

01_57874x ffirs.qxd 8/15/05 3:40 PM Page ii

Professional WinFX™ Beta:
Covers “Avalon” Windows Presentation

Foundation and “Indigo”
Windows Communication

Foundation

01_57874x ffirs.qxd 8/15/05 3:40 PM Page i

01_57874x ffirs.qxd 8/15/05 3:40 PM Page ii

Professional WinFX™ Beta:
Covers “Avalon” Windows Presentation

Foundation and “Indigo”
Windows Communication

Foundation

Jean-Luc David, Bill Ryan, Ron DeSerranno,
and Alexandra Young

01_57874x ffirs.qxd 8/15/05 3:40 PM Page iii

Professional WinFX™ Beta: Covers “Avalon” Windows
Presentation Foundation and “Indigo” Windows Communication
Foundation
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-7874-8
ISBN-10: 0-7645-7874-X

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/TR/QY/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. WinFX is a trademark of Microsoft Corporation in
the United States and/or other countries. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

01_57874x ffirs.qxd 8/15/05 3:40 PM Page iv

About the Authors
Jean-Luc David is a Toronto-based software developer and consultant. He founded Stormpixel.com in
1998, where he specializes in web design and in developing custom desktop, Tablet and Windows
Mobile applications for his clients. Jean-Luc has written many technical articles for companies such as
ASPToday.com, C|NET and XML.COM. Jean-Luc has the unique distinction of being the first Canadian
to receive the Microsoft .NET MVP Award.

Ron DeSerranno is the founder and CEO of Mobiform Software Ltd. His software development career
first began at the Space and Atmospheric Research Group, Physics Department, at the University of
Western Ontario. He was a Microsoft Certified Trainer and consultant and taught courses in both
New York and Toronto. For five years, he was development lead and architect for Rockwell’s flagship
Industrial Automation product RSView, an invaluable tool for globally scaled companies such as Kraft
and General Motors. Other ventures include the establishment of BoardMaster Software and Motivus
Software Ltd. Mr. DeSerranno is considered one of the leading authorities on XML-based graphics
technologies and has been designing and developing world-class software products for many years.
His current focus is on WinFX by Microsoft.

Bill Ryan is a Microsoft MVP in Windows Embedded Product group. He’s currently working as a
senior software developer at InfoPro, Inc in Augusta, Georgia. He is a .NET enthusiast and spends a lot
of time working with bleeding-edge technologies. His favorite areas in technology are ADO.NET, the
Compact Framework, Microsoft Speech Server, Biztalk Server, and Yukon. Outside of technology, his
interests include reading, cult movies, techno-music, and cuckoo clocks. You can usually find Bill in one
of the Microsoft .NET newsgroups, his blog (www.msmvps.com/WilliamRyan) or some of his Web sites
(www.knowdotnet.com, www.devbuzz.com).

Alexandra Young of Mobiform Software is the team leader for Avalon and XAML education as well as
user interface design for Mobiform’s XAML Designer for WinFX, Aurora.

With over six years experience in web, multimedia, and database design, Alexandra has acquired
necessary skills to program in XAML, ASP, ASP.Net, Visual Basic, VB.Net, T/SQL, and C#. Fully under-
standing the tools available to designers and developers has led to her passion for, success in, and drive
to understand and evangelize new software technologies. These skills have been instrumental in the
education of Mobiform’s customers.

Experience in various software products has given Alexandra a full understanding of the limitations
and benefits of products produced by the likes of Microsoft, Adobe, and Macromedia. This knowledge
has fueled her enthusiasm for the universal benefits of Microsoft’s “Avalon” API and XAML markup
language. She knows that this technology will revolutionize the way we design and build Web and
software applications.

01_57874x ffirs.qxd 8/15/05 3:40 PM Page v

01_57874x ffirs.qxd 8/15/05 3:40 PM Page vi

For my beautiful wife, Miho, who has patiently stood by me and supported
me through the writing of this book. A special thanks goes out to the
David family for their ongoing support.

01_57874x ffirs.qxd 8/15/05 3:40 PM Page vii

01_57874x ffirs.qxd 8/15/05 3:40 PM Page viii

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editors
Marcia Ellett
Sydney Jones

Technical Editors
Derek Comingore
Bill Ryan
Andrew Watt

Production Editor
William A. Barton

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Bill Ramsey

Graphics and Production Specialists
Jennifer Heleine
Amanda Spagnuolo

Quality Control Technician
Charles Spencer

Proofreading
Publication Services

Indexing
Johnna VanHoose Dinse

Media Development Specialists
Angela Denny
Kit Malone
Travis Silvers

01_57874x ffirs.qxd 8/15/05 3:40 PM Page ix

01_57874x ffirs.qxd 8/15/05 3:40 PM Page x

Acknowledgments

First and foremost, I would like to thank my Wrox editors, Jim Minatel and Bob Elliot, for their wisdom,
guidance, and patience, and Marcia Ellett and Sydney Jones for their great editing feedback and advice.
A very special thanks goes out to my coauthors—Bill Ryan, Ron DeSerranno, and Alexandra Young—for
sharing their knowledge and expertise within these pages. I’d also like to thank the Indigo and WinFX
product teams for providing fantastic resources and direction—in particular, Steve Swartz, Ami Vora,
Erik Weis, Ed Kaim, Ari Bixhorn, Stuart Celarier, Achim Ruopp, Tim Sneath, and Jan Shanahan.

—Jean-Luc David

I would like to thank Ron DeSerranno for his leadership and guidance and for giving me the opportu-
nity to coauthor the Avalon chapters. Additionally, I am thankful to my coworkers at Mobiform
Software, Gary Fuhr, Jason Wylie, and Glen Sollors, for their technical and proofreading input and sup-
port. Mike Swanson and the Avalon team at Microsoft were instrumental in helping me with concepts
and markup structure for some of the newer controls. My exceptional editors Maria Ellett and Sydney
Jones were paramount to making this book cutting edge by accommodating Avalon updates and
changes right up to the moment of going to press. Most important, I would like to thank my mother,
Wilma Young, for her unyielding support and patience.

—Alexandra Young

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xi

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xii

Introduction

The Windows Framework Extension (WinFX) is Microsoft’s next-generation Windows programming
framework. WinFX is based on the .NET Framework 2.0 but incorporates new programming APIs such
as “Avalon” (now renamed as Windows Presentation Foundation) and “Indigo” (now known as
Windows Communication Foundation). WinFX was first unveiled to the world at the 2003 Professional
Developer’s Conference (PDC) in Los Angeles and initially was an integral part of what was then code-
named Windows “Longhorn” client and is now known as Windows Vista. (Throughout this book, we’re
still going to refer to the operating system as Longhorn, the codename that included both the client and
server versions of the OS. And we’ll continue to use the shorter, more convenient Avalon and Indigo
nomenclature.) In August 2004, Microsoft made the following decisions:

❑ To remove Windows File System (WinFS)

❑ To port WinFX to downlevel platforms such as Windows XP Service Pack 2 and Windows
Server 2003

You may be asking what the core difference between WinFX and Windows Longhorn is. WinFX is a
development framework that sits on top of the platform. Windows Longhorn is Microsoft’s next-
generation operating system. WinFX was intentionally decoupled from the platform to make it portable
to other platforms and to minimize the dependencies between the platform and framework. Using
WinFX, you can’t directly access the shell or the User Experience component (code named Aero).

Microsoft has a history of code naming operating systems after mountains. For example: Windows XP
had the code name “Whistler,” after a popular ski resort in Vancouver, Canada. Longhorn Server was
originally code named Blackcomb (yet another ski resort). The Longhorn Saloon & Grill, a popular bar
at the foot of Whistler Mountain, inspired the name Longhorn. I met the saloon’s manager on a plane
trip a year or so ago—apparently Bill Gates likes to conduct executive meetings in the establishment.
Here is the link to the saloon’s Web site: longhornsaloon.ca.

Why rewrite the .NET Framework? Part of the reason is Moore’s law. Hardware technology is develop-
ing and innovating by leaps and bounds. In the near future, terabyte drives and ultra-high-resolution
displays will be commonplace. Computers are able to handle a greater capacity. Connectivity is at the
forefront, along with the need for better security. Standards such as RSS and Web Services are garnering
wide adoption and solving integration issues.

For many years, Microsoft had different product divisions working on different solutions for similar
problems. For example, in the Win32 API, there are currently over half a dozen ways of generating
graphics by using technologies such as the Graphical Device Interface (GDI), DirectX, Direct3D, and
others. In developing WinFX, Microsoft took the opportunity to look at the preexisting framework

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xiii

xiv

Introduction

and decided to unify many of the principal APIs, most notably on the presentation and the communica-
tion layer. There are several additional reasons why WinFX makes sense:

❑ The Win32 API was designed in the fall of 1992—it’s currently over 12 years old. It wasn’t origi-
nally designed to handle the challenges of Internet and distributed computing environments,
especially in terms of security.

❑ DCOM has proven to be overly complicated, lacking the ability to handle asynchronous enter-
prise-level applications and integrate with multiplatform environments

❑ The Windows visual user interface has not changed much since 1995. All icons and elements are
all two-dimensional and can benefit greatly from an upgrade.

Since WinFX is based on the .NET Framework 2.0, you can rest assured that your existing .NET code will
continue working. WinFX is primarily designed to provide you with new APIs to leverage the Longhorn
platform and new advances in hardware and software. Since the WinFX framework has been down-
ported to Windows XP Service Pack 2 and Windows Server 2003, the code you design will not only work
on Windows Longhorn but also on existing systems.

A misconception about WinFX is that it is completely written in managed code. This is largely untrue.
Microsoft has written a rich, unmanaged codebase comprising millions of lines of code. It doesn’t make
sense for them to reinvent the wheel. For example, the Windows threading model works pretty well as
is. Using WinFX, Microsoft has provided you with a way to instantiate and control threads in a managed
environment. However, behind the scenes WinFX taps into the Win32 API for some of its functionality.
The same holds for queuing in Indigo: Why rewrite an entire queuing infrastructure? Indigo leverages
the existing Microsoft Message Queue (MSMQ) framework because, frankly, it does the job really well.

Microsoft is currently synchronizing the release of WinFX with the release of the Longhorn betas. For
example, Longhorn Beta 2 will be released at the same time as WinFX Beta 2 is released. One of the
questions that I’ve heard many times recently is why would I want to work with these Longhorn-based
technologies right now? The short answer is that being an early adopter can give you a competitive
advantage. You can gain a better understanding of the technology and gain an early (and larger) market
share for new products based on the platform.

Another compelling reason for learning Avalon and Indigo is the simple fact that these technologies are
the future of Windows programming. There’s no excuse for not being on top of the latest developments
on your primary development platform!

Who This Book Is For
This book is designed to provide you with an overview of programming with WinFX, with a special
emphasis on Avalon and Indigo. After reading the book, you will be able to:

❑ Upgrade your current Windows .NET applications to take advantage of Longhorn’s new
programming model, framework, and architecture

❑ Create and deploy Avalon/XAML applications from scratch

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xiv

xv

Introduction

This book targets experienced Windows .NET programmers. You’ll notice that most of the samples
included in this book are written in C#. Programming with WinFX requires the following skill set:

❑ A solid knowledge of fundamental .NET programming concepts in the language of your choice
(C# or VB—although the book’s examples are in C#, much of this code could be done in VB by
experienced VB programmers)

❑ An understanding of the common language runtime (CLR) and managed code

❑ A good handle on XML concepts (such as XML Web Services) and Service Oriented Architecture

❑ Knowledge of the .NET Framework’s Base Class API

This book contains plenty of code samples and demonstrations that will help you adapt old applications
to take full advantage of the WinFX API and use Longhorn-specific features. Whether you are a .NET
developer or an active Longhorn developer, Professional WinFX Beta provides ways to jump easily into
this new technology.

If you are an active Longhorn developer, you will feel at ease in these pages. If you are a hobbyist or
beginner, Professional WinFX Beta provides a solid entry point to Microsoft’s new programming con-
cepts and technologies. The playing field is level in some ways because the technology is new to every-
one. If you are starting out, it might be of benefit to read this book from cover to cover.

What This Book Covers
From a big picture perspective, this book delivers an overview of the major APIs and functionality
available in WinFX Beta 1. You can fully expect that your code will work on Beta 1 of the framework.
Microsoft may decide to make changes to the framework by the time the final version is released. The
Object Model (OM) for Avalon and Indigo has matured by leaps and bounds since the 2003 PDC.

In a nutshell, some parts of WinFX will not change between now and the final release; some parts will.
If you write code using WinFX Beta 1, expect to be making some changes to it in the future. Depending
on what parts of the framework you are using, your mileage may vary. As a rule of thumb, beta code
on a beta framework should not be integrated into mission-critical, production environments. For up-to-
date guidance (and a release schedule) for WinFX, please consult the Microsoft Longhorn Web site:
http://msdn.microsoft.com/longhorn.

We will be talking about familiar concepts such as ADO.NET. As much as possible, we’ve tried to put it
in a “Longhorn” context, tackling issues such as how to bind data to a XAML form.

How This Book Is Structured
The book is divided into the three distinct sections. Each section is composed of chapters that drill down
into the particulars of each WinFX technology.

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xv

xvi

Introduction

Avalon
Avalon is Longhorn’s new presentation subsystem, made accessible through WinFX. Chapters 1 through
4 will provide you with a solid end-to-end overview of the major features of Avalon:

❑ Chapter 1—This chapter will provide you with a high-level overview of the important concepts
behind Avalon.

❑ Chapter 2—This chapter looks at XAML, Microsoft’s new Extensible Application Markup
Language. You will learn how to create effective forms using XAML for implementations rang-
ing from simple to complex.

❑ Chapter 3—Avalon has terrific support for graphics and motion. In this chapter, you learn how
to work with shapes, paths, painting, and brushes and find out how to create applications that
leverage 2-D animation.

❑ Chapter 4—In this chapter, you look at advanced features of Avalon including styling, events,
XAML /Windows Forms interoperability, and Avalon 3-D features.

Indigo
Indigo is one of the key pillars of Longhorn, representing the entire communication subsystem. This
component comprises an infrastructure based on Web Services and peer-to-peer processing to transmit
messages internally and across all types of networks. Indigo’s strength lies in facilitating tasks such as
creating Web-enabled applications, communicating across application domains, integrating PC-to-PC
data transfers, and instant messaging capabilities. Here are the Indigo chapters in the book:

❑ Chapter 5—This is an introductory chapter on Indigo. You’ll learn the fundamental concepts of
Indigo and the Indigo architecture.

❑ Chapter 6—This chapter deals with transactions and messaging. You will find out how to send
secure, reliable messages and take advantage of Microsoft Message Queuing.

❑ Chapter 7—Migration and interoperability are the focus of this chapter. You will learn how to
migrate existing communication APIs (such as DCOM, .NET Remoting, Enterprise Services, and
many others) to Indigo. You’ll also learn how to configure these communication services to
interoperate effectively with Indigo.

Data
As with traditional .NET applications, data integration is an important function in any Longhorn-based
application. Here is a listing of the data chapters in the book:

❑ Chapter 8—This chapter discusses data services, which is the mechanism of setting properties
based on values persisted to and retrieved from a data store. It shows you how to bind data to
Avalon forms and how to leverage data within the WinFX framework.

❑ Chapter 9—This chapter explores ADO.NET and ASP.NET. This chapter will show you how to
manipulate data within the WinFX framework.

❑ Chapter 10—We will provide an overview of Windows Services. This chapter will explain the
new service features in WinFX and how to integrate these services into your Avalon/Indigo
applications.

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xvi

xvii

Introduction

What You Will Not Find in This Book
In this book, you will not find coverage on the Windows File System (WinFS), user experience and
shell programming (Aero), or information specific to Beta 2 or the final release of the product. If you are
interested in these topics the best place to look is the Longhorn Center on Microsoft’s MSDN Web site:
http://msdn.microsoft.com/longhorn.

What You Need to Use This Book
To write the code and run the samples in this book, you will need the following software:

❑ Windows Longhorn Client Beta 1, Windows XP Service Pack 2, or Windows Server 2003 (you
must also install components such as IIS)

❑ Visual Studio 2005 Beta 2

❑ SQL Server 2005

❑ WinFX Beta 1

❑ WinFX Beta 1 Software Developer Kit (SDK)

❑ Optional: Microsoft VirtualPC 2004. (In fact, we strongly recommend that you use this product
to install any Beta product. You can download a trial version on the Microsoft Web site.)

Both the WinFX framework and SDK are available in ISO formats. For more detailed information about
the system requirements for each of these components, please refer to the appropriate ReadMe files.

XAML Tools
There are many tools available for writing XAML code. Microsoft is currently working on an XAML
designer code named Sparkle. If you want a designer today, the following third-party tools offer good
solutions:

MobiForm Aurora
Aurora is a designer that allows you to produce XAML using the Avalon Object Model. Such a tool is
currently missing in the current Visual Studio IDE. With Aurora, you can visually build Avalon docu-
ments, graphics, and user interfaces. It enables you not only to draw but also to programmatically create
graphic libraries and objects. Finally, Aurora was designed with an extensible plug-in architecture and a
well-documented object model. The Avalon chapters in the book were written by experts from
MobiForm. To download a trial version of Aurora, visit the following link: mobiform.com.

AvPad
Chris Anderson, one of the software architects on the Avalon team, has designed a free, simple XAML
designer. Simply plug in your code, and you are able to see the resulting XAML graphics. You can down-
load this tool from simplegeek.com.

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xvii

xviii

Introduction

Indigo Tools
Indigo comes bundled with a bunch of great tools. Pierre Greborio, a solutions architect MVP, has
designed many Indigo tools, including an Indigo proxy generator that integrates with Visual Studio
2005 and the Indigo Service Tester to test an Indigo service. You can download these tools on his blog:
http://weblogs.asp.net/pgreborio.

Languages
XML plays a pivotal role in all facets of WinFX, starting from declarative XAML client user interfaces,
MSBuild configuration files, and Indigo support for XML and Simple Object Access Protocol (SOAP)
messaging. Most of the nondeclarative logic you’ll write using WinFX should primarily be written
in C# or VB.NET.

Source Code
As you work through the examples in this book, you may choose to type in all the code manually or to
use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists), and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7874-X (changing to 978-0-7654-7874-8 as the new industry-wide 13-digit numbering
system is phased in by January 2007).

After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time, you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xviii

xix

Introduction

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At p2p.wrox.com, you will find a number of different forums that will help you, not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com, and click the Register link.

2. Read the terms of use, and click Agree.

3. Complete the required information to join, provide any optional information you want to,
and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but to post your own messages, you
must join.

After you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xix

01_57874x ffirs.qxd 8/15/05 3:40 PM Page xx

Contents

Acknowledgments xi

Introduction xiii

Who This Book Is For xiv
What This Book Covers xv
How This Book Is Structured xvi

Avalon xvi
Indigo xvi
Data xvi
What You Will Not Find in This Book xvii

What You Need to Use This Book xvii
XAML Tools xvii
Indigo Tools xviii

Languages xviii
Source Code xviii
Errata xviii
p2p.wrox.com xix
Contents xxi

Part I: Avalon 1

Chapter 1: Avalon 3

What Is Avalon? 3
What Is XAML? 4
XAML Syntax 5

Namespace 6
Important Concepts 7
Jump Start 11
Creating an Application 11
Summary 14

02_57874x ftoc.qxd 8/15/05 3:40 PM Page xxi

xxii

Contents

Chapter 2: Avalon Documents in XAML Markup 15

Understanding XAML 15
The Avalon API Hierarchy 16

UIElement 16
FrameworkElement 17

Working with Controls 20
Dependency Properties 20
Control Types 21

Working with Multimedia 32
Image 32
MediaElement 32

Working with Panels 33
Properties 33
Canvas 33
DockPanel 36
Grid 38
StackPanel 41
BulletPanel 42
TabPanel 43
ToolBarOverflowPanel 44

Working with Documents 45
Fixed-Format Documents 45
Flow Format Documents 48
Tables 48
TextFlow 50
TextBlock 51
Hyperlinks 51

Application Types in Visual Studio 51
Avalon Control Library 52
Avalon Application 52
Browser Application and Navigation Application 52

Chapter Exercise: Creating a Calculator 53
Summary 56

Chapter 3: Avalon Graphics and Animation 57

Working with Shapes 57
Ellipse 58
Line 59
Polygon 59
Polyline 60
Rectangle 61
Glyphs 63

02_57874x ftoc.qxd 8/15/05 3:40 PM Page xxii

xxiii

Contents

Using Paths 63
Simple Geometries 64
GeometryCollection 66
PathGeometry 67
ArcSegment 68
BezierSegment 69
LineSegment 69
QuadraticBezierSegment 70
Poly Segments 71
Abbreviated Path Syntax 72

Painting and Brushes 77
Solid Color Brush 78
Gradient Brushes 78
Abbreviated XAML Gradient Syntax 81
Brushes that Paint with Graphics 83

Transforms 89
TransformGroup 89
TranslateTransform 90
RotateTransform 91
ScaleTransform 91
SkewTransform 92
MatrixTransform 93

Implementing 2-D Animation 93
Timelines 93
StoryBoard 95
Color Animation 97
Double Animation 98
Point Animation 98

Summary 102

Chapter 4: Advanced Techniques 105

Types of Styling 105
Implicit Styling 105
Named Styles 106
Derived Styles 107
Triggers 108
Overriding the Visual Tree 109

Events 110
Bubbling and Tunneling 111
Resources 112
Binding 117
Interoperation Capabilities 120

02_57874x ftoc.qxd 8/15/05 3:40 PM Page xxiii

xxiv

Contents

Serialization 122
Avalon 3D 122
Summary 131

Part II: Indigo 133

Chapter 5: Introducing Indigo 135

Service Orientation 136
Indigo Architecture 136
Contracts and Endpoints 137

Code-First, Contract-First and Late-Bound Development 138
Service Contract 138
Operation Contract 139
Data Contract 139

Bindings 140
Standard Bindings 141
Custom Bindings 142

Metadata 144
Publishing and Exporting Metadata 144
Consuming Static Metadata 146
Handling Dynamic Metadata 147

Service Addresses 148
URI Specifications 148

Hosting 148
Web Hosting 151

Indigo from End to End 152
Building the Indigo Client 152
Building the Indigo Service 154

Summary 155

Chapter 6: Transactions and Messaging 157

System.Transactions 158
Using Indigo Transactions 158
Secure Reliable Messaging 159
Indigo Queues 160

Managing Queues and Transactions 161
Handling Transaction Failures in Config 163
Using Sessions in Queues 164
Handling Queue Delivery Errors 165
Dead Letter Queues 166

02_57874x ftoc.qxd 8/15/05 3:40 PM Page xxiv

xxv

Contents

Synchronous versus Asynchronous Invokes 166
Indigo Sessions 167
Indigo Transactions 168
Duplex Communication 171
Streaming 172
BizTalk Server and Indigo 172
Summary 173

Chapter 7: Indigo Migration and Interoperability 175

The Big Picture 175
Looking at the Scorecard 176

Web Service Enhancements and ASMX 176
Enterprise Services (ES) 178
Microsoft Message Queuing 180

Unsupported Features 181
Working with Indigo Queues 181

.NET Remoting 183
COM+ 184

Preparing your COM+ Assemblies for Indigo 184
Exposing COM+ Functionality Using Indigo Services 185
Consuming Indigo Services Using COM+ Clients 185
Indigo Moniker Properties 186

Other Vendors’ Technologies 187
Integration Challenges 187
Indigo Tools 187

ComSvcConfig 187
Svcutil 188

Summary 188

Part III: Data and Web 189

Chapter 8: Data Services 191

Data Services 191
Enter XAML 193
Binding Types 194
Data Sources 195
Data Styling 198
Conversion 200
Data Collections 203

Summary 207

02_57874x ftoc.qxd 8/15/05 3:40 PM Page xxv

xxvi

Contents

Chapter 9: ADO.NET and ASP.NET 209

The Evolution of ASP.NET 209
ADO.NET 211

Enumerating SQL Server Instances 211
Transaction Processing 219
XML Processing 224

Summary 232

Chapter 10: Windows Services 233

Creating Services 233
Controlling Services 239
Installing Your Windows Services 242
Summary 244

Appendix A: Resources 245

Websites 245
Newsgroups 245
Tools 245

Index 247

02_57874x ftoc.qxd 8/15/05 3:40 PM Page xxvi

Professional WinFX™ Beta:
Covers “Avalon” Windows Presentation

Foundation and “Indigo”
Windows Communication

Foundation

03_57874x flast.qxd 8/15/05 3:40 PM Page xxvii

03_57874x flast.qxd 8/15/05 3:40 PM Page xxviii

Part I

Avalon

04_57874x pt01.qxd 8/15/05 3:41 PM Page 1

04_57874x pt01.qxd 8/15/05 3:41 PM Page 2

Avalon

This section of the book provides an introduction to Avalon, a graphics and user interface applica-
tion programming interface (API) and Extensible Application Markup Language (XAML). These
components are a major part of WinFX, the next generation of graphics and communications tech-
nologies developed by Microsoft.

The goal of the first four chapters is to equip you with a degree of confidence and expertise in cre-
ating and authoring XAML documents and in working with the Avalon API. Avalon is extensive,
and covering it in detail could easily span several books. We will be covering key concepts and
providing you with the basic skills and knowledge to get great results quickly.

What Is Avalon?
Avalon is the code name for the new presentation API in WinFX. It is revolutionary, not only in its
capabilities, but also in how you use it to develop software applications and how you view soft-
ware and the Web. Avalon is a two-dimensional (2-D) and three-dimensional (3-D) graphics engine
with the following characteristics and capabilities:

❑ Contains many common user interface components, including buttons, sliders, and edit
boxes

❑ Does 2-D and 3-D animation

❑ Contains hyperlinks (for navigating between documents) and tables

❑ Provides various types of grids and panels to assist in layout

❑ Has multipage fixed-format and flow-format document layout, styles, storyboards, time-
lines, effects, data binding, and so on

05_57874x ch01.qxd 8/15/05 3:41 PM Page 3

To get a good mental grip on what documents created in Avalon are capable of, consider a document as
a file that has the majority of the features found in a Macromedia Flash document (.SWF) all mixed
together, including the following:

❑ HTML page

❑ Cascading Style Sheets (CSS)

❑ Scalable Vector Graphics (SVG)

❑ Microsoft Word document

❑ Virtual Reality Markup Language (VRML)

❑ WinForms controls

Mobiform Software, one of the foremost authorities outside of Microsoft, describes Avalon as “The con-
vergence of documents, media, and applications,” where the whole concept of a document, the Internet,
and an application begins to blur into something new and more powerful.

This means that within one document you can combine 2-D graphics with 3-D graphics, animate and
transform, and apply other effects. Additionally, this API enables you to create applications for either the
desktop or the Web with one markup language and, more excitingly, maintains your initial vision of the
document structure while maintaining the personal preferences of the users as they interact with the
final product.

The Avalon API has been created in .NET 2.0 and can be accessed by any of the .NET languages such as
Visual Basic, C#, and managed C++.

At the time of writing this section of the book, the API was still being developed and was not fully com-
plete. All syntax is based on the Beta Release Candidate 2, which was released in June 2005.

Developers have the option of either using C# or VB.NET to code directly against the API. Alternatively,
the Avalon objects may be instantiated using the XAML markup, or they can have a mixture of XAML
with .NET code behind.

What Is XAML?
XAML is a declarative XML-based language that defines objects and their properties in XML. An XAML
parser instantiates and wires up the objects using an appropriate API and sets their properties.

Quite often you will hear XAML and Avalon used interchangeably, but this is incorrect. XAML is simply
a form of XML markup. Avalon is the graphics and user interface API. While XAML is used to instanti-
ate Avalon objects, there is nothing that excludes XAML from being used to create objects from other
nongraphical APIs. However, at the time of writing, Avalon/XAML runs only on Windows XP or
Windows Server 2003 and Longhorn.

When using XAML with Avalon, the procedural code (code behind) is separate from the user interface
(UI). The advantage to this approach is that it enables teams to work together at the same time. For
example, traditionally designers’ and developers’ interaction on projects has been negligible; however,
with this new API, this barrier has been lowered. A programmer can work on the code behind a

4

Chapter 1

05_57874x ch01.qxd 8/15/05 3:41 PM Page 4

document at the same time that a graphics designer works on the UI. This makes for efficient coding
practices. Additionally, programmers no longer need to be designers, because the designer’s work can
be integrated directly into the software. Architects and designers can design and approve their front
ends in XAML, which can then be incorporated directly into the software. The developers need to worry
only about the back-end logic. Teams of designers can now focus on creating a much richer user inter-
face experience without interrupting the overall development process. Interface skins can be designed;
even the localization process of creating applications for different languages gets easier.

Skins are customized interchangeable graphics that enable users to personalize the appearance of their
desktop and various applications.

XAML Syntax
XAML is written in XML. The XAML syntax describes objects and properties and their relationship to
each other. Properties can be set as attributes. Alternatively, with the use of the period notation, you can
specify the object as a property of its parent. The following example shows an object (ListBox) with
three children (ListBoxItem one through three). The Content property on the first ListBoxItem
object is assigned the value of Item One:

<ListBox Name=”lbox” Height=”127” Width=”154”>
<ListBoxItem Name=”lBoxItem1” Background=”Aqua” Width=”100”>

<ContentControl.Content>
Item One

</ContentControl.Content>
<ContentControl.Height>

30
</ContentControl.Height>

</ListBoxItem>
<ListBoxItem Name=”lBoxItem2”>

Item Two
</ListBoxItem>
<ListBoxItem Name=”lBoxItem3” Content=”Item Three” />

</ListBox>

For the syntax to be correct, the setting of the Content property on the first ListBoxItem to Item One
should be a valid assignment. Therefore, based on that statement, Item One would be considered a sub-
class of Content. Also note the various manners in which you are able to write the syntax in order to fit
your style of coding. Figure 1-1 shows the output produced from either the C# or XAML syntax for cre-
ating the parent ListBox, its three children, and their dependent properties.

Figure 1-1

5

Avalon

05_57874x ch01.qxd 8/15/05 3:41 PM Page 5

Following is the C# equivalent to the XAML syntax from the previous example:

private void WindowLoaded(object sender, EventArgs e) {
lBox = new ListBox();
lBox.Width = 154;
lBox.Height = 127;
lBoxItem1 = new ListBoxItem();
lBoxItem1.Content = “Item One”;
lBoxItem1.Background = Brushes.Aqua;
lBoxItem1.Width = 100;
lBoxItem1.Height = 30;
lBox.Items.Add(lBoxItem1);
lBoxItem2 = new ListBoxItem();
lBoxItem2.Content = “Item Two”;
lBox.Items.Add(lBoxItem2);
lBoxItem3 = new ListBoxItem();
lBoxItem3.Content = “Item Three”;
lBox.Items.Add(lBoxItem3);

myWindow.Children.Add(lBox);
}

XAML is an example of declarative programming, which describes relationships between variables
through the use of functions and logic rules. To come to a solution, the programming is structured as a
series of conditions that the application proceeds through to solve the problem presented. XAML is a
declarative markup language.

Namespace
A namespace is a mechanism used in XML and .NET technologies to group objects together and to pre-
vent naming collisions. A namespace extends the name of an object, much like adding a last name for a
person. There might be many Bills in a large group of people, but only one Bill Gates. There might be
two or three Node classes in a group of large API’s, but when qualified with their namespace prefix, they
are unique. Namespaces are also arranged to contain like and related classes. This makes it easier to
locate objects and structures while programming. Namespaces can also have child namespaces, which
are used for further organization of an API.

The Namespace Hierarchy in Avalon is extensive; it encompasses a large and complex API that includes
2-D and 3-D graphics, user interface type controls, and the animation classes. The API is an addition to
the namespaces available in .NET 2.0.

The following list introduces some of the more commonly used namespaces:

❑ System.Windows— This namespace contains the classes and interfaces that are used in creating
applications. This namespace defines many common interfaces and structures used throughout
the API, such as the Application Class, Window Class, styling, dependency, and the common
base classes.

6

Chapter 1

05_57874x ch01.qxd 8/15/05 3:41 PM Page 6

❑ System.Windows.Controls— The Controls namespace is associated with the application’s
user interface. This includes menus, hyperlinks, edit boxes (text, check, combo and list boxes),
buttons, panels, borders, and sliders for audio and video. The Viewport3D (see Chapter 4 to
learn more) is also located in this namespace in order to control all 3-D content and interaction.

❑ System.Windows.Data— The Data namespace controls all the properties for binding proper-
ties to data. It is used to specify the source, its classes, and anything specifically associated with
implementing the data and its collections.

❑ System.Windows.Input— This namespace controls all modes of input, such as a mouse, key-
board, or tablet that a user may interact with when using the application.

❑ System.Windows.Media— The Media namespace controls all the graphics classes for both 2-D
and 3-D. It also defines path segment classes, brushes, colors, image effects, geometry classes,
collections, audio, video, enumerations, and structures.

❑ System.Windows.Media.Animation— This namespace contains the classes used for 2-D and
3-D animation. This area includes the various Timelines, KeyFrames, and Animation types.
(See Chapter 3 to learn more).

❑ System.Windows.Media.Media3D— It contains a variety of classes specific to 3-D graphics.
These classes are used to further define how the graphics will be presented within an applica-
tion. Lights, meshes, materials, and 3-D point and vector classes are all included in this
namespace.

❑ System.Windows.Navigation— This namespace is dedicated to the classes and interfaces
used for application navigation, whether it is the navigation between windows, panes, or jour-
naling.

❑ System.Windows.Shapes— This is the namespace for all the primitive 2-D shapes used within
the API. They are the ellipse, glyphs, line, path, polygon, polyline, and rectangle. These classes
are quite similar to those found in Scalable Vector Graphics (SVG).

❑ System.Windows.Resources— This namespace contains all the classes that use resources.
This is the area of the namespace where you would define properties for styles, animations, and
localization that can be accessed by any object, by referencing its name such as
Style=”{StaticResource ResourceName}”, within the application.

❑ System.Windows.Serialization— This namespace supports the conversion of the Avalon
object model to the XAML declarative language and vice versa.

Important Concepts
This section discusses key Avalon API concepts that are required and used in every application. The next
part of the chapter discusses the hierarchical structure of documents and elements and the manner in
which properties are passed down from parent to child within the API.

Trees in Avalon
In Avalon there are two important types of trees: Logical Trees and Visual Trees. These trees define
aspects of the Avalon API and the object hierarchy.

7

Avalon

05_57874x ch01.qxd 8/15/05 3:41 PM Page 7

Logical Tree
Much like an XML document hierarchy, the Logical Tree defines the relationship between objects and
their parents. This tree helps determine how properties from one element are inherited from its parent
and how event routings occur for the application’s events.

You navigate the tree using higher-level classes. For example, Panel-derived classes have children,
whereas ListItem-derived classes have an Items property for accessing their children. To navigate the
tree without having to worry about the types of objects located in the tree, Avalon has provided the
LogicalTreeHelper class. This class provides GetParent, GetChildren, and FindLogicalNode
methods for traversing the tree. The document’s Logical Tree structure is represented on the right side of
Figure 1-2.

Figure 1-2

Visual Tree
The other tree layer in Avalon defines how an object is rendered. Unlike the Logical Tree, this one is
more conceptual. It depicts the structure of visuals and their basic services and properties such as hit-
testing and coordinate transformations. For example, a button in Avalon is not rendered simply as a but-
ton; it is rendered as a set of visuals. These visuals comprise a structure of primitive drawing objects
(brushes, gradients, and primitive objects). The button is rendered as a Visual Tree of drawing primi-
tives. Unlike the Logical Tree, the Visual Tree cannot be navigated through the API. The Visual Tree
becomes significant when you look at styles and customization of how objects are rendered. This cus-
tomization and styling of objects is performed at the level of the Visual Tree.

Dependency Properties
The FrameworkElement is the initial class. It forms the baseline that separates the higher framework
from the visual presentation of the API. It provides the basic structure implementations for specific
methods that are defined in its parent, the UIElement. The UIElement is the primary base class for
frameworks in Avalon; it dictates all basic presentation and rendering characteristics.

8

Chapter 1

05_57874x ch01.qxd 8/15/05 3:41 PM Page 8

The dependency properties for the FrameworkElement are properties that are common on most every
visible object.

What Is the Dependency Property System?
DependencyProperties are registered with the Dependency Property System. These static properties
are used as lookup keys to access properties on objects in Avalon. Properties that participate in the
Dependency Property System can be styled, animated, used in data binding, and used in expressions.

Regular DependencyProperties are used on the objects that are declared. For example, the Ellipse
class has a RadiusX property. It has a corresponding static DependencyProperty called
RadiusXProperty, which is used in animation and other functions. You get the value of a
DependencyProperty on an object by using the GetValue() method and passing in the
DependencyProperty you are interested in. Another kind of DependencyProperty is attached. These
properties are not used on the objects that declare them, but are used (inherited) by other classes.

A good example of this is the DockPanel in Figure 1-3 where it shows that the button is placed to the
right side of the panel. When the property Dock is an attached property used by one of the child ele-
ments within the DockPanel in order to place it, the other two are distributed evenly across the
DockPanel.

<DockPanel Width=”300” Height=”50” Background=”Gray”>
<Button DockPanel.Dock=”Right” Width=”50” Content=”Button”/>

</DockPanel>

Figure 1-3

The following code snippet is a gross generalization of what the Dependency Property System looks like:

public class DependencyObject
{

public static DependencyProperty dependencyProperty1 =
DependencyProperty.Register(“prop1”, typeof(String), typeof(Button);

public static DependencyProperty dependencyProperty2 =
DependencyProperty.Register(“prop2”, typeof(String), typeof(Button);

System.Collections.Hashtable hashTable = new
System.Collections.Hashtable();

public object GetValue(DependencyProperty dp)
{

return hashTable[dp];
}

public void SetValue(DependencyProperty dp, object value)

9

Avalon

05_57874x ch01.qxd 8/15/05 3:41 PM Page 9

{
return hashTable.Add(dp, value);

}

Dependency properties are always static variables and are very common within the Avalon API. They
are used as a key in locating various properties on an object.

Although Avalon creates dependency properties, they can be created and used by developers, too. In
order to create a dependency property, in Avalon, it must be registered. To register the property, you
supply the property name, the type associated with the property, and the type of the owner.

Consider the following code, which creates a Rectangle and sets its Height:

Rectangle rect = new Rectangle();
rect.Height = 40;

Looking at the Rectangle class in the System.Windows.Shapes namespace, you will note that it has a
DependencyProperty for the RectangleHeight.

public static DependencyProperty HeightProperty;

The following code is also valid and equivalent to the preceding code:

Rectangle rect = new Rectangle();
rect.SetValue(Rectangle.HeightProperty), 40;

While dependency properties are normally used in the class in which they are declared, some can be
“attached” to other classes. Consider the following:

Button button = new Button();
button.Width = 40;
button.Height = 20;

This code creates a button and sets its width and height, but what is the position of the button? The
answer to that depends on its parent. If the parent of the button is a Canvas, then you set the position by
using dependency properties that belong to the Canvas class. These properties are then attached to the
button.

button.SetValue(Canvas.LeftProperty, 40);
button.SetValue(Canvas.TopProperty, 30);

However, if the parent of the button is a DockPanel, the position is set by using dependency properties
that belong to the DockPanel class.

button.SetValue(DockPanel.DockProperty, Dock.Left);

10

Chapter 1

05_57874x ch01.qxd 8/15/05 3:41 PM Page 10

A control located in a table, grid, or panel will use attached dependency properties to determine its posi-
tion within its parent. Regular and attached dependency properties can also be set in XAML, as in the
following example:

<Button Name=”btnOK” Height=”37” Width=”80” Canvas.Top=”313” Canvas.Left=”268”
BorderBrush=”Black” FontSize=”12”>OK</Button>

Here, the button has two dependent properties (Canvas.Top and Canvas.Left). They inherit their
location from their parent, Canvas, which could be either the root element or possibly be nested within
something larger itself. A period between two properties denotes a dependency property to its parent.

Jump Start
To begin creating an Avalon application, you must already have the WinFX Software Development Kit
(SDK) installed. This is available from the MSDN Web site at Microsoft. To follow along with the demos
in the next chapters, you must also have a copy of Microsoft Visual Studio 2005 installed to compile and
run the applications.

Prior to installing and working with this technology, you must be running on the following: Longhorn,
Windows XP with Service Pack 2, or Windows Server 2003 with Service Pack 1. Additionally, you
must have the latest version of the .NET Framework.

Microsoft Visual Studio 2005 and Mobiform Software Aurora are both optional but make constructing
much faster and easier.

To download the latest version of Avalon go to http://msdn.microsoft.com/longhorn.

To download Microsoft Visual Studio 2005 go to http://lab.msdn.microsoft.com/vs2005.
(XP Home Edition will not work with this program.)

To download Mobiform Software Aurora go to mobiform.com/Eng/aurora.html.

Creating an Application
To create an application, follow these steps:

1. Open Visual Studio and then select New ➪ Project from the File menu.

2. The program will bring up a dialog window where you can set your coding preference (C# or
VB.NET) in the project type frame.

3. In the Visual Studio installed templates frame, select the Avalon Application. Name the project
HelloWorld, as shown in Figure 1-4, and click OK.

11

Avalon

05_57874x ch01.qxd 8/15/05 3:41 PM Page 11

Figure 1-4

4. When the project opens, select Window1.xaml in the Solution Explorer panel.

5. Inside the Grid elements insert the following code:

<Button>Hello World!</Button>

6. Change the run mode from Debug to Release, and then click the Start button, F5, or Build
Solution from the Build menu to compile and launch the application.

Once launched, the application appears as if nothing has happened apart from displaying
“Hello World!” In fact, the entire window is a giant button, because the button is within a grid.
To make it look more like a button, simply add values for the Width and Height properties (as
in the following code) and then rebuild the program.

<Button Width=”100” Height=”50”>Hello World!</Button>

7. Next, modify the button so that it is housed in a canvas. Use the following code as a guide:

At the time of writing, the schemas were as stated in the sample that follows. However, the schema is
dynamically generated by Visual Studio upon opening the document. If you are hand coding, check with
the Microsoft Software Development Kit (SDK) to get the current URLs.

<Window x:Class=”SampleApp.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”SampleApp”
>
<Canvas Background=”Lime”>

<Button Name=”btnOK” Width=”100” Height=”50” Canvas.Top=”236”
Canvas.Left=”400” BorderBrush=”Red” FontSize=”14”>OK</Button>

</Canvas>
</Window>

12

Chapter 1

05_57874x ch01.qxd 8/15/05 3:41 PM Page 12

Upon running the application again, notice that the button is now using the attached depen-
dency properties on the Canvas to indicate its position. The Name property is very significant in
the XAML. When Avalon parses the XAML, it will create an object with a name of btnOK. This
object can be used in the CodeBehind as a declared object. Build and run the sample. When you
run the application, you will see a purple button with a red border placed in the middle of a
lime green window.

8. Next, you add some CodeBehind. Open the Window1.xaml.cs (located in the Solution
Explorer tab) code behind file. In it you will see the WindowLoaded method. This method is trig-
gered when the window is loaded. Uncomment the method and follow the instructions above it.

9. In the Window1.xaml file, set the Loaded property to the value “WindowLoaded” as shown in
the following code:

<Window x:Class=”SampleApp.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”SampleApp”
Loaded=”WindowLoaded”
x:CodeBehind=”Window.xaml.cs”>

This indicates to Avalon that when the window is loaded, the WindowLoaded method should be
called.

10. Return to the Window1.xaml.cs code behind file, and add the following code:

private void WindowLoaded(object sender, EventArgs e)
{
btnOK.Background = Brushes.BlueViolet;

}

Because the method is called, the background property will be set. You do not need to declare
the variable “btnOK” because this was already declared in the XAML document.

You may notice that objects morph into variables; this demonstrates the power of Avalon at work. In the
XAML, “btnOk” is considered an object by the markup. However, when the object is passed back to the
logic layer, the C#, in the CodeBehind, recognizes it as a variable because it has a name “btnOK”.

11. Next, hook up an event for the button. This should be very familiar to .NET developers who
work with .NET common controls. In the WindowLoaded method, hook up a click event to the
button. This event will be tripped when the button is clicked.

private void WindowLoaded(object sender, EventArgs e)
{
btnOK.Background = Brushes.BlueViolet;
btnOK.Click += new RoutedEventHandler(btnOK_Click);

}

void btnOK_Click(object sender, RoutedEventArgs e)
{
System.Windows.MessageBox.Show(“Hello Avalon Developer!”);

}

12. Press F5 to view the application. You will see that the button has a blue-violet background and a
message box pops up when you click the button.

13

Avalon

05_57874x ch01.qxd 8/15/05 3:41 PM Page 13

Summary
From this chapter, you should now begin to envision the possibilities of XAML and Avalon for develop-
ing better software. You have the option to program the logic using any .NET language, in any manner,
including directly against the API; create and use custom controls and integrate them into the API; and
so on.

You now know that Avalon is the engine that parses the XAML markup and wires it to objects in the
Avalon API. You have a basic understanding of how the objects are placed within the Logical Tree in an
application and in parent/child relationships, and how defining the Visual Tree sets the stage for styles
and control over the rendering of object content.

The key namespaces present in the Avalon API were introduced. As you move forward through the
chapters that follow, these namespaces will be fleshed out in more detail.

With some of the basic concepts behind the structure and hierarchy used in Avalon under your belt, the
following chapters will also introduce you to Avalon’s most common elements and controls. In addition,
you will look at some new user interface concepts and see how your old common controls found in
Windows forms are anything but common in Avalon.

14

Chapter 1

05_57874x ch01.qxd 8/15/05 3:41 PM Page 14

Avalon Documents in
XAML Markup

XAML is the most common method of creating a UI for a WinFX application. As discussed in the
first chapter, XAML is derived from XML. Where XML is commonly used as a means to describe
data, XAML combined with Avalon does much more.

Understanding XAML
Following is an example of a basic XML file:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<Window Name=”MyWindow”>

<Button Name=”MyButton”>Hello XML World</Button>
</Window>

It is important to note that XAML itself is nothing more than a markup language to create and
instantiate an object model, in this case Avalon. It is the power of the Avalon graphics engine that
allows you to create rich interfaces, support flow control, and create the UI without any code.

Following is the XAML equivalent to the XML shown previously:

<Window xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
Name=”MyWindow”>

<Button Name=”MyButton”>
Hello XAML World

</Button>
</Window>

06_57874x ch02.qxd 8/15/05 3:43 PM Page 15

When code is required—for example, when events are triggered by users to enhance their experience—
a separate file would be created in a .NET procedural code such as C# or VB.NET. This file would then
be referenced with the CodeBehind attribute. The xmlns:x, also present in the code that follows, indi-
cates to the parser which assemblies and namespaces need to be referenced to execute the code.

<Window xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
CodeBehind=”myLogic.cs” Name=”MyWindow”>

All XAML documents are saved with a .xaml file extension and require the mapping to point to the
Avalon and XAML namespaces (see previous sample). As you progress through this chapter, you may
note that Avalon has the ability to morph elements; classes will become tags, attributes will turn into
properties and events, and even XML namespaces change into common language runtime namespaces.
For example, a button written in XAML is an object, but when it is referenced in the C# CodeBehind, it is
considered a variable because it has a name.

Whereas traditional user interfaces (UI) were written by software developers, the Avalon API now
empowers designers to control the layout and presentation of their application regardless of where it
will ultimately be viewed. The API provides a selection of standard and specialized panels in which to
display a variety of documents a specific way. Instead of a single page that scrolls forever, you can actu-
ally navigate through documents like a book. Additionally, the API provides specialized classes that con-
trol how the text flows despite the end user’s preferences. The API maintains the intended appearance
and adapts these settings to the end user’s choice of text and screen size. This, in turn, speeds up the
development process for testing various screen sizes and localized versions of software products.

To effectively define the various types of layouts available, Microsoft has placed them in three name-
spaces:

❑ System.Windows.Controls— This encompasses many of the interactive controls in the appli-
cation, such as buttons, check boxes, and list boxes.

❑ System.Windows.Controls.Primitives— These are mainly base classes for the more com-
plex controls used on the interface, such as BulletPanel, RepeatButton, and TabPanel.

❑ System.Windows.Documents— As its name implies, this is the namespace used to program-
matically create documents. It also controls the text object model and editing capabilities.

The Avalon API Hierarchy
Now that you know where the elements are coming from in the API, let’s discuss some of the more
important base classes.

UIElement
The UIElement, from the System.Windows namespace, is the base class from which many visual objects
are derived. It determines each element’s initial appearance, layout, position, and user interaction.

16

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 16

The following table defines the most commonly used dependency properties of the UIElement.

Property Definition

AllowDrop Enables the element to have drag-and-drop capabilities.

IsEnabled A Boolean type valued property that allows you to control whether a
control is to work or not. For example, when creating a login inter-
face, the OK button can have the property IsEnabled=”False” until
the user enters his/her username and password.

IsFocused A Boolean type valued property that determines whether the control
has keyboard focus or not.

IsMouseOver Also a Boolean type valued property that controls mouse events
when over an element as well as its children.

Opacity A double type valued property that gets or sets the level of opacity
an object has. The value range is from 0 (transparent) to 1(opaque).

Visibility Gets or sets the visibility of an object.

FrameworkElement
Derived from UIElement, the FrameworkElement is also a base class. It is the class from which most
visual elements inherit their appearance and features—for example, the width and height of a ToolTip,
context menu, or cursor. The first of three key areas that pertain in particular to Visual Studio developers
and is found on this element is the Name property. When writing the .NET code, you access an object in
the XAML document by referencing its Name property.

Consider the following XAML:

<Canvas Name=”MyCanvas”>
<Button Name=”btnOK” Height=”37” Width=”80” Canvas.Top=”313” Canvas.Left=”268”

BorderBrush=”Red” FontSize=”14”>OK</Button>
</Canvas>

To access the button via your CodeBehind, use the Name of the object “btnOK” as a declared variable in
your C#. The variable has full IntelliSense and behaves like a regular defined variable. Figure 2-1 illus-
trates how IntelliSense assists you as you code.

Figure 2-1

17

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 17

When an application is compiled, dynamic code is created in a hidden file. It contains the variable decla-
rations for the object(s) in the XAML file. To see this generated file, select an object in the code behind
the file, right-click, and select the Go To Definition option from the context menu. The variable was cre-
ated in a partial class. The partial class is new syntax in .NET 2.0. It allows a class to be spread over mul-
tiple source code files. A partial class is especially effective for large projects where more than one
programmer is involved in its development. It is not necessary to add to or modify the partial class
because it is dynamically generated and will be overwritten upon compilation.

Following is a sample of generated code for a button:

public partial class Window1 : System.Windows.Window,
System.Windows.Serialization.IPageConnector {

protected internal System.Windows.Controls.Button btnOK;

private bool _contentLoaded;

private SampleApp.MyApp MyApplication {
get {

return ((SampleApp.MyApp)(System.Windows.Application.Current));
}

}

The second area of note is a class found in the FrameworkElement is the LogicalTreeHelper, which is
used to locate an object in the Logical Tree by its name. It contains static methods for locating an object
by its name as well as methods to retrieve the children of that FrameworkElement present in the Logical
Tree.

The third area is the TagProperty, an object that is not actually used by Avalon. Instead, it has been cre-
ated for developers to use to associate an Avalon object to an object or piece of information in their appli-
cation.

Following is a table of the common properties used in the FrameworkElement.

Property Definition

Cursor This is a read/write property that allows you to get or set the cursor.
With this property you would set the width and height, the represen-
tation of the cursor if it is to change states on mouseEvents, and so on.

FlowDirection This determines the manner in which all of the panel’s elements
should flow. The values can be LeftToRightThenTopToBottom, Right-
ToLeftThenTopToBottom, TopToBottomThenLeftToRight, or TopTo-
BottomThenRightToLeft.

Focusable A Boolean type valued property to determine whether an element
may receive focus. By default, elements are not focusable.

Height A double type valued property that gets or sets the height of an
element

18

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 18

Property Definition

HorizontalAlignment Determines how the control will be displayed along the horizontal
plane. Although the control is ultimately dependent on its parent as
to its layout, with this property the values can vary from Left, Center,
Right to Stretch. Stretch is the default value for this property, which
means that it is evenly laid across the parent element. Note: Explicit
height and width values applied on the parent element will take
precedence over the alignment properties.

Name This is used to get or set the identity of an element. Using the Name
property is an effective way of referring to a specific element in code
in cases of events or styling. Each element must be uniquely identi-
fied. Refer to the Style property if you want to affect more than one
element.

LogicalTreeHelper A means of locating an object in the Logical Tree by its Name.
The class also has methods to retrieve the children of a
FrameworkElement present in the Logical Tree.

Margin The space surrounding an Element. To set the margin requires four
double values separated with commas. Instantiate the margin’s val-
ues as a string in the order
<Element Margin=”Left,Top,Right,Bottom” />.

Resources Gets or sets the resources required for the immediate use in order to
render the elements present within the panel. (See the “Resources”
section to learn more.)

Style This is used to get or set the style of an object(s) from the resource.
For example, to make all the buttons appear like gel buttons the
syntax would be <button style=”GelButton” />. (See “Styles”
for more information).

Tag This property is made available for developers to use to associate an
Avalon object to an object or piece of information in their own appli-
cation.

ToolTip This property is a small pop-up window to enter a label as to the con-
trol’s purpose. The ToolTip is triggered when the mouse hovers over
the control.

VerticalAlignment Determines how the control will be displayed along the vertical
plane. Although the control is ultimately dependent on its parent for
its layout, with this property the values can be Top, Center, Bottom,
or Stretch. Stretch is the default value for this property, which means
it is evenly laid across the parent element. Note: Explicit height and
width values applied on the parent element will take precedence
over the alignment properties.

Width A double typed value property that gets or sets the width of an
element.

19

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 19

The UIElement and the FrameworkElement are two of the most important elements in the API. It is
these two elements that influence the basic appearance of each and every other element present in the
API. For example, Height and Width are two properties that are inherited from the FrameworkElement.
Based on the previous table, you know that both properties have double type values; this means that any
element in the entire API also has double type value, for this is a property inherited from the UIElement.
Being aware of the basic structures of the API will make building applications that much easier.

Working with Controls
This next section will discuss the various controls that you can add to your panels to create the layout of
your UI. Avalon has a variety of panels for hosting controls. This section will focus on the controls them-
selves. The subsequent section will go into more depth on the panels and other control hosts.

A control is anything that requires interaction from the user. Avalon has a rich set of controls, including
many similar to those available in Win32 and some additional controls. A key difference between the
Avalon controls and those previously used in Windows development is that the look and behavior of the
control can be modified or changed completely without complex source code. Most of the derived look
and feel of a control can be accomplished declaratively in the XAML document.

The functionality of a control in Avalon is actually spread over two base classes: the FrameworkElement
class and the Control class. The FrameworkElement has enough of the base implementation that it can
be used for what we typically define as a control. Commonly used dependency properties were defined
earlier in the chapter. (See the properties table in the “Framework Element” section to review.)

Dependency Properties
The following table shows some of the more commonly used properties found on the Control class.

Property Description

Background This property gets or sets the brush used to define the control’s
appearance. This could be a solid color, a linear or radial gradi-
ent, an image, or an opacity mask. (See the “Brushes” section to
learn more.)

BorderBrush This also gets or sets the brush to apply; however, it applies only
to the brush for the outline of the control.

BorderThickness Gets or sets the breadth of the outline surrounding the control.

FontFamily Gets or sets the name of the font to apply on the control.

FontSize Gets or sets the size of the font to be used on the control’s text.

FontStretch Determines the amount of stretch to apply to the font on the control.

FontStyle Gets or sets the style that is applied to the font used on the con-
trol. (See the “Styles” section to learn more.)

20

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 20

Property Description

FontWeight Determines the thickness of the font to be applied to the
control’s text.

Foreground Gets or sets the brush used to define the appearance to the con-
trol’s foreground (usually the text on the control). As with the
Background property, one may opt to use a solid color, a linear
or radial gradient, an image, or an opacity mask to alter the
appearance of the control’s foreground. (See the “Brushes” sec-
tion to learn more.)

HorizontalContentAlignment Gets or sets how the content will be placed horizontally on the
control. It too has values of Left, Center, Right, and Stretch.
Stretch is the default value, which stretches it out across the con-
trol evenly. However, the stretch value is canceled out when the
height and width of the control have been defined.

Padding Gets or sets the space surrounding the control.

VerticalContentAlignment Gets or sets how the content will be placed vertically on the con-
trol. It too has values of Top, Center, Bottom, and Stretch. Stretch
is the default value, which stretches it out across the control
evenly. However, the stretch value is canceled out when the
height and width of the control have been defined.

The Control class is a public base class derived from FrameworkElement. Elements based on the
Control class also inherit all of their properties from both the FrameworkElement and UIElement. The
Control base class contains additional properties for Font, Border, and Background.

Control Types
In WinFX controls are separated into 10 groups (patterns). The separation is based on similarities and
unique features that distinguish them from the other types of controls. Due to space limitations, this
book discusses only the first six.

❑ ContentControl

❑ DocumentViewer

❑ InkCanvas

❑ ItemsControl

❑ RangeBase

❑ Thumb

❑ TextBoxBase

❑ PasswordBox

❑ ResizeGrip

❑ Separator

21

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 21

Content Controls
These are controls that can hold content and use the Content property in which to contain it. This prop-
erty acts as an object that is typically set to accept one child (usually a string). But this value can be set to
contain other more complex objects such as a panel that can have more than one child. This approach of
using a panel as the content within content controls will ultimately change the way that you view and
use them. The following is the list of controls grouped under content controls:

❑ ButtonBase

❑ Frame

❑ GroupItem

❑ Headered content controls

❑ ListBoxItem

❑ Label

❑ ScrollViewer

❑ StatusBarItem

❑ ToolTip

❑ Window

ButtonBase
In Avalon, the Button, RepeatButton, and ToggleButton are the three types of buttons derived from
the ButtonBase class. The RepeatButton repeats the click event until the user releases the mouse but-
ton. The ToggleButton is a button that has two states like that of an on/off switch. Their basic syntax is
virtually the same. Following is a simple example of each:

<StackPanel>
<Button>Button</Button>
<ToggleButton>ToggleButton</ToggleButton>
<RepeatButton>RepeatButton</RepeatButton>

</StackPanel>

The following example uses an image as the content within a button:

<StackPanel>
<Button>

<Image Source=”Flower.jpg”/>
</Button>

</StackPanel>

When the window opens up, it will be filled with the image that acts as a button.

22

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 22

Now apply more complex content such as a panel that contains an image and text. Using the same code,
define the Button’s Height and Width, wrap a DockPanel around the image, and add a TextBlock.
Figure 2-2 is a simple example of how you can apply complex content to a button.

<StackPanel>
<Button Height=”100” Width=”375”>

<DockPanel>
<Image Source=”Flower.png”/>
<TextBlock>Button with an Image and a body of Text</TextBlock>

</DockPanel>
</Button>

</StackPanel>

Figure 2-2

The Content of a content control is typically set to a string, but the child of the control can have a more complex
object (like panels) that in themselves can have many elements.

Frame
The Frame is one of the more interesting content controls because it references contents from another
tree. Several Frames can be used within a single XAML document. Each Frame loads the content with
the Frame’s Source property. Navigation within the Frame affects only the content of that Frame and
not the content of the rest of the document housing the Frame.

<StackPanel Orientation=”Horizontal” Margin=”3,3,3,3”>
<Frame Background=”LightGray” Width=”350” Height=”312”

Source=”DocumentOne.xaml”/>
<Frame Background=”Gray” Width=”120” Height=”100” Source=”DocumentTwo.xaml”/>

</StackPanel>

Figure 2- 3 illustrates how two different documents can be referenced and viewed independently despite
being placed next to one another.

23

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 23

Figure 2-3

Headered Content Controls
The headered content control defines a Header property and a Content property. The headered content
control exists when there is a label or header and a single content item. Unlike the headered items con-
trols, which allow plural content, this control supports only one content item. Currently, there are two
types of headered content controls: the TabItem and the Expander.

TabItem is used in conjunction with the TabControl. TabControl contains the collection of tabs, while
TabItem controls each individual tab within the group. Figure 2-4 illustrates the output of the following
code:

<TabControl Height=”113” Width=”188”>
<ItemsControl.Items>

<TabItem Name=”TabItem1” IsSelected=”True”>
<ContentControl.Content>

Tab Item Content on Tab1
</ContentControl.Content>
<HeaderedContentControl.Header>

TabItem1
</HeaderedContentControl.Header>

</TabItem>
<TabItem Name=”TabItem2”>

<ContentControl.Content>
Tab Item Content on Tab2

</ContentControl.Content>
<HeaderedContentControl.Header>

TabItem2
</HeaderedContentControl.Header>

</TabItem>
<TabItem Name=”TabItem3”>

<ContentControl.Content>
Tab Item Content on Tab3

24

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 24

</ContentControl.Content>
<HeaderedContentControl.Header>

TabItem3
</HeaderedContentControl.Header>

</TabItem>
<TabItem Name=”TabItem4”>

<ContentControl.Content>
Tab Item Content on Tab4

</ContentControl.Content>
<HeaderedContentControl.Header>

TabItem 4
</HeaderedContentControl.Header>

</TabItem>
</ItemsControl.Items>

</TabControl>

Figure 2-4

The Expander allows the user to view or collapse additional information attached to the headered con-
tent. Figure 2-5 shows you the two states of an Expander.

<StackPanel Height=”50” Width=”500” Orientation=”Horizontal”>
<Expander Width=”150” IsExpanded=”True” Background=”Red” Header=”Headered

Content 1” Content=”Viewed Content”/>
<Expander Width=”150” HorizontalAlignment=”Left” IsExpanded=”False”

Background=”Red” Header=”Headered Content 2” Content=”Collapsed Content”/>
</StackPanel>

Figure 2-5

ListBoxItem
As the name implies, this controls the individual items within a ListBox.

Label
This control allows you to provide information about the application to the user. Additionally, it can be
used as a keyboard access to controls in dialog boxes.

25

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 25

<StackPanel Orientation=”Horizontal”>
<Label Height=”40” Width=”150”>

This is a label.
</Label>
<ListBox Height=”20” Width=”150”>

<ListBoxItem>Apples</ListBoxItem>
</ListBox>

</StackPanel>

Figure 2-6 shows the result of the preceding code.

Figure 2-6

DocumentViewer
This control enables you to create environments for your fixed or flow documents, while allowing users
to customize their viewing experience and maintaining the integrity of your document.

<DocumentViewer Zoom=”250”>
Document Structure here (see Document section for markup syntax)

</DocumentViewer>

InkCanvas
InkCanvas is a new control that allows you to dynamically write on the application with your mouse or
digitizer. Figure 2-7 shows the output of the preceding code with dynamically generated script, which
occurs when a user passes the mouse over InkCanvas.

<InkCanvas Background=”Beige” EditingMode=”Ink” Width=”600” Height=”300” />

Figure 2-7

26

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 26

Items Controls
Unlike the previous control class, the Items Control class does not have the content property; instead
it holds a series of items within a collection, hence ItemsCollection. This collection is generic and
accepts objects as valid items. The collection can be one or many items. Typically, the item is text, but it
can be other objects including visuals.

The following lists some examples of items controls:

❑ MenuBase

❑ HeaderedItemsControl

❑ Selector

❑ StatusBar

MenuBase
Within this class there are two types of menus: the Menu and the ContextMenu. The first one acts as a
container for the MenuItem control (as mentioned in the next section). The ContextMenu allows you to
extend the optionability of a control through the enabling the mouse right-click.

The ContextMenu is a little different from the other Items controls, for it sits within another control and
creates a menu in the form of a pop-up. In the sample that follows, the advantage of adding the
ContextMenu is that it empowers the Button with both left- and right-click functionality; the left mouse
key is used to click the button, and the right key is used to view and select from the menu. In Figure 2-8,
you can see the ContextMenu contained within the button upon right-clicking.

<Canvas>
<Button Width=”300” Height=”45”>A ContextMenu within a Button

<Button.ContextMenu>
<ContextMenu>

<MenuItem Header=”File”/>
<MenuItem Header=”New”/>
<MenuItem Header=”SaveAs”/>
<MenuItem Header=”Recent Files”>

<MenuItem Header=”DocumentOne.txt”/>
<MenuItem Header=”SpeadSheetOne.xls”/>

</MenuItem>
</ContextMenu>

</Button.ContextMenu>
</Button>

</Canvas>

Figure 2-8

27

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 27

HeaderedItem Controls
HeaderedItem controls have two components: the header (title/caption) for the control and the items
collection holding the children or content. They include:

❑ MenuItem

❑ ToolBar

The MenuItem is an example of this type of control, where the header specifies the label for the
MenuItem and the ItemsCollection contains all the submenu items. The following example shows a
MenuItem control (see Figure 2-9):

<Menu>
<MenuItem Header=”File”>

<MenuItem Header=”New”/>
<MenuItem Header=”New2”/>
<MenuItem Header=”submenu”>

<MenuItem Header=”submenuitem1”/>
<MenuItem Header=”submenuitem2”>

<MenuItem Header=”submenuitem21”/>
</MenuItem>
<MenuItem Header=”submenuitem3”/>

</MenuItem>
</MenuItem>

</Menu>

Figure 2-9

The ToolBar and ToolBarTray are two new controls that work together much as the Menu and
MenuItem controls do. The ToolBarTray is the container, and the ToolBar displays the item. This con-
trol enables you to create your own vector graphic (such as an icon) and have the corresponding text
next to it. This particular control ultimately allows you to create your own vector-based graphics that
could be 2-D, 3-D, or animated. Figure 2-10 illustrates how the ToolBar and ToolBarTray work
together.

<ToolBarTray>
<ToolBar>

<Canvas Height=”100” Width=”100”>
<Rectangle Fill=”#FFFF0000” Height=”25” Name=”Chimney”

Canvas.Left=”59” Stroke=”#FF000000”
Canvas.Top=”22.7383333333333” Width=”9” />

<Rectangle Fill=”#FF0000FF” Height=”38” Name=”HouseBase”

28

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 28

Canvas.Left=”27” Stroke=”#FF000000” Canvas.Top=”53.7383333333333”
Width=”42” />

<Polygon Fill=”#FF008000” Name=”Roof” Canvas.Left=”0”
Points=”23,56.7383333333333 48,7.73833333333333
74,57.7383333333333” Stroke=”#FF000000” Canvas.Top=”0” />

<Rectangle Fill=”#FFFFFF00” Height=”12” Name=”RightWindow”
Canvas.Left=”55” Stroke=”#FF000000” Canvas.Top=”62.7383333333333”
Width=”10” />

<Rectangle Fill=”#FFFFFF00” Height=”12” Name=”LeftWindow”
Canvas.Left=”32” Stroke=”#FF000000” Canvas.Top=”61.7383333333333”
Width=”10” />

<Rectangle Fill=”#FFFF0000” Height=”18” Name=”Door”
Canvas.Left=”43” Stroke=”#FF000000” Canvas.Top=”73.7383333333333”
Width=”10” />

</Canvas>
</ToolBar>
<ToolBar>

<TextBlock HorizontalAlignment=”Stretch” VerticalAlignment=”Center”
FontSize=”20”>Body of Text</TextBlock>

</ToolBar>
</ToolBarTray>

Figure 2-10

Selector
The Selector class includes any control that has multiple children from which a user can select.

Examples of Selector controls are:

❑ ListBox

❑ ComboBox

❑ RadioButtonList

❑ TabControl

Typically, you would expect that a ListBox would contain ListItems:

<ListBox>
<ListItem>Item 1</ListItem>
<ListItem>Item 2</ListItem>
<ListItem>Item 3</ListItem>
<ListItem>Item 4</ListItem>
<ListItem>Item 5</ListItem>

</ListBox>

29

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 29

But part of the power and flexibility of Avalon is that visuals are interchangeable when you are defining
content and rendering. This means that you are no longer confined to having only ListItems within a
ListBox. The following code and Figure 2-11 illustrate how you can place a variety of controls and have
them contained within a ListBox:

<ListBox>
<TextBlock>Item 1</TextBlock>
<RadioButton>Item 2</RadioButton>
<TextBox>Item 3</TextBox>
<Button>Item 4</Button>
<ListItem>Item 5</ListItem>

</ListBox>

Figure 2-11

The code following shows the syntax for creating a ComboBox and a RadioButtonList. Figure 2-12
illustrates the code that follows; on the left is an example of a ComboBox, and on the right is a
RadioButtonList.

<StackPanel Orientation=”Horizontal”>
<ComboBox Width=”100”>

<ComboBoxItem>One</ComboBoxItem>
<ComboBoxItem>Two</ComboBoxItem>
<ComboBoxItem>Three</ComboBoxItem>

</ComboBox>

<RadioButtonList Width=”100”>
<RadioButtonList.Items>

<RadioButton>
<ContentControl.Content>One</ContentControl.Content>

</RadioButton>
<RadioButton>

<ContentControl.Content>Two</ContentControl.Content>
</RadioButton>
<RadioButton>

<ContentControl.Content>Three</ContentControl.Content>
</RadioButton>

</RadioButtonList.Items>
</RadioButtonList>

</StackPanel>

30

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 30

Figure 2-12

The TabControl acts as the container for the tabs and determines the overall alignment of all the tabs.
(See TabItem in the “Headered Content Control” section.)

RangeBase
This class contains elements that have a set value range. The Sliders and ScrollBars are, in fact, com-
posites (more than one control combined to create a new control).

The Slider control enables you to adjust the value based on the range set on the element. This control is
commonly used as a volume control. As their names imply, the HorizontalSlider controls the hori-
zontal (left and right) plane, while the VerticalSlider handles the vertical (up and down) plane.
Figure 2-13 illustrates the two sliders as coded here:

<StackPanel>
<HorizontalSlider Width=”100” />
<VerticalSlider Height=”100” />

</StackPanel>

Figure 2-13

The ScrollBar control allows a user to scroll through an interface that extends the size of the screen.
As their names imply, the HorizontalScrollBar controls the horizontal (left and right) plane, while
the VerticalScrollBar handles the vertical (up and down) plane. Figure 2-14 is a representation of the
ScrollBar syntax, shown here:

<StackPanel>
<HorizontalScrollBar Width=”100”></HorizontalScrollBar>
<VerticalScrollBar Height=”100”></VerticalScrollBar>

</StackPanel>

31

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 31

Figure 2-14

Thumb
This class works in conjunction with the RangeBase class. The thumb is the element that enables a user
to adjust the value on the Slider or ScrollBar control.

Working with Multimedia
The following sections describe the multimedia classes available to you.

Image
The Image class is used purely for placing an image within a document or application. The image is ref-
erenced through the control’s Source property, the location of the image must be referenced with either
an absolute or relative path. The control will accept any of the following image types: .jpg, .gif, .png,
.tiff, .bmp, and .ico.

Create a new Avalon application in Visual Studio and save it as an Image. Inside the Grid tags of
Window1.xaml (the default root element in an Avalon application) add the image tag syntax:

<Image Source=”myImage.jpg” />

When adding the name of your own image, it either needs to be an absolute path or in the same folder as
Window1.xaml.

When the window opens, the image will fill the dimensions of the window and is automatically resized
in relation to the window’s resizing. This happens because neither the Height nor Width was defined in
the code; therefore, the image is inheriting its height and width values from the Grid. If a value is added
to the Width, Image no longer has this resizing feature.

MediaElement
This control is used for adding either Audio or Video to an application with full streaming capabilities:

<StackPanel>
<MediaElement Name=”mySound” Source=”SoundFile.wma”/>
<MediaElement Name=”myVideo” Source=”VideoFile.wpl” Stretch=”Fill” />

</StackPanel>

32

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 32

Working with Panels
The development of an Avalon document usually starts with the selection of one of the premade panels.
The next sections will introduce you to each of the panels that are present in the API and their behaviors.

Properties
Panel is a class derived from the FrameworkElement, but it also looks to the UIElement for inheriting
many of its properties. Panel is the base class for all the panel-derived classes. The purpose of the Panel
class is to act as a container and as a means of placing elements within it. The panel can control the
object’s dimension, position, and overall arrangement. There are five common and two specialized
Panel classes used in Avalon (listed following the next table). The specialized panels are used for spe-
cific tasks and have limitations different from the other more common panels. The following table lists
some common properties used for this class.

Property Description

Background This property gets or sets the brush used to define the panel’s
appearance. This could be a solid color, a linear or radial gradient, an
image, or an opacity mask. (See the “Brushes” section to learn more.)

Children Contains the FrameworkElements found below this element in the
LogicalTree.

IsItemsHost A Boolean-valued property to indicate the panel holds items for use
by an ItemsControl.

Common Panels
❑ Canvas

❑ DockPanel

❑ Grid

❑ StackPanel

Specialized Panels
❑ BulletPanel

❑ TabPanel

❑ ToolBarOverFlowPanel

Canvas
Canvas is used to explicitly position things in an exact X, Y position with the (0,0) position in the upper
left, increasing to the right and down. It uses a painter’s model of rendering similar to that of Scalable
Vector Graphics (SVG). Objects that appear first in the markup are rendered first on-screen. As objects
are added, they are subsequently layered on top of the initial objects, like layers of paint on a painting.
Then effects can be added, such as opacity and animation. The added effects, in turn, give the whole pre-
sentation a feeling of depth and structure.

33

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 33

Following is a simple sample of a Canvas that contains a TextBlock as a child:

<Canvas Name=”MyCanvas” Background=”Red” Width=”300” Height=”100” >
<TextBlock Name=”MyTextBlock” Canvas.Top=”10” Canvas.Left=”20”>

Hello World!</TextBlock>
</Canvas>

Canvas uses a special kind of dependency property (as do many of the other panels) called the attached
dependency property. This type of property is not normally used by the class that declares it but is used by
the elements contained within the panel. For example, you will not see a Left, Top, X, or Y property on
any of the common controls in Avalon. Instead, the controls use the dependency properties of their par-
ent panel to specify their position. In the previous sample, the TextBlock specified its X and Y position
by using the dependency properties Canvas.Left and Canvas.Top. These are, in fact, the Canvas’s
attached dependency properties. If the TextBlock was housed in a different panel-derived class, it
would use a different attached dependency property to specify its location.

All child elements on a Canvas use the attached dependency properties described in the following table
to explicitly position themselves.

Property Type Description

Top Double This determines the distance of the top of the child element in
relation to the top of the canvas (which is its parent).

Bottom Double This determines the distance of the bottom of the child element
in relation to the bottom-right corner of the canvas (which is its
parent).

Left Double This determines the distance of the left of the child element in
relation to the left side of the canvas (which is its parent).

Right Double This determines the distance of the right of the child element in
relation to the right side of the canvas (which is its parent).

Panel classes often have helper functions to set the attached dependency properties. For example,
Canvas.SetLeft is the static method used in the Canvas class. Other static methods are available for
each of the panel-derived classes. Dependency properties can also be set on FrameworkElement(s) by
using the SetValue method. SetValue is used to apply a regular or attached dependency property to
an object. Attached and regular dependency properties can be removed using the ClearValue method.

Following is an example of a simple XAML document:

<Canvas xmlns=”http://schemas.microsoft.com/winfx/avalon/2005” Name=”Canvas”
Background=”BlanchedAlmond” Width=”400” Height=”300”>

<TextBlock Name=”TextBlock” Width=”300” Height=”200” Canvas.Left=”50”
Canvas.Top=”10”>

Hello World
</TextBlock>

</Canvas>

34

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 34

Objects don’t always have to be created using XAML. Avalon is an API, essentially an extension of .NET,
so you can create objects in code just as you do today in the System.Forms namespace. The following
code will create a Canvas and a TextBlock like the XAML code you looked at earlier. The sample uses
the static Canvas helper methods and the SetValue method for defining the dependency properties.
Following is the C# equivalent to the preceding XAML code. Figure 2-15 illustrates the outcome from
either method of programming.

private void WindowLoaded(object sender, EventArgs e)
{

// Create the Canvas.
Canvas canvas = new Canvas();

// Set the background using a premade brush.
canvas.Background = Brushes.BlanchedAlmond;

// Set the Canvas’s width and height.
canvas.Width = 400;
canvas.Height = 300;

// Create a TextBlock.
TextBlock textBlock = new TextBlock();
textBlock.Width = 300;
textBlock.Height = 200;

// Set the X position of the text block using Canvas helper function.
Canvas.SetLeft(textBlock, 50);

// Set the Y position of the text block using the SetValue method.
textBlock.SetValue(Canvas.TopProperty, (double) 10);

// Set the content.
textBlock.TextContent = “Hello world”;

// Add the text block to the Canvas.
canvas.Children.Add(textBlock);

// Set the Canvas as the root element for this window.
Content = canvas;

}

Figure 2-15

35

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 35

Generally, a Canvas has better performance when rendering its children than the DockPanel or
StackPanel do because it explicitly places its children, whereas the other panel types use implicit posi-
tioning to place controls and UI elements. Apart from the minimal rendering time difference, it is benefi-
cial to use the other panel types if resizing capabilities are desired in your application. The Canvas is
best suited for diagrams and printable material, but not suited to creating a dialog box or window in an
application.

DockPanel
DockPanel arranges elements horizontally or vertically relative to each other. Elements use the attached
dependency property Dock to position themselves in a DockPanel. The Top or Bottom settings pile the
elements above or below one another, whereas Left and Right place objects to the left or right of one
another. Unless the child elements have values for their Height and Width attributes, they will be
evenly sized in order to fill the space of the DockPanel. An additional value, LastChildFill, is the
default value. It is a Boolean-valued property that fills the remaining space available within the panel. To
override the default, set LastChildFill=”False”. The purpose of the DockPanel is to place a variety
of elements as well as to have resizing capabilities on the window. As previously mentioned, if the
dimensions of a child element in a DockPanel are not explicitly written, the child element will inherit
the dimensions of the remaining available space in the DockPanel.

To familiarize you with DockPanel, let’s add a series of buttons as children:

<DockPanel Name=”MyDockPanel”>
<Button Name=”myButton1”>Button 1</Button>
<Button Name=”myButton2”>Button 2</Button>
<Button Name=”myButton3”>Button 3</Button>
<Button Name=”myButton4”>Button 4</Button>

</DockPanel>

Once the code is compiled, the application window that comes up will appear as a series of stripes
instead of a series of buttons, as shown in Figure 2-16.

Figure 2-16

Another thing you will notice is that the first three buttons have similar dimensions, and then third is
three times the size of the first buttons. The size of the last button is determined by the default value
LastChildFill. This means that, as the last element in the panel, it will fill the remaining space not
already filled.

36

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 36

With the same code, now add in docking properties to each of the buttons:

<Button Name=”myButton1” DockPanel.Dock=”Left”>Button 1</Button>
<Button Name=”myButton2” DockPanel.Dock=”Right”>Button 2</Button>
<Button Name=”myButton3” DockPanel.Dock=”Top”>Button 3</Button>
<Button Name=”myButton4” DockPanel.Dock=”Bottom”>Button 4</Button>

The result is shown in Figure 2-17.

Figure 2-17

Button 4 still appears to be larger than the rest despite being docked to the bottom. This happens
because the makeup is always read from top to bottom; therefore, the last child listed in the DockPanel
will have the LastChildFill=”True”. “myButton4”, being last, defaults to LastChildFill =”True”
whether it is docked or not. The reason for this is that the DockPanel acts as a rubber band around its
children and resizes them accordingly with as little null space(s) present as possible. Add another but-
ton, label it “LastChildFill”, and recompile the application:

<Button Name=”myButton5”>LastChildFill</Button>

The result is shown in Figure 2-18.

Figure 2-18

37

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 37

The items are docked in the order in which they are placed in the code. For example, if you place the
code for Button 3 before the code for Button 2, the docking order will be altered. The placement of previ-
ous elements has precedence over the elements that follow. The image in Figure 2-19 shows the button
docking order of Left, Top, Right, and Bottom. Figure 2-20 moves the code for Button 3 above the code
of Button 2. Now, the docking order is Left, Right, Top, and Bottom.

Figure 2-19

Figure 2-20

When placing elements on a DockPanel is it important to remember precedence (of placement) is
given to the elements in the order in which you enter them in the code.

If rendering time is of more concern than the resizing capabilities, specifying the Height and Width
properties of the panel (even specifying one) greatly improves its rendering performance. This specifica-
tion of height and width is applicable to the StackPanel as well.

Grid
The Grid is a series of flexible columns and rows, and you can give the contents of each precise spacing
by using the Margin property.

The Grid is a good option for using as the top-level element in a dialog box or for styling component
visuals or data when resizing is a constant requirement. The Grid adds elements based on a row and

38

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 38

column index. Grids are also more flexible than tables (which will be covered later in the chapter) in that
the grid allows layering (more than one element to exist in a single cell). Elements are positioned relative
to the upper-left corner of each cell boundary. The positioning is altered by redefining the four margin
values.

UI elements added to a grid are placed using the row and column attached dependency properties.
These are described in the following table.

Property Definition

Column Defines the column and determines the placement of the cell content
on the vertical plane.

ColumnSpan Determines the width of a cell. This allows the developer to set the
content to extend across one or more columns without affecting the
other content within the Grid.

Row Defines the row and determines the placement of the cell content on
the horizontal plane.

RowSpan This determines the width of a cell. The RowSpan allows the devel-
oper to set the content to extend across the row without affecting the
other content within the Grid.

Grid.ColumnSpan and Grid.RowSpan specify the number of cells in which an object may cross in
either the X or Y direction.

Following is an example of a simple Grid:

<Grid Name=”MyGrid” ShowGridLines=”True”>
<ColumnDefinition Name=”MyColumn1”/>
<ColumnDefinition Name=”MyColumn2”/>
<ColumnDefinition Name=”MyColumn3” Width=”*”/>

<RowDefinition Name=”MyRow1” Height=”Auto”/>
<RowDefinition Name=”MyRow2” Height=”Auto”/>
<RowDefinition Name=”MyRow3” Height=”Auto”/>
<RowDefinition Name=”MyRow4” Height=”Auto”/>
<RowDefinition/>

<!-- Column Headings -->
<TextBlock Name=”MyTextBlock1” Grid.Column=”0” Foreground=”White”

FontWeight=”Bold”>
Name

</TextBlock>
<TextBlock Name=”MyTextBlock2” Grid.Column=”1” Foreground=”White”

FontWeight=”Bold”>
Address

</TextBlock>
<TextBlock Name=”MyTextBlock3” Grid.Column=”2” Foreground=”White”

FontWeight=”Bold”>
Home Number

39

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 39

</TextBlock>

<!-- Grid Content-->
<!-- 1st Row-->
<TextBlock Name=”MyTextBlock4” Grid.Column=”0” Grid.Row=”1”>

Dick
</TextBlock>
<TextBlock Name=”MyTextBlock5” Grid.Column=”1” Grid.Row=”1”>

24 Park Street
</TextBlock>
<TextBlock Name=”MyTextBlock6” Grid.Column=”2” Grid.Row=”1”>

555-5555
</TextBlock>

<!-- 2nd Row-->
<TextBlock Name=”MyTextBlock7” Grid.Column=”0” Grid.Row=”2”>Jane</TextBlock>
<TextBlock Name=”MyTextBlock8” Grid.Column=”1” Grid.Row=”2”>

2468 Celebration Ave
</TextBlock>
<TextBlock Name=”MyTextBlock9” Grid.Column=”2” Grid.Row=”2”>

775-1234
</TextBlock>

<!-- 3rd Row-->
<TextBlock Name=”MyTextBlock10” Grid.Column=”0” Grid.Row=”3”>Spot</TextBlock>
<TextBlock Name=”MyTextBlock11” Grid.Column=”1” Grid.Row=”3”>

123 Main Street
</TextBlock>
<TextBlock Name=”MyTextBlock12” Grid.Column=”2” Grid.Row=”3”>

553-0071
</TextBlock>

<!-- 4th Row-->
<TextBlock Name=”MyTextBlock13” Grid.Column=”0” Grid.Row=”4”>

Fluffy
</TextBlock>
<TextBlock Name=”MyTextBlock14” Grid.Column=”1” Grid.Row=”4”>

23 Mockingbird Lane
</TextBlock>
<TextBlock Name=”MyTextBlock15” Grid.Column=”2” Grid.Row=”4”>

264-4578
</TextBlock>

</Grid>

Setting the Width=”*”, as specified in the third ColumnDefinition, acts as a wildcard to say that this
column will absorb all the remaining column space available in the Grid. In the RowDefinition section
there is an extra, required tag, <RowDefinition />; otherwise, the last two rows will be laid on top of
one another.

Unless specifically defined in the ColumnDefinitions or RowDefinitions, the dimensions of each
Cell will be set to an equal portion to the rest of the Grid. For example, in Figure 2-21 there appears to
be a lot of wasted space in the Name column; however, you will also note that its width is one-third of
the entire Grid.

40

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 40

Figure 2-21

StackPanel
The StackPanel is similar to the DockPanel in that they both enable resizing. However, as the name
reflects, the StackPanel piles the elements on top of one another. Create a basic StackPanel using the
following code:

<StackPanel Name=”myStackPanel”>
<Button Name=”myButton1”>Button 1</Button>
<Button Name=”myButton2”>Button 2</Button>
<Button Name=”myButton3”>Button 3</Button>
<Button Name=”myButton4”>Button 4</Button>

</StackPanel>

When the application is run with the preceding code, the buttons are all the same dimension and all
equally fill the size of the window. The equality continues as the window is resized. This is so because
the StackPanel manages the positioning of the content through measuring the size of the object and
then flowing it until a break is required (usually the dimension of the panel). Figures 2-22 and 2-23 are
two screenshots of the preceding StackPanel sample.

Figure 2-22

Figure 2-23

The child elements in a StackPanel are resized in relation to the dimensions of resized panel.

41

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 41

Figure 2-23 also shows how the StackPanel can affect the appearance of its children. The buttons have
been elongated to the proportion of the StackPanel; however, the height of the buttons does not appear
to be affected. The reason for this is that the StackPanel will flow its children only along one plane
(Horizontal or Vertical) with its Orientation property; thus, there is an empty space below the
buttons.

Now, add the following dimensions to the buttons and recompile the application:

<StackPanel Name=”myStackPanel”>
<Button Name=”myButton1” Width=”75” Height=”30”>Button 1</Button>
<Button Name=”myButton1” Width=”75” Height=”30”>Button 2</Button>
<Button Name=”myButton1” Width=”75” Height=”30”>Button 3</Button>
<Button Name=”myButton1” Width=”75” Height=”30”>Button 4</Button>

</StackPanel>

Although the default flow direction is Vertical, the stacking can be done either vertically or horizon-
tally. To override the panel’s default alignment value set the attribute Orientation=”Horizontal”.

In Figure 2-24 the StackPanel is using the default Orientation property, whereas Figure 2-25 has the
attribute set to Horizontal.

Figure 2-24

Figure 2-25

To distribute the buttons horizontally, the code on the start tag of the StackPanel element would be as
follows:

<StackPanel Name=”myStackPanel” Orientation=”Horizontal”>

BulletPanel
BulletPanel is one of the two specialized panels within the Avalon API. It is a panel used for control-
ling layout. Unlike the other panels, the BulletPanel may contain only two children. The most com-
mon children found in the BulletPanel are a text string and a glyph.

42

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 42

<StackPanel>
<BulletPanel>

<RadioButton />
<TextBlock>First BulletPanel</TextBlock>

</BulletPanel>
<BulletPanel>

<RadioButton />
<TextBlock>Second BulletPanel</TextBlock>

</BulletPanel>
<BulletPanel>

<RadioButton />
<TextBlock>Third BulletPanel</TextBlock>

</BulletPanel>
</StackPanel>

The result of the code is shown in Figure 2-26.

Figure 2-26

TabPanel
TabPanel is the other specialized panel in Avalon. It acts as host for the TabItems used in the
TabControl. The panel gets and sets the size and positioning, determines the controls for multiple
rows, and allows styles to be applied to the child.

<TabPanel>
<TabControl>

<TabItem>One</TabItem>
<TabItem>Two</TabItem>
<TabItem>Three</TabItem>
<TabItem>Four</TabItem>

</TabControl>
</TabPanel>

Figures 2-27 and 2-28 show the same TabPanel, but the tabs are dynamically rearranged by the Panel
upon the window’s resizing in Figure 2-28.

Figure 2-27

43

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 43

Figure 2-28

Figure 2-28 is a resized version of Figure 2-27. It is also a good example of how the TabPanel controls
the sizing and positioning of its child elements. The TabPanel will not let you reduce its width any fur-
ther, for it would not be able to properly display them without compromising their appearance.

ToolBarOverflowPanel
This is a new tool that allows you to control the overflow of toolbar items. The ToolBarOverFlowPanel
works like the ones you see in any of the Microsoft Office 2003 products in that there are more toolbar
options than there is space on the toolbar. Within this Panel, the tools can be hidden or revealed when
required.

<ToolBarOverflowPanel Name=”MyTlBOPanel”Width=”250”>
<ToolBarTray Name=”MyToolBarTray”>

<ToolBar Name=”MyTray”>
<Canvas Name=”MyCanvas” Height=”100” Width=”100”>

<Rectangle Name=”Chimney” Fill=”#FFFF0000” Height=”25”
Canvas.Left=”59” Stroke=”#FF000000”
Canvas.Top=”22.7383333333333” Width=”9” />

<Rectangle Name=”HouseBase” Fill=”#FF0000FF” Height=”38”
Canvas.Left=”27” Stroke=”#FF000000”
Canvas.Top=”53.7383333333333” Width=”42” />

<Polygon Name=”Roof” Fill=”#FF008000” Canvas.Left=”0”
Points=”23,56.7383333333333 48,7.73833333333333
74,57.7383333333333” Stroke=”#FF000000” Canvas.Top=”0”/>

<Rectangle Name=”RightWindow” Fill=”#FFFFFF00” Height=”12”
Canvas.Left=”55” Stroke=”#FF000000”
Canvas.Top=”62.7383333333333” Width=”10” />

<Rectangle Name=”LeftWindow” Fill=”#FFFFFF00” Height=”12”
Canvas.Left=”32” Stroke=”#FF000000”
Canvas.Top=”61.7383333333333” Width=”10” />

<Rectangle Name=”Door” Fill=”#FFFF0000” Height=”18”
Canvas.Left=”43” Stroke=”#FF000000”
Canvas.Top=”73.7383333333333” Width=”10” />

</Canvas>

<TextBlock Name=”MyTextBlock” HorizontalAlignment=”Stretch”
VerticalAlignment=”Center” FontSize=”20”>

Body of Text
</TextBlock>

</ToolBar>
</ToolBarTray>

</ToolBarOverflowPanel>

44

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 44

In Figure 2-29, the TollBarOverFlowPanel has been repeated twice so that you can see it in its two
states.

Figure 2-29

Working with Documents
Located in the System.Windows.Documents namespace, the goal of the Avalon document services is to
provide a better online document-viewing experience and to integrate other capabilities present in the
Avalon API and add them into documents. The API has both document-viewing components and docu-
ment-layout services.

There are two kinds of documents in Avalon: FixedFormat documents, which are analogous to PDF
(Portable Document Format), and FlowFormat documents, which parallel HTML. Both formats allow
the reader to specify viewing preferences, while maintaining the overall design concepts as intended by
the document’s author.

Fixed-Format Documents
Fixed-format documents display content as the author intended regardless of the screen’s size, resolu-
tion, or available fonts; this makes fixed-format documents ideal for printing and publishing.

The two classes that contribute to a fixed-format document are the FixedDocument class and the
FixedPage class. The FixedDocument class provides specialized functionality for managing the
FixedPage(s). The following sample shows a two-page document that is viewed within the
DocumentViewer. Figure 2-30 illustrates how the following markup appears when you run it.

<Window x:Class=”WroxSamples.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”WroxSamples”
>
<DocumentViewer Name=”MyViewer” ZoomPercentage=”100”>

<FixedDocument Name=”MyFirstDoc”>
<PageContent Name=”MyContent”>

45

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 45

<FixedPage Name=”MyFirstDoc” Width=”500” Height=”400”
Background=”White”>

<TextBlock Name=”MyTextBlock1”>
Images, Glyphs, for Page 1 could go here.

</TextBlock>
</FixedPage>

</PageContent>

<PageContent>
<FixedPage Name=”MyOtherDoc” Width=”500” Height=”400”

Background=”White”>
<TextBlock Name=”MyTextBlock2”>

Shapes and Drawings for Page 2 could go here!
</TextBlock>

</FixedPage>
</PageContent>

</FixedDocument>
</DocumentViewer>

</Window>

Figure 2-30

Instead of inheriting its Height and Width properties from the FrameworkElement, FixedDocument
combines the two into one property called PageSize. The default value is that of the standard page
dimensions 8.5 by 11 and is instantiated as PageSize=”8.5,11”. When creating your document,
PageContent is the only type of child you place within FixedDocument. The PageContent class is sig-

46

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 46

nificant to a document’s structure because it signifies the starting point of the Visual Tree for each page.
To fill PageContent, use this to reference external XAML files as the source of its content. The only child
that PageContent may have is a FixedPage; therefore, your referenced .xaml file must have
FixedPage as the root element. FixedPage automatically sets page breaks at the beginning and end of
the document. The content inside a referenced FixedPage must be placed inside either a TextBlock or
Canvas.

<Window x:Class=”AvalonApplication30.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”FixedDocument”>

<FixedDocument Name=”MyDoc” PageSize=”8.5,11” >
<PageContent Name=”MyFirstPage” Source=”Page1.xaml” />
<PageContent Name=”MySecondPage” Source=”Page2.xaml” />

</FixedDocument>
</Window>

Following is the syntax to the referenced FixedPage file. Figure 2-31 shows the two code documents
combined.

<FixedPage xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005” Name=”MyFixedPage1”>

<TextBlock Name=”MyTextBlock” Background=”LightGreen” Foreground=”White”
Height=”500” Width=”500” TextWrap=”Wrap”>

This is the body of a FixedPage document.
</TextBlock>

</FixedPage>

Figure 2-31

47

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 47

Flow Format Documents
Flow format documents are similar to HTML pages. They adjust and resize content based on the user’s
preferences and the screen size. The FlowDocument element is the root for all flow-format documents.

Tables
The table in the Avalon API is better than that of previous technologies because you can easily create
rich-document-styled tables. Tables in Avalon are similar to their HTML counterparts in many respects.
Tables are still created as a series of columns and rows and have the cell padding, column span, and
margins to assign specific placement of the data. However, the structure is slightly different in that all
the columns are defined at the top of the table instead of being implied with the cells in each row. This
format will ultimately speed up the process of building tables as well as reducing the number of pro-
gramming errors. One requirement in using a table is that the Table must be nested within a TextFlow
element. This is likely due to several of the inherited properties relating to the strict typographical struc-
ture from the TextElement. The table has some resizing capabilities; if you specify a width or height for
a column or row, or add padding to a cell, the value will be carried through all the contents along that
vertical or horizontal plane.

Apart from this rigorous structure involved in the table, it actually has a more efficient rendering time
than that of the resizable Grid.

The basic structure of a table in Avalon is:

<Table>
<TableColumn />
<TableColumn />

<TableHeader />
<TableBody>

<TableRow>
<TableCell>Content</TableCell>
<TableCell>Content</TableCell>

</TableRow>
<TableRow>

<TableCell>Content</TableCell>
<TableCell Text=”Content” />

</TableRow>
</TableBody>

<TableFooter />
</Table>

Content is logically divided by the header, body, and footer, each of which can have its own set of styles
applied. The content is added to the table in a TableCell. The TableCell has ColumnSpan and
RowSpan properties (like HTML), which allow a cell to cross row and column boundaries.

<TextFlow Name=”MyTextFlow”>
<Table Name=”MyTable” TextAlignment=”Justify” BorderBrush=”Black”

BorderThickness=”3”>
<TableColumn Name=”MyColumn1”></TableColumn>
<TableColumn Name=”MyColumn2”></TableColumn>
<TableColumn Name=”MyColumn3”></TableColumn>

48

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 48

<TableHeader Name=”MyHeader”>
<TableRow Name=”MyRow1”>

<TableCell Name=”MyCell_1” Background=”WhiteSmoke”
ColumnSpan=”3” TextAlignment=”Center”
TextElement.FontWeight=”Bold”>Phone List</TableCell>

</TableRow>
<TableRow Name=”MyRow2”Background=”DimGray”

TextElement.Foreground=”White”>
<TableCell Name=”MyCell_2” >Name</TableCell>
<TableCell Name=”MyCell_3” >Address</TableCell>
<TableCell Name=”MyCell_4” >Phone Number</TableCell>

</TableRow>
</TableHeader>
<TableBody>

<TableRow Name=”MyRow3” Background=”LightGray”>
<TableCell Name=”MyCell_5” BorderThickness=”1”

Text=”Dick”/>
<TableCell Name=”MyCell_6”>24 Park Street</TableCell>
<TableCell Name=”MyCell_7”>555-5555</TableCell>

</TableRow>
<TableRow Name=”MyRow4” Background=”AliceBlue”>

<TableCell Name=”MyCell_8” BorderThickness=”1”>
Jane

</TableCell>
<TableCell Name=”MyCell_9”>

2468 Celebration Ave
</TableCell>
<TableCell Name=”MyCell_10”>775-1234</TableCell>

</TableRow>
<TableRow Name=”MyCell_l5” Background=”LightGray”>

<TableCell Name=”MyCell_11” BorderThickness=”1”>
Spot

</TableCell>
<TableCell Name=”MyCell_12” >123 Main Street</TableCell>
<TableCell Name=”MyCell_14” >553-0071</TableCell>

</TableRow>
<TableRow Name=”MyCell6” Background=”AliceBlue”>

<TableCell Name=”MyCell_15” >Fluffy</TableCell>
<TableCell Name=”MyCell_16” >

23 Mockingbird Lane
</TableCell>
<TableCell Name=”MyCell_17” >264-4578</TableCell>

</TableRow>
</TableBody>

<TableFooter>
<TableRow Name=”MyRow6” >

<TableCell Name=”MyCell8” Background=”WhiteSmoke”
ColumnSpan=”3” />

</TableRow>
</TableFooter>

</Table>
</TextFlow>

49

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 49

Notice that the cell content can either be written between the opening and closing TableCell tag or as
an attribute of TableCell, as in the first cell in the table’s body. This is another example of the flexibil-
ity that you have when working with Avalon.

<TableCell BorderThickness=”1” Text=”Dick”/>

Choosing whether to use Grids or Tables can be confusing. Each has its own advantages and disadvan-
tages. Figure 2-32 illustrates the table based on the preceding code.

Figure 2-32

Tables are more structured than grids are typographically, with a TableHeader, TableBody, and
TableFooter. The table is set into these three areas to separate the data for ease of use and readability.
The table header located at the top usually contains the title and column headings. The body contains all
the data that fills the cells within the table. The footer usually contains any credits or conclusions related
to the table.

Although the two formats (Table and Grid) can do virtually the same thing, they should be used differ-
ently. Tables are suited to laying out tabular type data, where it is preferable to have everything uniform
and relatively static. Grids should be used when each cell’s content needs to be addressed individually
with specific placement within a resizable container.

TextFlow
Unlike other text classes within the System.Windows.Controls namespace, TextFlow is located in
System.Windows.Document. This control is designed specifically for use with printed text and multi-
page documents. Figure 2-33 illustrates the TextFlow code with each paragraph’s content present.

<TextFlow TextWrap=”Wrap” TextAlignment=”Justify” Margin=”20,15,20,15”>
<Paragraph>

Lorem ipsum dolor sit ... sollemnes in futurum.
</Paragraph>
<Paragraph Margin=”0,10,0,0”>

<Bold>This is a second paragraph within the TextFlow Document.</Bold>
Lorem ipsum dolor sit ... sollemnes in futurum.

</Paragraph>
</TextFlow>

Note: For the purpose of viewing the code, the body of each paragraph has been removed.

50

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 50

Figure 2-33

TextBlock
TextBlock is meant for creating a simple block of text, commonly used on user interfaces. To create rich
documents that require formatting of paragraphs and other features, use FlowDocument, because it can
handle formatting a much richer layout. Figure 2-34 shows the rendering of the following XAML syntax:

<Canvas>
<TextBlock>This is a TextBlock of Text</TextBlock>

</Canvas>

Figure 2-34

Hyperlinks
In Avalon, the hyperlink has been defined as an inline control that allows you to navigate to either inter-
nal or external content. As with Table, Hyperlinks must be nested within a TextFlow element:

<TextFlow>
<Hyperlink NavigateUri=”home.xaml” >Home</Hyperlink>

</TextFlow>

Application Types in Visual Studio
When you create a new application in Visual Studio, you are presented with four project types.

51

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 51

Avalon Control Library
The Avalon control library project is simply a project for the creation of a reusable .NET library. It sets up
references to the Avalon libraries PresentationCore.dll and PresentationFramework.dll and
creates an empty class for your custom control derived from ContentControl.

Avalon Application
Selecting a new Avalon application as the project type creates a new Avalon application. The application
has two classes: an Application class derived from System.Windows.Application and a main
Window class, which is derived from System.Windows.Window. Both the Application class and the
main Window class have their own XAML file and code behind file. The XAML files are mostly empty
and waiting for content to be added. If you try adding some of the controls discussed instead of coding
by hand, you can use a XAML designer like Aurora by Mobiform to create the content faster.

Browser Application and Navigation Application
If you are creating an application that can make use of multiple pages, you may wish to select a browser
or navigation application to create your project. NavigationApplication is derived from the
Application class.

When creating a new navigation application, Visual Studio creates an application class as it does in a
regular Avalon application, but instead of creating a main Window for your project, it creates a main
Page.

<Page x:Class=”AvalonApplication2.Page1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
>

<Canvas Background=”Red” Width=”300” Height=”100” >
<TextBlock Canvas.Top=”10” Canvas.Left=”20”>Hello World!</TextBlock>

</Canvas>
</Page>

This main page is referenced by the XAML for the application in the StartupURI property. When the
navigation application is launched, it loads and displays this page.

<NavigationApplication x:Class=”AvalonApplication2.MyApp”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
StartupUri=”Page1.xaml”
>

<NavigationApplication.Resources>

</NavigationApplication.Resources>
</NavigationApplication>

A NavigationApplication has built-in smarts to remember the pages that you have been viewing;
this is accomplished via a journal. As with a Web browser, it too has Back and Forward buttons to return
to previously viewed content. The journal keeps track of the content and the pages the user visits.

52

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 52

By getting the NavigationService and calling the Navigate method, you can programmatically change
pages within the application. The NavigationService is acquired by calling the static
NavigationService.GetNavigationService() method and passing in the root element of the page.
The Navigate method is called after the NavigationService is present. The NavigationWindow also
uses the Navigate method, and it can be called through the NavigationApplication as an alternative.

private void btnGoToAnotherPage(object sender, RoutedEventArgs args)
{

app = (NavigationApplication) System.Windows.Application.Current;
navWindow = (NavigationWindow) app.MainWindow;
navWindow.Navigate(new Uri(“NextPage.xaml”, UriKind.RelativeOrAbsolute));

}

For ease of development and testing, Visual Studio makes the NavigationApplication available to
both the navigation and browser applications. They are essentially the same, however; once your appli-
cation is completed, the NavigationApplication is converted into a BrowserApplication. The con-
version occurs when the application’s .csproj file is opened and the HostInBrowser setting is set to
true. Then you build the program. After it is built, an .application file will be generated in the bin
directory. The application can be loaded in a browser by navigating to the application file; this installs
the application on your system. If you wish to remove the application after viewing it, go to
Add/Remove programs on your computer’s Control Panel.

Chapter Exercise: Creating a Calculator
In this project, you create the basic layout of a calculator using the elements discussed in this chapter. In
the chapters that follow, you add to the functionality and improve the visual appearance of this project
as various subjects are brought up within the context of the book. Figure 2-35 is a representation of the
XAML project used in constructing the calculator; use Aurora to quickly build the interface, and then
open up the saved file in Visual Studio to write the code.

Figure 2-35

53

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 53

Following is the XAML used in constructing the calculator; use Aurora to quickly build the interface,
and then open up the saved file in Visual Studio to write the code. A downloadable version of this pro-
ject is available at www.wrox.com.

<Window xmlns=”http://schemas.microsoft.com/winfx/avalon/2005” Name=”ROOT”
x:Class=”AvalonCalculator.Window1”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005” Loaded=”WindowLoaded”>

<Window.Text>AvalonCalculator</Window.Text>
<ContentControl.Content>

<Canvas Background=”#FFECE9D8” Height=”355.99331331257372”
Canvas.Left=”0” Canvas.Top=”0” Width=”585.79723818560637”>

<Panel.Children>

<!-- Notice that the grid is nested within a canvas that also
contains the calculator screen and “Clear” button. -->

<TextBox FlowDirection=”RightToLeftThenTopToBottom” Height=”33”
HorizontalAlignment=”Left” HorizontalContentAlignment=”Left”
ID=”textBoxValue” Canvas.Left=”33.9493264988669”
Canvas.Top=”37.8582880370136” Width=”428” />

<Button Height=”32” Name=”btnClear”
Canvas.Left=”464.949326498867” Canvas.Top=”37.8582880370136”
Width=”103”>

<ContentControl.Content>Clear</ContentControl.Content>
</Button>

<!-- top of Grid that holds the buttons -->
<Grid Background=”#00FFFFFF” Height=”201” Name=”grid”

Canvas.Left=”64.9999999999221” Canvas.Top=”108.111666666745”
Width=”598”>
<Grid.ColumnDefinitions>

<ColumnDefinition MinWidth=”10” />
<ColumnDefinition MinWidth=”10” />
<ColumnDefinition MinWidth=”20” />
<ColumnDefinition MinWidth=”20” />
<ColumnDefinition MinWidth=”20” />
<ColumnDefinition MinWidth=”10” />

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition MinHeight=”10” />
<RowDefinition MinHeight=”10” />
<RowDefinition MinHeight=”20” />
<RowDefinition MinHeight=”10” />

</Grid.RowDefinitions>
<Panel.Children>
<!-- Buttons on top row of calculator -->

<Button Grid.Column=”0” Grid.ColumnSpan=”1” Name=”btn7”
Canvas.Left=”0” Grid.Row=”0” Canvas.Top=”0”>

<ContentControl.Content>7</ContentControl.Content>
</Button>
<Button Grid.Column=”1” Name=”btn8” Canvas.Left=”0”

Grid.Row=”0” Canvas.Top=”0”>
<ContentControl.Content>8</ContentControl.Content>

54

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 54

</Button>
<Button Grid.Column=”2” Name=”btn9” Canvas.Left=”0”

Grid.Row=”0” Canvas.Top=”0”>
<ContentControl.Content>9</ContentControl.Content>

</Button>

<!-- Buttons on second row of calculator -->
<Button Grid.Column=”0” Name=”btn4” Canvas.Left=”0”

Grid.Row=”1” Canvas.Top=”0”>
<ContentControl.Content>4</ContentControl.Content>

</Button>
<Button Grid.Column=”1” Name=”btn5” Canvas.Left=”0”

Grid.Row=”1” Canvas.Top=”0”>
<ContentControl.Content>5</ContentControl.Content>

</Button>
<Button Grid.Column=”2” Name=”btn6” Canvas.Left=”0”

Grid.Row=”1” Canvas.Top=”0”>
<ContentControl.Content>6</ContentControl.Content>

</Button>
<!-- Buttons on 3rd row of calculator -->
<Button Grid.Column=”0” Name=”btn1” Canvas.Left=”0”

Grid.Row=”2” Canvas.Top=”0”>
<ContentControl.Content>1</ContentControl.Content>

</Button>
<Button Grid.Column=”1” Name=”btn2” Canvas.Left=”0”

Grid.Row=”2” Canvas.Top=”0”>
<ContentControl.Content>2</ContentControl.Content>

</Button>
<Button Grid.Column=”2” Name=”btn3” Canvas.Left=”0”

Grid.Row=”2” Canvas.Top=”0”>
<ContentControl.Content>3</ContentControl.Content>

</Button>

<!-- Logic Buttons in right column of calculator -->
<Button Grid.Column=”3” Name=”btnDivide” Canvas.Left=”0”

Grid.Row=”0” Canvas.Top=”0”>
<ContentControl.Content>/</ContentControl.Content>

</Button>
<Button Grid.Column=”3” Name=”btnMultiply”

Canvas.Left=”0” Grid.Row=”1” Canvas.Top=”0”>
<ContentControl.Content>*</ContentControl.Content>

</Button>
<Button Grid.Column=”3” Name=”btnAdd” Canvas.Left=”0”

Grid.Row=”2” Canvas.Top=”0”>
<ContentControl.Content>+</ContentControl.Content>

</Button>
<Button Grid.Column=”3” Name=”btnMinus” Canvas.Left=”0”

Grid.Row=”3” Canvas.Top=”0”>
<ContentControl.Content>-</ContentControl.Content>

</Button>
<Button Grid.Column=”2” Name=”btnPeriod” Canvas.Left=”0”

Grid.Row=”3” Canvas.Top=”0”>
<ContentControl.Content>.</ContentControl.Content>

55

Avalon Documents in XAML Markup

06_57874x ch02.qxd 8/15/05 3:43 PM Page 55

</Button>
<Button Grid.Column=”1” Name=”btnPlusMinus”

Canvas.Left=”0” Grid.Row=”3” Canvas.Top=”0”>
<ContentControl.Content>+/-</ContentControl.Content>

</Button>

<!-- Buttons on bottom row of calculator -->
<Button Grid.Column=”0” Name=”btn0” Canvas.Left=”0”

Grid.Row=”3” Canvas.Top=”0”>
<ContentControl.Content>0</ContentControl.Content>

</Button>
<Button Grid.Column=”4” Name=”btnEquals” Grid.Row=”3”>

<ContentControl.Content>=</ContentControl.Content>
</Button>

</Panel.Children>
</Grid>

</Panel.Children>
</Canvas>

</ContentControl.Content>
</Window>
}

Points to note in the code behind are:

❑ This is a partial class because Visual Studio generates another hidden code behind file that adds
declarations to the class in this file.

❑ This second file also creates declarations for the objects (variables) found in the XAML file.

❑ XAML object events were wired up in WindowLoaded, which was declared in the root section of
the file. Therefore, the WindowLoaded method is applied to hook up all the events in the code
behind in order for the calculator to run once it opens.

Summary
This chapter reviewed a portion of the Avalon hierarchy so that you could understand why elements
appear or are laid out in a panel in a particular way. This led to a discussion of the various layout
options provided in the Avalon API. You now know that the panel you choose will also determine the
properties and functionality that each control will inherit from the panel.

The chapter discussed the more common controls from several of the classes so that you can recognize
their differences.

The four types of navigation and each of their strengths were then reviewed, which led you into creating
the layout of a calculator to which you will apply styles and functionality over the next chapters.

In the chapters to follow, you learn about adding 2-D and 3-D graphics that are created using the XAML
syntax. You will also learn how to apply styles and brushes to make the calculator more visually appeal-
ing and reactive to user interaction.

56

Chapter 2

06_57874x ch02.qxd 8/15/05 3:43 PM Page 56

Avalon Graphics and
Animation

The graphics and animation capabilities in Avalon have marked similarities to those found in SVG.
Avalon has graphics classes for regular shapes (lines, polygons, ellipses, and rectangles). It also has
complex arcs and Bezier curves. Any dependency property in Avalon can be animated; this
includes properties for position, opacity, color, and size. In this chapter, you will be looking at the
Shapes subsystem in Avalon and basic animation capabilities.

Working with Shapes
The Shapes class is an abstract base class found in the System.Windows.Shapes namespace of
Avalon. In addition to the dependency properties inherited from the FrameworkElement class, the
following table lists DependencyProperties common to all of the shape classes.

Dependency Property Description

Fill This determines the type of brush that will be applied to illus-
trate the shape’s inner area.

Stroke The outline that surrounds a shape or in regards to a path; the
stroke represents the line between its points.

Table continued on following page

07_57874x ch03.qxd 8/15/05 3:44 PM Page 57

Dependency Property Description

StrokeDashArray This property is a list (or collection) of double values. It determines
the pattern that a shape’s (or path’s) outline will take. The output is a
combination of spaces and dashes. A minimum of one number is
required, and multiple numbers are separated by a space or comma.
The first number sets the length of the dash, while the second num-
ber sets the length of the gap. The next set of numbers fixes the
length of the following dash and gap and so on. When the sequence
finishes, it repeats from the beginning, until the stroke has been com-
pleted.

StrokeDashCap This property alters the appearance of each end of the dashes on a
shape’s stroke. The default value is Flat, but it can also be Round or
Triangle.

StrokeDashOffset A double type valued property that determines how far into the
shape’s stroke that this property should go into the array of values
before applying the pattern. For example, instead of starting the pat-
tern from the beginning, you can start it 45 pixels in, offsetting the
original pattern’s appearance.

StrokeEndLineCap Determines the appearance of the end part of the stroke’s dashes of a
path. The default value is Flat, but it can also be Square, Round, or
Triangle.

StrokeLineJoin Finishes the corner edges of the stroke on a path. The default value is
Miter, but the join can also be Bevel or Round.

StrokeMiterLimit A double type valued property that identifies the limit of proportion
applied to the Miter length in relation to the StrokeThickness of the
shape.

StrokeStartLineCap Determines the appearance of the beginning part of the stroke’s
dashes of a path. The default value is Flat, but it can also be Square,
Round, or Triangle.

StrokeThickness A double type valued property that sets the width of the Stroke sur-
rounding the shape.

All sizing properties such as Height, Width, Top, and bottom are double type valued properties. This
means that neither percentages nor relative sizing measurements are accepted. However, it is possible to
add units to the double values (cm, in, pt, and px). Avalon then converts it (sizing units used) into pixels
based on 96 dpi (dots per square inch).

Ellipse
The ellipse class enables you to create ellipse and circular shapes. Its dimensions are controlled with
the RadiusX and RadiusY properties. They indicate how wide the horizontal or vertical arc will be on
the ellipse. There are also two properties that control where the center of the ellipse is to be placed on the
parent panel: the CenterX for the vertical plane and the CenterY for the horizontal.

58

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 58

<Ellipse RadiusX=”100” RadiusY=”50” Stroke=”#000000” StrokeThickness=”3”>
<Ellipse.Fill>

<SolidColorBrush Color=”Yellow” Opacity=”0.4” />
</Ellipse.Fill>

</Ellipse>

Figure 3-1 shows the result of this code.

Figure 3-1

Line
Lines are the direct connection between two points.

To create a more complex line, see the section on paths.

<Line Stroke=”Black” X1=”450” Y1=”50” X2=”300” Y2=”180” StrokeThickness=”9”
StrokeStartLineCap=”Round” StrokeEndLineCap=”Triangle” />

Figure 3-2 shows the result of executing this code.

Figure 3-2

59

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 59

Polygon
A polygon is a series of lines arranged to form a multisided closed shape.

<Polygon Stroke=”#FF000000” Fill=”#FF008000” Points=”99.5,298.238333333333
199.5,101.238333333333 299.5,302.238333333333 99.5,147.238333333333
299.5,150.238333333333” />

Figure 3-3 shows the result of the preceding code.

Figure 3-3

Polyline
Polyline is similar to the polygon, but it does not need to be closed. Another difference is that the area
inside the Polyline cannot be filled. To illustrate the differences, the same points have been used in the
following sample. In this sample, the star appears to be unfinished. For it to be closed, the start point
would need to be added.

<Polyline Stroke=”#FF000000” Points=”99.5,298.238333333333 199.5,101.238333333333
299.5,302.238333333333 99.5,147.238333333333 299.5,150.238333333333” />

Figure 3-4 shows the result of this code.

60

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 60

Figure 3-4

Rectangle
This is the class that enables you to create a four-sided shape, such as a rectangle or square.

MaxHeight and MaxWidth control how much of the rectangle will be filled. For example, if you have a
rectangle with a Width greater than its MaxWidth, the rectangle will take the dimension of the Width
property but will only display the rectangle filled to the MaxWidth. This example is best viewed using
the Aurora XAML Designer.

<Rectangle Fill=”#FF0000FF” Stroke=”#FF000000” Height=”125” Width=”214”
MaxHeight=”500” MaxWidth=”100” MinHeight=”0” MinWidth=”0” />

Figure 3-5 shows the result of the preceding code.

61

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 61

Figure 3-5

The MinWidth and MinHeight properties do the opposite of their Max counterparts.

The rectangles built in XAML by default have square corners; however, if you want rounded corners,
you can implement the RadiusX and RadiusY properties. As discussed in the “Ellipse” section, the
radius properties control the curvature of arc on the rectangle’s corners. The higher the value, the
rounder the corner will be, based on the plane on which it has been placed.

<-- First Rectangle with equal RadiusX and RadiusY values -->
<Rectangle Height=”100” Width=”100” Fill=”Red” Opacity=”0.4” RadiusX=”20”

RadiusY=”20” />

<-- Second Rectangle with the RadiusX value to be greater than the RadiusY -->
<Rectangle Fill=”Red” Stroke=”Black” StrokeThickness=”10” Height=”85”

Width=”160” RadiusX=”50” RadiusY=”10” />

Figure 3-6 shows the preceding code’s result when executed.

Figure 3-6

62

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 62

Glyphs
Glyphs are shapes that take on the appearance of fonts. For the code to work, the Uniform Resource
Identifier (URI) for the font must have either an absolute or relative path to the file’s location. (if you
want to try this syntax with your system’s fonts, the font folder is most likely located at
C:\WINDOWS\Fonts). Glyphs are often applied in fixed-format documents intended for print.

<Glyphs FontUri=”CURLZ___.ttf” FontRenderingEmSize=”48” OriginX=”85”
OriginY=”60” Fill=”Red” UnicodeString=”Hello World!” />

Figure 3-7 shows the result of executing the preceding code.

Figure 3-7

Using Paths
Paths are also derived from the Shape base class and are found in the System.Windows.Shapes
namespace of Avalon. Paths are composed of geometries, which are located in the
System.Windows.Media namespace.

Paths are more complex than the shapes previously discussed (Line, Polygon, and Polyline)
because they are a combination of many connected lines and curves that make up a two-dimensional (2-
D) graphic. Paths can vary from simple to complex. Examples of more intricate paths include elaborate
images, linear maps, and computer-aided design (CAD drawings).

Paths have a data property that is a type of geometry. Geometry is a series of connected mathematical
points, lines arcs, and surfaces that can be combined to create 2-D graphics (path).

In the Avalon API, the Path is defined as a class of objects that have clipping, hit-testing (the ability to
select with a mouse), and rendering capabilities. Therefore, the geometry of a path is the instructions
defining how it will be rendered.

Geometries are categorized into the classes listed in the following table.

63

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 63

Geometry Class Definition

EllipseGeometry Represents the geometry of a circle or ellipse.

GeometryCollection Represents a collection of Geometry objects. Note that a
GeometryCollection is derived from Geometry and represents
a composite shape of the Geometry objects it contains.

LineGeometry Represents the geometry of a line.

PathGeometry Represents a complex shape comprising a variety of segments. The
segments may be composed of arcs, curves, ellipses, lines, and rect-
angles.

RectangleGeometry Represents the geometry of a rectangle.

Simple Geometries
A simple geometry, as the name implies, is a basic shape created using the path syntax.
EllipseGeometry, LineGeometry, and RectangleGeometry are relatively simple formats for creat-
ing a Path in relation to some of the other geometries covered next.

<!-- Beginning of an EllipseGeometry -->
<Path Fill=”Blue” Stroke=”Black”>

<Path.Data>
<EllipseGeometry Center=”440, 100” RadiusX=”40” RadiusY=”75”/>

</Path.Data>
</Path>

<!-- Beginning of a LineGeometry -->
<Path Fill=”Blue” Stroke=”Black”>

<Path.Data>
<LineGeometry StartPoint=”50,50” EndPoint=”300,50”/>

</Path.Data>
</Path>

<!-- Beginning of a RectangleGeometry -->
<Path Fill=”Blue” Stroke=”Black”>

<Path.Data>
<RectangleGeometry >

<RectangleGeometry.Rect>
<Rect X=”200” Y=”25” Width=”100” Height=”50”/>

</RectangleGeometry.Rect>
</RectangleGeometry>

</Path.Data>
</Path>

Figure 3-8 shows the results of the preceding code.

64

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 64

Figure 3-8

This is an example of how to create a path using each of the simple geometries.

To control the placement of an EllipseGeometry, another property named Center is added. The two
numbers on the Center property are X,Y values. This same X,Y format is used when creating
LineGeometry; however, the coordinates are placed on the StartPoint and EndPoint to indicate
where the beginning and ending points of the line are located. The RectangleGeometry is a little more
obvious where it uses X and Y as a means of placing the rectangle on the document and subsequently is
filled out based on its Height and Width values. However, if the amount of code is an issue,
RectangleGeometry can be written in an abbreviated fashion. Following is the syntax for creating the
same rectangle two different ways; the top part is written in the abbreviated fashion, whereas the bottom
part has each property name and value written out separately:

<!-- The abbreviated version -->
<Path Fill=”Pink” Stroke=”Black”>

<Path.Data>
<RectangleGeometry Rect=”50,25 100,50” />

</Path.Data>
</Path>

<!-- The same rectangle but naming each of the properties -->
<Path Fill=”Blue” Stroke=”Black”>

<Path.Data>
<RectangleGeometry >

<RectangleGeometry.Rect>
<Rect X=”50” Y=”25” Width=”100” Height=”50”/>

</RectangleGeometry.Rect>
</RectangleGeometry>

</Path.Data>
</Path>

A TranslateTransform was applied to the rectangle on the right to show two geometries side by side.
(See the “Transforms” section, later in this chapter to learn more about TranslateTransforms.)

65

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 65

Figure 3-9 shows the results of the preceding code.

Figure 3-9

GeometryCollection
Derived from the Geometry abstract base class, the GeometryCollection can have several geometries,
grouped together or nested, within the GeometryGroup. Collectively, they can be interconnected to cre-
ate one image.

<Path Stroke=”LinearGradient 1,0 0,1 Red DimGray” StrokeThickness=”3”
Fill=”RadialGradient LightGray Red”>

<Path.Data>
<GeometryGroup>

<RectangleGeometry Rect=”20,125 100 60” />
<LineGeometry StartPoint=”20,10” EndPoint=”50,220” />
<EllipseGeometry Center=”40,150” RadiusX=”30” RadiusY=”80” />

</GeometryGroup>
</Path.Data>

</Path>

Figure 3-10 shows the result of this code.

Figure 3-10

In the preceding image there is a white space where the rectangle and ellipse geometries intersect. The
Path class has a property called the FillRule. It has two values: nonzero and evenodd. This property
creates cutout effects to the GeometryCollection. To override the default value (evenodd), set
FillRule=”nonzero”.

66

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 66

PathGeometry
PathGeometry is an intricate combination of arcs, curves, and shape geometries. The
PathFigureCollection is used within PathGeometry to hold more than one subpath (PathFigure).
The PathFigure itself can be composed of a combination of PathSegment, ArcSegment, and
BezierSegments.

When there is more than one of the segments present, they would be placed within a
PathSegmentCollection. The segments further define the final outcome to the subpath’s appearance.
Following is the syntax structure used to encompass multiple the paths:

<Path Stroke=”Black” StrokeThickness=”1”>
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigureCollection>

//collection of figures goes here

</PathFigureCollection>
</PathGeometry.Figures>

</PathGeometry>
</Path.Data>

</Path>

Within each PathSegmentCollection there must be a StartSegment. This indicates where the path is
to be started. The CloseSegment property ends the segment and is also a useful indicator in more com-
plex paths when one path ends and another begins.

<Path Stroke=”Black” StrokeThickness=”3”>
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigureCollection>
<!-- Start of triangle (first subpath)-->
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”10,10” />
<LineSegment Point=”30,50”/>
<LineSegment Point=”50,20”/>
<CloseSegment />

</PathSegmentCollection>
</PathFigure.Segments>

</PathFigure>

<!-- Start of diamond shape (second subpath) -->
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”50,20” />
<LineSegment Point=”75,50”/>
<LineSegment Point=”100,20”/>

67

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 67

<LineSegment Point=”75,3”/>
<CloseSegment />

</PathSegmentCollection>
</PathFigure.Segments>

</PathFigure>
</PathFigureCollection>

</PathGeometry.Figures>
</PathGeometry>

</Path.Data>
</Path>

Figure 3-11 shows the result of the preceding code.

Figure 3-11

ArcSegment
ArcSegment represents an elliptical arc between two points. The Size property represents the X,Y coor-
dinates of the arc’s radius. The X,Y values of Point define the endpoint of the arc. Another property is
the XRotation. It determines the amount of rotation to apply in relation to the other coordinates.

<Path Stroke=”Black” StrokeThickness=”1”>
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigureCollection>
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”10,30” />
<ArcSegment Size=”10,50” XRotation=”130”

LargeArc=”True” SweepFlag=”False”
Point=”100,10”/>

</PathSegmentCollection>
</PathFigure.Segments>

</PathFigure>
</PathFigureCollection>

</PathGeometry.Figures>
</PathGeometry>

</Path.Data>
</Path>

Figure 3-12 shows the ArcSegment defined in the preceding code.

68

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 68

Figure 3-12

BezierSegment
This represents a cubic Bezier curve (a curve that is mathematically created from three points).

For most segments, the current point is a point used in calculations and is significant. The Bezier for
example is constructed from four points: the current point, Point1, Point2, Point3. In the following
sample, the start segment is defining the current point:

<Path Stroke=”Black” StrokeThickness=”1”>
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigureCollection>
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”10,100” />
<BezierSegment Point1=”100,0”

Point2=”200,200” Point3=”300,100”/>
</PathSegmentCollection>

</PathFigure.Segments>
</PathFigure>

</PathFigureCollection>
</PathGeometry.Figures>

</PathGeometry>
</Path.Data>

</Path>

Avalon divides the curve into thirds and controls them with Point1, Point2, and Point3. Each point
controls the X,Y coordinates of the curve.

LineSegment
This represents a line between two points. Point A (or the starting point) is represented by the
StartSegment of the line, while the LineSegment represents point B.

69

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 69

<Path Stroke=”Black” StrokeThickness=”1”>
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigureCollection>
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”10,50” />
<LineSegment Point=”200,70”/>

</PathSegmentCollection>
</PathFigure.Segments>

</PathFigure>
</PathFigureCollection>

</PathGeometry.Figures>
</PathGeometry>

</Path.Data>
</Path>

QuadraticBezierSegment
This class creates a quadratic Bezier segment (a curve based on three anchor points: 0, 1, and 2). As with
all other curves, the StartSegment is the starting point, Point0. Point2 is the ending point, and
Point1 controls the curvature of the arc.

<Path Stroke=”Black” StrokeThickness=”1”>
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigureCollection>
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”50,100” />
<QuadraticBezierSegment Point1=”250,300”

Point2=”500,100”/>
</PathSegmentCollection>

</PathFigure.Segments>
</PathFigure>

</PathFigureCollection>
</PathGeometry.Figures>

</PathGeometry>
</Path.Data>

</Path>

Figure 3-13 shows the QuadraticBezierSegment result defined in the preceding code.

70

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 70

Figure 3-13

Poly Segments
There are three types of poly segments: PolyBezierSegment, PolyLineSegment, and
PolyQuadraticBezierSegment. They each enable one or more segments of their type to be created and
connected. Because the syntax is similar in each, they have been listed together in the following code:

<Path Stroke=”Black” StrokeThickness=”1”>
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigureCollection>
<!-- Beginning of PolyBezierSegment-->
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”10,50” />
<PolyBezierSegment Points=”100,0 200,200

300,100 400,0 500,200 600,100”/>
</PathSegmentCollection>

</PathFigure.Segments>
</PathFigure>
<!-- Beginning of PolyLineSegment-->
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”10,150” />
<PolyLineSegment Points=”200,250 400,180”/>

</PathSegmentCollection>
</PathFigure.Segments>

</PathFigure>
<!-- Beginning of PolyQuadraticSegment-->
<PathFigure>

<PathFigure.Segments>
<PathSegmentCollection>

<StartSegment Point=”50,200” />
<PolyQuadraticBezierSegment Points=”250,400

500,200 750,400 900,200” />

71

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 71

</PathSegmentCollection>
</PathFigure.Segments>

</PathFigure>
</PathFigureCollection>

</PathGeometry.Figures>
</PathGeometry>

</Path.Data>
</Path>

Figure 3-14 shows the result.

Figure 3-14

Abbreviated Path Syntax
Abbreviated syntax is used to help create smaller documents. Paths can also be created in this manner.
This concept was adopted from the SVG abbreviated syntax. Following is the syntax for the same line
written in two different manners: The top section of code is written in full syntax; the bottom part is in
the abbreviated format. If you wish to test the syntax, remember to nest the paths within a StackPanel;
otherwise, the lines will be on top of one another.

<StackPanel>
<Path Stroke=”Black” StrokeThickness=”3”>

<Path.Data>
<PathGeometry>

<PathGeometry.Figures>
<PathFigureCollection>

<PathFigure>
<PathFigure.Segments>

<PathSegmentCollection>
<StartSegment Point=”10,50” />
<LineSegment Point=”200,70”/>

</PathSegmentCollection>
</PathFigure.Segments>

</PathFigure>
</PathFigureCollection>

72

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 72

</PathGeometry.Figures>
</PathGeometry>

</Path.Data>
</Path>

<!-- Same line as above but in abbreviated version-->
<Path Stroke=”Black” StrokeThickness=”3” Data=”M 10,50 L 200,70” />

</StackPanel>

Figure 3-15 shows the resulting lines.

Figure 3-15

Data is the property that holds the string of commands and points in which the path will proceed to ren-
der the graphic. The M (for Move) represents the starting (or current) point from which it will proceed to
the ending point of the segment, which is defined by the L (Line) coordinates. This syntax produces a
much smaller document size for large drawings. Multiple subpaths can also be specified with the abbre-
viated path syntax. Each subpath contains its own move, draw, and optional close statements. The fol-
lowing example demonstrates a simple path, which is drawn using abbreviated syntax:

<Path Stroke=”#000000” StrokeThickness=”3” Data=”M 250 20 L 150 50 L 350 150 z” />

Figure 3-16 illustrates the resulting shape.

Figure 3-16

73

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 73

In addition to lines, a draw command can create other lines and curves, including the following:

❑ Horizontal line

❑ Vertical line

❑ Cubic Bezier curve

❑ Quadratic Bezier curve

❑ Smooth cubic Bezier curve

❑ Elliptical arc

The command letter can be entered as either uppercase or lowercase. However, there is a difference
between the two because the uppercase commands denote absolute values, whereas the lowercase ones
indicate relative values. When entering more than one command of the same type (such as a series of
lines) sequentially, it is not necessary to repeat the L command for each point. For example, both frag-
ments define the same shape, However, the second is more efficient in its syntax size, which could ulti-
mately improve the performance of the final product. This efficiency would be more prevalent when
creating more complex graphics.

L 100,200 L 300,400.
L 100,200 300,400

Following is a table listing all the abbreviated commands available, with the most commonly used com-
mands first. Either a space or comma may be used after each coordinate. To illustrate this format, the
Abbreviated Syntax column shows the commas in the pseudocode and spaces in the sample fragment.

Command Abbreviated Syntax Description

Move M x,y or m x,y Denotes the beginning point
M 100 200 or m 100 200 (StartSegment) for the path (or subpath).

As with all paths it requires a
StartSegment; however, in abbreviated
syntax, it is defined as Move(M).

Line L x,y or l x,y This creates a line from the last coordinate
L 200 300 or l 200 300 of the X,Y values specified in the Line

command.

Horizontal Line H x or h x A command to create a horizontal line
H 100 or h 100 from the previous point to the X value of

this command.

Vertical Line V y or v y A command to create a vertical line from
V 200 or v 200 the previous point to the Y value of this

command.

74

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 74

Command Abbreviated Syntax Description

Close Path Z or z This represents the CloseSegment of the
path. A straight line from the current
point to the initial point of the current
subpath. If there is a command other than
a move command (to indicate a new sub-
path) following the close, the Z point will
become the starting point for the new sub-
path. For example:
Data=”M 250 20 L 150 50 L 350 150 z L
30 250”.

Cubic Bezier Curve C x1,y1 x2,y2 x3,y3 This signifies a cubic Bezier curve. The arc
or starts at the current position or the last
c x1,y1 x2,y2 x3,y3 point drawn in the previous segment.

x1,y1, and x2,y2 control the curvature of
C 100 300 200 300 300 100 the arc. x3,y3 specify the endpoint of the
or curve and becomes the start point for the
c 100 300 200 300 300 100 next segment of the path.

Smooth Cubic S x1,y1 x2,y2 This command also creates a cubic Bezier
Bezier Curve or curve; while the second point completes

s x1,y1 x2,y2 the curve, the first point reflects the curve
with the ending point of the previous

S 100 200 200 300 command. For example, if the syntax
or fragment of this curve followed the cubic
s 100 200 200 300 Bezier curve’s fragment, it would look

like an upside-down loop. If it followed a
Z, it would look like a cup.

Quadratic Q x1,y1 x2,y2 This creates a quadratic Bezier curve. The
Bezier Curve or second point completes the curve, while

q x1,y1 x2,y2 the first point controls the arc of the
curve.

Q 50 150 200 150
or
q 50 150 200 150

Table continued on following page

75

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 75

Command Abbreviated Syntax Description

Elliptical Arc A xr,yr rx flag1 flag2 x,y This creates an elliptical arc. The first
or coordinates control the radius for both
a xr,yr rx flag1 flag2 x,y the X and Y plane. The next value (which

is a degree value) controls the overall
A 300 50 180 1 0 50 50 dimension and placement of the ellipse.
a 300 50 180 1 0 50 50 The center point is not defined because it

is calculated in from the other values. The
next two values are the flags and have a
value of 0 or 1.

Flag1 controls which of the arc sweeps to
apply. Within an elliptical arc there are
actually four candidate arc sweeps; two
represent large arcs with sweeps of 180
degrees or greater, and two represent
smaller arcs with sweeps 180 degrees or
less. Therefore, if Flag1 has a value of 1,
the larger sweep will be applied. Flag2
indicates if the arc will be drawn in a pos-
itive or negative angled direction. There-
fore, if Flag2 has a value of 1, the arc will
be drawn as a positive angle.

Following is the syntax of an abbreviated path using all the values displayed from the preceding table:

<Path Stroke=”#000000” StrokeThickness=”3” Data=”M 100 200 L 200 300 H 100 V 200 Z
C 100 300 200 300 300 100 S 100,200 200,300 Q 50 150 200 150 A 300 50 180 1 0 50 50
z “ />

Figure 3-17 shows the result.

Figure 3-17

76

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 76

Painting and Brushes
Brushes are used for specifying how color will be applied (painted) on the Stroke and Fill of 2-D
graphics. They are used to specify the painting of the Background, Foreground, and Borders for
Controls and Material on 3-D objects.

Some of the concepts for painting and filling 2-D graphics in Avalon are very similar to those in SVG. To
illustrate the outline of a graphic, you use the shape’s Stroke property, and you use the Fill property
to color the shape’s interior. For controls and 3-D objects, the properties are BorderBrush (for the out-
line) and Background or Material for their interior areas. Controls also have a Foreground property
that controls the visual appearance of the content (usually text) in the control.

<Rectangle Height=”74” Width=”144” Fill=”Red” Stroke=”Black” />

<Button Height=”74” Width=”144” Background=”Blue” BorderBrush=”Black”
Foreground=”White” >Button</Button>

Figure 3-18 shows the result of executing this code.

Figure 3-18

This XAML fragment creates two objects. The first is a red rectangle with a black outline, and the second
is a blue button with a black border and white text. This sample leads into how to specify colors in an
Avalon document. As with much of the API, you have options in the area of color; both common color
names and hexadecimal conventions are valid formats to use.

Common color names, such as red and black, are valid. The property’s value is not case-sensitive.
Hexadecimal RGB (Red, Green, Blue) is the other option for specifying a brush’s color. At the time of
printing, system color names, such as ActiveCaption, are not a valid naming convention. Instead, use
the equivalent in the hexadecimal format (#FF0054E3) or the RGB format (#0054E3).

In both Avalon and SVG, Transparent is considered a valid color name; however, in Avalon the color
must be specified like Fill=”Transparent” not Fill= “” or it will be considered an empty string.
Opacity can also be set for the stroke (or fill) by using the ARGB format (#AARRGGBB), where AA repre-
sents the opacity value. In addition to specifying the opacity, using the alpha channel in the color,
brushes also have an Opacity property to control the transparency.

The following fragments are all equivalent and valid formats:

❑ Named format —Fill=”Red” Stroke=”Black”

❑ Abbreviated format —Fill=”#F00” Stroke=”#000”

77

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 77

❑ Standard format —Fill=”#FF0000” Stroke=”#000000”

❑ Extended format —Fill=”#FFFF0000” Stroke=”#FF000000”

Solid Color Brush
SolidColorBrush uniformly applies a single solid color to an element. The System.Windows.Media
namespace in Avalon also defines some premade SolidColorBrushes. They are static system brushes
accessible from the Brush class.

SolidColorBrush can be specified by simply assigning a color value to a property expecting a brush,
such as Fill=”Green”. The Internal Type Converters convert the color to a SolidColorBrush.
Alternatively, SolidColorBrush itself may be explicitly set and assigned in XAML. Both formats are
provided in the following sample:

<!-- Applying a color value -->
<Ellipse CenterX=”120” CenterY=”120” RadiusX=”100” RadiusY=”50” Fill=”Yellow”

Opacity=”0.4”/>

<!-- Format used to specify the brush which is to apply the color -->
<Ellipse CenterX=”120” CenterY=”120” RadiusX=”100” RadiusY=”50”>

<Ellipse.Fill>
<SolidColorBrush Color=”Yellow” Opacity=”0.4”/>

</Ellipse.Fill>
</Ellipse>

Gradient Brushes
Both gradients (LinearGradientBrush and RadialGradientBrush) represent multicolored brushes
that blend the colors on an axis. As their names imply, the linear gradient flows across a linear plane,
whereas the radial radiates the colors out from its center. There is no limit to the number of colors that
either brush can have, but they must have a minimum of two colors or the result will look as if
SolidColorBrush was applied.

GradientStop controls the gradation from one color to the next, and both brushes share this property.

Each stop controls an individual color in the gradient and its position or offset. Offset is a double type
valued property with a range from 0 to 1. The purpose of the offset is to interpolate the color at various
positions in relation to the offset values of the other colors present in the gradient. Colors where a large
gap between offset values is present result in a gradual gradation, whereas colors with a small separa-
tion have a sharper color change, as illustrated in Figure 3-19.

78

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 78

Figure 3-19

The rectangle on the left shows a large offset value difference; the rectangle on the right has no difference.

<!-- Large value difference between offsets -->
<Rectangle Height=”130” Stroke=”#FF000000” Width=”130”>

<Shape.Fill>
<LinearGradientBrush EndPoint=”1,1” Opacity=”1”>

<GradientBrush.GradientStops>
<GradientStopCollection>

<GradientStop Color=”White” Offset=”0” />
<GradientStop Color=”Black” Offset=”1” />

</GradientStopCollection>
</GradientBrush.GradientStops>

</LinearGradientBrush>
</Shape.Fill>

</Rectangle>

<!-- No gap in value between offsets -->
<Rectangle Height=”130” Stroke=”#FF000000” Width=”130”>

<Shape.Fill>
<LinearGradientBrush EndPoint=”1,1” Opacity=”1”>

<GradientBrush.GradientStops>
<GradientStopCollection>

<GradientStop Color=”White” Offset=”0.5” />
<GradientStop Color=”Black” Offset=”0.5” />

</GradientStopCollection>
</GradientBrush.GradientStops>

</LinearGradientBrush>
</Shape.Fill>

</Rectangle>

Linear Gradient Brush
LinearGradientBrush represents a multicolored brush, and the colors flow along a linear axis. To fur-
ther define the appearance, it has two other properties, the StartPoint and the EndPoint. Together
they orient the flow in which the gradient is to travel. To further explain this concept, the following
example (see Figure 3-20) displays how the colors are interpolated along the diagonal created between
the start- and endpoints:

79

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 79

Figure 3-20

<Rectangle Height=”300” Stroke=”#FF000000” Width=”300”>
<Shape.Fill>

<LinearGradientBrush EndPoint=”1,1” Opacity=”1” StartPoint=”0,0”>
<GradientBrush.GradientStops>

<GradientStopCollection>
<GradientStop Color=”Aqua” Offset=”0” />
<GradientStop Color=”DarkBlue”

Offset=”0.29652605459057074” />
<GradientStop Color=”Aquamarine”

Offset=”0.60607940446650121” />
<GradientStop Color=”Purple” Offset=”1” />

</GradientStopCollection>
</GradientBrush.GradientStops>

</LinearGradientBrush>
</Shape.Fill>

</Rectangle>

Radial Gradient Brush
RadialGradientBrush is similar to LinearGradientBrush except that the axis used for interpolation
of the colors is defined from the center of an ellipse outwards.

RadialGradientBrush has four properties (GradientOrigin, Center, RadiusX, and RadiusY) to
further the exact positioning and appearance of the gradient. The GradientOrigin determines where

GradientStop
#1 Aqua

(0,0)

(1,1)

GradientStop
#2 DarkBlue

GradientStop
#3 Aquamarine

GradientStop
#4 Purple

80

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 80

the gradient will begin. The Center property controls where the gradient will radiate out from. The two
radius properties control the vertical and horizontal arc that will be applied to the gradient.

<Ellipse StrokeThickness=”25px” RadiusX=”100px” RadiusY=”50px”>
<Shape.Fill>

<RadialGradientBrush Center=”0.653846153846154,0.730769230769231”
RadiusX=”0.77149321266968374” RadiusY=”0.77149321266968374”
GradientOrigin=”0.144796380090498,0.30316742081448” >

<GradientBrush.GradientStops>
<GradientStopCollection>

<GradientStop Color=”Aqua” Offset=”0.28054298642533937” />
<GradientStop Color=”DarkBlue”

Offset=”0.50904977375565619” />
<GradientStop Color=”Magenta”

Offset=”0.59162895927601811” />
<GradientStop Color=”AquaMarine”

Offset=”0.71662895927601822” />
</GradientStopCollection>

</GradientBrush.GradientStops>
</RadialGradientBrush>

</Shape.Fill>
</Ellipse>

Figure 3-21 shows the results.

Figure 3-21

Abbreviated XAML Gradient Syntax
As you can see from the previous examples, the syntax for specifying a gradient brush can be verbose.
To shorten the lengthy syntax, the Avalon type converters can translate it into a simpler string represen-
tation. Unfortunately, it can have only two colors.

<!-- LinearGradientBrush full syntax -->
<Rectangle Margin=”10,10,10,10” Width=”150” Height=”100” Stroke=”#FF000000” >

<Shape.Fill>
<LinearGradientBrush EndPoint=”0.5,0.5” Opacity=”1”

StartPoint=”0.1,0.1”>

81

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 81

<GradientBrush.GradientStops>
<GradientStopCollection>

<GradientStop Color=”Red” Offset=”0.0” />
<GradientStop Color=”AliceBlue” Offset=”1.0” />

</GradientStopCollection>
</GradientBrush.GradientStops>

</LinearGradientBrush>
</Shape.Fill>

</Rectangle>

<!-- LinearGradientBrush in abbreviated syntax -->
<Rectangle Width=”150” Height=”100”

Fill=”LinearGradient 0.1,0.1 0.5,0.5 Red AliceBlue”/>

<!-- RadialGradientBrush full syntax -->
<Rectangle Margin=”10,10,10,10” Width=”150” Height=”100” Stroke=”#FF000000” >

<Shape.Fill>
<RadialGradientBrush Opacity=”1” GradientOrigin=”0.5,0.5”

Center=”0.5,0.5” RadiusX=”0.5” RadiusY=”0.5”>
<GradientBrush.GradientStops>

<GradientStopCollection>
<GradientStop Color=”Red” Offset=”0.0” />
<GradientStop Color=”AliceBlue” Offset=”1.0” />

</GradientStopCollection>
</GradientBrush.GradientStops>

</RadialGradientBrush>
</Shape.Fill>

</Rectangle>

<!-- RadialGradientBrush abreviated syntax -->
<Rectangle Fill=”RadialGradient Red AliceBlue” Width=”150” Height=”100” />

Figure 3-22 shows results for both the full and abbreviated syntax.

Figure 3-22

The two outlined shapes were created with the full syntax, whereas the shapes without a Stroke were
written with the abbreviated syntax.

82

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 82

Brushes that Paint with Graphics
The next three brushes are a little different in that instead of a color they illustrate elements with graph-
ics. Graphics can be images, drawings, patterns, 3-D images or video. Before discussing each one indi-
vidually, the common layout properties of each of them are reviewed.

To control the appearance of the graphics there are four formatting properties available:

❑ VerticalAlignment

❑ HorzontalAlignment

❑ ImageStretch

❑ TileMode

The alignment of the image is set using HorizontalAlignment or VerticalAlignment with one of the
following values: Left, Right, or Center.

To have the graphic fill the element, apply the brush to the ImageStretch property. This property has
four values: Fill, None, Uniform, and UniformToFill. Because the values are fairly self-explanatory,
see the sample shown in Figure 2-23 to identify their differences.

Figure 3-23

This figure illustrates the four ImageStretch properties (from left to right: None, Fill, Uniform, and
UniformToFill).

Another common property is the TileMode property. It allows you to reverse or invert the graphic to
create a tiled pattern. The values available are FlipX, FlipY, FlipXY, Tile, or None. Tile repeats the
initial pattern without any flipping; the value None means that no tile effects are implemented.

83

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 83

Image Brush
As its name implies, this brush paints an object with an image. An image can be any of the following for-
mats: .jpg, .gif, .png, .tiff, .bmp, and .ico.

<Button FontSize=”26px” FontWeight=”ExtraBold” Foreground=”#FF000000” Height=”149”
Name=”myButton” Canvas.Left=”47” Canvas.Top=”25” Width=”216”>

<Control.Background>
<ImageBrush AlignmentX=”Right” AlignmentY=”Top”

ImageSource=”MyFlower.png” Opacity=”0.5” Stretch=”None”
TileMode=”None” />

</Control.Background>
<ContentControl.Content>Button1</ContentControl.Content>

</Button>

Figure 3-24 shows the results of the preceding code.

Figure 3-24

Drawing Brush
The drawing brush is similar to the image brush, but it fills the interior area of an element with a draw-
ing. The benefit of this brush is that it can fill an area with vector or bitmap images as well as video and
drawings. In addition, it’s smaller and has a faster rendering time than other FrameworkElements,
which makes this brush an ideal option for creating clipart and backgrounds.

DrawingBrush displays the drawing’s elements in proportion to the area it is to fill. Because
DrawingBrush is independent from the element, it is able to fill the area of one or more differently
shaped elements consistently with its tiling property. Nesting within the DrawingGroup enables you to
apply multiple drawings to elements.

The size of the elements can be controlled by setting the output proportions with double values between
0 and 1. Therefore, if you set the proportion size to 0.5, the drawing element will fill 50 percent of the
area. To prevent any distortion set Stretch=”None”.

DrawingBrush has two other properties to control the horizontal and vertical layout. AlignmentX con-
trols the horizontal plane and has three values to choose from: Left, Center, and Right. AlignmentY
controls the vertical plane and has three values to choose from: Top, Center, and Bottom. This tool is an
effective means for creating and repeating intricate patterns, as shown in the following:

84

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 84

<Rectangle Width=”200” Height=”200”
Stroke=”LinearGradient 0.0,0.5 0.1,0.7 Silver Black” StrokeThickness=”3”>

<Rectangle.Fill>
<DrawingBrush>

<DrawingBrush.Drawing>
<GeometryDrawing Brush=”RadialGradient Blue Red”>

<GeometryDrawing.Geometry>
<GeometryGroup>

<EllipseGeometry RadiusX=”0.3” RadiusY=”0.45”
Center=”0.5,0.5” />

<EllipseGeometry RadiusX=”0.45” RadiusY=”0.2”
Center=”0.5,0.5” />

<EllipseGeometry RadiusX=”0.2” RadiusY=”0.3”
Center=”0.5,0.5” />

<EllipseGeometry RadiusX=”0.45”
RadiusY=”0.45” Center=”0.5,0.5” />

</GeometryGroup>
</GeometryDrawing.Geometry>
<GeometryDrawing.Pen>

<Pen Thickness=”0.026”
Brush=”RadialGradient Black Transparent” />

</GeometryDrawing.Pen>
</GeometryDrawing>

</DrawingBrush.Drawing>
</DrawingBrush>

</Rectangle.Fill>
</Rectangle>

Figure 3-25 shows the result of the preceding code.

Figure 3-25

VisualBrush
VisualBrush is similar to DrawingBrush except that it maintains the layout. The most interesting thing
about this tool is that it empowers you to add something from another part of the Visual Tree.
VisualBrush enables you to create side-by-side views of an item, where one is a zoomed-in version of
the original. Also this brush empowers you to paint the surface of 3-D objects with visuals. To illustrate
the power of this brush, Figure 3-26 uses the 3-D syntax. (The actual syntax follows the figure.)

85

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 85

Figure 3-26

<StackPanel >
<StackPanel.Resources>

<VisualBrush x:Key=”visualBrush” Viewbox=”0,0,1,1”>
<VisualBrush.Visual>

<StackPanel Background=”LinearGradient 0.3,0.3 0.55,0.78 Red
Black”>

<TextBlock Height=”100” Width=”100” FontSize=”30”
FontWeight=”Bold” FontFamily=”times” Foreground=”Blue”
TextWrap=”Wrap” >

This is some text. That can wrap around the corners
of a 3D Object!

</TextBlock>
</StackPanel>

</VisualBrush.Visual>
</VisualBrush>

</StackPanel.Resources>

<!-- Please note, the Canvas tag on the next line is a workaround for Beta
Release Candidate 2 and will likely be unnecessary in later releases. -->

<Canvas Background=”{StaticResource visualBrush}” Height=”100” Width=”100” >
<Viewport3D Canvas.Left=”60” ClipToBounds=”True” Height=”480”

Width=”640”>
<Viewport3D.Camera>

<PerspectiveCamera NearPlaneDistance=”1” FarPlaneDistance=”100”
LookAtPoint=”0,-1,0” Position=”-8, 0, 8” Up=”1, 1, 0”
FieldOfView=”30”/>

</Viewport3D.Camera>
<Viewport3D.Models>

<Model3DGroup>
<Model3DGroup.Children>

<!--Lights-->
<DirectionalLight Color=”#FFFFFFFF”

Direction=”3,-1,-3” />

86

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 86

<AmbientLight Color=”#66666666” />

<!--Pyramid-->
<GeometryModel3D>

<GeometryModel3D.Geometry>
<MeshGeometry3D Positions=”-1 -2 -0.5 2 -1

-0.5 -1 2 -0.5 1 1 -0.5 0 0 1”
Normals=”-1 -1 0 0 -1 0 -1 0 1 0 0.5
0 0 0 1” TextureCoordinates=”0 1 1 1 0
0 1 0 0.25 0.25” TriangleIndices=”0 4 2
2 4 3 4 1 3 0 1 4” />

</GeometryModel3D.Geometry>
<GeometryModel3D.Material>

<DiffuseMaterial
Brush=”{StaticResource visualBrush}” />

</GeometryModel3D.Material>
</GeometryModel3D>

</Model3DGroup.Children>
</Model3DGroup>

</Viewport3D.Models>
</Viewport3D>

</Canvas>
</StackPanel>

To learn more about 3-D, go to Chapter 4, “Advanced Features.”

Opacity Mask
An opacity mask enables you to combine one object with other objects. You can then define areas on the
combined objects with transparencies. In Avalon, the opacity is a little different from the brushes in that
it is actually a property to which you apply a brush to alter the appearance of an element. It seems to
work like a combination of the image brush and the gradient brush; however, instead of a gradation of
colors, it is a gradation of opacity. With the use of alpha channels it blocks out areas, enabling you to cre-
ate visual effects or cutouts to an image. The opacity value is a double-valued range between 0 and 1,
where 0 is transparent and 1 is opaque.

Figure 3-27 shows different ways of creating a mask. The first is without any mask; the second is with a
radial gradient; next is the image that has been applied as a mask to the button on the far right. The code
to recreate them follows.

Figure 3-27

87

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 87

<StackPanel Orientation=”Horizontal”>

<!-- Button with an image applied without an opacity mask applied -->
<Button Height=”149” Width=”165” Foreground=”White” Content=”Button 1”>

<Control.Background>
<ImageBrush BitmapSource=”MyFlower.png” Stretch=”UniformToFill” />

</Control.Background>
</Button>

<!-- Button with an image applied with a radial gradient opacity mask applied --
>

<Button Height=”149” Width=”165” Foreground=”White” Content=”Button1”>
<Control.Background>

<ImageBrush BitmapSource=”MyFlower.png” Stretch=”UniformToFill” />
</Control.Background>
<UIElement.OpacityMask>

<RadialGradientBrush Center=”0.490074441687345,0.508684863523573”
GradientOrigin=”0.5,0.46029776674938” Opacity=”1”
RadiusX=”0.37593052109181158” RadiusY=”0.5496277915632749”>

<GradientBrush.GradientStops>
<GradientStopCollection>

<GradientStop Color=”#FF000000”
Offset=”0.42718446601941745” />

<GradientStop Color=”#00FFFFFF” Offset=”1” />
</GradientStopCollection>

</GradientBrush.GradientStops>
</RadialGradientBrush>

</UIElement.OpacityMask>
</Button>

<!-- Image that is applied as a mask the last button -->
<Image Height=”149” Width=”165” Source=”ImageMask.gif” />

<!-- Button with the image above that is applied as a mask -->
<Button Height=”149” Width=”165” Content=”Button1” Foreground=”White”>

<Control.Background>
<ImageBrush BitmapSource=”MyFlower.png” Stretch=”UniformToFill” />

</Control.Background>
<UIElement.OpacityMask>

<ImageBrush BitmapSource=”ImageMask.gif” Opacity=”1”
Stretch=”UniformToFill />

</UIElement.OpacityMask>
</Button>

</StackPanel>

88

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 88

Transforms
Transforms enable you to alter the location, size, appearance, and rotation of an object. Transforms affect
any visual element, including controls (both visually and through animation). There are six types of
transforms:

❑ TransformGroup

❑ TranslateTransform

❑ RotateTransform

❑ ScaleTransform

❑ SkewTransform

❑ MatrixTransform

Each transform is defined by a 3 × 3 matrix, which is applied as a Matrix property on each Transform
class. Transforms are set on an individual object using the RenderTransform.

TransformGroup
TransformGroup acts as a container when more than one transform is present. Without using the
TransformGroup, a transform can have only one child. However, as with the elements discussed earlier,
the child can be a complex object such as a Canvas. This can come in handy if you have laid out an intri-
cate table and you then want to scale it down to fit within the formatting of another XAML document.

<Canvas>
<Canvas.RenderTransform>

<TransformGroup>
<SkewTransform AngleX=”10” AngleY=”10” />
<RotateTransform Center=”0 0” Angle=”-30” />
<TranslateTransform X=”100” Y=”50” />
<ScaleTransform ScaleX=”1.5” ScaleY=”1.5” />

</TransformGroup>
</Canvas.RenderTransform>
<Polygon Fill=”Pink” Stroke=”#FF000000” StrokeThickness=”3”

Points=”65,150.238333333333 10,64.2383333333333 61,9.23833333333332
149,62.2383333333333 67,35.2383333333333 38,67.2383333333333”/>

<Ellipse CenterX=”245” CenterY=”101.23833333333332” Fill=”#FFFF0000”
RadiusX=”88” RadiusY=”44” Stroke=”#FF000000”/>

<Button Width=”100” Height=”30”>Translated Button</Button>
</Canvas>

Figure 3-28 shows the result of the preceding code, where each element has been transformed with all of
the transforms in the TransformGroup.

89

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 89

Figure 3-28

TranslateTransform
TranslateTransform changes the object’s horizontal and/or vertical location.

The gold polygon in Figures 3-29 through 3-32 denotes the polygon before the transform has been
applied.

<Polygon Fill=”Pink” Stroke=”#FF000000” StrokeThickness=”3”
Points=”65,150.238333333333 10,64.2383333333333 61,9.23833333333332
149,62.2383333333333 67,35.2383333333333 38,67.2383333333333” >

<Polygon.RenderTransform>
<TranslateTransform X=”350” Y=”55” />

</Polygon.RenderTransform>
</Polygon>

Figure 3-29 shows how the polygon has been relocated to the new coordinates stated in the preceding
code.

Figure 3-29

90

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 90

RotateTransform
RotateTransform rotates an object around a specific point (Center) by the specified angle.

<TransformDecorator AffectsLayout=”false”>
<TransformDecorator.Transform>

<RotateTransform Center=”80,80” Angle=”20”/>
</TransformDecorator.Transform>

<Polygon Fill=”Pink” Stroke=”#FF000000” StrokeThickness=”3”
Points=”65,150.238333333333 10,64.2383333333333 61,9.23833333333332
149,62.2383333333333 67,35.2383333333333 38,67.2383333333333” >
<Polygon.RenderTransform>

<RotateTransform Center=”80,80” Angle=”-40” />
</Polygon.RenderTransform>

</Polygon>
</TransformDecorator>

Figure 3-30 shows how the polygon has been rotated to the new coordinates stated in the preceding code.

Figure 3-30

ScaleTransform
This property scales a child by the specified values in ScaleX and ScaleY, as shown in the following
code and Figure 3-31:

<TransformDecorator AffectsLayout=”false”>
<TransformDecorator.Transform>

<ScaleTransform ScaleX=”1.5” ScaleY=”0.5” />
</TransformDecorator.Transform>

<Polygon Fill=”Pink” Stroke=”#FF000000” StrokeThickness=”3”
Points=”65,150.238333333333 10,64.2383333333333 61,9.23833333333332
149,62.2383333333333 67,35.2383333333333 38,67.2383333333333” >

<Polygon.RenderTransform>

</TransformDecorator>

91

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 91

Figure 3-31

SkewTransform
SkewTransform enables you to distort the original shape of an element by an angle on either the X-axis,
the Y-axis, or both. This is demonstrated in the following code and Figure 3-32:

<Polygon Fill=”Pink” Stroke=”#FF000000” StrokeThickness=”3”
Points=”65,150.238333333333 10,64.2383333333333 61,9.23833333333332
149,62.2383333333333 67,35.2383333333333 38,67.2383333333333”>

<Polygon.RenderTransform>
<SkewTransform AngleX=”25” AngleY=”30”/>

</Polygon.RenderTransform>
</Polygon>

Figure 3-32

92

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 92

MatrixTransform
The MatrixTransform is for creating custom transforms that cannot be accomplished with the previous
transform classes. It is a 3 × 3 matrix that performs the transform over a two-dimensional X, Y plane. The
structure of the markup is:

MatrixTransform=”(M11,M12,M21,M22,OffsetX,OffsetY)”

Implementing 2-D Animation
The animation subsystem in Avalon relies heavily on DependencyProperties for its functionality.
Generally speaking, any dependency property that represents a property of a type can be organized into
one of the four animation class types listed in the following table.

Property Animation Definition

Color ColorAnimation Animates the color on a Brush or GradientStop.

Double DoubleAnimation Animates the Opacity, Angle, or Length properties.

Point PointAnimation Animates a specific spot on the X,Y plane in a lin-
ear fashion. PointAnimation is commonly used for
lines and paths.

String None Animates the TextContent of a TextBlock or the
Content of a Button.

For each of these classes, there are three common key properties used to determine how an animation is
executed:

❑ By— Acts as a measurement in that it determines how much of an animation will occur.

❑ From— Determines the initial stage for which the transition will begin. The double type valued
range is from 0 to 1.

❑ To— Determines the final stage of the transition. The double type valued range is from 0 to 1.

Timelines
Before going into each of the animation types, it is best to review some of the key timeline properties.
Many of the animations properties come from the Timeline class located in the
System.Windows.Media.Animation namespace.

Timeline is a public base class that determines a period of time. It is at this level of the hierarchy that
when, where, and how animations will be executed based on the element’s properties are defined. The
following table lists properties that are common to most animations.

93

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 93

Common Timeline Terms Definition

AccelerationRatio A double type valued property that determines the percentage of
rate increase that will occur over the duration of the animation.

AutoReverse A Boolean type valued property that determines the assigned time
that a Timeline should be initiated in relation to its parent’s Begin-
Time.

BeginTime Determines the assigned time that a Timeline should be initiated.

CutOffTime Determines when an animation is to end in relation to its parent’s
BeginTime.

DecelerationRatio The opposite of the AccelerationRatio, this determines the per-
centage rate decrease that will occur over the duration of the ani-
mation.

Duration The time it will take for the animation to complete. The format for
the time must be H:M:S (Hours:Minutes:Seconds)

FillBehavior Determines the behavior of a Timeline when it is inactive despite
its parent being in an active or hold state.

Name Determines the Name of the Timeline

RepeatBehavior This is the looping behavior in Avalon. It determines the number
of times the animation will occur. For example, if it is to animate
twice, the syntax would be RepeatBehavior=”2x”, whereas if it
were to be infinite the value would be “Forever”.

SpeedRatio A double type valued property that determines the time ratio the
animation will progress over the Timeline. If either the Accelera-
tionRatio or DecelerationRatio properties is set, the default value
of this property is “1.0”.

Stemming from the Timeline class is the TimelineGroup, which is a base class that holds multiple
timelines together. Within this class is determined the ParallelTimeline. The ParallelTimeline is
based on its children’s beginning times instead of the order in which they are placed in the group. This
control enables multiple and overlapping animations to occur simultaneously.

The third and final time line is the SetterTimeline. Inherited from the ParallelTimeline, the
SetterTimeline class determines the value and (its duration) of a property at the point(s) in time. The
SetterTimeline has three properties (Path, Value, and TargetName) that further establish the man-
ner in which an element will be animated. These properties are described in the following table.

94

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 94

SetterTimeline Properties Definition

Path This determines the property of the target element that will be
animated. The basic syntax for a path value is
(ClassName.PropertyName). The syntax to animate the opacity
of a shape’s fill is: Path=”(Rectangle.Fill).(SolidColor-
Brush.Opacity)”.

TargetName This enables an animation to be triggered based on an Element’s
Name. If the TargetName is not specified, the animation will ani-
mate the base element within the SetterTimeline.

Value This determines the starting value of the animation.

Storyboard
To create an animation, you must have a Storyboard present. Located on the root element of the applica-
tion, the Storyboard enables you to manage multiple timelines and objects within a single tree as well as
control all the timing behaviors for each, which can vary from simple to the complex. Another benefit is
that amount of markup is greatly reduced.

Following is the basic structure for creating an animation in an XAML document.

<RootElement>
<RootElement.Storyboard>

<ParallelTimeline Name=”TimelineOne” BeginTime=”00:00:00”>
<SetterTimeline TargetName=”Element1”>

<AnimationType />
</SetterTimeline>

</ParallelTimeline>

<ParallelTimeline Name=”TimelineTwo” BeginTime=”00:00:05”>
<SetterTimeline TargetName=”Element2”>

<AnimationType />
</SetterTimeline>

<SetterTimeline TargetName=”Element2”>
<AnimationType />

</SetterTimeline>
<SetterTimeline TargetName= “Element1”>

<AnimationType />
</SetterTimeline>

</ParallelTimeline>
</RootElement.Storyboard>
<Element Name=”Element1”/>
<Element Name=”Element2”/>

</RootElement>

Because animation can get quite involved, following are examples of all of the common animation prop-
erties to all of the animation types.

95

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 95

In the following sample, the property DoubleAnimation property is used to animate the endpoints. The
behaviors of the From, To, and By properties are the same for all the animation classes.

This example increases the line’s value from 50 to 500 over 20 seconds. The DoubleAnimation overrides
the line’s initial value to the new values stated in the DoubleAnimation. The Duration property is the
measure in time that the animation will take to execute the transition from the beginning value to the
target value.

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<SetterTimeline TargetName=”myLine” Path=”(Line.X2)”>
<DoubleAnimation From=”50” To=”500” Duration=”0:0:20”

RepeatBehavior=”Forever”/>
</SetterTimeline>

</StackPanel.Storyboards>

<Line Name=”myLine” X1=”10” Y1=”10” X2=”100” Y2=”10” Stroke=”Green”
StrokeThickness=”10” Opacity=”0.5”/>

</StackPanel>

In the next example, only the To property is set. This means the From value will be the base value of the
property it is animating or the ending value of a previous animation. This animation uses the base value
of the line’s X2 property, 100, as its starting value. This animation will only occur three times because the
RepeatBehavior=”3x”.

This value is case-sensitive and must have a lowercase x to work.

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<SetterTimeline TargetName=”myLine” Path=”(Line.X2)”>
<DoubleAnimation To=”300” Duration=”0:0:20” RepeatBehavior=”3x”/>

</SetterTimeline>
</StackPanel.Storyboards>

<Line Name=”myLine” X1=”10” Y1=”10” X2=”100” Y2=”10” Stroke=”Green”
StrokeThickness=”10” Opacity=”0.5”/>

</StackPanel>

The By property determines “by how much” the animation changes an element’s value over a period of
time. As stated earlier, the animation uses the base value (or ending value from a previous animation) to
build the new animation from its starting value. It then adds 500 to that value over a time period of 20
seconds. Setting the By value instead of the To value is effective when exact dimensions are more perti-
nent than layout, as with blueprint drawings.

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<SetterTimeline TargetName=”myLine” Path=”(Line.X2)”>
<DoubleAnimation By=”500” Duration=”0:0:20”

RepeatBehavior=”Forever”/>
</SetterTimeline>

96

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 96

</StackPanel.Storyboards>

<Line Name=”myLine” X1=”10” Y1=”10” X2=”100” Y2=”10” Stroke=”Green”
StrokeThickness=”10” Opacity=”0.5”/>

</StackPanel>

This next sample is the same as the preceding, except that both the By and From properties have set val-
ues. Even though the line is defined to be 90 px long the animation From value changes the beginning
dimension to 1 px long. This means that the line length will first appear to be 1 px long and then
lengthen to 510 px over the next 20 seconds.

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<SetterTimeline TargetName=”myLine” Path=”(Line.X2)”>
<!-- Animate the Line’s length from 1 by 510 -->
<DoubleAnimation From=”1” By=”500” Duration=”0:0:20”

RepeatBehavior=”Forever”/>
</SetterTimeline>

</StackPanel.Storyboards>
<Line Name=”myLine” X1=”10” Y1=”10” X2=”100” Y2=”10” Stroke=”Green”

StrokeThickness=”10” Opacity=”0.5”/>
</StackPanel>

The base value of the property is used as the destination value when no destination value has been set.
In the following syntax, the line will first appear 50 px long and then grow to 100 px long over a period
of 5 seconds:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<SetterTimeline TargetName=”myLine” Path=”(Line.X2)”>
<!-- Animate the Line’s length from 50 to 100. -->
<DoubleAnimation From=”50” Duration=”0:0:2”

RepeatBehavior=”3x” AutoReverse=”True” />
</SetterTimeline>

</StackPanel.Storyboards>

<Line Name=”myLine” X1=”10” Y1=”10” X2=”100” Y2=”10” Stroke=”Pink”
StrokeThickness=”10” Opacity=”0.5” />

</StackPanel>

Color Animation
The following XAML will animate the color of a SolidColorBrush from red to blue and reverse the col-
ors three times:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<SetterTimeline TargetName=”myEllipse”
Path=”(Ellipse.Fill).(SolidColorBrush.Color)”>

<!-- Animate from Red to Blue. -->
<ColorAnimation From=”Red” To=”Blue” Duration=”0:0:001”

97

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 97

RepeatBehavior=”3x” AutoReverse=”True” />
</SetterTimeline>

</StackPanel.Storyboards>
<Ellipse Name=”myEllipse” Fill=”Pink” CenterX=”200” CenterY=”200”/>

</StackPanel>

Double Animation
This XAML sample animates the Opacity of a rectangle five times:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<SetterTimeline TargetName=”myRectangle” Path=”(Rectangle.Opacity)”>
<DoubleAnimation From=”1” To=”0” Duration=”0:0:3”

RepeatBehavior=”5x” AutoReverse=”False”/>
</SetterTimeline>

</StackPanel.Storyboards>

<Rectangle Name=”myRectangle” Height=”50px” Width=”50px” Fill=”Red”
Opacity=”1”/>

</StackPanel>

The DoubleAnimation class is also used to animate an element’s Height or Width properties. The next
animation example will repeat the animation 10 times. If the AutoReverse property were set to False,
the user would experience a degree of flashing. Instead of growing and shrinking, the element would
grow and then immediately jump back to its original size on each of the repeat loops.

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<SetterTimeline TargetName=”myRectangle” Path=”(Rectangle.Width)”>
<DoubleAnimation To=”600” Duration=”0:0:4” RepeatBehavior=”10x”

AutoReverse=”True”/>
</SetterTimeline>

</StackPanel.Storyboards>

<Rectangle Name=”myRectangle” Width=”200” Height=”150” Stroke=”Red”
StrokeThickness=”5”/>

</StackPanel>

Point Animation
The following XAML animates the StartPoint and EndPoint of a LineGeometry segment in a Path
element. The animation makes the line appear to grow as it gets closer to you.

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”>
<StackPanel.Storyboards>

<-- Controls the StartPoint Animation-->
<SetterTimeline TargetName=”myPath”

Path=”(Path.Data).(LineGeometry.StartPoint)”>
<PointAnimation From=”20,50” To=”100,250” Duration=”0:0:3”

98

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 98

RepeatBehavior=”Forever” AutoReverse=”True”/>
</SetterTimeline>

<-- Controls the EndPoint Animation-->
<SetterTimeline TargetName=”myPath”

Path=”(Path.Data).(LineGeometry.EndPoint)”>
<PointAnimation From=”30,50” To=”300,350” Duration=”0:0:3”

RepeatBehavior=”Forever” AutoReverse=”True”/>
</SetterTimeline>

</StackPanel.Storyboards>

<Path Name=”myPath” Stroke=”Black” StrokeThickness=”5”>
<Path.Data>

<LineGeometry StartPoint=”20,50” EndPoint=”30,50”/>
</Path.Data>

</Path>
</StackPanel>

Following is markup of a Storyboard that incorporates each of the samples used in this section. To add
more complexity to the Storyboard, the ParallelTimeline and the AccelerationRatio have been
introduced. The ParallelTimeline enables you to control the time as to when an animation is to begin
and end or overlap over other timelines simultaneously. The AccelerationRatio (used in the
“myRotationAnimation” ParallelTimeline) is a double type valued property that makes the anima-
tion appear to speed up during the animation’s Duration from 0 to the maximum set.

<Window x:Class=”AnimationStoryBoard.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”AnimationStoryBoard” >

<Window.Storyboards>
<ParallelTimeline Name=”myColorAnimation” BeginTime=”00:00:05” >

<!--Color Animation-->
<SetterTimeline TargetName=”myEllipse”

Path=”(Ellipse.Fill).(SolidColorBrush.Color)”>
<ColorAnimation From=”Red” To=”Blue” Duration=”0:0:5”

RepeatBehavior=”3x” AutoReverse=”True” />
</SetterTimeline>

</ParallelTimeline>

<ParallelTimeline Name=”myOpacityAnimation” BeginTime=”00:00:10” >
<!--Double Animation-->
<SetterTimeline TargetName=”myRectangle” Path=”(Rectangle.Opacity)”>

<DoubleAnimation From=”1” To=”0” Duration=”0:0:3”
RepeatBehavior=”5x” AutoReverse=”True”/>

</SetterTimeline>
</ParallelTimeline>

<ParallelTimeline Name=”myRotationAnimation” BeginTime=”00:00:20” >
<!--Double Animation with a Rotate Transform-->
<SetterTimeline TargetName=”myRectangle”

Path=”(Rectangle.RenderTransform).(RotateTransform.Angle)”>
<DoubleAnimation From=”0” To=”720” AccelerationRatio=”0.5”

Duration=”0:0:01” RepeatBehavior=”Forever”

99

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 99

AutoReverse=”True” />
</SetterTimeline>

<SetterTimeline TargetName=”myRectangle”
Path=”(Rectangle.Fill).(SolidColorBrush.Color)”>

<ColorAnimation From=”DarkGreen” To=”LightGreen”
Duration=”0:0:03” RepeatBehavior=”Forever”
AutoReverse=”True” />

</SetterTimeline>
</ParallelTimeline>

<ParallelTimeline Name=”myWidthAnimation” BeginTime=”00:00:15” >
<SetterTimeline TargetName=”myRect” Path=”(Rectangle.Width)”>

<DoubleAnimation To=”600” Duration=”0:0:4” AutoReverse=”True”
RepeatBehavior=”10x” />

</SetterTimeline>
</ParallelTimeline>

<ParallelTimeline Name=”myPointAnimationPart1” BeginTime=”00:00:20” >
<!--Point Animation -->
<SetterTimeline TargetName=”myPath”

Path=”(Path.Data).(LineGeometry.StartPoint)”>
<PointAnimation From=”20,50” To=”100,250” Duration=”0:0:3”

RepeatBehavior=”Forever”/>
</SetterTimeline>

</ParallelTimeline>

<ParallelTimeline Name=”myPointAnimationPart2” BeginTime=”00:00:25” >
<SetterTimeline TargetName=”myPath”

Path=”(Path.Data).(LineGeometry.EndPoint)”>
<PointAnimation From=”30,50” To=”300,350” Duration=”0:0:3”

RepeatBehavior=”Forever”/>
</SetterTimeline>

</ParallelTimeline>

<ParallelTimeline Name=”myTransformAnimation” BeginTime=”00:00:00” >
<!--Animating with a transform-->
<SetterTimeline TargetName=”myPolyline”

Path=”(Polyline.RenderTransform).(RotateTransform.Angle)”>
<DoubleAnimation From=”0” To=”360” Duration=”0:0:01”

RepeatBehavior=”Forever” />
</SetterTimeline>
<SetterTimeline TargetName=”myPolyline”

Path=”(Polyline.StrokeThickness)”>
<DoubleAnimation From=”0.2” To=”20” Duration=”0:0:3”

RepeatBehavior=”Forever” AutoReverse=”True” />
</SetterTimeline>
<SetterTimeline TargetName=”myPolyline”

Path=”(Polyline.Stroke).(SolidColorBrush.Color)” >
<ColorAnimation From=”Red” To=”Cyan” Duration=”0:0:7”

AutoReverse=”True” RepeatBehavior=”Forever” />
</SetterTimeline>

</ParallelTimeline>

100

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 100

</Window.Storyboards>

<StackPanel Margin=”30” Orientation=”Horizontal”>

<!-- Path appears to come closer -->
<Ellipse Name=”myEllipse” CenterX=”200” CenterY=”200” Fill=”Red” />

<!-- Rectangle fades in and out -->
<Rectangle Name=”myRectangle” Height=”50px” Width=”50px” Fill=”Green”

Opacity=”1” >
<Rectangle.RenderTransform>

<RotateTransform Center=”25,25” Angle=”0” />
</Rectangle.RenderTransform>

</Rectangle>

<!-- Rectangle resizes its width -->
<Rectangle Name=”myRect” Width=”200” Height=”150” Stroke=”Red”

StrokeThickness=”5” />

<!-- Path appears to come closer -->
<Path Name=”myPath” Fill=”Blue” Stroke=”Black” StrokeThickness=”5”>

<Path.Data>
<LineGeometry StartPoint=”20,50” EndPoint=”30,50” />

</Path.Data>
</Path>

<!-- Path where its StrokeThickness increases and decreases,
changes color and rotates Also note how it is pushed to the right
as the rectangle with the animating width property grows. -->

<Polyline Name=”myPolyline” Opacity=”1” Stroke=”Red” StrokeThickness=”2”
StrokeMiterLimit=”10” Points=”300 180 300.9976 179.9302 301.9805

179.7216 302.9344 179.3763 303.845 178.8974 304.6985 178.2899 305.4813 177.5596
306.1806 176.7137 306.7844 175.7607 307.2812 174.7099 307.6604 173.5721 307.9128
172.3588 308.0296 171.0823 308.0036 169.7559 307.8287 168.3935 307.5 167.0096
307.0139 165.6193 306.3683 164.2379 305.5623 162.881 304.5965 161.5644 303.473
160.3038 302.1951 159.115 300.7678 158.0134 299.1973 157.014 297.4913 156.1315
295.6588 155.3798 293.71 154.7723 291.6566 154.3215 289.511 154.0388 287.2872
153.935 285 154.0192 282.665 154.2998 280.2988 154.7837 277.9187 155.4762 275.5424
156.3816 273.1884 157.5024 270.8754 158.8397 268.6222 160.393 266.448 162.1601
264.3717 164.1373 262.4123 166.3192 260.5883 168.6989 258.9178 171.2677 257.4185
174.0156 256.1072 176.9307 255 180 254.1121 183.2088 253.4574 186.5411 253.0489
189.9798 252.8982 193.5062 253.0154 197.101 253.4092 200.7436 254.0867 204.4125
255.0535 208.0857 256.3131 211.7404 257.8676 215.3533 259.717 218.9009 261.8596
222.3593 264.2916 225.7046 267.0076 228.9132 270 231.9615 273.2594 234.8264
276.7744 237.4854 280.5319 239.9166 284.517 242.0989 288.7129 244.0125 293.1011
245.6384 297.6617 246.9592 302.3732 247.9586 307.2125 248.622 312.1554 248.9365
317.1765 248.891 322.2492 248.4761 327.3463 247.6844 332.4395 246.5108 337.5
244.9519 342.4987 243.0069 347.4059 240.6768 352.1922 237.9653 356.8279 234.878
361.2836 231.423 365.5304 227.6106 369.5399 223.4534 373.2846 218.9661 376.7378
214.1659 379.8739 209.0717 382.6685 203.7048 385.0988 198.0883 387.1436 192.2472
388.7832 186.2083 390 180 390.7783 173.6522 391.1047 167.1961 390.9677 160.6642
390.3586 154.0901 389.2708 147.5081 387.7004 140.9533 385.6459 134.4613 383.1087
128.0679 380.0927 121.8093 376.6044 115.7212 372.6533 109.8395 368.2513 104.1992

101

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 101

363.4131 98.83489 358.1561 93.7801 352.5 89.06734 346.4673 84.72783 340.0829
80.79133 333.3738 77.2859 326.3695 74.23776 319.1013 71.67115 311.6027 69.60807
303.9088 68.06822 296.0564 67.06883 288.0837 66.6245 280.0305 66.74711 271.9371
67.44569 263.845 68.72639 255.7964 70.5923 247.8338 73.04351 240 76.07695 232.3377
79.68645 224.8893 83.86269 217.6969 88.59319 210.8019 93.86236 204.2444 99.65154
198.0639 105.9391 192.2979 112.7003 186.9827 119.9076 182.1526 127.531 177.84
135.5374 174.0747 143.8915 170.8845 152.5557 168.2943 161.49 166.3264 170.6526 165
180 164.3313 189.4869 164.3333 199.0667 165.0156 208.6918 166.3846 218.3136 168.443
227.8828 171.1901 237.3499 174.6214 246.665 178.7291 255.7785 183.5016 264.6411
188.9236 273.2042 194.9764 281.4201 201.6378 289.2423 208.8821 296.6256 216.6803
303.5266 225 309.9038 233.806 315.7179 243.0598 320.9319 252.7204 325.5117 262.744
329.4255 273.0845 332.6452 283.6936 335.1454 294.5208 336.9044 305.5141 337.9037
316.62 338.129 327.7837 337.5692 338.9494 336.2176 350.0608 334.0712 361.0609
331.131 371.8929 327.4022 382.5 322.8942 392.826 317.6202 402.8155 311.5978
412.4139 304.8483 421.5684 297.3973 430.2275 289.2739 438.3419 280.5113 445.8643
271.1461 452.7499 261.2186 458.9569 250.7722 464.4462 239.8535 469.1821 228.5122
473.1321 216.8004 476.2677 204.7728 478.564 192.4864 480 180 480.5591 167.3741
480.2288 154.6705 479.001 141.9522 476.8721 129.2827 473.8431 116.7263 469.9194
104.347 465.1112 92.20882 459.433 80.37518 452.9042 68.90859 445.5485 57.87035
437.3939 47.32025 428.4731 37.31619 418.8227 27.91393 408.4834 19.16672 397.5
11.12505 385.9207 3.836365 373.7975 -2.655228 361.1854 -8.309189 348.1425 -13.08885
334.7296 -16.96155 321.0102 -19.89891 307.0497 -21.87695 292.9154 -22.87634
278.6762 -22.88248 264.4021 -21.88559 250.1641 -19.88092 236.0335 -16.8687 222.0818
-12.85425 208.3804 -7.847961 195 -1.865326 182.0103 5.073074 169.4798 12.94171
157.4752 21.71016 146.0613 31.34311 135.3004 41.80066 125.2523 53.03839 115.9736
65.00752 107.5174 77.6552 99.93355 90.92467 93.26762 104.7556 87.56117 119.0841
82.85123 133.8436 79.17023 148.9644 76.54565 164.3746 75 180 74.55052 195.765
75.20915 211.5923 76.98235 227.4039 79.87108 243.121 83.8707 258.6646 88.97101
273.9562 95.15616 288.9174 102.4048 303.4712 110.69 317.5417 119.9796 331.0551
130.2358 343.9394 141.416 356.1253 153.4726 367.5466 166.3529 378.14 180 387.8461
194.3526 396.6094 209.3452 404.3785 224.9089 411.1068 240.9711 416.7521 257.4562
421.2779 274.286 424.6524 291.3798 426.8495 308.6551 427.8489 326.0276 427.636
343.412 426.2019 360.7224 423.5442 377.8723 419.6663 394.7755 414.5775 411.3463
408.2937 427.5 400.8365 443.1534 392.2336 458.225 382.5188 472.6357 371.7314
486.309 359.9165 499.1716 347.1248 511.1534 333.4119 522.1886 318.8389 532.2152
303.471” >

<Polyline.RenderTransform>
<RotateTransform Angle=”45” Center=”300,180” />

</Polyline.RenderTransform>
</Polyline>

</StackPanel>
</Window>

Summary
In this chapter, you learned about the 2-D graphics available in the Avalon API. The chapter also
included a discussion of each of the brushes that can be applied to any element within the API as well as
the various masks that can be applied to elements with the OpacityMask property.

In the “Transitions” section, you learned how to alter the layout of elements through the use of the five
transforms and that a transform can only have one child, but that child can be a complex child (such as a
panel with many children of its own).

102

Chapter 3

07_57874x ch03.qxd 8/15/05 3:44 PM Page 102

The last area covered was animation. In this area, you learned that animation is applied to one of the
four property types (color, double, point, and string). You learned that most of the Avalon anima-
tion properties are inherited from the Timeline class such as Duration, RepeatBehavior,
AutoReverse, and BeginTime.

The chapter concluded by putting all the animations together in a Storyboard. You learned that the
Storyboard controls all that occurs in the window as well as how it greatly reduces the amount of
markup required.

By the end of the next chapter, you will see how powerful Avalon is and the limitless possibilities with
which it empowers both programmers and designers when they are developing future applications.

103

Avalon Graphics and Animation

07_57874x ch03.qxd 8/15/05 3:44 PM Page 103

07_57874x ch03.qxd 8/15/05 3:44 PM Page 104

Advanced Techniques

Styling is a tool that allows you to create dynamic user interfaces and customize the appearance of
data. It is one of the most compelling aspects of Avalon.

Styling allows you to separate the presentation layer of an element from the logic. The styling
techniques in this chapter can be applied to each individual document, and for the purpose of
streamlining and application uniformity, the styles can be placed in a central location for ease of
access and subsequent updates.

Types of Styling
Styles are defined in the Resources section of an element or application.

Implicit Styling
Implicit styling is a blanket form of styling that will affect all like elements with the same style.
Therefore, if the style of a button is unnamed, the style will be applied to all buttons present. The
following XAML creates a style that sets the background color of all buttons in the DockPanel
to red:

<Window x:Class=”Styles.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”Implicit Styling”>

<Window.Resources>
<Style TargetType=”{x:Type Button}”>

<Setter Property=”Control.Background” Value=”Red” />
</Style>

</Window.Resources>
<StackPanel>

08_57874x ch04.qxd 8/15/05 3:45 PM Page 105

<Button Name=”Button1” Height=”30”>This button is Red.</Button>
<Button Name=”Button2” Height=”30”>This button is also Red.</Button>
<Button Name=”Button3” Height=”30”>This button is Red too.</Button>

</StackPanel>
</Window>

Figure 4-1 illustrates the implicit styling from the previous code.

Figure 4-1

Named Styles
Another alternative is to reference the style by name from visual elements with the Style property.
Styles that are explicitly set override the implicit ones. The following XAML shows a red button with its
style set implicitly and a blue button with its style set explicitly (named):

<Window x:Class=”Styles.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”Named Styling”>

<Window.Resources>
<!-- Implicit Style from earlier sample-->
<Style TargetType=”{x:Type Button}”>

<Setter Property=”Control.Background” Value=”Red”/>
<Setter Property=”Control.Height” Value=”30”/>

</Style>

<!-- Named Style-->
<Style x:Key=”BlueButton” TargetType=”{x:Type Button}”>

<Setter Property=”Control.Background” Value=”Blue”/>
<Setter Property=”Control.Foreground” Value=”White”/>
<Setter Property=”Control.Height” Value=”30”/>

</Style>

</Window.Resources>

<Button Name=”Button1”>This button is Red.</Button>
<Button Name=”Button2” Style=”{StaticResource BlueButton}”>

This button is Blue.
</Button>

</StackPanel>
</Window>

106

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 106

Figure 4-2 shows the result of the preceding code.

Figure 4-2

Derived Styles
The third and final format to apply a style is derived. This means it is a style that is based on (using the
BasedOn property) another style. In the following situation, the property values are defined by the new
style, which takes precedence over the properties set by the base style:

<Window x:Class=”Styles.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”Named Styling”>

<Window.Resources>
<!-- Named style which the derived style below is referencing-->
<Style x:Key=”BlueButton”>

<Setter Property=”Control.Background” Value=”Blue”/>
</Style>
<!-- This style is derived from the BlueButton style above -->
<Style x:Key=”BlueButtonWhiteText” BasedOn=”{StaticResource BlueButton}”>

<Setter Property=”Control.Foreground” Value=”White” />
<Setter Property=”Control.FontWeight” Value=”Bold” />
<Setter Property=”Control.FontFamily” Value=”Bradley Hand ITC” />
<Setter Property=”Control.FontSize” Value=”25” />

</Style>
</Window.Resources>
<StackPanel Orientation=”Horizontal”>

<Button Name=”Button2” Height=”30” Style=”{StaticResource BlueButton}”>
This button is Blue.

</Button>
<Button Name=”Button3” Height=”30”

Style=”{ StaticResource BlueButtonWhiteText}”>
This button has White Text.

</Button>
</StackPanel>

</Window>

Figure 4-3 shows the result of the preceding code.

Figure 4-3

107

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 107

Triggers
The Style class contains a collection of Trigger(s). They define style properties that are set condition-
ally (usually mouse events or events common to the control). The following XAML sets the background
color of the button to orange on mouse over. Triggers can also inherit properties through derived styles
with the BasedOn property.

<Window x:Class=”Styles.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”Visual Triggers”>

<Window.Resources>
<!-- Style with Visual Trigger that changes the button Background

onMouseOver -->
<Style x:Key=”BlueButton”>

<Setter Property=”Control.Background” Value=”Blue”/>
<Style.Triggers>

<Trigger Property=”Button.IsMouseOver” Value=”True”>
<Setter Property=”Control.Background” Value=”Orange” />

</Trigger>
</Style.Triggers>

</Style>
<!-- Derived Style-->
<Style x:Key=”BlueButtonWhiteText” BasedOn=”{StaticResource BlueButton}”>

<Setter Property=”Control.Foreground” Value=”White” />
<Setter Property=”Control.FontWeight” Value=”Bold” />
<Setter Property=”Control.FontFamily” Value=”Bradley Hand ITC”/>
<Setter Property=”Control.FontSize” Value=”25”/>

</Style>

</Window.Resources>
<StackPanel Orientation=”Horizontal”>

<Button Name=”Button2” Height=”30”
Style=”{StaticResource BlueButton}”>

This button is Blue.
</Button>
<Button Name=”Button3” Height=”30”

Style=”{StaticResource BlueButtonWhiteText}”>
This button has White Text.

</Button>
</StackPanel>

</Window>

Figure 4-4 shows the result of the preceding code.

Figure 4-4

108

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 108

Overriding the Visual Tree
Overriding the Visual Tree of an object completely redefines how the object is rendered. The following
XAML creates a new button style that supersedes the Visual Tree normally used to draw the button.
The Trigger property acts on the new content defined in the Style. This means that instead of showing
a standard button you can personalize its appearance. The code that follows gives the button rounded
corners:

<Window x:Class=”Styles.Window1”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Text=”Overriding the VisualTree”>

<Window.Resources>
<Style x:Key=”MyButton” TargetType=”{x:Type Button}”>

<Setter Property=”Template”>
<Setter.Value>

<ControlTemplate>
<Canvas>

<!-- Rectangles that alter button’s default
appearance-->

<!-- Alters the Background property of the
Button-->

<Rectangle x:Name=”MouseOverBack” RadiusX=”20”
RadiusY=”20” Fill=”LightGray” Stroke=”Blue”
Width=”75” Height=”35” StrokeThickness=”2”/>

<!-- Alters the Foreground property of the
Button-->

<Rectangle x:Name=”MouseOverFront” Width=”60”
Height=”25” Margin=”8,5,0,0” RadiusX=”20”
RadiusY=”23” Fill=”LightGray” />

<Rectangle x:Name=”PressedBase” Width=”60”
Height=”25” Margin=”8,5,0,0” RadiusX=”20”
RadiusY=”23” Opacity=”0”>

<Rectangle.Fill>
<ImageBrush ImageSource=”myFlower.png”

Stretch=”Fill” />
</Rectangle.Fill>

</Rectangle>
<ContentPresenter Content=”{TemplateBinding

ContentControl.Content}” Margin=”15,11,0,0”/>
</Canvas>
<ControlTemplate.Triggers>

<!-- MouseOver Button Events-->
<Trigger Property=”IsMouseOver” Value=”true”>

<Setter Property=”Fill” Value=”Red”
TargetName=”MouseOverBack”/>

<Setter Property=”Fill”
Value=”RadialGradient Indigo Red”
TargetName=”MouseOverFront”/>

</Trigger>
<!-- Button Pressed Events-->
<Trigger Property=”ButtonBase.IsPressed”

Value=”true”>
<Setter Property=”Control.Opacity”

109

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 109

Value=”1” TargetName=”PressedBase”/>
<Setter Property=”Fill” Value=”Green”

TargetName=”MouseOverBack”/>
<Setter Property=”Control.Opacity”

Value=”0.25”
TargetName=”MouseOverBack”/>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

</Window.Resources>
<StackPanel Orientation=”Horizontal”>

<Button Name=”Button1” Style=”{StaticResource MyButton}”>
Button 1

</Button>
<Button Name=”Button2” Style=”{StaticResource MyButton}”>

Button 2
</Button>
<Button Name=”Button3”>No Style</Button>

</StackPanel>
</Window>

Figure 4-5 shows the results of the preceding code.

Figure 4-5

The preceding sample also demonstrates the use of property aliasing to expose content. The benefit of
TemplateBinding is that it allows you to have the overall style set (and stored in a library) that can
then be applied to elements that may require specific styling—for example, the Send and Reset buttons
on a form.

<ContentPresenter Content=”{TemplateBinding ContentControl.Content}”
Margin=”15,11,0,0” />

ContentPresenter is used when applying a style to a control. The objective of this class is to define
where the content is placed within the control’s Visual Tree.

Events
Events are the action and response from the user’s interaction with the application. Connecting mouse
and keyboard events in Avalon is accomplished in a way similar to that used for WinForms. Event

110

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 110

routing is the term used to describe when one control involved in an event directs one of its child ele-
ments to carry out the task. In Avalon there are three approaches to routing events:

❑ Direct — This is the basic type of event handling where only the element that was accessed is
executed. Windows Forms and .NET libraries use this method.

❑ Tunneling — The event begins from the root and proceeds down the tree to the target element
that will perform the rest of the event.

❑ Bubbling — The opposite of tunneling, this type of event first alerts the target element and
reports up the tree to the root via its parent element(s).

Bubbling and Tunneling
Bubbling and tunneling describe the manner in which a procedure navigates through the tree structure,
either rising up (bubbling) or digging down (tunneling) the tree. For every bubble event, there is a tun-
nel to counterbalance it. Using the most common event, the mouse click, the MouseDown (portion of the
mouse click caused by the user) is the bubble and PreviewMouseDown is the tunnel event.

The diagram shown in Figure 4-6 is a representation of the bubble/tunnel process of an event. For exam-
ple, if the target child were a ListItem, a bubble handler would go up the tree to notify all the parent
elements (ListBox, DockPanel, and Canvas) that a MouseDown event has been triggered. This would
then trigger the PreviewMouseDown event handler to tunnel from the Canvas (Root Parent) down the
tree back to the ListItem (target element) to inform it of the actions to execute for this case.

Figure 4-6

Root Parent

Tunnel

Tunnel

Tunnel

Bubble

Bubble

Bubble

Intermediary Parent

Parent Element Parent Element

Child
Element

Child
Element

Child
Element

Parent Element

Child
Element

Target
Child

Element

Child
Element

111

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 111

Resources
The Resource property is found on the FrameworkElement. It acts like an encyclopedia and holds data
about the defined elements of the application. The data may either be located within the resource or can
be referenced from a Locators collection that specifies where the objects reside within the application.
As the application runs through its procedures, it refers to the ResourceDictionary for the manner in
which elements are to be displayed or computed. The ResourceDictionary is a hash table tool con-
taining the named styles and reusable resources accessible from within the XAML document. It can be
placed anywhere in the document, but it is most commonly located at the top of the document on the
root element.

<DockPanel Background=”white” Name=”root”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”>

<!-- The resource is controlling the color and opacity of each element’s
property that has the named resource notated.-->

<DockPanel.Resources>
<SolidColorBrush x:Key=”MyBrush” Color=”LightGreen” Opacity=”0.75”/>
<SolidColorBrush x:Key=”MyOtherBrush” Color=”Red” />
<LinearGradientBrush x:Key=”myTextBrush” EndPoint=”0.875930521091811,1”

Opacity=”0.57” StartPoint=”0.575,0.2”>
<GradientBrush.GradientStops>

<GradientStopCollection>
<GradientStop Color=”#FF0000FF” Offset=”0” />
<GradientStop Color=”#FFDC143C” Offset=”0.69” />

</GradientStopCollection>
</GradientBrush.GradientStops>

</LinearGradientBrush>
</DockPanel.Resources>
<TextBlock FontSize=”48” FontWeight=”Bold”

Foreground=”{StaticResource myTextBrush}” TextContent=”Text” />
<Button Height=”30” Background=”{StaticResource MyBrush}” FontWeight=”Bold”

Foreground=”{StaticResource MyOtherBrush}” >
Button

</Button>
<Ellipse RadiusX=”50” RadiusY=”50” Fill=”{StaticResource MyOtherBrush}”

Stroke=”{StaticResource myTextBrush}” StrokeThickness=”5” />
<Rectangle RadiusX=”5” RadiusY=”5” Height=”50” Width=”100”

Fill=”{StaticResource myTextBrush}” />
</DockPanel>

Figure 4-7 shows the results of the preceding code.

Figure 4-7

112

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 112

As shown in the XAML for the preceding example, all the elements have at least one property that refers
to a value in the Resource section.

<TextBlock FontSize=”48” FontWeight=”Bold”
Foreground=”{StaticResource MyTextBrush}” TextContent=”Text” />

If the Foreground reference (in the previous sample fragment) were to be removed, the text would
default to black.

To apply styles to the calculator created in Chapter 2, the first step is to define the Resources section.
Following is the markup that needs to be placed in the Window.xaml document just before the
<ContentControl.Content> opening tag. This section defines how the button’s appearance will be
overridden. Go to www.wrox.com to download a copy of the code to view the syntax.

<Window xmlns=”http://schemas.microsoft.com/winfx/avalon/2005” Name=”ROOT”
x:Class=”AvalonCalculator.Window1”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005” Loaded=”WindowLoaded”>

<Window.Text>AvalonCalculator</Window.Text>
<FrameworkElement.Resources>

<ResourceDictionary>
<Style x:Key=”ClearButton” TargetType=”{x:Type Button}”>

<Setter Property=”Button.Background” Value=”Transparent” />
<Setter Property=”Button.Height” Value=”50” />
<Setter Property=”Button.Width” Value=”100” />
<Setter Property=”Button.HorizontalAlignment” Value=”Left” />
<Setter Property=”Button.Cursor” Value=”Hand” />

<Style.Storyboards>
<ParallelTimeline>

<!-- Animation to make the Clear button pulsate-->
<SetterTimeline Path=”(Button.Width)”>

<DoubleAnimation From=”100” To=”110”
Duration=”0:0:1” RepeatBehavior=”5x”
AutoReverse=”True”/>

</SetterTimeline>
<SetterTimeline Path=”(Button.Height)”>

<DoubleAnimation From=”50” To=”60”
Duration=”0:0:1” RepeatBehavior=”5x”
AutoReverse=”True”/>

</SetterTimeline>
<SetterTimeline

Path=”(Button.Background).(SolidColorBrush.Color)”>
<ColorAnimation From=”Blue” To=”Red”

Duration=”0:0:1” RepeatBehavior=”5x”
AutoReverse=”True”/>

</SetterTimeline>
</ParallelTimeline>

</Style.Storyboards>

113

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 113

<Setter Property=”Template”>
<Setter.Value>

<ControlTemplate>
<Canvas>

<Rectangle
Fill=”LinearGradient 0,0 0,1 #00FFFFFF
#FF000000”
Height=”{TemplateBinding
Control.Height}” Canvas.Left=”1”
Margin=”6,4,6,0” Opacity=”0.15”
RadiusX=”15” RadiusY=”15”
Stroke=”#00FFFFFF” Canvas.Top=”1”
Width=”{TemplateBinding Control.Width}”
/>

<DockPanel x:Name=”MainDockPanel”
Height=”{TemplateBinding
Control.Height}”
Width=”{TemplateBinding Control.Width}”>

<Rectangle Fill=”{TemplateBinding
Control.Background}” RadiusX=”15”
RadiusY=”15”
Stroke=”LinearGradient 0,0 0,1
#00FFFFFF #CC000000”
StrokeThickness=”1”/>

</DockPanel>
<DockPanel

x:Name=”RadialGradientShineDockPanel”
Height=”{TemplateBinding
Control.Height}” Width=”{TemplateBinding
Control.Width}”>

<Rectangle
x:Name=”RadialGradientShine”
Fill=”RadialGradient #99FFFFFF
#00FFFFFF” Opacity=”0.75”
RadiusX=”15” RadiusY=”15”
Stroke=”#00FFFFFF”
StrokeThickness=”2” />

</DockPanel>
<DockPanel x:Name=”HighLightDockPanel”

Height=”{TemplateBinding
Control.Height}” Width=”{TemplateBinding
Control.Width}”>

<Rectangle Fill=”LinearGradient 0,0
0,1 #99FFFFFF #00FFFFFF”
Margin=”7,4,6,0” RadiusX=”12”
RadiusY=”12” Stroke=”#00FFFFFF” />

</DockPanel>

114

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 114

<StackPanel x:Name=”GelButtonTextBlack” >
<Label x:Name=”Content”

Foreground=”{TemplateBinding
ContentControl.Foreground}”
Content=”{TemplateBinding
ContentControl.Content}”
Width=”{TemplateBinding
ContentControl.Width}”
Height=”{TemplateBinding
ContentControl.Height}”
VerticalContentAlignment=
“{TemplateBinding
ContentControl.
VerticalContentAlignment}”
HorizontalContentAlignment=
“{TemplateBinding ContentControl.
HorizontalContentAlignment}” />

</StackPanel>
</Canvas>
<ControlTemplate.Triggers>

<!-- MouseOver events-->
<Trigger Property=”IsMouseOver”

Value=”True”>
<Setter

TargetName=”RadialGradientShine”
Property=”Opacity” Value=”1” />

</Trigger>

<!-- Button Pressed Events-->
<Trigger Property=”Button.IsPressed”

Value=”True”>
<Setter

TargetName=”RadialGradientShine”
Property=”Opacity” Value=”0” />

<Setter
TargetName=”RadialGradientShine
DockPanel” Property=”Canvas.Top”
Value=”2” />

<Setter
TargetName=”GelButtonTextBlack”
Property=”Canvas.Top” Value=”2”
/>

<Setter
TargetName=”HighLightDockPanel”
Property=”Canvas.Top” Value=”2”
/>

<Setter TargetName=”MainDockPanel”
Property=”Canvas.Top” Value=”2”
/>

115

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 115

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

<!-- Since all the buttons are Gel type buttons notice, how the next
two styles use the BasedOn property in order to reduce the
amount of repetitious code.-->

<Style x:Key=”NumberButton” BasedOn=”{StaticResource ClearButton}”
TargetType=”{x:Type Button}”>

<Setter Property=”Button.Width” Value=”95” />
<Setter Property=”Button.Background” Value=”LightSteelBlue” />
<Setter Property=”Button.Foreground” Value=”MediumBlue” />
<Setter Property=”Button.Opacity” Value=”75” />
<Setter Property=”Button.Margin” Value=”3,3,3,3” />

</Style>

<Style x:Key=”LogicButton” BasedOn=”{StaticResource ClearButton}”
TargetType=”{x:Type Button}”>

<Setter Property=”Button.Width” Value=”100” />
<Setter Property=”Button.Height” Value=”30” />
<Setter Property=”Button.Background” Value=”DodgerBlue” />
<Setter Property=”Button.Opacity” Value=”75” />
<Setter Property=”Button.Margin” Value=”5,0,0,0” />

</Style>
</ResourceDictionary>

</FrameworkElement.Resources>

<ContentControl.Content>
<!--Layout of Buttons go here-->

</ContentControl.Content>
</Window>

Because all the buttons were made to have a gel button appearance, the two secondary styles use the
BasedOn property. This property then refers to the earlier style with the same name. This helps stream-
line the size of the file and reduces code redundancy.

<Style x:Key=”NumberButton” BasedOn=”{StaticResource ClearButton}”
TargetType=”{x:Type Button}”>

Before running the application, a Style property needs to be placed on each of the controls that have a
style attached. In the project there are three styles (ClearButton, NumberButton, and LogicButton).

<Button Style=”{StaticResource NumberButton}” Grid.Column=”0” Grid.ColumnSpan=”1”
Name=”btn7” Grid.Row=”0”>

<ContentControl.Content>7</ContentControl.Content>
</Button>

Once it is complete, run the calculator. It should look like the example shown in Figure 4-8.

116

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 116

Figure 4-8

Binding
Binding is the combining of user interface properties with custom common language runtime (CLR)
objects such as XML, SQL, or other data sources. These objects can then be connected with data, Web
Services, or Web properties.

Typically, data binding integrates server or local configuration data into forms or other controls on the
interface. In Avalon, binding can also be applied to other properties, including colors, positioning,
and more.

Binding in Avalon requires the following:

❑ Source object

❑ Source property

❑ Target element — the control where the data binding is based from on the interface

❑ Target property — the interface

The source object (data item) separates the interface from the data to be displayed. The data can be dis-
played as a spreadsheet or as any desired visual graph type layout (such as pie and bar charts).

In Avalon three directional flags allow interaction with the source object:

❑ In One Way Binding, the data is updated from the source and the changes are reflected in the
target. Alterations from the target will not be able to access the source data because the bound
control has been rendered as read-only.

❑ In Two Way Binding, changes in the source are updated in the target and vice versa.

❑ In One Time Binding, the target is updated with the current value of the source once.

117

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 117

118

Chapter 4

The syntax is declared as a string and then assigned as a value. This enables the binding source to be
declared and appropriate transforms to be applied to the data and any other characteristics specific to it.
The syntax comprises clauses. Each clause is placed within its own parenthesis; clauses are separated
with semicolons when more than one clause is present.

The following example declares the string as a bind declaration with a One Time Binding property,
{Bind declaration}:

<TextBlock TextContent=”{Bind Path=SimpleProperty, Mode=OneTime}”/>

The following table lists all the possible clauses for a bind with their corresponding property and the
syntax to declare the binding.

Property Syntax Definition

Culture Culture=”en-US” Determines the information’s format,
such as calendar and date formats,
specific to the country specified.

ElementName ElementName= The name of the source element.
”MyDataSourceID”

Mode Mode=”OneWay” Determines the type of binding to be
performed. The values can be OneWay,
TwoWay, or OneTime.

NotifyOnSource NotifyOnSourceUpdated= Reports when data has been transferred
Updated ”NotifyOnTransfer” from the target to its source.

NotifyOnTarget NotifyOnTargetUpdated= Reports when data has been transferred
Updated ”NotifyOnTransfer” from the source to its target.

Path Path=”MyDataProperty” Determines the name or description of
the source data property to be bound.
If the data source is XML, use XPath as
the property instead.

Source Source={StaticResource Determines the original data source based
myObjectDataSource} on the object. When used in XAML, this

must be written in compound property
syntax, which declares both the Source
and Mode. Property=”{Bind Path=Bound-
Property, BindType=OneWay}”.

UpdateSource UpdateSourceTrigger= Determines how changes to the target get
Trigger ”Explicit” transmitted back to the source.

XPath XPath=”MyXMLData Determines the name or description of the
Property” XML data source property to be bound.

When bindings are referenced or a transformer is set, the Compound-property syntax must be used.
Instead of a single string of data, as in a simple declaration, the data becomes an attribute of the element.
Therefore, it requires the property to be exposed as a compound, and the binding is within it.

08_57874x ch04.qxd 8/15/05 3:45 PM Page 118

<TextBlock Name=”myconvertedtext”>
<TextBlock.TextContent>

<Bind DataSource=”{StaticResource MyConverterReference}”/>
</TextBlock.TextContent>

</TextBlock>

Following is a sample where the data is bound to another element’s property. As the slider moves, the
data in the text box is updated along with the X and Y coordinates of the rectangle.

<Canvas>
<HorizontalSlider Name=”HSlider1” Height=”25” Width=”200” Canvas.Top=”20”

Canvas.Left=”50” Foreground=”LightGray” Value=”500” Minimum=”100”
Maximum=”500” SmallChange=”1” LargeChange=”10” />

<TextBox Name=”TextBox1” Height=”25” Width=”120” Canvas.Top=”20”
Canvas.Left=”270”
Text=”{Binding ElementName=HSlider1,Path=Value,Mode=TwoWay}” />

<HorizontalSlider Name=”HSlider2” Height=”25” Width=”200” Canvas.Top=”55”
Canvas.Left=”50” Foreground=”LightGray” Value=”300” Minimum=”100”
Maximum=”300” SmallChange=”1” LargeChange=”10” />

<TextBox Name=”TextBox2” Height=”25” Width=”120” Canvas.Top=”55”
Canvas.Left=”270”
Text=”{Binding ElementName=HSlider2, Path=Value, Mode=TwoWay}”/>

<Rectangle Name=”Rectangle1” Fill=”#80ff80” Stroke=”Black” StrokeThickness=”2”
Opacity=”100” Canvas.Left=”{Binding ElementName=TextBox1, Path=Text}”
Canvas.Top=”{Binding ElementName=TextBox2, Path=Text}”
Width=”100” Height=”100” RadiusX=”0” RadiusY=”0” />

<Line Name=”Line1” Stroke=”Black” StrokeThickness=”2”
X1=”{Binding ElementName= TextBox1, Path=Text}”
Y1=”{Binding ElementName= TextBox2, Path=Text}” X2=”400” Y2=”200” />

</Canvas>

Figure 4-9 shows the result of the preceding code.

Figure 4-9

119

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 119

Interoperation Capabilities
Avalon provides excellent functionality for bringing your existing .NET controls into an Avalon docu-
ment, or vice versa.

Hosting a Regular .NET Control in an Avalon Document
The WindowsFormsHost class in System.Windows.Forms.Integration hosts the existing .NET user
control. To apply this class in an XAML document, the namespace mapping must first be declared:

<?Mapping XmlNamespace=”wfi” ClrNamespace=”System.Windows.Forms.Integration”
Assembly=”WindowsFormsIntegration”?>

The .NET user control can then be added to the XAML document. To specify the assembly and class to
be applied, the control also requires a namespace mapping:

<?Mapping XmlNamespace=”mcl” ClrNamespace=”MyControls” Assembly=”MyControls”?>

Next, add the XML to the XAML document to represent the WindowsFormsHost control:

<wfi:WindowsFormsHost Name=”WindowsFormsHost” DockPanel.Dock=”Left” Height=”Auto”
GotFocus=”Form_GotFocus”>

</wfi:WindowsFormsHost>

The namespace prefix matches that in the namespace mapping declaration. WindowsFormsHost is
derived from a FrameworkElement and behaves like a regular Avalon control with respect to position-
ing and use of DependencyProperties.

The .NET user control can then be added to the XAML document. To specify the assembly and class to
be applied, the control also requires a namespace mapping:

<?Mapping XmlNamespace=”mcl” ClrNamespace=”MyCustomControl” Assembly=”MyControl”?>

Once referenced, the assembly is added to the WindowsFormsHost controls collection:

<wfi:WindowsFormsHost Name=”windowsFormsHost” DockPanel.Dock=”Top” Height=”Auto”
GotFocus=”Form_GotFocus”>

<wfi:WindowsFormsHost.Controls>
<mcl:MyCustomControl Name=”myCustomControl”/>

</wfi:WindowsFormsHost.Controls>

</wfi:WindowsFormsHost>

To view a sample application of a .NET user control being hosted by Avalon, you can download a copy
of the project from www.wrox.com. The sample in Figure 4-10 displays a .NET control that is placed
within an Avalon canvas.

120

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 120

Figure 4-10

Hosting an Avalon Document in a Regular .NET WinForm
Using an Avalon object in a System.Windows.Forms form requires the use of the ElementHost class.
The class is derived from System.Windows.Forms.Control and is a new feature in .NET 2.0. It can be
added to a form using the standard methods for adding objects to a System.Windows form.

The ElementHost is added to the form in the same manner as any control.

private void Form1_Load(object sender, EventArgs e)
{

ctrlHost = new ElementHost();
this.Controls.Add(ctrlHost);

}

Once the ElementHost is added to the form, the Avalon object can be created and added as a child to
the ElementHost. In the following sample, a grid is being instantiated from the Avalon control library.
This control is then added as a child of the ElementHost. Note that the Avalon control must be initial-
ized before use. ElementHost objects should have only one child element.

private void Form1_Load(object sender, EventArgs e)
{

// Create the ElementHost and add it to the Form.
ctrlHost = new ElementHost();
this.Controls.Add(ctrlHost);

// Create and initialize the Grid from an Avalon class library.
gridCtrl = new MyControls.MyGrid();
gridCtrl.InitializeComponent();

// Add the Grid as a child of ElementHost.
ctrlHost.AddChild(gridCtrl);

}

121

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 121

Serialization
The purpose of serialization is to change the object’s state into one that can be stored (persisted) or used
elsewhere (transported). Objects are serialized using the System.Windows.Serialization namespace.
Within the namespace are two modes of serialization: binary XML (BAML) and regular XML (XAML).
Binary XAML would be used when an object is to be used in more than one application. XML serializa-
tion is purely for data procedures (create/consume). XML serialization maintains the data’s platform
independence and, by serializing the data separately from the application, eliminates the restriction on
the type of data that may be processed by the application.

When you want to save or load an Avalon object, you use the Parser class. This class has static methods
for saving and loading.

Saving Avalon Objects
The Parser SaveAsXml method saves an Avalon object and any children in the Logical Tree to a stream:

System.IO.FileStream stream = System.IO.File.Create(@”c:\text.xaml”);

System.Windows.Serialization.Parser.SaveAsXml(rootObject, stream);

stream.Close();

Loading Avalon Objects
To load an Avalon object, use the Parser LoadXml method. This method takes a stream and returns the
root Avalon object in the Logical Tree or objects defined in the stream:

System.IO.FileStream stream = System.IO.File.Open(@”c:\text.xaml”,

System.IO.FileMode.Open);

Object obj = System.Windows.Serialization.Parser.LoadXml(stream);

stream.Close();

Avalon 3D
The three-dimensional (3-D) elements are derived from the System.Windows.Media.Media3D namespace.
The 3-D objects created in Avalon can be primitive or models. They can be manipulated with transforms,
animation, and hit testing (the ability to mouse click 3-D objects) as well as be made to appear to be on
the same plane as other 2-D objects. A 3-D scene comprises a viewing plane, camera, lights, and objects.
To view the objects in the scene, you must apply materials and textures to their surfaces so that the lights
can be cast across them. Because the 3-D syntax can quickly get involved, the code samples in this sec-
tion of the chapter will be fragments focusing on that particular element.

Viewport3D
Before you can create a 3-D environment, you need a viewing plane. The API has two options, the
RetainedVisual3D, which creates an environment suitable for 3-D graphs, and the Viewport3D. The

122

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 122

latter option is a base class of the System.Windows.Controls namespace and is the rendering plane for
3-D objects. Because Viewport3D is more commonly used in 3-D scenes, all subsequent samples will be
based on Viewport3D.

The basic markup for this control is as follows:

<Viewport3D Canvas.Top=”50” Canvas.Left=”50” Width=”300” Height=”300”
ClipToBounds=”true”>

#Scene definition of lights, camera, and objects

</Viewport3D>

Cameras
The Camera is the manner is which a 3-D environment is viewed, or simply put, it serves as your eye.
There are two types of camera classes available: ProjectionCamera and the MatrixCamera. The
MatrixCamera class is used for applications with built-in matrix calculation devices.

The ProjectionCamera is the base class that depicts the viewer’s point of view (POV) and determines
how the scene will appear to the user on the viewing surface. Because of the constraints of this book, the
focus will be on the ProjectionCamera class of cameras. The following table lists commonly used
properties for the cameras derived from this class.

Property Syntax Description

FarPlaneDistance FarPlaneDistance=”double” A double type valued property that
determines how far the camera is from
the scene’s horizon line. This property is
used with the NearPlaneDistance to
define the camera’s near and far viewing
range (limits).

LookAtPoint LookAtPoint=”x,y,z” Determines the camera’s direction:
The camera will face this point from its
position. The format requires values for
its X, Y, Z coordinates.

NearPlaneDistance NearPlaneDistance=”double” A double type valued property that
determines how close the camera is to
the scene. This property is used with
FarPlaneDistance to define the cam-
era’s near and far viewing range (limits).

Position Position=”x, y, z” This property determines the location of
the camera within the scene. The format
requires values for its X, Y, Z coordinates.

Up Up=”x,y,z” Determines the amount of tilt (or roll)
to apply to the camera to set the scene
(like tilting your head).

123

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 123

Perspective Camera
The PerspectiveCamera and OrthographicCamera are both derived from the ProjectionCamera
base class. The PerspectiveCamera is the most versatile and the most commonly used of the two.
As its name implies, it uses perspective and foreshortening to make objects appear near to or far from
the camera.

<Viewport3D.Camera>
<PerspectiveCamera Position=”-250,250,200” LookAtPoint=”0,0,0” Up=”0,1,0”

FieldOfView=”40” NearPlaneDistance=”1” FarPlaneDistance=”500” />
</Viewport3D.Camera>

Based on the definitions in the table, the preceding sample code is fairly straightforward. The position of
the camera is in the scene and slightly to the left of center with a slight downward tilt. The focal point of
the scene is absolute center and the depth of the scene is quite vast because the camera can view from 1
to 500, as determined by NearPlaneDistance and FarPlaneDistance, before objects disappear. Any
object outside of this range will not be visible. When setting the range, you have to consider the size of
the range because a degree of distortion can occur based on the depth buffer. It has limited accuracy on
larger areas, which can cause flickering, jumping, and other anomalies. A property exclusive to the per-
spective camera is the FieldOfView property. It determines how much of the scene will be seen through
the camera along the horizontal plane. (This is similar to using a standard lens versus a wide-angle lens
to create the shot).

Orthographic Camera
OrthographicCamera is similar to perspective camera, except it flattens everything out (no perspective
is apparent). This camera is good for portraying blueprints or data visualization in graphs, because there
is no distortion to the object’s sizing properties. This camera uses the Width property instead of the
FieldOfView property that the PerspectiveCamera uses. Width determines how much of the scene is
in view. Although the scene is a 3-D environment, it has a 2-D boxlike appearance in comparison to the
PerspectiveCamera. This means that although all the objects in the scene are 3-D, they are flattened
out. This particular camera is commonly used for displaying 3-D graphs and charts.

<Viewport3D.Camera>
<OrthographicCamera Position=”-250,250,200” LookAtPoint=”0,0,0” Up=”0,1,0”

Width=”150” NearPlaneDistance=”1” FarPlaneDistance=”500”/>
</Viewport3D.Camera>

Model3DGroup
Model3DGroup is the class that contains all the children (both the objects and lights) in the scene.

<Viewport3D>
<!--Camera defined here-->
<Viewport3D.Models>

<Model3DGroup >
<Model3DGroup.Children>

<!-- Insert models and Lights here -->

</Model3DGroup.Children>

124

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 124

</Model3DGroup>

</Viewport3D.Models>
</Viewport3D>

Lights
Located in the System.Windows.Media.Media3D namespace, these classes provide the illumination
to a 3-D environment. There are three base classes that are derived from the Light class: AmbientLight,
DirectionalLight, and PointLight. Lighting in a 3-D scene is required to render the scene. In general,
the lights shine across objects with a material and texture. If an object is without either, it will not be seen.

Ambient Light
The first and easiest to use of all the base classes is the AmbientLight. It is a universal light (like day-
light) that affects the entire scene equally despite the size or shape of the objects; therefore, this light
does not have a positioning property.

<AmbientLight Color=”#C0C0C0” />

Directional Light
Another ever-present light that lights all the objects in a scene is the DirectionalLight. It differs from
the ambient because the light is cast from a specified direction (X, Y, Z format) as opposed to the univer-
sality of the AmbientLight. Therefore, an object’s surface that is directly facing into the light source will
be illuminated. Any surface not facing into the source will be cast in shadows. This light is effective in
portraying the rays of light from the sun.

<DirectionalLight Color=”#C0C0C0” Direction=”-0.5,-0.25,-0.25”/>

Point Light
The PointLight is a single point light source that casts its light in a uniform fashion throughout the 3-D
scene. This light is more involved than the other two because it requires specification to each of its prop-
erties, a position, color, range, and attenuation values. The following table lists properties exclusive to
this light class.

Property Description

ConstantAttenuation This property determines the intensity of the light as it travels
through space toward the object it is to illuminate. Logically speak-
ing, as the distance from the light to the object increases, the intensity
will decrease. This is a double type valued property with a range
between 0 and 1.

LinearAttenuation Determines the intensity of light multiplied with the distance from
the source to the object. This property has an exponential double
value range beginning from 0.001, and the light gets more intense as
the number gets smaller.

Table continued on following page

125

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 125

Property Description

Position Determines the exact position of the light in the scene. The placement
is determined by an X, Y, Z format.

QuadraticAttenuation Determines the intensity of light multiplied with the square of the
distance from the source to the object. This property has an exponen-
tial double value range beginning from 0.0001, and the light gets
more intense as the number gets smaller.

Range A double type valued property that determines the distance the light
will travel. If an object is outside of the range of the light it will not
be seen.

The PointLight is the 3-D equivalent of a light bulb. This light is optimal for illuminating objects
that require precision lighting to create a sense of drama to the scene, because it has many definable
properties.

<PointLight Position=”0,100,0” Color=”#C0C0C0” Range=”100” LinearAttenuation=”1” />

Spot Light
SpotLight is an additional light that is derived from the PointLight class. This produces the most
intense of all the lights. Listed in the following table are additional properties present that further pin-
point the light SpotLight casts on objects.

Property Description

Direction Defines the direction the light is to travel from the light source to the
object.

InnerConeAngle Determines the angle of the most intense part (hot spot) of the light
in relation to the rest of the light. In other words, as an object gets
closer to the InnerConeAngle, the more washed out it will appear.

OuterConeAngle Defines the angle of the cone-shaped projection from the light. This
light is so exact that objects or other areas of the object immediately
outside the scope of the OuterConeAngle will appear in shadow.

<SpotLight Position=”0,100,0” Direction=”0,-1,0” Color=”#C0C0C0” Range=”100”
ConstantAttenuation=”1” InnerConeAngle=”20” OuterConeAngle=”35”/>

3-D Objects
A 3-D object is composed of a mesh, texture, and material. They are located in the
System.Windows.Media.Media3d namespace, and all objects in a scene are contained in the
MeshGeometry3D base class. The purpose of this base class is to determine how the shape is to be
shown, whether it will be created with lines, points, or triangles.

The Positions property is used in conjunction with TriangleIndices to define the collection of
points that make up the object. The format of the Positions property is a collection of three double

126

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 126

typed values to represent the X, Y, Z coordinates to create the shape. TriangleIndices is also in this
format; however, its numbers act as a guide to place the triangle on the point created by the Positions
property. Normals, also fashioned in this manner, are values that act as an indicator to the light source,
to dictate how light will be cast over each point on the surface of the object. Each value in the Normals
collection directly corresponds to a point in the Positions collection. The values in this property are
commonly standardized to a length of 1 but can also be 0 or -1. If the values are the same, this indicates a
flat surface.

Because you know a normalized vector has a length of 1, to determine the normalization of each compo-
nent you would use the Pythagoras theorem (x_ + y_ + z_ = length_) and then multiply each by
1/length_.

The TextureCoordinates property directs how the brush is applied to the mesh surface. As with the
properties previously mentioned, this property also maps to a point in the Positions collection. The
values in this collection are a set of two floats with a double value range between 0 and 1.

Following is a section of code showing each of the object’s properties:

<GeometryModel3D >
<GeometryModel3D.Geometry>

<MeshGeometry3D Normals=”0,0,1 0,0,1 0,0,1 0,0,1”
Positions=”-10,-10,30 10,-10,30 -10,10,30 10,10,30”
TextureCoordinates=”0,1 1,1 0,0 1,0”
TriangleIndices=”0 2 1 1 2 3” />

</GeometryModel3D.Geometry>
<GeometryModel3D.Material>

<BrushMaterial Brush=”#FF008000” />
</GeometryModel3D.Material>

</GeometryModel3D>

Figure 4-11 shows the result of this code.

Figure 4-11

127

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 127

Referencing a Mesh
The benefit of referencing a mesh is that it can be defined globally and reused anywhere within the
application. Reusable definitions are defined in the Canvas.Resources section of the application and
can be applied to any Mesh3D in the application. To define a referenceable object in 3-D, you use the
same format you learned in the styles section, x:Key=”Name of Object”. The following code adds a
second object to the shape discussed in the earlier section:

<Canvas xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
Background=”#FFFFFFFF” Height=”400” Name=”ROOT” Width=”500”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”>

<Canvas.Resources>
<MeshGeometry3D x:Key=”SmallerBox”

Positions=”-10,-10,80 10,-10,80 -10,10,80 10,10,80”
Normals=”0,0,1 0,0,1 0,0,1 0,0,1”
TextureCoordinates=”0,1 1,1 0,0 1,0”
TriangleIndices=”0,2,1 1,2,3” />

</Canvas.Resources>

<Panel.Children>
<Viewport3D Height=”137” Canvas.Left=”143” Canvas.Top=”109” Width=”202”>

<Viewport3D.Camera>
<PerspectiveCamera FarPlaneDistance=”5000” FieldOfView=”45”

LookAtPoint=”0,0,1” NearPlaneDistance=”1”
Position=”25,0,-15” Up=”0,1,0” />

</Viewport3D.Camera>
<Viewport3D.Models>

<Model3DGroup>
<Model3DGroup.Children>

<Model3DCollection>

<!--Green sample from earlier syntax sample -->
<GeometryModel3D>

<GeometryModel3D.Geometry>
<MeshGeometry3D

Normals=”0,0,1 0,0,1 0,0,1 0,0,1”
Positions=”-10,-10,30 10,-10,30
-10,10,30 10,10,30”
TextureCoordinates=”0,1 1,1 0,0
1,0”
TriangleIndices=”0 2 1 1 2 3” />

</GeometryModel3D.Geometry>

<!-- Brush applied to surface of object-->
<GeometryModel3D.Material>

<DiffuseMaterial Brush=”#FF008000” />
</GeometryModel3D.Material>

</GeometryModel3D>

<!--Referenced Object -->
<GeometryModel3D

Geometry=”{StaticResource SmallerBox}”>
<GeometryModel3D.Material>

128

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 128

<DiffuseMaterial Brush=”Pink” />
</GeometryModel3D.Material>

</GeometryModel3D>

<!-- Light Source-->
<AmbientLight Color=”#FFFFFFFF” />

</Model3DCollection>
</Model3DGroup.Children>

</Model3DGroup>
</Viewport3D.Models>

</Viewport3D>
</Panel.Children>

</Canvas>

Figure 4-12 shows the result of this code.

Figure 4-12

Materials
Material represents the surface of a 3-D object. With no material information, a model will most
likely end up being rendered entirely black. Applying a material to a mesh is much like applying a brush
to a 2-D object. The surfaces of the 3-D objects can be painted with brushes derived from the four brush
base classes:

❑ GradientBrush

❑ NineGridBrush

❑ SolidColorBrush

❑ TileBrush

<GeometryModel3D.Material>
<DiffuseMaterial Brush=”Red”/>

</GeometryModel3D.Material>

129

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 129

Viewport is an additional property required when applying a brush from the TileBrush base class. It
determines the location and dimensions of the tiles produced by the brush.

<GeometryModel3D.Material>
<DiffuseMaterial>

<DiffuseMaterial.Brush>
<ImageBrush Stretch=”UniformToFill” ImageSource=”MyImage.jpg” />

</DiffuseMaterial.Brush>
</DiffuseMaterial>

</GeometryModel3D.Material>

Transforms
As with 2-D graphics, 3-D objects can also be transformed. In a 3-D scene, all objects are defaulted with
an identity matrix, which means the object has a position value of 0,0,0 and has no rotation nor scaling
applied. Transforms control the placement, orientation, and sizing and can also be used with animation
to move the objects through the scene.

As with the rest of the APIs, when controlling multiple objects, they are held in a collection class. In 3-D
the class is called a Transform3DCollection.

Following is the XAML syntax for creating a single transform for a 3-D object:

<GeometryModel3D Mesh=”{StaticResource SmallerBox}”>
<Model3D.Transform>

<TranslateTransform3D Offset=”-10,3,30” />
</Model3D.Transform>

</GeometryModel3D>

Next is an example of how to write the markup for creating multiple transforms within a
Transform3DCollection for a 3-D object:

<GeometryModel3D Geometry=”{StaticResource SmallerBox}”>
<Model3D.Transform>

<Transform3DGroup>
<Transform3DGroup.Children>

<Transform3DCollection>
<TranslateTransform3D Offset=”-10,3,30” />
<ScaleTransform3D ScaleVector=”2 4 2”

ScaleCenter=”0,0,0”/>
<RotateTransform3D Center=”0,0,0”>

<RotateTransform3D.Rotation>
<Rotation3D Axis=”0,10,100” Angle=”45” />

</RotateTransform3D.Rotation>
</RotateTransform3D>

</Transform3DCollection>
</Transform3DGroup.Children>

</Transform3DGroup>
</Model3D.Transform>

</GeometryModel3D>

130

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 130

Translation
A Translation transform moves an object’s location through the scene. Instead of just shifting the 2-D
graphic based on its X, Y coordinates, in 3-D it performs the transform to the X, Y, Z coordinates of each
point listed in the 3-D object.

<TranslateTransform3D Offset=”10 20 0” />

Scale
ScaleTransform3D is the transform used to make objects bigger or smaller. Based on the center point of
the object, this transform applies the scaling to each of the mesh’s points. The ScaleVector property
individually scales the object based on its X, Y, Z values.

<ScaleTransform3D ScaleVector=”2 4 2” ScaleCenter=”0,0,0”/>

For example, in the preceding code fragment, the X and Z points will be two times the original size, and
the Y points will be four times the original size. Values less than 1 will scale down the size of the object.
If ScaleCenter has values other than 0,0,0, the stretching and the object’s positioning will be altered.

Rotation
RotateTransform3D uniformly rotates all points of a mesh around its axis. The Angle property deter-
mines the amount of incline that will be applied (in degrees) to the object as it is rotated around the
Center property. If the Center values are not centered to the object, the object will appear to spin
around that point instead of spinning in one spot.

<RotateTransform3D Angle=”45” Center=”0,0,0” Axis=”0,10,100”/>

Summary
This chapter introduced you to the basic concepts and requirements for creating rich interactive inter-
faces in the areas of styling, binding, interpolation, and 3-D.

In styling, there are three formats to applying styles to Avalon elements:

❑ Implicit styles

❑ Named styles

❑ Derived styles

In addition to learning about applying styles, you learned that styles can be applied with Triggers,
such as on MouseOver, and how to override the Visual Tree of an Avalon element to completely change
its appearance but still maintain the element’s basic behaviors (for example, the gel buttons in the calcu-
lator project).

131

Advanced Techniques

08_57874x ch04.qxd 8/15/05 3:45 PM Page 131

The next area was an introduction to how events work in Avalon. You learned that there are three meth-
ods of event handling:

❑ Direct

❑ Tunneling

❑ Bubbling

The next area covered in this chapter was resources. You learned that this section resides at the root of
the document or application and acts like an encyclopedia by holding data about the defined elements
of the application.

Next we covered binding, and you learned the three methods of binding data:

❑ One Way

❑ Two Way

❑ One Time

This led to the topic of interpolation and migration, which means that all the forms that you once created
in WinForms aren’t completely lost; with the use of a .NET control, the old form can be hosted within an
Avalon document and vice versa.

In the “Serialization” section of the chapter, you learned that there are two modes of serialization:

❑ Binary, for when an object is used in more than one application (such as a library object).

❑ XML, for the creating and consuming of data.

The last area was an introduction to 3-D. You learned that you need Viewport3D, a camera, and lights
when first creating a scene. You now know that 3-D objects must have a material and/or a texture for the
light to illuminate them. You also learned that although the objects are made of meshes and textures,
unlike the 2-D backgrounds and foregrounds, they can be rotated, scaled, and transformed similarly to
the 2-D graphics.

132

Chapter 4

08_57874x ch04.qxd 8/15/05 3:45 PM Page 132

Part II

Indigo

09_57874x pt02.qxd 8/15/05 3:45 PM Page 133

09_57874x pt02.qxd 8/15/05 3:45 PM Page 134

Introducing
Indigo

The driving force behind software today, whether you are using a browser, e-mail client, or peer-
to-peer program, is connectivity. Traditionally, the process of writing communication software has
been difficult. In the Win32 world, you had to contend with Winsock. With .NET, there are over
seven different ways of communicating with other systems. When you have to worry about relia-
bility and security, making interoperable software can be a real challenge. Windows communica-
tion APIs have also grown, and it can take a great deal of time and effort to: (1) figure out which
APIs will work best for you, and (2) learn how to effectively leverage them. For example, the
System.EnterpriseServices namespace in the .NET Framework 1.1 has over 831 methods,
320 types, 294 fields, and 176 properties!

Indigo is a code name for Microsoft’s new communication subsystem for Windows Longhorn.
In architecting Indigo, Microsoft had specific design goals:

❑ Create a new unified communications API

❑ Base it on service-oriented architecture

❑ Provide a new and robust way of implementing Remoting and Web Services (WS)

❑ Support most WS-* specifications

Kenny Wolf has an explanation of the early origins of the Indigo code name in his
weblog (www.kennyw.com/indigo). The Indigo project was originally code named
“Green.” The story goes that product team members John Shewchuk and Robert
Wahbe drove by an Apple Indigo iMac billboard, and the rest was history.

10_57874x ch05.qxd 8/15/05 3:46 PM Page 135

At the core of Indigo is the System.Messaging namespace. In this chapter, you will learn about the fun-
damental components of Indigo and how to leverage the new API to create connected software.

Service Orientation
Microsoft (and many other Fortune 500 companies) is placing big bets on Service Orientation. Service
Orientation is centered on four primary tenets. (Don Box first presented these tenets in a presentation at
the 2003 PDC.)

❑ Boundaries are explicit — In Service Orientation (SO), boundaries are well defined and formal-
ized. You have a set contract and set endpoints. The most important thing to remember is that
implementation of a service is hidden from a client and vice versa. This has huge implications.
In the old DCOM way of doing things, you must create tightly coupled applications to be able
to instantiate remote distributed objects. In these kinds of applications, the boundaries are all
over the place. One of the problems of using this method is that the client and server implemen-
tation are so tightly bound to each other that any upgrades or changes to the code require a
huge amount of work and cost. By hiding the implementation details, you have a great deal of
flexibility about how you implement your services and your client applications. For example, if
you perform enhancements or upgrades to a service, it won’t break a client implementation as
long as the service and expected endpoints are still accessible. On top of that, the service details
are automatically transmitted using metadata, further simplifying your development. Be aware
that whenever you need to cross any kind of boundary, you will have to pay a price in perfor-
mance hits, increased complexity, or communication issues.

❑ Services are autonomous — Systems are in constant evolution. Rarely will you encounter a situ-
ation where you will install services and let them be for indefinite periods of time. When you
use distributed objects, all parts of your application are interdependent. This means that any
incremental changes to your system require you to completely rearchitect and redeploy your
solution. With autonomous services, no such dependencies exist. You don’t have to worry about
a central authority or tight binding. Each service can be upgraded and versioned independently;
it’s a simple matter to add endpoints to your service once your service is upgraded.

❑ Services share schemas and contracts, not classes — Rather than use types and classes, services
rely on schemas to represent data and contracts to represent behavior. The data and behavior
are represented separately, which allows you to create communication software that doesn’t rely
on a particular execution environment or tight coupling. You can be assured of the consistency
and stability of the schemas and contracts over time.

❑ Service compatibility is determined based on policy — The requirements and compatibility of
a service is dependent on policy. A policy is simply a description of systems capabilities. Using
policies, you can distinguish between service constraints and service interactions. Policies can
help set a set of specifications to make it easy to gracefully degrade the service capabilities to
match the service with the client.

Indigo Architecture
Here is an architectural overview of Indigo. At the bottom level is a wide variety of hosting environ-
ments. Then you have the connectors that implement the channels of communication and the service

136

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 136

model at the API level. The messaging capabilities and services are baked into the API, as illustrated in
Figure 5-1.

Figure 5-1

Contracts and Endpoints
If you look up the word contract in the dictionary, you will find it defined as “an agreement between two
(or more) parties.” Indigo contracts define how remote clients will agree to connect to your service
through endpoints. In a nutshell, a contract is an abstract description of the methods, return values, and
parameters of an endpoint.

In the old DCOM way of doing things, remote communication is difficult. You have to instantiate an
object on a remote server, maintain refcounts, and track pointers. In the Indigo world, all transactions are
message-based rather than object-based. All data transfers are loosely coupled, and message exchanges
are mapped by value.

In code, you can create an Indigo contract by simply decorating your classes and methods with
Contract attributes. Here is a simple example of a ServiceContract and an OperationContract:

[ServiceContract]
interface IConvertTemperature
{
[OperationContract]
void CelsiusToFahrenheit(TemperatureValue Temp);
}

The ServiceContract attribute creates an Indigo service from your IConvertTemperature interface.
The OperationContract converts the CelsiusToFahrenheit method into a service endpoint, passing
a parameter of the type TemperatureValue. The following section looks at three types of contracts:

Messaging Services
Discovery, Routing, Queuing, Eventing

Indigo
Application

Service Model
Methods, Types, Behaviors, Managers...

Connector
Channels, Transport Channels, Message Encoder...

Hosting Environments
ASP.NET, XAML, NT Service, DLLHost, EXE...

137

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 137

❑ ServiceContract

❑ OperationContract

❑ DataContract

Code-First, Contract-First and Late-Bound Development
You can develop with Indigo using one of these three programming styles:

❑ Code-First — With code-first development, you start by writing your code to represent a service
contract, using common language runtime (CLR) types decorated with attributes. The service
then in turn creates metadata (like a Web Service Description Language, WSDL, file). In most
circumstances, this is the most intuitive way of creating contracts in Indigo. The plumbing is
abstracted away from the developer: Indigo takes care of all the Simple Object Access Protocol
(SOAP) messaging. One of the key advantages of the code-first approach is that the API will
remain consistent even if there are changes to the underlying WS-* protocols.

❑ Contract-First — The contract-first approach involves writing out the metadata first and then
generating code. To facilitate the code generation process, Indigo provides the Svcutil tool.
Svcutil will read the service metadata and autogenerate the corresponding service or client code
for you. (You can learn more about the Svcutil tool at the end of Chapter 7.) This approach
requires a solid understanding of the Web Service specifications and protocols.

❑ Late-Bound — You can develop applications that send and receive messages without requiring
the use of contracts. For example, what if you want to build an application that handles a wide
variety of messages from different sources and you can’t assume the contents of the message?
Like contract-first programming, late-bound programming requires a strong knowledge of the
structure of SOAP messages and a deep knowledge of the Web Services specifications and pro-
tocols. Late-bound programming provides you with the utmost of flexibility — however, it is the
most error prone and requires the most expertise to implement.

With most of the examples in this book, you learn how to use the code-first approach; however, it is very
important for you to map out the architecture of your application (including the contracts and the end-
points) before you start writing out a single line of code.

Service Contract
Service contracts are a very important concept in Indigo. They are used to define message exchange pat-
terns between a client and service. A ServiceContract defines what application interface will be
exposed as an Indigo service. Here is an example:

[ServiceContract]
interface IposEntry
{
[OperationContract(IsOneWay=true)]
void InsertOrder(CustomerOrder Order);
}

You don’t necessarily need to use an interface. You can also define your ServiceContract using a class
declaration, as follows. You might be asking yourself: Why implement an interface rather than a class?
If you think of it, an interface perfectly represents the contract without exposing any of the implementation

138

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 138

details. Interfaces provide for flexibility and portability without the hangups of tight binding — it’s a
natural fit.

[ServiceContract]
class PosEntry
{
[OperationContract(IsOneWay=true)]
void InsertOrder(CustomerOrder Order){...}
}

Each contract has a name and a namespace, which uniquely identifies the contract in the Metadata por-
tion of the service:

[ServiceContract(Name=”MyContract”, Namespace=”http://localhost:80/contracts”)]
interface IPosEntry
{
[OperationContract(IsOneWay=true)]
void InsertOrder(CustomerOrder Order);
}

Operation Contract
An operation contract defines a message exchange operation. It can be an individual exchange or
request/reply. It also specifies what methods will be available through the Indigo service. Here is a typi-
cal example of an OperationContract:

[ServiceContract]
interface IOrderEntry
{
[OperationContract(IsOneWay=true)]
void PlaceOrder(PurchaseOrder Order);
}
class OrderEntry : IOrderEntry
{
public void PlaceOrder(PurchaseOrder Order){...}
}

Data Contract
A data contract abstractly defines the types in the classes to be exchanged between the client and service.
The types aren’t exchanged — only the data contract. The data contract determines what parameters will
be serialized. Here is an example of a typical data contract. Each of the parameters is decorated with a
DataMember to specify which return types are to be serialized.

[DataContract]
public class Customer
{
[DataMember]
public string CustomerName;
[DataMember]
public int CreditCard;
}

139

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 139

In most cases, when the data arrives to the client, a corresponding type has to match the service types.
The KnownType attribute typically decorates a structure or class and specifies that a type is known
whenever any associated objects are deserialized:

[DataContract]
public class Order{}

[DataContract]
public class Cheque{}

[DataContract]
[KnownType(typeof(Order))]
[KnownType(typeof(Cheque))]
public class PosTracker
{
[DataMember]
Object[] trackingModule
;
}

Bindings
The bindings of an Indigo service define the communication stack specifications of the service.
Specifically, it defines how an endpoint will communicate with an external client. A binding has several
characteristics, including the following:

❑ Transport protocols — Some of the choices include HTTP, Named Pipes, TCP, and MSMQ.

❑ Encoding — You have three choices: Text, Binary, or Message Transmission Optimization
Mechanism (MTOM). MTOM is an interoperable message format that allows the effective trans-
mission of attachments or large messages (greater than 64K). You can learn more about MTOM
at the following link: www.w3.org/TR/soap12-mtom.

❑ Security — Includes wire security (SSL) or schema-defined security (WS-Security).

Bindings can also determine if you are using sessions or a transacted communications channel. You have
the choice of creating custom channels or using prebuilt bindings. In this section, you’ll learn how to
work with both types. Here are the five standard Indigo bindings to handle most common message
exchange patterns (MEPs):

❑ BasicProfileBinding (also referred to as BP 1.0) —BasicProfileBinding allows develop-
ers to communicate using SOAP standards such as SOAP and WSDL over HTTP. The
BasicProfileBinding supports SSL but no Transactions sessions.

❑ WsProfileBinding—WsProfileBinding implements WS-Security and WS-Transactions
(using sessions). Use the WsProfileBinding to implement Secure Reliable Messaging (SRM).

Most non-Indigo software supports only one binding. Indigo can support multiple
bindings.

140

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 140

❑ WsProfileDualHttpBinding—WsProfileDualHttpBinding allows you to communicate
over duplex channels on an HTTP channel.

❑ NetProfileTcpBinding—NetProfileTcpBinding supports streaming and duplex commu-
nication over TCP.

❑ NetProfileNamedPipesBinding—NetProfileNamedPipeBinding supports streaming and
duplex communication using Named Pipes instead of TCP.

The Basic Profile 1.0 is used for interoperability with existing XML Web Services, and the WS Profiles allow
you to implement Secure Reliable Messaging using WS-* specifications. Bindings are composed of an
ordered set of binding elements. Each element and type must be placed in the correct order to correctly build
the communication stack. Figure 5-2 shows the structure of the Basic Profile binding classes and elements.

Figure 5-2

In the preceding example, the BasicProfileBinding class uses the HTTP transport (as defined by
the HttpTransportBindingElement), and the message will be serialized as text (via the
TextMessageEncodingBindingElement).

Standard Bindings
The following example demonstrates how you can incorporate one of the standard bindings into your
application. To make use of the basicProfileBinding using SSL, we added a parameter to obtain
secure communication by defining the securityMode as HTTPS. The endpoint defines the address of
our service and the binding, and specifies that the communication should be configured to work accord-
ing to our custom binding configuration settings.

<configuration>
<system.serviceModel>

<bindings>
<basicProfileBinding>
<binding configurationName=”Secure” securityMode=”Https” />
</basicProfileBinding>
</bindings>

Binding

Name

Namespace

HttpTransportBindingElement

TextMessageEncodingBindingElement

141

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 141

<services>
<service serviceType=”Pos”>

<endpoint address=”http://server:8080/PosServer”
bindingSectionName=”basicProfileBinding”
bindingConfiguration=”Secure”
contractType=”Pos” />

</service>
</services>
</system.serviceModel>
</configuration>

While it is recommended that you put the binding information in your .config file, you can also place
it inline in your code. In the following example, the ServiceContract and OperationContract
attributes are added to a point-of-sale application. A runtime is generated using ServiceHost<T>, and
the bindings are added programmatically to the endpoint.

[ServiceContract]
public class Pos
{

[OperationContract]
public int AddOrder(int OrderNumber) { ... }

}

public static void Main(string[] args)
{

ServiceHost<Pos> host = new ServiceHost<Pos>(“http://server:8080/PosServer”);

BasicProfileBinding binding = new BasicProfileBinding();
binding.SecurityMode = BasicProfileSecurityMode.Https;
host.AddEndpoint(typeof(Pos), binding, “BpEndpoint”);
host.Open); }

Custom Bindings
Custom bindings allow you to define com type, transport, and encoding. What if you need to do some-
thing that doesn’t fit with the five standard bindings? You can create your own custom bindings by care-
fully stacking a set of available Binding Elements. The following table contains the common Binding
Elements (which can be found in the System.ServiceModel namespace).

Binding Element Name Element Description

ContextFlowBindingElement Permits logical threads and flowing transactions.

ReliabilityBindingElement Implements the reliability features found in the
WS-ReliableMessaging specification.

SecurityBindingElement Implements security features such as confidentiality,
authentication, and authorization.

CompositeDuplexBindingElement Enables communication between client and service
where both are capable of transmitting and receiving
unsolicited messages.

142

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 142

143

Introducing Indigo

Binding Element Name Element Description

TransportBindingElement Enables protocol transports such as HTTP, Named
Pipes, TCP, and MSMQ.

MessageEncoderBindingElement Enables message encoding such as Text, Binary,
and MTOM.

The following code sample creates a custom binding that allows a binary encoded message to be sent
over TCP with a maximum message size of 10,024 bytes. The custom binding uses the
CompositeDuplexBindingElement, the TcpBindingElement as the transport protocol, and message
serialization using the BinaryMessageEncoderBindingElement.

public static void Main(string[] args)
{
ServiceHost<Pos> host = new ServiceHost<Pos>(“net.tcp://server:8080/PosServer/”);
CompositeDuplexBindingElement ComDuplexBind = new CompositeDuplexBindingElement();
TcpBindingElement TcpBind = new TcpBindingElement();
TcpBind.MaxMessageSize = 10024;
BinaryMessageEncoderBindingElement BinMes=newBinaryMessageEncoderBindingElement();
CustomBinding CustomBind = new CustomBinding(ComDuplexBind, TcpBind, BinMes);
host.AddEndpoint(typeof(Pos), CustomBind, “CustomEndpoint”);
}

You can also define the custom binding in the .config file. The following example shows the parame-
ters to be added between the customBindings tags:

<?xml version=”1.0” encoding=”UTF-8” ?>
<configuration>
<system.serviceModel>
<bindings>
<customBinding>

<binding configurationName=”TestCustomBinding”>
<compositeDuplex />
<tcpTransport maxMessageSize=”10024” />
<binaryMessageEncoding />
</binding>
</customBinding>
</bindings>
</system.serviceModel>
</configuration>

You can’t mix and match all Binding Elements; some are simply incompatible. For
example, avoid setting a large TcpBindingElement MaxMessageSize in conjunction
with the TextMessageEncoderBindingElement. You will experience performance
issues and other problems. Use standard bindings whenever you can.

10_57874x ch05.qxd 8/15/05 3:46 PM Page 143

Metadata
In object-oriented programming on the Windows platform, runtime metadata is quite important. Using
.NET reflection (or a client application such as Reflector), you can extract classes, methods, and proper-
ties from any assembly. The inherent limitation of reflection is that it doesn’t scale well in a distributed
environment. Metadata formats such as Web Service Description Language (WSDL), XML Schema
Definition (XSD), and the WS-MetaDataExchange (MEX) specifications are designed to effectively
describe Indigo clients and services.

It is important to note that metadata semantically describes an Indigo service or client (as opposed to
its implementation details). The schematic representation of a service is called a ServiceDescription.
On the client, it’s called a ChannelDescription. Metadata can be created in three ways:

❑ By annotating your code with attributes in Visual Studio — This is the code-first approach.
Your metadata is represented by an in-memory representation using CLR types. This metadata
representation of your contract and endpoints can be published as a WSDL or MEX.

❑ Using tools such as Svcutil — Your WSDL file can be converted into annotated proxy classes.
Please refer to the “Consuming Static Metadata” section for more details.

❑ Coding by hand — You can create a representation of your contract using the contract-first
approach. Indigo typically shields the developer from the plumbing details, but brave develop-
ers can build WSDL files by hand (or by using modeling tools). The obvious area to watch out
for is structural and formatting errors in your code.

Publishing and Exporting Metadata
Metadata can currently be exported into two formats: WS-MEX and WSDL using HTTP GET. To enable
Metadata export on an Indigo service, you have to add a few parameters in the service behaviors portion
of your .config file. Here is an example:

<?xml version=”1.0”encoding=”utf-8”?>
<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.serviceModel>
<services>...</services>
<behaviors>
<behavior configurationName=”PosServerBehavior”>
<metadataPublishing

enableGetWsdl=”true”
enableHelpPage=”true”
enableMetadataExchange=”true” />

</behavior>
</behaviors>
</system.serviceModel>
</configuration

The Service Metadata behavior is enabled by default in Indigo. The service will use Scheme-Based
Default Bindings (which are customizable). To disable publishing your service as metadata, simply set
the parameter value to false. For example, enable MetadataExchange=”false”.

144

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 144

The EnableGetWsdl parameter publishes your service metadata as a WSDL. Let’s say that the base
address of your service is http://server:8080/PosServer/PosService.svc; you can then retrieve
the metadata by accessing the following address:

http://server:8080/PosServer/PosService.svc?wsdl

You can also define the location of a custom metadata file using MetadataLocation. Please note that
WSDL will currently work only over HTTP and HTTPS. The EnableHelpPage parameter enables
HTML Help pages — these pages are quite familiar if you are used to working with .NET Web Services.

EnableMetadataExchange publishes your service metadata in MEX format. To enable MEX, you have
to perform two steps: First, you must define the MEX endpoint using an IMetaDataExchange contract.
Then you have to enable wsProfileBinding in your .config file, as indicated in the following:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.serviceModel>
<services>
<service serviceType=”PosService”>
<endpoint
address=”http://server:8080/PosServer”
bindingSectionName=”wsHttpBinding”
contractType=”IPos”/>
</service>
</services>
<behaviors>
<behavior configurationName=”POSServerBehavior”>
<metadataPublishing

enableGetWsdl=”true”
enableHelpPage=”true”
enableMetadataExchange=”true” />

</behavior>
</behaviors>
</system.serviceModel>
</configuration

When you are manipulating configuration files, please be careful about spelling errors and spacing.
They may cause errors during execution.

Your MEX metadata is accessible at the following address (assuming that you are using the same base
address as the WSDL example):

http://server:8080/POSServer/mex

There are two ways you can publish metadata in the current version of Indigo: using custom and default
Metadata Exchange endpoints. You can download the WS-MetaDataExchange specifications in PDF
format at the following link: http://msdn.microsoft.com/ws/2004/09/ws-metadataexchange.

145

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 145

Consuming Static Metadata
The Service Metadata Utility Tool (SvcUtil.exe) is a powerful and often-used Indigo tool. It retrieves
metadata from an Indigo service and generates proxy code to allow you to access the service. It’s very
similar to the Add Web Reference functionality in Visual Studio when you are trying to connect to an
XML Web Service. The following example retrieves the metadata from the Indigo service using Svcutil
and creates a C# output file called posproxy.cs:

SvcUtil.exe http://server:8080/PosServer/PosService.svc?wsdl /out:posproxy

SvcUtil.exe will create both code and configuration information. You can add the addresses and bind-
ings into the configuration file (or incorporate it in code). The contract proxy classes should be added in
your own custom code. It creates contract proxies, contract interfaces, endpoint configuration informa-
tion, and more. Here is an example of source code output from Svcutil:

using System.ServiceModel;

class IndigoClientApp
{
public interface IPos
{
[OperationContract]
public int AddOrder(int OrderNumber)
{ ... }
}

public class PosProxy : IPos
{ ... }

void SendMessageToEndpoint()
{
PosProxy proxy = new PosProxy();
int result = proxy.AddOrder(12345);
}
}

The PosProxy class creates a channel behind the scenes. You must also add the following generated
code into your .config file to define the address and binding:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.serviceModel>
<services>
<service serviceType=”PosService”>
<endpoint
address=”http://server:8080/PosServer”
bindingSectionName=”netProfileTcpBinding”
contractType=”IPos”/>
</service>
</services>
</system.serviceModel>
</configuration>

146

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 146

You can also communicate with an endpoint using a ChannelFactory. In the following example, a
channel is created using ChannelFactory.CreateChannel<T>. The contract is passed as a type T
(in this case, IPos interface). The address and binding are sent as parameters.

using System.ServiceModel;

class IndigoClientApp
{
public interface IPos
{
[OperationContract]
public int AddOrder(int OrderNumber)
{ ... }
}

void SendMessageToEndpointUsingChannel()
{
IPos channel=ChannelFactory.CreateChannel<IPos>(
“http://server:8080/PosServer”,
new NetProfileTcpBinding());
int result=channel.AddOrder(12345);
}
}

For every contract, only one proxy class is generated. It will provide all the code you need to create a
client contract that will communicate with the service endpoint. For more information about the
svcutil.exe tool, refer to Chapter 7.

Handling Dynamic Metadata
There are circumstances where you would want to consume dynamic metadata. You might want to add
new members, new endpoints, or operations to your service. You also might want to use a new binding
to expose your existing contract. By creating several bindings, you can open up the service on many
ports and to a diverse range of clients. When the service is static, it’s quite easy to generate proxy classes.
However, what do you do with your client code if your service changes during a period of time?

To successfully implement dynamic metadata binding in your application, your client has to know the
target MEX endpoint address, the service binding, and the endpoint contract. From a best practices per-
spective, the changes that are made to the service should be geared towards compatibility.

The Indigo SDK has a sample application called RetrieveMetadata, which demonstrates how to
gather and resolve dynamic metadata. The application creates a proxy to the Indigo service via MEX
and connects to all the endpoints.

Please note that only the default MEX binding is supported in the current version of
Indigo.

147

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 147

Service Addresses
The service address is a Uniform Resource Identifier (URI) that specifies the location of a service. It’s a
globally unique location that identifies where to communicate to an endpoint. Usually, one service
address is defined per transport scheme. Each host provides a series of base addresses and an endpoint
defines a relative address.

Here is the typical structure of a service address:

http://wrox.com:80/POSService/WS

You must define both a host and an endpoint pattern. (Refer to the URI specifications for more details.)
The endpoint addresses are usually included in your .config file (as seen in the following). You can
also extract endpoint service addresses from metadata using the Svcutil tool.

<endpoint

address=”http://server:8080/PosServer”
bindingSectionName=”wsHttpBinding”
contractType=”IPos”/>

URI Specifications
The following table outlines the address URI specifications.

URI Components Description

Transport Scheme Specifies the transport protocol to be used (for example: http, https,
net.tcp, net.pipe, and so on).

Host Name Specifies your host name.

Port This is an optional parameter. Specifies a port number. (Can’t be used
in conjunction with Named Pipes.)

Base Path Specifies the base path of your service. For example, PosServer is the
Base Path of http://server:8080/PosServer.

Endpoint Address Specifies a targeted endpoint in an Indigo service.

Hosting
Indigo supports a wide variety of hosting conditions; the onus is on the developer to pick the right host-
ing model for the right application. It is important to note that Indigo services aren’t tied to a specific
application model and can support self-hosted to remotely hosted scenarios. In the context of Indigo,
hosting means creating environments that support and control Indigo services. The two hosting models
that we will be examining in detail include self-hosting and Web hosting. Following is a table with a
comparison of the relative strengths and weaknesses of each hosting approach.

148

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 148

Self-Hosting Web Hosting

Using ServiceHost<T>, you can host On Internet Information Server (IIS), you must
the application in any Windows based create a service (.svc) file in an accessible directory.
application. The Web hosting option requires IIS.

Services are not automatically instantiated. Services are instantiated and managed
You must instantiate them manually using automatically.
the Open method, and dispose of the
services using Close and Dispose.

The application hosting the service must The application hosted on IIS can be in binary form
be compiled in a binary format in order or source code.
to be used.

Indigo processes are not managed For the most part, Indigo processes are managed
automatically. automatically.

You define a standard address for your You must generate a virtual directory and a .svc
service. For example: http://localhost: file to make IIS aware of your Indigo service.
8000/IndigoService/.

If you would like to create a Windows application (be it a Windows Forms application, Windows
Service, Dynamic Link Library (.DLL) or console application) that hosts Indigo services, self-hosting is
for you. At the core of self-hosting is the ServiceHost generic class. The service lifetime is under your
full control. Here is an example of the configuration file for a self-hosted application — you have to
define the endpoint address and binding (in this example, we chose the wsProfileBinding over HTTP):

<system.ServiceModel>
<services>

<service serviceType=”ProWinFXBeta.SelfHostingDemo”>

<endpoint address=”http://localhost:8000/SelfHostingService/”
binding=”wsProfileBinding”
contractType=”ProWinFXBeta.ISelfHostingDemo” />

</service>
</services>

</system.serviceModel>

Otherwise, you can define your endpoints in code. Here is an example of the Windows Forms applica-
tion using self-hosting with the endpoint definitions inline:

Using System;
Using System.Collections.Generic;
Using System.ComponentModel;
Using System.Data;
Using System.Drawing;
Using System.Text;
Using System.Windows.Forms;

Using System.ServiceModel;

149

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 149

namespace WindowsFormsDemo
{

public partial class SelfHostingDemo : Form
{

You then create an instance of ServiceHost<T> called selfHost. This object will be used to instantiate,
close, and dispose of your self-hosted Indigo service.

ServiceHost<SelfHostingService> selfHost = null;
public SelfHostingDemo()
{

InitializeComponent();
}

You can then load the Windows Form and start the service using the selfHost.Open command. You’ll
notice that the address and binding are exactly the same as the configuration file outlined at the begin-
ning of the section.

private void SelfHostingDemo_Load(object sender, EventArgs e)
{

selfHost = new ServiceHost<SelfHostingService>();
Uri address = new Uri(“http://localhost:8000/SelfHostingService/”);
BasicProfileBinding binding = new BasicProfileBinding();
selfHost.AddEndpoint(typeof(ISelfHostingDemo), binding, address);
selfHost.Open();

}

To dispose of your self-hosted Indigo service once you are done, simply include:

private void SelfHostingDemo_FormClosing(object sender, FormClosingEventArgs e)
{

selfHost.Close();
selfHost.Dispose();

}

Now we have to wire up our interface and class. Here is the code for defining the ISelfHostingDemo
interface. The following Indigo service will calculate Einstein’s famous theory of relativity equation:

[ServiceContract]
public interface ISelfHostingDemo
{

[OperationContract]
integer RelativityCalculation(int matter, int speedoflight);

}

Next, we have to write out the class that will actually perform the calculation. Notice that the
ServiceBehavior contains a parameter called RunOnUIThread. This parameter tells the Indigo service
that the service will be run using a Windows Form thread. Indigo can then optimize the service for that
particular.

150

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 150

[ServiceBehavior(RunOnUIThread = true)]
public class SelfHostingService : ISelfHostingDemo
{

public integer RelativityCalculation(int matter, int speedoflight)
{

return matter * (speedoflight)^2;
}

}

Using ServiceHost<T>, Indigo can host a number of self-hosted Windows applications, including con-
sole, Windows Forms, and Windows Services. For more examples, please refer to the MSDN documenta-
tion available as part of the WinFX Beta 1 SDK.

If you currently using Internet Information Server 5.1, please note that it will try to take over port 80.
When you are defining binding addresses, pick a port number other than 80; otherwise, you are bound
to experience connectivity problems and port conflicts with your self-hosted Indigo application. Web
hosted Indigo hosted applications are not bound by this limitation.

Web Hosting
Internet Information Server (IIS) 5.1 and 6.0 can support Indigo hosting. The advantage of using version
6.0 over 5.1 is that the Indigo service runs using the IIS 6.0 process model (which means they have a ded-
icated AppDomain and Worker Processes).

Here are the steps to set up a Web hosted Indigo service:

1. Set up your desired virtual directory using the Internet Information Server Console. (You can
access it by clicking Start ➪ Control Panel ➪ Administrative Tools ➪ Internet Information
Services.) You can also define your endpoints in the Web.config file by adding the following
section. Notice that the endpoint address is set to nothing (which means that the service will be
accessible from your virtual directory — for example,
http://localhost/CustomService/service.svc):

<system.ServiceModel>
<services>

<service serviceType=”ProWinFXBeta.WebHostedDemo”>

<endpoint address=””
binding=”wsProfileBinding”
contractType=”ProWinFXBeta.IWebHostedDemo” />

</service>
</services>

</system.serviceModel>

When you are working out bugs in your service, you can enable the debug options in your system.web
settings within your Web.config file. It may help you track problems more easily.

2. You can then create your service file. First, create a new file called service.svc in your virtual
directory. Edit the file and add the following @Service directive:

<%@Service language=”C#” Debug=”True” class=” ProWinFXBeta.WebHostedDemo” %>

151

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 151

3. You then have two choices. You can bring in a code-behind file using the @Assembly directive.
Your service source code can also be compiled into a .dll.

<@ Assembly src=”service.cs”>

4. Otherwise, you can include your service code inline. Here is the Einstein relativity example
shown in the Self-Hosted section adapted for Indigo Web hosting:

Using System;
Using System.ServiceModel;

[ServiceContract]
public interface IWebHostingDemo
{

[OperationContract]
integer RelativityCalculation(int matter, int speedoflight);

}

public class WebHostingService : IWebHostingDemo
{

public integer RelativityCalculation(int matter, int speedoflight)
{

return matter * (speedoflight)^2;
}

}

Once your service is in place, you should test the service in your browser to make sure that everything is
working well and you can create a number of clients to consume the service. You can use the Svcutil tool
to create your proxy code and simplify your development process. You can host as many services as you
want within a directory.

Windows Activation Services
Windows Activation Services (WAS) is a new message service found in IIS 5.1, 6.0, and 7.0. This service
is primarily used for message-based activation. The version of WAS found in IIS 7.0 allows protocols
such as TCP, Named Pipes, and MSMQ to be used. IIS 7.0 will be available to coincide with the final
release of Windows Longhorn — stay tuned for more details.

Indigo from End to End
Indigo is built on the client/service model. Following is a sample end-to-end application designed to
calculate and pass a temperature calculation between an Indigo service and client.

Building the Indigo Client
First we have to configure the endpoint in the .config file. The application uses the
wsProfileBinding (which means the messages will be passed along reliably):

152

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 152

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
<system.serviceModel>

<client>
<endpoint configurationName=”TempCalculatorEndpoint”

address=”http://localhost/TempCalc/”
bindingSectionName=”wsProfileBinding”
contractType=”ITempCalculator, client” />

</client>
</system.serviceModel>

</configuration>

Here is the code for our client software. The TempCalculatorProxy will act as a proxy to the
TempCalculator service endpoint. Then a value of 30 Celsius is passed into the service. Finally, the
results are displayed in the console screen, as shown in Figure 5-3.

Figure 5-3

class Client
{

static void Main()
{

using (TempCalculatorProxy proxy =
new TempCalculatorProxy(“TempCalculatorEndpoint”))
{
int temp = 30;
int result = proxy.CelsiusToFahrenheit(temp);
Console.WriteLine(“{0} Celsius equals {1} Fahrenheit”, temp, result);
proxy.Close();

}
Console.WriteLine();
Console.WriteLine(“Press Enter to close the console.”);
Console.ReadLine ();
}

}

153

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 153

Building the Indigo Service
You will now define the contract and endpoints to configure our Indigo service. First, we must define
our endpoints within the .config file.

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
<system.serviceModel>
<services>
<service serviceType=”TempCalculatorService”

<endpoint address=”http://server:8080/TempCalc”
bindingSectionName=”wsProfileBinding”
contractType=”ITempCalculator, service” />

</service>
</services>

</system.serviceModel>
</configuration>

Your Indigo service is defined as follows. You have exposed a method called CelsiusToFahrenheit,
which can be remotely accessed by our Indigo client:

[ServiceContract]
public interface ITempCalculator
{

[OperationContract]
int CelsiusToFahrenheit(int temp);

}

In this example, you will use the ServiceHost<T> hosting model. The following code will host the
Temperature Calculator Indigo service within the console application:

ServiceHost<TempCalculatorService> iserv = new
ServiceHost<TempCalculatorService>();
iserv.Open();

Finally, you have to build your interface to perform the actual calculation. You define the name of your
assembly and the programming language of your service:

<%@Service language=”C#” class=”TempCalculatorService”>
<%@Assembly Name=”TemperatureCalculationService” %>

Then you create the interface with a method called CelsiusToFahrenheit, which will perform the
calculation:

public class TempCalculatorService : ItempCalculator
{

public int CelsiusToFahrenheit(int celsius) {
return (celsius*1.8)+32;

}
}

154

Chapter 5

10_57874x ch05.qxd 8/15/05 3:46 PM Page 154

Summary
In this chapter, you were introduced to Indigo, including the concept of Service Orientation and the
ABCs of building an Indigo service. It delved into the creation of Indigo contracts and endpoints, focus-
ing on the service, operation, and data contracts.

You learned how to leverage standard bindings and build custom bindings. The chapter also explored
metadata and the different types that can be published from an Indigo service.

Finally, you learned how to properly construct service addresses and the Indigo hosting options at your
disposal. We wrapped up the chapter with an end-to-end Indigo application featuring both client and
service code to help you gain an understanding of how everything fits together.

155

Introducing Indigo

10_57874x ch05.qxd 8/15/05 3:46 PM Page 155

10_57874x ch05.qxd 8/15/05 3:46 PM Page 156

Transactions and
Messaging

Effective transaction handling is one of the most difficult mechanisms to implement within an
application. COM+ and MTS succeeded on a certain level but at a price — complexity. Everyone at
one time or another has to figure out how to implement transactions in business logic.

In all real-world systems, the following tends to happens:

❑ Servers can fail.

❑ Messages get lost.

❑ Connected systems get out of synch.

❑ Messages get reordered.

❑ Messages cannot be safely retried.

❑ Messages are interconnected but processed individually.

The way to get around this is to create assurances that messages arrive exactly once, in the same
order as they were sent. Assurances are provided by default in the following bindings:

❑ NetProfileTcpBinding

❑ WSProfileBinding

To implement Secure Reliable Messaging, here are the options you must configure in your custom
bindings:

<bindings>
<customBinding>

11_57874x ch06.qxd 8/15/05 3:47 PM Page 157

<binding configurationName=”ReliableTransportOverHTTP”>
<reliablesession/>
<httpTransport/>

</binding>
</customBinding>

</bindings>

Indigo greatly simplifies messaging by using the WS-* specifications to implement Secure Reliable
Transactions (SRT). The implementation details are abstracted from you. All SOAP plumbing is automat-
ically generated. (Of course, you can work with XML if you are determined to use contract-first method-
ologies.)

Indigo uses a variety of standards including the following:

❑ WS-Transactions

❑ WS-Coordination

❑ WS-Security

❑ WS-Reliability

System.Transactions
System.Transactions, found in .NET Framework 2.0, handle all kinds of transactional operations.
Unlike Enterprise Services (ES), System.Transactions doesn’t require a tight coupling of the object
state and transaction. Indigo takes System.Transactions to the next level with loose coupling and no
object dependencies. In combination with WS-AtomicTransactions, you can communicate via Web
Services with any other platform.

Using Indigo Transactions
You can indicate that you want a transaction to occur by using the OperationBehavior attribute. The
behaviors leverage System.Transactions.

using System.ServiceModel;
[ServiceContract]
class CashTransfer
{
[OperationContract]

[OperationBehavior(RequireTransaction=true,
AutoCompleteTransaction=true)]

int Transfer(int)
{
...
}

}

158

Chapter 6

11_57874x ch06.qxd 8/15/05 3:47 PM Page 158

Secure Reliable Messaging
If you have ever tried to create communication protocols or had to pass messages back and forth from
remote points, one of the hardest things to program in is reliability. All kinds of disruptions may happen
in the course of transmitting a message: The server may go down, the connection may hiccup, or you
may experience periods when the service drops. Reliability entails three things: an expectation that the
message will arrive at a destination, a mechanism to compensate for, recover, and resend the missing
data if the message doesn’t arrive, and a way of detecting when things go wrong.

Another difficult thing to implement is security. One of the issues you face is that you may have little
control over how the messages are handled at each endpoint. You’ll need to create a lot of custom code
to implement a custom encryption scheme to make it work. Cross-platform security adds another layer
of complexity.

Indigo provides solid tools to implement reliable secure communication. And even more surprising, it’s
dead easy to set up. Placing ReliableSessionEnabled in your binding will put all the infrastructure in
place. Secure Reliable Messaging is available in the following bindings:

❑ WsProfile binding

❑ WsProfileDualHttp binding

❑ NetProfileTcp binding

❑ NetProfileDualTcp binding

You can also use ReliableSessionBindingElement to implement custom bindings. The following
example shows how to enable secure reliable messaging in your configuration file. (You can also enable
it in code just like other bindings.)

<?xml version=”1.0 encoding=”utf-8” ?>
<configuration xmlns=”http://schemas.microsoft.com/.Netconfiguration/v2.0”>
<system.serviceModel>
<client>
<endpoint
configurationName=”customEndpoint”
address=”http://localhost:8080/customService”
bindingSectionName=”wsProfileBinding”
bindingConfiguration=”customBinding”
contractType=”ICustomService” />
</client>
<bindings>
<wsProfileBinding>
<binding
configurationName=”customBinding”

reliableSessionEnabled=”true”
orderedSession=”true” />
</wsProfileBinding>
</binding>
</system.serviceModel>
</configuration>

159

Transactions and Messaging

11_57874x ch06.qxd 8/15/05 3:47 PM Page 159

The preceding code sample also ordered the session. To enable reliable sessions in code, simply add the
session property to your ServiceContract attribute.

[ServiceContract(Session=true)]

Following is an example of how to implement SRM in a custom binding:

<bindings>
<customBinding>

<binding configurationName=”CustomReliableMessagingOverTcp”>

<reliableSession/>
<tcpTransport />

</binding>
</customBinding>

</bindings>

Indigo Queues
You can implement queues using Indigo. Indigo queues use the Microsoft Message Queue (MSMQ)
infrastructure to create queued channels. The great thing about this integration is that if you are experi-
enced with MSMQ, you’ll feel very comfortable with Indigo queues. As outlined in the tenets of service
orientation in Chapter 5, services are decoupled by default. Indigo queues also can assist in the decou-
pling services.

In many business circumstances, you may want one-way operations with high availability. From an
administrative standpoint, you may also want to maintain and load balance your services without any
downtime while keeping these operations invisible to the clients. Indigo queues provide all of these
advantages and more; you can effectively handle many challenging demands made to the system.

Indigo doesn’t support database-style operations in a queue. Instead queued messages wait for any kind
of availability to push the message in the service code. Here is how you can create a vanilla one-way
contract:

public interface IAirlineReservation
{

[OperationContract(IsOneWay = true)]
void AddReservation(int resID, string CustomerName);

}

Here is how you can write out the queue endpoint. This example uses netProfileMsmqBinding. Most
queued communication is local; you’ll notice that the address points to a private queue (denoted by
private$):

<endpoint

address =”net.msmq://MyServer/private$/MyQ/”
bindingSectionName=”netProfileMsmqBinding”

160

Chapter 6

11_57874x ch06.qxd 8/15/05 3:47 PM Page 160

bindingConfiguration =”MyQueueBinding”
contractType=”Queue.IAirlineReservation, Queues” />

In some circumstances, you will need to access public queues. You can write the public queue using an
address such as net.msmq://MyServer/MyQ/:

<endpoint

address =”net.msmq://MyServer/MyQ/”
bindingSectionName=”netProfileMsmqBinding”
bindingConfiguration =”MyQueueBinding”
contractType=”Queue.IPurchaseOrder, Queues” />

In the endpoint, there is a referenced binding configuration called “MyQueueBinding”. This binding
information can also be found in your configuration file. You can configure the details of your queued
communication, including the queue protection level and the authentication mode.

<bindings>

<netProfileMsmqBinding>
<binding
configurationName=”MyQueueBinding”
addressingMode=”Native”
assurances=”ExactlyOnce”

msmqProtectionLevel=”EncryptAndSign”
msmqAuthenticationMode=”None” />

</netProfileMsmqBinding>
</bindings>

You can also specify the use of NetProfileMsmq binding in the code by using the
NetProfileMsmqProfile class. Here is an example:

Uri baseAddress = new Uri(“net.msmq://localhost/private$/CustomService”);
NetProfileMsmqBinding qBinding = new NetProfileMsmqBinding();
service.AddEndpoint(typeof(IAirlineReservation), qBinding, baseAddress);

To access queues, you have to preconfigure them using the Microsoft Management Console (MMC)
Computer Manager snap-in. In some circumstances, you would want to enforce the use of queues in
your application. You can do this in code using the QueuedDeliveryRequirements property within the
BindingRequirement attribute. Here is an example:

[BindingRequirements(QueuedDeliveryRequirements = RequirementsMode.Require)]
class ReservationService : IAirlineReservation
{ ... }

Managing Queues and Transactions
You can combine queues and transaction to make sure that no messages get lost, especially when mas-
sive connectivity problems occur. It is also important to tie transactional operations in your queues when
you are tying in a database or another external resource is used. Using the combination of transactions
and queues, queued messages are handled a batch at a time.

161

Transactions and Messaging

11_57874x ch06.qxd 8/15/05 3:47 PM Page 161

Transacted queues share special characteristics:

❑ Transactions occur between the client, the service, and the queue. Any messages sent from an
“outside” source will not be seen.

❑ All transactions are local.

❑ When the transaction is committed, messages are then removed from or added to the queue.

❑ If a message returns to the queue, another attempt will be made.

If you are interested in using transacted queues, you must perform the following steps:

1. Choose a queued transport, using one of the MSMQ bindings.

2. On the service side, enact the AutoEnlistTransaction and AutoCompleteTransaction
parameters, using the OperationsBehavior attribute.

3. On the client side, use a transaction scope to send messages and complete the transactions.

Here is some client code for a transacted queue. First, you need to define a scope for the transaction,
using the TransactionScope object. You can then perform a number of operations and end the transac-
tion by using the Complete method:

TransactionScope transScope;
using (tranScope= new TransactionScope())
{
AirlineSystem.AddReservation(transactionID, clientCode, credAuthID);
commitData();

transScope.Complete();
}

Your service uses a different transaction to read every message, despite the fact that the messages were
sent within the same transaction on the client. The approach is really decoupled between the client and
service. Here is a code sample of the service using the OperationBehavior attribute:

[ServiceBehavior(TransactionIsolationLevel=IsolationLevel.ReadCommitted)]
public class AirlineService:IAirlineService
{

[OperationBehavior(AutoEnlistTransactions=True, AutoCompleteTransactions=True)]
string GenerateReservation(int transactionID)
{
...
}

The ServiceBehavior basically does what it indicates: It sets the behavior for your service. The
TransactionIsolationLevel in ServiceBehavior allows you to set the amount of isolation between
transactions; this will greatly impact the way transactions affect one another. The accepted values for
TransactionIsolationLevel include the following:

162

Chapter 6

11_57874x ch06.qxd 8/15/05 3:47 PM Page 162

❑ Chaos

❑ ReadCommitted

❑ ReadUncommitted

❑ RepeatableRead

❑ Serializable

❑ Snapshot

❑ Unspecified

The default value for TransactionIsolationLevel is Unspecified. The level set in the preceding
example is ReadCommitted. The OperationBehavior attribute sets the behaviors for all operations
conducted by the service. The AutoEnlistTransactions parameter sets whether the
GenerateReservation operation must execute as a transaction. The AutoCompleteTransaction
parameter enables the transaction to be completed automatically after the service operation is com-
pleted. This autopilot feature is convenient from a programming standpoint, letting Indigo automati-
cally manage the transaction details for you (rather than having you manually shut down a transaction).

Queues provide consistent transactions, but don’t allow transactions using one-way operations because
you can never know how they will turn out before the commit stage. All queued transactions are vali-
dated by the service model. (You have the option of removing the validator, but it’s definitely not recom-
mended.) Here is a code sample featuring the IServiceValidator collection:

ServiceDescription servdesc=...;

foreach (IServiceValidator validator in servdesc.Validators)
{

ContextValidator context = validator as ContextValidator;
if (context != null)
{

description.Validators.Remove(context);
}

}

Handling Transaction Failures in Config
Transaction failures are commonplace, as is the way they are handled. After a transaction fails, retrying it
is a logical step to take. But what happens if you don’t want the application to retry sending the message
or if you want to set the amount of times that a retry should occur? You can use retry patterns to cope
with transaction failures very easily and with a lot of granularity.

Retry patterns let you control what to do with any messages that fail. You can control whether you want
to automatically retry failed messages, configure the maximum number of retries, and set whether you
want messages to appear in a Dead Letter Queue (DLQ) or Poison Message Queue (PMQ).

163

Transactions and Messaging

11_57874x ch06.qxd 8/15/05 3:47 PM Page 163

The following code shows you how to deal with transaction failure in your binding code, including
some of the parameters you can set:

<netProfileMsmqBinding>
<binding configurationName=”CustomQueueBinding”

msmqAuthenticationMode=”None”
msmqProtectionLevel=”None”

maxRetries=”5”
maxRetryCycles=”3”
retryCycleDelay=”0:0:40”
rejectAfterLastRetry=”True” />

</netProfileMsmqBinding>

The maxRetries parameter is set to 5, which means that if a transaction fails it will be retried five times.
The maxRetryCycles is set to the default value of 3. This controls the number of times the transaction is
cycled in the retry queue and the application queue. retryCycleDelay sets the amount of time that
should pass between each retry. Finally, the rejectAfterLastRetry parameter is set to True, which
means that a message should be rejected (as opposed to being sent to the PMQ). The default value for
rejectAfterLastRetry is True.

The PMQ is a subqueue of the application queue. It is a place where lost messages get sent to if they
can’t be sent otherwise. These messages are then passed back into the application queue on a schedule
different from the primary application queue’s schedule.

<endpoint

address=”net.msmq://MyServer/private$/MyPrivateQueue;Poison/”
bindingSectionName=”netProfileMsmqBinding”
bindingConfiguration=”CustomQueueBinding”
contractType=”Queue.IAirlineReservation, Queues” />

The ;Poison at the end of the endpoint address indicates that the queue to be used is the PMQ rather
than the application queue.

Using Sessions in Queues
What if you have to process groups of messages together? Breaking up the messages into smaller chunks
is sometimes not the answer because this complicates the process of recovering the messages. The way
to get around this problem in Indigo is to use Queue Sessions. What will happen is that your applica-
tions will not be able to recognize the message unless all of them end up in the message queue. Queue
Sessions deliver all the messages within the same transactions, and there is no possibility of creating par-
tial sessions. If there is more than one call to the service method, they are all accomplished in the same
transaction. Keep in mind that if you end or abort a transaction, all the associated session messages
revert back to the queue.

164

Chapter 6

11_57874x ch06.qxd 8/15/05 3:47 PM Page 164

To use queues with sessions, you must first define Queue Session contracts. Here is some code demon-
strating the mechanics of the contract in a client:

[ServiceContract(Session = true)]
public interface IAirlineReservation
{

[OperationContract(IsOneWay = true)]
void SetReservation(int reservationID);
}

To set a session in a ServiceContract, simply add a Session=True parameter in the
ServiceContract attribute. You’ll also notice that OperationContract is set to IsOneWay=True. The
one-way service doesn’t bother to send a response; the return value for this kind of operation is typically
void. The following looks in more depth at the way that queue sessions are handled in a service:

[BindingRequirements(QueuedDeliveryRequirements=RequirementsMode.Require,
RequireOrderedDelivery=true)]

The BindingRequirements attribute sets what binding requirements must be met in a service contract.
In this case, the QueuedDeliveryRequirements specifies that queuing is required and the delivery
order of the messages has to be ordered.

[ServiceBehavior(InstanceMode=InstanceMode.PrivateSession)]
class AirlineReservationService:IAirlineReservations
{

[OperationBehavior(AutoEnlistTransaction=True, AutoCompleteTransaction=False)]
public void SetReservation(int reservationID) {...}
}

The InstanceMode attribute in the previous example is set to PrivateSession. This means that an
instance of the service will be created for every client that connects. As explained before, the
AutoEnlistTransaction parameter enables transactional support for the SetReservation operation.
Since the AutoCompleteTransaction is set to False, you would typically have to define where you
want to shut down the transaction somewhere in your code.

Handling Queue Delivery Errors
How can you find out when your message’s delivery failed within a timeframe? You can set the delivery
assurances to Exactly-Once (the default value). This is only available using reliable, transacted queues.
You can define the time-to-live (TTL) for any bindings as opposed to relying on the default values. If the
message is not processed in the correct amount of time (defined by the TTL), then it is sent to the Dead
Letter Queue (DLQ).

To know when messages are sent to the DLQ, you have to write (or invoke) logic or contact the
administrator.

165

Transactions and Messaging

11_57874x ch06.qxd 8/15/05 3:47 PM Page 165

Dead Letter Queues
You can define the DLQ for every client binding, and all queues using transactions use the same DLQ.
To access the DLQ in your binding, you must use the following address:

net.msmq://SpecialQueue/system$;deadxact/

The default DLQ for queues not participating in transactions is set Null. Typically, you would want to
use the default DLQ only for activities such as debugging. The DLQ sits on the queue manager on the
client side. Here is the binding code for a deadLetterQueue:

<binding configurationName=”CustomQueueBinding”
...

timeToLive=”0:1:0”
deadLetterQueue= “net.msmq://MyClient/private$/myCustomDLQ” />

The DLQ endpoint for the client is written as follows:

<endpoint
address =”net.msmq://MyClient//private$/myCustomDLQ/”

bindingSectionName=”netProfileMsmqBinding”
bindingConfiguration =”CustomQueueBinding”
contractType=”Queue.IAirlineReservation, Queues”>

</endpoint>

From a peripheral perspective, the DLQ behaves like other channels, but it can carry extra information
on failures and so forth:

MsmqMessageProperty m = OperationContext.Current.IncomingMessageProperties
[MsmqMessageProperty.n] as MsmqMessageProperty;
Console.WriteLine(“Failure Status:{0}”, m.DeliveryFailure);

Synchronous versus Asynchronous Invokes
You can use sync and async methods to drive message operations. You can set sync and async
decisions using local behaviors. These decisions will not affect the metadata. From a CLR implementa-
tion perspective, you must modify the local view of the contract. Keep in mind that the implementation
varies, but the wire contracts are identical. In a nutshell, the choice in the way you want to go
(synchronous or asynchronous) is decided in the same way you make determinations of how you
would want your invocations handled.

[ServiceContract]
public interface IAirlineReservation
{

[OperationContract(AsyncPattern=true)]
IAsyncResult BeginAddReservation (int reservationID);
int EndDoWork(IAsyncResult result);

}

166

Chapter 6

11_57874x ch06.qxd 8/15/05 3:47 PM Page 166

Indigo Sessions
Indigo sessions are used to allow your messages to maintain state over a period of time. Implementing
sessions is quite easy; all you have to do is set the Session parameter to True within
ServiceContract:

[ServiceContract(Session = true)]
public interface IAirlineReservation
{
[OperationContract]
int AddReservation(int reservationID);

}

You can enable an automatic session shutdown (to automanage your session) using the
AutomaticSessionShutdown parameter. In the example that follows, the BindingRequirements
attribute is set to require an ordered delivery of messages:

[ServiceBehavior(AutomaticSessionShutdown=true)]
[BindingRequirements(RequireOrderedDelivery=true)]
class AirportReservationService : IAirportReservation
{
public int AddReservation(int reservationID) { ... }

}

In the configuration portion of the service, you can set the reliableSession parameter to send mes-
sages in an ordered or unordered fashion. Here is a custom binding example using a configuration file:

<bindings>
<customBinding>

<binding configurationName=”MyCustomBinding”>
<reliableSession ordered=”True”>
<tcpTransport />

</binding>
</customBinding>

You can also manipulate the standard bindings. The following example sets the orderedSession
attribute to True:

<wsProfileBinding>

<binding configurationName=”OrderedReliableMessaging”
orderedSession=”true”>

</binding>
</wsProfileBinding>

</bindings>

Initiating and terminating sessions can be accomplished using the IsInitiating attribute and
IsTerminating attribute as shown in the following example.

[ServiceContract(Session=true)]
public interface IAirlineReservation
{

167

Transactions and Messaging

11_57874x ch06.qxd 8/15/05 3:47 PM Page 167

[OperationContract(IsInitiating=true,IsOneWay=true)]
public void Start();

[OperationContract(IsInitiating=false,IsTerminating=true,IsOneWay=true)]
public void End();

}

In the configuration file, you can set all sorts of connection management settings, including the inactivity
timeout. The inactivity timeout is measured according to the amount of time it takes to send a message
to and from a service and/or client. The timeout appears when no traffic is generated. The inactivity
timeout has a set number of retries; messages are tried a number of times until they are acknowledged.
The message acknowledgments in turn can be sent in batches. Here is a bit of binding code that sets the
acknowlegment interval, the quota of buffered messages, and an inactivity timeout:

<reliableSession

acknowledgementInterval=”00:00:00.20”
bufferedMessagesQuota=”50”
inactivityTimeout=”00:40:00”
maxRetryCount=”6”/>

To configure the sessions on the client, you use the TransactionScope object. After the transaction has
been completed, you can use the Complete method to end the transaction process:

TransactionScope transcope;
using (transcope=new TransactionScope())
{
Reservation.Add(reservationID);
Reservation.Close();

transcope.Complete();
}

As soon as a service runs, an instance of the implementation class is instantiated for any request mes-
sage. The instance mode sets when implementation instances are instantiated and destroyed. The com-
mon instancing modes include the following:

❑ Shared and Private Sessions — A private session instance means that a class instance is created
for every client request. The shared instance means that many clients can share the same
instance.

❑ Singleton — Multiple callers rely on one service instance.

❑ Per-call — A single class is instantiated for each message request, and then it is destroyed.

Indigo Transactions
Indigo supports a variety of transacted communications. The following code demonstrates a transacted
service operation. To enable a transaction in Indigo, use the transaction parameters within the
OperationBehavior attribute:

168

Chapter 6

11_57874x ch06.qxd 8/15/05 3:47 PM Page 168

[OperationBehavior(AutoEnlistTransaction = true,
AutoCompleteTransaction = true)]

public bool RemoveReservation(bool transactionFlag);

To share a transaction in Indigo, simply use the contextFlow parameter within your binding, and set
the transactions parameter to Required:

<bindings>
<wsHttpBinding>
<binding configurationName=”CustomBinding”>

<contextFlow transactions=”Required” />
</binding>

</wsHttpBinding>
</bindings>

To require a transaction flow, you can set the TransactionFlowRequirements within the
BindingRequirements:

[BindingRequirements(TransactionFlowRequirements = RequirementsMode.Require)]

The possible enum values for RequirementsMode include the following:

❑ Required

❑ Disallowed

❑ Ignore

Please note that the default value is Ignore, which means that no transaction flow is required. You can
also validate your transactions using the IServiceValidator interface. You can set the context using
the ContextValidator object:

ServiceDescription description = ...;

foreach (IServiceValidator validator in description.Validators)
{

ContextValidator context = validator as ContextValidator;
if (context != null)
{

description.Validators.Remove(context);
break;

}
}

To flow a transaction from the client, you can set a transaction scope and complete the transaction using
the following code:

TransactionScope transscope;
using (transscope = new TransactionScope())

169

Transactions and Messaging

11_57874x ch06.qxd 8/15/05 3:47 PM Page 169

{
proxy.Transfer(employeeID);
UpdateLocalCache(employeeID);
transscope.Complete();

}

To control the transaction flow of your application, simply add the TransactionFlowRequirements
parameter to your BindingRequirements attribute. The options you can set include: Ignore, Require,
and Disallow.

[BindingRequirements(TransactionFlowRequirements=RequirementsMode.Require)]

Using the AutoEnlistTransaction and AutoCompleteTransaction parameters, you can set up a
transaction for your method:

[OperationBehavior(AutoEnlistTransaction = true, AutoCompleteTransaction = true)]
public void AddReservation(string myArg)
{
...

If the transaction does not complete successfully, you can force a rollback using the Rollback method:

if (AbortConditionToKillTheTransaction)
{

Transaction.Current.Rollback();
}

}

Otherwise, you can throw an exception to kill the transaction. The following code shows you how to
accomplish this:

if (AbortConditionToKillTheTransaction)
{

throw new Exception(...);
}

}

To complete a transaction, you can use the SetTransactionComplete method. If you know that you
will be programmatically terminating the transaction, you can set the AutoCompleteTransaction
attribute to false, as shown in the following example:

[OperationBehavior(AutoEnlistTransaction = true, AutoCompleteTransaction = false)]
public void AddEmployee(int employeeID)
{
// Do neccesary operations under the transaction.

...

OperationContext.Current.SetTransactionComplete();
}

170

Chapter 6

11_57874x ch06.qxd 8/15/05 3:47 PM Page 170

Duplex Communication
Traditional remote procedure calls (RPCs) use in-and-out operations. Indigo supports multichannel in-
out operations, otherwise known as duplex communication. These are implemented using duplex con-
tracts. You should use ServiceContract to define your inputs and CallContract to define the
outputs. See the following example:

[ServiceContract(CallbackContract = typeof(IPosCallback), Session = true)]
public interface IPos
{

[OperationContract(IsOneWay = true)]
void AddOrder(string itemID);

[OperationContract(IsOneWay = true)]
void commitTransaction();

}

public interface IPosCallback
{

[OperationContract(IsOneWay = true)]
void Confirmation(string status);

To set up a duplex sender, implement CallbackContract and provide Callback at proxy creation:

public class PosCallback : IPosCallback
{

public void Confirmation(string orderStatus)

Console.WriteLine(orderStatus);
}

}
// ...

PosCallback posCBack = new PosCallback();
PosProxy proxy = new PosProxy(new ServiceSite(posCBack));
proxy.Add(“Brown Shirt”);

To set up a duplex receiver, you must first implement a ServiceContract and use the callback channel
(from the OperationContext). Here is an example:

public class PosService : IPos
{

List<string> items = new List<string>();
public void AddItem(string item)
{

items.Add(item);
}

public void Complete()
{

IPosCallback posCallback =
OperationContext.Current.GetCallback<IPosCallback>();

171

Transactions and Messaging

11_57874x ch06.qxd 8/15/05 3:47 PM Page 171

posCallback.Confirmation(“Ok”);
}

}

Duplex communications allow for rich message exchange patterns (MEPs). ServiceContract defines
the in messages and CallbackContract defines the out messages.

Streaming
Indigo supports application-level chunking of messages. By default, messages are buffered before they
can be accessed. You can also break one operation into many. Here is a code sample demonstrating
streaming:

public Stream StreamData(string incomingStream)
{

MemoryStream outgoingStream = new MemoryStream();
XmlFormatter xFormat = new XmlFormatter();
...
xFormat.Serialize(outgoingStream, incomingStream);
outgoingStream.Seek(0, SeekOrigin.Begin);
return outgoingStream;

}

To do streaming on the Indigo platform, you must use stream-oriented operations. The stream parame-
ter will provide you with a return value. You can also use an XmlReader over a message body. All you
need to do is set the binding’s TransferMode to Streaming. When you use Streaming, you must not
enable reliable sessions.

There are other streaming restrictions you should be aware of. You are limited to transport-based secu-
rity (for example, SSL). If you want to add security to your bindings, add the security mode to None,
TcpWithWindowsSecurity, or TcpWithSsl. HTTP-based bindings and nondual bindings are not sup-
ported. Custom bindings are required for any request-reply operations.

BizTalk Server and Indigo
In the near future, BizTalk Server and Indigo will integrate in a powerful way. It’s the perfect mix:
BizTalk provides services such as transformation, business process orchestration, and the capability for
designers to model and track business activities. Indigo provides the low-level transport. Indigo will
provide many additional features to BizTalk, including Secure Reliable Transactions and greater interop-
erability with third-party platforms. BizTalk server brings to the table business process management
capabilities and rules.

Microsoft is planning to fully integrate BizTalk Server 2006 with Indigo via an Indigo connector. If you
would like to start using the connector today, Scott Woodgate (the lead product manager for BizTalk) is
working with members of his team on a prototype that works with BizTalk Server 2004. For a link to
download the Indigo connector and for more information, please visit Scott’s blog at
http://blogs.msdn.com/scottwoo.

172

Chapter 6

11_57874x ch06.qxd 8/15/05 3:47 PM Page 172

Please note that the adapter works only with the .NET Framework 2.0. (BizTalk currently interacts with
the .NET Framework v.1.0.) The system requirements and installation details are available through the
blog Web site.

Summary
Indigo has multiple ways of providing assurances about the delivery of your messages. The deter-
ministic nature of Indigo makes it easy for developers to set the order and the number of messages
sent. Indigo provides robust transaction and session management, and high availability for business
applications.

In this chapter, you learned about transaction boundaries and the standards behind the transaction,
security, and reliability features of Indigo. You then learned about the concept of compensation and how
Indigo relates to System.Transactions. Next, you looked at secure reliable messaging in Indigo,
including the bindings used to set it up. You also learned about Indigo queues and synchronization; how
to effectively manage sessions and scopes; and how to deal with failures, critical communication errors,
and Dead Letter Queues.

The next topic on the roster was sessions and the four types of instancing. You also looked at transac-
tions in detail, including how to start, fail, and complete transactions. Then you examined duplex
communication and streaming. Finally, you learned how BizTalk and Indigo will be integrated in the
near future.

Speaking of integration, how does one port over existing applications to Indigo? In the next chapter, you
learn how to port and connect existing COM+, ASMX, Enterprise Services, .NET Remoting, and MSMQ
applications to Indigo.

173

Transactions and Messaging

11_57874x ch06.qxd 8/15/05 3:47 PM Page 173

11_57874x ch06.qxd 8/15/05 3:47 PM Page 174

Indigo Migration and
Interoperability

Indigo is the new communication paradigm for the next generation of the Windows operating sys-
tem. This chapter examines what changes you will be required to make to your existing code base
to make your applications interoperable with Indigo. We will be examining all the major commu-
nication APIs that currently exist on the Windows platform, including the following:

❑ XML Web Services (ASMX)

❑ Enterprise Services (ES)

❑ Microsoft Message Queuing (MSMQ)

❑ NET Remoting

❑ DCOM/COM+

In many cases, you’ll find that migrating your application to Indigo is quite simple. You can even
leverage old, unmanaged COM+ components without too much difficulty. Toward the end of the
chapter, you will find out what challenges lie ahead and how to avoid common migration pitfalls.

Indigo is interoperable not only with Microsoft technologies but also with other platforms through
the BasicProfile, WSProfile, and WSProfileDualHttp bindings. This chapter primarily
focuses on the integration of Indigo with existing Microsoft technologies and provides a migration
path to port your applications to Indigo.

The Big Picture
Code rewrites are not pleasant experiences. The process can be prohibitively expensive and
require a lot of time. Another challenge is justifying the costs from a business perspective.

12_57874x ch07.qxd 8/15/05 3:47 PM Page 175

Fortunately, the developers on the Indigo team anticipated these challenges and created relatively sim-
ple mechanisms to migrate or wrap your existing code to make it work with Indigo.

Indigo interoperates on the wire level with Enterprise Services, Web Service Extensions 3.0, and ASMX.
MSMQ and COM+ can also interact with Indigo using proxies and minor code modifications. Microsoft
is currently working on plug-ins to integrate Indigo with BizTalk Server 2006 and the SQL Server Service
Broker. (BizTalk Server/Indigo integration is covered in more detail in Chapter 6).

The only formats that will require extensive code changes are Web Service Extensions 2.0 and .NET
Remoting. This isn’t a small issue; these two communication technologies present a unique set of chal-
lenges. We will help guide you in the right direction.

Looking at the Scorecard
How can you prepare your current applications for Indigo? Here’s a high-level overview of best prac-
tices for all the current Windows communications technologies. Later in the chapter, we will drill down
through each of these technologies.

❑ COM+ — If your infrastructure is primarily component-based, it makes a great deal of sense to
try to keep your business logic in place. The simplest transition point between COM+ and
Indigo is Enterprise Services. You can use unmanaged COM+ clients to transmit and receive
Indigo messages; however, Enterprise Services will provide you with a solid and established
framework that easily interconnects with Indigo.

❑ Enterprise Services (ES) — ES interacts well with Indigo, especially if your code is written in
.NET. In most cases, your code will require only a few annotations.

❑ .NET Remoting — .NET Remoting does not interoperate well with Indigo. In most cases, you
will have to rewrite large chunks of your code to make it work. However, .NET Remoting will
be supported on the .NET Framework for the foreseeable future.

❑ MSMQ — If you use MSMQ, only small changes are required to make your code interoperable
with Indigo. (Refer to Chapter 6 and the “Microsoft Message Queuing” section later in this
chapter.)

❑ ASMX — Indigo can communicate on the wire with ASMX and requires the least amount of
work to migrate. Both are based on the WS-* specifications. (You can find out more in the sec-
tion that follows.)

Web Service Enhancements and ASMX
Indigo is based on service-oriented architecture, most notably the Web Service standards ratified by the
Organization for the Advancement of Structured Information Standards (OASIS). You can find out more
about OASIS at the following location: oasis-open.org.

Throughout the chapter, you’ll find the terms attribute and annotation. Please note
that they refer to the same thing — the terms are completely interchangeable.

176

Chapter 7

12_57874x ch07.qxd 8/15/05 3:47 PM Page 176

Note that the Web Service Enhancements (WSE) 2.0 are not wire-compatible with Indigo. For direct
compatibility, use WSE 3.0 (which is slated to ship before the final version of Indigo).

Indigo is fundamentally compatible with ASMX using the BasicProfileBinding (which corresponds
to the WS-I Basic Profile). It supports the HTTP/SOAP/WSDL infrastructure and SSL transactions over
HTTP. BasicProfileBinding does not support WSE-based transactions. (Indigo’s transactional infras-
tructure is provided by WS-Transactions.)

Indigo and ASP.NET support SOAP. If you are trying to port over a Web Service to Indigo, anything that
contains ASP.NET sessions or ASMX SOAP code modifications (in other words, anything dependent on
HTTP security or sessions) will require a rewrite. Security and session are now handled through Secure
Reliable Messaging (SRM). Indigo provides fine-grained control and customization using simple annota-
tions. Here is an example of an Airline Reservation Web Service client. The AddRes operation passes two
variables into the Web Service (the customer name and the transaction ID):

using System.Web.Services;
public class AirReservationWSClient
{
public static void Main(string[] args)
{
AirReservation arc = New AirReservation();
AirReservationOperation NewRes = new AirReservationOperation(“Jon Doe”,”ID132537”);
arc.AddReservation(NewRes);
}
}

To convert this Web Service client to an Indigo client requires a few subtle changes. First, you must
replace System.Web.Services with System.ServiceModel (the core Indigo namespace). Then you
must create an Indigo proxy and explicitly close your communication channel, as illustrated in the fol-
lowing code:

using System.ServiceModel;
public class AirReservationIndigoClient
{
public static void Main(string[] args)
{
AirlineReservationProxy arc = New AirlineReservationProxy();
AirReservationOperation NewRes = new AirReservationOperation(“Jon Doe”,”ID132537”);
arc.AddReservation(NewRes);
arc.Close();
}
}

Now, look at the Web Service providing the airline reservation functionality. First, you need to define
your Web Service variables within the AirReservationOperation class. You then define the
AirReservation class and declare it a WebMethod using a simple annotation. The
TransactionOption property is set to RequiresNew. This property will automatically instantiate a
transaction for the Web Service method.

using System.Web.Services;
public class AirReservationOperation
{

177

Indigo Migration and Interoperability

12_57874x ch07.qxd 8/15/05 3:47 PM Page 177

public string CustomerName;
public string TransactionID;
}

public class AirReservation:WebService
{
[WebMethod(TransactionOption = TransactionOption.RequiresNew)]
public string AddReservation(AirReservationOperation NewRes)
...
}

Now, change this code to make it interoperable with Indigo messaging rather than default Web Services.
As with the previous examples, you must first change the namespace to System.ServiceModel. Then
you define an Indigo service contract for your class using the [ServiceContract] attribute. You can
set the behavior of your Indigo service using the [OperationBehavior] attribute. The
AutoEnlistTransaction property will allow the transaction to appear in the client window.
AutoCompleteTransaction will report the client transaction’s success when the service contract is
completed. The [OperationContract] attribute exposes the method as an Indigo operation.

using System.ServiceModel;
public class AirReservationOperation
{
public string CustomerName;
public string TransactionID;
}

[ServiceContract]
public class AirReservation:WebService
{
[OperationBehavior(AutoEnlistTransaction = true, AutoCompleteTransaction = true)]

[OperationContract]
public string AddReservation(AirReservationOperation NewRes)
...
}

Enterprise Services (ES)
Indigo has many similarities to Enterprise Services. They both support asynchronous calls, publication/
subscriber-like events, security contexts, reliable messaging, and much more. Using attributes (such as
[Transaction]), you can allow an application using Enterprise Services to interoperate with Indigo.
If your application doesn’t use the .NET Framework, Indigo offers the service moniker to help connect
to Web Services. (Refer to the section on COM+ for more details; use the same instructions to create
an Indigo service for your ES component.)

You’ll notice a lot of similarities between migrating an Enterprise Services application to Indigo and
migrating ASMX code to Indigo. Both involve required attribute changes. Here is an example of a simple
sales class using Enterprise Services:

178

Chapter 7

12_57874x ch07.qxd 8/15/05 3:47 PM Page 178

Using System.EnterpriseServices;
[Transaction(TransactionOption.Required)]
public class Sales:ServicedComponent
{
public void AddSale(string salesAccount, int salesAmount)
{ . . . }
}

To migrate this code to Indigo, you must change the namespace from System.EnterpriseServices to
System.ServiceModel. Using the [BindingRequirements] attribute, the
TransactionFlowRequirements property set as RequirementsMode.Require makes sure that the
bindings that are used support transactions.

You can set the behavior using the [ServiceBehavior] attribute. In the example that follows, the
InstanceMode and ConcurrencyMode properties denote that there is a new instance of the service for
each session (you can set the service to be shared by several sessions by using the
InstanceMode.SharedSession value), and the service instance is single threaded. The
ConcurrencyMode.Reentrant value indicates that service can accept reentrant calls; this is especially
useful if your services will call other services.

You will notice that the AddSale method is decorated with two attributes: [OperationBehavior] and
[OperationContract]. The AutoEnlistTransaction and AutoCommitTransaction properties will
allow the service to be displayed on the client and indicate when the service starts and ends (these prop-
erties were also used in the Indigo code sample in the section on Web Services at the beginning of the
chapter). The ReleaseInstance property makes sure that the service object is recycled after the call (via
the ReleaseInstanceMode.AfterCall value). The [OperationContract] attribute sets the AddSale
method as the primary Indigo operation in the following example:

using System.ServiceModel;
[BindingRequirements(TransactionFlowRequirements=RequirementsMode.Require)]
[ServiceBehavior(InstanceMode=InstanceMode.SharedSession,

ConcurrencyMode=ConcurrencyMode.Reentrant)]
[ServiceContract(Session=true)]
public class Sales:ServicedComponent
{
[OperationBehavior(AutoEnlistTransaction = true,

AutoCommitTransaction = true,
ReleaseInstance=ReleaseInstanceMode.AfterCall]

[OperationContract]

public void AddSale(string salesAccount, int salesAmount)
{ . . . }
}

If you are unfamilliar with the Indigo Contract and Behavior properties, refer
to the WinFX Software Development Kit (SDK) documentation available on the
Microsoft MSDN Web site: http://winfx.msdn.microsoft.com. This online
source is constantly updated and contains current API information.

179

Indigo Migration and Interoperability

12_57874x ch07.qxd 8/15/05 3:47 PM Page 179

Microsoft Message Queuing
Microsoft Message Queuing (MSMQ) is Microsoft’s initial offering for reliable messaging. It contains
a powerful API to queue messages on an enterprise level. A new version of MSMQ will be available
in Longhorn; in fact, it is a core component of Indigo, providing all of its queuing capabilities. BizTalk
includes a message queuing framework (codenamed MSMQ-T). Microsoft is currently developing
interfaces to allow BizTalk and SQL Server Service Broker to interact with Indigo. To find out more
about MSMQ, visit the Microsoft Message Queuing Center at www.microsoft.com/windows2000/
technologies/communications/msmq/default.asp.

Indigo implements queuing using the QueueService component. QueueService supports Global XML
Web Services Architecture (GXA) protocols. It enables you to implement your own Indigo queuing
schemes or communicate directly to MSMQ using Web Services. Figure 7-1 illustrates the relationship
between the GXA and Indigo.

Figure 7-1

WS-* Infrastructure Specifications (Secure Reliable Transactions)

WS-ReliableMessaging WS-AtomicTransaction
WS-Coordination WS-Evening

WS-* Core XML Web Service & Messaging Specifications

The Global XML Web Services Architecture (GXA) and Indigo

WS-SecureConversation WS-Trust

WS-Addressing

WS-Security

MetaData

WS-Policy

WS-MEX

WSDL

WS-* Core XML Web Service & Messaging Specifications

SOAP MTOM

XML Specifications XPath XSDXML

Transports TCP UDPHTTP

180

Chapter 7

12_57874x ch07.qxd 8/15/05 3:47 PM Page 180

If you are used to creating MSMQ applications, you won’t find that you can easily leverage your existing
knowledge to create Indigo queues.

MSMQ is very useful in tackling service-oriented challenges such as load balancing or availability.
Queues loosen the coupling between client and service, allowing you to add reliability in the process.
Queued messages are passed to the code level based on the availability of the message. If you are
unfamilliar with MSMQ, be aware that you can currently access MSMQ capabilities through the
System.Messaging namespace.

Unsupported Features
There are several MSMQ features that are unsupported under Indigo. You will need to eliminate the
code that references these features and use the Indigo analogues:

❑ Request/response

❑ Simulating database-like operations — In Indigo, database-like operations are not permitted.

❑ Pragmatic General Multicast (PGM) protocol — PGM is a reliable messaging protocol that
allows an ordered or unordered transfer of messages. PGM is not supported under Indigo
because it is not a standard service-oriented transport (and, therefore, is not included in the
list of available channels). Secure Reliable Messaging is included within Indigo via the
WS-* specifications.

❑ Distribution lists

❑ Message priorities

Working with Indigo Queues
Much of the code used to define the queue properties can be set in the .config file. Here is an example
of how you can create a queued, one-way operation contract in Indigo. The following example demon-
strates an interface for a Customer Entry program. As with any Indigo-enabled application, you must
first add in a reference to the System.ServiceModel namespace. The [OperationContract] attribute
exposes the AddCustomer method as an Indigo operation. The IsOneWay property indicates that the
method should not deliver a reply; all messages to AddCustomer should be treated as one-way messages.

using System.ServiceModel;
public interface ICustomerEntry
{
[OperationContract(IsOneWay=true)]
void AddCustomer(string CustomerName, string Address, int CustomerCode);

}

Creating Queue Endpoints in Config
As previously indicated, Indigo queue properties such as addressing method and queue bindings can be
defined in the configuration file. Here is an example of a private queue endpoint definition. You can set
an endpoint as private by adding private$ in the URI between the local server name and the queue.
Address sets the base address and protocol (which is set to net.msmq). The bindingSectionName

181

Indigo Migration and Interoperability

12_57874x ch07.qxd 8/15/05 3:47 PM Page 181

property is set to netProfileMsmqBinding, which allows you to select a standard queue binding. The
bindingConfiguration property is set to the value of usingDefaults. This indicates that you want to
use the default queue binding configuration settings. Finally, the contractType property generates a
queue for the ICustomerEntry interface.

<endpoint
address =”net.msmq://MyServer/private$/MyQueue/”
bindingSectionName=”netProfileMsmqBinding”
bindingConfiguration =”usingDefaults”
contractType=”Queue.ICustomerEntry,Queues” />

If you want to instantiate a public queue, simply remove the $private value in the URI, as indicated in
the following example:

<endpoint
address =”net.msmq://MyServer/MyQueue/”
bindingSectionName=”netProfileMsmqBinding”
bindingConfiguration =”usingDefaults”
contractType=”Queue.ICustomerEntry,Queues” />

Creating Queue Bindings in Config
You can define queue bindings in the web.config file using the following code:

<bindings>
<netProfileMsmqBinding>
<binding

configurationName=”usingDefaults”
msmqProtectionLevel=”None”
msmqAuthenticationMode=”None”

/>
</netProfileMsmqBinding>

</bindings>

The netProfileMsmqBinding section defines the properties of the binding. This binding is referenced
in the Endpoint section of the configuration file (see the preceding section). The configurationName
property indicates that the binding should use default values. msmqProtectionLevel and
msmqAuthenticationMode indicate if encryption should be added to the binding and if authentication
is required. In the preceding example, both are set to None. You have four authentication types that you
can use in Indigo including Anonymous, Certificate (using X.509), Username (also using X.509), and
Windows (using NTLM/Kerberos).

You can enforce a queue by adding the [BindingRequirements] attribute to an interface. The
QueuedDeliveryRequirements property is set to RequirementsMode.Require. This means that the
delivery of messages from the service must be executed using Indigo queues.

[BindingRequirements(QueuedDeliveryRequirements=RequirementsMode.Require)]
class CustomerService:ICustomerEntry
{ ... }

For more in-depth information on the MSMQ features in Indigo, refer to Chapter 6.

182

Chapter 7

12_57874x ch07.qxd 8/15/05 3:47 PM Page 182

.NET Remoting
.NET Remoting allows you to create custom communication channels. You can connect to remote
.NET objects and remote processes can interact with the processes using any protocol you want. .NET
Remoting uses CLR assemblies to map value types and can only operate on two (or more) systems using
the .NET platform. By contrast, Indigo is designed to communicate with vendor-independent systems
using Web Services. This very fact (and many others) highlights the difficulties in migrating .NET
Remoting applications to Indigo.

With the release of Indigo, .NET Remoting has been deprecated. All the object-remoting semantics
plumbing is included in Indigo. One of the core reasons that .NET Remoting will not easily interoperate
with Indigo applications is the differences in the way that the SOAP headers are encoded. .NET
Remoting uses an RPC variety of SOAP, whereas Indigo specifically adheres to the ASMX/WS-I Profile.
Indigo also has no way of knowing how to handle custom infrastructure extensions. For example, Indigo
is not compatible with non-WS features, unusual transports, and encodings. If you have built a propri-
etary system using custom extensions, you might want to look into Indigo’s extensibility features to suc-
cessfully port your custom protocols and code.

One of the things to look out for is a client application that uses lease-based lifetime properties or
Singleton objects. These will definitely need to be changed: the Leased-Based Lifetime Manager han-
dles the task of garbage collecting when a lease expires. Indigo uses sessions to maintain state and has
completely different mechanisms for maintaining sessions (see Chapter 6 for more details). Also be sure
to respect the service boundaries and keep the calls local.

Client- and server-activated objects are not supported in Indigo. (In fact, they go completely against the
fundamental principles of SOA, especially the boundaries tenet.) If you are using basic Web Services to
access remote objects, you can easily create a proxy to the service using Indigo. However, if the activa-
tion code is not Web Service–based, you must do one of the following:

❑ Bypass Indigo and continue using the built-in support for .NET Remoting in the .NET
Framework 2.0/WinFX. If your system works, there should not be any pressing need to
change it.

❑ Rewrite the .NET Remoting code as Indigo. Instead of remotely accessing objects, use
contracts and endpoints.

It is possible to port applications that use .NET Remoting to Indigo; however, you will need to manually
recode portions of your application that relate to wiring (specifically custom formatters and sinks). The
bulk of the work will involve changing your code to Indigo channel providers. There are advantages to
doing this because Indigo abstracts a lot of the low-level plumbing (which will simplify your develop-
ment efforts later).

If your .NET Remoting applications work as you want them to, you don’t necessarily
need to recode them to make them Indigo-compliant. .NET Remoting will continue
to be supported in the .NET Framework 2.0 and for the foreseeable future.

183

Indigo Migration and Interoperability

12_57874x ch07.qxd 8/15/05 3:47 PM Page 183

If you want to simulate .NET Remoting using Indigo, use the extensibility model that allows you to
manipulate the low-level calls much like remoting extensions. This will give you granular control over
how the wire is handled. You can interoperate Indigo with a .NET Remoting application only if the
application is used to communicate to a .NET Web Service over HTTP.

COM+
The great news with trying to integrate COM+ applications with Indigo is that you don’t have to rewrite
any code. Service monikers and proxies are used to wrap COM+ clients to allow them to receive Indigo
messages. COM+ components can also become Indigo services. This means that you don’t have to scrap
any of the business logic you’ve built — a huge benefit from a cost perspective.

You can expose COM+ functionality to Indigo using an Indigo proxy. This proxy can be created easily
and seamlessly using the comsvcutil tool. (You can learn more about the tool later in this chapter.)

Please note that Indigo doesn’t use DCOM as a communication channel.

To consume Indigo services using COM+, you must create an Indigo service moniker. The Indigo service
moniker can interoperate with COM-based development tools such as Visual Basic 6.0 and Office Visual
Basic for Applications.

Preparing your COM+ Assemblies for Indigo
Microsoft has designed a mechanism to allow developers to access Indigo Web Services using strongly
typed COM objects. This can be accomplished using the Indigo service moniker. The following instruc-
tions show you how to create COM-visible definitions of the Indigo Web Service contract and bindings.
It is the simplicity of being able to set up client info from the config file that makes the solution very
elegant — Indigo does all the plumbing work.

1. Use the Service MetaData Utility (svcutil.exe) to create the metadata contract from the
Indigo Web Service. This will create a proxy assembly and a config file for your COM object.
(The tool is covered later in the chapter.) The binding information should then be placed in a
configuration file within your application directory (for a file called
AirlineReservation.exe, create a config file called AirlineReservation.exe.config).

2. Next, your assembly must be made ComVisible. Add the following as the first line of code in
your assembly file (if you are writing your application in C#, your assembly file will be called
AssemblyInfo.cs):

[assembly: ComVisible(true)].

3. Your proxy has to be compiled as a strong named assembly. If you are unfamilliar with strong
naming assemblies, you can obtain more information on the MSDN Web site at http://msdn.
microsoft.com/library/en-us/cpguide/html/cpconstrong-namedassemblies.asp.

4. The assembly must then be registered in the Global Assembly Cache (GAC), and the
assembly types must be registered with COM. You can use the GAC tool (gacutil.exe) and
the Assembly Registration (regasm.exe) tool to pull this off. For example, type gacutil/
iAirlineReservation.dll and regsvcs AirlineReservation.dll.

184

Chapter 7

12_57874x ch07.qxd 8/15/05 3:47 PM Page 184

Exposing COM+ Functionality Using Indigo Services
How can you expose a COM+ client as an Indigo service? First, you must configure the binding. In the
following example, the configurationName of the binding is called COMIndigoBinding. The SOAP
version that is used for the binding is version 1.2.

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.serviceModel>

<bindings>
<wsProfileBinding>

<binding configurationName=”COMIndigoBinding” soapVersion=”Soap12” />
</wsProfileBinding>

</bindings>
</system.serviceModel>

</configuration>

For every COM+ class, Indigo generates a unique corresponding service. Indigo directly maps the inter-
face of a COM+ component to a matching service contract. COM+ features, such as security and transac-
tional support, are also reflected into the service using Indigo implementations. Here is the actual code
for the airline reservation application. First, you must create a reference to the System.ServiceModel
namespace. Then you define an Indigo service contract called IAirlineReservation. It, in turn,
exposes a method called BookFlight.

using System.ServiceModel;
...
[ServiceContract]
public class IAirlineReservation
{
[OperationsContract]
public int BookFlight(int FlightID)
}

You can then use the ComSvcConfig.exe tool to expose Indigo endpoints on a COM+ service. The
IAirlineReservation interface is exposed as an Indigo Web Service hosted within the COM+
container.

ComSvcConfig add /application:AirlineReservation /interface:
AirlineReservation.BookFlight,IAirlineReservation /hosting:complus

The Indigo service generated from the COM+ component can be hosted either by using Web hosting or
standard COM+ (svchost) hosting. (See Chapter 5 for an overview of Indigo hosting.) The next section
demonstrates how to consume Indigo services using COM+.

Consuming Indigo Services Using COM+ Clients
To consume an Indigo service using COM+, you must build an Indigo service moniker and call the
GetObject method. Once the moniker is used, a typed Indigo channel is “invisibly” created. The first
step in building a moniker is accomplished by constructing a moniker string. Here is an example:

service:address=http://localhost/AirlineReservation, binding=wsProfileBinding,
bindingName=MyBinding

185

Indigo Migration and Interoperability

12_57874x ch07.qxd 8/15/05 3:47 PM Page 185

In the preceding code sample, the base address is set to a service called AirlineReservation on local-
host. The moniker will use the Web Service WS-I Profile binding (wsProfileBinding) to access the ser-
vice. In the example, the binding has been named MyBinding. You can also reference an Indigo contract
using a GUID, as shown in the following example:

service:address=http://localhost/AirlineReservation, binding=wsProfileBinding,
bindingName=MyBinding, contract={36ADAD5A-A944-4d5c-9B7C-967E4F00A090}

The next code sample features a VB6 example of an Indigo service moniker. If you want to reference an
Indigo Web Service inside a VB6 application, simply add a reference to the assembly in your project and
add in the following code:

Dim AirlineReservationProxy As IAirlineReservation
Dim process As Integer
Set AirlineReservationProxy = GetObject(_

“service:address= http://localhost/AirlineReservation,_
binding=wsProfileBinding,_
bindingName=MyBinding”)

process=AddService.BookFlight(5150)

You can also use Indigo service monikers to make COM clients “speak” to COM+ services using Indigo.

You will have to modify or rewrite any code that uses COM+ Loosely Coupled Events (LCE) or COM+
context dependencies.

Indigo Moniker Properties
The Indigo service moniker supports the properties shown in the following table:

Property Name Description

wsdl An alternate address for metadata contract information.
Example: http://localhost/MyService/?wsdl

address A link (URL) where the service is located.
Example: address=net.tcp://INTLIVE/BookService

contract The service contract Interface Identifier (IID).
Example: contract={39BABA7D-B543-5d7a-7A5B-235D2A85B121}

binding Specifies the binding type.
Example: binding=customBinding

bindingName Identifier for the binding — corresponds with binding specified in config.
Example: bindingName=MyBinding

186

Chapter 7

12_57874x ch07.qxd 8/15/05 3:47 PM Page 186

Other Vendors’ Technologies
Interoperability can be a challenge if you try to connect a non-Microsoft system with a Microsoft
application. One of the ways you can get over this limitation is by using the following WS-* protocols:

❑ WS-ReliableMessaging

❑ WS-I Basic Profile

❑ WS-AtomicTransactions

❑ WS-Security

From a .NET development perspective, Indigo abstracts the construction of the SOAP headers. As a
.NET developer, all you need to worry about are changes in the API. Indigo was designed that way to
minimize the impact of WS-* spec changes.

Integration Challenges
Microsoft has vowed that they will implement specs with full fidelity. However, many interoperability
challenges lie ahead, including the following:

❑ Other vendors might not implement the Web Services protocols exactly as indicated in the
specifications.

❑ Standards are in a state of flux and there are challenges in getting wide adoption of standards-
based technology.

Indigo Tools
Indigo provides many tools. The following sections describe two of these tools.

ComSvcConfig
This tool helps you integrate Indigo with COM+ and Enterprise Services components by creating a Web
Service. Here is an example of a typical ComSvcConfig command-line directive:

ComSvcConfig add /application:POS /interface:POS.AddCustomer, IPOS /hosting:was
/webDirectory:PosService /mex

The following table lists the command line options available for ComSvcConfig:

187

Indigo Migration and Interoperability

12_57874x ch07.qxd 8/15/05 3:47 PM Page 187

188

Chapter 7

Option Description

/application Configure the selected the COM+ application. You can identify
your application by application ID or Name.

/hosting You can choose the hosting model that fits your needs. The available
choices include: was and complus.

/interface You can select the interface to configure using the /interface
option. You can identify you interfaces using the ClassID, ProgID,
InterfaceID, or Name.

/id Shows IDs for all application interfaces and components.

/mex Creates a metadata endpoint.

/nologo Hides the ComSvcConfig logo.

/quiet Hides all output with the exception of errors.

/webDirectory Choose the target virtual directory for hosting.

/webSite Choose the target Web site for hosting.

Otherwise, you can use ComSvcUtil to integrate COM+ with services For more information about both
tools, refer to the COM+ integration section earlier in the chapter and the MSDN documentation.

Svcutil
Svcutil is an amazing tool that enables you to do automatic code generation based on a WSDL or Mex
metadata. Svcutil can create source code from service metadata and assemblies. Here is how you can
generate proxy code from an Indigo address:

svcutil http://localhost/CustomService

You can also create a .svc file form service assembly files:

svcutil CustomService.dll

Summary
In this chapter, you learned the relationship between Microsoft’s existing communication technologies
and Indigo. You also found out how to migrate or interoperate technologies such as ASMX, MSMQ,
Enterprise Services, .NET Remoting, and COM+ with Indigo. Finally, you learned about the integration
challenges in implementing Indigo and got an overview of some of the important tools to help you sim-
plify Indigo development.

In the next chapter, you learn how data is handled in WinFX and how to integrate data-binding capabili-
ties in Avalon forms.

12_57874x ch07.qxd 8/15/05 3:47 PM Page 188

Part III

Data and Web

13_57874x pt03.qxd 8/15/05 3:48 PM Page 189

13_57874x pt03.qxd 8/15/05 3:48 PM Page 190

Data
Services

Like so much in WinFX, one could make a compelling argument that the new features afforded to
developers with respect to data binding are essentially the same as they’ve always been. One
could also make an equally compelling argument that the new features are completely different.
Depending on your perspective, both are equally true. To understand what is new, it’s critical to
understand what is in the current .NET Framework.

As someone who spends a good bit of time answering questions on various newsgroups and
forums, I’ve seen a lot of confusion and misinformation about .NET and data binding, in particu-
lar. I can’t count the times on my fingers that I’ve read a post by someone berating ADO.NET, for
instance, because he can’t get data to display and behave as he wanted in a DataGrid. ADO.NET
is a technology that has absolutely nothing to do with user interface (UI) or visualization, yet it
often gets blamed for any shortcomings in the display of data. Chapter 9 is titled “ADO.NET and
ASP.NET,” and given this, should give a pretty good clue that data binding (Data Services) and
accessing data (ADO.NET) are two totally different areas. However, although they are two totally
different areas, they are two technologies that can and should be used in conjunction with one
another in many situations to meet business requirements for users.

Data Services
Data Services, stated simply, is merely the new name Microsoft has given the mechanism of setting
properties based on values persisted to and retrieved from a data store somewhere. Under the cur-
rent version of the .NET Framework, there are a few different ways you can bind data to a data
store. The first is the most obvious and simple and entails using a given controls set accessor to
specify the value, as in the following example:

tbBirdName.Text = “EDC”;

14_57874x ch08.qxd 8/15/05 3:48 PM Page 191

Now, if you had a DataTable (retrieved from a database in most instances), and you wanted to set the
value of tbBirdName to a value contained therein, you’d typically do something like this:

private void Form1_Load(object sender, System.EventArgs e) {
DataTable Cuckooz = new DataTable(“CuckooBirds”);
DataColumn CuckooFirstName = new DataColumn(“CuckooFirstName”,
typeof(System.String));
DataColumn CuckooLastName = new DataColumn(“CuckooLastName”,
typeof(System.String));
Customers.Columns.Add(CuckooFirstName);
Customers.Columns.Add(CuckooLastName);
//Fill Customers with a DataAdapter, XML etc
tbBirdName.Text = Cuckooz.Rows[0][“CuckooFirstName”].ToString() + “” “ +
Cuckooz.Rows[0][“CuckooLastName”].ToString();

}

At present, if you want to programmatically set properties, using the preceding code is the way you
accomplish it. With the advent of .NET though, Microsoft gave us a few new tools to take advantage of.
One of the more interesting ones is the configuration file. You can now use a configuration file (which is
stored with your executable and ends in .config) and store the initial values for many features, controls
being one, in a structured and easy to read XML Format. Once those are set, the application will use
those values without any intervention on the developer’s part. If you look at Figure 8-1, you can see how
to instruct the Integrated Development Environment (IDE) to use a value in a configuration file for a
given control.

Figure 8-1

When using the designer, a configuration file will be generated for you if it doesn’t already exist, and
you set the value in the respective “value” section of the configuration file, as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>
<appSettings>

<!-- User application and configured property settings go here.-->
<!-- Example: <add key=”settingName” value=”settingValue”/> -->
<add key=”tbBirdName.Text” value=”EDC” />

192

Chapter 8

14_57874x ch08.qxd 8/15/05 3:48 PM Page 192

</appSettings>
</configuration>

Thus, using the code in the first two examples, where the value for tbBirdName.text is specified
through the accessor, will have the same result as using the dynamic properties and specifying the value,
as shown in the preceding code.

The final current alternative is to use the designer to drag a typed DataSet onto a form and then specify
a mapping through the (Data Bindings) tool. An example of how this is accomplished is provided in
Figure 8-2.

Figure 8-2

While any of the preceding methods will still be available under Avalon, Data Services is such a pro-
found improvement that it’s hard to imagine why anyone would want to use any of them.

Enter XAML
At the heart of Data Services is a mechanism known as Extensible Application Markup Language
(XAML) and specifically, UI Binding. Stated simply, XAML and UI Binding allow a developer to do
away with traditional approaches and define UI elements and layout declaratively. To be honest, the
first time I heard this, my initial response was “big deal.” I’ve been programming for a few years now,
so declaring and instantiating an object (particularly when the IDE does so much of the heavy lifting for
you in regard to controls) and setting a few properties is second nature. Even when I think back to the
days when I was first learning programming, I still never thought it was all that difficult to specify
Control.Text = “ValueIWantToShowUp”. So why is being able to set values declaratively a big deal?
According to the WinFX SDK (found at http://winfx.msdn.microsoft.com/library/default
.asp?url=/library/en-us/wcp_conceptual/winfx/connecteddata/overviews/dataservices
.asp), Microsoft lists the following as potential benefits:

193

Data Services

14_57874x ch08.qxd 8/15/05 3:48 PM Page 193

1. Inherent support for data binding in the core UI

2. Flexible representation of data

3. Clean separation of business logic from UI

4. A broad range of binding targets provided by the data access models available in Avalon

Revisit Figures 8-1 and 8-2. Figure 8-1 lists every property available for a given TextBox control, but
mapping values to a configuration file makes sense only in a very specific set of circumstances. Figure
8-2 shows that you can map the fields to the values in a dataset; however, there’s one major problem —
you have only the Text and Tag properties available to you directly. You can use the Advanced
DataBindings to specify properties such as BackGround color, but it won’t work exactly as you’d expect.

Binding Types
There are three types of bindings available in Avalon and Data Services:

❑ One Way Binding — This type of binding occurs unidirectionally. The control receives a prop-
erty value(s) from a given data source, but changes made to that control are not propagated or
transmitted back to the originator in any fashion. This method works well for read-only scenar-
ios but has limited viability in any scenario where the user has a need to manipulate or change
the data.

❑ Two Way Binding — In this type of binding, the original property values for a given control are
set from a given data source. However, unlike One Way Binding, any changes that the user
makes to the control’s properties are sent back to the data store.

❑ One Time Binding — Of the three, this is the most limited. When the control is originally
bound, the value is retrieved from the binding source. After that, any changes that are made to
this data are not shown in the control. Thus, the primary difference between One Way and One
Time Binding is that One Way Binding is dynamic. (In the example, any changes made to the
BirdName row that you’ve bound to will show up in the control.)

The best way to think of these is by way of example. If you retrieve a value from a configuration file
(app.config/web.config) and you change any values in the file, they will not be seen by the applica-
tion until it is restarted. This method is analogous to One Time Binding. If you have a typical ASP.NET
application that queries a database at each page load and pulls back the current data, this is analogous to
One Way Binding. If the data changes between page loads, it will be reflected the next time the page is
refreshed. Two Way Binding is exemplified by a typical data entry screen where you query for data,
make changes to it, and hit a Submit or Save button when you’re finished.

As is the case with everything in Data Services, there are two ways you can define the binding direction:
through code (C#, VB.NET, and so on) or through XAML. An example of doing both is provided here:

<TextBlock Name=”FirstName” TextContent=”{Bind Path=FirstName, Mode=OneTime}” />
<TextBlock Name=”FirstName” TextContent=”{Bind Path=FirstName, Mode=OneWay}” />
<TextBlock Name=”FirstName” TextContent=”{Bind Path=FirstName, Mode=TwoWay}” />

Binding FirstNameDefinition = new Binding(“FirstName”);
FirstNameDefinition.Mode = BindingMode.OneTime;

194

Chapter 8

14_57874x ch08.qxd 8/15/05 3:48 PM Page 194

Binding FirstNameDefinition = new Binding(“FirstName”);
FirstNameDefinition.Mode = BBindingMode.OneWay;

Binding FirstNameDefinition = new Binding(“FirstName”);
FirstNameDefinition.Mode = BindingMode.TwoWay;

So let’s dive into a real example. I’m going to create a simple class called BindingExample that has one
simple property, DBValueProperty. Now, this is a completely contrived example and wouldn’t make
much sense in the real world. However, this class could just as easily have been something from the
Enterprise library, the Data Access Application block, or any other real-world class.

namespace WroxDemo
{

public class BindingExample
{

private System.String m_DBValue = “I came from a Data base”;
public BindingExample() {}
public System.String DBValueProperty
{
get
{

return m_DBValue;;
}
set{

m_DBValue = value;
} }

}
}

<DockPanel ID=”root”
xmlns=”http://schemas.microsoft.com/winfx/avalon/2005”
xmlns:x=”http://schemas.microsoft.com/winfx/xaml/2005”
Width=”500”
Height=”500”
Background=”NavyBlue”>

<DockPanel.Resources>
<ObjectDataSource x:Key=”ExampleDataSource”

TypeName=”WroxDemo.BindingExample,DemoApp” />
</DockPanel.Resources>
<TextBlock>

<TextBlock.TextContent>
<Bind DataSource=”{StaticResource ExampleDataSource}” BindType=”OneTime”

Path=”DBValueProperty”/>
</TextBlock.TextContent>

</TextBlock>
</DockPanel>

Data Sources
Any notion of data binding is essentially untenable without the context of data. What I mean is that in
order for data to be bound, there needs to be something for it to be bound to. With the advent of .NET,

195

Data Services

14_57874x ch08.qxd 8/15/05 3:48 PM Page 195

196

Chapter 8

the objects that could be bound to were seemingly endless. Believe it or not, Avalon and WinFX take this
up a notch.

The primary item that developers will concern themselves with in regard to data binding is a Data Item.
When you think of a data source in the context of data binding, what you’re thinking of is a Data Item.
So is a Data Item essentially a fancy phrase for “business object that I might want to bind my data to?”
Yes. When you think of data sources, in most instances, you are going to be using Two Way Binding, as
mentioned in the previous section. This is because, in most cases, users need to see data, make determi-
nations about it, and modify it as necessary. One-way data is essentially little more than a report.

Any real binding mechanism has to perform many tasks. For one thing, formatting needs to be per-
formed. For example, if you are binding to data in a SQL Server database, there is no such thing as a
purely “Date” datatype. If you want to store date data in a SQL Server database, you can choose
DateTime, SmallDateTime, or a string representation, which will need to be type cast to be of much
value. However, many times you don’t want the time element associated with the date. (In fact, if not
specified, it defaults to midnight.) Conversely, you may want a time but not really care about the date.
Before, you would trap two events to handle this: Format and Parse. This worked, but it definitely
lacked elegance. This shortcoming is handled much differently in Avalon/WinFX.

As previously mentioned, data can come from many sources, including but not limited to the following:

❑ A text file

❑ XML

❑ An Access database

❑ A Web Service

❑ Hard-coded values

❑ Resource files

❑ Configuration files

Notice in the previous example that I specified an ObjectDataSource. This is one data source that
you can use, but there are others, one of the more popular being XmlDataSource. All data sources will
implement a common interface, IDataSource. To understand more about how it works, let’s look at
the interface in detail. (The following table is taken directly from the current MSDN documentation on
IdataSource— by the time of publication, it’s likely to have been enhanced.)

Properties:

Visual Basic Public ReadOnly Property Data As Object

C# Public object Data { get; }

C++ public:
property Object^ Data {

Object^ get();
}

JScript public function get Data() : Object

14_57874x ch08.qxd 8/15/05 3:48 PM Page 196

Methods:

Visual Basic Public Sub Refresh()

C# public void Refresh();

C++ public:
void Refresh();

JScript Public function Refresh();

Events:

Visual Basic Public Event DataChanged As EventHandler

C# public event EventHandler DataChanged;

C++ public:
event EventHandler^ DataChanged;

JScript In JScript, you can use events, but you cannot define your own.

Now, both ObjectDataSource and XmlDataSource have many more members; remember that this is
just the interface implementation, so most classes implementing it are going to have more functionality.

So basically, you have two ways of specifying a data source:

<Binding Source=”{StaticResource ExampleDataSource}” BindType=”OneTime”
Path=”DBValueProperty”/>

or

Objectnsame.DataSource = ExampleDataSource;

You can also use the XmlDataSource for XML data:

<DockPanel xmlns=” “
xmlns:x=” “>

<DockPanel.Resources>
<XmlDataSource x:Key=”Person” XPath=”/Details”>

<Persons xmlns=””>
<Person SSN=”072-00-0000”>

<FirstName>Bill</FirstName>
<LastName>Ryan</LastName>

</Person>
<!-- ... other Book entries ... -->

</Persons>
</XmlDataSource>

<Style x:Key=”PersonDataStyle”>
<Style.VisualTree>

197

Data Services

14_57874x ch08.qxd 8/15/05 3:48 PM Page 197

<TextBlock FontSize=”Large” Foreground=”Blue”>
<TextBlock.TextContent>

<Bind XPath=”Details”/>
</TextBlock.TextContent>

</TextBlock>
</Style.VisualTree>

</Style>
</DockPanel.Resources>

<ListBox ItemsSource=”{Bind DataSource={StaticResource PersonData},
XPath=Person}”

ItemStyle=”{StaticResource PersonDataStyle}”/>

</DockPanel>

Pay close attention to the ItemStyle example because it will be discussed in depth in the next section.

So what do you see here? Fortunately, both the ObjectDataSource and the XmlDataSource provide
pretty intuitive mechanisms for seeing and manipulating data, and once you’ve used one, the other one
is the functional equivalent.

Data Styling
Data styling is the main mechanism that developers use to present their data to their users. The primary
object used in styling is not surprisingly called a style. There is a ton of nuance involved in using styles,
which is my way of saying that they can get quite complex. However, to get started using them, it’s actu-
ally quite straightforward. The SDK has one of the most compelling examples of using and extending
styles, so I’m going to borrow from it here. First, I’ll show how to create a simple (which isn’t so simple
after all) button, and then apply a data style to it:

<Button ContentStyle=”{StaticResource WroxStyle}”>
<Person Name=”BillRyan” Picture=”BillR.jpg”/>

</Button>

Notice here that under the ContextStyle, you specifically reference a StaticResource named
TestSimpleStyle. Whether you are using a Button control, a TextBox, a ListBox, or any other
Avalon control, you can use the same style that is specified in the following:

<Style x:Key=”WroxStyled”>
<Style.VisualTree>

<DockPanel>
<Image Source=”{Bind Path=Picture}/>
<TextBlock TextContent=”{Bind Path=Name}”/>

</DockPanel>
</Style.VisualTree>

</Style>

In the first example, see that the Person object has a Name and a Picture property, respectively. The
Name property takes a simple string representing someone’s name, and the Picture property takes an

198

Chapter 8

14_57874x ch08.qxd 8/15/05 3:48 PM Page 198

image. Now, it’s important to note that the implementation (that is, how the picture is rendered) is
completely determined by the class. With this particular example, the class could have a network path
prepended in the accessor, so it would look for \\NetworkShareName\BillR.jpg. This is totally
decoupled, though, from the binding and the style. For the sake of this example, assume that the class
handles the image name and the person name correctly.

Now notice the defined style. In it, I am declaring a DockPanel and adding an image. The image’s path
is mapped to the Picture property. Similarly, the TextBlock control is added to the panel and the
TextContent is set to the Name property.

This style, in case you’re wondering, is totally decoupled from the Button that is declared. You can do
whatever you want here to the TestSimpleStyle class. You can add other items to the DockPanel, for
example. However, if you want to do anything meaningful, you have to map some additional proper-
ties. Take the original definition and assume the following modifications:

<Button ContentStyle=”{StaticResource TestSimpleStyle}”>
<Person FirstName=”Bill” LastName =”Ryan” Picture=”BillR.jpg”/>

</Button>

And now assume this modification:

<Style x:Key=”TestSimpleStyle”>
<Style.VisualTree>

<DockPanel>
<Image Source=”{Bind Path=Picture}/>
<TextBlock TextContent=”{Bind Path=FirstName}”/>
<TextBlock TextContent=”{Bind Path=LastName}”/>

</DockPanel>
</Style.VisualTree>

</Style>

Would this behave as expected? Sure. Could you also use the original implementation? Sure, assuming
that you still had a property named Name. Now this is where things get pretty cool. Assume that you had
a ListBox that you wanted to bind and use the same styling — how would it work?

<ListBox ItemStyle=”{StaticResource TestSimpleStyle}”>
<Person FirstName=”Bill” Picture=”Bill.jpg”/>
<Person FirstName=”Jean-Luc” Picture=”Jean-Luc.jpg”/>

</ListBox>

Why specify ItemStyle in the second example and ContentStyle in the first? That has to do with
Simple versus Complex Binding. A ListBox, for instance, is bound via Complex Binding. A button is
bound using Simple Binding. So if you wanted to apply this style to another control, a TextBox for
example, it would be as simple as this:

<TextBox ContentStyle=”{StaticResource TestSimpleStyle}”>
<Person FirstName=”Bill” LastName =”Ryan” Picture=”BillR.jpg”/>

</TextBox>

199

Data Services

14_57874x ch08.qxd 8/15/05 3:48 PM Page 199

If you are unfamiliar with the terms Simple and Complex Binding, a quick way to distinguish between
the two is that objects that contain collections of other objects are typically Complex Binding objects.
The ListBox shows the binding multiple of Person objects, whereas only one is being bound in the
Button example.

While this is pretty cool, applying the same style to a ListBox or a TextBox, the real coolness in my
opinion is in the style itself. Not only can you specify a name by which to apply styles, but you can
dynamically add them based on object type. For example, if you modify the first style slightly, you could
have something like the following:

<Style x:Key=”*typeof(Person)”>
<Style.VisualTree>

<DockPanel>
<Image Source=”{Bind Path=Picture}/>
<TextBlock TextContent=”{Bind Path=FirstName}”/>
<TextBlock TextContent=”{Bind Path=LastName}”/>

</DockPanel>
</Style.VisualTree>

</Style>

So what does this do? Well, anytime the Data Item object is of the type specified in the Key declaration,
this style can be applied, allowing for great flexibility.

I’ve played with just about every variation of this that I can think of and it behaves exactly as expected.
About the only shortcoming I’ve found is due to the nature of markup itself; because the object type
must be known in advance to specify it, you can’t really use reflection, for instance, to make determina-
tions about an object type and create styles accordingly, at least not through markup.

Conversion
Previously we discussed binding to data, in a SQL Server database, that was of DateTime datatype
when you just wanted to display the date component and not the time. Previously, there was little sup-
port for such operations, and while you could essentially get where you wanted to go, your ways of get-
ting there were very limited. With the advent of Avalon and WinFX, this conversion and transformation
ability has been greatly enhanced. The primary mechanism used to change data to display differently is
a Converter. You could use a Converter to take the first five numbers of a Social Security number and
replace their values with Xs so that critical information won’t be displayed. This is one of the simpler
uses for Converters, but it’s a pretty good starting point example for how they can be used.

In a nutshell, a Converter is a mechanism you can use to change the way source data is displayed.
Structurally, between building correctly normalized database tables and then business objects, the data
you get back is often not in the most user friendly format. SQL Server for instance has no notion of either
a Date or Time; it only has DateTime types. However, having an erroneous 12:00:00 at the end of every
date where you really just needed a date is inelegant at best and confusing at worst. Many people, for
instance, might think that they were supposed to add a time there and waste time over and over putting
it in, when in fact it will never be used. And if they did this incorrectly, it would cause the database to
bark at it, and they may have to reenter a record. My point is simply this: A lot of times, the optimal way

200

Chapter 8

14_57874x ch08.qxd 8/15/05 3:48 PM Page 200

to store and maintain data is markedly different from the way you want to present it to the user. Key val-
ues, which are often integers, are of little value to users but are critical to the database system. So show-
ing the users the CustomerName while tracking it internally with the key value is critical. But more
importantly, often proper database design dictates things that make it very difficult for users to deal
with. You’d never (at least it’s really really hard for me to imagine a case) want to store City, State, and
Zip Code in one field in a database. It would make it impossible (or really difficult) to sort and search on
states and zip codes. But for presentation purposes, Miami, FL 33133-3433, is a typical representation of
the way we’d show that information to users.

As mentioned, you would previously trap the format and parse events when you wanted to convert
data. The current mechanism intuitively follows the same flow. However, as much as it stays the same,
it differs.

The primary way you handle this mechanism is by implementing the IValueConverter interface. It’s
an extremely simple interface that implements two main methods: Convert and ConvertBack. The
interface definition is provided in the following table:

Convert:

Visual Basic Public Function Convert(_
ByVal value As Object, _
ByVal targetType As Type, _
ByVal parameter As Object, _
ByVal culture As CultureInfo _

) As Object

C# public object Convert(
object value,
Type targetType,
object parameter,
CultureInfo culture

);

C++ public:
Object^ Convert(

Object^ value,
Type^ targetType,
Object^ parameter,
CultureInfo^ culture

);

JScript public function Convert(
value : Object,
targetType : Type,
parameter : Object,
culture : CultureInfo

) : Object;

201

Data Services

14_57874x ch08.qxd 8/15/05 3:48 PM Page 201

ConvertBack:

Visual Basic PublicFunctionConvertBack(_
ByVal value As Object, _
ByVal targetType As Type, _
ByVal parameter As Object, _
ByVal culture As CultureInfo _

) As Object

C# public object ConvertBack(
object value,
Type targetType,
object parameter,
CultureInfo culture

);

C++ public:
Object^ ConvertBack(

Object^ value,
Type^ targetType,
Object^ parameter,
CultureInfo^ culture

);

JScript Public function ConvertBack(
value : Object,
targetType : Type,
parameter : Object,
culture : CultureInfo

) : Object;

So how would you make this work? It’s pretty simple. Take your Telephone object, which represents
Telephone Numbers. The TelephoneNumber class is pretty straightforward for the purposes here.
Assume that it has a CountryCode property, an AreaCode property, a FirstThree property and a
LastFour property. Furthermore, assume that none of them can be null, so there are default values spec-
ified in the accessors to ensure that you don’t deal with null values. Thus, you want to have a conversion
routine that formats instances of TelephoneNumber objects like
CountryCode(AreaCode)FirstThree-LastFour ie 011(305)555-1212.

public class PhoneConverter : IValueConverter
{

public object Convert(
object o,
Type type,
object parameter,

System.Globalization.CultureInfo culture)
{

TelePhoneNumber testPhoneNumber = o as TelePhoneNumber;
return testPhoneNumber.CountryCode.ToString() + “(“ +

testPhoneNumber.AreaCode.ToString() + “)” + testPhoneNumber.FirstThree.ToString() +
“-” + testPhoneNumber.LastFour.ToString();

}

202

Chapter 8

14_57874x ch08.qxd 8/15/05 3:48 PM Page 202

public class AddressConverter : IValueConverter
{

public object Convert(
object o,
Type type,
object parameter,
System.Globalization.CultureInfo culture)

{
Address testAddress = o as Addressr;
return testAddress.City + “, “ + testAddress.State + “ “ +

testAddress.ZipCode.FirstFive + “-” + testAddress.ZipCode.LastFour;
}

Then you’d apply it like this:

<TextBlock.TextContent>
<Bind Path=”FormattedTelephoneNumber” Converter=”{StaticResource

PhoneConverter}”/>
</TextBlock.Content>

<TextBlock.TextContent>
<Bind Path=”FormattedAddress” Converter=”{StaticResource AddressConverter}”/>

</TextBlock.Content>

Of course, as with most everything else, you don’t need markup here; you can specify it through code
as well:

TestBindingDefinition.Converter = PhoneConverter;

Data Collections
Binding in Avalon can be accomplished through both Simple and Complex Binding mechanisms. A
summary of both is provided here:

❑ Simple Binding is used, for the most part, exactly as its name implies. It is the mechanism by
which you bind a single data element to a single property of a given control. Take a traditional
TextBox object, for instance; you may want to set the BackGroundColor property or some-
thing else, but typically the property most people concern themselves with is the Text property.
If you have a collection of sorts, be it a HashTable, DataTable, or custom collection that con-
tains multiple Names, it only makes sense to bind the Text property to one of them at a time.
Now, you could argue that an object was created such that it had many properties and that
you’d use those properties to set multiple properties on the TextBox, but even this would still
be Simple Binding because you are binding one property at a time.

❑ Complex Binding, in contrast, is what you’d typically see when you deal with a control like a
DataGrid, ListBox, or ComboBox. Both the ListBox control and the ComboBox control, for
example, have an indexer property called Items, which allows multiple things to be added to
them. There are certainly times when you may have only one item in a ListBox or ComboBox,
but in those cases the power of the controls pretty much is wasted. The only time you see the
value of the control is when you are binding to multiple items. And if you had a DataTable
with a list of states in it for instance, and you had to iterate through it, adding an item one at a
time, it would be simple to do but it would be rather monotonous. To accommodate this,
Complex Binding is available.

203

Data Services

14_57874x ch08.qxd 8/15/05 3:48 PM Page 203

So the distinction is that you use Simple Binding when you are binding one value at a time and Complex
Binding when you want to bind multiple values at one time.

Another important concept is that of collections — simple groups of objects. Collections can be strongly
typed, meaning that every member of the collection is of the same type, or they can be weakly typed,
meaning that all sorts of stuff can be included in the collection. For binding purposes, you are typically
dealing with strongly typed collections, and enumerable ones at that. Why? Because if you had a collec-
tion that allowed Customers, Trades, Integers, and HashTables to be included in it, can you imagine
what binding to such a thing would look like? First off, it would take a tremendous amount of work to
accommodate just those few objects. After all, you’d need to know what you were going to bind to in a
HashTable as opposed to a Trade. (HashTables don’t have BrokerName properties after all.) But more
troublesome is that a developer could intentionally or accidentally insert something you never antici-
pated into the collection, and your code wouldn’t have any idea how to deal with it. At best you would
get some unpredictable results, but in all likelihood, you’d have a bug that would be a deal breaker. As
far as enumerability goes, an enumerable collection is simply a collection that can be iterated by type as
opposed to index. In .NET, an enumerable collection will normally be enumerated via the for each con-
struct. This type of iteration has many benefits, the main one being that it’s very easy to see what the
intent of the code is. Moreover, since there is an instance of the object in the loop already, you can refer-
ence its properties directly, which gives you IntelliSense support and makes coding a lot cleaner. If you
used index-based iteration, it would provide better performance, but you’d have to reference the collec-
tion using the index, then type cast it and do all sorts of other things that are a pain to deal with. (Which
way to iterate is a subject people argue ad nauseum — there’s merit to both approaches, and I doubt the
“right” way will ever be settled definitively.)

One problem with enumeration is that you can’t remove or add items when using it. Suppose that you
had a strongly typed collection and wanted to remove every item in it that had a FirstName property
beginning with W. Using a for each construct, this would be impossible. Thus, you’d need to resort to
an index-based approach and respond accordingly.

With this in mind, you can iterate through and bind to any collection that implements the IEnumerable
interface. If you inherit from CollectionBase, for example, it already implements IEnumerable, so
there’s no need to implement it manually.

There’s another interface, INotifyCollectionChanged, which is used to handle insertions and dele-
tions. It has only one member, an event for CollectionChanged.

One of the more interesting new mechanisms is the notion of a view of your collection. In previous ver-
sions of the framework, you’ve no doubt used a DataTable object. This object is at the heart of
ADO.NET and is the primary object used when manipulating, binding, or doing anything else with
data. Although it’s unbelievably powerful, it does have some shortcomings; for example, sorting is not
possible.

For many other behaviors, such as sorting, the DataView object was created. For custom collections that
need functionality such as sorting, the CollectionView object was created, and the ICollectionView
interface was created for you to implement in your own collections.

204

Chapter 8

14_57874x ch08.qxd 8/15/05 3:48 PM Page 204

The ICollectionView interface provides a tremendous amount of functionality, but most of it is con-
cerned with either sorting or filtering. It also concerns itself with positioning.

The ICollectionView is an interface that you have available to make it possible and easy to manage
positions within a collection of objects. Functionality that is commonly needed in collections, such as
sorting and filtering, are provided as well. It’s easy to overlook this fact and just assume that because
you stick something in a collection, it can be sorted. But take, for example, a TradesCollection that
has a group of securities trades in it. How many ways might you want to sort such a thing? By ticker
symbol? By date? By broker? By dollar amount? By number of shares? In all likelihood, you’d probably
want to do all of the above and more, depending on what all was in the collection. You might also want
to filter things out. For instance, you may want to deal with trades from only one broker at a time and
then iterate through those trades. If you didn’t do this (filtering), you’d have to use some detection
mechanism to decide when you reached another broker in cases when you wanted to deal with only one
broker (or less than everyone), and you’d need to add additional logic to break out of the loop at some
point. Difficult to do? Probably not in most cases. But it would be cumbersome and the type of
monotonous programming task that takes some of the fun out of work.

The current version of the MSDN documentation lists the following properties/methods of the
ICollecionView.

Properties:

CanFilter Indicates whether or not this ICollectionView can do any filtering.

CanSort Whether or not this ICollectionView does any sorting.

Culture Culture contains the CultureInfo used in any operations of the
ICollectionView that may differ by Culture, such as sorting.

CurrentItem Return current item.

CurrentPosition The ordinal position of the CurrentItem within the (optionally
sorted and filtered) view.

Filter Filter is a callback set by the consumer of the ICollectionView and
used by the implementation of the ICollectionView to determine if
an item is suitable for inclusion in the view.

IsCurrentAfterLast Returns true if CurrentItem is beyond the end (End-Of-File).

IsCurrentBeforeFirst Returns true if CurrentItem is before the beginning
(Beginning-Of-File).

Sort Set/get Sort criteria to sort items in collection.

SourceCollection SourceCollection is the original unfiltered collection of which this
ICollectionView is a view.

205

Data Services

14_57874x ch08.qxd 8/15/05 3:48 PM Page 205

Methods:

Contains Returns true if the item belongs to this view. No assumptions
are made about the item. This method will behave similarly to
IList.Contains(). If the caller knows that the item belongs to the
underlying collection, it is more efficient to call Filter.

DeferRefresh Enters a Defer Cycle. Defer cycles are used to coalesce changes
to the ICollectionView.

MoveCurrentTo Moves CurrentItem to the given item.

MoveCurrentToFirst Moves CurrentItem to the first item.

MoveCurrentToLast Moves CurrentItem to the last item.

MoveCurrentToNext Moves CurrentItem to the next item.

MoveCurrentToPosition Moves CurrentItem to the item at the given index.

MoveCurrentToPrevious Moves CurrentItem to the previous item.

Refresh Re-creates the view, using any Sort.

By implementing this interface, virtually everything you’d ever need to do with your data — sort it, filter
it, or navigate it — is provided.

Following is a basic example of navigation:

public void OnButton(Object sender, RoutedEventArgs args)
{

Button btnSample = sender as Button;

switch (btnSample.ID)
{

case “Previous”:
if (MyCollectionView.MoveCurrentToPrevious())
{

FeedbackText.TextContent = “”;
o = MyCollectionView.CurrentItem as Order;

}
break;

case “First”:
if (MyCollectionView.MoveCurrentToFirst())
{

FeedbackText.TextContent = “At First Record”;
}
break;

case “Next”:
if (MyCollectionView.MoveCurrentToNext())
{

206

Chapter 8

14_57874x ch08.qxd 8/15/05 3:48 PM Page 206

FeedbackText.TextContent = “”;
o = MyCollectionView.CurrentItem as Order;

}
break;

case “Last”:
if (MyCollectionView.MoveCurrentToNext())
{

FeedbackText.TextContent = “At Last Record”;
o = MyCollectionView.CurrentItem as Order;

}
break;

}
}

You can do a lot more. You can call the MoveCurrentTo method passing in an index, and you’ll move to
that record if it’s available. If you overshoot the boundary, fortunately you won’t raise an exception;
you’ll just be taken to the last record. Similarly, you can move ahead by a given number. This type of
functionality is analogous to absolute versus relative references in Excel. You might in some instances
know for sure that you want to move to position 50. Or you might know that you want to find a given
record and look to the record two positions ahead of it, wherever that may be.

You can also use it to test for a value. By calling the Contains method and passing in the value you are
looking for, you can return either true or false, depending on whether or not the value exists. Again, this
makes life a lot easier. Otherwise, each time you wanted to do this, you’d have to loop through the col-
lection, object by object, check for the value you were looking for, and if it was found, set a True flag and
break out of the loop, and if it isn’t found, walk through the entire collection for nothing. Behind the
scenes, this is what’s being done, but the elegance of it is that you don’t have to do it each time, and you
can specify how this is accomplished. So, with the trading example discussed earlier, you could call
Contains in such a way that it took into account Broker, TradeDate, and Number of Shares. You could
specify this any way you wanted using whatever rules you wanted. And, of course, you could overload
it to accommodate many different scenarios, something that in real life is often necessary.

The main point here is that while none of this stuff is necessarily “hard” to code, by any means, it’s
painfully monotonous.

Summary
Avalon is without a doubt a major leap forward in creating compelling software applications that
involve user interface elements. While many things can be done just as they have traditionally been in
.NET, there are many new methods that will fundamentally reshape your relationship with UI program-
ming. Traditionally, if you wanted to create a TextBox control, you did this just as you would any other
object. In fact, other than the object name, there was absolutely no distinction between creating a
TextBox and creating a Foo. ObjectType objectName = new ObjectType() was the predominant
metaphor when dealing with Windows applications.

207

Data Services

14_57874x ch08.qxd 8/15/05 3:48 PM Page 207

In contrast, more and more applications needed to become Web-based. Traditional HMTL programming
was declarative, and instead of using the “new” object paradigm, visual elements are now markup-
based. This is probably the most notable feature of Avalon programming.

Since almost any nontrivial application involves the use of both a user interface and a data store, data
binding has always been an important issue. In Avalon, you now have Data Services — ostensibly the
biggest step forward in connecting data to user interface elements in a long time. Not only is the new
approach more intuitive, but it also works like you’ve always wanted it to. Data binding in the past has
been so problematic that many developers today still refuse to take advantage of many of .NET’s bind-
ing features just because of problems they had in the past. Now with the advent of Avalon and Data
Services, I suspect much of this ambivalence will dissipate quickly. Finally, you have an easy-to-use and
-understand mechanism that works well and does exactly what it purports to do — enables developers
to create more compelling data-driven applications in a much better way.

208

Chapter 8

14_57874x ch08.qxd 8/15/05 3:48 PM Page 208

ADO.NET and
ASP.NET

ADO.NET and ASP.NET are two core technologies of the .NET Framework. Many people think
that ASP.NET and ADO.NET are languages, but indeed they are not — they are technologies.
On a regular basis, I write both ADO.NET and ASP.NET code in both Visual Basic.NET and C#.
Increasingly, I’m writing a lot in C++ as well.

Just about any application that you can think of has some need for data manipulation. In most
real-world scenarios, data manipulation is not only a side note, but the crux of an application.
While ADO.NET has expanded the notion of a data store extensively, at the end of the day, it’s
simply a mechanism to retrieve and manipulate data. If you’ve worked with previous versions of
ADO or technology such as Java Database Connectivity (JDBC), ADO.NET is a huge leap from
what you’re used to. For instance, with very little experience, you can invoke a Web Service, popu-
late a DataSet object with the results, and using the same dataset, you can populate a SQL Server
or Oracle database, to name two. You could also fire up your application to retrieve data from a
Web Service or database, pull the network cable out of your computer, manipulate the data as you
see fit, and then plug the network cable back in and submit the changes. If you were to do this in
old-school ADO, all you’d have on your hands would be a mess.

The Evolution of ASP.NET
The evolution of ADO.NET is amazing. Having used it for four years now and being involved in
both the Visual Studio 2005 and Windows Longhorn Beta programs, I’ve seen the maturation of
the technology. The first evolutionary step is in the .NET 2.0 (Whidbey) Framework and then
ultimately the change to WinFX/Longhorn. Longhorn’s release date is still in the future, but we
are well into the beta phase and have a pretty good idea of what WinFX and the 2.0 Framework
are going to look like.

15_57874x ch09.qxd 8/15/05 3:49 PM Page 209

So what’s so amazing? Well, that’s what this chapter is going to be about, but a few general points come
to mind. I have heard various claims that ASP.NET 2.0 for instance, will allow developers to provide the
same functionality they did in the 1.x frameworks with 70 percent less code. That’s a pretty bold state-
ment, but so far I think it’s pretty close to accurate. There are enhancements in so many areas that some
things that used to be painfully monotonous are now done automatically. On a typical ASP.NET project,
for instance, my company will have a custom configuration file section for each module. We then need a
ConfigurationSectionHandler and a class to hold those settings. The Handler class is virtually iden-
tical across modules, varying only in the specific properties being managed. But it’s not uncommon to
have these classes span a few hundred lines of code. Some projects have 10–15 of these. None of it is
hard, but it’s certainly monotonous. Now in ASP.NET 2.0, that’s done just about automatically. So what
took an hour or two to do (and test/debug correctly) now takes a few minutes at most.

Transaction processing is another area that’s been enhanced. There’s a new TransactionScope object
that is used to handle transaction processing. It’s very intelligent in the sense that it begins things as
lightweight transactions and then promotes them to distributed transactions as the need arises. So now,
you can accomplish in just a few lines of code what took quite a bit of code and a tremendous amount of
knowledge of COM+ and distributed transactions to complete. It is no understatement to say that dis-
tributed transactions used to be items that those faint of heart would be well advised to avoid. Now the
same functionality can be learned and used in just a few minutes. (When I say a few minutes, I’m assum-
ing that you know and understand distributed transactions. Obviously, distributed transactions are
something you could write an entire book on (and in fact people have.) So it’s not something you just
jump into. My main point is that the transactionScope makes using them a lot easier. There are new
MasterPage controls in ASP.NET 2.0 that give your sites a common look and feel. And while these were
available in previous versions, they took a little getting used to. Features for giving your site a consistent
look and feel have been so enhanced in 2.0 that you’ll need to see them to believe it. There’s plenty more,
but these are just a few of the examples that come to mind.

ASP.NET is no less amazing. Ten years ago, if you wanted dynamic content, you had to be a computer
guru, not just a casual user. Most people used dialup back then and the whole Web experience was, well,
amazing by old standards but painful by modern standards. The original Active Server Pages (ASP)
changed things quite a bit. It allowed people to learn Visual Basic Script, for instance, and parlay an
existing skill set (or one that you could easily gain due to the abundance of books and training on the
subject) in VB6 into a Web developer career. Pretty soon market forces came into play and static content
just didn’t cut it any more.

As cool as ASP was, though, it was still very awkward. For one thing, you had to use scripting lan-
guages. While flexible, scripting languages were often weakly typed, and code reusability was accom-
plished by copying and pasting. The physical separation of presentation layer objects and business and
data objects was difficult to accomplish and was often not done. When ASP.NET came out, everything
changed in this regard. Microsoft boasted huge savings in terms of code. (It was pretty common to hear
about people who recreated their ASP Web sites in ASP.NET with half the lines of code.)

I’ve been involved with ASP.NET 2.0 since the first Alpha release, and although I’m probably considered
an advanced ASP.NET developer, I had a lot to learn. I wouldn’t go so far as to say that the leap from 1.x
to 2.0 is as big as the original leap from ASP to ASP.NET, but it is quite profound. If a developer started
learning ASP.NET 2.0, he/she would be every bit as productive as an experienced 1.x developer in a
mere fraction of the time. I know I keep emphasizing this point, but 2.0 is a full paradigm shift, not just a
modest version change.

210

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 210

ADO.NET
The new features in ADO.NET under the 2.0/WinFX Framework can essentially be broken down as
follows:

❑ Accessing data

❑ Transaction processing

❑ XML processing

The sections that follow discuss each in turn.

Enumerating SQL Server Instances
Chalk this one up in the “could do before but greatly simplified category.” Previously, if you wanted to
list all of the SQL Server instances on a network, you had to use either SQLDMO or you had to do some
significant P/Invoke. Currently, this is all that it takes:

using System.Data;
using System.Data.Sql;
using System;
public class Wrox.DeveloperBeta
{
public static int Main(string[] args)
{
SqlDataSourceEnumerator MyDbEnumerator = SqlDataSourceEnumerator.Instance;
DataTable DBInstances = MyDbEnumerator.GetDataSources();
foreach (DataRow row in DBInstances.Rows)
{

Console.WriteLine(“Server Name:”+row[“ServerName”]);
Console.WriteLine(“Instance Name:”+row[“InstanceName”]);
Console.WriteLine(“Is Clustered:”+row[“IsClustered”]);
Console.WriteLine(“Version:”+row[“Version”]);

}
return 0;
}

}

That code just declared an instance of the SqlDataSourceEnumerator class and called its
GetDataSources method. You’ll notice that the DataTable object declared didn’t have any columns
added to it. In the same way that a DataAdapter object creates the schema, the GetDataSources
method returns a DataTable object, which you set equal to DBInstances. Thus, there’s no need to
really do anything else. What I mean by this is that you are simply declaring a DataTable object but not
instantiating it. The return value from the call to GetDataSources is a DataTable, so when it returns,
DBInstances will no longer be an uninstantiated object.

211

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 211

SqlBulkCopy
While ADO.NET makes for a superb, scalable data access environment, one of its shortcomings has been
manipulating data en masse. In previous versions of ADO.NET, this was true across the board, whether
one was talking about bulk loading data or item-by-item updates to a database. Previously, if you
wanted to move data from one table to another, you had to use very convoluted means. For example,
you could set the AcceptChangesDuringFill property of the DataAdapter to false, so the
Rowstates of each of your rows were added. Then you could call Update on the Adapter, pointing to
an entirely new DataTable, as follows:

Private Sub Form2_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
daSource.AcceptChangesDuringFill = false
End Sub

Private Sub btnImport_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnImport.Click

MessageBox.Show(“DataSet currently has Changes: “ & ds.HasChanges.ToString) ‘True
Dim i As Integer = daDestination.Update(ds, “TransferData”) ‘203 records
Label2.Text = “Transferred Records: “ & i.ToString ‘i = 203

End Sub

Private Sub btnLoadData_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnLoadData.Click
ds.HasChanges() ‘false
daSource.Fill(ds, “TransferData”)
MessageBox.Show(“Source Table has “ & ds.Tables(0).Rows.Count.ToString & “ rows”)
‘203
ds.HasChanges() ‘true
Label1.Text = “Source Table: “ & ds.Tables(0).Rows.Count.ToString
End Sub

Can you see what’s wrong with this approach? You are pulling the data over a network in most cases,
because all the data involved is probably sitting on the same server. Even if it’s not, you are still essen-
tially caching the data locally just so you can send it back, row by row, to another table. Because most
such operations will involve a large amount of data, you can easily see that’s something’s very wrong
with this picture. Now, look at the new way to handle the same operation. (The code is very different
because they are fundamentally different approaches.)

//Declare a few variables...
private SqlConnection cn;
private SqlDataAdapter da;
private SqlCommand cmd;
private DataSet ds;
//Instantiate everything we need
private void Form1_Load(object sender, EventArgs e)
{
SqlConnection.ClearAllPools();//Cool new feature!
cn = new SqlConnection(“integrated security=SSPI;data source=x;initial catalog=x”);
cmd = new SqlCommand(“SELECT TOP 200000 * FROM Source”, cn);
da = new SqlDataAdapter(cmd);
}
//Load the DataSet/DataTable and Bind it to a DataGridView control.

212

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 212

private void btnLoad1_Click(object sender, EventArgs e)
{
ds = new DataSet();
try
{
DateTime dt = DateTime.Now;

da.Fill(ds, “MyTable”);
TimeSpan ts = DateTime.Now - dt;

lblStart.Text = ts.TotalSeconds.ToString();
}

catch (SqlException ex)
{

System.Diagnostics.Debug.Assert(false, ex.ToString());
}
finally { cn.Close(); }

}
private void btnLoadDb_Click(object sender, EventArgs e)
{

System.Data.SqlClient.SqlBulkCopy bc = new SqlBulkCopy(cn);
bc.DestinationTableName= “Destination”;
try
{

DateTime dt = DateTime.Now;
lblStart.Text = “Start Time: “ + DateTime.Now.ToLongTimeString();
cn.Open();
bc.WriteToServer(ds.Tables[0]);

TimeSpan ts = DateTime.Now - dt;
lblDone.Text = “End Time” + ts.TotalSeconds.ToString();

}
catch (SqlException ex)

{
System.Diagnostics.Debug.Assert(false, ex.ToString());

}
finally { cn.Close (); }

}

Not only is this new mechanism more intuitive, but the speed difference is blinding. To be honest, in
the first example, if you were dealing with more than a couple hundred rows, or using a slow network
(and heaven help you if you were using a Web service), the speed would probably end up being
prohibitive.

UpdateBatchSize
As far as bang for the buck goes, this is probably one of the hottest new features. Basically, by inserting
one line of code, you can change the entire behavior of your DataAdapter so that performance is greatly
increased. Currently, when you call Update, the adapter loops through your DataSet/DataTable and
checks each row’s rowstate. If it’s Added, Modified, or Deleted, it looks for the corresponding com-
mand and sends the Update, one at a time. By specifying this property, you can gather them all up (or
chunk them) and send them in batches. It’s honestly this easy to use:

System.Data.SqlClient.SqlDataAdapter da = new
System.Data.SqlClient.SqlDataAdapter(someCommand);
Da.UpdateBatchSize = 100;//Or whatever number you want.

213

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 213

AcceptChangesDuringUpdate
One of the common problems many new ADO.NET developers run into is regarding transactions.
Remember that when you call the Update method of a DataAdapter, it walks through the rows, checks
the Rowstate, and then calls the corresponding command. Well, there’s one more thing that happens.
After the update is complete, it calls AcceptChanges individually on the row.

However, there is a ContinueUpdateOnError property for each Adapter implementation, which, if an
error is caused, will just proceed with the next row. So if you had 100 rows with a changed Rowstate
and the 98th caused an error, you’d have 97 successful changes in the database and only three rows in
your dataset without changes (assuming that you were not inside a transaction). If you specified
ContinueUpdateOnError, you’d have 99 successful updates, and only one row with changes in it.

However, if this was inside a transaction, you’d have a serious problem. From the client side, nothing
would be different, but in the first examples, you’d have 97 rows with AcceptChanges called on them,
which would reset their Rowstate to Unchanged. But when the transaction rolled back, no changes
would be present in the database. This would cause those changes to be effectively lost.

How do you get around this? First, you need to use the GetChanges() method of a dataset and then
pass in the result to your DataAdapter. If successful, commit your transaction and call AcceptChanges
on the entire dataset. This has some potential problems, because it’s possible that the power could go out
between the commit statement and the AcceptChanges, but fortunately, this all happens so fast that
such a situation is highly unlikely. Here is an example of how to do this:

public void TransactionExample()
{

SqlDataAdapter da = new SqlDataAdapter(BusinessClass.GetBusinesses());
DataSet ds = new DataSet(“WroxExample”);
DataTable dt = new DataTable(“ExampleTable”);
ds.Tables.Add(dt);

using(SqlConnection cn = new
SqlConnection(ConfigurationSettings.AppSettings(“ConnectionString”))))
{
SqlTransaction tx = null;
try
{
tx = cn.BeginTransaction();
da.Update(ds.GetChanges());
tx.Commit();
ds.AcceptChanges();
}
catch (SqlException ex)
{
tx.Rollback();
System.Diagnostics.Debug.Assert(false, ex.ToString());
}
//The using block will ensure the connection is closed
//but it’s here for illustration.
finally
{
cn.Close();
}
}

214

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 214

Now you can do away with the intermediary step of getting the changes and just set the
AcceptChangesDuringUpdate property of the Adapter to false. This will prevent the adapter from
calling AcceptChanges on each row as it updates them. Here’s an example of how this works:

private void button1_Click(object sender, EventArgs e)
{

SqlDataAdapter da = new SqlDataAdapter(BusinessClass.GetBusinesses());
DataSet ds = new DataSet(“WroxExample”);
DataTable dt = new DataTable(“ExampleTable”);

ds.Tables.Add(dt);
//Make changes here.
SqlConnection cn = new

SqlConnection(ConfigurationSettings.AppSettings(“connectionstring”))”);
SqlTransaction tx;
try
{
tx = cn.BeginTransaction();
da.AcceptChangesDuringUpdate = false;
da.Update(ds);
tx.Commit();
ds.AcceptChanges();
}
catch (SqlException ex)
{
tx.Rollback();
System.Diagnostics.Debug.Assert(false, ex.ToString());
}
finally
{

cn.Close();
}

SqlDependency
Another one of my favorite features is the SqlDependency and notification. If you spend any time in the
.NET newsgroups, you’ll no doubt see people wondering how to detect changes to their source data in a
disconnected data scenario. As previously mentioned, with ADO.NET, you could query your database
and then pull the network cable until you needed to update. A lot could happen in the interim. Okay, if
you want to detect changes, you need a network cable plugged in, or at least you need to be running on
the same machine as the DB server.

Just because you have an object to do something doesn’t mean that it becomes inexpensive. And think
about how you would implement detecting changes if you didn’t have an object to take care of it. One
way was to use SQL Server notification services. Another is to use Triggers and Message Queues.
Do either of those sound cheap? Nope. And neither is the dependency. Again, if you are planning on
using this feature as a mechanism to circumvent the underlying architecture of ADO.NET, don’t do it.
This is a magnificent feature when used correctly, but it wasn’t intended to be used by 10,000 client
applications. Also, the fact that you need the network cable plugged in should be a great hint about
what’s going on, right?

215

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 215

Enough preaching; let me provide an example:

System.Boolean CreateDependency()
{

SqlConnection MyConnection = new
SqlConnection(ConfigurationSettings.AppSettings(“connectionstring”)););

// Create a new SqlCommand object.
SqlCommand cmd=new SqlCommand(“SELECT * FROM Cuckooz”, MyConnection);

// Create a dependency and associate it with the SqlCommand.
SqlDependency dep=new SqlDependency(cmd);
// Maintain the reference in a class member.

// Subscribe to the SqlDependency event.
dep.OnChanged+=new OnChangedEventHandler(OnDependencyChanged);

// Execute the command.
SqlDataReader dr = cmd.ExecuteReader();
// Process the DataReader.

}

// Handler method
void OnDependencyChanged(object sender,

SqlNotificationEventArgs e)
{

MessageBox.Show(e.Info.ToString ());
}

Note that if you are using the code in the SDK documentation, the documentation is wrong. There is no
such thing as an SqlNotificationsEventArgs— it’s SqlNotificationEventArgs.

Anyway, it’s that simple to use. The only real code is that for hooking up the event handler and then
deciding what you want to check for. The SqlNotificationEventArgs class has three properties, no
methods, and, of course, one event. The properties are listed in the following table.

Info Gets a value that indicates the reason for the notification event.

Source Gets a value that indicates the source that generated the notification.

Type Gets a value that indicates whether this notification is generated due
to an actual change or by the subscription.

SQL Server Provider Statistics
This is another feature that makes life a lot easier in the new framework:

using(SqlConnection cn = new SqlConnection(“Data Source=xxxxxx;Initial
Catalog=xxxxxxxxxx;Integrated Security=SSPI;”)){
using (SqlCommand Cmd = cn.CreateCommand())

216

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 216

cn.Open();
Cmd.CommandText = “sp_who”;
Cmd.ExecuteNonQuery();
IDictionary result = cn.RetrieveStatistics();

foreach (DictionaryEntry entry in result)
{

System.Diagnostics.Debug.WriteLine(entry.Key + “ = “ + entry.Value);
}
cn.Close();

}
}

This code yields the following result:

BytesReceived = 6261
UnpreparedExecs = 1
SumResultSets = 0
SelectCount = 1
PreparedExecs = 0
ConnectionTime = 699
ExecutionTime = 0
Prepares = 0
BuffersSent = 1
SelectRows = 1
ServerRoundtrips = 1
CursorOpens = 0
Transactions = 0
BytesSent = 18
BuffersReceived = 1
IduRows = 0
IduCount = 0

Remember that when you try this, you are going to get different results because you are using a different
machine, a different database, a different table, and a different query. Now, you probably are having the
same reaction I first had: “This is cool and all, but why would I use it?” Well, all of the provider statistics
aren’t necessarily useful, but a few are. ServeRoundTrips, for instance, probably isn’t the most useful
statistic because you should have a pretty good idea about this in the first place. ExecutionTime,
though, is pretty helpful and is certainly going to yield more accurate results than would be measuring
execution time by creating two TimeSpan objects and comparing the differences between them.

DataTables Are Now Real Objects
Being the ADO.NET fanatic that I am, one of my ultra-pet peeves was that DataSet objects were
required to do things when you didn’t really need them. If you had only one Datatable and you
wanted to write it to XML, you’d have to create a DataSet object and insert the DataTable into
it before using the WriteXml method. This has always seemed wasteful and required a bunch of extra
code for no real reason. Similarly, if you wanted to determine if a DataTable had changes, you
couldn’t use the HasChanges method because it didn’t exist. You’d have to again stick the DataTable
into a DataSet and check it. The same went for GetChanges.

217

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 217

Well, those days are over, as shown in the following code:

DataTable dt = new DataTable();
if(dt.HasChanges(){
MessageBox.Show(“Yep, It has Changes”);
}
SomeDataAdapter.Update(dt.GetChanges());// Yep, it works.
dt.WriteXml(@”C:\testtable.xml”);

Essentially, if you can do it with a DataSet, chances are good that you can now do it with a
DataTable, too.

Installed Data Providers
This is one of the other interesting new features. Essentially, you can use a DBProviderFactory object
to enumerate (list) providers installed on a given machine. Using it is easy enough. In software develop-
ment, there are a lot of tradeoffs, and this is particularly true with data access providers. There are two
schools of thought. The first is to make things as generic as possible so if the back-end database changes,
you aren’t tightly coupled to it. Advocates of the other position would argue that you should always use
the most specific provider you have available because this will afford you the best performance and fea-
ture sets. The decision on which way to go is dependent on a lot of factors, so there aren’t any real hard-
and-fast rules. On the one hand, if you’re 100 percent sure that you’ll never need your code to talk to
a different database, using a generic provider gives you little benefit. On the other hand, if you think
you may have to talk to a bunch of different databases, which is not uncommon in large distributed
environments, it is probably well worth any performance loss.

public class ProviderTest
{

public static void Main()
{

DataTable ProviderTable = DbProviderFactories.GetFactoryClasses();

foreach (DataColumn col in Providetable.Columns)
Console.Write(col.ColumnName + “\t”);

Console.WriteLine();

foreach (DataRow row in ProviderTable.Rows)
{

foreach (DataColumn col2 in ProviderTable.Columns)
Console.Write(row[col2] + “\t”);

Console.WriteLine();
}

}
}

Multiple Active Result Sets
Ostensibly the most hyped feature that I’ve ever encountered, Multiple Active Result Sets (MARS) is
the ultimate solution to a subtle annoyance. In the previous versions of the framework, 1 command + 1
connection = DoublePlusGood 1 Command > 1 Connection = Exception. What this means is that
if you tried to fire a command using a connection that was already opened, you got the dreaded open
and available connection error message. It was very easy to fix. If your problem was that you had left

218

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 218

a connection open, you needed to write code to close it. If your problem was that you needed another
connection, you needed to create one. So while iterating a SqlDataReader, for instance, you couldn’t hit
the same database (using the same connection) with values retrieved from the reader. With MARS that
all changes. Now you can fire more than one command on the same connection. Again, you don’t get
something for nothing, so don’t think this “enhances” performance by any means. Any performance
benefit is merely perception, just like threading. And like threading, there may actually be additional
overhead associated with this. But if you want to simplify your code, it’s easy enough to do:

SqlConnection cn = new SqlConnection(“SomeConnectionString”);
SqlDataReader dr;
SqlCommand cmd = new SqlCommand(“Select * From someTable where KeyField =
WhateverField”, cn);
if(cn.State != ConnectionState.Open){cn.Open();}
dr = cmd.ExecuteReader();
while (dr.Read())
{
dr2;
SqlCommand cmd2 = new SqlCommand(“Select * from ChildTable where KeyField =
@KeyField”, cn);
cmd2.Parameters(“@KeyField”).Value = dr.GetString[0];
while (dr2.Read()) //DoSomething else
}

Transaction Processing
This topic could provide at least an entire chapter to itself, but the real news in transaction processing is
in regard to the TransactionScope object

In most of my examples so far, I’ve referenced the SqlClient library, which is the native library for
SQL Server. However, that library isn’t of much use in distributed transaction scenarios because you
probably aren’t working with SQL Server across the board. Do you think that if you called an Oracle
database that it would have any clue what @@Error is? Given this, the starting point here is the
System.Transactions namespace. Out of the box, this isn’t a referenced assembly, so you’ll need to
add a reference to it to use it. You can do this by selecting Project ➪ Add Reference, and then selecting
System.Transactions under the .NET tab, as shown in Figure 9-1.

At the time of this writing, Oracle, SQL Server, and MSMQ are the only data sources that are provided
under the TransactionScope object. If you need to use another DB, it’s COM+ for you, although in
all likelihood, it’s virtually assured that other vendors will provide support for this.

For this to work correctly, remember that the following order should be adhered to:

1. Create your transaction.

2. Create the connection.

3. Dispose of the connection.

4. Call TransactionScope’s Complete()method.

5. Dispose of the transaction.

219

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 219

Figure 9-1

How do you create a simple transaction? An example follows:

const string ConnectString = @”Data Source=.\SQLExpress;Integrated
Security=True;AttachDBFilename=C:\Visual EmptyDatabase1.mdf”;

private void btnTryTransaction_Click(object sender, EventArgs e)
{

TimeSpan ts = new TimeSpan(0, 0, 5);
//Didn’t do this yet - should have taken it out.

TransactionScope scopeObject = new TransactionScope();
string sql = “INSERT INTO tb_Customers(Customer_ID, Customer_FirstName,

Customer_LastName) VALUES (@CustID, @FirstName , @LastName)”;
using (scopeObject)
{
using (SqlConnection cn = new SqlConnection(ConnectString))
{
SqlCommand cmd = new SqlCommand(sql, cn);
cmd.Parameters.Add(“@CustID”, SqlDbType.Int, 4).Value = 8;
cmd.Parameters.Add(“@FirstName”, SqlDbType.VarChar, 50).Value = “William”;
cmd.Parameters.Add(“@LastName”, SqlDbType.VarChar, 50).Value = “Gates”;
cn.Open();
cmd.ExecuteNonQuery();
cmd.Parameters.Clear();
cmd.CommandText = “SELECT COUNT(*) FROM tb_Customers”;
int i = (int)cmd.ExecuteScalar();//7 Records after Successful Insert
cn.Close();

//Open a connection to a Different Sql Server database, MSMQ, Oracle etc and do
something there.

}

220

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 220

scopeObject.Complete(); //At this point, the transaction is committed
}

MessageBox.Show(GetTotalCount().ToString());
}

private int GetTotalCount()
{
using (SqlConnection cn = new SqlConnection(ConnectString))
{
SqlCommand cmd = new SqlCommand(“SELECT COUNT(*) FROM tb_Customers”, cn);
cn.Open();
int i = (int)cmd.ExecuteScalar();
cn.Close();
return i;
}
}

The default Isolation that will be used is Serializable, and the default timeout on the transaction is
60 seconds. However, you will probably come across scenarios where you want completely different set-
tings. For this, the TransactionOptions class comes in handy.

TransactionOptions transactionOption = new TransactionOptions();
transactionOption.IsolationLevel = System.Transactions.IsolationLevel.Snapshot;

//Set the transaction timeout to 30 seconds.
//In reality, you’d probably want to get this from a .Config setting
//or resource file.
transactionOption.Timeout = new TimeSpan(0, 0, 30);
TransactionScope ts =
new TransactionScope(TransactionScopeOption.Required, transactionOption);

Other than Timeout and IsolationLevel, is there much you can do with this? Not that I’ve been able
to find, but it is a straightforward way to manipulate these settings.

Back when I first loaded the alpha bits of Whidbey, things were a little more complex, and hats off to the
ADO.NET team for making it ever easier. Previously, there was a property (actually the property is still
there but you don’t have to constantly set it) named Consistent. At each pass through your code,
you’d set it to false if something failed. At the end, when the code exited the block and the scope was
disposed of, if the Consistent property was set to true, everything would be committed. If
Consistent was false, it would be rolled back. Compared to what you had to do previously, this was a
walk in the park, but it was still a little short on elegance. Now, when you are done and you are sure you
want to commit everything, you simply call the .Complete method and, voilà, everything is committed.

Presently, you can/should call Complete to finish off the transaction. You can still set the Consistent
property, but the latest build I have of Whidbey indicates it has been deprecated already.

In this example, there is only one data store being used; thus, this transaction is operating as a local
transaction. However, let’s assume that we made a slight modification to this code, so that another data
store was used:

221

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 221

using (SqlConnection cn = new SqlConnection(ConnectString))
{
SqlCommand cmd = new SqlCommand(sql, cn);
cmd.Parameters.Add(“@CustID”, SqlDbType.Int, 4).Value = 8;

cmd.Parameters.Add(“@FirstName”, SqlDbType.VarChar, 50).Value = “William”;
cmd.Parameters.Add(“@LastName”, SqlDbType.VarChar, 50).Value = “Gates”;
cn.Open();
cmd.ExecuteNonQuery();
cmd.Parameters.Clear();
cmd.CommandText = “SELECT COUNT(*) FROM SomeTable”;

int i = (int)cmd.ExecuteScalar();//7 Records after Successful Insert
cn.Close();

//Open a connection to a Different Sql Server database, MSMQ, Oracle etc and do
something there.}

ts.Complete(); //At this point, the transaction is committed
}
MessageBox.Show(GetTotalCount().ToString());
}

What would happen is very interesting. At first, a local transaction would be created. When the second
connection was created and opened, it would be automatically enlisted into a distributed transaction.

Now, if you don’t want to use the TransactionScope and you want to do things manually, there’s a
great new feature that simplifies things:

IDBConnection.EnlistTransaction

Each derivation of this, SqlConnection, OracleConnection, and so on, has the capability of manually
enlisting the transaction, although as far as I know, SqlClient is the only provider in beta that has actu-
ally implemented it.

Monitoring Transactions and Their Performance
There’s an inverse relationship between performance and accuracy in respect to isolation level. Another
thing to remember is that distributed transactions require a lot more monitoring, so obviously there is
more overhead associated with them. You will no doubt want to monitor them at some point.

The easiest way to accomplish this is visually. Select Start ➪ Control Panel ➪ Administrative Tools ➪

Component Services ➪ Component Services (under Console Root) ➪ Computers ➪ My Computer ➪

Distributed Transaction Coordinator. Once you’re there, you should see the screen shown in Figure 9-2.

From there, you can select either the Transaction List (which will show you all currently running dis-
tributed transactions) or Transaction Statistics (which will show you the performance statistics of any
given transaction). In most instances, the latter, shown in Figure 9-3, will be of much more use.

Keep in mind that what you are viewing here are distributed transactions, not local ones. If a local trans-
action has been promoted/enlisted, it will become visible. But remember that this is the Distributed
Transaction Coordinator, hence it’s used for monitoring distributed (not local) transactions.

222

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 222

Figure 9-2

Figure 9-3

223

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 223

Transactional Web Services
Because Web Services are being used increasingly as a data source, it is worth mentioning them. If you
want your Web Service to participate in a transaction automatically, you simply need to decorate the
WebMethod with an additional attribute, as illustrated in the following code:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.Services;
using System.Web.Util;
using System.EnterpriseServices;

public class WroxTest : WebService
{

[WebMethod(TransactionOption=TransactionOption.RequiresNew)]
public System.Boolean DoSomething(System.Boolean shouldComplete)
{

String cmd = “INSERT INTO SOMETABLE VALUES @Value)” ;

SqlConnection cn = new SqlConnection
ConfigurationSettings.AppSettings(“connectionstring”)););
SqlCommand cm = new SqlCommand(cmd,cn);
cmd.Parameters.Add(“@Value”, SqlDbType.Bit);
cmd.Parameters[“@Value”].Value = shouldComplete;

// If a Web Service method is participating in a transaction and an
// exception occurs, ASP.NET automatically aborts the transaction.
// Likewise, if no exception occurs, then the transaction is
// automatically committed.

cn.Open();
Boolean Result = cmd.ExecuteNonQuery() == 0;
Cn.Close();

return Result
}
}

XML Processing
These days, it’s almost impossible to read anything tech related and not hear the letters XML. Although
the changes/enhancements in this area are the least substantial, they are definitely worth mentioning.

ASP.NET
With the changes from the 1.x Framework to the 2.0+ Frameworks in ASP.NET being so substantial,
entire books could be written about both the new features in ADO.NET and ASP.NET, so at best I’m
going to be able to scratch the surface. However, some really cool features are highlighted in the follow-
ing sections.

224

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 224

Multi-Language Support
You can now use multiple languages in the same project, and it will work well. Before continuing, let me
mention the Code folder, a new feature that simplifies things. In each ASP.NET application, there is a
reserved folder called Code. You can insert classes in here, and they will be visible throughout your
application. This is the primary mechanism that allows you to use both languages. Before doing so you
need to specify some settings in your configuration file (and one could honestly write the good part of a
book on the enhancements in configuration under the new frameworks, as well), as shown in Figure 9-4.

Figure 9-4

Once you have this in place, the stage is set for using dual languages. Think about the ramifications of
this. For once, both VB.Net and C# developers can have their own way and no one will be the wiser.
Figure 9-5 shows a simple example where I created a Base class in VB.NET and a derived class from C#,
and they are both in the same project.

Figure 9-5

225

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 225

FTP Support
As a rule, I prefer stubbing my toes really hard over deploying ASP.NET applications. Fortunately, this is
one area that has been greatly enhanced.

Once you are ready to deploy, you simply select Publish from the Build menu. You will be prompted
with a dialog box that looks something like that shown in Figure 9-6 (which is intuitive enough not to
need much explanation).

Figure 9-6

Master Pages
Master pages are definitely one of the more exciting features of ASP.NET 2.0, but they aren’t necessarily
new. At my current place of employment, we’ve been using them for well over a year and a half now.
To see a master page in action, take a look at Figure 9-7.

The callouts show the actual MasterPage. This is static content that each page will have. If you think of
a template, you’re conceptually in the right place, but you have a lot more power here. Another callout
shows the ContentRegions. These are the areas you specify that change from page to page.

There is now an actual MasterPage type that you can add to your project. The definition for a typical
MasterPage looks something like this:

<%@ Master Language=”C#” CodeFile=”MasterPage.mymaster.cs” AutoEventWireup=”false”
Inherits=”MasterPage” %>

You layout your MasterPage just as you would any other page, except that you specify
ContentRegions.

226

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 226

Figure 9-7

The pages containing ContentRegions reference the MasterPage as follows:

<%@ Page Language=”C#” MasterPageFile=”MySite.Master %>

Now one of the really interesting features about MasterPages is that you can nest them. One
MasterPage can derive from another one, and another one from that, and so on. To do this, you
simply change the declaration to the “child” master page and nothing more.

Themes
In similar capacity to that of MasterPages, themes can be used to provide a consistent look and feel.
Themes are really easy to use and make life a lot easier, particularly in situations where consistency is
critical.

To define a theme, you simply create a text file with a .skin extension or select Theme from the
Add New Item Menu in Visual Studio .NET.

Here’s a sample theme for a TextBox and Button control, respectively:

<asp:TextBox runat=”server” BackColor=”#FFFFFF” ForeColor=”Black”
Font-Name=”Tahoma” Font-Size=”11px” SkinID=”WroxTextBox” />
<asp:Button runat=”server” BackColor=”#FFFFFF” ForeColor=”White”
Font-Name=”Verdana” Font-Size=”11px” SkinId=”WroxButton”/>

227

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 227

When you have a control that you want to apply this to, you simply specify the SkinID value:

<asp:TextBox runat=”server” ID=”tbFirstName” SkinID=”WroxTextBox” />
<asp:Button runat=”server” ID=”btnSubmit” SkinID=”WroxButton” />

You can make life even easier by creating a custom control, setting a theme for it, and then using the cus-
tom control in place of the standard ones.

Base Pages Now Work
Probably the biggest annoyance that I’ve encountered in the past with ASP.NET has been when using
inheritance (which I use constantly). Suppose that you create a given base page that has some properties
available that will be used throughout a given segment of your application. Assume for the moment that
you have the following page definition. (Some of it is truncated for the sake of brevity — but nothing
related to this discussion has been removed.)

/// <summary>
/// Summary description for WebForm1.
/// </summary>

public class WebForm1 : System.Web.UI.Page
{public System.String CustomerLastName
{
get
{

return Session[“CustomerLastName”];
}

set
{
Session[“CustomerLastName”] = value;

}
}

public System.String CustomerFirstName
{get
{
return Session[“CustomerFirstName”];
}

set
{
Session[“CustomerFirstName”] = value;
}
}

Under the 2.0 Framework, the public properties show up, as do all the other properties of the page
(see Figure 9-8). In previous versions, you had to use this keyword to get IntelliSense. This (no pun
intended) greatly convoluted the intent of your code.

228

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 228

Figure 9-8

Data Binding
One area that typically threw developers familiar with only WinForms programming for a loop when
coming to ASP.NET was data binding. Because HTTP is a stateless protocol, many people could not
get used to module-level variables that were previously set, losing their values when a button was
clicked. In essence, this hasn’t changed. ASP.NET didn’t make HTTP a stateful protocol out of the blue.
However, it did make the way you interact with ASP.NET a lot more intuitive.

To begin with, there’s a new object called the SqlDataSource that you can use. Take a look at the fol-
lowing declaration:

<asp:SqlDataSource ID=”WroxDataSource” runat=”server”
SelectCommand=”select * from TestTable”
ConnectionString=”<%$ MyAppSettings:MainConnectionString %>”>

</asp:SqlDataSource>

Now, to use this DataSource, you simply specify it to a given control:

<asp:GridView ID=”GridView1” runat=”server”
DataSourceID=” WroxDataSource “>

</asp:GridView>

229

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 229

While this seems cool, how many times do you really have a straightforward bind situation where you
aren’t specifying and restrictions? Well, it’s easy as pie:

<asp:sqldatasource id=” WroxDataSource “ runat=”server”
connectionstring=”server=xxxx;database=xxxx;trusted_connection=yes”
selectcommand=”SELECT * From Cuckooz Where CuckooName = @CuckooName”>

<selectparameters> <asp:controlparameter name=”CuckooName”
controlid=”tbCuckooName” propertyname=”Text”/> </selectparameters>
</asp:sqldatasource>

What Cuckoo are you looking for? <asp:textbox id=”tbCuckooName”
runat=”server”></asp:textbox>

<asp:gridview datasourceid=” WroxDataSource” runat=”server”/>

The same can be accomplished programmatically with the following:

if(Page.IsPostBack)
{WroxDataSource.SelectParameters.Add(“@CuckooName”, tbCuckooName.Text);
}

You could also take the value from a QueryString parameter and use it instead of a given control, as
follows:

if(!Page.IsPostBack)
{WroxDataSource.SelectParameters.Add(“@CuckooName”,
Request.QueryString(“CuckooName”);
);
}

There is one subtle distinction between the two. When using a TextBox, you obviously want a value in
most cases. This value probably isn’t supplied when the page first loads unless you hard-code it or set it
somewhere. However, when you use a QueryString, the exact opposite is the case; it typically has little
value after the initial page load. As such, I have a Not (!) symbol in the second example.

Cookieless Forms Authentication
A while back, I was invited to Microsoft’s Mobius conference in Redmond, Washington. I was pretty
excited, but there was one problem. The night before I left, our company went live with an ASP.NET
Web application that I was lead developer on. We had tested it thoroughly and all was well, until I got
to the Atlanta airport. All of a sudden, the whole authentication scheme broke down and the application
no longer worked. What was worse is that this was a HIPAA-compliant application, so we couldn’t
just loosen security.

What had happened was that right before we put the application in the wild, our network administrator
ran some patches on the Web server, IIS Lockdown, and a few other tools. And he shut off cookies. That
was the source of a very big problem for a few hours.

In the past, if you were using FormsAuthentication, you’d simply specify it and a username and a
second parameter indicating whether you should persist cookies across sessions. Many people think this
means “Don’t use cookies,” but it doesn’t.

230

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 230

Take a look at Figure 9-9.

Figure 9-9

Personalization
Another slick feature in ASP.NET 2.0 is personalization. This allows you to build a class that you can
reference throughout an application. Typically, this was done through Session variables in the past
or included in a base page as previously illustrated. However, this is a much more straightforward,
object-oriented, and type-safe way to handle things. There’s no chance of spelling errors, and you have
full IntelliSense support. In addition, the properties are strongly typed, and equally important, it’s very
easy to use.

Take a look at the following configuration file:

<configuration>
<system.web>

<personalization>
<profile>
<property name=”FullName”/>

<property name=”LastLogIn”
type=”System.DateTime”/>

</profile>
</personalization>
</system.web>

</configuration>

This is greatly simplified, but it creates two properties, FullName and LastLogIn.

You can set either of them like this:

Profile.FullName = “William Ryan”;
Profile.LastLogIn = DateTime.Now();

Now, throughout the entire application, you can reference the FullName or LastLogin in both a typo-
safe and type-safe manner.

231

ADO.NET and ASP.NET

15_57874x ch09.qxd 8/15/05 3:49 PM Page 231

Summary
So as would be expected, WinFX and Longhorn definitely change the developer landscape, particularly
in regard to data access and display. Data access, of course, is addressed via ADO.NET, and the presenta-
tion layer, in part, is addressed by ASP.NET (not to mention XAML). Both of these technologies are won-
derful and were marked advances when they came out, but both left a lot to be filled in. When the
framework moved from 1.0 to 1.1, there were very few feature improvements, but the ones that were
there were pretty cool. However the situation isn’t the same with the next leap forward. Everything is
getting better—a lot better. Everything is getting cooler—a lot cooler. Things like distributed transactions
that used to be nightmarishly difficult are now accessible to even beginner programmers. And like
everything else, these advances not only will lead to a lot greater developer productivity, but also will
make coding in .NET a lot more fun.

232

Chapter 9

15_57874x ch09.qxd 8/15/05 3:49 PM Page 232

Windows Services

It seems like almost yesterday that Windows Services were indeed rare. Today, most of the projects
I work on or install on my computer entail a service or three. It wasn’t too long ago that you
needed to use C++ to write a Windows Service and it took a good bit of Windows API savvy to
make it worthwhile. .NET has made creating services exponentially easier than it used to be, and
it’s only getting easier going forward. If you aren’t familiar with a Windows Service, the best way
to think of it is as a program that doesn’t require a user to be logged in to run. Services can start,
stop, and pause themselves. Think about a typical database implementation such as SQL Server.
Imagine that the power went out. If it weren’t for services, someone would have to physically
approach the machine, log in, and start the program. Sure, you could stick the program in a Start
Up folder, so you wouldn’t actually have to start it, but you’d still have to log in. Moreover, many
such items require specially privileged accounts, so in all likelihood, only a few people would
know the credentials. This could cause a major problem if the person/people who knew those
credentials weren’t available.

To use, create, and manage Windows Services under Longhorn, you need be familiar with
only one additional namespace, System.ServiceProcess, as well as
System.ServiceProcess.Design, which is a subset of the preceding namespace.

Creating Services
The first step to easily creating services is to create a blank solution and then add a new project of
type Windows Services to it. A template is already provided that does 95 percent of everything
you need to actually create the service for you, as shown in Figure 10-1.

16_57874x ch10.qxd 8/15/05 4:20 PM Page 233

Figure 10-1

Visual Studio 2005 will go ahead and create a class for you that can be installed as a service. However,
just like a Windows Form or ASP.NET application, it won’t do anything at this point. The code that’s
created for you is provided here:

// The main entry point for the process
static void Main()
{

System.ServiceProcess.ServiceBase[] ServicesToRun;

ServicesToRun = new System.ServiceProcess.ServiceBase[] { new Service1() };

System.ServiceProcess.ServiceBase.Run(ServicesToRun);
}

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{
components = new System.ComponentModel.Container();
this.ServiceName = “DemoService”;
}

/// <summary>
/// Set things in motion so your service can do its work.
// </summary>

234

Chapter 10

16_57874x ch10.qxd 8/15/05 4:20 PM Page 234

protected override void OnStart(string[] args)
{
// Whatever you want to
// happen when the service starts

/// <summary>
/// Stop this service.
/// </summary>
protected override void OnStop()
{

// Whatever you want to
// happen when the service stops

}
}

}

I intentionally left out some of the generated code irrelevant to Windows Services, but this is the major-
ity of what you should see. First, you’ll see the System.ServiceProcess namespace reference. You
don’t technically need this but you’ll have to fully qualify your names for all ServiceProcess objects
if you don’t. The next important line is:

public class MyService: System.ServiceProcess.ServiceBase
{

This indicates that the class inherits from ServiceBase, which provides all the functionality that you need
to create a service. Now, out of the box, two methods are stubbed out for you, OnStart and OnStop.
OnStart takes an Array of Strings that you can use to instruct your process on how to behave when it
starts. The Main method also allows for parameters, and this affords a great opportunity for us. Services
can’t just be XCopied or double-clicked; they must be installed. However, if they must be installed, then
debugging them can be a pain. A handy way to work around this shortcoming is to create a WinForm
that calls the exact same functionality that the service will, but that has buttons or other UI elements that
allow you to manually control it. Then check the startup parameters, and if the parameter you send in to
indicate it’s a debug scenario is present, call the WinForm as the startup object instead of the service
code. It’s amazingly simple and can save you a lot of hassle:

// The main entry point for the process
static void Main(string[] args)
{
if (args.Length == 1) {

System.ServiceProcess.ServiceBase[] ServicesToRun;
// More than one user service may run within the same process. To add
// another service to this process, change the following line to
// create a second service object. For example,
//
//
ServicesToRun = new System.ServiceProcess.ServiceBase[] { new MyService()

};
System.ServiceProcess.ServiceBase.Run(ServicesToRun);

}
else {

System.Windows.Forms.Application.Run(new ServiceForm());
}

}

235

Windows Services

16_57874x ch10.qxd 8/15/05 4:20 PM Page 235

Another helpful trick applies to configuration files. When using a configuration file, the app looks to the
bin directory, but with Windows Services, it uses the Windows\System folder. Thus, your configuration
information won’t be found unless you specify the following:

string ConfigFile =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(ConfigFile);

At this point, we’ve addressed just about all of the common stuff you’ll run into when creating a service.
Other than the installer, everything you need to create, start, stop, test, and configure a service has been
addressed in just a few pages, but don’t let this apparent simplicity fool you. Services are very powerful,
and you can do quite a bit with them. Actually, I glossed over something. In the preceding example, the
code to handle what occurs when the process stops or starts is addressed, but how you specifically stop
or start the service isn’t. So how do you start or stop the service? You can create a Service controller and
use it, or you can use the tools provided in Windows. Under XP, you can select Start ➪ Control Panel ➪

Administrative Tools ➪ Services. After selecting this, a dialog box similar to the one shown in Figure 10-2
should appear.

Figure 10-2

236

Chapter 10

16_57874x ch10.qxd 8/15/05 4:20 PM Page 236

To actually run a service, you can call ServiceBase.Run and pass in a service name, as in the following
example:

ServiceBase.Run(“SqlService”);

There are a few other methods and properties, but they are all, by and large, very intuitive and don’t
lend much to the imagination. For reference purposes, a complete set of the methods afforded by
ServiceBase is provided in the following table.

Dispose Disposes of the resources (other than memory) used by the
ServiceBase.

Equals Determines whether the specified Object is equal to the current
Object. Inherited from Object.

Finalize Releases unmanaged resources and performs other cleanup opera-
tions before the Component is reclaimed by garbage collection.
Inherited from Component.

GetHashCode Serves as a hash function for a particular type. GetHashCode is suit-
able for use in hashing algorithms and data structures such as a hash
table. Inherited from Object.

GetLifetimeService Retrieves the current lifetime service object that controls the lifetime
policy for this instance. Inherited from MarshalByRefObject.

GetService Returns an object that represents a service provided by the
Component or by its Container. Inherited from Component.

GetType Gets the Type of the current instance. Inherited from Object.

InitializeLifetimeService Obtains a lifetime service object to control the lifetime policy for this
instance. Inherited from MarshalByRefObject.

MemberwiseClone Creates a shallow copy of the current Object. Inherited from Object.
Also inherited from MarshalByRefObject.

OnContinue When implemented in a derived class, OnContinue runs when a
Continue command is sent to the service by the Service Control
Manager (SCM). Specifies actions to take when a service resumes
normal functioning after being paused.

OnCustomCommand When implemented in a derived class, OnCustomCommand
executes when the Service Control Manager (SCM) passes a custom
command to the service. Specifies actions to take when a command
with the specified parameter value occurs.

OnPause When implemented in a derived class, executes when a Pause com-
mand is sent to the service by the Service Control Manager (SCM).
Specifies actions to take when a service pauses.

Table continued on following page

237

Windows Services

16_57874x ch10.qxd 8/15/05 4:20 PM Page 237

OnPowerEvent When implemented in a derived class, executes when the computer’s
power status has changed. This applies to laptop computers when
they go into suspended mode, which is not the same as a system.

OnSessionChange When implemented in a derived class, executes when a change event
is received from a Terminal Services session.

OnShutdown When implemented in a derived class, executes when the system is
shutting down. Specifies what should happen immediately prior to
the system shutting down.

OnStart When implemented in a derived class, executes when a Start com-
mand is sent to the service by the Service Control Manager (SCM) or
when the operating system starts (for a service that starts automati-
cally). Specifies actions to take when the service starts.

OnStop When implemented in a derived class, executes when a Stop com-
mand is sent to the service by the Service Control Manager (SCM).
Specifies actions to take when a service stops running.

ReferenceEquals Determines whether the specified Object instances are the same
instance. Inherited from Object.

RequestAdditionalTime Requests additional time for a pending operation.

Run Provides the main entry point for an executable that contains multi-
ple associated services. Loads the specified services into memory so
that they can be started.

ServiceBase Creates a new instance of the ServiceBase class.

ServiceMainCallback Registers the command handler and starts the service.

Stop Stops the executing service.

ToString Returns a String containing the name of the Component, if any. This
method should not be overridden. Inherited from Component.

UpdatePendingStatus Sets the wait hint in the status for a service in a pending state.

These should all be pretty clear because they do exactly what their names imply. The properties of the
ServiceBase class are very similar to the methods. In fact, most of them simply indicate whether or not
a given method can be called, as described in the following table:

AutoLog Indicates whether to report Start, Stop, Pause, and Continue com-
mands in the event log.

CanHandlePowerEvent Gets or sets a value indicating whether the service can handle notifi-
cations of computer power status changes.

CanHandleSession Gets or sets a value that indicates whether the service can handle
ChangeEvent change events received from a Terminal Server session.

238

Chapter 10

16_57874x ch10.qxd 8/15/05 4:20 PM Page 238

239

Windows Services

CanPauseAndContinue Gets or sets a value indicating whether the service can be paused
and resumed.

CanRaiseEvents Gets a value that indicates whether the component can raise an
event. Inherited from Component.

CanShutdown Gets or sets a value indicating whether the service should be notified
when the system is shutting down.

CanStop Gets or sets a value indicating whether the service can be stopped
once it has started.

Container Gets the IContainer that contains the Component. Inherited from
Component.

DesignMode Gets a value that indicates whether the Component is currently in
design mode. Inherited from Component.

ExitCode Gets or sets the exit code for the service.

ServiceHandle Gets the service control handle for the service.

ServiceName Gets or sets the short name used to identify the service to the system.

Controlling Services
To control a given service, the ServiceController class is used. Virtually everything that you need to
do with or to a service can be done from just dragging a ServiceController onto a form and manipu-
lating it from there. ServiceControllers are available under the Components tab of your Visual
Studio .NET 2005 Toolbox, as shown in Figure 10-3.

Figure 10-3

16_57874x ch10.qxd 8/15/05 4:20 PM Page 239

After dragging a ServiceController component onto your form and naming it (sc), add four buttons
to control the service: Stop, Start, Pause, and Refresh. The code to handle each of these is as follows:

private void btnStart_Click(object sender, System.EventArgs e) {
sc.MachineName = “BillRyan”;
sc.ServiceName = “DemoService”;
sc.Start();

}

private void btnStop_Click(object sender, System.EventArgs e) {
sc.MachineName = “BillRyan”;
sc.ServiceName = “DemoService”;
sc.Stop();

}

private void btnPause_Click(object sender, System.EventArgs e) {
sc.MachineName = “BillRyan”;
sc.ServiceName = “DemoService”;
sc.Pause();

}

private void btnReset_Click(object sender, System.EventArgs e) {
sc.MachineName = “BillRyan”;
sc.ServiceName = “DemoService”;
sc.Refresh();

}

At each pass, you specify the MachineName and the ServiceName, but those can be set once and used
just like any other property. (I simply reiterated this for illustrative purposes.)

As far as permissions go, starting services on someone else’s machine is a big security no-no in most
cases, so you can’t use the ServiceController to do anything that you don’t have permission to do
already. However, you can use the ServiceControllerPermission class to specify declarative secu-
rity permissions on what your code does. Any discussion of declarative security is beyond the scope of
this chapter, but in today’s environment, it’s the height of insanity (and irresponsibility in my humble
opinion) to write code that isn’t secure. Do you really want to leave it to chance that no one will misuse
your service?

If you want to enumerate each of the services running on a given machine and then leave a UI cue to
manipulate them, you can do so with the following:

private void Form1_Load(object sender, System.EventArgs e) {
ServiceController[] allServices;
allServices = ServiceController.GetServices();

240

Chapter 10

16_57874x ch10.qxd 8/15/05 4:20 PM Page 240

Console.WriteLine(“Services running on the local computer:”);
foreach (ServiceController svc in allServices) {

listBox1.Items.Add(svc.ServiceName);
}

This code will yield the results shown in Figure 10-4.

Figure 10-4

Figure 10-5 is the Services dialog provided by the operating system. As you can see, they are identical,
showing that each of the installed services can be discovered using the API.

You have probably noticed by now that both images bear a striking similarity, proving essentially that
the GetServices method is working exactly as expected.

241

Windows Services

16_57874x ch10.qxd 8/15/05 4:20 PM Page 241

Figure 10-5

Installing Your Windows Services
There’s only one somewhat tricky element in the whole area of processes, and that’s installation. It’s not
really complicated, but it may seem so the first time around. The good news is that it’s actually pretty
easy after you’ve done it once or twice.

1. You need to create an Installer class. Simply create a new class that inherits from the Installer
Class, or select Project ➪ Add New Item, and then select Installer, as illustrated in Figure 10-6.

2. Ensure that the RunInstaller attribute is set to true:

[RunInstaller(true)]
public class Installer1 : System.Configuration.Install.Installer
{

}

242

Chapter 10

16_57874x ch10.qxd 8/15/05 4:20 PM Page 242

Figure 10-6

3. Create your ServiceInstaller and a ServiceProcessInstaller, as shown in Figure 10-7,
and you are pretty much off to the races.

Figure 10-7

243

Windows Services

16_57874x ch10.qxd 8/15/05 4:20 PM Page 243

Notice that this is all pretty straightforward. Create a ServiceInstaller and a
ServiceProcessInstaller object, specify the account that you want it to run under (LocalService,
LocalSystem, NetworkService, User), select the Start Type (Automatic, Manual, Disabled), and
you are ready to go.

All that needs to be done now is to call InstallUtil.exe, passing in the name of the assembly of
the service, and it should take care of the rest. To get to InstallUtil, I recommend going to the Visual
Studio .NET command prompt, navigating to your project directory, and calling InstallUtil.exe
from there, as illustrated in Figure 10-8.

Figure 10-8

Summary
Just like most of the other new features that .NET has brought us, Windows Services are now easily
accessible to most any developer. Far from being the complex beasts that most programmers feared, they
are easy to create, maintain, and deploy. It wasn’t very long ago indeed that very few programs ran as
services, and now it’s rather amazing how many do. (Just look at your services dialog box; I’m sure
you’ll be quite surprised at how many there are.)

244

Chapter 10

16_57874x ch10.qxd 8/15/05 4:20 PM Page 244

Resources

Websites
Microsoft’s Developer Center: http://winfx.msdn.microsoft.com/library

Xaml.net: xaml.net

XAMLshare.com: xamlshare.com

Newsgroups
Hosted by Microsoft Developer Center: http://msdn.microsoft.com/longhorn/
community/newsgroups/default.aspx?dg=microsoft.public.windows
.developer.winfx.avalon&lang=en&cr=US

Hosted by Mobiform Software: http://groups.yahoo.com/group/XAML

Hosted by MyWinFX.org: http://groups.yahoo.com/group/mywinfx

Tools
Aurora, Xaml Designer for WinFX: mobiform.com/Eng/aurora.html

AvPad: http://blog.simplegeek.com/avalon/avpad.application

17_57874x appa.qxd 8/15/05 3:55 PM Page 245

17_57874x appa.qxd 8/15/05 3:55 PM Page 246

Index

18_57874x bindex.qxd 8/15/05 3:55 PM Page 247

18_57874x bindex.qxd 8/15/05 3:55 PM Page 248

In
de

x

Index

2-D animation, Avalon, 93
color, 97
double animation, 98
point animation, 98-102
StoryBoard class, 95-97
Timeline class, 93-94

2-D graphics, Avalon, 77
3D animation, Avalon

cameras, 123-124
lighting, 125-126
materials, 129
Model3DGroup, 124
objects, 126-129
rotation, 131
scale, 131
transforms, 130
translations, 131
Viewport3D, 122

A
abbreviated syntax

gradient brushes, XAML, 81-82
paths (Avalon), 72-76

AcceptChangesDuringUpdate command,
214-215

addresses, service addresses (Indigo), 148
ambient light, Avalon, 125
animation, 2-D (Avalon), 93-102
annotation, attributes and, 176

applications, Avalon, 11-13
architecture, Indigo, 136
ArcSegment, Avalon, 68
ASMX

migration and, 176
Web Services and, 176-178

ASP.NET
history, 209-210
XML processing and, 224

base pages, 228
data binding, 229-230
forms authentication, cookieless, 230
FTP support, 226
master pages, 226-227
multi-language support, 225
personalization, 231
themes, 227

asynchronous invokes, messaging, 166
attributes, annotation and, 176
authentication, cookies and, 230
Avalon

2-D animation, 93
color, 97
double animation, 98
point animation, 98-102
StoryBoard class, 95-97
Timeline class, 93-94

2-D graphics, 77

18_57874x bindex.qxd 8/15/05 3:55 PM Page 249

Avalon (continued)
3D

cameras, 123-124
lighting, 125-126
materials, 129
Model3DGroup, 124
objects, 126-129
rotation, 131
scale, 131
transforms, 130
translations, 131
Viewport3D, 122

animation, 2-D, 93-102
application creation, 11-13
ArcSegment, 68
BezierSegment, 69
content controls

ButtonBase, 22-23
Frame, 23
headered, 24-25
Label, 25
ListBoxItem, 25

controls, 20-21
content controls, 22-25
DocumentViewer, 26
InkCanvas, 26
Items, 27-29
RangeBase, 31
Selector, 29-31
Thumb, 32
types, 21-32

dependency properties, Shapes class, 57
Dependency Property System, 9-11
documents

fixed-format, 45-47
flow-format, 48
Hyperlinks class, 51
tables, 48-50
TextBlock class, 51
TextFlow class, 50

events
binding, 117-119
bubbling, 111
resources, 112-113, 116
tunneling, 111

Geometry abstract base class, 66
graphics

2-D, 77
brushes, 77-88
Fill property, 77
opacity, 87-88
painting, 77
paths, 63-76
shapes, 57-63
Stroke property, 77
transforms, 89-93

HeaderedItem control class, 28
interoperability, 120

.NET controls, 120

.NET WinForm, 121
LineSegment, 69
MenuBase control class, 27
multimedia classes

Image, 32
MediaElement, 32

namespaces, 6, 7
Media.Windows.Controls, 7
System.Windows, 6
System.Windows.Controls, 7
System.Windows.Data, 7
System.Windows.Input, 7
System.Windows.Media.Animation, 7
System.Windows.Media.Media3D, 7
System.Windows.Navigation, 7
System.Windows.Resources, 7
System.Windows.Shapes, 7

overview, 3-4
panels, 33

BulletPanel, 42
Canvas, 33-36
DockPanel, 36-40
StackPanel, 41-42
TabPanel, 43-44
ToolBarOverflowPanel, 44-45

PathGeometry, 67
paths, simple geometries, 64-66
Paths class, 63-76

simple geometries, 64, 66
syntax, abbreviated, 72-76

poly segments, 71-72

250

Avalon (continued)

18_57874x bindex.qxd 8/15/05 3:55 PM Page 250

properties, dependency properties, 8, 20-21, 34
QuadraticBezierSegment, 70
serialization

loading objects, 122
saving objects, 122

Shapes class, 57-63
Ellipse, 58
Glyphs, 63
lines, 59
Paths, 63-76
polygons, 59
Polyline, 60
Rectangle, 61

styles
derived styles, 107
implicit, 105
named styles, 106-107
Triggers, 108
Visual Tree override, 109-110

trees, logical tree, 8
Visual Studio and

applications, 52
browser applications, 52-53
navigation applications, 52-53

XAML and, 4
code behind, 4
UI, 4

Avalon API hierarchy, 16-20
Avalon Control Library, Visual Studio applications

and, 52

B
base pages, XML processing and, 228
BezierSegment, Avalon, 69
binding

Avalon, 117-119
collections and, 204

IEnumerable interface, 204
Complex binding, 203
formatting and, 196
Indigo, 140-141

custom, 142-143
standard, 141

One Time, 194
One Way, 194

Simple binding, 203
Two Way, 194
XML processing and, 229-230

BizTalk Server, Indigo and, 172
browser applications, Visual Studio and (Avalon),

52-53
brushes, Avalon, 77, 83

DrawingBrush, 84-85
gradient, 78-82
image brush, 84
opacity masks, 87-88
SolidColorBrush, 78
VisualBrush, 85-87

bubbling, Avalon events, 111
BulletPanel panel, Avalon, 42
ButtonBase content control, Avalon, 22-23

C
calculator creation exercise, 53-56
cameras, Avalon 3D, 123

OrthographicCamera, 124
PerspectiveCamera, 124

Canvas panel, Avalon, 33-36
CenterX property, Ellipse class (Avalon), 58
CenterY property, Ellipse class (Avalon), 58
channels, communication, 183-184
classes

ArcSegment, Avalon, 68
Avalon

BezierSegment, 69
Geometry, 66
Hyperlinks, 51
LineSegment, 69
Panel, 33
PathGeometry, 67
QuadraticBezierSegment, 70
Shapes, 57-76
TextBlock, 51
TextFlow, 50
Timeline, 93-97

Paths, 63-76
abbreviated syntax, 72-76
simple geometries, 64, 66

ServiceController, 239-241
TransactionOptions, 221

251

classes

In
de

x

18_57874x bindex.qxd 8/15/05 3:55 PM Page 251

code behind, XAML and Avalon, 4
code-first development, Indigo, 138
CollectionChanged event, 204
collections, 204

binding and, 203-204
binding to, IEnumberable interface, 204
custom, CollectionView object, 204
enumerable, 204
INotifyCollectionChanged interface, 204

CollectionView object, custom collections, 204
color in 2-D animation, Avalon, 97
COM+

Indigo integration, 184-186
migration and, 176

ComboBox control, Avalon, 29
communication, custom channels, 183-184
Complex binding, 203
ComSvcConfig, 187
Config file, transactions and, 163-164
Contains method, 207
content controls, Avalon

ButtonBase, 22-23
Frame, 23
headered, 24-25
Label, 25
ListBoxItem, 25

contract-first development, Indigo, 138
contracts, Indigo, 137
controls

Avalon, 20-21
content controls, 22-25
DocumentViewer, 26
InkCanvas, 26
Items, 27-29
RangeBase, 31
Selector, 29-31
Thumb, 32
types, 21-32

.NET, Avalon documents, 120
Convert method, 201
ConvertBack method, 201
Converters, 200-203
cookies, XML processing and, 230
CRL (common language runtime) objects,

117-119
custom bindings, Indigo, 142-143

D
data binding, XML processing and, 229-230
data collections, binding and, 203
data contracts, Indigo, 139-140
Data Items, 196
data providers, installed, 218
Data Services

introduction, 191
XAML, 193

data sources, 195
data styling, 198-200
DataTables, objects, 217
DataView object, 204
delivery errors, queues, 165
dependency properties, Avalon, 8, 20-21

attached dependency property, Canvas panel, 34
Shapes class, 57

Dependency Property System, 9-11
derived styles, Avalon, 107
directional light, Avalon, 125
DLQ (dead letter queues), 166
DockPanel panel, Avalon, 36-40

Grid, 38-40
documents, Avalon

fixed-format, 45-47
flow-format, 48
Hyperlinks class, 51
tables, 48-50
TextBlock class, 51
TextFlow class, 50

DocumentViewer control, Avalon, 26
double animation, Avalon 2-D animation, 98
DrawingBrush, Avalon graphics, 84-85
duplex communication, Indigo, 171-172
dynamic metadata, Indigo, 147

E
Ellipse class, Avalon, 58
endpoints, Indigo, 137
Enterprise Services, migration and, 176
enumerable collections, 204
ES (Enterprise Services)

Indigo comparison, 178-179
transactions, 158

252

code behind, XAML and Avalon

18_57874x bindex.qxd 8/15/05 3:55 PM Page 252

events
Avalon

binding, 117-119
bubbling, 111
resources, 112-116
tunneling, 111

CollectionChanged, 204
exporting metadata, Indigo, 144-145

F
Fill property, Avalon, 77
fixed-format documents, Avalon, 45-47
flow-format documents, Avalon, 48
formatting, binding and, 196
forms authentication, cookies and, XML

processing and, 230
Frame content control, Avalon, 23
FrameworkElement, Avalon API hierarchy, 17-20
FTP (File Transfer Protocol), XML processing

and, 226

G
Geometry abstract base class, Avalon, 66
Glyphs class, Avalon, 63
gradient brushes, Avalon, 78

abbreviated syntax, 81-82
linear, 79
radial, 80-81

graphics, Avalon
2-D, 77
brushes, 77-88
opacity, 87-88
painting, 77
paths, 63-76
shapes, 57-63
transforms, 89-93

Grid, Avalon DockPanel, 38-40

H
headered content control, Avalon, 24-25
HeaderedItem control class, Avalon, 28
hosting (Indigo), 148-150

Web hosting, 151-152
Hyperlinks class, Avalon, 51

I
ICollectionView interface, 204

methods, 205
properties, 205

IEnumerable interface, collections, binding to,
204

image brush, Avalon graphics, 84
Image class, Avalon multimedia, 32
implicit styles, Avalon, 105
Indigo

architecture, 136
bindings, 140-141

custom, 142-143
standard, 141

BizTalk Server, 172
code-first development, 138
contract-first development, 138
contracts, 137
data contracts, 139-140
duplex communication, 171-172
endpoints, 137
ES (Enterprise Services) comparison, 178-179
hosting, 148-152
integration, COM+, 184-186
introduction, 135
late-bound development, 138
MEPs (message exchange patterns), 140
messaging

queues, 160-168
SRT (Secure Reliable Transactions), 158

metadata, 144
dynamic, 147
exporting, 144-145
publishing, 144-145
Service Metadata Utility Tool, 146-147
static, 146-147

MSMQ (Microsoft Message Queue), 160
operation contracts, 139
sample end-to-end application, 152-154
service addresses, 148
service contracts, 138
Service Orientation, 136
streaming, 172
transactions, 158, 168-170

Config and, 163-164

253

Indigo

In
de

x

18_57874x bindex.qxd 8/15/05 3:55 PM Page 253

InkCanvas control, Avalon, 26
INotifyCollectionChanged interface, 204
installation, Windows Services, 242-244
installed data providers, 218
instances, enumeration, ADO.NET and, 211-219
integration, COM+ and Indigo, 184-186
interfaces

ICollectionView, 204
INotifyCollectionChanged, 204
IValueConverter, 201

interoperability, Avalon, 120
.NET controls, 120
.NET WinForm, 121

invokes, messaging
asynchronous, 166
synchronous, 166

Items controls, Avalon
HeaderedItem, 28
MenuBase, 27

IValueConverter interface, 201

L
Label content control, Avalon, 25
late-bound development, Indigo, 138
lighting, Avalon, 125

ambient light, 125
directional light, 125
point light, 125
spot light, 126

linear gradient brushes, Avalon, 79
lines class, Avalon, 59
LineSegment, Avalon, 69
ListBox control, Avalon, 29
ListBoxItem content control, Avalon, 25
loading objects, Avalon serialization, 122
logical trees, Avalon, 8

M
MARS (Multiple Active Results Sets), 218
mask opacity, Avalon, 87-88
master pages, XML processing and, 226-227
materials, 3D, Avalon, 129
MatrixTransform, Avalon, 93
MaxHeight property, Ellipse class (Avalon), 61

MaxWidth property, Ellipse class (Avalon), 61
MediaElement class, Avalon multimedia, 32
MenuBase control class, Avalon, 27
MEP (message exchange patterns), 140, 172
Mesh3D, Avalon, 128-129
messaging

invokes
asynchronous, 166
synchronous, 166

MSMQ (Microsoft Message Queue), 160
queues, 160

delivery errors, 165
DLQ (dead letter queues), 166
sessions, 164-168
transactions and, 161-163

Secure Reliable Messaging, 157-160
security, 159
SRT (Secure Reliable Transactions), 158

metadata
Indigo, 144

dynamic, 147
exporting, 144-145
publishing, 144-145
Service Metadata Utility Tool, 146-147
static, 146-147

WSDL, 144
XSD, 144

methods
Contains, 207
Convert, 201
ConvertBack, 201
MoveCurrenTo, 207
Windows Services, 237-238

MEX (MetaDataExchange), 144
migration

.NET Remoting, 176
ASMX, 176
COM+, 176
Enterprise Services and, 176
introduction, 176
MSMQ, 176, 180-182

Indigo queues and, 181-182
Web Services, 176

MinHeight property, Ellipse class (Avalon), 62
MinWidth property, Ellipse class (Avalon), 62

254

InkCanvas control, Avalon

18_57874x bindex.qxd 8/15/05 3:55 PM Page 254

Model3Dgroup, Avalon, 124
monitoring transaction performance, 222
MoveCurrentTo method, 207
moving data between tables, 212-213
MSMQ (Microsoft Message Queue), 160

migration and, 176, 180-182
Indigo queues, 181-182

multimedia classes, Avalon
Image, 32
MediaElement, 32

N
named styles, Avalon, 106-107
namespaces in Avalon, 6-7
navigation applications in Avalon, Visual Studio

and, 52-53
.NET controls, Avalon and, 120
.NET Remoting

communication channels, 183-184
migration and, 176

.NET WinForm, Avalon and, 121

O
OASIS (Organization for the Advancement of

Structured Information Standards), 176-178
objects

DataTables, 217
DataView, 204
loading, Avalon serialization, 122
saving, Avalon serialization, 122

One Time binding, 194
One Way binding, 194
opacity mask, Avalon graphics, 87-88
operation contracts, Indigo, 139
OrthographicCamera, Avalon, 124
overriding Visual Tree, Avalon styles, 109-110

P
painting in Avalon, 77
panels, Avalon, 33

BulletPanel, 42
Canvas, 33-36
DockPanel, 36-40

Grid, 38-40
StackPanel, 41-42

TabPanel, 43-44
ToolBarOverflowPanel, 44-45

PathGeometry, Avalon, 67
Paths class, Avalon, 63-76

simple geometries, 64-66
syntax, abbreviated, 72-76

performance monitor, transactions, 222
personalization, XML processing and, 231
PerspectiveCamera, Avalon, 124
point animation, Avalon 2-D animation, 98-102
point light, Avalon, 125
poly segments, Avalon, 71-72
polygons, Avalon, 59
Polyline class, Avalon, 60
processing, XML and ASP.NET, 224-231
processing transactions, 219-224
properties

Avalon, dependency properties, 8, 20-21, 34
methods, Windows Services, 238
Panel class, Avalon, 33

providers
data, installed, 218
SQL Server, statistics, 216-217

publishing metadata, Indigo, 144-145

Q
QuadraticBezierSegment, Avalon, 70
Queue Session contracts, 165
queues, messaging

delivery errors, 165
DLQ (dead letter queues), 166
sessions, 164-168
transactions and, 161-163

R
radial gradient brushes, Avalon, 80-81
RadioButtonList control, Avalon, 29
RadiusX property, Ellipse class (Avalon), 58
RadiusY property, Ellipse class (Avalon), 58
RangeBase controls, Avalon, 31
Rectangle class, Avalon, 61
Resource property, Avalon, 112-113, 116
resources, Avalon events, 112-113, 116
RotateTransform, Avalon, 91
rotation, Avalon 3D, 131

255

rotation, Avalon 3D

In
de

x

18_57874x bindex.qxd 8/15/05 3:55 PM Page 255

S
scale Avalon 3D, 131
Secure Reliable Messaging, 157-160
security in messaging, 159
Selector controls, Avalon, 29-31
serialization, Avalon

loading objects, 122
saving objects, 122

service addresses, Indigo, 148
service contracts, Indigo, 138
Service Metadata Utility Tool, 146-147
Service Orientation, Indigo and, 136
ServiceController class, 239-241
sessions, queues, 164-168
Shapes class, Avalon, 57-63

Ellipse, 58
Glyphs, 63
lines, 59
Paths, 63-76
polygons, 59
Polyline, 60
Rectangle, 61

Simple binding, 203
simple geometries, Avalon, 64, 66
SkewTransform, Avalon, 92
SolidColorBrush, Avalon, 78
spot light, Avalon, 126
SQL Server

instances, enumeration, ADO.NET and, 211-219
providers, statistics, 216-217

SqlBulkCopy command, 212-213
SqlDependency, 215-216
SRT (Secure Reliable Transactions), 158
StackPanel panel, Avalon, 41-42
standard bindings, Indigo, 141
static metadata, Indigo, 146-147
StoryBoard class, Avalon, 95-97
streaming, Indigo, 172
Stroke property, Avalon, 77
styles, 198-200

Avalon
derived, 107
implicit, 105
named, 106-107
Triggers, 108
Visual Tree override, 109-110

Svcutil, 188
SVG (Scalable Vector Graphics), Canvas panel

and, 33
synchronous invokes, messaging, 166
syntax, abbreviated

Paths, 72-76
XAML, 5-6, 81-82

System.Transactions, 158
System.Windows namespace, Avalon, 6
System.Windows.Controls namespace, Avalon, 7
System.Windows.Data namespace, Avalon, 7
System.Windows.Input namespace, Avalon, 7
System.Windows.Media namespace, Avalon, 7
System.Windows.Media.Animation namespace,

Avalon, 7
System.Windows.Media.Media3D namespace,

Avalon, 7
System.Windows.Navigation namespace,

Avalon, 7
System.Windows.Resources namespace,

Avalon, 7
System.Windows.Serialization namespace,

Avalon, 7
System.Windows.Shapes namespace, Avalon, 7

T
TabControl control, Avalon, 29
tables

Avalon, 48-50
data, moving between tables, 212-213

TabPanel panel, Avalon, 43-44
TextBlock class, Avalon, 51
TextFlow class, Avalon, 50
themes, XML processing and, 227
Thumb controls, Avalon, 32
Timeline class, Avalon, 93-94
ToolBarOverflowPanel panel, Avalon, 44-45
Transaction List, monitoring and, 222
Transaction Statistics, monitoring and, 222
TransactionOptions class, 221
transactions

ES (Enterprise Services), 158
failures, Config and, 163-164
Indigo, 158, 168-170
introduction, 157
messaging queues and, 161-163

256

scale Avalon 3D

18_57874x bindex.qxd 8/15/05 3:55 PM Page 256

performance monitoring, 222
processing, 219-224
System.Transactions, 158
Web Services, 224

TransformGroup, Avalon, 89
transforms, Avalon, 89

3D, 130
MatrixTransform, 93
RotateTransform, 91
SkewTransform, 92
TransformGroup, 89
TranslateTransform, 90

TranslateTransform, Avalon, 90
translations, Avalon 3D, 131
trees, Avalon, 8
Triggers, Avalon styles, 108
tunneling Avalon events, 111
Two Way binding, 194

U
UI (user interface), Avalon and XAML, 4
UI Binding, 193
UIElement, Avalon API hierarchy, 16
UpdateBatchSize command, 213
URIs (Uniform Resource Identifiers), service

addresses, 148

V
Viewport3D, Avalon, 122
Visual Studio

Avalon applications, 52
browser applications, 52-53
navigation applications, 52-53

Avalon Control Library, 52
Visual Tree, overriding, Avalon styles, 109-110
VisualBrush, Avalon graphics, 85-87

W
WAS (Windows Activation Services), 152
Web hosting, Indigo and, 151-152
Web Services

ASMX and, 176-178
enhancements, 176-178
transactional, 224

Windows Services
controlling, ServiceController class, 239-241
creating, 233-238
installation, 242-244
introduction, 233
methods, 237-238

WS-MEX, exporting metadata, 144
WSDL (Web Service Description Language), 144

X–Y–Z
XAML (Extensible Application Markup

Language), 3, 193
Avalon and, 4

code behind, 4
UI, 4

introduction, 4
overview, 15-16
syntax, 5-6

XML processing, ASP.NET and, 224
base pages, 228
data binding, 229-230
forms authentication, cookieless, 230
FTP support, 226
master pages, 226-227
multi-language support, 225
personalization, 231
themes, 227

XSD (XML Schema Definition), 144

257

XSD (XML Schema Definition)

In
de

x

18_57874x bindex.qxd 8/15/05 3:55 PM Page 257

