Brought to You by

Like the book? Buy it!

 Program

- Construction

Calculating Implementations from Specifications

ROLAND BACKHOUSE

Program Construction

This page intentionally left blank

Program Construction

Calculating Implementations
from Specifications

Roland Backhouse
The University of Nottingham, UK

WILEY

Copyright © 2003 John Wiley & Sons, Ltd
The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

National 01243 779777
International (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the
publication. Requests to the Publisher should be addressed to the Permissions Department,
John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Neither the authors nor John Wiley & Sons, Ltd accept any responsibility or liability for
loss or damage occasioned to any person or property through using the material, instruc-
tions, methods or ideas contained herein, or acting or refraining from acting as a result of
such use. The authors and publisher expressly disclaim all implied warranties, including
merchantability or fitness for any particular purpose. There will be no duty on the authors
or publisher to correct any errors or defects in the software.

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Ltd is aware of a claim, the product names
appear in capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

This publication is designed to provide accurate and authoritative information in regard
to the subject matter covered. It is sold on the understanding that the Publisher is not
engaged in rendering professional services. If professional advice or other expert assis-
tance is required, the services of a competent professional should be sought.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data
(to follow)

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
0470 848820

Typeset in 10/12.5pt Lucida Bright by TgT Productions Ltd, London.

Printed and bound in Great Britain by Biddles Ltd, Guildford and Kings Lynn.

This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

Preface

1 A Science of Computing

1.1
1.2
1.3
1.4

Debugging

Testing a Correct Program
Testing an Incorrect Program
Correct by Construction

2 A Searching Problem and Its Solution

Problem Statement
Problem Solution
Proof of Correctness
What, Why and How
Exercises

Summary

3 (Calculational Proof

3.1
3.2
3.3

3.4
3.5

The Nature of Proof
Construction versus Verification
Formatting Calculations

3.3.1 Basic Structure

3.3.2 Hints

3.3.3 Relations between Steps
3.34 ‘If’ and ‘Only If’

A Classic Example

Summary

4 Implementation Issues

4.1

4.2
4.3

Binary Search

4.1.1 Implementation
Verifying Correctness—A Taster
Summary

5 Calculational Logic: Part 1

Logical Connectives

Boolean Equality

Examples of the Associativity of Equivalence
Continued Equivalences

The Island of Knights and Knaves

Contents

S VT W RS e

Contents

5.6 Negation 65
5.7 Summary 68
Number Conversion 71
6.1 The Floor Function 71
6.2 Properties of Floor 73
6.3 Indirect Equality 75
6.4 Rounding Off 77
6.5 Summary 80
Calculational Logic: Part 2 83
7.1 Disjunction 83
7.2 Conjunction 85
7.3 Implication 88

7.3.1 Definitions and Basic Properties 89

7.3.2 Replacement Rules 90
7.4 Exercises: Logic Puzzles 93
7.5 Summary 96
Maximum and Minimum 97
8.1 Definition of Maximum 97
8.2 Using Indirect Equality 98
8.3 Exercises 101
8.4 Summary 103
The Assignment Statement 105
9.1 Hoare Triples 105
9.2 Ghost Variables 107
9.3 Hoare Triples as Program Specifications 109
9.4 Assignment Statements 112
9.5 The Assignment Axiom 113
9.6 Calculating Assignments 115
9.7 Complications 118
9.8 Summary 119
Sequential Composition and Conditional Statements 121
10.1 Sequential Composition 121
10.2 The skip Statement 123
10.3 Conditional Statements 124
10.4 Reasoning about Conditional Statements 126
10.5 Constructing Conditional Statements 130
10.6 Combining the Rules 132
10.7 Summary 136
Quantifiers 137
11.1 DotDotDot and Sigmas 137
11.2 Introducing Quantifier Notation 141

11.2.1 Summation 141

11.2.2 Free and Bound Variables 143

11.2.3 Properties of Sumination 146

11.2.4 The Gauss Legend 151

11.2.5 Warning 152

Contents vii
11.3 Universal and Existential Quantification 153
11.3.1 Universal Quantification 154
11.3.2 Existential Quantification 155
11.3.3 De Morgan’s Rules 156
11.4 Quantifier Rules 156
11.4.1 The Notation 157
11.4.2 Free and Bound Variables 158

11.4.3 Dummies 15
11.4.4 Range Part 158
11.4.5 Trading 159
11.4.6 Term Part 159
11.4.7 Distributivity Properties 159
11.5 Summary 163
12 Inductive Proofs and Constructions 165
12.1 Patterns and Invariants 166
12.2 Mathematical Induction 170
12.3 Strong Induction 175
12.4 From Verification to Construction 179
12.5 Summary 182
13 Iteration 183
13.1 The do-od Statement 183
13.2 Constructing Loops 184
13.3 Basic Arithmetic Operations 187
13.3.1 Summing the Elements of an Array 187
13.3.2 Evaluating a Polynomial 188
13.3.3 Evaluation of Powers 191
13.4 Summary 195
14 Sorting and Searching Algorithms 197
14.1 The Dutch National Flag 197
14.1.1 Problem Statement 197
14.1.2 The Solution 199
14.1.3 Verifying the Solution 201
14.2 Finding the K Smallest Values 205
14.2.1 The Specification 206
14.2.2 The Algorithm 208
143 Summary 212
15 Remainder Computation 215
15.1 Formal Specification 215
15.2 Elementary Algorithm 217
15.3 The mod and div Functions 219
15.3.1 Basic Properties 221
15.3.2 Separating mod from + 223
15.3.3 Separating + from mod 224
15.3.4 Modular Arithmetic 224
15.4 Long Division 228
15.4.1 Implementing Long Division 229
15.4.2 Discarding Auxiliary Variables 233
15.5 On-Line Remainder Computation 234
15.6 Casting Out Nines 238
15.7 Summary 239

Contents

16 Cyclic Codes

16.1
16.2
16.3
16.4
16.5
16.6

Codes and Codewords

Boolean Polynomials

Data and Generator Polynomials
Long Division

Hardware Implementations
Summary

Appendix

Solutions to Exercises

References

Glossary of Symbols

Index

241

241
243
246
247
249
253

255

263

331

333

335

Preface

Programming is a highly skilled activity, and good programmers are few and far
between. In few other professions is the 90-10 rule (90% of the effort goes into
the last 10% of the work) so vitally important. Many programmers are able to
write programs that ‘work’ in most circumstances; few programmers know the
basic principles of program specification, let alone how to construct programs
that guarantee to meet their specifications in all circumstances.

It is no wonder. Many texts have been written that explain how to encode compu-
tational processes in some specific programming language (C, Java, Visual Basic,
or whatever), but few tackle the much harder problem of presenting the problem-
solving skills that are needed to formulate programming problems precisely and
concisely, and to convert those formulations into elegant implementations.

This book is about programming per se. It is about the most elementary princi-
ples of program construction—problem decomposition, invariant properties, and
guarantees of progress. It is intended to appeal to both novice programmers, who
wish to start on the right track, and to experienced programmers who wish to
properly master their craft.

Although the subject matter of the book is ‘elementary’, in the sense of foun-
dational, it is not ‘easy’. Programming is challenging, and it is wrong to skirt the
issues or to wrap it up in a way that makes it seem otherwise. I have lectured
on this material for many years, mostly to undergraduates on computing science
degrees, and, occasionally, to professional programmers. Inevitably, it is the expe-
rienced programmers who appreciate its value the most. Novice programmers
have the additional hurdle of learning how to write code—too often in a highly
complex programming language. For them, the problem is the programming lan-
guage, whereas, of course, the programming language should not be a problem,
but part of the solution.

In order to present the real challenges of programming without obfuscation,
the book uses a very simple programming language, with just four programming
constructs—assignment, sequential composition, conditionals and loops. I have
omitted variable declarations, so that the focus of the book remains clear. Experts
will recognize the language as the Guarded Command Language, a simple, elegant
language designed by Dijkstra specifically for this purpose.

Preface

The book is a major revision of my earlier book Program Construction and Ver-
ification, published in 1986. Some sections remain the same, but there is much
that is different. The main difference is reflected in the omission of ‘verification’
in the title. The primary goal of the book is to show how programs are constructed
to meet their specifications, by means of simple, mathematical calculations. The
emphasis on construction is crucial; the fact that the calculations can be formally
verified is also important, but much less so. Unfortunately, however, the empha-
sis in many related texts is the reverse; the fundamental principles of program
construction are introduced as a mechanism for performing a post hoc validation
of the program’s correctness, and their integral role in the activity of developing
programs is neglected. Even worse, automatic verification is often given as the pri-
mary justification for their use. I have no doubt that this misplaced emphasis on
verification rather than construction has, for long, stood in the way of the accep-
tance and active use of the principles by practising programmers. Quite rightly,
professional programmers will strive to ensure that their programs are correct by
construction; it is this endeavour that this text aims to support.

Another aspect of the text that has undergone major revision is the discus-
sion of logical reasoning. I now realize just how inadequate my own education
in logic has been. The traditional style of reasoning in mathematics is to verify
a conjecture by means of a sequence of true statements, each statement being a
self-evident truth or implied by earlier ones. Calculational logic, as presented in
this book, places equality of propositions at the forefront. Mathematical theorems
are derived (not verified) by a process of algebraic calculation, just as in school
algebra and in differential and integral calculus.

The basis for calculational logic was formulated by Dijkstra and Scholten, in
their 1990 book Predicate Calculus and Program Calculus. In my view, their work
has initiated a major revolution in the art of effective reasoning. As yet, however,
it is largely unknown in mathematical circles. Hopefully, this book will help to
foster the widespread acceptance and application of their ideas.

Intended Readership

The book has been written primarily for self-study. Many exercises have been sup-
plied, with complete solutions, interspersed throughout the text. Only by making a
serious attempt at the exercises can the material be properly mastered. My hope is
that readers will do the exercises as they read, rather than postponing them until
the chapter has been completed. Many of the exercises are quite challenging; the
solutions are there to be consulted, so that the reader can build up confidence
and experience in an effective, calculational style of reasoning.

I anticipate that all readers will have an elementary, operational understanding
of at least one programming language. (By this, I mean that they will know about
the store (‘memory’) of a computer, and how an assignment statement updates the
store. They will also know how conditional statements, sequences of statements,

Preface

xi

and loops are executed.) Most benefit will be gained by studying the book simulta-
neously with, or shortly after, learning how to code in a conventional (preferably
simple!) programming language. In this way, it is possible to appreciate just how
easy it is to get things wrong, and to gain the satisfaction of being confident that
you are right.

The assumed mathematical knowledge is minimal. Only simple properties of
arithmetic (including inequalities between integers and reals) are required. How-
ever, my experience of where students have difficulty (apart from the intrinsic
difficulty of the subject matter) is primarily in the mathematical skill of alge-
braic manipulation. Allowing sufficient time in the curriculum for the students to
develop this skill, rather than trying to cram it into an already overfull syllabus,
is the best remedy.

Lots more examples and exercises could have been included in the book. I have
deliberately refrained from doing so in order to keep the book relatively short.
My plan is to publish additional supporting material from time to time, access to
which can be gained via the URL http://www.wiley.com/go/backhouse.

Acknowledgments

It is a pleasure to record my gratitude to some of the people who have helped in
the realization of this book, however indirect their help may have been.

First and foremost, I am indebted to my own teachers, without whom my own
work would not have been possible. It will soon become very evident to the reader
of the ‘Bibliographic Remarks’ who has influenced me the most. I am particularly
indebted to the late Edsger W. Dijkstra, whose writings have been a major inspi-
ration for many years. I have also learnt much from David Gries’s books; David
also reviewed an early draft of this book, in exceptionally comprehensive and
helpful detail, for which I am very grateful. Thanks, too, to Tony Hoare, for his
support and encouragement; I am also grateful to him and the Queen’s University
of Belfast for kind permission to reproduce a major part of his inaugural lecture.

I learnt a very great deal during the 13 years that I spent in the Netherlands,
about mathematical method, about teamwork, and about academic and scientific
values. Many thanks go to Henk Doornbos, Paul Hoogendijk, Ed Voermans and
Jaap van der Woude, whose loyalty and enthusiasm are unforgettable. Thanks,
also, to Doaitse Swierstra for his support and friendship in difficult times. Special
thanks must go to Netty van Gasteren, who tragically died only recently, from
whom I learnt more than I really appreciated at the time.

A number of people have helped directly by reading drafts of the text, pointing
out errors and making suggestions for improvements. Robert L. Baber and Tony
Seda both gave me extensive and very thoughtful reviews of an earlier draft. I hope
that [have done justice to their criticisms. Diethard Michaelis has also sent me
many invaluable comments and corrections.

Preface

The book was prepared using Mathfpad, a system that aims to integrate the
process of doing mathematics and writing about it. Its use, in combination with
the TiX and KIiX systems, has been of immeasurable benefit to me. I am grateful
to Eindhoven University of Technology and the Dutch government for their gen-
erous support of the development and implementation of Mathfpad. I am greatly
indebted to Richard Verhoeven, who not only implemented the system, working
many long hours in doing so, but who also has always been, and continues to be,
extremely helpful, willing and generous, giving of his time far beyond the call of
duty.

Thanks are also due to the staff of John Wiley & Sons, Ltd, for their friendly
and professional help in producing this book. Thanks also to Sam Clark, of
TgT Productions Ltd, for the cheerful and competent way he has assisted in trying
to make sure that everything is exactly right.

As always, my biggest thanks go to my wife, Hilary.

Roland Backhouse
January 2003

1

A Science of
Computing

The hallmark of a science is the avoidance of error.
J. Robert Oppenheimer

The electronic, digital computer is a marvel of modern technology. Within a life-
time, it has developed from nothing to a tool whose use is so widespread that we
are often unaware that it is there. The first computers, built in the 1940s, were
monstrous. As recently as the 1960s and 1970s, it was common for new employ-
ees in a company to be shown ‘the computer’—housed in a special-purpose, air-
conditioned room, to which admission was restricted to a select few. Nowadays,
computers are used in many household appliances, they are also used in cars,
trains and aircraft, and we even carry them around with us—Ilaptops, palm-tops,
what would we do without them?

The developments in computer hardware have been truly phenomenal. But
developments in computer software have not kept pace. The programming lan-
guages that are in use today have changed little from the programming languages
that were developed in the 1950s, and programming remains a highly skilled activ-
ity. It is the nature of the task that is the problem. The hardware designer must
build a dumb machine, whose sole purpose is to slavishly execute the instructions
given to it by the programmer; the programmer has to design general-purpose sys-
tems and programs, at a level of detail at which they can be faithfully executed,
without error, by even the dumbest of machines.

Chapter 1: A Science of Computing

1.1

Debugging

There is a story about the current state of computer software that is widely
reported on the Internet. The chief executive of a multi-billion dollar software
company compared the computer industry with the car industry.

‘If the automobile industry had kept up with technology like the com-
puter industry has,’

he is reported to have said,
‘we would all be driving $25 cars that get 1000 to the gallon’.

‘That may be true,

was the swift response of the president of one automobile company,
‘but who would want to drive a car that crashes twice a day?’

This story is, most likely, just a joke!. But, like all good jokes, it succeeds because
it reflects profoundly on modern-day reality.

At the time of writing (December 2002), it is still the case that computer soft-
ware is liable to spontaneously ‘crash’, due to simple programming errors (or
‘bugs’ as they are called in the software industry). In contrast, the car indus-
try is often held up as an exemplar of excellence in standards of safety and
reliability.

Memories are short. Cars may be (relatively) safe and reliable today but, in the
1950s, as highlighted by Ralph Nader in his acclaimed book Unsafe At Any Speed,
cars were knowingly made and sold that were liable to spontaneous crashes, and
car manufacturers were guilty of deliberately undermining efforts to invest in
improved standards. (‘Safety and sales strategies do not mix’ was the argument
used at the time.)

The computer industry of today is very much like the car industry of the 1950s.
Computers are still relatively new, and the novelty factor has not worn off, so that
guarantees of reliability and fitness-for-purpose are, for many, a low priority. Few
programmers are trained in scientific methods of constructing programs and,
consequently, they waste substantial amounts of effort ‘debugging’ their pro-
grams, rarely with complete success. (‘Debugging’ is the process of repeatedly
testing, followed by patching, the program, in an attempt to remove discovered
eITors.)

The need for alternative, mathematically rigorous, program construction tech-
niques was recognized in the late 1960s when the large computer manufactur-
ers first began to realize that the costs of producing computer software were

1 At least, I think it is. It may be true, but it is difficult to verify the authenticity of material on the
Internet. For this reason, names have been omitted in this account.

1.2 Testing a Correct Program 3

1.2

outstripping by far the costs of producing computer hardware. They spoke of
a ‘software crisis’. The problems of producing reliable computer software were
aired at two conferences on Software Engineering, held in 1968 and 1969 and
sponsored by the NATO Science Committee. Typical of the sort of facts laid
bare at these conferences was the following statement by Hopkins of the IBM
Corporation.

We face a fantastic problem in big systems. For instance, in 0S/360°
we have about 1000 errors per release.

Tellingly, he added:

Programmers call their errors ‘bugs’ to preserve their sanity; that num-
ber of ‘mistakes’ would not be psychologically acceptable.

The process of debugging has several drawbacks: it is useless as a methodology
for constructing programs, it can never be used to establish the correctness of a
correct program, and it cannot be relied upon to establish the incorrectness of an
incorrect program.

Let us look in detail at these drawbacks. Here are two examples, each illustrating
a different aspect.

Testing a Correct Program

One well-known method of computing n?, for some positive integer n, without
performing a multiplication is to sum the first n odd numbers. This is based on
the property that

n? = 14345+...+02n-1) .

Not so well known is that a similar method can be used to compute n3, n4, n>,
etc., without performing a multiplication. To see how this is done let us re-express
the computation of n? as follows.

First, write down all the positive integers up to (and including) 2n — 1. For n =6,
this means the numbers 1 through 11.

1 2 3 4 5 6 7 8 9 10 11
Cross out every second number:

1 3 5 7 9 11
Finally, add these together to form a running total:
1 4 9 16 25 36

To compute n3, begin as before by writing down all the positive numbers, but
this time up to 3n — 2. For n = 6, this means the numbers 1 through 16.

2 At that time, 0S/360 was a widely used operating system for IBM computers.

Chapter 1: A Science of Computing

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
Cross out every third number:

1 2 4 5 7 8 10 11 13 14 16
Add these together to form a running total:

1 3 7 12 19 27 37 48 61 75 91
Cross out every second number:

1 7 19 37 61 91
Finally, form a running total:

1 8 27 64 125 216

The general algorithm for computing n™ is to write down all the positive
numbers up to mn —m+ 1. Then we iterate m—1 times the process of cross-
ing out numbers followed by forming a running total. On the kth iteration every
(m—k+1)th number is crossed out. (In this way, the set of numbers crossed out
changes from every mth number on the first iteration to every second number on
the last iteration.)

Now, we can test this algorithm in two ways. We can extend one of the existing
tables to the right; for example, the table for n? can be extended to calculate 7°
and 82:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 3 5 7 9 11 13 15
1 4 9 16 25 36 49 64

Alternatively, we can add new tables to the ones we already have; for example,
the table for 34:

1 2 3 4 5 6 7 8 9
1 2 3 5 6 7 9
1 3 6 11 17 24 33
1 3 11 17 33
1 4 15 32 65
1 15 65
1 16 81

We can continue this testing as much as we like (indeed, for ever and a day).
Each time we add more entries and verify the correct result, our confidence in the
algorithm grows. But, this process will never make us totally confident. Can we be
sure that it will correctly compute 21° or 6!2? On the evidence presented so far

would you be willing to gamble on its correctness?
Edsger W. Dijkstra, an eminent computer scientist, has summarized the flaw in

testing in a now-famous quotation.

Program testing can be used to show the presence of bugs, but never
to show their absence.

1.3 Testing an Incorrect Program

W1

1.3

ODE

Figure 1.1 Cutting the cake.

Exercise 1.1 (Cutting the cake). This exercise demonstrates the fallacy of using
‘poor man’s induction’, i.e. extrapolating from a few cases to a more general claim.

Suppose n points are marked on the circumference of a circular cake and then
the cake is cut along the chords joining them. The points are chosen in such a
way that all intersection points of pairs of chords are distinct. The question is: in
how many portions does this cut the cake?

Figure 1.1 shows the case whenn is 1, 2, 3 or 4.

Suppose n =5. Determine the number of portions. On the basis of these five
cases make a conjecture about the number of portions for arbitrary n. Now, sup-
pose 1 = 0. Does this support or refute the conjecture? Next, suppose n = 6. Deter-
mine the number of portions. What do you discover? O

Testing an Incorrect Program

Testing cannot be used to establish the absence of errors in a program. Nor can
testing be relied upon to show the presence of errors.

I once had a very graphic illustration of this when I had to mark a programming
assignment. The problem the students had been set was to write a program that
would compare two strings for equality. One student’s solution was to assign the
value true or false to a boolean equal as follows?:

equal = (stringl.length=string2.length);
if equal
then for i := 1 to stringl.length
do equal := (stringl.character|i]=string2.character[i])

The problem with this code is that it returns the value true whenever the two
strings have equal length and their last characters are identical. For example, the
two strings ‘cat’ and ‘mat’ would be declared equal because they both have length
three and end in ‘t’.

The student was quite taken aback when I demonstrated the error. Indeed, upon
further questioning, it emerged that the program had been tested quite system-

3The program is coded in Pascal. The characters of a string s are assumed to be stored in the
array s.character, indexed from 1 to s.length.

Chapter 1: A Science of Computing

1.4

atically. First, it had been tested on several pairs of identical strings, and then on
several pairs of strings of unequal length. Both these tests had produced satis-
factory results. The final test had been to input several pairs of equal length but
unequal strings, such as ‘cat’ and ‘dog’, or ‘house’ and ‘river’.

This final test is interesting because it is possible to use simple probability
theory to make a rough estimate of the chances of discovering the programming
error. The details are not relevant here. Suffice it to say that, assuming pairs of
words of equal length are generated with equal letter frequencies (that is, each
letter in the alphabet is chosen with a probability of 1/26), there is only a one
in three chance of discovering the error after ten tests; increasing the number
of tests to 20 would still only yield a one in two chance, and one would need to
perform over 50 tests to achieve a 90% chance of discovering the error. Finally,
and most importantly, there is no certainty that one would ever discover the error,
no matter how many tests have been performed.

So, you see that program testing is never-ending. We can never be sure that all
avenues have been tried; we can never be sure that there is not one more error
lurking unseen, just waiting for the most crucial opportunity to show itself.

(Needless to say, I observed the error by reading the code, not by testing. The
student was blameless. The error was the responsibility of the student’s teacher
for having failed to teach proper design principles and suggesting that testing
was adequate.)

Correct by Construction

That debugging is not fail-safe is a drawback, but not its main limitation. The
main problem with debugging is that it is useless as the basis for program design,
of which fact even a small acquaintance with programming will convince you. An
alternative to debugging is the development of a science of programming. Such
a science should provide the techniques to enable the verification of a program
against its specification. But it should do more than that; it should provide a
discipline for the construction of programs that guarantees their correctness.

Of course, the science guarantees correctness only if it is used correctly, and
people will continue to make mistakes. So testing is still wise, and debugging
will occasionally be necessary. But now, rather than chance, it is our own skill in
applying the science on which we rely. The aim of this book is to impart that skill
and to enable you to take a pride in your programming ability.

Bibliographic Remarks

The Internet is awash with accounts of bugs and other programming errors that
have made headline news over the years. For a particularly tragic case, search on
the word ‘Therac’ for details of a software error that resulted in at least three

1.4 Correct by Construction 7

deaths by an overdose of radiation in 1986. Searching on ‘Risks’ (short for ‘Forum
on Risks to the Public in Computers and Related Systems’) yields details of many
other examples.

The summary of the state of the car industry in the 1950s (see Section 1.1) is
based on Unsafe At Any Speed by Nader (1965). The reports on the two NATO
Science Committee-sponsored conferences (Naur and Randell, 1969; Buxton and
Randell, 1970) are available on the Internet.

A very large part of the text has been directly influenced by the work of Edsger
W. Dijkstra. The quotation attributed to Dijkstra in Section 1.2 appears in Buxton
and Randell (1970), which is also the source of Hopkins's remarks.

I first saw the algorithm for computing the powers of n, discussed in Section 1.2,
in Polya (1954); it was originally discovered by Mossner (1951) and verified by
Perron (1951).

The case n =0 in the cutting-the-cake problem (Exercise 1.1) was pointed out
to me by Diethard Michaelis. A formula giving the number of portions is quite
complicated. See Dijkstra (1990) for a derivation of the correct formula.

This page intentionally left blank

2.1

2

A Searching
Problem and
Its Solution

Examples are better than precepts; let me get down to examples—I much
prefer examples to general talk.

G. Polya

This chapter is about the systematic development of a search algorithm and its
proof of correctness. The algorithm is presented in English rather than in a math-
ematical language so that you can begin to understand the process of algorithm
design without being distracted by perhaps unfamiliar notation. A disadvantage
is that the description is imprecise and relies on your good will in understanding
what is meant.

Problem Statement

The problem we consider is this. Suppose you are presented with a deck of cards,
as shown in Figure 2.1. On each card is printed the name of a student together with
personal details (date of birth, address, examination record, etc.). The cards are
all in alphabetical order (according to surname). Suppose you are also presented
with one additional card on which is printed the name of a student X. The task
is to describe a procedure for splitting the deck of cards into two parts in such

10

Chapter 2: A Searching Problem and Its Solution

Abel

Figure 2.1 Sorted deck of cards.

a way that (a) all of the cards in the first part precede X in alphabetical order,
and (b) none of the cards in the second part precedes X in alphabetical order.
Otherwise, the original deck should be left intact.

We call this a searching problem because we are effectively looking for the
position in the deck at which to insert the new card.

When presented with a problem like this, the first step is to ensure that you have
a clear understanding of the problem. For programming purposes, the demands
on clarity and unambiguity of the problem specification are much higher than
if the task is to be carried out manually by a colleague, when one can rely on
common sense and intelligence. We discuss program specification in detail later,
but for the purposes of this exposition we rely on goodwill in making sense of
some of the actions to be described.

One point needing clarification is that the process of splitting the original deck
may result in one of the parts being empty. For example, if the deck contains the
student surnames

Einstein
Newton
Russell

and the name X is Galileo, the deck should be split into the two parts consisting
of, first, the card belonging to Einstein and, second, the two cards belonging to
Newton and Russell. However, if the name is Turing, the first part consists of all
three cards in the original deck and the second part is empty.

The mathematical abstraction of regarding no cards as being nonetheless a deck
of cards is a useful one with the very practical effect of reducing the number of
cases one has to consider from three (X is at the beginning, X is in the middle, and

2.3 Problem Solution 11

2.2

X is at the end) to one. As a bonus, the original problem statement now applies
to an empty deck of cards, in which case the process of splitting the deck would
result in two parts, each of which is also empty.

Problem Solution

Here is an efficient algorithm to solve the problem. We maintain at all times three
decks of cards. The first of these, which we call the left deck, contains cards that
are all known to precede X in alphabetical order; the third deck, which we call
the right deck, contains cards that are all known to not precede X in alphabetical
order; finally, the second deck, which we call the middle deck, contains cards that
may or may not precede X in alphabetical order. All three decks are alphabetically
ordered and are such that recombining the left, middle and right decks, in that
order, returns the deck to its original form.

Initially, the left and right decks are both empty. The task is complete when
the middle deck is empty. We make progress to this state by repeatedly remov-
ing cards from the middle deck and adding them to either the left or right
deck.

In more detail, the procedure to be used is the following. Arrange space on
a table for the three decks of cards. Initially, the entire deck is placed face
up in the space reserved for the middle deck. The left and right decks are
empty. Subsequently, the following process is repeated until the middle deck is
empty.

Pick up the middle deck and split it in two. This splitting may take place in
an arbitrary fashion except that the deck containing the cards that are later in
alphabetical order should be non-empty. Call the two decks the lower and upper
decks, where the lower deck contains the cards that are earlier in alphabetical
order and the upper deck contains the cards that are later in alphabetical order.
Then, depending on the student name revealed at the start of the upper deck, do
one of two things.

(R1) If the name precedes X in alphabetical order, place the entire lower deck
and the first card of the upper deck face down on the left deck and return
the remainder of the upper deck to the middle deck.

(R2) If the name does not precede X in alphabetical order, place the entire upper
deck face up on the right deck and return the lower deck to the middle deck.

When the middie deck is empty, the goal of splitting the deck in two will have
been achieved.

This completes the description of the algorithm. Let us now see what would
constitute a proof of correctness.

12

Chapter 2: A Searching Problem and Its Solution

2.3

Proof of Correctness

The first thing to be completely clear about is that ‘correctness’ as used in this
text is a relative notion. The word ‘correct’ sounds absolute—and that may be the
way you use it in everyday conversation—but it is being used here as a technical
term. When we refer to a program being ‘correct’, we mean relative to some given
specification. Generally, the specification of a programming problem consists of
a precondition, describing the properties of the input data, and a postcondition,
describing the desired effect of the computation. In our searching problem, the
precondition comprises a description of the given deck of cards and the informa-
tion it contains together with the important requirement that the names on the
cards be alphabetically ordered. The postcondition states that the given deck of
cards is to be split into two and details the properties required of the two parts.
In terms of the solution we have presented, these properties are:

(P1) every card in the left deck precedes X in alphabetical order;
(P2) none of the cards in the right deck precedes X in alphabetical order;

(P3) the original deck can be retrieved by recombining the left and right decks in
that order.

The proof of correctness hinges on two aspects of the repeated process, the
so-called bound function and the invariant.

In general, the bound function is an integer function of the data being manipu-
lated. It measures, in some sense, the ‘size’ of the problem remaining to be solved.
We use it to prove that the repeated process will always terminate, i.e. that the
program will not ‘get into a loop’ and repeat the same sequence of actions indef-
initely.

The invariant is a property of the data being manipulated that holds irrespective
of the number of repetitions that have been executed. We use the invariant to
establish so-called ‘conditional correctness’, meaning that the program meets its
specification under the assumption of (or ‘conditional’ on) a proof of termination.

(a) Proof of Termination. For the bound function, we take the number of cards
in the middle deck. To use it to prove that the process of repeatedly executing
(R1) or (R2) will always terminate, we make two observations.

(T1) There is a lower bound (zero) on the number of cards in the middle deck.
In this case, the lower bound is dictated by the physical characteristics of
a deck of cards. In general, we look to the condition for terminating the
repeated process to provide such a bound.

(T2) Every time the repeated part of the search process is executed, the number
of cards in the middle deck decreases by at least one. This is because we
have been careful to ensure that the inspected card is always removed from
the middle deck and added to either the left or right deck.

2.3 Proof of Correctness 13

Together, these two observations make it obvious that the number of times the
repeated part of the algorithm is executed is at most equal to the number of cards
in the original deck.

It is worth noting in passing that this proof of termination does not depend
on how the middle deck is split at each iteration. It is allowed, for example, to
always split it so that the lower deck is empty. This is correct but inefficient. A
more efficient strategy is to always split the middle deck into two (as near as
possible) equal parts, since this means that its size is (approximately) halved at
each repetition. We return to the issue of efficiency in Chapter 4 but, for the
moment, correctness is our only concern.

(b) Conditional Correctness. The second part of the proof of correctness is given
the name conditional correctness'. A proof of conditional correctness assumes
that the execution of a program terminates and concentrates on establishing that
its specification is met.

The properties we use to establish the conditional correctness of our searching
algorithm have already been stated. They are:

{I1) every card in the left deck precedes X in alphabetical order;
(I2) none of the cards in the right deck precedes X in alphabetical order;

(I3) the original deck may be retrieved by recombining the left, middle and right
decks, in that order.

Note that these properties hold no matter how often the splitting process has
been executed, and so we refer to them as invariants.

Note, also, that properties (I1)-(I3) generalize the properties (P1)-(P3) above.
Indeed, (I1) and (P1) are identical, as are (I12) and (P2). Properties (I3) and (P3) are,
however, different; they are the same only when the middle deck is empty. It is
in this sense that (I3) generalizes (P3). The invention of invariants is a crucial
process in program construction. Typically, as this example illustrates, invariants
are generalizations of the required postcondition.

We use the principle of mathematical induction to prove that these three prop-
erties really are invariant. Generally, the principle of mathematical induction is
used to prove that some property P.n is true for all natural numbers 7. (The nat-
ural numbers are the whole numbers beginning at 0, thus 0, 1, 2, 3 and so on. The
notation ‘P.n’ indicates that P is a function of ».) In this case, n refers to the num-
ber of times the middle deck has been split and property P is property (I1) and
property (12) and property (I3). In other words, what we wish to prove is that, for
any natural number n, each of properties (I1), (I2) and (I3) hold after n iterations
of the repeated process.

IMany texts use the term ‘partial correctness’ instead. The statement that a program is ‘partially’
correct can be misleading, since it suggests that there is something wrong with the program. ‘Con-
ditional’ correctness is the term introduced and favoured by C. A. R. Hoare, the computing scientist
to whom the techniques on which this text is based are widely attributed.

14

Chapter 2: A Searching Problem and Its Solution

2.4

The first step is to show that they all hold after O iterations—i.e. initially. This
is true of (I1) as initially the left deck is empty. Similarly, (I2) is true initially.
Property (I3) is also true because the combination of the left, middle and right
decks is just the middle deck, which is identical to the original deck.

The next step is to make the induction hypothesis that all three properties
hold just before execution of the repeated part. Then we examine in turn the
two cases considered within the splitting process and show that, in each case,
properties (I1)-(I3) remain true after its execution. Let us examine just one of
these cases to see how the argument goes.

We are assuming that the original deck has been split into three decks—the
left, middle and right decks—and that all the cards in the left deck and none of
the cards in the right deck precede X in alphabetical order. Let us suppose that
cutting the deck reveals a name that precedes X in alphabetical order. Then, as the
original deck was sorted, the name on every card in the lower part of the middle
deck must also precede X. Thus, removing the lower deck and the revealed card
from the middle deck and appending them to the left deck preserves property (I1).
The right deck is not affected, so (I2) remains true. Finally, we leave the deck intact,
in the sense of (I3), by adding the removed cards to the end of the left deck.

A similar argument applies in the case that cutting the deck reveals a name that
does not precede X in alphabetical order.

The final step in our use of mathematical induction is to argue that, as proper-
ties (I1)-(I3) hold initially, they must, by the above argument, also hold after one
iteration of the repeated part and, therefore, after two and three, and so on. We
conclude that (I1)-(I3) are invariants, i.e. their truth is independent of the number
of times the repeated part has been executed.

There is one more step remaining before our proof is complete. This is to show
that the postcondition of the algorithm is a logical consequence of the condi-
tion for termination and the invariant property. This is clearly true because, on
termination, the middle deck is empty, which is equivalent to saying that the orig-
inal deck has been split into two. More formally, when the middle deck is empty,
invariant (Ii) is equivalent to postcondition (Pi), where i is 1, 2 or 3.

What, Why and How

The objective of this chapter has been to summarize the main elements of pro-
gram construction, using a concrete example as illustration. A brief summary is
that there are three essential ingredients: the ‘what’, the ‘why’ and the ‘how’.

The ‘what’ is the program’s specification. A specification acts as a contract
between the client, who commissions the software, and the programmer, who
implements the software; it says what the program should compute.

The ‘how’ is the implementation itself. It consists of a number of instructions
that are executed by a computer. The implementation thus prescribes how to meet
the specification.

2.5 Exercises 15

2.5

The ‘why’ is the justification that the implementation does indeed meet its spec-
ification. It documents the program by explaining the function of the instructions
in the implementation; it says why the program is as it is.

A precise specification is essential to the construction of reliable programs;
without one, there is simply no basis for verifying that the client’s requirements
have been met. Also, because it is to be executed by an unforgiving machine, the
implementation needs to be precise and unambiguous. Finally, the justification
that the program meets its specification needs to be precise, in order to have
complete confidence in the correctness of the implementation.

In this chapter, we have foregone precision for the sake of illustration. This
lack of precision means that we cannot truly claim to have developed a correct
implementation of the given specification. The problem lies in the use of an impre-
cise language (English) to discuss the program,; at times you have been expected to
interpret the statements generously. (For example, the way in which the lower and
upper decks, or the left and right decks, are combined into one was never precisely
stated, although it is crucial to keeping the original deck intact.) In later chapters,
we rectify the problem. We introduce a simple language for program specifica-
tion, and a separate language for program implementations. We also relate the
two, precisely and concisely.

Exercises

Exercise 2.1 (Find). The development of the mathematics of program con-
struction was pioneered by, most prominently, Edsger W. Dijkstra and C. A. R.
Hoare (now Sir Tony Hoare). In his inaugural lecture at The Queen’s University
of Belfast in February 1971, Hoare presented the design of an algorithm which
he enacted with a deck of cards. In this question, you are asked to study Hoare’s
description of the algorithm and then analyse the correctness argument he gave.

This is Hoare’s description of the algorithm?. Study it carefully and then answer
the questions which follow.

...So in order to explain my understanding of computer science, it
is essential to describe the nature of the activity of computer program-
ming. To do this I have chosen an example of one of the first programs
which 1 designed and wrote some ten years ago for the solution of a
simple but nontrivial practical problem. It is a problem that can arise
in the collection and tabulation of statistics, for example, the discov-
ery of the median and other quantiles of a set of statistical observa-
tions. Suppose we have a large number of observations, say a hundred

2Reproduced with the permission of the author and by courtesy of the Queen’s University of
Belfast.

16

Chapter 2: A Searching Problem and Its Solution

thousand—perhaps the heights of school entrants, or the distances of
stars, or marks in some examination. It is required to single out those
20 thousand observations with smallest value; perhaps the 20 thou-
sand nearest stars, or the 20 thousand shortest schoolchildren, or the
20 thousand students with lowest marks.

The first guide in the discovery of a method for computer solution
of a problem is to see how the problem could be solved by hand by a
human being. In order not to be overwhelmed by the sheer numbers
involved, we will scale down the problem to only one hundred observa-
tions, of which the twenty with lowest values are to be selected. Imagine
for convenience that the values of the observations are recorded on a
hundred cards; these cards must be separated into two heaps, the left-
hand heap containing the twenty lowest cards, and the right-hand heap
containing the rest. We can now regard the problem as one of design-
ing, as it were, the rules for a game of patience, whose outcome is the
one we desire, and which has the delightful property that it always
comes out.

Perhaps the first idea which occurs to us is to sort the cards into
ascending order; for then the selection of the required twenty cards is
trivial. All that is needed is to deal the first twenty cards off the top
of the pack. So all we have to do is to find some efficient method of
sorting the pack. But further consideration shows that it would be a
waste of time to sort the whole pack, when all we require is to single
out twenty of them, the twenty cards with smallest value. So we turn
attention again to this problem.

Our second proposed method is to look through the whole pack for
the smallest card, and remove it; then look for the smallest again in
the reduced pack; and to repeat the process until twenty cards have
been singled out. Before accepting this solution, we ask ourselves how
efficient the method is. In order to find the lowest card in a pack it is
in principle necessary to look at every card in the pack, i.e. a hundred
cards; to find the second lowest card requires ninety-nine inspections,
and so on. Thus assuming optimistically that each inspection takes
a second, the total time taken will be about half an hour—a rather
daunting prospect. Going back to the original computer program of
100 thousand observations, and assuming our computer can examine
about a hundred thousand observations in one second, it would take
about five hours to select the least 20000 observations. So it is worth
while to seek an alternative more efficient solution.

As our third idea, it may occur to us that if we happened to
know the value of the observation which was the twenty-first small-
est one, we could use this as a sort of borderline value in the pro-
cess of splitting the pack into two heaps. For example, supposing we

2.5 Exercises

17

think that 367 is the twentieth smallest value. All we need to do is
to go through the pack, putting all the cards lower than the border-
line value on a left-hand heap, and all cards higher than it on a right-
hand heap, and so on. At the end, we expect that the left-hand heap
will contain exactly the required twenty values. This process requires
only one scan of the entire pack, and will take just over one and a
half minutes in our small manual example. Returning to the com-
puter problem, it could carry out the whole process on a hundred
thousand observations in one second—very much better than the five
hours required if the previous method had been used. But it seems
that this gain in speed can be achieved only if we have prior knowl-
edge of the correct borderline value, and this knowledge we do not
have.

But now suppose we make a guess of the correct borderline value,
and carry out the partitioning process as before. I suggest that we
choose the borderline as the value of an actual card in the pack, since
this will ensure that we never choose a ridiculously high or low value.
Now if our guess, say 367, was too high, the left-hand heap ends up
too large, containing more than twenty cards; and the right-hand heap
is too small, containing less than eighty cards. Similarly, if our guess
was too low, the left-hand heap is too small and the right-hand heap is
too large. Thus we always know afterwards whether the first guess was
too high or too low, and perhaps we can use this knowledge to make a
better guess next time.

As before, it is a good idea to select as next guess an actual card
of the pack, which is known to be better than the previously guessed
wrong borderline. This can be done very easily by selecting a card from
the appropriate heap, for example, the left-hand heap if the original
guess was too high; for it is known that all cards in this heap are smaller
that the previous (too high) borderline. So we can repeat the process
with this new borderline.

But now consider the right-hand heap which was too small. This
heap contains only cards which should be there, in the sense that they
are already in the same heap as they will be in when the correct bor-
derline is found. There is no point in scanning the cards of this heap
again. This suggests that in any subsequent scan we can put these
cards aside, say at the top of the card table. The importance of this
suggestion arises from the fact that subsequent scans will be shorter
than earlier ones, so eventually we will get down to a single card, which
must then be the right borderline.

So having put to the top the right-hand heap which was too small,
we move the other heap to the middle, select a new borderline, say 196,

18

Chapter 2: A Searching Problem and Its Solution

and proceed with the split. At the end of the second split, we will have
a borderline value and three heaps:

1. A top right heap, with cards higher than the first borderline 367.

2. Abottom right heap, with cards lying between the two borderlines
196 and 367.

3. A bottom left heap, with cards lower than the second smaller bor-
derline 196.

It may happen now that it is the left of the two bottom heaps which
is too small; it will therefore contain only cards which properly belong
to the left heap; and as before, we can put it on the card table, and
omit it from future examination. Then we place the borderline value on
that heap. Next we move the remaining bottom heap up to the middle
and repeat the process, selecting again an arbitrary trial borderline
(say 229), and splitting the middle heap into a bottom left heap and a
bottom right heap. Then we have a picture as shown in Figure 2.2.

Top Top
left right
heap heap
(<196) (= 367)

Borderline Middle

value heap

(229) (196 to

367)

Bottom Bottom
left right
heap heap
(<229) (= 229)

Figure 2.2 Layout of the game.

Obviously we don’t want to continue to proliferate more and more
heaps, and we must seek every opportunity to amalgamate them, for
example, by putting the bottom right heap on top of the top right heap.

2.5 Exercises

19

(1) Put all 100 cards on the middle heap.
(2) Repeat the following until the middle heap is empty:

(2.1) Take a card from the middle heap as borderline.

(2.2) Repeat the following until the middle heap is empty:

If the top card of the middle heap is less than the borderline, put it on
the bottom left heap; otherwise on the bottom right heap.

(2.3) If the combined size of top left and bottom left heaps is less than 21,
amalgamate them; and if it is still less than 20 put the borderline card on
as well.

(2.4) If the combined size of top right and bottom right heaps is less than
81, amalgamate them; and if it is still less than 80 put the borderline card
on as well.

(2.5) Move the remaining bottom heap (if any) to the middle heap.

(3) The required 20 observations will now be found on the top left heap.

Figure 2.3 Rules of the game.

This operation is permissible whenever the resulting combined heap is
not too large. Similarly the left-hand heaps can be amalgamated if this
would not make the top left heap too large. It is evident that one at least
of these amalgamations is always possible; and if they are both possi-
ble, the whole problem is solved. But if one of them cannot be amal-
gamated, we must continue the process of splitting on this remaining
heap, and so continue until the problem is solved.

It seems now that we have a grasp of a solution to our original
problem; and to verify this, it is worthwhile to write the rules of the
game rather more precisely, as is done in Figure 2.3.

Now answer the following questions.
(a) Does the algorithm make any assumption about the given pack of cards?
What is the weakest assumption for the algorithm to function correctly?

(b) What can you say about the size of the individual heaps? (For example, what
can you say about the size of the top-right heap?)

(c) What relationships exist between the values in the different heaps? (For
example, which heap contains the smallest values?)

(d) Suppose all cards in the pack have the same value. Describe what happens.
Suppose the pack is sorted in ascending order and suppose the borderline

20

Chapter 2: A Searching Problem and Its Solution

card is chosen to be the 20th in the pack. Is it the case that step (2) will be
repeated exactly once? If not, give a necessary and sufficient condition for
this to be the case.

(e) Why is it important that the borderline is a card in the middle heap? Show by
example what may go wrong if the chosen borderline value is not the value
of one of the cards. (Hint: think about why the algorithm is guaranteed to
terminate.)

(f) Generalize your answers to (a)-(c) for the case that the problem is to find the
M lowest values in a pack of N cards, where M and N are input parameters to
the algorithm. Modify the algorithm accordingly. Check that your algorithm
works for the extreme cases when M and/or N is zero, and when M equals
the number of cards in the pack. |

The exercises below are aimed at getting you to think in terms of invariant

properties. The invariant properties are very simple—even ‘obvious’ once pointed
out. Finding them can be difficult, however, because thinking in terms of invariants
is a skill that is rarely taught properly, if at all. The solutions are provided at the
back of the book, but try not to give up too early!

Exercise 2.2 (The Domino Problem). A chess board has had its top-right and
bottom-left squares removed so that there are 62 squares remaining. (See Fig-
ure 2.4.)

Figure 2.4 Mutilated chess board.

An unlimited supply of dominoes has been provided; each domino will cover

exactly two squares of the chessboard. Is it possible to cover all 62 squares of the
chessboard with the dominoes without any domino overlapping another domino
or sticking out beyond the edges of the board? O

2.6 Summary 21

2.6

Figure 2.5 The amorous beetles.

Exercise 2.3 (The Amorous Beetles). Four beetles—A, B, C and D—occupy the
corners of a square (Figure 2.5). A and C are male, B and D are female. Simulta-
neously A crawls towards B, B towards C, C towards D, and D towards A. If all
four beetles crawl at the same rate, they will describe four congruent logarithmic
spirals which meet at the centre of the square.

How far does each beetle travel before they meet? The problem can be solved
without calculus. O

Summary

The purpose of this chapter has been to introduce, informally, the concepts under-
lying program construction. The specification of a program by means of a precon-
dition and postcondition has been illustrated. The design of a repetitive process
(a loop’) using an invariant property to precisely describe the function of the
iteration, and the use of a bound function as a measure of progress towards the

22

Chapter 2: A Searching Problem and Its Solution

termination condition have been introduced. Finally, the relation between invari-
ants and mathematical induction has been explained.
All these topics will be amplified and made rigorous in later chapters.

Bibliographic Remarks

The algorithm discussed in this chapter is a variant on the well-known binary
search method. We return to it again in Chapter 4. The idea of using a deck of
cards to illustrate the algorithm was suggested to me by Stuart Anderson. Hoare's
inaugural 1971 lecture (see Exercise 2.1) is published in Hoare and Jones (1989,
pp. 89-101). See Section 14.2 for a formal specification of Hoare’s problem, and
how an implementation is calculated from the specification.

The problem of the amorous beetles (Exercise 2.3) is from Gardner (1959). The
origin of the domino problem (Exercise 2.2) is unknown to me.

3.1

3

Calculational
Proof

In earlier chapters, we have argued that proof is necessary to guarantee that pro-
grams meet their specifications. What is meant by a ‘proof’ is, however, not as
clear cut as one might at first imagine. In this chapter, we discuss different sorts
of proofs. We advocate ‘calculational proofs’ in which reasoning is goal directed
and justified by simple axiomatic laws that can be checked syntactically rather
than semantically. We introduce a notation for presenting calculations and give
several examples.

The Nature of Proof

The word ‘proof’ can be understood in several ways. An informal proof , the sort
most commonly encountered in mathematical texts, consists of a mixture of nat-
ural language (for example, English) and mathematical calculations. The English
text outlines the main steps in the proof, and the mathematical calculations fill
in some of the details. Figure 3.1, a proof of Pythagoras’s theorem, is a typical
example. It uses English to describe the construction of a square from four copies
of a right-angled triangle, combined with an outline of an algebraic calculation
using properties of arithmetic.

Informal proofs place a large burden on the reader. The reader is expected to
have a good understanding of the problem domain, and the meaning of the nat-
ural language statements, as well as the language of mathematics. Because of
their reliance on meaning, we say that they are semantic proofs. Figure 3.2 is an
example of a proof where the burden of understanding of the English language

Chapter 3: Calculational Proof

I B J
a C
E
o
5 A
L D K

Let ABC be a triangle with BAC = 90°. Let the lengths of sides BC, AC, AB
be, respectively, a, b and c. We wish to prove that a? = b2+c?. Construct a
square IJKL, of side b+c, and a square BCDE, of side a, as shown in the
figure. Clearly,

area(IJKL) = (b+c)? .

But, i
area(IJKL) = area(BCDE) + 4xarea(ABC) = a? +2bc .
That is,
(b+c)? = a® +2bc .
Whence,

b’+c?=a’® .

Figure 3.1 Proof of Pythagoras’s theorem.

statements is particularly great. The theorem proved is deep and interesting—if a
map is placed on the ground anywhere in the area covered by the map, then there
will be a point on the map that is directly above the point on the ground that it

3.1 The Nature of Proof 25

Suppose a map of London is placed on the ground in the middle of Trafalgar
Square. (Readers unfamiliar with London should note that Trafalgar Square
is in Central London.) Then, there is a point on the map that is directly above
the point on the ground that it represents.

Proof. The map (of London) is directly above a part of London.
Thus the (entire) map is directly above a part of the area which it
represents. Now, the (smaller) area of the map representing Central
London is also above a part of the area which it represents. Within
the area representing Central London, Trafalgar Square is marked,
and this (yet smaller) part of the map is directly above a part of
the area which it represents. Continuing in this way, we can find
smaller and smaller areas of the map each of which is directly
above a part of the area which it represents. In the limit we reduce
the area on the map to a single point which is directly above a part
of the area it represents. That is, a point has been found that is
directly above the point on the ground that it represents.

Figure 3.2 A semantic proof.

represents—but it is quite difficult to understand even the statement of the theo-
rem, and yet more difficult to understand the proof. Without a good understanding
of the semantics of the proof, the reader cannot check its validity. Many would
feel uneasy about the validity of the proof and would demand a more detailed
justification for some of the steps. The difficulty is compounded, of course, for
those for whom English is not the mother tongue. What is meant, for example, by
‘the area represented’ by a section of the map, and the meaning of ‘in the limit’.
In comparison, the language of mathematics is much simpler; moreover, unlike
natural language, it is universal!

At the other end of the scale, a formal proof is conducted entirely in the lan-
guage of mathematics. A formal proof is a sequence of steps, each of which is
a well-established fact or which follows from earlier statements by a process so
simple that it is deemed to be self-evident. Figure 3.3 is an example of a formal
proof. It is a proof of the fact that /2 + /7 is greater than /3 + /5. The first three
lines of the proof state well-known facts. Each subsequent line combines one or
more previous lines in order to derive some new fact; next to each of these lines
is a hint explaining how the line is derived.

Checking each line of Figure 3.3 is straightforward. The lines where the hint
mentions ‘arithmetic’ involve squaring and other simple arithmetic calculations.
For example, to check line 7 it is necessary to check that (1 + 2+/14)2is 57 + 4./14
and that (2+/15)? is 57+3. The remaining lines are checked by confirming that
the line is an instance of either line 0 or line 1. That is, one has to check that

26

Chapter 3: Calculational Proof

3.2

=]

ifa>0and b>c>0thena+b>a+c>0

ifa>b>0then Ja>vb>0

224 >9>0

V224> /9>0 (1 and 2)
4/14>3>0 (3 and arithmetic)
57+4V14 > 57+3 > 0 (0 and 4)
V57+4v14 > /57+3 >0 (1 and 5)
142v14 > 2/15 >0 (6 and arithmetic)
8+1+2/14 > 8+2/15 >0 (0and 7)

. V8+1+2/14>+/8+2/15>0 (1 and 8)
0.2+V7>V3+/5>0 (9 and arithmetic)

SO XN W

Figure 3.3 A formal proof of v2 + 7 > /3 +./5.

the line is obtained by a valid substitution of numbers for the variables a, b
and c.

Most proofs of theorems in mathematics go through a ‘social process’ to check
their validity. This process involves the proof being checked by a number of
experts in the field; eventually the proof is accepted or shown to be flawed. For
example, Andrew Wiles’s first announced ‘proof’ of Fermat’s Last Theorem was
discovered to be flawed. His second proof has been accepted by the mathematical
community even though it is said that no one but he understands the proof in its
entirety. In the course of time, understanding of Wiles’s proof should grow, lead-
ing to simpler, shorter proofs, or, possibly, the discovery of another flaw in the
proof. This social process is inappropriate for proving properties of programs.
The delay is too long and there are too many of them to be proved. Fortunately,
properties of programs are often rather shallow; proof is still necessary, because
the devil lies in the detail.

Exercise 3.1. The proof in Figure 3.1 assumes a lot of knowledge about geometric
figures. Can you fill in some of the details? O

Construction versus Verification

Informal proof's are often favoured because they are claimed to be easier to under-
stand and they appeal to ‘intuition’. In reality, informal proofs have their own char-
acteristic types of complexity, namely the complexity of hidden details, assumed
knowledge and the imprecision of natural language. Also, intuition (meaning
understanding without conscious reasoning) is a fickle ally which should never
be relied upon.

3.2 Construction versus Verification 27

On the other hand, formal proofs can be difficult to understand, particularly
when done badly. The proof in Figure 3.3 is a good example of how not to present a
formal proof. Unfortunately, it is typical of how many formal proofs are presented.

The problem with the proof in Figure 3.3 is that it is oriented to verification
rather than construction. Each step in the proof is relatively easy to check, but it
is very difficult to see how the proof was constructed. The goal is to determine
which of V2 + /7 or /3 + /5 is the largest, but the proof begins in line 2 with the
numbers 224 and 9—completely out of the blue! Because of this, the proof is very
difficult to reproduce, even though the individual steps are easy to understand,
and it is yet more difficult to apply the underlying method to a problem of a
similar form. The proof offers no guidance on how to determine, for example,
the ordering relation between /3 + /11 and /5 + /7. In fact, the proof was not
constructed in the way it is presented but rather by inverting a construction of
the ordering relation.

In this text we employ a calculational proof style. ‘Calculational’ means that the
proofs are syntactic rather than semantic. In other words, our proofs are like a
game with meaningless symbols conducted according to a set of predetermined
rules. It also means that our calculations are directed towards determining what
is true rather than verifying some conjectured truth.

To illustrate calculational proof let us consider the problem just mentioned of
determining a relation between /3 + /11 and /5 + /7. We denote the relation
by X. So, X is one of ‘<’, ‘=" or *>".

This is the first step in every calculation—introduce a variable to denote the
unknown, the value to be calculated. Undoubtedly, it is a step very familiar to the
reader in other circumstances. (Examples that the reader may have encountered
elsewhere include calculating the distance d travelled by a falling body in a given
time, and calculating the temperature T of a gas contained within a given volume
at a given pressure.) What may well be unfamiliar is that the unknown in this case
is arelation (rather than a distance, a time, a temperature, a voltage, or some other
measurable quantity). If it is unfamiliar, don’t let it worry you!

The next step is to identify properties of the unknown that will help to identify
it. The problem statement involves two arithmetic operators, addition and taking
square roots. So it is properties of these two operators with respect to the three
ordering relations that we seek.

The crucial property of addition is that it is invertible with respect to all three
relations. To explain what we mean by ‘invertible’, we first have to explain equal-
ity between ‘booleans’. Suppose a, b and c are arbitrary numbers. Then, clearly,
a+b X a+c will be true or false, whichever of the three relations X is. For exam-
ple, 1+2 < 1+3 is true, and 1+2 =1+3 is false. Also, b X ¢ will be true or false.
We say that a+b X a+c and b X ¢ are booleans: their values are either true or
false.

Invertibility of addition is the property that these booleans are always equal.
That is, a+b X a+c is true exactly when b X ¢ is true. Vice versa, a+b X a+c is

28

Chapter 3: Calculational Proof

false exactly when b X c is false. Mathematically, for all numbers a, b and c,
(a+b X a+c) = (bXc) . (3.2)

In words, the truth value of a+b X a+c is equal to the truth value of b X c. Spelling
the three instances of the property out in detail, we have

(a+b<a+c) = (b<c) ,
(a+b=a+c) = (b=c) ,
(a+b>a+c) = (b>c) .

Note that the parentheses are necessary here in order to avoid confusion: it is
common to write so-called continued orderings and/or equalities, these being
read conjunctionally. For instance, the continued equality

a+b =a+c =b =c¢

means a+b =a+c and a+c =b and b = c (i.e. the conjunction of three equalities).
This is quite different from

(a+b=a+c) = (b=c)

which means that the boolean a+b = a+c is equal to the boolean b =c.

Later, we introduce another symbol for equality between booleans (symbol ‘=’)
partly to avoid confusion with continued equalities, but also for more significant
reasons.

Squaring of positive numbers is also ‘invertible’ with respect to the three order-
ing relations. This means that, whatever X is among the three relations, we have,
for all numbers a, b and c, that the boolean a? X b? is equal to the boolean a X b.
That is, for all positive numbers a and b,

(@?Xb% = (aXb) . (3.3)
For example,
(a°>b?) = (a>bh) .

The two properties (3.2) and (3.3) are all we need to know to calculate the rela-
tionship X between /3 + /11 and /5 + /7. Here is how it goes. It is a sequence of
equalities, just like a calculation in algebra, in which the equality between the first
and last terms is the result of the calculation. To help you understand the calcu-
lation, a hint has been added at each step, indicating the property that is being
applied. (The parentheses needed to disambiguate in-line formulae are no longer
needed because the layout of the calculations makes clear what is intended.)

V3+/11 X VS5+V7

= { squaring is invertible with respect to X: (3.3) }

3.2 Construction versus Verification 29

(V3+V/11)? X (/5+V7)?

= { arithmetic }
14 +2/33 X 12 + 235

= { addition is invertible with respect to X: (3.2) }
24233 X 235

= { squaring is invertible with respect to X: (3.3) }
(2 +2V/33)% X (235)?

= { arithmetic }
136 + 8v/33 X 140

= { addition is invertible with respect to X: (3.2) }
833 X 4

= { squaring is invertible with respect to X: (3.3)

and arithmetic }
2112 X 16 .
Summarizing, we have established that
(V3+V11 X V5+7) = (2112 X 16) .

So, the boolean /3 ++/11 < +/5++/7 is false, since 2112 <16 is false; for the
same reason, /3 + /11 =+/5+ /7 is false. But, /3 + /11 > /5 + +/7 is true, since
2112 > 16. In this way, we have calculated that /3 + /11 is greater than /5 + /7.

Note that we could now repeat the calculation with X replaced everywhere by
>’, adding the additional final step (2112 > 16) = true, as outlined below:

V3+VIT > 5+7

= { squaring is invertible with respect to X: (3.3) }
(V3+V1I1)? > (V5+7)?

= { o}

= {)
2112 > 16

= { arithmetic }
true .

This would be a verification that /3 + /11 is greater than /5 + /7 because we
start with the answer and verify its validity. A verification is undesirable because

30

Chapter 3: Calculational Proof

it hides the process of discovery. Worse still would be to turn the calculation
upside down:

true

= { arithmetic }
2112 > 16

= { o}

= { e}
(V3+VI1)2 > (V5+7)?

= { squaring is invertible with respect to X: (3.3) }
V3+VIT > /5+V7 .

Now the process of discovery has been completely obliterated; a straightforward
calculation has been turned into a piece of magic!

Exercise 3.4. The arithmetic in the calculation could have been made simpler
if 2 + 2/33 X 2+/35 had been simplified to 1+ /33 X /35. State the rule that
allows this simplification to be made. (Take care with positive and negative num-

bers.)]
Exercise 3.5. Determine the ordering relation between /3 + 13 and /5 + /11.
Try to copy the style of calculation used above. O

Exercise 3.6. Below is an algorithm to determine the ordering relation between
Ja++/b and /¢ +/d for given natural numbers a, b, ¢ and d. What is wrong
with the algorithm? Construct a counterexample to demonstrate the error. (Hint:
examine each step to see whether it makes a valid use of a property of squaring or
addition. Also, note that counterexamples do not need to be complicated!) Identify
a suitable invariant property to be maintained by the algorithm in order to avoid
the error; using the invariant, modify the algorithm so that it is correct.

We refer to ./a+ b and ./c +/d as the left and right sides of the relation,
respectively.

Step 1. Square the left side and simplify it to the form u + /v. (For example,
(v/3 + V13)2 is simplified to 16 + 2+/39.) Similarly, square and simplify the right
side to the form x + /.

Step 2. Subtract u from both sides and simplify. The left side is now in the form
/v and the right side is in the form z + /7.

Step 3. Square both sides again. Simplify the right side to the form p + /4. The
left side is simplified to v.

Step 4. Subtract p from both sides and square again.

3.3 Formatting Calculations 31

3.3

3.3.1

The relation between the original left and right sides is the same as the relation
between the left and right sides obtained by carrying out steps 1-4. 1

Formatting Calculations

The message of Section 3.2 is that reducing problem solving to calculation can be
very effective, but, the use of a verificational, as opposed to constructive, style of
reasoning can make simple calculations opaque and complex. In this text, we will
develop a style of calculation that aims to elucidate the process of constructing
solutions to non-trivial mathematical and programming problems.

Throughout, we use a uniform format for presenting calculations. We summa-
rize the format in this section, but discuss it again when we begin to use it in
earnest. The reader may therefore wish to omit this section on a first reading,
returning to it when the need arises.

Basic Structure

Our calculations have a number of steps (usually more than one). A mandatory
element is that each step is accompanied by a hint providing a justification for the
validity of the step. For example, a two-step calculation might have the following
shape.

S

In this calculation, R, S and T are expressions, and p and g are hints why R=S§
and S =T, respectively. The conclusion of the calculation is that R =T.

Here is a concrete example, where we use the laws of arithmetic to simplify an
arithmetic expression. The goal of the calculation is to simplify the expression
(n+1)? — n? by eliminating the squaring operator.

(n+1)? - n?
= { x2—y? = (x-y)x(x+y),
withx,y = n+l,n }
((n+1)-n)x((n+1)+n)
= { addition is symmetric and associative }

(n-n+1)x{(n+n)+1)

32 Chapter 3: Calculational Proof
= { n-n=0,n+n=2xn }
(0+1)x(2xn +1)
= { arithmetic }
2xn + 1 .
The calculation is parametrized by the variable n which, by convention, denotes
an arbitrary (natural) number. The conclusion of the calculation is the equality
between the first and last lines:
(n+1)2 -n? = 2xn+1
for all (natural) numbers n.
3.3.2 Hints

The hints in a calculation serve a number of purposes. The simple device of brack-
eting allows them to be of any size whatsoever. As a consequence, we may not
only give detailed information about the formal justification for an individual step
but also, whenever necessary, explain where we are going and why. We can also
include a subcalculation in the hint, should we choose to do so.

In the above calculation, the hints get progressively simpler so let us begin with
the last one.

The final hint, ‘arithmetic’, says almost nothing; it simply says that some prop-
erty of arithmetic is being used. Here, the general laws actually being used are that
0+x =x, and 1Xxx = x, irrespective of the value of x. These are very basic laws,
which we expect the reader to be completely familiar with, and the presence of
a hint is deemed to be superfluous. In more complicated cases, a hint like ‘arith-
metic’ can be very useful. If, for example, an expression involves both arithmetic
and boolean operators, such a hint focuses attention on the arithmetic operators
rather than the boolean operators.

In contrast, the first hint is quite complicated. It states a property of arithmetic
that holds for all values of the variables x and y. The accompanying text ‘with
x,y := mn+l,n’ indicates that the property is being used in the case that x
has the value n+1 and y has the value n. Formally, the equality between the first
and second expressions in the calculation

(n+1)2 = n? = ((n+l)-n)x((n+1)+n)
is the instance of the law
x? - y? = (x-y)x(x+y)

obtained by instantiating x to n+1 and y to n.
Note that n+1 is parenthesized in order to make it clear how the instance is
obtained. Sometimes, as in this case, parentheses are unnecessary when forming

3.3 Formatting Calculations 33

an instance of a law. In many cases, however, precedence conventions dictate the
insertion of parentheses. For example, instantiating x to n+1 in the law Oxx =0,
we get Ox{n+1)=0. Had we not parenthesized ‘n+1’ in the left side, we would
have got 0 x n+1 = 0. According to the convention that multiplication has prece-
dence over addition, this is read as (Oxn) + 1 = 0, which is blatantly untrue!

Instances of properties are most often indicated by a simultaneous assignment!
where, as in this case, more than one variable is instantiated simultaneously.
Although simultaneous assignments are rarely allowed in conventional program-
ming languages their use should not cause any difficulty.

The second hint is less detailed than the first, but more detailed than the
last. Formally, the step uses three properties of arithmetic: two explicitly men-
tioned in the hint, and one not mentioned at all. The two that are men-
tioned are that x+y =1y+x, for all x and 1y (addition is ‘symmetric’), and
(x+y)+z=x+(y+z),forall x, y and z (addition is ‘associative’). The third prop-
erty is that x—y =x+(-2y). The step is thus quite large. One should beware of
large steps—this is where errors can occur, and the steps need to be checked
carefully.

The third hint uses what is called substitution of equals for equals. The hint
states that n — n and 0 are equal, and the step replaces one by the other. The hint
also states that n+n and 2xn are equal, again justifying the step of replacing one
by the other.

A difficulty that you may encounter, when carrying out calculations in this style
for the first time, is that you can ‘see’ that a step is valid but cannot give a formal
justification. The temptation to write ‘arithmetic’ or a similar hint becomes very
great. The problem is that it is usual to first develop substantial skills in arithmetic
before beginning to explore the basic laws (the ‘axioms’) on which those skills are
based. Also, reduction of calculation steps to primitive axioms, each accompanied
by the appropriate hint, can lead to a huge expansion in their lengths.

Documenting a calculation requires experience in order to achieve the right
grain of detail. The omission of detail is, however, a common cause of error. So, it
is better to include more detail than less, unless you are very confident of a step’s
accuracy.

A case in point is the use of arithmetic. Because the axioms of arithmetic are not
the topic of this text, the grain of detail will vary, depending on the circumstances.
Often, we will abbreviate a calculation to just one or two steps, giving the very
briefest of explanations and leaving the reader to fill in the details:

(n+1)2 — n?
= { arithmetic }

2xn + 1

1Sometimes referred to as a ‘multiple’ assignment.

34 Chapter 3: Calculational Proof

On the other hand, calculations that involve the topics introduced in this text—
calculational logic and program construction—will be presented in much greater
detail. Our policy is that, when a topic is first introduced, we use very small steps,
each making use of just one formal rule. Later, as experience is gained, we combine
small steps into one larger step.
Exercise 3.7. We commonly use the notation E[xg,Xx},...,Xn = €g,€},...,€n] tO
denote the simultaneous substitution of expressions eg,ey, ... ,en for the variables
X0,X1,-..,Xn in expression E. In the process, it is important to respect precedence
conventions, adding parentheses around the expressions eg,e;,...,e, when nec-
essary.

Perform the following substitutions. Be careful with parenthesization and
remove unnecessary parentheses. (A raised infix dot denotes multiplication. Mul-
tiplication has precedence over addition. Exponentiation is denoted by a super-
script. Exponentiation has precedence over multiplication.)

(@) x[x:=x+2] .

) (y-x)x:=x+y] .

© (x+y)[x:=x+y] .

d (x+1)[y:=x] .

(e) x[x,y:=0,x+2] .

O (x+y-x)x,y:=x-y,x+y] .

(® (x+¥)x,y=xy,x-¥].

(h) (x+x-y3)I[x,y,z:=x+2,x-y,2] . O

3.3.3 Relations between Steps

A calculation with a number of steps, in which each step relates one expression
to the next by equality, establishes that all the expressions are equal. However, it
is usually the equality between the first and last expressions that is important to
us. As mentioned earlier, the conclusion of the above four-step calculation is the
equality between the first and last lines, that is,

(n+1)2 —m? = 2xn+1.

Formally, equality is a transitive relation. That is, if R=5 and § =T, it is also the
case that R=T.

Two other relations that are transitive are the less-than relation, denoted by ‘<’,
and the at-most relation, denoted by ‘<’2. Sometimes, our calculations use these

21t is strongly recommended that you pronounce the symbol ‘<’ as ‘at most’ rather than the more
cumbersome ‘less than or equal to’. Similarly, we recommend that you pronounce ‘>’ as ‘at least’
rather than ‘greater than or equal to'.

3.3 Formatting Calculations 35

relations in successive steps. Here, for example, is a calculation that constructs a
rough estimate of the difference between 256 and 367:

367 - 256

< { 367 <400 }
400 - 256

< { 200 <256 }
400 - 200

= { arithmetic }
200 .

The conclusion of this calculation is that 367 — 256 < 200. It illustrates the so-
called conjunctional use of the less-than operator. In general, R < S < T means
R <S and S < T. Transitivity of less-than means that a consequence of R<S<T
isthat R<T.

Different relations may be combined in the same proof, but then there should
be a logical justification for doing so. For instance, one step of a proof may assert,
say, R < S, whereas the next asserts S < T. The inference is then that R < T. All such
steps can be combined with equality steps, as in the last line above. However, it
would be nonsense to combine ‘<’ with ‘>’ or ‘>’ in one calculation since then no
inference can be made of the relation between the first and last expressions.

The type of the expressions is arbitrary. They may denote real values, integer
values, sets, relations, etc. In each case, the familiar equality symbol, ‘=’, is used
to denote equality of values. In particular, if R, S and T denote boolean values,
we still use the equality symbol to denote equality. For example, a step in a proof
might be

= { E and F denote integer values.
Property of integer arithmetic }
E<F+1

Here we are using the fact that the statement E < F is the same as the statement
E <F+1 whenever E and F denote integer values. In other words, the value of
E < F (which is either true or false) is equal to the value of E <F+1. In in-line
expressions, we often use the symbol ‘=’ to denote equality of boolean values.
One reason for this is to avoid ambiguity. For example, we write

E<F = E<F+1
in order to avoid confusion with

E<LF=E<F+1

36

Chapter 3: Calculational Proof

3.3.4

which means E < F and F = E and E < F+1. (So equality here means equality of
integer values rather than equality of boolean values.) There is another reason for
having two notations for equality of boolean values. This second reason, which is
much more important than the first, is discussed in Chapter 5.

Generally, in such calculations, the connecting relations will have lower prece-
dence than the operators in the expressions they connect, this convention super-
seding any other precedence conventions. You should have no problem with this
convention since it is clearly what is suggested by the layout.

If’ and ‘Only If

Steps relating boolean values will sometimes be related by ‘if” or ‘only if’. The ‘if’
relation is denoted by ‘<’ and the ‘only if’ relation by ‘='. We introduce these rela-
tions formally in Section 7.3. For the moment we use them informally (although
in a formally correct way).

Here is an example of a calculation involving an ‘if’ step. (Read the second step
as 10x20 < 11x23 if both 10x20 < 11x20 and 11x20 < 11x23.) It establishes
that 200 < 11x23 is true.

200 £ 11x23
= { 200=10x20 }
10x20 < 11x23

« { ‘<’ is a transitive relation }
10x20 € 11x20 < 11x23
= { multiplication is invertible with respect to ‘<’

(applied twice), and 10< 11 and 2023 }
true .

An ‘if’ step is a strengthening step. In this example, the inequality 10x20 <
11x23 is replaced by the stronger statement 10x20 < 11x20 < 11x23. Because
they are strengthening steps, ‘if” steps in calculations are much less welcome than
equality steps; it may be the case that the strengthening is too coarse. In the fol-
lowing example, the pattern of the above calculation is used, but the strengthening
leads to a property that cannot be established. As a consequence, the calculation
stalls.

243 € 11x23

= { 243 =9%x27 }
9%x27 < 11x23
< { ‘<’ is a transitive relation }

Ix27 € 11x27 < 11x23 .

3.4 A Classic Example 37

3.4

(Note that the calculation is correct even though 11x27 < 11x23 is false. As we
see later, ‘243 < 11x23 if false’ is a valid, although meaningless, conclusion.)

‘Only if’ steps are the converse of ‘if’ steps; an ‘only if’ step is a weakening step.
An important use of ‘only if’ steps is in determining circumstances in which a
boolean expression is false. An example is the following. (x mod 3 is the remain-
der after dividing x by 3.)

23x11 =243

= { Leibniz (substitution of equals for equals) |
{(23x11) mod 3 = 243 mod 3

= { (23x11) mod 3 = 1

243 mod3 = 0

(details of calculation omitted) }

= { arithmetic }
false .

The first step should be read as ‘23x11 =243 only if (23x11)mod3 =
243 mod 3'. The hint ‘Leibniz (substitution of equals for equals)’ refers to the
fact that application of a function to equal values results in equal values?. In this
case, the function that is being applied is the ‘mod 3’ function, which computes
the remainder after dividing a given number by 3. The omitted details in the sec-
ond step involve the use of properties of remainder computation which make it
easy to evaluate (23x11) mod 3 and 243 mod 3. (See Chapter 15.) The conclusion
is that 23x11 = 243 only if false, i.e. 23x11 * 243.
Section 3.4 gives a non-trivial example of the use of ‘only if’.

A Classic Example

This section is more advanced and intended for readers who already have some
training in the conventional style of presenting proofs in mathematics. It is
intended as a demonstration of the effectiveness of calculational proof. Other
readers may return to it at a later stage in their reading.

The problem we consider is to prove that /2 is irrational, i.e. /2 cannot be
expressed in the form 7 for natural numbers m and n.

The standard textbook proof begins by assuming that /2 is equal to -’,’% and
then establishes a contradiction. This is, of course, the only way to proceed. The

3Baron Gottfried Wilhelm von Leibniz, 1646-1716, a famous German mathematician, was the first
to formulate the rule. In his honour, we frequently abbreviate the hint to ‘Leibniz’; ‘substitution of
equals for equals’ is longer, but decidedly more self-explanatory.

38 Chapter 3: Calculational Proof

next step in the standard textbook proof is, however, a very big one. The claim
is made that, without loss of generality, it may be assumed that m and »n have
no common factors. This is a major step, most often taken without proof, if only
because it is not entirely clear what ‘without loss of generality’ means.

Here is the calculational proof. The strategy is the same: we assume that 2
is equal to % and then deduce false, but the assumption that m and n have no

common factors is not needed.
-
= { Use arithmetic to eliminate the square root operator. }
2xn? = m?
= { This and the next are the crucial steps. We use the fact
that if two values are equal then the result of applying
any function to them yields equal values. (This is called
‘substitution of equals for equals’ or ‘Leibniz’s rule’.)
For the validity of this step, the identity of the function
is not needed. We call it exp. }
exp.(2xn?) = exp.(m?)
= { Now we choose the function exp.
Let exp.k be the number of times that 2 divides k.
For example, exp.48 =4 and exp.49=0.
The function exp has two important properties:
exp.2 =1 and
exp.(kxl) = exp.k + exp.l.
We apply these properties to simplify the left
and right sides. }

1+ 2Xexp.n = 2xXexp.m
= { The left side is an odd number, the right side is an even

number. Odd numbers and even numbers are different. }
false .

Exercise 3.8. Examine the above proof carefully to see how it can be generalized.
Specifically, consider replacing the number 2 by k. Derive a condition on k that
guarantees that vk is irrational. O

3.5 Summary 39

3.5

Summary

In this chapter, we have discussed the difference between formal, syntactic proofs
and semantic proofs. Syntactic proofs involve a game with symbols in which each
step of a proof involves the application of a well-defined rule. They are precise
and each step can be easily verified. Presented badly, however, it can be difficult
to understand how the proof was constructed, making it difficult to apply the
proof method to examples of a similar form. Semantic proofs employ natural lan-
guage to convey the essential details of a logical argument and rely heavily on the
reader’s understanding of the terms used and ability to fill in the missing detail.
For this reason, semantic proofs are difficult to check thoroughly and usually
undergo a ‘social process’ whereby, in the course of time, they become accepted
or rejected by a community of mathematicians.

This text is about the formal, syntactic calculation of programs and their prop-
erties. This ensures the highest possible level of confidence in their correctness
and reduces to a minimum the social process of checking their validity (although
we can never guarantee 100% correctness and an independent check is still indis-
pensable). We avoid the shortcomings of syntactic proof by making our calcula-
tions goal directed and adding copious hints in order to make clear the strategy
being used. We call such proofs calculational because they are about calculating
solutions to (mathematical and programming) problems in the style of ordinary
arithmetic.

Bibliographic Remarks

The proof format is due to W. H. J. Feijen and was first used in Dijkstra and Feijen
(1984); nowadays it is used very widely. I learnt the proof of the irrationality of
/2 given here from Hoogerwoord (2001).

This page intentionally left blank

4

Implementation
Issues

In Chapter 2, we showed how to design a card-searching algorithm in a way that
guaranteed the algorithm'’s correctness. This chapter is about the issues that arise
when we implement the algorithm in a conventional programming language. The
main issues are about how to represent a deck of cards in a computer program.
Another issue is how to implement the choice of a particular card in the deck. This
leads us on to a discussion of the mathematical properties of integer division.

Binary Search

This section is about implementing the card-searching algorithm discussed in
Section 2.2. We use Java as the implementation language in the first instance in
order to illustrate the problems that arise when using a ‘real’ programming lan-
guage. In Chapter 9 and beyond, we use an idealized programming language that
allows us to focus on program design rather than the intricacies of one particular
programming language.

A word of caution is needed in advance. Java uses the symbol ‘=’ for the assign-
ment operator and the symbol ‘==" for the equality operator. So, in Java, ‘x==0’
has the same meaning as ‘x = 0’ in mathematics, but ‘x=0’ means something quite
different. The difference between the two is evident from that fact that x =0—
conventional equality—has the same meaning as 0 =x, whereas x=0—in Java—
does not have the same meaning as O=x. (In fact, the latter is not even a valid
statement.) Mathematical equality is symmetric, whereas assignment is not.

42

Chapter 4: Implementation Issues

In words, the Java assignment x=0 means that the value referenced by the vari-
able x becomes 0. More briefly, it is read as ‘x gets 0’ or ‘x becomes 0’. This misuse
of the equality symbol is a frequent cause of error in Java programs. In order to
avoid confusion, we use the teletype font when the Java assignment is intended.
We also emphasize the fact that assignment is not symmetric by putting a space
immediately after, but not before, the assignment operator in Java programs. On
the other hand, we place the equality operator symmetrically between its two
operands. Thus, we write ‘x= 0’ to mean the assignment of the value 0 to the
variable x, and ‘x == 0’ (or ‘x = 0’, using a non-teletype font) for equality between
x and 0.

The search algorithm in Section 2.2 manipulates an actual deck of cards. In a
computer program, we have to represent the physical operations on the decks of
cards in terms of operations that are primitive to the programming language. That
is, we have to decide how to represent each of the decks of cards, how to represent
splitting a deck into two and how to represent the transfer of cards between decks.
Also, we have to decide on a specific implementation of the choice of a card in
the middle deck of cards.

The simplest and most convenient way to represent a deck of cards in a language
like Java is an array. An array is a sequence of numbered values. Below is such a
sequence. In this case, numbering begins at zero and the values are all names of
animals.

0 1 2 3 4 5
cat cow dog fox fox hen

The values stored in an array are called the elements of the array. In our example,
the elements are ‘cat’, ‘cow’, ‘dog’, etc. The number assigned to each element is
called its index. Note that the values in an array may occur more than once (as,
for example, ‘fox’) but the elements are distinct, because each has a unique index.
The above array has six elements, but only five values are stored in the array. (The
above array is also alphabetically ordered, but, in general, array values need not
be ordered.)

In Java and similar languages, array elements can be quite complex objects. In
a real-life situation, an array element might represent, for example, all the infor-
mation about a book in a library: its title, author and publisher, date of purchase,
location, etc. For simplicity, in our implementation of the searching algorithm of
Section 2.2, we assume that the information on each card in the given deck of
cards is an integer, and the given card X is an integer value. The representation
we choose for the whole deck of cards is thus an array of integers.

In a Java program, the text

int[] card

declares an array (‘[]’) of integers (“int’) with the name card, implicitly indexed
from zero onwards. The length of the array is its number of elements; its value

4.1 Binary Search 43

is denoted in Java by card. length. The declaration means that elsewhere in the
program (more precisely, within the ‘scope’ of the declaration) the individual ele-
ments of the array can be accessed by card[0], card[1], etc. For brevity, we use
N to denote the length of the array of cards. It is important to note that N may be
zero, in which case the array represents an empty deck of cards.

We use the notation m..n to denote a range of integers, the set of all integers
at least m and at most n. For example, 2..5 denotes the set of integers {2,3,4,5}.
When m is greater than n, m..n denotes the empty set. For example, 1..0 is the
empty set; there are no integers in the range 1..0. (The notation was introduced
in the language Pascal. It is not a standard notation in Java, so we use it to specify
Java programs, but not in the programs themselves.)

An attempt to access an array element card[k], where k is an integer outside
the range 0..N—1 and N is the length of the array, will result in a so-called ‘array
bound exception’. Note that if the length of an array is zero, any attempt to access
an array element will result in such an error when the program is executed.

A segment of an array is identified by a range of integers; it is the sequence of
array elements indexed by the integers in the range. If an array represents a deck
of cards, a segment represents a contiguous subdeck of the deck. In this way, the
computation of a single integer, j say, represents splitting a deck into two: the
deck represented by the segment indexed by integers up to, but not including, j,
and the deck represented by the segment indexed by integers from j onwards.

Given that we propose to represent the deck of cards by an array indexed from
0 up to, but not including, N, splitting the deck into two can be represented by
computing an index in the range 0..N. The index j represents splitting the orig-
inal deck into a lower and upper deck, namely the subdecks represented by the
segments 0..j—1 and j..N—-1, respectively. Note that j equal to zero represents
the situation in which the lower deck is empty, whilst j equal to N represents the
situation in which the upper deck is empty. (Check your understanding by saying
what is meant by j and N both being equal to zero.)

A summary of the foregoing is that our searching algorithm is represented in
Java by a function sp1it that returns an integer when given two parameters: an
(ordered) integer array card and an integer X. The declaration of such a function
in Java is as follows!:

public static int split(int[] card, int X);

More precisely, the input array is ordered and the function returns an integer
index in the range 0..N, where N equals card. length; if the returned index is j,
all cards in the segment 0.. j—1 should be less than X, and all cards in the segment
j..N—1 should be at least X.

I'The keywords ‘public static’ in this declaration are not relevant to this discussion and can
safely be ignored by readers unfamiliar with Java. The declaration of the function can, in fact, be
made more precise and more general by relaxing the assumption that the array values are integers.
The details are not relevant to our discussion. ‘

44

Chapter 4: Implementation Issues

4.1.1

Implementation

In the implementation of the algorithm, we need to represent the left, right and
middle decks. However, since the ‘left’ deck is always an initial segment of the deck
of cards, the range of integer values representing the left deck always begins with
0. We can therefore represent the left deck by a single integer 1. To be precise,
the left deck will be represented by the segment 0.. 1-1 of the array card, where
index 1 is in the range 0..N. (Recall that N is the length of the array card.) The use
of upper bound ‘1-1’ means that 1 equal to O represents the situation that the
left deck is empty.

Similarly, the right deck is always a final segment of the deck of cards. It can
therefore be represented by a single integer r. To be precise, the right deck will
be represented by the segment r..N-1 of the array card, where index r is in the
range 0..N. Note that r equal to N represents the situation that the right deck is
empty.

This leaves the representation of the middle deck. But, this is easy, as the middle
deck is what is left over after removing the left and right decks. No new variables
need to be introduced to represent the middle deck; it is represented by the array
segment 1..r—1. In particular, 1 equal to r represents the situation that the middile
deck is empty.

To guarantee that the left, middle and right decks represented by the indices 1
and r are all disjoint, we require 1 and r to satisfy the invariant property

0<TLKrgN.

An empty left deck is represented by 1 =0 and an empty right deck is represented
by r=N.

The middle deck is empty when 1 = r; choosing a card in the middle deck occurs
when it is known that 1 < r. The choice is represented by choosing an (integer)
index k in the range 1.. r—1. For correctness, any choice in this range will do; for
efficiency, a good idea is to try to reduce the size of the middle deck by a half at
each iteration. This is achieved by choosing k in the middle of the range, using
the assignment:

k= (T+r-1)/2 .

We postpone checking that this does return a value in the right range until later.

The final pieces of the implementation represent adding the cards in the lower
deck to the left deck and adding cards in the upper deck to the right deck. These
are implemented by the assignments

1= k+1
and
r= k ,

respectively. The complete implementation is shown in Figure 4.1.

4.2 Verifying Correctness—A Taster 45

4.2

/* card is an array of integers sorted in ascending order
(repetitions are allowed), and X is an integer

*

returns an index 1 in the range 0..N, such that
all cards in segment 0..1-1 are less than X, and
all cards in segment 1..N-1 are at least X,
where N is card.length

% % sk %k

*/
public static int split(int[] card, int X) {
int N= card.length;

int 1= 0; int r= N;

/* Invariant: all cards in segment 0..1-1 are less than X
* all cards in segment r..N-1 are at least X
* 0<=1<=r <=N
* Bound function: r-1
*/

while (1 < r)
{int k= (l+r-1)/2;
if (card[k] < X) 1= k+1;
else r= k;
}
/* A1l cards in segment 0..1-1 are less than X
* A11 cards in segment 1..N-1 are at least X
7':/

return 1;

Figure 4.1 Implementation of search program in Java.

Exercise 4.1. Add code to the program in Figure 4.1 that assigns the value true
to the variable found if there is an index i such that card[i] == X. O

Verifying Correctness—A Taster

The step from manipulating decks of cards to a Java program is quite large and
raises the question of whether we can be really sure that the Java implementation
correctly meets its specification.

Later, we will be discussing formal techniques for verifying that the construc-
tion of a program has been carried out correctly. This section is a taster of what
is to come.

One particular aspect of the Java program in Figure 4.1 that gives rise to some
doubt is the assignment to k:

int k= (1+r-1)/2 .

46

Chapter 4: Implementation Issues

The right side of this assignment is an integer division and not an exact division?.
Can we be really sure that the assignment will set k to a value that is in the correct
range; does it depend on how the exact division is rounded to an integer value?
In order to be absolutely sure we need to understand properly the effect of an
integer division.

In order to avoid any confusion that may be caused by the overloading of the
division operator, it is useful to switch from the monospaced ASCII notation of
Java to a good old-fashioned mathematical notation. (Mathematical notation has
been developed over many centuries to enhance readability—fortunately becom-
ing well-established long before the development of the teletype technology that
has tyrannized programming language notation during the last half century.) We
will use m +n to denote the integer value obtained by dividing integer m by integer
n. This is different from % and m/n, which both denote the real value obtained
by dividing m by n. We also use ‘.=’ to denote the assignment operator, avoiding
the confusion (and errors) that occur when the Java ‘=" symbol is mistaken for
equality. In this notation the assignment is

k = (I+r-1)=2 .

The assignment to k is executed when 0 < I < r < N. The requirement is that the
value assigned to k is at least [and less than » —otherwise we cannot guarantee
termination of the program. So what we have to verify is that

l<+r-1)+2 <r <« 0O0L<lI<r<N.

(Note: read the symbol ‘<’ as ‘if’.)

In order to do this, we need to have a precise definition of integer division.
The official documentation on Java gives such a definition but that definition is
complicated by the inclusion of all sorts of special cases (such as that one of the
arguments is a so-called ‘NaN'—‘Not a Number’). For our purposes it is reasonable
to assume the following properties of the integer division m-+n.

« Dividing a multiple of n by n is exact. That is,
(mxn)=m = m .

» Integer division by (positive number) n is monotonic with respect to the
at-most relation. That is, for integers i and j,

i+n<jsn « i<j .

In addition, we may require the following property.

2In programming language jargon, we say that the division operator '/’ is overloaded. The compu-
tation that is executed depends on the type of the arguments. When both its arguments are integers,
the result is an integer; if both arguments are floating point values, the result is a floating point value.

4.2 Verifying Correctness—A Taster 47

+ Integer division rounds towards 0. In particular,
m=n<m/n <« 0<m A 0<n .
(We will not need to consider the case when either of m or = is negative.)

The first two of these properties are properties that one can reasonably expect
to hold of any implementation of integer division, independently of how one
chooses to round the real division. The third property is a design choice. Other
choices are to round away from zero, or round up, or round down, and other
programming languages may choose differently. For this reason, we are care-
ful to avoid using the property in our calculations wherever possible. See Exer-
cise 4.4 for further evidence of why the exploitation of this property should be
avoided.
Now, recall that what we have to prove is

l<U+r-1)+2 <r « 0<K<l<vr <N
This is the same as showing that

l<({+r-1)+2 « 0<Ll<r <N
and

(I+r-1):2 <r « 0<Il<r <N .

The proof of the first of these properties proceeds as follows. First, we begin with
the property | < (I+v-1)+2 and calculate a simpler formula that guarantees its
truth (simpler in the sense of not involving integer division).

< (l+r-1)=2
= { I = (2xl)+2
(division by 2 is introduced here in order to
eliminate it at the next step) }
@xD=2 < (U+r—-1)+2
& { division by 2 is monotonic }
2xl < l+r—1
= { addition is monotonic }
I<r-1

= { l and r are integers }

48

Chapter 4: Implementation Issues

We have thus shown that
I <(l+r-1)+2 « l<7r.
But
I<r « 0<l<r<N.
So it follows that
Il < (+r-1)+2 <« 0<l<r <N,

as required.

The calculational proof style used above was introduced in Section 3.3. Since
this is the first significant application, let us briefly recall the main elements of
the format. The calculation has four steps beginning with

I < (l+r-1)=2
and ending with
l<r .

Each step asserts either an equality between two properties or that the upper
property is true if (‘<’) the lower property is true. A reason or hint why a step is
valid is stated between braces. For example, the hint in the first step is that ! and
(2xl)+2 areequal so thatl < (l+r-1)=2is the same as (2xI[)+2 < (l+r-1)+2.
The second and third hints state the property being used. The final hint states
that the step is valid because [and 7 are integers. (It would not be valid if [and
r were real values.)
The fact that the four step calculation allows us to conclude that

< U+r-1)+2 « l<r ,

i.e. that the first line follows from the last line, is a consequence of simple prop-
erties of equality. The second step asserts that

2xD)+2 < (I+r-1)+2 <« 2xl < l+r-1 ,

but the first step asserts that the left side of this proposition is equal to
I < (I+7-1)+2, and the third and fourth steps assert that the right side is equal
to I <7. So the conclusion is obtained from the second step by ‘substitution of
equals for equals’—the replacement of subexpressions by equal subexpressions.

Note that we use plain old ‘=’ for equality of booleans (and not, for example,
‘«<"). To avoid ambiguities, we often use the symbol ‘=’ for equality of booleans in
in-line formulae. For example, the final step in the above proof uses the property

Il<r-1 = l<r .

4.2 Verifving Correctness—A Taster 49

(Read this as: ‘the boolean [< ¥—1 is equal to the boolean L <#’.) Here, we need
to distinguish between equality of booleans and equality of integers. It would be
confusing to write

I<r-1 = Il<r

even if lots of white space were used to separate the two booleans.

Note that, last but not least, the calculation simplifies ‘Il < (I+r-1)+2"to‘l <7’
It is always good practice to prove properties in a goal-oriented way, working from
complicated statements to simpler statements. In this case, the goal was to prove

I<(+r-1)+2 « 0<Il<rv <N .

The strategy is to take the left side of this statement, since this is the more com-
plicated side, and simplify it. In the process, we learn that the properties 0 < I
and r < N are not relevant.

Exercise 4.2. Prove
(l+r-1)+2 <rv <« Il<r

in the same way. Prove it also using that m+2 < m/2 < 0<m. (That is, integer
division by 2 rounds down for positive m.) O

Exercise 4.3.

(a) Integer division by positive number n is monotonic with respect to the at-
most relation. Is it monotonic with respect to the less-than relation? That is,
prove or disprove that, for all integers i and j, and all positive integers n,

i+n<jim e i<j .
(b) Is it the case that the ‘if’ in the monotonicity of integer division by »n can

be replaced by an equality? That is, prove or disprove that, for all integers i
and j, and all positive integers n,

(i=n < j+n) = (i<)) .
(c) Compare your answers to (a) and (b) with the following properties of addi-
tion. Why is there a difference?
(i+m < j+n) = (i<j) ,
(i+n < j+n) = (i<]) .
(d) Suppose n is negative. Which of the following do you expect to be true?
in<j+n « i<j ,
i+n<jn « j<i .
O

Exercise 4.4. The searching algorithm shown in Figure 4.1 is correct so long as k
is assigned a value satisfying | < k < . Determine which of the following assign-

50

Chapter 4: Implementation Issues

ments meet this requirement. In the cases that the requirement is not met give
an example showing how the program would not function correctly.

k=1,
k:=7r,
k:={+r)+2 .

Suppose that integer division is defined to round away from zero rather than
towards zero. That is, suppose

m/n<mn < 0<MmAOLn .
If this is the case, would the following assignments to k be correct?

k:={+r-1)=2 ,

k:=+7r)=2 .
Draw a conclusion about the safest assignment to k in the case in which it is not
known whether integer division is implemented by rounding up or down. O

Exercise 4.5. Rather than cutting the middle deck into two roughly equal decks,
one might try to estimate where in the middle deck the value X can be found. For
example, if the deck of cards contains the numbers from O to M in steps of roughly
%, the value X might be found roughly at position X x % As more and more of
the deck has been eliminated from the search, the array values at positions [and
r—1 can be used to interpolate an estimate of the position of X in the array.

A suggested implementation of this idea is to use the following assignment to
k:

L X —card(l] a
ko= L+ card[r—l]—card[l]x(r b

What is wrong with this idea? (Assume that real arithmetic is used to evaluate the
right side and then the value is converted to an integer by rounding. The answer
does not depend on how rounding is done.)]

Exercise 4.6. The implementation of binary search below is taken from a textbook
on developing Java software.

The class Comparator, which is used in the implementation, provides a method
relation which compares its two arguments. Assume that array v is sorted in
ascending order (possibly with duplicate entries) and c.relation(x,y) imple-
ments the test x <y.

The notationb ? el : e2 denotes a conditional expression. If boolean b eval-
uates to true, the value of the expression is given by el, otherwise it is given by
e2.

(a) Suppose array v has length 2 and elements 10 and 20. Suppose also that the
object o being searched for has the value 30. Trace the execution sequence
of the method and identify a run-time error in the program.

4.3 Verifying Correctness—A Taster 51

(b)

;/
pub

Write a critique of the implementation focusing on its correctness, the roles
of the variables hi and 1o, and its robustness in extreme circumstances.

The statically accessible sort operation

@param v the sorted array of <code>Object</code>s to be
searched.

@param o the object to be searched for.

@param ¢ the <code>Comparator</code> used to compare the
<code>0Object</code> during the search process. Must either be
"less than" or "greater than" and the same comparator that
defines the order on the array.

@return index of the item or -1 if it is not there.
Tic static int execute(final Object[] v,

final Object o,
final Comparator c¢)

{
int hi = v.length ;
int lo = 0 ;
while (true)
{
int centre = (hi + 10) / 2 ;
if (centre == 10)
{
//
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
return (v[centre].equals(o)
? centre
(v[centre+1].equals(o)
? centre+l
-1
}
if (c.relation(v[centre], 0))
{
lo = centre ;
else if (c.relation(o, v[centrel))
{
hi = centre ;
}
else
{
return centre ;
}
}
}

52

Chapter 4: Implementation Issues

4.3

Summary

In this chapter, we have shown how the card-searching algorithm of Chapter 2
is implemented in Java. A possible source of error-—non-termination due to the
approximate nature of integer division—was identified and we showed how to
verify that the implementation is indeed correct. This involved identifying the
mathematical properties of integer division rather than relying on a description
of how integer division is implemented. The exercises explore the freedom we
have in the implementation; in particular, they demonstrate instances where the
implementation goes wrong.

Bibliographic Remarks

Binary search is notorious for catching out programmers (Knuth, 1973, p. 407);
although the ‘idea’ is very simple, many programmers have failed to implement
it correctly. Unfortunately, many textbooks continue to present its implementa-
tion without any justification. Fortunately, nowadays, most published implemen-
tations are correct. The program in Exercise 4.6 (from Winder and Roberts (1998,
pp. 592, 593)) demonstrates how easy it is to get it wrong and, thereby, the impor-
tance of a scientific approach to program construction.

D

Calculational
Logic: Part 1

In a proof, whether formal or informal, we may distinguish two types of reasoning.
There is reasoning that involves properties of the data and is therefore problem
dependent, and there is reasoning that is independent of the problem domain.
The latter form of reasoning we call logical reasoning. For example, if the goal is
to prove that

< (+r-1)s2 <r « 0<I<r<N,

logical reasoning justifies splitting the proof into two parts, a proof that
< (+r-1)+2 <« 0<l<r

and a proof that
(I+r-1)+2 <rv <« 0<l<r.

This step is quite independent of the fact that the property we are required to
prove is a property of integer division. However, to prove these two parts we need
to exploit the properties of arithmetic and integer division. The first step is thus
domain independent, whereas subsequent steps are domain dependent. Logic is
the glue that binds together the properties of the data.

The computer programmer is a voracious consumer of logic, and an excellent
understanding of logical reasoning is vital to building reliable software. In this
chapter, we begin a study of logic. The focus of the chapter is equality of boolean
values. It is appropriate to begin with a study of equality because it is the most

34

Chapter 5: Calculational Logic: Part 1

5.1

fundamental operator in any calculus. In addition, we study the negation operator.
In Chapter 6, we apply what we have learnt here to reasoning about the conversion
between real and integer numbers.

Section 5.1 is a brief introduction to what logic is about. We assume that most
readers will have had an elementary introduction already. Section 5.2 onwards
contains the meat of the chapter. We observe that equality of boolean values is
transitive, symmetric and associative. The associativity of boolean equality is a
property that is very important and it is vital that it is reflected in the notation
used. So, an underlying theme of this chapter is choice of notation and how it
helps in calculational proofs.

Logical Connectives

Mathematics is the art of effective reasoning. Progress in mathematics is encoded
and communicated via its own language—a universal language that is understood
and accepted throughout the world. Indeed, communication via the language of
mathematics is typically easier than communication via a natural language. This
is because mathematical language is clear and concise.

Logic is a part of mathematics. It is the glue that binds together other mathe-
matical statements. Traditionally, logic has been conducted in natural language.
Mathematical statements are interspersed with phrases or sentences like—‘a nec-
essary condition is...’, ‘therefore...’, ‘because’, ‘if and only if’, ‘every number can
be factorized into a product of prime numbers’, etc. But, from the time of Leibniz
(1646-1716), who dreamt of reducing all mathematics to calculation, efforts have
been made to formalize logic. George Boole’s aim in his book Laws of Thought
was specifically to

‘investigate the fundamental laws. .. by which reasoning is performed,
... give expression to them in the language of a Calculus, and upon this
foundation. .. establish the Science of Logic.'

The basis of logic is very simple. It consists of the two so-called boolean values
true and false. Propositions are statements that are either true or false. Examples
of propositions are 0 =0 (a true proposition), the word ‘logic’ begins with the
letter ‘c’ (a false proposition), and the number /2% is rational (which is either
true or false, but I don’t know which). Atomic propositions are ones that cannot
be broken down into simpler propositions.

Logic is not at all concerned with the truth or otherwise of atomic propositions;
that is the concern of the problem domain being discussed. Logic is concerned
with whether the combination of atomic propositions leads to a valid or ‘logical’
conclusion. Compare, for example,

If a book is a recommended text, a copy will be held in the library. The

book Logic is Glue is a recommended text. Therefore, a copy of Logic
is Glue will be held in the library.

5.1 Logical Connectives 55

with
The knowledge in universities grows and grows. Each new student
brings a little in and the graduates do not take any away.
The first is a logical argument. It has two premises, the statements
If a book is a recommended text, a copy will be held in the library.
and
The book Logic is Glue is a recommended text.
and one conclusion:
A copy of Logic is Glue will be held in the library.

And, clearly, the conclusion is indeed a consequence of the first two statements.
Note, however, that logic does not enable us to tell whether or not the premise
that all recommended texts are held in the library is true, nor whether or not the
premise that the book Logic is Glue is a recommended text is true. Logic is about
the properties of the logical connectives and not about the truth or otherwise of
the atomic propositions.

The second argument has the same structure, the two premises

Each new student brings a little [knowledge] in.
and

The graduates do not take any [knowledge] away.
and one conclusion

The knowledge in universities grows and grows.

The argument is illogical, not because we may dispute the validity of the premises,
but because the conclusion is just not a logical consequence of the premises.

The logical connectives are functions from booleans to booleans. Since their
domain and range are finite sets we can give them a precise mathematical meaning
by simply enumerating all possible combinations of input and output value. This
is done in a truth table.

There are four truth tables with one propositional variable. That is, there are
exactly four functions that map a single boolean value into a boolean value.

p |true p -p false
true | true true false false
false | true false true false

The first column is the ‘constant true’ function, the second is the identity func-
tion, the third is negation, and the last column is the ‘constant false’ function.

56 Chapter 5: Calculational Logic: Part 1

This means that any expression in one propositional variable p can always be
simplified to either true, p, —p or false.

There are 16 binary functions from booleans to booleans. Eight correspond to
the most frequently used ones: six binary operators and the constant true and
false functions.

r=q9q p=*q
14 q true p=q p#¥q9 pAq pvq p<q p=>q false
true true | true true false true true true true false
true false | true false true false true true false false
false true | true false true false true false true false
false false | true true false false false true true false

Of all these logical operators, the most important is equality. So, it is with this
operator that we begin.

5.2 Boolean Equality

The history of mathematics shows that it is often the most fundamental con-
cepts that have taken the longest to be recognized and properly incorporated
into the body of mathematical knowledge. The number zero, indispensable to the
conventional positional notation for numbers, is the classic example—the Greek
mathematicians did not even recognize one as a number, let alone zero. Equal-
ity is another example. It was not until 1557 that the ‘=’ symbol was introduced
by Robert Recorde in his book The Whetstone of Witte ‘containying. . . the rule of
Equation...'. Before then, equal values were written side by side. In historical
terms, equality is a relatively modern concept.

Recorde’s symbol for equality is used universally to denote the fact that two
values are the same. It is used, for example, for equality of numbers (integers,
reals, complex numbers, etc.), for equality of sets, for equality of functions, and so
on. Curiously, however, it is rarely used in logic texts for equality of propositions.

Equality—on any domain of values—has a number of characteristic properties.
First, it is reflexive. That is x = x whatever the value (or type) of x. Second, it is
symmetric. That is, x = y is the same as y = x. Third, it is transitive. That is, if
x =7y and y = z, then x = z. Finally, if x =y and f is any function, then f.x = f.v
(where the infix dot denotes function application). This last rule is called substi-
tution of equals for equals or Leibniz’s rule.

Equality is a binary relation. When studying relations, reflexivity, symmetry and
transitivity are properties that we look out for. Equality is, however, also a func-
tion. It is a function with range the boolean values true and false. When we study

5.2 Boolean Equality 57

functions, the sort of properties we look out for are associativity and symmetry.
For example, addition and multiplication are both associative: for all x, v and z,

Xx+(y+2z) (x+y)+z

and
XX (yXxz) = (XxXy)xz .

They are also both symmetric: for all x and 1y,
X+y =y+Xx

and
XXy =yYXX .

Symmetry of the equality function is just the same as symmetry of the equal-
ity relation. But what about associativity of equality? Is equality an associative
operator?

The answer is that, in all but one case, the question does not make sense. Asso-
ciativity of a binary function only makes sense if the domains of its two arguments
and the range of its result are all the same. The expression (p =q) =1 just does
not make sense when p, q and r are numbers, or characters, or sequences, etc.
The one exception is equality of boolean values. When p, g and r are booleans,
p =q is also a boolean; so it makes sense to compare p =g with r for equality.
That is, (p = q) = r is a meaningful boolean value. Similarly, so toois p = (g =71).
It also makes sense to compare these two values for equality. In other words, it
makes sense to ask whether equality of boolean values is associative—and, per-
haps surprisingly, it is. That is, for all booleans p, g and 7,

[Associativity] ((p=q)=71) = (p=(q=71)) . (5.1)

Please complete the following exercise before continuing. It will help you understand
the discussion that follows better.

Exercise 5.2. Check that equality of boolean values is associative by constructing
the truth tables for (p=q)=v and p =(q=7), where p, g and » are boolean
values. Identify a general rule, based on how many of p, g and r are true, that
predicts when the two expressions are true.]

Associative functions are usually denoted by infix operators!. The benefit is
immense. If a binary operator @ is associative (that is, (x®y)ez=xo(yez) for
all x, y and z), then we can write x®y @z without fear of ambiguity. The expres-
sion becomes more compact because of the omission of parentheses. But the

1 An infix operator is a symbol used to denote a function of two arguments that is written between
the two arguments. The symbols ‘+’ and ‘x’ are both infix operators, denoting addition and multi-
plication, respectively.

58

Chapter 5: Calculational Logic: Part 1

omission of parentheses is not that important. The real benefit comes in calcula-
tions. A major advantage is that the notation is unbiased; a calculation in which
an expression of the form x®y®z occurs may begin by simplifying x@y or it
may begin by simplifying y®z, no preliminary manipulation being required to
get the expression in the right form. Also, what frequently happens is that (for
example) x®y is replaced by, say, u®v so that the subterm becomes usve:z.
This simplification is then immediately followed by the simplification of vez to
some term w, say. Thus in two steps the term x& y @z has been replaced by uew,
whereas, formally, the calculation has three steps, the invisible middle step being
application of the associativity of the operator. Indeed, a good notation guides
calculations by making the most important steps (almost) invisible. If the opera-
tor is also symmetric (thatis, x®y = yex for all x and y), the gain is even bigger
because then, if the operator is used to combine several subexpressions, we can
choose to simplify any pair of subexpressions.

Infix notation is also often used for binary relations. We write, for example,
0 < m < n. Here, the operators are being used conjunctionally: the meaning is
0 < m and m < n. In this way, the formula is more compact (since m is not written
twice). More importantly, we are guided to the inference that 0 < n. The algebraic
property that is being hidden here is the transitivity of the at-most relation. If the
relation between m and n is m <n rather than m <n and we write 0 < m < n,
we may infer that 0 < n. Here, the inference is more complex since there are two
relations involved. But it is an inference that is so fundamental that the notation
is designed to facilitate its recognition.

In the case of equality of boolean values, we have a dilemma. Do we understand
equality as a relation and read a continued expression of the form

xX=y=z
as asserting the equality of all of x, ¥ and z? Or do we read it ‘associatively’ as
(x=y)=z,
or, equally, as
x=(y=2),

in just the same way as we would read x+y+z? The two readings are unfortu-
nately not the same (for example, true = false = false is false according to the first
reading but true according to the second and third readings). As we shall see, there
are advantages in both readings and it is a major drawback to have to choose one
in favour of the other.

It would be very confusing and, indeed, dangerous to read x = y = z in any other
way than x =y and y = z; otherwise, the meaning of a sequence of expressions
separated by equality symbols would depend on the type of the expressions. Also,
the conjunctional reading (for other types) is so universally accepted—for good

5.3 Examples of the Associativity of Equivalence 59

5.3

reasons—that it would be quite unacceptable to try to impose a different conven-
tion.

The solution to this dilemma is to use two different symbols to denote equality
of boolean values—the symbol ‘=" when the transitivity of the equality relation
is to be emphasized and the symbol ‘=’ when its associativity is to be exploited.
Accordingly, we will write both p =g and p = q. (As the reader will have observed,
we have been doing this for some time now. It is only now, however, that we have
been able to provide a full explanation.) When p and q are expressions denoting
boolean values, these both mean the same. But a continued expression

p=a=r,

comprising more than two boolean expressions connected by the ‘=’ symbol, is
to be evaluated associatively—i.e. as (p=q) =+ or p =(q =r), whichever is the
most convenient—whereas a continued expression

p=a=r

is to be evaluated conjunctionally—i.e as p =q and q =v. More generally, a con-
tinued equality of the form

pPr=p2=...=pPn
means that all of p;, po, ..., pn are equal, whilst a continued equivalence of the
form

PL=EP2= ... =Py

has the meaning given by fully parenthesizing the expression (in any way what-
soever, since the outcome is not affected) and then evaluating the expression as
indicated by the chosen parenthesization. Note that when n is 2 we may use either
symbol. That is, p = q and p = g have the same meaning.

Moreover, we recommend that the ‘=" symbol is pronounced as ‘equivales’;
being an unfamiliar word, its use will help to avoid misunderstanding.

Examples of the Associativity of Equivalence

This section contains a number of examples illustrating the effectiveness of the
associativity of equivalence.

Even and Odd Numbers. The first example is particularly beautiful. It is the
following property of the predicate even on numbers. (A number is even exactly
when it is divisible by two.)

m+niseven = miseven = niseven .

60

Chapter 5: Calculational Logic: Part 1

It will help if we refer to whether or not a number is even or odd as the parity of
the number. Then, if we parenthesize the statement as

m+niseven = (miseven = niseven) ,

it states that the number m+n is even exactly when the parities of m and n are
both the same. Parenthesizing it as

(m+niseven = miseven) = niseven ,

it states that the operation of adding a number n to a number m does not change
the parity of m exactly when 7 is even.

Another way of reading the statement is to use the fact that, in general, the
equivalence p = g =v is true exactly when an odd number of p, g and r is true
(see Exercise 5.2). So the property captures four different cases:

(m+niseven) and (miseven) and (niseven))
or (m+nisodd) and (m is odd) and (n is even))
or (m+nisodd) and (miseven) and (n isodd))
or ((m+niseven) and (m is odd) and (nisodd)) .

The beauty of this example lies in the avoidance of case analysis. There are four
distinct combinations of the two booleans ‘m is even’ and ‘n is even’. Using the
associativity of equivalence the value of ‘m+n is even’ is expressed in one simple
formula, without any repetition of the component expressions, rather than as a
list of different cases. Avoidance of case analysis is vital to effective reasoning.

Exercise 5.3. The sign of a number says whether or not the number is positive.

For non-zero numbers x and y, the product x Xy is positive if the signs of x and

v are equal. If the signs of x and y are different, the product xxy is negative.
Assuming that x and y are non-zero, this rule is expressed as

XXy is positive = x is positive = 'y is positive .

Interpret the two different ways of parenthesizing the equivalences and enumer-
ate the different properties of the sign of a number that this one equivalence
captures. O

Full Adder. A full adder is a component of a circuit to add two binary numerals.
An addition unit comprises a chain of full adders, the number of full adders being
equal to the bit length of the numerals to be added. Each full adder has three
inputs and two outputs. The three inputs are two bits to be added and a carrier
bit, the carrier bit being ‘carried over’ from previous additions in the chain. Let us
suppose the bits to be added are a and b and the carrier bit is c. Let A, B and C
be the propositions a =1, b =1 and ¢ = 1. The output is a bit d, which is the least
significant bit of a+b+c, and a new carrier bit, the most significant bit of a+b+c.
Let us suppose that D is the proposition d = 1. It is easy to see that d =1 exactly

5.4 Continued Equivalences 61

5.4

when an odd number of a, b and ¢ is 1 (i.e. when all are 1 or when just one is 1
and the other two are 0). Now the proposition p =q =7 is true exactly when an
odd number of p, g and is true. So we have

D=(A=B=C) .
Now, using the associativity of boolean equality, we get
(D=A)=(B=C(C) .

In words, the least significant bit of a+b+c is equal to a when the other two bits b
and ¢ are equal; if the bits b and ¢ are different, then the bits d and a are different.

Continued Equivalences

The associativity of equivalence is exploited in almost all laws of the propositional
calculus. A first example is the law

[Constant true] true=p=p . (5.4)

There are two ways to parenthesize this formula. Reading it as true= (p =p),
which we write in the form

true = (p=p)

for greater emphasis, the law states that equivalence is a reflexive relation. Accord-
ing to the other parenthesization,

(true=p)=p ,

the law states that true is a unit? of the equivalence operator.

The law (5.4), in conjunction with the symmetry of equivalence, provides an
easy way of simplifying continued equivalences in which one or more terms is
repeated. Suppose, for example, we want to simplify

p=p=q=p=r=q .

Symmetry of equivalence allows us to rearrange all the terms so that repeated
occurrences of ‘p’ and ‘q’ are grouped together. Thus we get

PEpPEpP=4d=q=7r .
Now we can use (5.4) to replace occurrences of ‘p = p’ and ‘q = g’ by ‘true’ obtaining

true=p=true=vr .

A unit of a symmetric binary operator ® is a value lg such that, for all x of the appropriate
type, x®1s = X. A zero of a binary operator ® is a value 0g such that x®0g = Os.

62

Chapter 5: Calculational Logic: Part 1

Finally, we use (5.4) again to replace ‘true = x' by ‘x’. The result is that the original
formula is simplified to

p=7r .
In general, the rule is that an expression of the form

P1=pP2=...=Pn
is simplified by replacing any term that is repeated an odd number of times by a
single occurrence of the term, and any term that is repeated an even number of
times by removing all occurrences of the term (replacing the original expression
by true if all terms are repeated an even number of times). Applying this process,
the expression

pEquEp—EYEqEQETEp
is simplified to

q .,

because both p and r occur an even number of times, whilst g occurs an odd
number of times.

Compare this process with the simplification of an arithmetic expression involv-
ing continued addition. The expression

p+p+q+p+r+q+q+r+p
is simplified to
4p +3q+2r .

This is made possible because addition is associative and symmetric. So, although
some details of the simplification process are different, in essence the process is
identical.

Exercise 5.5. Simplify the following.
(@ p=p=p=p=p .
(b) p=true=g=p .
(c)a=p=q=p=q=p .
(d) false =false =false .
(&) p=p=p .
(f) (false=false) =false = false .

(8 (p=p)=p=p . O

5.5 The Island of Knights and Knaves 63

5.5

The Island of Knights and Knaves

The island of knights and knaves is a fictional island that is often used to test stu-
dents’ ability to reason logically. The island has two types of inhabitants: ‘knights’,
who always tell the truth; and ‘knaves’, who always lie. Logic puzzles involve
deducing facts about the island from statements made by its inhabitants without
knowing whether or not the statements are made by a knight or a knave. We will
use this, and similar sorts of logic puzzle, from time to time to provide practice
in effective, calculational reasoning.

Suppose A is the proposition ‘person A is a knight’ and suppose A makes a
statement S. Then A is true is the same as § is true. That is,

A=S .

This is the basic rule that is used in solving logic puzzles about the island. For
example, if A says ‘I am a knight’, we can infer A = A. Since this is always true,
we get no information from the statement. A moment’s thought confirms that
this is what one would expect. Both knights and knaves would claim that they are
knights. A more informative statement is, for example, if A says ‘I am the same
type as B’. For then we infer A= (A = B), which by associativity of equivalence
and the rule (5.4) simplifies to B. So, from this statement, we can infer that B is a
knight, but nothing about A.

If native A is asked a yes/no question Q, then the response to the question is
A =Q. That is, the response will be ‘yes’ if A is a knight and the answer is really
yes, or A is a knave and the answer is really no. Otherwise the response will be
‘no’. For example, asked the question ‘are you a knight’ all natives will answer
‘ves’, as A= A. Asked the question ‘is B a knight?’ A will respond ‘yes’ if they are
both the same type, otherwise ‘no’. That is, A’s response is ‘ves’ or ‘no’ depending
on the truth or falsity of A=B.

Because these rules are equivalences, we expect the algebraic properties of
equivalence to play a central role in the solution of logic puzzles formulated about
the island. In this section, we consider two examples: one very simple, the other
more complicated. Then it is your turn.

Example 5.6. In this first example, it is rumoured that there is gold buried on the
island. You ask one of the natives, A, whether there is gold on the island. He makes
the following response: ‘There is gold on this island equivales3 I am a knight.’ The
problem is as follows.

(a) Can it be determined whether A is a knight or a knave?
(b) Can it be determined whether there is gold on the island?

You may wish to try the example yourself before consulting the solution. [

3The knights and knaves had had a proper training in calculational logic, otherwise they would
not always be able to give the right response!

64

Chapter 5: Calculational Logic: Part 1

Solution. Let G denote the proposition ‘There is gold on the island’. A’s statement
is A =G. So what we are given is

A=A=G .

This, by (5.4), is equivalent to G. So we deduce that there is gold on the island,
but it is not possible to tell whether A is a knight or a knave. O

Example 5.7. A tourist comes to a fork in the road, where one branch leads to

a restaurant and one does not. A native of the island is standing at the fork.

Formulate a single yes/no question that the tourist can ask such that the answer

will be ves if the left fork leads to the restaurant, and otherwise the answer will
be no.

Again, you may wish to try the example yourself before consulting the solution.

O

Solution. Let Q be the question. Let A be ‘the native is a knight'. Let L be the
proposition ‘the left fork leads to the restaurant’. We require that L equivales
the response to the question is yes. But the response to the question Q is yes
equivales Q = A. So we require that L = (Q = A). Equivalently, using the symmetry
and associativity of equivalence, Q = (L = A). The question is thus: is the statement
that the left fork leads to the restaurant equivalent to your being a knight?

Note that this analysis is valid independently of what L denotes. It might be that
the tourist wants to determine whether there is gold on the island, or whether
there are any knaves on the island, or whatever. In general, if it is required to
determine whether some proposition P is true or false, the question to be posed
is P = A. In the case of more complex propositions P, however, the question may
be simplified. 0

Here are some exercises to try yourself. More will be given later.

Exercise 5.8. Suppose you come across two of the inhabitants. You ask both of
them whether the other one is a knight. Will you get the same answer in each
case? O

Exercise 5.9. There are three natives A, B and C. Suppose A says ‘B and C are the
same type.” What can be inferred about the number of knights? a

Exercise 5.10. Suppose C says ‘A and B are as like as two peas in a pod’. What
question should you pose to A to determine whether or not C is telling the truth?
O

Exercise 5.11. What single question allows you to determine whether A is a
knight? Justify your question using the construction given above. O

Exercise 5.12. What question should you ask A to determine whether B is a
knight? Justify your question using the construction given above. 0

5.6 Negation 65

5.6

Exercise 5.13. What question should you ask A to determine whether A and B are
the same type? Justify your question using the construction given above. [

Exercise 5.14. You would like to determine whether an odd number of A, B and
C is a knight. You may ask one yes/no question to any one of them. What is the
question you should ask? O

Negation

We now consider the negation operator. Negation is a unary operator (meaning
that it is a function with exactly one argument) mapping a boolean to a boolean
and is denoted by the symbol ‘—’, written as a prefix to its argument. If p is a
boolean expression, ‘—p’ is pronounced ‘not p’. The law governing —p is

[Negation] -p=p=false . (5.15)
Reading this as

-p = (p =false) ,
it functions as a definition of negation. Reading it the other way,

(-p=p) = false ,

it provides a way of simplifying propositional expressions. In addition, the sym-
metry of equivalence means that we can rearrange the terms in a continued equiv-
alence in any order we like. So, we also get the property:

p = (—p=false) .

The law (5.15), in conjunction with the symmetry and associativity of equivalence,
provides a way of simplifying continued equivalences in which one or more terms
are repeated and/or negated. Suppose, for example, we want to simplify

TPEPEJGETPEY=T] .

We begin by rearranging all the terms so that repeated occurrences of ‘p’ and ‘q’
are grouped together. Thus we get

pEopEp=q=-q=vr .

Now we can use (5.4) and (5.15) to reduce the number of occurrences of ‘p’ and
‘q’ to at most one (possibly negated). In this particular example we obtain

true=p=false=vr .

Finally, we use (5.4) and (5.15) again. The result is that the original formula is
simplified to

“p=Er .

66

Chapter 5: Calculational Logic: Part 1

Just as before, this process can be compared with the simplification of an arith-
metic expression involving continued addition, where now negative terms may
also appear. The expression

p+(-p)+a+(-p)+r+q+(-q@)+7r+p
is simplified to
q+2r
by counting all the occurrences of p, q and r, an occurrence of —p cancelling out
an occurrence of p. Again the details are different but the process is essentially
identical.
The two laws (5.4) and (5.15) are all that is needed to define the way that negation

interacts with equivalence; using these two laws we can derive several other laws.
A simple example of how these two laws are combined is a proof that —false = true:

—false

= { law —p = p =false with p := false }
false = false

= { law true = p = p with p := false }
true .

Let us now see how associativity of equivalence is used in a simple calculation.
We investigate the expression —~(p = q) to see whether it is possible to distribute
negation through equivalence:

~(p=q)

= { the law ~p=p =falsewithp := (p=q) }
p =q=false
= { the law ~p=p =falsewithp := q }
P="q .
We have thus proved
[Inequivalence] -(p=gq)=p=-q . (5.16)

Note how associativity of equivalence has been used silently in this calculation.
Note also how associativity of equivalence in the summary of the calculation gives
us two properties for the price of one. The first is the one proved directly:

~(p=q)=(p=-q),
the second comes free with associativity:

(~(p=q)=p)=—q .

5.6 Negation 67

The proposition —(p = q) is usually written p # q. The operator is called inequiv-
alence (or exclusive-or, abbreviated xor). As a final worked example, we show that
inequivalence associates with equivalence:

(p#tq) =vr

= { expanding the definitionof p#q |}
~(p=q) =7

= { ~(p=q)=p=-q |
p=-q=vr

= { using symmetry of equivalence, the law (5.16)
is applied in the form ~(p=q) = g=p
withp,q := q,v }

p=-(g=r)
= { definitionof g #+ }
p=(q#7r) .

Exercise 5.17. Simplify the following. (Note that in each case it does not matter
in which order you evaluate the subexpressions. Also, rearranging the variables
and/or constants does not make any difference.)

(a) false # false # false .

(b) true # true # true # true .

(c) false # true # false # true .

dp=p=-p=p=-p.

) pfa=q=p .

) pfa=r=p .

@pr=p#-pEp=-p.

hp=pt-pEp=-p#-p. 0

Exercise 5.18. Using only equivalences and/or inequivalences, formalize the fol-
lowing statements.

{a) None or both of p and q is true.

(b) Exactly one of p and q is true.

(c) Zero, two, or four of p, q, v and s is true.

(d) One or three of p, g, v and s is true. [

Exercise 5.19. Prove that —true = false. O

68

Chapter 5: Calculational Logic: Part 1

5.7

Exercise 5.20 (Double Negation). Prove the rule of double negation

—lﬁp:p .
0

Exercise 5.21. The proof that inequivalence and equivalence associate with each
other is summarized in the law

pEq=r=p=q#r,

any parenthesization being allowed. In addition, any rearrangement of the vari-

ables is allowed because both equivalence and inequivalence are symmetric.
Use these observations to list as many individual properties of equivalence and
inequivalence as you can. In particular, deduce that inequivalence is associative.
O

Exercise 5.22 (Encryption). The fact that inequivalence is associative, that is

ptEQ@FEr)=Wp£tq £1),

is used to encrypt data. To encrypt a single bit b of data, a key a is chosen and
the encrypted form of b that is transmitted is a # b. The receiver decrypts the
received bit, ¢, using the same operation?. That is, the receiver uses the same key
a to compute a # c. Show that, if bit b is encrypted and then decrypted in this
way, the result is b independently of the key a. O

Exercise 5.23. Let us return to the island of knights and knaves. In this question,
there are two natives, A and B. Now, A says, ‘B is a knight is the same as I am a
knave’. What can you determine about A and B? 0

Exercise 5.24. On the island of knights and knaves, you encounter two natives, A
and B. What question should you ask A to determine whether A and B are different

types? O

Summary

In this chapter, we have explored the basic properties of equivalence (the equality
of boolean values), negation and inequivalence. Equivalence is highly unusual in
that it is reflexive, symmetric, transitive and associative. Inequivalence is sym-
metric and also associative. We have shown how these properties are exploited in
a variety of situations and we have begun the introduction of an axiomatization
of the logical connectives.

See the appendix for a list of properties that have been established.

4This operation is usually called ‘exclusive-or’ in texts on data encryption; it is not commonly
known that exclusive-or and inequivalence are the same. Inequivalence can be replaced by equiva-
lence in the encryption and decryption process. But, very few scientists and engineers are aware of
the algebraic properties of equivalence, and this possibility is never exploited!

5.7 Summary 69

Bibliographic Remarks

The fact that equality of boolean values is associative has been known since at
least the 1920s, having been mentioned by Alfred Tarski in his PhD thesis, where
its discovery is attributed to J. Lukasiewicz. (See the paper ‘On the primitive term
of logistic’ (Tarski, 1956); Tarski is a famous logician.) Nevertheless, its useful-
ness was never recognized until brought to the fore by E.W. Dijkstra in his work
on program semantics and mathematical method (see, for example, Dijkstra and
Scholten 1990). Even now, however, it appears to be unknown to most mathemati-
cians and logicians (and many computing scientists).

The origin of the logic puzzles is Raymond Smullyan’s book What is the Name
of this Book (Smullyan, 1978). This is a very entertaining book which leads on
from simple logic puzzles to a discussion of the logical paradoxes and Godel's
undecidability theorem. But Smullyan’s proofs invariably involve detailed case
analyses. The exploitation of the associativity of equivalence in the solution of
such puzzles is due to Wiltink (1987). The textbook by Gries and Schneider (1993)
is highly recommended for further reading. The slogan ‘logic is the glue’ is theirs.
The example of a full adder is also theirs.

This page intentionally left blank

6.1

6

Number
Conversion

In Chapter 4, we discussed the properties of integer division. In this chapter, we
discuss the related issue of converting real numbers to integers. We introduce
a method for defining such operations, called a Galois connection. The use of
a Galois connection to define a function is particularly elegant, as we hope to
demonstrate in this and later chapters.

The Floor Function

Casting is the name given in languages like C and Java for the operation of con-
verting a value of one type to another. Casts often occur automatically, but the
programmer should still be aware of when they occur because they can cause
errors if not used properly.

The cast from real numbers to integers occurs when evaluating an integer divi-
sion. The real value of the division is first computed and then the value is con-
verted to an integer, for example by rounding towards zero. The cast from integers
to reals may seem unnecessary—one might argue that an integer is a real value
anyway—but it is required in languages like Java, and indeed sometimes needs to
be made explicit. This is because the division operator ‘/’ is overloaded in Java.
The text 1/2 (for example) means an integer division and evaluates to zero. So, if
the real value is intended, one has to write, say, 1.0/2.0. Adding decimal points
does not help, however, when the values being divided are expressions. So if, for
example, m and n have been declared to be integers, we have to write something
like (real)m/(real)n to force the compiler to compute the real value of m/n.

72

Chapter 6: Number Conversion

(We say ‘something like’ here because we do not want to go into all the intricacies
of a specific language. In fact there is no ‘real’ type in Java; there are two integer
types and two floating point types.)

Most languages specify how conversion from reals to integers is done. Java, for
example, specifies that it is to be done by rounding towards zero. But there are
circumstances when a programmer wishes the cast to be evaluated differently. For
example, when completing a tax return, the tax payer is allowed to round in a direc-
tion in their own favour. Thus, interest received would be rounded down whilst
interest paid would be rounded up. The values entered may also be computed, for
example by dividing interest between two partners according to a pre-negotiated
ratio. The programmer of a tax-calculator must therefore fully understand the
properties of the casting operators. This is the topic of this chapter.

In mathematics, there is no specific notation for casting an integer value to a
real value. Mathematicians call it an ‘embedding’ and usually rely on a notational
convention, like using m and 7 to denote integers and x and y to denote reals, in
order to make clear what is intended. When specific reference to the embedding
is needed, it is usual to introduce some local ad hoc notation. There is, however,
a well-established mathematical notation for converting reals to integers. Math-
ematicians have identified two such functions, the floor function and the ceiling
function. For real value x, the floor of x is an integer and is denoted | x|. Also,
for real value x, the ceiling of x is an integer and is denoted [x]. To begin with
we consider only the floor function; we return to the ceiling function later.

The floor function from reals to integers is defined as follows: for all real x we
take | x] (read ‘floor x’) to be the greatest integer that is at most x. Formally, this
is captured by a simple equivalence.

Definition 6.1 (Floor Function). For all real x, | x| is an integer such that, for all
integers n,

n<lxl=n<x .

O

In the definition of the floor function we use the mathematical convention of
not denoting the conversion from integers to reals. It is implicit in the inequality
n < x, which seems to compare an integer with a real. In fact, what is meant is
the comparison of the real value corresponding to n with the real value x. On the
right side of the equivalence the at-most relation (‘<’) is between reals, whereas
on the left side it is between integers.

Making explicit both conversions, temporarily adopting a Java-like notation, is
illuminating. Doing so the definition becomes that, for all real x, (floor)x is an
integer such that for all integers n,

n < (floor)x = (real)n < x .

6.2 Properties of Floor 73

6.2

So, the floor of x is defined by connecting it to the conversion from integers to
reals in a simple equivalence. The definition of the floor function is an instance
of what is called a Galois connection. In general, a Galois connection relates (or
connects) two functions by a simple equivalence of the same shape as that above;
Galois connections are used to define a complicated function (like the floor func-
tion) by mapping its properties into the properties of a simpler function (like the
embedding of integers into the reals). This said, it is useful to adopt the mathe-
matical convention of omitting explicit mention of the embedding function and
this is what we do from now on.

Properties of Floor

The first time that one encounters a definition like Definition 6.1, it can be difficult
to see how it is used. But, it is not as difficult as it may seem.

The first thing we can do is to try to identify some special cases that simplify
the definition. Two possibilities present themselves immediately; both exploit the
fact that the at-most relation is reflexive. The equation

n<|xl=n<x

is true for all integers n and reals x. Also, | x| is by definition an integer. So we
can instantiate » to [x|. We get

IxI<Ixl=lx]<x .
The left side that is obtained—| x | < [x]—is true, and so the right side is also true.
That is,

[x]<x .

This tells us that the floor function rounds down. It returns an integer that is at
most the given real value. (Note that this is not the same as rounding towards zero.
For negative numbers, rounding down rounds away from zero. So the Java real-
to-integer conversion coincides with the floor function only for positive values.)

The second possibility is to instantiate x to n. This is allowed because every
integer is a real. Strictly, however, we are instantiating x to the real value obtained
by converting n. We get

n<|nl=ngn .

In this case, it is the right side of the equivalence that is true. So we can simplify
to

n<lnl .

Earlier, we determined that | x] < x for all real values x. Instantiating x to n, we
get

lnl<n .

74

Chapter 6: Number Conversion

Combining the two inequalities, we have derived that, for all integers n,
Inj=n. (6.2)

(Formally, the property of the at-most relation we use is that it is antisymmetric.
That is, for all numbers m and n, m = n exactly when both m <n and n<m.)
Note that it is not permissible to instantiate n with some real value x. The
defining equation is true for all integers n, but a real value is not an integer.
A good understanding of the equivalence operator suggests something else we
can do with the defining equation: in general, we have

p=a=-p=-q .

This is the rule of contraposition. So the contrapositive of the definition of the
floor function is, for all integers 7 and real x,

~(nglx)) = ~(n<x) .

But ~(n<m) =m<n.So
Ix]<n=x<n.

Equally, using that for integers m and n, m<n = m+1<n,
[x]+1<n = x<n .

Now we can exploit reflexivity of the at-most relation again. Instantiating n with
[x]+1 and simplifying we deduce:

x <|x]+1.
Recalling that [x | < x, we have established
Ix] € x < |x]+1 .

In words, | x| is such that | x] is at most x and x is less than | x|+1. Because
| x] is an integer, this defines it uniquely. We can express the unicity by a simple
equivalence: for all integers m and all reals x,

m=|x] = m< x <m+1 . (6.3)

Recalling the discussion of integer division, we now ask whether the floor func-
tion is monotonic. That is, we want to show that

(xI<lylex<y .
Here we calculate:

Ix]<ly]
= { Definition 6.1, x,n := y,|x] }

6.3 Indirect Equality 75

IxI<y

= { transitivity of < }
Ix]<x<y

- { [xl<x }
x<y .

Thus, the floor function is, indeed, monotonic.

6.3 Indirect Equality

Let us now demonstrate how to derive more complicated properties of the floor
function. In the process we introduce an important technique for reasoning with
Galois connections called the rule of indirect equality.

The following property illustrates the technique:

[Vix1| = 1= 6.4)

for all x, 0< x.

Suppose we want to establish this property. It is an equality between two floor
values; yet the definition of the floor function, Definition 6.1, seems to suggest
that we should prove it by proving the two inequalities

[\/E] < Vx|

and

[\/EJ > Vx| .

This strategy turns out to be rather difficult to carry out. A better strategy is this:
the form of the left side of Definition 6.1 is an inequality between an arbitrary
integer and a floor value. So let us begin with the expression

ve]

where 7 is arbitrary, and see what we can discover. This is how the calculation
goes.

n< [\/l—x”

= { n is an integer, Definition 6.1 }

n<ylx|

= { arithmetic }

76

Chapter 6: Number Conversion

n?<ix]vn<o
= { n? is an integer, Definition 6.1 }

n’<xvn<0

= { arithmetic, assuming that 0<n }
n<.J/x

= { n is an integer, Definition 6.1 }
n< [Vx] .

So we have proved that, for all integers n, where 0 < n,

ngl\ﬂx_JJ = n< VR .

Since n is an arbitrary integer, and [\/liJ is an integer, by definition, we can now
instantiate » to [\/LxJ J We can also instantiate n to | /x|, for the same reason.
In the former case, we get

[< [V = [< 71

That is,

[\/l_X—JJ < Vx|

Similarly, in the latter case, we get

lvx] < [\/Ec'JJ

Property (6.4) now follows from the antisymmetry of the at-most relation.

Note that the decision on how to prove the theorem, i.e. the introduction of
the integer n, is entirely inspired by the shape of Definition 6.1. The only way
we can calculate something about the floor function is to use its specification.
That specification allows one to rewrite the floor function only when it is in some
special shape. In this case: it is on the greater side of the at-most relation and on
the smaller side there is an (arbitrary) integer. That the specification of the floor
function is indeed a good basis for calculating properties of the function is due
to the rule of ‘indirect equality’.

Rule of indirect equality.
Two numbers [and m are equal if it is the case that, for all numbers n of
the same type as I and m,

n<l=n<m .

6.4 Rounding Off 77

The qualification on 7 in the rule means that (for example) if [and m are reals,
the property n <l = n < m must be true of all real numbers, n; if, however, [and
m are known to be, say, natural numbers, the property must be true of all natural
numbers, n, and, if [and m are, say, even integers, the property must be true of
all even integers, n.

Exercise 6.5. Prove the rule of indirect equality making clear how the properties
of equivalence and the at-most ordering are used. Where does the requirement
that all of I, m and n have the same type enter into the proof? o

Exercise 6.6. Using the same calculational style exemplified above, prove the fol-
lowing properties of the floor function:

(@ |x+m| = |x|+m ;
(b) |x/m]| = [lx]/m] (assuming m is a positive integer). 0

Exercise 6.7. What is wrong with the following ‘proof’?
We have, for integers m and n, where n is strictly positive, and all real x,

m < [nxx]
= { definition of floor }
m < nxx

{ arithmetic }

il

m/n < x
= { definition of floor }
m/n < |x]
= { arithmetic }
m< nx|x] .
Thus, by indirect equality, n X | x] = | n X x| for all positive n. (Hint: check every
step carefully to see that all requirements have been met.)

Give examples of n and x for which n x | x| #= | n x x]. (Hint: find values m, n
and x that demonstrate the error in the above proof.) O

Rounding Off

To round off this chapter, we show how the programmer can take control of
rounding in integer division.

Recall the discussion at the beginning of the chapter where we said that in a
tax calculation it is sometimes necessary to round down and sometimes to round
up. We want to show how to implement rounding up integer divisions supposing
that our programming language always rounds down.

78

Chapter 6: Number Conversion

In order to express the problem we need the ceiling function. The definition is
a dual of the definition of the floor function.

Definition 6.8. For all real x, [x] is an integer such that, for all integers n,
[x]I<nm=x<n .
a
We leave it as an exercise to the reader to derive properties of the ceiling func-

tion dual to the properties of the floor function derived in Section 6.2.
Rounding down, an integer division of positive numbers m and »n is expressed

]

where % is the real division of m and n. Dually, rounding up is expressed by

%]

Implementing rounding up given an implementation of rounding down amounts
to finding suitable values p and g so that

p|_ [1"_]

al In
The values p and g should be expressed as arithmetic functions of m and n (that
is, functions involving addition and multiplication, but not involving the floor or
ceiling functions).

We can calculate suitable expressions for p and q using the rule of indirect

equality. Specifically, for arbitrary integer k, we aim to eliminate the ceiling func-
tion from the inequality

e 2]

obtaining an inequality of the form
k<e ,

where e is an arithmetic expression in m and n. We may then conclude that

- [2]

The first step in the calculation is perhaps the most difficult. This is because
the definition of the ceiling function, Definition 6.4, provides a rule for dealing
with inequalities where a ceiling value is on the lower side of an at-most relation
but not when it is on the higher side (which is the case we are interested in).

6.4 Rounding Off 79

However, recalling our discussion of the floor function, the solution is to consider
the contrapositive of the defining equation. Specifically we have, by negating both
sides of Definition 6.4,

n<[xl=n<x. (6.9)

We can now proceed with the derivation:

k< {m]
n
= { integer arithmetic }
k-1< 131_]
n
= { contrapositive of definition of ceiling (rule (6.9)) }
m
k-1<—
n
= { arithmetic, assuming O<n }

nx(k-1)<m

= { integer inequalities }
nx(k-1)+1<m

- { arithmetic, assuming O<n }
K < m+n-1

n
{ definition of floor function: (6.1) }

k < [m+n—lJ
n

i

Here k is arbitrary. So, by indirect equality, we get, for all m and »n, where 0 <n,

[m] - [’_"_ill:_lJ) (6.10)
n n

In Java, therefore, if it is required to round up the result of dividing integer m by
strictly positive integer n, one should compute (m+n-1)/n. (If n is negative, then,
of course, both m and n should be negated before applying the formula.)

Exercise 6.11. Note how the assumption 0 <n emerged naturally during the
above calculation; multiplication by 7 is only monotonic with respect to the less-
than relation when 7 is strictly positive. Show that the assumption is necessary
by using (6.10) to evaluate

Bt

What do you get?]

80 Chapter 6: Number Conversion
Exercise 6.12. What is wrong with the following derivation?
[1"—] <k
n
= { definition of ceiling }
m
n
= { inequalities }
m < k+1
n
= { contrapositive of definition of floor }
m
— | <k+1
| n |
= { inequalities }
<k .
[n |
Thus, by indirect equality,
m|_ [m]
nl |n
O
Exercise 6.13. Construct a function f such that f.(-x)=—|x]. 0
Exercise 6.14. Integer division can be defined independently of real division. A
possible definition is: for integers m and n (where n +0), m+n is the largest
integer k such that kxn<m.
Rephrase this definition in the form of an equivalence connecting division to
multiplication. Use your definition to establish
M
m+n=|—
n
Suppose the definition is: for integers m and n (where n # 0), m+n is the smallest
integer k such that kxn > m. What is the equivalence in this case?
(The definition in Java amounts to a case analysis on whether the sign of m is
equal to the sign of n. If so, the first definition above is taken, if not, the second.)
O
6.5 Summary

In this chapter, we have seen how the conversion of real numbers to integer num-
bers is given a mathematical definition by connecting it to the opposite conver-
sion, from integer numbers to real numbers. Specifically, we have studied the floor
and ceiling functions and their mathematical properties. The concluding example
showed how to construct a definition of rounding up an integer division in terms
of rounding down.

6.5 Summary 81

Bibliographic Remarks

A good source for further discussion of the floor and ceiling functions is the book
Concrete Mathematics (Graham, Knuth and Patashnik, 1989).

This page intentionally left blank

7.1

/

Calculational
Logic: Part 2

This chapter continues the axiomatization of the propositional connectives begun
in Chapter 5. The axioms for disjunction (the logical ‘or’ of two statements) are
added to the axioms for equivalence and negation, and then it is shown how to
define the remaining logical connectives (conjunction, i.e. logical ‘and’, ‘if’ and
‘only if’) in terms of these three primitives. Additional laws are derived in exam-
ples and exercises.

Disjunction

The disjunction p v q is the (inclusive) ‘or’ of p and q. Stating that p v q is true
means that one or more of p and g is true.

Disjunction has three obvious properties, namely idempotence, symmetry and
associativity. Idempotence of disjunction is the rule:

[I[dempotence] pvp =p . (7.1)

Note that, for convenience, we assume that the operator ‘v’ takes precedence over
the operator ‘=’. Fully parenthesized, (7.1)reads (p Vp) = pandnotp v (p =p).
As an aid to reading, we try to indicate precedence by suitably spacing the subex-
pressions, adding more space around the operators with lower precedence, but
sometimes the formulae become too large to be able to do this well.

The symmetry and associativity of disjunction are expressed as follows:

[Symmetry] pvg = qvp . (7.2)
[Associativity] pv(gVvr) = (pvq)Vr . (7.3)

84

Chapter 7: Calculational Logic: Part 2

The associativity of disjunction allows us to omit parentheses in continued dis-
junctions, as in, for example,
pvavpvrvqgvqg .

The symmetry of disjunction means that the terms in such a continued disjunc-
tion can be rearranged at will, and the idempotence of disjunction means that mul-
tiple occurrences of the same term can be reduced to one. So the above expression
would be simplified as follows:

pvqvpvrvqgvq
{ rearranging terms—allowed because

il

disjunction is symmetric and associative }

pvpvrvqgvqvq
{ idempotence of disjunction (applied three times) }

pvrvq .

Exercise 7.4. What is the difference between the simplification rule just given for
continued disjunctions and the simplification rule for continued equivalences?
.

The fourth law governing disjunction is not so obvious. Disjunction distributes
through equivalence:

[Distributivity] pv(g=7v) = pvg = pvr . (7.5)

The fifth and final law is called the rule of the excluded middle; it states that,
for each proposition p, either p or its negation is true. These are the only two
possibilities and a third ‘middle’ possibility is excluded:

[Excluded Middle] pv-p . (7.6)

Using this basis, we can derive many other laws. Here is how to show that false
is a unit of disjunction:

p Vfalse

= { definition of false (5.15) }
pVv(-p=p)

= { disjunction distributes over equivalence (7.5) }
pvp =EpVp

= { excluded middle (7.6) and
idempotence of disjunction }

true=p

7.2 Conjunction 85

7.2

= { unit of equivalence (5.4) }
|

Exercise 7.7. Prove that p v true = true. (In words, true is a zero of disjunction.)
O

Exercise 7.8. Construct a truth table for (7.5) and verify that it is always true.

Conjunction

In this section, we define conjunction (logical ‘and’) in terms of disjunction and
equivalence. We show how to use the definition to derive the basic properties of
conjunction.

The definition of conjunction uses the so-called golden rule:

[GoldenRule] pAg =p =g = pvq . (7.9

The convention is that the conjunction operator (‘A’, read ‘and’) has the same
precedence as disjunction (‘Vv’), which is higher than the precedence of equiva-
lence.

Giving conjunction and disjunction the same precedence means that an expres-
sion like p A g v ¥ is ambiguous. It is not clear whether it means (p Aq) V¥ or
p A (g V7). You should, therefore, always parenthesize, so that the meaning is
clear. (Giving conjunction precedence over disjunction, as is often done, is bad
practice, because it obscures symmetries in their algebraic properties.)

The golden rule can be seen as a definition of conjunction in terms of equiva-
lence and disjunction if we read it as

(prna) = (p =q =pvq) .

But, it can also be read in other ways. For example, the golden rule asserts the
equality

(prnqg =p) =(@q=pvqg) .

This reading will be used later when we define logical implication. It can also be
read as a definition of disjunction in terms of conjunction:

(prqg =p =q) = (pvq) .

This reading is sometimes useful when, in a calculation, it is expedient to replace
disjunctions by conjunctions.

The golden rule is so named because it can be used in so many different ways.
Its beauty comes from exploiting the associativity and symmetry of equivalence.
Here is how it is used to prove some basic properties of conjunction.

86

Chapter 7: Calculational Logic: Part 2

It is easy to see that conjunction is symmetric:

pAq

= { golden rule }
r=a=pvq

= { equivalence and disjunction are symmetric }
q=p=qVvp

= { golden rule, p,g := q,p }
qrp .

Exercise 7.10. Prove that p A p = p. (Begin with p A p and simplify.)]

So-called absorption of conjunctions by disjunctions is derived as follows:

pVv(pAaq)
{ golden rule }

pvip=sq=pvq)
{ disjunction distributes over equivalence }

pvp =pva=pVv(pVva)

= { idempotence and associativity of disjunction }
p=pvq=pvq
= { unit/reflexivity law of equivalence }
vy .
Thus,
[Absorption] pv(pAag) = p . (7.11)
Exercise 7.12. Prove that pA(pvVvg) = p. O

Now we prove that conjunction is associative. First, we observe a lemma:

I

PA(@AT)
{ goldenrule: p,q := p,gqnrr }

p=gArr =pv(gnar)
{ golden rule: p,q := q,v }
p=qg=r=qVvVr =pv(q@=sr=qVvr)

q
{ distributivity of disjunction over equivalence }
q

Y = qVY = pvVq = pVvr = pvgqgVvr .

<
1l

7.2 Conjunction

87

Note that the formula in the last line is completely symmetric in p, g and v. That
is, because of the symmetry of equivalence and disjunction, any permutation of
the three variables leaves the formula unchanged. To complete our task we use
the lemma twice, once with a different permutation of the variables:

pA(@AT)

{ above }
p=qgqQ=r=qQVYy = pVvVqg=pVvyr =pvqvr

{ equivalence is symmetric, disjunction is symmetric }
Y¥=Ep=q=pvVqs=rVp =rVvVq=E=rvpVvyg

{ above, p,q,v = v,p,q4 }
rA(pnag)

{ conjunction is symmetric }
(pra)Ar .

From now on, we often omit parentheses in continued conjunctions, silently
exploiting the associativity property.

Exercise 7.13. Prove that disjunction distributes over conjunction. That is, prove

pv@nr) = (pvqa)A(pVvr) .

(Hint: start from the most complicated side.)]

Now we prove that conjunction distributes through disjunction:

il

(pr@)Vv(pAr)
{ distributivity of disjunction over conjunction (7.13) }
((pra)vp) A((pra) V)
{ absorption (see above) }
pA(pAq) V)
{ distributivity of disjunction over conjunction
(symmetric version) }
pAalpvrin(gvr)
{ absorption }
pAa(gvr) .

Exercise 7.14. Prove the following laws.

Modus Ponens: pA(p=q) =pArq .

88 Chapter 7: Calculational Logic: Part 2

De Morgan: —(pAgq) = "pv—q .
De Morgan: —~(pvg) = "pA—q .
Distributivity: pA(g=7r) = pAq=pAr =p .
Hint: always try to begin with the most complicated term. If you get stuck try to
simplify the remaining term(s). Prove the two De Morgan rules in the order given,
exploiting the first when proving the second. O
Exercise 7.15. Prove that the following are all equivalent.

@ (pvg) Al@vr)A(rvp) .

b) pvg=qvr =rvp .

Q) pArqg=qgArr =T Ap .

d) (pAag) vigar) virap) .
Hint: work towards the middle. That is, starting from (a) derive (b), and starting
from (d) derive (c). (These two calculations are completely dual.) Then show that
(b) and (c) are equivalent. (The statement

(prgq)vgar)Vv(rap)
expresses the fact that at least two of p, q or 7 is true. One of the other three
equivalent expressions may be preferred in some calculations. See, for example,
Exercises 7.36 and 7.37, where the middle expressions are more handy.) O
7.3 Implication

Many constructions and proofs involve a logical implication rather than a logi-
cal equivalence. Put simply, implications are ‘if’ statements rather than ‘is’ state-
ments. An example is: John and Sue are cousins if their fathers are brothers. This
is an ‘if’ statement because the condition given for John and Sue to be cousins is
not exhaustive. Another condition is, for example, that their mothers are sisters.

Confusingly, in normal conversation the English word ‘if” is often used when an
equivalence is meant. For instance we might say, Ann and Dave are siblings if they
have the same father or the same mother. What is meant here, however, is that the
definition of sibling is having the same father or mother. That is, Ann and Dave
are siblings is they have the same father or the same mother. In mathematical
texts, the distinction between ‘if’ and ‘is’ is often made by saying ‘if and only if’
when an equivalence is intended.

The notation we use for the statement ‘p if q’ is p =q. The notation we use for
‘p only if ¢’ is p=q. The expression p«gq is often verbalized as ‘p follows from
q’ and p=q is verbalized as ‘p implies q’.

The statements p<«<q and gq=p mean the same thing. It is useful to use both
notations. Sometimes, an argument can be easier to construct in one direction
than in the other.

7.3 Implication 89

7.3.1 Definitions and Basic Properties

Implications are defined equationally. One definition of p <4 is as follows:
[Definition of If] p<q = p = pvq . (7.16)

Note that the precedence of ‘<’ is higher than the precedence of ‘=’, as suggested
by the spacing. Henceforth, we give ‘<’ and ‘=’ lower precedence than ‘v’ and ‘A’.

Equation (7.16) defines ‘<’ in terms of equivalence and disjunction. Alterna-
tively, in terms of equivalence and conjunction,

[Definition of If] p<q = q = pArq . (7.17)

The two definitions are the same because, by the goldenrule,p =pvgandg=pnrg
are the same.
Turning the arrows around, we get two definitions of p=q.
[Definition of Only-If] p=q q=pvq . (7.18)
[Definition of Only-If] p=gq p pPAq . (7.19)

Immediate consequences of these definitions are obtained by suitable instantia-
tions of the variables p and g. For example, (7.16) gives us

il

il
i

[Strengthening] pvqg <« q . (7.20)

(Note that the precedence of ‘<’ is lower than the precedence of ‘v’, as suggested
by the spacing.) The specific details of the calculation are as follows:

rvq < q
= { (7.16), p,qa == pva,q }
pva = (pva)vg

= { associativity and idempotence of disjunction }
pvq = pvq

= { reflexivity of = }
true .

The rule is called ‘strengthening’ because it is used to replace a proof requirement
p Vv q by the stronger requirement gq. For example, a programming problem may
involve us in establishing the inequality I<7.Butlgristhesameasl<r v l=v.
So, rather than establishing [<+ we may choose to establish I =*. The require-
ment [=7 is ‘stronger’ than the requirement [< 7.

A second immediate consequence of the definitions is another strengthening
rule:

[Strengthening] p <« pAg . (7.21)
This is obtained by instantiating g to p A g in (7.16).

90 Chapter 7: Calculational Logic: Part 2
Exercise 7.22. Express the strengthening rules for the operator ‘=’ rather than
‘«<’. Note that turning the arrows around turns a strengthening rule into a weak-
ening rule. a
Other immediate consequences are

p <false ,

true<«p ,
and

p<p .
Exercise 7.23. The only other entry in the truth table of ‘<’ not covered by these
three properties is false < true. Calculate what its value is. O
Exercise 7.24. Show that p<q = pv q . a
Exercise 7.25. Prove (p<q) v (p=>q) . O
Exercise 7.26. Prove the following properties.
Contrapositive: p<«<q = "p=>-q .
Contradiction: -p = p=>false .
Distributivity: (p=q)cr =pAr=qnar .
Distributivity: (p=q)<r = p<r = qer .
Shunting: peqnrr = (peq)«r . O

7.3.2 Replacement Rules

The advantage of using equations over other methods for defining the logical
connectives is the opportunity to substitute equals for equals. The definition of
p<q provides good examples of this.
An important rule of logic is called modus ponens. It is the rule that
(p=a)rg = PArq .

(The rule is often stated as the implication (p=>q) Ap = g, but it is preferable to
state it as an equivalence. Whether or not one chooses to state it in terms of ‘<’
or ‘=’ is a matter of choice.) Here is one way of proving it. The important step is
the middle step, the first step paving the way for this step.

(p<=q)nq

= { true is the unit of equivalence }
(p<=q) A (q=true)

= { substitution of equals for equals:

7.3 Implication 91

specifically the value true is substituted for g
intheterm p<«q |}
(p<true) A (g =true)

= { p<true = p, true is the unit of equivalence }

pnrq .

The middle step uses the fact that, if we know that g is true, we can substitute true
for g in any expression in which it appears. The rule is called a meta-rule because
it cannot be expressed in the form of an algebraic law, and we need additional
language outwith the language of the propositional calculus to explain how the
rule is used. A way of expressing the rule is as follows:

[Substitution] (e=f)AE[x:=e] = (e=f)AE[x:=f] . (7.27)

The notation E[x := ¢] is explained as follows. Suppose E is some propositional
expression parametrized by the variable x. Then E[x := e] stands for the expres-
sion E after replacing all occurrences of x by e. For example, E may be (p<x) A x
and e may be pvq.Then E[x :=elis (p < p Vv q) A(pVq). (Recall that parenthe-
ses may need to be added during the process of substitution. Refer back to the
discussion in Chapter 3 if in doubt.) Similarly, E[x := f1is the expression after
replacing all occurrences of x by f. So the rule expresses the idea that, if e and f
are equal, e may be replaced by f (and vice versa) in any logical expression E.

Note that the rule does not depend on the type of e and f—they could be num-
bers, strings, booleans, or whatever. Equivalence of propositions is just equality
of boolean values, so the rule applies to equivalences e = f just as well. The types
of e, f and x do, however, have to be the same.

The introduction of the variable x in the rule allows the possibility that not
every occurrence of e and f is interchanged. For example,

(@®>=b) A (@®+1 =2a%+3) = (a®°=b) A (@°+1 =2b+3)
is an instance of the rule. It is so because

(a®°+1 =2x+3)[x:=a’] = a’+1 =2a%*+3 ,
and

(@’+1 =2x+3)[x:=b] = a’+1=2b+3 .

Thus, although the subexpression ‘a?’ is repeated, the replacement rule allows a
substitution of a value equal to a? in selected occurrences of the expression.
Substitution ‘of equals for equals’ is, in fact, an instance of the rule, first for-
mulated by Baron Gottfried Wilhelm von Leibniz, that application of a function to
equal values gives equal results: an expression E parametrized by a variable x is
a function of x, and E[x := e] and E[x := f] simply denote the result of applying

92

Chapter 7: Calculational Logic: Part 2

the function to e and to f, respectively. Sometimes, for brevity and to give credit
to Leibniz, we use ‘Leibniz’ as the hint when we mean ‘substitution of equals for
equals’.

A more direct formulation of Leibniz's rule is the following. Suppose E is an
arbitrary expression. Then, assuming e, f and x all have the same type:

[Leibniz] (e=f) = (e=f)A(E[x:=el=E[x:=f]) . (7.28)

(Rule (7.28) is a consequence of rule (7.27) because e=f is equivalent to
(e=f) A (E=E), to which (7.27) can be applied.)

We use both rules (7.27) and (7.28). Which of the two is being used can be
recognized by whether a step does not or does change the number of conjuncts,
respectively.

Returning to the properties of logical implication, here is how substitution (of
equals for equals) is used to prove that implication is transitive.

(p<=q) A (qeT)
= { definition }
(p =pva) Alq =qVvr)
= { substitution of equals for equals (7.28),
applied to 2nd term with E=(p v x) }
(p =pvg A =qvr)An(pvg = pvqVvr)
= { substitution of equals for equals (7.27):
the two rightmost occurrences of p v q
are replaced by p }
(p =pva)alq = qvr)An(p = pVvr)
= { definition }
(peq) A (@er) A (per)
= { weakening }

pesr .

Exercise 7.29. Prove the following properties using substitution of equals for
equals.

Mutual Implication (iff): p=q = (p<g) A (p=q) .

Distributivity: p < qvr (peqg) A (per) .

O

it

Distributivity: paAq < r (per)A(qer) .

7.4 Exercises: Logic Puzzles 93

7.4

Exercises: Logic Puzzles

The following are exercises in applying the algebraic laws discussed above. For
the exercises involving knights and knaves, recall that if person A makes a state-
ment §, then

A=S ,
where A is ‘A is a knight'.

Exercise 7.30. The following is a list of statements that might be made by per-
son A on the island of knights and knaves. In each case, the problem is to deter-
mine what can be deduced about A and B.

(a) If I am a knight, B is a knight.
(b) If I am a knave, B is a knight.
(c) If I am a knight, B is a knave.
(d) If I am a knave, B is a knave.

(e) If B is a knight, I am a knight.
() If B is a knave, I am a knight.
(g) If B is a knight, I am a knave.
(h) If B is a knave, I am a knave.

All statements are implications in which either the premise or the conclusion
is a statement about person A. One method is to use (7.19) in the case that the
statement about A is the premise, and (7.18) in the case that the statement about A
is the conclusion. This allows easy use of the elementary properties of equivalence.
We illustrate the method on two cases and leave its application in the other cases
to you.

Sample Solutions. (a) We are required to simplify A= A=B. In this case, we
choose (7.19).

A= A=B

= { (7.19) }
A=A=AAB

= { reflexivity of equivalence }
AAB .

So, both A and B are knights.

94

Chapter 7: Calculational Logic: Part 2

(e) We are required to simplify A = B= A. In this case, we choose (7.18).

A =B=>A

= { (7.18) }
A=A=AVBE

= { reflexivity of equivalence }
AVB .

So, at least one of A and B is a knight, but which it is is not clear.

Note that another method is to restate (e), (f), (g) and (h) using the contrapositive
rule (see Exercise 7.26). This maps each of the four problems into one of (a), (b),
(c) and (d). g

Exercise 7.31. You encounter two inhabitants. Pose a question that will determine
whether or not both are knights. Pose a question that will determine whether or
not at least one of them is a knight. a

Exercise 7.32. Inhabitant A says ‘either I am a knave or B is a knight’. What can
you deduce about A and B? O

Exercise 7.33. According to this problem, three of the inhabitants—A, B and C—
were standing together in the garden. A stranger passed by and asked A, ‘Are you
aknight or a knave?’. A answered, but rather indistinctly, so the stranger could not
make out what was said. The stranger then asked B, ‘What did A say?’. B replied,
‘A said that he is a knave’. At this point the third, C, said ‘Don’t believe B; he’s
lying!. The question is, what are B and C? a

Exercise 7.34. Suppose the stranger asked A, ‘How many knights are among you?'.
Again, A answers indistinctly. So, the stranger asks B, ‘What did A say?’ B replies,
‘A said there is one knight among us’. Then C says, ‘Don’t believe B; he’s lying!".
Now what are B and C? 0

In Shakespeare’s Merchant of Venice, Portia had three caskets: gold, silver
and lead. Inside one of these is her portrait, and on each an inscription. Portia
explained to her suitor that each inscription could be either true or false, but on
the basis of the inscriptions, he was to choose the casket containing the portrait.
If he succeeded, he could marry her. The first exercise below is a simpler version.
We demonstrate how to solve the problem and then leave the remaining exercises
to you.

Exercise 7.35. Suppose there are two caskets, gold and silver, into one of which
Portia placed her portrait. The inscriptions are as follows.

Gold: the portrait is not in here.
Silver: exactly one of these inscriptions is true.

Which casket contains the portrait? O

7.4 Exercises: Logic Puzzles 95

The solution involves introducing several variables. Let G stand for ‘the portrait
is in the gold casket’, let S stand for ‘the portrait is in the silver casket’, g stand
for ‘the inscription on the gold casket is true’ and s for ‘the inscription on the
silver casket is true’. Let U stand for ‘the portrait is in exactly one of the caskets’.
Then we are given

(g=-G) A (s=g=-s) AU,
where
U=G#S .
The middle term simplifies to —g, so we conclude
(@=-G) A ~g A (G£S) .
That is, G A =g A —S. Formally, the calculation is as follows:

true
= { problem statement }
(g=-G) A (s=g=-s) A (G£S)
= { contrapositive applied to 1st conjunct,

simplification of continued equivalences
applied to 2nd conjunct,
definition of inequivalence applied to 3rd conjunct }

(ng=G) A g A ("G=S)

I

{ substitution of equals for equals }
G ANg AS .

So the portrait is in the gold casket (and the inscription on the gold casket is false,
but nothing can be concluded about the inscription on the silver casket).

In the following exercises, there are three caskets rather than two. Each inscrip-
tion gives one item of data which is to be added to the information that the portrait
is in exactly one of the caskets.

Exercise 7.36. Suppose that Portia put the following inscriptions on the three
caskets.

Gold: the portrait is in here.
Silver: the portrait is in here.
Lead: atleast two of these caskets bears a false inscription.

Which casket should the suitor choose? Use the abbreviations L for ‘the por-
trait is in the lead casket’ and [for ‘the inscription on the lead casket is true’ in
formulating your answer. Hint: use Exercise 7.15 to formulate the inscription on
the lead casket.]

96 Chapter 7: Calculational Logic: Part 2
Exercise 7.37. In this version of the problem, Portia puts a dagger into one of the
caskets. The suitor must choose a casket that does not contain the dagger. The
inscriptions on the caskets are as follows.

Gold: the dagger is in this casket.
Silver: the dagger is not in this casket.
Lead: at most one of these caskets bears a true inscription.
Which casket should the suitor choose? O
7.5 Summary

This chapter completes the axiomatization of calculational logic. Axioms for dis-
junction were added to the axioms for equivalence and negation. Briefly, disjunc-
tion is associative, symmetric and idempotent, and distributes through equiva-
lence. In addition, it satisfies the law of the excluded middle.

The axioms for equivalence, negation and disjunction were used as a basis for
the study of the remaining logical connectives—conjunction, follows-from and
implies—with the golden rule acting as the linchpin. The solution of logic puzzles
demonstrated the effectiveness of mathematical calculation based on equational
reasoning.

Bibliographic Remarks

This chapter is heavily influenced by Dijkstra and Scholten’s development of
propositional calculus (Dijkstra and Scholten, 1990), as well as the textbook by
Gries and Schneider (1993). Most of the logic puzzles are from Smullyan (1978).

8.1

3

Maximum and
Minimum

In this chapter, we put logic to work. Rather, we put you, the reader, to work, with
calculational logic as the main tool. The chapter is about the algebraic properties
of the maximum and minimum operators on real numbers. The definitions we
give of these operators are equivalences which relate them to the propositional
connectives. (Formally, the definitions are instances of the general concept of a
Galois connection mentioned in Chapter 6, but it is not necessary to know that
here.) So, maximum and minimum inherit many of their properties directly from
the properties of the logical connectives.

Definition of Maximum

Denoting the maximum function on real numbers by the infix operator t, we have,
for all x, y and z,

[Maximum] xty <z = x<zAy<z. 8.1)

Note that this is a distributivity property. It is the property that the boolean-valued
function (< z) distributes through maximum, turning it into a conjunction. In this
way properties of maximum are translated into properties of conjunction.

What can be deduced from this definition? Three properties can be deduced very
easily. First, we use the fact that true is a unit of equivalence and < is reflexive—
specifically, by instantiating z to x 11y, the left side of the definition becomes true
so that

x<xty Ay<xty .

98 Chapter 8: Maximum and Minimum
Second and third, we use the fact that true is a unit of conjunction and, again, <
is reflexive—by instantiating z to x and z to y we get, respectively,

xly<x = y<x
and
xty<y = X<y .
A fourth property can be obtained from the fact that < is a total ordering. That
is, for all x and y,
X<yVvVy<x.
Using this fact, we calculate:
xXty=x Vv xty=y
= { antisymmetry of < }
(xty <xAx<xty)vixty<yAay<xty)
= { above, substitution of equals for equals }
(y<x Atrue) v (x <y A true)
= { true is the unit of conjunction }
Y<XVXKy
= { < is a total ordering }
true .
So maximum is a choice function: xty chooses between x and y.
Here are a couple of very short exercises.
Exercise 8.2. Show that xfy < x = xty=x. a
Exercise 8.3. Simplify the statement xty < x+.]
8.2 Using Indirect Equality

To derive additional equalities, we recall the rule of indirect equality: in order to
establish the equality x = y, show that, for arbitrary z of the same type as x and

Y,
x<z=y<z.

Here are two examples. In the first example, we show that maximum is associative
because conjunction is associative. We have, for all w,

(xty)tz<w
= { definition of max }

8.2 Using Indirect Equality 99

Xty<wAzsw

= { definition of max }
(x<wAy<w)Az<w

= { A is associative }
xX<WwWA(YSw Az<w)

= { definition of max (applied twice) }
xt{ytz)<w .

Thus, by indirect equality,

(xty)tz = xt(ytz) .

Note how short and straightforward this proof is. In contrast, if maximum is
defined in the conventional way by case analysis, it would be necessary to con-
sider six different cases, six being the number of ways to order three values x, y
and z.

In the second example, we derive a distributivity property of maximum. We
have, for all w,

xX+(ytz) <w

il

{ shunt ‘x +’ out of the way in order to be
able to apply the definition of maximum }
yiz<w-x
{ definition of max }
y<w-x A z< WX
{ shunt ‘x +’ back in order to be
able to apply the definition of maximum }
X+Yy<w A x+z<w
= { definition of max }
(x+y)t(x+z) <w .
Thus, by indirect equality,
x+(y1z) = (x+y)1(x+z) .

Try the following for yourself, observing carefully the properties of conjunction
that you exploit.

Exercise 8.4. Prove the following.
(@) xtx =x .

(b) xty = yix .]

100 Chapter 8: Maximum and Minimum

Another property we can derive from the definition is by using contraposition:

true

= { definition of maximum }
xly<z = xX<zZAY<KzZ

= { contrapositive }

S(xty <2z) = 2 (x<zAY<2)

= { De Morgan }
“xty<z) = ~(x<2) v ~(¥y<2)

= { ~(ugv)=v<u }
z<xty = z<xvz<y .

Thus we have derived
Z<xly = z<xVvVzZ<y .

This too is a distributivity property: the function (z <) distributes over maximum
turning it into a disjunction. Now we verify that the function (z <) also distributes
over maximum using the properties of disjunction as opposed to the properties
of conjunction.

z<xVvz<y .
= { definition }
(z=xVvz<x)V(z=yVz<y)
= { rearrangement of terms
(allowed because disjunction is symmetric and
associative) }
(z=xvVvz=y)vi(iz<xVvz<y)
= { in the second disjunct: z<xty = z<xvz<y }
Z=Xx V z=Yy V z<xly
= { See the calculation below. }
zL<xly .

The last step in the above needs justification. On the face of it, it looks like the
step is an easy one. After all,

z<xty = z=xty v z<xly ,

so that it looks like we just need to replace z=x v z=y by z=x1y. But it is not
thecasethatz=x v z=7y = z=x1y ingeneral. A bit more thought is necessary.

8.3 Exercises 101

8.3

To complete the proof, we use a ping-pong argument. That is, we prove an
equivalence by mutual implication. Here is how it goes.

Z=X V z=y V z<xly
& { xty=xvxty=y }
z=x1y VvV z<x!y
= { definition of < }
z<xty
<« { x<xly, y<xty }
Z=X V Z=Y V z<x1y .
Note that the first two steps of this calculation prove that
zZ=x V z=y V z<xty <« z<xly
and the final step proves that
ZELXly « z=x V z=y V z<xly .
(Formally, the final step involves the use of the rule
peqvry = (peq) A(per) .

The two hints establish that z<x1y « z=x and z<x'y « z =1, respectively,
and the final conjunct is the straightforward property z< xty « z<xty. The
final step is thus not as simple as it looks.) The required equivalence follows by
the rule of mutual implication.

Summarizing, we have proved that

z<xly = z<xvVvz<y . (8.5)

So the function (z) also distributes over maximum turning it into a disjunction.

Exercises

Try the following exercises. The definition of minimum is dual to the definition
of maximum. That is, its definition is obtained by ‘turning the ordering around”:
replacing maximum by minimum, and at-most by at-least, in the definition of
maximum:

[Minimum] z<xly = z<xAz<y . (8.6)

Begin by dualizing all the results given above. Observe the similarity in the prop-
erties of | and v, and 1 and A. Property 8.7 (a) is like the distributivity law,

pv@nrys(pvarlpvr) ,

102

Chapter 8: Maximum and Minimum

whilst 8.7 (b) is like the absorption law

pvigap)=p .

Finally, 8.7 (c) is like the identity between the first and last expressions in Exer-
cise 7.15.

Exercise 8.7. Prove the following.
(@ xt(ytz) = (xiy)t(xiz) .
b) xi(ytx)=x .
© (xiy)t(yizo)t(zix) = (xty)l(ytz)l(ztx) .]

Exercise 8.8. The absolute value | x| of real number x is x1(-x). Identify some
immediate consequences of this definition (by instantiating the properties of max-
imum above). Then prove the triangular inequality

Ix+yl < |x[+y],
and also

Hxl=Iyll < ix-yI .

Hint: in each case use the rule of indirect order: to prove that u < v, prove that,
for an arbitrary w of the same type as u and v,

uswevrv<sw .

The absolute value of a real number is often defined by a case analysis on whether
the number is positive or not. This leads to so-called ‘tedious but straightforward’
proofs by case analysis of the above properties. Your proofs should not involve
any case analysis; they should be straightforward, but not tedious. O

Exercise 8.9. Prove that | x]!|y] = |xly] . O

The final example is about maximum and minimum, but not with respect to the
usual at-most relation on real numbers. Instead, the ordering relation is divisibility
of natural numbers.

Exercise 8.10. Every (strictly) positive integer has a unique prime factorization.
That is, every (strictly) positive integer n can be expressed as a product of the
form p§° x p}* x p5? x ..., where po,p1,p2,... is a list of all prime numbers! and
each a; is a natural number.

Suppose p is a prime number. We call a the p-exponent of n if p? is a term in
the prime factorization of n. This question is about the algebraic properties of
exponents.

First, note that the relation ‘divides’ is a partial ordering on positive integers
since it is reflexive (n divides n for all n), transitive (if k divides m and m divides

1 A prime number is a number greater than 1 that is divisible by only itself and the number 1.

8.4 Summary 103

8.4

n, then k divides n) and antisymmetric (if m divides n and n divides m then m
and n are equal). We shall write m\n, meaning m divides n.

The minimum of two numbers in the partially ordered set of positive numbers
ordered by divisibility is their greatest common divisor. Their maximum is their
least common multiple. That is, for all k, m and n,

k\m A k\n

il

k\gcd(m,n) ,

and

i

m\k A n\k lem(m,n)\k .

Given prime number p, we let exp.n denote the p-exponent of n. It is defined by
the Galois connection: for all natural numbers m and n,

m<expn = p™\n .

(Read ‘exp.n is the greatest m such that p™ divides n’.)
With these preliminaries we can now pose the following questions.

(a) Show that exp.p = 1.
(b) Derive an operator & such that

exp.gcd(m,n) = exp.meexp.n .
(c) Derive an operator ® such that
exp.(mxn) = exp.m®eexp.n .

(You will need to use existential quantification—see Section 11.3.2—to complete
this final part of the exercise. Specifically, for prime number p,

pX\mxn = (3i,j:k=i+j:p'\m A p/\n))

O

Summary

The maximum and minimum operators can be defined by an equivalence relation
connecting the operators to conjunction and disjunction in the propositional cal-
culus. This facilitates proving that maximum and minimum share many properties
in common with conjunction and disjunction (such as associativity, idempotence
and absorption). In particular, the tedious case analyses, unavoidable when max-
imum and minimum are defined by a conditional statement, are avoided entirely.

Bibliographic Remarks

Much of this chapter is drawn from Feijen and Bijlsma (1990).

This page intentionally left blank

9.1

9

The Assignment
Statement

This chapter introduces the formal specification and construction of programs.
A notation for formally specifying programs is introduced and applied to assign-
ment statements. Simple illustrations of how assignments are constructed to meet
their specifications are given.

Hoare Triples

When writing computer programs, it is very good practice to comment them thor-
oughly in order to explain what is going on. It helps the programmer to avoid
errors by enforcing greater clarity, and it helps others who need to modify the
program at a later date (including the one who wrote the program in the first
place!). It is a good discipline, for example, to comment every variable declaration
with a statement about the variable’s function in the program. This has the addi-
tional benefit of disciplining the programmer to use distinct variables for distinct
functions, rather than overloading a variable with several different functions.
Comments can also be almost useless. The comment

increment i by 1
immediately preceding the C/Java statement

i++
is completely useless to the experienced programmer who can be expected to
know that “i++ means ‘increment i by one’ in C/Java idiom.

106

Chapter 9: The Assignment Statement

Useless comments are ones that simply repeat in natural language (with all its
complexities, nuances and ambiguities) what is stated simply and precisely in the
program statements. They are operational in the sense that they repeat in words
the instructions given to the computer in symbols. Good comments, on the other
hand, should have added value. They should supplement the program text with
explanations of the program’s function and why the code that is used achieves
that function.

In this text, comments will be indicated by enclosing them in curly brackets—'{’
and ‘}. The comments we write state formal properties of the program variables
at a particular point in the execution of the program. For example, the text of a
program may look like

{i=0} ...,

where the dots represent some arbitrary program statements. The intended mean-
ing is that, when execution of the program has reached the point in the program
text where the comment appears, the value of the variable i is guaranteed to be
zerol. Such comments are called assertions, conditions or properties. They are
boolean-valued functions of the values of the program variables; by adding them
to the program, the claim is being made that they are true at that point in the pro-
gram’s execution. Typical examples of such assertions (albeit written in English
rather than as mathematical expressions) can be seen by referring back to the
search program shown in Figure 4.1.
When a program statement is bracketed by two comments, as for example in

{O0<i}i:=1i-1{0<i},

we reason about the correctness of the program statement (here ‘i := i—1’) on
the basis that the first comment (here ‘0 < i’) acts as an assumption. That is, we
understand the comments as claiming that if 0 < i before the statement i := i—1
is executed, then 0 < i after the assignment has been executed. (This is, of course,
a valid claim in this particular instance provided that i has type integer.)

An expression of the form

tpisiQyt,

where P and Q are properties of the program variables and S is a program state-
ment (some portion of the program text), is called a Hoare triple. The property P
is called the precondition, and the property Q is called the postcondition of the
statement S. We read such a triple as the claim that, if the program variables sat-
isfy property P before execution of statement S, execution of S is guaranteed to
terminate and, afterwards, the program variables will satisfy property Q. A Hoare
triple thus denotes a boolean value; if the value is true, we say the triple is valid,
and, if it is false, we say the triple is invalid.

limportant warning to C/Java programmers: the equality symbol ‘=’ really means equality here
and not assignment.

9.2 Ghost Variables 107

9.2

The following are examples of valid Hoare triples:

{i=0}i=1i+1{i=1},

{i+j=0}i:=i+1;j:=j-1{i+j=0},

{true}i:=1{i=1}.
Note the use of the precondition true in the final example. A true precondition
describes all states of the program variables; the claim is thus that whatever the
initial value of the program variables (in particular the variable i) after execution
of the assignment i := 1 the property i =1 will hold.

The following are examples of invalid Hoare triples:

{i=1}i:=i+1{i=0},

{i+j+0}i=1i+1;j:= j—-1{i+j=0},

{true}i:=1{i=0} .
The first and last are obviously not valid. The middle example is shown to be
invalid by supposing, for example, that i and j are initially O ‘and 1. Then the
precondition i+j # 0 is indeed satisfied but, after execution of the two assign-

ment statements, i and j have values 1 and 0, respectively, and i+j is 1. So, the
postcondition i+ j = 0 is not satisfied.

Exercise 9.1. Using your current knowledge, say which of the following are valid
Hoare triples. Assume that i, j and N are integers. (Shortly we show how to validate
Hoare triples formally.)

@{i=1}j:=i{i=j=1}.

b {i=1}i:=jli=j=1}.

(©{0<i<N}i:=i+1{0<i<N}.

(d) {trueti:= j+1{i<j} .

(e){i=1}i:=0{true} .

B {i=0}i:=1{false} .

(g) {false}i:=1{i=0} .]

Ghost Variables

Consider the following sequential composition of three statements:
t'=x;x:=y,;y:=1.

Its purpose is to interchange the values of x and 1y, the variable t being used as
a scratch variable. We can see this by the following chain of reasoning. After the
first assignment, both x and t have the original value of x, and v has its original

108

Chapter 9: The Assignment Statement

value. After the second assignment, t has the original value of x, and x and y
have the original value of +y. Finally, after the third assignment, x has the original
value of y, and y has the original value of x.

To document this argument effectively, we need to adopt some notational con-
ventions. Firstly, we need a mechanism for expressing predicates like ‘t has the
original value of x’. Secondly, we need a notation for saying that ‘if the program
segment is executed, then, afterwards, x will have the original value of y’. The
notation we use is the following:

{x=X A y=Y}
t=x;x:=y,;,y =1
{x=Y Ay=X}.

The assertions added before and after the assignment statements refer to vari-
ables X and Y that appear nowhere in the assignments themselves. These are
called ghost variables. Their function is to relate the final values of the program
variables to their initial values. In general, an expression of the form

{pis{Ql,

where P and Q are predicates on a collection of program variables and ghost
variables, means that, for all possible values of the ghost variables, if the pro-
gram variables satisfy property P before execution of statement S, execution of
S is guaranteed to terminate, and, afterwards, the program variables will satisfy
property Q. So, the claim above is that, for all values of Xand Y, if x=X A y=Y
before executing the sequence of assignments t := x ; x := y ; ¥ := t, then,
afterwards, x =Y A y=X.

Using the same notation, we can expand the claim, giving details of its justifi-
cation:

{x=XAy=Y}
t = x;

{t=x=X A y=Y}

X =y,
{t=XAx=y=Y}
y =1

{x=Y Ay=X}.

A sequence of statements, parenthesized in this way by assertions, is called a
tableau. We can read such a tableau as a collection of three claims, one for each
of the individual assignments as shown below.

9.3 Hoare Triples as Program Specifications 109

9.3

(1) {x=X A y=Y} If x=Xand y =Y when
t = x t = x is executed
{t=x=X A y=Y} thenafterwardst=x=Xand y =Y.

(2) {t=x=X A y=Y} Ift=x=Xandy=Y when
X =y x = vy isexecuted
{t=X A x=y=Y} thenafterwardst=Xand x=y =Y.

3) {t=XAx=y=Y} Ift=Xand x=7y =Y when
Vo=t y = tis executed
{x=Y A y=X} then afterwards x =Y and y =X.

Additionally, we can read the tableau as making claims about subsequences
of the three assignments. For instance, omitting the last-but-one assertion, the
tableau asserts the following about the last two assignments.

(4) {t=x=X A y=Y} Ift=x=Xandy=Y when
x:=y;y:=1t x := yfollowedbyy := tisexecuted
{x=Y A y=X} then afterwards x =Y and y =X.

We shall see in Chapter 10 that, provided the claims about each of the individual
assignments (claims (1), (2) and (3) above) are valid, any claim about a composition
of assignments, obtained by omitting the intermediate assertions as we did in (4)
above, is also valid.

Hoare Triples as Program Specifications

The specification of a program, in its simplest form, is a relation between input
values and output values. The specification of a sorting program, for example,
would require that the input is an array of values and the output is the same
array but sorted according to some given function on the elements of the array.
The precise and clear specification of computer programs is a demanding task that
needs to be done with great care and attention to detail. Here, we only consider
very simple specifications.

It is important to note that specifications are, commonly, non-deterministic.
That is, the output values are typically not completely determined by the input
values, thus giving some latitude in what is acceptable output for given input.
For example, when sorting the entries in a table by, say, date of last access, the
program is free to list entries last accessed on the same day in an arbitrary order.
In mathematical terms, specifications are truly relations and not functions.

The emphasis in this text is on methods for constructing programs to meet their
specifications (so-called correct-by-construction design methods). A program S is
specified by stating a precondition P and a postcondition Q (possibly involving

110

Chapter 9: The Assignment Statement

ghost variables in order to relate input and output values) and requiring that S
be constructed to satisfy

{tPis{Qtl.

If so, we say that S establishes (postcondition) Q under the assumption of precon-
dition P.

The notation { P } S { Q } is so important that it is worth repeating its meaning
and making it stand out.

{ P} S {Q } means that, for all possible values of the variables in P, S and
Q, if, initially, the state of the program variables satisfies the predicate
P and the statement S is executed, S is guaranteed to terminate and, on
termination of S, the final state will satisfy the predicate Q.

Although we use Hoare triples exclusively in this text to specify programs, they
do have a number of inadequacies which we need to overcome. The reason for
choosing Hoare triples as specification mechanism is that they fit in well with the
simple process of adding comments to the program text.

Four problems with the use of Hoare triples are

(a) we are forced to name the variables to be used in the program (whereas the
names are irrelevant to the specification),

(b) there is no way of saying which variables may be altered in the course of
execution of the program and which should remain constant (that is, there
is no distinction between input and output variables),

(c) there is no way of limiting the mechanisms for updating the values of the
output variables,

(d) an artificial mechanism—the ‘ghost’ variables discussed above—often needs
to be employed to relate the input values of variables to their desired output
values.

We ignore the first problem. It is a nuisance rather than a serious issue, and one
that is impossible to avoid entirely.

The second problem is more serious. It is illustrated by a very simple example.
If we require that program S satisfies

{true}S{i=j},
then this can be achieved by the assignments
i:=7

and

9.3 Hoare Triples as Program Specifications 111

there being no way to distinguish between the two variables. In reality, however,
one of i and j would store the input value and the other the output value, and
the requirement would be to assign a value to the output variable so as to meet
the specification, leaving the value of the input variable unchanged. A program to
determine whether a student is registered for a module would not be acceptable
if it altered the register in the process!

It is possible to avoid this problem formally using a so-called specification state-
ment. (See the bibliographic notes for references.) The problem is resolved here
informally—we state which are the input and which are the output variables in
the text accompanying the formal specification.

Problem (c) is also resolved informally. The issue here is that implementa-
tions are limited by the implementation language. The limitations are sometimes
imposed to improve efficiency. For example, when sorting a very large collection of
data, it is undesirable to make copies of large portions. Sometimes, a requirement
is that the implementation be limited to functions supplied by a given library. For
example, a hardware implementation of a given specification might require that
the implementation be composed of circuits from a small base collection.

Problem (d) is exemplified by the specification of sorting programs. Sorting a
list of values involves permuting the values in the list. But, if we simply require
that the output list is sorted, the requirement can be met by outputting any list
that is sorted without regard to the contents of the input list. The remedy for this
problem, as already discussed in Section 9.2, is to introduce ghost variables. (Some
authors call these rigid variables because their values do not change throughout
the execution of the program. Some authors call them auxiliary variables.)

It is worthwhile giving another illustration of the use of ghost variables. Sup-
pose we want to specify that the sum of two variables i and j should remain
constant. For example, i and j may be initially zero. The requirement is then that,
on termination, i+ j should also be zero. If, however, i and j are initially 1 and 2,
we require that i+j is 3 on termination of the program. We specify this by intro-
ducing a ghost variable C. This variable should not be used anywhere else in the
program. Then the program S is specified by

{i+j=C}S{i+j=C} .

This says that if the sum of i and j has the value C before execution of statement S,
execution of statement S is guaranteed to terminate in a state in which the sum
of i and j still has the value C.

In summary, we specify a program S by supplying a precondition P and a post-
condition Q and requiring that S be constructed to satisfy

{Pis{Qtl.

In addition, we (informally) specify the input variables and the output variables
of the program and their types. Ghost variables may be used to link the precondi-
tion to the postcondition. Ghost variables are treated just like ordinary program

112

Chapter 9: The Assignment Statement

9.4

variables but the program code may not refer to them in any way. To distinguish
ghost variables from normal program variables we use a sans serif type. Finally,
we sometimes impose limitations on the primitives that may be used in the imple-
mentation of the specification. These limitations are stated informally.

Assignment Statements

The very simplest specifications can be met by assignment statements. An assign-
ment statement has the form

X =,

where x is a program variable and e is an expression. It is executed by evaluat-
ing the expression e and then updating the value of the variable x to the value
obtained. For example,

X 1= 2Xy

evaluates twice the value of variable y and ‘assigns’ this value to x.

It is convenient to allow simultaneous assignments. In a simultaneous assign-
ment, the left side is a list of variables and the right side is a list of expressions
of the same length as the list of variables. A simultaneous assignment to three
variables x, y and z is, for example,

X,Y,Z2 = 2Xy,x+y,3xz .
A simultaneous assignment
X03X1y:e0e3Xn = €0,€1,...,6n

is executed by evaluating all of the expressions eg,e;, ... ,en and then, for each
i, updating the value of the variable x; to the value obtained for expression e;. In
the above example, 2xy, x+7y and 3xz are all evaluated before assigning their
values to x, y and z, respectively.

Simultaneous assignments are not allowed in many programming languages
(C and Java, for example) but they are allowed in some (Perl, for example). It is
unfortunate when they are not allowed because it is very simple to program a
compiler to handle them, and their use contributes to the avoidance of error. An
example is the assignment

X,y =YX,

which has the effect of swapping the values stored in variables x and y. Barred
from using simultaneous assignments, the programmer is forced to introduce a
local variable ¢, say, and write

t=x;,x=y,;y :=1.

9.5 The Assignment Axiom 113

9.5

The number of times that programmers have had to write such a sequence of
statements and made a mistake, for example in the order, must be countless.

There are, of course, restrictions on the use of simultaneous assignments. Basi-
cally, the variables on the left side should be pairwise distinct. For example, the
assignment

x,x = 0,1

does not make sense (because it tries to assign the distinct values 0 and 1 simul-
taneously to the variable x) and is disallowed. Very occasionally it is useful to
relax this requirement. The statement

alil,aljl = aljl,ali]

swaps the array elements indexed by i and j. The statement makes sense whatever
the values of i and j, including when they are equal. (When i and j are equal the
statement means ‘do nothing’.) Because it is convenient to do so, we also allow
such statements. The rule is that, if a variable occurs more than once on the left
side of an assignment, the corresponding expressions on the right side must be
guaranteed to denote equal values.

The Assignment Axiom

We have already used the notation of simultaneous assignment in hints accom-
panying proof steps. There we used the notation to explain how a law is instanti-
ated to a particular case. The coincidence of notations is deliberate. Rather than
understanding the way an assignment is executed, we can also understand an
assignment in terms of syntactic substitution. The key insight involves working
backwards from postconditions to preconditions.

Suppose the assignment x := e is required to establish the postcondition Q.
The postcondition is any boolean-valued expression in the program variables,
one of which is x. We can regard it as a local law governing the program variables
immediately after execution of the assignment statement.

After the assignment, x will have the value of expression e before the assign-
ment. So, if Q is to apply to x after the assignment, it should apply to e before the
assignment. That is, the property Q[x := e]—the property Q but with all occur-
rences of ‘x’ replaced by ‘e’—must hold in advance of executing the assignment.
This is stated in the assignment axiom:

[Assignment Axiom] {Q[x:=e]l}lx:=e{Q} . (9.2)

The assignment axiom is a very straightforward rule, at least after having seen a
number of examples! The dynamics of its use, something that is difficult to convey
in the static pages of a textbook, is to work backwards from the postcondition.

114

Chapter 9: The Assignment Statement

The simplest example is provided by a postcondition of the form x = ¢, where
¢ is some constant independent of the value of x and the assignment is x := c.
For concreteness, let us consider the assignment i := 0 and postcondition i = 0.
Then the assignment axiom requires us to replace ‘i’ everywhere it occurs in the
postcondition ‘i = 0’ by ‘0’. (This is a syntactic substitution, which is why we have
used inverted commas.) This gives the precondition ‘0 = 0’. So, application of the
assignment axiom gives

{0=0}i:=0{i=0}.
Of course, 0 =0 simplifies to true. The conclusion is, thus,
ftrue}i:=0{i=0}.

(Replacing 0 = 0 by true is a semantic replacement as it depends on the meaning
of equality.) In words, beginning in an arbitrary state, execution of the assignment
i := 0 is guaranteed to terminate in a state satisfying i = 0.

As a second example, consider the assignment i := 2xi and postcondition
i < 10. Replacing ‘i’ by ‘2xi’ in the postcondition gives ‘2xi < 10’ so that applica-
tion of the assignment axiom results in

{2xi<10}i:=2xi{i<10} .
Again, the precondition can be simplified, this time to i < 5. We conclude that
{i<5}i:=2xi{i<10} .

In words, beginning in a state in which i is less than 5, execution of the assignment
i := 2xi is guaranteed to terminate in a state satisfying i is less than 10.

The assignment axiom is equally valid when x is a list of variables and e is an
equal-length list of expressions. If x is the list x¢,x;,...,Xx, and e is the list
eo,e1, ..., en, then Q[x := e] denotes the simultaneous substitution of ey for xo,
e; for x1, and so on.

To illustrate this, consider the postcondition i+j=C and the simultaneous
assignment i,j := i+1,j—1. Then, simultaneously substituting ‘i+1’ for ‘i’ and
‘j—1’ for ‘j’, application of the assignment axiom gives

{(+1)+(j-1)=C}i,j = i+1,j-1{i+j=C} .
Simplifying the precondition, we get
{i+j=C}i,j := i+l,j-1{i+j=C} .

Thus, simultaneously incrementing i by 1 and decrementing j by 1 keeps the
value of i+j constant.

Note that we introduced parentheses around ‘i+1’ and ‘j—1’ when performing
the above substitutions. This is because one has to take care with precedence
conventions when making such substitutions. An example of where things can go

9.6 Calculating Assignments 115

9.6

wrong is as follows. Suppose the postcondition is i—j=C and the assignment is
as above i,j := i+1,j—1. Then the assignment axiom gives

(+1) - (-1)=C}ij = i+l,j-1{i~j=C},
which simplifies to
{(i—-j)+2=C}i,j = i+1,j-1{i—j=C} .

Had we omitted to parenthesize ‘j—1’ when performing the substitution we would
have got

{i+1-j—-1=C}i,j = i+1,j-1{i—-j=C},
which simplifies to
{i-j=C}i,j = i+1,j-1{i—j=C} .

This is of course wrong: take C to be 0 and i and j to be 1 before the assignment.
Then the precondition i—j = C is satisfied. But, after the assignment, i has value
2 and j has value 0. So, i—j = 2, which is not equal to the value of C.

Exercise 9.3. Using the assignment axiom (9.2), determine preconditions for the
following statements and postconditions. Simplify the preconditions you obtain.

Statement Postcondition
(@) x = x+1 x+y <10
(b) x = x-1 x2+2:x=0
(0 X,y = X-y,x+y x-y=1
(d) X, V,Z = Z,X,¥ x=0vy=1lvz=2
O
Calculating Assignments

Given a specification in terms of a precondition-postcondition pair, it is often
possible to calculate an assignment statement that does the job. Many examples
involve a property that is to be maintained invariant whilst progress is made by
incrementing (or decrementing) a counter.

We begin with a simple example. Suppose the requirement is to maintain the
value of the sum j+k constant whilst incrementing k by 1. We can formulate this
requirement by introducing a ghost variable C; the precondition is then j+k=C
and the postcondition is also j+k = C. Our task is to calculate an expression X
such that

{j+k=C}jk = X,k+1{j+k=C} .
Applying the assignment axiom, we get
{X+k+1=C}jk = X, k+1{j+k=C} .

116

Chapter 9: The Assignment Statement

Comparing the precondition so obtained with the given precondition, the specifi-
cation is met if

Jj+k=C > X+k+1=C .

In words, the postcondition j+k = C is guaranteed to hold after execution of the
assignment j,k := X,k+1 if before its execution X+k+1 =C. But the latter is
true before execution if it is implied by the given precondition j+k = C.

In this way, we have constructed a functional specification of the expression X
in terms of j, k and C. Our task is complete if we can find a solution for X not
involving the ghost variable C. This we do by manipulating the left side of the
implication until something of the same shape as the right side is obtained. Now,

Jj+k
- { arithmetic—introducing ‘k+1' }
Jj+k+1-1
- { rearranging }
(J-1)+k+1 .
So, for all C,

Jj+k=C = (j-1)+k+1=C .
Recalling the above discussion, it thus follows that a suitable value of X is j—1.
That is,

{j+k=C}ljk = j-1,k+1{j+k=C} .
A more complicated example is this. Suppose variables s and n satisfy the prop-

erty
s=n?

and we want to increment 7 by 1 whilst maintaining this relationship between s
and n. Of course this is trivially satisfied by the assignment

sm o= (m+1)2,n+1 .

(Note that this takes no account of the given precondition.) However, we add the
further requirement that squaring is not allowed—the computation of s should
only involve additions and not multiplications. So, our goal is to calculate an
expression X involving only addition such that

{s=n?}sm = s+X,n+1{s=n} .
Applying the assignment axiom, we get

{s+X=m+1)2}snm = s+X,n+1{s=n?} .

9.6 Calculating Assignments 117

Comparing with the specification we calculate X so that

s=n% > s+X=(n+1)° .

Now,
(n+1)?
= { arithmetic—introducing ‘n?® }
n’+2n+1
= { assume s =n° |}
s+2n+1 .
That is,

s=n® = s+2n+1=(n+1)% .
In this way, we have calculated the required assignment statement:
{s=n?}sm = s+2n+1,n+l1{s=n}.

Some of these examples and the exercises below may seem quite trivial. It is tempt-
ing in some cases to guess the appropriate assignment and then verify it. Calcu-
lation is, however, much more reliable. It is in solving ‘trivial’ problems like these
that so-called ‘one-off’ errors are made, often because it is human nature to guess
and then not bother to verify. The consequences can be disastrous.

The use of simultaneous assignments increases reliability if the discipline of
calculating right sides is applied. If a sequential composition of assignments is
used instead, mistakes occur because of confusion over the right order in which
to apply the assignments. Sometimes, sequencing the assignments can be more
efficient, but the efficiency gains are minor and it is much more reliable to leave
such details to an optimizing compiler.

Exercise 9.4. Suppose there are two integer variables m and n. Suppose a given
precondition is that m is even. Calculate the assignment to n that maintains
invariant the product mxn under the division of m by two. In other words, cal-
culate X such that for arbitrary C

{mxn=CArevenmimmn = m+2,X{mxn=C}.
O

Exercise 9.5. Suppose there are three program variables n, s and t. Calculate
assignments to s and t that maintain invariant the relationship

s=n® At=n3.
In other words, calculate X and Y such that

{s=n? At=n3}stn = s+X,t+Y ,n+l{s=n? A t=n’} .

118 Chapter 9: The Assignment Statement
The assignments to s and t should involve additions only. Multiplications are not
allowed. O
Exercise 9.6. The factorial function n! satisfies the equations

o=1
and, for all natural numbers n,

(n+1)! = (n+1) xn! .
Suppose program variables f and n satisfy the property

f=n
and it is required to maintain this property by a suitable assignment to f whilst
simultaneously incrementing n by 1. Calculate the assignment. O
Exercise 9.7. The Fibonacci function fib satisfies the equations

fib.0=0

fib.1=1
and, for all natural numbers n,

fib.(n+2) = fib.(n+1) +fib.n .
Suppose program variables f, g and n satisfy the property

f=fib.n A g=fib.(n+1)
and it is required to maintain this property by suitable assignments to f and g
whilst simultaneously incrementing n by 1. Calculate the assignments. O

9.7 Complications

The assignment axiom, as we have presented it, is not completely correct because
it ignores the problems of undefined expressions. It ignores, for example, the
problem of division by zero in an arithmetic expression. It also ignores overflow
and underflow errors (calculating numbers that are too large or too small for the
computer to handle) and out-of-bound errors in array indexing.

A more complete statement of the assignment axiom is

{‘e’is well defined A Q[x:=el}x :=e{Q} .

Determining whether ‘e’ is well defined depends on the primitive operators used
in ‘e’ (for example ‘m/0’ is not well defined) and, possibly, the size limitations
of the computer on which the program is to be executed. (The inverted commas
are there because it is the syntactic form of the expression that is relevant. For

9.8 Summary 119

9.8

example, ‘(mxn)/n’ may be simplified to ‘m’. The former may cause a divide-
by-zero error, whereas the latter will not. Similarly, examples can be given where
overflow may occur, whereas an equivalent expression does not cause overflow.)

In addition to taking account of the well-definedness of the right side of an
assignment, it is also necessary to take account of whether the left and right sides
have the same type and, if not, the effect of automatic type conversions. Some of
the issues surrounding the latter have been discussed in Chapter 4. However, a
full discussion of all these complications is beyond the scope of this text.

Summary

In this chapter, we have seen how to specify programs using precondition-
postcondition pairs. We have also shown how to calculate assignment statements
that meet a given specification. The basis is the assignment axiom, which is
applied by working backwards from the postcondition to the precondition. Other
topics that have been discussed are the use of ghost variables and complications
arising from undefined right sides of assignments.

Bibliographic Remarks

The *Hoare’ triple notation for program specification, and the assignment axiom—
crucially, in a form working backwards from the postcondition to the precon-
dition—were introduced by C. A. R. Hoare in 1969 (see Hoare and Jones 1989,
Chapter 4). Actually, the notation used by Hoare—P {S}Q—bracketed the program
statement rather than the preconditions and postconditions. More significantly,
P{5}Q was defined to be conditional on the guaranteed termination of S. (Proving
termination is something we return to later.)

Itis becoming increasingly common for programming languages to include pro-
vision for assertions to be added to a program and processed by the compiler. The
assertions are evaluated while the program is run in test mode, and their failure
indicates where the printout of a diagnostic trace is needed. Sometimes they are
evaluated in a running system, to trigger automatic re-initialization of data or a
restart of the program (Hoare, 2001).

This page intentionally left blank

10.1

10

Sequential
Composition and
Conditional
Statements

This chapter continues the discussion of the formal construction of programs. We
discuss the decomposition of a programming problem into constructing a number
of statements to be executed sequentially. We also discuss the decomposition
of a programming problem into a number of distinct cases, solutions to which
are then combined in a conditional statement. We observe a lack of symmetry
in conventional if-then-else statements and propose, in their place, a so-called
‘guarded command’ for defining conditional statements. The rules governing the
construction of sequential and conditional statements are applied to a number of
examples.

Sequential Composition

It is common to decompose a problem into two (or more) simpler problems which
are to be solved in some specific order. Many examples can be given. Finding the
k best entries in a database can be solved, for example, by sorting all the entries

122

Chapter 10: Sequential Composition and Conditional Statements

and then extracting the first k entries. The amount of fuel that a car consumes
on a journey of k kilometres is computed by determining the number of litres
consumed per kilometre and then multiplying this amount by k. Counting the
proportion of times that a particular letter occurs in the words in a text—say
the proportion of words in this text that contain the letter ‘e’—is computed by
counting the total number of words in the text and, of these, the number that
contain the given letter, and then finally dividing the latter by the former.

This problem-solving strategy is captured in programming terms by the sequen-
tial composition of statements, here denoted by an infix semicolon. Hoare triples
are used to provide the mathematical basis for the strategy.

Suppose a programming problem is specified by giving a precondition P and
postcondition Q. We are required to construct a program statement S to satisfy

{pis{Q} .

We can decompose this problem by inventing a suitable intermediate assertion R
and then constructing program statements S1 and S2 such that

{P}S1{R}
and

{R}S2{Q} .

Examples of intermediate assertions are ‘the deck of cards is sorted’ (in the case of
finding the best k entries in a deck of cards), ‘lpk is the number of litres consumed
per kilometre’ (in the case of computing fuel consumption over a given number
of kilometres), or ‘w is the number of words in the text and [is the number of
such words containing the given letter’ (in the case of counting the proportion of
times that a particular letter occurs in a sequence of words).

The sequential composition S1;S?2 of statements S1 and S2 is executed by first
executing statement S1 and then statement S2. If S1 has been constructed to
satisfy

{P}S1{R}, (10.1)

it means that, if execution of S1 is begun in a state satisfying P, termination is
guaranteed in a state satisfying R. Also, if $2 has been constructed to satisfy

{R}S2{Q}, (10.2)

it means that, if execution of S2 is begun in a state satisfying R, termination is
guaranteed in a state satisfying Q. Clearly then, if execution of S1;S2 is begun
in a state satisfying P, termination is guaranteed in a state satisfying Q. That is,
given (10.1) and (10.2), it is the case that

{pys1;s2{Q} . (10.3)

10.2 The skip Statement 123

10.2

This is the rule of sequential composition: for all statements S1 and $2 and all
assertions P, Q and R,

[Sequence] {P}S1;S2{Q} « {P}S1{R}A{R}S2{Q}.
(10.4)

We have introduced the rule of sequential composition in terms of inventing a
suitable intermediate assertion R. This is just one way the rule may be used.
Another way is that we invent a program statement S1 that we think may be of
use in solving the given programming problem. From the specification of S1, we
calculate a postcondition R that is guaranteed to hold after executing S1 beginning
in a state satisfying P. Finally, we solve the problem of constructing a program
statement S2 that will guarantee the postcondition Q if execution of it is begun
in a state satisfying precondition R.

Symmetrically, we may invent a program statement S2 that we think may be
of use in solving the given programming problem. From the specification of 52,
we calculate a precondition R that will guarantee Q after executing S2. Finally, we
solve the problem of constructing a program statement S1 that will guarantee the
postcondition R if execution of it is begun in a state satisfying precondition P.

These three different strategies (first inventing R, first inventing S1, or first
inventing S2) are interrelated but it can be helpful for the more difficult problems
to keep them separate in one’s mind. It is difficult to give realistic but simple
examples at this stage. An example combining the rule of sequential composition
with the construction of conditional statements is discussed in Section 10.6.

The skip Statement

Sequential composition is associative. That is, it does not matter whether we read
S;T;U as (5;T);U or as S;(T;U). The statement (S;T);U is executed by first
executing §'; T and then executing U; the statement §; (T ;U) is executed by first
executing S and then executing T'; U. Both boil down to executing S then T then
U. This is a rule that we use in many places, but always without explicit mention
of the fact.

Sequential composition also has a unit. It is the ‘do-nothing’ statement. Most
often, there is no need to waste ink on doing nothing. Sometimes, we do want to
make the operation explicit, in which case we denote it by skip. Doing nothing
means leaving the state of the program variables unchanged. So, clearly,

skip;§ = § = §;skip ,

confirming that skip is the (left and right) unit of sequential composition.

Doing nothing does not seem a very useful operation to do, so introducing a
notation for it does not seem useful either. Like the introduction of zero in the
number system, the consideration of extreme cases often meets with resistance

124

Chapter 10: Sequential Composition and Conditional Statements

10.3

but is, in fact, very important. We will see that the skip statement does have its
uses.

Formally, { P } skip { Q } means that, beginning in a state satisfying P, the
act of doing nothing is guaranteed to terminate in a state satisfying Q. It is thus
equivalent to [P=Q], where the square brackets mean that the statement P=Q
is true in all states. This is the skip rule:

[Skip] {P}skip{Q} = [P=>Q] . (10.5)

We recommend that the square brackets are read as ‘in all states’. The skip rule is
then read as ‘beginning in a state satisfying P, execution of skip (i.e. doing nothing)
is guaranteed to terminate in a state satisfying Q if, in all states, P implies Q’.

In most cases, skip is not explicit (think of it as being written with zero amount
of ink). The skip rule is thus most often used in the form:

[Weakening] {P} {Q} = [P=>Q] . (10.6)

So, if two assertions appear consecutively in a program, the intended meaning
is that the first assertion is always true at that point in the program’s execution,
but may be weakened to the second assertion without affecting the program'’s
correctness.

We have already made use of (10.6) without making it explicit. Indeed, the
assignment axiom gives the weakest precondition that will guarantee a given
postcondition after execution of an assignment. For example, 0 < k+1 is the pre-
condition obtained by applying the assignment axiom given postcondition 0 < k
and assignment k := k+1. However, the given precondition might be 0 <k. (In
words, we might be interested in showing that the assignment k := k+1 main-
tains invariant the property that k is strictly positive.) In terms of Hoare triples,
we have

{O<k}{O<k+1}k:=k+1{0<k} .

The precondition 0 < k+1 is the weakest property guaranteeing that 0 < k after the
assignment k := k+1;itis calculated using the assignment rule. The precondition
0 <k is stronger than 0 <k+1. (That is, for all k, 0<k = 0<k+1.) So, using the
rule of sequential composition (10.4), with S1 the skip statement, combined with
the weakening rule (10.6), we infer that

{O0<k}k:=k+1{0<k} .

Examples of the use of skip in constructing programs are given in Section 10.6.

Conditional Statements

Every programming language has some way of expressing the execution of a state-
ment conditional on some property of the program variables. The most common

10.3 Conditional Statements 125

form is the if-then-else statement. A statement of the form
if bthenSelseT

is executed by evaluating the boolean expression b; if b evaluates to true, the state-
ment S is executed, otherwise (‘else’) the statement T is executed. For example,
the statement

if x<0 then y ;= —x else vy = x

assigns to v the absolute value of x.

The use of ‘else’ leads to an asymmetry in the branches of a conditional state-
ment. In the evaluation of the absolute value of x, the case x =0 can be handled
by either the assignment y := —x or by the assignment y := x; it does not mat-
ter which is chosen. The asymmetry becomes more pronounced when there are
more cases to be considered, as in, for example,

if ali]l <b[j]
theni ;= i+]
else if b{j]<ali]
then j ;= j+1
else i,j := i+1,j+1 .

A modest improvement can be obtained if each branch of a conditional state-
ment is ‘guarded’ by the condition under which it is executed. An example is the
statement

if x<0 — y:i=-x
O0x20 — ¥y :i=x
fi .
This statement consists of two guarded statements
Y= —-X
and

yi=Xx,
the guards being x <0 and x > 0, respectively.

The conditional statement is executed by evaluating the guards and then exe-
cuting any one of the statements whose guard evaluates to true. (If one such guard
is found, the subsequent execution of its associated statement need not wait for
all the guards to be evaluated.)

Note that this makes evaluation of a conditional statement non-deterministic in
that it may be the case that both guards evaluate to true. This is illustrated by the
example: in the case that x =0 it is permitted to execute either the assignment

126

Chapter 10: Sequential Composition and Conditional Statements

10.4

¥y := -x or the assignment y := x. But, it does not matter which is executed
since both will assign the value 0 to y. It is precisely this non-determinism that
is the advantage of the guarded command style of writing conditionals. It saves
the programmer from making arbitrary and possibly confusing distinctions. Also,
efficiency improvements can be automated in an optimizing compiler. (Freeing the
programmer from the task of making detailed efficiency improvements improves
reliability and eases program reuse.)

The number of guarded commands in a conditional statement is finite but oth-
erwise unbounded. An example with three guards is

if alil<bl[j] — i:=i+1

O alil=blj] — i,j := i+1,j+1

0 alil>b[jl] — j:= j+1

fi .
Compare this statement with the equivalent if-then-else statement above to see
which you think is clearer.

An if-then statement (i.e. a conditional statement without an else clause) is
expressed using the skip statement. The statement if b then S is expressed as

if b—S
0O —-b—skip
fi .

Conditional statements with just one guard are used in concurrent program-
ming. (Concurrent programs consist of a collection of programs that are run at the
same time. They include synchronization mechanisms which allow communica-
tion between the component programs at certain times.) In a concurrent program,
the statement

if b—S

fi
waits until the guard b becomes true. In general, with multiple guards, a concur-
rent program waits until one of the guards becomes true. We will not be consid-
ering concurrent programs in this text; so, if none of the guards evaluates to true,
execution of the conditional statement will be forever ‘stuck’ (because there is

no other program running concurrently that can make the guard true) and the
program is incorrect.

Reasoning about Conditional Statements

When we reason about conditional statements, we can take into account the fact
that a guarded statement is only executed when its guard is true. So, suppose we

10.4 Reasoning about Conditional Statements 127

consider a conditional statement with precondition P and postcondition and,
for concreteness, two branches:

I P}

if b1 —S1

a b2—S2

fi

{Qt.
The assumption is that the statement will begin execution in a state satisfying P;
it will, therefore, begin execution of statement S1 in a state satisfying P A b1 and
statement S2 in a state satisfying P A b2. Also, we require that on termination
the state must satisfy Q. So, it must be the case that execution of statement S1
guarantees termination in a state satisfying Q assuming an initial state satisfying
P A b1; moreover, execution of statement S2 must guarantee termination in a state
satisfying Q assuming an initial state satisfying P A b2. We can summarize this
by an extended annotation of the program with additional assertions:

{ P}

if b1 — {PADb1}S1{Q}

0O b2 — {PAb2}S2{Q}

fi

{Q1}.

Note that the statement S1 is now bracketed by precondition P A b1 and postcon-
dition Q, whilst statement S2 is bracketed by precondition P A b2 and postcondi-
tion Q.

For example, consider the correctness of the assignment to y of the absolute
value of x. The precondition is true and the postcondition is y = |x]|. The fully
annotated program is, thus,

{ true }

if x<0 — {trueax<0}y:=-x{y=|x|}
O0x20 — {trueax20}y:=x{y=|x|}
fi

ty=lIxl }.

Since it is the case that either x <0 or x>0, one of the two assignments
will be chosen for execution. The correctness of the conditional statement is

128

Chapter 10: Sequential Composition and Conditional Statements

thus reduced to the correctness of the two assignment statements. Simplifying
true A p to p, we have to verify

{x<0ty:=-x{y=Ixl}
and
{x20ty:=x{y=Ix]}.
Using the assignment axiom, we have
{-x=[x|}y:=-x{y=Ix]}.

That is, the assignment y := —x establishes the postcondition y = |x| if the
precondition —x = |x| holds. But, it is indeed a property of absolute values that

x<0=—x=|x]| .

Substituting equals for equals (x <0 for —x = |x|), we have thus verified the cor-
rectness of the first assignment. Also, again using the assignment axiom,
{x=Ixl}y =x{y=Ixl}.
But
x20=x=|x]| .

Substituting equals for equals again (this time x > 0 for x = | x|), the second assign-
ment is valid. We conclude that the conditional statement correctly assigns the
absolute value of x to y.

The Conditional Rule. The above discussion can be summarized by saying that
the proposition

{ P}

if b1 —S1

O b2 —S82

fi

{Q}
is equivalent to the conjunction of three propositions:

[P = blvb2] ,

{PAb1}S1{Q} ,

{PADb2}S2{Q1} .

10.5 Reasoning about Conditional Statements 129

The first proposition guarantees that at least one branch of the conditional state-
ment can be chosen (recall that the square brackets around P = b1 v b2 mean
that the property is true in all states); the second and third propositions specify
the correctness of the individual branches.

Exercise 10.7. Introduce additional assertions into the following Hoare triples so
that every assignment statement is bracketed by a precondition and a postcondi-
tion. Use the assignment axiom to verify the correctness of each assignment with
respect to its precondition and postcondition.

(@ { mxn=p }
if even.m — mm = m=2,2xn
0 true — m,p = m—-1,p-n
fi
{ mxn=p } .
(b) {f 0o<m A 0<n A ged(m,n)=C }
if m<n — n:=n-m
On<m — m:=m-n
fi

{ogm A 0g<n A gedimm)=C }

(gcd stands for greatest common divisor). O

Exercise 10.8. Rather than assign the absolute value of x to a new variable vy as
we did above, it may be required to update x to its absolute value. To specify such
an update operation it is necessary to use a ghost variable. The program segment
complete with precondition and postcondition is shown below, variable X being
the ghost variable.

{ X=1Ix| }

if x<0 — x:= -x

O x>0 — skip

fi

{ X=x 1} .

Use the conditional rule, skip rule and assignment axiom to verify that this pro-
gram segment is indeed correct.]

130

Chapter 10: Sequential Composition and Conditional Statements

10.5

Constructing Conditional Statements

We use conditional statements in programming when a problem can be split into
a (small) number of cases and these cases solved independently. The conditional
rule neatly captures this problem-solving strategy.

The conditional rule can be used to construct conditional statements in several
different ways. We illustrate two.

Suppose a specification of a program statement S is given in terms of a pre-
condition P and a postcondition Q. So, P and Q are given and we are required to
construct S. Then we can meet the specification in three steps.

(@) Split the precondition into two (or possibly more) cases b1 and b2. For-
mally, ‘splitting the precondition’ means identifying b1 and b2 such that
[P=>blvVDb2].

(b) Construct a program statement S1 that guarantees termination in a state
satisfying Q given the precondition P A b1.

(c) Construct a program statement S2 that guarantees termination in a state
satisfying Q given the precondition P A b2.

(If the problem is split into more than two cases, a program statement has to be
constructed for each of the cases.)

This strategy involves the invention of the cases b1 and b2. This is a creative
step that relies on the programmer’s problem-solving ability. Having taken this
step, the specifications of S1 and S2 are easy to derive.

Let us show how this strategy is used to construct assignments that will assign
the maximum of x and y to z (all assumed to be real values).

The problem is specified formally by the precondition true (so the state before
execution of the program is arbitrary) and the postcondition z = x 17y where the
maximum x 1y is as defined in Chapter 8.

In Chapter 8, we observed that maximum has the following elementary proper-
ties:

xty=x (10.9)

]
<
N
x

and
(10.10)

Il
®
N
<

xXly=y
Since
xX<yvy<sx,

we are led to consider splitting the problem into two cases: the case that x <y
and the case that y < x. (Formally, step (a) above is satisfied by the fact that

true =>x<y Vv y<x

10.5 Constructing Conditional Statements 131

for all x and y.) So, our goal is to calculate expressions el and e2 such that
{ true }
if x<y —{xg<ylzi=el{z=xty}
Oy<x —{yv<xlz:=e2{z=x1y}
fi
{z=x1y } .

Using the assignment axiom we calculate that
{e=xty}zi=e{z=xly} .

In particular,
{x=xtytz=x{z=xty} .

Thus, by (10.9),
{y<xlzi=x{z=xty} .

Similarly, using the assignment axiom and (10.10),
{x<ylzw=y{z=xty} .

We have thus determined expressions el and e¢2, and conclude that

{ true }

if x<y —{x<ylz=y{z=xtly}
Oy<x —{y<xlz=x{z=xty}
fi

{ z=xty } .

Exercise 10.11. Given are two variables x and y. It is required to update the
values stored in these variables so that the value of x is at most the value of y.
In other words, it is required to sort the values of x and .

Using ghost variables X and Y to record the initial values of x and y, formu-
late an appropriate precondition and postcondition and construct a conditional
statement that implements the specification. Take care to specify that the initial
values of x and y are not lost in the process of sorting. O

Exercise 10.12. A program has two real variables x and y and one integer variable
k. Initially, k is strictly positive. It is required to decrease the value of k to a positive
value whilst maintaining the value of x* x y constant. Using ghost variable C to
record the initial value of x* x y and ghost variable K to record the initial value
of k, the precondition is

0<k=K A xkxy =C

132

Chapter 10: Sequential Composition and Conditional Statements

10.6

and the postcondition is
0<k<K A xkxy =C.

(Observe how the combination of the conjunct k =K in the precondition and the
conjunct k <K in the postcondition express the requirement that k is decreased.)

It is of course always possible to decrease k by subtracting 1. When k is even,
however, it is possible to decrease it at least as much, and generally more, by
dividing by 2. So, we are interested in constructing expressions a, b, ¢ and d such
that

{ 0<k=K A xkxy =C}

if true — k,x,y := k-1,a,b
O evenk — k,x,y := k+2,c,d
fi

{ 0<k<K A xkxy =C } .

Calculate appropriate values for a, b, ¢ and d.

(Note: the guard ‘true’ may of course be replaced by ‘odd.k’. We choose the
weaker guard because correctness is not compromised. In fact, when k=2 the
assignments k := k—1 and k := k=2 are equivalent. The non-determinism in the
conditional statement thus allows us to postpone the decision on how to handle
such cases until the complete program has been calculated. At this later stage, we
may choose to strengthen either of the guards in order to improve the efficiency
of the program.) O

Combining the Rules

In this section, we show how the rule of sequential composition is combined with
the skip rule and the conditional rule in constructing a small program.

Suppose that a programming language does not have a direct implementation
of integer division by 2. However, it is required to write a program that will imple-
ment the assignment m := m+2 for a given positive integer m. Formally, using
ghost variable M to record the initial value of m, the problem is to construct a
statement S such that

{os<m=M}S{m=M=21} .

If the programming language does not provide a division-by-two operation, it must
provide some other more primitive operation. Let us suppose that the language
does have a division-by-two operation in the case that the supplied argument is
positive and even. Let us denote this operation by rot (short for rotate). Then,
what we may assume is that the function rot satisfies, for all k,

0<k A evenk = rotk=k=+2 . (10.13)

10.6 Combining the Rules 133

That is, rot.k correctly computes the integer division k+2 in the case that k is
positive and even. We also assume that the language implements a test even that
determines whether a given argument k is even or not. Finally, we assume that
the language has an operation dec (short for decrement) that subtracts one from
a given strictly positive integer. That is, dec satisfies, for all k,

O0<k = deck=k-1 . (10.14)

(The problem statement is a bit artificial—this is an inevitable consequence of
trying to keep the problem simple. If this concerns you, think in terms of a Java
class FunnyInteger that provides the methods described, but no others. Alterna-
tively, the following scenario might put your mind at rest. Suppose k is stored as
a binary numeral, and suppose the operation rot.k rotates the bits one place so
that the rightmost bit becomes the leftmost bit. Then, this implements division
by two, provided that the number is even. The operation even.k simply converts
the rightmost bit to a boolean value. That is, if the rightmost bit of the binary
representation of k is 0, even.k is true, and if it is 1, even.k is false.)

At some stage, the program must compute vot.k for some k. This operation
computes k+2 reliably only when k is even (see (10.13)). The input value M is not
necessarily even. So, it is reasonable to seek a program that ensures that m gets
an even value and then assigns rot.m to m. That is, we use the rule of sequential
composition to replace the original problem by the problem of determining a
statement S and an intermediate assertion P satisfying

{O<m=M}S{0<m Anevenm AP} (10.15)
and

t0smaevenmAaPtm:=rotm{m=M+2} . (10.16)
We begin by calculating P. Applying the assignment axiom, we have

{rotm=M+2tm:=rotm{m=M+2} .
So, P must satisfy, for all m and M,

O<m~Aarevenm AP = rot.m=M=2 .
Comparing this with the property (10.13) of rot, it is clear that

P =m+2=M=2
will do. (In more detail, it is a consequence of (10.13) that

O<m Arevenm A m=2=M+2 = rot.m=m=+2 A m=+2=M=2 .
But then, by the transitivity of equality,

rotm=m+2 Am<+2 =M=z2 = rot.m = M+2 .

134

Chapter 10: Sequential Composition and Conditional Statements

So, by the transitivity of implication,
O<KmaAaevenm Am+2=M=2 = rot.m=Mz2)
Substituting the calculated value for P in (10.16) and (10.15) gives us

{0<mAevenm A m=2 =M=21}

m = rot.m (10.17)
{m=Mz+2}
and the specification of S:
{fosm=M}
S (10.18)

{0<m Arevenm A m=+2=M=21} .

In words, S must compute a positive, even number m which has the same integer
division by 2 as M.
The specification of S suggests that a conditional statement is appropriate.
After all, m+2 = m+2, so that, if m is even, nothing needs to be done. Formally,
{0<mMm=MA even.m }
skip (10.19)
fo<mAarevenm Am+2=M=21} .
If m is odd, doing nothing is not valid and we must seek a property of division-by-
two that will allow us to proceed. The appropriate property is, of course, that for
an odd positive integer m, m+2 = (m—1)+2 and m~1 is even. Moreover, we are
told that the operation dec calculates m—1 when m is a strictly positive number
(see (10.14)). All odd, positive integers are strictly positive, so it is thus the case
that

{o<m=MAodd.m}
m = dec.m (10.20)
fo<mAevenmAm+2=M=2} .

(Use the assignment axiom to check the claim, making sure that no details have

been overlooked.)
The final step is to put (10.19) and (10.20) together using the conditional rule
given in Section 10.4. Every number is either even or odd. So

{fogm=M}

if evennm — skip

0O oddm — m :=dec.m
fi

f 0O<KmAevenm Am+2=M=2 } .

10.7 Combining the Rules 135

The construction of § satisfying (10.15) is thereby solved. To complete the con-
struction, we combine the above with (10.17) using the rule of sequential compo-
sition to get

{0sm=M }

if even.m — skip

0 oddm — m :=decm

fi;

{ O<m nrnevenm A m+2 =M=+2 }
m = rot.m

{ m=M=2 1} .

Note that the middle assertion could now be omitted. It is included in order to
document the program better.

Exercise 10.21. This exercise is a variation on Exercise 10.12. Recall the statement
of the problem. A program has two real variables x and y and one integer variable
k.Initially, k is strictly positive. It is required to decrease the value of k to a positive
value whilst maintaining the value of x* x y constant.

In this exercise, the requirement is to develop a program that is the sequential
composition of two statements using the fact that decreasing an odd number by
one always yields an even number.

Construct statement S2 and assertion P such that executing S2 beginning in a
state satisfying

P A evenk A xkxy =C (10.22)
is guaranteed to terminate in a state satisfying
0<k<K A xkxy =C . (10.23)

(Hint: a simple assignment statement is all that is needed—make use of Exer-
cise 10.11. You can then use the assignment axiom to determine what P should
be.)

Now construct statement S1 with precondition

O<k=K A xkxy =C (10.24)

and postcondition (10.22).

In this way, you will have constructed statements S1 and S2 such that
the sequential composition S1;S52 has precondition (10.24) and postcondition
(10.23). O

136

Chapter 10: Sequential Composition and Conditional Statements

10.7

Summary

This chapter completes the discussion of non-looping programs. Rules for sequen-
tial composition, the skip statement and conditional statements have been given
and applied to a number of simple programming problems. The use of guarded
commands and non-determinism, rather than the conventional if-then(-else) state-
ments, helps to avoid error and offers increased scope for improving the efficiency
of programs without compromising reliability.

Bibliographic Remarks

The guarded command language was introduced by Dijkstra (1975).

Exercises 10.11 and 10.21 are based on the so-called ‘SX’ method for computing
powers described by Knuth (1969, pp. 398-422). Exercise 13.15 in Chapter 13
completes the discussion of this method.

A recommended text on concurrent programming that practises a correct-
by-construction methodology is A Method of Multiprogramming by Feijen and
van Gasteren (1996).

11.1

11

Quantifiers

Before moving on to add iteration to the control structures in our simple program-
ming language, it is convenient to first extend the specification language to allow
so-called quantifiers. Quantifiers allow one to denote the operation of applying
some binary operator (like addition or multiplication, conjunction or disjunction)
to an arbitrary, possibly infinite, bag! of values.

In this chapter, we introduce a uniform notation for quantifiers. We compare the
notation with existing notations, pointing out its advantages and disadvantages.
We also give rules for manipulating quantifiers and illustrate their use with several
examples.

Two quantifiers that are particularly important are universal quantification and
existential quantification. Additional rules governing such quantifications are also
presented.

DotDotDot and Sigmas

Most readers will have encountered the dotdotdot notation already. It is a notation
that is rarely introduced properly; mostly, it is just used without explanation as
in, for example, ‘1 +2+ ... +20=210" and ‘let x9,x1, ... ,Xn be’.

The dotdotdot notation is used when some operation is to be applied to a bag
of values in cases where the bag is too large to be enumerated, or the size of
the bag is given by some variable. In the case of ‘1+2+ ... + 20=210’, the oper-
ation is addition and there are 20 values to be enumerated; in the case of ‘let
Xo0,X1, --- ,Xn be’, the operation is sequencing (indicated by a comma) and the
number of values is given by the variable 7.

1 A bag is a set in which elements may occur more than once (and the number of occurrences is
significant).

138

Chapter 11: Quantifiers

The dotdotdot notation is convenient in the very simplest cases. But it has a
number of disadvantages in more complicated cases. It can become cumbersome
and it is prone to error. Most importantly, however, it puts a major burden on the
reader, requiring them to interpolate from a few example values to the general
term in a bag of values.

The so-called ‘Sigma’ notation is a popular notation for continued summations.
An example is the sum of the squares of all numbers from 0 up to and including
the number n which, in Sigma notation, is written

n
S
k=0

Similarly, the ‘Pi’ notation is used to denote a continued product. For example,
the factorial of number 7 is defined to be the product of all numbers from 1 up
to and including the number 7. In dotdotdot notation this would be written

n=1x2x...xn .

The equivalent in Pi notation is

n
n! = nk.
k=1

The two-dimensional nature of the Sigma and Pi notations makes them very read-
able because it is easy to identify the constituent components of the notation.
There is a quantifier—> or [] in the two examples—which identifies the opera-
tion to be carried out (addition in the case of Y. and multiplication in the case of
I']). There is also a so-called bound variable (k in both examples above) which has
a certain range (from 0 to n in the first example and from 1 to n in the second
example). Finally, there is a term defining a function of the bound variable which
is to be evaluated at each point in the range (k? in the first example and k in the
second example). The bound variable is always to the left of the equals sign in
the expression below the quantifier, and it ranges over a consecutive sequence of
numbers, where the lower bound is given to the right of the equals sign and the
upper bound is placed above the quantifier. The function of the bound variable is
written immediately to the right of the quantifier. The general form of the Sigma
and Pi notations is thus

ub
D E.
bv=Ib

where @ is the quantifier, bv is an identifier denoting the bound variable, Ib
and ub are expressions denoting the lower and upper bounds of the range of the
quantification, respectively, and E is an expression denoting the function of the
bound variable that is to be evaluated at each point in the range of the bound
variable.

11.1 DotDotDot and Sigmas 139

Because of their readability, the Sigma and Pi notations are widely used. A major
drawback, however, is that they are limited to quantifications over a consecutive
sequence of numbers. Problems arise if the notation is to be used for quantifica-
tions over non-consecutive numbers.

In some cases it is possible to get around the problems. For example, if we want
an expression denoting the sum of all odd numbers in, say, the range 1..n, we can
write

n+2
> 2k+1 .
k=0

But this is unsatisfactory, first because the intention is obscured—the reader is
burdened with the task of relating the complicated expressions (‘n+2’and ‘2k + 1°)
to the intended sequence of numbers—and, second, because the process is error
prone. In the example, that the smallest value of k is 0 and not 1, and that the
largest value is n+2, is far from obviously correct!

In other cases, it is not possible to circumvent the problem of the range being
a sequence of consecutive numbers. It is impracticable, for example, to use the
notation to express the sum of all prime numbers below a given value as there is
no simple arithmetic function denoting the kth prime number.

In order to overcome these drawbacks, some authors use a more flexible form
of the Sigma-Pi notation in which the range of the bound variable is indicated by
a predicate. The notation takes the form

b rik)

p(k)

where p (k) and f (k) are expressions typically (but not necessarily) dependent on
k (as indicated by ‘(k)’). For example, the sum of the odd numbers in the range
1..n would be denoted by

k .

1<k<n A oddk

Once again, this notation can be said to work—in the simple cases. But, its greater
flexibility has a major shortcoming—the notation is inherently ambiguous! The
problem is that the identity of the bound variable has become obscured. If we
write

> kxn .

m<k<n

then the meaning appears to be clear: k is the bound variable and the entire expres-
sion denotes a function of the variables m and ». But, taking m equal to n,

> kxn
n<k<n

140

Chapter 11: Quantifiers

simplifies to
Z kxn .
n=k

Now the meaning is not clear. The variables n and k are used in identical ways
and it is not clear which is the bound variable. Does the quantification denote a
function of n or is it a function of k? If we write

> nxk ,
k=n

using the symmetry of equality and multiplication to interchange n and k, does
this change the meaning?

Another serious problem is that the scope of the quantifier is not made clear.
Does

> j+1

1<j<3

mean (1+1) +(2+1) + (3+1) or does it mean (1+2+3) + 1?7 In other words, is the
function that is being quantified given by ‘j’ or by ‘j + 1°’. Most of us would assume
the latter. But, if ‘1’ is replaced by another quantified expression, the meaning
suddenly becomes different:

> J+ 2k
1<j<3 k=1
is normally understood tomean (1+2+3) + 1 andnot (1+1) + (2+1) + (3+1)!(The
spacing around the plus symbol is commonly used to indicate the intended mean-
ing but it is a bad notation that is susceptible to the presence or absence of
spaces—as many a C programmer will verify.)

The ambiguity of the more flexible Sigma-Pi notation is its main drawback. Less
serious, but still important, is that the use of a two-dimensional notation does
not scale up either. Here, the problem is that the predicate p used to delimit the
range of the bound variable, being written as a subscript, cannot be allowed to get
too complicated. Moreover, it should not itself make use of any two-dimensional
notation. Try reading

3
2 Kk
skt
= i
1<kg<nAa odd.(Zj:Z{F:0 2 Jz)

and you will understand the problem.
In the next section, we introduce a uniform notation for quantified expressions
that avoids all the problems mentioned above.

11.2 Introducing Quantifier Notation 141

11.2

11.2.1

Introducing Quantifier Notation

Summation and multiplication are just two examples of the quantifiers we want
to consider. In general, it is meaningful to ‘quantify’ over a non-empty range with
respect to any binary operator that is associative and symmetric. Addition, multi-
plication, equivalence, inequivalence, set union, set intersection, minimum, max-
imum, conjunction, disjunction, highest common factor and least common mul-
tiple are all examples of associative and symmetric operators. In each case, it is
meaningful (and useful) to consider the operator applied to a (non-zero) number
of values rather than just a pair of values. Moreover, quantifying over an empty
range is meaningful provided the operator in question has a unit?. Most of the
operators just listed have units, minimum, maximum and highest common factor
being the exceptions. (The unit of addition is zero (that is, x+0 = x for all x), the
unit of multiplication is one (xx1 = x for all x), the unit of conjunction is true
(that is, x A true = x), and so on. Minimum and maximum can be given units by
adding so-called ‘fictitious’ values, respectively c and — oo, to their domains but
care has to be taken in defining how these values behave in combination with
other arithmetic operators. The unit of highest common factor is the number 0,
so0 long as its domain is not restricted to only strictly positive numbers.)

We use a uniform notation to denote quantifications over a number of values. In
this way, we can also present a uniform set of laws for manipulating quantifiers,
resulting in a substantial reduction in the number of laws one has to remember.

We begin by explaining the particular case of summation, comparing our nota-
tion with the Sigma notation discussed above. Then, we consider quantifications
with respect to conjunction and disjunction (‘for all’ quantifications and ‘there
exist’ quantifications, respectively) before considering the general case.

Summation

Our notation for summation has the form
(Zbv :range : term) .

There are five components to the notation, which we explain in turn.

The first component is the quantifier, in this case . By a long-standing con-
vention among mathematicians, denotes summation of some arbitrary number
of values. The second component is the dummy bv. The dummy is said to be
bound to the quantifier; it is also called the bound variable. We use identifiers
like i, j and k, or x, v and z as dummies. Later, we allow the possibility of a list
of dummies rather than just a single one. The third component is the range of
the dummy. The range is a boolean-valued expression that determines a set of
values of the dummy: specifically, the set of all values of the bound variable for

2Recall that a unit of a symmetric binary operator @ is a value 14 satisfying 1s®x = x, for all x.

142

Chapter 11: Quantifiers

which the range evaluates to true. (Quantifications are not always well defined
if the range defines an infinite range set; we postpone discussion of this prob-
lem until later.) The fourth component is the term. In the case of summation, the
term is an integer or real-valued expression. The final component of the nota-
tion is the angle brackets; these serve to delimit the scope of the bound vari-
able.

The value of a summation of the form (X bv : range : term) is determined as
follows: evaluate the term for each value of the dummy described by the range,
and then sum all these values together. For example, the value of

(Zk:1<k<3: k%)
is
13+23433 |

Here, the range 1 < k < 3 determines the set {k | 1 <k <3} (read ‘the set of k such
that 1 <k<3’). That is, the dummy k ranges over the three values 1, 2 and 3.
The term k3 is evaluated at these three values and then the values are summed
together.

The range can be any boolean expression, and the term any integer or real-
valued expression as in, for example,

(Zk : even.k AO<k<N : kK3+kZ+N+1) .

Sometimes there may be no value of the dummy in the range, for example, if the
dummy is k, the range is 0< k <N, and N happens to be zero. In this case, the
summation is defined to be zero. (In words, a sum of no values is zero.)

The dummy has a certain type, the knowledge of which is crucial in certain cir-
cumstances. A long-standing mathematical convention is that variables i, j and
k denote integer values, whereas x, y and z denote real values. Such conven-
tions help for small-scale problems (like the ones considered in this text) but are
inadequate for the large-scale problems commonly encountered in programming.
Where necessary, the type of the dummy can be indicated by adding it immedi-
ately after the first occurrence of the dummy, as in

(SkeZ : even.k AO<k<N : k3+k>+N+1) .

(The symbol Z is commonly used in mathematics to denote the set of all integers.
The symbols N and R are used for the natural numbers and reals, respectively.)
Mostly, however, we will indicate the type of the dummies in the accompanying
text rather than in the quantification itself.

Rather than have just one dummy, it is convenient to allow a number of variables
to be bound to the same quantifier. An example is

(Zi,j : 0<i<j<N :i+j) .

11.2 Introducing Quantifier Notation 143

11.2.2

This denotes the sum of all values i+j such that i and j satisfy the property
0<i<j<N. Taking N to be 2, the possible values of i and j are i=0 and j=1,
i=0and j=2,i=1and j =2, so that

(Zi,j:0<i<j<2 1 i+f) = (0+1)+(0+2)+(1+2) .

Note that the variables in a list of dummies must all be distinct. It does not make
sense to repeat dummies. For example, {(Zi,i : 0<i<2 : 0) is not meaningful.

Exercise 11.1. Evaluate the following summations.
(@) (k1 1<k<3: k) .
b) (Zk:0<k<5:1) .
(¢) (Zi,j : 0<i<j<2 Aoddd @ i+j) .
(d (Zi,j : 0<i<j<2 AoddiAnodd.j @ i+j) . O

Exercise 11.2. What is the value of (Zk:k? =4:k?2) in the case that the type of k
is

(a) a natural number,
(b) an integer? O

Free and Bound Variables

In the next section, we formulate general properties of summation. Several of
these rules have so-called side conditions that prevent improper use of the rule.
The side conditions are, primarily, syntactic and not semantic. This means they are
conditions on the way expressions are written (their syntax) rather than conditions
on the values of the expressions (their semantics). So, the conditions may apply
to one expression but not to an equal expression. For example, the condition ‘the
symbol ‘0’ occurs in the expression’ is a syntactic condition on expressions, which
is true of ‘0’ but not true of ‘1-1’, even though 0 and 1-1 are equal.

A consequence of the syntactic nature of the side conditions is that they are
cumbersome to state even though they are, in fact, quite straightforward. In order
to understand them, we need to have a clear understanding of the notions of
‘free’ and ‘bound’ variables in an expression. (These notions provide the semantic
justification for the syntactic side conditions.)

Note that although all the examples given in this section are of surnmations,
the discussion applies equally well to all quantifiers.

Recall that a dummy in a sumrmation is said to be bound. For example, all occur-
rences of 'k’ in (Zk : 1<k <3 : k) are bound to the X quantifier. Variables that
have occurrences in an expression that are not bound to a quantifier are called free
variables. For example, n is free in 2", and m and n are free in (3k:0 <k <m k™).

Free and bound variables have different roles. The value of an expression
depends on the value of its free variables. For example, the value of 2" depends

144

Chapter 11: Quantifiers

on the value of the free variable n, and the value of (Xk:0<k <m:k™) depends
on the values of the free variables m and n. However, it is meaningless to say
that the value of an expression depends on the value of any bound variables
occurring in the expression. Also, the names given to bound variables can be
changed, whereas those given to free variables cannot. So, (Zk:1 <k <3:k") and

(Sj : 1<j<3 : j™ both have the same meaning—the change of dummy name

from ‘k’ to ‘j’ is irrelevant. But 2™ and 2" are quite different—the free variables
m and n cannot be interchanged at will.

Dummies bound to quantifiers act like local variables in a program. The first
occurrence is comparable to a declaration of the variable, the scope of the decla-
ration being delimited by the angle brackets. This means that dummy names may
be reused, i.e. different quantifications may use the same bound variables, as in,
for example,

(Sk:0<k<n:k) x Sk:1<k<n:k?) .

In this expression, there are two distinct dummies, both having the same name
‘k’. The first is bound to the leftmost X and the second to the rightmost 3. The
angle brackets avoid confusion between the two because they clearly delimit the
scope of the bindings (the subexpressions in which the dummies have meaning).

(Mathematicians do not usually make the effort to delimit the scope of their
dummies; the errors that occur from not doing so have taught computing scien-
tists that it is always a good idea to make scopes explicit. So always remember to
include the brackets, even though others may be more sloppy.)

Reuse of dummy names is quite common. After all, the name of a dummy is
irrelevant, so why bother to think of different names. Reuse of dummy names is
not a problem, except where the scope of the bindings overlaps. The only time
that scopes overlap is when they are ‘nested’.

Nesting of quantifications is when one quantification is a subexpression in
another quantification—as in, for example,

(5j:0<j<n: (Sk:0<k<n: jxk?)) .

A variable that is bound at one level in an expression is free within subexpressions.
In the above example, all occurrences of ‘j’ are bound, but in the expression
(Zk:0<k<n:jxk?) ,

‘j’ is free. (This is just like nested declarations in a block-structured programming
language. Variables are local to the block in which they are declared but global in

any nested blocks.)
Variables may be both free and bound in the same expression. An example is

(Zk:0<k<n:k?® +k .

In this expression, the rightmost occurrence of ‘k’ is free, whereas all other occur-
rences are bound to the ¥ quantifier. The rightmost occurrence of ‘k’ is distinct

11.2 Introducing Quantifier Notation 145

from all other occurrences, as is evident from the fact that the other occurrences
can be renamed to, say, ‘j’. An equivalent (and perhaps more readable) expression
is

(5j:0<j<n:j?) +k .

The names of dummies may also be reused in nested quantifications. The sum-
mation

(Zi:i=0vi=1:Ci:i=2vi=3:1) — 4Xi)

is perfectly meaningful. It evaluates to ((2+3) — 4x0) + ((2+3) — 4x1). Renam-
ing the innermost dummy to j, we get the equivalent expression

(Zi:i=0vi=1:(Zj:j=2vj=3:]j) — 4xi) .

The rule is that in nested quantifications, the innermost bindings take precedence.
(The analogy with variable declarations in block-structured languages is again
useful.)

A variable can be captured by a quantifier when dummies are renamed. Earlier,
we gave

(Zk:1<k<3:k™ = (37:1<j5<3:jM
as a valid use of renaming. But it would be wrong to rename ‘k’ to ‘n’. Clearly,
Sk:1<k<3: k™) = (En:1<n<3:n") .

In the left-hand summation, 7 is free; in the right-hand summation, all occur-
rences of ‘n’ are bound to the quantifier. The left side depends on the value of
n, whilst the right side does not (it equals 1!+22+33). So, a proviso on dummy
renaming is that the new name is not free anywhere in the scope of the quantifier.

Care must be taken when manipulating quantifications to ensure that free vari-
ables are not ‘captured’ by a quantifier and, conversely, bound variables are not
‘released’ from their binding. As a general rule, you should always be aware of
which variable occurrences in an expression are free and which are bound. Appli-
cation of algebraic laws is invalid if free variables become bound or, vice versa,
bound variables become free. Care is also needed to ensure that a dummy name
does not occur twice in a list of dummies. (This can occur, for example, when
unnesting quantifications.) And care is needed in the process of substitution —
substituting an expression for a variable should only replace free occurrences of
the variable. Understanding the distinction between free and bound occurrences
of variables will enable you to easily avoid any pitfalls.

Exercise 11.3. Identify all occurrences of free variables in the following expres-
sions.

(a) 4xi .
(b) (Zj:1<j<3:4x1) .

146

Chapter 11: Quantifiers

11.2.3

(©) (£j:1<j<3:4%j) .
(d) Zj:1<j<3:mxj)+(Zj:1<j<3:nxj) .
() (Zj:1<j<3:mxj)+(Zk:1<k<3:nxj) . a

Exercise 11.4. Evaluate the left and right sides of the following equations. Hence,
state which are true and which are false.

(@ (2j:1<j<3:4xi) = (Zk:1<k<3:4xi) .

() (£j:1<j<3:4%j) = (Zk:1<k<3:4%j) .

(© (Zj:1<j<3:(Sk:k=0:4%xj)) = (Zi:1<i<3:(Zk:k=0:4x%1i)) .

(d) (Zj:1<j<3:(Zj:j=1:4%xj)) = (Zk:1<k<3:(Zj:j=1:4%xk)) . O

Properties of Summation

The main advantage of a formal quantifier notation over the informal dotdotdot
notation is that it is easier to formulate and use calculational rules. In this sub-
section, we formulate rules for summation. Later, we will see that these rules are
all instances of more general rules.

We formulate the rules in terms of each of the components of a quantification.
So there are rules governing the use of dummies, rules exploiting the structure of
the range, and rules exploiting the structure of the term. Additionally, there are
two so-called trading rules that allow information to be moved to and from the
range of the quantification.

Side Condition. A general side condition on all the rules is that their application
should not result in the capture of free variables or release of bound variables,
and should not result in a variable occurring more than once in a list of dummies.

Dummy Rules. There are three rules governing the use of dummies. The first
rule expresses the fact that a ‘dummy’ is just a place holder, the particular name
chosen for the dummy is not relevant provided it does not clash with the names of
other variables in the quantified expression. (The rule has already been discussed
in Section 11.2.2 but is repeated here for convenience.) Renaming is often used
when performing other algebraic manipulations in order to avoid capture of free
variables or release of bound variables.

Let R[j := k] and T[j := k] denote, respectively, the expressions obtained by
replacing every free occurrence of ‘j' in R and T by ‘k’. Then

{[Dummy Renaming] (Xj:R:T) = (Zk:R[j:=k]:T[j:=k]) . (11.5)

As discussed earlier, the general side condition on application of rules demands
that R and T be expressions not containing any free occurrence of ‘k’.

11.2 Introducing Quantifier Notation 147

The second rule states, essentially, that the use of more than one dummy is
a convenient abbreviation for a collection of quantifications. We use ‘js’ in the
statement of the rule to denote any list of variables:

[Nesting] (Sj,js:RAS:T) = (5j:R:(Sjs:S:T)) . (11.6)

There are two side conditions on this rule. The first side condition is that expres-
sion R may not depend on any variable in the list js. The reason for this is that the
scope of the variables in the list js on the right side of the equality is delimited
by the innermost angle brackets and, thus, does not extend to the range R of the
bound variable j. Were R to depend on variables in js, those variables would be
released in the process of replacing the left side by the right side.

This is an example of avoiding the circumstance that a bound variable becomes
free—were the rule to be used from left to right when R does depend on some
variable in the list js, that variable would be bound in the left-hand occurrence
of R but free in the right-hand occurrence of R. The right side would, thus, be an
expression that depends on the value of this variable, whereas the left side does
not.

The second side condition is that the list js may not include the variable j. This
is because ‘j,js’ in the left side of the equality would then include two occurrences
of 'j’, and it would not be possible to distinguish between related and unrelated
occurrences of ‘j’ in the range and term. For example, a naive attempt to apply
the nesting rule to

(Zi:i=0vi=1:{3i:i=2vi=3:1) — 2Xi)
gives
(Zi,i : (i=0vi=D)A(i=2Vvi=3) i 2Xi) .

This is meaningless because it is impossible to determine which occurrences of i
are related, and which not.

It is always possible to avoid such complications by suitably renaming bound
variables before using the nesting rule. Using the renaming rule, the above sum-
mation equals

(Ti:i=0vi=1:(Sj:j=2vj=3:j) — 2xi) ,
which, by the nesting rule, equals
(2i,j : i=0vi=)A(j=2Vvj=3) 1 j — 2Xi) .

It is worth remarking that the rule is used both from left to right—from which the
name ‘nesting’ is derived—and from right to left—in which case quantifications
become urmested. So the rule is both a nesting and an unnesting rule. The first
side condition relates to the use of the rule in a left-to-right direction, and the
second side condition to its use in a right-to-left direction.

148

Chapter 11: Quantifiers

The third rule is very powerful because, in combination with the nesting rule,
it allows us to rearrange the order in which the values in a summation are added
together. Formally, however, the rule is very simple. It simply states that the order
in which the dummies are listed in a summation is irrelevant.

[Rearranging] (3j,k:R:T) = (Zk,j:R:T) . (11.7)
Here is an example of how the nesting and rearranging rules are combined. The
parenthesization corresponds to the nesting of the summations.
(IX1+1%x2+1x3)+(2%x2+2x3)+3x3
{ definition of ¥ }
(Zi:1<ig<3:(Zj:i<j<3ixy))
= { (un)nesting: 1<i<3Ai<j<3 = 1<ig<j<3 }
(Zi,7j:1<ig<j<3ix))

Il

= { rearranging }
(T j,i:1<i<j<3:ixy)

= { nesting: 1<i<j<3 = 1<j<3A1<Kigyj }
(2j:1<j<3 1 (Zi1<i<jixy))

= { definition of = }
1x1+(1x2+2x2)+(1x3+2%x3+3x%3) .

Note that repeated use of nesting and rearranging allows the rearrangement of the
order of the values to be summed. The rules depend crucially on the associativity
and symmetry of addition.

Range Part. We now come to the laws governing manipulation of the range part.
There are four rules. The first two rules govern the case that the range defines the
empty set, and the case that the range defines a set with exactly one element.

[Empty Range] (Sk:false:T) = O . (11.8)
[One-Point] (Sk:k=e:T) = Tlk:=e] . (11.9)

The general side condition on use of rules prohibits the use of the one-point
rule when e is an expression containing free occurrences of ‘k’, the reason being
that this would result in their release when using the rule from left to right and
in their capture when using the rule from right to left.

The third rule allows a summation to be split into separate surnmations:

[Splitting] (Zk:P:T) + (Zk:Q:T) = Sk:PvQ:T)+ (Zk:PAQ:T) .
(11.10)

11.2 Introducing Quantifier Notation 149

The splitting rule gets its name because it is most often used when P and Q
‘split’ the range into two disjoint sets, that is, when P A Q is everywhere false. In
this case, (£k:P A Q:T) is zero, by the empty-range rule, and may be eliminated
from the right side of the rule. Here is the most common example, where we ‘split’
predicate P into P AQ and P A Q.

(Zk:PAQ:T)+ (Zk:PA-Q: T)
{ splitting (11.10) with P,Q := PAQ,PA—-Q |

SZk:(PAQ)VPA-Q):T)+ {Zk:PAQAPA-Q:T)

i

= { predicate calculus }
(Zk:P:T) + (Tk:false: T)
= { empty range (11.8), arithmetic }
(Zk:P:T) .
We have thus derived the rule:
(Zk:P:T) = (Zk:PAQ:TY+(Zk:PA-Q : T) . (11.11)

This rule can now be combined with the one-point rule to split off one term in a
sumimation, as in, for example,

(2i:0<i<N:2%)
= { splittingoni=0vi=0
(i.e. (11.11) with Q instantiated to i=0) }
($i:0<i<KNAiI=0:21) + (Zi: 0<i<KNAi#0: 2%)
= { simplification of ranges (assuming O<N) }
(Zi:i=0:2") + (Ti:1<i<N:2b)
= { one-point rule }
204 (Zi:1<i<N : 20)
= { arithmetic }
1+(Zi:1<i<N:2Y) .

(It is more common to state the splitting rule in the form (11.11). However, the
beautiful symmetry of (11.10) makes it more attractive and easier to remember.)

The final rule is a consequence of the rearrangement rule given earlier. It also
allows the terms in a summation to be rearranged.

Suppose function f maps values of type J to values of type K, and suppose g is
a function that maps values of type K to values of type J. Suppose, further, that
f and g are inverses. That is, suppose that, for all jeJ and k€K,

fi=k = j=gk .

150

Chapter 11: Quantifiers

Then
[Translation] (ZkeK:R:T) = (Zje]J:Rlk:= fjl:Tlk:= f.j]) . (11.12)

If a function has an inverse, it is called a bijection. The most common use of
the translation rule is when the source, J, and target, K, of the function f are the
same. A bijection that maps a set to itself simply permutes the elements of the
set. So, in this case, (11.12) says that it is permissible to arbitrarily permute the
values being added.

The rule is, in fact, a combination of the one-point rule (11.9), the nesting rule
(11.6) and the rearrangement rule (11.17). See exercise 11.19. We call it the trans-
lation rule because, in general, it translates a summation over elements of one
type into a summation of elements of another type. It is useful to list it sepa-
rately, because it is a quite powerful combination of these earlier rules, which
finds frequent use.

When we use the translation rule, the function f is indicated in the accompa-
nying hint by giving the substitution ‘k := f.j’. See Section 11.2.4 for an example.

Trading Rules. The range part of a summation is very convenient to use but,
in a formal sense, it is redundant because the information can always be shifted
either to the type of the dummy or to the term part. Shifting the information to
the type of the dummy is expressed by the rule:

[Trading] (SkeK:PAQ:T) = (Ske{keK|P}:Q:T) . (11.13)

Here the type K of the dummy k is replaced by the subset {k€K | P}. For exam-
ple, we might consider the natural numbers N to be a subset of the integers Z,
specifically {keZ|0<k}.

Rule (11.13) is most often used implicitly; in order to avoid specific mention of
the range (for example, if it is not explicitly used in a calculation) the information
about the types of the dummies is given in the text and then omitted in the formal
quantifications. In this case, the form

(Zk:=T)

of the notation is used. Formally, (Xk::T) is a shorthand for (X k€K :true:T),
where K is the declared type of k.

Shifting the information in the range to the term part is achieved by exploiting
the fact that zero is the unit of addition. For values k not in the given range, we
add zero to the sum:

[Trading] (Sk:PAQ:T) = (3k:Q :ifP—T 0O -P—0fi) . (11.14)

(Some texts use a trick peculiar to summation to simplify this rule. The trick is
to note that Oxx =0 and 1xx = 1; the boolean value false is mapped to 0 and the
boolean value true is mapped to 1. Denoting this mapping by square brackets, the
rule reads

(Zk:PAQ:T) = {Zk:Q: [P]IxXT) .

11.2 Introducing Quantifier Notation 151

11.2.4

Term Part. There are two rules governing the term part. The first allows us to
combine two summations over the same range (or, conversely, split up an addition
within a summation into two summations):

[Rearranging] (Zk:R:To+Ty) = (Zk:R:Ty) + (Zk:R:Ty) . (11.15)

Like the translation rule, this rule is also a combination of the nesting (11.6) and
rearranging rules (11.7) given earlier (because

To+Ty = (Zj:j=0vj=1:Tj)).
1t is worth listing separately because it is used very frequently.

The final rule allows us to ‘factor out’ multiplication by a constant from a sum-
mation. (Conversely, it allows one to ‘distribute’ multiplication by a constant into
a summation.)

[Distributivity] (Ek:R:cxT) = cxX(Zk:R:T) . (11.16)

The general side condition on the application of rules prohibits the use of dis-
tributivity when ‘k’ occurs free in the expression c. (Otherwise, any such occur-
rences would be released/captured by application of the rule.)

The Gauss Legend

In order to illustrate the summation rules, we recall a well-known legend. Accord-
ing to the legend, when he was just nine years old, the famous mathematician
Karl Friedrich Gauss was told to add all the numbers from 1 to 100 by his teacher.
The teacher wanted to keep Gauss occupied for some time, but Gauss foiled him
by simply writing down

1+ 2+ -+ 100,
and immediately below it
100 + 99 + .- 4+ 1.
He then proceeded to add the two rows together:

101 + 101 + e 101,

and, from the fact that there are 100 occurrences of 101, he concluded that the
sum is (100x101)/2, i.e. 5050.

To do the same sum formally, for the more general case of summing a + bk
for k=0,1,...,N, we calculate as follows. The crucial step in Gauss's calculation,
the reversal of the sequence of numbers, is the use of the translation rule in the
second step.

152 Chapter 11: Quantifiers
(Zk:0<k<N:a+bk)
= { arithmetic (in order to introduce two summations) }
((Ek:0<k<N:a+bk)+ (Zk:0<k<N:a+bk))/2
= { rearranging (11.12) the second summation,
using permutation k := N-k }
((Zk:0<k<N:a+bk)+ {Zk:0<N-k<N:a+b(N-k)))/2
= { OKN-k=k<N
N-k<N=0<gk }
((Zk:0<k<N:a+bk) + (Zk:0<k<N:a+b(N-k)))/2
= { addition is associative and symmetric: (11.15) }
(Zk:0<k<N:(a+bk)+(a+b(N-k)))/2
= { arithmetic }
(Zk:0<k<N:2a+bN)/2
= { multiplication distributes through summation }
2‘1—;17—1\]><(Zk:0<k<N:l)
= { 1 summed N +1 times is clearly N+1 }
2—aizkﬂx(NH) .
11.2.5 Warning

We conclude this discussion of summation with a warning. The warning is that
care must be taken when quantifying over an infinite range. In this case, the value
of the expression is defined as a limit of a sequence of finite quantifications,
and, in some cases, the limit may not exist. For example, (Zi:0<i:(-1)%) is not
defined because the sequence of finite quantifications (Zi:0<i<N:(-1)?), for
N increasing from 0 onwards, alternates between 0 and 1. So, it has no limit. The
rules we have given are not always valid when the range of the summation is
infinite. The so-called convergence of infinite summations is a well-studied part
of mathematics but is beyond the scope of this text.

Exercise 11.17. Derive the trading rule (11.14) from the splitting rule (11.10). You
may assume that (£k:R:0) =0 for all ranges R. O

Exercise 11.18. Prove the generalized distributivity law
(Zj:P:S)x{(3Zk:Q:T) = (Xjk:PAQ:SXT) .

What are the side conditions on using this rule? O

11.3 Universal and Existential Quantification 153

11.3

Exercise 11.19. Derive (11.12) from the one-point rule (11.9), the nesting rule
(11.6) and the rearrangement rule (11.7). Hint: your derivation should head for
using the fact that f is a bijection, i.e. that there is a function g such that for all
jeJ and kekK

fi=k = j=gk .

Use the one-point rule to introduce a second dummy so that you can exploit this
property. O

Universal and Existential Quantification

Summation is just one example of the quantifiers we want to consider. Readers
already familiar with the] notation for continued multiplications will proba-
bly have no difficulty rewriting each of the properties of summation into a form
that is applicable to multiplication. In general, it is meaningful to ‘quantify’ with
respect to any binary operator that is associative and symmetric. As mentioned
earlier, addition, multiplication, equivalence, inequivalence, minimum, maximum,
conjunction, disjunction, highest common factor, and least common multiple are
all examples of associative and symmetric operators and, in each case, it is mean-
ingful (and useful) to consider the operator applied to a number of values rather
than just a pair of values.

Two quantifications that are particularly important in program specification are
so-called universal quantification and existential quantification. Universal quan-
tification extends conjunction to a set of booleans of arbitrary size. Just as for
summation, there is a widely accepted symbol denoting universal quantification,
namely the ‘v’ (‘for all’) symbol.

The notation (Vk:R:T) means the logical ‘and’ (‘A’) of all values of the boolean
expression T determined by assigning to dummy k all values in the range R. In
words, it reads

forall k intherange R itisthecasethat T
(Vv k : R : T) .

For example,
(Vk:0<k<N:alk]=0)

states that all elements in the array a indexed from 0 up to (but not including) N
are zero. In dotdotdot notation this is

al0]=0 A a[l]=0 A ... A a[N-1]=0 .

When disjunction is extended to an arbitrary set of boolean values, the long-
standing mathematical convention is to use the ‘3’ (‘there exists’) symbol. The

154 Chapter 11: Quantifiers
notation (3k:R:T) means the logical ‘or’ (‘v’) of all values of the boolean expres-
sion T determined by assigning to dummy k all values in the range R. In words,
it reads

there exists k intherange R suchthat T
(3 k : R : T) .
For example,
(Ik:0<k<N:alk]=0)
states that there is some element in the array a indexed from O up to (but not
including) N that is zero. In dotdotdot notation this is
a[0]=0 v a[1]l=0vVv ... v a[N-1]=0 .
11.3.1 Universal Quantification

Just as for summation, we can enumerate a list of rules that govern the algebraic
properties of universal and existential quantification. The rules have much the
same shape. In this section, we list the rules for universal quantification. Only the
splitting rule differs in a non-trivial way from the rules for summation.

The side conditions on application of the rules will not be repeated for individ-
ual rules. As a reminder, here, once more, is the statement of the condition.

Side Condition. The application of a rule is invalid if it results in the capture of
free variables or release of bound variables, or it results in a variable occurring
more than once in a list of dummies.

The rules governing the dummies are identical to the rules for summation
except for the change of quantifier. The side conditions concerning capture of
free variables and/or release of bound variables remain as before.

[Dummy Renaming] (Vj:R:T) = (Vk:R[j:=k]:T{j:=k]) . (11.20)
[Nesting] (Vj,js:RAS:T) = (Vj:R:(Vjs:5:T)) . (11.21)
[Rearranging] (V j,k:R:T) = (Vk,j:R:T) . (11.22)

The rules governing the range are obtained by replacing the quantifier ‘>’ by
‘V’, replacing ‘+’ by ‘A’ and replacing O (the unit of addition) by true (the unit of
conjunction). The proviso on the one-point rule (e contains no occurrences of ‘k’)
still applies.

[Empty Range] (Vk:false:T) = true . (11.23)
[One-Point] (Vk:k=e:T) = Tlk:=e] . (11.24)
[Splitting] (Vk:P:T) A (Vk:Q:T) = (Vk:PvQ:T) . (11.25)

11.3 Universal and Existential Quantification 155

11.3.2

The splitting rule for universal quantification is simpler than that for summa-
tion. The difference is that conjunction is idempotent whereas addition is not.
When splitting the range in a universal quantification it does not matter whether
some elements of the range are repeated in the two conjuncts. When splitting the
range in a summation it does matter whether elements of the range are repeated.

This additional flexibility allows the range in the splitting rule to be generalized
from a disjunction P v Q of two predicates on the dummy to an arbitrary disjunc-
tion of predicates on the dummy. That is, we replace an ‘or’ by an existential
quantification:

[Splitting] (Vj:R:(Vk:S:T)) = (Vk:{(3j:R:$):T) . (11.26)

(The side condition on this rule, when used from right to left, demands that ‘k’ is
not free in R.)

Trading terms in the range is the same as summation, with the appropriate
replacements for the operators and constants. In particular, 0 (the unit of sum-
mation) is replaced by true (the unit of conjunction). But, since

if P— T 0O —-P — true fi
is the same as P=T, trading with the term part can be simplified.
[Trading] (VkeK:PAQ:T) = (Vke{keK|P}:Q:T) . (11.27)
[Trading] (Vk:PAQ:T) = (Vk:Q:P=>T) . (11.28)

The final rules govern the term part. The distributivity law is just one example of
a distributivity property governing universal quantification. We see shortly that
there are several more distributivity laws.

(Vk:R:Ty) A {(Vk:R:T) . (11.29)
pVv{Vk:R:T) . (11.30)

i

[Rearranging] (Vk:R:ToATy)
[Distributivity] (Vk:R:pvT)

il

Existential Quantification

These are the rules for existential quantification. Not surprisingly, they are
entirely dual to the rules for universal quantification. (In the rule (11.39),
if P— T O -P — false fi has been simplified to P A T.) Once again, the side con-
dition that free variables may not be captured, and bound variables may not be
released, applies to all rules.

[Dummy Renaming] (3j:R:T) = (Ik:R[j:=k]:T[j:=k]) . (11.31)
[Nesting] (3j,js:RAS:T) = (Ij:R:(Jjs:S:T)) . (11.32)
[Rearranging] (3j,k:R:T) = (3k,j:R:T) . (11.33)
[Empty Range] (3k:false:T) = false . (11.34)
[One-Point] (3k:k=e:T) = Tlk:=e] . (11.35)

156 Chapter 11: Quantifiers
[Splitting] (3k:P:T) v (3k:Q:T) = (Ik:PvQ:T) . (11.36)
[Splitting] (3j:R:(3k:S:T)) = (3k:(3Fj:R:S):T) . (11.37)
[Trading] (3keK:PAQ:T) = (Ike{keK|P}:Q:T) . (11.38)
[Trading] (Ik:PAQ:T) = (Fk:Q:PAT) . (11.39)
[Rearranging] (3k:R:TovTi) = {(Fk:R:Ty) v (Ik:R:Ty) . (11.40)
[Distributivity] (3k:R:pAT) = pA{(3k:R:T) . (11.41)

11.3.3 De Morgan’s Rules

In addition, De Morgan’s rules (Section 7.2) apply not just to binary conjunctions
and disjunctions:

[De Morgan] —(3k:R:T) = (Vk:R:-T) , (11.42)
[De Morgan] —(Vk:R:T) = (3k:R:-T) . (11.43)
The warning about existence of summations over an infinite range does not apply
to universal or existential quantifications. Any universal or existential quantifica-
tion you care to write down has meaning and the rules above apply.

11.4 Quantifier Rules

We have now seen four different quantifiers: summation, product, universal quan-
tification and existential quantification. We have also seen that the rules governing
the manipulation of these quantifiers have much in common. In this section, we
generalize the rules to an arbitrary quantifier. The technical name for the process
is abstraction; we ‘abstract’ from particular operators to an arbitrary associative
and symmetric operator, which we denote by ®.

The rules are grouped, as before, into rules for manipulating the dummy, rules
for the range part and the term part, and trading rules. The process of abstrac-
tion has the added benefit of enabling us to relate different quantifiers, based on
distributivity properties of the operators involved. A separate section discussing
distributivity has, therefore, also been added.

Warning! In general, the rules given in this section apply only when the range of
the quantification is finite. They can all be proved by induction on the size of the
range (see Chapter 12). Fortunately, in the case of universal and existential quan-
tification, this restriction can be safely ignored. In all other cases, it is not safe to
ignore the restriction. We have previously mentioned the dangers of infinite sum-
mations. An example of a meaningless quantification involving a logical operator
is the (associative) equivalence of an infinite sequence of false values (denoted by

11.4 Quantifier Rules 157

11.4.1

(=1:0<i:false)). It is undefined because the sequence of finite quantifications
(=1:0<1i<N:false) alternates between true and false and has no limit.

How to handle infinite quantifications (other than universal and existential
quantifications) is beyond the scope of this text.

The Notation

The quantifier notation extends a binary operator, ® say, to an arbitrary bag of
values, the bag being defined by a function (the term) acting on a set (the range).
The form of a quantified expression is

(B bvetype:range:term) ,

where @ is the quantifier, bv is the dummy or bound variable and type is its
type, range defines a subset of the type of the dummy over which the dummy
ranges, and term defines a function on the range. The value of the quantification
is the result of applying the operator & to all the values generated by evaluating
the term at all instances of the dummy in the range.

Strictly, the type of the dummy should always be explicitly stated because the
information can be important (as in, for example, the stronger relation between
the less-than and at-most orderings on integers compared with their properties
on reals). It is, however, information that is often cumbersome to repeat. For
this reason, the information is often omitted and a convention on the naming of
dummies (such as i, j and k denote integer values) is adopted. This means that
the most common use of the notation is in the form

(Pbv:range:term) .

In addition, the range is sometimes omitted (again to avoid unnecessary repeti-
tion in calculations). In this case the form of the quantification is

(Bbv ::term) .
Formally, omitting the range is equivalent to a true range:
(Bbv s term) = (Pbv:true:term) .

As we have defined it, a quantification only has meaning if the operator & is
associative and symmetric3. The operator ® should also have a unit in order to
make quantification over an empty range meaningful. We denote the unit of @
by 1s.

There is often an existing, long-standing, mathematical convention for the
choice of the symbol & corresponding to the operator . If so, we follow that

3This assumption can be avoided if an order is specified for enumerating the elements of the
range—this is what is done in so-called ‘list comprehensions’ in functional programming languages.
The rules on nesting and rearrangement would then no longer apply.

158

Chapter 11: Quantifiers

convention. If not we use the same operator symbol, made larger if the printer
will allow it. Examples of quantifications are as follows.

summation (Zbv :vange : term)
product (ITbv : range : term)
universal (and) (V bv : range: term)
existential (or) (3 bv :range:term)

minimum (4 bv : range : term)
maximum (tbv :range : term)
equivalence (=bv :range : term)

inequivalence (#bv : range : term)

11.4.2 Free and Bound Variables

11.4.3

11.4.4

The notions of ‘free’ and ‘bound’ occurrences of variables were discussed in Sec-
tion 11.2.2 in the context of summation. The definitions apply to all quantifica-
tions, as do the side conditions on the use of rules. (Briefly, capture or release is
forbidden, as is repetition of a variable in a list of dummies.) We do not repeat the
side conditions below but trust in the reader’s understanding of the concepts.

Dummies

The dummies (or bound variables) in a quantification serve to relate the range and
term. There are three rules governing their use.

[Dummy Renaming] (@j:R:T) = (Pk:R[j:=k]:T[j:=k]) . (11.44)
[Nesting] (D j,js:RAS:T) = (Bj:R:(Pjs:S:T)) . (11.45)
[Rearranging] (P j,k:R:T) = (Pk,j:R:T) . (11.46)
Range Part

The range part is a boolean-valued expression that determines the set of values
over which the dummy ranges. There are four rules, two simplification rules and
two splitting rules.
[Empty Range] (@k:false:T) = 15 . (11.47)
[One-Point] (Pk:k=e:T) = Tlk:=e] . (11.48)
[Splitting] (Dk:P:T)e(Pk:Q:T) = (Bk:PvQ:T)od{(Pk:PAQ:T) .
(11.49)
In the case that @ is idempotent, the splitting rule can be simplified to

(Pk:P:T)e® (Bk:Q:T) = (Pk:PvQ:T) . (11.50)

11.4 Quantifier Rules 159

11.4.5

11.4.6

11.4.7

Furthermore, the right side can be generalized from a disjunction of two propo-
sitions P and Q to a disjunction of an arbitrary number (i.e. existential quantifi-
cation) of propositions. We obtain the following.

If @ is idempotent,

[Splitting] (Dj:R:(Pk:S:T)) = (Pk:{(Jj:R:S8):T) . (11.51)

Trading

Two trading rules allow information to be traded between the type of the dummy
and the range, and between the range and the term part.

[Trading] (PkeK:PAQ:T) = (Pke{keK|P}:Q:T) . (11.52)
[Trading] (Pk:PAQ:T) = (Pk:Q:ifP—T O -P—1gfi) . (11.53)

Term Part

We give just one rule pertaining to the term part. See the discussion of distribu-
tivity below as well.

[Rearranging] (Pk:R:TooT;) = (Bk:R:Tp) ® (Pk:R:Ty) . (11.54)

Distributivity Properties

Distributivity properties are very important in mathematical calculations; they are
also very important in computations because they are used to reduce the number
of calculations that are performed.

A typical distributivity property is the property that negation distributes
through addition:

—(x+y) = (=x)+(-y) .

The property is used to ‘factor out’ negation, in order to replace subtractions by
additions. Similarly, the fact that multiplication distributes through addition

xX(y+z) = XXy + XXz

is used to reduce the number of multiplications.

160

Chapter 11: Quantifiers

Another example is the distributivity of addition through minimum:
x+(ylz) = (x+y)l(x+z) .

We use this rule all the time when giving directions. Suppose you are standing on
a street corner and a stranger asks you the way to, say, the nearest supermarket.
Suppose also that you know the route well but realize that it is complicated, too
complicated for the stranger to remember. So, you point in a particular direction
and say ‘go down this street and, at the next junction, ask the way again’. You
can be confident that your directions will not send the stranger out of their way
because of the distributivity of addition through minimum! To see this, just think
of x as the distance to the next junction, and y and z the distances from the next
junction to the supermarket by alternative routes. The distance to the supermar-
ket from where you are standing is (x+y)!(x+z)—this is the choice you make
in your head—but it is also x+(y{z), this corresponding to walking a distance x
to the next junction and then choosing the route again. Since the two are equal,
it makes no difference whether the choice of route from the junction is decided
immediately or postponed until the junction has been reached.

Sometimes distributivity properties involve a change in the operator. Multipli-
cation of real numbers is translated into addition, and vice versa, by the rules of
logarithms and exponentiation:

In(xxy) = Inx+ Iny ,
eXtY = e¥xe¥ .
In words, the logarithm function distributes through multiplication turning it into
addition, and exponentiation distributes through addition turning it into multi-
plication.
It is clear that a distributivity property can be extended from two operands to
a finite, non-zero number of operands. We have, for example,

ax(x+y+z) = axx + axy +axz .

Extending a distributivity property to zero operands amounts to requiring that
units be preserved. And, by good fortune, that is indeed the case in all the exam-
ples given above. Specifically, we have
-0 = 0 (minus preserves the unit of addition),
xx0 = 0 (multiplying by x preserves the unit of addition),
Inl = 0 (the unit of multiplication becomes the unit of addition),

0 — 1 (the unit of addition becomes the unit of multiplication).

Il

e
In addition, we can postulate that minimum has a unit «~ and that

X+o00 = oo (addition of x preserves the unit of minimum).

11.4 Quantifier Rules 161

So, in each case, the distributivity property with respect to a binary operator
extends to a distributivity property with respect to any finite number of operands,
including zero. (The case when there is only one operand is trivial.)

Formally, the general distributivity for quantifications is as follows. Suppose
both ® and ® are associative and symmetric operators, with units 14 and 1s,
respectively. Suppose f is a function with the properties that

fle = 1g
and, for all x and y,
fixey) = fxofy .
Then
[Distributivity] f.(@k:R:T) = (Qk:R: fT) . (11.55)
Exercise 11.56. Derive the rule
(Bk:P:T) = (Pk:PAQ:T)s (Bk:PA—-Q:T) .
Use this rule to derive (11.50) from (11.49) in the case that & is idempotent. O

Exercise 11.57 (Translation, idempotent operators). The translation rule for
summations (11.12) requires function f to be a bijection. The rule is applicable to
all quantifications, and not just summations. (Exercise 11.19, which asked you to
derive the rule for summations, can be repeated with X replaced by an arbitrary
quantifier.)

In the case that the quantifier is idempotent, the rule can be simplified. The
translation rule for idempotent quantifiers is as follows. Suppose f is a function
from the type of dummy j to the type of dummy k such that

(Vk = (Fjuk=1,])) .
Then
(@Bk:R:T) = (Dj:Rlk:=fjl:Tlk:= fjl) .
Prove this rule. 0

Exercise 11.58. The following table shows a number of associative and symmet-
ric binary operators together with their units. For each, give an instance of the
distributivity rule (11.55) not already mentioned in the text.

162

Chapter 11: Quantifiers

Operator Unit Quantifier

A true v
v false 3
+ 0 b
X 1 II
| 00 4
1 — 00 ft
= true =
false
U ¢ U
N Uu N

Exercise 11.59 (Pigeon-Hole Principle). Show that, for n > 0,
(Zk:0<k<n:xy)
n
In words, the average of a finite, non-empty set of (real) numbers is at most the
maximum value in the set. Deduce that, for integers my (0 <k <n),
(Zk.0<k<n.mk)] < mk> '
n

(In words, at least one of the integers is at least the ceiling of the average value
of the integers.)

What is the dual property (involving the floor function)?

Suppose p items are put into n pigeon holes. Let m; denote the number of
items placed in pigeon hole k. What does this formula predict in the case that
p = n+1? What does it predict in the case that p > jxn? O

Exercise 11.60. Recall the proof given in Section 3.4 of the fact that /2 is irra-
tional. Suppose the goal is to determine exact conditions when vk is irrational,
for arbitrary k. Can you see how to generalize the proof in Section 3.4 to solve this
problem? As a hint, note that the first step in the proof of Section 3.4 is a weak-
ening step. In general, the statement that exp(m) =exp(n) is weaker than the
statement m = n. This is why the step is an only-if step. However, the fundamen-
tal theorem of arithmetic says that, for all strictly positive natural numbers m and
n, m = n is the same as, for all primes p, the number of times that p divides m
is equal to the number of times that p divides n. Formally, for all strictly positive
natural numbers m and n,

< (tk:0<g<k<n:xy) .

<Elk:0<k<n:[

m=n = (Vp:iexp,(m) = exp,(n)) .

The problem is to find an expression equivalent to

(smi-)

n

11.5 Summary 163

11.5

that does not involve an existential quantification. Your solution should exhibit
appropriate values for m and n. O

Summary

The general concept of a quantification has been introduced and furnished with
a uniform notation. Summation, universal quantification and existential quantifi-
cation have been discussed in detail. Rules for manipulating quantifications have
been presented.

Bibliographic Remarks

Properties of summation are discussed extensively in the book Concrete Math-
ematics, A Foundation for Computer Science by Graham, Knuth and Patashnik
(1989). This excellent text is about ‘the controlled manipulation of mathematical
formulas, using a collection of techniques for problem solving’. Thus, although
the subject matter is different, we share the same goal. Knuth (1969) points out
the ambiguities of the Sigma notation.

The formulation of the splitting rule for non-idempotent quantifiers and Exer-
cise 11.19 (in the more general form where summation is replaced by an arbitrary
quantifier) are due to Gries and Schneider (1993). Gries and Schneider use ordi-
nary parentheses to delimit the scope of the dummies in a quantification. Which
parentheses you choose to use is not significant, but we hope you will adopt the
advice of always delimiting the scope in this way!

The calculational formulation of the pigeon-hole principle (Exercise 11.59) is
due to Edsger W. Dijkstra. (‘The undeserved status of the pigeon-hole principle’,
EWD 1094, 21 March 1991. The principle is called the ‘Dirichlet box principle’ in
Graham, Knuth and Patashnik (1989).) Dijkstra points out how counterproductive
the metaphor of pigeons in holes is, and how much easier it is to apply a sim-
ple mathematical formula. Dijkstra’s (handwritten) documents are available from
http://www.cs.utexas.edu/~ewd and are well worth reading. Several examples
of the use of the formula can be found in Gries and Schneider (1993).

Although it is beyond the scope of this text to discuss in detail, it is worth
mentioning that quantifications are used extensively in database query languages.
Below is a typical database query.

select author: Y
from biblio._ X,
X.author Y,
X.title Z
where "Quantification in database queries" in Z

164

Chapter 11: Quantifiers

It selects the authors of articles with ‘Quantification in database queries’ in the
title. We recognize ‘select’ as the quantifier (essentially set union, or bag union if
duplicates are allowed) ‘X, ‘Y’ and ‘Z’ as bound variables, ‘author: Y’ as the term
and ‘bibTlio._ X, ‘X.author Y and ‘X.title Z’ as conjuncts determining the
range of the quantification (with a comma indicating conjunction). In complicated
queries, database query languages can exhibit the ambiguities discussed above,
since the scope of the bound variables is not precisely defined.

12

Inductive Proofs
and
Constructions

The logician, the mathematician, the physicist, and the engineer.
‘Look at this mathematician’, said the logician. ‘He observes that the
first ninety-nine numbers are less than a hundred and infers hence, by
what he calls induction, that all numbers are less than a hundred.’

‘A physicist believes’, said the mathematician, ‘that 60 is divisible by
all numbers. He observes that 60 is divisible by 1, 2, 3,4, 5 and 6. He
examines a few more cases, as 10, 20, 30, taken at random as he says.
Since 60 is divisible also by these, he considers the experimental evidence
sufficient.’

‘Yes, but look at the engineer’, said the physicist. ‘An engineer suspected
that all odd numbers are prime numbers. At any rate, 1 can be con-
sidered a prime number, he argued. Then there come 3, 5 and 7, all
indubitably primes. Then there comes 9; an awkward case, it does not
seem to be a prime number. Yet 11 and 13 are certainly primes. ‘Coming
back to 9’, he said, ‘I conclude that 9 must be an experimental error.’

George Polya

This chapter explores the process of inductive reasoning, linking it to the identi-
fication of invariants. Inductive reasoning lies at the heart of problem solving; it

166 Chapter 12: Inductive Proofs and Constructions
O i
Figure 12,1 Sequences.
is the process whereby one makes informed conjectures from a limited number
of experimental observations and then subjects these conjectures to the rigours
of proof.
12.1 Patterns and Invariants

An invariant is a constant, something that is not changing. Paradoxically, in a
world which seems to be changing faster than ever, invariants can be said to
dominate our lives. Some of the first that a child learns are the formation of
plurals,

dogs, cats, hands, arms, legs,

and the past tense,
kicked, jumped, walked.

The fact that there are exceptions to these rules can be perplexing to the child
and frustrating to the parents: it can take many years to dissuade a child from
saying ‘foots’ or ‘buyed’ instead of ‘feet’ or ‘bought’.

The human brain seems to have a particular aptitude for recognizing invari-
ants—or ‘patterns’ as they are more commonly called—and many intelligence
tests involve just that. Consider, for example, the tests shown in Figure 12.1 which
ask you to find the next two shapes in a sequence.

The questions appear to ask for the next change but, in fact, are solved by rec-
ognizing what does not change. In the first, it is easy to see that the sequence
square, circle, triangle is repeated and, hence, the next two are a square and a cir-
cle. The second is more difficult (but only just), because it exploits two invariants,
the first being that there is always a large square followed by a small square and
the second that there is one white square followed by two shaded squares. We
conclude that the next two are a small white square and a large shaded square.

Recognition of invariants often provides a simple solution to a seemingly diffi-
cult problem. Exercises 2.2 and 2.3, in Chapter 2, provided a couple of examples.
Here is another one.

Suppose it is required to move a square armchair sideways by a distance equal
to its own width (see Figure 12.2). However, the chair is so heavy that it can only
be moved by rotating it through 90°, around one of its four corners. Is it possible
to move the chair as desired? If so, how? If not, why not?

12.1 Patterns and Invariants 167

o ° . . ®
» .
L g f ’ L4
: o
i g
. 4
i 4
i ;
-
® e ®
° ° L ° °

Figure 12.2 Moving a heavy armchair.

The answer is that it is impossible. Suppose the armchair is initially positioned
along a north-south axis. Suppose, also, that the floor is painted alternately with
black and white squares, like a chess board, with each of the squares being the
same size as the armchair. Suppose the armchair is initially on a black square.
The requirement is to move the armchair from a north-south position on a black
square to a north-south position on a white square.

This cannot be achieved because an invariant property of rotating the armchair
around a corner point is

the chair is on a black square = the chair is facing north-south ,

which is false when the chair is on a white square and facing north-south (see
Figure 12.3).

Figure 12.3 Invariant when moving a heavy armchair.

168

Chapter 12: Inductive Proofs and Constructions

The word ‘invariant’ is synonymous with ‘pattern’, ‘rule’ or ‘law’. Recognition
of an invariant is synonymous with understanding. When scientists formulate a
law, for example the law of motion, they believe they have significantly increased
their understanding. But, the understanding associated with the recognition of
invariants is much more fundamental than this. Whenever we use a word—'‘arm’,
‘cup’, ‘home’—we are naming an invariant, the property that is common to all the
objects which go by that name. Sometimes it is very difficult, if not impossible,
for us to define what is unchanging—what, for instance, is meant by ‘living’ and
‘non-living’—nonetheless, we are naming something that is unchanging. The fact
that the ‘something’ is imprecise signifies that our understanding is incomplete.

And so it is with computer programs. We shall find, in Chapter 13, that the way
to understand loops, statements that continually change the program variables,
is to examine what is left unchanged by the loop—the so-called loop invariant.

Here are some more exercises aimed at getting you to think in terms of invariant
properties. They all describe some sort of game (sometimes one-person, some-
times two-person) in which every move has to obey the given rules of the game.
They are all solved by identifying an invariant property of the game, i.e. a prop-
erty of the position reached in the game that is true no matter how many moves
have been made. All the invariant properties are very simple—even ‘obvious’ once
pointed out. Finding them can be difficult, however, because thinking in terms of
invariants is a skill that is rarely taught properly, if at all. Try not to consult the
solutions too soon, and have fun!

Exercise 12.1. Several tumblers are placed in a line on a table. Some tumblers are
upside down, some are the right way up. It is required to turn all the tumblers the
right way up. However, the tumblers may not be turned individually; an allowed
move is to turn any two tumblers simultaneously. Describe the initial states of
the tumblers from which it is possible to turn all the tumblers the right way up,
and describe the strategy for doing so. O

Exercise 12.2.

(a) In this game there are two players. A pile of matches is placed on a table; a
move is to remove one, two or three matches from the pile. The winner is
the one who removes the last match.

Suppose an odd number of matches is placed on the table. Who should win
and what is the winning strategy?

(b) Suppose that the players are allowed to remove any number of matches from
1 up to 2m + 1, where m is a natural number (fixed by mutual agreement
between the players in advance of the game). The initial pile of matches
contains an odd number of matches. Who should win and what is the winning
strategy?

{c) Suppose that the players are allowed to remove any number of matches from
1 up to m, where m is a natural number (fixed by mutual agreement between

12.1 Patterns and Invariants 169

the players in advance of the game). What property should the initial position
satisfy for one of the players to always have a winning strategy? O

Exercise 12.3 (The Grid Game). In this game, players A and B are provided with a
grid of any size (see Figure 12.4). On each turn, player A draws a solid horizontal
line or a solid vertical line between two adjacent points in the grid. Player B draws
a dashed horizontal line or a dashed vertical line between two adjacent points.
One player cannot play in a place that the other has already played. Player A wins
by completing a closed curve of solid lines; player B wins by preventing A from
completing a closed curve. Who should win and what is the winning strategy? O

.
.
-
>--——¢---o
\\.

|
4 *--- > -——b .

Figure 12.4 The grid game.

Exercise 12.4. Consider an urn filled with a number of balls each of which is either
black or white. There are also enough balls outside the urn to play the following
game. We want to reduce the number of balls in the urn to one by repeating the
following process as often as necessary.

Take any two balls out of the urn. If both have the same colour, throw them
away, but put another black ball into the urn; if they have different colours, then
return the white one to the urn and throw the black one away.

Each execution of the above process reduces the number of balls in the urn by
one; when only one ball is left the game is over. What, if anything, can be said
about the colour of the final ball in the urn in relation to the original number of
black balls and white balls?

Hint: denote the original number of black balls and white balls by by and wo,
respectively. Let b and w be the number of black balls and white balls after an
arbitrary number of executions. Then, on the next execution the values of b and
w are changed according to the following rules:

b :=b-2;b:= b+l if the balls are both black,
w = w-2 ; b := b+1 if the balls are both white,
b = b-1 if the balls are different colours.
Can you see what is invariant about b and/or w? |

170 Chapter 12: Inductive Proofs and Constructions

Exercise 12.5.

(a) Suppose a daisy has 16 petals arranged symmetrically around its centre.
There are two players. A move involves removing one petal or two adjacent
petals. The winner is the one who removes the last petal. Who should win
and what is the winning strategy?

(b) Generalize your solution to part (a) to the case that there are initially n petals
and a move consists of removing between 1 and m adjacent petals (where
m is fixed in advance of the game).

(c) Two players are seated at a rectangular table which is initially bare. They each
have an unlimited supply of circular coins of varying diameter. The players
take it in turns to place a coin on the table, such that it does not overlap
any coin already on the table. The winner is the one who puts the last coin
on the table. Who should win and what is the winning strategy? (Harder.)
What, if anything, do you assume about the coins in order to justify your
answer? a

Figure 12.5 A 16-petal daisy.

12.2 Mathematical Induction

The process by which one infers an invariant property from a set of observa-
tions is called inductive reasoning. Induction, as opposed to deduction, is about
abstracting general laws from specific instances. It is a process that is vital to the
progress of science.

12.2 Mathematical Induction 171

E;:} hd L4 . L]
I

Figure 12.6 An inductive proof.

Induction proceeds from observation to conjectures to proof. Conjectures that
are proved become laws. For example, we may observe that 1 =12, 1+3 = 22,
1+3+5=3%and1+3+5+7 = 42. We recognize a pattern and so make the con-
jecture that

1+3+...+2m+1) = (m+1)° .

We test the conjecture—for the case m =3 and possibly others—and then we
prove the conjecture. Figure 12.6 shows a diagrammatic proof. Note that, at each
stage, the square of size m is increased in size by adding 2m + 1 dots, as indicated
by the boxes!.

Typically, inductive reasoning is not so straightforward. More often than not,
the conjectures we make are unfounded. They do not stand up to proof and have
to be discarded or, at best, modified in some way. In order to improve the effec-
tiveness of inductive reasoning, it is important to limit the amount of guesswork,
reducing induction as far as possible to deduction. Of course, it is never possible
to eliminate guesswork altogether—otherwise the creative element of inductive
reasoning would be eliminated, and that is too much to expect.

The Principle of Mathematical Induction

The principle of mathematical induction provides a method of proving that a
property P predicated on natural numbers is true for all natural numbers?, An
example is the predicate S defined by

Sn = (Sk:l1<k<n:k) = Inn+l) . (12.6)

(Using the dotdotdot notation: Sm = 1+2+...+n= %n(n+1). We prefer to
use the quantifier notation in order to be precise and unambiguous. In particu-
lar, the quantifier notation makes it clear that S.0 is well defined, whereas the
dotdotdot notation appears to exclude the case that n equals 0.)

IThe leftmost square in the diagram has zero dots, but you cannot see them! The inability to
handle important special cases—here, the case m = 0—is a major drawback of diagrams.

2Recall that a natural number is a non-negative integer. So the natural numbers are the numbers
0,1, 2, etc.

172

Chapter 12: Inductive Proofs and Constructions

The essence of the principle of mathematical induction is that an arbitrary prop-
erty P of the natural numbers is provably true for all natural numbers, n, if it is
possible to prove

(i) P.Ois true, and
(ii) for all n, P.(n+1) follows from the assumption that P.n is true.

Example 12.7. To illustrate the principle let us apply it to the predicate S defined
in (12.6). We begin by proving S.0. This first step is called the basis of the proof.
We have

S.0
{ definition }
(Tk:1<k<0:k) = 20(0+1)
{ empty-range rule to simplify the summation,
arithmetic for the right side of the equality }

il

0=0
= { reflexivity of equality }
true .

The next step, called the induction step, is to show that S.(n+1) follows from the
assumption S.n. We have

S.(n+1)
= { definition }
(Tk:1<k<n+l:k) = 3(m+1)((n+1)+1)
= { range splitting applied to the summation }
(Tk:l<k<n:k) + (n+l) = 1 (n+1)((n+1)+1)
= { o assume S.n . That is, assume that
(Zk:1<kgnk) = %n(n+1) }
In(n+1) + (m+1) = 3(n+1)((n+1)+1)
= { arithmetic }
true .

The crucial step in this calculation is the bulleted step in which the assumption
is made that S.n is true. This assumption is called the induction hypothesis.

The final step is to cite the principle of mathematical induction to combine the
basis and the induction step in the conclusion that property S.n is true for all
natural numbers n. O

12.2 Mathematical Induction 173

Formally, the principle of (simple) mathematical induction is the following.

Principle of Simple Mathematical Induction.

Let P be a predicate on the natural numbers. Then, with dummy » ranging
over the natural numbers,

(Vn=Pn) = POA(Vn:P(n+l)«Pn) .

|

The principle is most often used in the form

(Vna:Pn) « POA(Vn:P.(n+l)<«Pn)

but we will see, shortly, why it is advantageous to express it as an equivalence.

The informal justification for the principle is this. The basis is the proof of P.0,
and the induction step is the proof that, for arbitrary »n, P.(n+1) < P.n. Having
proved the basis and the induction step we know

P.0O

and we also know (by instantiating » to 0 in the induction step)
P1 <« PO .

By modus ponens, we infer
POAP1 .

But, from the induction step (by instantiating n to 1) we also have
P2 <Pl .

So, applying modus ponens again, we infer
POAP1IAP2 .

In this way, one can see (informally) that P.(n+1) can be inferred by »n applications
of modus ponens. This, together with the basis P.0, gives a proof of (Vn:P.n),
where n ranges over all natural numbers.

Example 12.8. In this example we prove that, for all natural numbers n,
(Sk:0<k<n:2k) = 21 .

(In the dotdotdot notation, 20 +21 + ... +271 =2n_1)
There are two steps in the proof, the basis and the induction step. To make the
process clear, let us give the predicate a name, say E. That is, by definition,

En = (Sk:0<k<n:2k) = 2n—1 |

Then the proof proceeds as follows.

174

Chapter 12: Inductive Proofs and Constructions

Basis.

E.O
= { definition }
(£k:0<k<0:2k) = 20-1
= { empty-range rule to simplify the summation,
arithmetic for the right side of the equality }
0=1-1
= { arithmetic and reflexivity of equality }

true .
Induction step.

E.(n+1)
= { definition }
(Zk:0<k<n+1:2k) = 2n+l

{ range splitting applied to the summation }
(Zk:0<k<n:2k) +2n = 2n+1]

Il

{ ¢ assume E.n . That is, assume that
(Tk:0<k<n:2ky = 2n-1 }
(2n—1) + 2n =27+l 1
{ property of exponentiation and simple arithmetic }

Il

true .

We conclude, by the principle of mathematical induction, that E.n is true, for all
natural numbers n. O

Doing Nothing Right. In this text, the natural numbers are defined to be the
integers from 0 onwards. Curiously, texts on mathematics often define the natu-
ral numbers to be the integers from 1 onwards, and take n =1 as the base case
for an inductive proof on n, thus omitting the case n =0! The case n =0 is very
important, and should never be forgotten. (Recall, for example, the discussion of
the skip statement in Chapter 10.) It is particularly important in programming,
because the body of a loop—see Chapter 13—may be executed zero times. A slo-
gan to help you remember this is: make sure to do ‘nothing’ right!

12.3 Strong Induction 175

12.3

Exercise 12.9. Suppose that instead of (12.6), it is required to prove the property
(Zk:0<k<nik) = in(n+l) ,

for all natural numbers n. (Note the change in the lower bound on the range of k,
from 1 to 0.) How does this affect the proof? O

Exercise 12.10. Prove the following. (The type of dummy k is the set of natural
numbers.)

(@) Tk:1<k<n: k%) = %n(n+l)(2n+ 1) , for all natural numbers n.
b)) Sk:1<k<n:k3) = %nz(nﬂ)z , for all natural numbers 7.

Xn+l -1

~—1 for all (real) x, x # 1, and all natural num-

() Zk:0<k<n:x%) =
bers n.

(d) (1+x)" > 1+nxx ,forall x, x> —1, and all natural numbers #.

1 n
k><(k+1)> = a1 , for all natural numbers #.

+2

54 <§_'k 1<k<n: EkE> = 2- Zlo—n— , for all natural numbers 7.

(e) <Zk:1<k<n:

0

Strong Induction

A variation on the principle of mathematical induction is the so-called strong
induction principle3. Formally, in a proof by strong induction, there is no sepa-
rate basis step and the induction step uses the assumption (V k:0<k <n:P.k)
in order to prove P.n. The precise formulation is as follows.

Principle of Strong Mathematical Induction.

Let P be a predicate on the natural numbers. Then, with dummy » ranging
over the natural numbers,

(Vn:zPn) = (VuniPn<{Vk:0<k<n:Pk)) .

The word ‘strong’ is used because the induction hypothesis when proving
P.(n+1)is P.O A P.1 A ... A P.n, which is stronger than the hypothesis P.n used
in simple mathematical induction. The absence of a base case is sometimes illu-
sory; occasionally, a special case needs to be made for n =0 in the induction step
as the induction hypothesis is (V k:0< k <0: P.k), i.e. true, which is just the same
as in simple induction.

3The principle is sometimes called course-of-values induction.

176

Chapter 12: Inductive Proofs and Constructions

Example 12.11. Very often in the analysis of algorithms we are faced with a recur-
rence relation whose solution expresses, for example, the worst-case running time
of the algorithm. An example is the following:

TO=1,
T.(n+1) =1+ (k:0<k<n:Tk) .

The problem is to find a closed formula for T.n. In this case, by writing down a
few values,

To=1 , T1=2 , T2=4 , T3=8 , T4=16,

it is plausible to guess that T.n = 2™. This we prove using the principle of strong
induction. The induction hypothesis P.n is thus T.n = 2".

Although the principle of strong induction does not specifically mention a base
case, we have to treat the case n =0 separately because the definition of T.0 is a

special case.
For n=0, T.n =1 by definition. But 1 = 2°. So, for n=0, T.n = 2" as required.
Also, for n > 0,

Tn

{ definition }
1+ (Zk:0<k<n: T.k)

{ o assume that (Vk:0<k<n:Tk=2k). }
1+ (k:0<k<n:2k)

{ by example 12.8, (Zk:0<k<n:2k)=2"-1 }
1+(2"-1)
= { arithmetic }

2" .

The property thus follows by the principle of strong mathematical induction. O
Example 12.12. The recurrence relation

FO0=0,
Fl1=1,
F.(n+2) = F.(n+1) + Fn ,

where 7n is a natural number, defines the Fibonacci numbers. The first few ele-
ments in the sequence are

12.3 Strong Induction 177

The Fibonacci sequence has a number of remarkable properties which are dis-
cussed in depth in many textbooks. Many involve its relationship to the golden
ratio, G, where

G =3(1+V5) .
G is one of the roots of the equation in x
x°-x-1=0 .
(In other words, G>°~G~-1 = 0.) The other root is
G =11-v5) .
Here we use strong induction to prove that, for all n such thatn > 1,
G2 < Fn < G"!.
The exercises ask you to prove further properties of F.n.

Basis. It is important to be very careful in the proof of any theorem about the
Fibonacci numbers because there are three separate cases in the definition; it is
very easy to make the mistake of applying the rule F.(n+2) = F.(n+1) + F.n when
n is not defined. (See Exercise 12.14 for an example). In addition, in this case, the
property we have to prove is claimed to be true only for n such that n>1. (It
is false when n equals 0.) A mistake that is easily made in the induction step
is to assume that the property is true when n equals 0. This means that we are
obliged to prove the property for the cases n =1 and n = 2 before proceeding to
the induction step. For n = 1, we have

G'72 < F1 < G}

Il

{ arithmetic, definition of F.1 }
Glg1g1

= { G=3(1+v5)>1SG ! <1 }

true .

For n =2, we have
G*2 < F2 < G*!

{ arithmetic, definition of F.2 }
116G

{ G=31+V5>1 }

true .

178

Chapter 12: Inductive Proofs and Constructions

Induction step. In the induction step we assume that n > 2. This means that
F.(n+1) =Fn+F.(n-1)

and the use of strong induction is valid.

G(n+1)—2 < F.(n+1) < G(n+l)-1

= { arithmetic, definition of F (see remarks above) }
G"1! < Fn+F(n-1) < G"
= { heading for the induction hypothesis, we note that

G>?-G-1=0.50,G" 1 =G"3xGZ=G""2+G" 3.
Similarly, G* = G*"1 + G2 | }
G"?2+G"3 < Fn+F(n-1) < G"!1 +Gn2
« { addition is monotonic }
G"2<Fn<G"! A G"3<F(n-1) <G"?
= { by the principle of strong induction,
and the fact that n > 2, we may assume that
G"?2<Fn<G"'land G"3 < F.(n-1)<G"? }
true .

Look again at this proof to ensure that you have understood the use of strong
induction. Its use, rather than simple induction, was necessary in the very last
step above.

It is also worth looking again at the warnings we made before establishing the
basis of the proof. The real significance of these warnings only becomes apparent
in the last step. Satisfy yourself that the step is valid and why it would be invalid

if the basis had excluded the case n = 2. O
Exercise 12.13. Prove that F.(n+1)xF.(n-1) — (Fn)? = (-1)" foralln, n>1.
Does your proof use strong induction or simple induction? a

Exercise 12.14. Here is a proof that F.n =0 for all n. What is wrong with it?
Basis. F.0 =0 by definition.
Induction step. We have, for all n, n>0,
F.(n+1)
{ definition }
F.(n-1) + Fn
= { by the principle of strong induction

Il

12.4 From Verification to Construction 179

12.4

we may assume that F.(n—-1)=0and Fn=0 }
0+0
= { arithmetic }

From Verification to Construction

So far, we have used induction to verify known mathematical formulae. Verifica-
tion is important but has a major drawback—it seems that a substantial amount
of clairvoyance is needed to come up with the formula that is to be verified. And, if
one’s conjecture is wrong, verification gives little help in determining the correct
formula.

Induction is not important in computing science as a verification principle but
because it is a fundamental principle in the construction of computer programs.
This section introduces the use of induction in the construction of mathematical
formulae.

The problem we consider is how to determine a closed formula for the sum of
the kth powers of the first n natural numbers.

Three instances of this problem were given in Section 12.2. You will recall that
the section began by showing how to verify that

(Tk:1<k<n:k) = in(n+1) .

Also, Exercises 12.10(a) and 12.10 (b) were about verifying that

It

(Ck:1<k<n:k?) = fn(n+1)(2n+1)
and

(Tk:1<k<n k%)

1l

in?(n+1)? .

As well as being good examples of the strength of the principle of mathematical
induction, the examples also illustrate the weakness of verification: the technique
works if the answer is known, but what happens if the answer is not already
known! Suppose, for example, that you were now asked to determine a closed
formula for the sum of the 4th powers of the first # numbers:

Sk:1<k<n kY = 7 .

How would you proceed? Verification, using the principle of mathematical induc-
tion, does not seem to be applicable unless we already know the right side of the
equation. Can you guess what the right side would be in this case? Can you guess

180

Chapter 12: Inductive Proofs and Constructions

what the right side would be in the case that the term being summed is, say, k27?
Almost certainly not!

Constructing solutions to non-trivial problems involves a creative process. This
means that a certain amount of guesswork is necessary, and trial and error cannot
be completely eliminated. Reducing the guesswork to a minimum, replacing it by
mathematical calculation is, however, the key to success.

Induction can be used to construct closed formulae for such summations. The
general idea is to seek a pattern, formulate the pattern in precise mathematical
terms and then verify the pattern. The key to success is simplicity. Do not be
over ambitious. Leave the work to mathematical calculation.

A simple pattern in the formulae displayed above is that, for m equal to 1, 2
and 3, the sum of the mth powers of the first n numbers is a polynomial in n of
degree m+1. (The sum of the first n numbers is a quadratic function of n, the sum
of the first n squares is a cubic function of n, and the sum of the first n cubes is
a quartic function of n.) This pattern is also confirmed in the (oft-forgotten) case
that m is O:

(Zk:1<k<n:k% = n .

A strategy for determining a closed formula for, say, (k:1<k<n:k?%) is thus
to guess that it is a fifth-degree polynomial in n and then use induction to calculate
the coefficients. The calculation in this case is quite long so let us illustrate the
process by showing how to construct a closed formula for (Zk: 1 <k<n: k).
We conjecture that the required formula is a second-degree polynomial in n,
say a + bn + cn?, and then calculate the coefficients a, b and c. Here is how the

calculation goes.
For brevity, let us use P.n to denote the proposition

(Zk:1<k<n:k) = a+bn+cn? .

Then
(Vn = (Zk:1<k<n:k) = a+bn+cn?)
= { principle of mathematical induction,
definition of P.n }
(Zk:1<k<0:k) = a+b0+c0?

A{Vn:P(n+l)<=Pn)

{ empty range and arithmetic }
O=a A {(Vn:P(n+l)«=Pn) .

Il

So the basis of the induction has allowed us to deduce that a, the coefficient of
n?, is 0. Now we calculate b and c. To do so, we make the induction hypothesis

12.5 From Verification to Construction 181

that 0 <n and P.n is true. Then

P.(n+1)
= { definitionof P,a =0 }
(Zk:1<k<n+l: k) = b(n+l)+c(n+1)?
= { range splitting }
(Sk:1<k<n:ky+n+1 = bn+l)+c(n+l)?
= { assumption: P.n, a = 0.
Thatis, (Sk:1<k<n:k) = bn+cn? }

bn+cn’+n+1 = b(n+l)+c(n+l)?
= { arithmetic }

cn?+ (b+1n+1 = cn®+ (b+2c)n+b +¢
p= { comparing coefficients }

1=2c A 1l=b+c
= { arithmetic }

1 1
:,—*—C/\E=l’).

From the conjecture that the sum of the first n numbers is a quadratic in n, we
have thus calculated that

(Sk:l1<k<n:k) = in+in? .

Extrapolating from this calculation, one can see that it embodies an algorithm to
express (S k:1 < k< n:k™) as apolynomial function for any given natural number
m. The steps in the algorithm are as follows.

(i) Postulate that the summation is a polynomial in n with degree m+1.

(ii) Use the principle of mathematical induction together with the empty-range
and range-splitting rules to determine a system of simultaneous equations
in the coefficients.

(iii) Finally, solve the system of equations.

Exercise 12.15. Use the technique just demonstrated to construct closed formu-
lae for

(Zk:1<k<n:k% and (Sk:1<k<n:k?) .

182

Chapter 12: Inductive Proofs and Constructions

12.5

Summary

This chapter has introduced the principle of mathematical induction. Induction is
about identifying patterns or ‘invariants’, a process that is vital to the construction
of computer programs. The emphasis has been on the use of mathematical induc-
tion in verifying known mathematical formula and only briefly have we illustrated
its use in constructing novel properties. The next chapter continues the discussion
of the latter, much more important, aspect of inductive reasoning.

Bibliographic Remarks

The exercises and examples used in this chapter are mostly standard, and appear
in lots of places. Exercises 12.3 and 12.4 are from Gries (1981).

Although not directly related to programming, George Polya’s books (1954,
1981) are warmly recommended. Polya’s concern is with the process of prob-
lem solving, including the formulation of conjectures and their subsequent ver-
ification or refutation. He illustrates his ideas with a tremendous collection of
examples, taken from many branches of mathematics. The tale of the logician,
the mathematician and the physicist at the head of this chapter is from Polya
(1954).

13.1

13

Iteration

This chapter is about designing programs that involve iterating the execution of
a statement whilst some condition on the program state holds. The key elements
are invariant properties and bound functions, both of which were introduced in
Chapter 1.

The do-od Statement

All but the most trivial programs involve some sort of iterative process whereby
the values of the program variables are continually updated until the desired final
state is reached.

Iteration in conventional programming languages is usually signalled by the
keyword while. A while statement has two parts, a condition and a body. The
condition is a boolean-valued function of the program variables and the body is
a statement. The body is repeatedly executed so long as (‘while’) the condition is
true.

In this text, iteration is indicated by parenthesizing a collection of guarded
commands by ‘do’ and ‘od’. The statement denoted by while (b) S in Java, or
while b do S in Pascal, is denoted here by

dob—S od .

Here, b is the condition and S is the body of the loop. The use of a parenthesis
pair improves readability and minimizes the use of additional brackets which are
otherwise needed to delimit the extent of the loop body.

184 Chapter 13: Iteration
As for conditional statements, it is convenient to allow a (finite) set of guarded
commands rather than just one. The notation
do b] ——‘Sl
o b,—S5
O
a bn _— Sn
od ,
where, for each i, b; is a boolean-valued expression and S; is a statement, denotes
a program that is executed by iterating the process of choosing an i such that
the guard b; evaluates to true, and then executing the statement S;. If none of
the guards evaluates to true, execution terminates. (Note that non-determinism is
allowed; it may be that more than one guard evaluates to true, in which case an
arbitrary choice is made as to which statement to execute.) We call a statement of
this form a loop.
An example of a loop is the statement
do m<n — dm = d+1,m+1
O m>n — dn = d+1,n+1
od ,
which adds to the initial value of d the absolute difference between (integer) vari-
ables m and n, resetting m and n in the process to the maximum of their initial
values.
Allowing multiple guards does not increase the power of the language since
C|0 bl—’SI O... Dbn_’Sn Od
is equivalent to
dO blv...vbn—‘ if bl_’S]D...Dbn—"Sn
fi
od .
So loops with multiple guards are easily rewritten as while statements. But, as in
the case of conditional statements, multiple guards improve readability as well
as helping to avoid error.
13.2 Constructing Loops

Invariants and Bound Functions. When constructing loops, the notions of an
invariant property and a bound function' are crucial. Loops are designed so that

INot to be confused with bound variable. The word ‘bound’ is used in two different ways. In
‘bound variable’, it signifies ‘binding’, i.e. tying together. In ‘bound function’, it signifies a restriction
or limitation.

13.2 Constructing Loops 185

each iteration of the loop body maintains the invariant whilst making progress
to the required postcondition by always decreasing the bound function. Let us
formulate this design principle in detail.

Suppose a problem is specified by precondition P and postcondition Q. We
design a loop to meet this specification by identifying an invariant property inv
and a bound function bf.

The bound function is a measure of the size of the problem to be solved. It is
required to be an integer-valued function of the program variables that is guaran-
teed to be greater than zero when the loop is executed. A guarantee that the value
of such a bound function is always decreased at each iteration is a guarantee that
the number of times the loop body is executed is at most the initial value of the
bound function.

The invariant property is designed, in combination with the termination con-
dition, by generalizing the required postcondition. The idea is to split the post-
condition, Q, into a termination condition, done say, and the invariant property,
inv, in such a way that

[invAndone = Q] . (13.1)

(As in the rule for conditional statements, we use square brackets to mean that
the property is true in all states.) The termination condition is typically related to
the bound function. (Often the termination condition is equivalent to the value of
the bound function being zero.) The invariant should also guarantee that, in all
states, the value of the bound function is greater than zero, unless the loop has
terminated. That is,

linv = bf>0vVv done] . (13.2)

The invariant property is chosen so that it is easy to design an initialization state-
ment, S, that establishes the invariant property inv. That is, we construct S such
that

{P}S{inv} . (13.3)

The design is completed by constructing a loop body T that maintains the invari-
ant whilst making progress towards the termination condition. That is, using the
ghost variable C to relate the values of the bound function before and after exe-
cution of T, we construct T to satisfy the specification

{inv A ~done Abf=C} T{inv A (bf <CvV done)} . (13.4)

(Note that (13.4) allows execution of T to not decrease the bound function, pro-
vided that done becomes true.)

If the termination condition, done, the bound function, bf, the invariant, inv,
and the loop body, T, have all been constructed so as to satisfy (13.1), (13.2) and
(13.4), it is the case that

{inv } do ~done—Tod {Q} . (13.5)

186

Chapter 13: Iteration

Moreover, if statement S has been constructed to satisfy (13.3), we can use the
rule of sequential composition to infer that

{P}S;do-~done—Tod{Q} . (13.6)

Loops and Induction. The validity of (13.5) is proved by a case analysis on bf <0
and bf > 0. The first case involves combining (13.2) and (13.1). The case bf >0
is proved by (strong) induction on the value of the ghost variable C in (13.4).
Formally, the inductive hypothesis is

(Vn =z {inv Abf=n}do~done—Tod{Q}), (13.7)

where the type of n is the set of all natural numbers. (We assume, of course, that
n is not one of the program variables.) Property (13.5) is then a consequence,
because of (13.2).

We will not go into the full details of the proof of (13.7). Briefly, (13.1) pro-
vides the basis of the inductive proof, whilst (13.4) establishes the induction step.
(Equation (13.1) states that Q is guaranteed to hold if the loop body is executed
zero times, and (13.4) enables the proof that, if the loop body T is executed at
least once, postcondition Q will still hold on termination.) The case that bf <0
needs to be considered separately.

Design Steps. The design of a loop is a non-trivial process, because there are
several aspects to keep in mind. With practice, however, it becomes second nature.
In order to reinforce this introduction, let us summarize the different items and
their roles.

We assume that the precondition P and the postcondition Q are given. The task
is to construct an initialization S and a loop with termination condition done and
body T to meet the specification

{P}S;do-~done—Tod{Q} . (13.8)

We do this with the aid of an invariant, inv, and a bound function (measure of
progress), bf. The invariant and termination condition, done, are chosen so that,
in all states, their conjunction implies the postcondition, Q:

[inv Adone = Q] . (13.9)

The invariant should also guarantee that, in all states, the bound function is
greater than zero, unless the termination condition is true:

[inv = bf>0vVv done] . (13.10)
The initialization statement, S, is constructed to establish the invariant:
{P}S{inv} . (13.11)

Finally, the loop body, T, is constructed so as to guarantee progress towards the
termination condition whilst maintaining the invariant:

{inv A ~done Abf=C} T {inv A (bf <Cv done)} . (13.12)

13.3 Basic Arithmetic Operations 187

13.3

13.3.1

Basic Arithmetic Operations

In this section, we present several simple arithmetic problems, the objective being
to illustrate the use of invariants in loop construction in the simplest possible
context. In the first few examples, the bound function is simply a counter. Later
examples involve (slightly) more complex bound functions.

Summing the Elements of an Array

The problem of summing the elements of an array is an elementary example of the
use of invariants. Suppose 0 < N and it is required to compute (Zi: 0 <i < N:ali]).
An obvious solution is to introduce a variable s and assign to s successively 0,
al0], a[0]+all], a[0]+a[1]+al2], and so on. Using index variable k to count the
number of values that have been added, the invariant property is

O0<k<N A s=(Zi:0<i<k:ali]) ,

and the termination condition is k = N. The appropriate initialization is the assign-
ment

k,s := 0,0

and the bound function is N —-k. Maintaining the invariant property whilst making
progress towards the termination condition is achieved by the assignment

k,s = k+1,s+alk] .
The complete program is, thus,
{f OKN |
k,s := 0,0 ;
{ Invariant: O<k<N A s=(Zi:0<i<k:ali])
Bound function: N-k }
do k<N — k,s = k+1,s+alk]
od
{ s =(Ei:0<i<N:ali]) } .

Let us check that this meets all the requirements for constructing a loop.

The requirement (13.9) enables us to check that the termination condition has
been implemented correctly. In this case, instantiating done to k> N and inv to
the invariant, we get

k=N A OKKkEN A s= {3i:0<i<k:ali]}

=»> § = (Zi:0<i<N:ali]) .

188 Chapter 13: Iteration
This is clearly true (since k > N and k < N together imply that k = N).
The requirement (13.11) checks the initialization. We have to verify that
{OKN ks =00{0<k<N A s=3i:0<i<k:ali])} .
Using the assignment axiom, this follows from
O<KN = 0<SOSN A 0= (Zi:0<i<0:ali]) ,
which is true by the empty-range rule for summations.
The requirement (13.12) checks the loop body. We have to verify that
{ OKk<N A s=i:0<i<k:ali]) A k<N A N-k=C }
k,s := k+1,s+alk]
{ OKkEN A s=(Zi:0gi<k:ali]) A N-k<C } .
Again, use of the assignment axiom is called for. We get
O<k<N A s=3i:0<i<k:alil) A k<N A N-k=C
= 0<k+1<N A s+alk]l = Ci:0<i<k+1:alil) A N-(k+1)<C .
This is true by virtue of the splitting and one-point rules for summation (and
simple arithmetic).
The final condition (13.10) is clearly satisfied:
O0<k<N A s=(Zi:0<i<k:a[i]) > N-k>0 .
13.3.2 Evaluating a Polynomial

Evaluating a polynomial involves a more complicated summation and is the basis
of several other algorithms. Suppose we are required to evaluate

(Zi:0<i<N:al[i]xX

for given real number X and array a.

It is possible, of course, to regard this problem as a specific instance of the
summation problem just discussed. Doing so means the introduction of variables
s and k satisfying the invariant property

O0<k<N A s=(Zi:0<i<k:alilxX?) .

The problem is that each iteration of the loop body involves executing the assign-
ment

ks := k+1,s+alk]xXk

and thus evaluating X*.

13.3 Basic Arithmetic Operations 189

An alternative method, called Horner’s rule, is preferable because it uses fewer
multiplications. Horner’s rule involves computing the values

a[N—l] y
al[N-1]xX + a[N-2] ,
(a[N-1]xX + a[N-2])xX + a[N-3] ,

and so on.
Functionally, we can describe Horner’s rule as maintaining invariant the prop-

erty
0<k<N A sxXK=(Sitk<i<N:ali]lxX") .
This property is established, initially, by the assignment
k,s ;== N,0 ,
and the required postcondition is satisfied when
k=0 .
We, therefore, consider an algorithm of the form
{ OKN }
k,s == N,0 ;
{ Invariant: O0<k<N A sxXk = (Zi:k<i<N:al[i]xX?)
Bound function: k }
do k>0 — k,s := k~1,S
od
{ s = (2i:0<i<N:ali]xX}) } ,

where S, the value to be assigned to s in the body of the loop, is the only missing
element.

We calculate the appropriate value of S using the assignment axiom. The spec-
ification of the assignment in the body of the loop is given by the Hoare triple:

{ OSkSN A sxXk=(Sitk<i<N:a[ilxX!) A k>0 }
k,s = k-1,5
{ OSKSN A sxXk = (Si:k<i<N:al[i]lxX% } .
Applying the assignment axiom, the requirement reduces to
O0<kSN A sxXk=(Si:k<i<N:a[i]xX!) A k>0
= 0<k-1<N A SxXk1 = (Si:k-1<i<N:al[i]lxX}) .

190

Chapter 13: Iteration

Clearly,
O0<k<N A k>0=0<k-1<N .

So, it is indeed only the appropriate value of S that needs to be determined.
We now use the summation rules to calculate the appropriate value of the
unknown S:

SxXk-1 = (Zi:k-1<i<N:ali]xX?)

= { splitting the range on i = k-1, assuming 0 <k <N }
SxXk-1 = (Fi:k<i<N:al[ilxX!) + alk-1]xXx*"!
= { assume sxX¥ = (Si:k<i<N:a[i]xX!) }

SxXk-1 = gxxk + a[k-1]xXxk!
= { factor out Xk-1 }
S =sxX +alk-1] .
We have thus determined that
0<k<N A sxXk=(Si:k<i<N:a[i]lxX!) A § = sxX +alk-1]
= 0<k-1<N A SxXK1=(Ji:k-1<i<N:ali]xX) .
So the loop body is
k,s := k-1,sxX+alk-1]
and the complete algorithm is as follows:
{ OKN }
k,s := N0 ;
{ Invariant: O0<k<N A sxXk = (Ji:k<i<N:ali]lxX?)
Bound function: k }
do k>0 — k,s = k-1,sxX+alk-1]
od
{ s = (Ci:0<i<N:alilxX!) } .

Note that this derivation of the algorithm constitutes a formal proof of Horner’s
rule. Note also how the calculation of S (as opposed to guessing what it should be)
avoids making a ‘one-off’ error. With problems like this one, it is very easy for array
indices to be ‘one-off’. For example, we might have guessed the value sxX + alk]
for S. The consequences are often noticed immediately, but not always. And, in
the digital world, a small error of this nature can be disastrous!

Exercise 13.13. Verify the correctness of the initialization and the termination
condition. 0

13.3 Basic Arithmetic Operations 191

13.3.3

Evaluation of Powers

The problem of evaluating X" for M >0 seems a trivial one but, in fact, has been
studied for thousands of years and an algorithm that is optimal for all values of M
is not known. This subsection discusses a number of algorithms for this purpose.

Flementary Algorithm. The simplest solution is to use the invariant
0<k<M A y=X*
in a loop that initializes k to 0 and continually increments it until it equals M:
{0<M }
k,y := 0,1 ;
{ Invariant: 0<k<M A y =Xk
Bound function: M-k }
do k+M — k,y = k+1,yxX
od
ty=xM1}.
Using Horner’s Rule. Another method, which is commonly used for large values

of M, makes use of Horner’s rule. Suppose the binary representation of M is stored
in array a. Specifically, we assume that

M = (Si:0<i<N:a[i]x2!) , (13.14)
where
(Vi:0<i<N:alil=0vali]l=1) .

Then, Horner’s rule suggests the computation, in succession, of
Xa[N-1J
Xa[N—l]xZ +a[N-2]
X(a[N—l]xZ +a[N-21)x2 +a[N-3]

and so on.

Within the algorithm, we use y to record the powers of X, and we use the value
of counter k as bound function. For the purpose of explaining the algorithm, we
also employ a variable s which records the exponent of X. This variable plays no
role in updating y and so can be eliminated from the algorithm. (It is a so-called
auxiliary variable, meaning that it is used to establish correctness but is irrelevant
to the computation.) The precise roles of y, s and k are expressed by the invariant:

0<k<SN A y =X A sx2k = (Sitk<i<N:ali]x2) .

192

Chapter 13: Iteration

The invariant is established initially by the assignment
k,s,y := N,0,1

and, when k =0, we have
Yy =X As=(Zi:0<i<N:a[i]x2) .

Using (13.14), it is thus the case that, when k =0,
y=xM .

Now, we know from our discussion of Horner's rule that the property of s is
maintained invariant by the assignment

ks = k-1,2xs+alk-1] .

We, therefore, consider an algorithm of the form
{ 0<M=(Zi:0<i<N:ali]x2!) }
k,s,y := N,0,1 ;
{ Invariant: 0<k<N A y=X5 A sx2k = (Si:k<i<N:ali]lx2!)
Bound function: k }
do k>0 — k,s,y = k-1,2xs+alk-1],Y
od
{y=x"1},

where Y, the value to be assigned to y in the body of the loop, is the missing

element.
We calculate the appropriate value of Y using the assignment axiom. The spec-
ification of the assignment in the body of the loop is given by the Hoare triple:

{ OSKkSN A ¥y =X A sx2k = (Sitk<i<N:ali]x2!) A k>0 }

k,s,y = k-1,2xs+alk-1],Y

{ OSKSN A y=X5 A sx2k=(Zi:k<i<N:ali]x2!) } .
Applying the assignment axiom, and ignoring the requirements on k and s in the
postcondition (as they have already been verified), the requirement reduces to

O<k<N A ¥y =X A sx2k=(Zitk<i<N:ali]x2%)

= Y = X2><s+a[kf1] .

13.3 Basic Arithmetic Operations 193

We now use properties of exponentiation to calculate the appropriate value of the
unknown Y:
Y = x2xs+alk-1]

i

{ exponentiation }
Y = (XS)Z x xalk-1]

i

{ assume y = X5 }
Y = y2xXxatk-1l
So, to maintain invariant the property y = X5, we must simultaneously perform
the assignment
y = y2xxelk-1l
In this way, we have constructed the following algorithm:
{0<M=Ci:0<i<N:a[i]x2%) }
k,s,y ;= N,0,1 ;
{ Invariant: 0<Sk<N A ¥y =X5 A sx2k = (Zi:k<i<N:a[i]x2!)
Bound function: k }
do k>0 — k,s,y = k-1,2xs+alk-1], y2xXxalk-1]
od
{y=xM1.
Two small changes are required before our task is complete. The first is to
remove the assignment to s, as forewarned. The second is to take account of the
binary value of a[k—1]. When a[k—1] =0, y2x X4lk-1I simp]ifies to 12 and, when
alk—1]=1, y?xXxalk-11 simplifies to 12 x X. In this way, we obtain the algorithm’s

final version, shown in Figure 13.1.
(The use of ‘where’ in the invariant is informal. Formally, the invariant is

0<k<N A (s : sx2k = (Sitk<i<N:al[i]x2%) : vy = X5) .
We discuss the use of auxiliary variables, and their elimination using existential
quantifications, in detail in Section 15.2.)

Exercise 13.15. The previous algorithm made use of the bits in the binary rep-
resentation of M starting with the most significant bit and ending with the least
significant bit. There is an advantage in processing them in the opposite order,
because they can be computed as the remainders resulting from successive divi-
sions by 2. (Thus a[0] = M mod 2,a[1] = (M+2) mod 2, a[2] = (M+4) mod 2,
etc.) An algorithm that uses this approach is based on the invariant

0<k A yxzk=XxM |

Develop such an algorithm.

194

Chapter 13: Iteration

{ 0K M =(Zi:0<i<N:al[i]x2!) }
k,y := N,1 ;
{ Invariant:
O0<k<N A y =X* where sx2k = (Zi:k<i<N:al[i]x2%)
Bound function: k }
do k>0 — k,y = k-1,y?%;
if alk]=0— skip
O alk]l=1—y = yxX
fi
od
{y=x"1.

Figure 13.1 Evaluation of powers.

You should make use of Exercise 10.21 in order to develop the loop body. (In
fact, the reason Exercise 10.21 was included was in order to prepare the way for
the current exercise.) You will need to make the substitutions X™ for C and z for
X. O

Exercise 13.16 (All Zeros). Given an array of integers, specify formally and
develop an algorithm that will determine whether all values stored in the array
are zero. Specify formally and develop an algorithm that will determine whether
at least one of the values stored in the array is zero. O

Exercise 13.17 (Binary Split). Given an array of booleans, specify formally and
develop an algorithm that will determine whether there is an index k such that
all array elements with index less than k are true and all elements with index at
least k are false. What answer should be returned if

(a) the length of the array is zero,
(b) all elements of the array are true, and
(c) all elements of the array are false? O

Exercise 13.18 (Array Equality). Given are two arrays a and b both of length M.
Given also is a binary relation R. (Think of the equality relation, or the less-than
relation.) Specify formally and develop a program to determine whether corre-
sponding elements of a and b are all related by relation R. a

13.4 Summary 195

13.4

Summary

This chapter has shown how bound functions and invariant properties are used
in the design of loops. The clear, mathematical formulation of an invariant is an
invaluable aid to avoiding errors when designing loops. For example, formulating
the function of the delimiters of array segments helps to avoid the so-called ‘one-
off’ errors that can plague programs (and cause systems to crash!).

This chapter completes our introduction to the principles of program construc-
tion. Rules have been formulated for the design of assignment statements, sequen-
tial composition of statements, conditional statements and loops. Each of the
rules expresses formally the creative element of the use of the particular type of
statement. For conditionals, there is a creative element involved in deciding how
to split the problem into different cases. In the case of sequential composition,
the creative element is in deciding what intermediate condition should be satis-
fied after the first statement in the sequence is executed. These problem-solving
strategies will probably ring a bell of familiarity with the reader. In the case of
loops, the creative element is the design of a suitable invariant property. This
strategy may be quite new to you. But, its unfamiliarity should not put you off. It
is an important skill that is invaluable in program construction. The skill can only
be acquired with practice and perseverance. Make the necessary time, and your
effort will be well rewarded.

Bibliographic Remarks

Knuth’s books (1968, 1969) are a mine of historical information on the devel-
opment of algorithms. For a history of methods of calculating powers (briefly
mentioned in Section 13.3.3) see Knuth (1969, pp. 398-422). It is worth looking at
Knuth’s discussion of the ‘SX’ method for computing powers, which was written
before the importance of invariants had been clearly identified in the development
of algorithms. What is interesting is that his (textual) description of the algorithm
is highly operational, making it extremely difficult to understand why the method
works (at least in my view), but the algorithm itself does include a comment which
is precisely the invariant property!

The chapters that follow provide more extensive examples of program con-
struction. Other texts that practise ‘correct-by-construction’ methods for devel-
oping non-trivial algorithms are Gries (1981), Dijkstra and Feijen (1984), Kaldewaij
(1990), Morgan (1990) and van de Snepscheut (1993). Consult these texts for yet
more examples.

This page intentionally left blank

14.1
14.1.1

14

Sorting and
Searching
Algorithms

Now that the basis for program construction has been laid, we can begin to study
more extensive problems. This chapter treats some classic problems involving a
combination of searching and sorting.

Section 14.2 is about finding the kth largest element in an array. The prob-
lem, and an informal solution, was introduced earlier in Chapter 2. An algorithm
solving this problem was one of the very first (non-trivial) algorithms to be pub-
lished together with a detailed formal proof of correctness. The Dutch National
Flag problem, discussed in the next section, is a simple sorting problem that was
invented in order to illustrate the principles of program construction.

The Dutch National Flag

Problem Statement

This section is about a sorting problem, called the Dutch National Flag problem.
The problem first arose as a sub-problem in other sorting problems—we will see
it being used in this way in Section 14.2—but it was given a (literally!) colourful
formulation by Edsger W. Dijkstra, which we repeat here.

198

Chapter 14: Sorting and Searching Algorithms

The problem, as originally posed by Dijkstra, concerns the control of a robot
that has the task of sorting a number of coloured pebbles, contained in a row
of buckets. The buckets are arranged in front of the robot, and each contains
exactly one pebble, coloured either red, white or blue. The robot is equipped with
two arms, on the end of each of which is an eye. Using its eyes, the robot can
determine the colour of the pebble in each bucket; it can also swap the pebbles
in any pair of buckets. The problem is to issue a sequence of instructions to the
robot, causing it to rearrange the pebbles into the order of the colours in the
Dutch National Flag, namely red, white and blue.

The motivation for this rather fanciful problem statement is partly to prohibit
some obvious solutions and partly to emphasize certain aspects of an efficient
solution to the problem. The only way to change the pebbles in the buckets is using
a swap function, thus prohibiting a solution that simply counts the number of
pebbles of each colour and then replaces the pebbles in the buckets with pebbles
of the appropriate colour. Also, it may be assumed that performing a swap is a
somewhat inefficient operation so that the number of times it is executed should
be kept to a minimum.

In formulating the problem, we minimize the number of assumptions about the
data and how it is stored.

We assume a number of values are stored, these values being indexed by num-
bers i such that M <i < N. The choice of arbitrary numbers M and N as begin and
end indices anticipates the later use of a solution to the problem as a subroutine
in solving more complex problems. We assume that M is at most N, but do not
assume that M is (strictly) smaller than N. In other words, we assume that M is
less than or equal to N; if M equals N, the number of stored values is zero.

We assume that boolean-valued functions red, white and blue on the indices
determine the colour of the stored values. That is, red.i equivales the value
indexed by i is red, and similarly for white.i and blue.i. These attributes cover
all cases. So, for each index i,

red.i v white.i v blue.i .

We do not assume that there is at least one value of each colour.
Swapping the pebbles in buckets i and j is effected by executing swap (i,j).
The effect of swap(i,j) is specified formally by the Hoare triple:

{ MKi=I<N AM<Kj=]J<N A colour.i=X A colour.j=Y }

swap(i,j)

{ i=1Aj=) Acolour.i=Y A colour.j=X } ,
where the function colour is defined in the obvious way (colour.i=red =
red.i, etc.). (Note the use of the ghost variables 1, J, X and Y, in particular that
it is not i and j that are swapped, but the colours at i and j.) It is convenient to

assume that swap (i,i) is valid and has no effect on the state of the stored values
(as predicted by the formal specification of swap).

14.1 The Dutch National Flag 199

14.1.2

We are required to construct a program, making use exclusively of the above
operations together with simple arithmetic operations on indices, that will rear-
range the stored values in such a way that, on termination, there are indices » and
w such that

MLr<w<N
A (Vi:M<i<r:red.i)
A (Viir<i<w:white.i)
A {Vi:w<i<N :blue.i) .

Note how the required postcondition has been formulated carefully to allow for
the absence of stored values of each colour. Termination with M equal to 7 indi-
cates that there are no red values, termination with * equal to w indicates no
white values, and termination with w equal to N indicates no blue values.

The Solution

It is clear that a solution to the problem will involve an iterative process. Initially,
all the colours are mixed and on termination all the colours should be sorted. We
therefore seek an invariant property that has both the initial and final states as
special cases.

A reasonably straightforward idea is to strive for an invariant that partitions
the array of values into four segments, three of the segments containing values
all of the same colour (red, white or blue) and the fourth containing a mixture of
colours. Four possible ways of arranging the boundaries between the segments
are shown in Figure 14.1. In each case, the initial state is that the red, white and
blue segments are empty and the ‘mixed’ segment is the entire array. Also, the
final state is that the ‘mixed’ segment is empty.

Any solutions based on the first and the last of these figures would be entirely
symmetrical, as would solutions based on the two inner figures. The real choice
is therefore between maintaining the ‘mixed’ section at one end of the array or in
the interior of the array.

The first figure corresponds to a program that uses a simple for statement
with the control variable initialized to M and incremented at each repetition by
one. The last possibility also corresponds to a for statement but where the control
variable is initialized to N and continually decremented. The idea is that the values
are processed one by one in order, and at each stage the set of values already
processed is sorted. It is possible to construct a program of this nature, but it is
not easy and the resulting program is not efficient! (Try to work out some of the
details to see why.) This is the sort of solution that arises from an operational
view of program construction, not taking sufficient time and effort to think about
and formulate alternative strategies.

200

Chapter 14: Sorting and Searching Algorithms

M N
red white blue mixed
M N
red white mixed blue
M N
red mixed white blue
M N
mixed red white blue

Figure 14.1 Possibilities for the invariant property.

Maintaining the ‘mixed’ segment in the interior of the array leads to a relatively
simple and efficient solution. Adopting the second of the figures as the frame-
work for a solution, we introduce the variables », w and b with the following
specifications.

M<r<w<b<N
A (Vi:M<i<r:red.i)
A (Vi:r<i<w:white.i)
A (Vi:b<i<N :blue.i) .
Note that the colour of each element is specified for all indices, with the exception
of indices i such that w < i < b. This is the ‘mixed’ segment of the array.

Our goal is to design a simple loop (together with its initialization) that main-
tains this invariant whilst decreasing the size b~w of the ‘mixed’ segment.

The chosen invariant property is depicted in Figure 14.2. Drawing a figure helps
but you should never rely on figures. Figures are often ambiguous and do not
properly capture the troublesome extreme cases. Always check your work against
the formal specifications and nothing else.

The initialization is easy. The red, white and blue segments are all empty. The
assignment

r,.w,b := MM,N

guarantees that all three universal quantifications are vacuously true.

14.1 The Dutch National Flag 201

14.1.3

M ¥ w b N

red white mixed blue

Figure 14.2 Chosen invariant property.

The termination condition for the loop is w = b. When this state is reached, the
‘mixed’ segment is empty and the required postcondition is satisfied.

In order to make progress towards the termination condition, it is reasonable to
examine the colour of one of the elements at the boundary of the ‘mixed’ segment,
that is, either the element with index w or the element with index b-1 (or both).
This way, we may hope to reduce the size of the ‘mixed’ segment by at least one
at each iteration. With foresight, we choose to examine the colour of the element
with index w.

An easy case is if the colour of the element with index w is white. If so, the
white segment can be extended by incrementing w. That is, execution of

whitew — w = w+1

is guaranteed to reduce »—w and maintain the invariant.

Another relatively easy case is if the element with index w is blue. If so, the
blue segment can be extended if the element with index w is swapped with the
element with index b—1. That is, execution of

bluew — swapb-1,w);b:=b-1

is guaranteed to reduce b—w and maintain the invariant.

The most difficult case is if the element with index w is red. If so, the red
segment can be extended by swapping the elements with indices w and r. This
means that the boundaries of both the red and white segments have been moved
up one position. The appropriate code is thus

redw — swap(r,w);rv,w = r+1,w+1 .

Note that simultaneously incrementing + and w has no effect on the size w—v
of the white segment. If » <w, then the white segment is non-empty and a white
element is swapped with the newly discovered red element; if » =w, the swap
statement has no effect.

Each element is known to be either red, white or blue. So the three guarded
commands above exhaust all the possibilities and we have completed the design
of the program which is shown in Figure 14.3.

Verifying the Solution

In this section, we finish the job off by formally verifying that the claimed invariant
property really is invariant. Actually, we consider only the most complicated case,
leaving the other two cases as exercises.

202

Chapter 14: Sorting and Searching Algorithms

{ MXN }
r,w,b ;= MM,N;

{ Invariant:

M<r<w<b<N
A (Vi:M<i<r:red.i)
A (Vi;r<i<w:white.i)
A (Vi:b<i<N:blue.i)

Bound function: b-w }

do w<b —

od

O redw —
O bluew —
fi

M<Lr<w<N
A (Vi:M<Ki<r:red.i)

A (Vi:r<i<w:white.i)

A (Vi:w<i<N:blue.i) } .

if whitew — w = w+1

swap(rw) ;rw = r+1,w+l

swap(b-1,w) ;b = b-1

Figure 14.3 Dutch National Flag program.

Our task is to check formally the correctness of the guarded command

redw — swap(r,w) ;r,w = r+l,w+l .

{ M<r<w<bgN

A AVi:M<Li<r:red.i)

In detail, we have to verify the following:

A (Vi:ir<i<w:white.i)

A {(Vi:b<i<N:blue.i)

A w<b A redw }

swaprw) ;rw = r+l1,w+l

{ M<r<w<b<N

14.1 The Dutch National Flag 203

A (Vi:M<i<r:ved.i)
A (Viir<i<w:white.i)
A (Vi:b<i<N:bluei) } .
Using the assignment axiom and simplifying, this is the same as
{ M<r<w<b<N
A {Vi:M<i<r:red.i)
A (Vir<i<w:white.i)
A (Vi:b<i<N:blue.i)
A redw }
swap(r,w)
{ M<Lr+1<w+l1<b<N
AN AVi:M<Ligr: red.i)
A (Vi:r+1<i<w :white.i)
A (Vi:b<i<N:blue.i) } .

By splitting the postcondition into three separate conjuncts, we can split this
proof requirement into three parts. Specifically, the postcondition is the conjunc-
tion of, first, the constraints on the indices 7, w and b,

M<Lr+1<w+1<b<N ,

second, the colour of the parts of the array that should not be affected by the
swap,

(Vi:M<i<r:red.i)
A (Vi:r+1<i<w :white.i)
A (Vi:b<i<N:blue.i) ;
and, finally, the parts that are affected,
redv A {(Vi:r+1<i=w:white.i) .

We verify the correctness of the swap statement with respect to each of these
postconditions in turn.

The first postcondition is guaranteed to hold if we can prove that
{ M<£r<w<bgN }
swap(r,w)

{ M£Lr+1<w+1<bgN } .

204 Chapter 14: Sorting and Searching Algorithms

(Here, we use the fact that it is always permissible to weaken the given precondi-
tion.) This is indeed the case because the specification of swap(r,w) states that
it does not alter the indices r and w. In other words, swap(r,w) behaves like
skip with respect to the indices r, w and b.

The second requirement expresses the fact that the original red and blue seg-
ments are unaffected by changes to the elements indexed by » and w. Formally,

{ M<Lr<w<bgN
A (Vi:M<i<r:red.i)
A (Vi:rr<i<w:white.i)
A (Vi:b<i<N:blue.i) }
swap(r,w)
{ (Vi:M<i<r:red.i)
A {Vi:r+l1<i<w :white.i)
A (Vi:b<i<N:blue.i) } .

This is true because v and w are outside the three ranges in the postcondition
M<i<r, r+1<i<w and b <i<N). Executing swap(r,w) behaves like skip
with respect to elements within these three ranges.

The final requirement is more subtle. Formally, we have to verify that

{ M<r<w<b<N
A (Vi:M<i<r:red.i)
A (Vi:r<i<w:white.i)
A (Vi:b<i<N:blue.i)
A redw }
swap(r,w)
{ redor A (Vi:r+1<i=w :white.i) } .

Now, the one-point rule can be used to simplify the universal quantification in
the postcondition when v+1 < w (i.e. ¥ <w). Also, the empty-range rule can be
used to simplify it when - (r+1 < w) (i.e. ¥ = w, using the fact that » < w). So the
requirement splits into two requirements, the case that r <w

{ r<w
A (Vi:M<i<r:red.i)
A (Vi:ir<i<w:white.i)

A redw }

14.2 Finding the K Smallest Values 205

14.2

swap(r,w)
{ redr A whitew } ;
and the case that v =w

{ r=w
A Vi:M<i<r:red.i)
A (Viir<i<w:white.i)
A redw }

swap(r,w)

{ redor } .

The first requirement is met because the quantification (Vi:r <i<w:white.i)
weakens to white.r (using the splitting and one-point rules) when + <w. The
second holds because red.w and red.r are both equivalent to red.r Ared.w
when v =w.

This completes the verification of the guarded command

redow — swap(r,w) ;r,w = r+1,w+1 .

Exercise 14.1. Check formally the correctness of the guarded commands
whitew — w = w+l

and

bluew — b:=b-1; swapbw) .

Finding the K Smallest Values

Exercise 2.1 was about identifying the invariant properties in Hoare’s algorithm
for finding the 20 best values among 100 values in a deck of cards. In this section,
we develop an implementation of the algorithm. If the exercise is no longer fresh
in your mind, it may be worthwhile reading through it once more. The implemen-
tation developed below differs from Hoare’s algorithm, but the essence remains
the same.

The algorithm is one of the first truly non-trivial algorithms to be developed
with the intention of demonstrating formal program construction techniques; it
is called the Find algorithm. The algorithm can be used to sort a sequence of
values into percentiles without doing a complete sort (for example, finding the
best 10% of students in an examination).

206

Chapter 14: Sorting and Searching Algorithms

14.2.1

Before we can begin the development of the algorithm, we must agree on exactly
what is to be computed. Hoare’s description of the problem and its solution is
informal, a drawback of which is a certain amount of ambiguity. Using a formal,
mathematical language to specify the algorithm forces us to be completely pre-
cise in our specification of the problem. This is, just by itself, a useful exercise;
Section 14.2.1 provides the details. Having agreed on a formal specification, the
development of the algorithm is discussed in Section 14.2.2.

The Specification

We suppose we are given an array a of numbers, indexed from 0 onwards, of
length N. Informally, we are required to determine those K array elements with
the smallest values!, where 1 <K <N.

This is an ‘informal’ specification because it is not at all clear what is meant
by ‘those K array elements with the smallest values’. If all the array values are
distinct, there is no problem, but, in general, we can expect that some values in
the array are repeated. If so, ‘those K array elements with the smallest values’
may not be well defined!

To understand the difficulty better, suppose the array contains the following
ten values.

3,5,3,1,1,6,4,1,2,3.

Now, suppose we are required to find those two array elements with the smallest
values. Clearly, this is impossible to do as there are three array elements with
value 1, which is the smallest value of all array elements. The same difficulty
occurs if we are required to find those five (or six) array elements with the smallest
values.

The problem here is with the use of the word ‘those’ in ‘those K array
elements...”. We may try to circumvent the problem by a subtle change in the
wording: let us require, instead, that we determine those array elements with the
K smallest values. (Note that the position of ‘K’ has shifted. It now counts values
rather than array elements.)

The change of wording makes a great deal of difference in the meaning, but now
the specification is ambiguous! Suppose that, as before, we take K to be two. This
time we are required to find those array elements with the two smallest values.
There are two possible answers we can give.

One answer is that 1 and 2 are the two smallest values in the array, and there
are four array elements with these values—the fourth, fifth, eighth and ninth.

L1This is, literally, Hoare's statement of the problem generalized to K. Specifically, Hoare states the
following: ‘It is required to single out those 20 thousand observations with smallest value; perhaps
the 20 thousand nearest stars, or the 20 thousand shortest schoolchildren, or the 20 thousand
students with lowest marks.” The reason for requiring that both K and N be strictly positive is
explained later.

14.2 Finding the K Smallest Values 207

An alternative answer is that 1 and 1 are the two smallest values in the array. The
value 1 occurs three times in the array, in the fourth, fifth and eighth positions,
so that any two of these can be given as the required array elements.

The difference in these answers is attributable to the difference between a set
and a bag. In a set, multiple occurrences of a value are ignored; in a bag, they
all count. The first answer corresponds to taking the two smallest values from
the set of values defined by the array, the second answer corresponds to taking
the two smallest values from the bag of values defined by the array. The second
answer is also the answer one would obtain by sorting the elements of the array
(ordering equal array values arbitrarily) and then choosing the first K elements.
Studying Hoare’s algorithm (see Exercise 2.1), it is clear that his intention is indeed
to determine the K smallest values in the bag of values defined by the array
elements.

One more difficulty remains. Viewing the array as determining a bag of values
means that there may be more than K elements that have the K smallest values.
The example array above was designed to illustrate this problem. We have agreed
that the two smallest values are 1 and 1, but there are three array elements with
these values.

One solution is to agree that the specification is non-deterministic. We require
that K array elements are identified but, if there is a choice, as in this case, we do
not care how the choice is resolved.

The second solution is to require that all array elements with the K smallest
values are identified. Because this is a tighter requirement and just as easy to
achieve, this is the one we choose to implement. (Exercise 14.3 asks you to design
an algorithm that meets the non-deterministic specification.)

In summary, the (still-informal) specification is to determine all array elements
that have the K smallest values among the bag of values defined by the array.
Additionally, we will require that it is possible to identify the Kth smallest value
in the array.

To achieve this, we develop an algorithm that rearranges the array elements
to the extent that, on termination, the required array elements are in the initial
segment of the array. These elements are smaller than all other elements and
there are at least K of them. However, decreasing their number by omitting the
elements with the largest value (among the selected array elements) results in
there being fewer than K elements remaining.

Formally, our algorithm rearranges the array elements so that, on termination,
there are indices s and [with the properties that

0<s<K<ILKN
AN AVi,j:0<i<s As<j<N:alil<alj]
A (Vi,j:0<<i<lALlLj<N alil<alj])

AN A(Vijis<i<lnansgj<l:alil=alj]) .

208

Chapter 14: Sorting and Searching Algorithms

14.2.2

In words, the first s values in the array are (strictly) smaller than any other array
elements—see the first universal quantification—and their number is less than K;;
the last N-1 values in the array are (strictly) larger than any other elements—see
the second universal quantification—and their number is at most N-K; and the
remaining array elements are all equal—see the final universal quantification. The
K smallest values in the array are thus delimited by the indices 0 and [; the Kth
smallest value is the value common to the array elements in the segment delimited
by s and L.

Note that it is impossible to satisfy this postcondition unless we impose the
precondition

1<K<EN .

Otherwise, it would be impossible to determine s such that 0<s <K. This is
unavoidable if we are required to determine the Kth smallest value. Note, also,
that the postcondition does not formally require that the final array is a rear-
rangement of the initial array. This requirement is clumsy to specify compared
with the ease with which it is met—by ensuring that the only operation used by
the algorithm to change array elements is to swap two of them, as detailed in the
discussion of the Dutch National Flag program.

The Algorithm

Now that we have agreed a precise formal specification of the precondition and
postcondition, we may proceed to the development of the algorithm.

Hoare's description of the problem involves manipulating a deck of cards. This
means that his solution involves operations that are not so easy to implement in
a computer program. In particular, Hoare’s solution puts the ‘borderline card’ to
one side during the process of adding cards to the bottom-left and bottom-right
heaps. We will impose the restriction that all changes to the array are effected by
swapping array elements. This means that the program we develop is guaranteed
to permute the elements of the array (and will not, for example, introduce spurious
array elements) but prohibits us from placing any cards to one side. We are seeking
a so-called in situ sort of the array elements.

The basic idea is to maintain invariant the property that, for some indices s and
1, the first s elements of the array are known to be ‘small’, the next [-s elements
are ‘medium’, and the remaining N-1[elements are ‘large’. Making precise what
we mean by ‘small’, etc., a suitable invariant property is:

0<s<K<ILKN
A (Vi,j:0<i<s As<j<N:alil<aljl)
A (Vi,j:0<i<lAlg<j<N:alil<aljl) .

The inequality 0 < s <K, together with the first universal quantification, defines
the function of the variable s during the course of the computation, whilst the

14.2 Finding the K Smallest Values 209

K

‘small’ ‘medium’ ‘large’

Figure 14.4 Find invariant.

inequality K <1< N, together with the second universal quantification, does the
same for the variable 1.

The invariant is depicted in Figure 14.4. (The same warning about reliance on
diagrams applies here as it did for the Dutch National Flag problem.)

The computation is complete when it is the case that all values in the ‘medium’
segment are known to be equal. That is when, in addition to the invariant property,
we have

(Vi,j:s<i<lnans<j<l:alil=aljl) .

We introduce a boolean value done whose function is to indicate when this prop-
erty has been established. Formally, the function of done is captured by the invari-
ant property

done = (Vi,j:s<i<lans<j<l:alil=alj]) .

Adding this property to the earlier invariant properties of s and [, our loop invari-
ant becomes

0<s<K<I<KN
AN AVi,j:0<i<sAs<j<N:alil<alj])
A (Vi,j:0<i<lIAl<j<N alil<alj])
A (dome = (Vi,j:s<i<las<j<l:alil=aljl)) .
It is straightforward to establish the invariant. The assignment
s,l,done := O,N,(N<1)

initializes the ‘small’ and ‘large’ segments, each to the empty set. (The initializa-
tion of done could be to false. Assigning it the value N <1 enables us to play
safe—the specification cannot be satisfied if N =0.)

The bound function is [-s. The loop body need not necessarily decrease [—s.
Instead of decreasing [-s, the loop body may truthify done. (Since ~done is the
condition for terminating the loop, this can only occur on the final iteration of
the loop body.)

In order to make progress to the termination condition whilst maintaining the
invariant, Hoare made the observation that it is crucial to choose a borderline
value that is known to be in the ‘medium’ segment. Values in the ‘medium’ seg-
ment are indexed by numbers j such that s < j < l. Because s < K < I when the loop

210

Chapter 14: Sorting and Searching Algorithms

body is executed, the choice of a[K—1] as borderline value is always appropriate,
so this is the one we will choose. (Any value in the ‘medium’ segment will do, but
choosing a[K—1] guarantees termination after exactly one iteration in the fortu-
nate circumstance that the array is already sorted.) Since the loop body may swap
the chosen array element with another, it is wise to record this value in some local
variable, say X. A crucial property of X, which is immediate from our invariant
property, is that all values in the small segment are (strictly) less than X and all
values in the large segment are (strictly) greater than X.

In summary, the algorithm we are aiming to develop has the basic structure
shown below.

{ 1<K<N }
s,l,done := O,N,(N<1);
{ Invariant: 0<s<K<IKN

A AVi,j:0<i<sAs<j<N:alil<aljD
A (Vi,j:0<i<lAlgj<N:alil<alj
A (done = (Vi,j:s<i<las<gj<l:alil=alj]}))
Bound function: [-s }
do —~done — { choose borderline value in ‘medium’ segment }
X = alK-1];
{ (Vi:0<i<s:alil<X)
A{(Vj:lI<j<N:X<aljl) }
reduce l—s, or truthify done,
whilst maintaining invariant
od
{ 0<s<K<ILKN
A (Vi,j:0<i<sAs<j<N:alil<alj])
AN AVi,j:0<i<lAl<j<N alil<aljl)
A A(Vij:s<i<las<j<l:alil=aljl) } .

It is at this point that the development differs from Hoare’s algorithm. The key
insight is that it is possible to use the Dutch National Flag program to sort the
elements in the ‘medium’ segment into values less than X (the ‘red’ values), values
equal to X (the ‘white’ values) and values greater than X (the ‘blue’ values).

Let us suppose this is done as the first step of maintaining the invariant. Let us
also assume that the Dutch National Flag program returns two indices, m and n,
delimiting the segment containing values equal to X. This segment is known to

14.2 Finding the K Smallest Values 211

0 s m n N
‘small’ | ‘medium < X’ | ‘medium = X’ ‘medium > X’ ‘large’

0 s m K n 3 N
‘small’ | ‘medium < X’ ‘medium = X’ ‘medium > X’} ‘large’

0 s K " 7 [N
‘small’ ‘medium < X’ ‘medium = X’ | ‘medium > X’ | ‘large’

Figure 14.5 Possible outcomes after applying the Dutch National Flag program.

be non-empty, since it includes the array element previously stored at index K 1.
Figure 14.5 depicts three possible outcomes, depending on the relationship of K
to m and n.

In each of the three possible outcomes, the five segments are ordered in the
sense that the values stored in the different segments are strictly increasing as
one proceeds from left to right. (That is, each value in a segment is at most each
value in the segment to its right.)

In the first case depicted in Figure 14.5,

n<k .

This means that all the array elements, up to and including a[#] are among the
K smallest values in the array. So, in this case, the assignment

s=n

may be executed. Moreover, this is bound to increase the value of s (and thus
decrease l—s) because the segment containing values equal to X is non-empty.
In the second case depicted in Figure 14.5,

m<K<n .

In this case, the sorting process is complete; the K smallest values in the array
have been successfully transferred to the first K positions in the array. So, in this
case, the assignment

s,l,done = m,n,true

may be executed. Moreover, this is bound to cause the loop to terminate at the
next iteration.

212

Chapter 14: Sorting and Searching Algorithms

14.3

In the third case depicted in Figure 14.5,
K<m .

This means that all the array elements from a[m] onward are among the N-K
largest values in the array. So, in this case, the assignment

l:=m

may be executed. Moreover, this is bound to decrease the value of I (and, thus,
decrease l-s) because the segment containing values equal to X is non-empty.

This completes the development of the algorithm, which is shown in Figure 14.6.
Note that the line

DNF(s,l,(<X),(=X),(>X),m,n)

indicates a call of the Dutch National Flag program applied to the segment of the
array a delimited by s and I with predicates red, white and blue set to (< X),
(= X) and (> X), respectively. The values of m and n returned by the call delimit
the segment of the (partially sorted) array a, all of whose values equal X.

Exercise 14.2. Prove the equivalence of the invariant with the following property:
0<s<K<ILKN
A (Vi,j:0i<sans<j<l:alil<aljh
AN (Vi,j:0<i<sAl<j<N: alil<alj])
A AVij:s<i<lanlgLj<N:alil<alj]) .

State in words what each universal quantification expresses.

The second universal quantification expresses the fact that every element in
the ‘small’ segment is less than every element in the ‘large’ segment. Is this quan-
tification implied by the other two quantifications? Is it possible to remove this
quantification without affecting the meaning? (In other words, is it implied by the
remaining terms?) Justify your answer. O

Exercise 14.3 (Finding the K smallest values). Suppose it suffices to find K small-
est values in the array. Formally, the given precondition is 0 < K < N and the post-
condition is

(Vi,j:0<i<K AK<j<N:alil<alj]) .
Develop an algorithm to solve this problem.]

Summary

Many computer applications involve sorting and searching. This chapter has pre-
sented two classic examples of sorting and searching algorithms.

14.3 Summary

213

s,l,done :=

{ Invariant:

do —-done —

od

0,N,(N<1);

0<s<K<ILKN
AN (Vi,j:0<i<sAs<j<N:alil<aljl
A (Vi,j:0<i<lAILj<N alil<aljl)

A (dome = (Vi,j:sgi<las<j<l:alil=aljl))
Bound function: [-s }

- u

X := a[K-1] { borderline value in ‘medium’ region };
{ apply Dutch National Flag program to the segment
delimited by s and [with predicates red,
white and blue set to (< X), (= X) and (> X),
respectively.
Return the boundary values in m and n. }
DNF(s,l,(<X),(=X),>X),m,n);
{ Extend either the ‘small’ or ‘large’ segment,
or terminate. }
if n<K — s :=n
Om<K<n — s,l,done = m,n,true
OK<m —1l:=m
fi

{ 0<s<K<ILKN

AN AVi,j:0<i<s As<j<N:alil<aljl)
A AVLj:0<i<lAILj<N alil<alj

A AVij:s<i<lasgj<l:alil=aljl) } .

Figure 14.6 Finding the Kth smallest value.

The problem of the Dutch National Flag illustrates the use of invariant prop-
erties in making precise the functions of the variables in a program, making
programming decisions straightforward, and avoiding array bound errors that
bedevil unsystematic methods. It also illustrates the inappropriateness of ‘for’

214

Chapter 14: Sorting and Searching Algorithms

statements, which, being less flexible than do-od loops, can impose an undesir-
able straitjacket on program design.

Finding the K smallest values in an array is a challenging programming problem.
The first task in solving the problem is to identify its specification, clearly and
precisely. Having done so, the use of invariant properties guides the algorithm
development. The Dutch National Flag problem emerges as a core subroutine.

Bibliographic Remarks

Dijkstra’s original description of the Dutch National Flag problem can be found in
his classic text A Discipline of Programming (Dijkstra, 1976). There you will also
find many other examples of derivations of non-trivial algorithms.

In addition to the informal discussion of the FIND program in his inaugural
lecture in 1971 (see Exercise 2.1), Hoare also developed and formally verified an
algorithm to solve the problem. His solution, which was one of the very first pub-
lished proofs of the formal correctness of a computer program, can be found in
Hoare and Jones (1989, pp. 59-74).

15.1

15

Remainder
Computation

Loosely speaking, the remainder on dividing one number by another is what is
left over after the division. For example, if seven pieces of cake are divided among
three children, there will be one piece remaining; the remainder after dividing 7
by 3 is 1. Similarly, the remainder after dividing 12 by 4 is 0.

Computing remainders is at the core of two sorts of coding of data: encrypting
data so that its content cannot be deciphered by unwanted readers, and adding
redundant information to data so that its content can be recovered even when
errors are introduced (so-called error-resilient coding). In Chapter 16, we consider
the latter application in detail. It involves computing remainders after dividing
one polynomial by another. This chapter is about the more familiar problem of
computing remainders after dividing one integer by another. We also discuss the
calculation of several algebraic properties of remainders.

Formal Specification

The remainder, r, and quotient, d, on dividing integer P by strictly positive natural
number Q are defined by the properties:

0<r<Q A P=Qxd+r . (15.1)
For example, the remainder after dividing 7 by 3 is 1 because

0<1<3 A 7=3x2+1.

216

Chapter 15: Remainder Computation

The quotient is 2, for the same reason. Also, the remainder after dividing —7 by
3 is 2 because

0<2<3 A -7=3x(-3)+2 .

The quotient is —3.

If we want to specify the computation of remainders only, the quotient is exis-
tentially quantified. The formal specification of just the remainder on dividing
integer P by the strictly positive number Q is thus the number r defined by the
properties:

0<r<Q A (3d :=2P=Qxd+71) . (15.2)
The dummy, d, ranges over all integers.

Even when only the remainder is of interest, it helps in the derivation of an algo-
rithm to compute the quotient as well. The quotient plays the role of an auxiliary
variable—a variable used to relate the computation to the specification—but oth-
erwise plays no role in the computation proper. Auxiliary variables are discarded
in the final stages of algorithm design.

We introduce the technique of using auxiliary variables in the next section. Later
sections make more extensive use of auxiliary variables.

Our use of ‘the’ remainder and ‘the’ quotient presupposes that (15.1) defines r
and d uniquely. This is indeed the case, as the following calculation demonstrates.
We postulate that both the pair (v, d) and the pair (r’,d’) satisfy (15.1) and then
show thatr=r'and d =4d'.

(0€<r<Q A P=Qxd+r)
ALY <Q A P=Qxd +7")
= { preparing for next step }
0<r<Q A P=Qxd+vr)
AQ>r">20 A P=Qxd +7')
> { introduce ¥ -7’ and d—d’ by ‘subtracting’
the bottom line from the top }
-Q<r-r'<Q A 0=Qx(d-d)+((r-r")
= { arithmetic and Leibniz }
-Q < -(@Qx(@-d')) <Q A -(Qx@-d"))=r-r

= { 0 < Q, inequalities }
“1<-(d-d)<l A —(Qx(d-d)) =7-7"
= { (integer) arithmetic and Leibniz }

d=d" A r=vr" .

15.2 Elementary Algorithm 217

15.2

Elementary Algorithm

In this section, we develop an elementary algorithm for computing remainders
and the corresponding quotients. The algorithm is not efficient, but its existence
allows us to identify a number of basic algebraic properties of remainders. The
algorithm involves a case analysis on positive and negative numbers P. The case
that P is positive is developed in detail below. Exercise 15.5 asks you to develop
the algorithm in the case that P is negative.

The elementary algorithm is based on splitting (15.1) into

P=Qxd+7r (15.3)
and

0<r<Q . (15.4)
An easy way to establish (15.3) is by the assignment

r,d = P,0 .
This suggests the construction of a loop with (15.3) as invariant and (15.4) as
termination condition.

We note that assigning P to v also establishes 0 <7 in the case that 0 < P; con-
versely, it establishes » < in the case that P < 0. This suggests a case analysis
on 0 < P or P <0, whereby, in the first case, progress is made to the termination
condition by continually decreasing v, and, in the second case, progress is made
by continually increasing 7.

It is at this point that we make the assumption 0 < P and, as mentioned earlier,
leave the other case as an exercise.

Based on the analysis above, we add 0<r as an invariant property, with the
effect that the termination condition can be weakened to r < Q. Progress is made

by continually decreasing ». The skeleton of an algorithm is thus as shown below,
where variables m and n are the unknowns.

{ 0<Q }

r,d = P,0;

{ Invariant: 0<*r A P=Qxd+7r
Bound function: 7+ }

dor>Q — rv,d = r-m,n

od

{0<r<Q AN P=Qxd+r }

The remaining details are as follows. The loop body is executed when r > Q. So,
m and n are required to satisfy

O<m

218 Chapter 15: Remainder Computation

(in order to guarantee progress) and
OKr AP=Qxd+7r)[r,d:=r-m,n]
< 0KrAP=Qxd+r nr=Q
(in order to maintain the invariant). Now,
O<r AP=Qxd+7r)[r,d:=r-m,n]
= { substitution }
O0Kr-maAP=Qxn+(r-m)
< { We may assume r > Q, equivalently 0 < r - Q.
This suggests m = Q.
(Q is greater than 0 by assumption.) }
m=Q Ar=2Q AP=Qxn+((r-Q)
= { Now, heading for the given precondition,
O0Kr AP=Qxd+r
we choose n=d+1. }
n=d+l Am=Q Ar>2Q A P=0Qx(d+1)+{(r—-Q)
= { arithmetic }
n=d+1 Anm=Q Ar>2Q A P=Qxd+r .
We conclude that a loop body consisting of the simple assignment
r,d = r-Q,d+1

maintains the invariant and makes progress to the termination condition. The
algorithm we have thus obtained is shown in Figure 15.1.

Exercise 15.5 (Elementary remainder algorithm for non-positive P). Derive an
algorithm to compute the remainder and quotient when P < 0. (Hint: add r <Q
to the invariant property (15.3) and weaken the termination condition (15.4) to
0<Lr) |

Auxiliary Variables

The algorithm we have developed computes both a remainder and a quotient.
Often, however, only the remainder is required, and the quotient is not needed.
If this is the case, the algorithm can be simplified, at the expense of making the
specification and invariant properties slightly more complicated.

We note that, in Figure 15.1, assignments to 4 play no role in the computation
of r. If only the remainder is required, these assignments can be discarded. The

15.3 The mod and div Functions 219

15.3

{ OKP A 0<Q }

r,d = P,0 ;

{ Invariant: 0<r A P=Qxd+7vr
Bound function: 7 }

dor>Q — 7r,d = r-Q,d+]

od

{0<7r<Q A P=Qxd+vr } .

Figure 15.1 FElementary remainder and quotient computation (for natural number P).
variable d still has a role in the assertions that establish the algorithm’s correct-
ness; it becomes an existentially quantified variable, as shown below.

{ remainder computation—elementary algorithm }

{ OKP A 0<Q }

v = P

{ Invariant: 0<v A (3d = P=Qxd+71)
Bound function: 7 }

dor=2Q — r :=7r-Q

od

{0<r<Q A (3d:P=Qxd+7r) } .

Where specifications involve existential quantifications, it is a useful technique
to introduce variables into the program in order to compute so-called witnesses
o the existentially quantified dummies. These are called aquxiliary variables. With
care, the program can often be developed in such a way that the auxiliary variables
play no role in the computation proper, and can be discarded once the develop-
ment of the algorithm is complete. The technique is useful because calculating the
implementation from the specification avoids direct manipulation of existential
quantifications.

We will use the technique of introducing, and then discarding, auxiliary vari-
ables several times throughout this chapter.

The mod and div Functions

In Section 15.1, we showed that (15.1) defines at most one remainder » and quo-
tient d for all integers P and all strictly positive natural numbers Q. The con-

220

Chapter 15: Remainder Computation

struction of the elementary algorithm in Section 15.2 (for both the cases that
0 <P and P <0) establishes that there is at least one remainder r and quotient d
for all integers P and all strictly positive natural numbers Q. Together, we have
thus established that there is a function that maps given integers P and Q, where
0<Q, to the remainder, r, and quotient, d, after dividing P by Q, as specified
formally by (15.1).

A specification (a relation between input and output values) has a functional
solution if there is exactly one output for each input. Exhibiting an algorithm, no
matter how efficient or inefficient, satisfying the specification is the most effective
way of demonstrating the existence of at least one solution to a specification.

Recognizing that a specification has a functional solution has important con-
sequences for reasoning about the specification. The consequences are realized
by naming the function and expressing the functionality by a simple equivalence.
(Some logic texts refer to this process as Skolemization.)

In the case of the specification (15.1), there are two quantities involved, so we
give separate names to each. The standard name in mathematics for the remainder
function is ‘mod’; the symbol ‘+’ is used for the quotient.

Given integers P and Q, where 0 < Q, P mod Q denotes the remainder,and P + Q
denotes the quotient, after dividing P by Q. The existence and uniqueness of these
functions is expressed by the calculational rule:

r=PmodQ Ad=P+Q = 0<r<QAP=Qxd+r . (15.6)

Splitting the equivalence into a mutual implication, the ‘=’ expresses the exis-
tence of a solution to (15.1), and the ‘<’ expresses the unigueness of a solution
to (15.1). We established the existence of a solution by constructing the elemen-
tary algorithm of Section 15.2. The uniqueness of the solution was established in
Section 15.1.

In Chapter 6, the symbol ‘=’ was used for integer division, but a different defini-
tion was given. We show in Section 15.3.3 that the two definitions are equivalent.
For the moment, however, we take care to use only properties of + that are derived
from (15.6).

The standard convention in mathematics texts is that mod, like +, has higher
precedence than addition but lower precedence than multiplication. So, for
example, m + nmodQ and m + (nmodQ) are equal. Also, mxnmodQ and
(mxn)mod Q are equal. Giving multiplication precedence over mod is undoubt-
edly due to the fact that it is common to denote multiplication by juxtapo-
sition, and the eye naturally groups m and n together in mn mod Q. When
multiplication is explicitly denoted, the algebraic properties make it undesir-
able to give multiplication precedence over mod. Our own preference is there-
fore for the opposite convention. However, to avoid confusion with other texts,
we take the middle road of including parentheses, even though some may be
omitted.

15.3 The mod and div Functions 221

15.3.1 Basic Properties
Here is how to use (15.6) in a few simple cases. First, we make the left side of the
equivalence trivially true by instantiating v to PmodQ and d to P + Q. We get
O0<PmodQ <Q A P=Qx(P+Q)+PmodQ . {15.7)

Next, we make the second and third conjuncts true by instantiating » to 0 and d
to P+ Q. We get

0=PmodQ = P=Qx(P+Q) . (15.8)
Now, we instantiate » to Pmod Q and d to 0. We get
true
= { (15.6) withr,d := PmodQ,0 }
PmodQ =PmodQ A 0=P=+Q
0<PmodQ <Q A P=Qx0+PmodQ
= { predicate calculus and arithmetic }
0=P+Q = 0<PmodQ<Q A P=PmodQ
= { (15.7) }

il

0=P+Q = P=PmodQ .
Summarizing,

0=P+Q = P=PmodQ . (15.9)
Now, we consider the case that P satisfies 0 < P < Q. We have

o0<P<Q

= { arithmetic }
0<P<Q A P=Qx0+P

= { (15.6) with P,v,d := P,P,0 }
P=PmodQ A 0=P=+Q
= { (15.9 }
P=PmodQ .
Combining with (15.9),
(0<P<Q) = P=PmodQ) = (0=P+Q) . (15.10)

The case that P =0 is important. From (15.10), we get
0=0modQ . (15.11)

222

Chapter 15: Remainder Computation

Now, we calculate (Qxm +n) mod Q and (Q xm +n) + Q for arbitrary m, 0 < m:

r=(@Q@xm+n)ymodQ Ad=(Qxm+n)+Q

= { (15.6)with P := Qxm+n }
0<r<Q AQxm+n=0Qxd+r

= { arithmetic }
0<7r<Q An=Qx(d-m)+r

= { (15.6)with P :=n }
r=nmodQ A d-m =n=+Q

= { arithmetic }
r=nmodQ Ad=m+(n+Q) .

We conclude that

Qxm+nymodQ = nmodQ A (Qxm+n)=Q =m+(n+Q) .

(15.12)
In particular, combining (15.11) and (15.12) by instantiating n to 0,
(QxmymodQ =0 A (Qxm)+-Q=m . (15.13)
Exercise 15.14. Use (15.6) to calculate Pmod1 and P + 1. O
Exercise 15.15. Assume that —Q < P < 0. In this case, can you calculate simpler
expressions for PmodQ and P + Q from (15.6)? 0
Exercise 15.16. Use (15.7) and (15.12) to simplify (P mod (Q xn)) mod Q, where
O<n. 0O
Exercise 15.17. Show that, for all m and n,
rmodQ =n
is an invariant of the assignment
¥ = r-Qxm.
O

Exercise 15.18. Rather than develop separate algorithms for the cases that 0 < P
and P < 0, as we did in Section 15.2, an alternative is to express P modQ and
P+ Q as functions of ((—=(P+1)) modQ) and (—(P+1)) + Q, respectively. (Since
P <0 = 0<—(P+1), the existence of such functions means that only the algo-
rithm for positive P is needed.) Calculate these functions using (15.6). 0

15.3 The mod and div Functions 223

15.3.2 Separating mod from +

It is convenient to have a rule for reasoning about the mod function alone, with-
out explicit mention of the + function. This is obtained from (15.6) by existen-
tially quantifying over the variable d. We get that, for all P and all Q, where

0<q,
r=PmodQ = 0<r<Q A{(3d:P=Qxd+r) . (15.19)

To illustrate the use of (15.19), let us determine when m and »n have the same
modulus values:

mmodQ = nmodQ
= { (15.19) with P := m,
O0<nmodQ < Q }
(3d = m =Qxd+nmodQ)
= { (15.7)withP :=n }
(3d = m=0Qxd+ (n—-Qx(n+Q)))

= { arithmetic }
(3d = m~n =Qx(d-n+Q))
= { range translation:d := d+n+Q }

(3d :: m-n = Qxd)
= { (15.19) with P := m—n }
(m—-n)modQ =0 .

We conclude that
mmodQ =nmodQ = (m-n)modQ =0 . (15.20)

Note the use of range translation in the calculation. (See Exercise 11.57 for the
statement of the rule.) Generally, when using (15.19) instead of (15.6), the use of
range translation replaces explicit calculations of the relationship between quo-
tients. This simplifies the calculations, particularly when range translation is used
more than once, because it permits the omission of unwanted detail; we know that
appropriate witnesses to the existentially quantified variables exist but their exact
form is not required.

Exercise 15.21. Express (3d :: P = Qxd +r) as an equation involving + and P.
(That is, eliminate the existential quantification.) |

224

Chapter 15: Remainder Computation

15.3.3 Separating + from mod

15.3.4

A rule for reasoning about the + function, without explicit mention of the mod
function, is

d=P+Q = (Ir 2 0<r<Q A P=0Qxd+7r) . (15.22)

Let us illustrate the use of (15.22) in showing that

- 4

(This is the definition of integer division used in Chapter 6.)
d=P+Q
{ (15.22) }
(FJr = 0<r<Q A P=Qxd+r)
= { arithmetic and trading (heading towards

one-point rule) }
FBr:r=P-0Qxd :0<1r<Q)

= { one-point rule }
0<P-Qxd <Q
= { arithmetic }
P P
——1<d< =
Q Q
= { for all real x and integer m,

Ix]=m = x-1<m<x }
P
d= i
5]

Exercise 15.23. Simplify (mxP) + (mxQ). Hence, simplify (mxP)mod (mxQ)
(when m > 0).]

Modular Arithmetic

A remainder after dividing by Q is called a remainder modulo Q. (Indeed, P mod Q
is sometimes read as P modulo Q.) A modulo-Q number is any number in the
range 0..Q 1. In this section, we identify addition, multiplication and negation
operations on modulo-Q numbers. We do so by seeking distributivity properties
of the mod Q function over addition, multiplication and negation.

15.3 The mod and div Functions 225

We begin with negation. The problem we consider is whether, for given Q, there
is a unary operator e such that, for all P,

o(PmodQ) = (-P)modQ .
An appropriate definition is calculated as follows.
(-P)modQ =7 A (-P)+Q = d
{ (15.6) with P := —P }
0<r<Q A —=P=Qxd+7r
= { (15.7), in order to introduce PmodQ and P+ Q }
0<r<Q A —(Qx(P+Q)+PmodQ) = Qxd +r

= { arithmetic—rewriting the second conjunct

i

in the shape of the second conjunct of (15.6) }
0<r<Q A —=(PmodQ) = Qx{(d+P+Q)+7r
= { (15.6) with P, d,y = —(PmodQ),d+P+Q ,r }

(=(PmodQ))modQ = *r A (=(PmodQ))+~Q = d+P+Q .
We conclude that

(=P)modQ = (—(PmodQ))modQ .
Thus, we define the operation e by, for all integers m,

em = (-m)modQ , (15.24)
so that

(-P)modQ = o(PmodQ) . (15.25)

Note that em is a modulo-Q number for all integers m. In particular, em is
a modulo-Q number when m is a modulo-Q number. The operation o is called
negation modulo Q. We say that the modulo-Q numbers are closed under negation
modulo Q.

Calling & a ‘negation’ operator is justified if it has similar algebraic properties
to negation in integer (or real) arithmetic. Negation of integers has two properties,
namely

-0=0,
and, for all integers m and n,
-m=n = m=-n .

(This is equivalent to —(—m) = m. It is neater because it is symmetric.) So, let us

226 Chapter 15: Remainder Computation

check that e has similar properties. First,

e0

= { definition (15.24) }
(-0)modQ

- { -0=0 }
OmodQ

= { (15.11) }
0.

We conclude that

e0=0 .

Second, assume that m and n are modulo-Q numbers. Then,
em=n
= { definition (15.24) }
(-m)modQ =n
= { (15.19), assumption: 0 < n < Q }
(3d :: - m = Qxd +n)
= { negation (in integer arithmetic) }
(3d :: —m = Qxd+m)
{ (15.19), assumption: 0 < m < Q }

Il

(—-n)modQ =m
{ definition (15.24) }

en=m .

il

We conclude that, for all modulo-Q numbers m and n,
em=n=o6en=m .

We next consider whether remainder computation distributes through addition.
That is, we seek an operator & such that

(m+n)modQ@ = (mmodQ) & (nmodQ) .
We have
(m+n)modQ

= { (15.7) in order to introduce mmod Q }

15.3 The mod and div Functions 227

(Qx(m+Q)+mmodQ + n)ymodQ
= { (15.12) }
(mmodQ +n)modQ .
That is,

(m+n)ymodQ = (mmodQ +n)modQ . (15.26)
We can now exploit the symmetry of addition:

(m+n)modQ
{ (15.26) }

(mmodQ +n)modQ

1
i

{ addition is symmetric }

(n+mmodQ)modQ
{ (15.26) with m,n := n,mmodQ }
{(nmodQ +mmodQ)modQ .

il

We have thus calculated that
(m+n)modQ = (mmodQ) ® (nmodQ) ,

where

req = (p+q)modQ .

Just as for negation, we observe that m & n is a modulo-Q number for all integers
m and n, but, in particular, for modulo-Q numbers m and n. The & operator is
called addition modulo Q.

The operators & and &, together with the multiplication operator ® you are
asked to construct in Exercise 15.27 (see below), form the basis of modular arith-
metic—arithmetic modulo some number Q. The exercises below ask you to estab-
lish that these three operators have some algebraic properties in common with
their counterparts in normal arithmetic. Some properties of normal arithmetic
do not carry over to modular arithmetic, however. One example is the subject of
Exercise 15.29. The bibliographic remarks point you to practical applications of
modular arithmetic.

Exercise 15.27. Calculate an operator ® such that

(mxn)modQ = (mmodQ) ® (nmodQ) .

228 Chapter 15: Remainder Computation
Exercise 15.28. Show that addition modulo Q and multiplication modulo Q are
symmetric and associative. To be precise, show that, for all integers m, n and p,

men = nem ,
(men)ep = me(nep) ,
men =nem
and
(men)ep = me(nep) .
Show, also, that negation modulo Q distributes through addition modulo Q. That
is, show that, for all integers m and n,
e(men) = (em)ea(6n) .
(This is the hardest part of this exercise. Hint: formulate a lemma like (15.26).)
Show that multiplication modulo Q distributes through addition modulo Q.
That is, show that, for all integers m and n,
me(naep) = (men)e (mep) .
]
Exercise 15.29 (Cancellation Properties). Show that addition of any modulo-Q
number is a bijection on modulo-Q numbers. That is, show that for all modulo-Q
numbers m, n and p,
men=mep = n=p .
Show, on the contrary, that multiplication by a non-zero modulo-Q number is not
necessarily a bijection on modulo-Q numbers. That is, exhibit modulo-Q numbers
m, n and p such that
m+0 A (me®n=mep £ n=p).
O
15.4 Long Division

The elementary remainder computation algorithm, developed in Section 15.2,
repeatedly subtracts Q from an approximation to the remainder. The efficiency
can be substantially improved if, for some positive number m, Q xm is subtracted,
in one go, where m is as large as possible. Long division, which has been designed
for efficient manual calculation of remainders and quotients, does just that.

Figure 15.2(a) shows the computation by long division of the remainder 6 and
quotient 521 on dividing 3653 by 7. (The presentation is in the format used in
British schools. Other nations may use a different format.)

15.4 Long Division 229

15.4.1

1 ms3
20 my
521 500 m
7)3653 7)3653 Yo (=P)
§_5__ 3500 mixQ
15 153 71
4 40 mxQ
13 13 o
_Z 7 msaxQ
6 6 ¥3
(a) (b)

Figure 15.2 Remainder computation in decimal arithmetic (P = 3653, Q =7). (a) Long
division; (b) filling in details.

In this section, we develop an implementation of this manual technique of com-
puting remainders and quotients. A method designed for paper-and-pencil calcu-
lations need not be the best method for implementation on a digital computer,
but we hope that your familiarity with the method will help you to understand
the use of invariant properties in the design of such an implementation.

Figure 15.2(b) explains long division in detail. From it, we see that the technique
begins with the remainder, 7y, equal to P (3653). At each subsequent step, a multi-
ple Q xm of Q is subtracted from 7, thus forming the sequence of ever-decreasing
remainders 7y, 71, r2 and 73. The process is terminated when the remainder is less
than Q. In decimal arithmetic, all the multiples take the form Q xnx10* for some
k, where 0 < n < 10. (Thus, m; is 5x102, m» is 2x10! and m3 is 1x10°. Not shown
is mg, which is 0x103.)

Figure 15.3 shows the same process in binary arithmetic. The strategy is iden-
tical but the multiples of Q subtracted from r take the form Q xnx2¥ for some
k, where 0 <n < 2. Since binary arithmetic is more suited to computer implemen-
tation, we develop long division for binary numerals.

Implementing Long Division

Long division subtracts successive multiples of Q from a remainder value. We
introduce variable m, to store the multiples of Q, and variables and d, to store
the remainder and quotient, respectively. The specification of m is simple; in
binary arithmetic, it satisfies the invariant property

(Ak: 0<k: m = Qx2ky .

230 Chapter 15: Remainder Computation

1 m>
101 100 my
101)11010 101)11010 ro(= P)
101 10100 Qxm,
110 110 18
101 L Qxm,
1 1 Yo
(a) (b)

Figure 15.3 Remainder computation in binary arithmetic (P =26, Q =5). (a) Long divi-
sion; (b) filling in details.

The existential quantification suggests the introduction of variable k into the algo-
rithm. The two variables m and k satisfy the invariant property
0<k A m=Qx2k .

Later (Section 15.4.2), we consider doing without variable k, reintroducing the
existential quantification.

What about the successive values of r and d? We have to identify an invari-
ant property and a termination condition such that their conjunction implies the
required postcondition (15.1). Noting that Q = Q x29, a possibility is to replace Q
in (15.1) by the variable m. That is, we postulate the invariant property

O0<r<m A P=Qxd+r
together with the termination condition
m=qQ .

Our algorithm thus has the following shape. (Note that the bound function for the
loop has yet to be determined.)

{f OKP A 0<Q }
initialize m, k, v and d to establish invariant ;
{ Invariant:
OKr<m A P=Qxd+r A 0<k A m=Qx2k }
do m#Q — make progress to termination condition
whilst maintaining invariant
od
{0<r<Q A P=Qxd+r } .

15.4 Long Division 231

The initialization is slightly more complicated than in earlier examples. Let us split
the invariant into four separate clauses and consider each in turn. The clauses are

o<r , (15.30)
r<m , (15.31)
P=Qxd+v , (15.32)
0<k A m=Qx2% . (15.33)

Now, (15.32) can be established by the assignment v,d := P,0. This also estab-
lishes (15.30) because we are given the precondition 0 < P. That is,

{ OKP }

r,d = P,0

{0<r A P=Qxd+7r } .
Clauses (15.31) and (15.33) are left. The code to establish these clauses is to be
executed after the initialization of » and d, so should not modify their values.

To establish (15.31) and (15.33), aloop is needed. The loop has (15.33) as invari-

ant and (15.31) as termination condition. Property (15.33) is established by the
assignment m,k := Q,0, and progress is made towards (15.31) by continually

multiplying m by 2. (Multiplying by 2 increases m because 0 < Q.) This, then, is
the initialization of m. It assumes that » has already been assigned the value of P.

{ 0<Q A OLT }

m,k = Q,0 ;

{ Invariant: 0<k A m = Qx2k
Bound function: r-m }

dorm — m,k = 2xm,k+1

od

{r<m AO<k A m=Qx2k } .

Because the initialization of m does not alter the value of v or d, the assignment
r,d = P,0, followed by the above code, fulfils the requirement of initializing m,
k, v and d. Let us now turn to the loop body.

The requirement on the loop body is that it should maintain properties (15.30),
(15.31), (15.32) and (15.33) whilst making progress to the condition m = Q.

We note that the loop body is executed when m + Q. Since we have also stip-
ulated that it should maintain invariant the property (15.33), 0<k A m = Qx2¥,
we conclude that the loop body is executed when 1 < k. The assignment

m,k = m+2,k-1

232

Chapter 15: Remainder Computation

will, therefore, decrease m whilst maintaining (15.33), thus making progress to
the termination condition m = Q.

Decreasing m may, however, falsify the requirement r < m. If this is the case,
the value of » must also be decreased, but in a way that maintains all conjuncts of
the invariant, in particular property (15.32). We investigate conditions on number
n that guarantee that subtracting n from » maintains (15.32). We have

(P=Qxd+r)[r,d:==r-n,d]
{ substitution }
P =Qxd +r-n

I

= { assume P = Qxd+v }
Qxd+r = Qxd'+r—n

= { arithmetic }
n = Qx(d-d)

= { one-point rule, arithmetic }

(A:d =l+d:n = Qxl) .

So, subtracting any multiple Qx1 of Q from r, simultaneously adding I to d,
maintains (15.32). Formally, for all [,

(P=Qxd+7r)[r,d:i=r-Qxl,d+l] « P=Qxd+7r .

By design, however, m is a multiple of Q; it is Qx2¥. Thus, subtracting m from
7, at the same time adding 2* to d, maintains property (15.32).
In summary, the loop body takes the following form:

{o<r<m A P=Qxd+r A 1<k A m=Qx2k }

m,k = m+2,k-1 ;

{ Imnvariant: 0<?r A P=Qxd+7r A 0<k A m=Qx2k
Bound function: 7 }

dor>m — r,d = r-m,d+2k

od

{O<r<m A P=Qxd+r A 0<k A m=Qx2k } .

So far, we have not made any use of the fact that the algorithm we are developing
is based on binary (as opposed to, say, decimal) arithmetic. All our calculations
are equally valid if ‘2’ is replaced everywhere by ‘B’, where B > 2.

Recall the discussion of long division. In decimal arithmetic, each step subtracts
a multiple of Q of the form Q xnx10X, for some k and n, where 0 < n < 10, from
the current remainder 7. In binary arithmetic, each step subtracts a multiple of

15.4 Long Division 233

15.4.2

Q of the form Qxnx2¥, for some k and n, where 0 < n <2, from the current
remainder 7. So, each step subtracts Q x2% at most once.

We can formally justify this within the development of our algorithm. Currently,
the loop body we have developed subtracts m repeatedly from » until » < m.
The following calculation investigates how many times this needs to take place.
Specifically, noting that the value subtracted from 7 is m + 2, where m satisfies
0 <r <m, we investigate when v —-m +2 < m -+ 2.

ryr-m+2 < m+2
= { arithmetic }

r < 2x(m+2)

- { m-—1 < 2x(m + 2), transitivity of < }
r < m-1

= { integer arithmetic }
r<m .

So, as expected, the subtraction only needs to take place at most once; the inner
loop, which repeatedly checks to see whether m should be subtracted from v, can
therefore be replaced by a conditional statement, which checks only once.

Our algorithm is now complete; it is shown in Figure 15.4.

Exercise 15.34. Check your understanding by giving the algorithm for the case
that ‘2’ is replaced everywhere by ‘B’, where B > 2. Why is the lower bound 2 on B
needed? O

Discarding Auxiliary Variables

As was the case for the elementary remainder computation algorithm, the imple-
mentation of long division can be simplified if only the remainder, and not the
quotient, is required.

The basis for the simplification is that the computation of remainder v depends
only on the variable m; no boolean test uses the value of k or d, and no assignment
to ¥ depends on the value of k or d. So, if only r is required, all assignments to k
and d can be removed from the program.

The variables do not disappear entirely. They are needed for the specification
of 7, and for the invariants, in the form of existentially quantified variables. The
invariant property of m reverts to

(Fk:0<k: m=Qx2ky |

which is what it was before we decided to introduce k. Also, the quotient d
becomes existentially quantified, so that the postcondition satisfied by 7 is

0<7r<Q A (Fd = P=Qxd+71) .

234 Chapter 15: Remainder Computation
{ OKP A 0<Q }
r,m,k,d = P,Q,0,0 ;
{ Invariant: 0<k A m = Qx2k
Bound function: r-m }
dor>m — m,k := 2xm, k+1
od ;
{ Invariant:
0<r<m A P=Qxd+r A 0<k A m=Qx2k
Bound function: m }
do m=Q — m,k .= m=2,k-1 ;
{ 0<r<2xm A P=Qxd+r
AO<k A m=Qx2k }
if r<m — skip
gr>m — r,d = r-m,d+2%
fi
od
{0<r<Q A P=Qxd+r }
Figure 15.4 Long division in binary arithmetic.
Removing d and k from the computation proper, introducing them as existentially
quantified variables in the assertions, we get the program in Figure 15.5.
Exercise 15.35. Use the equivalence
(3d = P=Qxd+r) = PmodQ =rmodQ
to develop the program in Figure 15.5 afresh, exploiting modular arithmetic (see
Section 15.3.4) rather than using the basic specification (15.2) of remainders. Make
clear which particular properties you use in your derivation. O
15.5 On-Line Remainder Computation

We now consider an implementation of remainder computation motivated by a
desire for an efficient implementation in hardware.

15.5 On-Line Remainder Computation 235

{ OKP A 0<Q }
r.m = P,Q ;
{ Invariant: (3k:0<k:m = Qx2%)
Bound function: r-m }
dorzm — m = 2xXm
od ;
{ Invariant:
O0<r<m A {3d = P=Qxd+r) A (Fk:0<k:m = Qx2k)
Bound function: m }
do m=Q — m = m-=+2;
{ O<r<2xm A (3d = P =Qxd+vr)
A (Fk:0<k:m = Qx2%) }
if r<m — skip
Orzm — v = r-m
fi
od
{ 0<r<Q A (3d 2P =Qxd+71) }

Figure 15.5 Remainder computation in binary arithmetic.

Suppose that the number P is stored in binary form as a sequence of hits. We
envisage a situation where the requirement is to construct a ‘black box’ into which
the bits are input one by one, most significant bit first. Within a constant delay
of inputting each bit, it is expected that the remainder after dividing the number
input thus far by Q should be output from the black box. For example, if Q is 11
(the number 3 in binary form) and the bits 1, 0, 1 and 1 are input, in that order, the
output should be 1, 10, 10 and 10, these being the remainder after dividing 1, 10,
101 and 1011 by 11, in binary arithmetic. (In decimal, the sequence of numbers
is 1, 2, 5 and 11. The sequence of remainders is 1, 2, 2, 2.)

A computation of this form occurs frequently in practice. The requirement of
constant delay (that is, a delay that is independent of the history of inputs and
outputs) makes the computation a so-called on-line algorithm. An on-line algo-
rithm maps a sequence of inputs to a sequence of outputs, each output occurring
within at most a constant delay after the associated input.

236

Chapter 15: Remainder Computation

We can model the input of bits and the computation of the ‘number input thus
far’ as a non-terminating loop that gets a bit b and ‘adds’ it to the value P input
thus far, which is initially zero:

P = 0;

{ Invariant: 0<P }

do true — (get.b {O0<b<1l} ; P = 2xP+b)
od .

(We continue to use an upper-case ‘P’, in spite of the fact that P is not constant,
as a warning that no additional assignments to P are allowed. The parentheses
around the body of the loop are unnecessary, since guarded commands are always
bracketed by if-fi or do-od, but they are included to improve readability.)

The requirement is to add code that establishes and maintains the invariant

¥ = PmodQ , (15.36)

where Q is a given positive number.

There is no progress requirement on the outer loop, because we choose to ignore
the detail of testing for the end of the input. There will, however, be a progress
requirement on any inner loop introduced during the development.

Since P is also initialized to 0, and 0 mod Q = 0, the assignment » := 0 estab-
lishes the invariant. So, our task is to determine m such that the following is valid:

Pyr = 0,0 ;

{ Invariant: O<P A r = PmodQ }

do true — (get.b {O0<b<1} ; P,r := 2xP+b,m ; putr)
od .

We calculate m, the right side of the assignment to r, as follows. The formal
requirement on m is

(r =PmodQ)[P,v:=2xXP+b,m] « ¥ = PmodQ ,
which is equivalent to
m=(2xP+b)modQ <« r =PmodQ .
Now,
(2xP +b)modQ
{ modular addition: (15.26) }
((2xP)modQ + b)ymod Q
{ modular multiplication: Exercise 15.27 }

Il

15.6 On-Line Remainder Computation 237

(2x(Pmod Q)+ b)modQ
= { assume * =PmodQ }
(2x¥ +b)modQ .

That is, ¥ = P mod Q is maintained invariant by taking m to be (2x» + b) mod Q.

This still involves a ‘mod Q’ operation, which we must eliminate. The strategy
is to split the assignment to v into the composition of two assignments, the first
assigning 2xr -+ b to 7, and the second assigning ¥ mod Q to #, as shown below.

{ 0P A ¥ = PmodQ }

P,r := 2xP+b,2xv+b ;

{ OKP A rmodQ = PmodQ }
¥ = rmodQ

{ 0OKP A ¥ = PmodQ } .

This simplifies the task to replacing the second assignment by something not
involving the ‘mod Q’ operation.

The assignment » := ¥ modQ may be replaced by skip if the precondition
r = v mod Q holds. Now, ¥ = ¥ mod Q is equivalent to

0<r<Q . (15.37)
Also, by an easy calculation,
{10€rA0LDbtr = 2xr+b{0<r}.
So, if the assignment + := 2x¥ + b falsifies (15.37), it does so by falsifying
r<Q .
However,
{r<QAb<lir =2xr+b{r<2xQ}.

The increase in 7, caused by the assignment v := 2x7 + b, thus makes v at most
Q more than the desired greatest value. Moreover, by (15.12) (see Exercise 15.17),

{rmodQ =PmodQ}r = r—Q{rmodQ =PmodQ } .

Re-establishing v = P mod Q thus amounts to a conditional statement that sub-
tracts Q from 7 in the case thatr > Q.

We have thus obtained the on-line remainder computation algorithm shown in
Figure 15.6.

Exercise 15.38. Suppose the input value b is not constrained to be a binary digit
but satisfies 0 < b < B. (So the base is B.) Modify the algorithm accordingly. O

238 Chapter 15: Remainder Computation
Pr = 0,0 ;
{ Invariant: O<P A v = PmodQ }
do true — get.b {0<b<g1l} ;
P,vr = 2xP+b,2xr+b ;
{ OKP A 0<K<7r<2xQ A rmodQ = PmodQ }
if r<Q — skip
Or>2Q —r :=1r-Q
fi; e
put.r i
od
Figure 15.6 On-line remainder computation in binary arithmetic.
15.6 Casting Out Nines

In Section 15.3, we showed how to derive properties of the mod function directly
from its specification. Some properties are more easily derived by analysing an
algorithm to compute the function. This is particularly true of properties that
require inductive proof, because these properties can be identified as invariants
of the algorithm. This section considers one example.

Decimal numbers can easily be checked to see whether or not they are divis-
ible by 3 and 9. Add the digits of the number, and check whether the sum
is divisible by 3 and 9. For example, 23571 is divisible by 3 and 9, because
2+3+5+7+1 =18, which is divisible by both; 23475 is divisible by 3 but not by 9,
because 2+3+4+7+5 =21 which is divisible by 3 but not by 9; 13475 is divisible
by neither, because 1+3+4+7+5 = 20 which is divisible by neither 3 nor 9. This
process is called casting out nines.

To prove the correctness of casting out nines, it suffices to add the computation
of the sum, s, of the input digits to the computation of the remainder, r, after
dividing by 9. Then we establish that s mod9, the remainder after dividing s by
9, equals 7. This we do by showing that it is an invariant of the algorithm for
computing remainders. The details are shown below. (Note the additions to the
invariant properties and the assignments to s.)

Pr,s := 0,00 ;
{ Invariant: O<P A v = Pmod9 = smod9 }
do true — get.b {0<b} ;

15.7 Summary 239

15.7

P,r,s := 10xP+b,10xr +b, s+b ;

{ Invariant:
0<P A rmod9 = Pmod9 = smodH
Bound function: 1+ }

dor>z29 — r = r-9

od ;

put.r

od .
To check the correctness of the added assertions, we have to check their validity
with respect to the three assignments involving + and s. That is, we check the
truth of

(r = smod9)[P,r,s:=0,0,0] ,
(rmod9 = smod9) [r,s := 10xr +b,s+b] « v =smod9 ,

and
(rmod9 =smod9)[r:=v-9] « rmod9=smod9 .

These follow from properties (15.11) and (15.12).

Exercise 15.39. We seem to have forgotten about divisibility by 3! Show that this
is not the case by showing how testing for divisibility by 3 follows from a test for
divisibility by 9. O

Summary

This chapter has been about specifying and implementing remainder computa-
tion in normal arithmetic. We have seen how to calculate algebraic properties of
remainders and how to calculate different implementations (both directly from
the specification and exploiting the derived properties). Specifications that involve
existential quantifications give rise to the use of auxiliary variables. This impor-
tant technique is illustrated by the computation of quotients, as well as remain-
ders, these computations being discarded at a later stage of the development.

Bibliographic Remarks

Remainder computation is fundamental to public-key cryptography (Schneier,
1995; Stallings, 1999). The encryption and decryption algorithms involve a com-
bination of remainder computation, as discussed in this chapter, and evaluating
powers, as discussed in Section 13.3.3. A different sort of remainder computation
is used in error-resilient coding, which is the subject of Chapter 16.

This page intentionally left blank

16.1

16
Cyclic Codes

The transmission of raw data from one site to another, for example over the
Internet or from a CD to a loudspeaker, is rarely error free. Data sent via a satellite
may be lost, corrupted or duplicated as a result of atmospheric disturbances; the
same may happen to data retrieved from a CD as a result of scratches or dirt.

In order to counteract the errors that occur in data transmission, it is usual to
encode the data in such a way that errors can be detected and, where possible,
repaired. This is achieved by adding redundant information to the data.

Cyclic codes offer an efficient way of protecting data from transmission errors,
and their use is recommended in several industry standards. Special-purpose
hardware has been developed to implement the associated encoding and decod-
ing algorithms, in order to make the process of transmitting data as efficient as
possible. This chapter is about deriving these hardware implementations.

The computation of cyclic codes is effectively a remainder computation, but
in an algebra different to ordinary arithmetic—in fact, an algebra that is, in one
sense, simpler than ordinary arithmetic. Section 16.2 introduces this algebra, and
Section 16.3 explains how remainder computation in this algebra is used to add
redundancy to transmitted data. Section 16.4 shows how a long-division algorithm
is developed, taking account of the novel algebraic properties, whilst Section 16.5
is about the implementation in hardware of on-line encoding and decoding algo-
rithms.

Codes and Codewords

One of the simplest possible encoding methods is to add a single parity bit to
the end of a sequence of bits to ensure that the number of unit bits is always
even (Figure 16.1(a)). This method allows a single error in the transmitted data

242

Chapter 16: Cyclic Codes

00010 000
00111 1111
010 1
01110
1001 1
101] 0
1101 0
11111
(@ (b)

Figure 16.1 Two examples of codes. The information bits are to the left of the dotted
line. (a) Parity check; (b) threefold repetition code.

to be detected. If there are two or more errors, the transmitted data will be indis-
tinguishable from a message containing at most one error; also, error repair is
impossible because it is not possible to determine which bit has been incorrectly
transmitted.

Another method is to repeat each bit of data some constant number of times.
This is called a repetition code. The threefold repetition code illustrated in Fig-
ure 16.1(b) permits the repair of a single error in the data. (We use the word
‘repair’ rather than ‘correction’ because it is never possible to guarantee that at
most one error has occurred during transmission; ‘repair’ is less likely to mislead
than ‘correct’.)

Redundancy in the transmitted data results from the fact that only a fraction of
all bit sequences are ever transmitted. Thus, of all sixteen 4-bit sequences, eight
may be transmitted when using a single parity bit (Figure 16.1(a)), and, in a three-
fold repetition code, only two out of eight 3-bit sequences are ever transmitted.

A code of length n is a subset of the set of all n-bit sequences!. A codeword is
an element of the code. If there are k information bits in a code of length n, the
rate of the code is expressed by the pair (k,n).

A mathematical theory has been developed with the aim of predicting codes that
maximize both the ratio k/n and the error detection and repair capability. Among
such codes the class of cyclic codes has assumed a prominent role, and their use is
recommended in several industry standards. In this chapter, we develop encoding
and decoding algorithms appropriate to the use of cyclic codes for error detection.
Algorithms for error repair are beyond the scope of this text.

1For simplicity, we assume that data to be transmitted are a finite sequence of Os and 1s—bits.
Block codes group bits together into larger units, but a full treatment of cyclic codes goes far beyond
the scope of this text.

16.2 Boolean Polynomials 243

16.2

Boolean Polynomials

The idea behind cyclic codes is that a finite sequence of bits can be represented as
a polynomial. Polynomial arithmetic has algebraic properties in common with nor-
mal arithmetic that allow remainder polynomials to be defined. Data is encoded
as the data itself, combined with a remainder, obtained by dividing the data poly-
nomial by a so-called generator polynomial.

The sequence of n+1 bits Py, Py,..., P, is regarded as a polynomial in x:

Pux™ + Ppax™ 1l + ... + Pix + Py .

The bits Py, P1,..., P, are called the coefficients of the polynomial, and x is a so-
called indeterminate value. That is, x is treated like a variable, but no information
is given that will allow its value to be determined.

The definition of a polynomial presupposes the definition of ‘addition’ and
‘multiplication’ operators on the coefficients. For cyclic codes, addition of bits
is defined to be addition modulo 2. That is,

0+0=0 ,
0+1 =1,
1+0=1 ,
1+1 =0 .

Likewise, multiplication of bits is defined to be multiplication modulo 2. This, as
it happens, is the same as normal multiplication:

0x0=0,
0x1=0,
1x0=0,
IxI=1.

(Another way of looking at these operations is as operations on the boolean val-
ues true and false, where true corresponds to 1 and false to 0. Addition is then
boolean inequality, and multiplication is conjunction of boolean values. Alterna-
tively, with true corresponding to 0 and false to 1, addition is boolean equality and
multiplication is disjunction. The algebraic properties should thus be familiar to
you from Chapter 5.)

A polynomial is said to have degree n if n is the index of the largest non-zero
coefficient. By convention, ‘0’, the polynomial whose coefficients are all zero, has
degree —oo.

Two polynomials are equal if they have the same degree and corresponding
coefficients are equal.

In defining operations on polynomials, it is useful to regard a polynomial as an
infinite sequence of bits that is eventually all zero. This means that we assume

244

Chapter 16: Cyclic Codes

that polynomial P satisfies
P = (Sk:0<k:Pyxk)

where no upper bound is given on the dummy k. The assumption that P, =0 for
all k greater than the degree of P ensures that problems with infinite summations
do not arise. In this way, the rule for equality of polynomials P and Q becomes

(Sk:0<k:Pxk) = (Zk:0<k:Qrx*)
= (Vk:0<k:Pc=Qx) .
Also, a precise definition of the degree of polynomial P, denoted degree.P, is
(Vn :: degreeP<n = (Vk:n<k:P,=0)) .

This definition also applies to the zero polynomial. The assumption we make
about —o0 is —o < (.

We are now in a position to define addition and multiplication of polynomi-
als. Both are defined by extending addition and multiplication operations on the
coefficients of the polynomials.

Suppose that the addition p+g of coefficients p and q is well defined. Then
addition of polynomials—also denoted by ‘+’— is defined as the addition of cor-
responding coefficients. That is,

(Zk:0<k: Pex®)y + (Sk:0<k: Qrxk)
= (Zk:0<k: (Pe+Qr)xk) .

Note that the ‘+’ in the upper line is the operator we are defining. The ‘+’ in the
lower line is assumed to be known. This overloading of the ‘+’ symbol is justified
by the fact that addition of polynomials inherits the principle algebraic properties
of an ‘addition’ operator. That is, if addition of coefficients is symmetric and
associative, then so is addition of polynomials. Also, if 0 is the unit of addition
of coefficients (that is, for all coefficients p, 0+p = p) then 0, the polynomial of
degree —o, is the unit of addition of polynomials. (It will also turn out to be the
zero of multiplication.)

An immediate consequence of the definition of addition of polynomials is that
the degree of P+Q is at most the maximum of the degrees of P and Q. For cyclic
codes, there is an additional, important consequence. Recall that, for cyclic codes,
the coefficients are bits, and addition is addition modulo 2. In particular, 1+1 =0.
This means that adding two non-zero polynomials of the same degree will result
in a polynomial of smaller degree. Formally, since b+b =0, for all bits b,

(Vk:k>n:P,=Qx) = (Vk:k>2n:Pr+Qx=0) .
Polynomial multiplication is defined by the rule
PxQ =R ,

16.3 Boolean Polynomials 245

where, for all k,
Rk = (Zi,j:i+j=k:PixQ;) .

This makes polynomial multiplication behave like normal multiplication. For
example,

(P1x + Pp) X (Q2x?+Q1x + Qo)
= (P1xQ2)x3 + (PoxQ2 + P1xQ1)x? + (PoxQ1 + P1xQo)x + PyxQy ,

which is what one would obtain if x is assumed to be a normal variable, and
multiplication and addition obey the rules of real arithmetic.

An immediate consequence of the definition is that, for non-zero polynomials
P and Q,

degree.(PxQ) = degvee.P +degree.Q .
For this to be true when P or Q is zero, we require that —c +n = —o0, for all n
(including — o).
Exact division of polynomials cannot be defined, just as it is impossible to define
exact division of integers. Remainder computation can be defined, however, and
it is this which is exploited in cyclic codes.

The precise specification of the remainder v after dividing the polynomial P by
the non-zero polynomial Q is

degree.r <degree.Q A{3d = P =Qxd+7r) .

In this specification, d ranges over polynomials.
For example, with arithmetic on the coefficients defined to be modulo 2, the
remainder on dividing x°+1 by x+1 is 0 because

x°+1 = (x+1)x(x+1)+0
and
degree.) = —o < 1 =degree.(x+1) .

(Remember that addition is modulo 2, so that 1+1 =0 and, hence, x+x =0.) The
remainder on dividing x2+x+1 by x+1 is 1 because

x%+x+1 = (x+1)xx +1
and

degree.l = 0 < 1 =degree.(x+1) .

246

Chapter 16: Cyclic Codes

16.3

Data and Generator Polynomials

To form a sequence of check bits from a data polynomial P, a so-called genera-
tor polynomial Q is used. Generator polynomials are chosen according to their
error detection/repair capabilities, and are published in internationally recog-
nized standards. The most important point, of course, is that both the trans-
mitter and the receiver of the data agree on which generator polynomial to
use.

The check bits are defined to be the coefficients of the remainder polyno-
mial after division of the input polynomial Pxx4¢9v¢e.Q by Q. The coefficients
of the data polynomial are then transmitted followed by the coefficients of the
remainder polynomial. In effect, this is equivalent to transmitting P x x4ed7ee-Q 4y
where 7 is the remainder. But, since addition modulo 2 coincides with subtrac-
tion modulo 2, this polynomial equals Pxx4e97¢e-Q _y which is divisible by Q.
Thus, the receiver may check for errors during transmission by determining
whether or not the remainder, after dividing the received data polynomial by Q,
is 0.

Example 16.1. Suppose the generator polynomial is x> +x4+x2+1. Then, the mes-
sage 1000100101, corresponding to the data polynomial x°+x°+x2+1, would be
encoded as 100010010100011. This corresponds to the polynomial

(xI+x°+x2+1)xx> + (x+1) .
The remainder O0xx* + 0xx3 + 0xx?2 + 1 xx! + 1xx9 is found by determining that
(xX+x3+x2+1)xx>
= (XP+xt+x2+ D)X (X + x84+ x7+x3+x%+x+1) + (x+1) .
If the transmission occurs without error, the receiver computes the remainder
after dividing
(x9+x°+x2+1)xx° + (x+1)
by the generator polynomial. This is 0 because
(xX%4x5+x2+1)xx> + (x+1)
= (Ot + 1) x (0 + a8+ x7+x3+x%4+x+1) .
O

The simple parity check illustrated in Figure 16.1 is the cyclic code resulting
from computing the remainder after division of the data polynomial by x+1. We
can see this from the specification of the remainder. Substituting x+1 for Q, the
remainder satisfies

degreer <1 A{3d :: P = (x+1)xd+71) .

16.4 Long Division 247

16.4

So,

true
= { above }
degreer <1 A (3d = P =(x+1)xd+7)

= { equality of polynomials }
degreevr=0 A (Ad:P[x:=1] = ((x+1)xd+7r)[x:=1])
= { substitution (P and r are independent of d),
1+1=0 }

degreer=0 A Plx:=1]=7r[x:=1]
= { degreer =0 = r =r[x:=1]
assume P = (Sk:0<k:Pyxky; 1%¥=1 forallk }
degreer =0 A (Zk:0<k:Py) =71 .

So the remainder, 7, is the sum (modulo 2) of the bits of the data polynomial. That
is, ¥ is 0 if P has an even number of 1 bits, and r is 1 if P has an odd number of
1 bits.

Long Division

The process of long division can be used to compute polynomial remainders so
long as we remember the appropriate rules of arithmetic. Figure 16.2 shows one
such computation presented in two ways. In the first, the powers of x are made
explicit, and, in the second, a more concise form is used.

To develop long division formally, we introduce a variable k into the specifica-
tion of the remainder 7:

k <degree.Q A degreer <k A (3d = P =Qxd+7) .

The first conjunct forms the termination condition for a loop with the second and
third conjuncts as invariants.
The invariant is established by the assignment

fP=0—k:=00P+0-—k := degreeP+1fi ; r:=P .

(Recall that the degree of the zero polynomial is —.)

Since the polynomial Q is assumed to be non-zero, its degree is a natural num-
ber. We can therefore make progress to the termination condition, k < degree.Q,
by repeatedly decreasing k and then re-establishing the invariant. The structure

248 Chapter 16: Cyclic Codes

1x3 + 1x2 + Ox! + 1x°
1x2 + 0x + 1)1x% + 1x4 + 1x3 + 0x2 + 1x! + 0x9O
1x% + 0x* + 1x3
1x% + 0x3 + 0x2 + 1x1 + 0x90
1x4 + 0x3 + 1x2
1x2 + 1x1 + 0x©
1x2 4+ Ox! + 1x°
Remainder = 1x! + 1x0

1101
101)111010
101

100

101
110
101

Remainder = 11

Figure 16.2 Long division of polynomials.

of the program is thus as follows.
{ 0<degree.Q }
ifP=0—k:=00P+0—k := degreeP+1fi ; r =P ;
{ Invariant: degree.r <k A (3d : P=Qxd+71)
Bound function: k }
do k > degree.Q — k:=k-1;
re-establish invariant
od
{ degree.r <degree.Q A (3d P =Qxd+7) } .

Re-establishing the invariant requires no action if the decrementation of k does
not falsify degree.r < k. If the property is falsified, the degree of » must be
reduced by adding a multiple of Q. Now, the precondition

degreer > k-1

16.5 Hardware Implementations 249

16.5

{ 0< degree.Q }
fP=0-—k:=00P+0—k := degreeP+1fi ; v =P ;
{ Invariant: degree.r <k A {3d :: P =Qxd+71)
Bound function: k }
do k > degree.Q — k= k-1;
if degree.r < k — skip
0O degree.r > k — { degreer =k }

¥ o= T+Qxxk‘degree.(2

od
{ degreev <degree.Q A (3d P =Qxd+7r) } .

Figure 16.3 Long-division algorithm for polynomials.

guarantees the postcondition —~(degree.r < k) after executing k := k-1, but the
precondition under which the assignment is executed is degree.r < k. We con-
clude that, if the property degree.r < k is falsified, then degree.r =k is truthi-
fied. This determines how to decrease the degree of r. We exploit the property
that the degree of the sum of two polynomials both of degree k has degree less
than k. We need therefore to add to r a multiple of Q that has degree k. Such a
multiple is Q xxk ~4edree.Q The complete algorithm is shown in Figure 16.3. You
should compare this algorithm with the long-division algorithm for integers.

Hardware Implementations

The polynomial arithmetic used to compute cyclic codes is simpler than inte-
ger arithmetic (because of the absence of ‘carrying’ when subtracting one num-
ber from another) although it is undoubtedly less familiar. Several operations on
polynomials are also easily implemented directly in computer hardware. We now
investigate the computation of cyclic codes using hardware functions as building
blocks.

The requirement on the implementation is to design logic circuitry that inputs
the coefficients of the polynomial P one by one. Simultaneously, the coefficients
are fransmitted to the receiver (see Figure 16.4). When the last coefficient (Pp) has
been input, a switch is thrown, so that the coefficients of the remainder polynomial
can be transmitted to the receiver.

250

Chapter 16: Cyclic Codes

logic circuit <}—p———

Figure 16.4 Requirement on the implementation.

(a)
B e e —— Tm-l Tm_zq— ass — TO
(b)

Tm-2 Vm-3fo— 7, b

Figure 16.5 Shift register implementation of polynomial operations. (a) Before shift;
(b) after shift.

The implementation we seek is, thus, an on-line algorithm, similar to the on-
line computation of remainders in integer arithmetic (Section 15.5). The circuitry
is required to input an arbitrary sequence of bits, computing, at each successive
input bit, the remainder after dividing the polynomial input thus far by the given
generator polynomial. When a signal is received that all of the data bits have been
input, the remainder stored in the register can be output, bit by bit.

A shift register (Figure 16.5) is a fundamental component of computer hard-
ware. It consists of an array of cells, each of which is capable of storing one bit.
On receipt of a signal, its basic operation is to simultaneously ‘shift’ the contents
of each cell into the next cell. Suppose the register stores m bits and we regard
its contents ¥, _1,%m-2,...,71, 7o as a polynomial r, where

¥ = YmaaX™ L 4+ rpoox™2 + ... + X + 19 .
The shift operation then corresponds to the assignment
r = (rxx+b)modx™ ,

where b is the bit that is input to the cell with index 0. In this assignment, ‘r xx’
represents shifting, the addition of ‘b’ represents the input of a new bit, and
‘mod x™’ represents the loss of the bit with index m-1.

Using a shift register with m cells, it is easy to implement the combined oper-
ation of multiplying a polynomial by x (i.e. shifting) and adding a multiple of a
polynomial Q of degree m, all modulo x™. Figure 16.6 shows the layout of such
a circuit. In this figure, the circles marked ‘+' represent addition modulo 2 (better

16.5 Hardware Implementations 251

/:\ . - m -
@ e QO

)

b

Figure 16.6 Shifting and adding a multiple of Q.

known to hardware designers as exclusive or (xor), and to readers of this text as
inequivalence), and those marked Q;, for some i, represent the ‘multiplication’ of
the input bit by the coefficient Q; of polynomial Q. Since 1xc=c¢ and Oxc =0,
the ‘multiplication’ operation is, in fact, realized by the existence of a connecting
wire if Q; =1 and the absence of a connecting wire if Q; = 0. Thus, the operation
of the circuit in Figure 16.6 corresponds to the assignment

¥ = (rxx+b+Qxc)modx™ . (16.2)

Moreover, if it can be guaranteed that the polynomial » xx + b + Q Xc has degree
less than m, the operation is equivalent to the assignment

¥ = rxXx+b+Qxc .

We can now begin the development of the algorithm. As in Section 15.5, we
model an on-line computation by an endless loop that inputs the coefficients of
the polynomial bit by bit, as shown below. (Note that ‘x’ is an indeterminate; it is
not a program variable.)

P = 0;
do true — (get.b {0<b<1} ; P := Pxx+b)
od .

The task is to add code to maintain a remainder polynomial » satisfying the invari-
ant property

degreer <degree.Q A (3d = P =Qxd+71) ,

where Q is the given (non-zero) generator polynomial. For convenience, we assume
that the degree of Q is m. Clearly, » should be initialized to 0. Within the body of
the loop, the property

(3d = P =Qxd+71)
can be maintained by mimicking the assignment to P:

¥ = r¥Xx+b .

252 Chapter 16: Cyclic Codes

Pr = 0,0 ;
{ Invariant: degree.r < degree.Q A (Id = P=Qxd+71) }
do true — get.b {0<b<1} ;

P = Pxx+b ;
¥ = rxx+b+QxXrm-1 ;
put.r

od

Figure 16.7 On-line computation of cyclic codes.

This increases the degree of r by one. Consequently, it may falsify
degree.r < degree.Q .

If it does, the degree of r after the assignment must be equal to the degree of Q.
The invariant can thus be re-established by adding Q to 7. If it does not, no further
action needs to be taken. So the assignments to + that we have to implement are

Y ;= rxx+b ;

if degree.r < degree.Q — skip

O degree.r > degree.Q — r = r+Q
fi.

A direct hardware implementation of the conditional statement would be inef-
ficient. However, by observing that the assignment r := rxx +b falsifies
degree.r < degree.Q exactly when r,,_; =1, we see that it may be replaced by
the unconditional assignment

v = v+ QX¥m-1 .

The two assignments can now be combined resulting in the program in Fig-
ure 16.7.

The assignment to 7 does, indeed, have the form of the assignment in (16.2).
(The ‘mod x™’ can be dropped because the resulting value of r is guaranteed
to have degree less than m.) The coefficient, ¢, in (16.2) takes the value 7,,_1,
the bit of the remainder that is ‘shifted out’ of the shift register by the operation
¥ := rxx+b.So,the assignment to r can be implemented by a simple feedback
loop. Figure 16.8 illustrates the circuit for the particular generator polynomial
Q=x+x4+x2+1.

16.6 Summary 253

16.6

¥ m ¥, ¥, n ¥ ¥ -

4 j/ 3 2

Figure 16.8 Remainder computation with generator Q = x>+x%+x?+1.

Exercise 16.3. Earlier on, we said that what is transmitted is the remainder after
dividing x™xP by Q, where P is the data polynomial. This means that the input
polynomial is terminated by m zeros. A direct implementation in hardware of the
program in Figure 16.7 would therefore involve a delay of m steps—inputting the
trailing zeros—before the remainder could be output.

Develop a program that eliminates this undesirable delay by taking as invariant
the property

degree.r < degree.Q A (3d :: xM™xP =Qxd+7) .

Summary

Cyclic codes are used to add redundancy to transmitted data in order to detect
and/or repair transmission errors. Computation of cyclic codes involves remain-
der computation in an algebra of polynomials. Two algorithms have been dis-
cussed for computing cyclic codes. One is similar to long division in integer arith-
metic, and the second is an on-line algorithm suitable for direct implementation
in hardware.

Bibliographic Remarks

More information on cyclic codes can be found in (for example) Blahut (1983).

This page intentionally left blank

Appendix

This appendix contains a summary of the mathematical laws discussed in the
main text.

Propositional Calculus

Minimal Basis. A minimal basis for the propositional calculus comprises three
operators (‘logical connectives’), listed below in ascending order of precedence,

* equivalence (=) ,

* disjunction (v) ,

* negation (—) ,
and the following laws.
Associativityof =: ((p=q)=r)=(p=(g=71)) .
Symmetryof =: p=gq=q=p .
Unit of =: true=p=p .
Negation: —-p=p =false .
Distributivity of -: —-(p=q)=-p=q .
Symmetryof v: pvg=qvp .
Associativityof vi (pvgq)vr=pv(qVvr) .
Idempotenceof v: pvp=p .
Distributivity of v: pv(g=r)=pvg=pvr .
Excluded middle: pv-p .

Note that, in all but the first law, the associativity of equivalence is assumed.

256

Appendix

Additional Operators. The remaining logical connectives are
* conjunction (A) ,
s if (&),
* onlyif (=) ,
* inequivalence (#) .

These are defined in terms of equivalence, disjunction and negation in the follow-
ing laws. The precedence convention is that conjunction has the same precedence
as disjunction, and inequivalence has the same precedence as equivalence. ‘If’ and
‘only if” have the same precedence, which is less than conjunction and disjunction,
and more than equivalence and inequivalence.

false: false = —true .

Goldenrule: pArg=p=q=pvq.

Inequivalence: (p#q) =-~(p=q) .

If: peq=pvag=p .

Only-if: p=q=pva=q .

Rules of Substitution.

Substitution: (e=f) A E[x:=¢e] = (e=f) A E[x:= f] .
Leibnizz (e=f) = (e=f) A(Elx:=e]l=E[x:= f]) .

The following subsections enumerate a number of theorems. That is, all the
properties can be derived from the above axioms. The names given to the theo-
rems are taken (with a few exceptions) from Gries and Schneider (1993) to which
reference should be made for a very full and clear discussion of the principles
with many more examples.

Negation

Negation of false: true = —false .
Contrapositive: p=g=-p=-q .

Double negation: —-—-p=p .

Appendix

257

Equivalence and Inequivalence

Symmetry: (p#q) = (Q#p) .

Associativity: ((p£q)£7v) = (p£(q#7)) .

(p £ (q=7)) .
r)=(p=(q#7)) .

i

Mutual associativity: ((p#4q) =)

il

Mutual interchangeability: ((p #q)

Note that, in view of mutual associativity, we can write p #q = r without ambi-
guity. This means, in turn, that the mutual interchangeability rule can be written:

pEq=r=p=q#vr .

Disjunction

Zero: p vtrue = true .

Unit: pvfalse = p .

Conjunction

Symmetry: pAq =qgAp .
Associativity: (pAg)ArY = pa(gar) .
Idempotence: pAp =p .
Contradiction: p A —p = false .

Zero: p Afalse = false .

Unit: pAtrue=p .

Disjunction and Conjunction

i

Absorption: paA(pvg) =p .
P -

il

Absorption: pVvi(pAqg)
Distributivity: pv(gav) = (pvg)an(pvr) .
Distributivity: pA(qvr)

il

(prq)Vv(pAar) .
De Morgan: —(pAq) = ~pv-q .

it

De Morgan: —(pvg) = "pA—q .

258

Appendix

Equivalence, Disjunction and Conjunction

Distributivity: pA(g=r) = pAgq=paAr =p .
Modus ponens: pA(g=p) = pAq .

Disjunctive normal form: p =q9 = (pAqQ vV(~pAr-q) .
Disjunctive normal form: p#q = (-pArg)v(pr—-q) .

Implication

Strengthening/weakening: p < pAq .
Strengthening/weakening: pvq < q .
Contrapositive: p<«g = -p=>-q .

Contradiction: -—p = p=>false .

Mutual implication (iff): p =g = (p<q) A (p>q) .
Distributivity: (p=q)<r = pAr = qnar .
Distributivity: (p=g)<7r
Shunting: p <gaAr = (peq)er .
Modus ponens: (p<q)Agqg = pAq .
Rightunit: p<true = p .

1l

1}

perY = q&r .

Left zero: true<p = true .

Absurdity: p <false = true .

Reflexivity: p<p = true .

Disjunctive normal form: p«gqg = pv—-q .

(The name given to the strengthening/weakenening rules depends on whether
they are used from left to right (‘strengthening’) or from right to left (‘weakening’).)

Properties of Numbers

In the rule of indirect equality, z ranges over the type of x and y. (That is, if x
and y are reals, z must range over all reals. If x and y are, say, even integers,
then z must range over all even integers.)

Indirect equality: x=y = (Vzux<z = y<z) .

Floor: n<|x]=n<x .

Floorr n=|x] = n<x <n+1 .

Ceiling: nz[xl=nzx .

Appendix

259

Ceiling: n=[x] = n<x <n+l .
Minimum: m<nlp = m<nAam<p .
Maximum: m>2nip = m>2nAam2p .

Quantifier Laws

This section summarizes the rules for manipulating gquantifiers. We assume that
@ is associative and symmetric. Some rules assume that @ has a unit, which is
denoted by 1. If ® does not have a unit, quantification over a false range is not
defined.

Two cautionary remarks need to be made. First, the rules are not applicable in
general to infinite quantifications. (They are, however, all applicable in the case
of universal and existential quantification.) Second, ‘side’ conditions on dummies
are not repeated here. Generally, rules are only applicable when (a) application of
the rule does not capture free variables and, conversely, (b) application of the rule
does not release bound variables. This must be the case for all subexpressions,
and not just the quantified expression itself. Also, application of a rule should
not result in a variable occurring more than once in a list of dummies. Dummy
renaming can sometimes be used before applying a rule in order to make its
application valid (but, of course, the side condition on dummy renaming must
also be observed).

Dummies.

Dummy Renaming: (Pj:R:T) = (Pk:R[j:=k]:T[j:=k]) .
Nesting: (B j,js:RAS:T) = (Pj:R:(Pjs:S:T)) .
Rearranging: (@ j,k:R:T) = (Pk,j:R:T) .

Translation: if f is a bijection from the type of dummy j to the type of dummy
k,

(Bk:R:T) = (Dj:Rlk:= f.jl:Tlk:= f.jI .
Translation (idempotent @): if f is a function from the type of dummy j to the
type of dummy k such that (Vk :: (3j = k= f.j)),
(Pk:R:T) = (Dj:Rlk:=fijl:Tlk:= fj]) .

Range Part.

Empty Range: (Pk:false:T) = 14 .

One-Point: (Pk:k=e:T) = Tlk:=e] .

Splitting: (Pk:P:.T)o (Pk:Q:T) = (Dk:PvQ:T)o{Pk:PArQ:T) .
Splitting (idempotent &): (Pk:(Jj:R:S):T) = (Pj:R:(Pk:S:T)) .

260

Appendix

Trading.
Type and Range: (PkeK:PAQ:T) = (Pke{keK|P}:Q:T) .
Range and Term: (Pk:PAQ:T) = (Bk:Q :ifP—T O -P— 1, fi) .

Term Part and Distributivity.
Rearranging: (Pk:R:TopoT)) = (Bk:R:Ty) ® (Bk:R:Th) .
Distributivity: suppose f is a function with the properties that
fle = 1o
and, for all x and y,
fixey) = fxofy .
Then
fADk:R:T) = (Qk:R: f£T) .

(If ® does not have a unit, the rule is still valid, provided that the range R is not
false.)

Laws of Programming

The Hoare triple { P } S { Q } is either true or false. Its meaning is, if execution of
the statement S begins in a state satisfying precondition P, termination is guar-
anteed in a state satisfying Q. (If P and Q involve ghost variables, then these are
universally quantified.)

Square brackets in the statement of the rules mean that the property is true for
all instances of the program and ghost variables.
Assignment Axiom.

Simplified form:
{Qlx:=ellx:=e{Q} .
Complete form:
{‘e’is well defined A Q[x :=e]l}x :=e{Q} .

Sequential Composition.
{P}S1;82{Q} « {P}S1{R}A{R}S2{Q} .

Skip Rule.

{P}skip{Q} = [P=>Q] .
{P} {Q} = [P=>Q] .

Appendix 261

Conditional Statements.
{ P}
if b1—S1
O b2—S2
fi
{Q}
is equivalent to the conjunction of three propositions:
[P=>DblvVvb2] ,

{PAb1}S1{Q}

and
{PAb2}S2{Q} .

Loops.
{P}S;do—-done—Tod{Q}
is guaranteed by the following construction.

(1) Choose bound function, bf, invariant, inv, and termination condition,
done, so that

[inv Adone = Q]
and
[inv = bf>0v done]
(2) Construct initialization statement, S, to establish the invariant:
{P}S{inv} .

(3) Construct the loop body, T, so as to guarantee progress towards the termi-
nation condition whilst maintaining the invariant:

{inv A ~done Abf=C} T {inv A (bf<C v done)} .

This page intentionally left blank

Solutions to
Exercises

Solution 1.1. For n =5, the number of portions is 16. This suggests that the num-
ber of portions for arbitrary n is 2"~1. However, for n = 0, it does not make sense
to say that there are 2! portions (even though cutting the cake as stated does
make sense). The conclusion might then be that the conjecture only holds for n
at least 1. However, for n = 6, the number of portions is 31 (see Figure B.1)! Note
that n = 6 is the first case in which the points are not allowed to be placed at equal
distances around the perimeter.) O

Figure B.1 Cutting the cake. The case n =6.

Solution 2.1.

(a) Hoare assumes that the pack contains 100 cards. The weakest assumption
is that the pack contains at least 20 cards.

(b) The number of cards in the top-left heap is always at most 20. The number
of cards in the top-right heap is always at most 80.

264

Solutions to Exercises

(c) Each value in the top-left heap is at most all values in the bottom-left heap.

~—

(e

()

Each value in the bottom-left heap is at most all values in the bottom-right
heap. And, each value in the bottom-right heap is at most all values in the
top-right heap.

Note: the relationship is ‘at most’. It is incorrect to claim, for example, that
all values in the top-left heap are lower than (or less than) all values in the
bottom-left heap.

If all cards in the pack have the same value, each iteration of step (2) adds
just the borderline card to the top-left heap. The repetition in step (2) will
therefore take place 20 times.

If the pack is sorted and the borderline card is chosen to be the 20th card
in the pack, one repetition of step (2) adds 20 cards to the bottom left deck
whenever there are exactly 19 cards strictly lower than the 20th card. If there
are n cards strictly lower than the 20th, 19—n repetitions are needed.

The borderline card is always either added to the top-left heap (in step (2.3))
or to the top-right heap (in step (2.4)). This means that between every repe-
tition of (2) the size of the middle heap decreases by at least one.

If an arbitrary value is chosen for the borderline, termination is not guar-
anteed. For example, if the borderline is chosen to be zero and all values in
the pack are greater than zero, the algorithm will continually loop between
a state in which all cards are in the bottom-right heap and one in which all
cards are in the middle heap.

The assumption is that M < N and (possibly) N = 0. The algorithm is obtained
by replacing 100 by N, 20 by M, 21 by M+1,80 by N-M and 81 by N-M+1.
When M is zero, the amalgamation in step (2.4) takes place. Also the bor-
derline card is moved to the top-right deck. Thus, the algorithm terminates
correctly after one repetition of step (2). When N equals M, the amalgama-
tion in step (2.3) takes place and the borderline card is moved to the top-
left deck. Thus, also in this case, the algorithm terminates correctly after
one repetition of step (2). The requirement that N = 0 is unfortunate and
depends on how one understands step (2). If one understands it as execut-
ing steps (2.1)-(2.5) and then testing whether the middle heap is empty, the
requirement is necessary because, otherwise, it is not possible to choose
a borderline card in step (2.1). This is the way repeat-until statements are
normally understood by computer programmers. If, however, the statement
means that the test of whether the middle heap is not empty is executed first
and only when it succeeds are steps (2.1)-(2.5) executed, it is not necessary
for N to be non-zero; it may be zero so long as M is also zero. (This is an
example, albeit minor, of the ambiguities of natural language.)

O

Solutions to Exercises 265

Figure B.2 Invariant: beetles are at the corners of a square.

Solution 2.2. Itis not possible to cover the chessboard. Removing the top-left and
bottom-right squares removes two squares of the same colour. So more squares
of one colour remain than of the other. But, each time a domino is placed on the
board it covers one black square and one white square. So, no matter how many
dominoes are placed on the board, an equal number of white and black squares
will have been covered. O

Solution 2.3. At all times the four beetles occupy the corners of a square (see
Figure B.2). Thus at no time does any beetle have any component of velocity away
from its pursuer. The distance travelled by any one beetle is therefore identical to
the distance it would travel were the pursued beetle to remain stationary. Thus,
each beetle travels a distance equal to the length of a side of the square.]

Solution 3.1. The proof assumes the formulae for the area of a triangle and a
square, and basic algebraic properties of addition and multiplication. However,
the most important omission in the proof is that nowhere is the fact that BAC is
aright angle explicitly used. The property is, in fact, implicitly used in the sentence

266

Solutions to Exercises

beginning ‘Construct a square IJKL’. The fact that IJKL is a square relies on the
fact that the angles I, J, K and I are all right angles. Less obviously, it also relies
on the fact that (for example) the line IBJ is a straight line, i.e. [BJ is 180°, and
that (again, for example) BDE is a right angle. These properties are consequences
of the fact that the angles of a triangle add up to 180°. O

Solution 3.4. The rule is that multiplication by a strictly positive number is invert-
ible with respect to the relation X. That is, for X is ‘<’, ‘=" or *>’, all strictly positive
numbers a and all numbers b and c,

(axb X axc) = (bXc) .

Solution 3.5. We have, for X is ‘<’, ‘=" or *>’,

V3+v/1I3 X 5+/11

{ squaring is invertible with respect to X:(3.3) }
(V3+v13)2 X (V5+VII)?

{ arithmetic }
16 + 2/39 X 16 + 2/55

{ addition is invertible with respect to X: (3.2) }
239 X 255

{ squaring is invertible with respect to X: (3.3) }

156 X 220 .
We conclude that 3+ /13 < 5+ V11. |

Solution 3.6. The flaw in the algorithm is the implicit assumption that both sides
remain non-negative. The property that squaring preserves each of the orderings
is not true for negative numbers. For example, —1 <0 but (~1)? > 02, So, for exam-
ple, if the algorithm is applied with a,b,c,d := 0,2,0,1, v is assigned the value 0
at step (2) and z and y are assigned the values —1 and 0, respectively. This results
in the incorrect inference that +/0 + v/2 < V0 + V1.

Each step of the algorithm replaces the left and right sides by new left and right
sides, each side being a sum of terms. The invariant that should be maintained
by the algorithm is that the ordering relation between the two sides remains the
same. In order to maintain this invariant, we add the extra requirement that the
terms on each side are non-negative. Thus, when a subtraction is performed, we
must ensure that the result is non-negative. Step (2) should therefore subtract the
minimum of u and x from both sides. This has repercussions for both steps (3)
and (4), with step (4) being modified similarly to step (2). a

i

I

Il

I

Solutions to Exercises 267

Solution 3.7.
(@) x+2 .
(b) y-(x+y) .
) x+y+y .
(d) x+1 .
(e) 0.
0 x-y+x+y)-(x-y) .
@ xy+xy .
(h) x+2+ (x+2)-(x-y)? .
O

Solution 3.8. Replacing 2 everywhere by k, exp.l is defined to be the number of
times that k divides . It is required to satisfy

exp.k =1,
and, for all m and =,
exp.(mxn) = exp.m + exp.n .

The former property is satisfied whatever the value of k. The latter property is
satisfied exactly when k is a prime number different from one. So a generalization
of the theorem and its proof is that vk is irrational if k is a prime number different
from one. (See Exercise 11.60 for a better generalization.) O

Solution 4.1. Immediately before the return statement, add the assignment
if (1 < N) found= (card[1] == X) ; else found= false ; .

Solution 4.2.

(I+r-1)+2 <vr

= { (I+r—1)+2 and 7 are integers }
(I+r-1)+2 < r-1

= { r—1 = (2x(r-1))+2 }
(I+r—-1)+2 € 2%x(r-1))+2

< { division by 2 is monotonic }
I+r-1 < 2x(r-1)

= { arithmetic }

268 Solutions to Exercises

= { ! and r are integers. }
l<r .
The proof using m+2 < m/2 <« 0 < m is as follows:
(I+r-1)=2 <7r
& { division by 2 rounds towards O for non-negative integers.
Thatis, (I+r-1)=2 < (I+r-1)/2 « O<l+r-1.
O<l+r-1<«0gl<r }
(I+r-1)/2 <7r
= { (real) division by 2 is monotonic
with respect to the < relation }
I-1<7r
= { arithmetic }
l<r .

From this we conclude the (slightly weaker)

(I+r-1)+2<r<0gl<r .

Solution 4.3.
(a) This is not the case. For example, 0 <1, but 0+2=0=1+2.
(b) This is not the case either; 1+2 <02 but it is not the case that 1 <0.

(c¢) The difference is that addition is invertible. (That is, adding m can be undone
by subtracting m.) Integer division is not invertible.

(d) Multiplication by a negative number is anti-monotonic. (That is, if n <0,
ixXn<jxn « izj .

(Note the reversal of the ordering.) Division inverts multiplication. So any
implementation of integer division should also be anti-monotonic. That is,

if n <0,

i=n<jn « j<i .

Solutions to Exercises 269

Solution 4.4. The assignment k := [is clearly correct, and the assignment k := »
clearly incorrect—it will generate an array bound error the very first time the loop
body is executed whatever the size of the array.

The assignment k := (l+7)=+2is correct. The property | < k is satisfied because
[< (I+r-1)+2, as proved above, l+7—1 < l+7, and integer division by 2 is mono-
tonic. The proof that (I+7)+2 <7 is the only time that we need to use the fact
that integer division rounds towards zero.

(I+r)+2<r

& { (l+r)+2<+7r) /2 }
(l+r)/2<r

= { arithmetic }
I<r .

If integer division is defined to round away from zero, the assignment k :=
(I+r—1)=+2 is correct, the assignment k := (l+7)+2 is not. To show that the
latter is incorrect consider an array of size 1. Then [and + are initialized to O
and 1, respectively. So (l+7v)/2 rounds up to 1. If this value is assigned to k, an
array bound error will occur.

A general conclusion is that the assignment k := (l+r-1)=+2 is safer than
the assignment k := (l+7r)+2 because its correctness is independent of whether
integer division is implemented by rounding down or up. O

Solution 4.5. First, if card[r—1]=card[l], a division-by-zero error will occur.
Assuming this not to be the case, the right side of the assignment to k gives a
value in the range [up to r-1 if

card[l] < X < card[r-1] .
But this is not an invariant property of the algorithm. O

Solution 4.6. (a) In the scenario given, hi and 1o are initialized to 2 and 0, respec-
tively. The first iteration of the loop sets centre to 1—the fact that there are
‘Only two items Teft’is not observed—and resets 1o to 1. In the second itera-
tion, centre is again assigned the value 1. This time, the method erroneously con-
cludes ‘Only two items left’. The test v[centre].equals(o) fails and then
an array bound error occurs when the test v[centre+1] .equals (o) is executed.

Reading the comment ‘Only two items left’, it would appear that the pro-
gram implicitly assumes that v.length is at least 2. Indeed, the program will
always give an array bound error if its length is zero, and it will also do so if
its length is one and the entry being sought is greater than the entry in the array.
The clumsy code preceded by the comment ‘Only two items left’was possibly
inserted to fix a bug that had been found. But, as we have just seen, the fix is not
just clumsy, it does not work! (It is very common for additional tests to be added

270

Solutions to Exercises

to fix bugs; an abundance of case analyses is indicative of bad programming.) The
problem lies in the fact that the assignments to hi and 10 are unsystematic: ini-
tially, the region to be searched is given by the indices from 1o to hi-1 inclusive.
If 10 is reassigned, however, the region to be searched begins at index 1o0+1. (This
observation makes it possible to identify the error.) The assignments to hi are
more systematic, but probably by good fortune rather than good programming!
There is no mention of an invariant property in the comments, and no mention
of how progress is guaranteed. O

Solution 5.2. (p =q) =7 and p = (q =r) are both true exactly when an odd num-
ber of p, q and 7 is true. (Thus when all are true or just one is true.) 0

Solution 5.3. Parenthesizing the statement as

xXy is positive = (x is positive = 1y is positive) ,
it states that the number x Xy is positive exactly when the signs of x and y are
both the same. Parenthesizing it as

(xxy is positive = x is positive) = y is positive ,

it states that the operation of multiplying a number x by a number y does not
change the sign of x exactly when Yy is positive. As for the parity of a number, we
get four different cases:
((xxy is positive) and (x is positive) and (y is positive))
or ((xxy is negative) and (x is negative) and (y is positive))
or ((xxy is negative) and (x is positive) and (y is negative))
or ((xxy is positive) and (x is negative) and (y is negative)).

Solution 5.5.
@p.
(b) q .
©q=p .
(d) false .
(e) true .
(H false .
8 p.
O

Solution 5.8. Yes. If you ask A if B is a knight you get the answer A = B. If you ask
B if A is a knight you get the answer B = A. But equivalence is symmetric, so they
are the same answer. O

Solutions to Exercises 271

Solution 5.9. We have A = B = C, which is true when an odd number of A, B and
C is true. Thus either just one is a knight or all three are knights. |

Solution 5.10. We have C=A=B. So the question we have to pose to A is
A = A=B, i.e. B. In words, ask A whether B is a knight. O

Solution 5.11. Let Q be the question. Asking the question Q will produce the
response A = Q, which we require to be A. So we require that A=A=Q,ie.Q.In
words, ask A to confirm or deny any true statement (for example 0 = 0). O

Solution 5.12. Let Q be the question. Asking the question Q will produce the
response A = Q, which we require to be B. So we require that B= A = Q. In words,
ask A whether they are both the same type. O

Solution 5.13. Let Q be the question. Asking the question Q will produce the
response A =(Q which we require to be B= A. So we require that B=A=A=Q,
i.e. B=Q. In words, ask A whether B is a knight.]

Solution 5.14. Let Q be the question. Choose arbitrarily to pose the ques-
tion to A. Asking the question Q will then produce the response A=Q. The
proposition whose truth we want to determine is A= B = C. So we require that
(A=Q) = (A=B=(). Rearranging and simplifying we get Q = B = (. That is, the
question is: ‘are your two companions the same type?’.]
Solution 5.17.

(a) false .

(b) false .

(c) false .

dp .

(e) false .

&) ga#r .

®p .

(h) true .

Solution 5.18.

(@ p=q .
b) p+q .
) p=q=r=s .

(d) pEq#r#s .

272 Solutions to Exercises

Solution 5.19.

—true

{ law —p = p =false with p := true }
true = false
{ law true=p = p with p := false }

I

false .

Solution 5.20.

‘—Y—lp
{ law —p =p =false with p :

—|p}

-p =false
{ law ~p=p =falsewithp ;= p
and symmetry of equivalence }

I

Solution 5.21. The three most important examples are
ptE@#7r)=(p=qgq=r7),
(p#tEq) #r)=(p=q=7),
pftg=@#tr)=p=r.

The first two establish that inequivalence is associative. O

Solution 5.22. The process of decryption after encryption computes a # (a#b).
But,

Il
i

a#(a#b)
{ # is associative }
(ata)#b
= { (a#a=false) }
false#b
= { definition of # }
false = -b
= { definition of negation: (5.15) }

Solutions to Exercises 273

Solution 5.23. A’s statement is B = - A. So, what we are given is
A=B=-A .

This simplifies to —B as follows.

A=B=-A

= { rearranging terms }
—A=A=B

= { law -p=p =falsewithp = A }
false=B

= { law —p = p =false with p := B and rearranging }
-B .

So, B is a knave, but A could be a knight or a knave. O

Solution 5.24. Let Q be the question. Then, Q = A=A #B, i.e. Q = —B. In words,
ask A whether B is a knave. O

Solution 6.5. Suppose that [and m are given numbers such that for all numbers
n,

n<l=ns<m .

Instantiating 7 to [(which is allowed because n and [are assumed to have the
same type), we get

I<l=l<m .
But,
I<l=1l<m
= { < is reflexive }
true=l<m
= { true is the unit of equivalence }
I<m .

Thus, we conclude that 1 < m.
Symmetrically, instantiating n to m (which is allowed because n and m are
assumed to have the same type), we get

m<l=m<m

and, hence, m <.
The conjunction of [<m and m <1, together with the fact that the at-most
relation is antisymmetric establishes that | = m, as required. O

274

Solutions to Exercises

Solution 6.6.

(a) We have, for all n,

n<i{x+m|

{ definition of floor }
n<x+m

{ arithmetic }
n-m<x

{ definition of floor }
n-m<|x]

{ arithmetic }

n<lxj+m .

The result follows by indirect equality.
(b) We have, for all n,

1

nglx/m]

{ definition of floor }
n<x/m

{ arithmetic, m is positive }
nxms<x

{ definition of floor }
nxm<ix]

{ arithmetic, m is positive }
n<lxl/m

{ definition of floor }

n<lixl/mj .

The result follows by indirect equality. O

Solution 6.7. The second ‘definition of floor’ step is invalid since m/n is not an
integer. Taking m, n and x to be 1, 2 and % we have

1
2

N

(3o

5] -

This suggests that 2 x [%J + |2X% %J, which indeed is the case as 0 # 1. a

Solutions to Exercises 275

Solution 6.11.
[(—1)+(-—1)~1J
-1 ’
which equals 3 and is clearly different from [%], which is 1. O

Solution 6.12. The second step (with the hint ‘inequalities’) is invalid. The rule
m<k+1 = m<k is only valid for integers m and k, and not for real numbers.
The mistake made here is an easy one to make because of the overloading of
the symbols < and < for ordering both real and integer numbers. In this case,
the mistake is easily spotted, but in other circumstances it may not be so easy to
spot. The moral is: beware of overloaded operators! O

Solution 6.13. We have, for all n,

nz-|x|
= { negation }
-n< x|
= { definition of floor }
-n<x
= { negation }
nz-x
= { definition of ceiling }
n=l-x] .
Thus, by indirect equality, the function f is the ceiling function. O

Solution 6.14. The defining equation is
k<m+n = kxn<m .

Indirect equality is used to show that

mon 2]

We have, for all integers k,

k<m-=+n
= { above definition }
kxn <m
= { arithmetic }
m
k< —

n

276

Solutions to Exercises

= { definition of the floor function }

In the case that m+n is the smallest integer k such that kxn > m, the definition
becomes

a

Solution 7.4. For continued equivalences, pairs of repeated terms cancel each
other out. So for continued equivalences, an even number of occurrences of the
same term reduces to none, and an odd number of repeated terms reduces to

one. 0
Solution 7.7.
p Vtrue
= { reflexivity of equivalence (5.4) }
pvip=p)
= { disjunction distributes over equivalence (7.5) }
pvp=pVvp
= { reflexivity of equivalence (5.4) }
true .
0
Solution 7.10.
pAp
= { goldenrule, p,g := p,p }
p=p=pvp
= { disjunction is idempotent }
pP=EpP=EPp
= { reflexivity of equivalence (5.4) }
p .
4

Solution 7.12.
pA(pva)
= { goldenrule: p,g := p,pvg }
p=pva=spvipvq)

.,

Solutions to Exercises 27

= { associativity and idempotence of disjunction }
pP=Epvq=EpVvq
= { reflexivity of equivalence (5.4) }
p -
Solution 7.13.
(pva)n(pvr)

il

{ goldenrule: p,g := pvqg,pvr }

pvq=pVvr = (pvq)Vv(pVvr)

= { associativity, symmetry, idempotence of disjunction }
pvq=pvry = pvqVvr

= { disjunction distributes over equivalence }
pv(@=r=qvr)

= { golden rule }

pvignr) .

Solution 7.14.
Modus ponens:

pA(p=q)
{ goldenrule,p,q 1= p,p=q }

p=p=q=pvip=q)
{ disjunction distributes over equivalence }

i

P=Pp=qg=pVvp =pVvq
= { simplification of continued equivalence,
disjunction is idempotent }
v=qg=pvqg
{ golden rule }

PAq .

278 Solutions to Exercises

De Morgan. The more complicated side is the right side (because it contains two

negations rather than one).
pvq
= { definition of negation }
(p = false) v (q = false)
= { disjunction distributes over equivalence
(applied twice) }
pvq = falsevg = p vfalse = false v false
= { false is unit of disjunction }
pvq = q = p = false
= { rearranging terms (using symmetry
and associativity of equivalence) }
p=qg=pvq = false
{ golden rule }
pAq = false
= { definition of negation }
~(prq) .
De Morgan. Again we begin with the right side.
pATq
= { golden rule }
p= 4 = TpvTq
= { contrapositive applied to —-p = —q
rule just proved: ~pv -~q = ~(pAq)
applied to third term }

p=4qg=—(prq)

= { definition of negation }
p =q=pnrq = false

= { golden rule }
pvq = false

= { definition of negation }
~(pvq) .

Solutions to Exercises

279

Distributivity of conjunction over equivalence.

pA@=T)
{ goldenrule, p,q := p,q=r }

It

¥ = pv(g=sr)

distributivity of disjunction over equivalence }

il

¥ = pvqg = pVvr

R~ T~

rearrange terms (using symmetry and associativity of
equivalence) and add p twice
in order to head for the golden rule. }
pPvq =p =p =YVv = pVvr
golden rule (twice—once with p,q := p,q ,

AN

il
R~
1l

once with p,q := p,») }

il

pPANg = p PAY .

We thus conclude that

PA@=T) = pAQ = P = PATY .

Rearranging terms we get the required result. O

Solution 7.15. In this solution, simplification of continued equivalences and dis-
junctions using the basic laws (symmetry, associativity, idempotence and con-
stants) is not spelt out.

We begin by deriving the equality between (a) and (b).

i

(pva) A(@vr) A(rvp)
{ goldenrule,p,g := pvqg,(@qvr)A (rvp) }
pvqg=(@vr)A(rvp) = pvgv@Vvr) A(rvp))
{ distributivity of disjunction over conjunction
and simplification }
pvg=(qQvr)An(rvp) =pvqgVvr
{ goldenrule, p,q := qVv7r,rVvp,
simplification of continued disjunction }
pvVqg =qQVvVrY = rvVvp = pvqgvy = pvqvr
{ simplification of continued equivalences }

pvq=qvVr =rvp .

280 Solutions to Exercises

Now the equality between (d) and (c) is obtained by replacing conjunction every-
where by disjunction and vice versa.

(pAnq) v (@Aar) Vv (rAp)
{ goldenrule, p,q := pAq,(@Ar) Vv (rap) }

1l

pAq = (@Ar)V (PAp) = pAqAa{@Aar) v (rap))
= { distributivity of conjunction over disjunction
and simplification }
pAq = (QAT)VrAp) = pAGAT
= { goldenrule, p,q := gAY, v Ap,
simplification of continued conjunction }
PAQ = gAY STYAP =S PAGAY = PAQAY
= { simplification of continued equivalences }
PAGQ =qAY = TAD .
Now we prove that (b) and (c) are equal.
PAGQ =qAY =TV ApD
= { golden rule, applied to each conjunct }
P=EQ=pPVgq=Eqgq=r=qQVr =r =p =rVvp
{ simplification of continued equivalences }

pvq=qgVvr =rvp .

0O
Solution 7.22.
pAqg=>p .
qa=pvq .
O

Solution 7.23.
false < true
{ definition }

false = false v true
= { true is zero of disjunction }

false = true

Solutions to Exercises 281

= { true is unit of equivalence }
false .
Solution 7.24.
p<=q
= { definition }
p=pVvq
= { false is unit of disjunction }
pVvfalse = pvg
= { disjunction distributes through equivalence }
pV (false=q)
= { definition of negation }
pv-q .
Solution 7.25.
(p<=a) v (p=4q)
= { (7.24) }
pvqv pVvqg
= { symmetry and associativity of disjunction }
pVvpvaqgVvq
= { excluded middle (twice) }
true .
Solution 7.26.
Contrapositive:
“p="q
= { definition }
—p=-opAq

= { De Morgan }
p=-(pvaq

282 Solutions to Exercises

= { contrapositive }
p=pvaq
= { definition }
p<q .
Contradiction:
p=>false
= { definition }
p =p nfalse
= { false is zero of conjunction }
p =false
= { definition }
-p .
Distributivity:
(p=q)er
= { definition }
r=(p=q)Ar
= { distributivity of conjunction over equivalence }
Y =S pAY = gAY =T

{ simplification of continued equivalences }

Il

PAY = AT .

Distributivity:

(p=q)=r

= { definition }
v=q=(p=q)Vr

= { distributivity of disjunction over equivalence }
p=q=pvr=qvr

= { rearranging terms }
p=pvr=q4=4qVvVr

= { definition }

pEr = q<r .

Solutions to Exercises 283

Shunting:
(peq) <r
= { definition (applied twice) }
p=Epvq=(p=pvaVvr
= { distributivity of disjunction over equivalence }
p=pvqg=pVvy = pvqgyvr
= { distributivity of disjunction over equivalence }
p=Epvi@=sr=qVr)
= { golden rule }
p=pv@nr)
= { definition }
pPEqgAar .
Solution 7.29.
Mutual implication:
(p<=q) A (p=q)

= { definition }
(p=pva)r@g=pVva)
= { substitution of equals for equals (7.27),
first occurrence of p v g replaced by g }
(p=a)ra=pvaq)
= { substitution of equals for equals (7.27),
second occurrence of p replaced by g }
r=a)r(@=qVvq)
{ disjunction is idempotent,

properties of true }
p=q .
Distributivity:
peqvr
= { definition of « }

284 Solutions to Exercises

p=pvqvr
= { substitution of equals for equals (7.28):
withg.x=(xvgqg) }
(p=pvavr) A(pvga=pvqVvr)
= { substitution of equals for equals (7.27):
specifically, p v g for first occurrence of pvgvr }
(p=pva) A(pvq=pvqVvr)
= { substitution of equals for equals (7.27):
specifically, p for last two occurrences of pvq }
(p=pva) A (p=pvr)
{ definition of < }
(p=q) A (psr) .
Distributivity:

I

(per)Al(ger)
{ definition }

(r=paAr)A(r = gqnar)

= { substitution of equals for equals (7.27)
specifically, p A r for last two occurrences of r }
(r=pAr)A(PpAY = pAQGAT)
= { substitution of equals for equals (7.27),
specifically, p A g A r for first occurrence of p Ar }
(r =pAgATYY A(PAY = PAQAT)
= { substitution of equals for equals (7.28),
withg.x=(pArx) }
Y = pAGAY
{ definition }

PAGQET .

a

Solution 7.30.

(b) Simplifying A = —~A = B using (7.19), we get A = -A = —~A A B, which equals
AV —B. So, either A is a knight or B is a knave.

Solutions to Exercises 285

(c) Simplifying A = A= —B using (7.19), we get AA —B. So A is a knight and B
is a knave.

(d) Simplifying A = -A= —B using (7.19), we get A = -A = ~A A B, which
equals A v B. So, at least one of A or B is a knight.

(f) Simplifying A = -B= A using (7.18), we get A = A = -B Vv A, which equals
— BV A. So, either A is a knight or B is a knave.

{g) Simplifying A = B= - A using (7.18), we get A = ~A = —~A v B, which equals
A A —B. So A is a knight and B is a knave.

(h) Simplifying A = -B=-A using (7.18), we get A= —-A = -A Vv —B, which
equals A A B. So, both A and B are knights.

O

Solution 7.31. Let the natives be A and B. Following the analysis given in Sec-
tion 5.5, to determine whether both are knights, the question to be posed is
A=A AB. This is the same as A=B. So, in words, the question is ‘is it the case
that, if you are a knight, then your colleague is also a knight?”.

To determine whether at least one is a knight, the question to be posed is
A= AvB. This is the same as A«<B. So, in words, the question is ‘is it the case
that you are a knight if your colleague is a knight?’. O

Solution 7.32. We are required to simplify A = =A v B.

A= -AVB
= { definition of negation }
A = (A=false) VB
= { disjunction distributes through equivalence }
A = (Av B=false v B)
= { associativity of equivalence,
false is unit of disjunction }
A=AVB =8B
= { definition of conjunction }
AAB .
So A and B are both knights. O

Solution 7.33. B’s statement is A = ~A. (’s statement is - B. So, what we are given
is

(B=A=-A)A(C=-B) .

286 Solutions to Exercises

We simplify this as follows:
(B=A=-A)A(C="B)
= { (A=—-A) =false }
—“BA(C=-B)
= { modus ponens }
=BAC .
So, B is a knave and C is a knight. O

Solution 7.34. Let U denote the proposition ‘One of A, B and C is a knight’. B's
statement is then A = U. C’s statement is —B. So, what we are given is

(B=A=U)A(C=-B) .
We begin by assuming C = —~B and simplifying U:
U
= { definition }
(AA=BA-C)V(BA-CA=-A)V(CA-AAB)

- { =-8 }
({AA-BA-=B)V(BA-=BA-A)V(-BA-AA-B)
= { -=-B=B, ~B A B = false,
p Ap =p (Once with p := B, once with p := -B),
constants }
(mAAB)V(—=AA-B)
= { distributivity, excluded middle }

-A .
Hence

(B=A=U)A(C=-B)

= { above, substitution of equals for equals }
(B=A=-A)A(C=-B)

= { A=-A=false }
(B=false) A (C=-B)

= { substitution of equals for equals, —~false =true }

(B =false) A (C =true)

Solutions to Exercises 287

= { constants }
~“BAC .
We conclude that C is a knight and B is a knave. Nothing can be deduced about A.

]

Solution 7.36. We are given a number of properties. The uniqueness of the place-
ment of the portrait is the conjunction of four statements:

@ GvSvL,
(b) "Gv =S,
(c) ~Sv-L ,
(d) ~Lv-—G .
The inscriptions on the gold and silver caskets amount to
(e) G=g and
£ S=s .
Finally, the inscription on the lead casket is
@1l = (~gAa-s)v(msa-l)v(—lar—g) .
Formally, therefore, we want to simplify
@AD)AADAERADAE .

We focus on (g) since this is clearly the most crucial property.
Using the hint of applying Exercise 7.15 as first step, the calculation goes as
follows:

Il = (mgA=S)V(msa-l)v(mlAa—g)
= { Exercise 7.15 }
l=-gv-s=-svalz=-lv-g
= { Here we bring in other information.
Since g and G are the same (see (e)) as are s and S (see (f)),
property (b) is ~g v —s. So, substituting equals for equals

(true for —g v —s) this term can be eliminated. }

—
i

—sV ﬂl = *‘1[VvV ™ g
= { (heading for the elimination of the negation operator
applied to)

rearranging, disjunction distributes over equivalence }

288

Solutions to Exercises

il

alv (=g =-s)

= { “pvq=4q=pVq, contrapositive }
l=g=s=1lvig=ss)

= { goldenrule, p,g := l,g=s }
In(g=s) .

From this calculation we conclude that the inscription on the lead casket is true
and the inscriptions on the gold and silver caskets are as true as each other.
Now we can complete the calculation:

@AM AAA)AD AR
{ above calcuation }
@AaBAr@Aa@da@AB®DALA(g=ES)

{ @ADA(g=s) = (g=5s=G=S)
b)A(g=s=G=S) = "GA(g=s=G=S),
definitions of (c) and (d) }

(GVSVL) A "G A g=s=G=S Al A (-SVv-L)

i

Il

If

{ substitution of equals for equals and simplification }
L A(g=s=G=S=false) Al .

So the portrait is in the lead casket, the inscription on the lead casket is true, and
the inscriptions on the gold and silver caskets are false. O

Solution 7.37. Using G for ‘the dagger is in the gold casket’, and similarly for §
and L, we have the properties (a), (b), (c) and (d), as in Exercise 7.36, together with
the three properties

(e) G=g ,
f) S#s ,
@ l=-((gAas)visanl)v(lag)) .
Again, we focus on simplifying (g). Much is copied from Exercise 7.36.
Il = -((gas)visalvlag))
= { contrapositive }
Sl = (gas)visal)vlag)
= { Exercise 7.15 and definition of negation }

false=1l=gvs=svl=lvg

Solutions to Exercises

289

But,

That is,

{ As in Exercise 7.36 we bring in additional information.
This time, we have from (b), (e) and (f),
G=g,s=-Sand ~S=Gv~-S. |}
false =l = =S = =Svl = IvG
{ rearranging and negation |}
S=Svl=I1lvG .

GvSv(S§ =Svli=1lvG)

{ distributivity, idempotence, symmetry of disjunction }
GvS =GvSvli=GvSvli

{ continued equivalences }
GvS .

byAABDAE => GVS .

We conclude that the dagger is in the gold or silver casket and Portia’s suitor

should choose the lead casket. O
Solution 8.2.
xty=x

il

il

{ antisymmetry }
x<xy Axty<x

{ x<xy }
xty<x .

Solution 8.3.

x1y < x+y

{ definition of 1 }
XE<X+Y AYy<Xx+y

{ arithmetic }
0<y A0<x .

290 Solutions to Exercises

Solution 8.4.
(a) We have, for all z,

xtx<z

= { definition of max }
x<zAx<z

= { conjunction is idempotent }
x<z .

The result follows by indirect equality.
(b) We have, for all z,
xty<z

{ definition of max }

x<zAy<z

{ A is symmetric }

Y<ZAXKLZ
{ definition of max }

i

yix<z .

The result follows by indirect equality.

Solution 8.7.
(a) We have, for all u,
xl(y1z)<u
{ dual of (8.5), specifically

xly<z = x<zvy<z }

x<uvytz<u
= { Galois connection defining maximum }
x<u v (y<uaz<u)

{ distributivity of v over A }

(x<uvy<su)a(xguvz<u)
{ dual of (8.5): see first step }

Solutions to Exercises 291

xly<u Axlz<u
= { Galois connection defining maximum }
(xiy)tixiz)y <u .
The result follows by indirect equality.
{b) We have, for all u,

xt(yix)y<u
{ dual of (8.5): see first stepin (a) }

I

x<uvylxs<u
= { Galois connection defining maximum }
x<uv{ysuarx<u)
= { absorptivity of v and A }
xX<u .
The result follows by indirect equality.
(c) We have, for all u,

(xIy)t(yiz)t(zix) < u

= { Galois connection defining maximum }
xly<uayiz<sunzix<u

= { (8.5) dual }
(x<uvysu)a(ysuvz<u)a(z<uvx<u)

= { Exercise 7.15 }
(x<uary<su)viys<unzsu)yvizsuarx<u)

= { first two steps reversed using dual properties }

(xty)l(y12)l(ztx) < u .

The result follows by indirect equality.

Solution 8.8. First part. We have, for all w,
Ix+y|<w
= { definition of |x| and max }

X+Yy<w A —(x+y)<w

292 Solutions to Exercises

« { 1st conjunct: y < |y|, and monotonicity;
2nd conjunct: arithmetic }
x+lyl<w A -x<w+y
= { 1st conjunct: arithmetic;
2nd conjunct: —y < |y|.
So, —|y| < y, and monotonicity }
x<w-|yl A -x<w-|y|
= { definition of |x| and max and arithmetic }
Ixl+lyi<w .

Thus by indirect order, |x+y| <|x|+|y]|.
Second part:

Hxl-IylI<w

= { definition of |x| and max }
[x|-l¥yI<w A =(Ix]-]yD) <w

= { arithmetic }
Ix|<w+lyl A lyl<w+lx]

= { definition of |x| and max }

x<w+H| Y| A —x<w+|y| A y<w+|x| A —y<w+|x|

= { y<|yland -y <|y|, similarly for x }
X<WHY A - X<W-Y AYLSWHX A -y <W—X
= { arithmetic and definition of |x| and max }
Ix-yl<w .
Thus, by indirect order, |x-y| <||x|-|y]l. a

Solution 8.9. We have, for all n,

n<ix]ily]
{ definition of | }

n<lx]Aangly]
{ definition of floor }

1l

n<x An<y
= { definition of min }

Solutions to Exercises 293

n<xly
= { definition of floor }
n< |xtyl .

The result follows by indirect equality. J

Solution 8.10. Indirect equality is used to compute the value of exp.p. We have,
for all k,

k < exp.p

il

{ definition of exponent }
pk\p
= { integer division }
k<1 .

Thus, by indirect equality, exp.p = 1.
Indirect equality is also used to derive . We have, for all k,

k < exp.gcd(m,n)

{ definition of exponent }
p*\gcd(m, n)
= { definition of gcd }
pk\m A p*\n
= { definition of exponent }
k<exp.m A k<exp.n
= { definition of minimum }
k < exp.mlexp.n .

We have thus derived that exp.gcd(m, n) = exp.m | exp.n.
Indirect equality is used to derive ®. We have, for all k,

k <exp.(mxn)

= { definition of exponent }
pk\ mxn
= { prime factorization }

(3i,j : k=1i+j: p'\m A pi\n)
= { definition of exponent }

294 Solutions to Exercises

(3i,j : k=i+j:i<exp.m A j<exp.n)
= { arithmetic }

k < expm+exp.n .

We have thus derived that exp.(mxn) = exp.m + exp.n. O
Solution 9.1.

(a) Valid.

(b) Invalid (the value of i is changed by the assignment).

(c) Valid.

(d) Invalid (a valid postcondition would be j < i).

(e) Valid (the triple says nothing about the assignment statement because all
states satisfy postcondition true).

(f) Invalid (it is impossible to end up in a state satisfying false).

(g) Valid (the claim is vacuously true because the assumption is that the execu-
tion of the assignment is begun in a state satisfying false, which can never
be the case).

O
Solution 9.3.
(a) x+y<9 .
(b) x?>-1=0 .
(€) x2-y2=1.
(d z=0vx=1vy=2.
(]
Solution 9.4. We seek X such that
mxn=C Aeven.m = (m+2)xX=C .
Clearly, X = 2n suffices. a

Solution 9.5. As before, X = 2n + 1. To calculate Y, we use that
m+1)3 = n3+3n2+3n+1 .

So,
s=n? A t=n3

> s+2n+1=Mm+1)2 A t+3s+3n+1 = (n+1)3 .

Solutions to Exercises 295

The required assignment is, thus,

stn = s+2n+1,t+3s+3n+1,n+1 .
X
Solution 9.6. We seek X such that
{f=n}fm = X,n+1{f =nl}.
That is, X must satisfy
f=n=>X=(n+1)! .
Now,
(n+1)!
= { definition of factorials }
(n+1) x n!
= { assume f = n! }
(n+1)x f .
So,
f=nl=> n+)xf = (n+1)! .
The required assignment is, thus,
fn = (n+l)xf,n+l .
O

Solution 9.7. We seek X and Y such that

{ f=fib.n A g=fib.(n+1)}

fign = X, Y, n+l

{f=fib.n A g=fib.(n+1)} .
That is, X and Y must satisfy

f=fibn A g=fib.(n+1) = X=fib.(n+1) A Y=fib.((n+1)+1) .
Now,

fib.((n+1)+1)

= { arithmetic }
fib.(n+2)

296

Solutions to Exercises

{ definition of fib }
fib.(n+1) +fib.n
{ assume f=fib.n A g=fib.(n+1) }

g+f .

I

So,
f=fibn A g=fib.(n+1) = g=fib.(n+1) A g+f=fib.((n+1)+1) .
The required assignment is, thus,
figmn = g, g+f,n+l .
d

Solution 10.7. (a) Moving the precondition and the postcondition inside the con-
ditional:

{ mxn=p }
if evenn-m — {mxn=p Anevenm } mmn = m+2,2xn { mxn=p }
O true — {mxn=p Atrue} m,p := m-1l,p-n{mxn=p}
fi
{ mxn=p } .
Thus the assignment statements must satisfy
{mxn=p Aevenm } mmn := m+2,2xn { mxn=p} ,
and
{mxn=p Atrue} myp = m-1l,p-n{mxn=p} .
Using the assignment axiom, their correctness follows from:
mxn=p Aevenm = (M+2)X2xXn=p
and
mxn=p = (m-1)xn=p-n .

(b) For brevity, we use Inv to denote 0<m A 0<n A gcd(m,n)=C. Moving
the precondition and the postcondition inside the conditional:

{ Inv }

if m<n—{Invam<nin:=n-mi{lnv}
On<m — {Invan<m}m:=m-n{Inv}
fi

{ Inv } .

Solutions to Exercises 297

Thus the assignment statements must satisfy
{Invam<nin:=n-mi{lnvj,
and
{Invan<mltm:=m-ni{inv} .

Using the assignment axiom, and spelling out the definition of Inv, their correct-
ness follows from

OsKmAaOgEn aAgedimmn)=CAm<n
= 0<m A Og<n-m A gad(im,n-m)=C
and
osKmaAaOgEn Agcdimmn)=CAn<m
= 0<m-n A 0<n A gadim—-n,n)=C .

0l

Solution 10.8. The conditional rule requires us to check that x <0v x > 0 is true.
This is clearly the case. Also, we have to verify each branch of the conditional
statement with respect to the appropriate preconditions and postconditions (as
given in the conditional rule). That is, we have to verify

{(X=x|Ax<0}x = —x{X=x}
and
{X=|x]Ax20}skip{X=x1}.
Using the assignment axiom and the skip rule, we get the verification conditions:
X=|x| Ax<0 = X=-x
and
X=|x|Ax20=X=x .
These are both clearly true, thus completing the verification. O
Solution 10.11. The precondition is
x=XAy=Y.
The postcondition is
x<yarlx=Xvy=X)A({x=YVy=Y).

We consider two cases: x < y and y < x. In the first case, there is nothing to do. In
the second case, an interchange of x and 7y establishes the postcondition. Thus

298

Solutions to Exercises

the program is
{ x=XAy=Y}
if x<y — skip
Oy<x — x,Y =YX
fi
{ x<yAx=Xvy=X)A(x=YVvy=Y)}.

Use of the assignment axiom and the skip rule in order to check the correctness
yields the verification conditions:

X=XAY=YAXKY =2 X<y A(x=XVvy=X)A(Xx=YVy=Y)
and

X=XAY=YAY<Xx 2> y<xA(y=Xvx=X)A(y=YVX=Y).
Both are clearly true. O

Solution 10.12. Using the conditional rule, the requirements are
{ 0<k=K A xkxy =C }
k,x,y .= k-1,a,b
{ 0<k<K A xkxy =C }
and
{ 0<k=K A xkxy = C A even.k }
k,x,y = k+2,c,d
{ 0<k<K A xkxy =C 1} .
Applying the assignment axiom, the requirement on a and b is

O0<k=K A x¥xy =C = 0<k-1<K A a¥Ixb =C.

Now,
0<k=K A xkxy =C
= { heading for introducing ‘k—1’ we use the fact that
O<k=K = k=(k-1)+1 A 0<k-1<K }
0<k-1<K A x*k-D+lyy = C
= { property of powers }

0<k-1<K A xkIxxxy =C.

Solutions to Exercises 299

So, suitable values for a and b are a =x and b =x x y. (Note the implicit use of
the associativity of multiplication!)
Again applying the assignment axiom, the requirement on ¢ and d is

0<k=K A x¥xy = C A evenk

= 0<k+2<K A c¥2xd =C .

Now,

O0<k=K A xkxy = C A evenk

= { heading for introducing ‘k+2’ we use the fact that

O<k=K A evenk = k=(k+2)x2 A0<k+2<K }

0<k+2<K A x*+2 X2y = C

= { property of powers }
0<k+2<K A (x?)k2xy =C .

So, suitable values for c and d are c=x2 and d = y.

In summary, taking account of the fact that x is unchanged when the assign-
ment k := k—1 is chosen, and y is unchanged when the assignment k := k<2 is
chosen, the program we have constructed is

{ 0<k=K A xkxy =C}

if true — k,y = k-1,xxy
O evenk — k,x = k+2,x°
fi

{ 0Sk<K A xkxy =C 1} .

Solution 10.21. Using Exercise 10.12, we have
{ 0<k+2<K A evenk A xkxy =C}
k,x = k+2,x?
{ 0<k<K A xkxy =C } .

So the statement S2 is k,x := k=+2,x? and the assertion P is 0 <k+2 <K.

Now, satisfying the postcondition even.k is achieved by doing nothing in the
case that k is already even, and subtracting one in the case that k is odd. So, again
making use of Exercise 10.12, we postulate that statement S1 is the statement

if even.k — skip
0 oddk — k,y = k-1,xXxy
fi .

300

Solutions to Exercises

We have to check that it meets its specification, i.e. we have
{ 0<k=K A xkxy =C}
if even.k — skip
0 oddk — k,y := k-1,xxy
fi
{ 0<k+2<K A evenk A xkxy =C } .
Using the conditional rule and the assignment axiom, this is the case if
O0<k=K A evenk A xkxy =C
=> 0<k+2<K A evenk A xkxy =C
and
0<k=K A odd.k A xkxy =C
> 0<(k-1)+2<K A even.(k—=1) A xKlxxxy =C.

Simple properties of arithmetic show that this is indeed the case. The complete
program is, thus,

{ 0<k=K A xkxy =C}
if even.k — skip
0 odd.k — k,y = k-1,xxy
fi;
{ 0Sk+2<K A evenk A xkxy =C }
k,x = k+2,x?
{ 0<k<K A xkxy =C } .
O

Solution 11.1. (a) 6, (b) 5, (c) 3, (d) 0. (There are no integers i and j such that
0<i<j<2 A odd.i A odd.j.) a

Solution 11.2. (a) 4 (there is only one natural number k such that k?=4). (b) 8
(there are two integers k such that k2 = 4). O

Solution 11.3. (a), (b) The one occurrence of ‘i’ is free, all other occurrences of
variables are bound. (c) There are no free occurrences of variables. (d) The occur-
rences of ‘m’ and ‘n’ are free. (e) The occurrences of ‘m’ and ‘n’ are free, as is the
rightmost occurrence of ‘j’. O

Solutions to Exercises 301

Solution 11.4. (a) Valid—both sides equal 12xi. (b) Invalid—left side equals 24,
right side equals 12xj. (c) Valid—both sides equal 24xj. (d) Invalid—left side
equals 12, right side equals 24.]

Solution 11.17.
Sk:Q:if P—T O -P—0fi)

i

{ range splitting |}
(Zk:PAQ:if P—T O =P —0fi)
+ (Zk:-PAQ:ifP—T 0O -P—0fi)

i

{ substitution of equals for equals
(true for P in 1st conditional,
true for =P in 2nd conditional) }
(Zk:PAQ:T) + (Zk:—"PAQ:0)
= { (Xk:R:0)=0for allranges R,R := =PAQ }
(Zk:PAQ:T)+ 0
= { arithmetic }
(Zk:PAQ:T) .

Solution 11.18.

(Zj:P:S)yx(Zk:Q:T)

= { distributivity }
(Zj:P:S%x(Zk:Q:T))

= { distributivity }
(3j:P:(Zk:Q:5xT))

= { nesting }
(Zj,k:PAQ:SXT) .

The side conditions are that k should not be free in P or S, and j should not be
free in Q or T. Also, j and k should be different. O

Solution 11.19.
(SZk:R:T)
= { one-point rule (11.9), g is the inverse of f }
(Zk:R:(Zj:j=gk:T))

302 Solutions to Exercises

= { nesting (11.6) }
(Xk,j: Rnj=g.k : T)
= { fij=k = j=gk }
(Zk,j:RA fj=k:T)
= { substitution of equals for equals }
(Zk,j : Rlk:= fjlIA fj=k:T)
= { rearranging (11.7),
(preparing to nest) }
(2j.k : Rlk:=fjIA fij=k:T)
= { nesting (11.6), ‘k’ is not free in R[k := f.j] }
(Zj :Rlk:=fjl:(Zk: fj=k:T))
{ one-point rule (11.9) }
(Zj:Rlk:= fjl:Tlk:= f.j]) .

0O

Solution 11.56. For the first part, simply replace ‘+’ by ‘@’ and ‘X’ by ‘@’ in the
derivation of (11.11). Now, for the second part,
(Pk:PvQ:T)

{ abovewithQ := PAQ }
(Bk:(PVQ)APAQ:T)® (DBk:(PvQ)A-(PAQ):T)
= { predicate calculus }

(Bk:PAQ:T)e (Pk:(PvQ)A—~(PAQ):T)

= { ® is idempotent }
(Pk:PAQ:T) ® (Bk:PAQ:T) ® (Bk: (PvQ)A—~(PAQ):T)
= { first two steps reversed }

(Pk:PAQ:T)e (Pk:PvQ:T)
{ (11.49) }
(Pk:P:T) o (Pk:Q:T) .

Solution 11.57.
(Bk:R:T)
= { assumption: (Vk:(3j:k=fj)) }

Solutions to Exercises

303

(Bk : RA(Ajuk=f74):T)

{ distributivity (11.41),

preparing for splitting }

(Bk : (FjRAk=fj):T)

{ splitting (11.51) }
(Pj(Pk:RAk=f]:T))

{ nesting (11.45) }
(Bjk : Rak=fj:T)

{ substitution of equals for equals }
(DJjk : Rlk:=fjlnk=fj:T)

{ nesting (11.45), R[k := f.j] is independent of k }
(DJ : Rlk:=fjl: (Bk:k=fj:T))

{ one-point rule (11.48) }

(DJ:Rlk:= fj]:Tlk:= fjI) . .

Solution 11.58. (Other solutions to this question are possible.) In all cases the
variable p is assumed not to occur free in R or T. (In the fifth example, p\q is to
be read as ‘p divides ¢q’, and p is assumed to be a prime number.)

p=>(Vi:R:T)=(Vj:R:p=>T) .

p < (Aj:R:T) = (Vj:R:p<T) .
~(Z1:R:T)=(Zi:R:-T) .
p\{I1i:R:T) =(3j:R:p\T) .

p+{{j:R:TY=(j:R:p+T) .
—(=j:R:T) = (£j:R:-T) .

PA(ETR:T)=(£j:R:prT) .

puU{Nj:R:TY={Nj:R:puT) .

pn{Uj:R:TY)=(Uj:R:pnT) .

Solution 11.59.

(Zk:0<k<n:xy)
n
{ arithmetic, n>0 }

< (rk:0<k<n:ixy)

(Tk:0<k<n:xy) < nx{(tk:0<k<n:x)

304

Solutions to Exercises

= { n=(Xk:0<k<n:1),
distributivity of multiplication over addition }
(Tk:0<k<n:xk) < (Tk:0<k<n: (1k:0<k<n:xk))
= { addition is monotonic }
(Vk : O<k<n @ xx < (tk:0<k<n:xy))
= { maximum }
true .

When xy is an integer, for each k, (t k:0<k <n:xy) is also an integer. So,

true
= { above }

<Zk:0<’;<n:mk) < (tk:0<k<n:my)
= { (Zk:0<k<n:my) = p }

% < (Mk:0<k<n:my)

= { definition of ceiling }

%] < (1k:0<k<n:my)

= { forallg, q<xty = q<xvVvq<y,
distributivity (valid because n>0) }

(Ak:0<k<n: [%] <my) .

——

The dual properties are

(Zk:0<k<n:xy)
n

> (Vk:0<k<n:xy)

and

> my) .

(Zk:0<k<n:mk)j
n

(Ak:0<k<n: [

In the case that p =n+1, it follows that there is a pigeon-hole with at least two
items in it. In the case that p > jxmn, it follows that there is a pigeon-hole with at
least j items in it. a

Solution 11.60.
(I3mm : Vk = %)
= { Use arithmetic to eliminate the square root operator. }

(Am,n : kxn? = m?)

Solutions to Exercises 305

= { Let exp, (1) denote the number of times that p divides .
Fundamental theorem of arithmetic. (Dummy p ranges
over prime numbers.) }

(Amn :z (Vpuexp,(kxn?) = exp,(m?)))

= { For all m and n, and all primes p,

exp,(mxn) = exp,(m)+exp,(n). }
(Imn : (Vp = expy(k) +2xexp,(n) = 2xexp,(m)))

= { (=) Both 2xexp,(n) and 2xexp,(m) are even.
The difference between two even numbers is even.
(«) mn = (pj:j=exp,(k)/2:p/), 1 }

(Vp :expy,(k) is even) .

So, vk is rational exactly when, for every prime number p, the number of times
that p divides k is even. O

Solution 12.1. If the two tumblers that are chosen on a particular move are both
upside down, the move increases the number that are the right way up by two.
If the two tumblers that are chosen on a particular move are both the right way
up, the move decreases the number that are the right way up by two. If one of
the tumblers is the right way up and the other is upside down, the move does not
change the number that are the right way up. Thus, in any move the number that
are the right way up changes by a multiple of two. The invariant is whether or not
the number that are the right way up is even. Starting from an initial position in
which an odd number of tumblers is upside down, it is impossible to turn them
all the right way up. Starting from an initial position in which an even number
of tumblers is upside down, it is possible—choose two tumblers that are upside
down at each step. O

Solution 12.2.

(a) The first player always wins. The strategy is to ensure that the number of
matches left is a multiple of 4 equivales it is the second player’s turn to move.
This invariant property is true initially (because there is an odd number of
matches and it is the first player’s move). To maintain the invariant, the
first player removes 1 mod 4 matches on the first move, where n is the
number of matches in the pile. (n mod 4 is the remainder after dividing n
by 4. In general, n mod m is the number remaining after dividing n by m.)
Subsequently, if the second player removes k matches, the first player then
removes 4—k matches.

Solutions to Exercises

(b) The first player always wins. The strategy is to ensure that the number of
matches left is a multiple of 2m + 2 equivales it is the second player’s turn to
move. (Since 0 is amultiple of 2m + 2 it follows that the first player makes the
last move.) The first player should therefore always remove n mod (2m + 2)
matches, where n is the number of matches remaining in the pile. The ini-
tial position satisfies the invariant property (because an odd number is not
divisible by an even number) and every move made by the first or second
player guarantees the invariant.

(c) The first player has a winning strategy if the initial number of matches is
not divisible by m+1. Otherwise the first player is guaranteed to lose if the
second player follows the winning strategy.

a

Solution 12.3. The key property is that any closed curve must include the four
corners of a rectangle. In particular, a closed curve must have a lower-right corner.
That is, in order to complete a closed curve, A must always draw two lines in the
shape below.

In order to guarantee winning, one strategy for B is to prevent A from drawing
such a shape. So, whenever A draws a horizontal line, B responds by adding a
vertical line forming the shape below.

If A draws a vertical line, B responds by adding a horizontal line forming the
shape below.

- -

If A’s move already forms either of these shapes, then B may make an arbitrary
move. O

Solutions to Exercises 307

Solution 12.4. The value of w remains constant or decreases by 2. So, the invari-
ant is the parity of w (whether or not it is even). Thus the last ball in the bag is
white if initially there is an odd number of white balls in the bag, otherwise the
last ball in the bag is black. O

Solution 12.5.

(a) The second player always wins. The strategy is to maintain the symmetry of
the daisy by always copying the first player’s moves, choosing petals diago-
nally opposite those chosen by the first player. If we number the petals from
0 to 15, then the second player removes petal 8+n whenever the first player
has removed petal n, the numbers being counted modulo 16. The invariant
property that holds after each of the second player’s moves is that, for all
n in the range 0 < n < 15, there is a petal at position n equivales there is a
petal at position (8+n) mod 16. More generally, the invariant property of
the game is that it is the first player’s turn to move equivales for all n in the
range 0 <n < 15, there is a petal at position n equivales there is a petal at
position (8+n) mod 16.

Figure B.3 Solution to the daisy problem.

(b) If n < m, then the first player wins (by removing all petals on the first move).
Otherwise, the second player has a winning strategy. After the first move, the
petals are divided into groups of adjacent petals. Immediately after the first
player’s first move there is one such group of petals; later in the game there
may be more.) The sizes of these groups varies but the winning strategy
is to ensure that, for each k, there is an even number of groups of petals
of size k. The second player’s first move is to establish this property—by
removing enough petals to create two groups of adjacent petals of equal size.

308

Solutions to Exercises

Subsequently, the first player is always obliged to invalidate this property—
if his move is to remove [petals from a group of size k, then the number of
groups of size k will become odd. The second player can restore the property
by copying the first player’'s move—removing the same [petals from one of
the remaining groups of size k.

(c) The first player wins. The first player places a coin over the centre of the

table. Thereafter, every move the first player makes is a copy of the second
player’'s move at a position diagonally opposite. Thus, if the second player
places a coin at position (x, y), the first player copies the move by placing a
coin of the same diameter at the position (—x, —7). The invariant property
holding immediately after the first player’s move is: there is a coin of diam-
eter d at position (x, y) equivales there is a coin of diameter d at position
(—=x, —y). The first player can always copy the second player’'s move pro-
vided that all coins are solid and circular. (If there are, say, coins with holes
in the centre and the first player places one such coin on the table in his first
move, the second player could put another coin in the centre of that coin,
thus foiling the first player’s winning strategy!) O

Solution 12.9. The main change is the base case. Instead of the empty-range rule,
the one-point rule is used:

S.0
{ definition }
(Tk:0<k<0:k) = 30(0+1)
0< k<0 = k=0, one-point rule to simplify

Il

the summation,
arithmetic for the right side of the equality }

0=0
= { reflexivity of equality }
true .
The proof of the induction step is essentially the same. a

Solution 12.10.
(a) Basis:

(Tk:1<k<0:k?) = £0x(0+1)x(2x0+1)
= { empty-range rule to simplify the summation,

arithmetic on the right side. }

Solutions to Exercises

309

reflexivity of equality }

true .

Induction Step:

(Tk:1<k<n+1:k%) = %(n+1)((n+1)+1)(2(n+1)+1)
{ range splitting, arithmetic }
(Tkil<k<n:ik®) + (n+1)? = tm+1)(n+2)(2n+3)

= { o assume that
(Sk:l<k<n:ik?) = tnm+1)2n+1) . }
mn+1)2n+1) + (m+1)? = F(m+1)(n+2)(2n+3)
= { arithmetic and reflexivity of equality }
true .
(b) Basis:
(Tk:1<k<0:k3) = $0%(0+1)?
= { one-point rule to simplify the summation,
arithmetic }
0=0
= { arithmetic and reflexivity of equality }
true .
Induction Step:

(Tk:l<k<n+1:k%) = T(m+1)2((n+1)+1)2
{ range splitting, arithmetic }

(Tk:1<k<nikd) + (n+1)3 = J(m+1)2(n+2)?

{ e assume that
(Tk:l<k<n:k?) = n2(m+1)?2. |
ntm+D? + (m+1)® = rm+1)2(n+2)?
{ arithmetic and reflexivity of equality }

true .

310 Solutions to Exercises

(c) Basis:
0+1 _
(Sk:0<k<0:xky = X —1
x-1
= { one-point rule to simplify the summation,
arithmetic }
X0 = x-1
x -1
= { x # 1, arithmetic and reflexivity of equality }
true .
Induction Step:
x(n+1)+1 -1
(Tk:0<k<n+l:x%) = 1
= { range splitting, arithmetic }
xn+2 -1
Sk:0<k<n:xk)y +xn+l = = — —
x-1
= { e assume that
xn+l -1
(Tk:0<kg<n:xky = =—— . }
n+l n+2 x-1
5___1 + xn+l = x_—_l
x-1 x—-1
= { arithmetic and reflexivity of equality }
true .
(d) Basis:

(1+x)% > 1+ 0xx
= { arithmetic }
true .
Induction Step:
(1+x)"*! > 1+ (n+1)xx
< { transitivity of >
(heading towards using the induction hypothesis,
we introduce the middle term
(I+x)x(1+nxx)) }
(1+x)™1 > (1+x)x(1+nxx) > 1+ (n+1)xx
= { e assume that (1+x)" > 1 +nxx.

x > -1, so 1+x > 0. Multiplication by a positive

Solutions to Exercises 311

number is monotonic. That is,
(14+2)"H > (1+x)x(1 +nxx) }
A+x)x(1+nxx) 2 1+ (n+1)xx

{ arithmetic }

l+x +nxx+nxx2 > 1+x+nxx

= { nxx? > 0. Addition is monotonic. }
true .
(e) Basis:
1 0
1 1<k<0: =
<Zk 1<k<0 kx(k+l)> 0+1
= { empty-range rule to simplify the summation,
arithmetic on the right side }
true .
Induction Step:
1 n+1
11<k<) =
<Zk Isk<n+i kx(k+1)> m+1)+1
= { range splitting }
<Zk'1<k<n' L >+ 1 -l
TR kx(k+1) m+D)x((m+1)+1) ~ n+2
= { s assume that
1 n
tl<kgn: = .
<Zk L<k<n kx(k+1)> n+1 }
n + 1 _ n+l
n+l (m+1)x(n+2) n+2
= { arithmetic and reflexivity of equality }
true .
(f) Basis:
k 0+2
<Zk.1<k<0.§lz> = 2—-———20

= { empty-range rule to simplify the summation,
arithmetic }

reflexivity of equality }

312 Solutions to Exercises

Induction Step:

) _k (n+1)+2
<Zk.1<k<n+1.§> - 2 (nils2
= { range splitting }
k n+1 n+3
<Zk:l<k<n.§>+2n+l = 2- 50
= { ¢ assume that
k n+2
(skiisksnig) = 2-222)
5 n+2 n+l - n+3
- on +2n+1 - _2n+1

{ arithmetic and reflexivity of equality }

true .
O

Solution 12.13. Basis: the basis is the case n = 1. This is because there are indi-
vidual definitions of F.0 and F.1. We have

F.(1+1)xF.(1-1) — (F.1)?
= { definition }
1x0-17?
= { arithmetic }

= { arithmetic }
(-t .

Induction Step: care must be taken in the induction step when expanding the
definition of F. Assuming that n > 1, the definitions of F.(n+2) and F.(n+1) are
given by the rule F.(k+2) = F.(k+1) + F.k, for all k, k > 0. (This is not the case for
the definition of F.n.)

F.((n+1)+1) X F.((n+1)-1) — (F.(n+1))?
= { arithmetic }
F.(n+2) X Fn — (F.(n+1))?
= { definition: F.(k+2) = F.(k+1) + F.k
applied to the cases k=n and k=n-1. }
(F.in+1)+Fn)xFn - (Fn+F.(n-1)) xF.(n+1)
{ arithmetic }

Solutions to Exercises 313

(Fn)2 — F.(n-1)xF.(n+1)
= { e assume that
F(n+1)xF.(n-1) - (Fn)* = (-1)". }

(="
= { arithmetic and reflexivity of equality }
(-1)nv+ 1 .
The proof uses simple induction only. i
Solution 12.14. The first step is invalid in the case that n=0. O

Solution 13.13. To verify the correctness of the initialization, we must verify the
Hoare triple

{ OKN |}
k,s == N,0
{ OKk<EN A sxXk=(Zi:k<i<N:ali]xX) } .
By the assignment axiom, this reduces to
OKN = OKNKN A OxXN = (Zi:N<i<N:ali]lxX!) .

This is true by virtue of the empty-range rule (since N <i< N is false) and simple
properties of arithmetic.
The termination condition is valid if

O0<k<N A sxXK=(Zi:k<i<N:ali]lxX!) A —(k>0)
= s = (Si:0<i<N:ali]xX!) .
This is clearly true as 0 < k <N A = (k> 0) reduces to 0=k <N. O
Solution 13.15. The invariant is established by the assignment
k,v,z .= M,1,X
and, when k = 0, we have
v =XxM

independently of the value of z. As the reader will have seen in solving Exer-
cise 10.21, we also have

{ 0<k=K A yxzk = XM}

if even.k — skip

0 oddk — k,y = k-1,vxz

314

Solutions to Exercises

fi;
{ 0<k=+2<K A evenk A yxzk = XM }
k,z := k+2,22

{ 0Kk<K A yxzk = xM } |

(Make the substitutions XM for C and z for x.) Thus we obtain the following

{O<M}

k,v,z = M,1,X ;

{ Invarian: 0<k A yxzk=XxM

Bound function: k }

do k>0 — if even.k — skip
O odd.k — k,y = k-1,yxz
fi;
k,z = k+2,2°

od

{y=xM1}.

0

Solution 14.1. For the first command, using the assignment axiom we have to

MLr<w<bgN
(Vi:M<i<r:red.i)
(Vi:r<i<w:white.i)

(Vi:b<i<N:blue.i)

> > > >

w<b A whitew

= MLr<w+l1<b<N

>

(Vi:M<i<r:red.i)
A (Vi:r<i<w+l:white.i)
A (Vi:b<i<N:blue.i) .

This is clearly true.

Solutions to Exercises 315

For the second command, using the assignment axiom we have to verify

{ M<r<w<b<N

A (Vi:M<i<r:red.i)

A (Viir<i<w:white.i)

A (Vi:b<i<N:blue.i)

A w<b A bluew }
swap(b-1,w)
{ M<r<w<gb-1<N

A (Vi:M<i<r:red.i)

A (Virr<i<w:white.i)

A (Vi:b-1<i<N:blue.i) } .

Here again, we split the postcondition into three separate conjuncts. These are,
first, the constraints on the boundary indices,

M<r<w<b-1<N ;
second, the parts of the array that should not be affected,
(Vi:M<i<r:red.i)
A (Viirr<i<w:white.i)
A (Vi:b<i<N :blue.i) ;
and, finally the one element that is affected,

blue.(b-1) .
These three conjuncts are verified by checking the following properties of swap.
First,

{ M<r<w<bhb<N Aw<b }

swap(b-1,w)

{ M<r<w<b-1<N } .
Second,

{ w<b
AN (Vi:M<i<r:red.i)
A (Viir<i<w:white.i)
A (Vi:b<i<N:blue.i) }

316

Solutions to Exercises

swap(b-1,w)
{ (Vi:M<i<r:red.i)

A (Vi:ir<i<w:white.i)

A (Vi:b<i<N:bluei) } .

Finally,

{ w<b A bluew }

swap(b-1,w)
{ blue.(b-1) } .

Solution 14.2. We have

0<s<K<ILKN

A (Vij:
A (Vij:

- {

0<i<s As<j<N:alil<aljD
O0<i<lAlgLj<N:alil<aljl)
range splitting
The first quantification is split on
whether or not s < j <,
the second quantification is split on

whether or not s<i<l!l. }

0<s<K<<ILKN

A (Vij:
A (Vij:
A AVi,j:
AN (Vij:

= {

O<i<sAasgj<l:alil<alj])
0<i<s Al<j<N:alil<aljl)
0<i<s Al<j<N:alil<aljl)
s<i<lAl<j<N:alil<aljl)

idempotence of A}

0<s<K<IKN

A (Vij:
A AVij:
A (Vij:

O<i<sas<j<l:alil<aljl)
0<i<s Al<j<N:alil<aljl)

s<i<lalgj<N:alil<alj] .

Solutions to Exercises 317

The first universal quantification states that every element in the ‘small’ segment
is less than every element in the ‘medium’ segment, the second universal quan-
tification that every element in the ‘small’ segment is less than every element in
the ‘large’ segment, and the third universal quantification that every element in
the ‘medium’ segment is less than every element in the ‘large’ segment.

The second universal quantification is not implied by the other two in the case
that the medium segment is empty. Take, for example, N to be 2 and all of s, K
and [to be 1. Let the array have elements a[0] =20 and a[1]=10. Then

(Vi,j:0<i<sAs<j<l:alil<aljl)
A Vi,j:0<i<s Al<j<N ali]l<aljl)
A Vi j:s<i<lal<j<N:alil<aljh
is false (because a[0] < all] is false), whereas
(Vi,j:0<i<s As<j<lalil<alj])
A Vi, j:s<i<lalg<j<N:alil<alj])

is (vacuously) true. The first term (0 < s <K << N) implies, however, that the
medium segment is indeed non-empty. So we have

(Vi,j:0<i<s ans<j<l:alil<alj})
A AVi,jrs<i<lalgj<N:alil<aljl)
= { 0<s <K<I<N. In particular, s <.
So, use the one point rule with j =s in the first conjunct
and i=s in the second conjunct. }
(Vi:0<i<s:alil<als])
A (Vj:l<j<N:als]<alj])
= { transitivity of < }
(Vi,j:0<i<s Al<j<N:alil<aljl) .
3
Solution 14.3. An appropriate invariant property is
0<s<K<ILKN
AN AVi,j:0<i<s As<j<N:alil<aljD
AN (Vi,j:0<i<lAl<j<N alil<aljl) .
The assignment
s,l:=0,N

318

Solutions to Exercises

initializes the ‘small’ and ‘large’ segments to the empty set and, so, the invariant
is vacuously true.

The bound function we use is l—s, the size of the ‘medium’ segment. The ter-
mination condition is s = K so that the loop body is executed when s < K. In order
to make progress to the termination condition whilst maintaining the invariant,
we again choose a[K—1] as borderline value, recording it in some local variable,
X. (The justification for this choice is unchanged from the earlier algorithm.) The
algorithm we are aiming to develop thus has the basic structure shown below:

{ OKKKN }
s,l:==0,N;
{ Invariant:
0<s<K<IKN
A (Vi,j:0<i<sAs<j<N:alil<aljl)
A AVij:0<i<lAlLj<N alil<alj]) }
do s<K — { choose boundary value in unsorted region }
X = alK-1};
reduce [—s whilst maintaining invariant
od
{ (Vi,j:0<i<KAK<j<N:alil<aljl) } .

Reducing I-s whilst maintaining the invariant is again achieved by applying the
Dutch National Flag program to split the medium segment into segments delim-
ited by the indices s, m, n and [, containing values less than X, values equal to
X, and values greater than X. After this operation, there are three cases to con-
sider. In the first case, n < K. This means that all the array elements, up to and
including a[n-1], are among the K smallest values in the array. So, in this case,
the assignment s := n is executed. Moreover, this is bound to increase the value
of s (and thus decrease l-s) because the segment containing values equal to X is
non-empty.

In the second case, m < K < n. In this case the sorting process is complete—the
K smallest values in the array have been successfully transferred to the first K
positions in the array. So, in this case, the assignment s,l := K,K is executed.
Moreover, this is bound to decrease l—s to zero.

In the third case, K <m. This means that all the array elements, from a[m]
onward, are among the N-K largest values in the array. So, in this case, the
assignment | := m is executed. Moreover, this is bound to decrease the value
of 1 (and thus decreases [—s) because the segment containing values equal to X
is non-empty.

Solutions to Exercises 319

{ OKKN }
s,1 := O,N { s delimits the ‘small’ segment, [the ‘large’ segment };
{ Invariant: 0<s<K<ILKN
AAVL,j:0<i<s As<j<N:alil<aljD
A AVi,j:0<i<lAl<j<N alil<alj])
Bound function: [-s }
do s<K — X := a[K-1] { borderline value in ‘medium’ region };

{ apply Dutch National Flag program to the segment
delimited by s and [with predicates red, white and
blue set to (< X), (= X) and (> X), respectively.
Return the boundary values in m and ». }

DNF(s,l,(<X),(=X),(>X),m,n)

{ ssm<ngl
A (Viis<i<m:al[i] <X)

A AViim<<i<n:ali]=X)
A (Virmgi<l:ali]l> X)
(Note: m <n by choice of X.) };

{ Extend either the ‘small’ or ‘large’ segment (or both),
ensuring that the chosen boundary element is added
to one of the heaps. }

if n<K—s:=mn

Om<K<n —s,l:= KK

OK<m-—Il:=m

fi

od
{ (Vi,j:0<i<KAK<Lj<N:alilgaljl) }

Figure B.4 Solution to simplified find problem.

320

Solutions to Exercises

This completes the development of the program. The complete details are
shown in Figure B.4. O

Solution 15.5. Assuming P < 0, the statement r,d := P,0 establishes
r<Q AP=Qxd+vr .

So, we take this as invariant and the condition 0 < r as the termination condition.
The development of the loop body proceeds in a similar way, leading to

{ remainder and quotient computation
—elementary algorithm, assumes that —P is a natural number }
{ PO A 0<Q }
r,d = P,0;
{ Invariant: r<Q A P=Qxd+7r
Bound function: 7 }
do O0>r — r,d := r+Q,d-1
od
{0<r<Q A P=Qxd+7r } .

Solution 15.14.
r=Pmodl Ad=P=+1
= { (15.6)withQ =1 }
0LKr<l1 AP=1xd+r
= { integer arithmetic }
r=0AP=d+r
= { substitution and arithmetic }
r=0AP=d .
Thatis,0 =Pmodland P =P+ 1. O
Solution 15.15.
-Q<P<O
{ addition is monotonic with respect to < and < }
0<P+Q <Q
{ arithmetic }

Solutions to Exercises 321

0<P+Q <Q AN P+Q=0Qx0+P+Q

= { arithmetic }
0<P+Q <Q A P=Qx(-1)+P+Q
= { (15.6) }

P+Q=PmodQ A —-1=P=+Q .

-Q<P<0 = P+Q=PmodQ A -1=P+Q .
.

Solution 15.16.

true
= { (15.7) }

P =Qxnx(Pmod(Qxn)) + P+ (Qxn)
= { Leibniz }

PmodQ = (Qxnx(Pmod(Qxn)) + P+ (Qxn))modQ
= { (15.12)withm ,n:=nx(Pmod(Qxn)), (P+(Qxn)) }
PmodQ = (Pmod(Qxn))modQ .

0
Solution 15.17.
(rmodQ = n)[r:=7r-Qxm]
= { substitution }
(r —Qxm)modQ =n
= { (15.12) }
rmodQ = n .
O

Solution 15.18. We combine the assumption P <0 with the specification (15.1)
and try to work towards the right side of (15.6).

0<r<Q A P=Qxd+vr
= { P <0 = 0<—(P+1) suggests replacing

‘P’ in second conjunct by ‘—(P+1)" }

322

Solutions to Exercises

0<r<Q A —(P+1)=—-(Qxd+r+1)
{ arithmetic }
0<7r<Q A —(P+1) = Qx(-ad)+ (= (r+1))
{ investigating replacing » by —(r+1)in0 < r < Q:
0<r<Q
= { negation }
-Q<-r<0
= { addition is monotonic
with respect to < and < }
Q-Q<Q-r<Q
= { integer arithmetic,
introducing ‘~(r+1)’ }
0<Q-(r+1)<Q 1}
0<Q-(r+1) <Q A —=(P+1) = @ x(—=(d+1)) + (Q—(r+1))
{ (15.6) with P,r.d = —(P+1),Q - (r+1),-(d+1)
—assumes 0 < —(P+1); but this equivales P <0,
which is the given assumptionon P }
Q-(r+1)=(-(P+1))modQ A —(d+1) = (—(P+1))+Q
{ arithmetic }
r=(Q-1)-((-(P+1))modQ) A d=-((-(P+1))+Q+1) .

We have thus calculated that

0<r<Q A P=Qxd+r
= r=(Q-1)-((=(P+1))modQ) A d=-((-(P+1))+Q+1) .

Comparing with (15.6), we see that Pmod Q equals (Q—1) — ((—(P+1)) mod Q)
and P + Q equals —((—(P+1)) + Q + 1). These equalities are valid for all P, but
would normally only be used in the case that P <0. a

Solution 15.21.

{(3d = P =Qxd+71)
{ arithmetic }
(3d = P-r = Qxd)

Solutions to Exercises

323

i

Solution 15.23. Using the property just obtained, and arithmetic, we have

{ (15.19) with P, := P ,rmodQ }
(P-r)modQ =0

{ (15.20) }
PmodQ =rmodQ .

(mxP) = (MxQ) = [:’n‘igJ - ['(%J -P:Q .

Consequently,

(mxP)mod (mxQ)
{ (15.7) }
mxP — mxQ X ((mxP)+(mxQ))
{ above }
mxP —mxQx(P+Q)
{ arithmetic }
mx(P - Qx(P+Q))
{ (15.7) }
mx (PmodQ) .

We conclude that (mxP)mod (mxQ) = mx (PmodQ).

Solution 15.27.

Thus,

(mxn)modQ

{ introduce m mod Q using (15.7) }
((Qx(m+Q)+mmodQ) xn)modQ

{ distributivity of x over + }
(Qx(Mm+Q)xn + mmodQ X n)modQ

{ (15.12) }

(mmodQ x n)modQ .

(mxn)modQ = (mmodQ x n)modQ .

(B.1)

324 Solutions to Exercises

Now, we can exploit the symmetry of multiplication:
(mxn)modQ
{ (15.26) }

(mmodQ x n)ymodQ

{ multiplication is symmetric,

B.1)withmmn :=nm }
(mmodQ x nmodQ)modQ .
We have thus calculated that
(mxn)modQ = (mmodQ) ® (nmodQ) ,

where

pe®q = (pxq)modQ .

Solution 15.28. Symmetry and associativity are easy to prove. For example,
(men)ep
= { definition of & (twice) }
(m+n)modQ +p)modQ
= { (15.26) }
(m+n)+p)modQ
= { + is associative }
(m+ (n+p))modQ
= { (15.26) (and symmetry of +) }
(m + (n+p)modQ) modQ
{ definition of & (twice) }

1l

me(nep) .

Distributivity of © over & is proved in a similar way. The lemma we need emerges
during the course of the calculation.

(em) & (on)

{ definition of ® }
((-m)modQ + (-n)mod Q) modQ
= { (15.26) (applied twice) }

I

Solutions to Exercises 325

((-m) + (-n))modQ
= { — distributes through + }
(—(m+n))modQ
= { Using (15.24) now would give e(m + n);
but we want e(m e n).
Since m o n=(m +n) mod Q, we need the lemma
(=P)modQ = (—(PmodQ))modQ, for all P.
This is proved below. }
(-~((m+n)ymodQ)) modQ
= { definitionof & }
(-(men))modQ
{ (15.24) }
e(men) .

I

The lemma we need to complete the proof is proved as follows. Assume that
0 <7r < Q. Then

¥ = (-P)modQ
= { (15.19) with P := P,
assumption: 0 < r <Q }
(3d = -P =Qxd+7)
= { introduce P mod Q using (15.7) }
(3d = -(QX(P+Q) + PmodQ) = Qxd +71)
= { arithmetic }
(3d : —(PmodQ) = Qx(d+Qx(P+Q))+7)
= { range translation:d = d-Qx(P+Q) }
{(3d : —(PmodQ) = Qxd+71)
= { (15.19) with P := —(PmodQ),
assumption: 0 < r < Q }
¥ =(—(PmodQ))modQ .
It follows that, as required,
(-=(PmodQ))modQ = (-P)modQ .

326 Solutions to Exercises

Solution 15.29. For the case of modulo-Q addition, we have
men=mep
{ definition }
(m+n)ymodQ = (m+p)modQ
= { (15.20) }
(m+n)—(m+p))modQ =0
= { arithmetic }
(n-p)modQ =0
= { (15.20) }
nmodQ = pmodQ
{ assumption: n and p are modulo-Q numbers

ieenmodQ =n A pmodQ =p }
n=p.
For the case of modulo-Q multiplication, we have

men=mep

Il

{ similar to above }
(mx(n-p))modQ =0

{ (15.19),0<0<Q }
(3d = mx(n-p) = Qxd) .

So we see that, if Q is not a prime number, we can choose n — p to be a divisor of
Q (so that n # p) and still satisfy m ® n = m ® p. A concrete example is when Q
is 4. Take m, n and p tobe 2, 3 and 1. O

Solution 15.34. When the base B is greater than 2, the process of decrementing r
by m may be executed several times, and not just at most once. The replacement
of the loop by a conditional statement is therefore invalid.

Otherwise, all steps in the development remain valid and we obtain the algo-

rithm below.
{ OKP A 0<Q }
r,mkd = P,Q,0,0;

{ Invariant: 0<k A m = QxBk
Bound function: r-m }
dor>m — m,k = Bxm,k+1

Solutions to Exercises

327

od ;
{ Invariant:
0<r<m A P=Qxd+r A 0<k A m = QxB¥
Bound function: m }
do m+=Q — m,k ;= m+B,k-1 ;
{ Invariant:
O0<v A P=Qxd+vr
A 0<k A m=QxBk
Bound function: v }
do r,d := r-m,d+BF
od
od
{0<r<Q A P=Qxd+r } .

The lower bound, 2, on B is needed in order to guarantee progress of the two

outer loops.

O

Solution 15.35. The changes are minor. The invariant of the second loop becomes

0<r<m A PmodQ =rmodQ A (Fk:0<k:m =Qx2%) .

That the property
PmodQ =rmodQ

is maintained invariant by the assignment
Y o= r-m

is a consequence of (15.12).

|

Solution 15.38. If b is an arbitrary positive number, an inner loop is needed. The

invariant of the loop is
0<r A rmodQ = PmodQ

and the termination condition is

r=Q .
Progress is made to the termination condition by decrementing v by Q.
Pr = 0,0 ;

{ Invariant: O<P A ¥ = PmodQ }

328

Solutions to Exercises

r + 7, 7, C\ r

\i/ i
+

Figure B.5 Remainder of x°xP for generator polynomial Q = x>+x*+x2+1.

do true — get.h {0O<b<B} ;

P,r := BXxP+b ,Bxr+b ;

{ Invariant: 0 <7* A rmodQ = PmodQ

Bound function: r }

dor>2Q — r = r-Q

od
od .

0

Solution 15.39. The property is that, for all m, mmod3 = (mmod9) mod 3. So
r mod 3 = s mod 3 is also invariant. 0

Solution 16.3. The initialization remains unchanged. In the body of the loop, the
property

(3d = xMxP =Qxd+7r)
is maintained by the assignment
Y = xXr+xMxb .

This will falsify degree.r < degree.Q exactlywhen t,,_1+bis 1.50 QX (*m-1+b)
must also be added to r. The program thus becomes

Pr = 0,0 ;
{ Invariant: degree.r < degree.Q A (Id:xMxXP =Qxd+7r) }
do true — get.b {0<b1}
P := xxP+b ;
{ degree.r <degree.Q A {(Ad::xxP =Qxd+71)}
¥ = XXr+xMxb+QXx(rm-1+b) ;
put.r
od .

Solutions to Exercises 329

Now,
XX¥ +x™Mxb + QX (¥m-1+b)
= { xxr = (xXr)modx™ + xM™X¥py_1 }
(x™+Q) X (Fm-1+b) + (xxXr) modx™ .

The subexpression (x xr) mod x™ is implemented by shifting the contents of the
register. Also, the polynomial x™+Q is a fixed polynomial of degree m—1. So it
can be hardwired into a circuit in which both the input bit, b, and the feedback
bit, 74,-1, are combined with the shift operation. The circuit for the generator
polynomial Q = x°+x%+x2+1 is shown in Figure B.5. m;

This page intentionally left blank

References

Blahut, R. E. 1983 Theory and Practice of Error Control Coding. Addison-Wesley.

Buxton, J. N. and Randell, B. 1970 Software Engineering Techniques. Report on a Confer-
ence Sponsored by the NATO Science Committee, Rome, October 1969. NATO Science
Committee.

Dijkstra, E. W. 1975 Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM, 18, 453-457.

Dijkstra, E. W. 1976 A Discipline of Programming. Prentice Hall.

Dijkstra, E. W. (ed.) 1990 Formal Development of Programs and Proofs, pp. 209-228. The
UT Year of Programming Series. Addison-Wesley.

Dijkstra, E. W. and Feijen, W. H. J. 1984 Een Methode van Programmeren. Academic Service.
(Also available as A Method of Programming. Addison-Wesley (1988).)

Dijkstra, E. W. and Scholten, C. S. 1990 Predicate Calculus and Program Semantics. Texts
and Monographs in Computer Science. Springer.

Feijen, W. H. J. and Bijlsma, L. 1990 Exercises in formula manipulation. In Formal Devel-
opment of Programs and Proofs (ed. E. W. Dijkstra). University of Texas at Austin Year
of Programming Series. Addison-Wesley.

Feijen, W. H. J. and van Gasteren, A. J. M. 1999 On a Method of Multiprogramming. Springer.

Gardner, M. 1959 Mathematical Puzzles and Diversions. Penguin Books.

Graham, R. L., Knuth, D. E. and Patashnik, O. 1989 Concrete Mathematics. Addison-Wesley.

Gries, D. 1981 The Science of Programming. Springer.

Gries, D. and Schneider, F. B. 1993 A Logical Approach to Discrete Math. Springer.

Hoare, C. A. R. and Jones, C. B. (eds) 1989 Essays in Computing Science. Prentice Hall.

Hoare, T. 2001 Legacy. Information Processing Letters, 77, 123-129.

Hoogerwoord, R. R. 2001 Formality works. Information Processing Letters, 77, 137-142.

Kaldewaij, A. 1990 Programming. The Derivation of Algorithms. Prentice Hall Interna-
tional.

Knuth, D. E. 1968 The Art of Computer Programming, vol. 1. Fundamental Algorithms.
Addison-Wesley.

Knuth, D. E. 1969 The Art of Computer Programming, vol. Il. Seminumerical Algorithms.
Addison-Wesley.

Knuth, D. E. 1973 The Art of Computer Programming, vol. Ill. Sorting and Searching.
Addison-Wesley.

Morgan, C. 1990 Programming from Specifications. Prentice Hall International Series in
Computer Science.

Mossner, A. 1951 Eine Bemerkung iiber die Potenzen der natiirlichen Zahlen. Sitzungs-
berichte der Bayerischen Akademie der Wissenschaften. Math.-naturwissenschaftliche
Klasse, p. 29.

Nader, R. 1965 Unsafe At Any Speed: The Designed-in Dangers Of The American Automo-
bile. Grossman.

332

References

Naur, P. and Randell, B. (eds) 1969 Software Engineering. Report of a Conference Spon-
sored by the NATO Science Committee, Garmisch, Germany, 7-11 October 1968. Scien-
tific Affairs Division, NATO, Brussels.

Perron, O. 1951 Beweis der Mossnerschen Satzes. Sitzungsberichte der Bayerischen
Akademie der Wissenschaften. Math.-naturwissenschaftliche Klasse, pp. 31-34.

Polya, G. 1954 Mathematics and Plausible Reasoning, vol. 1. Induction and Analogy in Math-
ematics. Princeton University Press.

Polya, G. 1981 Mathematical Discovery. On Understanding, Learning and Teaching Prob-
lem-Solving. John Wiley & Sons, Ltd/Inc.

Schneier, B. 1995 Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd
edn. John Wiley & Sons, Ltd/Inc.

Smullyan, R. 1978 What Is The Name Of This Book? Prentice Hall.

Snepscheut, van de, J. L. A. 1993 What Computing Is All About. Springer.

Stallings, W. 1999 Cryptography and Network Security, Principles and Practice, 2nd edn.
Prentice Hall.

Tarski, A. 1956 Logic, Semantics, Metamathematics, Papers from 1923 to 1938 (transl. J. H.
Woodger). Oxford University Press.

wiltink, J. G. 1987 A deficiency of natural deduction. Information Processing Letters, 25,
233-234.

Winder, R. and Roberts, G. 1998 Developing Java Software. John Wiley & Sons, Ltd/Inc.

IRAAV VY
=i
3

—_—

e L R < >

Glossary of Symbols

assignment operator, 46
greater than, 27

at least, 34

less than, 34

at most, 34

boolean constant ‘false’, 65
boolean constant ‘true’, 61
conjunction (‘and’), 85
disjunction (inclusive ‘or’), 83
equals, 35

equivalence, 35
inequivalence, 67

if, 36, 88

only if, 36, 88

(boolean) negation, 65
ceiling function, 78

floor function, 72

integer division, 46, 220
(binary) maximum , 97
(binary) minimum, 101
absolute value, 102
exponent function, 103
greatest common divisor, 103

PeE>0wad

e ZN—

— -
[

least common multiple, 103
modulus (remainder), 220
divisible by two, 129

not divisible by two, 134
summation, 141
multiplication, 153

‘for all’ quantifier, 153
‘there exists’ quantifier, 154
equivalence quantifier, 158
inequivalence quantifier, 158
maximum quantifier, 158
minimum quantifier, 158
(arbitrary) quantifier, 157
range of integers, 43

real division, 46

set of integers, 150

set of natural numbers, 150
empty set, 162

universe of values, 158
divides, 103

set comprehension, 142

in all states, 124

This page intentionally left blank

absolute value, 102, 127
absorption, 86, 257
absurdity rule, 258
addition

modulo-Q, 224, 228

of polynomials, 244
all-zeros problem, 194
amorous beetles problem, 21
Anderson, Stuart O., 22
antisymmetry, 74

of at-most relation, 74, 76

of divides relation, 103
array, 42

bound error/exception, 43, 213

element, 42

index, 42

length, 42

segment, 43
array-equality problem, 194
assertion, 106, 119
assignment, 105-119
assignment axiom, 113, 124, 260
assignment operator, 46

in Java, 41, 46
assignment statement, 112, 195
associative operator, 57
associatively, 58, 59
associativity, 148

of addition, 31, 33, 57, 62

of conjunction, 86, 257

of disjunction, 83, 255

of equality, 57

of equivalence, 54, 57, 65, 255

Index

of maximum, 98
of modular addition, 228
of modular multiplication, 228
of multiplication, 57
at-least relation, 34
at-most relation, 34
atomic proposition, 54

auxiliary variable, 111, 191, 193, 216,

218-219, 233-234, 239

bag, 137, 157

basis (of inductive proof), 172, 175

bijection, 150, 228

Bijlsma, Lex, 103

binary search, 41-52

binary-split problem, 194

Blahut, Richard E., 253

block code, 242

body (of do-od statement), 183

Boole, George, 54

bound function, 12, 183, 186, 195
Find algorithm, 209

bound variable, 138, 139, 141, 143-146,

157
in database query, 164
bug, 2, 4

C (programming language), 71, 105, 106,

112, 140
calculational logic, x, 53-69, 83-96
calculational proof, 23, 27, 39
cancellation

of modular addition, 228

of equivalence with inequivalence, 68, of modular multiplication, 228
257 capture (of free variables), 145, 154, 158
of inequivalence, 257 case analysis, 99, 102

336

Index

casting, 71
casting out nines, 238-239
ceiling function, 72, 78, 162, 258
code, 242
codeword, 242
coding, 215
coefficient (of a polynomial), 243
conclusion

of a calculation, 31

of a logical argument, 55
concurrent programming, 126, 136
condition, 106
condition (in while statement), 183
condition (of do-od statement), 183
conditional correctness, 12,13, 119
conditional rule, 128, 130, 261
conditional statement, 121, 124-132, 195
conjunction, 85-88
conjunctional (use of an operator), 28, 35,

58, 59
connective, see logical connective
constant false function, 55
constant true function, 55
construction, x, 27, 179
continued

addition, 62, 66

disjunction, 84

equality, 28, 59

equivalence, 59, 61-62, 65, 84

expression, 58

ordering, 28

product, 138

summation, 138
contradiction, 90, 257, 258
contrapositive, 74, 79, 90, 256, 258
convergence (of infinite summations), 152
correct-by-construction, x, 109, 195
course-of-values induction, 175
cyclic code, 241, 243, 253

data polynomial, 246, 247, 253

database query, 163

debugging, 2, 3

decryption, 68

decryption algorithm, 239

degree (of a polynomial), 243

De Morgan rule, 88, 156, 257

Dijkstra, Edsger W., ix-xi, 4, 7, 15, 39, 69,
96, 163, 197, 214

Dirichlet box principle, 163
disjunction, 83-85
disjunctive normal form
of ‘if’, 258
of equivalence, 258
of inequivalence, 258
distributivity
addition over maximum, 99
at-most over maximum, 97, 100
conjunction through disjunction, 87,
257
conjunction through equivalence, 88,
258
disjunction through conjunction, 87,
257
disjunction through equivalence, 84,
255
‘if” over conjunction, 92
‘if’ over disjunction, 92
‘if’ through equivalence, 90, 258
less-than over maximum, 100
modular negation, 228
negation over equivalence, 255
of modQ, 224
over quantifiers, 260
distributivity properties, 159-161
distributivity rule
existential quantification, 156
general quantifications, 161
summations, 151
universal quantification, 155
divides ordering, 102
domino problem, 20, 22
do-od statement, 183-184
dotdotdot notation, 137, 146, 153, 154,
171,173
double negation, 68, 256
dummy, 141, 157
renaming, 145, 146, 154, 156, 158, 259
rules, 146
Dutch National Flag, 197-205, 208, 213
invariant, 200
problem formulation, 198
program, 201

embedding, 72

empty range, 141, 148, 154, 156, 158, 259
encryption, 68, 215

encryption algorithm, 239

Index

337

equality, 34, 35

of booleans, 28, 54

symbol, 35, 42, 56

symbol (in Java), 41, 42
equality of booleans, 35, 53, 56-59
equality of polynomials, 243
equivales, 59
error correction, see error repair
error detection, 241, 242, 246
error repair, 242, 246
error-resilient coding, 215, 239
establish

a postcondition, 110

an invariant, 185
excluded middle, 84, 255
exclusive-or, 67, 68, 251
existential quantification, 153, 155-156
exponent, 102

Feijen, W. H. J., 39, 103, 136

Fermat’s Last Theorem, 26

Fibonacci number, 176

Find (searching problem) 15, 205
algorithm, 205, 208-212
bound function, 209
invariant, 208
specification, 207

floor function, 72-78, 162, 224, 258

follows-from relation, 88

formal proof, 25, 39

free variable, 143-146

full adder, 60

Galois connection, 71, 73, 97
Gasteren, A. J. M. van, xi, 136

Gauss, Karl Friedrich, 151

generator polynomial, 243, 246, 251
ghost variable, 107-109, 111, 115, 129
global variable, 144

Godel, Kurt, 69

golden ratio, 177

golden rule, 85, 96, 256

Graham, Ronald L., 81, 163

greatest common divisor, 103, 129
grid game, 169

Gries, David, xi, 69, 96, 163, 182, 195
guard, 125

guarded command, 121, 184
Guarded Command Language, ix

hint (in a calculation), 31-34, 48
Hoare, C. A. R, xi, 13, 15, 22, 119, 205,
206, 208, 214
inaugural lecture, 15, 22
Hoare triple, 105-107, 109-112, 122
Hoogerwoord, Rob, 39
Hopkins, M. E,, 3,7
Horner’s rule, 189, 191, 192

idempotence
of conjunction, 86, 257
of disjunction, 83, 84, 255
identity function, 55
‘if’ relation, 36, 89, 256
‘if” step, 36
if-then(-else) statement, 124-126
iff, see mutual implication
implementation, 14
implication, 85, 88-92
implies relation, 88
in situ sorting, 208
in-line expression, 35
indeterminate, 243, 251
indirect equality, 75, 76, 78, 98, 258
indirect order, 102
induction, 5, 13, 170
course-of-values, 175
hypothesis, 14, 172, 175
principle, 173
simple, 178
step, 172, 175
strong, 175-179, 186
induction, principle of mathematical,
171-179
inductive proof, 165-182, 238
inductive reasoning, 170
inequivalence, 66, 251, 256
infinite quantification, 142
infinite summation, 152
infix operator, 57
informal proof, 23
initialization statement, 185, 186
input polynomial, 246, 253
instance, 32
instantiate, 32
integer division, 46, 53, 71, 78, 220, 224
interchangeability (of equivalence and
inequivalence), 257

Index

intermediate assertion, 123

invalid (Hoare triple), 106

invariant, 12, 13, 44, 166-171, 182-186,
195, 208
array summation, 187
Dutch National Flag, 200
evaluating powers, 191-193
Find algorithm, 208
long division, 231
long division of polynomials, 247
on-line remainder polynomial, 251
poynomial evaluation, 189, 190
remainder computation, elementary
algorithm, 217
SX method, 195

inverse functions, 149

invertible, 27, 28

island of knights and knaves, 63

Java, 41, 46, 71-73, 79, 105, 112, 133

Kaldewaij, Anne, 195

knave, 63

knight, 63

Knuth, Donald E,, 81, 136, 163, 195

least common multiple, 103

Leibniz, see substitution of equals for
equals

Leibniz, Baron Gottfried Wilhelm von, 37,
91

Leibniz’s rule, 56, 92, 256

length of an array, 42

less-than, 34

limit (infinite quantification), 152

list comprehension, 157

local variable, 144

logical connective, 55

logical reasoning, 53

long division, 228-234, 241
algorithm (integer arguments), 233
of polynomials, 247-249

loop, 183, 184, 186, 195

loop body, 186

loop rule, 261

Lukasiewicz, J., 69

maintaining an invariant, 185
making progress, 185

maximum, 97-103, 259
measure of progress, 186
meta-rule, 91
Michaelis, Diethard, xi, 7
minimum, 97-103, 259
modular
addition, 224, 227, 228, 243
arithmetic, 224-228, 234
multiplication, 224, 227, 228, 243
negation, 224, 225, 228
modulo-Q number, 224
modus ponens, 87, 90, 173, 258
monotonicity, 74
of integer division, 46, 49
Morgan, Carroll, 195
Mossner, A., 7
multiple assignment, see simultaneous
assignment
multiplication
modulo-Q, 224, 228
of polynomials, 244
mutual associativity, 257
mutual implication, 92, 101, 258

Nader, Ralph, 7
natural number, 13, 171
negation, 54, 65-68
modulo-Q, 224, 225, 228
of false, 256
nesting, 144, 147, 150, 154, 156, 158, 259
non-deterministic
evaluation of conditional, 125
evaluation of loop body, 184
specification, 109

on-line algorithm/computation, 235, 250,
251

one-off error, 195

one-point rule, 148, 150, 154, 156, 158,
259

‘only if’ relation, 36, 89

‘only if’ step, 37

Oppenheimer, J. Robert, 1

out-of-bound error, 118

overflow, 118

overloaded operator, 46

overloading, 71, 275

parity, 60
parity bit, 241

Index

339

partial correctness, 13
partial ordering, 102
Pascal (programming language), 43
Patashnik, Oren, 81, 163
Perl (programming language), 112
Perron, O., 7
Pi notation, 138
pigeon-hole principle, 162, 163
Polya, George, 9, 165, 182
polynomial, 180, 215, 243
polynomial evaluation, 188-190
Portia’s casket, 94-96
postcondition, 12, 106, 109, 119
powers, evaluating, 239
precedence

convention, 33

in calculations, 36

of mod, 220

of integer division, 220

of logical connectives, 255
precondition, 12, 106, 109, 119
premise, 55
prime factorization, 102
product, 156
program specification, 109
proof format, 31
proof of correctness, 12
property (of a program), 106
proposition, 54
public-key cryptography, 239
Pythagoras’s theorem, 23, 24

quantifier, 137-164

in database query, 164
quantifier notation, 157
Queen’s University of Belfast, xi, 15
quotient (specification), 215

range
infinite, 156
of a quantification, 138, 141, 157
of database query, 164
of integers, 43
translation, 223, 259
rate (of a code), 242
rearranging
summations, 148, 151
term part, 260
universal quantification, 154

rearranging rule, 155, 156, 158, 159, 259
Recorde, Robert, 56
recurrence relation, 176
reflexivity
of divides relation, 102
of equality, 56
of ‘if’, 258
release (of bound variables), 145, 147, 154,
158
remainder, 215
computation, 241
on-line algorithm, 234-237
polynomial, 251
specification, 215
repetition code, 242
replacement rule, 90-92
rigid variable, 111
Risks, 7
round down, 49
round towards 0, 268
rounding, 47, 71, 73, 77-80

Schneider, Fred B., 69, 96, 163
Schneier, B., 239
Scholten, Carel S., x, 96
scope, 140, 144

of bound variables, 142, 164
search algorithm, 9, 42
segment (of an array), 43
semantic proof, 23, 39
semantic side condition, 143
sequential composition, 195

rule of, 123, 260
sequential statement, 121
shift register, 250
shunting, 90, 258
side condition, 143, 146, 155
Sigma notation, 137-140
simple induction, 173, 175
simultaneous assignment, 33, 112
skip, 123-124, 174
skip rule, 124, 260
Skolemization, 220
Smullyan, Raymond, 69
Snepscheut, Jan, van de, 195
software crisis, 3
specification, 12, 14
specification statement, 111
splitting, 259

340

Index

splitting rule, 163
for existential quantifications, 156
for summations, 148, 155
for universal quantifications, 154, 155
general form, 158
idempotent operators, 159
Stallings, W., 239
step
induction, 175
strengthening, 36, 89, 258
strong induction, 175-179, 186
substitution, 91
in quantified expressions, 145
of equals for equals, 33, 37, 48, 56
rule, 256
summation, 146-151, 156
SX method, 136, 195
symmetric operator, 56, 58
symmetry, 148
of addition, 31, 33, 57, 62
of conjunction, 257
of disjunction, 83, 255
of equality, 41
of equivalence, 54, 61, 65, 255
of inequivalence, 257
of modular addition, 228
of modular multiplication, 228
of multiplication, 57
syntactic proof, 39
syntactic side condition, 143

tableau, 108
Tarski, Alfred, 69
term
in database query, 164
of a quantification, 138, 142, 157
rules for, 151, 155, 159
termination, 119
termination condition, 185, 186
termination proof, 12
Therac 25 disaster, 6
total ordering, 98
trading, 146, 260
rule, 150, 155, 156, 159
transitive relation, 34, 56

transitivity, 58

of at-most, 34

of divides relation, 102

of equality, 34

of equivalence, 54

of implication, 92

of less-than, 34
translation (of range), 259
translation rule, 150, 151

idempotent operators, 161
triangular inequality, 102
truth table, 55
type (of a bound variable), 157

underflow, 118
unit, 141, 157

of a binary operator, 61

of addition, 141

of conjunction, 257

of disjunction, 84, 257

of equivalence, 61, 255

of highest common factor, 141

of maximum, 141

of minimum, 141

of multiplication, 141
universal quantification, 153-156
unnesting, 145

valid (Hoare triple), 106
verification, x, 27, 31, 179
verification condition, 297

weakening, 37, 90, 258
weakening rule, 124
weakest precondition, 124
while statement, 183
Wiles, Andrew, 26
Wwiltink, Gerard J., 69
witness, 219, 223

zero
of a binary operator, 61
of conjunction, 257
of disjunction, 85, 257
zero polynomial, 243

	Program Construction : Calculating Implementations From Specifications
	Program Construction : Calculating Implementations From Specifications
	Copyright
	Contents

	Preface
	1 A Science of Computing
	1.1 Debugging
	1.2 Testing a Correct Program
	1.3 Testing an Incorrect Program
	1.4 Correct by Construction
	Bibliographic Remarks

	2 A Searching Problem and Its Solution
	2.1 Problem Statement
	2.2 Problem Solution
	2.3 Proof of Correctness
	2.4 What, Why and How
	2.5 Exercises
	2.6 Summary
	Bibliographic Remarks

	3 Calculational Proof
	3.1 The Nature of Proof
	3.2 Construction versus Verification
	3.3 Formatting Calculations
	3.3.1 Basic Structure
	3.3.2 Hints
	3.3.3 Relations between Steps
	3.3.4 ' If and'Only If

	3.4 A Classic Example
	3.5 Summary
	Bibliographic Remarks

	4 Implementation Issues
	4.1 Binary Search
	4.1.1 Implementation

	4.2 Verifying Correctness ¡ª A Taster
	4.3 Summary
	Bibliographic Remarks

	5 Calculational Logic: Part 1
	5.1 Logical Connectives
	5.2 Boolean Equality
	5.3 Examples of the Associativity of Equivalence
	5.4 Continued Equivalences
	5.5 The Island of Knights and Knaves
	5.6 Negation
	5.7 Summary
	Bibliographic Remarks

	6 Number Conversion
	6.1 The Floor Function
	6.2 Properties of Floor
	6.3 Indirect Equality
	6.4 Rounding Off
	6,5 Summary
	Bibliographic Remarks

	7 Calculational Logic: Part 2
	7.1 Disjunction
	7.2 Conjunction
	7.3 Implication
	7.3.1 Definitions and Basic Properties
	7.3.2 Replacement Rules

	7.4 Exercises: Logic Puzzles
	7.5 Summary
	Bibliographic Remarks

	8 Maximum and Minimum
	8. 1 Definition of Maximum
	8.2 Using Indirect Equality
	8.3 Exercises
	8.4 Summary
	Bibliographic Remarks

	9 The Assignment Statement
	9.1 Hoare Triples
	9.2 Ghost Variables
	93 Hoare Triples as Program Specifications
	9.4 Assignment Statements
	9.5 The Assignment Axiom
	9.6 Calculating Assignments
	9.7 Complications
	9.8 Summary
	Bibliographic Remarks

	10 Sequential Composition and Conditional Statements
	10.1 Sequential Composition
	10.2 The skip Statement
	10.3 Conditional Statements
	10.4 Reasoning about Conditional Statements
	10.5 Constructing Conditional Statements
	10.6 Combining the Rules
	10.7 Summary
	Bibliographic Remarks

	11 Quantifiers
	11.1 DotDotDot and Sigmas
	11.2 Introducing Quantifier Notation
	11.2.1 Summation
	11.2.2 Free and Bound Variables
	1 1 .2.3 Properties of Summation
	11.2.4 The Gauss Legend
	11.2.5 Warning

	1 1.3 Universal and Existential Quantification
	11.3.1 Universal Quantification
	11.3.2 Existential Quantification
	11.3.3 De Morgan's Rules

	11.4 Quantifier Rules
	11.4.1 The Notation
	11.4.2 Free and Bound Variables
	11.4.3 Dummies
	11.4.4 Range Part
	11.4.5 Trading
	11.4.6 Term Part
	11.4.7 Distributivity Properties

	11.5 Summary
	Bibliographic Remarks

	12

Inductive Proofs and Constructions
	12.1 Patterns and Invariants
	12.2 Mathematical Induction
	12.3 Strong Induction
	12.4 From Verification to Construction
	12.5 Summary
	Bibliographic Remarks

	13

Iteration
	13.1 The do- od Statement
	13.2 Constructing Loops
	13.3 Basic Arithmetic Operations
	13.3.1 Summing the Elements of an Array
	1 3.3.3 Evaluation of Powers

	13.4 Summary
	Bibliographic Remarks

	14

Sorting and Searching Algorithms
	14.1 The Dutch National Flag
	14.1.1 Problem Statement
	14.1.2 The Solution

	14.2 Finding the K Smallest Values
	14.2.1 The Specification
	14.2.2 The Algorithm

	14.3 Summary
	Bibliographic Remarks

	15

Remainder Computation
	15.1 Formal Specification
	1 5.2 Elementary Algorithm
	15.3 The mod and div Functions
	15.3.1 Basic Properties
	15.3.2 Separating mod from - r
	15.3.3 Separating -=- from mod
	15.3.4 Modular Arithmetic

	15.4 Long Division
	15.4.1 Implementing Long Division
	15.4.2 Discarding Auxiliary Variables

	15.5 On- line Remainder Computation
	15.6 Casting Out Nines
	15.7 Summary
	Bibliographic Remarks

	16 Cyclic Codes
	16.1 Codes and Codewords
	16.2 Boolean Polynomials
	16.3 Data and Generator Polynomials
	16.4 Long Division
	16.5 Hardware Implementations
	16.6 Summary
	Bibliographic Remarks

	Appendix
	Solutions to

Exercises
	Referencess
	Glossary of Symbols
	Index

