Radio-Frequency and Microwave Communication Circuits: Analysis and Design
Devendra K. Misra

Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-41253-8 (Hardback); 0-471-22435-9 (Electronic)

RADIO-FREQUENCY
AND MICROWAVE
COMMUNICATION
CIRCUITS



RADIO-FREQUENCY
AND MICROWAVE
COMMUNICATION
CIRCUITS

ANALYSIS AND DESIGN

DEVENDRA K. MISRA

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS, INC.

New York e Chichester « Weinheim e Brisbane e Singapore e Toronto



Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or
ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

Copyright © 2001 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling,
recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third
Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@
WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional
services. If professional advice or other expert assistance is required, the services of a competent
professional person should be sought.

ISBN 0-471-22435-9

This title is also available in print as ISBN 0-471-41253-8.

For more information about Wiley products, visit our web site at www.Wiley.com.



CONTENTS

Preface

Acknowledgements

1. Introduction

1.1

Microwave Transmission Lines, 4

2. Communication Systems

2.1
2.2
23
24
2.5

Terrestrial Communication, 10
Satellite Communication, 11

Radio Frequency Wireless Services, 14
Antenna Systems, 17

Noise and Distortion, 34

Suggested Reading, 53

Problems, 53

3. Transmission Lines

3.1
3.2
33
3.4

Distributed Circuit Analysis of Transmission Lines,
Sending End Impedance, 68

Standing Wave and Standing Wave Ratio, 81
Smith Chart, 84

Suggested Reading, 97

Problems, 98

4. Resonant Circuits

4.1
4.2
4.3

Series Resonant Circuits, 105
Parallel Resonant Circuits, 115
Transformer-Coupled Circuits, 119

57

ix
xiii

57

105



vi

CONTENTS

4.4
45

Transmission Line Resonant Circuits, 126
Microwave Resonators, 134

Suggested Reading, 141

Problems, 142

Impedance Matching Networks

5.1
52
53

Single Reactive Element or Stub Matching, 147
Double-Stub Matching, 159

Matching Networks Using Lumped Elements, 164
Suggested Reading, 183

Problems, 183

Impedance Transformers

6.1
6.2
6.3

6.4
6.5
6.6

6.7
6.8
6.9

Single-Section Quarter-Wave Transformers, 190
Multisection Quarter-Wave Transformers, 192
Transformer with Uniformly Distributed Section Reflection
Coefficients, 195

Binomial Transformers, 200

Chebyshev Transformers, 205

Exact Formulation and Design of Multisection Impedance
Transformers, 212

Tapered Transmission Lines, 221

Synthesis of Transmission Line Tapers, 228

Bode-Fano Constraints for Lossless Matching Networks, 237
Suggested Reading, 240

Problems, 241

Two-Port Networks

7.1
7.2
7.3
7.4
7.5

7.6
7.7

7.8

Impedance Parameters, 244

Admittance Parameters, 249

Hybrid Parameters, 256

Transmission Parameters, 259

Conversion of the Impedance, Admittance, Chain, and Hybrid
Parameters, 266

Scattering Parameters, 267

Conversion From Impedance, Admittance, Chain, and Hybrid
Parameters to Scattering Parameters or Vice Versa, 286
Chain Scattering Parameters, 287

Suggested Reading, 289

Problems, 289

Filter Design

8.1

Image Parameter Method, 296

146

189

243

295



10.

8.2
8.3

CONTENTS

Insertion Loss Method, 314
Microwave Filters, 342
Suggested Reading, 352
Problems, 352

Signal-Flow Graphs and Applications

9.1
9.2
9.3
9.4

Definitions and Manipulation of Signal-Flow Graphs, 358
Signal-Flow Graph Representation of a Voltage Source, 363

Signal-Flow Graph Representation of a Passive Single-Port Device,

Power Gain Equations, 373
Suggested Reading, 381
Problems, 381

Transistor Amplifer Design

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Stability Considerations, 385

Amplifier Design for Maximum Gain, 393

Constant Gain Circles, 404

Constant Noise Figure Circles, 424

Broadband Amplifiers, 434

Small-Signal Equivalent Circuit Models of Transistors, 438
DC Bias Circuits for Transistors, 440

Suggested Reading, 445

Problems, 445

11. Oscillator Design

12.

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Feedback and Basic Concepts, 449

Crystal Oscillators, 460

Electronic Tuning of Oscillators, 463
Phase-Locked Loop, 465

Frequency Synthesizers, 485

One-Port Negative Resistance Oscillators, 489
Microwave Transistor Oscillators, 492
Suggested Reading, 508

Problems, 509

Detectors and Mixers

12.1
12.2
12.3
12.4
12.5
12.6

Amplitude Modulation, 514

Frequency Modulation, 525

Switching-Type Mixers, 531

Conversion Loss, 537

Intermodulation Distortion in Diode-Ring Mixers, 539
FET Mixers, 543

vii

354

364

385

449

513



viii CONTENTS

Suggested Reading, 548
Problems, 548

Appendix 1. Decibels and Neper

Appendix 2. Characteristics of Selected Transmission Lines
Appendix 3. Specifications of Selected Coaxial Lines and Waveguides
Appendix 4. Some Mathematical Formulas

Appendix 5. Properties of Some Materials

Appendix 6. Common Abbreviations

Appendix 7. Physical Constants

Index

551

553

560

563

566

567

572

573



PREFACE

Wireless technology has been growing tremendously, with new applications reported
almost every day. Besides the traditional applications in communication, such as
radio and television, RF and microwaves are being used in cordless phones, cellular
communication, local area networks (LANSs), and personal communication systems
(PCSs). Keyless door entry, radio frequency identification (RFID), monitoring of
patients in a hospital or a nursing home, and cordless mice or keyboards for
computers are some of the other areas where RF technology is being employed.
While some of these applications have traditionally used infrared (IR) technology,
radio frequency circuits are continuously taking over because of their superior
performance. The current rate of growth in RF technology is expected to continue in
the foreseeable future. These advances require personnel trained in radio frequency
and microwave engineering. Therefore, besides regular courses as a part of electrical
engineering curricula, short courses and workshops are regularly conducted in these
areas for practicing engineers. I also introduced a course in this area over ten years
ago to address the needs of local industry. Since the available textbooks generally
assumed that students had more background in electrical circuits and electromag-
netic fields than our curriculum provided, I developed the lecture notes for this class.
Based on the input from our alumni, I added a second course as well. This book is
based on the lecture notes that evolved over the past several years.

As mentioned above, the presentation of this book assumes only a basic course in
electronic circuits as a prerequisite. Instead of using electromagnetic fields as most
of the microwave engineering books do, the subject is introduced via circuit
concepts. Further, an overview of communication systems is presented in the
beginning to provide the reader with an overall perspective of the various building
blocks involved.

ix



X PREFACE

The book is organised into twelve chapters and seven appendices, using a top-
down approach. It begins with an introduction to frequency bands, RF and
microwave devices, and applications in communication, radar, industrial, and
biomedical areas. The introduction also includes a brief description of microwave
transmission lines—waveguides, strip lines, and microstrip lines. Modern wireless
communication systems, such as terrestrial and satellite communication systems and
RF wireless services, are briefly discussed in Chapter 2. After introducing antenna
terminology, effective isotropic radiated power (EIRP), the Friis transmission
formula, and the radar range equation are presented. The final section of the chapter
introduces noise and distortion associated with communication systems.

Chapter 3 starts with distributed circuits and the construction of solutions to the
transmission line equation. Topics presented in this chapter include RF circuit
analysis, phase and group velocities, sending end impedance, reflection coefficient,
return loss, insertion loss, experimental determination of characteristic impedance
and propagation constant, voltage standing wave ratio (VSWR), and measurement of
impedance. The final section of this chapter includes a description of the Smith chart
and its application in analysis of transmission line circuits.

Resonant circuits are discussed in Chapter 4, which begins with series and
parallel resistance-inductance-capacitance (RLC) circuits. This is followed by a
section on transformer-coupled circuits. The final two sections of this chapter are
devoted to transmission line resonant circuits and microwave resonators. The next
two chapters of the book deal with impedance matching techniques. Single reactive
element or stub, double-stub, and lumped-element matching techniques are
discussed in Chapter 5 while Chapter 6 is devoted to multisection transmission
line impedance transformers. Chapter 6 includes binomial and Chebyshev sections
as well as impedance tapers.

Chapter 7 introduces circuit parameters associated with two-port networks.
Impedance, admittance, hybrid, transmission, scattering, and chain-scattering para-
meters are presented along with examples that illustrate their characteristic beha-
viors. Chapter 8 begins with the image parameter method for the design of passive
filter circuits. The insertion loss technique is introduced next to synthesize Butter-
worth- and Chebyshev-type low-pass filters. It includes impedance and frequency
scaling techniques to realize high-pass, band-pass, and band-stop networks. The
chapter concludes with a section on microwave transmission line filter design.

Concepts of signal flow graph analysis are introduced in Chapter 9 along with a
representation of voltage source and passive devices. It facilitates the formulation of
power gain relations that are needed in the amplifier design discussed in the
following chapter. Chapter 10 starts with stability considerations using scattering
parameters of a two-port network. Design techniques of different amplifiers are then
presented.

Chapter 11 presents basic concepts and design of various oscillator circuits.
Concepts of the phase-locked loop and its application in the design of frequency
synthesizers are also summarized. The final section of this chapter includes analysis
and design of microwave transistor oscillators using s-parameters. Chapter 12
includes fundamentals of frequency division multiplexing, amplitude modulation,

X



PREFACE Xi

radio frequency detection, frequency-modulated signals, and mixer circuits. The
book ends with seven appendices that include a discussion of logarithmic units (dB,
dBm, dBW, dBc, and neper), design equations for selected transmission lines
(coaxial line, strip line, and microstrip line), and a list of abbreviations used in
the communications area.

Some of the highlights of the book are as follows.

e The presentation starts with an overview of frequency bands, RF and micro-
wave devices, and their applications in various areas. Communication systems
are presented next in Chapter 2, which motivates students. It includes terrestrial
and satellite systems, wireless services, antenna terminology, the Friis trans-
mission formula, radar equation, and Doppler radar. Thus, students learn about
the systems using blocks of amplifiers, oscillators, mixers, filters, and so on.
Student response here has strongly supported this top-down approach.

e Since students are assumed to have had only one semester of electrical circuits,
the resonant circuits and two-port networks are included in this book. Concepts
of network parameters (impedance, admittance, hybrid, transmission, and
scattering) and their characteristics are introduced via examples.

e A separate chapter on oscillator design includes concepts of feedback, Hartley
oscillator, Colpitts oscillator, Clapp oscillator, crystal oscillators, PLL and
frequency synthesizers, transistor oscillator design using s-parameters, and 3-
port s-parameter description of transistors and their use in feedback network
design.

e There is a separate chapter on the detectors and mixers that includes AM and
FM signal characteristics and their detection schemes, single diode mixers, RF
detectors, double-balanced mixers, conversion loss, intermodulation distortion
in diode ring mixers, and FET mixers.

e Appendices include logarithmic units, design equations for selected transmis-
sion lines, and a list of abbreviations used in the communication area.

e There are over 130 solved examples with step-by-step explanations. Practicing
engineers will find this text useful for self-study as well.

e There are nearly 200 class-tested problems. Supplementary material is avail-
able to instructors adopting the book. This includes an instructor’s manual and
access to a web page containing useful material, such as downloadable files
used for solving the problems, reference material, and URLs of other useful
sites.
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INTRODUCTION

Scientists and mathematicians of the nineteenth century laid the foundation of
telecommunication and wireless technology, which has affected all facets of modern
society. In 1864, James C. Maxwell put forth fundamental relations of electro-
magnetic fields that not only summed up the research findings of Laplace, Poisson,
Faraday, Gauss, and others but also predicted the propagation of electrical signals
through space. Heinrich Hertz subsequently verified this in 1887 and Guglielmo
Marconi successfully transmitted wireless signals across the Atlantic Ocean in 1900.
Interested readers may find an excellent reference on the historical developments of
radio frequencies (RF) and microwaves in the /EEE Transactions on Microwave
Theory and Technique (Vol. MTT-32, September 1984).

Wireless communication systems require high-frequency signals for the efficient
transmission of information. There are several factors that lead to this requirement.
For example, an antenna radiates efficiently if its size is comparable to the signal
wavelength. Since the signal frequency is inversely related to its wavelength,
antennas operating at radio frequencies and microwaves have higher radiation
efficiencies. Further, their size is relatively small and hence convenient for mobile
communication. Another factor to favor RF and microwaves is that the transmission
of broadband information signals requires a high-frequency carrier signal. In the
case of a single audio channel, the information bandwidth is about 20kHz. If
amplitude modulation is used to superimpose this information on a carrier then it
requires at least this much bandwidth on one side of the spectrum. Further,
commercial AM transmission requires a separation of 10kHz between the two
transmitters. On the other hand, the required bandwidth increases significantly if
frequency modulation is used. Each FM transmitter typically needs a bandwidth of
200 kHz for audio transmission. Similarly, each television channel requires about

1



2 INTRODUCTION

TABLE 1.1 Frequency Bands Used in Commercial Broadcasting

Channels Frequency Range Wavelength Range

AM 107 535kHz-1605kHz 186.92 m—560.75 m
vV 2-4 54 MHz-72 MHz 4.17m-5.56 m
5-6 76 MHz-88 MHz 341 m-3.95m
FM 100 88 MHz-108 MHz 2.78m-3.41m
TV 7-13 174 MHz-216 MHz 1.39m-1.72m

14-83 470 MHz-890 MHz 33.7cm—63.83 cm

6 MHz bandwidth to carry the video information as well. Table 1.1 shows the
frequency bands used for commercial radio and television broadcasts.

In the case of digital transmission, a standard monochrome television picture is
sampled over a grid of 512 x 480 elements that are called pixels. Eight bits are
required to represent 256 shades of the gray display. In order to display motion,
30 frames are sampled per second. Thus, it requires about 59Mb/s
(512 x 480 x 8 x 30 = 58,982,400). Color transmission requires even higher band-
width (on the order of 90 Mb/s).

Wireless technology has been expanding very fast, with new applications
reported every day. Besides the traditional applications in communication, such as
radio and television, RF and microwave signals are being used in cordless phones,
cellular communication, LAN, WAN, MAN, and PCS. Keyless door entry, radio-
frequency identification (RFID), monitoring of patients in a hospital or a nursing
home, and cordless mice or keyboards for computers are some of the other areas
where RF technology is being applied. While some of these applications have
traditionally used infrared (IR) technology, current trends are moving toward RF. The
fact is that RF is superior to infrared technology in many ways. Unlike RF, infrared
technology requires unobstructed line-of-sight connection. Although RF devices are
more expensive in comparison with IR, this is expected to change soon as their
production and use increases.

TABLE 1.2 1EEE Frequency Band Designations

Wavelength Range

Band Designation Frequency Range (in free-space)

VLF 3-30kHz 10 km—-100 km
LF 30-300kHz 1 km—10km
MF 300-3000 kHz 100 m—1 km
HF 3-30 MHz 10 m—100m
VHF 30-300 MHz I m-10m
UHF 300-3000 MHz 10cm—1m
SHF 3-30GHz lcm—10cm

EHF 30-300 GHz 0.1cm—1cm
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TABLE 1.3 Microwave Frequency Band Designations

Old New

Frequency Bands (still widely used) (not so commonly used)
500-1000 MHz UHF C
1-2GHz L D
2-4GHz S E
3-4GHz S F
4-6 GHz C G
6-8 GHz C H
8-10GHz X I
10-12.4 GHz X J
12.4-18 GHz Ku J
18-20 GHz K J
20-26.5 GHz K K
26.5-40 GHz Ka K

The electromagnetic frequency spectrum is divided into bands as shown in Table
1.2. Hence, AM radio transmission operates in the medium frequency (MF) band;
television channels 2—12 operate in the very high frequency (VHF) band; and
channels 18-90 operate in ultra high frequency (UHF) band. Table 1.3 shows the
band designations in the microwave frequency range.

F; layer

Figure 1.1 Atmosphere surrounding the earth.



4 INTRODUCTION

Besides the natural and human-made changes, electrical characteristics of the
atmosphere affect the propagation of electrical signals. Figure 1.1 shows various
layers of the ionosphere and the troposphere that are formed due to the ionization of
atmospheric air. As illustrated in Figure 1.2(a) and (b), a radio frequency signal can
reach the receiver by propagating along the ground or after reflection from the
ionosphere. These signals may be classified as ground and sky waves, respectively.
Behavior of the sky wave depends on the season, day or night, and solar radiation.
The ionosphere does not reflect microwaves and the signals propagate line-of-sight,
as shown in Figure 1.2(c). Hence, curvature of the earth limits the range of a
microwave communication link to less than 50 km. One way to increase the range is
to place a human-made reflector up in the sky. This kind of arrangement is called the
satellite communication system. Another way to increase the range of a microwave
link is to place the repeaters at periodic intervals. This is known as the ferrestrial
communication system.

Figures 1.3 and 1.4 list selected devices used at RF and microwave frequencies.
Solid-state devices as well as vacuum tubes are used as active elements in RF and
microwave circuits. Predominant applications for microwave tubes are in radar,
communications, electronic countermeasures (ECM), and microwave cooking. They
are also used in particle accelerators, plasma heating, material processing, and power
transmission. Solid-state devices are employed mainly in the RF region and in low-
power microwave circuits, such as low-power transmitters for LAN, and receiver
circuits. Some of the applications of solid-state devices are listed in Table 1.4.

Figure 1.5 lists some applications of microwaves. Besides terrestrial and satellite
communications, microwaves are used in radar systems as well as in various
industrial and medical applications. Civilian applications of radar include air-traffic
control, navigation, remote sensing, and law enforcement. Its military uses include
surveillance, guidance of weapons, and C3 (command, control, and communication).
Radio frequency and microwave energy is also used in industrial heating as well as
household cooking. Since this process does not use a conduction mechanism for the
heat transfer, it can improve the quality of certain products significantly. For
example, the hot air used in a printing press to dry the ink adversely affects the
paper and shortens its life span. On the other hand, only the ink portion is heated in
microwave drying and the paper is barely affected by it. Microwaves are also used in
material processing, telemetry, imaging, and hyperthermia.

1.1 MICROWAVE TRANSMISSION LINES

Figure 1.6 shows selected transmission lines used in RF and microwave circuits. The
most common transmission line used in the RF and microwave range is the coaxial
line. A low-loss dielectric material is used in these transmission lines to minimize the
signal loss. Semirigid coaxial lines with continuous cylindrical conductors outside
perform well in microwave range. In order to ensure single-mode transmission, the
cross-section of a coaxial line must be much smaller in comparison with the signal
wavelength. However, this limits the power capacity of these lines. In high-power



MICROWAVE TRANSMISSION LINES

Transmitting
antenna

Receiving
antenna

(a) Signal propagation along the ground
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Transmitting
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Receiving
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(c) Line-of-sight propagation

Figure 1.2 Modes of signal propagation.



6 INTRODUCTION

Microwave Devices

I
Acfive
Solid' state Vacuur;l tube
1
I

Linear beam
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Hybrid tubes

Cross-lﬁeld

Passive

- Directional couplers
- Attenuators
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Figure 1.3 Microwave devices.

li Devices

Transistors

BIT
FET
HEMT

Transferred electron

Avalanche transit time

Quantum electronic

Gunn diode BARITT diode Ruby MASERS

LSA diode IMPATT diofje emiconductor LASERS
InP diode TRAPA'["T diode |

CdTe diode Parametric devices |

Figure 1.4 Solid-state devices used at RF and microwave frequencies.

TABLE 1.4 Selected Applications of Microwave Solid-State Devices

Devices Applications Advantages
Transistors L-band transmitters for telemetry Low cost, low power supply,
systems and phased-array radar reliable, high CW power output,
systems; transmitters for lightweight
communication systems
TED C, X, and Ku-band ECM amplifiers Low power supply (12V), low
for wideband systems; X and cost, lightweight, reliable, low
Ku-band transmitters for radar noise, high gain
systems, such as traffic control
IMPATT Transmitters for mm-wave Low power supply, low cost,
communication reliable, high CW power,
lightweight
TRAPATT S-band pulsed transmitter for High peak and average power,
phased-array radar systems reliable, low power supply, low
cost
BARITT Local oscillators in communication Low power supply, low cost, low

and radar receivers

noise, reliable
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Figure 1.5 Some applications of microwaves.
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8 INTRODUCTION

microwave circuits, waveguides are used in place of coaxial lines. Rectangular
waveguides are commonly employed for connecting the high-power microwave
devices because these are easy to manufacture in comparison with circular
waveguides. However, certain devices (such as rotary joints) require a circular
cross-section. The ridged waveguide provides broadband operation in comparison
with the rectangular one. The fin line shown in Figure 1.6 (e) is commonly used in
the mm-wave band. Physically, it resembles a combination of slot line enclosed in a
rectangular waveguide.

The transmission lines illustrated in Figure 1.6 (f)—(h) are most convenient in
connecting the circuit components on a printed circuit board (PCB). The
physical dimensions of these transmission lines are dependent on the dielectric
constant ¢, of insulating material and on the operating frequency band. The
characteristics and design formulas of selected transmission lines are given in the
appendices. Chapter 2 provides an overview of wireless communication systems and
their characteristics.
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COMMUNICATION SYSTEMS

Modern communication systems require radio frequency and microwave signals for
the wireless transmission of information. These systems employ oscillators, mixers,
filters, and amplifiers to generate and process various kinds of signals. The
transmitter communicates with the receiver via antennas placed on each side.
Electrical noise associated with the systems and the channel affects the performance.
A system designer needs to know about the channel characteristics and system noise
in order to estimate the required power levels. This chapter begins with an overview
of microwave communication systems and the radio frequency wireless services to
illustrate the applications of circuits and devices that are described in the following
chapters. It also gives an idea to the reader about the placement of different building
blocks in a given system.

A short discussion on antennas is included to help in understanding the signal
behavior when it propagates from transmitter to receiver. The Friis transmission
formula and the radar range equation are important in order to understand effects of
frequency, range, and operating power levels on the performance of a communica-
tion system. Note that radar concepts now find many other applications, such as
proximity or level sensing in an industrial environment. Therefore, a brief discussion
on Doppler radar is also included in this chapter. Noise and distortion characteristics
play a significant role in analysis and design of these systems. Minimum detectable
signal (MDS), gain compression, intercept-point, and the dynamic range of an
amplifier (or the receiver) are subsequently introduced. Other concepts associated
with noise and distortion characteristics are also introduced in this chapter.



10  COMMUNICATION SYSTEMS
2.1 TERRESTRIAL COMMUNICATION

As mentioned in the preceding chapter, microwave signals propagate along the line-
of-sight. Therefore, the earth-curvature limits the range over which a microwave
communication link can be established. A transmitting antenna sitting on a 25-foot-
high tower can typically communicate only up to a distance of about 50 km. The
repeaters can be placed at regular intervals to extend the range. Figure 2.1 illustrates
the block diagram of a typical repeater.

The repeater system operates as follows. A microwave signal arriving at antenna
A works as input to port 1 of the circulator. It is directed to port 2 without loss,
assuming that the circulator is ideal. Then it passes through the receiver protection
circuit that limits the magnitude of large signals but passes those of low intensity
with negligible attenuation. The purpose of this circuit is to block excessively large
signals from reaching the receiver input. The mixer following it works as a down-
converter that transforms a high-frequency signal to a low frequency one, typically
in the range of 70 MHz. The Schottky diode is generally employed in the mixer
because of its superior noise characteristics. This frequency conversion facilitates
amplification of the signal economically. A band-pass filter is used at the output of
the mixer to stop undesired harmonics. An intermediate frequency (IF) amplifier is

Circulator A Circulator B
1 m _3 Transmitter for Received -2 ! B
A - direction A [ _ from
direction B
2 3

Receiver Transreceiver for the reverse direction (from B to A) Po»Yer

protection amplifier

circuit

Mixer
. Band-pass IF Limiter Band-pass
Mixer filter amplifier [ circuit filter
with AGC

Mixer
Band-pass Power
filter divider
Microwave
Shift source

oscillator

Figure 2.1 Block arrangement of a repeater system.
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then used to amplify the signal. It is generally a low-noise solid-state amplifier with
ultralinear characteristics over a broadband. The amplified signal is mixed again with
another signal for up-conversion of frequency. After filtering out undesired harmo-
nics introduced by the mixer it is fed to a power amplifier stage that feeds circulator
B for onward transmission through antenna B. This up-converting mixer circuit
generally employs the varactor diode. Circulator B directs the signal entering at port
3 to the antenna connected at its port 1. Similarly, the signal propagating upstream is
received by antenna B and the circulator directs it toward port 2. It then goes through
the processing as described for the downstream signal and is radiated by antenna A
for onward transmission. Hence, the downstream signal is received by antenna A and
transmitted in the forward direction by antenna B. Similarly, the upstream signal is
received by antenna B and forwarded to the next station by antenna A. The two
circulators help channel the signal in the correct direction.

A parabolic antenna with tapered horn as primary feeder is generally used in
microwave links. This kind of composite antenna system, known as the hog-horn,
is fairly common in high-density links because of its broadband characteristics.
These microwave links operate in the frequency range of 4-6 GHz, and signals
propagating in two directions are separated by a few hundred megahertz. Since this
frequency range overlaps with the C-band satellite communication, their interference
needs to be taken into design consideration. A single frequency can be used twice
for transmission of information using vertical and horizontal polarization.

2.2 SATELLITE COMMUNICATION

The ionosphere does not reflect microwaves as it does radio frequency signals.
However, one can place a conducting object (satellite) up in the sky that reflects
them back to earth. A satellite can even improve the signal quality using on-board
electronics before transmitting it back. The gravitational force needs to be balanced
somehow if this object is to stay in position. An orbital motion provides this
balancing force. If a satellite is placed at low altitude then greater orbital force will
be needed to keep it in position. These low- and medium-altitude satellites are
visible from a ground station only for short periods. On the other hand, a satellite
placed at an altitude of about 36,000 km over the equator is visible from its shadow
all the time. These are called geosynchronous or geostationary satellites.

C-band geosynchronous satellites use between 5725 MHz and 7075 MHz for their
uplinks. The corresponding downlinks are between 3400 MHz and 5250 MHz. Table
2.1 lists the downlink center frequencies of a 24-channel transponder. Each channel
has a total bandwidth of 40 MHz; 36 MHz of that carries the information and the
remaining 4 MHz is used as a guard-band. It is accomplished with a 500-MHz
bandwidth using different polarization for the overlapping frequencies. The uplink
frequency plan may be found easily after adding 2225 MHz to these downlink
frequencies. Figure 2.2 illustrates the simplified block diagram of a C-band satellite
transponder.



12 COMMUNICATION SYSTEMS

TABLE 2.1 C-Band Downlink Transponder Frequencies

Horizontal Polarization Vertical Polarization
Channel Center Frequency (MHz) Channel Center Frequency (MHz)

1 3720 2 3740
3 3760 4 3780
5 3800 6 3820
7 3840 8 3860
9 3880 10 3900
11 3920 12 3940
13 3960 14 3980
15 4000 16 4020
17 4040 18 4060
19 4080 20 4100
21 4120 22 4140
23 4160 24 4180

A 6-GHz signal received from the earth station is passed through a band-pass
filter before amplifying it through a low-noise amplifier (LNA). It is then mixed with
a local oscillator (LO) signal to bring down its frequency. A band-pass filter that is
connected right after the mixer filters out the unwanted frequency components. This
signal is then amplified by a traveling wave tube (TWT) amplifier and transmitted
back to the earth.

Another frequency band in which satellite communication has been growing
continuously is the Ku-band. The geosynchronous Fixed Satellite Service (FSS)
generally operates between 10.7 and 12.75 GHz (space to earth) and 13.75 to
14.5 GHz (earth to space). It offers the following advantages over the C-band:

e The size of the antenna can be smaller (3 feet or even smaller with higher-
power satellites) against 8 to 10 feet for C-band.

e Because of higher frequencies used in the up- and downlinks, there is no
interference with C-band terrestrial systems.

Mixer f
BPF »| LNA p TWT |

BPF amp.

Uplink Downlin.k
6 GHz signal LO 4 GHz signal

Figure 2.2 Simplified block-diagram of a transponder.
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Since higher-frequency signals attenuate faster while propagating through adverse
weather (rain, fog, etc.), Ku-band satellites suffer from this major drawback. Signals
with higher powers may be used to compensate for this loss. Generally, this power is
of the order of 40 to 60 W. The high-power direct broadcast satellite (DBS) system
uses power amplifiers in the range of 100 to 120 W.

The National Broadcasting Company (NBC) has been using the Ku-band to
distribute its programming to its affiliates. Also, various news-gathering agencies
have used this frequency band for some time. Convenience stores, auto parts
distributors, banks, and other businesses have used the very small aperture terminal
(VSAT) because of its small antenna size (typically, on the order of three feet in
diameter). It offers two-way satellite communication; usually back to hub or
headquarters. The Public Broadcasting Service (PBS) uses VSATSs for exchanging
information among the public schools.

Direct broadcast satellites (DBSs) have been around since 1980, but early DBS
ventures failed for various reasons. In 1991, Hughes Communications entered into
the direct-to-home (DTH) television business. DirecTV was formed as a unit of GM
Hughes, with DBS-1 launched in December 1993. Its longitudinal orbit is at
101.2°W and it employs a left-handed circular polarization. Subsequently, DBS-2
was launched in August 1994. It uses a right-handed circular polarization and its
orbital longitude is at 100.8°W. DirecTV employs a digital architecture that can
utilize video and audio compression techniques. It complies with the MPEG-2
(Motion Picture Experts Group). By using compression ratios 5 to 7, over 150
channels of programs are available from the two satellites. These satellites include
120-W traveling wave tube (TWT) amplifiers that can be combined to form eight
pairs at 240 W power. This higher power can also be utilized for high-definition
television (HDTV) transmission. Earth-to-satellite link frequency is 17.3 to
17.8 GHz while satellite-to-earth link uses the 12.2- to 12.7-GHz band. Circular
polarization is used because it is less affected by rain than linear orthogonal (HP and
VP) polarization.

Several communication services are now available that use low-earth-orbit
satellites (LEOS) and medium-earth-orbit satellites (MEOS). LEOS altitudes range
from 750km to 1500 km while MEOS systems have an altitude around 10350 km.
These services compete with or supplement the cellular systems and geosynchro-
nous earth-orbit satellites (GEOS). The GEOS systems have some drawbacks due to
the large distances involved. They require relatively large powers and the propaga-
tion time-delay creates problems in voice and data transmissions. The LEOS and
MEOS systems orbit the earth faster because of being at lower altitudes and,
therefore, these are visible only for short periods. As Table 2.2 indicates, several
satellites are used in a personal communication system to solve this problem.

Three classes of service can be identified for mobile satellite services:

1. Data transmission and messaging from very small, inexpensive satellites
2. Voice and data communications from big LEOS
3. Wideband data transmission
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TABLE 2.2 Specifications of Certain Personal Communication Satellites

Iridium (LEO)} Globalstar (LEO) Odyssey (MEO)

No. of satellites 66 48 12
Altitude (km) 755 1,390 10,370
Uplink (GHz) 1.616-1.6265 1.610-1.6265 1.610-1.6265
Downlink (GHz) 1.616-1.6265 2.4835-2.500 2.4835-2.500
Gateway terminal uplink 27.5-30.0 GHz C-band 29.5-30.0 GHz
Gateway terminal downlink  18.8-20.2 GHz C-band 19.7-20.2 GHz
Average sat. connect time 9 min. 10—12 min. 2 hrs.
Features of handset
Modulation QPSK QFPSK QPSK
BER 1E-2 (voice) 1E-3 (voice) 1E-3 (voice)
1E-5 (data) 1E-5 (data) 1E-5 (data)
Supportable data rate 4.8 (voice) 1.2-9.6 (voice & data) 4.8 (voice)
(Kbps) 2.4 (data) 1.2-9.6 (data)

11t is going out-of-service because of its excessive operational costs.

Another application of L-band microwave frequencies (1227.60 MHz and
1575.42 MHz) is in the global positioning system (GPS). It uses a constellation of
24 satellites to determine a user’s geographical location. Two services are available:
the standard positioning service (SPS) for civilian use, utilizing a single frequency
course/acquisition (C/A) code, and the precise positioning service (PPS) for the
military, utilizing a dual-frequency P-code (protected). These satellites are at an
altitude of 10,900 miles above the earth with their orbital period of 12 hours.

2.3 RADIO FREQUENCY WIRELESS SERVICES

A lot of exciting wireless applications are reported frequently that use voice and data
communication technologies. Wireless communication networks consist of micro-
cells that connect people with truly global, pocketsize communication devices,
telephones, pagers, personal digital assistants, and modems. Typically, a cellular
system employs a 100-W transmitter to cover a cell of 0.5 to 10 miles in radius. The
handheld transmitter has a power of less than 3 W. Personal communication networks
(PCN/PCS) operate with a 0.01- to 1-W transmitter to cover a cell radius of less than
450 yards. The handheld transmitter power is typically less than 10 mW. Table 2.3
shows the cellular telephone standards of selected systems.

There have been no universal standards set for wireless personal communication.
In North America, cordless has been CT-0 (an analog 46/49 MHz standard) and
cellular AMPS (Advanced Mobile Phone Service) operating at 800 MHz. The
situation in Europe has been far more complex; every country has had its own
standard. While cordless was nominally CT-0, different countries used their own
frequency plans. This led to a plethora of new standards. These include, but are not
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limited to, CT-1, CT-14, DECT (Digital European Cordless Telephone), PHP
(Personal Handy Phone, in Japan), E-TACS (Extended Total Access Communication
System, in UK), NADC (North American Digital Cellular), GSM (Global System
for Mobile Communication), and PDC (Personal Digital Cellular). Specifications of
selected cordless telephones are given in Table 2.4.

2.4 ANTENNA SYSTEMS

Figure 2.3 illustrates some of the antennas that are used in communication systems.
These can be categorized into two groups—wire antennas and the aperture-type
antennas. Electric dipole, monopole, and loop antennas belong to the former group
whereas horn, reflector, and lens belong to the latter category. The aperture antennas
can be further subdivided into primary and secondary (or passive) antennas. Primary
antennas are directly excited by the source and can be used independently for
transmission or reception of signals. On the other hand, a secondary antenna requires
another antenna as its feeder. Horn antennas fall in first category whereas the
reflector and lens belong to the second. Various kinds of horn antennas are
commonly used as feeders in reflector and lens antennas.

When an antenna is energized, it generates two types of electromagnetic fields.
Part of the energy stays nearby and part propagates outward. The propagating signal
represents the radiation fields while the nonpropagating is reactive (capacitive or
inductive) in nature. Space surrounding the antenna can be divided into three
regions. The reactive fields dominate in the nearby region but reduce in strength at a
faster rate in comparison with those associated with the propagating signal. If the
largest dimension of an antenna is D and the signal wavelength is A then reactive
fields dominate up to about 0.62 \/(D*/) and diminish after 2D* /). The region
beyond 2D?/4 is called the far field (or radiation field) region.

Power radiated by an antenna per unit solid angle is known as the radiation
intensity U. It is a far field parameter that is related to power density (power per unit
area) W 4 and distance r as follows:

U=rW., (2.4.1)

Directive Gain and Directivity

If an antenna radiates uniformly in all directions then it is called an isotropic
antenna. This is a hypothetical antenna that helps in defining the characteristics of a
real one. The directive gain Dy is defined as the ratio of radiation intensity due to the
test antenna to that of an isotropic antenna. It is assumed that total radiated power
remains the same in the two cases. Hence,

U 4nU
DG = = —
U Prad

o

(2.4.2)
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Figure 2.3 Some commonly used antennas: (a) electric dipole, (b) monopole, (c) loop,
(d) pyramidal horn, (e) cassegrain reflector, and (f) lens.

where

U = radiation intensity due to the test antenna, in watts-per-unit solid angle

U, = radiation intensity due to the isotropic antenna, in watts-per-unit solid
angle
P,,q = total radiated power in watts

Since U is a directional dependent quantity, the directive gain of an antenna depends
on the angles 0 and ¢. If the radiation intensity assumes its maximum value
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then the directive gain is called the directivity D,. That is,

D — Umax — 47TUm

? Uo P, rad

ax (2.4.3)

Gain of an Antenna

Power gain of an antenna is defined as the ratio of its radiation intensity at a point to
the radiation intensity that results from a uniform radiation of the same input power.
Hence,

Radiation intensity _an U, ¢)

Gain = 4
am " Total input power Py

(2.4.4)

Most of the time, we deal with relative gain. It is defined as a ratio of the power
gain of the test antenna in a given direction to the power gain of a reference antenna.
Both antennas must have the same input power. The reference antenna is usually a
dipole, horn, or any other antenna whose gain can be calculated or is known.
However, the reference antenna is a lossless isotropic source in most cases. Hence,

U, ¢)

Gain = 4n - -
P,,(Lossless isotropic antenna)

(2.4.5)

When the direction is not stated, the power gain is usually taken in the direction of
maximum radiation.

Radiation Patterns and Half-Power Beam Width (HPBW)

Far-field power distribution at a distance » from the antenna depends upon the spatial
coordinates 6 and ¢. Graphical representations of these distributions on the
orthogonal plane (0-plane or ¢-plane) at a constant distance » from the antenna
are called its radiation patterns. Figure 2.4 illustrates the radiation pattern of the
vertical dipole antenna with 0. Its ¢-plane pattern can be found after rotating it about
the vertical axis. Thus, a three-dimensional picture of the radiation pattern of a
dipole is doughnut shaped. Similarly, the power distributions of other antennas
generally show peaks and valleys in the radiation zone. The highest peak between
the two valleys is known as the main lobe while the others are called the side-lobes.
The total angle about the main peak over which power reduces by 50 percent of its
maximum value is called the half-power beam width on that plane.

The following relations are used to estimate the power gain G and the half-power
beam width HPBW (or BW) of an aperture antenna

=" Ak (2.4.6)
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Figure 2.4 Radiation pattern of a dipole in the vertical (6) plane.

and,

65 x A

BW (in degree) = (2.4.7)

where A, is the effective area of the radiating aperture in square meters; 4 is its
physical area (m x d?/4, for a reflector antenna dish with its diameter d); « is the
efficiency of the antenna (ranges from 0.6 to 0.65); and 4 is the signal wavelength in
meters.

Example 2.1: Calculate the power gain (in dB) and the half-power beam width of a
parabolic dish antenna of 30 m in diameter that is radiating at 4 GHz.

Signal wavelength and area of the aperture are

_3><108

and

nd? 30? )
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Assuming that the aperture efficiency is 0.6, the antenna gain and the half-power
beam width are found as follows:

4
G =—T % 706.8584 x 0.6 = 947482.09 = 10 log,,(947482.09)
(0.075)
— 59.76 ~ 60 dB
BW = % — 0.1625 deg.

Antenna Efficiency

If an antenna is not matched with its feeder then a part of the signal available from
the source is reflected back. It is considered as the reflection (or mismatch) loss. The
reflection (or mismatch) efficiency is defined as a ratio of power input to the antenna
to that of power available from the source. Since the ratio of reflected power to that
of power available from the source is equal to the square of the magnitude of voltage
reflection coefficient, the reflection efficiency e, is given by

e, =1—|I)?
ZA_ZO

I' = Voltage reflection coefficient =
Zy+Z,

where Z, is the antenna impedance and Z, is the characteristic impedance of the
feeding line.

Besides mismatch, the signal energy may dissipate in an antenna due to imperfect
conductor or dielectric material. These efficiencies are hard to compute. However,
the combined conductor and dielectric efficiency e,y can be experimentally deter-
mined after measuring the input power P;, and the radiated power P,,4. It is given as

o

rad
€d = 2

in
The overall efficiency e, is a product of the above efficiencies. That is,

€, = €€ (2.4.8)
Example 2.2: A 50-Q transmission line feeds a lossless one-half-wavelength-long

dipole antenna. Antenna impedance is 73 Q. If its radiation intensity, U(0, ¢), is
given as follows, find the maximum overall gain.

U = B, sin*(0)
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The maximum radiation intensity, U,,,, is B, that occurs at 0 = /2. Its total
radiated power is found as follows:

21w
3
Pog= Jo L B, sin® 0sin0 d0 dp = anBo

Hence,

Upe  47B, 16
max _ %0 _ 2 = 1.6977
Prad ZTEZBO 3n

D, =4n

or,
D,(dB) = 10log,,(1.6977)dB = 2.2985 dB

Since the antenna is lossless, the radiation efficiency e 4 is unity (0 dB). Its mismatch
efficiency is computed as follows.

Voltage reflection coefficient at its input (it is formulated in the following chapter)
is

r_%—2% _73-50_ 23
Zy+Z, T3+50 123

Therefore, the mismatch efficiency of the antenna is
e, =1 —(23/123)* = 0.9650 = 1010g,,(0.9650)dB = —0.1546 dB
The overall gain G, (in dB) is found as follows:

G,(dB) =2.2985 — 0 — 0.1546 = 2.1439 dB

Bandwidth

Antenna characteristics, such as gain, radiation pattern, impedance, and so on, are
frequency dependent. The bandwidth of an antenna is defined as the frequency band
over which its performance with respect to some characteristic (HPBW, directivity,
etc.) conforms to a specified standard.

Polarization

Polarization of an antenna is same as the polarization of its radiating wave. It is a
property of the electromagnetic wave describing the time varying direction and
relative magnitude of the electric field vector. The curve traced by the instantaneous
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electric field vector with time is the polarization of that wave. The polarization is
classified as follows:

e Linear polarization: If the tip of the electric field intensity traces a straight line
in some direction with time then the wave is linearly polarized.

e Circular polarization: If the end of the electric field traces a circle in space as
time passes then that electromagnetic wave is circularly polarized. Further, it
may be right-handed circularly polarized (RHCP) or left-handed circularly
polarized (LHCP), depending on whether the electric field vector rotates
clockwise or counterclockwise.

e FElliptical polarization: If the tip of the electric field intensity traces an ellipse
in space as time lapses then the wave is elliptically polarized. As in the
preceding case, it may be right-handed or left-handed elliptical polarization
(RHEP and LHEP).

In a receiving system, the polarization of the antenna and the incoming wave need
to be matched for maximum response. If this is not the case then there will be some
signal loss, known as polarization loss. For example, if there is a vertically polarized
wave incident on a horizontally polarized antenna then the induced voltage available
across its terminals will be zero. In this case, the antenna is cross-polarized with
incident wave. The square of the cosine of the angle between wave-polarization and
antenna-polarization is a measure of the polarization loss. It can be determined by
squaring the scalar product of unit vectors representing the two polarizations.

Example 2.3: The electric field intensity of an electromagnetic wave propagating in
a lossless medium in z-direction is given by

E(F, f) = RE,(x, ) cos(wt — kz) V/m
It is incident upon an antenna that is linearly polarized as follows:
E,() =E+DEX, y, 2) V/m

Find the polarization loss factor.

In this case, the incident wave is linearly polarized along the x-axis while the
receiving antenna is linearly polarized at 45° from it. Therefore, one-half of the
incident signal is cross-polarized with the antenna. It is determined mathematically
as follows.

The unit vector along the polarization of incident wave is
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The unit vector along the antenna polarization may be found as

A

Lo .
U, = 75 x+y)
Hence, the polarization loss factor is

|it, @ 1,|* = 0.5 = —3.01 dB

Effective Isotropic Radiated Power (EIRP)

EIRP is a measure of power gain of the antenna. It is equal to the power needed by
an isotropic antenna that provides the same radiation intensity at a given point as the
directional antenna. If power input to the feeding line is P, and the antenna gain is G,
then EIRP is defined as follows:

PG,

EIRP = (2.4.10)

where L is the input-to-output power ratio of transmission line that is connected
between the output of the final power amplifier stage of the transmitter and the
antenna. It is given by

P
L= 2.4.1
Pant ( 0)
Alternatively, the EIRP can be expressed in dBw as follows:
EIRP(dBw) = P,(dBw) — L(dB) + G(dB) (2.4.11)

Example 2.4: In a transmitting system, output of its final high-power amplifier is
500 W and the line feeding its antenna has an attenuation of 20 percent. If gain of
the transmitting antenna is 60 dB, find EIRP in dBw.

P, =500 W = 26.9897 dBw
P, = 0.8 x 500 = 400 W
G = 60dB = 10°

and,

500
L =755 = 1:25 = 10log;(1.25) = 0.9691 dB
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Hence,
EIRP(dBw) = 26.9897 — 0.9691 + 60 = 86.0206 dBw
or,
500 x 10°
EIRP = 2=~ — 400 x 106 W
1.25
Space Loss

The transmitting antenna radiates in all directions depending upon its radiation
characteristics. However, the receiving antenna receives only the power that is
incident on it. Hence, the rest of the power is not used and is lost in space. It is
represented by the space loss. It can be determined as follows.

Power density w, of a signal transmitted by an isotropic antenna is given by

Py 2
W =g W/m (2.4.12)

where P, is the transmitted power in watts and R is the distance from the antenna in
meters. The power received by a unity gain antenna located at R is found to be

P, = wd,, (2.4.13)

where A, is the effective area of an isotropic antenna.
From (2.4.6), for an isotropic antenna

4n
G= )—eru =1
or,
/12
Ay =—
U 4n
Hence, (2.4.12) can be written as
P,
= 47”;2 X i (2.4.14)

and the space loss ratio is found to be

J) 2
. <4nR> (2.4.15)
t
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It is usually expressed in dB as follows:

A
Space loss ratio = 20 log;, <ﬁ) dB (2.4.16)
T

Example 2.5: A geostationary satellite is 35 860 km away from the earth’s surface.
Find the space loss ratio if it is operating at 4 GHz.

R =35860000 m

and,

3 x 108
=22 0075
4% 100 m

Hence,

4n x 35860000

2
=2. 1072 = —195.5752 dB
0075 ) 77 x 10 95.5752 d

Space loss ratio = (

Friis Transmission Formula and the Radar Range Equation

Analysis and design of communication and monitoring systems often require an
estimation of transmitted and received powers. Friis transmission formula and the
radar range equation provide the means for such calculations. The former is
applicable to a one-way communication system where the signal is transmitted at
one end and is received at the other end of the link. In the case of the radar range
equation, the transmitted signal hits a target and the reflected signal is generally
received at the location of the transmitter. We consider these two formulations here.

Friis Transmission Equation

Consider a simplified communication link as illustrated in Figure 2.5. A distance R
separates the transmitter and the receiver. Effective apertures of transmitting and

Transmitter Receiver

Figure 2.5 Simplified block diagram of the communication link.
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receiving antennas are 4. and A, respectively. Further, the two antennas are
assumed to be polarization matched.

If power input to the transmitting antenna is P, then isotropic power density w, at
a distance R from the antenna is given as follows:

Pie
w,., —=
°  4nR?

(2.4.17)

where e, is the radiation efficiency of the transmitting antenna.
For a directional transmitting antenna, the power density w, can be written as
follows:

o PG, - PieDy

= = 2.4.18
T 4R T 4R (24.18)
where G, is the gain and D; is the directivity of transmitting antenna.
Power collected by the receiving antenna is
P.=A.w, (2.4.19)
From (2.4.6),
)2
o =—G, (2.4.20)
4n
where the receiving antenna gain is G,.
Therefore, we find that
) 2
A A PG,
Po="—-Gw="—G
FT N T 4 U R
or
P, 2\ A\’
T ) GG = —— ) D.D 2.4.21
Pt (47'ER> r-t eter<4ﬂ:R) =t ( )

If signal frequency is fthen for a free-space link,

A 3x108
4nR  4nfR

where f'is in Hz and R is in meters.
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Generally, the link distance is long and the signal frequency is high such that
kilometer and megahertz will be more convenient units than the usual meter and
hertz, respectively. For R in km and f in MHz, we find that

A 3 x 108 _ 03 " 1
4R 4m x 108 X fyyy, X 103 X Ry, 47 " fumoRim

Hence, from (2.4.21),
0.3
P(dBm) = P,(dBm) + 20log,, ey 201ogo( vzRim) + Gi(dB) + G,(dB)

or,

P.(dBm) = P,(dBm) + G,(dB) + G,(dB) — 20 1og,( /i, Rim) — 324418
(2.4.22)

where the transmitted and received powers are in dBm while the two antenna-gains
are in dB.

Example 2.6: A 20-GHz transmitter on board the satellite uses a parabolic antenna
that is 45.7 cm in diameter. The antenna gain is 37 dB and its radiated power is 2 W.
The ground station that is 36941.031km away from it has an antenna gain of
45.8 dB. Find the power collected by the ground station. How much power would be
collected at the ground station if there were isotropic antennas on both sides?

The transmitted power, P(dBm) = 101log,,(2000) = 33.0103 dBm and

2010g,( Atz Rim) = 2010g;4(20 x 10° x 36941.031) = 177.3708 dB

Hence, the power received at the earth station is found as follows:

P.(dBm) = 33.0103 4 37 4+ 45.8 — 177.3708 — 32.4418 = —94.0023 dBm
or,

P.=3.979 x 107" mW
If the two antennas are isotropic then G, = G, = 1 (or, 0 dB) and therefore,
P.(dBm) =33.0103 4+ 0+ 0 —177.3708 — 32.4418 = —176.8023 dBm

or,

P, =2.0882 x 10718 mW
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Radar Equation

In the case of a radar system, the transmitted signal is scattered by the target in all
possible directions. The receiving antenna collects part of the energy that is scattered
back toward it. Generally, a single antenna is employed for both the transmitter and
the receiver, as shown in Figure 2.6.

If power input to the transmitting antenna is P, and its gain is G, then power
density w;,, incident on the target is

Wi = Pth _PtAet
inc — ATR2 - /12R2

(2.4.25)

where A, is the effective aperture of the transmitting antenna.

The radar cross-section g of an object is defined as the area intercepting that
amount of power that, when scattered isotropically, produces at the receiver a power
density that is equal to that scattered by the actual target. Hence,

Scattered power
Incident power density

Radar cross-section =

or,

r (2.4.26)

where w, is isotropically back-scattered power density at a distance » and wy,, is
power density incident on the object.

Hence, the radar cross-section of an object is its effective area that intercepts an
incident power density w,,. and gives an isotropically scattered power of 4nr?w, for
a back-scattered power density. Radar cross-sections of selected objects are listed
in Table 2.5.

A
VY
i <©>
Transmitter / D v Q

Circulator

Receiver Antenna

Figure 2.6 A radar system.
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TABLE 2.5 Radar Cross-Sections of Selected Objects

Object Radar Cross-Section (m?)
Pickup truck 200
Automobile 100
Jumbo-jet airliner 100

Large bomber 40

Large fighter aircraft 6

Small fighter aircraft 2

Adult male 1
Conventional winged missile 0.5

Bird 0.01
Insect 0.00001
Advanced tactical fighter 0.000001

Using the radar cross-section of a target, the power intercepted by it can be found
as follows:

oP.G

Pinc = O0Wjpe = 47;12; (2427)

Power density arriving back at the receiver is

P
Wscatter = 47_352 (2.4.28)

and power available at the receiver input is
G.AoPG, 0AuAyP

P = A Wyeqer = AT Tl (2.4.29)

4n(4nR2?  4mi’R

Example 2.7: A distance of 100 4 separates two lossless X-band horn antennas.
Reflection coefficients at the terminals of transmitting and receiving antennas are 0.1
and 0.2, respectively. Maximum directivities of the transmitting and receiving
antennas are 16dB and 20 dB, respectively. Assuming that the input power in a
lossless transmission line connected to the transmitting antenna is 2 W, and that the
two antennas are aligned for maximum radiation between them and are polarization
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matched, find the power input to the receiver.

"— 100n —

P Receiver

L Pe={1-|TP} P

Transmitter
- 2
P={1-T}Ps

As discussed in the next chapter, impedance discontinuity generates an echo
signal very similar to that of an acoustical echo. Hence, signal power available
beyond the discontinuity is reduced. The ratio of the reflected signal voltage to that
of the incident is called the reflection coefficient. Since the power is proportional to
square of the voltage, power reflected from the discontinuity is equal to the square of

the reflection coefficient times the incident power. Therefore, power transmitted in
the forward direction will be given by

P =[1—|TPIP,
Therefore, the power radiated by the transmitting antenna is found to be
P=(1-0.17)2=198 W

Since the Friis transmission equation requires the antenna gain as a ratio instead of
in dB, G, and G, are calculated as follows.

G, =16 dB = 10'® = 39.8107
G, =20dB = 10*° = 100

Hence, from (2.4.21),

) 2
Po=(—"" ) x100 x 39.8107 x 1.98
' <4nx 100&) S x

or,
P.=5mW
and power delivered to the receiver, Py, is

Py=(1-02%)5=48mW
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Example 2.8: A radar operating at 12 GHz transmits 25 kW through an antenna of
25 dB gain. A target with its radar cross-section at 8 m? is located at 10 km from the
radar. If the same antenna is used for the receiver, determine the received power.

P, =25kW
3% 108
=12GHz - A =———-=10.025
/ SRR TISSTE m
G, = G, =25dB — 10>° =316.2278
R =10km
o =8m?
Hence,
G,.GPo)?  316.2278% x 25000 x 8§ x 0.025
= ekt Rah =63x 107 W
(4n)’ R4 (4n)’ x (10%)
or,
P, = 0.63 pW

Doppler Radar

An electrical signal propagating in free-space can be represented by a simple
expression as follows:

v(z, ) = A cos(wt — kz) (2.4.30)

The signal frequency is m radians per second and £ is its wavenumber (equal to @/c,
where ¢ is speed of light in free-space) in radian per meter. Assume that there
is a receiver located at z = R, as shown in Figure 2.5 and R is changing with time
(the receiver may be moving toward or away from the transmitter). In this situation,
the receiver response v,(t) is given as follows.

v,(t) = V cos(wt — kR) (2.4.31)

The angular frequency, w,, of v,(f) can be easily determined after differentiating the
argument of the cosine function with respect to time. Hence,

dR

. (2.4.32)

d
wo—a(wt—kR)—w—k
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Note that k£ is time independent, and the time derivative of R represents the
velocity, v,, of the receiver with respect to the transmitter. Hence, (2.4.32) can be
written as follows:

r_ a)( - ﬁ) (2.4.33)

If the receiver is closing in then v, will be negative (negative slope of R) and,
therefore, the received signal will indicate a signal frequency higher than . On the
other hand, it will show a lower frequency if R is increasing with time. It is the
Doppler frequency shift that is employed to design the Doppler radar.

Consider a simplified block-diagram of the radar, as illustrated in Figure 2.7. A
microwave signal generated by the oscillator is split into two parts via the power
divider. The circulator feeds one part of this power to the antenna that illuminates a
target while the mixer uses the remaining fraction as its reference signal. Further, the
antenna intercepts a part of the signal that is scattered by the object. It is then
directed to the mixer through the circulator. Output of the mixer includes a difference
frequency signal that can be filtered out for further processing. Two inputs to the
mixer will have the same frequency if the target is stationary and, therefore, the
Doppler shift dw will be zero. On the other hand, the mixer output will have Doppler
frequency if the target is moving. Note that the signal travels twice over the same
distance and, therefore, the Doppler frequency shift in this case will be twice that
found via (2.4.33). Mathematically,

W, = w( — 2vr> (2.4.34)

Circulator

Amplifier

Figure 2.7 Simplified block-diagram of a Doppler radar.
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and

i (2.4.35)

2.5 NOISE AND DISTORTION

Random movement of charges or charge carriers in an electronic device generates
currents and voltages that vary randomly with time. In other words, the amplitude of
these electrical signals cannot be predicted at any time. However, it can be expressed
in terms of probability density functions. These signals are termed noise. For most
applications, it suffices to know the mean square or root-mean-square value. Since
the square of the current or the voltage is proportional to the power, mean-square
noise voltage and current values are generally called noise power. Further, noise
power is normally a function of frequency and the power-per-unit frequency (W per
Hz) is defined as the power spectral density of noise. If the noise power is the same
over the entire frequency band of interest then it is called white noise. There are
several mechanisms that can cause noise in an electronic device. Some of these are
as follows:

e Thermal noise: This is the most basic type of noise, which is caused by thermal
vibration of bound charges. Johnson studied this phenomenon in 1928 and
Nyquist formulated an expression for spectral density around the same time.
Therefore, it is also known as Johnson noise or Nyquist noise. In most
electronic circuits, thermal noise dominates; therefore, it will be described
further because of its importance.

e Shot noise: This is due to random fluctuations of charge carriers that pass
through the potential barrier in an electronic device. For example, electrons
emitted from the cathode of thermionic devices or charge carriers in Schottky
diodes produce a current that fluctuates about the average value /. The mean-
square current due to shot noise is generally given by the following equation:

(%) = 2elB 2.5.1)

where e is electronic charge (1.602 x 107! C) and B is the bandwidth in Hz.

e Flicker noise: This occurs in solid-state devices and vacuum tubes operating at
low frequencies. Its magnitude decreases with the increase in the frequency. It
is generally attributed to chaos in the dynamics of the system. Since the flicker
noise power varies inversely with frequency, it is often called 1/f noise.
Sometimes it is referred to as pink noise.
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Thermal Noise

Consider a resistor R that is at a temperature of 7K. Electrons in this resistor are in
random motion with a kinetic energy that is proportional to the temperature 7. These
random motions produce small, random voltage fluctuations across its terminals.
This voltage has a zero average value, but a nonzero mean-square value (v2). It is
given by Planck’s black-body radiation law, as follows:

o AWRB
{on) = exp(hf JKT) — 1 (2.5.2)

where £ is Planck’s constant (6.546 x 1073* J-Sec); k is the Boltzmann constant
(1.38 x 1072* J/K); T'is temperature in Kelvin; B is bandwidth of the system in Hz;
and f'is center frequency of the bandwidth in Hz.

For frequencies below 100GHz, the product Af will be smaller than
6.546 x 10723 J and kT will be greater than 1.38 x 10722 J if T stays above 10K.
Therefore, kT will be larger than Af for such cases. Hence, the exponential term in
equation (2.5.2) can be approximated as follows:

hf h
exp (ﬁ) ~ 1 %

Therefore,
(v7) ~ —— = 4BRkT (2.5.3)

This is known as the Rayleigh-Jeans approximation.

A Thevenin-equivalent circuit can replace the noisy resistor, as shown in Figure
2.8. As illustrated, it consists of a noise equivalent voltage source in series with the
noise-free resistor. This source will supply a maximum power to a load of resistance
R. The power delivered to that load in a bandwidth B is found as follows:

<Uﬁ)
P = = kTB 254
n 4R ( )

R

Noise-free resistor

R S
—

Noisy resistor

Figure 2.8 Noise equivalent circuit of a resistor.
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Noisy R P Noiseless
T,=0K L T =—=° X R
ﬁl R amplifier I? * GkB <R amplifier >

Figure 2.9 Noise-equivalent representation of an amplifier.

Conversely, if an arbitrary white noise source with its driving point impedance R
delivers a noise power Pg to a load R then it can be represented by a noisy resistor of
value R that is at temperature 7,. Hence,

Py
e =15 (2.5.95)
where T, is an equivalent temperature selected so that the same noise power is
delivered to the load.

Consider a noisy amplifier as shown in Figure 2.9. Its gain is G over the
bandwidth B. Let the amplifier be matched to the noiseless source and the load
resistors. If the source resistor is at a hypothetical temperature of 7g = 0 K, then the
power input to the amplifier P; will be zero and the output noise power P, will be
only due to noise generated by the amplifier. We can obtain the same noise power at
the output of an ideal noiseless amplifier by raising the temperature 7 of the source
resistor to T, as follows:

T—P" (2.5.6)
¢ GkB -

Hence, the output power in both cases is P, = GkT.B. The temperature T, is known
as the equivalent noise temperature of the amplifier.

Measurement of Noise Temperature by the Y-Factor Method

According to definition, the noise temperature of an amplifier (or any other two-port
network) can be determined by setting the source resistance R at 0K and then
measuring the output noise power. However, a temperature of 0K cannot be
achieved in practice. We can circumvent this problem by repeating the experiment
at two different temperatures. This procedure is known as the Y-factor method.

Consider an amplifier with power gain G over the frequency band B Hz. Further,
its equivalent noise temperature is 7, K. The input port of the amplifier is terminated
by a matched resistor R while a matched power meter is connected at its output, as
illustrated in Figure 2.10. With R at temperature 7}, the power meter measures the
noise output as P;. Similarly, the noise power is found to be P, when the temperature
of R is set at T,. Hence,
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/ \ Amplifier

e R

Figure 2.10 Experimental setup for measurement of the noise temperature.

and

P, = GkT.B + GkT,B

For 7;, higher than T, the noise power P, will be larger than P,.
Therefore,

P _,_Ti+T,
P2 Tc+Te
or,
T, — YT,
I,=———° 2.5.7
= 2.5.7)

For T, larger than 7, Y will be greater than unity. Further, measurement accuracy
is improved by selecting two temperature settings that are far apart. Therefore, T}
and 7, represent hot and cold temperatures, respectively.

Example 2.9: An amplifier has a power gain of 10 dB in the 500-MHz to 1.5-GHz
frequency band. The following data is obtained for this amplifier using the ¥factor
method:

At T,=290K, P, =-70dBm
At T,=77K, P, = —75 dBm

Determine its equivalent noise temperature. If this amplifier is used with a source
that has an equivalent noise temperature of 450 K, find the output noise power in
dBm.
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Since P, and P, are given in dBm, the difference of these two values will give ¥
in dB. Hence,

Y = (P, — P,)dBm = (—70) — (=75) = 5 dB
or,

Y =10% =3.1623
290 —(3.1623)(77)

=2151K
¢ 3.1623 — 1

If a source with an equivalent noise temperature of 7g = 450 K drives the
amplifier, the noise power input to this will be k7gB. Total noise power at the
output of the amplifier will be

P, = GkTsB + GKT,B = 10 x 1.38 x 107 x 10° x (450 + 21.51)
= 6.5068 x 107" W

Therefore,

P, = 1010g(6.5068 x 10~%) = —71.8663 dBm

Noise Factor and Noise Figure

Noise factor of a two-port network is obtained by dividing the signal-to-noise ratio at
its input port by the signal-to-noise ratio at its output. Hence,

Si/N;

So/No

Noise factor, F =

where S;, N;, S,, and N, represent the power in input signal, input noise, output
signal, and output noise, respectively. If the two-port network is noise-free then
signal-to-noise ratio at its output will be the same as its input, resulting in a noise
factor of unity. In reality, the network will add its own noise while the input signal
and noise will be altered by the same factor (gain or loss). It will lower the output
signal-to-noise ratio, resulting in a higher noise factor. Therefore, the noise factor of
a two-port network is generally greater than unity. By definition, the input noise
power is assumed to be the noise power resulting from a matched resistor at
T, =290 K, ie., N; =kT,B. Using the circuit arrangement illustrated in Figure
2.11, the noise factor of a noisy two-port network can be defined as follows:

Total output noise in B when input source temperature is 290 K

Noise factor =
o1se tactor Output noise of source (only) at 290 K
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Noisy two-port
network R
G B T

RB=8o+ No

R
T, =290K

A =5+N

Figure 2.11 Circuit arrangement for the determination of noise factor of a noisy two-port
network.

or,

:kToBG+Pint =1+ Pint
kT,BG kT,BG

(2.5.8)

where P, represents output noise power that is generated by the two-port network
internally. It can be expressed in terms of noise factor as follows:

Py =k(F — 1)T,BG = kT_BG (2.5.9)

where T, is known as the equivalent noise temperature of a two-port network. It is
related to the noise factor as follows:

T,=(F - 1T, (2.5.10)

When the noise factor is expressed in decibels, it is commonly called the noise
figure (NF). Hence,

NF = 101log,,(F)dB (2.5.11)

Example 2.10: Power gain of an amplifier is 20 dB in the frequency band of 10 GHz
to 12 GHz. If its noise figure is 3.5 dB, find the output noise power in dBm.

Output noise power = kT, BG + P;,, = FkT,BG = N,
F=35dB =10 =2.2387
G =20dB = 10> =100

Therefore,
N, =2.2387 x 1.38 x 1072 x 290 x 2 x 10° x 100 = 1.7919 x 107° W
or,

N, = 101log;,(1.7919 x 107® mW)dBm = —57.4669 dBm &~ —57.5 dBm
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Noise in Two-Port Networks

Consider a noisy two-port network as shown in Figure 2.12 (a). ¥, = G, +jB, is
source admittance that is connected at port 1 of the network. The noise it generates is
represented by the current source i with its root-mean-square value as /. This noisy
two-port can be replaced by a noise-free network with a current source 7, and a
voltage source v, connected at its input, as shown in Figure 2.12 (b). I, and V,
represent the corresponding root-mean-square current and voltage of the noise. It is
assumed that the noise represented by i is uncorrelated with that represented by i,
and v,. However, a part of i, i,., is assumed to be correlated with v, via the
correlation admittance Y, = G, 4 jX, while the remaining part i,, is uncorrelated.
Hence,

I = (i) = 4kTBGq (2.5.12)
V2 = (v’) = 4kTBR, (2.5.13)
and,
I, = (i3,) = 4kTBG,, (2.5.14)
h— <« b
T Noisy
Is 1% two-port
(@ s ll network f
(@)
I —p /V\ <+«— 5L
T Noise-free
i Ys Wi I CD two-port 1
l network

(b)

Figure 2.12 A noisy two-port network (a), and its equivalent circuit (b).
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Now we find a Norton equivalent for the circuit that is connected at the input of a
noise-free two-port network in Figure 2.12 (b). Since these are random variables, the
mean square noise current (igq) is found as follows:

2) (i + Y0, 12) = () + (g + e + Yovn 19

(iZ) = (i2
(@2) + (ligy + (Yo + Yo)v, %)

or,
(i) = (i) + (ia) + | Yo + Yy [P (03) (2.5.15)

Hence, the noise factor F is

F= i’g =1+ é‘)) +1Y + Y P <<lz)§ﬁ)> =1 +(2?S“+ 1Yo+ 7, I22—:
or,
Fe1 20 B G 6P 4+ (s +X07) (2.5.16)
S S
For a minimum noise factor, F,,
;’_gszo;» G =Gg+(12“ — G, (2.5.17)
and,
;TFS:O:XS =X, =X, (2.5.18)
From (2.5.17),
Gou = R\(GLy — G2) (2.5.19)

Substituting (2.5.18) and (2.5.19) into (2.5.16), minimum noise factor is found as
Frin =14+ 2R, (G + G) (2.5.20)

Using (2.5.18)—(2.5.20), (2.5.16) can be expressed as follows:

R,
F = Fuin+ o215 = Yoptl’ (2.5.21)
N
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Noise Figure of a Cascaded System

Consider a two-port network with gain G;, noise factor F|, and equivalent noise
temperature 7,. It is connected in cascade with another two-port network, as shown
in Figure 2.13 (a). The second two-port network has gain G,, noise factor F,, and
noise temperature 7,,. Our goal is to find the noise factor  and the equivalent noise
temperature 7, of the overall system illustrated in Figure 2.13 (b).

Assume that the noise power input to the first two-port network is N;. Its
equivalent noise temperature is 7;. Output noise power of the first system is N,
whereas it is N, after the second system. Hence,

N, = G\kT;B + G,kT.,B (2.5.22)
and,
N, = G,N; + GokT B = Gy[G1kB(T; + T)] + GokT.,B
= G GukB[T; + Toy + Tep/G1]
or,

N, = G,G,kB[T, + T = GKkB[T, + T} (2.5.23)

Therefore, the noise temperature of a cascaded system is

T2
Te:Tel+G_el

and, from T,, = (F, — V)T;; Ty, = (F, — DT;; T, = (F — 1)T;, we get

F=F +
1
N N N,
— G, F, T . Gy, F, T ——————
T;
(@)
N; N,
EE—— G FT. mm———
T;
(b)

Figure 2.13 Two networks connected in cascade (a) and its equivalent system (b).
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The above equations for 7, and F can be generalized as follows:

T T T
Te:Te +_62+ e3 _’_734
"1 G, GG, GGG,

+o- (2.5.24)

and

F=F 2.5.25
e Y66 T66.6 (2:3.23)

Example 2.11: A receiving antenna is connected to an amplifier through a
transmission line that has an attenuation of 2 dB. Gain of the amplifier is 15dB
and its noise temperature is 150K over a bandwidth of 100 MHz. All the
components are at an ambient temperature of 300 K.

(a) Find the noise figure of this cascaded system.

(b) What would be the noise figure if the amplifier were placed before the
transmission line?

First we need to determine the noise factor of the transmission line alone. The
formulas derived in the preceding section can then provide the desired noise figures
for the two cases.

Consider a transmission line that is matched terminated at both its ends by
resistors R, as illustrated in Figure 2.14. Since the entire system is in thermal
equilibrium at 7K, noise powers delivered to the transmission line and that available
at its output are k7B. Mathematically,

P, = kTB = GKTB + GNadded

where N,y4eq 18 nNoise generated by the line as it appears at its input terminals. G is
output-to-input power ratio and B is bandwidth of the transmission line. Note that
input noise is attenuated in a lossy transmission line but there is noise generated by it
as well. Hence,

1 1
Nadded = 5(1 — G)kTB = (G - 1>kTB = kT.B

kTB —»
T B =kTB—>\T
R, G TR R

Figure 2.14 A lossy transmission line matched terminated at its ends.
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An expression for the equivalent noise temperature 7, of the transmission line is
found from it as follows:

and,

F—1+Te—1+ L) I
T, G T,

[

Gain of the amplifier, G,,, = 15 dB = 10" = 31.6228. For the transmission line,
1/G = 10%% = 1.5849.

Hence, the noise factor of the line is 1 + (1.5849 — 1)300/290 = 1.6051. The
corresponding noise figure is 2.05 dB. Similarly, the noise factor of the amplifier is
found to be 1+ 150/290 = 1.5172. Its noise figure is 1.81 dB.

(a) In this case, the noise figure of the cascaded system, F 404> 1S fOund as

Fomp — 1 1.5172 — 1
Focaded = Fiine + % = 1.6051 + 15840 = 2.4248 = 3.8468 dB
ne .

(b) If the amplifier is connected before the line, i.e., the amplifier is placed right
at the antenna, then

Fiipe — 1 1.6051 — 1
Fcascaded = Famp +#mp =1.5172 +W =11.5363 = 1.8649 dB

Note that the amplifier alone has a noise figure of 1.81 dB. Hence, the noisy
transmission line connected after it does not alter the noise figure significantly.

Example 2.12: Two amplifiers, each with 20-dB gain, are connected in cascade as
shown below. The noise figure of amplifier 4, is 3 dB while that of 4, is 5dB.
Calculate the overall gain and noise figure for this arrangement. If the order of two
amplifiers is changed in the system, find its resulting noise figure.

P I P, | Ps




NOISE AND DISTORTION 45

The noise factors and gains of two amplifiers are:

F;=3dB=10" =2
F, =5dB = 10" =3.1623
G, =G, =20dB = 10> =100

Therefore, the overall gain and noise figure of the cascaded system is found as
follows:

P, P, P
G==="3x=2=100x 100 = 10000 = 40 dB
Pl PZ Pl
and,
F,—1 3.1623 — 1
F=F 4+ —=24+"_ _—2021623 =3.057 dB

G, 100

If the order of amplifiers is changed then the overall gain will stay the same.
However, the noise figure of new arrangement will change as follows:

F,—1 2-1
F=F =3.1623 +=—— =3.1723 = 5.013743 dB
2+ G, 700

Minimum Detectable Signal (MDS)

Consider a receiver circuit with gain G over bandwidth B. Assume that its noise
factor is F. P; and P, represent power at its input and output ports, respectively. IV is

input noise power and N, is total noise power at its output as illustrated in Figure
2.15. Hence,

N, = kT,FBG (2.5.26)

This constitutes the noise floor of the receiver. A signal weaker than this will be lost
in noise. N, can be expressed in dBW as follows:

N,(dBW) = 10log,,(kT,) + F(dB) + 101og,,(B) + G(dB) (2.5.27)

M P No,

Receiver

&

Figure 2.15 Signals at the two ports of a receiver with a noise figure of F' dB.
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The minimum detectable signal must have power higher than this. Generally, it is
taken as 3 dB above this noise floor. Further,

101og,(kT,) = 101log,,(1.38 x 1072 x 290) ~ —204 dBW per Hz
Hence, the minimum detectable signal P, ypg at the output is
Py vps = —201 + F(dB) + 101og,((By,) + G(dB) (2.5.28)
The corresponding signal power P;pg at its input is
Py vps(dBW) = =201 + F(dB) 4 101log,(By,) (2.5.29)
Alternatively, P;yps can be expressed in dBm as follows:
Pryps(dBm) = —111 4 F(dB) + 10log;(Bypz) (2.5.30)

Example 2.13: The noise figure of a communication receiver is found as 10 dB at
room temperature (290 K). Determine the minimum detectable signal power if (a)
B =1MHz, (b) B=1GHz, (c) B= 10 GHz, and (d) B = 1 kHz.

From (2.5.30),
Hence,

(a) Pyyps = —111 + 10 4 101og,o(1) = —101 dBm = 7.94 x 10~!! mW
(b) Pyyps = —111 + 10 + 101og,((10%) = —71 dBm = 7.94 x 10~ mW
(©) Piups = —111 4 10 + 101og,,(10*) = —61 dBm = 7.94 x 10~7 mW

and,
(d) Piyps = —111 410+ 101og,((1073) = —131 dBm = 7.94 x 10~ ¥ mW

These results show that the receiver can detect a relatively weak signal when its
bandwidth is narrow.

Intermodulation Distortion

The electrical noise of a system determines the minimum signal level that it can
detect. On the other hand, the signal will be distorted if its level is too high. This
occurs because of the nonlinear characteristics of electrical devices such as diodes,
transistors, and so on. In this section, we analyze the distortion characteristics and
introduce the associated terminology.
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Nonlinear circuit

Figure 2.16 Nonlinear circuit with input signal v; that produces v, at its output.

Consider the nonlinear system illustrated in Figure 2.16. Assume that its
nonlinearity is frequency independent and can be represented by the following
power series

vy = kyv; + kot 4 ksvd 4 - - (2.5.31)
For simplicity, we assume that the k; are real and the first three terms of this series are

sufficient to represent its output signal. Further, it is assumed that the input signal
has two different frequency components that can be expressed as follows:

v; = acos(w,t) + b cos(w,t) (2.5.32)
Therefore, the corresponding output signal can be written as
vy 2 ky[a cos(w; ) + b cos(w,1)] + kyla cos(w, 1) + b cos(w, )]
+ kz[a cos(w, 1) + b cos(w,1)]?
After simplifying and rearranging it we get

2 2
v, = ky[a cos(w;t) + b cos(w,1)] + ky |:a7 {1+ cos{2mw,1}} + % {1+ cosQw,1)}

b 3 3
+a7 {cos(w; + wy)t + cos(w; — cozt)}:| + ks |:Z a’ cos(w, 1) + Eab2 cos(m, )
3

3 3
+ % cos(3w, 1) + 1 ab* cos(w, — 2w,)t + 1 a?bcos(2w, — wy)t

3 3 b’ 3
+ 3 a?b cos(w,t) + 1 b* cos(w,1) + T cos(3m,t) + 1 a?bcosQw, + wy)t
3
+ Zabz cos(w; + sz)t] (2.5.33)

Therefore, the output signal has several frequency components in its spectrum.
Amplitudes of various components are listed in Table 2.6.

Figure 2.17 illustrates the input—output characteristic of an amplifier. If input
signal is too low then it may be submerged under the noise. Output power rises
linearly above the noise as the input is increased. However, it deviates from the linear
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TABLE 2.6 Amplitudes of Various Harmonics in the

Output

Harmonic Components

Amplitude

1dB
compression
point

(O k1a+k3(%a3 +%ab2)
W, kb +k3(%b3 —I—%azb)
ab
W, —m, ky 2
ab
) + o, ky >
2
a
2 ky =
o} 25
b2
2 ky —
W, 25
3
a
3 ks -
w,; )
b3
3 by
w, o
2w — w, %k3a2b
w; —2m, %k3ab2
2w, + w, %k3a2b
w; + 2w, %k3ab2
A
A\ 4 dB
Pol
Pout (dBm) L /Noise level
4—— Dynamicrange —P
Pimps o

Py (dBm) '

Figure 2.17 Gain characteristics of an amplifier.
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characteristic after a certain level of input power. In the linear region, output power
can be expressed in dBm as follows:

P,,(dBm) = P, (dBm) + G(dB)

The input power for which output deviates by 1 dB below its linear characteristic
is known as 1-dB compression point. In this figure, it occurs at an input power of
Pp dBm that produces an output of P,; dBm. From the above relation, we find that

P,;(dBm) + 1 = Pp(dBm) + G(dB)
or,
Pp(dBm) = P,,(dBm) + 1 — G(dB) (2.5.34)

The difference between the input power at 1-dB compression point and the
minimum detectable signal defines the dynamic range (DR). Hence,

DR = Pp(dBm) — Py yps
From (2.5.30) and (2.5.34), we find that

DR = P,;(dBm) + 112 — G(dB) — F(dB) — 101og,((By,) (2.5.35)

Gain Compression

Nonlinear characteristics of the circuit (amplifier, mixer, etc.) compress its gain. If
there is only one input signal, i.e., b is zero in (2.5.32), then the amplitude a, of
cos(w,?) in its output is found from Table 2.6 to be

3
a, =ka+ Zk3a3 (2.5.36)

The first term of @, represents the linear (ideal) case while its second term results
from the nonlinearity. Generally, k; is a negative constant. Therefore, it tends to
reduce a;, resulting in lower gain. The single-tone gain compression factor may be
defined as follows:

o145y (2.5.37)
a

Let us now consider the case when both of the input signals are present in
(2.5.32). Amplitude of cos(w,?) in the output now becomes k;a + k3 (% a® + %ab2).
If b is large in comparison with a then the term with &; may dominate (undesired)
over the first (desired) one.
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Second Harmonic Distortion

Second harmonic distortion occurs due to k,. If b is zero, then the amplitude of the
second harmonic will be k,(a?/2). Since power is proportional to the square of the
voltage, the desired term in the output can be expressed as

2
P = lOloglO(le %) — 20log,o(a) + C, (2.5.38)

where ¢ is the proportionality constant and

ck
C, =20 log<$21>

Similarly, power in the second harmonic component can be expressed as

2N\ 2
P, = 1010g10<gk2 %) = 40log,(a) + G, (2.5.39)

while the input power is
a2
P, = 1010g10<g§) — 201log,4(a) + C; (2.5.40)

Proportionality constants ¢ and k, are imbedded in C, and Cj.
From (2.5.38)—(2.5.40), we find that

and
P, =2P, + D, (2.5.42)

where D, and D, replace C,—C; and C,—2Cj, respectively.

Equations (2.5.41) and (2.5.42) indicate that both the fundamental as well as the
second harmonic signal in the output are linearly related with input power. However,
the second harmonic power increases at twice the rate of the fundamental (the
desired) component.

Intermodulation Distortion Ratio

From Table 2.6, we find that the cubic term produces intermodulation frequencies
2w, £ w, and 2w, £+ w,. If ®,; and w, are very close then 2w, + ®, and 2w, + v,
will be far away from the desired signals, and, therefore, these can be filtered out
easily. However, the other two terms, namely, 2w, — w, and 2w, — w;, will be so
close to w; and w, that these components may be within the pass-band of the
system. It will distort the output. This characteristic of a nonlinear circuit is specified
via the intermodulation distortion. It is obtained after dividing the amplitude of one
of the intermodulation terms by the desired output signal. For an input signal with
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both w; and w, (i.e., a two-tone input), intermodulation distortion ratio (IMR) may
be found as

Fhsa’b 3

IMR = =
kl a 4k1

(2.5.43)

Intercept Point (IP)

Since power is proportional to the square of the voltage, intermodulation distortion
power may be defined as

(haa?b)’

5 (2.5.44)

Pyvp =¢

where ¢ is the proportionality constant.
If the two input signals are equal in amplitude then a = b, and the expression for
intermodulation distortion power simplifies to

(2.5.45)

Similarly, the power in one of the input signal components can be expressed as
follows:

P.

m

—a
-5

2

Therefore, the intermodulation distortion power can be expressed as
Ppp = 0P}
IMD in

where o is another constant.

The ratio of intermodulation distortion power (Ppp) to the desired output power
P,(P, = kiP,,) for the case where two input signal amplitudes are the same is
known as the intermodulation distortion ratio. It is found to be

P
Prr = —;)MD = o, P}, (2.5.46)

[}

Note that Pjp increases as the cube of input power while the desired signal
power P, is linearly related with P;,. Hence, Ppp increases three times as fast as P,
on a log—log plot (or both of them are expressed in dBm before displaying on a linear
graph). In other words, for a change of 1 dBm in P;,, P, changes by 1 dBm whereas
Ppvp changes by 3 dBm. The value of the input power for which Py, is equal to P,
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is referred to as the intercept point (IP). Hence, Py is unity at the intercept point. If
Pyp is input power at IP then

1

Pyr =1 =0,P% = o) = P (2.5.47)
1P

Therefore, the intermodulation distortion ratio Pyyy is related with Pjp as follows:

P.

2
Ppyr = (P_;P) (2.5.48)

Example 2.14: The intercept point in the transfer characteristic of a nonlinear
system is found to be 25 dBm. If a —15-dBm signal is applied to this system, find the
intermodulation ratio:

Py’
Pyr = (P_g) — Ppyr(dB) = 2[P;,(dBm) — Pjp(dBm)]

= 2[—15 —25] = —80 dB

Dynamic Range

As mentioned earlier, noise at one end and distortion at the other limit the range of
detectable signals of a system. The amount of distortion that can be tolerated
depends somewhat on the type of application. If we set the upper limit that a system
can detect as the signal level at which the intermodulation distortion is equal to the
minimum detectable signal then we can formulate an expression for its dynamic
range. Thus, the ratio of the signal power that causes distortion power (in one
frequency component) to be equal to the noise floor to that of the minimum
detectable signal is the dynamic range (DR) of the system (amplifier, mixer, or
receiver).
Since the ideal power output P, is linearly related to input as follows:

P, = kP, (2.5.49)

the distortion power with reference to input can be expressed as

P
Py = ;{“;“’ (2.5.50)
1

Therefore,

P BPy Py (Pu\
Ppyr = EAD = —képfh = Ile = (P—m) (2.5.51)
o 1+ in in ig
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If Py; = N; (noise floor at the input) then

N, P\’
St= (P> = P}, = PpN; = Py, = (PRNp)'° (2.5.52)
1P

and the dynamic range is

2 1/3 2/3
pR = LN (PIP) (2.5.53)
N¢ Np
or,
DR(dB) = 2 {Pp(dBm) — Ny(dBm)} (2.5.54)

Example 2.15: A receiver is operating at 900 MHz with its bandwidth at 500 kHz
and the noise figure at 8 dB. If its input impedance is 50 Q2 and IP is 10 dBm then
find its dynamic range

N; = kT,BF = N;(dBm) = 101log;y(1.38 x 107> x 290 x 500 x 10> x 10°) + 8
= —108.99 dBm
DR = 2(10 + 108.99) = 79.32 dBm
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PROBLEMS

1. (a) What is the gain in decibels of an amplifier with a power gain of 4?
(b) What is the power gain ratio of a 5-dB amplifier?
(¢c) Express 2kW power in terms of dBm and dBw.
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. The maximum radiation intensity of a 90 percent efficiency antenna is 200 mW

per unit solid angle. Find the directivity and gain (dimensionless and in dB)
when the

(a) Input power is 40T mW.
(b) Radiated power is 40m mW.

. The normalized far-zone field pattern of an antenna is given by

o V/sin(0) cos?(¢) 0<f<mand0< ¢ <m/2, 3n/2 <¢ <2mn

0 elsewhere

Find the directivity of this antenna.

. For an X-band (8.2—-12.4 GHz) rectangular antenna, with aperture dimensions of

5.5 and 7.4 cm, find its maximum effective aperture (in cm?) when its gain is
(a) 14.8dB at 8.2 GHz

(b) 16.5dB at 10.3 GHz

(c) 18.0dB at 12.4GHz

. Transmitting and receiving antennas operating at 1 GHz with gains of 20 and

15 dB, respectively, are separated by a distance of 1 km. Find the maximum
power delivered to the load when the input power is 150 W, assuming that the
antennas are polarization matched.

. An antenna with a total loss resistance of 1 ohm is connected to a generator

whose internal impedance is 50 4 j25 ohm. Assuming that the peak voltage of
the generator is 2 V and the impedance of antenna is 74 + j42.5 ohm, find the
power

(a) Supplied by the source (real power)
(b) Radiated by antenna
(c¢) Dissipated by antenna

. The antenna connected to a radio receiver induces 9 LV of root-mean-square

voltage into its input impedance that is 50 Q. Calculate the input power in watts,
dBm, and dBW. If the signal is amplified by 127 dB before it is fed to an
8-Q speaker, find the output power.

. The electric field radiated by a rectangular aperture, mounted on an infinite

ground plane with z perpendicular to the aperture, is given by

E = [0 cos(¢p) — ¢ sin() cos(0)] £(r, 0, p)

where f(r, 0, ¢) is a scalar function that describes the field variation of the
antenna. Assuming that the receiving antenna is linearly polarized along the x-
axis, find the polarization loss factor.

. A radar receiver has a sensitivity of 10~'2 W. If the radar antenna’s effective

2

aperture is 1 m* and the wavelength is 10cm, find the transmitter power
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required to detect an object at a distance of 3 km with a radar cross-section of
S5m?.

Two space vehicles are separated by 10® m. Each has an antenna with D = 1000
operating at 2.5 GHz. If vehicle A’s receiver requires 1 pW for a 20-dB signal-to-
noise ratio, what transmitter power is required on vehicle B to achieve this
signal-to-noise ratio?

(a) Design an earth-based radar system that receives 10~!> W of peak echo
power from Venus. It is to operate at 10 GHz with a single antenna to be
used for both transmitting and receiving. Specify the effective aperture of
the antenna and the peak transmitter power. Assume that the Earth to Venus
distance is 3 light-minutes; the diameter of Venus is 13 e 10° m; and the
radar cross-section of Venus is 15 percent of its physical cross-section.

(b) If the system of (a) is used to observe the moon, determine the power
received. Assume that the moon diameter is 3.5 e 10° m; its radar cross-
section is 15 percent of the physical cross-section; and earth-to-moon
distance is 1.2 light-seconds.

Consider an imaging satellite that sends closeup pictures of the planet Neptune.
It uses a 10-W transmitter operating at 18 GHz and a 2.5-m diameter parabolic
dish antenna. What earth-station system temperature is required to provide a
signal-to-noise ratio of 3dB for reception of a picture with 3 e 10° pixels
(picture-elements) in 2 min if earth-station antenna diameter is 75 m? Assume
aperture efficiencies of 70 percent and the Earth—Neptune distance as 4 light-
hours. One pixel is equal to one bit and two bits per second has a bandwidth
of 1 Hz.

Two receivers are shown below for a design trade-off study. The components
have the following specifications:

@

Mixer IF life
. amplifier
IF amplifier
12-14 GHz _/>-<\ BEF >4 Gl
F=6dB _
= F=2dB
VG:-“B F=2dB 2_5,3“3 G=15dB
10 GHz G=-2dB =10dB
I
LO
(i)
Mixer
. IF amplifier
12-14 GHz RF amplifier
;I @F 6dB o 2-4GHe
G=-6dB F=2dB gfl“df
F=5dB 10 GHz G=-2dB =15d8
G=10dB
LO

(a) Calculate the noise figure for the two systems.
(b) Calculate the overall gain of the two systems.
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(¢) Calculate the minimum detectable signal at the input of the two systems.

(d) If the output power at 1dB compression point is 10 mW for both systems,
calculate the dynamic range for the two systems.

14. Calculate the input minimum detectable signal in mW at room temperature for a
receiver with (a) BW = 1 GHz, F = 5dB; and (b) BW = 100 MHz, F = 10 dB.

15. (a) What is the rms noise voltage produced in a 10-kQ resistance when its
temperature is 45°C and the effective bandwidth is 100 MHz?
(b) A 50-kQ resistance is connected in parallel with the 10-k(Q resistance of (a).
What is the resulting rms noise voltage?

16. The intercept point in the transfer characteristic of a nonlinear system is found to
be 33dBm. If a —18-dBm signal is applied to this system, find the inter-
modulation ratio.

17. A receiver is operating at 2455 MHz with its bandwidth at 500 kHz and the
noise figure at 15 dB. If its input impedance is 50 Q and IP is 18 dBm then find
its dynamic range.
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TRANSMISSION LINES

Transmission lines are needed for connecting various circuit elements and systems
together. Open-wire and coaxial lines are commonly used for circuits operating at
low frequencies. On the other hand, coaxial line, stripline, microstrip line, and
waveguides are employed at radio and microwave frequencies. Generally, the low-
frequency signal characteristics are not affected as it propagates through the line.
However, radio frequency and microwave signals are affected significantly because
of the circuit size being comparable to the wavelength. A comprehensive under-
standing of signal propagation requires analysis of electromagnetic fields in a given
line. On the other hand, a generalized formulation can be obtained using circuit
concepts on the basis of line parameters.

This chapter begins with an introduction to line parameters and a distributed
model of the transmission line. Solutions to the transmission line equation are then
constructed in order to understand the behavior of the propagating signal. This is
followed by the concepts of sending end impedance, reflection coefficient, return
loss, and insertion loss. A quarter-wave impedance transformer is also presented
along with a few examples to match resistive loads. Impedance measurement via the
voltage standing wave ratio is then discussed. Finally, the Smith chart is introduced
to facilitate graphical analysis and design of transmission line circuits.

3.1 DISTRIBUTED CIRCUIT ANALYSIS OF TRANSMISSION LINES

Any transmission line can be represented by a distributed electrical network, as
shown in Figure 3.1. It comprises series inductors and resistors and shunt capacitors
and resistors. These distributed elements are defined as follows:

57
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Figure 3.1 Distributed network model of a transmission line.

L = Inductance per unit length (H/m)
R = Resistance per unit length (ohm/m)
C = Capacitance per unit length (F/m)
G = Conductance per unit length (S/m)

L, R, C, and G are called the line parameters, which are determined theoretically by
electromagnetic field analysis of the transmission line. These parameters are
influenced by their cross-section geometry and the electrical characteristics of
their constituents. For example, if a line is made up of an ideal dielectric and a
perfect conductor then its R and G will be zero. If it is a coaxial cable with inner and
outer radii a and b, respectively, as shown in Figure 3.2, then,

55.63¢,
= In(b/a) pF/m (3.1.1)
and,
L =200In(b/a) nH/m (3.1.2)

Figure 3.2 Coaxial line geometry.
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where ¢, is the dielectric constant of the material between two coaxial conductors of
the line.

If the coaxial line has small losses due to imperfect conductor and insulator, its
resistance and conductance parameters can be calculated as follows:

17 [ficm
b

1
R~ 10[—4—— —— ohm/m (3.1.3)
a o

and,

_0.3495¢, fGuy) tan(J)

3.14

In(b/a) ( )
where tan(d) is loss-tangent of the dielectric material; ¢ is the conductivity (in S/m)
of the conductors, and fgy,)is the signal frequency in GHz.

Characteristic Impedance of a Transmission Line

Consider a transmission line that extends to infinity, as shown in Figure 3.3. The
voltages and the currents at several points on it are as indicated. When a voltage is
divided by the current through that point, the ratio is found to remain constant. This
ratio is called the characteristic impedance of the transmission line. Mathematically,

Characteristic impedance = Z, =V, /I, =V, /I, = V3 /15 = -------- =V,/L,

In actual electrical circuits, length of the transmission lines is always finite.
Hence, it seems that the characteristic impedance has no significance in the real
world. However, that is not the case. When the line extends to infinity, an electrical
signal continues propagating in a forward direction without reflection. On the other
hand, it may be reflected back by the load that terminates a transmission line of finite
length. If one varies this termination, the strength of the reflected signal changes.
When the transmission line is terminated by a load impedance that absorbs all the
incident signal, the voltage source sees an infinite electrical length. Voltage-to-
current ratio at any point on this line is a constant equal to the terminating
impedance. In other words, there is a unique impedance for every transmission

I I I3 I,
—> — —> —
Vi Va2 V3 Va

I

Figure 3.3 An infinitely long transmission line and a voltage source.
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line that does not produce an echo signal when the line is terminated by it. The
terminating impedance that does not produce echo on the line is equal to its
characteristic impedance.

If

Z = R + joL = Impedance per unit length
Y = G + joC = Admittance per unit length

then, using the definition of characteristic impedance and the distributed model
shown in Figure 3.1, we can write,

1
(Zo—l-ZAz)(—)
Z, + ZA
Zo = YAlz :1+YZJ(FZ +ZZAZ):>ZOY(ZO+ZAZ):Z
z
ZO+ZAZ+E o
For Az — 0,

Z R+ joL
Zy === |—— 3.1.5
© Y \G+joC ( )
Special Cases:

R
1. For a dc signal, Z¢& = \/;

L
2. For @ — oo, wL > R and wC > G, therefore, Z (o — large) = \/;

L
3. For a lossless line, R — 0 and G — 0, and therefore, Z, = \/;

Thus, a lossless semirigid coaxial line with 2a = 0.036 inch, 26 = 0.119 inch, and &,
as 2.1 (Teflon-filled) will have C = 97.71 pF/m and L = 239.12nH/m. Its char-
acteristic impedance will be 49.50hm. Since -conductivity of copper is
5.8 x 107S/m and the loss-tangent of Teflon is 0.00015, Z =3.74 + 1.5 x
10° ohm/m, and ¥ = 0.092 4+ j613.92mS/m at 1 GHz. The corresponding char-
acteristic impedance is 49.5 — j0.058 ohm, that is, very close to the approximate
value of 49.5 ohm.

Example 3.1: Calculate the equivalent impedance and admittance of a one-meter-
long line that is operating at 1.6GHz. The line parameters are: L =
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0.002 uH/m, C = 0.012 pF/m, R = 0.015 ohm/m, and G = 0.1 mS/m. What is the
characteristic impedance of this line?

Z=R+joL =0.0154+ ;27 x 1.6 x 10° x 0.002 x 107°Q/m
=0.015 +,20.11 Q/m

Y =G +joC =0.0001 + 27 x 1.6 x 10° x 0.012 x 10712 S/m
=0.14,0.1206 mS/m

Z
Z, = \/; =337.02 4;121.38Q

Transmission Line Equations

Consider the equivalent distributed circuit of a transmission line that is terminated by
a load impedance Z; , as shown in Figure 3.4. The line is excited by a voltage source
v(¢) with its internal impedance Zg. We apply Kirchhoft’s voltage and current laws
over a small length, Az, of this line as follows:

di(z, 1)

For the loop, v(z, ¢) = LAZT

or,

+ RAzi(z, t) + v(z + Az, t)

v(z+ Az, t) — v(z, 1) . di(z, t)
=—R —L
Az iz, 1) ot
Under the limit Az — 0, the above equation reduces to
w(z, t di(z, t
G R iz r) 4 1 2CD (3.1.6)
0z ot

V(ZFAZY) (7 +Azt)
—

v(1)

Figure 3.4 Distributed circuit model of a transmission line.
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Similarly, at node A,

A
i(z, ) = i(z + Az, f) + GAzv(z + Az, £) + CAZW
or,
iz + AZX) —izy_ [G X oz + Az, 1) + ¢ XET A0 ;tAZ’ t)}
Z

Again, under the limit Az — 0, it reduces to

w(z, 1)
ot

di(z, t) _

-G xv(z,t)—-C
dz

(3.1.7)

Now, from equations (3.1.6) and (3.1.7) v(z, f) or i(z, t) can be eliminated to
formulate the following:

v(z, 1) w(z, 1) % v(z, 1)
o = RGG, 1)+ (RC+ LG) =2 + LC—5 (3.1.8)
and,
3%i(z, 1) 0i(z, ) iz, 1)
= RGi(z, t RCH+ LG LC 3.1.9
32 iz, )+ (RC+LG) =5 =+ pr2 (319

Special Cases:

1. For a lossless line, R and G will be zero, and these equations reduce to well-
known homogeneous scalar wave equations,

3% v(z, 1) u(z, 1)
=LC
0z2 ot

(3.1.10)

and,

2. 2.
0%i(z, 1) :LCB i(z, 1)

= o (3.1.11)

Note that the velocity of these waves is

1

VLC’

2. If the source is sinusoidal with time (i.e., time-harmonic), we can switch to
phasor voltages and currents. In that case, equations (3.1.8) and (3.1.9) can be
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simplified as follows:

@ VZ(Z) — ZYV () = 2V (2) (3.1.12)
dz
and,
@1 (ZZ) — ZYI(z) = 1 (2) (3.1.13)
dz

where V(z) and /(z) are phasor quantities; Z and Y are impedance per unit
length and admittance per unit length, respectively, as defined earlier.
9 = +/ZY = o+ jp, is known as the propagation constant of the line. o and
B are called the attenuation constant and the phase constant, respectively.

Equations (3.1.12) and (3.1.13) are referred to as homogeneous Helmholtz equa-
tions.

Solution of Helmholtz Equations

Note that both of the differential equations have the same general format. Therefore,
we consider the solution to the following generic equation here. Expressions for
voltage and current on the line can be constructed on the basis of that.

4’f(2)

yEaie Y f(2) =0 (3.1.14)

Assume that f(z) = Ce'*, where C and k are arbitrary constants. Substituting it
into (3.1.14), we find that k = £y. Therefore, a complete solution to this equation
may be written as follows:

@) = Cie™ + Cye™ (3.1.15)

where C; and C, are integration constants that are evaluated through the boundary
conditions.

Hence, complete solutions to equations (3.1.12) and (3.1.13) can be written as
follows:

V(z) = Vipe ™ + Vige” (3.1.16)
and,
I(z) = I,e " + L g€ (3.1.17)

where Vi, Vi, Iy, and I ¢ are integration constants that may be complex, in general.
These constants can be evaluated from the known values of voltages and currents at
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two different locations on the transmission line. If we express the first two of these
constants in polar form as follows,

Vin = Uinejd’ and V= Urefejq)
the line voltage, in time domain, can be evaluated as follows:

v(z, 1) = Re[V (z)e’"]

= Re[V,,e P2 it 4 Vi etz gior]
or,
0(z, t) = vi,e ™ cos(wt — Bz + ¢) + vpet cos(wt + Bz + @) (3.1.18)

At this point, it is important to analyze and understand the behavior of each term on
the right-hand side of this equation. At a given time, the first term changes
sinusoidally with distance, z, while its amplitude decreases exponentially. It is
illustrated in Figure 3.5 (a). On the other hand, the amplitude of the second
sinusoidal term increases exponentially. It is shown in Figure 3.5 (b). Further, the
argument of cosine function decreases with distance in the former while it increases
in the latter case. When a signal is propagating away from the source along +z-axis,
its phase should be delayed. Further, if it is propagating in a lossy medium, its
amplitude should decrease with distance z.

Thus, the first term on the right-hand side of equation (3.1.16) represents a wave
traveling along +z-axis (an incident or outgoing wave). Similarly, the second term
represents a wave traveling in the opposite direction (a reflected or incoming wave).

1.2 150.0

08 100.0

0.4 50.0
fi@) | £2(Z) }
0.0 0.0
-0.4 -50.0
PR
ol b b b b b gepele e b U e L
0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0
z z

(a) (b)

Figure 3.5 Behavior of two solutions to the Helmholtz equation with distance.
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This analysis is also applied to equation (3.1.17). Note that /¢ is reflected current
that will be 180° out-of-phase with incident current I;,.
Hence,

V.
- _ ref — Zo
[in Iref

and, therefore, equation (3.1.17) may be written as follows:

Vo o Vet
I(z) = fe*fz - Z—efe (3.1.19)

(8] (8]

Incident and reflected waves change sinusoidally with both space and time. Time
duration over which the phase angle of a wave goes through a change of 360° (2 nt
radians) is known as its time-period. Inverse of the time-period in seconds is the
signal frequency in Hz. Similarly, the distance over which the phase angle of the
wave changes by 360° (2 & radians) is known as its wavelength (1). Therefore, the
phase constant f§ is equal to 2 m divided by the wavelength in meters.

Phase and Group Velocities

The velocity with which the phase of a time-harmonic signal moves is known as its
phase velocity. In other words, if we tag a phase point of the sinusoidal wave and
monitor its velocity then we obtain the phase velocity, v,, of this wave. Mathema-
tically,

A transmission line has no dispersion if the phase velocity of a propagating signal
is independent of frequency. Hence, a graphical plot of @ versus f will be a straight
line passing through the origin. This kind of plot is called the dispersion diagram of
a transmission line. An information-carrying signal is composed of many sinusoidal
waves. If the line is dispersive then each of these harmonics will travel at a different
velocity. Therefore, the information will be distorted at the receiving end. Velocity
with which a group of waves travels is called the group velocity, v,. It is equal to the
slope of the dispersion curve of the transmission line.

Consider two sinusoidal signals with angular frequencies @ + dw and w — dw,
respectively. Assume that these waves of equal amplitudes are propagating in z-
direction with corresponding phase constants f§ + 6 and f — 5. The resultant
wave can be found as follows.

f(Z, l) — Re{Aej((w+6w)t—(/)’+(5/)’)z) +Aej((w—éw)t—(/f—é/})z)}
= 24 cos(dwt — dfz) cos(wt — fz)
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Hence, the resulting wave, f(z, f), is amplitude modulated. The envelope of this
signal moves with the group velocity,

_50)

Ug—%

Example 3.2: A signal generator has an internal resistance of 50€Q and an open-
circuit voltage v(f) =3 cos(2m x 10%/) V. It is connected to a 75-Q lossless
transmission line that is 4 m long and terminated by a matched load at the other
end. If the signal propagation velocity on this line is 2.5 x 103m/s, find the
instantaneous voltage and current at an arbitrary location on the line.

50-Q
50-Q !:

-~

4m

75-Q

-
VL0 75-Q 75-Q 3vZ£0°

Since the transmission line is terminated by a load that is equal to its
characteristic impedance, there will be no echo signal. Further, an equivalent circuit
at its input end may be drawn, as shown in the illustration. Using the voltage division
rule and Ohm’s law, incident voltage and current can be determined as follows.

75
Incident volt t the input (z=0)= /0°=1.8/0°
ncident voltage at the input end, V,,(z = 0) 50+753 0 8/0°V
Incident current at the input end, 7,,(z = 0) = 307 0.024/0°A
put ene fnte =0 =50 75 =
and,
o 21 x 108
p= g =5 108~ 0.87 rad/m
S V() = 1.8¢7% ) and, I(z) = 0.024e 7087 A
Hence,

v(z, ) = 1.8 cos(2m x 1081 — 0.872)V, andi(z, 1) = 0.024 cos(2m x 1087 — 0.872)A
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Example 3.3: The parameters of a transmission line are:

R =2ohm/m, G =0.5mS/m, L = 8nH/m, and C = 0.23 pF/m

If the signal frequency is 1 GHz, calculate its characteristic impedance (Z,) and the
propagation constant (}).

hm

7 _ R+ jolL 2421 x 10° x 8 x 1072 5
° VG +jwC \0.5x 1073 + 727 x 10° x 0.23 x 10-12

B 2 +,50.2655 5 _\/ 50.31/1.531rad
T V0.5 x 1073 41.4451 x 103 V1529 x 104/1.2377 rad

= 181.39 ohm/8.4° = 179.44 + j26.51 ohm

and y =+/ZY =/(50.31/1.531rad.) x (15.29 x 10~4/1.2377 rad.)
=0.2774/79.31°'m™! = 0.0514 4+ j0.2726 m~' = o + j8

Therefore, o = 0.0514 Np/m, and § = 0.2726 rad/m.

Example 3.4: Two antennas are connected through a quarter-wavelength-long
lossless transmission line, as shown in the circuit illustrated here. However, the
characteristic impedance of this line is unknown. The array is excited through a 50-Q
line. Antenna A has an impedance of 80 + ;35 Q while antenna B has 56 + j28 Q.
Currents (peak values) through these antennas are found to be 1.5/0° A and
1.5/90° A, respectively. Determine characteristic impedance of the line connecting
these two antennas, and the value of a reactance connected in series with antenna B.

A
50 Ohm I Zo=? H 80 +,35 ohm

56 +,28 ohm
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Assume that ¥V, and V. are the incident and reflected phasor voltages,
respectively, at antenna A. Therefore, the current, /,, through this antenna is

Iy = (Vi = Vep)/Zy = LSLO°A = Viy = Vg = Z,Iy = Z,1.5/0°V

Since the connecting transmission line is a quarter-wavelength long, incident and
reflected voltages across the transmission line at the location of B will be jV;, and
—jV,s, respectively. Therefore, total voltage, Vrpy, appearing across antenna B and
the reactance jX combined will be equal to j(Vi, — Vier)-

Vigx =J(Vie = Viet) = JZoIn = j1.5Z, = 1.5Z,/90°
Ohm’s law can be used to find this voltage as follows.
VTBX = (56 +J28 +]X)lSZ 90O

Therefore, X = —28Q and Z, = 56 Q.
Note that the unknown characteristic impedance is a real quantity because the
transmission line is lossless.

3.2 SENDING END IMPEDANCE

Consider a transmission line of length £ and characteristic impedance Z,. It is
terminated by a load impedance Z; , as shown in Figure 3.6. Assume that the incident
and reflected voltages at its input (z=0) are V,, and V., respectively. The
corresponding currents are represented by [;, and 7.

If V(z) represents total phasor voltage at point z on the line and /(z) is total

current at that point, then

V(z) = Vipe 7 + Vigpe” (3.2.1)
Iln -
Iref*_
I: Load
Zin_> Vin+ Vref Zo ZL
z=0 =¢

— >

Figure 3.6 Transmission line terminated by a load impedance.



SENDING END IMPEDANCE 69
and,
1(z) = L,e™ " + I € (3.2.2)
where Vi, Vier, Iy, and I are incident voltage, reflected voltage, incident current,
and reflected current at z = 0, respectively.

Impedance at the input of this transmission line, Z;,, can be found after dividing
total voltage by the total current at z = 0. Thus,

: ZV(ZZO)ZI/in+V;ef= Vm+V =7 Vin+Vref
" I(Z = O) Iin + Iref Vin me ¢ Vin - Vref

ZO Z()
or,
Vier
1+i
V. 1+T
Z =7 n _ 7 0 323
n 01_@ Ol_ro ( )
V.

1

where ', = pe/? is known as the input reflection coefficient.
Further,

where Z,, is called the normalized input impedance.
Similarly, voltage and current at z = £ are related through load impedance as
follows:

_ V=0 _ Vipe" 4 Ve

7 = =
FTIE=0) e et
— Vineiﬂ + Vrefe+75 _ eiﬂ + 1—‘oeﬂe
o Vine—ye — Vrefe-&-yl 0ot _ ]"Oe-&-yl
Therefore,
=y Ve =
— e "+ T e Zy—1 _,
= o T (3.2.4)

L="7, > R
et — T et Zp+1
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and equation (3.2.3) can be written as follows:

ZL -1 N
1+= et _ M )
Z. = gL +1 — ZfL[1 + 672*[] + [1 _ 6*2,[]
; ZL —1 —270 ZL[I - 627’5] + [] + 372}'8]
—_— =8 ’
Zy +1
since,
1 —e 2t +yl =yl h(ve
e e e C_ sinh(y£) _ tanh(;0)
1+e 2t et e cosh(yl)
—  Z +tanh(ye)
71+ Z, tanh(y¢)
or,

7 Z; + Z, tanh(y¢)

=7 —=° 3.2.5
! °Z, + Z; tanh(y¢) ( )

For a lossless line, y = o + jf§ = jf, and therefore, tanh(y£) = tanh( jf£) = j tan(f3¢).
Hence, equation (3.2.5) simplifies as follows.

Z, +jZ, tan(BL)
Z =7 ———— 3.2.6
! °Z, +jZ; tan(pe) ( )

Note from this equation that Z;, repeats periodically every one-half wavelength on
the transmission line. In other words, input impedance on a lossless transmission line
will be the same at points d = ni/2, where n is an integer. It is due to the fact that

2n ni 2nd

and tan(f¢) = tan (sz + nn) = tan (226{)

Special Cases:

1. Z, =0 (i.e., a lossless line is short circuited) = Z;, = jZ, tan(f3¢).

2. Z; =00 (i.e., a lossless line has an open circuit at the load) = Z;, =
—jZ, cot(pL).

3. ¢ = J/4 and, therefore, B¢ = n/2 = Z,, = Z2/Z, .

According to the first two of these cases, a lossless line can be used to synthesize
an arbitrary reactance. The third case indicates that a quarter-wavelength-long line of
suitable characteristic impedance can be used to transform a load impedance Z; to a
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new value of Z;,. This kind of transmission line is called an impedance transformer
and is useful in impedance-matching application. Further, this equation can be
rearranged as follows:

Hence, normalized impedance at a point a quarter-wavelength away from the load is
equal to the normalized load admittance.

Example 3.5: A transmission line of length d and characteristic impedance Z, acts
as an impedance transformer to match a 150-€ load to a 300-Q line (see illustration).
If the signal wavelength is 1 m, find (a) d, (b) Z,, and (c) the reflection coefficient at
the load.

300-Q

Zo [|] 150-Q

(@ d=)/4—d=025m.
(b) Z, = VZZ — Zy = (150 x 300)"/? = 212.132 ohm.
Z, -1 7 —2Z, 150-212.132

== = = =0.1716.
Zi+1 Zp+Z7Z, 150+212.132

(© I'.

Example 3.6: Design a quarter-wavelength transformer to match a 20-Q load to the
45-Q line at 3 GHz. If this transformer is made from a Teflon-filled (¢, = 2.1) coaxial
line, calculate its length (in cm). Also, determine the diameter of its inner conductor
if the inner diameter of the outer conductor is 0.5 cm. Assume that the impedance
transformer is lossless.

Zy =\ZnZ =45 x20=30Q

and,

I 200 x 10-
7, = 2= In(b/a) = 30
o \/; \/55.63><sr><1012 n(b/a)

30

S In(b/a) = =76

=0.7251




72 TRANSMISSION LINES

Therefore,
b 2b s 2b 0.5
D _ 20 _ 07251 _ 50649 = 24 — =" —0.2421
a 22 ¢ 0649 = 2a = 50629 ~ 2.0640 ~ 02421 em
Phase constant f = w+/LC
2 1 )
327z>j:%\/LC:fx V200 x 55.63 x &, x 10721

=3 x 10° x 107'% x +/200 x 55.63 x 2.1 x 0.1
= 145011 m™!

Therefore, A = 0.06896 m, and d = % =0.01724m = 1.724 cm.

Example 3.7: Design a quarter-wavelength microstrip impedance transformer to
match a patch antenna of 80 Q with a 50-Q line. The system is to be fabricated on a
1.6-mm-thick substrate (¢, = 2.3) that operates at 2 GHz (see illustration).

Z

[
Characteristic impedance of the microstrip line impedance transformer must be
Zy, =2, Z = 63.2456Q

Design formulas for a microstrip line are given in the appendix. Assume that the
strip thickness ¢ is less than 0.096 mm and dispersion is negligible for the time being
at the operating frequency.

63.2456 2.3+ 1\'* (231 0.11
A= 023 +——) =1.4635
60 ( 2 ) +(2.3 ¥ 1> x ( * 2.3)

6072

B=——"-=6.1739
63.2456+/2.3
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Since 4 < 1.52,

2
%: - {6.1739 —1-In@2 x 6.1739 — 1)

2x23 23

2% 3.2446
o T

231 62
423 [1n(6.1739—1)+0.39—ﬁ}}

=2.0656 = w =33 mm

At this point, we can check if the dispersion in the line is really negligible. For
that, we determine the effective dielectric constant as follows:

~1/2 ~1/2
W h 12

Fl—)=(14+12— =|14+— =0. 21
(h) ( + w) ( +2.0656> 0383216

t
Assuming that h= 0.005,

2341 23-1 23—1  0.005
= 0.383216 — =1.8981~ 1.9
e > T2 46 /2.0656
and,
4hfe, —1 2
F=WET {0.5 + [1 12 x 1og(1 +K)] } —0.213712
2 h
2
V23 -419
ee(f) = <] e F_]'5+\/1.9> = 1.909192

Since ¢.( f) is very close to ¢, dispersion in the line can be neglected.

3x 10% 10.8821

=—————m=10.8821 cm = length of line = =2.72cm
2 x10° x /1.9 &

Reflection Coefficient, Return Loss, and Insertion Loss

The voltage reflection coefficient is defined as the ratio of reflected to incident
phasor voltages at a location in the circuit. In the case of a transmission line
terminated by load Z;, the voltage reflection coefficient is given by equation (3.2.4).
Hence,

= E _ ZL - Zo 672}% —2(o+7B)E

_ —2al _—j(2p0—0)
= =pe e 3.2.7
7 A oL ( )

=pele

o L —Z
where p; e/! = 21“7_'_0 is called the load reflection coefficient.
L 0
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Equation (3.2.7) indicates that the magnitude of reflection coefficient decreases
by a factor of e 2% as the observation point moves away from the load. Further, its
phase angle changes by —2¢. A polar (magnitude and phase) plot of it will look
like a spiral, as shown in Figure 3.7 (a). However, the magnitude of reflection
coefficient will not change if the line is lossless. Therefore, the reflection coefficient
point will be moving clockwise on a circle of radius equal to its magnitude, as the
linelength is increased. As illustrated in Figure 3.7 (b), it makes one complete
revolution for each half-wavelength distance away from load (because
—2p2/2 = —2m).

Similarly, the current reflection coefficient, I';, is defined as a ratio of reflected to
incident signal-current phasors. It is related to the voltage reflection coefficient as
follows.

Fc :%: _Vref/Zo —-T

n o Vin/Zo

Return loss of a device is defined as the ratio of reflected power to incident power
at its input. Since the power is proportional to the square of the voltage at that point,
it may be found as

Reflected power
Return loss = ¢ = p?
Incident power

Generally, it is expressed in dB, as follows:
Return loss = 201og;,(p)dB (3.2.8)

Insertion loss of a device is defined as the ratio of transmitted power (power
available at the output port) to that of power incident at its input. Since transmitted
power is equal to the difference of incident and reflected powers for a lossless
device, the insertion loss can be expressed as follows.

Insertion loss of a lossless device = 101log;(1 — p*)dB (3.2.9)

Low-Loss Transmission Lines

Most practical transmission lines possess very small loss of propagating signal.
Therefore, expressions for the propagation constant and the characteristic impedance
can be approximated for such lines as follows.

7 =VZ¥ = J/(R+joL)G +joC) = \/ —‘”2“7(1 +ijL> (1 +Jwic>
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For R « oL and G <« wC, a first-order approximation is

/—a+1ﬁ~1wx/_<1+i><1+i>N]w\/—< +i>

J2oL 2wC 2wl j20C
Therefore,
o % (R\/g + G\/g)Np/m (3.2.10)

and,

LC rad/m (3.2.11)

R+ joL G\ '?
~\G+jocC \[ ) (1 +ij)

Hence,

L R G L R G
Zy~ [—= |1+ 1 —- ~ =(1+———
C J2wL J2wC C J2oL  j2wC

I 1 (R G
_ E(sz_w(Z_E)) (3.2.12)

Thus, the attenuation constant of a low-loss line is independent of frequency
while its phase constant is linear, as in the case of a lossless line. However, the
frequency dependency of its characteristic impedance is of concern to communica-
tion engineers, because it will distort the signal. If RC = GL, the frequency
dependent term will go to zero. This kind of low-loss line is called the distortionless
line. Hence,

y=x/Z_Y:\/(R+ij)(G+ij):(R—i—ja)L)\/g:oc—i-jﬁ, ( G:RTC)

(3.2.13)

Example 3.8: A signal propagating through a 50-Q distortionless transmission line
attenuates at the rate of 0.01 dB per meter. If this line has a capacitance of 100 pF per
meter, find (a) R, (b) L, (¢) G, and (d) v,

Since the line is distortionless,

L
zoz\fgzso
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and,
o =0.01dB/m ~ 0.01/8.69 Np/m = 1.15 x 1073 Np/m

Hence,

L
(@) R = oc\/; =1.15%x 1073 x 50 = 0.057Q/m
(b) L =CZ2 =10""" x 50> H/m = 0.25 uH/m
RC R 0.057
L.~ 72 502
—— =2x10%m/s
JVLC /

Experimental Determination of Characteristic Impedance and Propagation
Constant of a Transmission Line

(c)G=

(d) v, =

S/m =22.8 uS/m

The given transmission line of length d is kept open at one end, and the impedance at
its other end is measured using an impedance bridge. Assume that it is Z .. The
process is repeated after placing a short circuit at its open end and this impedance is
recorded as Z. Using equation (3.2.5), one can write

Z.. = Z, coth(yd) (3.2.14)
and,
Z. = Z, tanh(yd) (3.2.15)
Therefore,
Zy=/ZoZy, (3.2.16)
and,
tanh(yd) = ;—ZZ =7y = étanhf1 ( ?:2) (3.2.17)

These two equations can be solved to determine Z, and y. The following identity
can be used to facilitate the evaluation of the propagation constant.

_ 1. (14+Z
1 —_
tanh™ (Z) = 21n<1 —Z)

The following examples illustrate this procedure.

Example 3.9: Impedance at one end of the transmission line is measured to be
Z;, = 30 + j60 ohm using an impedance bridge, while its other end is terminated by
a load Z; . The experiment is repeated twice with the load replaced first by a short
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circuit and then by an open circuit. This data is recorded as j53.1 ohm and
—j48.3 ohm, respectively. Find the characteristic resistance of this line and the
load impedance.

Zy = \/Zy X Zy, = 1/j53.1 x (—j48.3) = 50.6432Q

7 =7 ZL +jZo tan(ﬁg) _ ZL + Zsc
in = %oz 47 tan(fl) " °Z, + 7 tan(pL)
_ %4 . 4+Z
j tan(Be) 7+ Z,
L .
jtan(pL)
Z +7Z Z.—7Z
S Ly=L——— I =L,
in oc ZL + Zoc L oc Zin — Zoc

753.1 = (30 + j60)

— _j48.3
JE02 X 30 1 j60 — (—j48.3)

Therefore,

7, =11.6343 +j6.3Q

Example 3.10: Measurements are made on a 1.5-m-long transmission line using an
impedance bridge. After short-circuiting at one of its ends, impedance at the other
end is found to be j103 ohm. Repeating the experiment with the short circuit now
replaced by an open circuit gives —j54.6 ohm. Determine the propagation constant
and the characteristic impedance of this line.

Zy = \/ZoZy = \/—j54.6 x j103 = 74.99 ~ 75Q

103 L 1 (14/1.8969
tanh(1.5y) = | — /1.8969 = 1.5y = tanh™"( j1.8969) = ~ In[ ~/ %
anh(1.57) =/ =543 =/ = 1.5y = tanh™(/1.8969) = 5 In{ I —"¢560

1. (14+/1.8969\ 1 1 a3
157 = ~In( L2707} = ZIn(1/2.1713 rad) = - In(e’
) n(l —j1.8969) 7 rad) =7 In(e™)

= j1.08565
and, y = j0.7238m ..

Example 3.11: A 10-m long, 50-ohm lossless transmission line is terminated by a
load, Z; = 100 + /50 ohm. It is driven by a signal generator that has an open-circuit
voltage V at 100/ 0° V and source impedance Z; at 50 ohm. The propagating signal
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has a phase velocity of 200 m/uS at 26 MHz. Determine the impedance at its input
end and the phasor voltages at both its ends (see illustration).

ZTZSO ohm |
r |
Vs || Z1=100+j50 ohm
:< 1om |
7 +jZ, tan(BE) ®  2mx 26 x 10°

7 =z ZLTJZ AP
n °Z, +jZ tan(Be)

100 450 + /50 tan(8.168) ,
- _ — 19.5278Q/0.181 rad = 19.21 +3.53 Q
" = 50 (100 +/50) tan(8.168) ra tJ

= 0.8168 rad/m

qp=L X0 x T _
and f =, =200 x 106

The equivalent circuits at its input and at the load can be drawn as in the
illustration.

I Zs ‘v’A l Zth |
© B © =
Vs 100 x 19.5278/0.18 rad

Voltage at the input end, V,, =
or,

Zs+Z, ™ 50 +19.21 4+,3.52

1952.78/0.181rad

— — 28.1788/0.1302rad V = 28.1788/7.46° V
A = 69.2995/0.0508 rad e

For determining voltage at the load, a Thevenin equivalent circuit can be used as
follows:

Zs +jZ, tan(ft) _

Za :ZOZ0 7, an(pe) 2 " Z=2Z,=50Q
and,
Vo= Vo + Veehatow. = @ % Voo, = 100V/ = 8.168 rad
V= Vi 7 — 1001—8.168radx (100 + /50) V

T Zoy+ 2" 504100 4,550
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or,
Vi =70.71V/—8.0261rad = 70.71/ — 459.86° V = 70.71/ — 99.86° V
Alternatively,
V(@) = Vine ™ + Ve = V(7 4 Te/F)

where V, is incident voltage at z = 0 while I" is the input reflection coefficient.

V,, =50V/0°
and,
19.21 +,3.52 — 50
= 15_3.52 g = 04472029769 rad
Hence,
VL = V(z = 10m) = 50(e7*' + 0.4472¢/29769+8.168))
=50 x 1.4142V/ — 1.742rad
or,

V. =70.7117V/ — 99.8664°

Example 3.12: Two identical signal generators are connected in parallel through a
quarter-wavelength-long lossless 50-Q transmission line. Each of these generators
has an open-circuit voltage of 12/0° V and a source impedance of 50 Q. It drives a
10-Q load through another quarter-wavelength-long similar transmission line as

illustrated here. Determine the power dissipated by the load.

Z, =50 ohm Zo=50 ohm

50 ohm 50 ohm
10 ohm
(<]
(A) 12v£0 (B) 12V 0°

N4 0 N4 "

v
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The signal generator connected at the left (source A), and the quarter-wavelength-
long line connecting it, can be replaced by a Thevenin equivalent voltage source of
12V/ —90° with its internal resistance at 50 ohm. This voltage source can be
combined with 12/0°V (source B) already there, which also has an internal
resistance of 50 ohm. The resulting source will have a Thevenin voltage of
6—joV = 6/2V/ —45° and an internal resistance of 25 Q (i.e., two 50-Q
resistances connected in parallel). The load will transform to 50 x 50/10 = 250
ohm at the location of source B. Therefore, a simplified circuit can be drawn as in the
illustration.

6V2 V£-45° 2500

Voltage across 250 ohm will be equal to
250 x (6 —j6)/275V = 60/2/11/ —45°V
Thus, the dissipated power, P4, can be calculated as follows:

60% x 2

Pij=——
47112 x 2 x 250

=0.119008 W = 119.008 mW

3.3 STANDING WAVE AND STANDING WAVE RATIO

Consider a lossless transmission line that is terminated by a load impedance Z; , as
shown below in Figure 3.8. Incident and reflected voltage phasors at its input (i.e., at

— V+
Vin — «— V.
Vref<_ []
—: xe—

Figure 3.8 A lossless transmission line with termination.
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z = 0) are assumed to be V;, and V., respectively. Therefore, total voltage V' (z) can
be expressed as follows:

V() = Vige ™ 4 Vige ™
Alternatively, V' (x) can be written as

V(x)=V.e" 4 v_e P = [e"F 4 Te 7P

or,
V(x) = V. [ePP 4 pe =0 (3.3.1)
where,
= pejqﬁ — Z;

V. and V_ represent incident and reflected wave voltage phasors, respectively, at the
load point (i.e., at x = 0).

Let us first consider two extreme conditions at the load. In one case, the
transmission line has an open circuit, while in the other it has a short-circuit
termination. Therefore, magnitude of the reflection coefficient, p, is unity in both
cases. However, the phase angle, ¢, is zero for the former, while it becomes 7 for the
latter. Phasor diagrams for these two cases are depicted in Figure 3.9 (a) and (b),
respectively. As distance x from the load increases, phasor e/ rotates counter-
clockwise because of the increase in its phase angle fix. On the other hand, phasor
e/’ rotates clockwise by the same amount. Therefore, the phase angle of the

/ ;
ol B
P
\g V(x)
-Bx V(x)
L N W) /
\ - Bx ke

Bx

v

(a) with an open-circuit termination (b) with a short-circuit termination

Figure 3.9 Phasor diagrams of line voltage with (a) an open-circuit (b) a short-circuit
termination.
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resultant voltage, V' (x), remains constant with space coordinate x while its magnitude
varies sinusoidally between £2V, . Since the phase angle of the resultant signal V' (x)
does not change with distance, it does not represent a propagating wave. Note that
there are two waves propagating on this line in opposite directions. However, the
resulting signal represents a standing wave.

When the terminating load is of an arbitrary value that is different from the
characteristic impedance of the line there are still two waves propagating in opposite
directions. The interference pattern of these two signals is stationary with time.
Assuming that ¥ is unity, a phasor diagram for this case is drawn as shown in
Figure 3.10. Magnitude of the resultant signal, ¥ (x), can be determined using the
law of parallelogram, as follows.

V()| = [V, {1+ p* 4+ 2p cos(2fx — ¢)}'/* (3.3.2)

The reflection coefficient, I'(x), can be expressed as follows.

Vie—j/fx e
F(X) = m = pe J@he=¢) (333)

Hence, the magnitude of this standing wave changes with location on the
transmission line. Since x appears only in the argument of cosine function, the
voltage magnitude has an extreme value whenever this argument is an integer
multiple of w. It has a maximum whenever the reflected wave is in phase with the
incident signal, and that requires that the following condition be satisfied:

Qpx—¢)=+2nn, n=0,1,2,... (3.3.4)

Figure 3.10 Phasor diagram of line voltage with an arbitrary termination.
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On the other hand, V' (x) has a minimum value where the reflected and incident
signals are out of phase. Hence, x satisfies the following condition at a minimum of
the interference pattern.

2px—¢p)=xCm+1)nr, m=0,1,2,... (3.3.5)
Further, these extreme values of the standing waves are
V() |max = IV I{1 + p} (3.3.6)
and,
V) lmin = 1V 11 = p} (3.3.7)

The ratio of maximum to minimum values of voltage ¥ (x) is called the voltage
standing wave ratio (VSWR). Therefore,

VSWR =S = L=
|V(x)|min 1 - P

(3.3.8)

Since 0 < p < 1 for a passive load, minimum value of the VSWR will be unity
(for a matched load) while its maximum value can be infinity (for total reflection,
with a short circuit or an open circuit as the load).

Assume that there is a voltage minimum at x; from the load and if one keeps
moving toward the source then the next minimum occurs at x,. In other words, there
are two consecutive minimums at x; and x, with x, > x;. Hence,

2(fx; — ¢) = 2m; + Dn
and,
2(fx; — @) =[2(m; + 1) + 1]z

Subtracting the former equation from the latter, one finds
A
2B(x; —x)) =21 = x, — X, =5

where (x, — x;) is separation between the two consecutive minimums.

Similarly, it can be proved that two consecutive maximums are a half-wavelength
apart and also that separation between the consecutive maximum and minimum is a
quarter-wavelength. This information can be used to measure the wavelength of a
propagating signal. In practice, the location of a minimum is preferred over that of a
maximum. This is because minimums are sharper in comparison with maximums, as
illustrated in Figure 3.11. Further, a short (or open circuit) must be used as load for
best accuracy in the measurement.
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Figure 3.11 Standing wave pattern on a lossless transmission line.

Measurement of Impedance

Impedance of a one-port microwave device can be determined from measurement on
the standing wave at its input. Those required parameters are the VSWR and the
location of first minimum (or maximum) from the load. A slotted line that is
equipped with a detector probe is connected before the load to facilitate the
measurement. Since the output of a detector is proportional to power, the square
root of the ratio is taken to find the VSWR. Since it may not be possible in most
cases to probe up to the input terminals of the load, the location of the first minimum
is determined as follows. An arbitrary minimum is located on the slotted line with
unknown load. The load is then replaced by a short circuit. As a result, there is a shift
in minimum, as shown in Figure 3.11. Shift of the original minimum away from the
generator is equal to the location of the first minimum from the load.
Since reflected voltage is out of phase with that of the incident signal at the
minimum of the standing wave pattern, a relation between the reflection coefficient,

I') = —p, and impedance Z; at this point may be written as follows:
I'=—-p==
1 p Z +1

where Z, is normalized impedance at the location of the first minimum of the voltage
standing wave.

Since VSWR § = iJr—p

85
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and, therefore,

S—1_Z-1_, _1
S+1-Z,+1 TS

This normalized impedance is equal to the input impedance of a line that is
terminated by load Z; and has a length of d;. Hence,

7 _ 1 Z +jtan(fd)) - 1—jStan(pd,)
'TS T 1+jZ tan(Bd,) " S —jtan(fd,)

Similarly, the reflected voltage is in phase with the incident signal at the
maximum of the standing wave. Assume that the first maximum is located at a
distance d, from the unknown load and that the impedance at this point is Z,. One
can write,

Z,—1 S-—1

F: = — e
A

:>72=S

and,

7, _ Zajtan(fdy)

1 —jZ, tan(Bd,)

Since the maximum and minimum are measured on a lossless line that feeds the
unknown load, magnitude of the reflection coefficient p does not change at different
points on the line.

Example 3.13: A load impedance of 73 — j42.5 ohm terminates a transmission line
of characteristic impedance 50 4 j0.01 ohm. Determine its reflection coefficient and
the voltage standing wave ratio.

7L -7, 73 —j42.5—(50+,0.01)

T Z +7Z, 73 —j42.5+ (50 +,0.001)
23— j42.51  48.3332/ — 1.0749rad

T 123 —j42.49 ~ 130.1322/ — 0.3326rad

=0.3714/ — 0.7423 rad = 0.3714/ — 42.53°

r

and,

1+p 1+03714

VSRW = =
1—p 1-03714

=2.1817
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Note that this line is lossy and, therefore, the reflection coefficient and VSWR will
change with distance from the load.

Example 3.14: A 100-ohm transmission line is terminated by the load Z;.
Measurements indicate that it has a VSWR of 2.4 and the standing wave minimums
are 100 cm apart. The scale reading at one of these minimums is found to be 275 cm.
When the load is replaced by a short circuit, the minimum moves away from the
generator to a point where the scale shows 235 cm. Find the signal wavelength and
the load impedance.

Since the minimum are 100cm apart, the signal wavelength 4 =2 x 100 =
200cm = 2m.

f =mnrad/m and d; =275 — 235 =40cm
Hence,

= 1 —j2.4tan(0.47)

= =1.65—,0.9618
L7724 — jtan(0.47) /

or,

Z, = 165 — j96.18 ohm

3.4 SMITH CHART

Normalized impedance at a point in the circuit is related to its reflection coefficient
as follows:

14+T 14T, 4T

Z=R+jX = =
RS B Sl o

(3.4.1)

where I', and I'; represent real and imaginary parts of the reflection coefficient,
while R and X are real and imaginary parts of the normalized impedance,
respectively. This complex equation can be split into two, after equating real and
imaginary components on its two sides. Hence,

2

R 1\
I —— )+ =—— 3.4.2
(r 1+R>+1 <1+R> (3.4.2)

(T, — 1"+ (r. — 1)2: <i>2 (3.4.3)
T 1 )-( )—( ST

and,
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These two equations represent a family of circles on the complex I'-plane. The

R 1 -
circle in (3.4.2) has its center at | ——, 0) and a radius of = For R =0, it is
I1+R 1+R

centered at the origin with unity radius. As R increases, the center of the constant
resistance circle moves on a positive real axis and its radius decreases. When
R = o0, the radius reduces to zero and the center of the circle moves to (1, 0). These
plots are shown in Figure 3.12. Note that for passive impedance, 0 < R < oo while
—o0 < X < +o00. 1 1
Similarly, (3.4.3) represents a circle that is centered at l,)T() with a radius of a

For X = 0, its center lies at (1, 0o) with an infinite radius. Hence, it is a straight line
along the I',-axis. As X increases on the positive side (that is, 0 <X < 00), the
center of the circle moves toward point (1, 0) along a vertical line defined by I', = 1
and its radius becomes smaller and smaller in size. For X = oo, it becomes a point
that is located at (1,0). Similar characteristics are observed for 0 > X > —o0. As
shown in Figure 3.12, a graphical representation of these two equations for all
possible normalized resistance and reactance values is known as the Smith chart.
Thus, a normalized impedance point on the Smith chart represents the corresponding
reflection coefficient in polar coordinates on the complex I'-plane. According to
(3.2.7), the magnitude of the reflection coefficient on a lossless transmission line
remains constant as p; while its phase angle decreases as —2f¢. Hence, it represents

T
9 (=]
Constant R or (LD
G Circles
.5
0.2
180° Q° - Fr
— 0 o1 0.5 0 0
Constant X or
B Arcs
0.
2.0
o
1.0
270°

| |

Figure 3.12 The Smith chart.
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a circle of radius p;. As one moves away from the load (that is, toward the
generator), the reflection coefficient point moves clockwise on this circle. Since the
reflection coefficient repeats periodically at every half-wavelength, the circumfer-
ence of the circle is equal to A/2. For a given reflection coefficient, normalized
impedance may be found using the impedance scale of the Smith chart. Further, R in
(3.4.1) is equal to the VSWR for I', > 0 and I'; = 0. On the other hand, it equals the
inverse of VSWR for I', < 0 and I'; = 0. Hence, R values on the positive I',-axis
also represent the VSWR.
Since admittance represents the inverse of impedance, we can write,

1-T

)_7: =
14+

NI —

Hence, a similar analysis can be performed with the normalized admittance instead
of impedance. It results in a same kind of chart except that the normalized
conductance circles replace normalized resistance circles while the normalized
susceptance arcs replace normalized reactance.

Normalized resistance (or conductance) of each circle is indicated on the I',-axis
of the Smith chart. Normalized positive reactance (or susceptance) arcs are shown in
the upper half while negative reactance (or susceptance) arcs are seen in the lower
half. The Smith chart in conjunction with equation (3.2.7) facilitates the analysis and
design of transmission line circuits.

Example 3.15: A load impedance of 50 4 7100 ohm terminates a lossless, quarter-
wavelength-long transmission line. If characteristic impedance of the line is 50 ohm
then find the impedance at its input end, the load reflection coefficient, and the
VSWR on this transmission line.

This problem can be solved using equations (3.2.6), (3.2.7), and (3.3.8), or the
Smith chart. Let us try it both ways.

2 A =m R

Zy +jZ,tan(Be) 50 (50 +7100) + 50 tan(90°)

Z.=Z —
0z 4 jZ; tan(fe) 50 + j(50 +100) tan(90°)
750 2500 .
s Zin =50+ = —— =10 —,200h
o 7(50 +7100) 50 + /100 Jemonm
=2, _50+/100-50 _ j100 _  10090°
T Z+Z, 50+,/100450 1004100 100 x /2/45°
=0.7071/45°
1+ 1407071  1.7071
vwsR =PI+ = — 5.8283

1—|] 1-0.7071 0.2929
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To solve this problem graphically using the Smith chart, normalized load
impedance is determined as follows.

= Zy 504100 )
Z, = 7. 50 =1+,2

This point is located on the Smith chart as shown in Figure 3.13. A circle that passes
through 1 4 ;2 is then drawn with point 1 + jO as its center. Since the radius of the
Smith chart represents unity magnitude, the radius of this circle is equal to the
magnitude of the reflection coefficient p; . In other words, the normalized radius of
this circle (i.e., the radius of this circle divided by the radius of the Smith chart) is
equal to p;. Note that a clockwise movement on this circle corresponds to a
movement away from the load on the transmission line. Hence, a point d meters
away from the load is located at —2fd on the chart. Therefore, the input port of the
line that is a quarter-wavelength away from the load (i.e., d = 4/4) can be located on

Y

0.20.4 NS TR —

Figure 3.13 Solution to Example 3.15 using a Smith chart.
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this circle after moving by —=n to a point at 0.438 4 on “wavelengths toward
generator” scale. _
Thus, from the Smith chart, VSWR =5.8, I’y =0.71/45°, and Z;, = 0.2 — j0.4.
Z, = 50(0.2 —j0.4) = 10 — j20 ohm

Example 3.16: A lossless 75-ohm transmission line is terminated by an impedance
of 150 + ;150 ohm. Using the Smith chart, find (a) I';, (b) VSWR, (c) Z;, at a
distance of 0.375 4 from the load, (d) the shortest length of the line for which

impedance is purely resistive, and (e) the value of this resistance.
= 150 + 7150
=——>—=2+4;2
L 75 +J
After locating this normalized impedance point on the Smith chart, the constant

VSWR circle is drawn as shown in Figure 3.14.

A 2472

03+j0.54

Figure 3.14 Solution to Example 3.16 using a Smith chart.
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(a) Magnitude of the reflection coefficient is equal to the radius of the VSWR
circle (with the radius of the Smith chart as unity). The angle made by the
radial line that connects the load impedance point with the center of the chart
is equal to the phase angle of reflection coefficient. Hence,

I, =0.62/30°

(b) VSWR is found to be 4.25 from the scale reading for the point where the
circle intersects the +1I', axis.

(c) For d =0.375 4, —2fd = —4.7124 radians = —270° (clockwise from the
load). This point is located after moving on the VSWR circle by 0.375 4
from the load (at 0.084 4 on “wavelengths toward generator” scale). The
corresponding normalized impedance is found to be 0.3 4 j0.54. Therefore,

Zi(£ = 0.375 2) = 75(0.3 +0.54) = 22.5 + j40.5 ohm

(d) While moving clockwise from the load point, the VSWR circle crosses the
I',-axis for the first time at 0.25 /. The imaginary part of impedance is zero
at this intersection point. Therefore, d = (0.25 — 0.208) 1 = 0.042 /.
Normalized impedance at this point is 4.25. The next point on the trans-
mission line where the impedance is purely real occurs a quarter-wavelength
from it (i.e., 0.292 /4 from load). Normalized impedance at this point
is 0.23.

(e) Normalized resistance and VSWR are the same at this point. Therefore,

R =75 x4.25 =318.750hm

Example 3.17: A lossless 100-ohm transmission line is terminated by an impe-
dance of 100 + j100 ohm as illustrated here. Find the location of the first V., first
Vin» and the VSWR if the operating wavelength is 5 cm.

i
Z.= 100 ohm Z,=100 +j 100 ohm

_ 100 4,100

L= 100 141
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szo

Figure 3.15 Solution to Example 3.17 using a Smith chart.

As shown in Figure 3.15, this point is located on the Smith chart and the VSWR
circle is drawn. From the chart, VSWR =2.6.

Scale reading on the “wavelengths toward generator” is 0.162 / at the load point.
When one moves away from this point clockwise (toward generator) on this VSWR
circle, the voltage maximum is found first at 0.25 A and then a minimum at 0.5 A. If
the first voltage maximum is at d,,,, from the load, then d,,,, = (0.25 — 0.162)4 =
0.088 4 = 0.44 cm from load.

The first minimum is a quarter-wavelength away from the point of voltage
maximum. Hence, d;, = (0.5 — 0.162)A = 0.338 A = 1.69 cm.

Example 3.18: A 150-ohm load terminates a 75-ohm line. Find impedance at points
2.154 and 3.75 A from the termination.

= 150
Z — —

=—— =2
L™ 75
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o oo

Figure 3.16 Solution to Example 3.18 using a Smith chart.

As illustrated in Figure 3.16, this point is located on the Smith chart and the
VSWR circle is drawn. Note that the VSWR on this line is 2 and the load reflection
coefficient is about 0.33/0°.

As one moves on the transmission line toward the generator, the phase angle of
reflection coefficient changes by —2fd, where d is the distance away from the load.
Hence, one revolution around the VSWR circle is completed for every half-
wavelength. Therefore, normalized impedance will be 2 at every integer multiple
of a half-wavelength from the load. It will be true for a point located at 2 4 as well as
at 3.5 4. For the remaining 0.15 A, the impedance point is located on the VSWR
circle at 0.40 4 (i.e., 0.25 4 0.15) on the “wavelengths toward generator” scale.
Similarly, the point corresponding to 3.75 A from the load is found at 0.5 /.
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From the Smith chart, normalized impedance at 2.15 1 is 0.68 — j0.48, while it is
0.5 at 3.75 A. Therefore,

Impedance at 2.15 4, Z; = (0.68 —j0.48) x 75 = 51 — j36 ohm

and,
Impedance at 3.75 1Z, = (0.5) x 75 = 37.5 ohm.

Example 3.19: A lossless 100-ohm transmission line is terminated by an admit-
tance of 0.0025 — j0.0025 S. Find the impedance at a point 3.15 4 away from load
and the VSWR on this line.

¢
YLZYL:Ysz‘,:o.zs —j0.25

(V]

As before, this normalized admittance point is located on the Smith chart and the
VSWR circle is drawn. It is shown in Figure 3.17. There are two choices available at
this point. The given normalized load admittance is converted to corresponding
impedance by moving to a point on the diametrically opposite side of the VSWR
circle. It shows a normalized load impedance as 2 4 j2. Moving from this point by
3.15/ toward the generator, normalized impedance is found as 0.55 —;1.08.
Alternatively, we can first move from the normalized admittance point by 3.154
toward the generator to a normalized admittance point 0.37 4-;0.75. This is then
converted to normalized impedance by moving to the diametric opposite point on the
VSWR circle.

Thus, the normalized impedance at a point 3.154 away from the load is
0.55 —j1.08. The impedance at this point is 100 x (0.55 —j1.08) =55 — ;108
ohm, and the VSWR is approximately 4.3.

Example 3.20: An experiment is performed using the circuit illustrated here. First,
a load Z; is connected at the end of a 100-ohm transmission line and its VSWR is
found to be 2. After that, the detector probe is placed at one of the minimums on the
line. It is found that this minimum shifts toward the load by 15 cm when the load is
replaced by a short circuit. Further, two consecutive minimums are found to be
50 cm apart. Determine the load impedance.

“] .

Z, =100 ohm
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Figure 3.17 Solution to Example 3.19 using a Smith chart.

Since the separation between consecutive minimums is 50cm, the signal
wavelength on the line is 100 cm. Therefore, first minimum of the standing wave
pattern occurs at 0.15 4 from the load.

Since VSWR on the line is measured as 2, this circle is drawn on the Smith chart
as illustrated in Figure 3.18. As explained in the preceding section, a minimum in a
voltage standing wave occurs when the phase angle of the reflection coefficient is
180°. It is located on the Smith chart at a point where the VSWR circle intersects the
—I', axis. From this point, we move toward the load by 0.151 (i.e., counter-
clockwise) to locate the normalized load impedance point. It is found to be 1 — j0.7.

Therefore,

Z, =100 x (1 —j0.7) = 100 — j70 ohm
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Figure 3.18 Solution to Example 3.20 using a Smith chart.
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PROBLEMS

1. A lossless semirigid coaxial line has its inner and outer conductor radii as

1.325mm and 4.16 mm, respectively. Find the line parameters, characteristic
impedance, and the propagation constant for a signal frequency of 500 MHz
(e, =2.1).

Calculate the magnitude of the characteristic impedance and the propagation
constant for a coaxial line at 2 GHz. Assume that b =3 cm, a = 0.5cm, and
& = ¢,(2.56 — j0.005).

3. A certain telephone line has the following electrical parameters:

R = 40Q per mile, L = 1.1 mH per mile, G ~ 0, and C = 0.062 pF per mile

Loading coils are added which provide an additional inductance of 30 mH per
mile as well as an additional resistance of 8 Q per mile. Obtain the attenuation
constant and phase velocities at frequencies of 300 Hz and 3.3 kHz.

. A given transmission line has the following parameters:

Zy = 600/6°Q, 0 = 2.0- 1075 dB/m, v, = 2.97 - 10°m/s, and / = 1.0kHz

Write phasor V(z) and /(z), and the corresponding instantaneous values for a
wave traveling in the z-direction, if the maximum value of the current wave at
z = 01s 0.3 mA and it has maximum positive value with respect to time at t = 0.

. A 30-km-long transmission line is terminated by a 100 +;200Q load. A

sinusoidal source with its output voltage v(f) = 15 cos(80007x¢) V and internal
resistance 75 Q is connected at its other end. Characteristic impedance of the
line is 75 Q and phase velocity of the signal is 2.5 x 108 m/s. Find total voltage
across its input end and the load.

. A 2.5-m-long transmission line is short circuited at one end and then the

impedance at its other end is found to be j5 Q. When the short is replaced by an
open circuit, impedance at the other end changes to —j500Q. A 1.9-MHz
sinusoidal source is used in this experiment and the transmission line is less than
a quarter-wavelength long. Determine characteristic impedance of the line and
phase velocity of the signal.

. A lossless 75-Q transmission line is connected between the load impedance of

37.5 —j15Q and a signal generator with internal impedance of 75 Q. Find (a)
the reflection coefficient at 0.15 4 from the load, (b) VSWR on the line, and (c)
input impedance at 1.3 4 from the load.

. Two antennas are connected through a quarter-wavelength-long lossless trans-

mission line, as shown in the circuit below. However, the characteristic
impedance of this line is unknown. The array is excited through a 50-Q line.
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Antenna A has impedance of 80 — 780 Q while the antenna B has 75 — j55 Q.
Peak voltage across antenna A is found to be 113.14/ — 45° V and peak current
through antenna B is 1.0/90° A. Determine the characteristic impedance of the
line connecting the two antennas, and the value of a reactance connected in
series with antenna B.

— s ——

. Measurements are made on a 1-m-long coaxial line (with negligible loss) using

an impedance bridge that operates at 100 MHz. First, one of its ends is short
circuited and the impedance at the other end is measured as —j86.6025 Q.
Repeating the measurements with an open circuit in place of a short circuit
shows an impedance of j28.8675 Q. Find the characteristic impedance of the
line and the propagation constant. If the coaxial line is Teflon-filled (¢, = 2.1)
and the inner diameter of its outer conductor is 0.066 cm, determine the
diameter of its inner conductor.

A lossless 75-ohm transmission line is terminated by a load impedance of
150 4+ 150 ohm. Find the shortest length of line that results in (a)
Z,, =75 — j120 ohm, (b) Z,, = 75 —j75 ohm, and (c) Z,, = 17.6 ohm.

The open-circuit and short-circuit impedances measured at the input terminals
of a lossless transmission line of length 1.5m, which is less than a quarter-
wavelength, are —j54.6 Q and j103 Q, respectively.

(a) Find characteristic impedance, Z, and propagation constant, 7y, of the line.
(b) Without changing the operating frequency, find the input impedance of a
short-circuited line that is twice the given length.

(¢) How long should the short-circuited line be in order for it to appear as an
open circuit at the input terminals?

At a frequency of 100 MHz, the following values are appropriate for a certain
transmission line: L =025pH/m, C =80pF/m, R=0.15Q/m, and
G = 8uS/m. Calculate (a) the propagation constant, y = a +jf, (b) the
signal wavelength, (c) the phase velocity, and (d) the characteristic impedance.

Open-circuit and short-circuit impedances measured at the input terminals of a
3-m-long (i.e., is greater than a quarter-wavelength but less than one-half
wavelength) lossless transmission line are j24.2 Q and —j232.4 Q respectively.
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(a) Find the characteristic impedance and propagation constant of this line.

(b) How long should the open-circuited line be in order for it to appear as a
short circuit at the input terminals?

A 2.25-J-long lossless transmission line with its characteristic impedance at
75 Q is terminated in a load of 300 Q. It is energized at the other port by a signal
generator that has an open-circuit voltage of 20V (peak value) and internal
impedance of 75 Q.

(a) Find the impedance at the input end of the line.

(b) Determine the total voltage across the load.

A 22.5-m-long lossless transmission line with Z, = 50Q is short circuited at
one end and a voltage source V = 20 cos(4m x 104 — 30°) V is connected at its
input terminals, as shown below. If the source impedance is 50 Q and the phase
velocity on the line is 1.8 x 103 m/s, find the total currents at its input and
through the short circuit.

—
50 Q

50 Q

L 22.5m
)

Determine the characteristic impedance and the phase velocity of a 25-cm long
loss-free  transmission line from the following experimental data:
Zsc = —j90 ohm, Zy- =j40ohm, and f = 300 MHz. Assume that ¢ is less
than =« radians.

A lossless line is terminated in a load resistance of 50 Q. Calculate the two
possible values of characteristic impedance Z, if one-fourth of the incident
voltage wave is reflected back.

Measurements on a 0.6-m-long lossless coaxial cable at 100kHz show a
capacitance of 54 pF when the cable is open circuited and an inductance of
0.3 pH when it is short circuited. Determine the characteristic impedance of the
line and the phase-velocity of this signal on the line. (Assume that the line
length is less than a quarter-wavelength.)

For the reflection coefficients and characteristic impedances given, find the
reflecting impedance in each case: (a) I' =0.7/30°,Z, =50Q; (b) I =
0.9/—-35°, Z,=100Q; (¢) '=0.1—-,0.2,Z, =50Q; (d) I'= 0.5—,0,
Z, = 600Q.
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A 75-ohm lossless line is terminated by a load impedance Z; =
100 + 7150 ohm. Using the Smith chart, determine (a) the load reflection
coefficient, (b) the VSWR, (c) the load admittance, (d) Z,, at 0.4 4 from the
load, (e) the location of V,,, and V,;, with respect to load if the line is 0.6 A
long, and (f) Z;, at the input end.

A lossless 50-Q line is terminated by 25 —j60Q load. Find (a) reflection
coefficient at the load, (b) VSWR on the line, (¢) impedance at 3.85 A from the
load, (d) the shortest length of the line for which impedance is purely resistive,
and (e) the value of this resistance.

An antenna of input impedance Z; = 75 4150 Q at 2 MHz is connected to a
transmitter through a 100-m-long section of coaxial line, which has the
following distributed constants:

R =153 Q per km,

L = 1.4 mH per km,

G = 0.8 uS per km, and
C = 0.088 uF per km.

Determine the characteristic impedance, the propagation constant, and the
impedance at the input end of this line.

A lossless 50Q transmission line is terminated in 25 4 ;50Q. Find (a) the
voltage reflection coefficient, (b) impedance at 0.3/ from the load, (c)
the shortest length of the line for which impedance is purely resistive, and (d)
the value of this resistance.

A uniform transmission line has constants R = 15mQ/m, L =2pH/m,
G =1.2pS/m, and C = 1.1 nF/m. The line is 1 km long and it is terminated
in a resistive load of 80Q. At 8kHz, find (a) the input impedance, (b) the
attenuation in dB, and (c) the characteristic impedance.

A microwave transmitter is fabricated on a GaAs substrate. An antenna used in
the system offers a resistive load of 40 Q. The electronic circuit has output
impedance of 1kQ. Design a microstrip 4/4 impedance transformer to match
the system. The operating frequency is 4 GHz and the substrate thickness is
0.05 mm. ¢, of the GaAs substrate is 12.3.

A microstrip line is designed on a 0.1-mm-thick GaAs substrate (¢, = 14). The
strip thickness is 0.0001 mm and its width is 0.0l mm. Compute (a) the
characteristic impedance and (b) the effective dielectric constant.

For the transmission line shown, find the (a) reflection coefficient (I';,) at the
input end, (b) VSWR on the line, and (c) input admittance (Y,).
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TRANSMISSION LINES

Z,=50Q 200 -j50 Q

< 03A >|

A lossless transmission line has characteristic impedance of 50Q and is
terminated with an unknown load. The standing wave ratio on the line is 3.0.
Successive voltage minimums are 20 cm apart, and the first minimum is 5 cm
from the load.

(a) Determine the value of terminating load.

(b) Find the position and value of a reactance that might be added in series with
the line at some point to eliminate reflections of waves incident from the
source end.

A lossless 50-Q line is connected to a load as shown below. The input reflection
coefficient I';, at 1.45 4 from the load is found at 0.3/ — 60°. Find (a) the load
impedance in ohm, (b) the VSWR, (c) shortest length of the line from the load
for which the impedance is purely resistive, and (d) the value of this resistance
in ohm.

[n=0.3 £-60° —»

‘ < 1.45A >

A lossless 100-ohm transmission line is terminated in 50 4 j150 Q load. Find (a)
reflection coefficient at the load, (b) VSWR, and (c) Z;,(z = 0.35 1).

A lossless 50-ohm transmission line is terminated by a 25 — j50-ohm load. Find
(a) I';, (b) VSWR, (c) Z;, at 2.35 A from the load, (d) the shortest length of the
line where impedance is purely resistive, and (e) the value of this resistance.
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For the transmission line circuit shown below, find (a) the load reflection
coefficient, (b) the impedance seen by the generator, (¢c) the VSWR on the
transmission line, (d) the fraction of the input power delivered to the load.

Q@D 50Q g 00

|<—— Bl=m/4

\ 4

For the transmission line circuit shown below, find the required value of Z, that
will match the 20-ohm load resistance to the generator. The generator internal
resistance is 60 ohm. Find VSWR on the transmission line. Is the load resistance
matched to the transmission line?

G@ - % 2080

le——— p-m2 N

Use a Smith chart to find the following for the transmission line circuit shown
below:

(a) Reflection coefficient at the load
(b) Reflection coefficient at the input
(¢) VSWR on the line

(d) Input impedance
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TRANSMISSION LINES

50Q 35-j20Q

9|

< 0.12A ”

A lossless 40-ohm line is terminated in a 20-ohm load. Find the shortest line
length that results in (a) Z;, = 40 —j28 ohm, (b) Z,, = 48 416 ohm. Use the
Smith chart rather than the impedance transformation equation.

A 30-m-long lossless transmission line with Z, = 50 Q operating at 2 MHz is
terminated with a load Z; = 60+ j40Q. If phase velocity on the line is
1.8 - 103 m/s, find:

(a) Load reflection coefficient

(b) Standing wave ratio

(c¢) Input impedance

A 50-ohm transmission line is terminated by an unknown load. Total voltage at
various points of the line is measured and found to be as displayed below.
Determine (a) the magnitude of reflection coefficient, (b) the VSWR, and (c) the
signal wavelength in meters.

1.4} - \
1.2
1
\4 0.8
0.6
[} 1 2 3 4 5 6

— , Distance in meters, away from the source
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RESONANT CIRCUITS

A communication circuit designer frequently requires means to select (or reject) a
band of frequencies from a wide signal spectrum. Resonant circuits provide such
filtering. There are well-developed, sophisticated methodologies to meet virtually
any specification. However, a simple circuit suffices in many cases. Further, resonant
circuits are an integral part of the frequency-selective amplifier as well as of the
oscillator designs. These networks are also used for impedance transformation and
matching.

This chapter describes the analysis and design of these simple frequency-selective
circuits, and presents the characteristic behaviors of series and parallel resonant
circuits. Related parameters, such as quality factor, bandwidth, and input impedance,
are introduced that will be used in several subsequent chapters. Transmission lines
with an open or short circuit at their ends are considered next and their relationships
with the resonant circuits are established. Transformer-coupled parallel resonant
circuits are briefly discussed because of their significance in the radio frequency
range. The final section summarizes the design procedure for rectangular and
circular cylindrical cavities, and the dielectric resonator.

4.1 SERIES RESONANT CIRCUITS

Consider the series R-L-C circuit shown in Figure 4.1. Since the inductive reactance
is directly proportional to signal frequency, it tries to block the high-frequency
contents of the signal. On the other hand, capacitive reactance is inversely propor-
tional to the frequency. Therefore, it tries to stop its lower frequencies. Note that the
voltage across an ideal inductor leads the current by 90° (i.e., the phase angle of an
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ARl —

Vin () R Ve®

| |

Figure 4.1 A series R-L-C circuit with input-output terminals.

inductive reactance is 90°). In the case of a capacitor, voltage across its terminals
lags behind the current by 90° (i.e., the phase angle of a capacitive reactance is
—90°). That means it is possible that the inductive reactance will be canceled out by
the capacitive reactance at some intermediate frequency. This frequency is called the
resonant frequency of the circuit. If the input signal frequency is equal to the
resonant frequency, maximum current will flow through the resistor and it will be in
phase with the input voltage. In this case, the output voltage ¥, will be equal to the
input voltage V;,. It can be analyzed as follows.
From Kirchhoff’s voltage law,

v, (D)dt + v,(f) = vy, (2) 4.1.1)

Ldv(t) 1 J
R dt RC

—00

Taking the Laplace transform of this equation with initial conditions as zero (i.e., no
energy storage initially), we get

sL 1
(X T 1) Vy(s) = V() (4.12)

where s is the complex frequency (Laplace variable).
The transfer function of this circuit, T'(s), is given by

v, 1 R
_VG) _ - s 4.1.3)
Vi(s) E—|——1 +1 SZL—i-sR—f-l

R " sRC c

T(s)

Therefore, the transfer function of this circuit has a zero at the origin of the complex
s-plane and also it has two poles. The location of these poles can be determined by
solving the following quadratic equation.

1
s2L+sR+E=0 (4.1.4)
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Two possible solutions to this equation are as follows.

R R\* 1
-4 (E) = 4.1.5
127 7o (ZL) LC (“1.5)

The circuit response will be influenced by the location of these poles. Therefore,
these networks can be characterized as follows.

o If — 7L \/_ ie, R > 2\/; both of these poles will be real and distinct, and

the circuit is overdamped.

R

If —
2L~ JIC

R
§ = —— = ———=. The circuit is critically damped.

2L vLC
R

L
o If — L \/_ e, R < 2\/; , the two poles of T'(s) will be complex conjugate

of each other. The circuit is underdamped.

,l.e,R= 2\/; the transfer function will have double poles at

Alternatively, the transfer function may be rearranged as follows:

sCR sCRw?
T(s) = = = 4.1.6
(<) S2LC+sRC+ 1 52+ 2{w,s + w2 ( )
where
R /C
=—,/= 4.1.7
(=3V7 (4.17)
W, = L (4.1.8)
° = Jic -
{ is called the damping ratio, and w, is the undamped natural frequency.
Poles of T'(s) are determined by solving the following equation.
s? + 2w+ 02 =0 (4.1.9)

For{ < 1,5, = —{w, £jo,v1 — 2. As shown in Figure 4.2, the two poles are
complex conjugate of each other. Output transient response will be oscillatory with a
ringing frequency of w,(1 — ¢*) and an exponentially decaying amplitude. This
circuit is underdamped.

For { = 0, the two poles move on the imaginary axis. Transient response will be
oscillatory. It is a critically damped case.

For { =1, the poles are on the negative real axis. Transient response decays
exponentially. In this case, the circuit is overdamped.
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Figure 4.2 Pole-zero plot of the transfer function.

®o

-0

Consider the unit step function shown in Figure 4.3. It is like a direct voltage
source of one volt that is turned on at time ¢ = 0. If it represents input voltage v, (7)
then the corresponding output v,(¢#) can be determined via Laplace transform
technique.

The Laplace transform of a unit step at the origin is equal to 1/s. Hence, output
voltage, v,(7), is found as follows.

sCRw? 1 . CRa?

) =L () =L ———  —x—=L"
g © s* 4+ 2wgs + w5 s (s + (op)’ + (1 = P)e}

where L~! represents inverse Laplace transform operator. Therefore,
21_,‘ —CW,t 3 2
0, (t) = ———=e "' sin| w /1 — { |u(?)
V1=

Vin(t)

A

v

> {00

Time —

Figure 4.3 A unit-step input voltage.
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“r £=0.95

Output voltage
Il
=
n

20 30 40 50
Wyt —

Figure 4.4 Response of a series R-L-C circuit to a unit step input for three different damping

factors.

This response is illustrated in Figure 4.4 for three different damping factors. As
can be seen, initial ringing lasts longer for a lower damping factor.

A sinusoidal steady-state response of the circuit can be easily determined after
replacing s by jo, as follows:

Vi(jo) Vi jo)
Vo(] )_ - = N
L S O A O
R TjorC tre\ P75
or,
Vi( jo) B Vi jo)

R I TR A S A TR
RC\»? o w,RC\w, o

The quality factor, O, of the resonant circuit is a measure of its frequency selectivity.
It is defined as follows.

Average stored energy
= 4.1.10
Q= Power loss ( )
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Hence,
1P oL
C=®ipR= &
. 1
Since w,L = ,
w,C
Q_wOL: 1 _~IC 1JL 1 @.1.11)
R w,RC RC RVC 2 o
Therefore,
V.(j
V.(jw) = () (4.1.12)
° [0 o,
14O ——=2
W,
Alternatively,
V() ! (4.1.13)

The magnitude and phase angle of (4.1.13) are illustrated in Figures 4.5 and 4.6,
respectively. Figure 4.5 shows that the output voltage is equal to the input for a
signal frequency equal to the resonant frequency of the circuit. Further, phase angles
of the two signals in Figure 4.6 are the same at this frequency, irrespective of the
quality factor of the circuit. As signal frequency moves away from this point on
either side, the output voltage decreases. The rate of decrease depends on the quality
factor of the circuit. For higher O, the magnitude is sharper, indicating a higher
selectivity of the circuit. If signal frequency is below the resonant frequency then
output voltage leads the input. For a signal frequency far below the resonance, output
leads the input almost by 90°. On the other hand, it lags behind the input for higher
frequencies. It converges to —90° as the signal frequency moves far beyond the
resonant frequency. Thus, the phase angle changes between n/2 and —mn/2,
following a sharper change around the resonance for high-Q circuits. Note that
the voltage across the series-connected inductor and capacitor combined has inverse
characteristics to those of the voltage across the resistor. Mathematically,

Vic(jw) = Vin(jo) = V,(jo)
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Figure 4.5 Magnitude of 4( jw) as a function of w.

Q=100

—
W

oy
=

o
n

e
=3

[
(=4
W

0
—_
(=3

'
—
W

1 | 1 I Il 1 1 I !

(P"l | 1 1 1 | 1 1 1 |

.
g
=

e

=

60.0 80.0 100.0

0 —>

20.0 40.0

Figure 4.6 The phase angle of A( jw) as a function of w.
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where V;(jw) is the voltage across the inductor and capacitor combined. In this
case, sinusoidal steady-state response can be obtained as follows.

(o o,
heGo)  Vi(jo) I ]Q<w_o_5>

Vo)~ Viljeo) <1 N jQ(wg_%)) - <1 N fQ(%‘%))

Hence, this configuration of the circuit represents a band-rejection filter.
Half-power frequencies w; and w, of a band-pass circuit can be determined from
(4.1.13) as follows:

1 1 , [ o\’

—= S2=140(—-=

2 Loy O O
w, o

Therefore,

Q(ﬂ—&) — 41
0,

Assuming that w; < 0, < w,,

and,
Q(& _ &) |
W,
Therefore,
@y Wy (& _ w)
(2 %) (O @
or,
2 2 2 2
[0) 0) W, 1 1
Wy ——==—0+ 2= (04 0)=—"+ "=y —+—
w w w; W w; o
2 1 1 1 1 2
or,

0 = w0, (4.1.14)
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and,
(601 wo) = wg Dy
PR e wn, —— = ——
(| 0 ! W 0
or,
wO wO
oy = ——0° =0 4.1.15
Wy — 0 0 =0 0, — Oy ( )

Example 4.1: Determine the element values of a resonant circuit that passes all the
sinusoidal signals from 9 MHz to 11 MHz. This circuit is to be connected between a
voltage source with negligible internal impedance and a communication system with
its input impedance at 50 Q. Plot its characteristics in a frequency band of 1 to
20 MHz.

From (4.1.14),

W, = JO, X 0 = fo =/fi xfo =9 x 11 =9.949874 MHz
From (4.1.11) and (4.1.15),

oL W, R 50
Q: :7—)[1: =
R o -, w; —w, 2x7x10°x(11-9)

=3.978874 x 107® H~ 4 uH

From (4.1.8),

1 1
0, =——= C =— = 6.430503 x 107! F ~ 64.3 pF

° JILC La?

The circuit arrangement is shown in Figure 4.7. Its magnitude and phase
characteristics are displayed in Figure 4.8.

|
AN

R =50 ohm

Figure 4.7. The filter circuit arrangement for Example 4.1.
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Figure 4.8 Magnitude (a) and phase (b) plots of A (jw) for the circuit in Figure 4.7.

Input Impedance

Impedance across the input terminals of a series R-L-C circuit can be determined as

follows.

1 2
zin:R+ij+__:R+ij<1_“’_g) (4.1.16)
joC w
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At resonance, the inductive reactance cancels out the capacitive reactance.
Therefore, the input impedance reduces to total resistance of the circuit. If signal
frequency changes from the resonant frequency by +dw, the input impedance can be
approximated as follows.

- 20R0
Zy = R4 jor O TN =) p s sor = R4+ 22R00 41
o
Alternatively,
z ~R+jz(swL—w°L+jz(w—w)L—j2<w—w +w°)L
mn Q o o ]2Q
1
—2(o—o(1+i—))L 4.1.18
/ ("’ ‘”( +J2Q)> @119

Therefore, a series resonant circuit can be analyzed with R as zero (i.e., assuming
that the circuit is lossless). The losses can be included subsequently by replacing a

1
real resonant frequency, o,, by the complex frequency, w0<1 +J E)
At resonance, current through the circuit, 7,

[ =2 4.1.19
= (4.1.19)
Therefore, voltages across the inductor, V;, and the capacitor, V,, are
. Vi .

VL =]woL7 ZJQVm (4120)

and,
Ve = Vin _ 194 4.1.21)
C _jCUOC R =—J in -Le

Hence, the magnitude of voltage across the inductor is equal to the quality factor
times input voltage while its phase leads 90°. Magnitude of the voltage across the
capacitor is the same as that across the inductor. However, it is 180° out of phase
because it lags behind the input voltage by 90°.

4.2 PARALLEL RESONANT CIRCUITS

Consider an R-L-C circuit in which the three components are connected in parallel,
as shown in Figure 4.9. A subscript p is used to differentiate the circuit elements
from those used in the series circuit of the preceding section. A current source, i;,(?),
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iot) T
vo(?)

A4

iin(t) J Lp /.\ Cp Rp

Figure 4.9 A parallel R-L-C circuit.

is connected across its terminals and i,(?) is current through the resistor R,,. Voltage
across this circuit is v,(¢). From Kirchhoft’s current law,

d(Ryi (1))

S+ io(0) 4.2.1)

1 t
in(t) = L—J R,i,(t)dt + C,
pJ—00

Assuming that there was no energy stored in the circuit initially, we take the
Laplace transform of (4.2.1). It gives

R
I,(s) = <ﬁ +sR,C, + 1>Io(s)
P

Hence,

st

1,(s) _ Rp

Ln(s) L,
s LpCp—i-s]T—i—l
P

Note that this equation is similar to (4.1.6) of the preceding section. It changes to
T(s) if RC replaces L,/R,. Therefore, results of the series resonant circuit can be
used for this parallel resonant circuit, provided

(4.2.2)

1
C = 2mRC
Wo L p
and,
1
W, = (4.2.3)
L, G,
Hence,
1 1 /L

P (4.2.4)
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The quality factor, O,,, and the impedance, Z,, of the parallel resonant circuit can
be determined as follows:

w,L 1 R,
L= =wRC, = 4.2.5
Qsenes R (,OORC = Qp (0 PP woLp ( )
N VO(](D) _ Io(jw)Rp _ JwLp (4 2 6)

P (o) (o) . L,
— LpCp +ij_+ 1
p

Input Admittance

Admittance across input terminals of the parallel resonant circuit (i.e., the admittance
seen by the current source) can be determined as follows.

y =41 e 4t 1+‘C(1 w§> 4.2.7)
hn===—+jo —=—+jo -— 2.
""Z, R, P joL, R, U @2

Hence, input admittance will be equal to 1/R, at the resonance. It will become zero
(that means the impedance will be infinite) for a lossless circuit. It can be

approximated around the resonance, w, &+ dw, as follows.

1 1 20wQ
Y, ® —+j200C, = —+j (4.2.8)
" R, PR, 0, R,
The corresponding impedance is
Z 7RP 429
P~ 200w (4.2.9)
1+j
[}
Current through the capacitor, /., at the resonance is
Ic ijonRp in ZJQIm (4210)
and current through the inductor, /;, is
I, = ——Ry ],y = ~jOl, (4.2.11)

jwoLp

Thus, current through the inductor is equal in magnitude but opposite in phase to
that through the capacitor. Further, these currents are larger than the input current by
a factor of Q.

Quality Factor of a Resonant Circuit

If resistance R represents losses in the resonant circuit, O given by the preceding
formulas is known as the unloaded Q. If the power loss due to external load coupling
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is included through an additional resistance R; then the external Q. is defined as
follows:

w,L . .
0 for series resonant circuit

0. = - (4.2.12)
L for parallel resonant circuit

a)op

The loaded O, Q;, of a resonant circuit includes internal losses as well as the
power extracted by the external load. It is defined as follows:

L . .
Rw:_ R for series resonant circuit
L
O = R, IR (4.2.13)
L1 for parallel resonant circuit
,L,
where,
R.R
BiR, =
L p

Hence, the following relation holds good for both kinds of resonant circuits (see
Table 4.1).

1 1 1
— =4 — (4.2.14)
QL Qe Q

Example 4.2: Consider the loaded parallel resonant circuit illustrated here.
Compute the resonant frequency in radians per second, unloaded Q, and the
loaded Q of this circuit.

Load
10pF | 10pH
100 kQ ™ 100 kQ
1 1
w, = =108 rad/s

° VLG, V1075 x 1011

R 10°
The unloaded Q = —2- = 0 = 100.

oL, 108 x 1073
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TABLE 4.1 Relations for Series and Parallel Resonant Circuits

Series Parallel
1 1
(,()0
VLC L,C,
R |C 1 /L
Damping fact s L}
amping factor, { 5 \/; 2%, 2
w,L 1 R
Unloaded o — L — w,R,C
nloaded © R w,RC ,L, Doltptp
w,L 1 R
External Q = o — L — R C
Xterna Q Qe RL woRLC oLp WK P
Loaded O = O, 9x 0. Q0.
0+0. 0+0.
2RQ0 R
Input impedance, Z;,, around resonance R+j Qow <
w, 200w
o 1 +]—
a)D
Ry 10°
The external O, = = = 100.
0.0 woLp 108 x 10—

RJR. 00, 50 x 10°

= — =50 .
w,L,  0+0Q, 108x 1075

The loaded O, O; =

4.3 TRANSFORMER-COUPLED CIRCUITS

Transformers are used as a means of coupling as well as of impedance transforming
in electronic circuits. Transformers with tuned circuits in one or both of their sides
are employed in voltage amplifiers and oscillators operating at radio frequencies.
This section presents an equivalent model and an analytical procedure for the
transformer-coupled circuits.

Consider a load impedance Z; that is coupled to the voltage source V; via a
transformer as illustrated in Figure 4.10. Source impedance is assumed to be Z,. The
transformer has a turn ratio of n:1 between its primary (the source) and secondary
(the load) sides.

Using the notations as indicated, equations for various voltages and currents can
be written in phasor form as follows.

V] =j(UL1[1 +JCUM]2 (4.3.1)
Vz ZJU)MII +JQ)L2[2 (4.3.2)
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Figure 4.10 A transformer-coupled circuit.

where M is the mutual inductance between the two sides of the transformer.
Standard convention with a dot on each side is used. Hence, magnetic fluxes
reinforce each other for the case of currents entering this terminal on both sides, and
M is positive.

The following relations hold for an ideal transformer operating at any frequency.

JA— (4.3.4)
n

and,

Nz 2V g (4.3.5)
I —h/n —1

There are several equivalent circuits available for a transformer. We consider one
of these that is most useful in analyzing the communication circuits. This equivalent
circuit is illustrated in Figure 4.11 below. The following equations for phasor
voltages and currents may be formulated using the notations indicated in Figure
4.11.

I I
and,

1 L
vV, =— < JoéL, (11 + —2>) (4.3.7)
n n

If the circuit shown in Figure 4.11 is equivalent to that shown in Figure 4.10 then
these two equations represent the same voltages as those of (4.3.1) and (4.3.2).
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L/ L
[25] o n:1

X L o | [
)

Ideal transformer

Figure 4.11 Equivalent model of the transformer-coupled circuit shown in Figure 4.10.

Hence,
L
Q =M (4.3.8)
n
and,
EL
n_zl =1, (4.3.9)

In other words,

_ L
=\ (4.3.10)

nM  ME M
=TT :>\/E:\/L1L2:

and,

— = K (4.3.11)

Ly VLiL,
where « is called the coefficient of coupling. It is close to unity for a tightly coupled
transformer, and close to zero for a loose coupling.

Example 4.3: A tightly coupled transformer is used in the circuit shown in Figure
4.12. Inductances of its primary and secondary sides are 320nH and 20nH,
respectively. Find its equivalent circuit, the resonant frequency, and the Q of this
circuit.

Since the transformer is tightly coupled, k & 1. Therefore, & ~ 1, (1 — &) =~ 0,
and its equivalent circuit simplifies as shown in Figure 4.13. From (4.3.10),

e p2o_,
"V, V20~
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I, —> <«
. 7y

. 0
: _|60F v v, _| 30.7pF 62.5kQ
S Mmoo LI M

Figure 4.12 A transformer-coupled resonant circuit.

Cy R Ly Va

AW
A

Ideal transformer

Figure 4.13 An equivalent model of the transformer-coupled circuit shown in Figure 4.12.

and, from (4.3.5),

Therefore,

R, = n’R, =16 x 62.5 kQ = IMQ

1
C) =6+ 43307 pF = 6+ 1.91875 ~ 7.92 pF

1 1
., = =
* VLGl /320 x 1079 x 7.92 x 10-12

= 628.1486 x 10° rad/s

Jo =52 =99.97 MHz ~ 100 MHz
/4
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and,

R, 10°
_ - = 4974.9375
O = L~ 628.1486 x 10° x 320 x 109

Example 4.4: A transformer-coupled circuit is shown in Figure 4.14. Draw its
equivalent circuit using an ideal transformer. (a) If the transformer is tuned only to its
secondary side (that is, R, and C, are removed), determine its resonant frequency
and impedance seen by the current source. (b) Determine the current transfer
function (/,/1,) for the entire circuit (that is, R, and C, are included in the circuit).
If the transformer is loosely coupled, and both sides have identical quality factors as
well as the resonant frequencies, determine the locations of the poles of the current
transfer function on the complex w-plane.

Following the preceding analysis and Figure 4.11, the equivalent circuit can be
drawn easily, as shown in Figure 4.15. Using notations as indicated in the figure,

I, —> «—1,

A A
+ + l L
. .
I _El V. I Va _|_..C2
S 0 ! L M R,

Figure 4.14 A double-tuned transformer-coupled circuit.

n:l
Vi _L CI é Ll nV, ¢ VZ_J_C‘Z R2
a ™

Ideal transformer

Figure 4.15 An equivalent representation for the circuit shown in Figure 4.14.



124 RESONANT CIRCUITS

circuit voltages and currents can be found as follows.
I
nV, = séL; <Il + —2>
n

R
2 R,

Vo= -, ——=—— =
2 21+sR,C, 2°

1
=1+ (R—+SC1)(’1V2 +s(1 = &L1y)
1

From (4.3.12), (4.3.13), and (4.3.10), we find that

S*EL R, Cy + sEL
(1+ 61222 él
nRz

or,

SéLl
I nR,
= I
4 ene+22
R2

L
)Vz = (1 + 5L, C, + SRZ)RZIO -
2

L
sé 111
n

(4.3.12)

(4.3.13)

(4.3.14)

(4.3.15)

e When R, and C, are absent, /; will be equal to [, and (4.3.15) will represent
the current transfer characteristics. This equation is similar to (4.2.2). Hence

the resonant frequency is found as follows:

1
. =

° VLG,

(4.3.16)

Note that the resonant frequency in this case depends only on L, and C,. It is

independent of inductance L, of the primary side.

The impedance seen by the current source, with R; and C; removed, is

determined as follows:

n’sL,

Zus) = - = sL(1 = 0)+

At resonance,

Zin(jw,) = jor L (1 — &) + n’R,

L
S2L2C2 + S—2 + 1
R,

(4.3.17)

(4.3.18)
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and, if the transformer is tightly coupled, & ~ 1
Zin(jw,) = n’R, (4.3.19)
e When R, and C, are included in the circuit, (4.3.12)—(4.3.14) can be solved to

obtain a relationship between /, and /. The desired current transfer function
can be obtained as follows.

sEL,
I nR,
I L, 1 1
2L, Gy +s—=+ 1) x {1 +s(1 =L | —+sC, ) § +sEL | — + 5C
R2 R1 Rl

(4.3.20)

Note that the denominator of this equation is now a polynomial of the fourth
degree. Hence, this current ratio has four poles on the complex w-plane. If the
transformer is loosely coupled, ¢ will be negligible. In that case, the
denominator of (4.3.20) can be approximated as follows.

sEL,
[_0 ~ nR2
I~ L 1 1
(S2L2C2 +sR—z+ 1) X {1 + 5L, (R—1+sc,>} + sEL, <R—1+SC1>
(4.3.21)
For , = w, = w,, and Q; = 0, = Q,,
1
LlCl == L2C2 == (,z)_g
and,
R Ry
E - L2 - ono‘
Hence, (4.3.21) may be written as follows.
sEL,
1
mUPY nRy (4.3.22)
IS

2 2 2
(S_+L+ 1) +§(S_+L>
g w0 w5 ©,0
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Poles of (4.3.22) are determined by solving the following equation.

S2 S 2 Sz S
S S ) =0
(w%+on+ > “(w%,*on)

Roots of this equation are found to be

1 2
sx g ijwo\/ 159~ (55.)

4.4 TRANSMISSION LINE RESONANT CIRCUITS

(4.3.23)

(4.3.24)

Transmission lines with open or short-circuited ends are frequently used as resonant
circuits in the UHF and microwave range. We consider such networks in this section.
Since the quality factor is an important parameter of these circuits, we need to
include the finite (even though small) loss in the line. There are four basic types of

these networks as illustrated in Figure 4.16.

It can be easily found by analyzing the input impedance characteristics around the
resonant wavelength, A, that the circuits of Figure 4.16(a) and (d) behave like a
series R-L-C circuit. On the other hand, the other two transmission lines possess the
characteristics of a parallel resonant circuit. A quantitative analysis of these circuits

is presented below for » as unity.

- @n-12,

4 f=—"
l— 4 | " ;

y=oa+jp

Open
Z, Open
% y=a+jp
a
(a) ®)
€=(2n—l)),, Z_nA'r
—4 f 2 —
y=a+jp
Short Z, Short
Z, y=a+jp

© @

Figure 4.16 Four basic types of transmission line resonant circuits, n = 1,2, ....
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Zin— VA y=a+jp

Figure 4.17 A short-circuited lossy transmission line.

Short-Circuited Line

Consider a transmission line of length £ and characteristic impedance Z;. It has a
propagation constant, y = o + jf. The line is short circuited at one of its ends as
shown in Figure 4.17. The impedance at its other end, Z;,, can be determined from
(3.2.5) as follows.

tanh(a.) + j tan(fBf)

Z 1 + j tanh(ef) tan(f3€)

i = Z, tanh(pf) = Z, tanh(o + jp)¢ = Z,

4.4.1)

For ol <« 1, tanh(of) &~ of, and assuming that the line supports only the TEM
14 . L
mode, we find that ¢ :(;)—. Hence, it can be simplified around the resonant

frequency, ,, as follows:

(4.4.2)

where f, is the phase constant at the resonance.
If the transmission line is one-half-wavelength long at the resonant frequency
then

£
pf = m, and -
UGN

Therefore, tan(f€) can be approximated as follows:

owl Tow Tow oW
tan(ff) = tan| n +— | =tan| 7 + = tan R
Up W, W, W,
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and,

0
O(E_’_jnw

5
Z.~7, —“’m ~Z, («z + /10—“’) (4.4.3)
1 —i—j(ozﬁ)( > ) ©

o

5
It is assumed in (4.4.3) that (f) (”J”) <1

o
For a series resonant circuit, Z;, ~ R 42 dw L. Hence, a half-wavelength-long
transmission line with short-circuit termination is similar to a series resonant circuit.
The equivalent circuit parameters are found as follows (assuming that losses in the
line are small such that the characteristic impedance is a real number):

1

R~ Zol = EZO:x/lr (4.4.4)

Z,
Ll (4.4.5)

2 w,

1

C~ (4.4.6)

WL,

and,
_w L o p

0= R 20f 2« (4.4.7)

On the other hand, if the transmission line is a quarter-wavelength long at the

14
resonant frequency then £ = n/2, and — = " . Therefore,
Vp W,

n owl T oW Tow 2w,
tan(ff) = tan(z—i—v) = tan(2+ "o ) =— cot(zw ) S - (4.4.8)

p o o

and,

2w, Z,
7 ~7 7w _ al (4.4.9)
n °1 ,EZwo_l T dw o
[— “ R—
1% e +J ¢ 20



TRANSMISSION LINE RESONANT CIRCUITS 129

This expression is similar to the one obtained for a parallel resonant circuit in
(4.2.9). Therefore, this transmission line is working as a parallel resonant circuit with
equivalent parameters as follows:

Z, 4z
R~2="2 4.4.10
Pl ad, ( )
47
L,~ ° (4.4.11)
nw,
v
C =~ 4.4.12
LA ( )
and,
T B
= =1 4.4.13
0 4ol 2o ( )

Open-Circuited Line

The analysis of the open-circuited transmission line shown in Figure 4.18 can be
performed following a similar procedure. These results are summarized in the
following.

From (3.2.5),

Z

Zoly = —0 4.4.14
leL_oo tanh(yﬂ) ( )

For a transmission line that is a half-wavelength long, the input impedance can be

approximated as follows:
) now
1+ j(ocZ)( > ) 7

~ ) ~ 0
Zin 7~ Zo oW O (4.4.15)
ol 4 ol 4
,

[} CUO

This is similar to (4.2.9). Therefore, a half-wavelength-long open-circuited
transmission line is similar to a parallel resonant circuit with equivalent parameters

L J
[« 4 gl

Zn = z y=o+ip

Figure 4.18 An open-circuited transmission line.
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as follows:

and,

_ " _b
Q_2a€_2tx

(4.4.16)

(4.4.17)

(4.4.18)

(4.4.19)

If the line is only a quarter-wavelength long, the input impedance can be

approximated as follows:

~

2
1—j(oz£)< ;0")
Zy N Zy 0O A, 0(

0
ocK—}—j—n @

2w,

[

(4.4.20)

Since (4.4.20) is similar to (4.1.17), this transmission line works as a series
resonant circuit. Its equivalent circuit parameters are found as follows (see Table

4.2):
1
R~ Zal = ZZoocir

(4.4.21)

(4.4.22)

(4.4.23)

TABLE 4.2 Equivalent Circuit Parameters of the Resonant Lines for n = 1

Quarter-Wavelength Line

Open Circuit Short Circuit

Half-Wavelength Line

Open Circuit

Short Circuit

Resonance Series Parallel Parallel Series
47 27,
1 1
R ZZOOMT g(j'(: a;: EZOOC)LI,
L nZ, 4z, 27, nZ,
LTON W, W, 2w,
C 4 T i 2
LIANON 4Z,w, 2Z,m, LIANON
o b b b b
200 20, 20 20
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and,

Z
WL (4.4.24)

O="R " 2ut 2

Example 4.5: Design a half-wavelength-long coaxial line resonator that is short-
circuited at its ends. Its inner conductor radius is 0.455 mm and the inner radius of
the outer conductor is 1.499 mm. The conductors are made of copper. Compare the
QO of an air-filled to that of a Teflon-filled resonator operating at 5 GHz. The
dielectric constant of Teflon is 2.08 and its loss tangent is 0.0004.

From the relations for coaxial lines given in the appendix,
R = [

20
R 1 1 0.018427 1000 1000
Yo = atp) = 1.499Y \0.455 T 1.499

5 Moy (b 2x376.7343 x In[—— ) V" '
P 0.455
0

= 0.058768 Np/m

=0.018427 Q

_\/27I><5>< 10° x 47 x 10-7
B 2 x 5.813 x 107
S

With Teflon-filling,

L R, (1 N 1) 0.018427 x +/2.08 ( 100, 1oo>
¢ N\a b))~ 1.4 . }
2 [PV N P 3767343 x [ LA20) \04S 1499
&6 \a 0.455
= 0.084757 Np/m

oy = % Viotottand = 1 x 5 x 10° x 3 x 10% x +/2.08 x 0.0004 = 0.030206

_2><7r><5x109

B, = 3 10° = 104.719755 rad/m
2x7x5x10% x 4/2.08
By = 3107 = 151.029 rad/m
B 104.719755
Quir 200 2 x 0.058768
151.029
Oreflon = Ba = = 656.8629

20 2 x (0.084757 + 0.030206)

Example 4.6: Design a half-wavelength-long microstrip resonator using a 50-ohm
line that is short circuited at its ends. The substrate thickness is 0.159 cm with its
dielectric constant 2.08 and the loss tangent 0.0004. The conductors are of copper.
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Compute the length of the line for resonance at 2 GHz and Q of the resonator.
Assume that thickness ¢ of the microstrip is 0.159 ym.

Design equations for the microstrip line (from the appendix) are

8e!
W oy for 4 > 1.52
B2 s — 1 0.61
—[3—1—1n(23—1)+8‘ {1n(B—1)+O.39— ” for 4 < 1.52
T 2¢, g,
where,
Z (e.+1\'? & —1 0.11
A=22(= r 2
60( 2 ) +sr+1(0 3+ ar>
and,
B 6072
Zy /e
o
B
h |
A4
Therefore,

50 /2.08 + 1\"* 2.08 -1 0.11
023 4+———) =113
60( 2 ) +2.08+1< +208> 33

Since A is smaller than 1.52, we need B to determine the width of microstrip.
Hence,

607>
= —g212
50 x +/2.08
w2 2.08 — 0.61
Y8212 -1 -2 x 8212 = 1)+ {n(8.212 — 1) + 0.39 — —
n|: n(2 x ) 208 { ( )+ 208”

=3.1921

Therefore,

w = 0.507543 cm ~ 0.51 cm
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Further,

1 2.08 — 1)0.0001
& =0.5]2.084+1+(2.08—-1) x — ( ) = 1.7875
4 12 4.64/3.1921
3.192094
Therefore, the length of the resonator can be determined as follows:
) 1 10
ptowl__c 3 > 10 em = 5.6096 cm

27 2 T 2fJE 2x2x10° x /17875

= 5.813 x 107 S/m, the quality factor of this resonator is deter-

mined as follows. For W > L,
h — 2n

Since 0 gopper

We _ W ! mn _
= +0.3979h{1 +ln(2 t)} —3.1923

and,

1.2 1.2
C=1+£<1— 5t+—51n(2ﬁ)> =2.5476
. mh T t

Therefore, for % > 1, o, is found to be

w.
0.667( e
Z z
5, = 44,1255 x 10-5° °8f°,/f‘GH) Zet o (h) Neper/m
h g |h S5 1444

= 0.0428 Neper/m

Similarly, oy is found from (A2.28) as follows:

oy = 10.4766 —=

-1
& — 1 grf/g— ;f(GHZ) tan 6 Neper/m = 0.0095 Neper/m

and,

2n  2: 27
ST S ad/m = 56.0035 rad
b=7=% 5609 rad/m rad/m

100
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Hence, Q of the resonator is found as follows.

B 56.0035

20 2 x (0.0428 + 0.0095)

o

4.5 MICROWAVE RESONATORS

Cavities and dielectric resonators are commonly employed as resonant circuits at
frequencies above 1 GHz. These resonators provide much higher O than the lumped
elements and transmission line circuits. However, the characterization of these
devices requires analysis of associated electromagnetic fields. Characteristic rela-
tions of selected microwave resonators are summarized in this section. Interested
readers can find several excellent references and textbooks analyzing these and other
resonators.

Rectangular Cavities

Consider a rectangular cavity made of conducting walls with dimensions @ x b X ¢,
as shown in Figure 4.19. It is filled with a dielectric material of dielectric constant &,
and the relative permeability . In general, it can support both TE,,, and TM,,,
modes, which may be degenerate. The cutoff frequency of TE,, and TM,,, modes
can be determined from the following formula.

f:(MHz) = j% [(Z)er(z';)z} MHz

Resonant frequency f; of a rectangular cavity operating in either TE,,,, or TM,,,,
mode can be determined as follows.

[(MHz) = j% [(Z)2+(;b)2+(i)z] MHz 45.1)

f

b_i —P> x
<=
z/

Figure 4.19 Geometry of the rectangular cavity resonator.
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If the cavity is made of a perfect conductor and filled with a perfect dielectric then
it will have infinite Q. However, it is not possible in practice. In the case of cavity
walls having a finite conductivity (instead of infinite for the perfect conductor) but
filled with a perfect dielectric (no dielectric loss) then its quality factor O, for TE,,
mode is given by

60b(acam /i)’ T
_ o 4.5.2
Qc|10p 7'CRS(2P203b + 2bc3 +p2a3c + ac3) \/; ( )

Permittivity and permeability of the dielectric filling are given by ¢ and pu,
respectively; o is angular frequency; and R is the surface resistivity of walls
which is related to the skin depth J, and the conductivity ¢ as follows.

1 jou
RS —_— 0__55 —_— E (4.5.3)

On the other hand, if the cavity is filled with a dielectric with its loss tangent as tan ¢
while its walls are made of a perfect conductor then the quality factor Oy is given as

(4.5.4)

1
Qu= tan 0

When there is power loss both in the cavity walls as well as in the dielectric filling,
the quality factor Q is found from Q. and Q, as follows:

1 1 1

é :Q‘i‘Q—d (4.5.5)

Example 4.7: An air-filled rectangular cavity is made from a piece of copper WR-
90 waveguide. If it resonates at 9.379 GHz in TE,;; mode, find the required length ¢
and the QO of this resonator.
Specifications of WR-90 can be found in the appendix, as follows:
a=0.9in = 2.286 cm
and,
b=0.41in=1.016 cm

From (4.5.1),

1 9379\* /1)’
o \/( 300> <2a) 3383 = ¢ 38 cm
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Next, the surface resistance, R, is determined from (4.5.3) as 0.0253 Q and the O,
is found from (4.5.2) to be about 7858.

Example 4.8: A rectangular cavity made of copper has inner dimensions
a=1.6cm, b =0.71 cm, and ¢ = 1.56 cm. It is filled with Teflon (¢, = 2.05 and
tan § = 2.9268 x 10™*). Find the TE,;,; mode resonant frequency and Q of this
cavity.

From (4.5.1),

Jr 300 ! 2+ ! ’ 9379 MHz = 9.379 GH
= I zZ=9Y. V4
T /2.05\\2-0.016 2.0.0156

Since power dissipates both in the dielectric filling as well as in the sidewalls, overall
O will be determined from (4.5.5).

From (4.5.2) and (4.5.4), Q. and Q, are found to be 5489 and 3417, respectively.
Substituting these into (4.5.5), Q of this cavity is found to be 2106.

Circular Cylindrical Cavities

Figure 4.20 shows the geometry of a circular cylindrical cavity of radius r and height
h. It is filled with a dielectric material of relative permeability u,. and dielectric
constant ¢,. Its resonant frequency f, in megahertz is given as

fi(MHz) = 2;5}% (X%)Z(%”)z MHz (4.5.6)

where,

(4.5.7)

P, for TM modes
Fonm = Pom  for TE modes

Figure 4.20 Geometry of the circular cylindrical cavity resonator.
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TABLE 4.3 Zeros of J,(x) and J,,(x)

n Pn1 Pn2 Pn3 D Dra D3

0 2.405 5.520 8.654 3.832 7.016 10.173
1 3.832 7.016 10.173 1.841 5.331 8.536
2 5.136 8.417 11.620 3.054 6.706 9.969

where p,, represents the mth zero of the Bessel function of the first kind and order n
while p; . represents the mth zero of the derivative of the Bessel function. In other
words, these represent roots of the following equations, respectively (see Table 4.3).

J,(x)=0 (4.5.8)
and
aJ,(x)
o 0 (4.5.9)

The Q. of a circular cylindrical cavity operating in 7E,,,, mode and filled with a

lossless dielectric can be found from the following formula.

2
|:1 - (On ) :||:(pnm) +
47.7465 nm

e ) - <%> () H

In the case of TM,,,, mode, O, is given by

47.7456 [pﬁm - (1%)2]

- , 0 4.5.11
Qe = 57 (M) <2r> P> (4.5.11)
14 (=
7
For p =0,
47.7465
Pom _ (4.5.12)

Oc ™ 5. f(MHD) | N (%) ’

The quality factor Q4 due to dielectric loss and the overall QO are determined as
before from (4.5.4), (4.5.5) with appropriate Q..
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Example 4.9: Determine the dimensions of an air-filled circular cylindrical cavity
that resonates at 5 GHz in TE(;; mode. It should be made of copper and its height
should be equal to its diameter. Find Q of this cavity, given that n =0, m =p =1,
and i = 2r.

From (4.5.6), with y,, as 3.832 from Table 4.3, we get

2
38322+ (5)
2/~ —0.03955 m

2n
5000 - —
( 300)

and,

h=2r=0.0791 m

Since

[ 2
5. — — =9.3459- 1077
s =\ wpo \/27r 5.10°-47-10-7-5.8 - 107 o

Q of the cavity can be found from (4.5.10) as

51
2, (T
47.7465 - 108 [3‘832 +(3 }

- X - = 39984.6
9.3459-10-7-5- 10 {3_8322+<§>}+1

0.

Further, there is no loss of power in air (tan é = 0) Q is infinite, and therefore, Q is
the same as Q..

Dielectric Resonators (DR)

Dielectric resonators, made of high-permittivity ceramics, provide high Q with
smaller size. These resonators are generally a solid sphere or cylinder of circular or
rectangular cross-section. High-purity TiO, (e, ~ 100, tand ~ 0.0001) was used in
early dielectric resonators. However, it was found to be intolerably dependent on the
temperature. With the development of new ceramics, temperature dependence of DR
can be significantly reduced.
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Figure 4.21 Geometry of an isolated circular cylindrical dielectric resonator (DR).

Figure 4.21 shows an isolated circular cylindrical DR. Its analysis is beyond the
scope of this book. Its TE; s;-mode resonant frequency, f, in GHz, can be found from
the following formula:

.ﬁaﬁh)zéﬂ(l45+i)GHz (4.5.13)
re h

T

where r and 4 are in millimeters. This relation is found to be accurate within +2
percent if

2>%>05 (4.5.14)

and,

50 > ¢, > 30 (4.5.15)

An isolated DR is of almost no use in practive. A more practical situation is
illustrated in Figure 4.22 where it is coupled with a microstrip line in a conducting
enclosure. Assume that dielectric constants of the DR and the substrate are ¢, and ¢,
respectively. With various dimensions as shown (all in meters), the following
formulas can be used to determine its radius » and the height 4. If r is selected
between the following bounds then the formulas presented in this section are found
to have a tolerance of no more than 2 percent:'

1.2892 x 108 1.2892 x 108
x >r > . (4.5.16)
T/ S/

where f, is resonant frequency in Hz.
The height of the DR is then found as

_1 -~ o B o
h= 5 [tan 1{7ﬁtanh(o¢1t)} + tan 1{7Btanh(a2d)” (4.5.17)

'D. Kajfez and P. Guillon, Dielectric Resonators. Dedham MA: Artech House, 1986.
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Conducting
enclosure

A

d
DR

Microstrip

WATAYAYAYA
NAYAYAT AN

I
Substrate

Figure 4.22 Geometry of a circular cylindrical dielectric resonator (DR) in MIC configura-

tion.
where,
oy = k" — k2 (4.5.18)
o, = K2 — K2 (4.5.19)
B = ke, — k2 (4.5.20)
2.4
o240 2y43 (4.5.21)
g 2.405{1 + <y> + 0.291yi|
v =l e, — 1) — 5.784 (4.5.22)
and,
ky = 08, (4.5.23)

Example 4.10: Design a TE;;;-mode cylindrical dielectric resonator for use at
35GHz in the microstrip circuit shown in Figure 4.22. The substrate is 0.25 mm
thick and its dielectric constant is 9.9. The dielectric constant of the material
available for DR is 36. Further, the top of the DR should have a clearance of 1 mm
from the conducting enclosure.

Since

1.2892 x 108

=1.171 x 102 m
fid/e
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and,

1.2892 x 108

=6.139 x 10™*m
Jen/E

radius r of the DR may be selected as 0.835 mm.
Height % of the DR is then determined from (4.5.17)—(4.5.22), as follows:

= ke, — 1) — 5.784 = 2.707
2,405 y

kK = +
2.43
d 2.405{1 + <—) + 0.291y}
y

oy = Vk? — k2e, = 2.474 x 10°
a0 = Vk? — k2 =3.302 x 10°

=3.382 x 10°

and,

B = ke —k? =2.812 x 10°

After substituting these numbers into (4.5.17), 4 is found to be

1 o o
h=—|tan"{—L Vit tan{— 2 16683 x10*m = 0.668
ﬁ[a“ {ﬁtanh(fxlt)} an {ﬂtanh(oczd) 10m mm
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PROBLEMS

1. Determine the resonant frequency, bandwidth, and Q of the following circuit.
2nH 0.015 uF

i —

Vin (t) Vo (t)
l 50 Q l

2. Quality factor of a 100-nH inductor is 150 at 100 MHz. It is used in a series
resonant circuit with a 50-C load resistor. Find the capacitor required to resonate
this circuit at 100 MHz. Find loaded Q of the circuit.

3. Find capacitance C in the following series R-L-C circuit if it is resonating at
1200 rad/s. Compute output voltage v, (t) when v;,(t) = 4 cos(wt 4+ 0.2 ) V for
w as 1200rad/s, 300rad/s, and 4800 rad/s.

10 mH

rO e

Vin (t) Vo ()
| -

4. Magnitude of input impedance in the following series R-L-C circuit is found to
be 3Q at the resonant frequency of 1600 rad/s. Find the inductance L, O, and
the bandwidth.

L 20 uF

Ak S —

Vin (1) Vo ()
| ©
5. Determine the element values of a resonant circuit to filter all the sinusoidal
signals from 100 MHz to 130 MHz. This filter is to be connected between a
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voltage source with negligible internal impedance and a communication system
that has input impedance of 50 ohm. Plot its response over the frequency range
of 50 to 200 MHz.

6. Calculate the resonant frequency, Q, and bandwidth of the parallel resonant
circuit shown below.

2 nH

/‘—\0.015 pF <100 kQ

7. Find the resonant frequency, unloaded Q, and loaded Q of the following parallel

resonant circuit.

500 Q

Resonator circuit

Load

8. The parallel R-L-C circuit shown below is resonant at 20,000 radian/s. If its
admittance has a magnitude of 1 mS at the resonance then find the values of R

and L.

L 1

/‘-\0.05 uF <R
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9.

10.

11.

12.

13.

14.

15.

16.

17.

RESONANT CIRCUITS

Consider the loaded parallel resonant circuit shown below. Compute the
resonant frequency in radians per second, unloaded Q, and the loaded Q of
this circuit.

Load
50 uF__ 20mH

2kQ TN 10kQ

Resistance R in a parallel R-L-C circuit is 200 Q. The circuit has a bandwidth of
80rad/s with lower half-power frequency at 800rad/s. Find inductance and
capacitance of the circuit.

A parallel R-L-C circuit is resonant at 2 x 10° rad/s and it has a bandwidth
of 20,000rad/s. If its impedance at resonance is 2000Q, find the circuit
parameters.

A resonator is fabricated from a 2-/-long transmission line that is short-circuited
at its ends. Find its Q.

A 3-cm-long 100-Q air-filled coaxial line is used to fabricate a resonator. It is
short circuited at one end while a capacitor is connected at the other end to
obtain the resonance at 6 GHz. Find the value of this capacitor.

A 100-Q air-filled coaxial line of length / is used to fabricate a resonator. It is
terminated by 10 —j5000 Q at its ends. If the signal wavelength is 1 m, find the
required length for the first resonance and the O of this resonator.

Design a half-wavelength-long coaxial line resonator that is short circuited at its
ends. Its inner conductor radius is 0.455 mm and the inner radius of the outer
conductor is 1.499 mm. The conductors are made of copper. Compare the O of
an air-filled to that of a Teflon-filled resonator operating at 800 MHz. The
dielectric constant of Teflon is 2.08 and its loss tangent is 0.0004.

Design a half-wavelength-long microstrip resonator using a 50-ohm line that is
short circuited at its ends. The substrate thickness is 0.12 cm with its dielectric
constant 2.08 and the loss tangent 0.0004. The conductors are of copper.
Compute the length of the line for resonance at 900 MHz and the Q of the
resonator.

Secondary side of a tightly coupled transformer is terminated by a 2kQ in
parallel with capacitor C,. A current source / = 10 cos(4 x 10%) mA is
connected on its primary side. The inductance L; of its primary is 0.30 uH,
mutual inductance M = 3 pH, and the unloaded QO of the secondary coil is 70.



18.

19.

20.

21.

22.
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Determine the value of C, such that this circuit resonates at 4 x 10° rad/s. Find
its input impedance and also the output voltage at the resonant frequency. What
is the circuit bandwidth?

A 16-Q resistor terminates the secondary side of a tightly coupled transformer.
A 40-pF capacitor is connected in series with its primary coil that has an
inductance L; at 100 mH. If the secondary coil has an inductance L, at 400 mH,
then find the resonant frequency and the Q of this circuit.

A 16-Q resistor terminates the secondary side of a tightly coupled transformer.
A 30-uF capacitor is connected in series with its primary coil that has an
inductance of 25mH. If the circuit QO is 50 find the inductance L, of the
secondary coil.

An air-filled rectangular cavity is made from a piece of copper WR-430
waveguide. If it resonates at 2 GHz in TE,;; mode, find the required length ¢
and the Q of this resonator.

Design an air-filled circular cylindrical cavity that resonates at 9 GHz in TE,,
mode. It should be made of copper and its height should be equal to its diameter.
Find Q of this cavity.

Design a TE; s mode cylindrical dielectric resonator for use at 4.267 GHz in the
microstrip circuit shown in Figure 4.22. The substrate is 0.7 mm thick and its
dielectric constant is 9.6. Dielectric constant of the material available for DR is
34.19. Further, the top of the DR should have a clearance of 0.72 mm from the
conducting enclosure.
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IMPEDANCE MATCHING NETWORKS

One of the most critical requirements in the design of high-frequency electronic
circuits is that the maximum possible signal energy is transferred at each point. In
other words, the signal should propagate in a forward direction with a negligible
echo (ideally, zero). Echo signal not only reduces the power available but also
deteriorates the signal quality due to the presence of multiple reflections. As noted in
the preceding chapter, impedance can be transformed to a new value by adjusting the
turn ratio of a transformer that couples it with the circuit. However, it has several
limitations. This chapter presents a few techniques to design other impedance
transforming networks. These circuits include transmission line stubs, and resistive
and reactive networks. Further, the techniques introduced are needed in active circuit
design at RF and microwave frequencies.

As shown in Figure 5.1, impedance matching networks are employed at the input
and the output of an amplifier circuit. These networks may also be needed to perform
some other tasks, such as filtering the signal and blocking or passing the dc bias
voltages. This chapter begins with a section on the impedance matching techniques
that use a single reactive element or stub connected in series or in shunt. Theoretical

Z
s — Impedance - Transistor Impedance [
transforming with dc bias transforming Load
circuit circuit circuit

Figure 5.1 Block diagram of an amplifier circuit.
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principles behind the technique are explained, and the graphical procedure to design
these circuits using the Smith chart is presented. Principles and procedures of the
double-stub matching are discussed in the following section. The chapter ends with
sections on resistive and reactive L-section matching networks. Both analytical as
well as graphical procedures to design these networks using ZY-charts are included.

5.1 SINGLE REACTIVE ELEMENT OR STUB MATCHING

When a lossless transmission line is terminated by an impedance Z; , the magnitude of
the reflection coefficient (and hence, the VSWR) on it remains constant but its phase
angle can be anywhere between +180° and —180°. As we have seen in Chapter 3, it
represents a circle on the Smith chart and a point on this circle represents the
normalized load. As one moves away from the load, impedance (or the admittance)
value changes. This movement is clockwise on the VSWR circle. The real part of the
normalized impedance (or the normalized admittance) becomes unity at certain
points on the line. Addition of a single reactive element or a transmission line stub at
this point can eliminate the echo signal and reduce the VSWR to unity beyond this
point. A finite-length transmission line with its other end open or short circuit is called
the stub and behaves like a reactive element as explained in Chapter 3.

In this section, we discuss the procedure for determining the location on a lossless
feeding line where a stub or a reactive element can be connected to eliminate the
echo signal. Two different possibilities, a series or a shunt element, are considered.
Mathematical equations as well as the graphical methods are presented to design the
circuits.

A Shunt Stub or Reactive Element

Consider a lossless transmission line of characteristic impedance Z; that is
terminated by a load admittance Y;, as shown in Figure 5.2. Corresponding
normalized input admittance at a point d; away from the load can be found from
(3.2.6) as follows:

7o Y, -+ tan(Bd,)
"1 45, tan(Bd,)

L_ ds 4"
i D ¥, =G ,+/B,

Figure 5.2 Transmission line with a shunt matching element.

(5.1.1)
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In order to obtain a matched condition at dg, the real part of the input admittance
must be equal to the characteristic admittance of the line; i.e., the real part of (5.1.1)
must be unity. This requirement is used to determine d. The parallel susceptance B,
is then connected at d, to cancel out the imaginary part of Y;,. Hence,

B, +./B? —A(1 — Gy)
d, = Lggn-t [ ZE2VE = (5.1.2)

= —tan~

B 4

where 4 = G (G, — 1) + B2.
The imaginary part of the normalized input admittance at d is found as follows.

5 _ 1Bt tan(pd)} x {1 — By tan(Bdy)} — G tan(pd,)

in — 5 = 5 (5.1.3)
{GL tan(ﬁds)} + {1 - BL tan(ﬁds)}
The other requirement to obtain a matched condition is
BS = _Bin (5.1 .4)

Hence, a shunt inductor is needed at d; if the input admittance is found capacitive
(i.e., By, is positive). On the other hand, it will require a capacitor if Y, is inductive
at d. As mentioned earlier, a lossless transmission line section can be used in place
of this inductor or capacitor. Length of this transmission line section is determined
according to the susceptance needed by (5.1.4) and the termination (i.e., an open
circuit or a short circuit) at its other end. This transmission line section is called a
stub. If £ is the stub length that has a short circuit at its other end, then

1 cot '(B,,) (5.1.5)

1 -
¢, =—cot (=B, =
S S B

p

On the other hand, if there is an open circuit at the other end of the stub, then

6, = %tan_l(és) = %tan_l(—E’m) (5.1.6)

A Series Stub or Reactive Element

If a reactive element (or a stub) needs to be connected in series as shown in Figure
5.3, the design procedure can be developed as follows. The normalized input
impedance at d; is

_ Z +jtan(Bdy)

= (5.1.7)
1 +jZ; tan(fdy)
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I::I Z, =R +jX,

Figure 5.3 Transmission line with a matching element connected in series.

In order to obtain a matched condition at dj, the real part of the input impedance
must be equal to the characteristic impedance of the line; i.e., the real part of (5.1.7)
must be unity. This condition is used to determine d,. A reactance X, is then
connected in series at d; to cancel out the imaginary part of Z;,. Hence,

1 X, £ /X2 —A4,(1—Ry)
d, i L (5.1.8)

= Btan_ AZ

where, 4, = R (R, — 1) + X7.
The imaginary part of the normalized input impedance at d; is found as follows:

5 _ W+ tan(Bd)} x {1 — X tan(pdy)} — RE tan(pdy)
" {Ry tan(Bdy)}* + {1 — X, tan(Bdy)}*

(5.1.9)

In order to obtain a matched condition at d,, the reactive part X;, must be
eliminated by adding an element of opposite nature. Hence,

X, = X, (5.1.10)

Therefore, a capacitor will be needed in series if the input impedance is inductive. It
will require an inductor if input reactance is capacitive. As before, a transmission
line stub can be used instead of an inductor or a capacitor. Length of this stub with
an open circuit at its other end can be determined as follows.

0, = %cot(—)_(s) = %cot()_(in) (5.1.11)
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However, if the stub has a short circuit at its other end, its length will be a quarter-
wavelength shorter (or longer, if the resulting number becomes negative) than this
value. It can be found as

L= %tan()_(s) = %tan(—)_(in) (5.1.12)

Note that the location d, and the stub length ¢ are periodic in nature in both cases.
It means that the matching conditions will also be satisfied at points one-half
wavelength apart. However, the shortest possible values of d and £, are preferred
because those provide the matched condition over a broader frequency band.

Graphical Method

These matching networks can also be graphically designed using a Smith chart. The
procedure is similar for both series as well as shunt-connected elements, except that
the former is based on the normalized impedance while the latter works with
normalized admittance. It can be summarized in the following steps.

1. Determine the normalized impedance of the load and locate that point on the
Smith chart.

2. Draw the constant VSWR circle. If the stub needs to be connected in parallel,
move a quarter-wavelength away from the load impedance point. This point is
located at the other end of the diameter that connects the load point with the
center of the circle. For a series-stub, stay at the normalized impedance point.

3. From the point found in step 2, move toward the generator (clockwise) on the
VSWR circle until it intersects the unity resistance (or conductance) circle.
Distance traveled to at this intersection point from the load is equal to d,.
There will be at least two such points within one-half wavelength from the
load. A matching element can be placed at either one of these points.

4. If the admittance in the previous step is 1 + jB, then a susceptance of —jB in
shunt is needed for matching. This can be a discrete reactive element (inductor
or capacitor, depending upon a negative or positive susceptance value) or a
transmission line stub.

5. In the case of a stub, the required length is determined as follows. Since its
other end will have an open or a short, VSWR on it will be infinite. It is
represented by the outermost circle of the Smith chart. Locate the desired
susceptance point (i.e., 0 — jB) on this circle and then move toward load
(counterclockwise) until an open circuit (i.e., a zero susceptance) or a short
circuit (an infinite susceptance) is found. This distance is equal to the stub
length £,.

For a series reactive element or stub, steps 4 and 5 will be same except that the
normalized reactance replaces the normalized susceptance.
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1

:|ZL=50-j7SQ

NN

Figure 5.4 A shunt stub matching network.

Example 5.1: A uniform, lossless 100-ohm line is connected to a load of
50 — j75 ohm, as illustrated in Figure 5.4. A single stub of 100-ohm characteristic
impedance is connected in parallel at a distance d, from the load. Find the shortest
values of d, and stub length ¢, for a match.

As mentioned in the preceding analysis, design equations (5.1.2), (5.1.3), (5.1.5),
and (5.1.6) for a shunt stub use admittance parameters. On the other hand, the series
connected stub design uses impedance parameters in (5.1.8), (5.1.9), (5.1.11), and
(5.1.12). Therefore, d, and ¢, can be theoretically determined as follows.

o _h_Z,_ 100

—L_Zo_ 0 0.6154 +,0.9231
LTy, Tz 50,75 *

A= G (G, — 1)+ B? =0.6154(0.6154 — 1) + 0.9231%2 = 0.6154

From (5.1.2), the two possible values of d are

1 —0.75 + \/(—0.75)2 —0.6154(1 — 0.5)

= tan~! =0.1949 1
dy =5 tan 0.6154 0.1949
and,
1 —0.75 — \/(—0.75)2 —0.6154(1 — 0.5)
d, = —tan"! =0.0353
2 0.6154

At 0.1949 /4 from the load, the real part of the normalized admittance is unity
while its imaginary part is —1.2748. Hence, the stub should provide j1.2748 to
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cancel it out. Length of a short-circuited stub, £, is calculated from (5.1.5) as
follows.

1
Q:EmF%42M$=0”Mi

On the other hand, normalized admittance is 1 4 ;1.2748 at 0.0353 4 from the
load. In order to obtain a matched condition, the stub at this point must provide a
normalized susceptance of —;j1.2748. Hence,

1
4=BmFMQM$=&mwz

Thus, there are two possible solutions to this problem. In one case, a short-circuited
0.3941-2-long stub is needed at 0.1949 A from the load. The other design requires a
0.1059 A long short-circuited stub at 0.0353 4 from the load. It is preferred over the
former design because of its shorter lengths.

The following steps are needed for solving this example graphically with the
Smith chart.

1. Determine the normalized load admittance.

= 50 — ;75
Z, =——=0.5—-,0.75
L7100 /
2. Locate the normalized load impedance point on the Smith chart. Draw the
VSWR circle as shown in Figure 5.5.

3. From the load impedance point, move to the diametrically opposite point and
locate the corresponding normalized load admittance. It is point 0.62 + j0.91
on the chart.

4. Locate the point on the VSWR circle where the real part of the admittance is
unity. There are two such points with normalized admittance values 1 + ;1.3
(say, point A) and 1 — j1.3 (say, point B), respectively.

5. Distance d of 1 4 1.3 (point A) from the load admittance can be determined
as 0.036 4 (i.e., 0.170 A — 0.134 1) and for point B (1 —;1.3) as 0.195 4 (i.e.,
0.329 4 — 0.134 2).

6. If a susceptance of —j1.3 is added at point A or j1.3 at point B, the load will
be matched.

7. Locate the point —j1.3 along the lower circumference of the chart and from
there move toward the load (counterclockwise) until the short circuit (infinity
on the chart) is reached. Separation between these two points is as
0254 —0.146 4 = 0.104 A. Hence a 0.104-A-long transmission line with a
short circuit at its rear end will have the desired susceptance for point A.

8. For a matching stub at point B, locate the point j1.3 on the upper circumfer-
ence of the chart and then move toward the load up to the short circuit (i.e., the
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szo

014 v \

Figure 5.5 Graphical design of matching circuit for Example 5.1.

right-hand end of the chart). Hence, the stub length £ for this case is
determined as 0.025 4+ 0.146 4 = 0.396 /.

Therefore, a 0.104-A-long stub at 0.036 A from the load (point A) or a 0.396-/-long
stub at 0.195 1 (point B) from the load will match the load. These values are
comparable to those obtained earlier.

As mentioned earlier, point A is preferred over point B in matching network
design because it is closer to the load, and also the stub length in this case is shorter.
In order to compare the frequency response of these two designs, the input reflection
coefficient is calculated for the network. Its magnitude plot is shown in Figure 5.6.
Since various lengths in the circuit are known in terms of wavelength, it is assumed
that the circuit is designed for a signal wavelength of ;. As signal frequency is
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1.0~

0.8

0.6

0.4

0.2

I |
%90 0.5 1.0 L5 2.0

Normalized wavelength ————»
Figure 5.6 Magnitude of the reflection coefficient as a function of signal frequency.

changed, its wavelength changes to 4. The normalized wavelength used for this plot
is equal to A4/4. Since the wavelength is inversely related to the propagation
constant, the horizontal scale may also be interpreted as a normalized frequency
scale, with 1 being the design frequency.

Plot (a) in Figure 5.6 corresponds to design A (that requires a shorter stub closer
to the load) while plot (b) represents design B (a longer stub and away from the
load). At the normalized wavelength of unity, both of these curves go to zero. As
signal frequency is changed on either side (i.e., decreased or increased from this
setting), reflection coefficient increases. However, this change in plot (a) is gradual
in comparison with that in plot (b). In other words, for an allowed reflection
coefficient of 0.2, bandwidth for design A is of,, which is much wider in
comparison with of, of design B.

Example 5.2: A lossless 100-Q line is to be matched with a 100/[2 + j3.732] Q
load by means of a lossless short-circuited stub, as shown in Figure 5.7. Character-
istic impedance of the stub is 200 Q. Find the position closest to the load and the
length of the stub using a Smith chart.

1. In this example, it will be easier to determine the normalized load admittance
directly, as follows.

1z
V, = — = 29— 2413732
LT 7 Tz +J
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Z,=100Q [:I 100
Z,=5—mrsQ

Z,=200Q

™~
4

™~

Figure 5.7 Matching circuit for Example 5.2.

2. Locate this normalized admittance point on the Smith chart and draw the
VSWR circle. It is illustrated in Figure 5.8.

3. Move toward the generator (clockwise) on the VSWR circle until the real part
of the admittance is unity. One such point is 1 — ;2.7 and the other is 1 +;2.7.
Since the former is closer to the load, the stub must be placed at this point.
Hence,

d;,=(0.3-0.217)2=0.083 4

4. Normalized susceptance needed for matching at this point is j2.7. However, it
is normalized with 100 Q, while characteristic impedance of the stub is 200 Q.
This means that the normalization must be corrected before determining the
stub length £. It can be done as follows.

= J27x200

jBs = 00— j5.4

5. Point j5.4 is located on the upper scale of the Smith chart. Moving from this
point toward the load (that is counterclockwise), open-circuit admittance
(zero) is found first. Moving further in the same direction, the short-circuit
admittance point is found next. This means that the stub length will be shorter
with an open circuit at its other end. However, a short-circuited stub is used in
Figure 5.7. Hence,

£,=022/40252=047)

Example 5.3: A load reflection coefficient is given as 0.4/ — 30°. It is desired to get
a load with reflection coefficient at 0.2/45°. There are two different circuits given in
Figure 5.9. However, the information provided for these circuits is incomplete.
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Figure 5.8 Graphical solution of Example 5.2.

|<— 0.0835837»—-'

ri,,=0.2445°——>/'\c |—' Z
|

I'.=04 £-30°

(@)

l<— 0.029928A —>|

0—

L

[ = 0.2.£45° —> %4

I =04 2£-30°
(b)

Figure 5.9 The two circuit designs for Example 5.3.
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Complete or verify the designs at 4 GHz. Assume that characteristic impedance is
50Q.

This example can be solved using equations (3.2.4) and (3.2.6) of Chapter 3.
Alternatively, a graphical procedure can be adopted. Both of these methods are
illustrated in the following.

From (3.2.4), the given load and the desired normalized impedance or admittance
can be calculated as follows. The normalized load impedance is

_ 14T, 1404/-30° .
7 = - — 1.7980 — j0.8562
LTI, 1-04/-30° J

The desired normalized input impedance is

. 14T, 140245
ALY — 1.2679 +0.3736
n =T, 1—0.2/45 T

and the corresponding normalized input admittance is

5 _1-T, 1-0245
"I+, 1+02/450

=0.7257 —;0.2138

e From (3.2.6), the normalized input admittance at £ = 0.0836 4 from the load is

-1 1+/Z tan(pe
7, = A = LAY _ 05 oeon
Zy 2y +jtan(Be)

Hence, the real part of this admittance is equal to the desired value. However,
its imaginary part is off by —j0.9049. A negative susceptance is inductive while
the given circuit has a capacitor that adds a positive susceptance. Therefore, the
desired reflection coefficient cannot be obtained by the circuit given in Figure
5.9 (a).

e In the circuit shown in Figure 5.9 (b), components are connected in series.
Therefore, it will be easier to solve this problem using impedance instead of
admittance. From (3.2.6), the normalized impedance at £, = 0.0299 A from the
load is

5 Z; +jtan(Bl,)

0 = — =1.2679 — j0.9456
1 +jZ; tan(p¢,)

Hence, its real part is equal to the desired value. However, its imaginary part
needs modification by j1.3192 to get j0.3736. Hence, an inductor is required at
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this point. The circuit given in Figure 5.9 (b) has a series inductor. Therefore,
this circuit will have the desired reflection coefficient provided its value is

1.3192 x 50
=" 7777 H=26245x 10"°H ~ 2.62 nH
2 x 7 x4 % 10° % t

Figure 5.10 illustrates the graphical procedure to solve this example using a
Smith chart. VSWR circles are drawn for the given reflection coefficient magnitudes.
Using the phase angle of load reflection coefficient, the normalized load impedance
point is identified as 1.8 — j0.85, which is close to the value calculated earlier. The
process is repeated for the desired input reflection coefficient and the corresponding
input impedance point is identified as 1.27 4 0.37. For the circuit given in Figure
5.9(a), the admittance (normalized) points are found as 0.4540.22 and
0.73 —j0.21, respectively. Next, move from the normalized load admittance point

0,15

o8

Figure 5.10 Graphical solution to Example 5.3.
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toward the generator by a distance of 0.083583 / (i.e., 0.042 1+ 0.084 2 = 0.126 1
of the scale “wavelengths toward generator”). The normalized admittance value of
this point is found to be 0.73 4 j0.69. Hence, its real part is the same as that of the
desired input admittance. However, its susceptance is j0.69, whereas the desired
value is —j0.2. Hence, an inductor will be needed in parallel at this point. Since the
given circuit has a capacitor, this design is not possible.

For the circuit shown in Figure 5.9 (b), elements are connected in series.
Therefore, normalized impedance points need to be used in this case. Move from
the load impedance (1.8 —;0.85) point toward the generator by a distance of
0.029928 1 (i.e., 0.292 1 4+ 0.03 A = 0.322 4 on the “wavelengths toward generator”
scale). Normalized impedance value at this point is 1.27 —;0.95. Thus, the
resistance at this point is found to be equal to the desired value. However, its
reactance is —j0.95, whereas the required value is j0.37. Therefore, a series
reactance of j1.32 is needed at this point. The given circuit has an inductor that
provides a positive reactance. Hence, this circuit will work. The required inductance
L is found as follows.

1.32 x 50

= I x x4 1091 — 2626 nH

5.2 DOUBLE-STUB MATCHING

The matching technique presented in the preceding section requires that a reactive
element or stub be placed at a precise distance from the load. This point will shift
with load impedance. Sometimes it may not be feasible to match the load using a
single reactive element. Another possible technique to match the circuit employs two
stubs with fixed separation between them. This device can be inserted at a
convenient point before the load. The impedance is matched by adjusting the
lengths of the two stubs. Of course, it does not provide a universal solution. As will
be seen later in this section, separation between the two stubs limits the range of load
impedance that can be matched with a given double-stub tuner.

Let £, and ¢, be the lengths of two stubs, as shown in Figure 5.11. The first stub
is located at a distance ¢ from the load, Z; = R + jX ohm. Separation between the
two stubs is d, and characteristic impedance of every transmission line is Z,. In
double-stub matching, load impedance Z; is transformed to normalized admittance
at the location of the first stub. Since the stub is connected in parallel, its normalized
susceptance is added to that and then the resulting normalized admittance is
transferred to the location of second stub. Matching conditions at this point require
that the real part of this normalized admittance be equal to unity while its imaginary
part is canceled by a conjugate susceptance of the second stub. Mathematically,

Y + j(B, + tan(fd)) B

T+ )7 4B anpa) /2! (5.2.1)
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\
Z, Zo I:I Zi=RL+jXu
\/2\4 '\/1 N

Figure 5.11 Double-stub matching network.

where,

1 +,/Z tan(Bl) Y +jtan(f0) -

y =21 = - =G+jB (5.2.2)
Z; +jtan(fe) 141, tan(fe)

where jB, and jB, are the susceptance of the first and second stubs, respectively, and
f is the propagation constant over the line.
For

. Y + j(B, + tan(pd)) _
1 4+ j(Y +jB,) tan(Bd)

G? tan®(Bd) — G{1 + tan*(Bd)} + {1 — (B + B)) tan(Bd)}* =0  (5.2.3)

Since conductance of the passive network must be a positive quantity, (5.2.3)
requires that a given double stub can be used for matching only if the following
condition is satisfied.

0 < G < csc*(Bd) (5.2.4)

Two possible susceptances of the first stub that can match the load are determined
by solving (5.2.3) as follows.

B, = cot(ﬁd)[l — Btan(pd) + \/ G sec?(pd) — {G tan(pd)}? } (5.2.5)
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Normalized susceptance of the second stub is determined from (5.2.1) as follows:

B _ G*tan(Bd) — {B + B, + tan(fd)} x {1 — (B + B,) tan(fd)}
2 {Gtan(Bd)} + {1 — (B + B)) tan(d))?

(5.2.6)

Once the susceptance of a stub is known, its short-circuit length can be determined
easily as follows:

0 = lcot—l(—Bl) (5.2.7)
B
and,
0, = %cot_l(—fiz) (5.2.8)

Graphical Method

A two-stub matching network can also be graphically designed with the help of the
Smith chart. This procedure follows the preceding analytical concepts. It can be
summarized as follows.

1. Locate the normalized load-impedance point on the Smith chart and draw the
VSWR circle. Move to the corresponding normalized admittance point. If the
load is connected right at the first stub then go to the next step; otherwise,
move toward the generator (clockwise) by 2¢ on the VSWR circle. Assume
that the normalized admittance of this point is g + jb.

2. Rotate the unity conductance circle counterclockwise by 2fd. The conduc-
tance circle that touches this circle encloses the “forbidden region.” In other
words, this tuner can match only those Y that lie outside this circle. It is a
graphical representation of the condition expressed by (5.2.4).

3. From g + jb, move on the constant conductance circle till it intersects the
rotated unity conductance circle. There are at least two such points, providing
two design possibilities. Let the normalized admittance of one of these points
be g +jb,.

4. The required normalized susceptance of the first stub is j(b; — b).

5. Draw a VSWR circle through point g 4 jb; and move toward the generator
(clockwise) by 28d on it. This point will fall on the unity conductance circle of
the Smith chart. Assume that this point is 1 + jb,.

6. The susceptance required from the second stub is —jb,.

7. Once the stub susceptances are known, their lengths can be determined
following the procedure used in the previous technique.
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Y

Z,=50Q
Z,=30Q | 7,=500Q Z,=100+j50Q
Z,=50Q

~
7z NS

N

Figure 5.12 A two-stub matching network for Example 5.4.

Example 5.4: For the double-stub tuner shown in Figure 5.12, find the shortest
values of ¢; and ¢, to match the load.

Since the two stubs are separated by 4/8, fd is equal to n/4 and the condition
(5.2.4) gives

0<G<2

That means the real part of the normalized admittance at the first stub (load side
stub) must be less than 2 otherwise it cannot be matched.
The graphical procedure requires the following steps to find stub settings.

_ 100 450
7, = AP0

= 2+l

L 50 +J

Locate this normalized load impedance on the Smith chart (point A) and draw
the VSWR circle, as depicted in Figure 5.13. Move to the diametrically
opposite side and locate the corresponding normalized admittance point B at
0.4 —;0.2.

Rotate the unity conductance circle counterclockwise by 2fd = n/2 = 90°.
This shows that this tuner can match only admittance with a real part less than
2 (because it touches the constant conductance circle of 2).

Move clockwise from point 0.4 — ;0.2 (0.463 A on the “wavelengths toward
generator” scale) by a distance of 2¢ = /2 = 90° or 4/8 on the VSWR
circle and locate the point C at 0.088 2 (0.463 A + 0.125 1 = 0.588 1) as the
normalized admittance 0.5 — j0.5 of the load transferred to the first stub’s
location.

. From point C, move on the constant conductance circle until it intersects the

rotated unity conductance circle. There are two such points, D and F. If point
D is used for the design then the susceptance of the first stub must be equal to
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Figure 5.13 Smith chart solution to Example 5.4.

—j0.37 (i.e., j0.13 —;0.5). On the other hand, it will be j1.36 (i.e.,
j1.86 —j0.5) for point F.
. Locate point —j0.37 and move toward the load along the circumference of the

Smith chart until you reach the short circuit (infinite susceptance). This gives
£, = 0.194 A. Similarly, ¢, is found to be 0.4 4 for j1.36.

. Draw the VSWR circle through point D and move on it by 0.125 4 ( i.e., point
0.154 /. on the “wavelengths toward generator” scale). The real part of the
admittance at this point (point E) is unity while its susceptance is j0.72.
Therefore, the second stub must be set for —;j0.72 if the first one is set for
—j0.37. Hence, the second stub is required to be 0.15 4 long (i.e., £, = 0.15 A).
. Draw the VSWR circle through point F and move on it by 0.125 4 (0.3 / on the
“wavelengths toward generator” scale). The real part of the admittance at this
point (point G) is unity while its susceptance is —;2.7. Therefore, the second
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stub must be set for ;2.7 if the first one is set for j1.36. In this case, the length
of the second stub is found as 0.442 4 (i.e., £, = 0.442 7).

9. Hence, the length of the first stub should be equal to 0.194 A and that of the
second stub should be 0.15 4. The other possible design, where the respective
lengths are found to be 0.4 A and 0.442 4, is not recommended.

Alternatively, the required stub susceptances and, hence, lengths £, and ¢, can be
calculated from (5.2.2) to (5.2.8) as follows.

Y =G+,jB=0.54,0.5
B, =j1.366 or — j0.366

For B, = j1.366, B, =j2.7321, and for B, = —j0.366, B, = —j0.7321. The corre-
sponding lengths are found to be 0.3994 4, 0.4442 1, 0.1942 A, and 0.1494 4. These
values are fairly close to those obtained graphically from the Smith chart.

5.3 MATCHING NETWORKS USING LUMPED ELEMENTS

The matching networks described so far may not be useful for certain applications.
For example, the wavelength of a 100-MHz signal is 3 m and, therefore, it may not
be practical to use the stub matching in this case because of its size on a printed
circuit board. This section presents matching networks utilizing discrete components
that can be useful especially in such cases. There are two different kinds of L-section
matching circuits described here. This section begins with resistive matching circuits
that can be used for broadband applications. However, these networks dissipate
signal energy and also introduce thermal noise. This section ends with a presentation
of the reactive matching networks that are almost lossless but the design is frequency
dependent.

Resistive L-Section Matching Circuits

Consider a signal generator with internal resistance R,. It feeds a load resistance R, ,
as illustrated in Figure 5.14. Since source resistance is different from the load, a part
of the signal is reflected back. Assume that R, is larger than R; and there is a
resistive L-section introduced between the two. Further, voltages at its input and
output ports are assumed to be V;, and V, respectively. If this circuit is matched at
both its ports then the following two conditions must be true.

1. With R; connected, resistance looking into the input port must be R,.

2. With R, terminating the input port, resistance looking into the output port must
be R; .
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R R
O B o<
Ry
Generator Matching network Load

Figure 5.14 A resistive L-section matching circuit.

From the first condition,

Ry+R. R, + Ry

and from the second,

_ Ry(Ri+R)  RiRy+ RyR
Ry+Ri+R, Ry,+R +R

Ry (5.3.2)

Equations (5.3.1) and (5.3.2) can be solved for R, and R, as follows:

R, = R.(R,—R,) (53.3)

R*R
R, = [—Ls 53.4
> R —R, ( )

The voltage across the load and the attenuation in the matching network are

and,

Vi 14 R,R
Vo= Ry|R. = = - (53.5)
R, + R, ||R, Vi. RRy +R\R_+ R,R;,
and,
R,R
Attenuation in dB = 20 log{ 2L } (5.3.6)
Ri(Ry + Ry) + RyRy,

Note that R, and R, are real only when Ry is greater than R; . If this condition is
not satisfied (i.e., R, < Ry), the circuit shown in Figure 5.14 will require modifica-
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tion. Flipping the L-section the other way around (i.e., R; connected in series with
R; and R, across the input) will match the circuit. Design equations for that case can
be easily obtained.

Example 5.5: Internal resistance of a signal generator is 75 ohm. If it is being used
to excite a 50-ohm transmission line then design a resistive network to match the
two. Calculate the attenuation in dB that occurs in the inserted circuit.

Since R; = 50 ohm and R, = 75 ohm, R, is greater than R;, and therefore, the
circuit shown in Figure 5.14 can be used.

R, = /75(75 — 50) = 43.3Q

[75 - 502
Ry=,— " =86.6Q
2= 75259~ 506
and,

86.6 - 50
43.3(86.6 + 50) + 86.6 - 50
— —7.48 dB

Attenuation in dB = 20 10g( > = 2010g(0.4227)

The final circuit arrangement is shown in Figure 5.15.

Reactive L-Section Matching Circuits

As mentioned earlier, resistive matching circuits are frequency insensitive but
dissipate a part of the signal power that adversely affects the signal-to-noise ratio.
Here, we consider an alternative design using reactive components. In this case,
power dissipation is ideally zero but the matching is frequency dependent.

Consider the two circuits shown in Figure 5.16. In one of these circuits, resistor
is connected in series with a reactance X,, while in the other, resistor Rp is

A

R R

Q) Vin & ﬁ> Vo Z, =50 ohm

Generator Matching network Load

R

S

Figure 5.15 Resistive matching circuit for Example 5.5.
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R Ry
! J X

%

Figure 5.16 Series- and parallel-connected impedance circuits.

connected in parallel with a reactance X;,. If impedance of one circuit is complex
conjugate of the other, then

j XPRP

IR + /Xl = | o——+
s s Rp+]Xp

or,

X, R

VR + X2 =L (5.3.7)

/R34 X7

The quality factor, O, of a reactive circuit is defined in Chapter 4 as follows:

Energy stored in the network
)
Average power loss

0=

where o is angular frequency of the signal.
For a series circuit,

X,
0= 172 (5.3.8)
and, for a parallel circuit,
0= % (5.3.9)
p

Assuming that the quality factors of these two circuits are equal, (5.3.7) can be
simplified as follows.

R

R
JRE LR = (Q)p :>RS/1+QQZL
2
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Hence,

2 RP
1+0=F (5.3.10)

S

The design procedure is based on equations (5.3.8)—(5.3.10). For a resistive load
to be matched with another resistor (it may be a transmission line or generator), R,
and R, are defined such that the former is greater. O of the circuit is then calculated
from (5.3.10). Respective reactances are subsequently determined from (5.3.8) and
(5.3.9). If one reactance is selected capacitive then the other must be inductive. X,
will be connected in parallel with R, and X, will be in series with R,. The following
example illustrates the procedure.

Example 5.6: Design a reactive L-section that matches a 600-Q resistive load to a
50-Q transmission line. Determine component values if the matching is desired at
400 MHz.

Since R, must be larger than Ry, the 600-Q load is selected as R, and 50-Q line as
R,. Hence, from (5.3.10) we have

R, 600
Q2+1:R_":%:12:>Q:«/11:3.3166

S

Now, from (5.3.8) and (5.3.9),

X, = OR, =3.3166 - 50 = 165.8312Q

14
= — == ,9 Sz

Therefore, either one of the two circuits in Figure 5.17 can be used to match the load
with the line.

500 OR 50Q

X, Xp
600 Q T 600 Q

® @i

Figure 5.17 Design of two reactive matching circuits for Example 5.6.
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For circuit (i) in Figure 5.17, component values are determined as follows.

X, =165.8312 =

S

1
~2.4-10712F = 2.4 pF

C
$2.7-400-10°-165.8312

and,

X, = 180.9068 = oL,

180.9068

= =  —71.9805-10"°H~ 72 nH
P =2 740010 n

Similarly, the component values for circuit (ii) in Figure 5.17 are

X, = 165.8312 = oL,

165.8312

=— " —659821-10"°H ~ 66 nH
S =2 7400 105 g

and,

1
X, = 180.9068 = ——
P oC,
1

C. = =22-1002F=22pF
P =2 7-400 105 - 180.9068 p

Example 5.7: Consider the preceding example again and transform a 600-ohm
resistive load to a 173.2-ohm by adjusting the O of a matching circuit. Continue the
transformation process to get 50 ohm from 173.2 ohm. Compare the frequency
response (reflection coefficient versus frequency) of your circuits.

For the first part of this example, R, is 600 ohm and Ry is 173.2 ohm. Hence, from

(5.3.8)-(5.3.10),
IR 600
= [2—1=/———1=1569778
0 R, 173.2

X, = OR, = 271.8856Q
and,

X, =— = 382.2196Q

o
Q|
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Repeating the calculations with R, = 173.2 Q and R, = 50 €, for the second part
of the problem, we get

R 1732
= [ = A = 15697
o= [2-1= 5

This value of Q is very close to that obtained earlier. This is because 173.2 is close to
the geometric mean of 600 and 50.
Hence,

X, = OR, = 78.4857Q

and,

R}"
X, =5 =11033860

Two of the possible circuits (iii and iv) are shown in Figure 5.18 along with their
component values. For these circuits, the impedance that the 50-ohm transmission
line sees can be determined. The reflection coefficient is then determined for each
case. This procedure is repeated for the circuits obtained in Example 5.6 as well.
Magnitude of the reflection coefficient for each of these four cases is displayed in
Figure 5.19. Curves (a) and (b) are obtained for circuits (i) and (ii) of Figure 5.17,
respectively. The frequency response of circuit (iii) in Figure 5.18 is illustrated by
curve (c) of Figure 5.19 while curve (d) displays the frequency response of circuit
(iv). The horizontal axis of Figure 5.19 represents the normalized frequency (i.e., the
signal frequency divided by 400 MHz).

As Figure 5.19 indicates, the reflection coefficient is zero for all four circuits at a
normalized frequency of unity. However, it increases if the signal frequency is
changed on either side. Further, the rate of increase in reflection is higher for circuits
obtained earlier in Example 5.6. For example, if a reflection coefficient of 0.2 is
acceptable, circuits (iii) and (iv) can provide much wider bandwidth in comparison
with those of the previous example. This concept can be used to shape the reflection
coefficient characteristics over the desired frequency band.

3123nH  66nH

5.07pF  24pF
50 Q[43.9 n% 72 nﬂg : 600 Q so0Q| 361 pﬂ\ 2.2 pgr 6002
(iii) (@iv)

Figure 5.18 Design of reactive matching networks for Example 5.7.
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0'8.0 0.5 1.0 T 15 20
Normalized frequency ———————

Figure 5.19 Reflection coefficient (magnitude) versus normalized frequency for the match-
ing circuits designed in Examples 5.6 and 5.7.

Example 5.8: A 50-Q transmission line is to be matched with a 10 4 j10-Q load.
Design two different L-section reactive circuits and find component values at
500 MHz.

Unlike the cases considered so far, the load is complex in this example. However,
the same design procedure is still applicable. We consider only the real part of load
impedance initially and take its imaginary part into account later in the design. Since
characteristic impedance of the transmission line is greater than the real part of the
load (that is, 50 Q >10 Q), R, is 50 Q while R is 10 Q. Therefore,

50
2" _1=4 =2
0 10 =0

X and X, can be determined now from (5.3.8) and (5.3.9):
X, =0 -R,=2-10=20Q

and,
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Cs

| £

AN
10Q

50Q Ly 1Load
J10Q
1
(i)

Figure 5.20 Reactive matching circuits for Example 5.8.

Reactance X, is connected in parallel with the transmission line while X is in
series with the load. These two matching circuits are shown in Figure 5.20. If X, is a
capacitive reactance of 25 Q then X; must be inductive 20 Q. The reactive part that
has not been taken into account so far needs to be included at this point in JX;. Since
this reactive part of the load is inductive 10 Q, another series inductor for the
remaining 10 Q is needed, as shown in circuit (i) of Figure 5.20. Hence,

oL, = (20 — 10)

10
L=—— [ =03183-10°H=23.183 nH
ST 2. 7500106 n

and,

—F =125

pr

1
=0.0127324 - 10™° F = 12.7324 pF

C, =
P 2.7.500-100-25

In the second case, X, is assumed inductive and, therefore, X, needs to be
capacitive. It is circuit (ii) as shown in Figure 5.20. Since the load has a 10-Q
inductive reactance, it must be taken into account in determining the required
capacitance. Therefore,

1 1
c—_ ' - F = 10.61 pF
= 00+10) "5 T 2-7-500- 10630 P
and,
L, —25=L — 2 479577 nH
@5 = T2 7.500.106
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G,

1B,

Figure 5.21 Series- and parallel-connected admittance circuits.

The matching procedure used so far is based on the transformation of series
impedance to a parallel circuit of the same quality factor. Similarly, one can use
an admittance transformation, as shown in Figure 5.21.

These design equations can be obtained easily following the procedure used
earlier:

g=1+Qz (5.3.11)
GP
G
== 3.12
0 B, (5.3.12)
and
By 5.3.13
Q_Fp (5.3.13)

Note from (5.3.11) that G, must be greater than G, for a real Q.

Example 5.9: A load admittance, ¥; = 8 — ;12 mS, is to be matched with a 50-
ohm line. There are three different L-section matching networks given to you in
Figure 5.22. Complete or verify each of these circuits. Find the element values at
1 GHz.

Since characteristic impedance of the line is 50 ohm, the corresponding conduc-
tance will be 0.02 S. The real part of the load admittance is 0.008 S. Therefore, G,
must be 0.02S in (5.3.11). However, the given circuits in Figure 5.22 have a
capacitor or an inductor connected in parallel with the 50-ohm line. Obviously, these
design equations cannot be used here. Equations (5.3.8)—(5.3.10) use the impedance
values. Hence, we follow the procedure outlined below.

103
7, = ——Q =38.4615 4576923 Q

Y, =—
L ZL:> L7g—j12
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Y -

c, iy Load Load
50Q n soq L @ n
[ |
@ (b)
C.
|
Ay
c, ™ Load
50Q n
|
©

Figure 5.22 Three possible L-section matching circuits given in Example 5.9.
Therefore,

50

R =50Qand R, = 38.4615Q = 0 = |—0
p and Ky = 9= 354615

1 =0.5477

Now, from (5.3.8) and (5.3.9),
X, =0-R, =0.5477 - 38.4615 = 21.0654 Q

and,

R 50
X, == _9129090Q
»T 0 T 0.5477

For circuit (a) in Figure 5.22, capacitor C, can be selected, which provides 91.29-
ohm reactance. It means that the inductive reactance on its right-hand-side must be
21.06 ohm. However, an inductive reactance of 57.69 ohm is already present there
due to load. Another series inductor will increase it further, whereas it needs to be
reduced to 21.06 ohm. Thus, we conclude that circuit (a) cannot be used.

In circuit (b) in Figure 5.22, there is an inductor in parallel with the transmission
line. For a match, its reactance must be 91.29 Q and overall reactance to the right
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must be capacitive 21.06 Q. Inductive reactance of 57.69 Q of the load needs to be
neutralized as well. Hence,

X, =57.6923 + 21.0654 = 78.7577Q

R 50
PT 0 0.5477
and,
91.2909
X =912909Q =L =———-H = 14.5294 nH
b 909Q = > 2 100 5 n

Circuit (c) in Figure 5.22 has a capacitor across the transmission line terminals.
Assuming that its reactance is 91.29 ohm, reactance to the right must be inductive
21.06 ohm. As noted before, the reactive part of the load is an inductive 57.69 ohm.
It can be reduced to the desired value by connecting a capacitor in series. Hence, the
component values for circuit (c) are calculated as follows:

X, = 57.6923 — 21.0654 = 36.6269 Q
. C, = 4.3453 pF

and,

X, =91.29009Q = C, = 1.7434 pF

Example 5.10: Reconsider the previous example where ¥} = 8 —j12 mS is to be
matched with a 50-ohm line. Complete or verify the following L-section matching
circuits at a signal frequency of 1 GHz.

As noted in the preceding example, G is 0.02 S while G,, is 8 mS. Looking over
the given circuit configurations, it seems possible to complete or verify these circuits
through (5.3.11)—(5.1.13). Hence,

G 0.02
ST 0T 1.2247 S

and,

B, =0-G,=1.2247-0.008 = 0.0097978 ~ 0.01 S
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Ls
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| ——ig
C, E; Load . _; Load
50Q Yy 50Q » (] YL
| |
(a) )

Figure 5.23 L-section matching networks given in Example 5.10.

If B is selected as an inductive susceptance then B, must be capacitive. Since load
has an inductive susceptance of 12 mS, the capacitor must neutralize that too. Hence,
circuit (a) of Figure 5.23 will work provided that

B, =0.0163 S = L, =9.746 nH

and,

B, =(0.01+0.012) S =0.022 S = C, = 3.501 pF

In circuit (b) of Figure 5.23, a capacitor is connected in series with G,. Therefore,
B, must be an inductive susceptance. Since it is 0.012 S while only 0.01 S is required
for matching, a capacitor in parallel is needed. Hence,

B, =0.0163 S = C, = 2.599 pF

and,

B, = (0.012 — 0.01) = 0.002 S (capacitive) = C, = 0.3183 pF

Thus, both of these circuits can work provided the component values are as found
above.

Graphical Method

As described earlier, L-section reactive networks can be used for matching the
impedance. One of these reactive elements appears in series with the load or the
desired impedance while the other one is connected in parallel. Thus, the resistive
part stays constant when a reactance is connected in series with impedance.
Similarly, a change in the shunt-connected susceptance does not affect the conduc-
tive part of admittance. Consider normalized impedance point X on the Smith chart
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Figure 5.24 Impedance (Z-) Smith chart.

shown in Figure 5.24. To distinguish it from others, it may be called the Z-Smith
chart. If its resistive part needs to be kept constant at 0.5, one must stay on this
constant resistance circle. A clockwise movement from this point increases the
positive reactance. It means that the inductance increases in series with the
impedance of X. On the other hand, the positive reactance decreases with a
counterclockwise movement. A reduction in positive reactance means a decrease
in series inductance or an increase in series capacitance. Note that this movement
also represents an increase in negative reactance.

Now consider a Smith chart that is rotated by 180° from its usual position, as
shown in Figure 5.25. It may be called a Y-Smith chart because it represents the
admittance plots. In this case, addition (or subtraction) of a susceptance to
admittance does not affect its real part. Hence, it represents a movement on the
constant conductance circle. Assume that a normalized admittance is located at point
X. The conductive part of this admittance is 0.5. If a shunt inductance is added then
it moves counterclockwise on this circle. On the other hand, a capacitive susceptance
moves this point clockwise on the constant conductance circle.

A superposition of Z- and Y-Smith charts is shown in Figure 5.26. It is generally
referred to as a ZY-Smith chart because it includes impedance as well as admittance
plots at the same time. A short-circuit impedance is zero while the corresponding
admittance goes to infinity. A single point on the ZY-Smith chart represents it.
Similarly, it may be found that other impedance points of the Z-chart coincide with
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the corresponding admittance points of the Y-chart as well. Hence, impedance can be
transformed to the corresponding admittance just by switching from the Z- to the Y-
scales of a ZY-Smith chart. For example, a normalized impedance point of 0.9 — 1
is located using the Z-chart scales as A in Figure 5.26. The corresponding
admittance is read from the Y-chart as 0.5 + 0.55.

Reactive L-section matching circuits can be easily designed using a ZY-Smith
chart. Load and desired impedance points are identified on this chart using Z-scales.
Y-scales may be used if either one is given as admittance. Note that the same
characteristic impedance is used for normalizing these values. Now, move from the
point to be transformed toward the desired point following a constant resistance or
conductance circle. Movement on the constant conductance circle gives the required
susceptance (i.e., a reactive element will be needed in shunt). It is determined by
subtracting initial susceptance (the starting point) from the value reached. When
moving on the conductance circle, use the Y-scale of the chart. Similarly, moving on
a constant resistance circle will mean that a reactance must be connected in series. It
can be determined using the Z-scale of the ZY-Smith chart.

Note from the ZY-chart that if a normalized load value falls inside the unity
resistance circle then it can be matched with the characteristic impedance Z, only
after shunting it with an inductor or capacitor (a series-connected inductor or
capacitor at the load will not work). Similarly, a series inductor or capacitor is
required at the load if the normalized value is inside the unity conductance circle.
Outside these two unity circles, if the load point falls in the upper half then the first
component required for matching would be a capacitor that can be series or parallel
connected. On the other hand, first an inductor will be needed at the load if the load
point is located in the lower half and outside the unity circles.

Example 5.11: Use a ZY-Smith chart to design the matching circuits of Examples
5.9 and 5.10.

In this case, the given load admittance can be normalized by the characteristic
admittance of the transmission line. Hence,

- Y
YLZTL:YLXZOZO.4—jO.6

(4]

This point is found on the ZY-Smith chart as A in Figure 5.27. The matching
requires that this admittance must be transformed to 1. This point can be reached
through a unity conductance or resistance circle. Hence, a matching circuit can be
designed if somehow we can reach one of these circles through constant resistance
and conductance circles only. Since constant conductance circles intersect constant
resistance circles, one needs to start on a constant resistance circle to get on the unity
conductance circle or vice-versa. There are two circles (namely, 0.4 conductance and
0.78 resistance circles) passing through point A. Hence, it is possible to get on to the
unity resistance circle via the 0.4 conductance circle. Alternatively, one can reach the
unity conductance circle through the 0.78 resistance circle. In either case, a circuit
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Figure 5.27 Graphical solution to Example 5.11.

can be designed. From point A, one can move on the 0.4 conductance circle (or 0.78
resistance circle) so that the real part of the admittance (or impedance) remains
constant. If we start counterclockwise from A on the conductance circle, we end up
at infinite susceptance without intersecting the unity resistance circle. Obviously, this
does not yield a matching circuit. Similarly, a clockwise movement on the 0.78
resistance circle from A cannot produce a matching network. Hence, an inductor in
parallel or in series with the given load cannot be used for the design of a matching
circuit. This proves that the circuit shown in Figure 5.22 (a) cannot be designed.

There are four possible circuits. In one case, move from point A to B on the
conductance circle (a shunt capacitor) and then from B to O on the unity resistance
circle (a series capacitor). The second possibility is via A to C (a shunt capacitor)
and then from C to O (a series inductor). A third circuit can be obtained following
the path from A to D (a series capacitor) and then from D to O (a shunt capacitor).
The last one can be designed by following the path from A to E (a series capacitor)
and then from E to O (a shunt inductor).

A-E to E-O and A-D to D-O correspond to the circuits shown in Figures 5.22 (b)
and 5.22 (c), respectively. Similarly, A-C to C-O and A-B to B-O correspond to
circuits shown in Figures 5.23 (a) and 5.23 (b), respectively. Component values for
each of these circuits are determined following the corresponding susceptance or
reactance scales. For example, we move along a resistance circle from A to D. That
means there will be a change in reactance. The required element value is determined
after subtracting the reactance at A from the reactance at D. This difference is j0.42
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—jl1.15 = — j0.73. Negative reactance means it is a series capacitor. Note that
—j0.73 is a normalized value. The actual reactance is —j073 x 50 = —;j36.5 ohm. It
is close to the corresponding value of 36.6269 ohm obtained earlier. Other compo-
nents can be determined as well.

Example 5.12: Two types of L-section matching networks are shown in Figure
5.28. Select one that can match the load Z; = 25 410 ohm to a 50-ohm transmis-
sion line. Find the element values at 500 MHz.

First, let us consider circuit (a). R, must be 50 ohm because it is required to be
greater than R,. However, the reactive element is connected in series with it. That
will be possible only with R,. Hence, this circuit cannot be designed using (5.3.8)—
(5.3.10). The other set of design equations, namely (5.3.11)—(5.3.13), requires
admittance instead of impedance. Therefore, the given impedances are inverted to
find the corresponding admittances as follows.

1
Y, =— =———— = 0.034483 — j0.01379 S
LT Z T 25410 /
and,
Y=+ =1 _o0s
°Z, 50 7

Since G must be larger than G, this set of equations produces a matching circuit
that has a reactance in series with ¥} . Thus, we conclude that the circuit given in
Figure 5.28 (a) cannot be designed.

Now, consider the circuit shown in Figure 5.28 (b). For (5.3.8)—(5.3.10), R, is
50 ohm while R, is 25 ohm. Hence, one reactance of the matching circuit will be
connected across 50 ohm and the other one will go in series with Z; . The circuit in
Figure 5.28 (b) has this configuration. Hence, it will work. Its component values are
calculated as follows.

Z,=50 ohm L, 7L

Zo=50 ohm ;; Cp ZL

(@ (b)

Figure 5.28 L-section matching circuits given for Example 5.12.
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Therefore,
X, = R, = 25 ohm

and,

X, =R, =50 ohm
For X, to be capacitive, we have

1
=50 C. = 6.366 pF
oC, = % P

And there is already 10 ohm inductive reactance included in the load. Therefore,
another inductive 15 ohm will suffice. Thus,

15
wL,=25-10=15= L,=—H=4.775nH
w

This example can be solved using a ZY-Smith chart as well. To that end, the load
impedance is normalized with characteristic impedance of the line. Hence,

- 2 i1
7 _ 54510

= =0.54/,0.2
L 50 +J

This point is located on a ZY-Smith chart, as shown in Figure 5.29. It is point A on
this chart. If we move on the conductance circle from A, we never reach the unity
resistance circle. That means an L-section matching circuit that has a reactance
(inductor or capacitor) in parallel with the load cannot be designed. Therefore,
circuit (a) of Figure 5.28 is not possible.

Next, we try a reactance in series with the load. Moving on the constant resistance
circle from A indicates that there are two possible circuits. Movement from A to B
on the resistance circle and then from B to O on the unity conductance circle
provides component values of circuit shown in Figure 5.28 (b).

The required normalized reactance is found to be j0.3 (i.e., j0.5 — j0.2). It is an
inductor because of its positive value. Further, it will be connected in series with the
load because it is found by moving on a constant resistance circle from A.

The required series inductance is determined as follows.

15
X, =03x50=15= L =—H=4775nH

Movement from B to O gives a normalized susceptance of j1. Positive susceptance is
a capacitor in parallel with a 50-ohm line. Hence,

1
0C, = 55 = G, = 6366 pF

These results are found to be exactly equal to those found earlier analytically.
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Figure 5.29 Graphical solution to Example 5.12.
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PROBLEMS

1. A 10-V (rms) voltage source in series with 50-Q resistance represents a signal
generator. It is to be matched with a 100-Q load. Design a matching circuit that
provides perfect matching over the frequency band of 1kHz to 1GHz.
Determine power delivered to the load.
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2.

5.

IMPEDANCE MATCHING NETWORKS

A 1000-Q load is to be matched with a signal generator that can be represented
by a 1-A (root-mean-square) current source in parallel with 100-Q resistance.
Design a resistive circuit to match it. Determine the power dissipated in the
matching network.

. Design a single-stub network to match a 800 — ;7300-Q load to a 400-Q lossless

line. The stub should be located as close to the load as possible and it is to be
connected in parallel with the transmission line.

A 140 — j70-Q load is terminating a 70-Q transmission-line, as shown below.
Find the location and length of a short-circuited stub of 40-Q characteristic
impedance that will match the load with the line.

70Q

70Q

140-j70 Q

40Q

S.C.

An antenna has impedance of 40 4 j30 ohm at its input. Match it with a 50-Q
line using short-circuited shunt stubs. Determine (a) required stub admittance,
(b) distance between the stub and the antenna, (c) stub length, and (d) VSWR on
each section of the circuit.

A lossless 100-Q transmission line is to be matched with a 100 + 7100-Q load
using double-stub tuner. Separation between the two stubs is 4/8 and its
characteristic impedance is 100€Q. Load is connected right at the location of
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the first stub. Determine the shortest possible lengths of the two stubs to obtain
the matched condition. Also find VSWR between the two stubs.

100 +j 100 Q

100 Q

}: M8 ;I

7. A lossless 75-ohm transmission line is to be matched with a 150 + j15-Q load
using a shunt-connected double-stub tuner. Separation between the two stubs is
A/8 and its characteristic impedance is 75 ohm. The stub closest to the load (first
stub) is 4/2 away from it. Determine the shortest possible lengths of the two
stubs to obtain the matched condition. Also find the VSWR between the two
stubs.

8. Complete or verify the following two interstage designs of 1 GHz.

Matching

T =029 £ 40° network

T'L=0.58 £20°

O.C.

(@
®)

|4_ ~0.1741 —’l 14_ ~0.0861 _’|
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9. Complete or verify the following two interstage designs of 1 GHz. Assume that
characteristic impedance is 50 ohm.

Matching
network

Tin=1/3 £-120°

TL=2/3 £50°

O.C.
® [
Il ®

Series stub

— o —f

10. Complete or verify the following interstage designs at f = 4 GHz.

. Matching network
=03 45— Load

I'L=0.5 £-90°

l‘_ ‘ "‘ '4— 4 —
@ | ®
[
C ~ . .
T, =0.3 £45° [] Zy Tn=0.3 £45 L [] L
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11. Complete or verify the following interstage designs at f =4 GHz. The
characteristic impedance is 50 Q.

i = (3/7) £ 80°
—

L= (5/9) £ -150°

~0.385)
0.126 ) b-l
e 1
L1 L
C
T = (3/7) £80° I:I 7L Tw=(/1)£80° I:] 2

12. Two types of L-section matching networks are shown below. Select one that can
match the load Z; = 20 — ;100 Q to a 50-Q transmission line. Find the element
values at 500 MHz.

w] | ]
L
50 Q 500 Z

&

13. Two types of L-section matching networks are shown below. Select one that can
match a 30 + 750-Q load to a 50-Q line at 1 GHz.

(a)

| (b) |
I [

50 ohm L I::I 4 50 ohm —_ |::| Z
C,

a A
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14. Design a matching network that will transform a 50 — j50-ohm load to the input
impedance of 25 + ;25 ohm.

Zi,=25+j250hm — > Matching Z, =50 - j 50 ohm
network

15. Match the following load to a 50-Q generator using lumped elements. Assume
the signal frequency at 4 GHz.

Matching network
Load

I'L=0.5 £45°
16. Two types of L-section matching networks are shown below. Select one that can

match the load Z; = 60 — ;20 Q to a 50-Q transmission line. Find the element
values at 500 MHz.

(a) Ly (b)
i | | I Z,
50 Q @ Cp 500 {
17. Design a lumped-element network that will provide a load Z; = 30 + ;50 ohm
for the following amplifier operating at 2 GHz.

Amplifier Llumped
|_’ elements 50 Q

Z

18. A 200-ohm load is to be matched with a 50-ohm line. Design (a) a resistive
network and (b) a reactive network to match the load. (¢) Compare the
performance of the two designs.
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IMPEDANCE TRANSFORMERS

In the preceding chapter, several techniques were considered to match a given load
impedance at a fixed frequency. These techniques included transmission line stubs as
well as lumped elements. Note that lumped-element circuits may not be practical at
higher frequencies. Further, it may be necessary in certain cases to keep the
reflection coefficient below a specified value over a given frequency band. This
chapter presents transmission line impedance transformers that can meet such
requirements. The chapter begins with the single-section impedance transformer
that provides perfect matching at a single frequency. Matching bandwidth can be
increased at the cost of a higher reflection coefficient. This concept is used to design
multisection transformers. The characteristic impedance of each section is controlled
to obtain the desired pass-band response.

Multisection binomial transformers exhibit almost flat reflection coefficient about
the center frequency and increase gradually on either side. A wider bandwidth is
achieved with an increased number of quarter-wave sections. Chebyshev transfor-
mers can provide even wider bandwidth with the same number of sections but the
reflection coefficient exhibits ripples in its pass-band. This chapter includes a
procedure to design these multisection transformers as well as transmission line
tapers. The chapter concludes with a brief discussion on the Bode-Fano constraints,
which provide an insight into the trade-off between the bandwidth and allowed
reflection coefficient.

189
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6.1 SINGLE SECTION QUARTER-WAVE TRANSFORMER

We considered a single-section quarter-wavelength transformer design problem
earlier in Example 3.5. This section presents a detailed analysis of such circuits.
Consider the load resistance R; that is to be matched with a transmission line of
characteristic impedance Z,. Assume that a transmission line of length ¢ and
characteristic impedance Z; is connected between the two, as shown in Figure
6.1. Its input impedance Z;, is found as follows.

Ry +jZ, tan(f0)

Z,=Z
"7 Z) 4 jRy tan(B)

(6.1.1)

For ¢ =90° (i.e., £ = A/4 ) and Z, = \/Z R\, Z, is equal to Z, and, hence,
there is no reflected wave beyond this point toward the generator. However, it
reappears at other frequencies when ¢ £ 90°. The corresponding reflection
coefficient I';, can be determined as follows.

Ry +jZ, tan(Be)
r _Zn=Z _ ' Zi+jRant) " _ R, —Z,
Zy + Z, z R+ {Z[ tan(f¢) 7. R+Zo+)2 /Z R, tan(BL)
Z, 4+ jRy tan(p?)

= pin exp(j@)
. RL - Zo 1
- Pin = 2 2 12~ 21172
{(R, + Z,)" +4Z,R, tan”(0)} - 2\/ZO—RL sl
RL - Zo ¢
(6.1.2)

YA Ry

Figure 6.1 A single-section quarter-wave transformer.
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035
0.30
I 0.25
0.20
pin

0.10

0.05

0.00

Figure 6.2 Reflection coefficient characteristics of a single section impedance transformer
used to match a 100-Q load to a 50-Q line.

Variation in p;, with frequency is illustrated in Figure 6.2. For ¢ near 90°, it can
be approximated as follows:

|RL_Zo| NlRL_Z()|

Pin ™5 JZ R an(Bl)  2\/ZuRy

If py is the maximum allowable reflection coefficient at the input, then

2pmv 2R

cos(f3¢) (6.1.3)

cos(0,) = ;0 0, <m/2 (6.1.4)

(RL - Zo)\/ 1 - pi/[
In the case of a TEM wave propagating on the transmission line, /¢ = g xj];,
o

where f, is the frequency at which f¢ :g. In this case, the bandwidth

(f, —f1) = Af is given by

o = =20k~ =2(f - 20, (6.1

and the fractional bandwidth is

A 4 20V Z,R
& =2——cos”! PMV 2oL (6.1.6)
Jo T Ry = Z)V'1 = py
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Example 6.1: Design a single-section quarter-wave impedance transformer to
match a 100-Q load to a 50-Q air-filled coaxial line at 900 MHz. Determine the
range of frequencies over which the reflection coefficient remains below 0.05.

|
riniiLl

For R;, = 100Q and Z, = 50Q

Z, = /100 x 50 = 70.7106781 Q

and,

A 3 x 108
b= = 000 x 105 = 8:33em

Magnitude of the reflection coefficient increases as ¢ changes from 7/2 (i.e., the
signal frequency changes from 900MHz). If the maximum allowed p is
oy = 0.05(VSWR = 1.1053), then fractional bandwidth is found to be

A 4| 2puVZR |
— =2 ——cos = 0.180897
f(‘) T (RL_ZQ)Vl_pIZ\/I

Therefore, 818.5964 MHz< f <981.4037 MHz or 1.4287< f¢ <1.7129.

6.2 MULTI-SECTION QUARTER-WAVE TRANSFORMERS

Consider an N-section impedance transformer connected between a transmission line
of characteristic impedance of Z, and load R, as shown in Figure 6.3. As indicated,
the length of every section is the same while their characteristic impedances are
different. Impedance at the input of Nth section can be found as follows:

v _ , exp(jBO) + Ty exp(—jpe)
"7 "Vexp(jpl) — Ty exp(—jpe)

(6.2.1)

where

R —Zy
R+ Zy

Iy (6.2.2)
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Zna N Ry
Z,

Figure 6.3 An N-section impedance transformer.

The reflection coefficient seen by the (N-1)st section is

;o Zy —Zy_ o Zy(eP* + Tye P — Zy_ (e/Pt — Tye )

N ZN A Zy T Zy(ePt + Tye P + Zy_ (et — Tyeiht)

or,
r. . (Zy — Zn_ e + Tn(Zy + Zy_ e P
N Zy + Zno)e P+ Ty(Zy — Zy_p)e P
Therefore,
Ty_, + [ye 2Bt
ry =21V 6.2.3
N—-1 1+1—'N1—\N_le_]2/}( ( )
where
Zy — 7,
e i L (6.2.4)
NV Ze + Zy

If Zy is close to Ry and Zy_, is close to Zy, then I'y, and I'y_, are small
quantities, and a first-order approximation can be assumed. Hence,

Ty, ~ Ty, 4+ Tye 7 (6.2.5)
Similarly,

Ty, ATy +The P =Ty, + Ty e 2P 4 Tye ¥
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Therefore, by induction, the reflection coefficient seen by the feeding line is

[Ty 4+ e 4 The 7P oo Ty e PNDBE LTy e 2VBE (6.2.6)

or,
N .
=Y T,e 7 (6.2.7)
n=0
where
Z =27
r,=2-ml o (6.2.8)
n+1 + Zn

Thus, we need a procedure to select I', so that I' is minimized over the desired
frequency range. To this end, we recast the above equation as follows:

N
F=Ty+Tw+Tow 4+ -+ Ty =Ty [[(w—w,) (6.2.9)
n=1
where
o= -2pt (6.2.10)
and,
w=el? (6.2.11)

Note that for f¢ = 0 (i.e., A — o0 ), individual transformer sections in effect have
no electrical length and load R; appears to be directly connected to the main line.
Therefore,

r= %r =RL_Z°, Cow=1) (6.2.12)
n=0 ! RL+ZO

and, only N of the N + 1 section reflection coefficients can be selected indepen-
dently.
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6.3 TRANSFORMER WITH UNIFORMLY DISTRIBUTED SECTION
REFLECTION COEFFICIENTS

If all of the section reflection coefficients are equal then (6.2.9) can be simplified as
follows:

r wh+l
—=14+w+wH+w+ W N = (6.3.1)
Iy w—1
or,
sin( 1 >
i(N+1 ¢
FL:eJ('+)<p1_1:eﬂ\,q)/2 -
¥ el — . ¢
()
Hence,
. <N +1 ) . (N +1 )
sin @ sin ®
IT| = p(9) = py|———2| = (N + Dpy|———4|  (6.3.2)
. (P . (P
sm(z) (N + 1)s1n<2>
and, from (6.2.12),
N R, —Z
[,=(N+1)py=-"2—2° 6.3.3
YL, =V + Doy =35 (633)
Therefore, equation (6.3.2) can be written as follows:
Ry, —Z,| [sin{(N + 1)p¢}
Be) = -2 . : 6.3.4
PBO =% =2 | [+ Dsin(Bo) (6.3.4)

This can be viewed as an equation that describes magnitude p of the reflection
coefficient as a function of frequency. As (6.3.4) indicates, a pattern of p(f£) repeats
periodically with an interval of 7. It peaks at nm, where n is an integer including
zero. Further, there are N — 1 minor lobes between two consecutive main peaks. The
number of zeros between the two main peaks of p(f¢) is equal to the number of
quarter-wave sections, N.

Consider that there are three quarter-wave sections connected between a 100-ohm
load and a 50-ohm line. Its reflection coefficient characteristics can be found from
(6.3.4), as illustrated in Figure 6.4. There are three zeros in it, one at ¢ = n/2 and
the other two symmetrically located around this point. In other words, zeros occur at
Pl =mn/4, n/2, and 3n/4. When the number of quarter-wave sections is increased
from 3 to 6, the p(f¢) plot changes as illustrated in Figure 6.5.
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035 —

0.30

Figure 6.4 Reflection coefficient versus ¢ of a three-section transformer with equal section
reflection coefficients for R, = 100Q and Z, = 50 Q.

For a six-section transformer, Figure 6.5 shows five minor lobes between two
main peaks of p(fi¢). One of these minor lobes has its maximum value (peak) at
pt =m/2. Six zeros of this plot are symmetrically located, p¢ = nn/7,
n=1,2,...,6. Thus, characteristics of p(f¢) can be summarized as follows:

e Pattern of p(f¢) repeats with an interval of 7.
e There are N nulls and (N — 1) minor peaks in an interval.

035 —
0.30
0.25

0.20

Figure 6.5 Reflection coefficient versus ¢ for a six-section transformer with equal section
reflection coefficients (R, = 100Q and Z, = 50Q).
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e When N is odd, one of the nulls occurs at £ = /2 (i.e., £ = A/4).

e If p), is specified as an upper bound on p to define the frequency band then
points P, and P, bound the acceptable range of €. This range becomes larger
as N increases.

Since
N
W =1 =T w—w,) (6.3.5)
n=0
where
w, =e/®, n=1,2,...,N (6.3.6)

(6.3.1) may be written as follows:

% = ﬁ(w —-w,) = ﬁ(w — ejﬂ%ljfnb) (6.3.7)
n=1

n=1

This equation is of the form of (6.2.9). It indicates that when section reflection
coefficients are the same, roots are equispaced around the unit circle on the complex
w-plane with the root at w = 1 deleted. This is illustrated in Figure 6.6 for N = 3. It
follows that

N

s 2mn
[ -e)

n=1

L (6.3.8)
PN

N 2
[1(v-e)
n=1

Imag. w

Rew

Figure 6.6 Location of zeros on a unit circle on the complex w-plane for N = 3.
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Since w = e/? is constrained to lie on the unit circle, distance between w and w,, is
given by

d,(p) = ‘e"" — e/t (6.3.9)

For the case of N = 3, d,(¢ = 0) is illustrated in Figure 6.7. From (6.3.3), (6.3.8),
and (6.3.9), we get

(0= [* =2l T4 (6.3.10)

PO =N T R vz, L@ 3.
Thus, as ¢ = —2¢ varies from 0 to 2 7, w = e/? makes one complete traverse of
the unit circle, and distances d|, d,, . . . , dy vary with ¢. If w coincides with the root

w,, then the distance d,, is zero. Consequently, the product of the distances is zero.
Since the product of these distances is proportional to the reflection coefficient,
p(@,) goes to zero. It attains a local maximum whenever w is approximately halfway
between successive roots.

Example 6.2: Design a four-section quarter-wavelength impedance transformer
with uniform distribution of reflection coefficient to match a 100-Q load to a 50-Q
air-filled coaxial line at 900 MHz. Determine the range of frequencies over which the
reflection coefficient remains below 0.1. Compare this bandwidth with that obtained
for a single-section impedance transformer.

ws3

Wwa

wi

Figure 6.7 Graphical representation of (6.3.9) for N = 3 and ¢ = 0.
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From (6.3.3) with N = 4 we have

_1100-50 1
+75100+50 15

and, from (6.2.2),

1100 -z,

15 100+ 2,
or,
100+ Z, = 1500 — 15 - Z, = 16 - Z, = 1400 = Z, = 87.5Q

Characteristic impedance of other sections can be determined from (6.2.8) as
follows:

1 Z,- 27,

15~ Z, + Z,

= 87.5+7,=15-87.5—15-Z, = Z, = 76.5625Q

— — 66.9922Q ~ 67Q
5 Z+2, 2 16

and,

A 14.67
- 7, =% _ 536250
5 2+2  'T 16

The frequency range over which reflection coefficient remains below 0.1 is
determined from (6.3.4) as follows:

|1 sin(5-0,,)
0.1= ’3 5 sin(0,,)

sin(5 - 0,)

sin(6,,) =13

where 0,, represents the value of ¢ at which magnitude of reflection coefficient is
equal to 0.1.

This is a transcendental equation that can be graphically solved. To that end, one
needs to plot | sin(50,,)| and 1.5|sin(0,,)| versus 0,, on the same graph and look for
the intersection of two curves. Alternatively, a numerical method can be employed to
determine 0,,. Two solutions to this equation are found to be 0.476 and 2.665,
respectively. Hence,

0.476 < pL < 2.665 or 272.7 MHz < f < 1.5269 Ghz
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 35

Bs >
Figure 6.8 Reflection coefficient versus ¢ for a four-section (N = 4) and a single-section
(N = 1) impedance transformer.

Corresponding bandwidth with a single section can be evaluated as follows:
1.2841 < p¢ < 1.8575 or 735.74MHz < f < 1.0643 GHz

Reflection coefficient characteristics for two cases are displayed in Figure 6.8.
Clearly, it has much wider bandwidth with four sections in comparison with that of a
single section.

6.4 BINOMIAL TRANSFORMERS

As shown in Figures 6.4 and 6.5, there are peaks and nulls in the pass-band of a
multisection quarter-wavelength transformer with uniform section reflection coeffi-
cients. This characteristic can be traced to equispaced roots on the unit circle. One
way to avoid this behavior is to place all the roots at a common point w equal to —1.

With this setting, distances d,, are the same for all cases and ]_[i,vzl(w —w,) goes to
zero only once. It occurs for ¢ equal to —m, i.e., at f¢ = n/2. Thus, p is zero only

for the frequency at which each section of the transformer is A/4 long. With

w, = —1 for all n, equation (6.2.9) may be written as follows.

N!

r x v ¥ ! n
ry = o) = 0re =2 (4D
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The following binomial expansion is used in writing (6.4.1).

m! o

Mz

1 m
07 = 2 — ™

A comparison of equation (6.4.1) with (6.2.7) indicates that

r NI
n— . p=0,1,2,...,N. 6.4.2
Ty n—n " (042

and therefore, the section reflection coefficients, normalized to I'y, are binomially
distributed.
From equation (6.4.1),

[ =Tyw+ 1Y = TBe) = Ty + 1)V = T2V e NP cos(po)]"
or,
p(BO) = py2" | cos(BO)Y (6.4.3)

For ¢ = 0, load R is effectively connected to input line. Therefore,

_ N __ RL - Zo
p(0) = py2" = R 47, (6.4.4)
and,
p(pt) = ﬁ x | cos(BE)|" (6.4.5)

Reflection coefficient characteristics of multisection binomial transformers versus
pe (in degrees) are illustrated in Figure 6.9. Reflection coefficient scale is normal-
ized with the load reflection coefficient p; . Unlike the preceding case of uniformly
distributed section reflection coefficients, it shows a smooth characteristic without
lobes.

Example 6.3: Design a four-section quarter-wavelength binomial impedance trans-
former to match a 100-Q load to a 50-Q air-filled coaxial line at 900 MHz.
Determine the range of frequencies over which the reflection coefficient remains
below 0.1. Compare this result with that obtained in Example 6.2.
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0.6

0.4

Reflection coefficient

0.2

0.0

Theta (degrees)

Figure 6.9 Reflection coefficient versus 3¢ for a multisection binomial transformer.

With N =4 and n =0, 1, and 2 in (6.4.2), we get

r, 4 T,
L, 04 I, 0 4
L_4 _n

r4—m—r4:>r‘1:r‘3:4xr4

and,
r, A4
ﬁ:ﬁ:6=>l"2:6xr4
From (6.4.4),
R, — 7 1 {100 — 50 1
0) = py2N = |—=° = |————| =— =0.020833
p(0) =py Ro+2, P78 100+50‘ 48
and from (6.2.8),
Z 1 —27Z
r,=2mtl _“n Z zZ)=27,.,—-Z
n Zn+1 +Zn = pn( n+1 + n) n+1 n
Therefore,
1 - pn
x Z (6.4.6)

n:1+pn n+1



BINOMIAL TRANSFORMERS 203

Alternatively,

_I+p,
Vl+l_1_pn

X Z

n

(6.4.7)

Characteristic impedance of each section can be determined from (6.4.6), as
follows:

oL

Z, :;418 x 100 = 95.9184Q
I+ g
-4

7 =—38 % 959184 = 81.1617Q
I+ 5
-6

A :;468 x 81.1617 = 63.1258 Q
I+ g

and,

-4

7, =— 5631258 = 53.4141Q
I+ g

If we continue with this formula, we find that

1
1 ——
7, =—38 x 53.4141 =51.2339Q
1 R
T

This is different from the given value of 50Q. It happened because of
approximation involved in the formula. Error keeps building up if the characteristic
impedances are determined proceeding just one way. In order to minimize it,
common practice is to determine the characteristic impedances up to half-way
proceeding from the load side and then the remaining half from the input side. Thus,
Z, and Z, should be determined from (6.4.7), as follows:

L
7, =—8B x50 =512770
1 ——

48
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and,
4
1+
Z,=—48 x50 = 61.6054Q
1——
48

The frequency range over which the reflection coefficient remains below 0.1 can
be determined from (6.4.5) as follows.

0.1 =1jcos(9))I* = 9, = 0.7376
Therefore,
0.7376 < £ <2404, or 422.61 MHz < f < 1.3774GHz

Clearly, it has larger frequency bandwidth in comparison with that of a single
section. However, it is less than the bandwidth obtained with uniformly distributed
section reflection coefficients. Reflection coefficient as a function of ¢ is illustrated
in Figure 6.10.

035 —

0.30

08

o) "

0.10

-

0.05 —

oL 11 | N I B
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
pr—————

Figure 6.10 Reflection coefficient of a four-section binomial transformer versus f¢.



CHEBYSHEV TRANSFORMERS 205
6.5 CHEBYSHEV TRANSFORMERS

Consider again the case of a uniform three-section impedance transformer that is
connected between a 50-ohm line and 100-ohm load. Distribution of zeros around
the unit circle is shown in Figure 6.11 with solid points. Its frequency response is
illustrated in Figure 6.12 as curve (a). Now, let us move two of these zeros to +120°
while keeping the remaining one fixed at 180°, as illustrated by unfilled points in
Figure 6.11. With this change in the distribution of zeros on the complex w-plane,
p(pe) versus ¢ varies as shown by curve (b) in Figure 6.12. It shows relatively
much lower peaks of intervening lobes while widths as well as heights of the two
main lobes increase. On the other hand, if we move the two zeros to £=60° then the
main peaks go down while intervening lobes rise. This is illustrated by hatched
points in Figure 6.11 and by curve (c) in Figure 6.12. In this case, minor lobes
increase while the main lobes reduce in size. Note that zeros in this case are
uniformly distributed around the unit circle and, therefore, its p(f¢) characteristic
has identical lobes.

Thus, the heights of intervening lobes decrease at the cost of the main lobe when
zeros are moved closer together. On the other hand, moving the zeros farther apart
raises the level of intervening lobes but reduces the main lobe. However, we need a
systematic method to determine the location of each zero for a maximum permis-
sible reflection coefficient, p,, and the number of quarter-wave sections, N. An
optimal distribution of zeros around the unit circle will keep peaks of all pass-band
lobes at the same height of py,.

In order to have magnitudes of all minor lobes in the pass-band equal, section
reflection coefficients are determined by the characteristics of Chebyshev functions,

Imag. w

Rew

\/

Figure 6.11 Distribution of zeros for a uniform three-section impedance transformer (solid),
with two of those zeros moved to £120° (unfilled), or to +£60° (hatched).
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0.54

0.4

0.3

0.2+

p(®)
0.14

(p—>

Figure 6.12 Reflection coefficient versus ¢ for (a) a uniform three-section transformer,
(b) two zeros moved to £120°, and (c) two zeros moved to +60°.

named after a Russian mathematician who first studied them. These functions satisfy
the following differential equation:

d*T, dr,
Wl(x) —x m(x) +

2T (x) = 5.1
72 R ) =0 (6.5.1)

(1-2)

Chebyshev functions of degree m, represented by 7,,(x), are mth degree poly-
nomials that satisfy (6.5.1). The first four of these and a recurrence relation for
higher-order Chebyshev polynomials are given as follows:

Ti(x) =x

Ty(x) =2x* — 1

Ty(x) = 4x° — 3x
Ty(x) = 8x* — 8x* + 1

Tm(x) = 2XTm71(x) - Tm72(x)
Alternatively,
cos(meos™!(x)) —1 <x <1

T,(x) = cosh(m cosh™ ! (x))x > 1 (6.5.2)
(—1)" cosh(m cosh™" |(x))x < —1
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Note that, for x = cos(6),

T,,(cos(0)) = cos(m0)

207

(6.5.3)

Figure 6.13 depicts Chebyshev polynomials of degree 1 through 4. The following
characteristics can be noted from it.

Magnitudes of these polynomials oscillate between 1 for —1 < x < 1.

For |x| > 1, |T,,(x)| increases at a faster rate with x as m increases.

Numbers of zeros are equal to the order of polynomials. Zeros of an even-order
polynomial are symmetrically located about the origin, with one of the minor
lobes’ peak at x = 0.

Polynomials of odd orders have one zero at x = 0 while the remaining zeros
are symmetrically located.

These characteristics of Chebyshev polynomials are utilized to design an
impedance transformer that has ripples of equal magnitude in its pass-band. The
number of quarter-wave sections determines the order of Chebyshev polynomials
and the distribution of zeros on the complex w-plane is selected according to that.
With x, properly selected, |7,,(x)| precisely corresponds to p(f3¢). This is done by
linking f3¢ to x of Chebyshev polynomial as follows.

x = x, cos(f¢)

(6.5.4)

Consider the design of a three-section equal-ripple impedance transformer. A
Chebyshev polynomial of order three is appropriate for this case. Figure 6.14

6.0

5.0

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

'
_—
W

Figure 6.13 Chebyshev polynomials for m = 1, 2, 3, 4.

m=4 = m=1
m=3 =2
\ | N\ -
o Xo Xo
» i L | 1 | 1 | 1 | | 1 |
-1.0 -0.5 0.0 0.5 1.0 1.5
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2.0

@ /
0.0 // //
-2.0

(b) Xo cos(B7)

- 0 /

4 B
i n
I ! i | 1 I
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 6.14 Third-order Chebyshev polynomial (a) and its variable, x versus £ (b).

illustrates 75(x) together with (6.5.4). Note that Chebyshev variable x and angle ¢ on
the complex w-plane are related through (6.5.4) because ¢ is equal to —2f¢. As ¢
varies from 0 to —2m, x changes as illustrated in Figure 6.14 (b) and the
corresponding 73(x) in Figure 6.14 (a). Figure 6.15 shows |T3(¢)| which can
represent the desired p(¢) provided that

I(e =0) _ T30) _ (R —Z)/(Ry +Z,)
1 S Pm

(6.5.5)

where p), is the maximum allowed reflection coefficient in the pass-band.
For an m-section impedance transformer, (6.5.5) can be written as follows:

« L (6.5.6)

M

R, —Z,

Tm(xo)z R +Z
L o

Location x, can now be determined from (6.5.2) as follows:

X, = cosh(% X cosh_l(Tm(xo))> (6.5.7)
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Figure 6.15 |T5(x)| versus ¢ and its relationship with the desired p(¢).

With x, determined from (6.5.7), |T,,(x)| represents the desired p(f¢). Hence,
zeros of reflection coefficient are the same as those of 7,,(x). Since Chebyshev
polynomials have zeros in the range of —1 < x < 1, zeros of p(¢) can be determined
from (6.5.2).

Therefore,

T,,(x,) =0 = cos(m x cos”'(x,)) =0 = :I:cos((2n - l)g), n=12,...

where x,, is the location of the nth zero.
Hence,

X, = :l:cos((Zn - 1)%) (6.5.8)

and corresponding ¢, can be evaluated from (6.5.4) as follows.

¢, =2 x cos”! <ﬁ> (6.5.9)
X,

o

Zeros of p(¢), w,, on the complex w-plane are now known because w, = €.
Equation (6.2.9) can be used to determine the section reflection coefficient, I',,. Z, is,
in turn, determined from equation (6.2.8).

Bandwidth of the impedance transformer extends from x = —1 to x = +1. With
pt =0y at x =1, (6.5.4) gives

1
cos(Oy) = =
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Therefore, bandwidth of a Chebyshev transformer can be expressed as follows.

1 1
cosl() <pt<m-— cosl<) (6.5.10)
xO xO

Example 6.4: Reconsider the matching of a 100-Q to a 50-Q line. Design an equal-
ripple four-section quarter-wavelength impedance transformer and compare its
bandwidth with those obtained earlier for p,; = 0.1.

From (6.5.6),

100 — 50
100 + 50

X —=L=3.3333

1
T4(xo) = ‘ 0.1 3

Therefore, now x, can be determined from (6.5.7) as follows.
1 -1
x, = cosh 1 x cosh™"(3.3333)

In case inverse hyperbolic functions are not available on a calculator, the
following procedure can be used to evaluate x,. Assume that y = cosh™!(3.3333) =

v -y
3.3333 = cosh(y) = = ¢

. Hence,
&+ e =2x3.3333 =6.6666

or,

6.6666 + /(6.6666)* — 4

¥ —6.6666 x e’ +1=0= ¢ = = 6.5131 and 0.1535

2
y =1In(6.5131) = 1.8738
Therefore,
1 1.8738
—cosh™(3.3333) = ——— = 0.4684
4 4
and,
0.4684 —0.4684
x, = cosh(0.4684) = ¢ " _ 11117

2

Note that the other solution of ¢’ produces y = —1.874 and x, = 1.1117. From
(6.5.8) and (6.5.9), we get

x, = £0.9239, +0.3827
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and,
p, =—67.61°, —139.71°, —220.29°, —292.39°
Therefore,
w; = 0.381 —0.925
wy, = —0.763 — j0.647
wy = —0.763 +j0.647
and,

wy = 0.381 +0.925
Now, from equation (6.2.9) we get
I'=T,(1+0.764 x w+ 0.837 x w? +0.764 x w* + w?)
Therefore,
Ir,=I,TI'=I;=0764xTI,, andI, =0.837 xT},

From equation (6.2.12) we have

N =7, R —Z
— © = 4365x T, = o
,;0 RL+Z * TR+ 7,
1 100 —50
r, = x =0.076

4.365 100+ 50
Hence,
I,=1,=0.076,T; =I5 =0.058, and I, =0.064

Now, characteristic impedance of each section can be determined from (6.2.8) as
follows:

ZL_Z4 1— r4
r, = T 47 85870
=g T AT A=
T, = Zy =37, —76.46Q
=772 TR

Z— 7, 1

r, = =7, = 27, =67.26Q
2T +2, TP 140,70
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and,

Z, -7, 1T,
I = =7Z =——272,=59.89Q
A T4,

In order to minimize the accumulating error in Z,, it is advisable to calculate half
of the impedance values from the load side and the other half from the input side. In
other words, Z; and Z, should be determined as follows:

1+T
Z, = °7Z =58.2251Q
1 1_1—~0 o
and
1+T,
Z, = Z, = 65.3951Q
2 I—T, 1

Bandwidth is determined from (6.5.10) as follows.

1
cos(ff) = —=0.899 = £ = 0.452

Xo

. 0.452 < e < 2.6896

Thus, bandwidth is greater than what was achieved from either a uniform or a
binomial distribution of I', coefficients.

6.6 EXACT FORMULATION AND DESIGN OF MULTISECTION
IMPEDANCE TRANSFORMERS

The analysis and design presented so far is based on the assumption that the section
reflection coefficients are small, as implied by (6.2.5). If this is not the case, an exact
expression for the reflection coefficient must be used. Alternatively, there are design
tables available in the literature’ that can be used to synthesize an impedance
transformer. In case of a two- or three-section Chebyshev transformer, the design
procedure summarized below may be used as well.

Exact formulation of the multisection impedance transformer is conveniently
developed via the power loss ratio, P|, defined as follows:

Incident power

P;» = Power loss ratio = -
LR Power delivered to the load

'G.L. Matthaei, L. Young, and E.M.T. Jones, Microwave Filters, Impedance-Matching Networks, and
Coupling Structures, Dedham, MA: Artech House, 1980.
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If P;, represents the incident power and p;, is the input reflection coefficient, then

P, 1 Pr—1
o = R

P = =
HR (1- pizn)Pin 1 —pi, Prr

(6.6.1)

For any transformer, p;, can be determined from its input impedance Z;,. The
power loss ratio P;i can subsequently be evaluated from (6.6.1). This P,z can be
expressed in terms of O,y (cos 0), an even polynomial of degree 2N in cos 0. Hence,

Prr =1+ Oyy(cos0) (6.6.2)

Coefficients of Q,y(cos 0) are functions of various impedances Z,. For an equal
ripple characteristic in the pass-band, a Chebyshev polynomial can be used to
specify Prr as follows:

Pig = 1 + k*T3(sec Oy cos 0) (6.6.3)

where k% is determined from the maximum value of P;y in the pass-band. 0y
represents the value of (¢ that corresponds to the maximum allowed reflection
coefficient py,. Since Ty (sec Oy cos 0) has a maximum value of unity in the pass-
band, the extreme value of P will be 1 + k2. Various characteristic impedances are
determined by equating (6.6.2) and (6.6.3). Further, (6.6.1) produces a relation

between py, and k2, as follows.
[ 2
=.\/— 6.6.4

For the two-section impedance transformer shown in Figure 6.16, reflection
coefficient characteristics as a function of 0 are illustrated in Figure 6.17. Power loss
ratio for this transformer is found to be

Z — ZO)2 (sec? 0, cos® 0 — 1)°

Pr=1
LR + 47, Z, * tan* 0,

(6.6.5)

Figure 6.16 A two-section impedance transformer.
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Figure 6.17 Reflection coefficient characteristics of a two-section Chebyshev transformer.

where 0, is the value of 0 at the lower zero (i.e., 6, < 1/2), as shown in Figure 6.17.
Maximum power loss ratio, Py 1S found to be

(Z, - Z,)
Piroviex = 1 + ﬁcot“ 0, (6.6.6)
Hence,
k2 — MCO'& 0 (6 6 7)
4z, Z, z o

Required values of characteristic impedances, Z; and Z,, are determined from the
following equations:

1/2
Z, - 72} Z (Z, —Z.)Z
72 — 72 (Lio L YL “o/%o 6.6.8
=% |:4Z§ tan*0, = Z, 2tan? 0, 668
and,
Z
Z, =2tz (6.6.9)
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Pass-band edge, 0, is given by
Oy = cos ™' (v/2 cos b)) (6.6.10)

Hence, bandwidth of this transformer is found as

Oy <0=p0 <m—0y (6.6.11a)
For a TEM wave,
A 40
A, 4 (6.6.11b)
fo i

If bandwidth is specified in a design problem along with Z; and Z,, then 0y is
known. Therefore, 0, can be determined from (6.6.10). Impedances Z, and Z, are
determined subsequently from (6.6.8) and (6.6.9), respectively. The corresponding
maximum reflection coefficient py, can be easily evaluated following k> from
(6.6.7). On the other hand, if py, is specified instead of 0y, then k? is determined
from (6.6.4). 0., in turn, is calculated from (6.6.7). Now, Z,, Z,, and 0y can be
determined from (6.6.8), (6.6.9), and (6.6.10), respectively.

In the limit 0, — n/2, two zeros of p in Figure 6.17 come together to give a
maximally flat transformer. In that case, (6.6.8) and (6.6.9) are simplified to give

Z, =7 x 73 (6.6.12)

Z, =7 x z}* (6.6.13)
and,

Oy = cos ™' (cot 0,) (6.6.14)

Example 6.5: Use the exact theory to design a two-section Chebyshev transformer
to match a 500-Q load to a 100-Q line. Required fractional bandwidth is 0.6. What is
the resultant value of py,.

From (6.6.10) and (6.6.11),

Af
3

4
:2—Ecos_1(«/§cos(92):>cos(92=—cos Jo

= Lcos<ﬂ> =0.321
V2 4/n

.. 0, = 1.244 radians
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and,
Oy = cosfl(«/icos 0,) = cosfl(\/z x 0.321) = 1.1

From (6.6.7),

k2 :Mcot“@ :M

t*0. = 0.0106
47,7, : cotl:

Z

Therefore, from (6.6.4),

=0.1022

Now, from (6.6.8),

PT% 472 tan* 0, ' Z, 2tan? 0, ' | 4tan® 0.

=2.4776

L Z, =~24776 =157 = 7, = 157.41Q

and from (6.6.9),

Z
Z, = Z—Lzo =317.655Q
1

Check: For 0 = n/2,

- Z2_ 157412
Z =Lz =" " 5=12277
727 T 317652

Z —1
=z ——01022=p,

in

2 172 = 2
o Zz[(ZL—Z(J +£} (G-2)2,_ 5 [(ZL— Dl ZL}

12 -
(Z -1
2tan? 0,

Let us consider the design of a three-section impedance transformer. Figure 6.18
shows a three-section impedance transformer connected between the load Z; and a
transmission line of characteristic impedance Z,. The reflection coefficient char-
acteristic of such a Chebyshev transformer is illustrated in Figure 6.19. The power
loss ratio, Py, of a three-section Chebyshev transformer is found to be

(Z, —Z,)*  (sec?0_cos? 0 — 1)* x cos? 0
X

Pr=1
LR + 47, 7, tan* 0,

(6.6.15)
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, Zs

— o —

Figure 6.18 A three-section impedance transformer.

It attains the maximum allowed value at 0 = 0,,, where

Oy = cos™! (jgcos 02) (6.6.16)

Since the maximum power loss ratio must be equal to 1 + &2,

2 2
kzz(ZL Z,) ( 2cos 0, ) 6:6.17)

421 Z, \3/3tan0,

[Tin |

i N7

Om 6.

Figure 6.19 Reflection coefficient characteristics of a three-section Chebyshev transformer.
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Characteristic impedance Z; is obtained by solving the following equation.

-7, 7t (ZL)I/Z 2.7 (ZL>1/2 172
=Zlyo(ZE) z - —2(ZL) z'z (6.6.18)
tan’0,  Z, Z 2 Z b

0 0

The other two characteristic impedances, namely, Z, and Z;, are then determined
as follows:

Z, =2, Z, (6.6.19)
and,

Z
Z, = L% 6.6.20
= ( )

The range of the pass-band (bandwidth) is still given by (6.6.11) provided that 0,
is now computed from (6.6.16).

Example 6.6: Design a three-section Chebyshev transformer (exact theory) to
match a 500-Q load to a 100-Q line. Required fractional bandwidth is 0.6. Compute
pm and compare it with that obtained in the previous example.

From (6.6.16) and (6.6.11),
0
5~ Um
Oy = cos™! (jgcos 62> and % —06=2

o

—03= 0y = g(l —03)=1.1
2
3
". cos(0,) = %cos Oy = 0.3932 = 0, = 1.17 radians

Now, from (6.6.17),

2 5 2
2 (Z, — Z,)* ( 2cos 0, ) _ (Z. - 1) < 2 cos 0, ) — 6.125 x 10~
42, Z, \3/3tan?0, 47, \3+/3tan?0,

and, from (6.6.4),

2
M=\ Ty = 007

which is approximately one-fourth of the previous (two-section transformer) case.
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Z, is obtained by solving the equation (6.6.18) as follows,
7 -7, 7+ _(zZ\'" 7z 7\’

L2 o L1 (%) 7 = L20_2_L Zr\ 22
tan-0, Z, Z, Z; Z,

or,
z, ~1 72 73127 Z > \1/25-1 4
tan2 0. =Zi +2(4) "7, _2_12 —2Z) " Zy = 20, =0.7314
= = 5 24/5
o2+ 2V52, —_—2—__‘/_: 0.7314
Zi 7
or,

Z{ 4+ 2523 — 0731423 — 252, —5=0
7, = —4.4679, (—0.6392 — j0.6854), (—0.6392 + j0.6854), and 1.2742

Thus, only one of these solutions can be physically realized because the others have
a negative real part. After selecting Z, = 127.42Q, (6.6.19) and (6.6.20) give
ZZ
LT0 —392.4277Q

Z3:—

1

and,
Z, =21 Z, = 223.6068 Q

If we use the approximate formulation and then following the procedure of

Example 6.4 we find from (6.5.6) that
500 — 100 1
= 26.9458

T. —
3(0%) = 5505100 * 0.02474

Now, from (6.5.7),
1 -1
X, = cosh gcosh (26.9458) | = 2.0208

and from (6.5.8),
s
X, = :I:cos[(Zn - 1)5] — 40.866, 0
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Using (6.5.9) we get,
@, =2.2558,3.1416, and 4.0274

Since w, = e/?, we find that,
Wy = —0.6327 +0.7744
w,y, = —0.6327 — j0.7744

W3:—1

and from (6.2.9),

(W —w)W —wy)(w —w,) = w> + 2.2654w* 4+ 2.2654w + 1

I
Hence,
r,=rI;
I' =T, =2.2654I;

Now, from (6.2.12),
I,+T,4+1,+T3;=6.5307T"5 = (500 — 100)/(500 + 100)

Therefore,
I';=0.1021=T,

Corresponding impedances are now determined from (6.2.8) as follows:

= 14T
Z, = + ©=1.2274

. =
1—
- FO calculated from the input side.
Z, = L=2.4234
2 7T 1-T,

and,

BT 4T,

- 1-T,-
Z 37, = 4.0737}calculated from the load side.
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A comparison of these values with those obtained earlier using the exact formulation
shows that the two sets are within 10 per cent of deviation for this example.

Note that for the fractional bandwidth of 0.6 with a single section, reflection
coefficient p,, increases to 0.3762.

6.7 TAPERED TRANSMISSION LINES

Consider that the multisection impedance transformer of Figure 6.3 is replaced by a
tapered transition of length L, as illustrated in Figure 6.20. Characteristic impedance
of this transition is a continuous smooth function of distance, with its values at the
two ends as Z, and R; . An approximate theory of such a matching section can be
easily developed on the basis of analysis already presented in Section 6.2.

The continuously tapered line can be modeled by a large number of incremental
sections of length dz. One of these sections, connected at z, has a characteristic
impedance of Z + 0Z and the one before it has a characteristic impedance of Z, as
shown in Figure 6.20. These impedance values are conveniently normalized by Z,
before obtaining the incremental reflection coefficient at distance z. Hence,

Z+0Z—-7 OZ
or, == + — (6.7.1)
Z+0Z+27Z 27
As 0z — 0, it can be written as
dZ 1d(InZ)
al'y = —= =~ d 6.7.2
° 27 2 dz “ ( )
- L N
1
&z
—» e R
71 Z+8Z

Z, — —  »

Figure 6.20 A tapered transition connected between load R; and a transmission line of
characteristic impedance Z,.
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The corresponding incremental reflection coefficient dT';, at the input can be
written as follows:

. ) 1 d -
dr, ~ e qr, = e 77 . ~. —(InZ)dz
2 dz

Total reflection coefficient, I';,, at the input of the tapered section can be
determined by summing up these incremental reflections with their appropriate
phase angles. Hence,

L (¢ .. d _
r, = J dr, = ,J e —_(InZ)dz (6.7.3)
0 2 0 dZ

Therefore, I';,, can be determined from (6.7.3) provided that _Z (z) is given. However,
the synthesis problem is a bit complex because, in that case, Z(z) is to be determined
for a specified I';,. Let us first consider a few examples of evaluating I';, for the

d _
given distributions of e (InZ2).
'z
d -
Case 1: af(ln Z) is constant over the entire length of the taper.
4
Suppose that

di(mZ(z)):c1 .. 0<z<lL
zZ

where C| is a constant. On integrating this equation, we get
ln(Z(Z)) = Clz + C2

With Z(z = 0) = 1 and Z(z = L) = Ry, constants C; and C, can be determined.
Hence,

In(Z) = %ln(l_?L) = 7 = /D) (6.7.4)

Thus, the impedance is changing exponentially with distance. Therefore, this kind
of taper is called an exponential taper. From (6.7.3), the total reflection coefficient is
found as

1t . drz., - In(R,) [+ _. In(R,) e |-
r, == *ﬂﬁz—[—l R ]d = L) J 2be gy — L)
i 2Le d MR [ = T E =T g,
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or,

r Zln(l_?L)_e*f/?L—lzln(I_QL)_efjﬁL_sin(ﬁL) 2p;, _ sin(BL)

L Ty By g T

where p,, = |I';,|. It is assumed in this evaluation that f = 2n/4 is not changing
with distance z. The right-hand side of (6.7.5) is displayed in Figure 6.21 as a
function of L. Since L is fixed for a given taper and f§ is directly related to signal
frequency, this plot also represents the frequency response of an exponential taper.

d -
Case 2: af(ln Z) is a triangular function.
Iz

d -
If —(InZ) is a triangular function, defined as
4

d:
4z - L
- InR; 0<z=<—
d(InZ) L? 2
= (6.7.6)

dz 1 =z - L
4( — InR, —<:z<lL

L 12 2

0.0 L
0.0000 3.1416  6.2832 9.4248 12.5664 157080  18.8496  21.9912

BL ——»

Figure 6.21 Frequency response of an exponential taper.
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then,
L2 47 L
J ElnRLdZ OSZSE
= 0
InZ = . .
z - L
4 -——=|InRyjdz —<z<L
JL/Z (L Lz)n S
or,
2722 - L
_ L_ZzlnRL+Cl OSZSE
InZ = )
z z - L
4(Z—m)lnRL+Cz ESZSL

Integration constants ¢; and ¢, are determined from the given conditions
Z(z=0)=1and Z(z = L) = R,. Hence,

2722 - L

. €Xp FIHRL 0 <z< E
Z = 6.7.7
4z 272 L ( )

exp L_ﬁ_l InR;, Efsz

and therefore, total reflection coefficient is found from (6.7.3) as

1 L/2 ) 4z _ L i 4 _
r,=- U e 72hz — - In(R)dz + J e 2. _ (L—2)- ln(RL)dzj|

21Jo L L2 L

or,
2-mRO[(* t :
Fin = nigL) |:J A eifzﬁzdz + J (L — Z) . ejzﬂzdzi|
L 0 L2
Since
J e—jZﬁZd z. e_jzﬁz e_jzﬁz
Z . Z = B —_—
=28 (=2p)

and,
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I';, can be found as follows:

(6.7.8)

. 2
T = % LM n(Ry) - [M}

(BL/2)

Figure 6.22 shows normalized magnitude of I';, as a function of L. As before, it
also represents the frequency response of this taper of length L. When we compare it
with that of Figure 6.21 for an exponential taper, we find that the magnitude of minor
lobes is reduced now but the main lobe has become relatively wider. It affects the
cutoff frequency of a given taper. For example, if the maximum allowed normalized
reflection coefficient is 0.2 then an exponential taper has a lower value of L in
comparison with that of a taper with triangular distribution. However, it is the other
way around for a normalized reflection coefficient of 0.05. For a fixed-length L, L is
proportional to frequency and, hence, the lower value of L has a lower cutoff
frequency in comparison with the other case.

Figure 6.23 depicts variation in normalized characteristic impedance along the
length of two tapers. A coaxial line operating in TEM mode can be used to design
these tapers by varying the diameter of its inner conductor. Similarly, the narrow
sidewall width of a TE;j,-mode rectangular waveguide can be modified to get the
desired taper while keeping its wide side constant.

d -
Case 3: d—(ln Z) is a Gaussian distribution.
z

1.0
0.8
0.6
0.4

0.2

o0 [ S N R
0.0000 3.1416 6.2832 9.4248 12.5664 15.7080 18.8496 21.9912

pL ———

Figure 6.22 Frequency response of a taper with triangular distribution.
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2.0

0.6

1.0

Figure 6.23 Distribution of normalized characteristic impedance along a tapered line

terminated by R; = 2Z, for (a) case 1, and (b) case 2.

Assume that

d _
—[In(2)] = K, 12
dz

(6.7.9)

This distribution is centered around the midpoint of the tapered section. Its falloff
rate is governed by the coefficient a. Integrating it over distance z, we find that

Z
In(Z) = K, J e HELD gy
0

Since Z(z =L) = R,

In(R,)

= [FeeL g

Therefore,

inZ) = (i)
n(Z) = In -
L [F e gz

and,

T.

1

L
2 o

(6.7.10)

(6.7.11)

(6.7.12)

(6.7.13)
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With the following substitution of variable and associated limits of integration in

(6.7.11) and (6.7.13),
L
Z——==X

2
dz = dx

z=0—->x=-L/2

and,
z=L—>x=1L/2
we get
1 L2 B 1 7 ,
I, ==K, J eTHOFD e dy = —K, e_fﬁLJ e 5 & dx
2 L2 2 "y
or,
L2 —j2px ,—ox? L/2 — o
1., - o0 )€ e ™dx 1. _ . cos(2 . d
T = In(Ry) e 2 (R e Jo L/(2 ) R
2 T e dx 2 Jo/ e dx
(6.7.14)
It can be arranged after substituting /ox with y, and /a(L/2) with ¢ as follows.
L
: fof cos({/—v}y> e dy
I, =~ In(R, )e < (6.7.15)
2 Jy e dy

Figure 6.24 shows the normalized magnitude of the reflection coefficient versus
BL for two different values of £. It indicates that the main lobe becomes wider and
the level of minor lobes goes down as ¢ is increased.

™
0.8 \
(@)
0.6
0.4 \ )
0.2
0 TN
0 5 10 15 20

pL —*

Figure 6.24 Frequency response of a tapered line with normal distribution of normalized
characteristic impedance for (a) ¢ = 0.3, and (b) ¢ = 3.
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6.8 SYNTHESIS OF TRANSMISSION LINE TAPERS

The frequency response of a transmission line taper can be easily determined from
(6.7.3). However, the inverse problem of determining its impedance variation that
provides the desired frequency response needs further consideration. To this end,
assume that F'(x) is the Fourier transform of a function f(x). In other words,

F(o) = Joo f(x)e ™ dx (6.8.1)
and,
1 [® ,
S :EJ F(a)e’™do (6.8.2)

For convenience, we rewrite (6.7.3) as follows.

L
I.(28) = L {;jz (In Z)}eﬂﬁzarz

ld(InZ
Ifz (; ) =0 for —oo < z < 0 and for z > L, then it may be written as
4
OO 1d N,—J2Bz
I,,2p) = ——(InZ)e7dz (6.8.3)
o0 2dz
A comparison of (6.8.3) with (6.8.1) indicates that I';,(2/8) represents the Fourier
1d(InZ
transform of —M. Hence, from (6.8.2),
2 dz
ld(nZz) 1 (® o
- =—| T,2ped2 6.8.4
N =] Taeperacy) (684

This equation can be used to design a taper that will have the desired reflection
coefficient characteristics. However, only those I';,(2f) that have an inverse Fourier
transform limited to 0 < z < L (zero outside this range) can be realized. At this
point, we can conveniently introduce the following normalized variables:

p= 277:2_([‘& (6.8.5)
and,
u=PE_2L (6.8.6)
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Therefore,

L

z=—@+mn)

2n

and,
L
dz = —d,
‘ 2n P

New integration limits are found as —n < p < n. Hence,

(" gy d . = dp L
r. = 72p(5+3) . L I
w2h =3 | D L2 L
or,

U [ L d o s

I,Q2p)=-e” e/ .—(InZ)-dp (6.8.7)
2 o dp

d(InZ (I

Now, if we define g(p) = %, and F(u) = J e 7" g(p)dp, then (6.8.7) can

be expressed as follows:
1 7'ﬂL
Tin(2h) = 57 F ()
or,

pn(2) = 3 1F @)
Further,
F(u=0)=1In(Z) (6.8.8)

Thus, F(u) and g(p) form the Fourier transform pair. Therefore,

o0 nonzero for|p| <=

e F(u)du = { (6.8.9)

1
g(p)—ﬂj 0 for|p| > =

—0Q
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In order to satisfy the conditions embedded in writing (6.8.3), only those F(u)
that produce g(p) as zero for |p| > n can be synthesized. Suitable restrictions on
F(u) can be derived after expanding g(p) in a complex Fourier series as follows.

oo
a,e’™ —m<p<mn
g(p)= n;o d (6.8.10)

0 lpl > 7

Since g(p) is a real function, constants a, = a*,. Therefore,

T ) 00 ) 00 T ) 00 e Ju—nmp |7
F(u) = J e/ x Y aedp= Y a,,J e = Y a,
—T —T

n=—o0 n=—o00 n=—00 _J(u - }’l) —n

or,
@ 00 e fu—mm _ o jlu—n)n 5 o0 sinw(u — n) ©.8.11)
F(u) = a, : =2n a,———— 811
n:z—:oo _J(u - I’l) n:z—:oo TC(U - I’l)
For u = m (an integer),
sint(m—n) |1 form=n
n(m — n) 0 form+#n
Therefore,
F
F(n) =2mna, = a, = ()
2n
and,
Flu) ioz F( )sinn(u—n) (6.8.12)
u) = n)———- .8.
n=—00 n(u - n)

This is the well-known sampling theorem used in communication theory. It states
that F(u) is uniquely reconstructed from a knowledge of sample values of F(u) at
u=mn, where n is an integer (positive or negative) including zero, i.e.,
u=n=0,=+1,£2, £3,....

In order to have greater flexibility in selecting F'(«), let us assume that a,, = 0 for
all |n| > N. Therefore,

N .
gp)= Y ae (6.8.13)
n=—N
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and, from (6.8.11),

Flu) = 2n % a(~1) sin(mu) _on sin(mu) % a(—1)" u

n=—N TE(” - I’l) T y=—N (u - }’l)

This series can be recognized as the partial-fraction expansion of a function and,
therefore, F(u) can be expressed as follows:

sin(7mu) » O(u)

F(u)=2n po— Hﬁlv:l(uz e

(6.8.14)

where Q(u) is an arbitrary polynomial of degree 2N in u subject to the restric-
tion O(—u) = O*(u) so that a, = a*,. Further, it contains an arbitrary constant
multiplier.

In (6.8.14), sin(nu) has zeros at u = +n. However, the first 2N of these zeros are
canceled by (1?> — n?). These can be replaced by 2N new arbitrarily located zeros by
proper choice of Q(u).

Example 6.7: Design a transmission line taper to match a 100-Q load to a 50-Q
line. The desired frequency response has a triple zero at L = £2m. Plot its
frequency response and normalized characteristic impedance distribution.

The desired characteristic can be accomplished by moving zeros at +1 and +3

into the points u = £2. Due to this triple zero, the reflection coefficient will remain
small over a relatively wide range of L around £27n. Therefore,

O(u) = C(u? — 4)°
and,

sin(7ur) (u® — 4y
@2 —1)x @ —4) x (u?*-9)

F(u) =2nC

Since u = BL/m, F(u) versus u represents the frequency response of this taper.
Further, it can be normalized with F(0) as follows.

9 sin(mu) u? — 4)°

16" -1 x @ —4)xu—9)

F(u)
o

A plot of this equation is illustrated in Figure 6.25. It shows that the normalized
magnitude is very small around u = 2.
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)
0.8
0.6
0.4
0.2 \
U ——

Figure 6.25 Normalized frequency response of the taper in Example 6.7.

Since F(0) is given by (6.8.8), multiplying constant C in F(u) can be easily
determined. Hence,

(—4)° 16 - 9 -
F(0) =2nC x 1 =21Cx—=InZ = C= InZ
(O) = 2nCx L e gy ~ g == C=5 4
Further,
2nC [ sinmu (1—4)° 9 9 _ 9
== <u2—1>uzlx(l—4)x(l—9) Cng=3pg ¥ Imaxmyg
=0.3164 x InZ
F2)=0
2nC (sinmu (9 —4)° 25
F(3 = 7 —-_ZC
®=73 <u2—9> Lo Dxo—4 12"

25 9
= <—72n> n X anL = 0.09766 x anL

and F(n) = 0 for n > 3. Therefore,

1 1. -
a, = EF(O) = —anL

0.3164
al =a_1 =_F(1)_—1 ZL
a, = a, =0

1 0. 09766
a; = a_; :EF(:S) = —
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and,
a,=a_,=0 forn>3
Hence,
d(nZ) InZ
g(p) = (n?) = —"%(a, + 2a, cos(p) + 2a; cos(3p))
dp 2n
InZ,
- nz L (1 4 0.6328 x cos(p) — 0.1953 x cos(3p))
T
and,
- Inz . .
InZ = (p+0.6328 x sin(p) — 0.0651 x sin(3p)) + ¢,

2n

The integration constant ¢; can be evaluated as follows:

InZ=0atp=—norlnZ=InZ atp=n

Therefore,
c;=05xInZ
and,
InZ = h;iL (p+ 7+ 0.6328 x sin(p) — 0.0651 sin(3p))
where

233

Normalized impedance (Z) versus the length of the taper (z/L) is illustrated in

Figure 6.26.

Example 6.8: Design a taper to match a 100-Q load to a 50-Q transmission line. Its
reflection coefficient has double zeros at fL = 427, and £3n. Plot its frequency
response and normalized characteristic impedance versus normalized length of the

taper.

This design can be achieved by moving the zeros at u = £1 and £4 into the

points £2 and =+3, respectively. Hence,

O(u) = C? — 22 (? — 3* = C(? — 4)°(u? — 9)’
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2.0

f —

Normalized impedance
N
LI

08 T L1 T B T L1
0.0 0.2 0.4 0.6 0.8 1.0
z/L

Figure 6.26 Normalized characteristic impedance variation along the length of the taper in
Example 6.7.

and,

sin(7mu) (? — 4)* x (u* — 9)?

Fay=C¢ T X(uz—l)X(u2—4)X(“2_9)X(”2_16)

Therefore,
F(0)=2.25C; F(1) =0.8C; F(2) =0; F(3) = 0; F(4) = (7/40)C

and F(n) = 0 forn > 4. From (6.8.8),

- InZ
F0)=InZ = C= 3735
and,
_dnz) = __F(n)
g(p) = b ngooane P =
or,

225xC 08xC . . 7xC . .

jp —Jp Jjap —j4p

T e @ e
_anL

2n

g(p) =

[1+0.7111 x cos(p) + 0.1556 x cos(4p)]
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Therefore,
- Inz . .
InZ = 7 [p+0.7111 x sin(p) + 0.0389 x sin(4p)] + ¢,
since
_ InZ
nZl,_ =0, ¢=— L
and,
- Inz . .
InZ = 7 [p+ 7+ 0.7111 x sin(p) + 0.0389 x sin(4p)]
where

_27'[ L
P=7T\*"2

Frequency response and normalized characteristic impedance distribution are
shown in Figures 6.27 and 6.28, respectively.

Klopfenstein Taper

The preceding procedure indicates infinite possibilities of synthesizing a transmis-
sion line taper. A designer naturally looks for the best design. In other words, which
design gives the shortest taper for a given py,? The answer to this question is the

0.8
0.6
0.4

0.2

u /—\M
0 2 4 6 8
u —»

Figure 6.27 Frequency response of the taper in Example 6.8.
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2.0

Normalized impedance
=
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zL

Figure 6.28 Normalized characteristic impedance variation of the taper in Example 6.8.

Klopfenstein taper, which is derived from a stepped Chebyshev transformer. The
design procedure is summarized here without its derivation.
Characteristic impedance variation of this taper versus distance z is given by

Z(z) = JZ,Ry - €" (6.8.15)
where,
K AzF"fzz 1,A), 0<z<L (6.8.16)
= - z RN
cosh(4)” \ L ) -7 -
AV NS
S A4) =J udy, x| <1 (6.8.17)
0 A1 —)2
R —Z
I, = > 8.
=R TZ (6.8.18)

Since the cutoff value of L is equal to 4, we have
A=p,L (6.8.19)

For a maximum ripple py; in its pass-band, it can be determined as follows.

r
A =cosh™! ('p—') (6.8.20)
M
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I;(x) is the modified Bessel function of the first kind. f({, A) needs to be
numerically evaluated except for the following special cases:

f(0,4)=0
S 0) =3
£ A) = cosh(4) — 1

A2

The resulting input reflection coefficient as a function of SL (and hence,

frequency) is given by
cosh (,/A2 - (ﬁL)Z)

cosh(4)

[, (BL) = T e P (6.8.21)

Note that the hyperbolic cosine becomes the cosine function for an imaginary
argument.

Example 6.9: Design a Klopfenstein taper to match a 100-Q load to a 50-Q
transmission line. Maximum allowed reflection coefficient in its pass-band is 0.1.
Plot the characteristic impedance variation along its normalized length and the input
reflection coefficient versus L.

From (6.8.18),

RL—Z, 100-50 1

T, = = ==
°TR +2, 100+50 3

I 1/3
A = cosh™! <M) = cosh™! (L> =1.87382
Pm 0.1

Equation (6.8.15) is used to evaluate Z(z) numerically. These results are shown in
Table 6.1. This data is also displayed in Figure 6.29. The reflection coefficient of this
taper is depicted in Figure 6.30.

From (6.8.20),

6.9 BODE-FANO CONSTRAINTS FOR LOSSLESS MATCHING
NETWORKS

Various matching circuits described in this and the preceding chapter indicate that
zero reflection is possible only at selected discrete frequencies. Examples 5.6 and 5.7
of previous chapter show that the bandwidth over which the reflection coefficient



238 IMPEDANCE TRANSFORMERS

TABLE 6.1 Characteristic Impedance of the Klopfen-
stein Taper (in Example 6.9) as a Function of its Normal-
ized Length

Z/L Impedance in Ohm
0 56.000896
0.05 57.030043
0.1 58.169255
0.15 59.412337
0.2 60.757724
0.25 62.202518
0.3 63.74238
0.35 65.371433
0.4 67.082194
0.45 68.865533
0.5 70.710678
0.55 72.605261
0.6 74.535428
0.65 76.486009
0.7 78.440749
0.75 80.382597
0.8 82.294063
0.85 84.157604
0.9 85.95606
0.95 87.673089
1 89.29361

Characteristic impedance (Ohm)

Figure 6.29 Characteristic impedance distribution along the normalized length of the
Klopfenstein taper in Example 6.9.
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Figure 6.30 Reflection coefficient versus L of the Klopfenstein taper in Example 6.9.

remains below a specified value is increased with the number of components. A
circuit designer would like to know whether a lossless passive network could be
designed for a perfect matching. Further, it will be helpful if associated constraints
and design trade-offs are known. Bode-Fano constraints provide such means to the
designer.

Bode-Fano criteria provide optimum results under ideal conditions. These results
may require approximation to implement the circuit. Table 6.2 summarizes these
constraints for selected R-C and R-L loads. The detailed formulations are beyond the
scope of this book.

As an example, if it is desired to design a reactive matching network at the output
of a transistor amplifier then this situation is similar to that depicted in the top row of
the table. Further, consider the case in which magnitude p of the reflection
coefficient remains constant at p,(p, < 1) over the frequency band from w; to
,, whereas it stays at unity outside this band. The constraint for this circuit is found

to be
o0 1 1 (05} 1 T
In| — )do = In| — J do =(w, — o )ln<—) <— (6.9.1)
Jo <p> <pm) o (@2 =) n( ) = ke

This condition shows the trade-off associated with the bandwidth and the reflection
coefficient. If R and C are given then the right-hand side of (6.9.1) is fixed. In this
situation, wider bandwidth (w, — w;) is possible only at the cost of a higher
reflection coefficient p,,. Further, p,, cannot go to zero unless the bandwidth
(wy — ) is zero. In other words, a perfect matching condition is achievable only
at discrete frequencies.
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TABLE 6.2 The Bode-Fano Constraints to Match Certain Loads Using a Passive
Lossless Network

Circuit Arrangement Constraint Relation
I=ps0 —p Matching C [ In (l) do < o
network 0 p RC
R
00 2
J m(l)da, L ok
0 p R
I=ps6 —p» Matching (where w, is the
network R center frequency)
11
—I J ln(f)dw < 0’nRC
0 p
C=p/6 —» Matching | C (where «, is the
network R center frequency)
L * 11 R
= Matchi % R J ln(—)dw <=
'=ps6 —» atching o P 2
network
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PROBLEMS

1. Output impedance of a microwave receiver is 50 Q. Find the required length and
characteristic impedance of a transmission line that will match a 100-Q load to
the receiver. Signal frequency and phase velocity are 10-GHz and 2.4x 103 m/s,
respectively. What is the frequency band over which the reflection coefficient
remains below 0.1?

2. A quarter-wave impedance matching transformer is used to match a microwave
source with internal impedance 10Q to a 50-Q transmission line. If source
frequency is 3 GHz and phase velocity on the line is equal to the speed of light
in free-space, then find the following.

(a) Required length and characteristic impedance of the matching section
(b) Reflection coefficients at two ends of the matching section

3. A 0.7-m-long transmission line short circuited at one end has an input
impedance of —j68.8€). Signal frequency and phase velocity are 100 MHz
and 2 x 108 m/s, respectively.

(a) What is the characteristic impedance of the transmission line?

(b) If a 200-Q load is connected to the end of this line, what is the new input
impedance?

(¢) A quarter-wave-matching transformer is to be used to match a 200-Q load
with the line. What will be the required length and characteristic impedance
of the matching transformer?

4. Design a two-section binomial transformer to match a 100-Q load to a 75-Q
line. What is the frequency band over which reflection coefficient remains below
0.1?

5. Design a three-section binomial transformer to match a 75-Q load to a 50-Q
transmission line. What is the fractional bandwidth for a VSWR less than 1.1?

6. Using the approximate theory, design a two-section Chebyshev transformer to
match a 100-Q load to a 75-Q line. What is the frequency band over which the
reflection coefficient remains below 0.1? Compare the results with those
obtained in Problem 4.

7. Design a four-section Chebyshev transformer to match a network with input
impedance 60 Q to a transmission line of characteristic impedance 40 Q. Find
the bandwidth if the maximum allowed VSWR in its pass-band is 1.2.

8. Using the exact theory, design a two-section Chebyshev transformer to match a
10-Q load to a 75-Q line. Find the bandwidth over which the reflection
coefficient remains below 0.05.

9. Using the exact theory, design a three-section Chebyshev transformer to match a
10-Q load to a 75-Q line. Find the bandwidth over which the reflection coeffi-
cient remains below 0.05. Compare the results with those obtained in Problem 8.
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10. Design a transmission line taper to match a 75-Q load to a 50-Q line. The
desired frequency response has a double zero at fL = £2x. Plot its frequency
response and normalized characteristic impedance distribution.

11. Design a transmission line taper to match a 40-Q load to a 75-Q line. Its
reflection coefficient has triple zeros at fL = +2x. Plot its frequency response
and normalized characteristic impedance distribution versus the normalized
length of the taper.

12. Design a Klopfenstein taper to match a 40-Q load to a 75-Q line. Maximum
allowed reflection coefficient in its pass-band is 0.1. Plot the characteristic
impedance variation along its normalized length and the input reflection
coefficient versus L. Compare the results with those obtained in Problem 11.



Radio-Frequency and Microwave Communication Circuits: Analysis and Design
Devendra K. Misra

Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-41253-8 (Hardback); 0-471-22435-9 (Electronic)

TWO-PORT NETWORKS

Electronic circuits are frequently needed for processing a given electrical signal to
extract the desired information or characteristics. This includes boosting the strength
of a weak signal or filtering out certain frequency bands and so forth. Most of these
circuits can be modeled as a black box that contains a linear network comprising
resistors, inductors, capacitors, and dependent sources. Thus, it may include
electronic devices but not the independent sources. Further, it has four terminals,
two for input and the other two for output of the signal. There may be a few more
terminals to supply the bias voltage for electronic devices. However, these bias
conditions are embedded in equivalent dependent sources. Hence, a large class of
electronic circuits can be modeled as two-port networks. Parameters of the two-port
completely describe its behavior in terms of voltage and current at each port. These
parameters simplify the description of its operation when the two-port network is
connected into a larger system.

Figure 7.1 shows a two-port network along with appropriate voltages and currents
at its terminals. Sometimes, port-1 is called the input while port-2 is the output port.
The upper terminal is customarily assumed to be positive with respect to the lower
one on either side. Further, currents enter the positive terminals at each port. Since

+ +
Port-1 Linear network Port-2
V1 Vz

Figure 7.1 Two-port network.

243
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the linear network does not contain independent sources, the same currents leave
respective negative terminals. There are several ways to characterize this network.
Some of these parameters and relations among them are presented in this chapter,
including impedance parameters, admittance parameters, hybrid parameters, and
transmission parameters. Scattering parameters are introduced later in the chapter to
characterize the high-frequency and microwave circuits.

7.1 IMPEDANCE PARAMETERS

Consider the two-port network shown in Figure 7.1. Since the network is linear, the

superposition principle can be applied. Assuming that it contains no independent

sources, voltage V; at port-1 can be expressed in terms of two currents as follows:
Vl ZZMI] +212[2 (711)

Since ¥, is in volts, and /; and /, are in amperes, parameters Z;; and Z;, must be in

ohms. Therefore, these are called the impedance parameters.

Similarly, we can write 7, in terms of /; and /, as follows:

Vz = Zz]]] + 222[2 (712)

Using the matrix representation, we can write

Vl _ le Zl2 Il
[Vz} B [Zzl Zzz}[lz} (7.1.3)
or,
(V1= I[Z][1] (7.1.4)

where [Z] is called the impedance matrix of two-port network.
If port-2 of this network is left open then 7, will be zero. In this condition, (7.1.1)
and (7.1.2) give

14
Z, =— (7.1.5)
I
1 1n=0
and,
v
Zy = 1—2 (7.1.6)
1 15,=0
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Similarly, with a source connected at port-2 while port-1 is open circuit, we find that

V
Z, = ]—‘ (7.1.7)
2 =0
and,
V.
ZZZ = 1—2 (7.1.8)
2 l=0

Equations (7.1.5) through (7.1.8) define the impedance parameters of a two-port
network.

Example 7.1: Find impedance parameters for the two-port network shown here.

L — -— ],
+ +
Vi 6Q V2

If I, is zero then V| and V, can be found from Ohm’s law as 6 ;. Hence, from
(7.1.5) and (7.1.6),

v, 61,
Z“_Tl _1—1_69
1 =0 1
and,
V. 61,
7 _Tz 1—1_69
1 1L=0 1

Similarly, when the source is connected at port-2 and port-1 has an open circuit, we
find that

V2:V1:612

Hence, from (7.1.7) and (7.1.8),
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and,

£

_hn| %L _
=2 _=%=

Zy I
L,=0 2

6Q

Therefore,

Example 7.2: Find impedance parameters of the two-port network shown here.

| [P -1
+ +
v 12Q v
) 30 )

As before, assume that the source is connected at port-1 while port-2 is open. In
this condition, ¥}, = 121/, and ¥V, = 0. Therefore,

V 121
le _I—l —[—1— 129
1 =0 1
and,
V.
Zy==| =0

I
1 15,=0

Similarly, with a source connected at port-2 while port-1 has an open circuit, we find
that

V2=3lzandV]=O

Hence, from (7.1.7) and (7.1.8),

Vl
Zi, =— =0
. I 1,=0
and,
V. 3L
Z _1—2 1—2_ 30
2 15=0 2
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Therefore,
Zy Zp| |12 0

Example 7.3: Find impedance parameters for the two-port network shown here.

12Q

3Q
[1 —_— /\/ /\/><—— 12
+ +
Vi 2 Vs
6Q

Assuming that the source is connected at port-1 while port-2 is open, we find that,
V1=(12+6)11=18[1 and V2=6[1

Note that there is no current flowing through a 3-Q resistor because port-2 is open.
Therefore,

v, 181,
Zy, _Tl = L-18Q
1 ln=0 1
and,
v 61,
Zy =+ —1=60Q
I L=0 1

Similarly, with a source at port-2 and port-1 open circuit,

This time, there is no current flowing through a 12-Q resistor because port-1 is
open. Hence, from (7.1.7) and (7.1.8),

v 61
le == 71 2 = 6 Q
L 1,=0 I
and,
V. 9l
Zyy =2 2-90Q
I 1,=0 I
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Therefore,

Zy Z,] [18 6

An analysis of results obtained in Examples 7.1-7.3 indicates that Z,, and Z,, are
equal for all three circuits. In fact, it is an inherent characteristic of these networks. It
will hold for any reciprocal circuit. If a given circuit is symmetrical then Z;; will be
equal to Z,, as well. Further, impedance parameters obtained in Example 7.3 are
equal to the sum of the corresponding results found in Examples 7.1 and 7.2. This
happens because if the circuits of these two examples are connected in series we end
up with the circuit of Example 7.3. It is illustrated here.

I, —= <~— ]
+ +
3Q
Vi V.
12Q
L |
Ill 112
+ +
\4 6Q V"

Example 7.4: Find impedance parameters for a transmission line network shown
here.

I: % :i
I — » -/
4 +
Zy Y
Vl V2

This circuit is symmetrical because interchanging port-1 and port-2 does not
affect it. Therefore, Z,, must be equal to Z;,. Further, if current / at port-1 produces
an open-circuit voltage V" at port-2 then current I injected at port-2 will produce V' at
port-1. Hence, it is a reciprocal circuit. Therefore, Z;, will be equal to Z,,.
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Assume that the source is connected at port-1 while the other port is open. If V,
is incident voltage at port-1 then V;, e~ is the voltage at port-2. Since the reflection
coefficient of an open circuit is +1, the reflected voltage at this port is equal to the
incident voltage. Therefore, the reflected voltage reaching port-1 is V;, e=>"*. Hence,

Vi = Vi + Ve

Vy =2 Ve
V .
I = Z—l:(l — %Y
and,
L=0
Therefore,
v V. (1 + e 2t 0 4 e 7
Zy = 1—11 o = V—((1 J:_M)) =7, ;ﬂ J_r Z_% = tanhzy 0= Z, coth(y£)
ZO
and,
Z, =2 = 2Wie™ 2z
1y =0 @(1 ) ° e+t — =1t sinh(yf)

0

For a lossless line, y = jf and, therefore,

Z, .
Zy = an(B0) JZ, cot(BL)

and,

Z, V4

Zn = Fsing) = sin(;%)

7.2 ADMITTANCE PARAMETERS

Consider again the two-port network shown in Figure 7.1. Since the network is
linear, the superposition principle can be applied. Assuming that it contains no
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independent sources, current /; at port-1 can be expressed in terms of two voltages as
follows:

11 :Y]1V1+Y12V2 (7.2.1)

Since /; is in amperes, and V; and V, are in volts, parameters Y, and Y}, must be in
siemens. Therefore, these are called the admittance parameters.
Similarly, we can write [, in terms of V|, and V, as follows:

12 = Y21 Vl + Yzz V2 (722)

Using the matrix representation, we can write

RRERAIE =
or,
U] =[YV] (7.2.4)
where [Y] is called the admittance matrix of the two-port network.

If port-2 of this network has a short circuit then ¥, will be zero. In this condition,
(7.2.1) and (7.2.2) give

1
Y, =—+ (7.2.5)
Vily,—o
and,
I
Yy == (7.2.6)
Vilv,—o
Similarly, with a source connected at port-2 and a short circuit at port-1,
1
Y, = — (7.2.7)
V2 ly=o
and,
Il
Yy == (7.2.8)
V2 lv,—o

Equations (7.2.5) through (7.2.8) define the admittance parameters of a two-port
network.
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Example 7.5: Find admittance parameters of the circuit shown here.

0.058

If V, is zero then [, is equal to 0.05 ¥, and 7, is —0.05 V;. Hence, from (7.2.5)
and (7.2.6),

I 0.05V
Yy, =— =——1-0058
Vi ly,—o Iz
and,
I —0.05V,
Y, == =——1—-_0058
Vily,=o "

Similarly, with a source connected at port-2 and port-1 having a short circuit,

Hence, from (7.2.7) and (7.2.8),

I —0.05 V.
Yy, =+ =——2-_0058S
Vs ¥,=0 Vs
and,
I 0.05 V.
Yy == = 2=0.05S
Valy o Vs
Therefore,

Yo Y] [ 005 —0.05
Yy, Yy | | =005  0.05

Again we find that Y;; is equal to Y,, because this circuit is symmetrical.
Similarly, Y}, is equal to Y,; because it is reciprocal.
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Example 7.6: Find admittance parameters for the two-port network shown here.
018

028
I —» /\/ J\/—<——— 12
+ +
Vv

1 VZ
0.025S

Assuming that a source is connected at port-1 while port-2 has a short circuit, we
find that

o 0.1(0.2+0.025) ~ 0.0225 _—
"7 014+02+0025 '~ 0325 !

and if voltage across 0.2 S is Vy, then

o I _ 00225 _ Ny
MT0.2+40.025) T 0225-0325 ' 325

Therefore,

0.2

12 = —OZVN = —EVI A
Hence, from (7.2.5) and (7.2.6),
I 0.0225
Y, =—+ = =0.0692 S
Vily—o  0.325
and,
I 0.2
Y, == =———=-0.06158S
TV s 325

Similarly, with a source at port-2 and port-1 having a short circuit,

~0.2(0.1+0.025)  0.025 VoA
2702+4+01+0.025 "' 0325 2

and if voltage across 0.1S is ¥}, then

_— I, _0.025 20,
MT0.140.025) ~ 0.125-0.325 2 3.25
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Therefore,
0.2
Hence, from (7.2.7) and (7.2.8),
A 0.2
Y, =— =———=-0.0615S
PVl 325
and,
1 0.025
v, V,=0 0.325
Therefore,

Yo Y] [ 00692 —0.0615
Yy, Yy | | —0.0615  0.0769

253

As expected, Y|, = Y,; but Y|, # Y,,. This is because the given circuit is

reciprocal but is not symmetrical.

Example 7.7: Find admittance parameters of the two-port network shown here.

11 —_— 4——‘12

Vi 2 V2
0.025 S

Assuming that a source is connected at port-1 while port-2 has a short circuit, we

find that

0.1(0.2 + 0.025)
0.1+0.2+0.025

I, = {0.05 + }V1 =0.11927, A

and if current through 0.05 S is 7, then

0.05
0.1(0.2 + 0.025)
005+ 61402 +0.025
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Current through 0.1S is I; — I, = 0.0692V,. Using the current division rule,
current /;, through 0.2 S is found as follows:

0.2

I, =—————0.0692V, = 0.0615V; A
M™0.240.025 ! !

Hence, I, = —(Iy + I};) = —0.1115V; A.
Now, from (7.2.5) and (7.2.6),

I
Y, =—+ =0.1192S
v,
1 ly,=0
and,
I
Y, == =—0.1115S
v,
1 ly,=0

Similarly, with a source at port-2 and port-1 having a short circuit, current 7, at
port-2 is

0.2(0.1 4+ 0.025)
0.2+40.1+0.025

5:{0%+— }%:OJ%%@A

and current /,; through 0.05S can be found as follows:

0.05
0.2(0.1 + 0.025)
0.05
0210140025

IN:

L =0.05V, A

Current through 0.2 S is I, — [y = 0.0769V,. Using the current division rule one
more time, the current /), through 0.1 S is found as follows:

0.1

Iy =——"0"——0. = 0.06157, A
W= T 5 0025 076972 = 0.0615%,

Hence, I} = —(Iy + I};) = —0.1115V, A. Therefore, from (7.2.7) and (7.2.8),

I
Y, =+ =—0.1115 S
V2 1r=0
and,
I
Yy == =0.1269 S
V.
2 ly=0
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Therefore,
Ynu Y| 0.1192 —-0.1115
Y,, Y»| | -0.1115 0.1269

As expected, Y, =Y, but Y}, # Y,,. This is because the given circuit is
reciprocal but is not symmetrical. Further, we find that the admittance parameters
obtained in Example 7.7 are equal to the sum of the corresponding impedance
parameters of Examples 7.5 and 7.6. This is because when the circuits of these two
examples are connected in parallel we end up with the circuit of Example 7.7. It is
illustrated here.

0.05S

Vi
1, —_—

Vi
018

0.025 S

Example 7.8: Find admittance parameters of a transmission line of length ¢, as
shown here.

4—[2

|
"

ZOs 'Y
Vi V2

This circuit is symmetrical because interchanging port-1 and port-2 does not
affect it. Therefore, Y,, must be equal Y;;. Further, if voltage V" at port-1 produces a
short-circuit current / at port-2 then voltage 7 at port-2 will produce current / at
port-1. Hence, it is a reciprocal circuit. Therefore, Y}, will be equal to Y5,.
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Assume that a source is connected at port-1 while the other port has a short
circuit. If ¥, is the incident voltage at port-1 then it will appear as V;, e™7* at port-2.
Since the reflection coefficient of a short circuit is equal to —1, reflected voltage at
this port is 180° out of phase with incident voltage. Therefore, the reflected voltage

reaching port-1 is —V;, e~2’*. Hence,

_ —2yL
Vl - Vin - Vine

V2 = 0
V.
[, =-2(1 e 2¢
1 Zo( +e )
and,
2V,
]2 = —7“]@7'6
ZO
Therefore,
Vin —290
y. =5 _Z_0(1+e )_ ety 1
YTV e V(I —e 20 T Z(eht — 1) T Z, - tanh(pe)
and,
— % et
v _ b _ Z, . 2 . 1
Ve V(l—e @0 Z(et —eh) T Z,« sinh(pe)

For a lossless line, y = jf and, therefore,

1
Y =———
™7 tan(Be)

and

1 o
“ iz sin(pe) ' Z, - sin(fe)

Y21 =

7.3 HYBRID PARAMETERS

Reconsider the two-port network of Figure 7.1. Since the network is linear, the
superposition principle can be applied. Assuming that it contains no independent
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sources, voltage V| at port-1 can be expressed in terms of current /; at port-1 and
voltage V), at port-2 as follows:

Similarly, we can write /, in terms of /; and V, as follows:
12 = thll + hzz V2 (732)

Since V; and V, are in volts while /; and /, are in amperes, parameter /,; must be
in ohms, 4, and A,; must be dimensionless, and /,, must be in siemens. Therefore,
these are called hybrid parameters.

Using the matrix representation, we can write

Vl] [hn h12i||:[1j|

= 7.3.3
[12 hy hy [ V2 ( )
Hybrid parameters are especially important in transistor circuit analysis. These

parameters are determined as follows. If port-2 has a short circuit then V, will be
zero. In this condition, (7.3.1) and (7.3.2) give

v
by = [—1 (7.3.4)
1 lr,=0
and,
I
hy, —Il (7.3.5)
1 17,=0
Similarly, with a source connected at port-2 while port-1 is open,
v,
hyy = 71 (7.3.6)
2 =0
and,
I
hy = 72 (7.3.7)
2 1n=0

Thus, parameters /;; and h,,; represent the input impedance and the forward
current gain, respectively, when a short circuit is at port-2. Similarly, /#,, and 4,,
represent the reverse voltage gain and the output admittance, respectively, when port-
1 has an open circuit. Because of this mix, these are called hybrid parameters. In
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transistor circuit analysis, these are generally denoted by #;, k¢, k., and h,, respec-
tively.

Example 7.9: Find hybrid parameters of the two-port network shown here.

12Q

3Q
I, —» /\/7 /\/74—— I,
+ +
Vl 2 Vz
6Q

With a short circuit at port-2,

63
vo=1(124+—) =141
! 1( +6+3) !

and, using the current divider rule, we find that

L, = 6 I, = 2[
2= T3t T T3h
Therefore, from (7.3.4) and (7.3.5),
hll = ﬁ = 14 Q
1
1 7,=0
and,
L 2
hy == =—=
2 I ly,—o 3

Similarly, with a source connected at port-2 while port-1 has an open circuit,
V,=03+6),=91,
and,
Vi=61,

because there is no current flowing through a 12-Q resistor.
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Hence, from (7.3.6) and (7.3.7),

V| _6h_2
27y 9L, 3
2 11,=0 2
and,
I, 1
hy=2| =28
Vali—o 9
Thus,

|:h11 h12i|: 140
hyy Iy -2

7.4 TRANSMISSION PARAMETERS

Ol— WIN
w2
1

Reconsider the two-port network of Figure 7.1. Since the network is linear, the
superposition principle can be applied. Assuming that it contains no independent
sources, voltage V| and current /; at port-1 can be expressed in terms of current /,
and voltage V, at port-2 as follows:

Vi =A4V, — B, (7.4.1)
Similarly, we can write /; in terms of /, and V, as follows:
I, =CV, - DI, (7.4.2)

Since V| and ¥, are in volts while /; and /, are in amperes, parameters 4 and D
must be dimensionless, B must be in ohms, and C must be in siemens.
Using the matrix representation, (7.4.2) can be written as follows.

Vil |4 B v,
n]-Le o)) 74
Transmission parameters (also known as elements of chain matrix) are especially
important for analysis of circuits connected in cascade. These parameters are
determined as follows.

If port-2 has a short circuit then ¥, will be zero. Under this condition, (7.4.1) and
(7.4.2) give

y
B=—_L

— (7.4.4)
—h ly,—o
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and,

1
_[2

D= (7.4.5)

V,=0

Similarly, with a source connected at the port-1 while port-2 is open, we find that

v
4=-1 (7.4.6)
g L=0
and,
I
c=-L (7.4.7)
Vs L=0

Example 7.10: Determine transmission parameters of the network shown here.

1Q
[|—> 4—12
+ +

Vi Vs

With a source connected at port-1 while port-2 has a short circuit (so that V, is
Z€ro0),

Therefore, from (7.4.4) and (7.4.5),

v
B=—L =1Q
—1 V=0
and,
1
D=—-L =1
—h V,=0

Similarly, with a source connected at port-1 while port-2 is open (so that 7, is zero),
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Now, from (7.4.6) and (7.4.7),

v,
A=-L =1
Vs L=0
and,
I
c=-L =0
£ L=0

Hence, the transmission matrix of this network is

¢ 5]=o 1]

Example 7.11: Determine transmission parameters of the network shown here.

L— - I,

+ +

joS
V1 v2

With a source connected at port-1 while port-2 has a short circuit (so that V, is
Zer0),

]2:—11 and Vl :OV
Therefore, from (7.4.4) and (7.4.5),

4
_12

B = =0Q

V,=0

and,

1
D=_—L

= =1
_[2

V,=0
Similarly, with a source connected at port-1 while port-2 is open (so that 7, is zero),

Vo=V, and I, =joV; A
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Now, from (7.4.6) and (7.4.7),

v
A=-1 =1
V2 L=0
and,
I
c=-2Ll =jos
g 5L=0

Hence, the transmission matrix of this network is

& =L 1]

Example 7.12: Determine transmission parameters of the network shown here.

/\}Q /\/IQ
h— + + L

joS
V] V2

With a source connected at port-1 while port-2 has a short circuit (so that V, is
zero), we find that

1 24
v, = (1 n )11 _=tje,

l+jw)"  14+jo
and,
1
1 1
L= f]w) =TT 'wh
—+1 J
jo
Therefore, from (7.4.4) and (7.4.5),
v
B=—L =2+jo Q

) V,=0
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and,

I
D=-L =14+jo
—1 V=0

Similarly, with a source connected at port-1 while port-2 is open (so that 7, is zero),

1 147
(o= (52
Jo Jo

g

and,

V,=—I
27 !
Now, from (7.4.6) and (7.4.7),
V
A= =l+jo
V2 =0
and,
1
C=- jo'S
V2 lh=0
Hence,

- jo 14+jo

A B 1 +jo 2+ jo
c D|~

Example 7.13: Find transmission parameters of the transmission line shown here.

I‘
I

I —»

+

»
V| 4—12
+

Zo Y
Vi V,

Assume that a source is connected at port-1 while the other port has a short
circuit. If V;, is incident voltage at port-1 then it will be V,, e~7* at port-2. Since the
reflection coefficient of the short circuit is —1, reflected voltage at this port is 180°

263
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out of phase with incident voltage. Therefore, reflected voltage reaching port-1 is
—V;, e 2. Hence,

VI = Vin - Vine_zyz

V2:0
V.
[ =" —29¢
1 720( +e )
and,
2V
h=——7ne

o

Therefore, from (7.4.4) and (7.4.5),

4 Z . " — et
B="1| =% q_e?)=z(""%")a =2z sinh@0)
L, _, 2e7* 2
-
and,
A l+e 2+ ot peit
Ly 2e 2 cosh(z6)

Now assume that port-2 has an open circuit while the source is still connected at
port-1. If V,, is incident voltage at port-1 then V,, e~ is at port-2. Since the
reflection coefficient of an open circuit is +1, reflected voltage at this port is equal to
incident voltage. Therefore, the reflected voltage reaching port-1 is V;, e~>"*. Hence,

Vl = Vin + Vin672ﬂ

Vy=2Vye
I = Z—i:(l -
and,
=0
Now, from (7.4.6) and (7.4.7),
_h| ke

A = cosh(y£)

= —
Va =0 2e7
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and,

I l—e 2t 1
:fi —C  _ _ sinh(y0)

C — 57 i
L=0 2Zoeﬂl Zo

Hence, the transmission matrix of a finite-length transmission line is

1 B cosh(y€)  Z, sinh(y¢)
[C D] - Z—sinh(yﬂ) cosh(y€)

(V]

For a lossless line, y = jf, and therefore, it simplifies to

cos(fl)  jZ,sin(fe)
4 BY_| |
[ C D] N jZ— sin(fi¢)  cos(fie)

An analysis of results obtained in Examples 7.10-7.13 indicates that the following
condition holds for all four circuits:

AD — BC = 1 (7.4.8)

This is because these circuits are reciprocal. In other words, if a given circuit is
known to be reciprocal then (7.4.8) must be satisfied. Further, we find that
transmission parameter A is equal to D in all four cases. This always happens
when a given circuit is reciprocal.

In Example 7.11, 4 and D are real, B is zero, and C is imaginary. For a lossless
line in Example 7.13, 4 and D simplify to real numbers while C and D become
purely imaginary. This characteristic of the transmission parameters is associated
with any lossless circuit.

A comparison of the circuits in Examples 7.10 to 7.12 reveals that the two-port
network of Example 7.12 can be obtained by cascading that of Example 7.10 on the
two sides of Example 7.11, as shown here.

1Q
LH— + /]/ /\/ 4 - ]

Vv \%4
1 oS 2

F_ e— 7.11 —
7.10 —> e— 7.10
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Therefore, the chain (or transmission) matrix for the network shown in Example 7.12
can be obtained after multiplying three chain matrices as follows:

L] [ ol [t 11 [t 1] [1 1 ]_[l4jo 2+jo
0 1] [jo 1]7l0 1]7[0 1] [jo jo+t1|"| jo l1+jo

This shows that chain matrices are convenient in analysis and design of networks
connected in cascade.

7.5 CONVERSION OF THE IMPEDANCE, ADMITTANCE, CHAIN,
AND HYBRID PARAMETERS

One type of network parameters can be converted into another via the respective
defining equations. For example, the admittance parameters of a network can be

found from its impedance parameters as follows.
From (7.2.3) and (7.1.3), we find

-1
[11]:[Y11 Y12][V1}:|:Zu le:| [V1:|
L Ly Yp | Ly Iy &)

Hence,

-1
|:Y11 Y12} _ |:Zn le} _ 1 [ Zy —le}
Yy Yp Zy Iy Z\1Zyy — Z1yZy, | =221 Zy

Similarly, (7.3.3) can be rearranged as follows:

D (4D — BC)
A _ B B 14
12 1 A V2
B B
Hence,
D (4D — BC)
Yy Yn|_| B B
Y, Yo 1 A
B B

Relations between other parameters can be found following a similar procedure.
These relations are given in Table 7.1.
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TABLE 7.1 Conversions Among the Impedance, Admittance, Chain, and Hybrid
Parameters

7, = Yy 7, = ﬁ 7y, = huhzzh— hiahy
Y11 Yo — Y21y C 2
Y, AD — BC h
Zn=yy 1; Y. Zn=""7¢ le_hﬁ
¥ — il 22
—Y 1 —h
Zy = 2 Zy == Zy = =2t
Y Yy — Y1y C ha,
Y, D 1
Z Zry = — Zyy = —
27 Y)Yy — VY 2oc 2 hy
Z D 1
Y= - Y=+ Yn—f
L\ Zyy — Z1yZy, B 11
—Z —(AD — BC) —h
Y=ot — Yp=——p— Y=
11422 12421 11
2y -1 hyy
Yy = Y, =— Y, =2
Z\Zyy — 2132y, B ! hyy
Yy = Zy Y, _é Yy = hithyy — hiphy
21 Zyy — Z1y2 B iy
A= @ = Yy A= —(hy1hyy — hiohyy)
Zy Yy hyy
B:ZnZzz —ZyZy, B:_—l B— —hy
Zy Yy hy
C:L C:—(Y11Y22—Y12Y21) C:—hzz
2y Yy hyy
D_@ D= —Yy D:__l
Zy Yy hy
By = Z21Zyy — Z1y2y By = L hyy = §
Zy, ey D
Z Y, AD — BC
hyy = Z_12 hiy = Y. 2 hyy = D
22 11
—Z Y -1
h21 = szl h21 = Yili h21 = 3
1 Y, Y. Y, Y. C
hyy = o By 11 22Y 12421 hyy =
22 11

7.6 SCATTERING PARAMETERS

As illustrated in the preceding sections, Z-parameters are useful in analyzing series
circuits while Y-parameters simplify the analysis of parallel (shunt) connected
circuits. Similarly, transmission parameters are useful for chain or cascade circuits.
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However, the characterization procedure of these parameters requires an open or
short circuit at the other port. This extreme reflection makes it very difficult (and in
certain cases, impossible) to determine the parameters of a network at radio and
microwave frequencies. Therefore, a new representation, based on traveling waves,
is defined. This is known as the scattering matrix of the network. Elements of this
matrix are known as the scattering parameters.

Figure 7.2 shows a network along with incident and reflected waves at its two
ports. We adopt a convention of representing the incident wave by «; and the
reflected wave by b, at the ith port. Hence, a, is an incident wave while b, is reflected
wave at port-1. Similarly, @, and b, represent incident and reflected waves at port-2,
respectively. Assume that a source is connected at port-1 that produces the incident
wave a;. A part of this wave is reflected back at the input (due to impedance
mismatch) while the remaining signal is transmitted through the network. It may
change in magnitude as well as in phase before emerging at port-2. Depending on
the termination at this port, part of the signal is reflected back as input to port-2.
Hence, reflected wave b, depends on incident signals a; and a, at the two ports.
Similarly, emerging wave b, also depends on a; and a,. Mathematically,

bl = Sllal =+ S12a2 (761)

bz = S21a1 + S22a2 (762)

Using the matrix notation, we can write,

bi| _|Su Sul||la
[bz]_[Szl 522][“2} (7.63)
or,
(6] = [S][a] (7.6.4)

where [S] is called the scattering matrix of the two-port network; S;; are known as
the scattering parameters of this network; and a; represents the incident wave at the
ith port while b; represents the reflected wave at the ith port.

H— Two-port network | —— by p. .
Port-1

b] —___. _'a2

Figure 7.2 Two-port network with associated incident and reflected waves.
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If port-2 is matched terminated while a, is incident at port-1, then a, is zero. In
this condition, (7.6.1) and (7.6.2) give

S, =-1 (7.6.5)
a; a,=0
and,
b
S, == (7.6.6)
a1 la,=0

Similarly, with a source connected at port-2 while port-1 is terminated by a matched
load, we find that

b
A lg,=0
and,
b
Syy =2 (7.6.8)
a a;=0

Hence, S;; is reflection coefficient I'; at the ith port when the other port is matched
terminated. S;; is the forward transmission coefficient of the jth port if i is greater
than j, whereas it represents the reverse transmission coefficient if i is less than j with
the other port terminated by a matched load.

We have not yet defined «; and b, in terms of voltage, current, or power. To that
end, we write steady-state total voltage and current at the ith port as follows:

Vi — Viin + Viref (769)

and,

1 .
I = Z_(V;n — preh (7.6.10)

oi

where superscripts “in” and “ref” represent the incident and reflected voltages,
respectively. Z,; is characteristic impedance at ith port.

Equations (7.6.9) and (7.6.10) can be solved to find incident and reflected
voltages in terms of total voltage and current at the ith port. Hence,

.
Vit =S+ Zy) (7.6.11)
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and,
ref 1 6
Vi - 2(Vz Zoi[i) (7 12)

Assuming both of the ports to be lossless so that Z; is a real quantity, the average
power incident at the ith port is

Z, 27,

oi oi

] o 1 2o\ 1
P = ERG{W“(I,-‘“)*} = ZRe{Vi‘“ () } =" (7.6.13)

and average power reflected from the ith port is

Z 2Z

1 1 Z2AW 1
P;’ef — 5Re{ Viref(]iref)*} — ERC{ Viref <l—> } - | Viref|2 (7614)
The a; and b; are defined in such a way that the squares of their magnitudes
represent the power flowing in respective directions. Hence,

iy Zoill) (7.6.15)

it Vit Zl; 1
a; = = — =
27, 2\ J2z, 22 \/Z,,

and,

et 1 (v, —Z.I 1 |
by =—A—=_1220) = L JZ.I 7.6.16
V27, 2( 2Z,,; ) 232 ( /Z,; ° ) ( )

Therefore, units of a; and b, are

Volt
v/ Watt = = Amp - v Ohm
+/Ohm P

Power available from the source, P,, at port-1 is
Py = |al|2;

power reflected from port-1, P, is

2.
Pref = |b1| s
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and power delivered to the port (and hence, to the network), P,, is
2 2
Py =Py — Pry = lay|” — [

Consider the circuit arrangement shown in Figure 7.3. There is a voltage source
Vs connected at port-1 while port-2 is terminated by load impedance Z; . The source
impedance is Zg. Various voltages, currents, and waves are as depicted at the two
ports of this network. Further, it is assumed that the characteristic impedances at
port-1 and port-2 are Z,; and Z,, respectively. Input impedance Z; at port-1 of the
network is defined as the impedance across its terminals when port-2 is terminated
by load Z; while source Vg, along with Zg are disconnected. Similarly, output
impedance Z, at port-2 of the network is defined as the impedance across its
terminals with load Z; disconnected and voltage source Vg, replaced by a short
circuit. Hence, source-impedance Zg terminates port-1 of the network in this case.
Input impedance Z, and output impedance Z, are responsible for input reflection
coefficient I'; and output reflection coefficient I',, respectively. Hence, the ratio of
b, to a; represents I'; while that of b, to a, is I',. For the two-port network, we can
write

by = Spay +Spa, (7.6.17)
and,
by, = S8ya1 + Sya, (7.6.18)
Load reflection coefficient I'} is

Zy, — Zy) )

r = =
YUz 427, b,

(7.6.19)

Note that b, leaves port-2 and, therefore, it is incident on the load Z; . Similarly, the
wave reflected back from the load enters port-2 as a,.
Source reflection coefficient I'g is found as

Zi—7Z
=28 %0 _ 41 (7.6.20)
V4
: I + + L

# : pc— Two-port network — b *
Vsi Port-1 Vi V2 Port-2
Lt 75 S

Zy

Figure 7.3 Two-port network with a voltage source connected at port-1 while port-2 is
terminated.
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Since b, leaves port-1 of the network, it is the incident wave on Zg while a, is the
reflected wave.
Input and output reflection coefficients are

Zi—Zy _ b
N=—"—=— 7.6.21
! Zl + Zol a ( )
and,
Zy, —Z b
r,=22_"2_22 (7.6.22)
LH+Z, a
Dividing (7.6.17) by a; and then using (7.6.21), we find
b Z,—Z
Ao =2 g, +S12(a—2> (7.6.23)
a Zy + 2y a;
Now, dividing (7.6.18) by a, and then combining with (7.6.19), we get
b2 a; 1 a; 1— Szer
2 _g S (L) =— =222 "2 L 7.6.24
a4 25 <a2) Iy - a4 Syl ( )
From (7.6.23) and (7.6.24),
S8l
ry==s —_— 7.6.25
. STy ( )

If a matched load is terminating port-2 then I'y =0, and (7.6.25) simplifies to
r1 = Sll'
Similarly, from (7.6.18) and (7.6.22),

b Z,— 7
ECRE R e - R Y (”_1> (7.6.26)
a Zy+Zy a

From (7.6.17) and (7.6.20), we have

by
a4

= 2=__"US (7.6.27)

az 1 a2 1 —Sllrs
e 12( > I's ay Sipls

a
Substituting (7.6.27) into (7.6.26) we get,

S2IS12rS

I,=8 =
2 22+1—Snrs

(7.6.28)
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If Zg is equal to Z;; then port-1 is matched and I'gq = 0. Therefore, (7.6.28)
simplifies to

Fz = Szz

Hence, S;; and S,, can be found by evaluating the reflection coefficients at
respective ports while the other port is matched terminated.

Let us determine the other two parameters, namely S,; and S),, of the two-port
network. Starting with (7.6.6) for S,,, we have

b
Sy =2 (7.6.6)
a1 lay,=0
Now, a, is found from (7.6.15) with i as 2 and forcing it to zero we get
L(Vy+Z,1
4=~ 21222 _ ooy, = 7,0 (7.6.29)
2 A% 2ZoZ

Substituting (7.6.29) in the expression for b, that is obtained from (7.6.16) with 7 as
2, we find that

1 V2 B 202[2 Zo2
by =-|———==) =—-L,/->= 7.6.30
. 2( o e (7.6.30)

An expression for a; is obtained from (7.6.15) with i = 1. It simplifies for Zg
equal to Z,;, as follows.

L (Vi +Z,1 Vsi
a, =— = 7.6.31
) ( V2Z4, 222, (7.6.31)

S,, is obtained by substituting (7.6.30) and (7.6.31) into (7.6.6), as follows.

by

21 —

a

(_\/202[2
V2 20, |2
== = /272 [Zol (7.6.32)
a=0 Vs Vsi{ Zo
24/2Zy

Following a similar procedure, S;, may be found as

2V, |7,
=1 |22 (7.6.33)
a;=0 VS2 Zol

b
Stz =1
a
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An analysis of S-parameters indicates that

by 2 P — Py
S =— ——as_d 7.6.34
| ”| |a1|2 P ( )

a,=0 avs

where P, is power available from the source and P, is power delivered to port-1.
These two powers will be equal if the source impedance is conjugate of Z;, that is,
the source is matched with port-1.

Similarly, from (7.6.32),

2 2

7 (’_2> 7 2(’_2>
0. 0. P

|S21|2 — \/§ _ \/E _ T AVN (7635)

1 <VSI)2 1 1 VSI 2 Pavs
4201 \/5 2 2Zol <\/§>
where P,y 1s power available at port-2 of the network. It will be equal to power
delivered to a load that is matched to the port. This power ratio of (7.6.35) may be
called the transducer power gain.
Following a similar procedure, it may be found that |S,,|* represents the ratio of
power reflected from port-2 to power available from the source at port-2 while port-1

is terminated by a matched load Zg, and |S),|* represents a reverse transducer power
gain.

Shifting the Reference Planes

Consider the two-port network shown in Figure 7.4. Assume that a; and b; are
incident and reflected waves, respectively, at unprimed reference planes of the ith
port. We use unprimed S-parameters for this case. Next, consider that plane A-A is
shifted by a distance ¢, to A’-A’. At this plane, a| and b represent inward and
outward traveling waves, respectively. Similarly, @) and b, represent inward and
outward traveling waves, respectively, at plane B’-B’. We denote the scattering
parameters at primed planes by a prime on each as well. Hence,

bl] |:S11 S12i||:al:|
= 7.6.36
|:b2 S Sn ||l @ ( )

A B -
— X] X2 &
A Two-port network | —— 1h, po . 5
Port-1
by ja—— - (2
—————— [ ——> -—
A’ A B B’

Figure 7.4 A two-port network with two reference planes on each side.
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b ] |: 1 12 :| |:a’1 i|
/ = I/ ! / 7.6.37
|:b2 S Sy lla ( )

Wave b, is delayed in phase by ¢, as it travels from A to A’. That means b, is
ahead in phase with respect to b}. Hence,

and,

b, = b|e/Ph (7.6.38)

Wave a; comes from A’ to plane A. Therefore, it has a phase delay of f¢, with
respect to a}. Mathematically,

a, = dye P (7.6.39)
On the basis of similar considerations at port-2, we can write
b, = bye/P® (7.6.40)

and,

a, = dye e (7.6.41)

Substituting for b, a,, b,, and a,; from (7.6.38)—(7.6.41) into (7.6.36), we get

by e/Ph Sy S |[ aje?P
‘ = , 7.6.42
[ Be bt S Sy || dye e (7.6.42)
We can rearrange this equation as follows.
b’l S”e_jzﬁll Slze—jﬁ(ll‘*‘zz) a’l
= A A 7.6.43
[b/z ] [Szlejm‘ﬂz) Spe 2t d) ( )
Now, on comparing (7.6.43) with (7.6.37), we find that
Si 1 Si2 _ Sl ! e 2Pt SIZe_jﬁ(el +4)
[S§1 Sy ] [ Sye Pt SpeiAhte (7.644)

Following a similar procedure, one can find the other relation as follows.

Sll SlZ S/llejzﬁel Sizejﬁ(ll'Mﬂ
= i , 6.4
|:S21 S Speftittd g e 2B (7.6.43)

Example 7.14: Total voltages and currents at two ports of a network are found as
follows:

V, =10/0°V, I, =0.140°A, V,=12/30°V, and I, =0.15/100°A
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Determine incident and reflected voltages, assuming that the characteristic imped-
ance is 50 Q at both its ports.

I < b
—> |
Two-port
1% network Va

From (7.6.11) and (7.6.12) with i = 1, we find that
yin = %(IOZOO + 50 x 0.1/40°) = 6.915 +1.607 V
and,
yref = %(10[0O —50 % 0.1/40°) = 3.085 —j1.607 V
Similarly, with 7/ = 2, incident and reflected voltages at port-2 are found to be
yin — %(12130o + 50 x 0.15/100°) = 4.545 4 j6.695 V
and,

1
il = 5(12[30O — 50 x 0.15/100°) = 5.845 —j0.691 V

Example 7.15: Find S-parameters of a series impedance Z connected between the
two ports, as shown here.

Zo

From (7.6.25), with I';, = 0 (i.e., port-2 is terminated by a matched load), we find
that

Z+2)—-2, V4

S :F _n = g
1 tla,=o Z+2)+2, Z+2Z,
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Similarly, from (7.6.28), with I'g = 0 (i.e., port-1 is terminated by a matched load),

(Z+4+z)-7Z, Z
CZ+Z)+Z, Z+2Z,

Sy =Thla -0

S,; and §;, are determined from (7.6.32) and (7.6.33), respectively. For evaluat-
ing S,;, we connect a voltage source Vg, at port-1 while port-2 is terminated by Z,,
as shown here. The source impedance is Z,.

Z, z |

VS Vl Vz

Using the voltage divider formula, we can write

Z

Vy=—"2_V,
2 Z+22, sl
Hence, from (7.6.32),
o 2 22, _22,+7-7_ z
N Ty T Z+22, 72422, Z+27,

For evaluating S;,, we connect a voltage source Vg, at port-2 while port-1 is
terminated by Z,, as shown here. The source impedance is Z,.

I z Z,

Using the voltage divider rule again, we find that
vV, = Zo V.
1= 7522, s2
Now, from (7.6.33),

0, 27, 22, +Z-Z z

JEE — =1
Ve Z+2Z, Z+2Z, Z+27,

S12 =
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Therefore,
[Sn 512i|:|: I, 1—F1i|
S Sy 1-T, I,
where
VA
I'=——
Z+27,

An analysis of the S-parameters indicates that S}, is equal to S,,. It is because the
given two-port network is symmetrical. Further, its S}, is equal to S,; as well. This
happens because this network is reciprocal.

Consider a special case where the series impedance Z is a purely reactive element,
that means Z equal to jX. In that case, I'; can be written as

iX
F] - = j
JX +27,
Therefore,
. 2 . 2
X X
SuP+ 18P = | = | 41—
JX +27, JX 427,
X ey _
X242 X2+(z,)
Similarly,

11> + 1S, * =1
On the other hand,

X2 N 22, X
JX +2Z, " —jX +2Z, jX+2Z,  —X+27Z,

SuSth +8,5% =

and,

27, XX 27, 0
= X X =
X +272, " —jX+2Z,  jX+2Z, —jX +2Z,

S8 + 85,5%,

These characteristics of the scattering matrix can be summarized as follows.

1 ifj=k%
0 otherwise

ZSijSTk = 5jk = {
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When elements of a matrix satisfy this condition, it is called the unitary matrix.
Hence, the scattering matrix of a reactance circuit is unitary.

Example 7.16: Find S-parameters of a shunt admittance Y connected between the
two ports, as shown here.

Z, Y Z
]
From (7.6.25),
1 1
Zi—Zy Y, Y, Y.=Y Y, —(+Y) —Y
S11:F1|1—L:0: =7 1= = =
Zl+Zol — 4+ — Y0+Yl Yo+(Y+Y0) 2Y0+Y
Yl Yo
Similarly, from (7.6.28),
1 1
ZZ_ZOZ Y2 Yo YO_YZ Yo_(Y+Yo) -Y
ZZ+ZO2 — 4 — Y0+Y2 Yo+(Y+Yo) 2Yo"i_Y
Y2 Yo

For evaluating S,;, voltage source Vg, is connected at port-1 and port-2 is
terminated by a matched load, as shown here.

Using the voltage divider rule,

1
Y+7, 1 Y,
V2= T Sl=Z(Y+Y)+1V51=Y+OZYVSl
Z_l’_ (¢ o (o]
°Y+Y,

Now, from (7.6.32),

27, 2, Y

72 — - 1=-—
Vo lr,—o Y +2Y, Y +2Y,

S21 =
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Similarly, when Vg, in series with Z, is connected at port-2 while port-1 is matched
terminated, S;, can be found from (7.6.33) as follows:

2V, 2, Y

S = — = :1— g
? " Vs lreo Y +2Y, Y +2Y,

where

As expected, S;; = S,, and S}, = 5, because this circuit is symmetrical as well
as reciprocal. Further, for ¥ = jB, the network becomes lossless. In that case,

B2 (27,
IS >+ 18y, 1* = > 5+ — =
B2+ (2Y))" B2+4+(2Y,)
and,
B 27, 27, JjB

SuStHh +8,8% =

_ L
Bt2v, “ TB+2v, jBt2v, CjB+2Y,

Hence, with Y as jB, the scattering matrix is unitary. In fact, it can be easily proved
that the scattering matrix of any lossless two-port network is unitary.

Example 7.17: An ideal transformer is designed to operate at 500 MHz. It has 1000
turns on its primary and 100 turns on its secondary side. Assuming that it has a
50-Q connector on each side, determine its S-parameters (see illustration).

1
1
+

Port-1 +
Vi V2 port-2

1000 : 100
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For an ideal transformer,

ﬁ—_—Izzn and

— ﬁ(_[2)21/17/11221:}’22
VZ Il V2 [1 VZ/(_[Z) ZZ

Now, following the procedure used in preceding examples, we find that

b Zn—-Z 21 99
Sh=-t =T e

a lg,—o a=0 = Z2+Z, n>+1 101

and, voltage V7| on the primary side of the transformer due to a voltage source FVy;
with its internal impedance Z,, can be determined by the voltage divider rule as
follows.

Zyn? 14 n? _nV,

V,=———V. — = =
I Iy A 7 e T

Hence,

2| 2 20
Vst loyoo W2+ 1 101

Similarly, S,, and S;, are determined after connecting a voltage source Vs, with
its internal impedance Z, at port-2. Port-1 is terminated by a matched load this time.
Therefore,

ZO
S22:@ :r2| 0:_’127_20:—1_”2:—2
a3 |4, =0 “= Z_(2)+Zo 1+ n? 101
n
and,
B/ M SO 0 V7 WS W C4VL)
PTG+ 2, T Ve ()1 1+nr v
Hence,
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Thus,
® 0
S S| | 101 101
S S| 209
101 101

This time, S, is different from S,, because the network is not symmetrical.
However, S, is equal to S,; because it is reciprocal. Further, an ideal transformer is
lossless. Hence, its scattering matrix must be unitary. Let us verify if that is the case:

99\* /20\> 10201
2 2
— R _— == 1
[S111° 4 1Sy1] (101) +<101> 10201
20\2 99\* 10201
2 2
— - _— :—:1
[S15]7 + S| (101> +< 101) 10201
99 20 20 99
% =X — 4 — -7 7=
S118%, + 8,18%, = 101 701 + 101~ ( ) 0

and,

20 99 99 20
S8t + 85,8% = ( ) =0

— X — —— ) x—=
101 101 101 101
Hence, the scattering matrix is indeed unitary.

Example 7.18: Find scattering parameters of the transmission line network shown
here.

I: ¢ >
1 —-»l |<—[2
ay + +
—_—
Zy, Y b
v Va
b a
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With port-2 matched terminated, wave a, entering port-1 emerges as a; e’ at

port-2. This wave is absorbed by the termination, making a, zero. Further, b, is zero
as well because Z; is equal to Z, in this case. Hence,
b2 = 61167}%

Similarly, when a source is connected at port-2 while port-1 is matched
terminated, we find that a; and b, are zero and

— -t
bl = ape

Hence,

Sl 1 Slz _ 0 eihfl(
S21 S22 B e_ﬂlYZ 0

As expected, S;; = Sy, and S}, = S,,, because this circuit is symmetrical as well
as reciprocal. Further, for y = jf3, the network becomes lossless. In that case,

Sll S12 _ 0 eijﬂ[
S21 S22 o eijﬁ[ 0

Obviously, it is a unitary matrix now.
Example 7.19: Find scattering parameters of the two-port network shown here.

_ YN

Port-1 j30Q

Port-2

Zo=50Q ——-j25Q Zp=50Q

With port-2 matched terminated by a 50-Q load, impedance Z; at port-1 is

. 50-(=25) _ . . .
7, =50 + ———2" = j50 + 10 — j20 = 10 4,30 Q
1 =730+ s =0+ 10— +J

Therefore,

Z,—Zy, 104,30 —50
S =T, _o= ol _ = 0.74536/116.565°
1 tla,=0 Z,+Z, 104530 +50
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Similarly, output impedance Z, at port-2 while port-1 is matched terminated by a
50-Q load is

SOV
, = COFPOER) _ 300
50+/50 — j25

and, from (7.6.32),

Zy—Zy 10—/30—50
2+ Zy,  10—330+50

S = Tala o = 0.74536/ — 116.565°

Now, let us connect a voltage source Vg, with its impedance at 50 Q at port-1 while
port-2 is matched, as shown here.

Va

Port-2

Vs Zu =300 ——.25Q  Zu=50Q l:l 50Q

Port-1

Using the voltage divider rule, we find that

10 — ;20
Vv, = 14
27504450410 —,20 3!

Therefore,

_10—520

=2 I 0.66666/ — 90°
60 4,30

a,=0

Now connect the voltage source at port-2 while port-1 is match terminated as
shown here.

Vi /7N V, 50Q
| —

j50Q L Vs2
[] #es B
Port-1 Port-2
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Using the voltage divider rule again, we find that

10 —j30
=y, =04714/—45°V
2750410 — 430 %

Using it one more time, V; is found as follows:

50

Vv, = Vv, = 0.4714/ — 45° = 0.33333/—90° V
P50 4550 27 141

and now, from (7.6.33) we get

S =— =2-0.33333/—-90° = 0.66666/ — 90°

Hence,

Si S [0.74536/116.565° 0.66666/ — 90°
S, Sy | T ] 0.66666/—90°  0.74536/ — 116.565°

In this case, S}, is different from S,, because the network is not symmetrical.
However, S, is equal to S,; because the network is reciprocal. Further, this network
is lossless. Hence, its scattering matrix must be unitary. It can be verified as follows:

1S11 1% 4 1S, 1> = (0.74536)* + (0.66666)* = 0.99999 = 1
11,17 + 185,12 = (0.66666)* + (0.74536)* = 0.99999 = 1

S115%, + 85,8%, = (0.74536/116.565%) x (0.66666/90°) + (0.66666/ — 90°)
x (0.74536/116.565°)
=0

and,

S158%, + Sy, 5%, = (0.66666/ — 90°) x (0.74536/ — 116.565°)
+(0.74536/ — 116.565°) x (0.66666/90°)
=0

Hence, this scattering matrix is indeed unitary.

Table 7.2 summarizes the characteristics of parameter matrices of the reciprocal
and symmetrical two-port networks. Properties of scattering parameters of lossless
junctions are listed in Table 7.3.
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TABLE 7.2 Properties of Parameters
of Reciprocal and Symmetrical Two-
Port Networks

Parameter Matrix Properties
-Zu le] Zyy =2y
_Zzl Zy Zy =12y
Yy le] Y, =Y
_Y21 Y5, Yin=1Yp
(4 B AD —BC =1
L C D A=D
_Sn 512] Sip =8
_S21 Szz Sll = Szz

TABLE 7.3 Properties of Scattering Matrix of Lossless Junctions

Properties Explanations

Matrix [S] is symmetrical. [S]* = [S], where [S]" is the tranpose matrix of [S]. Consequently
S = Sji
Matrix [S] is unitary. [S]* = [$*]' = [S]”!, where [S]® is the adjoint matrix of [S];

[$*]"is the conjugate of [S], and [S]7! is the inverse matrix of [S].
Consequently,

1 forj=k
> 5,51 =0 |

0 otherwise

Therefore,

N N
YSSE=Y 1S, =1. j=123,....N
i=1 i=1

7.7 CONVERSION FORM IMPEDANCE, ADMITTANCE, CHAIN,
AND HYBRID PARAMETERS TO SCATTERING PARAMETERS OR
VICE VERSA

From (7.1.3) we can write

v
\/ﬁ 7. Z Zydy = \/ O'lk Z k,/ Ik, wherei = 1,2

Therefore, from (7.6.15) and (7.6.16), we have

2
Z Zy +64) °’Ik (7.7.1)



CHAIN SCATTERING PARAMETERS 287
and,
13 - Zoi
bi =5 (Zix — 0y | 51k (7.7.2)
2 2
where,

5 — 1 fori=k
k=10 otherwise

Equations (7.7.1) and (7.7.2) can be written in matrix form as follows:

fa] = 3 {121+ (V1)1 (7.1.3)
(51 = 311~ (U] (17.4)
where
1= %Ik
and [U] is the unit matrix.
From (7.7.3) and (7.7.4), we have
(5] = 2] - U2 + U] [a (1.1.5)
Hence,
5] = (121 - [UIHZ] + (U]} (1.7.6)
o,
[21= (U] + [STH(U] — [~ (.1.7)

Similarly, other conversion relations can be developed. Table 7.4 lists these
equations when the two ports have different complex characteristic impedances.
Characteristic impedance at port-1 is assumed Z;, with its real part as R,;. Similarly,
characteristic impedance at port-2 is Z,,, with its real part as R,.

7.8 CHAIN SCATTERING PARAMETERS

Chain scattering parameters are also known as the scattering transfer parameters or
T-parameters and are useful for networks in cascade. These are defined on the basis
of waves a, and b, at port-1 as dependent variables and waves a, and b, at port-2 as
independent variables. Hence,

3] (5 £
b, Ty Tnlla
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TABLE 7.4 Conversion From (To) Impedance, Admittance, Chain, or Hybrid To (From)
Scattering Parameters

(2 = Z5) (g + Zi) — 21325,

(@6 + S1Z0)(1 = 8) + 812512y

= 7=
T2+ Zo)Zoy + Ziy) — Z1yZs, ! (1 =81 )1 = 8%) — 8125
S — 2Z1,/Ro1 Rz 7 25,5v/Ro1Rpy
2Tz, + Zo)Zoy + Zip) — Z12 2 2T (=81 = Sp) — 51585
S, = 2Zy /Ry Ry Zy) = 28514/ Ry Ry
(Z1) + Zy )2y, + Zyy) — 212y, (1 =81 = 83) — 8128,
_ (Z11 + 2y )2y, — Z%) — Z122 7 — (Z8 + S0Zp)(1 — S11) + 81251 Zp,
2720+ 20) 2y + Zy) — Z13 2 2 (1 =811 = 8%) — 81255
S — (=Y Z5)( + Yo Zio) + Yo Vo1 261 2 v — (1 = S1)(Z% + 520Zp2) + 512512,
U+ Y1 Zoy )1+ Y Ziy) — Vs Yoy Zg\ Zoy T+ S0Zo) 28y + S0nZiy) — 812501 201 2o
S,y = —2Y,4/Ro1 Ry Y, = —2851,v/RoiRp,
A+ Y1 Zo)( + YoZip) — Yio Y01 Zo1 Zi (Z8 + SuZo)(Z§, + SnZp) — S129Z01 2
S, = =2Y,,/Ro 1 Ry, Y, = =285,1v/RoiRp,
A+ Y1 Zo)( + Yo Zip) — Y12 Y1 Zoy Zp (Z8 + SuZo)(Z§ + SnZp) — S1251 201 2
_ A+ Y1 Zo)( = Yo Zl) + Yo Yo 251 25, Yoo — (ZF + S1Zo)(A = Sx) + 812512,
271+ Y1 Zo)( + Yo Z) = Y12 Y01 Zo1 Zo 2 (Z8 + SuZo)(Z, + SnZy) — S1251Z01 2
_ AZy, + B — CZ§,Zy, — DZ§, 4= (Z§ +S1uZo)(A — 85) + 81251201
" AZy + B+ CZy Zyy + DZy, 28517/ Ro1 Ry
_ 2(AD — BCY(/Ryi Ryn) B— (Z§ +SuZo)(Z§ + SnZip) — S1250 2o 2z
2 AZy, + B+ CZy1 Zy, + DZy, 2851/ Ro1Roz
S = 2Ry Ryp C— (1 =81 = 8y) = 8155,
27 4Zy + B+ CZy 2y, + DZy, 2851V Ro1 Ry,
_ —AZ§ + B — CZy Z§, + DZy, D= (I =81)EZ% + SnZy) + 512512
27 AZy + B+ CZyZ, + DZy 281v/Ro1Roy
S = (hyy — ZE)( + hyyZyy) — hyphoy Ziyy b o— (Z8 + S1uZe)(Z + SnZip) + S1251 201 2
! (Zo1 + )L + hypZyy) — hyohyy Zy, a (1 = 8$1)(Z% + $22Zp2) + 8125212,
S,y = 2h15/Ro1 Ry hyy = 2814/ Ry Roy
(Zo1 + )1+ hyyZyy) — hinhy Zy, (1 = S$1)(Z8 + $22Zpy) + 812521 Z;
2y Rz 253, Rz
S, = hyy =
T Zoy + o)A+ hyyZiy) — hiyhy Zyg T = 8)(Z + S$0nZpy) + 512501 2oy
S, = (Zoy + h )X — hyy Z§y) + hiahy Z5 hyy (I =810 = 85) — 8128y

- (ZOI + hll)(l + hZZZOZ) - h12h21202

(- SINZE + 8502p) + 8125120
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TABLE 7.5 Conversion Between Scattering and
Chain Scattering Parameters

Ty, 1
S, =2 T, =—
11 T11 11 S21
S12 _ T11T22T_ T12T21 le _ _SSZZ
11 21
1 S
Sy = T_11 Ty = S_;
_T12 _(SIISZZ - S12S21)
Sy, = T,, — 1122 = 212921
22 Tll 22 S21

Conversion relations of chain scattering parameters with others can be easily
developed. Conversions between S- and T-parameters are listed in Table 7.5.

SUGGESTED READING

I. Bahl and P. Bhartia, Microwave Solid State Circuit Design. New York: Wiley, 1988.
R. E. Collin, Foundations for Microwave Engineering. New York: McGraw Hill, 1992.

R. S. Elliott, An Introduction to Guided Waves and Microwave Circuits. Englewood Cliffs, NJ:
Prentice Hall, 1993.

V. E. Fusco, Microwave Circuits. Englewood Cliffs, NJ: Prentice Hall, 1987.
G. Gonzalez, Microwave Transistor Amplifiers. Englewood Cliffs, NJ: Prentice Hall, 1997.
D. M. Pozar, Microwave Engineering. New York: Wiley, 1998.

S. Ramo. J. R. Whinnery, and T. Van Duzer. Fields and Waves in Communication Electronics,
New York: Wiley, 1994.

Peter A. Rizzi, Microwave Engineering. Englewood Cliffs, NJ: Prentice Hall, 1988.

PROBLEMS

1. Determine Z- and Y-matrices for the following two-port network. The signal
frequency is 500 MHz.

h—m— > || <+—D

N
T
V[ V2
I I
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2. Determine Z-parameters of the following two-port network:

10-Q 10-Q

I.

3. Determine the Z-parameters of the following two-port network operating at
800 MHz.

50Q 50Q

Port-1 —— 10pF Port-2

4. Determine the Z-matrix for the following two-port network.

5. The following two-port network represents a high-frequency equivalent model
of the transistor. If the transistor is operating at 10%rad/s then find its Z-
parameters.

1 pF
|

f i r
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6. Find the Y-parameters of the two-port network given below.

£

Port-1

10-Q

Y

20-Q

A

Port-2

291

7. Measurements are performed with a two-port network as shown below. The

observed voltages and currents are tabulated. However, there are a few blank
entries in this table. Fill in those blanks and also find Y- as well as Z-parameters

of this two-port network.

11 > <4— 12
Vi V,
Experiment Vi (V) v, (V) I, (A) L (A)
1 20 0 4 -8
2 50 100 —20 -5
3 ? ? 5 0
4 100 50 ? ?
5 ? ? 5 15

8. The Y-matrix of a two-port network is given as follows:

10 -5
= [50 20 }ms
It is connected in a circuit as shown below. Find the voltages V| and V5.

25Q

100V £0° Vl 100 Q

10 -5
[¥]= |: :I mS Va
50 20
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9. Determine the transmission and hybrid parameters for the following networks:

20Q

(@

200 Q 200 Q

(b

10Q 10Q

200+ 8 Q

10. Calculate Z- and S-parameters for the following circuit at 4 GHz. Both ports of
the network have characteristic impedance of 50 ohm.

0.5 pF
]
H

17.6 Q
292 Q f % 202 O

11. Determine S-parameters of the following two-port T-network:

100 20Q

L 1

Z,=50Q 300 7,=50Q
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12. Determine S-parameters of the following two-port network:

Z,=50 Q Z,=50Q

10Q

13. Determine S-parameters of the following two-port network:

50 Q

Z,=50Q Z,=50Q

14. Determine S-parameters of the two-port pi-network shown below:

Z0=5()Q 200Q 2000 Z0=SOQ

15. Scattering variables measured at a port are found as follows:

a=8—j5and b =2+4/5

293

Normalizing impedance is Z, = 50 Q. Calculate the corresponding voltage and

current.

16. Scattering variables measured at a port are:

a = 0.85/45°and b = 0.25/65°

Normalizing impedance is Z, = 50 Q. Calculate the corresponding voltage and

current.

17. Calculate power flow into a port in each case for the following sets of scattering

variables at the port:
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18.

19.

20.

21.

TWO-PORT NETWORKS

@ a=3+,5b=0.2—,0.1

(b) a=40—-;30,b=5—5

Calculate the power flow into a port in each case for the following sets of
scattering variables at the port:

(@) a=/60°, b=2/—45°

(b) a =50/0°, b =10/0°

Calculate scattering variables a and b in each of the following cases:

@ V=4—-;3V,1=03+,04A

(b) V=10/-30°V, I =0.6/70°A

Assume that characteristic impedance at the port is 100 Q.

Find the reflection coefficient for each of the following sets of scattering
variables:

@ a=03+,04,b=0.1-02

(b) a=-0.54+;0.2,6=0—,0.1

(€) a=0.5/—-70°,b=0.3/20°

(d) a=5/0°,b=0.3/90°

The scattering parameters of a two-port network are given as follows:

Sy, = 0.687/107°, Sy, = 1.72/ — 59°, S, = 0.114/ — 81°, S,, = 0.381/153°

A source of 3mV with internal resistance of 50Q is connected at port-1.
Assuming the characteristic impedance at its ports as 50, determine the
scattering variable a,, b,, a,, and b, for the following load conditions:

(a) 50Q

(b) 100Q



Radio-Frequency and Microwave Communication Circuits: Analysis and Design
Devendra K. Misra

Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-41253-8 (Hardback); 0-471-22435-9 (Electronic)

FILTER DESIGN

A circuit designer frequently requires filters to extract the desired frequency
spectrum from a wide variety of electrical signals. If a circuit passes all signals
from dc through a frequency w, but stops the rest of the spectrum, then it is known
as a low-pass filter. The frequency w, is called its cutoff frequency. Conversely, a
high-pass filter stops all signals up to @, and passes those at higher frequencies. If a
circuit passes only a finite frequency band that does not include zero (dc) and infinite
frequency, then it is called a band-pass filter. Similarly, a band-stop filter passes all
signals except a finite band. Thus, band-pass and band-stop filters are specified by
two cutoff frequencies to set the frequency band. If a filter is designed to block a
single frequency, then it is called a notch-filter.

The ratio of the power delivered by a source to a load with and without a two-port
network inserted in between is known as the insertion loss of that two-port. It is
generally expressed in dB. The fraction of the input power that is lost due to
reflection at its input port is called the return loss. The ratio of the power delivered to
a matched load to that supplied to it by a matched source is called the attenuation of
that two-port network. Filters have been designed using active devices such as
transistors and operational amplifiers, as well as with only passive devices (inductors
and capacitors only). Therefore, these circuits may be classified as active or passive
filters. Unlike passive filters, active filters can amplify the signal besides blocking
the undesired frequencies. However, passive filters are economical and easy to
design. Further, passive filters perform fairly well at higher frequencies. This chapter
presents the design procedure of these passive circuits.

There are two methods available to synthesize passive filters. One of them is
known as the image parameter method and the other as the insertion-loss method.
The former provides a design that can pass or stop a certain frequency band but its

295
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frequency response cannot be shaped. The insertion-loss method is more powerful in
the sense that it provides a specified response of the filter. Both of these techniques
are included in this chapter. It concludes with a design overview of microwave filters.

8.1 IMAGE PARAMETER METHOD

Consider the two-port network shown in Figure 8.1. V; and V), represent voltages at
its ports. Currents /; and /, are assumed as indicated in the figure. It may be noted
that /; is entering port-1 while /, is leaving port-2. Further, Z;, is input impedance at
port-1 when Z, terminates port-2. Similarly, Z, is output impedance with Z;
connected at port-1. Z;; and Z,, are known as the image impedance of the network.
Following the transmission parameter description of the two-port, we can write

and,
I, = CV, + DI, (8.1.2)

Therefore, impedance Z;; at its input can be found as

Vv, AV,+BIl, AZ,—+B
in =737 = = (8.1.3)
I, CVy,+DI, CZ,+D

Alternatively, (8.1.1) and (8.1.2) can be rearranged as follows after noting that
AD — BC must be unity for a reciprocal network. Hence,

V, =DV, — BI, (8.1.4)
and,

L, =—-CV, + Al (8.1.5)
Therefore, output impedance Z, is found to be

v, DV, —Bl, _DZ, +B

7 = —_2_ _ = .1.6
© I —CV,+4Al, CZ;+A4 (8.1.6)
h—p —» L
Zy Vi Zin 4 B <7z Vo | Zy
I l C D ‘

Figure 8.1 A two-port network with terminations.
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Note that

For Z,, = Z;; and Z, = Z,,, equations (8.1.3) and (8.1.6) give
Zy(CZ, +D)=AZ, + B
and,
Zy(CZy +A) =DZ; + B
Subtracting equation (8.1.8) from (8.1.7), we find that

12_A il

Now, substituting (8.1.9) into (8.1.7), we have

AB
“1=Vep

Similarly, substituting (8.1.10) into (8.1.9)

BD

7, = |—
2 AC

(8.1.7)

(8.1.8)

(8.1.9)

(8.1.10)

(8.1.11)

Transfer characteristics of the network can be formulated as follows. From

(8.1.1),
v, I B
L A+BEZ=A+—
VZ V2 ZiZ
or,
v, |4
“L— JZ (V4D + vBC)
v, \D

For a reciprocal two-port network, 4D — BC is unity. Therefore,

(8.1.12)
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Similarly, from (8.1.2),

é:\/E(JE—JzTC) (8.1.13)
L, VD

Note that equation (8.1.12) is similar to (8.1.13) except that the multiplying
coefficient in one is the reciprocal of the other. This coefficient may be interpreted as

the transformer turn ratio. It is unity for symmetrical T and Pi networks. Propagation
factor y (equal to a +jf3, as usual) of the network can be defined as

e’ =+AD — v/BC
Since (AD — BC) = 1, we find that
cosh(y) = v/AD (8.1.14)

Characteristic parameters of m- and T-networks are summarized in Table 8.1;
corresponding low-pass and high-pass circuits are illustrated in Table 8.2.

TABLE 8.1 Parameters of T and Pi Networks

n-Network T-Network
z, I — zn }—l——‘ zn |-
27, 27, Z
VA Z
ABCD parameters A=1 +2—le A=1 +i
ZZ
B=Z7 B=27 +-1
! 1tz
1 Z 1
C=—+— C=—
2tz Z
A Z,
*az, ta2z
VAV YAVA VA
Image impedance Z, = 1 é =172 Zy = 2,2, (1 + _'>
1+ Zr 47,
4z,
. Z 1 Zl
Propagation constant, y cosh(y) =1+ — cosh(y) =1+ —

27, 27,
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TABLE 8.2 Constant-k Filter Sections

Filter Type T-Section n-Section

Low-pass L2 L2 L

OO0 =0
T T

High-pass 2C ICf
— —— 1<
L 2L 2L
For a low-pass T-section as illustrated in Table 8.2,
and,
1
Zy =—— (8.1.16)

Therefore, its image impedance can be found from Table 8.1 as follows:

L ?LC\"?
Zr = J=[1- 8.1.17
iT \/Z( 4 > ( )

In the case of a dc signal, the second term inside the parentheses will be zero and
the resulting image impedance is generally known as the nominal impedance, Z,.

Hence,
L
ZO = E

Note that the image impedance goes to zero if ®?LC/4 = 1. The frequency that
satisfies this condition is known as the cutoff frequency, ®,. Hence,

(8.1.18)
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Similarly, for a high-pass T-section,

1
Z, = —— 8.1.19
=oC (8.1.19)
and,
Z, = joL (8.1.20)

Therefore, its image impedance is found to be

T 1 0.5
Zo==2(1 - —— 1.21
T \/;< 4w2LC) ®.1.21)

The cutoff frequency of this circuit will be given as follows.

Wy = ——— (8.1.22)

Example 8.1: Design a low-pass constant-k T-section that has a nominal impedance
of 75 Q and a cut-off frequency of 2MHz. Plot its frequency response in the
frequency band of 100 kHz to 10 MHz.

Since the nominal impedance Z, must be 75 Q,

L
ZO=75=\/;

The cutoff frequency w, of a low-pass T-section is given by (8.1.18). Therefore,

2
W, =21 x2x 10° = ——
~LC
These two equations can be solved for the inductance L and the capacitance C, as

follows.
L =11.9366 uH
and,
C =2.122nF

This circuit is illustrated in Figure 8.2. Note that inductance L calculated here is
twice the value needed for a T-section. Propagation constant y of this circuit is
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5.9683 pH
2.122 nF

5.9683 pH

T

Figure 8.2 A low-pass constant-k T-section.

determined from the formula listed in Table 8.1. Transfer characteristics are then
found as e”7.

The frequency response of the designed circuit is shown in Figure 8.3. The
magnitude of the transfer function (ratio of the output to input voltages) remains
constant at 0 dB for frequencies lower than 2 MHz. Therefore, the output magnitude
will be equal to the input in this range. It falls by 3 dB if the signal frequency
approaches 2 MHz. It falls continuously as the frequency increases further. Note that
the phase angle of the transfer function remains constant at —180° beyond 2 MHz.
However, it shows a nonlinear characteristic in the pass-band.

ol 0.2 0.5 1 2 5 10
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o1}
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S 20
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o
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Fregjecy  (Miz)
0.1 0.2 0.5 1 2 5 10
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- ~J
\\
-50
§ N
g -100
L \
_Eo \
-175

0.1 0.2 0.5 1 2 5 10
Freqecy (M&)

Figure 8.3 Frequency response of the T-section shown in Figure 8.2.
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The image impedance Z;; of this T-section can be found from (8.1.17). Its
characteristics (magnitude and phase angle) with frequency are displayed in Figure
8.4. The magnitude of Z;; continuously reduces as frequency is increased and
becomes zero at the cutoff. The phase angle of Z;; is zero in pass-band and it
changes to 90° in the stop-band. Thus, image impedance is a variable resistance in
the pass-band, whereas it switches to an inductive reactance in the stop-band.

Frequency characteristics illustrated in Figures 8.3 and 8.4 are representative of
any constant-k filter. There are two major drawbacks to this kind of filter:

1. Signal attenuation rate after the cutoff point is not very sharp.

2. Image impedance is not constant with frequency. From a design point of view,
it is important that it stays constant at least in its pass-band.

3001

250

Magnitude (Ohm)
g

150}
100}
50k
2 4 6 8 10
Frequency (MHz)
80 |
=
0]
)
S  wf
Q
3
<
~
204+
2 4 6 5 10
Frequency (MHz)

Figure 8.4 Image impedance of the constant-k filter of Figure 8.2 as a function of frequency.
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These problems can be remedied using the techniques described in the following
section.

m-Derived Filter Sections

Consider two T-sections shown in Figure 8.5. The first network represents the
constant-k filter that is considered in the preceding section, and the second is a new
m-derived section. It is assumed that the two networks have the same image
impedance.

From Table 8.1, we can write

! 171 Zi Zl
2 2

It can be solved for Z} as follows.

7y = Zi{ <ZlZz + @) (8.1.23)
Now, assume that
Z) = mZ, (8.1.24)
Substituting (8.1.24) in to (8.1.23) we get
Z, = % + (1 4_m’"2)zl (8.1.25)

Thus, an m-derived section is designed from values of components determined
for the corresponding constant-k filter. The value of m is selected to sharpen the
attenuation at cutoff or to control image impedance characteristics in the pass-band.

Z,/2 Z/2 | —1 z/2 Z'2 |

(@ (b

Figure 8.5 A constant-k T-section (a) and an m-derived section (b).



304 FILTER DESIGN

For a low-pass filter, the m-derived section can be designed from the correspond-
ing constant-k filter using (8.1.24) and (8.1.25), as follows:

Z) = jomL (8.1.26)

and,

1 — m? 1
Zh = ol + —— 8.1.27
2 < 4dm ) *J@ +jcomC ( )

Now we need to find its propagation constant y and devise some way to control its
attenuation around the cutoff. Expression for the propagation constant of a T-section
is listed in Table 8.1. In order to find y of this T-section, we first divide (8.1.26) by
(8.1.27):

40*m?
Z/ 2 ZLC B

4 _ wm - @e (8.1.28)

Z 1 —m? 2 ?

1 - w’LC 1-(1-m»)—

4 P

where,
2

W, = —— 8.1.29
« = JIc (8.1.29)

Using the formula listed in Table 8.1 and (8.1.28), propagation constant y is found as
follows:

mo\’
.
cosh(y) =1+ -2 =1— ¢

! 2
27, 1_(1_’”2)(%)

¢

or,

w? — 0? — (mw)?

2
cosh() = T Ayt

(8.1.30)

Hence, the right-hand side of (8.1.30) is dependent on frequency w. It will go to
infinity (and therefore, y) if the following condition is satisfied.

w:leij—W:ww (8.1.31)
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This condition can be used to sharpen the attenuation at cutoff. A small m will place
W, close to . In other words, m, is selected a little higher than w, and the
fractional value of m is then determined from (8.1.31). Z| and Z} of the m-derived
section are subsequently found using (8.1.24) and (8.1.25), respectively.

Note that the image impedance of an m-derived T-section is the same as that of
the corresponding constant-k network. However, it will be a function of m in case of
a m-network. Therefore, this characteristic can be utilized to design input and output
networks of the filter so that the image-impedance of the composite circuit stays
almost constant in its pass-band. Further, an infinite cascade of T-sections can be
considered as a m-network after splitting its shunt arm as illustrated in Figure 8.6.
Note that the impedance Z; of the T-network is replaced by 2 Z;, while two halves of
the series arms of the T-network give Z; of the m-network. Image impedance Z;, is
found from Table 8.1, as follows.

1 —m?
Z,\7Z 72
zz ‘2+< 4 )

Z; 8.1.32
17T ZlT ZlT ( )
For the low-pass constant-k filter, we find from (8.1.15)—(8.1.18) that
L 2
Z\Z, = c= Zs
2Z,0\°
7= 0?1 = < "w)
wC
and,
2
w
f-a-(2)
4 zr z2 || zr z'n | z ]
L= |
Z; Z 22/ 22,
@ ®)

Figure 8.6 Dec-embedding of a n-network (b) from a cascaded T-network (a).
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Therefore,

or,
- _1-q — m?)@?
it T /7(1 —(Z)Z)

- Z
where Z;, = % may be called the normalized image impedance of m-network and

(8.1.33)

0

.o
@ = — the normalized frequency.
C

Equation (8.1.33) is graphically displayed in Figure 8.7. The normalized image
impedance is close to unity for nearly 90 per cent of the pass-band if m is kept
around 0.6. Therefore, it can be used as pre- and post-stages of the composite filter
(after bisecting it) to control the input impedance. These formulas will be developed
later in this section.

Example 8.2: Design an m-derived T-section low-pass filter with cutoff frequency
of 2 MHz and nominal impedance of 75 Q. Assume that £, = 2.05 MHz. Plot the
response of this filter in the frequency band of 100 kHz to 10 MHz.

25—

20

Normalized impedance
&
[

1.0

05 PR S SR AT SN TN N TR SO R NN TR SN SN SR S S
0.0 02 04 0.6 08 10

Normalized frequency

Figure 8.7 Normalized image impedance of m-network versus normalized frequency for
three different values of m.
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From (8.1.31),

Therefore,

_ LY _ 2\ _
e 1= (£) = = () —oows

Using (8.1.24) and (8.1.25) or Table 8.3 (on page 310) and component values of
the constant-k section obtained earlier in Example 8.1, the m-derived filter is
designed as follows:

mL/2 =0.2195 x 5.9683 = 1.31 uH
mC = 0.2195 x 2.122 = 465.78 nF

and,

1 — m?

m

L=12.94pH

This filter circuit is illustrated in Figure 8.8.

As noted earlier, the image impedance of this circuit will be the same as that of
the corresponding constant-k section. Hence, it will vary with frequency as
illustrated earlier in Figure 8.4. Propagation constant y of this circuit is determined
from the formula listed in Table 8.1. The transfer characteristics are then found as
e~ 7. Its magnitude and phase characteristics versus frequency are illustrated in
Figure 8.9.

The transfer characteristics illustrated in Figure 8.9 indicate that the m-derived
filter has a sharp change at cutoff frequency of 2 MHz. However, the output signal
rises to —4dB in its stop-band. On the other hand, the constant-k filter provides
higher attenuation in its stop-band. For example, the m-derived filter characteristic in

1.31 uH 131 uH
12.94 uH
TN 465.78 pF

Figure 8.8 An m-derived T-section for Example 8.2.



308 FILTER DESIGN

0.1 0.2 0.5 1 2 5 10
0
-2
o
Z 4
=
: d
£ -6
&
= -8
-10
0.1 0.2 0.5 1 2 5 10
Frequaxy (Miz)
0.1 0.2 0.5 1 2 5 10
0 . l
. N
-50
7 ]
) =75 \I
¢ -
] 100 H
&
~125
-150 I
-175
0.1 0.2 0.5 1 2 S 10

Freqercy (M)
Figure 8.9 Frequency response of the m-derived T-section shown in Figure 8.8.

Figure 8.9 shows only 4dB attenuation at 6 MHz, whereas the corresponding
constant-k T-section has an attenuation of more than 30dB at this frequency, as
depicted in Figure 8.3.

Composite Filters

As demonstrated through the preceding examples, the m-derived filter provides an
infinitely sharp attenuation right at its cutoff. However, the attenuation in its stop-
band is unacceptably low. Contrary to this, the constant-k filter shows higher
attenuation in its stop-band although the change is unacceptably gradual at the
transition from pass-band to stop-band. One way to solve the problem is to cascade
these two filters. Since image impedance stays the same in two cases, this cascading
will not create a new impedance matching problem. However, we still need to
address the problem of image impedance variation with frequency at the input and
output ports of the network.
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zZ\2

_ e

’ Z;
Zi] _» 2Z 2 ‘ 2

]

Figure 8.10 Right-hand side of the bisected n-section shown in Figure 8.6.

As illustrated in Figure 8.7, image impedance of the m-section with m = 0.6
remains almost constant over 90 per cent of the pass-band. If this network is bisected
to connect on either side of the cascaded constant-k and m-derived sections, then it
should provide the desired impedance characteristics. In order to verify these
characteristics, let us consider a bisected m-section as shown in Figure 8.10. Its
transmission parameters can be easily found following the procedure described in
Chapter 7.

From (7.4.4)—(7.4.7), we find that

Z/
A=1 ! 8.1.34
Tz (8.1.34)
Z/
B==-L (8.1.35)
2
C= : (8.1.36)
27, o
and,
D=1 (8.1.37)
Image impedance Z;; and Z, can now be found from (8.1.10) and (8.1.11) as
follows:
Z/Z
Z, = Z{Z§+TI= T (8.1.38)
and,

2z, 17
=7 = (8.1.39)

1
4z,

1+

Thus, the bisected m-section can be connected at the input and output ports of
cascaded constant-k and m-derived sections to obtain a composite filter that solves
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TABLE 8.3 Design Relations for the Composite Filters

Low-Pass High-Pass
Constant-k T-Filter Constant-k T-filter
Z,=VL/C Z,=1/C
L2 L2 w, =2/LC w, = 1/2/IC
TC L=27,]o, L =052/,
C=2/Z0, C =0.5/Z,0,

m-derived T-Section
(Values of L and C are same as above)

2
m=y- ()

ml12 mlL/2

4m
T mC

Input and Output Matching Sections

O\

03L 03L
8 8
L =
15 15 L
03C 03C
N N

m-derived T-Section
(Values of L and C are same as above)

2C/m 2CIm
_' 6_
Lim
4m . c
l—m
P« S

Input and Output Matching Sections

—H¢ i
Cc/0.3 c/0.3
L/0.3 1/03
M 8 m

the impedance problem as well. Relations for design of these circuits are summar-

ized in Table 8.3.

Example 8.3: Design a low-pass composite filter with a cutoff frequency of 2 MHz
and image impedance of 75 Q in its pass-band. Assume that £, = 2.05 MHz. Plot
its response in the frequency range of 100 kHz to 10 MHz.

Constant-k and m-derived sections of this filter are already designed in Examples
8.1 and 8.2, respectively. Its input and output matching sections can be designed as

follows. With m = 0.6, we find that

L
’%zs.ssluH

3
Q

B 636.6pF
5= 636.6p
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3.581 pH 1.31 pH 131pH | 3.581 pH

6.366 LH, 5.9683 uH| 5.9683 uH 12.94 WH 6.366 pH

T 2.122 nF
636.6 pF 465.78 pF 636.6 pF
PFR 7 m o~ p

4— Bisected-m  _pig—  Constantk —pig— m-derived —Pig— Bisectedn —Pp

Figure 8.11 Composite filter of Example 8.3.

and,

1 —m?

L =6.366uH
m
This composite filter is depicted in Figure 8.11.

Figure 8.12 illustrates the frequency response of this composite filter. As it
indicates, there is a fairly sharp change in output signal as frequency changes from
its pass-band to the stop-band. At the same time, output stays well below —40 dB in
its stop-band. Figure 8.13 shows variation in the image impedance of this filter as the
signal frequency changes. This indicates that the image impedance stays at 75 Q
(pure real, because the phase angle is zero) over most of its pass-band.

Example 8.4: Design a high-pass composite filter with nominal impedance of 75 Q.
It must pass all signals over 2MHz. Assume that f,, = 1.95MHz. Plot its
characteristics in the frequency range of 1 MHz to 10 MHz.

From Table 8.3 we find the components of its constant-k section as follows:

75
L= H = 2.984 uH
2x2xmx2x10° H
and,
C= ! F = 530.5pF
T x2xmx2x100x75  000P

Similarly, the component values for its m-derived filter section are determined as

follows:
B o\ 1.95\*
m_\/l_<_fc> _\/l—<—2) =0.222
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Figure 8.12 Frequency response of the composite filter of Figure 8.11.

Hence,
E =4.775nF
m
L
—=13.43 pH
m
and,
M 0.496nF
1 —m?

Component values for the bisected n-section to be used at its input and output ports
are found as

= 1.768 nF

|~ Sla

= 9.947 uH

=)

3
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Figure 8.13 Image impedance of the composite filter of Figure 8.11 versus frequency.

and,

%5 C =0.9947nF

The composite filter (after simplifying for the series capacitors in various sections)
is illustrated in Figure 8.14. Frequency response of this composite filter is depicted
in Figure 8.15. It shows that the attenuation in its stop-band stays below —40 dB, and
the switching to pass-band is fairly sharp. As usual with this kind of circuit, its phase

0 6631 nF 0. 8681 nF 1. 2903 nF

9.947uﬂ% :\L‘; :2984p.H ,-El: ;1343P«H f-EI-: :9947},LH

0.9947 nF 0 496 nF 0 9947 nF

Figure 8.14 The composite high-pass filter with 2 MHz cutoff frequency.
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Figure 8.15  Frequency response of the composite high-pass filter of Figure 8.14.

characteristics may not be acceptable for certain applications because of inherent
distortion.

As depicted in Figure 8.16, image impedance of this composite filter is almost
constant at 75 Q. Note that its magnitude varies over a wide range in the stop-band
while its phase angle seems to remain constant at 90°. Phase angle of the image
impedance is zero in the pass-band.

8.2 INSERTION LOSS METHOD

The output of an ideal filter would be the same as its input in the pass-band while it
would be zero in the stop-band. Phase response of this filter must be linear to avoid
signal distortion. In reality, such circuits do not exist and a compromise is needed to
design the filters. The image parameter method described in the preceding section
provides a simple design procedure. However, transfer characteristics of this circuit
cannot be shaped as desired. On the other hand, the insertion loss method provides
ways to shape pass- and stop-bands of the filter although its design theory is much
more complex.
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Figure 8.16 Image impedance of the composite high-pass filter of Figure 8.14 as a function
of signal frequency.

The power-loss ratio of a two-port network is defined as the ratio of the power that
is delivered to the load when it is directly connected at the generator to the power
delivered when the network is inserted in between the two. In other words,

B Power incident at port — 1 B 1
~ Power delivered to the load connected at port —2 1 — |[(w)|?

(8.2.1)

PLR

The power-loss ratio, Py, expressed in dB, is generally known as the insertion-
loss of the network. It can be proved that |T'(w)|* must be an even function of w for a
physically realizable network. Therefore, polynomials of @w? can represent it as
follows:

2 _ fl((ﬂz)
()l —m (8.2.2)
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and,

fi(@?)

=1 pn)

(8.2.3)

where f;(w?) and f;(w?) are real polynomials in w?.
Alternatively, the magnitude of the voltage-gain of the two-port network can be
found as

1 1
|G(w)| = = (8.2.4)
VPir fi(@?)
H )
2

Hence, if Py is specified then I'(w) is fixed. Therefore, the insertion-loss method is
similar to the impedance matching methods discussed earlier in Chapter 6.

Traditionally, the filter design begins with a lumped-element low-pass network
that is synthesized by using normalized tables. It is subsequently scaled to the
desired cutoff frequency and the impedance. Also, the low-pass prototype can be
transformed to obtain a high-pass, a band-pass, or a band-stop filter. These lumped-
element filters are used as a starting point to design the transmission line filter. This
section presents the design procedure for two different kinds of lumped-element low-
pass filters. It is followed by the transformation techniques used to design high-pass,
band-pass, and band-stop filters.

Low-Pass Filters

As illustrated in Figure 8.17, an ideal low-pass filter will pass the signals below its
cutoff frequencyw, without attenuation while it will stop those with higher frequen-
cies. Further, the transition from its pass-band to its stop-band will be sharp. In
reality, this kind of filter cannot be designed. Several approximations to these
characteristics are available that can be physically synthesized. Two of these are
presented below.

Maximally Flat Filter As its name suggests, this kind of filter provides the flattest
possible pass-band response. However, its transition from pass-band to stop-band is

A

—

Pass-band Stop-band

| G(w)

0 o >

Figure 8.17 Characteristics of an ideal low-pass filter.
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gradual. This is also known as a binomial or Butterworth filter. The magnitude of its
voltage-gain (and hence, its frequency response) is given as follows:

1G(w)| = n=1,23,... (8.2.5)

where ¢ is a constant that controls the power-loss ratio at its band edge; » is the
order; and @ is normalized frequency. For |G(w| = 0.7071 (i.e., —3 dB) at the band
edge, ¢ is unity.

Note that derivatives of |G(w)| at normalized frequencies much below the band
edge are close to zero. This guarantees maximum flatness in the pass-band. Further,
(8.2.5) indicates that |G(w)| will be a fractional number for @ greater than zero.
Therefore, it is generally known as insertion loss, L, of the network when expressed
in dB. Hence,

1 2n
L=-20logy| ——o =101og10[1+g<w3> ]dB (8.2.6)
n

w . ¢
L+e(—
wC

or,
L o\
0 logjo| 1+¢ o
or,
w 2 L
g(—) — 106 —1 (8.2.7)
cUC

Figure 8.18 illustrates the pass-band characteristics of this kind of filter for three
different values of n. Power-loss ratio at its band edge is assumed to be —3 dB, and
therefore, ¢ is equal to unity. It shows that the pass-band becomes flatter with a
sharper cutoff when its order # is increased. However, this relationship is not a linear
one. This change in characteristics is significant for lower values of # in comparison
with higher orders.

Equation (8.2.7) can be used for determining ¢ and » of a filter as follows. If
insertion loss at the band edge (w = w,) is specified as L = L then (8.2.7) yields

c=10% —1 (8.2.8)
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Figure 8.18 Characteristics of maximally flat low-pass filters.

Similarly, the required order »n (and hence, number of elements required) of a filter

can be determined for the specified L at a given stop-band frequency. It is found as
follows.

| logg(106-1)

n—=-—xX o
l 1 C
0810 <w0> Oglo(s)

(8.2.9)

Chebyshevy Filter A filter with sharper cutoff can be realized at the cost of flatness
in its pass-band. Chebyshev filters possess ripples in the pass-band but provide a

sharp transition into the stop-band. In this case, Chebyshev polynomials are used to
represent the insertion loss. Mathematically,

1
1G(w)] = ——— m=123,... (8.2.10)

J1+cT2 (@)

where ¢ is a constant; @ is normalized frequency: and 7,(w) is a Chebyshev
polynomial of the first kind and degree m. It is defined earlier in Chapter 6 by
(6.5.2).

Figure 8.19 shows the frequency response of a typical Chebyshev filter for m = 7.
It assumes that ripples up to —3 dB in its pass-band are acceptable. A comparison of
this characteristic to that for a seventh order Butterworth filter shown in Figure 8.18
indicates that it has a much sharper transition from pass-band to stop-band.
However, it is achieved at the cost of ripples in its pass-band.
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Figure 8.19 Characteristics of a low-pass Chebyshev filter for n = 7.

As before, the insertion loss of a Chebyshev filter is found as follows:

1
L=-20log,| ———| = 1010g10|:1 +gT,%,(;U>]

14cT2 <3> :
wc

or,
1010g10|:1 + gcosz{m cos~! <w2) ” 0<w<w,
L= ¢ (8.2.11)
1010g10|:1 + gcoshz{m cosh™! (g) ” W, <o
C
where
c =106 — 1 (8.2.12)

G, is ripple amplitude in dB.
The order m (and hence, number of elements) of a Chebyshev filter can be found
from its specified characteristics as follows:

100-1xL _ |
-1
cosh |: 100A1><G _ 1:|

cosh™! (2>
wC

where L is required insertion loss in dB at a specified frequency w.

m =

(8.2.13)
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Example 8.5: It is desired to design a maximally flat low-pass filter with at least
15 dB attenuation at @ = 1.3 o, and —3 dB at its band edge. How many elements
will be required for this filter? If a Chebyshev filter is used with 3-dB ripple in its
pass-band then find the number of circuit elements.

From (8.2.8),

And from (8.2.9) we have

A
1 10g10<1010 — 1) loglo(lol.S _ 1)

n==x =05 x =6.52
w log,,(1.3
IOgIO(_> + log;(c) gio(1-3)
wC
Therefore, 7 elements will be needed for this maximally flat filter.
In the case of a Chebyshev filter, (8.2.13) gives
1 100.1><L -1
cosh —_
10016 —1 cosh™'[v/1015 — 1]
m= = — =2.49
cosh™! o cosh™ (1.3)
CUC

Hence, it will require only 3 elements. Characteristics of these two filters are
illustrated in Figure 8.20.

Normalized frequency — 3,

0.5 1 1.5 2

-1

-2

-3

-5

| G(w)l (in dB)

7t

Figure 8.20 Characteristics of low-pass Butterworth and Chebyshev filters.
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Figure 8.21 A low-pass ladder network prototype.

Low-Pass Filter Synthesis

The scope of this book does not include the theory of passive filter synthesis. There
are several excellent references available in the literature for those who may be
interested in this. The design procedure presented here is based on a doubly
terminated low-pass ladder network as shown in Figure 8.21.

The g notation used in Figure 8.21 signifies roots of an nth order transfer function
that govern its characteristics. These represent the normalized reactance values of
filter elements with a cutoff frequency w, = 1. Source resistance is represented by g,
while the load is g, ;. The filter is made up of series inductors and shunt capacitors
that are in the form of cascaded T-networks. Another possible configuration is the
cascaded m-network that is obtained after replacing g, by a short circuit, connecting
a capacitor across the load g,,;, and renumbering filter elements 1 through n.
Elements of this filter are determined from # roots of the transfer function.

The transfer function is selected according to desired pass- and stop-band
characteristics. Normalized values of elements are then found from the roots of
that transfer function. These values are then adjusted according to desired cutoff
frequency, and source and load resistance. Design procedures for the maximally flat
and the Chebyshev filters can be summarized as follows.

Assume that the cut off frequency is given as follows:

=1 (8.2.14)

Butterworth and Chebyshev filters can then be designed using the following
formulas.

o For a Butterworth filter,
80 = &ny1 =1 (8.2.15)

and,

p=12....n (8.2.16)

(2p—Drn
2n ]

g = 2sin[

Element values computed from (8.2.15) and (8.2.16) are given in Table 8.4 for
nup to 7.
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TABLE 8.4 Element Values for Low-Pass Binomial Filter Prototypes (g, =1, o, =1)

n 81 & &3 84 85 86 g7 83
1 2.0000 1.0000
2 1.4142 1.4142 1
3 1.0000 2.0000 1.0000 1.0000
4 0.7654 1.8478 1.8478 0.7654 1.0000
5 0.6180 1.6180 2.0000 1.6180 0.6180 1
6 0.5176 1.4142 1.9319 1.9319 1.4142 0.5176 1
7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.445 1.0000
e For a Chebyshev filter,
g =1 (8.2.17)
1, m is an odd number
= . 8.2.18
Em+1 cosh (4_5;)’ m 1s an even number ( )
2
g =4 (8.2.19)
X
and,
da, _a
=L =2,3,....m (8.2.20)
bp-ngp-1)
where,
¢ = In| coth G, (8.2.21)
N 17.37 -
. ¢
q= smh(—) (8.2.22)
2m
2p —1
a, = sin[%] (8.2.23)
and,
b, = 1 + sin’ (p—") (8.2.24)
m

Element values for several low-pass Chebyshev filters that are computed from
(8.2.17)«(8.2.24) are given in Tables 8.5-8.9.
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TABLE 8.5 Element Values for Low-Pass Chebyshev Filter Prototypes (g, =1, o, =1,
and 0.1 dB ripple)

m 81 & 83 84 85 86 87 83

1 0.3053 1.0000

2 0.8431 0.6220 1.3554

3 1.0316 1.1474 1.0316 1.0000

4 1.1088 1.3062 1.7704 0.8181 1.3554

5 1.1468 1.3712 1.9750 1.3712 1.1468 1.0000

6 1.1681 1.4040 2.0562 1.5171 1.9029 0.8618 1.3554

7 1.1812 1.4228 2.0967 1.5734 2.0967 1.4228 1.1812 1.0000

TABLE 8.6 Element Values for Low-Pass Chebyshev Filter Prototypes (g, =1, . =1,
and 0.5 dB ripple)

m 81 & 83 84 85 86 87 83

1 0.6987 1.0000

2 1.4029 0.7071 1.9841

3 1.5963 1.0967 1.5963 1.0000

4 1.6703 1.1926 2.3662 0.8419 1.9841

5 1.7058 1.2296 2.5409 1.2296 1.7058 1.0000

6 1.7254 1.2479 2.6064 1.3136 2.4759 0.8696 1.9841

7 1.7373 1.2582 2.6383 1.3443 2.6383 1.2582 1.7373 1.0000

TABLE 8.7 Element Values for Low-Pass Chebyshev Filter Prototypes (g, =1, o, =1,
and 1.0 dB ripple)

m 81 & &3 84 85 86 87 83

1 1.0178 1.0000

2 1.8220 0.6850 2.6599

3 2.0237 0.9941 2.0237 1.0000

4 2.0991 1.0644 2.8312 0.7892 2.6599

5 2.1350 1.0911 3.0010 1.0911 2.1350 1.0000

6 2.1547 1.1041 3.0635 1.1518 2.9368 0.8101 2.6599

7 2.1666 1.1115 3.0937 1.1735 3.0937 1.1115 2.1666 1.0000

TABLE 8.8 Element Values for Low-Pass Chebyshev Filter Prototypes (g, =1, o, =1,
and 2.0 dB ripple)

m &1 & &3 84 85 86 87 83

1 1.5297 1.0000

2 2.4883 0.6075 4.0957

3 2.7108 0.8326 2.7108 1.0000

4 2.7926 0.8805 3.6064 0.6818 4.0957

5 2.8311 0.8984 3.7829 0.8984 2.8311 1.0000

6 2.8522 0.9071 3.8468 0.9392 3.7153 0.6964 4.0957

7 2.8651 0.9120 3.8776 0.9536 3.8776 0.9120 2.8651 1.0000
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TABLE 8.9 Element Values for Low-Pass Chebyshev Filter Prototypes (g, =1, o, =1,
and 3.0 dB ripple)

m 81 & &3 84 85 86 87 83

1 1.9954 1.0000

2 3.1014 0.5339 5.8095

3 3.3489 0.7117 3.3489 1.0000

4 3.4391 0.7483 4.3473 0.5920 5.8095

5 3.4815 0.7619 4.5378 0.7619 3.4815 1.0000

6 3.5047 0.7685 4.6063 0.7929 4.4643 0.6033 5.8095

7 3.5187 0.7722 4.6392 0.8038 4.6392 0.7722 3.5187 1.0000

Scaling the Prototype to the Desired Cutoff Frequency and Load:

e Frequency scaling: For scaling the frequency from 1 to w,, divide all
normalized g values that represent capacitors or inductors by the desired
cutoff frequency expressed in radians per second. Resistors are excluded from
this operation.

o [mpedance scaling: To scale g, and g, to XQ from unity, multiply all g
values that represent resistors or inductors by X. On other hand, divide those g
values representing capacitors by X.

Example 8.6: Design a Butterworth filter with cutoff frequency of 10 MHz and an
insertion loss of 30dB at 40 MHz. It is to be used between a 50-Q load and a
generator with internal resistance of 50 Q.

From (8.2.9), we have

1

n—=—X

0.5

I

0.

1og10(10% — 1)

1

log,o(103 — 1)

X
6

10

3
~ 25

==X
2 40 2 1 4)+1 1. -1
10g10<> + 10g10<101370 - 1) 0210(4) + log;(1.9933 )

Since the number of elements must be an integer, selecting » = 3 will provide more
than the specified attenuation at 40 MHz. From (8.2.15) and (8.2.16),
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795.77 nH

795.77 nH

636.62 pE 1~ C,
T 50 Q

Figure 8.22 A maximally flat low-pass filter obtained in Example 8.6.

and,

5n
1 =20(2)

If we use the circuit arrangement illustrated in Figure 8.22 then element values
can be scaled to match the frequency and load resistance. Using the two rules, these
values are found as follows:

1
L =L;=50x ———=H=795.77nH

27 x 107
and,
=t x 2 F_636.62pF
2750 2w x 107 OO0PeP

The frequency response of this filter is shown in Figure 8.23. It indicates a 6-dB
insertion-loss in the pass-band of the filter. This happens because the source
resistance is considered a part of this circuit. In other words, this represents voltage
across R; with respect to source voltage, not to input of the circuit. Since source
resistance is equal to the load, there is equal division of source voltage that results in
—6 dB. Another 3-dB loss at the band edge shows a total of about 9 dB at 10 MHz.
This characteristic shows that there is an insertion loss of over 40 dB at 40 MHz. It is
clearly more than 30 dB from the band edge, as required by the example. Also, there
is a nonlinear phase variation in its pass-band.

Alternatively, we can use a circuit topology as shown in Figure 8.24. In that case,
component values are found by using the scaling rules, as follows:

1 -5
and,
1 1 107°
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Figure 8.23 Characteristics of the low-pass filter shown in Figure 8.22.

Cl C3 R4 = RL
/lel pF /‘;8.31 pF 50Q

Figure 8.24

Frequency response of this circuit is illustrated in Figure 8.25. It is identical to that

shown in Figure 8.23 for earlier circuit.

Example 8.7: Design a low-pass Chebyshev filter that may have ripples no more
than 0.01 dB in its pass-band. The filter must pass all frequencies up to 100 MHz and
attenuate the signal at 400 MHz by at least 5 dB. The load and the source resistance

are of 75 Q each.

An alternative circuit for Example 8.6.
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Figure 8.25 Characteristics of the low-pass filter shown in Figure 8.24.

Since,
G, =0.01dB

and

400
L(=)=5dB
(100) 3d

(8.2.13) gives,

3 (10045 -1
cosh 1|: /m]

m= =2

cosh™!(4)

327
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Since we want a symmetrical filter with 75 Q on each side, we select m = 3 (an
odd number). It will provide more than 5dB of insertion loss at 400 MHz. The g
values can now be determined from (8.2.17) to (8.2.24), as follows. From (8.2.23),

a, = sin(g) =0.5

nf3) -
a, =SIn{—- ) =
2 2

Sn
=sin[— ) =0.5
a s1n<6>

Next, from (8.2.21), (8.2.22), and (8.2.24) we get

0.01
=lIn|coth( —= ) [ =T7.
£ n|:co (17.37>1| 7.5

1= sinh(%) = 1.6019

and,

_ 2 -2 (T
b, = 1.6019% + sin (3) =3316
2 .2 27'[
by, =1.6019” + sin 5 =3.316
and,
2 .2 37'[
by = 1.6019” + sin 5 = 2.566

However, b5 is not needed in further calculations.
Finally, from (8.2.17) and (8.2.20),

g =8 =1
g = ‘71'20(1'95 — 0.62425
2= % = 0.9662
and,
2 4x1x0.5 0.60425

3316 x 0.9662
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74.5155 nH

74.5155 nH

Figure 8.26 Low-pass Chebyshev filter circuit obtained in Example 8.7.

For the circuit topology of Figure 8.26, element values are found after applying
the scaling rules as follows:

75 x 0.62425
L =L, =2 2000 74515500
LT T T 108 n
and,
c =1 ! 0.9662F = 20.5 pF
=—x——x0. = 20.
2775 2 x 108 P

Frequency response of this filter is illustrated in Figure 8.27. As expected, there is
over 20-dB insertion loss at 400 MHz in comparison with its pass-band. Note that
the magnitude of allowed ripple is so small that it does not show up in this figure.
However, it is present there as shown on an expanded scale in Figure 8.28.

Figure 8.28 shows the pass-band characteristics of this Chebyshev filter. Since
now the scale of magnitude plot is expanded, pass-band ripple is clearly visible. As
expected, the ripple stays between —6.02 dB and —6.03 dB. Phase variation in this
pass-band ranges from 0° and —70°.

The band edge of this filter can be sharpened further either by using a higher-
order filter or by allowing larger magnitudes of the ripple in its pass-band. The
higher-order filter will require more elements because the two are directly related.
The next example illustrates that a sharper transition between the bands can be
obtained even with a three-element filter if ripple magnitudes up to 3dB are
a