Rapid Mobile Enterprise
Development for

An Introduction to OPL Application
Design and Programming

Rapid Mobile
Enterprise
Development
for Symbian OS

TEAM LinG

TITLES PUBLISHED BY SYMBIAN PRESS

e Wireless Java for Symbian Devices
Jonathan Allin
0471 486841 512pp 2001 Paperback

e Symbian OS Communications Programming
Michael] Jipping
0470 844302 418pp 2002 Paperback

e Programming for the Series 60 Platform and Symbian OS
Digia

0470 849487 550pp 2002 Paperback

e Symbian OS C++ for Mobile Phones, Volume 1

Richard Harrison
0470 856114 826pp 2003 Paperback

e Programming Java 2 Micro Edition on Symbian OS
Martin de Jode
0470 092238 498pp 2004 Paperback

e Symbian OS C++ for Mobile Phones, Volume 2
Richard Harrison
0470 871083 448pp 2004 Paperback

e Symbian OS Explained
Jo Stichbury
0470 021306 448pp 2004 Paperback

e PC Connectivity Applications for Symbian OS
lan McDowall
0470 090537 480pp 2004 Paperback

Rapid Mobile
Enterprise

Development
for Symbian OS

An Introduction to OPL Application Design and
Programming

Ewan Spence

With
Phil Spencer and Rick Andrews

Reviewed by
Phil Spencer

Managing editor
Phil Northam

Assistant editor
William Carnegie

John Wiley & Sons, Ltd

Copyright © 2005 by John Wiley & Sons, Ltd
The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system for exclusive use by
the purchaser of the publication. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 85Q,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario,
Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Spence, Ewan.

Rapid mobile enterprise development for Symbian OS : an introduction to OPL
application design and programming / Ewan Spence, with Phil Spencer and Rick
Andrews.

.cm.

Includes bibliographical references.

ISBN-13 978-0-470-01485-1 (alk. paper)

ISBN-10 0-470-01485-7 (alk. paper)

1. Cellular telephone systems—Computer programs. 2. Operating systems (Computers)
3. OPL (Computer program language) I. Spencer, Phil. Il. Andrews, Rick. IIl.
Title.
TK6570.M6566 2005
005.26'8 — dc22
2004027113

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-01485-1
ISBN-10 0-470-01485-7

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Biddles Ltd, King’s Lynn

This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

http://www.wiley.com

Contents

Foreword ix
About This Book xi
Author Biography Xvii
Author Acknowledgments Xix
Symbian Press Acknowledgments XXi
PART 1 1
1 Programming Principles 3
1.1 The Language of Computers 3
1.2 Speaking the Language 5
1.3 Learning the Vocabulary 9
1.4 Summary 17
2 Introducing the Tools of OPL 19
2.1 Parts of OPL 19
2.2 Organizing your Projects 21
2.3 Gathering Tools 22
2.4 How we Program 26
2.5 Summary 30
3 Event Core 33

3.1 Event Core? What is it Good for? 33

Vi CONTENTS

3.2 Planning the Event Core, Init:
3.3 Other Procedures
3.4 Summary

4 A Conversion Program: Event Core
in Practice
4.1 First Steps with Event Core
4.2 Summary

5 Using Graphics in an Othello Game
5.1 Using Graphics in OPL
5.2 Designing Othello
5.3 Representing the Board
5.4 Reading the Player’s Move
5.5 The Computer’s Move — Doing A.l.
5.6 Putting it Together — the Main Game Loop
5.7 Summary

6 Databases and a Notepad Program
6.1 What is a Database?
6.2 Our First OPL Database
6.3 Summary

7 Publishing your OPL Application
7.1 Types of Application
7.2 How Distribution Affects your Application Design
7.3 How to Make your Application Available
7.4 Promotion — Tell Everyone it's Available
7.5 Summary

8 Creating Applications and Installers
8.1 Creating an OPL Application
8.2 Symbian Installation System — SIS Files
8.3 Summary

9 Where Now With OPL?
9.1 RMRBank, by Al Richey (RMR Software)
9.2 Fairway, by Steve Litchfield
9.3 EpocSync, by Malcolm Bryant
9.4 Final Summary. .. Moving Forwards Yourself

36
49
59

61
61
77

79
79
84
85
87
94
97
99

101
101
102
112

113
113
114
116
119
120

121
121
123
128

129
129
130
130
131

CONTENTS vii

Part 2 Introduction to Part 2: Command

Listing 133
Appendix T OPL Command List 135
Appendix 2 Const.oph Listing 263
Appendix 3 Symbian Developer Network 279

Appendix 4 Specifications of Symbian OS Phones 287

Index 313

Foreword

Howard Price, Senior System Architect, System Management
Group, Symbian

| have had the pleasure of being involved in the development of the
OPL language since its earliest days, when Psion first provided OPL
for the Organizer Il, a device that had two lines of LCD text available.
OPL programs were then mainly used to query and write to the built-in
database system, with some mathematical, date, and string manipulation
functions. Even then OPL was very popular with third-party developers,
such as Marks & Spencer, which used OPL Organizer Il programs at its
checkout counters. In my opinion OPL was a key factor in Psion’s success
in the PDA market.

| wrote the Series 3/Series 3a OPL, adding support for modules,
powerful graphics capability, GUI menus and dialogs, and direct access to
the EPOC OS functions. By then over 90% of third-party applications were
written in OPL, despite strong efforts by Psion to encourage developers
to use their object-oriented C. OPL was the language of choice both
for commercial applications and for shareware, including a lot of games
software. A large and very active OPL developer community grew,
with authors working from home or on the train to develop many
shareware programs.

For the Series 5, | led the five-person OPL development team where
we also added, among other things, the OPX framework. An OPX is a
C++ DLL containing OPL extension functions that an OPL application
can call as easily as calling OPL procedures. OPXs can also call-back to
the OPL application. With OPXs, an OPL application can be as powerful
and perform as well as a C++ application.

In 2002 Symbian decided to release OPL to the Open Source commu-
nity, where the opl-dev project on sourceforge started in April 2003.

X FOREWORD

Why is OPL so popular? Well, here are a few reasons.

e From the beginning OPL, in all its device-specific incarnations, has
been carefully designed to enable an OPL application to be fully
integrated into the application architecture, to the extent that a user
would be very hard-pressed to tell whether an application has been
written in OPL or C/C++.

e OPL is a simple, intuitive but powerful language and can be learnt
very quickly.

e Over the years the OPL development community has developed a
large set of incredible OPL applications, showing just what can be
done and encouraging others to try.

e The OPL development community provides OPX libraries for use by
other developers.

e The OPL SDK and many other useful resources are freely available
from the opl-dev project on sourceforge.

e Applications written in OPL are multi-platform —they will run as
expected with very little change on any Symbian OS device. Device-
specific features are generally provided in OPXs.

e Applications can be developed on the PC, or on a communicator/PDA
that has a keyboard.

With the increasing efforts of the Open Source OPL community, and
Ewan in particular, OPL is getting more attention than ever and | am sure
OPL has a bright future, and with it | would predict that OPL will once
again account for a majority of Symbian OS applications.

About This Book

In this introduction, you will learn:

e what OPL is
e the history of OPL
e what you can do with OPL

e how the rest of the book is structured.

What is OPL?

The shortest answer is that OPL stands for ‘Open Programming Language’
and it is a way of programming your Symbian OS Smartphone to make it
do what you want!

If you've downloaded an application into your phone (for example,
from the Internet) then you’ve already started to realize that your phone
can do more than what it did, out of the box. There are thousands of
applications out there that you can put on your phone. OPL will help
you program your own applications that do exactly what you want them
to. These applications could be for yourself and your own enjoyment
or needs; they could be to help you and your colleagues at work solve
a specific business problem; or you could look to putting them on the
Internet and selling your software to other users.

Any programming language supported by Symbian OS can offer this to
you, so why choose OPL? The first thing is that OPL itself is free. It doesn’t
cost you to download and use the tools needed. It is also Open Source.
This means that a competent Symbian OS C++ programmer can look at
the code that makes OPL work and see if they can improve it, add to it,
and help maintain it... all to the benefit of OPL and the programmers
who use it.

Xii ABOUT THIS BOOK

But the main thing about OPL is that it is very easy to learn, and it
takes very little time to program a new application.

The History of OPL

OPL first made its appearance on the Psion Organizer Il in 1984. Before
OPL, all programs for Psion’s machines had to be written in a very
tricky, complex form of code called ‘Assembler” using a PC development
kit, requiring the developer to have a good, in-depth knowledge of
programming.

By this time, the BASIC programming language was available for most
home computers, making computer programming accessible to anyone
who owned a computer. OPL was based on BASIC, but tailored for
the Psion Organizer Il. Users were able to write simple programs even
if they didn’t have the in-depth knowledge that Assembler program-
ming required.

OPL was originally designed as a database language to access or create
databases shared with the Psion Organizer II’s built-in Data application,
but it has evolved with each new hardware device, always aiming
to maintain good backward compatibility with previous versions. This
helped developers to port existing OPL applications to a new device with
the minimum of effort, while at the same time giving OPL applications
the ability to have the same look and feel as the built-in applications. A
key requirement for OPL was to make it possible to develop applications
fully on the device itself.

The power of OPL has arisen from its extensibility. OPL has supported
language extensions from the beginning, via 6301 Assembler procedures
on the Psion Organizer Il, and now via C++ OPX procedures on phones
running Symbian OS.

On the Psion Organizer I, the OPL Runtime was written in 6301
Assembler. The main functionality included loops, conditionals, one-
dimensional menus, database keywords, error handling, arithmetic oper-
ators, mathematical functions, language extensions written in Assembler,
and procedure files in a flat filing system. At this time, most of the
applications were written for the corporate environment.

In the late 1980s, Psion launched the MC series of (laptop sized)
devices. OPL was ported over to the 8086 CPU and had broadly the
same functionality as the Organizer — without menus, but with dynami-
cally loadable modules, keywords to call OS services, and input/output
keywords (both synchronous and asynchronous forms).

The Psion HC was again built around the 8086 chip, but made greater
use of graphical elements. In addition to the keywords added for the
MC series, there were graphics keywords, the ability to call procedures
by indirection, the concept of OPL applications that looked like built-in
applications, event handling (for handling messages from the operating
system such as switch files, close, etc.), and command line support.

ABOUT THIS BOOK xiii

The Psion Series 3 (with the advent of the ‘SIBO’ operating system)
was released in 1991, and along with it came the first OPL Software
Development Kit (SDK), giving many utilities and macros for nearly
full access to the SIBO operating system services. Series 3 OPL added
menus, dialogs, and the expression evaluator (used by the Calculator
application).

When the Psion Series 3a came out a few years later, OPL was again
upgraded and remained almost unchanged for the rest of the SIBO range
(Psion Series 3a, 3c, 3mx, Siena, and the Workabout range). It added
allocator keywords, a cache with least recently used procedures flushed
when necessary (for up to seven times speed improvement), and digital
sound support.

In 1997, OPL was ported to C++ for Symbian OS, adding pen event
handling, cascaded menus, popup menus, language extensions (using
OPXs), constants, and header files. Other enhancements included toolbar
support and extremely powerful access to the new Symbian OS DBMS
database implementation. The first Symbian OS OPL SDK was released
shortly afterwards, allowing developers to develop OPL applications on
a PC with the addition of a number of tools.

Symbian OS v5 in 1999 added improved color support and file
recognition thanks to MIME support, amongst many other minor improve-
ments.

When Symbian OS v6 debuted, powering the Nokia 9210 Commu-
nicator, the OPL Runtime was no longer included in the ROM of the
machine, and it appeared that OPL would not be part of the Smart-
phone revolution. Luckily, OPL appeared as a downloadable component
on the Symbian website, so OPL authors could move onto the new
platforms.

OPL is now available over three major Symbian OS platforms, the
Communicator range (sometimes called Series 80), Series 60, and UIQ. It
has become an Open Source project, which means anyone can download
the code that is used to create the runtime, the tools, and the developer
environment. It is also free to use, there are no licensing costs involved
to use OPL — it is truly a totally free development option.

Who is This Book For?

If you’ve programmed, at any level and in any language, then you'll find
this book is an excellent primer for the OPL language, and you should be
able to understand OPL in under a week. You should be able to start at
Chapter 3, which details the tools and utilities available for OPL.

This book is primarily aimed at non-professional programmers, the IT
Manager in a company that needs an application for their staff, the ‘power
user’ who wants to do more with his phone, and anyone interested in
starting programming Symbian OS phones, but wary of spending months
learning the ins and outs of Symbian OS C++.

Xiv

ABOUT THIS BOOK

How the Book is Structured

Part 1

Chapter 1: Programming Principles

Here we look at how a computer is made up, the parts of a computer
and what they do, how programming languages work, and some of
the core structures of the OPL language.

Chapter 2: Introducing the Tools of OPL

Here we install the relevant SDKs, and point out the tools that are
provided, and those you need to download to help you get started
in OPL.

Chapter 3: Event Core

Event Core will be your first full program for OPL — in this chapter we
look at the design and coding process in great detail, explaining at
every step of the way what we are doing and why it is important. If
you're new to programming, this will probably be the hardest chapter
to comprehend, as it steps through every stage of OPL development.
Once you understand this chapter, programming in OPL should be an
easy experience.

Chapter 4: A Conversion Program: Event Core in Practice

Event Core is a building block for the rest of your OPL programs,
but how do you expand Event Core into a new program? Here we
take the core and build a real-life program; a conversion program for
measurements, weights, and lengths.

Chapter 5: Using Graphics in an Othello Game

While it is possible to create a program using just menus and dialog
boxes, you will want to be able to display graphics for many appli-
cations, respond to pen taps on the screen, and present a ‘nice’ user
interface on screen. By writing an Othello program, we cover all these
areas, and take a brief look at how Computer Artificial Intelligence
(‘A.1.”) works, and how to apply this to your own games programming.

Chapter 6: Database and a Notepad Program

The final example program in the book looks at using databases to
store information for your program, so it is available whenever you
run your program.

Chapter 7: Publishing your OPL Application

In this chapter, we look at how to go about putting your programs on
the Internet, and offer some advice if you decide to try and sell your
programs online, including what you should do and where you can
go to achieve this.

Part 2

ABOUT THIS BOOK XV

Chapter 8: Creating Applications and Installers

While developing these first programs, the files have been moved by
hand onto the phone. This is not something you can ask an end-user
to do when releasing your programs. This chapter looks at making an
OPL program into a full Symbian OS application, and using Symbian
OS SIS files to allow for easy installation.

Chapter 9: Where Now For OPL?
Finally we see what OPL can do in the real world, by looking at three
OPL authors and what they’ve achieved. Al Richey, Steve Litchfield,
and Malcolm Bryant all have well-respected OPL applications that
they have released on the Internet.

Part 2 contains all the reference material for OPL that you will need as
you program in OPL.

Command Listing
An alphabetical list of all the standard OPL commands, their syntax,
and how to use them. Includes code examples where appropriate.

Const.oph Listing

The library of constants (names that replace long numbers or strings
to help make your code easier to read — these are explained in detail
later) is listed in its entirety.

Author Biography

Ewan Spence studied Computing and Artificial Intelligence at Edinburgh
University before discovering his first Psion PDA. Since then he has
actively followed the development of mobile computing technology,
and become one of the leading authorities on the OPL language of
Symbian OS.

He has produced software in OPL since 1994, including the ever-
popular and addictive ‘Vexed’ game for Symbian OS mobile phones.
Since providing support for and fostering a vibrant Open Source and
Freeware community for programmers through the FreEPOC Software
House, Ewan has continued to help the wider Symbian community
through the All About Symbian family of websites. He strongly believes
that programming computers should be something that is easy, accessible,
and simple to understand for every user. It shouldn’t require a university
degree and months of studying.

He currently lives in Edinburgh with his wife, Vikki, his two daughters,
Eilidh and Mairi, and Crow, the puppet.

Author Acknowledgments

A huge amount of thanks have to go to Rick Andrews and Phil Spencer for
keeping OPL alive. More thanks go to lan Weston, Phil Northam, Edward
Kay, David Mery, Colin Turfus, Martin de Jode, Lars Persson, and Peter
Wikstrém for believing in OPL, and suggesting that an ‘Introduction” book
would be ““a rather good idea”.

Thanks should also be directed to Rafe Blandford, Jim Hughes, Rus-
sell Beattie, Matt Croydon, Monty, Mobibot, Robin Talboom, Jordan
Holt, Andy Langdon, Hayden Smith, Craig Setera, Matthew Langham,
Frank Koehntopp, and everyone else involved in All About Symbian and
Mobitopia who’ve had to put up with my promotion of OPL (and my
spelling) for several years.

Steve Litchfield, Al Richey, Jon Read, Martin Harnevie, Andy Harsent,
Martin Dehler, Domi Hugo, as well as Malcolm Bryant, Adrian Pemsel,
Martin Guthrie, and all the other guys at FreEPOC must be mentioned
for not only being better programmers than me, but for letting me look at
their source code and learn from it.

And a series of special mentions go to. .. Rael Dornfest, for providing
a shot in the arm that showed me OPL was actually going somewhere.
Jerry Sadowitz, for being the second greatest card magician alive. Suw
Charman and Jeannie Cool, just for being around. Kenton Douglas,
for an inordinate amount of time off work. Danny O’Brien and Dave
Green, because they get thanked in everything and | don’t want to break
the chain. Janne Jalkanen, for the Go lesson and the subsequent alpha
application in OPL. Hector and Russell, the Kiltmakers. And finally Ed,
Frankie, and the Hawkins brothers, for the music that this book was
(mostly) written to.

| know I've probably missed a bundle of people involved in OPL, but
thanks go to them as well. Get in touch with me and if there’s a second
edition, I'll add you in!

XX AUTHOR ACKNOWLEDGMENTS

But the biggest thanks of all go to Vikki, Eilidh, and Mairi. For being
with me in my life, spending time with me, and putting up with everything
I had to do to write this book — and everything else. .. | can never thank
them enough.

Symbian Press Acknowledgments

Symbian Press would like to thank Ewan for his steadfast dedication
to the cause of OPL. Thanks too must go to young Phil Spencer for
being a veritable cornucopia of information in times of need. Eternal
gratitude to Phil n’ Freddie for their master class in publishing, no one
can underestimate the value of a few choice words, even when spoken
through the froth of a pint.

Cover concept by Jonathan Tastard.

About the Cover

The mobile phone has traditionally connected the mouth to the ear — at
Symbian’s Exposium 2003, Symbian introduced the concept of Symbian
OS, enabling a new generation of connected communications devices
by connecting the mouth to the ear to the eye. To realize this vision, the
mobile phone industry is working together through Symbian to develop
the latest technologies, support open industry standards, and ensure
interoperability between advanced mobile phones as networks evolve
from 2.5G to 3G and beyond. ..

Symbian licenses, develops, and supports Symbian OS, the platform for
next-generation data-enabled mobile phones. Symbian is headquartered
in London, with offices worldwide. For more information see the Symbian
website, http://www.symbian.com/. ‘Symbian’, ‘Symbian OS’, and other
associated Symbian marks are all trademarks of Symbian Software Ltd.
Symbian acknowledges the trademark rights of all third parties referred to
in this material.

© Copyright Symbian Software Ltd 2004. All rights reserved. No part of
this material may be reproduced without the express written permission
of Symbian Software Ltd.

Part 1

1

Programming Principles

In this chapter you will learn:

e the essential parts of a mobile computer and how they relate to
each other

e why there are many languages to program a computer with, and why
they are all different

e the main elements of computer coding; so-called ‘variables’, the
DO...UNTILloop, theWHILE. . . ENDWHloop, andthe IF. . .ENDIF
structure.

1.1 The Language of Computers

To program your Symbian OS Smartphone the first thing to remember is
that it is a computer. Sure, it may be a lot smaller than the one on your
desk, and it has a phone built in to it — and it may or may not have a full
QWERTY keyboard — but nonetheless it is a computer. And to program a
computer, you need to speak its language.

1.1.1 Storing Information

A computer is a digital machine, which has a language that consists of
two characters, 1 and 0. That’s it. These represent the two electrical states
that each tiny portion of the computer can have (on or off). This is called
a bit, and it is the smallest structure in the language of a computer. A
memory chip can hold millions and millions of these states, and like any
language, collections of these pieces (individual ‘letters” if you will) can
be grouped together to make more complex ‘words’.

If you have a collection of 8 bits (eight 1s, eight Os or a mix of them)
then this is called a byte. A byte can represent any number from zero
(00000000) to 255 (11111111). Why does this equal 255 and not eleven
million, one hundred and eleven thousand, one hundred and eleven!?

4 PROGRAMMING PRINCIPLES

Well, that is a subtle complexity of the way this special ‘binary’ language
is interpreted by computers. If you don’t want to know, please feel free
to skip this bit — it’s in no way essential to your understanding of OPL. If
you're just a little curious then there are various excellent sources on the
Internet which explain the binary system in detail — for example, search
for ‘binary numeral system’ on www.wikipedia.org/ to learn more.

When counting bytes, it starts to get unwieldy when you get to around
a thousand bytes; which is where the kilobyte comes in. A kilobyte
is 1024 bytes, and is commonly written as 1K (or 1Kb). And when
we get to a thousand kilobytes, we have another term: 1024 kilobytes
equals one megabyte, written as 1Mb. You’ll probably be aware that
your Smartphone has a certain number of megabytes of memory. This is
where that number comes from. So if you have 4 Mb of memory, you
can store thirty three and a half million ones and zeros. These bits, bytes
and kilobytes represent information — not readable to you as a user, but
basically all the phone itself understands.

1.1.2 Processing Information

What can we do with this information? Well, we can’t do much with it.
But the phone can — it can take this information from its memory and
then process it somehow. This happens in the Central Processing Unit
(CPU), more commonly just called the ‘processor’.

The CPU reads information from the memory and follows the instruc-
tions that it finds there. We said above that a group of bits makes up
a ‘word’. The length of this word (8 bits, 16 bits, 32 bits or more) is an
indicator of how complex a CPU is. Home computers of the 1980s were
based around CPUs that could read 8-bit words. Nowadays, desktop
computers are generally 32-bit or 64-bit. Your Symbian OS Smartphone
is 32-bit, so each word is made up of 32 bits.

Inside the CPU there is a ‘dictionary” of all the unique words that the
CPU understands, and what it should do when it reads in one of these
words from memory. This is the essence of a computer program; a list of
things to do.

1.1.3 Talking to the Users

It's all well and good having the processor reading information from
memory, but how do we know what’s happening? Or tell it what infor-
mation to read? This is where inputs and outputs (I/O) come into play.
I/Os are how computers are told what to do (input) and how they report
back on what they have done (output).

The most common form of input is a keyboard; but inputs can also
include things like touchscreen display, a microphone, a light sensor, in
fact anything that passes information into the computer. Information from
the Internet is regarded as an input as it is passed into the computer.

SPEAKING THE LANGUAGE 5

Talking to the Internet is also an output, as your computer needs to
give information to the Internet (e.g., downloading a web page). What is
displayed on the screen is an output, as is a speaker, a buzzer, a flash on
a digital camera. . .anything that comes out of the computer.

Memory can be regarded as something that does 1/O operations
to the processor: it passes stored information to the processor (input)
and takes the responses or results from the processor and stores that
information (output).

1.1.4 Keeping a Note of Things

Memory on a computer is not like the memory you and | have. Just
because something is put in memory does not mean it stays there for ever.
A computer’s memory is like a temporary workspace. The processor will
copy a program into memory from a storage device. Some commands
may ask the processor to read information from storage for the program
to use (for example, a list of phone numbers). Any changes to information
will need to be made to the equivalent information in storage if it is to be
kept permanently.

And yes, a storage device is an 1/O device, but it's an important one,
so gets recognized in its own right.

1.1.5 Putting it All Together

In abstract form, your computer looks like the model in Figure 1.1.

The Life of a Program

When a user runs a program, they start it off with an input (maybe typing a
command or selecting an icon). The Central Processing Unit, (commonly
known as the processor or CPU) recognizes this command from its
dictionary and reads the program itself in from the storage device, copying
it into memory where it can be accessed directly by the processor. The
processor can only read from memory directly, hence this intermediate
step is almost always required. The processor reads these commands from
the memory one at a time, looking each one up in its dictionary. Some
of these commands may be to output information (such as the result of a
calculation). When there are no more words to read in from the memory,
the program is finished and the processor waits for more input.

1.2 Speaking the Language
Now we know how a program works, how do we write our first program?

Well, when computers first came about, everybody programmed directly
in binary. That is, they actually wrote down and manually inputted all the

6 PROGRAMMING PRINCIPLES

Memory

Inputs —_— Central — Outputs

Processing Unit

Storage

Figure 1.1 Abstract computer model

ones and zeros themselves, by looking up what they wanted to do in a
human dictionary of commands (similar to the one inside the processor).
This is called, naturally, machine code, because it is the code of the
machine itself. If you work at this level, then you are said to be working
at a low level — the lowest of all, in fact — hence the term Very Low Level
Programming.

1.2.1 Assembly Language

After a short period of time, one programmer came up with a smart idea.
Instead of writing down each word of 1s and Os, he wrote down the
list of commands so that one command matched one computer word.
So 10101010 could also be written as load hl. These were called
mnemonics, and while still arcane and hard to understand, they did
mean that it was much easier to read and write computer code.

But the processor could still only recognize 1s and Os. So a program
was written that read in this list of mnemonics, looked up the database,
and outputted 1s and Os that could be read by the processor. This
program could take something that was easy for users to read, and
assemble something that was easy for computers to read. Hence, these
mnemonic words became known as Assembly Language. No longer did

SPEAKING THE LANGUAGE 7

everyone have to work at a very low level; they could now work at ‘just’
a low level.

This is the principle of writing source code, and then translating it into
something that is readable by the computer (called object code) before
storing or running it. It still required a lot of knowledge about how the
processor worked, and while still very hard to program in, it made life a
lot easier.

1.2.2 Climbing up to Higher Languages

Nowadays, there are a lot of languages out there, some of them work at
a low level, like Assembly, but most people prefer to work in languages
that are easier to read and offer other advantages.

Symbian OS offers developers many choices of development language
including native C++, Java, Mobile Visual Basic (‘Crossfire’ from Symbian
Partner AppForge) and, of course, OPL. The two most widely used
languages are currently C++ and Java (specifically the Personal Java or
MIDP implementation).

A simple diagram (Figure 1.2) illustrates the move from lower-level
languages to higher-level ones.

L , , , , 1
| Lowtevel ‘ ‘ ‘High Levejl
A o C++ Java OPL Apple £ iish
ssembler iot nglis
Machine Scrip g
Code

Figure 1.2 Transition from lower-level to higher-level languages

C++ — The Halfway House

You hear that C++ is a very powerful language. This means that it can
do a lot of I/O operations, and as a programmer you have to be able to
specify exactly what has to happen. This means you have a large amount
of control over what you can make the processor do, but you also have
to understand the effects of everything.

A good C++ programmer needs to know almost everything about
every subject that we might encounter — controlling the screen, commu-
nications devices, memory access, etc. C++ itself also offers advantages
to programmers in terms of ‘code re-use’ to save them re-implementing
lots of code in multiple programs. This is a classic trade-off in program-
ming — very often, the more power a language offers you, the steeper the
learning curve.

Java J2ME (MIDP)

One of Java’s strengths is that once you have written one program, it
should be able to run on any computer that contains Java. Why is this a

BASIC

8 PROGRAMMING PRINCIPLES

strength? Because most different types of computer have a different list of
instructions in the processor. This is why programs written in C++ and
other low-level languages that run on one computer (e.g. an Apple Mac)
will not run on another computer (e.g. Windows-based PC). The ‘price’
you pay for this is more limited access to some system functionality
compared to C++.

One of the earliest ‘high-level’ languages was BASIC. Commands in
BASIC were very close to readable English, and meant that the learning
curve associated with the low-level languages was not present. Many of
the personal computers available at the start of the home computer boom
in the early 1980s shipped with BASIC installed on them, and this led
to a huge cottage industry of curious programmers programming their
machines to do whatever they needed them to do.

1.2.3 Compiled Languages

We've already seen that the principle of source code being compiled to
machine code is present in Assembly Language and C++, but higher-level
languages (such as Java) work slightly differently. The source code for
these languages is compiled into an intermediate form, and this code is
the object code.

The object c is read in by another program. This program can take
the instructions in the object code, and interpret these into the correct
commands that need to be sent into the processor. This program can be
called an interpreter, or a runtime.

Runtimes are usually device-specific, but are written in such a way that
the object code can be read by any runtime, no matter what computer the
runtime is running on. This is the principle of write once, run anywhere.
Many high-level languages have this capability to some extent.

1.2.4 The Trade-Off

So why doesn’t everyone just use the highest-level language possible?
Two considerations: speed and access to functionality.

Compiled high-level languages are much slower than lower-level
languages such as C++. Each command in the object code has to be
looked up and translated into an instruction by the runtime as you go
through your program. In lower-level languages, the code is already in the
form the processor can understand, so there is no overhead to ‘translate’
or ‘interpret’ it.

In order to ensure the object code is universal, it must conform to
some kind of standard —thus you might not have access to all of the

LEARNING THE VOCABULARY 9

functionality that is available to lower-level programming (for example,
the Bluetooth 1/O device) if the current standard does not specify this. If
your runtime does allow you to access these features, it may be much
slower than accessing it from a low-level language.

1.2.5 Where does OPL Fit in?

OPL, in a similar way to Java, is an interpreted language that needs a
special ‘OPL Runtime’. This runtime can be packaged with every OPL
application or downloaded separately from the Internet (we’ll show you
where when we gather all our tools in the next chapter). If the runtime
is included in the actual package, the file size will be much larger, so it
is common to provide a download reference in your documentation on
where to download the runtime.

The OPL Runtime is written in C++, to make sure the speed penalty of
using a high-level language is minimized. OPL can be extended to access
the device functionality through a feature called OPXs. An OPX is an
‘OPL eXtension’, and is a small piece of C++ code that can be loaded into
your phone. OPL can then call this extension with a simple line of code.

1.3 Learning the Vocabulary

Now we've had a look deep inside your phone, at how it works and
the basics of what a program is, we can start looking at OPL and how
it works.

Like any language, OPL has a grammar that you need to follow to be
understood. You have words (commands) that have to be followed by
certain things to make them work. These make up lines of code (sentences)
and these lines of code can be grouped to make procedures (paragraphs).

From now on, we’re only going to concern ourselves with how the
computer reacts to the OPL code you write. Remember that once it
is compiled, the runtime will do the work required to allow it to talk
correctly to the processor, and OPL developers never need to concern
themselves with this.

1.3.1 Procedures

When an OPL program is run, the first procedure (here called PROC
Main:, though commonly the first procedure is named after the program)
is opened. The lines are then read and processed in the order they are
listed, until the ENDP (end of procedure) command is reached, at which
point the program stops itself.

Within a procedure, you can call another procedure. Do this simply
by typing the name of the procedure you want to run next. All procedure
names must have a colon after them (:) in both the PROC command and
when calling that PROC from inside the code.

10 PROGRAMMING PRINCIPLES

PROC Main:
SetupApp:
DoSomethingNice:
SaveStatus:
ENDP
PROC SetupApp:
rem Do something interesting here
ENDP
ECH.

In this example, PROC Main: is opened, it calls three other procedures
in order, then reaches ENDP and the program closes. Note that each
procedure must start with PROC <a name>: and end with ENDP on
separate lines. When the end of the first procedure is reached, your OPL
program stops. The only way to run other procedures is to call them in
this way.

Procedure names cannot have spaces in them, so you'll see that each
new word is signified by a capital letter. While OPL is not case-sensitive,
this is the recommended style for writing code. If you follow this style, it
makes it easier for you (and other programmers) to read your code.

1.3.2 The Remark Statement

Speaking of making code easier, you’ll see in the example above that we
have a line with a new command.

rem Do something interesting here

rem stands for remark, and it's a powerful statement for anyone reading
the code. You see, the rem statement does absolutely nothing. The
interpreter ignores anything after the rem statement on the same line, so
you can use it to add notes, thoughts, and descriptions throughout your
code. For example, a procedure may have something like this at the start:

PROC WhereIsTheCursor:
rem This routine calculates the cursor position
rem FooX%% represents the temporary x co-ordinate
rem FooY%% represents the temporary y co-ordinate

Not only are these rem statements useful when you come back to the
code in six months’ time and can’t remember what something is for, they
are also useful if other people are going to read your code.

1.3.3 Variables

A variable is something you want your program to remember for a
certain amount of time — either throughout the entire time the program

LEARNING THE VOCABULARY 11

is running, or just during one particular procedure. A variable can be a
small number, a big number, or a string of letters and numbers. Each
of these variables is given a name, and a small sign to indicate what
type of information it represents. You should also remember these names
cannot have a space in them either, so don’t forget to use capital letters
for YourVariableNames.

Types
e A small number (called a ‘short integer’) is followed by a % sign. For
example, HighScore% is a short integer that stores a number, and
can be referred to as HighScore% in your code. An integer has to
be a whole number (i.e. you can’t have HighScore%=2.5, but you
can have HighScore%=2 or HighScore%=3). The maximum value
a short integer variable can store is 32767, the minimum —32768.

e A larger number (or ‘long integer’) is followed by a & sign. For
example, BigNumber& is a large integer that stores a number, and can
be referred to as BigNumber& in your code. Just like small integers,
these large integers can only be whole numbers. The maximum
value a long integer variable can store is 2147483647, the minimum
—2147483648.

e Numbers that contain decimals or fractions are implemented as ‘floats’
(short for ‘floating point numbers’). These are easiest to code — you
simply type the variable name with no suffix and a float type is
implied, for example MyFloat. The maximum value a float vari-
able can store is 1.7976931348623157E4+308 and the minimum is
2.2250738585072015E—-308.

e A string of letters and numbers is called (funnily enough) a string,
and is followed by a $ symbol, For example, Name$ could be set to
contain "Ewan Spence". A string variable can be a maximum of 255
characters. Note that a string can hold any valid characters, so could
also represent a number — for example, Name$="1138" is a valid
string. You can’t, however, do any arithmetic on a string like this.

You may have a simple question at this point regarding the different types
of numerical variable — “if float lets me store any type of number and to
a much larger size than the other two, why don’t | just declare all my
numbers as floats?”” The answer is simple — floats use more memory. Think
of variables as ‘boxes’ or ‘pigeon holes’ — the bigger the box, the more
space (or memory) it requires. It is therefore wasteful to always use a float.

Defining Variables

Before you can use a variable, you need to have told your program that
you are going to use it by defining it. Think of it as reserving a little

12 PROGRAMMING PRINCIPLES

space in memory to store the information. There are two ways of defining
a variable.

A GLOBAL variable is a variable that any procedure in the program
can use, at any time.

A LOCAL variable is a variable that only the specific procedure in
which it is defined can use. When you leave the procedure, the little
space in memory for the number is destroyed. Local variables are good
for temporary counters and bits of info that are only needed for a few
moments (rather like a scrap of paper).

The command to define (or ‘declare’) a variable needs to be the first
command of a procedure (although remember that rem comments do
not count as commands, so these are acceptable before your variables).
GLOBAL definitions must be the first lines in your first procedure, and
LOCAL variables must be the first lines in the relevant procedure.

You can put more than one definition on a line — simply separate them
with a comma, and they can be different types of variables.

PROC Main:
GLOBAL HighScore%,BigNumber&, MyFloat

And...

PROC LocalExample:
LOCAL HouseNumber$%, Names$ (20)

Note that after defining Name$ we have a bracketed number. This tells
the computer the maximum length (in characters) this particular string
will ever need to be. You need to define the maximum length of all strings
or when you translate the program to run, you’ll get an error message.

All numerical variables do not need this length definition, as they
already have a ‘largest number’ limit implied (see above).

Setting Variables

Variables are easy to set. Simply use the equals sign. For example:

HighScore%=56
BigNumber&=1383512467
MyFloat=559.8798
NameS$="Ewan Spence"

Setting a variable should be done on a separate line for each command.
Note that when setting a string, you have to use quotation marks. These
don’t appear as part of the string, they are used in the source code to
show where the string starts and ends.

Once a variable has been set, you can of course change its value.

LEARNING THE VOCABULARY 13
For example:

HighScore%=56
HighScore%=58

results in HighScore$% first being assigned the value of 56, then the
value of 56 is thrown away and HighScore% is assigned the value
of 58 instead. You can also have a variable set to equal the value of
another variable:

NewHighScore%=LastScoreInGame%

1.3.4 Arrays

One other tool you have in variables is an array. An array is a list of
things. For example, if we wanted to have a table of 10 numbers, we
could do:

GLOBAL Tablel%, Table2%,Table3%

This would work, but imagine now doing a list of a hundred things — that
would be a lot of typing! This is where an array comes in useful. If you
think of variables as being ‘boxes’ in memory, each with a name (the
variable name), an array is a line of boxes, and that line has the name,
each box has a number. It's a bit like a spreadsheet — the array variable
is ‘Row A’ and the individual ‘elements’ are columns 1, 2, 3, etc. on
that row.

To illustrate, let's make an array called Table% to handle those
hundred things. Firstly, as with any variable, we need to define it:

GLOBAL Table% (100)

This will create an array of 100 items (the number in the brackets)
and call it Table$%. The array will hold short integers, signified by the
% sign.

The first ‘box’ can be addressed as Table% (1), the next as
Table% (2), and so on. Smart-eyed readers will see that this bears
a striking resemblance to how we define a string — which has a maximum
length. This is because each character in a string effectively takes up one
‘box’ of memory.

So can we make an array with strings? Yes, we can. We will need to
define the maximum length of the string inside the brackets, and we also
need to say how large the array will be (how many strings are in the
array). This becomes a second number inside the brackets, separated by
a comma.

14 PROGRAMMING PRINCIPLES
So defining a string array looks like this:

GLOBAL NameTable$ (100,20)

which is an array of 100 strings, each a maximum of 20 characters long,
and the array is called NameTables$.

So why use Table% (100) and not Tablel%, Table2%, Table3%,
and so on? Because if you have another variable (e.g. LookUpThisNum-
ber%) then you can simply refer to Table% (LookUpThisNumber$%)
to get its value, rather than having to actually write in code ““Well,
if LookUpThisNumber%=1, return Tablel%. If LookUpThisNum-
ber%=2, return Table2%, and so on’”’ — which, for 100 elements, would
be very, very wasteful!

We will illustrate this further shortly.

1.3.5 Constants

Constants are exactly what they sound like — things that don’t change!
They are a bit like variables (so they can be numbers or strings), but they
can never change value. You can use them so code is easier to read.
Rather than having to type the number 103782376 every time you need
to use it (assuming it is something that appears a lot in your program),
you can put the following at the start of your code:

KBigNumber&=103782376

Each time you need to use this number, you can write KBigNumber&
instead. By convention, you should prefix any constant name with K to
help differentiate it from normal variables. Constants should be defined
at the start of your source code, before the first procedure.

CONST KBigNumber&=103782376

PROC Main:
GLOBAL HighScore%,HighScoreNames$ (100)
ete...

Once you see some example code, constants should be a lot clearer. One
thing to point out now is that there are a lot of default constants for things
you will use a lot. If you have the line

INCLUDE "Const.oph"

at the top of your code, then these default constants can all be used in
your own code too. A list of these constants can be found in the OPL
Documentation.

LEARNING THE VOCABULARY 15

1.3.6 Loops

Do. . .Until

Loops are a great way to make your program do something over and over
again, maybe with a few changes. Look at this code:

PROC DoUntilLoop:
LOCAL Foo%
Foo%=0
DO
Foo%=Foo%+1
Table% (Foo%) =Foo%
UNTIL Foo%=100
ENDP

To make sure you understand this code, let’s look at it line by line. The
DO...UNTIL loop is a primary building block of source code, because
lots of programming involves repetition. Firstly we create a variable to
act as a counter, in this case Foo%. This is a LOCAL variable so will only
be accessible to the DoUntilLoop: procedure, and the space reserved
for it in memory is reclaimed once the procedure is finished.

You'll see me use Foo% (and Gnu% and Zsu$%) as a temporary variable
name a lot. If you do see it, you can assume it's a counter or another
temporary local variable.

First of all we set the temporary variable Foo% to be zero. We
then reach the start of the loop (DO). The code will then DO whatever
comes up next — here, add one to the current value of Foo% first of all
(Foo%=Foo%+1) and then set the array element of the Table% array to
be equal to the new value of Foo%. We will keep doing this UNTIL the
value of Foo% is 100. Thinking ahead, what this code means is that at the
end of the loop, our Table% array will have 100 sequential numbers in
each box, and the box position will match the value.

While. . .EndWhile

DO...UNTIL is the primary loop that you will see in this book. One
thing you need to note is that the code inside a DO...UNTIL loop
will always be carried out a least once — think for a minute to work out
why this is the case (Hint: remember OPL code is executed line-by-line
in order).

There will be circumstances where you might want to check the
condition before the code in the loop is reached. If this is the case, you
would use the WHILE. . . ENDWH (EndWhile) construction.

PROC WhileEndWhileLoop:
LOCAL Foo%,Table% (100)

Break

16 PROGRAMMING PRINCIPLES

Foo%=0
WHILE Foo%<100
Foo%=Foo%+1
Table% (Foo%) =Foo%
ENDWH
ENDP

Here, the code inside the loop is only carried out if the comparison in
the WHILE statement is true (i.e. the reverse of the UNTIL statement). The
code in the loop will continue to be run until the statement is false. At this
point the commands after the ENDWH will be read. Here, we are checking
for Foo% being not equal to 100 (thus the WHILE condition will become
false once Foo%=100).

You'll note that although these two loop styles work logically in
different ways, the end result is the same. This is something that happens
in code a lot, where you can achieve the same end result through different
methods. Don’t worry if you do something slightly different to somebody
else — the end result is the most important thing to consider.

So we can come out of these loops at the start of the loop, or at the end of
the loop. What happens if we want to come out of the loop in the middle
of the loop code? We can use the BREAK command.

When your program reaches a BREAK command, it will jump to the
first line of code after the end of the loop (either the UNTIL or ENDWH
command). BREAK statements are usually inside an IF statement, as you
shouldn’t be using the BREAK statement very often — it's mentioned here
for completeness only.

1.3.7 Decisions, Decisions
If. . .Else. . .Endif

The IF...ELSE...ENDIF construct is the third great building block of
computing languages.

At many points in your program, you’ll have to check something and
then execute different commands depending on the outcome. To check
things you use the IF command.

IF Guess%=1
GuessRight:
ELSEIF Guess%=2
GuessClose:
ELSE
GuessWrong:
ENDIF

SUMMARY 17

Hopefully, you should by now be able to make a good guess (no pun
intended!) as to what this code is attempting to do.

If the variable Guess% equals 1, then go to a procedure called
GuessRight:. If Guess% equals 2, then go to a procedure called
GuessClose: If Guess% is anything else, then go to a procedure called
GuessWrong:.

Note that one of these options has to be chosen. Using ELSE on its
own means that if all the other tests have failed, then do this. It's a safety
net in some cases, as the program must go somewhere. The last resort
here is to call GuessWrong:.

1.4 Summary

This chapter started by assuming you knew nothing about the inner
workings of a computer. We've taken you through the basic principles,
both of how a computer works and how different languages came into
being. We looked at their strengths and weaknesses, and why certain
languages are a better choice than others.

Finally, we looked at the main building blocks of the OPL language:
e Using constants to make code easier to read
e Storing information using variables

— small numbers (short integers)

— large numbers (long integers)

— numbers with decimal points (floats)

— textual information (strings)
e Using arrays for large collections of variables
e Repeating sections of code by using loops

— theDO...UNTIL loop

— the WHILE. ..ENDWH loop
e Making decisions

— IF...ELSEIF...ENDIF

2

Introducing the Tools of OPL

In this chapter you will learn:

e the files and file extensions that you will need to be familiar with to
program in OPL

e the tools that are available to help you program in OPL, where to find
them, and where to get help in installing them

e the process of creating an OPL program, what tools are required at
each stage, and how these tools are used

e taking these ideas and creating your very first OPL program!

2.1 Parts of OPL

Like any computer language, OPL is made up of many different parts that
must all come together. We've looked at the basic syntax and structure of
the OPL language in the previous chapter, and here we’ll look at physical
organization of your code during development. This means file names
and extensions, what they are for, and how they relate to each other.
Some of these may be familiar if you have already developed with other
languages on Symbian OS.

2.1.1 Source Code (.tpl or .opl)

Source code is what you will regard as your program. It is a plain text file
of words, numbers, and symbols that you will work on and edit in your
text editor. This text is then read by a compiler (or, in the case of OPL, a
‘translator’) — a program that takes this easily readable code and turns it
into something that a computer can understand and relate to.

Writing computer code, even in a high-level language such as OPL,
requires you to be precise in your language, and all the commands and
statements must be typed in exactly. The OPL translator will check that
what you have typed in follows these rules.

20 INTRODUCING THE TOOLS OF OPL

It is also possible to write source code directly on your Symbian OS
phone using the Program application (if available). While this is something
that is comfortable to do on the Communicator devices entering more
than a few lines of code on a Series 60 or UIQ device will take some
dedication. Using a bluetooth keyboard such as the Nokia SU-8 W or the
ThinkOutside Bluetooth stowaway keyboard can be a great help here.

Source code written through the Program application on the phone will
not be directly readable on your PC text editor, as there are a few Symbian
OS flags and unique identifying numbers embedded in the source code
file because it will be saved as a ‘native’ Symbian OS document.

If you enter source code on your phone, it is recommended you give
it the extension .opl. Whereas, the .tpl extension should be used on a PC
(the ‘t’ signifies a pure text file, as opposed to one with Symbian OS flags
and UID numbers).

If you wish to move source code between your Symbian OS phone and
your PC, you should use the Import text and Export text options
that are present in the Program application.

2.1.2 Header Files (.tph or .oph)

A header file is used to make reading your OPL code easier. For example,
as discussed in the previous chapter, if you use the number 99 constantly
in your program to represent someone’s house number, your header file
can have a line reading something like:

CONST KHouseNumber$=99

Now, in your code when you want to use 99, you simply write KHouse -
Number$%. This makes code a lot easier to read, and also means that if
you need to change the house number, you only have to change one line
in the header file, as opposed to every occurrence of 99 in the source
code. Again, the .oph extension applies to headers saved in Symbian OS
format on your phone, with .tph reserved for the plain text versions saved
on the PC.

The main const.oph is a standard header file and can be included in
any OPL program as it is part of the standard package.

2.1.3 Compiled Code (.opo)

Once your source code has been passed through the OPL translator, this
code is output to another file. It is now called ‘object code’, to distinguish
it from the raw source code. Unless otherwise specified (see below), your
object code file will have the same filename as the source code file,
but a different extension. This extension is .opo. So MyCode . tpl would
translate into MyCode . opo. The .opo file produced will be the same

ORGANIZING YOUR PROJECTS 21

regardless of where it is produced (i.e. either by translating your code on
the phone or on the PC).

Once sent to your phone, this .opo file can be selected and run. You
can do this through the built-in file manager on Communicators or using
a third-party file manager on the UIQ and Series 60 platform — see below
for some unsupported suggestions.

2.1.4 Complied Code (.app and .aif)

You can also choose to translate your source code so it appears as an
application, with an icon on the main launcher screen (System screen)
of your Symbian OS phone. This is done by adding the APP. . .ENDA
commands at the start of your source code. When you translate your
source code into an .app, an Application Information File (.aif) is also
created. This is used by the smartphone to recognize an application and
display it on the main System screen, as an icon which can be launched.
OPL applications are covered in more detail in Chapter 8.

2.1.5 Graphics File (mbm)

What is a computer program without pictures, icons, and graphics to
look at? The Symbian standard graphics file is the .mbm, which stands
for Multiple BitMap, and it is just that. It allows you to hold a ‘book’ of
images and use them in your OPL program. They are created on your PC
from standard Windows bitmaps. Graphics handling and .mbm files are
covered in more detail in Chapter 6.

2.1.6 Installation File (.sis)

One of the advantages of Symbian OS is that it is incredibly easy for
end-users to install applications. All the application files are packaged up
in a single distribution file with the extension .sis. This file can be run
on your PC, and the PC Suite will extract the application files and place
them in the correct locations on the Symbian OS phone.

You can also select .sis files that have been downloaded onto the
Symbian OS phone, and the installer will extract and place the files
where they are required.

If you have created your OPL program to be an application, then .sis
files are the expected distribution method, and you should not provide
the files separately. The creation of .sis files is covered in more detail in
Chapter 8.

2.2 Organizing your Projects

Your OPL program can be built up of many small files that you will need
to keep track of. The system | use is to have a root folder on my PC called

22 INTRODUCING THE TOOLS OF OPL

OPL, and then give each program ‘project’ its own name. Inside that |
have five folders containing the required files. I'll be using this structure
throughout this book, but it is not the only way to do it —if you find a
way that works for you, then go for it.

Root: C:\OPL\<project name>
\Source\
\Source\Archive\
\Compiled\
\Graphics)\
\SIS\

e Source folder
Used to store the text format source code files. The Archive subfolder
holds previous versions of the code so | can look back if I delete
something or introduce errors.

e Compiled

Move any compiled .opo files here for long-term storage.
e Graphics

Holds the bitmaps and the resulting .mbm files.
e SIS

Any file that needs to be put in the installation .sis file is moved here.
This folder will also contain the script text file that will be needed to
assemble the .sis.

2.3 Gathering Tools

To develop in OPL, you will need to have the relevant software
tools. These are all available over the Internet (some of them are
on the accompanying website www.symbian.com/books/rmed/rmed-
info.html). These will need to be installed on your PC before we move
on to creating our first OPL program, "Hello World".

2.3.1 Text Editor Application

You will need a program to enter the source code into a plain text
file. Notepad ships as part of every Windows installation and you can
(if you wish) use Notepad for all your source code needs. But there
are other text editors out there that are geared towards programmers
entering source code on their PC. Three of the more popular choices are
TextPad (www.textpad.org/), Crimson (www.crimsoneditor.com/), and
Source Edit (www.sourceedit.com/). All OPL needs is the source code
saved as an ASCII (ANSI) text file. The OPL translator on the PC does not
use Unicode text files.

GATHERING TOOLS 23

2.3.2 C++ SDK

Unless you have good reason, you should use the default paths when
installing the SDK, and install all the optional components. This will make
it easier to use the command line tools and follow the examples in this
book.

Series 60 and Communicators

uIQ

The regular C++ SDK can be used. Links and information can be found
on the accompanying website www.symbian.com/books/rmed/rmed-
info.html. Alternatively, the SDKs can be downloaded at Forum Nokia
(http://forum.nokia.com).

While you are not going to be using C++ to code your programs, the UIQ
C++ SDK has many of the underlying files and tools that need to be present
on your PC to develop in OPL. The easiest way to have these in place
is to install the SDK from www.symbian.com/developer/sdks_uiq.asp.
There is more than one download type for the UIQ SDK, so you should
make sure that you download the Metrowerks Codewarrior UIQ SDK.
Links and information can be found on the accompanying website,
www.symbian.com/books/rmed/rmed-info.html.

What if | Want to Program for Communicator or Series 60 Phones?

There is nothing to stop OPL programs being compiled using the UIQ
SDK running on non-UIQ, Symbian OS phones. Because OPL is file-
compatible across the range you can compile with any of the SDKs, and
the resulting object code should run on other phones. It is recommended
you install the SDK for the primary machine you will be programming on.

As we work through our examples, we’ll show you how your OPL
code can be written so you only have to maintain one version that will
run over all the OPL runtimes for Symbian OS.

For the purposes of this book, we’ll assume you are using only the UIQ
SDK and you have not altered the files or folder names from the default
values.

2.3.3 OPL Developer’s Pack

Symbian OS licensees do not ship OPL as part of the standard SDKs, so
you will need to add these elements in yourself. The OPL SourceForge
Project page will provide you with the relevant OPL Developer’s Pack.

Download: http://opl-dev.sourceforge.net/. You'll need to copy and
place the files in the correct directories manually, but this is covered in
detail in the accompanying documentation.

24 INTRODUCING THE TOOLS OF OPL

2.3.4 The OPL Runtime

The OPL Runtime for your phone is a standard .sis file and can be installed
just like any other program. The file will be found on the SourceForge
site along with the Developer Pack. Assuming you have the PC Suite
installed for your phone, double clicking the .sis file will start the PC
Suite’s installer program and place the runtime onto your phone.

2.3.5 Command Line Tools

Now the above elements are in place, you have access to three tools that
are run from the command line on your PC.

OPLTran (the PC-Based Translator)

OPLTran is the primary tool for taking OPL source code and creating
object code. The command syntax is:

OPLTRAN <sourcefile> <flags> <output file> <flags>

When installing the UIQ C++ SDK your PC’s PATH variable will be
updated, adding the directory that holds all the command line tools. This
means you can use the tool from any directory on your PC.

Open up the command line on your PC (use Start | Run ‘cmd.exe’
on Windows 2000/XP, or ‘command.com’ if you're using Windows 98).
You need to navigate to the directory holding your OPL source. If you are
using the suggested folder structure, this will be C:\OPL\Tim\Source\
(assuming the project is called ‘Tim’). To translate the Tim source code
file (Tim. tpl) you would type in:

OPLTRAN Tim.tpl Tim.opo

The resulting .opo file can then be copied to C:\OPL\Tim\Compiled\.
Alternatively, you could use:

OPLTRAN Tim.tpl ..\Compiled\Tim.opo

This will copy the compiled file to the compiled directory if you are using
the recommended folder layout.

OPLTran (for File Conversion)

As noted earlier, OPLTran requires your source code to be an ASCII (ANSI)
text file (7-bit character representation), not Unicode text. Symbian OS
uses Unicode throughout, so if you are moving a text file from the phone
(e.g. an export of source code from the Program application) then you

BMConv

MakeSIS

GATHERING TOOLS 25

will need to use the convert function of OPLTran:

OPLTRAN Tim.tpl -conv

This will take our source code file called Tim.tpl, and change the
format. If it is ASCIl (ANSI), it will be converted to Unicode. If it is
Unicode, it will be converted to ASCII (ANSI).

This allows you to take Windows bitmap files, and combine them in one
Multiple BitMap file that Symbian OS can understand and use in OPL.
BMConv and other issues around graphics are discussed in more detail
in Chapter 6.

This allows you to take your compiled program, the resource files,
libraries, and any other files to be packaged up in a standard Symbian
Installation System. SIS files are the standard way to distribute Symbian
OS applications to phones. Distributing applications is covered in more
detail in Chapter 8.

2.3.6 Symbian OS File Manager

Communicators

Series 60

UIQ

The Nokia Communicator has a file manager built-in — this can be found
under the Office quick launch button, and is called ‘File manager’.

Series 60 does not come with a file manager as standard, although some
phones (e.g. the Siemens SX-1) do ship with a file manager built-in.

There are a number of file managers available for Series 60, and you
can use whichever you feel most comfortable with. When discussing
Series 60 OPL in this book, we will use FExplorer, which is a freeware
file manager available from www.gosymbian.com. Download FExplorer
and install the SIS file as you would for any other application — but note
this is not supported or endorsed by either me or Symbian.

For UIQ phones, there is a free developer tool called QfileMan, which
you can use on your own phone. You can get this from the support site

26 INTRODUCING THE TOOLS OF OPL

for this book at www.symbian.com/books/rmed/rmed-info.html. Some
UIQ models (such as the P900) come with a File Manager built in.

Epocware’s PC File Manager

Another alternative is to manage your phone’s directories and files using a
PC-based file manager. Third-party developer Epocware supply a product
called PC File Manager. When your Symbian OS phone is connected via
the PC Suite, the PC File Manager opens a window similar to Windows
Explorer, and you can drag and drop files onto and around your phone.
It is available as a 30-day trial version from www.epocware.com. Again,
this is not supported or endorsed by either myself or Symbian.

2.3.7 Creating and Compiling OPL on the Phone

As well as installing the OPL Runtime onto your Symbian OS phone,
you can also install a program called TextEd or ‘Program’. This is a text
editor that is specifically geared towards writing OPL programs on the
phone. As well as the normal editing commands, you have a translate
function built in, and other useful functionality such as jumping straight
to procedures by name.

Once your code has been translated you will be given the opportunity
to run it immediately.

You can also use Program on your SDK emulator, it's part of the
standard Developer Pack binaries. Some people find this easier than
OPLTran. As with programming, there’s no ‘correct’ method — just work
in whichever way suits you.

2.4 How we Program

2.4.1

The Development Cycle

Developing programs is a process much like a loop inside a program.
You repeat lots of small steps again and again until you get a successful
result. That result is the finished program. The steps you go through are:
e edit your source code

e translate the source code

e run the compiled code

e edit your source code if needed to fix any problems

e repeat.

HOW WE PROGRAM 27

With every program you write, you will go through these steps countless
times — as you add new sections to the code. Let’s look at each step
in turn.

2.4.2 Source Code

Whichever environment you write your code in, the code you write and
the techniques used will be the same.

Let's open a new .tpl file in your preferred text editor (or if you're
using Program on your Symbian OS phone, a new .opl file). Type in the
following lines exactly as they are printed here:

PROC Main:
PRINT "Hello World"
GET

ENDP

Congratulations. You’ve typed in your first OPL program! Make sure that
all the punctuation, spelling, and capitalization are exactly as listed here.
Save the file as HelloWorld.tpl/HelloWorld.opl before moving
to the next step.

Before we move on, a quick word on capitalization. Unlike other
computer languages, OPL is not strict on capitalizing procedure, variable,
or command names. So PROCMain: is the same as proc MAIN: or pROcC
MaiN:, but there are certain conventions used in OPL programs that we
will use in this book:

e procedure and variable names have the first letter of each word
capitalized

e where procedure and variable names contain more than one word,
each word is capitalized, but no spaces are included (e.g. ThisIs-
MoreThanOneWords)

e commands are fully capitalized (with three exceptions — Graphics
commands are prefixed with a lowercase ‘g’, Menu commands with
a lowercase ‘m’, and Dialog commands with a lowercase ‘d" — for
example, gPRINT, mCARD, or dTEXT) .

Elements of Hello World

Let’s have a look at what makes up our program, line by line.
PROC Main:

The command PROC, short for procedure, gives the next small lump of
code its own unique name, in this case "Main". The colon ":" after the

28 INTRODUCING THE TOOLS OF OPL

name is always required to signify where the name ends and the code
begins.

PRINT "Hello World"

When an OPL program is first launched, you have a blank screen. In fact,
OPL creates a default window that takes up the whole screen —to you
it appears that you have a white screen to work with. This is called a
window, and we’ll look at using windows in Chapter 5. For the moment,
we'll just use the PRINT command. This takes a string and displays it on
the screen.

You should know from the previous chapter that a string is a collection
of letters and numbers inside quotation marks. So our PRINT command
displays Hello World on our empty window, not "Hello World" - if
you wanted to display "Hello World" with the quotation marks, your
PRINT command would read PRINT """Hello World""" with three
quotation marks on either side. When your program is run, OPL will know,
on seeing three quotation marks, that it should display one on the screen.

GET

This will get the next keypress event from your phone. An event is
something that passes information to the program. This could be a key
press, a pen tapping on the screen, a message from the processor, or
a variety of other things. Events are how users communicate with your
program. In the next chapter, we’ll see how events can be read, stored,
and used by the program.

GET waits for an keypress event to happen. This event is not needed
by the Hello World, so we don’t read it or use it in any way. But it does
mean the text stays on the screen until we press a key.

ENDP

Signifies the end of our procedure. As it is the first procedure in the
program, the program will now stop. If it was the second or subsequent
procedure, the program would jump back to the line after that which
called this procedure.

2.4.3 Translation

Once you've typed in your OPL source code, you need to translate the
source code into object code so the OPL Runtime (on the phone) can
understand it. You can do this from inside Program if you are coding on
your Symbian OS phone, or through the command line if you are coding
on your PC.

HOW WE PROGRAM 29

Translation from Program (on the Smartphone)

The ‘Translate’ option can be found under the ‘Build’” menu. When you
press this, your code will be compiled, and the resulting .opo file will be
saved in the same directory as the source code.

You will also be given the option to immediately run the .opo code
after translation without having to run a file manager.

Translation from PC Command Line

As mentioned previously, OPLTran is a command line tool you can
use to compile OPL source code on your PC. Open up your command
prompt, and navigate to the directory with the Hello World source code.
If you are using the directory structure we’ve suggested, you should find
it at C:\OPL\HelloWorld\Source\HelloWorld.tpl. Type in the
command line:

OPLTRAN HelloWorld.tpl

This will compile the code into a file called HelloWorld. opo. This file
should be copied from your PC to your Symbian OS phone.

2.4.4 Transfer to Phone

This is only needed if you translated your OPL program on a PC. You need
to get the .opo file from your PC onto your phone to test it. If you have
Bluetooth or an infrared port on your PC you can transfer the file directly
to your phone where it should appear in the Inbox and you can try to run
it directly from there. Alternatively, you can use a PC-based file manager
tool, as mentioned above to copy the .opo file to a location of your choice
on your phone and then use a phone-based file manager to run it.

You might want to look at an application called "Forward" (www.
compsoc.man.ac.uk/~ashley) which allows you to copy a file from the
Inbox of a Series 60 device into a specified directory on the C:\ drive of
your Series 60 device.

If this all sounds rather convoluted, bear in mind it's only you (the
developer) who needs to do this. For any applications you seek to deliver
to end-users, you build a SIS file and avoid these problems — more in
Chapter 8.

2.4.5 Running Inside the Emulator

If you are working on a PC, then it is possible to run .opo files inside
the Emulator that comes with the SDK. You should locate the ‘root
directory’ of the file system for the emulator. If you are using the UIQ

30 INTRODUCING THE TOOLS OF OPL
SDK and have installed it to the default path, then you can find it here:
C:\Symbian\UIQ 21\epoc32\wins\c\

Other SDKs will require you to change the UIQ_21 directory to something
more appropriate.

Copy your .opo file to a directory under here. | suggest you create
an OPL directory and mirror the directory structure suggested above.
Run the file manager inside the Emulator, go to this directory, and run
the .opo.

2.4.6 Problems?

Did the program do exactly what you wanted it to? In a simple program
like Hello World, probably. But as your programs gain complexity, you'll
find that small errors — so-called ‘bugs’ — may arise.

Any computer is incredibly strict in how you must use it. Substituting
Name$ for Name% in your source code may not stop the program
translating in all circumstances, but it will stop it running correctly.

One advantage of translating on the phone with Program is that it will
show you directly the line where the error occurred. So look carefully at
what you see, double checking the syntax of commands. OPLTran will
also give you a text output of the line number in question.

Other errors can be from not declaring variables correctly — in which
case you might need to look a few lines back in your code to check what
you typed when you set something up. OPL has a set of commands called
DECLARE EXTERNAL and EXTERNAL, which help at translate time by
ensuring you’re using correct variables and procedure names, etc. It is
recommended practice to use these commands, but for the programs
we’re writing in this introductory book we are dispensing with it for
brevity. If you're interested in more details, see the command reference
in the Appendix.

The hardest errors to find are when the code is typed in correctly,
but you have made a logical error. Remember that your program will do
exactly what you ask it to do, so you should work through your code
line by line, following in your head what you are asking your program
to do.

Bug hunting is part and parcel of programming, and any programmer
who says otherwise is lying. Being able to think clearly at all stages of
programming will cut down bugs.

2.5 Summary

This chapter introduced you to both the tools and the elements of OPL.
Like any computer language, there are different parts to OPL and we

SUMMARY 31

looked at all of these, and noted the different file extensions used:

e source code (.tpl as a text file on a PC, or .opl on the Symbian OS
powered device)

e header files to make reading code easier (.tph or .oph)

e compiled code (.opo)

e compiled code as an application (.app)

e graphics file (.(mbm)

e installation file (.sis).

We then looked at one way of developing with all these tools, and

showed you the code/test/debug path that you will continue to use as you

develop OPL programs.

Finally, we looked at how to run your program on the SDK emulator
or on your Symbian OS phone.

3.1

3.1.1

3

Event Core

In this chapter you will learn:

e how we take ideas and turn them into OPL code

e about the Event Core: a skeleton program we use as a basis of any
new OPL program

e using Event Core on different Symbian OS platforms
e how to store information when you close a program
e how to read in messages from the processor

e how to read and act on pen taps

e how to read and act on key presses.

Event Core? What is it Good for?

What is Event Core?

So now that we know the basic building blocks of a program and how
to use all our programming tools, it's time to start doing some real-world
programming.

In the real world, we need to think about how our OPL program will
interact with the user, the rest of the operating system, and the processor.
To study this, we will build up a skeleton program that does all the things
a good program should do. It won’t actually ‘do’ anything useful for a
user, but it will provide a starting point for every other program in this
book, and can be used by you for all your own programs too.

This core will react to events sent to it from various I/O devices, hence
its name, Event Core. Think of it as the foundations of your program, the
structure you can build everything else around.

34 EVENT CORE

3.1.2 What Should it Do?

Think of the other programs on your phone and what they do. By that |
don’t mean their high-level function (i.e. the Contacts application stores
names and addresses), but how they react to the system and the user as
they open, as they are running, and as they are closed.

So our Event Core program needs to be able to accommodate all these
core functions of a responsible program:

e reactto messages from the processor (for example, exiting the program
when the system asks it to)

e save the state of the program when we exit the program

e load these preferences back in when the program is opened again

e be able to display and react to a menu

e be able to recognize and act on a pen tap

e be able to recognize and act on a key press.

We'll work through these elements in this chapter, and by the end of it
you'll have a complete foundation for all your future programs.

3.1.3 Recognizing Different Platforms

Special Keys

At the time of writing, Symbian OS has three major platforms that have a
working version of the OPL Runtime. It is possible for your OPL programs
to be written so that the object code can be run on any of the three
platforms. There are a few things we need to consider while writing the
Event Core, so that this multi-platform support will be inherent in all your
programs:

Screen Screen Touch Keyboard
(Full) (with Furniture) Screen
ulQ 208x%x320 208x234 Yes No
Series 60 176x208 176x144 No No
Series 80 640x200 640x180 No Yes

CBAT, CBA2, CBA3, CBA4, Menu, Enter, Clear. See Figures 3.1, 3.2
and 3.3.

Our Event Core will have to be able to cope with these different key
layouts so that when you come to write your program using the Event
Core, you won’t need to worry about them.

EVENT CORE? WHAT IS IT GOOD FOR? 35

Command Buttons

Clear (Escape Key)

Figure 3.1 Series 80

Command Button ; F < Command Button
CBA 1 L% Ve - CBA 2
CBA 4 (push in) 2

Figure 3.2 Series 60

Command Button 1

_Jog Dial up
Jog Dial Back Jog Dial Forward
Command Button 4 Command Button 3

Jog Dial Push In Jog Dial Down
Enter Command Button 2

symbiaolg

ML TECHRILAGY

Figure 3.3 UIQ

36 EVENT CORE

3.2 Planning the Event Core, Init:
3.2.1 Planning the Event Core

There are some people who can sit down with a blank file and type
source code with only a rough idea of what they are planning to do. They
see everything, the structure, the variables and all the windows, and can
type them straight in.

Most people (including myself) will need to do some planning. We've
already bullet pointed out what we want the program to do. We need to
break this down into a list of procedures, and work out in what order we
move through them. It’s also best to add in the basic loops we will use.

So here’s our first procedure, in plain English rather than OPL code:

PROC Main:
Set up all the GLOBAL and LOCAL variables
Load any saved settings
Check all the things we need to check when starting a program
Set up program-specific things
Check for a key press
Do something if one is pressed
Keep doing this until we need to exit the program
Do the things we need to do when exiting a program
ENDP

Now some of these lines can be procedure calls, and some can be loops.
So let’s do a re-write and put this plain English into something very close
to OPL:

PROC Main:
GLOBAL rem We'll fill these in as we plan the program
LOCAL rem We'll fill these in as we plan the program
Init:
InitApp:
DO
rem Get a key press (an event)
rem Act on this key press
UNTIL rem we need to exit the program
Exit:
ENDP

3.2.2 The Init: (Initialize) Procedure

Again, let's break down what we want to do in this procedure:

e set up paths, determine what disk the program is stored on

PLANNING THE EVENT CORE, Init: 37

e load INIfile, determine if this is the first time the program has been run
e sort out screen sizes
e set up windows and load graphics.

We'll look at each of these sections in turn, showing the relevant code,
and explaining principles and commands as we come across them.

A Little Reminder

Set Up Paths

Before all that, we'll just remind the user what program they are running,
who wrote it, and what version they are using in a small on-screen
message. The command:

GIPRINT KAppName$+", "+KAuthorName$+", ver "+KAppVer$

is all we need (although note I'll be using GIPRINT with a capital ‘G,
even if it is a graphics command), and it uses the following constants:

CONST KAuthorName$="Ewan Spence"
CONST KAppVer$="1.00"
CONST KAppName$="Event Core"

All of these we’ll need to define at the start of our program. GIPRINT
shows an on-screen Graphical Information Printed message for a few
seconds, and is great for short bursts of information like this. Its syntax is
similar to the PRINT statement we used previously.

One good use of GIPRINT is that when debugging programs, you can
add ina

GIPRINT CheckValue$

GIPRINT NUMS (VariableToShow%, 3)

.. .to check the value of a variable at that point in a program.

Your OPL program is going to need to be able to load information from
(and save information to) the phone’s storage devices. Graphics are the
obvious items here, but no matter what they are, it is important to find
out where these stored files are held.

It is a convention of Symbian OS that every program has its own direc-
tory to store libraries, graphics, and other information. This directory is:

AnyDrive:\System\Apps\AppName\

38 EVENT CORE

In addition, every major program will have this folder on C:\ (the internal
disk that is always present) to store its INI file. INI files are only ever
stored on the C:\, so we must search for another file to determine where
our program is running from. On the assumption that every program will
have some graphics, we search for this file to discover what directory the
user installed our program and all other supporting files to.

Again, Symbian OS convention is to search for the directory a file is
installed on in a specific order. That order starts with the Y:\ drive, then
moves back through the alphabet to reach A:\, and finally it checks Z:\
(whichisalways the ‘/ROM’ of the phone where Symbian OS itself is stored).

While there are no Symbian OS phones with more than one external
drive (at the moment), you should always consider the fact that these may
get released. Take this into consideration now and you will not need to
re-write your code.

So here’s what we can do:

MbmFile$=KAppNameShort$+" .mbm" : Data$="\System\Apps\"+KAppNameShorts$
Foo%=ASC ("y")
DO
Drive$=UPPERS (CHRS (Foo%))
IF EXIST(Drive$+":"+DataS$+MbmFile$)
Path$=Drive$+":"+Data$
BREAK
ENDIF
Foo%=Foo%-1
UNTIL CHRS (Foo%)="Y"

IF Path$=""
ALERT ("Support mbm file not found", "Please re-install
"+KAppName$)
STOP
ENDIF

We have four global variables used here, a constant, and one local
variable. This is how they were declared:

CONST KAppNameShorts$="Core"
GLOBAL Path$ (255) ,Drives$ (2) ,Datas$ (255) ,MbmFiles$ (16)

Data$ will hold the directory where the program stores its information.
We use the constant for this short name so when you come to edit the
Event Core into your own program, you don’t need to search through all
the code for the program name, you can just change the constant at the
start of the code.

Drive$ will let us know what drive the information is being stored on
(e.g. "C:" — thus it only needs to be two characters long at most).

Paths holds the full directory name for the data, and is made up of
DriveS+Paths.

LOCAL Foo%

PLANNING THE EVENT CORE, Init: 39

Foo% is used in the DO. . . UNTIL loop to keep track of the numeric value
that represents the letter (of the drive) that we are checking for. When we
leave the procedure, the memory space reserved for Foo% is reclaimed
as free memory.

Inside the loop, firstly we make sure we are searching for Y: and not y:
when we decide what to make Drive$ equal to for this loop iteration,
by converting the character into uppercase (using the built-in UPPERS
function). If it is already an uppercase letter (which will only be true in
this example when we loop back to Z:) then UPPER$ will have no effect.
This exploits how letters are stored on most computers; each letter has
a corresponding numerical access code, and capital letters come before
lowercase ones. In our code, we start with ‘y’ and move down a letter
until ‘a’, then roll down one more number which will take us to ‘Z’,
achieving our aim of searching Y: to A: and then Z:.

The EXIST command is a binary check. It returns a 1 if the statement
is true, and a O if it is false. As you read before, an IF statement is as
simple as checking IF something is TRUE, so we can happily write “if
this file exists, then do something””. Which in OPL corresponds to:

IF EXIST(Drive$+":"+Data$+MbmFile$)

This will be true when we find our .mbm file. When we do, we can set
the path and break out of the loop — we don’t need to check any further.

Path$=Drives$+":"+Data$
BREAK

Of course we may loop all the way through the letters (Y: to A:, then Z:,
then back to Y:). If this happens, then we can’t find the .mbm file, the
Paths will not be given a value, and we must assume the program is
not installed correctly. So we show an error message (using the ALERT
command) and STOP the program.

IF Pathg=""
ALERT ("Support mbm file not found", "Please re-install
"+KAppNames)
STOP
ENDIF

The ALERT command is another type of PRINT statement. It puts the
information in a box similar to the alert boxes of the Symbian OS phone
we are running on. Note that each line of text is separated by a comma,
and that we can still add together terms, or just display a given string
inside "quotation marks").

40 EVENT CORE

The INI File Procedures (LoadIniFile % and SavelniFile %)

Imagine if you had a program where you could set the screen color to
your favorite color. Now whenever you run the program you’d expect the
program to remember your choice. This is where the INI file comes in.

The INIfile is a very small database that holds information important to
the program. If you think of a database as being a large stack of cards, the
INI file is represented by one card, which looks a bit like the illustration
in Figure 3.4.

N\

Name: Ewan Spence

Title: OPL Guide

Subject: OPL Programming

Figure 3.4 Index card with three variables

As with all databases, you have a label (on the left) and the value
(on the right). Note how similar this is to assigning a value to a variable.
Databases are just big ways to store variables on the disk when a program
is not running.

We illustrate the concept of an INI file in Event Core by saving one
value — later examples (see Chapter 6) will create much larger databases
that we can manipulate, but for now, we’ll use the simplest database
possible.

So how do we open and read our INI file? As always, think about the
steps in English first:

e s there an INI file already? If there is, read the values

e if there isn’t, create a set of default values.
In fact, we’ll change that last line very slightly to read:

e if there isn’t, create a set of default values, then save those values to a
new INI file.

So we'll also need a way to save the values when any of them are
changed, and when we exit our program. There are two main operations
in these statements; reading the values in the INI file; and saving the
INI file. Creating the INI file will only ever be done if the reading fails,
so is part of that procedure. Let’s put this into something a bit like
OPL code:

PLANNING THE EVENT CORE, Init: 41

PROC LoadIniFile%:
[F there is an INI file
Read the values into memory
ELSE
Create some default values in memory
Save these values (call PROC SavelniFile%: to avoid duplicating
code)
ENDIF
ENDP

PROC SavelniFile%:
Delete any existing INI file
Create an empty database card
Write the values on the database card
Save the database card to storage
ENDP

Note the % at the end of the procedure names. This is because when we
are finished, we will RETURN a value to the procedure that called these
two procedures. The RETURN keyword allows your procedure to pass
back some kind of result to whichever other procedure called it. Much like
variables, the type of the result you pass back is specified in the procedure
name — so PROC ReturnsStrings:, PROC ReturnsLongInt&, PROC
ReturnsShortInt% or PROC ReturnsFloat are all valid names. You
simply then use RETURN to pass back the information you want. Calling
RETURN brings the execution of that procedure to an end, much like as
if ENDP had been reached. Here, if the INI file exists, we will return a
value of 0, if we have to create a new INI file, then we will RETURN a
value of 1. If we’ve had to create the INI file, we can assume that this is
the first time the program has been run. So in PROC Init: we load the
INI file with:

FirstRun%=LoadIniFile%:

This way, FirstRun$% takes on the value of whatever we RETURN in
LoadIniFile%:.

You've already seen how we look for a file when looking for the
.mbm file, so you should recognize the IF statement that looks for the
INI file:

PROC LoadIniFile%:
IF EXIST ("C:"+Data$+KAppNameShort$+".ini")
OPEN "C:"+Data$+KAppNameShort$+".ini",A, Soundvol$%
SoundVol%=A.SoundVol%
CLOSE A

42 EVENT CORE

RETURN 0

ELSE
rem Set initial values here, then save to disk
SoundvVol%=0
SaveIniFile%:
RETURN 1

ENDIF

ENDP

So let’s look first at what happens if the INI file exists. Well, the first thing
to do is OPEN the database with the OPEN command, which is laid out
like this:

OPEN Filename, Reference, Variablel, Variable 2, Variable 3, etc.

The filename is constructed as before (and again note we use the constant
string that holds the name, not the name itself).

It is possible to have more than one database open at a time, so we
give each open database a reference letter. In this case, we’'ve used the
letter "A". In OPL, you can use the letters A to Z to reference databases.

Finally, we need to know how the database is made up, by listing all
the variables that are on the card. In the INI file, we’ll only have one
variable, but you can have up to 32. Think of these as the heading names
of each field of your database.

OPEN "C:"+Data$+KAppNameShort$+".ini", A, Soundvol%

Thus our INI file has one variable (Soundvol$%) and is reference letter "A".

We can then read the values stored in the database by using the
reference letter, followed by a dot, followed by the name of the field. So
we can copy the database value of Soundvol$% to our GLOBAL variable
Soundvol$% with the following:

SoundVol%=A.SoundVol%

That's us finished with the database! As with anything in programming,
when you're finished with something, close it, put it away, or destroy it.
Here we CLOSE the database with reference "A" and RETURN the value 0,
leaving the procedure.

CLOSE A
RETURN 0

What if the INI file doesn’t exist? Well, we set a default value to the
GLOBAL variable Soundvol% and call PROC SaveIniFile%:

PLANNING THE EVENT CORE, Init: 43

SoundvVol%=0
SaveIniFile%:
RETURN 1

When we come back from PROC SaveIniFile%: we RETURN the value
of 1, representing the fact that we had to create a new INI file.
Now let’s think about the SaveIniFile%: procedure in English:

e if the directory doesn’t exist, create it

e if there is already an INI database with old values, then delete it
e create a new INI database

e save the values to the database

e close the database.

And now in pseudo-OPL:

PROC SavelniFile%:
Make Directory "C:"+Data$
Delete the database "C:"+Data$+KAppNameShort$+".ini" if needed
Create a new database in the same location
Save the SoundVol% value to the database
Close the database
ENDP

Finally, here it is in OPL:

PROC SaveIniFile%:
TRAP MKDIR "C:"+Data$
TRAP DELETE "C:"+Data$+KAppNameShort$+".ini"
TRAP CREATE "C:"+DataS$+KAppNameShort$+".ini",A, SoundVol%
A.SoundVol%=SoundVol%
APPEND
CLOSE A
ENDP

This introduces us to a new concept — error handling. Normally, when
an error happens on running an OPL program, the program will stop and
display an error message. The TRAP command will trap or suppress any
error messages that occur due to a line of code that follows it, allowing
the program to continue running. The reason we do this when we MKDIR
(Make a Directory) is that there is every chance the directory will already
be there, but if this is the first time we are running the program, it won't
be there. This way, if it is not there, we will make the directory, if not,
then the program will raise an error, it will get TRAPped and we can
move on and ignore it.

44 EVENT CORE

The same reasoning is used for deleting the existing INI file. If there
was no INI file and we tried to DELETE it, then we would have an error
message. TRAPping again lets us carry on.

The CREATE database command is identical in layout to the OPEN
database command. We supply a filename, a reference letter, and a list
of variable names.

To assign a variable’s value from our program variables to one in the
database is simple; we just use the reference letter and the name of the
field:

A.SoundVol%=SoundVol%

However, all we’ve done is assign values. We haven’t actually written
them into the database yet. Once we’ve assigned all the values, we need
to create a record (like a paper index card) and add that record into the
empty database (e.g. a large empty filing box). This is where the APPEND
command comes in:

APPEND

This adds the record we have just created (with A.Soundvol%=
Soundvol%) to the end of the database. Of course, because we've
deleted any existing database and created a new database, this appended
record will become the first (and only) record.

As before when loading the INI database file, when we’re finished we
close the database, again with the appropriate close command:

CLOSE A

Sorting out Screen Sizes

Windows are a bit like pieces of paper on (and off) the screen. If we want
to show something on the screen, we need to write it on one of these
pieces of paper. We're going to look at windows and graphics in a later
chapter, but here are some basics.

When an OPL program is started, it creates a default window. This
window fills the screen, so we can use this window to get the size of
the screen of the phone we are running on. It is also made the current
window; the current (or active) window is the one where we can draw to.

We will store these dimensions in two global variables Screen-
Width% and ScreenHeight$% using the following commands:

ScreenWidth%=gWIDTH
ScreenHeight $=gHEIGHT

PLANNING THE EVENT CORE, Init: 45

Because every Symbian OS phone has a slightly different way of present-
ing information, we need to realize where all the toolbars and widgets
are on screen, so we can calculate the size of the ‘empty’ window (or
‘canvas’) we can use.

Here are the variables being defined at the top of our code:

GLOBAL ScreenMenubarOffset%, ScreenMainViewWindowOffset$%
GLOBAL ScreenStatusBarHeight%, ScreenLeftOffset%
GLOBAL ScreenRightOffset%, Platform%

And here is the code to calculate the size of the empty main window.
We're also using the variable Platform% so we can reference what
platform we are running on — this information may be needed at another
point in the program.

IF ScreenWidth%=640 AND ScreenHeight%=200
rem Series 80 Communicators
Platform$=KPlatformSeries80%
ScreenMenubarOffset%=0
ScreenMainViewWindowOffset%=20
ScreenStatusBarHeight$%=0
ScreenlLeftOffset%=0
ScreenRightOffset%=0

ELSEIF ScreenWidth%=176 AND ScreenHeight%=208
rem Series 60
Platform$=KPlatformSeries60%
ScreenMenubarOffset%=0
ScreenMainViewWindowOffset%=44
ScreenStatusBarHeight%=20
ScreenLeftOffset%=0
ScreenRightOffset%=0

ELSEIF ScreenWidth%=208 AND ScreenHeight%=320
rem UIQ
Platform$=KPlatformUIQ%
ScreenMenubarOffset%=24
ScreenMainViewWindowOffset%=44
ScreenStatusBarHeight$%=18
ScreenLeftOffset%=0
ScreenRightOffset%=0

ELSE
rem Any new platforms will default to a full screen view
Platform%=KPlatformGeneric%
ScreenMenubarOffset%=20
ScreenMainViewWindowOffset%=0
ScreenStatusBarHeight$=0
ScreenLeftOffset%=0
ScreenRightOffset%=0

ENDIF

The values taken by Platform% are constants, which are variables we
pre-define at the start of our program to make our code easier to read. To
make sure this technique works, add the following to the very top of your
OPL source code file:

46 EVENT CORE

CONST KPlatformGeneric%=0
CONST KPlatformSeries80%=1
CONST KPlatformSeries60%=2
CONST KPlatformUIQ%=3

We can now calculate our canvas size (i.e. the area we can actually draw
to) for this phone:

CanvasWidth%=ScreenWidth%-ScreenLeftOffset%-ScreenRightOffset%
CanvasHeight%$=ScreenHeight%-ScreenMainViewWindowOffset%-
ScreenStatusBarHeight$%

Set up Windows and Load Graphics

There are two types of windows. The first are ones we can display on
the screen; these are called drawables. The second are graphics you load
into memory from a file; these are called bitmaps. When you create a
window, it is assigned a number, and this number is used throughout the
rest of the program to refer to it.

These numbers are held in a GLOBAL array we create called Id% ().
So this is another variable we will need to define at the start of our
code — as you sketch out your program you should keep a note of all
these variables, as it will make it easier when you come to write your
own source code.

The gCREATE command creates a window that is displayed on the
screen. It looks like this:

gCREATE (X%, Y%, Width%, Height%, ColorDepth%, Visibility%)

% and Y% represent the top left corner of the window we are creating.
The very top left of the screen on your device is (0,0). You then specify
the width (Width$%) and height (Height%) of the window.

ColorDepth$ is the number of colors that the window can show.
The lower the number of colors, the less colors there are! There are
values in Const.oph that relate to the value that needs to be used in the
ColorDepth$ variable.

Colours Value

16 KdefaultWin16ColorMode%
256 KdefaultWin256ColorMode%
4096 KDefaultWin4kMode%
65,535 KdefaultWin64kMode%

16 million KDefaultWin16MMode%

Finally, visibility% is a binary value, where 1 means the window
can be seen, and 0 means it is invisible, no matter what we draw in it.

PLANNING THE EVENT CORE, Init: 47
In Event Core, we have one drawable, defined by this command:

Id% (KMainViewWindow%)=gCREATE (ScreenLeftOffset$,
ScreenMainViewWindowOffset%, (Ca
nvasWidth%-ScreenLeftOffset%-ScreenRightOffset%)
CanvasWidth%, CanvasHeight$%, KDefaultWin4kMode%, 1)

Now this may look unnecessarily long, but do you remember where
we calculated various screen sizes depending on what machine we are
using? This uses those numbers so that the same line of code will make
sense no matter what platform you run Event Core on.

We'll look at bitmaps and graphics handling in more detail in
Chapter 5, so just be aware that this line loads a bitmap from a file
into the memory:

Id% (9) =gLOADBIT (Data$+MbmFiles$,0,0)

Why 9 and not 2? Well, it’s up to you, but when | write code, | assign
Id% (1) to Id% (8) as drawables, and 1d% (9) and greater as bitmaps.
Directly after the gLOADBIT command we have three elements. The
first is the location of the MBM Graphics files — again note we’re using
elements that are defined previously, keeping this code as portable as
possible. The first 0 is a write protect flag. If it is 0, we cannot edit the
graphic (if it is 1, we can). Unless you have a need to change a graphic
permanently, you should always leave this as 0.

Finally, the last number lets the command know which bitmap to load.
As an .mbm file holds multiple bitmaps (hence MBM), we need to state
explicitly which one we’re looking at, as a graphics window can only
hold one bitmap graphics. The first bitmap in any .mbm file is number 0,
followed by number 1, 2, 3, etc.

Putting the Procedures Together

PROC Init: has a lot of little things going on that all need to be done
every time a program is opened. Here’s all the bits put together in the
final procedure. Hopefully you can follow this all now:

PROC Init:

LOCAL FirstRun%,Drive$ (1) ,Foo%
SETFLAGS &10000 rem Used to allow Auto Switch off
GIPRINT KAppNames$+", "+KAuthorName$+", ver "+KAppVers

rem *** Set some names and paths
MbmFile$="Core.mbm" : Data$="\System\Apps\Core\"
Foo%=ASC ("y")
DO

Drive$=UPPERS (CHRS (Foo%))

IF EXIST(Drive$+":"+DataS$+MbmFiles$)

48 EVENT CORE

Path$=Drive$+":"+Datas
BREAK
ENDIF
Foo%=Foo%-1
UNTIL CHRS (Foo%)="Y"

IF Paths=""
ALERT ("Support mbm file not found", "Please re-install
"+KAppNames)
STOP
ENDIF

rem *** INI File Handling
FirstRun%=LoadIniFile%:

rem *** Screen dimensions, color fixed across all devices
ScreenWidth%=gWIDTH : ScreenHeight%=gHEIGHT
IF ScreenWidth%=640 AND ScreenHeight%=200
rem Series 80 Communicators
Platform$=KPlatformSeries80%
ScreenMenubarOffset%=0
ScreenMainViewWindowOffset%=20
ScreenStatusBarHeight$=0
ScreenLeftOffset%=
ScreenRightOffset%=0
ELSEIF ScreenWidth%=176 AND ScreenHeight%=208
rem Series 60
Platform%$=KPlatformSeries60%
ScreenMenubarOffset%=0
ScreenMainViewWindowOffset%=44
ScreenStatusBarHeight%=20
ScreenLeftOffset%=0
ScreenRightOffset%=
ELSEIF ScreenWidth%=208 AND ScreenHeight%=320
rem UIQ
Platform$=KPlatformUIQ%
ScreenMenubarOf fset%=24
ScreenMainViewWindowOffset%=44
ScreenStatusBarHeight%=18
ScreenLeftOffset%=
ScreenRightOffset%=
ELSE
rem Any new platforms will default to a full screen view
Platform$=KPlatformGeneric%
ScreenMenubarOffset%=20
ScreenMainViewWindowOffset%=0
ScreenStatusBarHeight%=0
ScreenLeftOffset%=
ScreenRightOffset%=0
ENDIF
CanvasWidth%=ScreenWidth%-ScreenLeftOffset%-ScreenRightOffset%
CanvasHeight%=ScreenHeight%-ScreenMainViewWindowOffset$%-
ScreenStatusBarHeight$%

rem *** Create initial windows
Id% (9) =gLOADBIT (Data$+MbmFiles$,0,0)
Id% (KMainViewWindow%)=gCREATE (0, KMainViewWindowOffset$%, CanvasWidth$,
CanvasHeight%,1,KDefaultWin4kMode%)
ENDP

OTHER PROCEDURES 49

3.3 Other Procedures
3.3.1 The InitApp: (Initialize this Application) Procedure

PROC Init: is a generic routine. It will very rarely change when you
start a new program. Apart from the layout of windows and graphics that
you will load in, it will stay static. The second initialize routine, PROC
InitApp:, will be very program-dependent, as it covers anything that
needs to be set up for your specific program.

In Event Core, we have a small InitApp: that simply displays one
graphic on the screen and some text. As we’ll see, other programs can
get quite involved in the InitApp:, so again it needs careful planning.
Here's the plain English version of our Event Core procedure:

PROC InitApp:
Start using to the main drawable window
Show the graphic we’ve loaded
Print some text

ENDP

For this procedure, let’s look straight at the OPL code:

PROC InitApp:
gUSE Id$% (KMainViewWindow$)

gFONT KOplFontLatinPlainl2é&
gAT 0,CanvasHeight%/2
gPRINTB "OPL Event Core", CanvasWidth%, 3

gAT 0, (CanvasHeight%-20)

IF Platform%=KPlatformGeneric% : gPRINTB "Generic
Machine", CanvasWidth%, 3

ELSEIF Platform%$=KPlatformSeries80% : gPRINTB "Series 80
Communicator", CanvasWidth%, 3

ELSEIF Platform$=KPlatformSeries60% : gPRINTB "Series 60
Device",CanvasWidth%, 3

ELSEIF Platform%=KPlatformUIQ% : gPRINTB "UIQ
Device", CanvasWidth%, 3

ENDIF

rem *** Displaying an MBM (loaded in PROC Init:)
gAT (CanvasWidth%-127) /2, (CanvasHeight%-65)
gCoOPY Id%(9),0,0,127,41,3

ENDP

We can have more than one drawable window open, and only one can
be active at a time. It is important to make sure that we're using the right
one. The gUSE command takes the values that we used when using the
gCREATE command to identify the windows, in this case the constant
representing the Main Window:

gUSE Id% (KMainViewWindow%)

50 EVENT CORE

The numbers in the gCOPY statement tell OPL which part of a graphical
bitmap to copy to the screen. We'll discuss these numbers and bitmaps
in more detail in Chapter 5. Next are three new commands that give you
much more control when printing text onto the screen.

gFONT allows you to change the font of any text that is printed after this
command is read. Values for the available fonts are held in the Const.oph
file, so you can use these names rather than the numbers:

Font Value

Latin KOplFontLatinPlain12 &
Latin KOplFontLatinBold12&
Latin KOplFontLatinltalic12&
etc. etc.

In any editing application (such as the text editor you are using) there is
a flashing cursor to show where the next character will appear. OPL has
two cursors. One for text using the PRINT commands, and one graphical
cursor. gAT affects the graphical cursor operations. It starts at (0,0) when
you first create a window. You move it by simply stating where you
would like it to go with:

gAT (X%,Y%)

where (0,0) is the top left corner of the current window. In our PROC
InitApp: for Event Core we again use the numbers worked out previ-
ously for screen dimensions. This is why they were created as GLOBAL
variables, so they could be used in different procedures.

gPRINTB is short for Graphical Print Banner:

gPRINTB Text$,Width%,Alignment$%

It takes the cursor as the bottom left of the banner strip it will print the
contents of Text$ in. This banner has a specified width (Width%) and
can be left, center or right justified using the Alignment#% variable: see
Figure 3.5.

Alignment Value Constant
Right 1 KDTextRight%
Left 2 KDTextLeft%
Center 3 KDTextCenter%

So in our Event Core example:

gPRINTB "OPL Event Core",CanvasWidth$%,KDTextCenter$%

OTHER PROCEDURES 51

Right &Align (1)

Left Align (23
Center Align (3)

Figure 3.5 gPrintB spaces and line up

we are printing the text "OPL Event Core" centrally inside our banner,
which is the width of our main screen.

The IF statement has a colon right after it, then another OPL command.
Why are these not over two lines? Well, there’s no reason to not have
them over two lines. The following is also correct:

IF Platform%=KPlatformGeneric%

gPRINTB "Generic Machine",CanvasWidth$%, 3
ELSEIF Platform$=KPlatformSeries80%

gPRINTB "Series 80 Communicator", CanvasWidth%, 3
eteht

But there are times when it is easier to lay out code with more than one
statement on a line. You can concatenate statements using a colon, with
a space on either side of it. So this is also correct:

IF Platform$=KPlatformGeneric% : gPRINTB "Generic
Machine", CanvasWidth%, 3

ELSEIF Platform$=KPlatformSeries80% : gPRINTB "Series 80
Communicator", CanvasWidth$, 3

EEE, oo -

3.3.2 The Main DO...UNTIL Loop

Let’s look back at our pseudo-OPL for the main procedure:

PROC Main:
GLOBAL rem We'll fill these in as we plan the program

52 EVENT CORE

LOCAL rem We'll fill these in as we plan the program
Init:
InitApp:
DO
rem Get a key press (an event)
rem Act on this key press
UNTIL rem we need to exit the program
Exit:
ENDP
Now we have everything set up, variables loaded, and the main screen
showing what we want it to show, we can start doing the central loop
of our program. The DO. . .UNTIL loop will have the program iterate
through the ‘get an event, act on event’ cycle until we want to exit the
program. As the program reacts to those events, things will happen.
Before we look at those events, let’s look at how we get out of the loop
first. For this, we’ll need to set up some error trapping.

Error Trapping in OPL

We're going to base this loop (and exiting the loop) around error trapping.
We've already seen (when loading the INI database file) how to TRAP an
error so that a program does not display an error message and stop. What
we are going to do now is give the program specific instructions on what
to do if there is an error, rather than just simply stop.

Firstly, we’ll need to know when an error has occurred. We do this by
creating a LOCAL variable (we’ll use E in Event Core) and letting it equal
the last error OPL knows about (normally zero for no error).

Next, what to do when an error occurs? This is where the ONERR
command comes in. After using ONERR we must tell the program to jump
somewhere in the procedure that the ONERR command is. How do we
do this? We use the GOTO command.

GOTO immediately jumps the flow of the program from where it is to
another line that is labeled with a given name. It is especially useful in
the error handling routine as it forces the program to go where we need
it, no matter where it is when the error happens.

So at the top of our PROC Main: let’s set up this error handling
mechanism:

LOCAL E
E=ERR : ONERR OFF
ONERR Error::

To be safe, we switch all the existing error trapping off (using ONERR OFF)
before we set up our own error handler. In this case, when there is an
error, we'll jump to a label called Error: : [note that all labels end with
a double colon (::)].

OTHER PROCEDURES 53

So after all our code in PROC Main: we need to add the following
code:

Error::

rem *** Show what the error is
dINIT "Error"

dTEXT "",ERRXS,KDTextCenter%
dTEXT "",ERRS (ERR) ,KDTextCenter%
dBUTTONS "Done", KABUTTONEnter$%
LOCK ON :DIALOG :LOCK OFF

GOTO Top: :

This brings in one of the main OPL ‘widgets’. Dialogs (and Menus) will
be looked at in depth in Chapter 4; suffice to say this code will display
a box explaining the error number and a short description of what the
error is.

But what about the GOTO Top: : label? This actually takes us back into
our main loop so the user can carry on using the program, but hopefully
reporting the error back to you, the programmer.

So with our error code, our pseudo-OPL looks like this:

PROC Main:
GLOBAL rem We'll fill these in as we plan the program
LOCAL rem We'll fill these in as we plan the program
ONERR Error::
Init:
InitApp:
Top::
DO
rem Get an event
rem Act on this event
UNTIL rem we need to exit the program
Exit:
Error::
PRINT message and carry on
GOTO Top::
ENDP

Back to Breaking out of the Loop

So one way we can come out of the loop is this:

UNTIL (ERR<>E)

where ERR is the value of the last error, or 0O if there is no error. So when
we have an error, ERR and E will not be equal (i.e. ERR<>E will be true).

54 EVENT CORE

Doing this ensures that all errors will be passed to the error handler. Of
course, when an error happens we will be returned to the program, so
we need another way to force the program to stop.

We create a GLOBAL variable called Breakout%. When all variables
are created, they initially hold the value of 0. So when we want to exit, we
set the Breakout % flag to something other than 0. Which gives us this:

UNTIL (ERR<>E) OR (Breakout%<>0)
IF Breakout%
Breakout%=0
Exit:
ENDIF
GOTO Top: :

We reset the value of Breakout% once we have exited the loop as
there is a chance we could be returned from PROC Exit :. This is good
defensive programming. Even though you are sure you won’t be back
here, just in case for some unknown, unforeseen reason you are sent back
here, in this case the Breakout% variable will still ‘behave’ itself.

Note also that if we come out of the DO . . . UNTIL loop because of the
ERR value, we won't automatically reach the jump to PROC Exit :, rather
we'll find the GOTO Top: : label and be returned to the DO. . .UNTIL
loop, even if something goes wrong with the error handler. Again, good
defensive programming!

3.3.3 PROC Exit:

When we're ready to exit our program, there are a few things we need to
do. These will be handled in PROC Exit :

PROC Exit:
LOCAL Foo%
ONERR JustStop::
SaveIniFile%:
Foo%=0
DO
Foo%=Foo%+1
IF Id%(Foo%)
gCLOSE Id$% (Foo%)
ENDIF
UNTIL Foo%=KMaxWindows$%
JustStop: :
ONERR OFF
STOP
ENDP

We set up a new error handling procedure here. If something goes wrong
in the Exit : procedure, rather than report the error and try to go back to

OTHER PROCEDURES 55

the program, we’re going to ask the program to just stop anyway. ONERR
JustStop: : takes care of this.

Next we save the INI database file by calling PROC SaveIniFile%:.
We discussed this procedure earlier, and although there it was used to
save the default settings, here it will be used to save whatever the settings
are currently.

Now we set up a small DO. . . UNTIL loop that closes all the drawable
windows and graphics that we have loaded. In theory, the OPL Runtime
should recover the memory used by these elements when we close the
program, but there is nothing wrong with giving it a helping hand. A
temporary LOCAL variable (Foo% again) is used to count up from 1 to the
maximum number of windows (something that we set as a constant at
the start of the source code) and perform the gCLOSE command on each
element in turn.

Finally, we give the STOP command, which stops the OPL program
running.

3.3.4 Getting Key Presses, Events, and Commands

So now we have everything in PROC Main:, except how to actually
receive any inputs (events) from the device or the user.
We need to react to three types of events:

e system commands (some of these are defined in Const.oph such
as KGetCmdLetterExit$, KGetCmbLetterBroughtToFore-
ground%, KGetCmdLetterBackups$)

e pen taps

e akey being pressed.

Note that not every Symbian OS phone will have all of these elements
(for example, current Series 60 phones do not have a touch screen), but
to make our Event Core portable we can address them all anyway.

System Commands

When the processor wants your OPL program to do something, it will
send a command ‘word’ to the program. This word will be stored by the
runtime until you decide to read it into a string variable (of maximum
length 255 characters) with the following command:

Command$=GETCMD$S

How Do you

56 EVENT CORE

The first letter reflects the action that needs to be carried out. This letter
value is also stored as a constant in Const.oph —as always, using the
values in Const.oph will make your program easier to read and to port to
other versions of OPL.

The rest of the string will be a filename. Most of the time this will be
to the program file, but if you create an OPL program that uses files (e.g.
a text editor) it will refer to the open file. Note that file-based programs
are not discussed in this book.

Letter Constant Value Requested Action
Sent
X KGetCmdLetterExit$ Close your program immediately
? KGetCmdLetterBackup$ Phone is being backed up, close
program
KGetCmdLetterBrought- Program brought to foreground
ToFGround$

Program sent to background
O Open a specified file
N Create a new blank file

All good programs should react to system events. In Event Core we check
the command word before checking for any events with this command,
and take the appropriate action.

Read an Event?

First we define a GLOBAL array that will be used to store any event we
read. When we want to read an event, we use the GETEVENT command
to read in all the relevant info into the 32-bit array previously defined:

GLOBAL Eventé&(16)

GETEVENT32 Eventé& ()

When an event occurs, the details of the event are stored in a queue.
The GETEVENT32 command will take the first event in the queue, and
then move to the other events. So if you have two events happening very
close to each other, the first will be read, and the second will wait until
GETEVENT32 is used again.

GETEVENT32 will fill the 16 elements of its array with the following
information. Not all of these are used, so only those relevant to OPL are
listed:

OTHER PROCEDURES 57

Event&() Value Type

1 Unicode Value Key pressed

2 Timestamp When the key was
pressed

3 Window Number Which window the
pointer event is in

4 1 Pointer removed from
screen (pen up)

5 0 Pointer tapped onto
screen (pen down)

6 Integer X Coordinate of pen tap

7 Integer Y Coordinate of pen tap

8 Integer X Coordinate of pen tap
relative to parent
window

9 Integer Y Coordinate of pen tap
relative to parent
window

We'll now check the Events& array for our two main types of event.

PROC PointerDriver:

The pointer can be used in two main areas. The first is to activate the
menu on UIQ devices. The second is to register a tap on the screen.

If you tap the menu bar in an OPL program on UIQ, it will pass an
event representing this menu press as if you had pressed a key. This value
is KMenuSilkScreen$, and is picked up in our key event handler. Here
we will discuss pen taps that are in the working area of the screen.

There are three types of pen events, and they all report back three
numbers, via the GETEVENT32 command (see above table):

e the graphics window the event occurred in (remember the Id%
window array? It's these numbers that are reported)

e the X coordinate in the window the event was in

e the Y coordinate in the window the event was in.

In the case of the Symbian OS phone not having a touch screen (such

as a Series 60 or Communicator), it is not possible for a pointer event to

be passed to the program. However, the Pointer Driver code can happily
stay inside the program and simply never get called.

58 EVENT CORE

PROC KeyboardDriver:

We split the types of keyboard events into two areas. The first is direct
key presses such as pressing cursor keys, the enter key, buttons that select
options, etc. You'd use these direct keys in a game, or when scrolling
through a list.

The second type of keyboard event is a hot key — this is commonly
used in devices such as the Communicators, but has less relevance on
UIQ devices.

After a key is pressed, and it is not one of the ‘direct’ keys (for example,
the cursor keys could be direct keys used to choose an item from a list), we
look at what modifier keys are used. If there are any present, this indicates
a hot key has been pressed by the user — these are keyboard shortcuts
to various menu items or functions. In the case of Communicators, for
example, hot keys use a combination of Ctrl and Shift keys alongside
normal keyboard letters.

Ctrl-K is a popular hot key. This brings up any settings or preferences
dialog the program has. Note that Event Core does not read the Ctrl key
as a distinct key press, but notes the fact that it has been pressed. The
same applies to the Shift key. In our code, we have two variables used to
track these:

Mod%=Ev&(4) AND 255
IF Mod% AND 2 : Shift%=1 : ELSE : Shift%=0 : ENDIF
IF Mod% AND 4 : Control%=1 : ELSE : Control%=0 : ENDIF

rem Check for Direct keys here
IF Shift% : Key&=Key&-32 : ENDIF

rem Check for Hot Keys here
IF Key&<=300

ActionHotKey:
ENDIF

rem reset Modifiers
Control%=0 : Shift%=0

Where do we get these values for Key&? There is a list of character codes
for all the keys in the SDK documentation. For example, 32 is the code
for the space bar and 13 is the Enter key.

We can have as many parts to the IF statement that checks for the
space bar (and we'll see this in later programs), but once these run out,
we check to see if a hot key has been pressed, by jumping to PROC
ActionHotKey:.

Processing Hot Keys

A separate procedure for hot keys is used to work out what procedure to
jump to when a hot key is pressed. This is because the menu system also
uses the hot key system, but we’ll come back to that in the next chapter.

SUMMARY 59

Now you could do a simple IF Key%=48 (where 48 is the character
code for the letter "a"), but the ASC function gives the character code
for any requested character. Therefore we can take the numerical value
from Key& and compare it to ASC (Value$) of the hot key to check the
result, and make our code more readable:

PROC ActionHotKey:
IF Key&=ASC("e")-96 : Exit:
ELSEIF Key&=ASC("k")-96 : SetPreferences:
ELSEIF Key&=ASC("A")-96 : About:
ENDIF
ENDP

Once we find the correct hot key, we go off to a procedure, do something,
and come back. Depending on what you want your program to do, Event
Core’s layout and this ‘jumping’ method should see you through most
exercises and tasks for many years to come.

Menu System
Chapter 4 looks at the menu system in more depth, and we will discuss
the menu commands and how to use them in Chapter 4.

3.4 Summary

This chapter introduced you to the Event Core, a framework that gives you
something to build your OPL programs into. You’ve been taken through
a huge number of OPL commands, what they do, and how they relate to
each other.

If you've got this far and have followed everything, then congratula-
tions. If you're still unsure, re-read this chapter and experiment. Once
you understand the principles in this chapter, the rest of the book will
make a lot more sense.

We finally looked at reading input through pen taps on the screen,
and direct presses of the keys. Chapter 4 will introduce you to the main
user elements of your operating system, the Menu bar and Dialog boxes.
This will allow you to quickly and efficiently get information and content
from the user, as well as present options and information to them.

4.1

4.1.1

4.1.2

4

A Conversion Program: Event Core
in Practice

In this chapter you will learn:

how to turn Event Core into a practical program
creating and using a Menu system
creating and using Dialog boxes

working with variables, doing calculations, and displaying the results.

First Steps with Event Core

Now that we have the Event Core framework, we can use this to create
our first real program — one that does more than doing nothing (although
Event Core does this so well)!

The Conversion Program

Our first program will be a conversion tool. It will take in measurements
of one type, and convert them into another type. We will use the
four conversions listed below, and show you how to add in your own
conversions to replace or augment these:

temperature: between degrees Celsius and degrees Fahrenheit
long distance: between miles and kilometers
short distance: between centimeters and inches

weight: between pounds and kilograms.

Starting the New Project

Take the Event Core source code and copy it into a new folder for your
project. If you're using the conventions of the book, then create a folder

62 A CONVERSION PROGRAM: EVENT CORE IN PRACTICE

called Convert, and in that folder create a folder called Source (for
your source code). Rename the Core.tpl to Convert.tpl (or Core.opl to
Convert.tpl if you are working directly on the Symbian OS phone).

Opening Convert.tpl you’ll want to change the first few constants to
reflect the new program:

CONST KAuthorEmail$="ewan@izzyhack.org"
CONST KAuthorName$="Ewan Spence"

CONST KAppNameS$="Convert"

CONST KAppVers="1.00"

I always like to translate the code now and see the new empty program
display its own name —it’s a bit like conception. Now we have to help
this program grow and reach its potential. And to do that, we need a plan.

4.1.3 Planning Convert

We've already defined in bullet points what we want the program to do
(the four conversion criteria listed above). We need to think what inputs
we're going to need, and what outputs we’ll use. What | do here is forget
about any limitations of OPL and sketch out on paper what the program
would be expected to do, no matter which language it was written in.

We would need a menu system that would let us choose the conversion
we want to perform. It would then display a box asking for the initial
information (how many miles, in this case let's say 500). The user
would then see the result in a second dialog box (which would be
804.67 kilometers).

Now let’s think how that could relate to Event Core. As you remember,
Event Core loops around waiting for something to happen. In Convert,
we’re going to wait until the menu is called. When this happens, we'll
display all the available conversions, and if one is selected we’ll move
onto the dialog box to get the relevant figures.

Once this dialog box is completed, we'll show the results in a second
dialog box, and then close the dialog box and the menu, returning to the
state where we wait for something to happen.

4.1.4 Recognizing and Acting on Menus in OPL Code

The commands to define a menu are as follows:

mINIT
mCARD "Convert","Option 1", %a,"Option 2", %b
MenuResult%=MENU (LastMenu%)

FIRST STEPS WITH EVENT CORE 63

Starting the Menu

mINIT is an initialization command, and lets the runtime know that
a menu is about to be created and called. It must always be the first
command when you call a menu.

A Single Pane Menu

The mCARD command defines a single menu card. Second and subsequent
menu cards can be defined by having additional mCARD commands.

The first part of the mCARD command is the name of the menu card.
This is the name that appears in the top menu bar of your program.
This name does not appear in a menu on Series 60. You then have as
many paired commands as you need to define your menu. The first text
string will be the text shown on the menu, and the second value is the
integer that will be returned by the MENU command. For obvious reasons,
this number must not be repeated in any of the mCARDs defined for this
instance of the menu system.

You could have any number here, but we're using a value of %a for
'Option 1'. This represents the value of the letter 'a' if pressed. If we were
to use %b, it would be 'b' and %B would be 'B' (so %b is not the same
as %B). %a actually means “the character code for the letter ‘a” which in
this case is 97”". These values mean that the relevant menu option will be
labeled with the relevant hot key on compatible devices (e.g. Series 80).
So %a would be shown with 'Ctrl+A" as the hot key, and %B would be
shown with 'Shift+Ctrl+B'.

These returned values will be used to jump to the correct procedure
when we act on the command received by the menu. More on this in
a minute.

Two or More Menu Panes

Let's say we want a second menu card, so our top menu bar reads
"Convert'" and "Edit". To add in a second card, we simply list it after the
first card, ensuring the name of the card is unique, and that we do not
repeat any of the hot key numbers:

mINIT

mCARD "Convert","Option 1", %a,"Option 2", %b
mCARD "Edit", "Option 3", %c,"Option 4", %d
MenuResult%=MENU (LastMenu%)

You can add in as many menu cards as you feel the need, but there will
come a point where your menu bar is too crowded to make any sense.

In all cases, LastMenu$% should be a GLOBAL variable into which the
last selected menu item will be stored. This ensures that (on compatible
devices) the menu can be brought up offering the last-selected item as
the initial choice for the user if required.

64 A CONVERSION PROGRAM: EVENT CORE IN PRACTICE

Reading the Result

Now we have defined all the elements of a menu, we will want to display
it on the screen and read the result. We do this with the MENU command

MenuResult%=MENU (LastMenu%)

This displays the menu system, and once we choose a menu option, it
will return the value that is listed after that menu option (the hot key
value).

Calling the Menu with a Key Press

Both Series 60 and Series 80 call up menus with a key press. Series 80
has a dedicated key (KKeyMenu32&), while Series 60 will generally use
the CBAT button (the left soft key). When the Event Core picks up this
value, it will call the menu procedure.

Calling the Menu with the Touchscreen

Hot Keys

In a similar way to the Series 60 and Series 80 devices, the UIQ menu
call is represented by a constant (in this case KMenuSilkScreens).
When the menu area is tapped, it acts as if it was a keypress sending
the KMenuSilkScreens value to the Event Core, which is handled
in exactly the same way as any other keypress calling for the menu to
be displayed.

We've stressed that we use hot key values in the menu system. We also
have a separate routine in Event Core that reads in hot keys from the
keyboard (if present).

As you know, Symbian OS applications can often achieve the same
result in many different ways. One example of this is choosing a menu
option. For example, the option to show an About box can be called by
a hot key combination on the keyboard or by selecting the menu item
itself. This is how we implement menu functions — by ensuring that the
hot keys in our menu system (even if the key combination is not shown
on our target device) can re-use the PROC ActionKey: procedure to
process the menu input.

Rather than read the value returned by MENU into an arbitrary variable,
we can re-use the Keye& variable:

Key&=MENU

FIRST STEPS WITH EVENT CORE 65

and modify PROC KeyboardDriver: by adding the following four
lines:

rem Call Menu

IF Key&=KKeyMenu32& OR Key&=KMenuSilkScreen&
DisplayMenu:

ENDIF

rem Check for Hot Keys here
IF Key&<=300

ActionKey:
ENDIF

So when we choose a menu option, through a pen interface, or using
the cursor keys and a select button, the value is passed back to PROC
ActionHotKey: as if a hot key was pressed (even if the device does not
have a keyboard). PROC ActionHotKey: can now jump to the correct
procedure, carry out the operation, and then return to the main loop of
the program.

4.1.5 Building a Menu System in OPL Code
Cascading Menus

As well as separate menu cards, there is another way to present informa-
tion in a menu. This is through the use of cascading menus. A cascade in
this respect is a menu option that, when selected, will pop up a second
list of menu options the user can choose from.

To use this feature, you firstly define the cascading menu by using
the mCASC command, in the same way as you would use the mCARD
system. The title (first string) in mCASC must be the same text as the menu
option that will call up the cascade. Now, as long as the cascade is
defined before the menu card it will appear in, you can place it in the
menu card by using the title of the cascade (as defined at the start of the
mCASC command) and appending a ">" symbol. For any menu item that
you don’t want to have a hot key you can specify a value less than or
equal to 32 instead. This always applies to mCASCs. Here, we're using
the value 16.

Here’s our menu code, now with a cascading menu option called
"More" that appears as the last entry in the first menu card:

mINIT

mCASC "More", "Option 5", %e,"Option 6", %f

mCARD "Convert","Option 1", %a,"Option 2", %b, "More>", 16
mCARD "Edit", "Option 3", %c,"Option 4", %d
MenuResult$%=MENU (LastMenué&)

66 A CONVERSION PROGRAM: EVENT CORE IN PRACTICE

1 L A .Y A AN F: 00
E File‘ ViewlFind Acc/Cat Invest Orders Currency Tools € Select
Account Balances Ctrl+B |
Category Balances Shift+Ctrl+B
Standing Orders Shift+Cirl+D
g‘ Splits/transfers for a transaction Ctrl+Y
All splits for this selection Ctrl+X
ﬂ . Zoomin Cancel
DateTrDEserption Refer Bald

Figure 4.1 ABP menu screen

Series 80 Menus

Series 80 is the closest to a PC or Mac menu on Symbian OS. You can
have as many menu cards as can be accommodated on the screen, and
while menu cascades can be used, there should be enough room on the
cards for all your menu options. See Figure 4.1.

Menus are called up by pressing the Menu key, and this will be
picked up in PROC KeyboardDriver: . Hot keys are shown, and they
should follow the Series 80 style guide. A link to this can be found on
www.symbian.com/books/rmed/rmed-info.html.

Series 60 Menus

UlQ Menus

Series 60 does not have specific menu keys, therefore you should hard
code the CBA1 button to call the menu. Generally, Series 60 applications
should use the left soft key (CBAT) to call a menu or do an action,
and the right soft key (CBA2) to go back/undo an operation or exit the
application. When you call a Series 60 menu, you will not see the title
of any menu card, and only the first menu card is shown —any others
are ignored. You are encouraged to use one level of cascading menus for
more options.

Hot key values are not shown on the menu but are still used in
the underlying OPL code as the return value for the selected menu
item — this means our ActionHotKey: procedure will still work. You
should always have "Exit" as the last option in a Series 60 menu.

UIQ menus can only be called by a pen tap on the screen. This is picked
up in the PROC PointerDriver: procedure, where the menu PROC is
called, and the resulting command is passed to PROC HotKey:.

UIQ applications generally have two menu cards, one named after the
application and one called 'Edit'. Note that the value of constants means
our menu card can use the KAppName$ string constant:

FIRST STEPS WITH EVENT CORE 67

mINIT

mCARD KAppName$, "Option 1", %a,"Option 2", %$b
mCARD "Edit", "Option 3", %c,"Option 4",%d
MenuResult%=MENU (LastMenu%)

If you program more than two menu cards, then you will see these
menu cards until there is no more room on the screen. Hot keys are
not shown, but as with Series 60 they’re still used in the underlying
OPL code.

UIQ applications do not normally have an exit command, instead
they respond to commands from the system to close down when more
memory is needed. These messages are handled by the System Command
Handler Procedure in our main event loop. The drop down ‘views’
list on the right-hand side of a UIQ menu bar is not implemented
in OPL.

4.1.6 Putting Together Menu Code for Each Ul

When programming your menus, you have to consider what Ul you will
be using. If you know the program will only run on one Symbian OS UlI,
then you only need to use the relevant menu system.

If the .opo file is designed to run on more than one platform, then you
need to define the menu system in such a way that the correct style is
used. In PROC Init: we set the variable Platform% to determine the
Ul we were using (1=Series 80, 2=Series 60 and 3=UIQ). This gives us
something like:

mINIT
IF Platform%=KPlatformSeries80%
mCASC "More", "Option 5", %e,"Option 6", %f
mCARD "Convert","Option 1", %a,"Option 2", %b, "More>", 16
mCARD "Edit","Option 3",%c,"Option 4",%d
ELSEIF Platform$=KPlatformSeries60%
mCARD KAppName$, "Option 1", %a,"Option 2",%b, "Option
",%c,"Option 4", %d
ELSE
mCARD KAppName$, "Option 1", %a,"Option 2", %b
mCARD "Edit", "Option 3", %c,"Option 4", %d
ENDIF
MenuResult$%$=MENU (LastMenu$%)

While we do not check for Platform%=KPlatformGeneric% (an
unrecognized Ul), it will default to using the UIQ menu (Platform%=
KPlatformUIQ%) of two menu cards. This is another example of
programming with an eye to what can go wrong (i.e. someone running
OPL on a device with a new screen size).

68 A CONVERSION PROGRAM: EVENT CORE IN PRACTICE

4.1.7 The Convert Menu

So, now we know how to set up a menu, let’s put one into action for our
conversion program.

Sketch it Out

As with all programming, we’ll sketch out what we want the program to
do, then put this into a structured format before going ahead and coding
that section.

There are some menu options that you should always consider
first — the defaults, as it were. These are:

e About

e Exit (although this option should not appear in UIQ applications)

e Preferences.
Add to this the four conversion operations we’ll want to show:

e temperature
e long distance
e short distance

e weight.

And we have the options we want to appear on our menu system.

Show the Code

Let’s look at the two variants of menu code. The first as if we are coding
for only one Ul — let’s look at the UIQ version:

mINIT

mCASC "Units", "Temperature", $t, "Long distance", %1, "Short
distance", %d, "Weight", $w

mCARD "Convert","Units>", 16

mCARD "Edit", "Preferences", %c, "About", %a

MenuResult%=MENU (LastMenu%)

While we’ve used the Menu Cascade option here when it isn’t truly
needed, there is scope on how to add in new options that will require
there to be this cascade in place.

If we were to do a ‘multiple UI" version, the code would look like this:

mINIT
IF Platform%=KPlatformSeries80%
rem Series 80

FIRST STEPS WITH EVENT CORE 69

mCARD "File", "Exit", %e

mCARD "Convert", "Temperature", %t,"Long distance", %1, "Short
distance", %d, "Weight", $w
mCARD "Tools", "Preferences", %$c, "About", %a

ELSEIF Platform$=KPlatformSeries60%
rem Series 60
mCASC "Units", "Temperature", $t, "Long distance", %1, "Short
distance", %d, "Weight", $w
mCARD "Convert","Units>",-16,"Preferences", %c, "About", %e
ELSE
rem UIQ Menu (also Default)
mCASC "Units", "Temperature", $t, "Long distance", %1, "Short
distance", %d, "Weight", $w
mCARD "Convert","Units>", 16
mCARD "Edit", "Preferences", %c, "About", %a
ENDIF
MenuResult%=MENU (LastMenu%)

4.1.8 Gathering and Presenting Information — Dialogs

We've now seen many ways to get input from a user through the use of
menus and key presses (mainly through hot keys). There are two more
ways to take input. Directly from a pen tap on the screen, and gathering
information from dialogs.

We'll look at pen taps in the next chapter, but for now let’s look at
dialog boxes.

Why have Dialogs?

Dialogs are designed to show information to the user, and gather infor-
mation from the user. They are a two-way process. In Convert, we'll use
a sequence of dialog boxes that will firstly get the number we want to
convert and secondly show the result.

One advantage of dialogs is that as a programmer you do not need to
worry about how the dialog box works. You don’t need to worry about
reading the keyboard, or processing any handwriting recognition. The
OPL Runtime will do this for you. This means that when constructing a
dialog box you can be confident that it will work on any of the Ul versions.

The OPL Runtime will also lay out the dialog box and give it a similar
look to other dialog boxes on that Ul. This makes dialog boxes a powerful
tool for cross-platform programming.

Showing Info — the About Dialog

Let’s start off with a simple dialog box — one to show a simple About
screen. See Figure 4.2. Here’s the OPL code:

dINIT "About "+KAppName$"

dTEXT "","by "+KAuthorName$,2 KgPrintBLeftAligned$%
dTEXT "","by "+KAuthorEmail$,2 KgPrintBLeftAligned$%
LOCK ON :DialogResult$%=DIALOG :LOCK OFF

70 A CONVERSION PROGRAM: EVENT CORE IN PRACTICE

Convert
By Ewan Spence
ewan@izzyhack. org

Figure 4.2 Convert about dialogue box

Constructing a Dialog

Creating and displaying your dialog is very similar to creating and
displaying a menu. You initialize the dialog, build up the elements, and
then show the dialog (while reading the result if appropriate). You then
add elements to your dialog box, one line of code at a time. These will
be added to the dialog box in the order that they appear in the code. In
the example above we have two text lines in our dialog box (all Dialog
elements are prefixed with a ‘d").

Finally, we display the dialog box with the DIALOG command. As
with the MENU command, DIALOG will return a value depending on
how we exit the dialog box (if you wanted you could use the DIALOG
command on its own without recording the value, but this is regarded as
bad programming practice).

Looking up Commands (dTEXT and DIALOG)

As with all OPL commands, understanding the syntax of a command will
give you more than enough knowledge to implement a command not
described in any of these chapters. Every OPL command is listed, with
syntax and a short description in the Appendix of this book, and that
should always be your first port of call for learning new commands.

FIRST STEPS WITH EVENT CORE 71

Dialog commands are probably the easiest to understand, so let’s

break down the dTEXT command with help from the Appendix. Here’s
the entry for ATEXT:

kkkkkhkkkkhkhhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkhkhkhkkhkkkkkkkkkkkkkkk*

dTEXT Defines text to be displayed in a dialog
Usage: dTEXT p$,bodys, t%
or dTEXT p$,bodys

Defines a line of text to be displayed in a dialog.

pS will be displayed on the left side of the line, and body$ on the
right side. If you only want to display a single string, use a null
string ("") for p$, and pass the desired string in body$. It will then
have the whole width of the dialog to itself. An error is raised if
bodys$ is a null string and the text line is not a separator (see below) .

bodys is normally displayed left aligned (although usually in the right
column) . You can override this by specifying t%:

Alignment of body$ is only supported when p$ is null, with the body
being left-aligned otherwise. In addition, you can add any or all of the
following three values to t%, for these effects:

Specify this item as a text separator. p$ and body$ must both be the
null string for this to take effect. The separator counts as an item in
the value returned by DIALOG.

These constants are supplied in Const.oph.

See also dEDIT, dINIT.

R

There are two ways we can type the dTEXT command in our source code,
dTEXT p$, body$ or ATEXT p$, body$, t%. Both ways are correct, and
neither is more correct than the other. From here we can see the three
elements that make up dTEXT, the prompt (p$) the body text (body$),
and the formatting (the value of t%).

Where you have a variable in a command explanation, this is for
guidance and reference only. You can enclose a string in quotation
marks, and this will work just as well as a reference to a variable. So
dTEXT "Name", "Symbian" is valid, as is:

Prompt$="Name"
Bodys$="Symbian"

dTEXT Prompts$,Body$

You are not limited to the variable names in the command explanation,
you can use whatever you need to use in your program.

72 A CONVERSION PROGRAM: EVENT CORE IN PRACTICE

The text notes that the formatting will default to left-aligned, but the
second way of writing the command (dTEXT p$, body$, t%) allows you
to specify your own formatting. The first option is where to align the text
(left, center, or right) and the second allows you to add other formatting
features with which you can experiment to get the correct look. There are
more details on the formatting options in the Appendix.

Values Returned from a Dialog

So now we've initialized our dialog, and created the text to display (using
dTEXT for each line of text), we can display it by using the DIALOG
command. Here’s the entry for Dialog from the command index:

EE]

DIALOG Presents a dialog
Usage: n%$=DIALOG

Presents the dialog prepared by dINIT and commands such as dTEXT and
dCHOICE. If you complete the dialog by pressing Enter, your settings are
stored in the variables specified in dLONG, dCHOICE, etc., although you
can prevent this with dBUTTONS. If you use dBUTTONS when preparing the
dialog, the keycode that ended the dialog is returned. Otherwise, DIALOG
returns the line number of the item that was current when Enter was
pressed. The top item (or the title line, if present) has line number 1.

If you cancel the dialog by pressing Esc, the variables are not changed
and KDlgCancel% is returned:

KDlgCancel% 0 Return value: dialog was cancelled

See also dINIT.

Kk khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkkkkhkhkhkhkkhkkkkkkkkkkkkkhkkkkk k%

What we have here is this entire section in three paragraphs — explaining
exactly how dialogs work, how we start them, construct them and finally
display (present) them on the screen. It also explains the value that the
DIALOG command will pass to the integer variable that is used within the
line of code that presents the DIALOG.

Getting Input from a Dialog (Prefs)

While a dialog can be used to present information, they are even more
useful when used to gather information. Whenever you need to have a
number, or a string of text, entered by a user, your first thought should be
to use a dialog box.

There are four main dialog commands used to get values from the user.
These are:

dCHOICE

dEDIT

FIRST STEPS WITH EVENT CORE 73

e dCHOICE
e JdEDIT

e dLONG

e dFLOAT

For a full description of these commands (and subsequent commands),
look in the Appendix for the command list.

dCHOICE provides you with a drop down list of text strings to choose
from. Let's imagine we want to present the user with a choice of two
items. For example, in our temperature conversion, we need to know if it
is Celsius to Fahrenheit, or vice versa.

So our two options in the drop down box in the dialog are "Celsius
to Fahrenheit" and "Fahrenheit to Celsius". We need to store the result
of this choice, and we use an integer number. If we choose the first
option then the integer will be 1, and if we choose the second it will be
2. Let’s store this value as TemperatureDirection%. Remember that
we’ll need to have initialized this variable with either LOCAL Temper-
atureDirection% or GLOBAL TemperatureDirection% at some
point previously in the code:

dINIT "Choose Conversion"

dCHOICE TemperatureDirection%, "Celsius to Fahrenheit,Fahrenheit to
Celsius"

LOCK ON :Return%=DIALOG :LOCK OFF

dEDIT allows the user to type in a string and have it stored in a string
variable when the dialog is successfully closed (i.e. the end user doesn’t
press Esc or a cancel button). dEDIT isn’t used in Convert, but it is one
of the more important dialog commands. Because the dialog commands
are built in to the runtime, you don’t need to worry about reading in
keystrokes, or T9 input, or character recognition: this will always be done
for you. dEDIT is the easiest way to get the user to enter text strings.

dFLOAT and dLONG

In a similar way to dEDIT, these commands allow you to type a number
in. dFLOAT is for very large numbers or numbers with decimal points (e.g.
LargeNumber, where there is no sign at the end of the variable name).
dLONG is used for long integers (e.g. MyNumber&). Both commands
require a lower and upper limit on the number, which you can specify,
and a prompt (which can simply be an empty string represented by two
quotation marks ", if you really want no prompt):

74 A CONVERSION PROGRAM: EVENT CORE IN PRACTICE

dFLOAT FloatPoint, Prompt$,MinValue,MaxValue
dLONG Long&, Prompt$,MinValue&, MaxValue&

Again, see the command list for a full explanation.

4.1.9 Putting it All Together

So, let’s take the Event Core, what we now know about menus and
dialogs, and put together the Convert program.

The user initiates a conversion dialog with either the menu entry, or
with a hot key press. For both cases, we need to add some lines into our
PROC ActionHotKey:

PROC ActionHotKey:

IF Key&=ASC("e")-96 : Exit:

ELSEIF Key&=ASC("k")-96 : SetPreferences:

ELSEIF Key&=ASC("A")-96 : About:

ELSEIF Key&=ASC("t")-96 : DialogTemperatureConvert:
ELSEIF Key&=ASC("1l")-96 : DialogDistanceConvert:
ELSEIF Key&=ASC("d")-96 : DialogShortDistanceConvert:
ELSEIF Key&=ASC("w")-96 : DialogWeightConvert:

ENDIF
ENDP

So once a conversion is chosen, we're passed over to a procedure to do
that conversion.

The Convert Variables

So we’ve worked out which conversion we’re going to do, and we've
been sent to the correct procedure to work out two values. The first is
what direction the conversion will go in (e.g. miles to kilometers, or
kilometers to miles). The second is the value we are converting (e.g. 500
miles). We'll use a dialog box to gather these, and then pass the two
variables to a procedure that will calculate the result, and then display it.

Now, we could set up two GLOBAL variables to hold both con-
versionDirection% and ConversionvValue%, but remember that
GLOBAL variables are always present and available to a program, using
up memory. There is no need to store these values after the calculation is
done, so we will create two LOCAL variables with the appropriate names,
and then pass these to the procedure that does all the calculations:

PROC DialogDistanceConvert:
LOCAL ConversionDirection$%, ConversionValue, ConversionReturn, Foo%
rem get the values from the user
dINIT
dCHOICE ConversionDirection%, "Direction","Miles to Km,Km to Miles"

FIRST STEPS WITH EVENT CORE 75

dFLOAT ConversionValue, “Value”,0,1000000
LOCK ON :Foo%=DIALOG :LOCK OFF
IF Foo%=0

RETURN
ENDIF
rem Go and do the calculation in another procedure
IF ConversionDirection%=1

ConversionReturn=DoConversion: (1.60934,ConversionValue)

ELSE
ConversionReturn=DoConversion: (0.62137,ConversionValue)
ENDIF
rem Display result here
ENDP

So once we've taken the values from the dialog, we pass them to a
procedure that will do the conversion of the values passed to it. ‘Passing’
variables is a great way to send a fixed number to another procedure
when you don’t want to use a global variable. To pass a variable, you
enclose it in brackets after calling a procedure. You can pass more than
one by separating them with a comma.

Here are some examples. Note we can pass string variables, actual
strings, and all types of number variable. Both of these are valid ways to
pass information to a procedure:

CallCustomer: (Name$, IDNumber$%, Numbers)
CallCustomer: ("Geoff",67,"+441234567890")

Doing the Maths

So at the other end, we need to make sure the procedure is expecting to
receive the information passed to it. We do this in a similar way to declar-
ing LOCAL variables, except we name the passed information by using
names in brackets after the procedure name. So our DoConversion:
procedure will look something like this:

PROC DoConversion: (Multiplier, FirstValue)

It's important to remember that these values are like temporary constants.
You cannot make any changes to the information contained in these
named values — they’re for reference only.

We'll need somewhere to store the result:

LOCAL StoreResult

Now we can do the maths itself:

StoreResult=Multiplier*FirstValue

76 A CONVERSION PROGRAM: EVENT CORE IN PRACTICE

Finally we must return the result to the procedure that called the DoCon-
version: routine, and end this procedure:

RETURN StoreResult
ENDP

Now, let’s look back at the line that called this procedure:

ConversionReturn=DoConversion: (1.60934,ConversionValue)

The RETURNed value of StoreResult is now going to be assigned to
ConversionReturn. You'll notice that we call the same DoConver-
sion: procedure for all the conversions; we just alter the values that we
pass to it. This is an example of code re-use — we don’t need to re-invent
the wheel and duplicate the actual calculation code for every conversion.

Showing the Results

We’ve now done the conversion, and we want to display the result. We'll
add this to the end of the PROC DialogDistanceConversion:. This
will be through another dialog, using dTEXT. You should be able to
follow this easily, but note we’re using some text in the prompt field to
help with the formatting:

dINIT "Conversion Complete"
IF ConversionDirection%=1
dTEXT "Miles:",FIXS$ (ConversionValue,3,10),2
dTEXT "Km:",FIXS$ (ConversionReturn,3,10),2
ELSE
dTEXT "Km:",FIXS (ConversionValue,3,10),2
dTEXT "Miles:",FIXS$ (ConversionReturn,3,10),2
ENDIF
dBUTTONS "OK",KdBUTTONEnter% OR KdBUTTONNoLabel% OR KdBUTTONPlainKey$%
LOCK ON :DIALOG :LOCK OFF

Here’s a good example of using an IF statement to help construct a dialog
box. The program flow will only reach one pair of ATEXT commands.
One of them shows miles to kilometers, the other shows the reverse.

FIX$ is a built-in command to turn a number value into a string so
it can be printed. The number is the first argument, then the number of
decimal places (here limited to three), and finally the maximum length of
the string (10 in this case). You should look this up, along with NUMS$ and
GENS$, which perform similar functions.

dBUTTONS does exactly what it says, it displays a button, with text
inside it, that can be pressed. When pressed it pretends to be a key,

SUMMARY 77

which is then used to process the DIALOG command. The command list
(as usual) has more details on any new command you will come across.

We're using the DIALOG command here without storing the returned
value in a variable — because we don’t need to know how (or why) the
user dismisses this particular dialog box.

Extending Convert

As described in this chapter, Convert isn’t quite complete. For example,
the procedures for the other three types of conversion (short distances,
weights and temperature) need to be written. There’s also scope to not
only add new conversions in the menu system, but to rework the dialog
boxes to perhaps display a choice of more than two units (e.g. miles,
kilometers, and furlongs).

What you should do now is complete Convert, and perhaps add in a
feature or two of your own to ensure that you understand how Convert
works, and how easy it is to (a) adapt it to your own needs and (b) create
a quick and easy program that will process some information that is
inputted by a user.

4.2 Summary

This chapter took what we learned previously about Event Core, and
showed how to build a program around it. The last two main ways to
interact with the user (dialogs and menus) were explained, and you saw
how you can use the Appendix command list to look up and learn about
new commands.

The ‘Convert’ program showed you how to use the menus and dialog
to create your first useful program, and left you scope to extend it yourself.

5

Using Graphics in an Othello Game

Convert was your first practical OPL program, but it was limited to
gathering information from the user and presenting new information
back to them using the dialog box system. Our next program will use a
graphical interface to gather and present information.

Gaming has advanced computing more than any other field. We're
going to program the game Othello (the classic board game). During this
you’ll learn about handling graphics, reading in pen taps, controlling a
cursor, and creating rules for a computer Othello player.

So, in the same way as we started Convert, let’s create a new directory
and a ‘Source’ folder, copy over the Event Core source code, and change
the filename and constants to reflect that this will be "Othello".

We need to talk about four areas of OPL programming to put every-
thing together:

e how OPL uses graphics
e representing an Othello board
e using pen taps or a cursor to read in the player’s move

e programming rules to make the computer’s move.

5.1 Using Graphics in OPL

Up until now, we've only used dialogs to show textual information.
Almost every computer nowadays has the ability to display graphics
(small pictures) on the screen. These can be used in games (e.g. to
represent a ghost in Pac Man), or to make a clean and easy to use ‘User
Interface’ with folders and files to open, just like you see on your Symbian
OS phone.

We briefly touched on graphics in Chapter 3 when discussing the
Event Core. As you may remember, the two main elements to graphical
work in OPL are windows and bitmaps.

5.1.1

80 USING GRAPHICS IN AN OTHELLO GAME

Windows

A window is where you will place your graphics. Consider it the sheet of
paper you're going to work with. One of the great things about windows
is that you can have more than one of them, so if your screen is split into
two views, you would see a window on the left and a window on the right.
You can also have hidden windows where you can draw, place graphics,
etc. before showing it to the user all at once — like a finished picture.

5.1.2 Bitmaps

Your bitmap is the graphic that you create in a graphics or drawing
package and include with your program. You can have lots of little
pictures, or one big one and copy over only the part you need onto the
paper (the window). The first thing you need to do is load the bitmap
into the memory of the phone. Just because it has been copied onto the
disk (e.g. when the user installed your program), that doesn’t mean the
program can use it directly. Instead, we call:

Id% (9)=gLOADBIT (Data$+MbmFiless$,0,3)

This will load the bitmap from the filename and path previously worked
out in the Event Core code. Although we've briefly touched on loading
bitmaps before, let’s recap. The two numbers at the end are very important,
and will change depending on the file. The second number (3) tells OPL
what bitmap to use from the MBM file. MBM files can hold multiple
bitmaps (hence .mbm). The first bitmap is bitmap 0, the second is bitmap
1, and so on.

The first number determines if you can alter or edit the bitmap within
the program. Unless you are writing some kind of art package, or need
to manipulate the .mbm for some reason, you would normally always
leave this as read only, which requires the value 0; to be able to edit the
bitmap, you would put a 1 here instead.

5.1.3 Closing Graphical Elements

Whenever you finish with a graphical window or bitmap, you should
close it. This makes sure that the memory it occupied is reclaimed by the
phone, and your program is more efficient. This is done simply with:

gCLOSE Id$% (Foo%)

where Foo% is the array index number required. A good idea at the end
of every program (in PROC Exit:) is to double check all the elements
are closed:

USING GRAPHICS IN OPL 81

Foo%=0
DO
Foo%=Foo%+1
IF Id%(Foo%) : TRAP gCLOSE Id% (Foo%)
ENDIF
UNTIL Foo%=KMaxWindows$

TRAP will, of course, make sure an error is not raised if the graphical
element isn’t in use.

5.1.4 Copying MBMs to Windows

Let's break down the command that allows you to copy bitmaps
to windows:

gUSE Id% (1)
gcopyY 1d%(9),100,0,40,50,3

The first command (gUSE) tells OPL what graphical window is to be
set as the current window. When you gCREATE a new window, it is
automatically made the current (or active) window, but it is always best
to use the gUSE command before any graphical operation to make sure
you'll be working with the window you really want to.

Next is the gCOPY command. The first number, 1d% (9) , tells OPL
which bitmap is to be copied into the current window. You now specify
an area of that bitmap to copy. The next two numbers (100,0) say where
the top left corner is (in pixels), measured from the top left corner of the
bitmap overall bitmap. The next two numbers (40,50) specify the width
and height of the portion of the bitmap which is to be copied, as in
Figure 5.1. The final number determines how the bitmap is to be copied.
Here's the different ways you can copy images. The checkerboard is

(0.0 (100,0)

Figure 5.1 Width and height portion of bitmap to be copied

82 USING GRAPHICS IN AN OTHELLO GAME

Mode & (Set) Mode 1 (Clear)
: EEEEN
+ — + + =: : : :
muman amann
Mode 2 (Tnvert) Mode 3 (Replace)
L]
+ = + =
L]
L

Figure 5.2 The four graphics modes

being copied in these examples onto the straight lines, and only the final
number is changed to show you what you can do (see Figure 5.2).

5.1.5 Creating MBMs

As with our previous programs, let’s do a sketch of what we want Othello
to look like (see Figure 5.3).

From the above, we’re now able to break it down into windows and
bitmaps. The window part is the easiest. The outside status bars, titles,
and CBA bars are something controlled by the runtime and so do not
need dedicated graphical windows. Our main display can be represented
by one window.

Looking at the bitmaps we’ll need, we find the following are needed
for Othello.

Figure 5.3 Othello empty

USING GRAPHICS IN OPL 83

The Playing Pieces

The Cursor

Cunningly, we can store all our balls in one strip, along with an initial
blank grid square in the first space, and a template (or ‘mask’) in the
second space that we can use to effectively punch out a hole in the
background so the individual balls can be copied over whilst preserving
what's already there. This technique of using masks will be discussed
later because it’s really important and something you can use in pretty
much any application you build.

Used to move around the grid so the user can see where the next piece
will be placed.

The Othello Board

A completely empty board is saved in our MBM file and copied to the
main window at the start of the game.

5.1.6 Creating the Bitmaps

Create your bitmaps in any graphics application (personally | use
Microsoft Windows Paint because it’s simple and gives you pixel perfect
control — but anything similar will do). If you download the example files
for this project from www.symbian.com/books/rmed/rmed-info.html the
original bitmaps can be found in the \Chapter5\Othello\Graphics)\
folder, along with a text file and a small PC .exe file called BMConv.

5.1.7 Using BMConv

BMConv (Bitmap File Convertor) is a command line tool that will take
a number of Microsoft Windows-format bitmap files, compile them into
a single MBM file, and compress the resultant file for use on Symbian
OS. While it is possible to input all the filenames of all your bitmaps on
one command line, and not make any spelling mistakes, and get all the
strings right first time, it is highly unlikely!

For this reason you can set up a small script in a text file that lists each
command to be passed to BMConv on a separate line. This is the txt file
in the \Graphics) folder for Othello.

A BMConv Script

Let’s have a look at the BMConv script for Othello’s three graphics:

Othello.mbm
/cl2Pieces.bmp
/cl2Cursor.bmp
/cl2Board.bmp

84 USING GRAPHICS IN AN OTHELLO GAME

The first line gives the filename of the MBM we want to make; in this
case, Othello.mbm. We then list each bitmap file to be included on a
separate line, and prefix the name of the bitmap file with the color depth
that we want that graphic to be stored with in the MBM file.

In all these examples, we’ve used 12-bit color; /c for color, and 12 for
12-bit. You can equally use /c8 for 8-bit color, and /c16 for 16-bit color.
You can also drop the ¢ so /8 corresponds to 8-bit grayscale (which is
useful for legacy devices, but not directly needed on current Symbian
OS phones). Given that BMConv isn’t great at scaling down the colors
in your bitmaps, you should ensure you save them from your graphics
package at the same depth as you specify in the BMConv script file.

Note that the bitmap files need to be in the same directory as
BMConv.exe for this method to work.

Sending the MBM to the Phone

On the final distribution of any application you would package the MBM
file into your SIS file, but while you are developing, this isn't always
practical. Assuming you have planned your application correctly, you
should only need to copy over the MBM file once.

You can get the file onto your phone using the same techniques as we
discussed in Chapter 2 (Section 2.4.4) for transferring the .opo file.

5.2 Designing Othello

If you’ve never played Othello then here is a quick recap of the rules.

The object is to end the game with more of your pieces on the board
than your opponent. Play starts with two pieces of each color in the
center of an 8 x 8 board (see Figure 5.4). The two players take turns to
capture their opponent’s pieces by ‘sandwiching’ one or more opposing
pieces in a straight line. When a piece is played at the end of a line of
pieces that starts with another of his pieces, the pieces that have been
‘sandwiched’ are captured and change color to that player’s color.

When there are no more moves possible for either player, or the board
has no more empty squares, then the game is over and the player with
the most of his own pieces on the board is the winner.

These rules are going to be incredibly useful in planning our computer
version of Othello. This is a very structured game, and while it is easy to
represent in a program, it still provides a very good challenge for the user.

At the start of any program, you need to sketch out how things are
going to work and how things are done. That’s a lot of things to cover.
We've identified four areas, one of which (graphics) we’ve just looked at.
Let’s now look at the next three areas (representing the board, reading the
player’s move, making the computer’s move), and then put it all together

REPRESENTING THE BOARD 85

o]
[]}

Figure 5.4 Othello board at start

to make our game. (As an aside, this is just a real-world example of
breaking a large problem into smaller and smaller steps. Once you get
to the smallest steps possible, it's those steps you use to write your OPL
source code.)

5.3 Representing the Board
5.3.1 The Board as an Array

The Othello board is an 8 x 8 structure, so 64 squares in total. The easiest
way to represent this is with an array called Board, with 64 elements. So
right at the top of the skeleton code from Event Core, we'll add:

GLOBAL Board% (64)

Any newly declared variable is initially set to a zero value, so if we were
to check any element of Board% () now, we would find it had a value
of 0. Therefore, if a ‘square’ of the Othello board has no pieces on it, the
value of the corresponding space in the array will be 0.

There are two other types of pieces on an Othello board, a white piece
and a black piece. In our version, white will be the player and black will
be the computer. These will be represented in the Board% () array by
the number 1 (for the player) and 2 (for the computer).

86 USING GRAPHICS IN AN OTHELLO GAME

5.3.2 Using Coordinates

OPL does not have two-dimensional arrays like other BASIC languages, so
the board array is a strip of 64 ‘squares’, while the Othello board is actually
eight strips of eight. Now while we could just do a lot of hard maths all
over the place to work out what square is what array box, we’ll add two
procedures to our code to simplify our array-based approach to the board:

PROC BoardIn: (Sx%,Sy%,Value%)
rem *** Place Value$% at (Sx,Sy) on Board (0,0 being top left)
Board% ((KBoardWidth%*Sy%) + (Sx%+1)) =Value%

ENDP

PROC BoardOut%: (Sx%,Sy%)
LOCAL Foo%
ONERR Marker: :
rem *** What is at (sx,sy) in the grid? RETURN this value.
Foo%=Board$% ((KBoardWidth*Sy%) + (Sx%+1))
ONERR OFF
RETURN Foo%
Marker: :
ONERR OFF
RETURN 0
ENDP

When you call BoardIn:, you pass three numbers. The coordinates of
a square on the board (and as noted in the rem comment, the top left
square of the board is (0,0)) and the value you want to place in the grid
position. For example, if you wanted to place a player piece (a value of
1) in the bottom right square, you would call the procedure with:

BoardIn: (7,7,1)

Discovering what piece is at a certain square is just as simple. You call
BoardOut%: with the correct coordinate and the value of that square is
RETURNed. So after the previous example:

WhatIsHere%=BoardOut%: (7,7)

would RETURN the value of 1 in to WhatIsHere%.

Also note that rather than explicitly state the dimensions of the board,
we use a constant to say it is eight squares wide. This is paired with
another constant (can you guess) in the opening lines of the code:

CONST KBoardWidth%=8
CONST KBoardHeight%=8

The code for the board reading is now transportable, and can be dropped
into any program you care to use. For example, a Go board can be 9, 13

READING THE PLAYER’S MOVE 87

or 17 squares wide. To represent this, all you do is change the constants.
This is an example of how code can be re-used between more than one
program, and a further benefit of using consistent programming style and
variable names.

5.3.3 Setting up Variables and Arrays

The other main value we need to keep track of in the game is the score.
In Othello, the score is simply the number of pieces that each player has
on the board. These can be stored in two variables, which again should

be globally declared:

GLOBAL PlayerScore%, ComputerScore%

There is also a constant called KGridsize$. This is the size (in pixels)
of one square on the board. In more advanced programs, this could be
a variable and one would calculate (when the app is initialized) the best
size and create all the graphics at the time of starting the game. In Othello,
we're not going down this road because it's needlessly complex for our
example; we're going to use a fixed size on the grid size of 17 pixels,
giving a grid of 136 pixels square, which comfortably fits on the screen
of all Symbian OS phones:

CONST KGridSize%=17
CONST KGridWidth%=8
CONST KgridHeight%=8

Scaling the KGridSize% could be a good exercise once you have the
basic Othello project working.

Finally, KGridwidth% and KGridHeight$% say how many squares
are in the grid on each side. Othello is played on an 8x8 grid.

5.4 Reading the Player’s Move

As with any program, how you get information from the user is sometimes
just as important as what you do with it. In Othello there are two main
areas of interaction. The first will be a simple menu system that allows you
to quit the current game and display the current scores. We've covered
menus in the previous chapter, so check you can understand what’s going
on in the source code, as we won’t go over it again here.

The second will be how to make a move. This is dependent on the
target phone. The easiest way to make a move would be on a touchscreen,
but devices using Series 60 will need to use a ‘cursor and click” control.

88 USING GRAPHICS IN AN OTHELLO GAME

5.4.1 Reading the (X,Y) from a Pen Tap

With a touch-sensitive screen, the easiest way to make a move is to tap
the square that you want to place your piece on. Remember that we have
a separate graphical window for just the board (where the top left (0,0)
coordinate represents the very top left of the physical board). When a pen
tap happens, the code flows from the main Event Loop procedure into
the PointerDriver: procedure.

PROC PointerDriver:
IF Ev&(4)=0 : rem Pen has been removed from the screen
IF Ev&(3)=Id%(2) : rem Was it in the window with the
board?
FooX%=INT (Ev&(6) /GridSize%)
FooY%=INT (Ev&(7) /GridSize%)
FooValue%=BoardOut : (FooX%, FooY%)
MakePlayerMove: (FooX%, FooY%, 1)
ENDIF
ENDIF
ENDP

We're using more of the values that are returned in the Ev& array (a full
list of what is in each array element is in the appendix of this book. You
should familiarize yourself with the GETEVENT32 entry, which carries
the full array explanation).

What we read into FooX% and FooY% is the actual pixel coordinates in
the window the pen was tapped, not the actual coordinates of the entire
screen. We then work out the coordinates of the grid square (rather than
the pixels). Using the INT (integer) function means we will ignore the
fraction of the answer, and take the whole number result only — which
will be the square.

5.4.2 Using a Cursor with Keyboard Input
What is a Cursor?

You're probably familiar with the concept of a cursor. It’s a highlighted
area on a computer screen that shows where the next piece of information
will be placed. In a word processing application, the vertical bar line is
the cursor.

On the Othello board, we'll want to have a way of highlighting the
square where the next piece will be placed. This is what the cursor will
be for. To move the cursor, we'll use the joystick on the Series 60 devices
(which has a push in function we’ll use to let the player make the actual
move). The Communicators also have a cursor pad and will use this same
method, as the cursor pad on those devices sends the same keypress
value as the Series 60 joysticks.

READING THE PLAYER’S MOVE 89

The cursor position will be stored as two coordinates, and these will be
GLOBAL variables. As well as the current cursor position, we’ll also need
to know the previous cursor position. Why? Imagine the cursor drawn on
the board. When we move to a new square, then we will draw the cursor
on the new square. But what happens to the last drawn cursor on the
previous square? It’s still there. This is why we need to know the location
of the previous cursor, so we can wipe it out. So we’ll define:

GLOBAL CursorX%,CursorY¥%,01dX%,01dY%

Reading the Cursor Keys

The main work in reading the keys for moving the cursor is done inside
the PROC KeyBoardDriver: . This is what we have from Event Core:

Mod%=Ev&(4) AND 255
IF Mod% AND 2 : Shift%=1 : ELSE : Shift%=0 : ENDIF
IF Mod% AND 4 : Control%=1 : ELSE : Control%=0 : ENDIF

rem Check for Direct keys here
IF Shift% : Key&=Key&-32 : ENDIF

rem Check for HotKeys here
IF Key&<=300

ActionHotKey:
ENDIF

We're going to add the cursor keys into the "Direct Keys" section. But
before we do that, there’s one other thing to consider. What do we do
when the cursor is at the edge of the board, and the player decides to try
and move the cursor off the board?

Before changing the values of Cursorx% and CursorY%, we'll use
an IF statement to check if this will push the value to less than zero (off
the top or left-hand edge) or if it will be larger than the width or height
of the board (remember we listed the width and height of the board as
constants — here’s another place we use those values).

We'll also need to check for the ‘fire’ key being pressed to place a
piece on the board. On Series 60 devices this is represented only by
the CBA4 value, so we’'ll use the constant that holds the key value for
CBA4 in the code. To make things a bit more like the built-in applications
(always a good thing), we'll ensure that pressing the Enter key (commonly
found on Communicators) will also place a piece:

rem Check for Direct keys here

IF Shift% : Key&=Key&-32 : ENDIF

IF Key&=KKeyCBA4& OR Key&=KKeySpace% OR Key&=KKeyEnter%
MakePlayerMove: (CursorX%, Cursor¥Y%, 1)

90 USING GRAPHICS IN AN OTHELLO GAME

ELSEIF Key&=KKeyLeftArrow%
CursorX%$=CursorXx%-1
IF CursorX%<0
CursorX%=0
ELSE
DrawCursor:
01dX%=CursorX%
ENDIF
ELSEIF Key&=KKeyRightArrow$
CursorX%$=CursorX%+1
IF CursorX%>KBoardWidth%
CursorX%$=KBoardWidth%
ELSE
DrawCursor:
01ldX%=CursorX%
ENDIF
ELSEIF Key&=KKeyUpArrow$%
CursorY%=Cursor¥%-1
IF CursorY¥Y%<0
CursorY%=0
ELSE
DrawCursor:
01dY%=CursorY%
ENDIF
ELSEIF Key&=KKeyDownArrow%
CursorY%$=Cursor¥%+1
IF CursorY%>KBoardHeight%
CursorY%$=KBoardHeight$%
ELSE
DrawCursor:
01dY%=CursorY%
ENDIF

These lines all follow the same principle of Event Core — when an event
happens, you do something. Here it is either moving the cursor in one of
four directions, or making a move. Once an event has happened, either
we return to the loop and wait for another event, or the conditions for
the end game have been met (either all the squares are full, or the player
has resigned).

Is the Move Legal?

But how do we know if a move has been made successfully? Well, this
comes down to thinking what you do when you make a move yourself. A
legal Othello move is when you capture some of your opponent’s pieces,
by moving to a square not already occupied. This means that you need
to sandwich at least one of your opponent’s pieces between yours.

Let’s work through this procedure:

PROC MakePlayerMove%: (X%,Y%,User$%)
LOCAL DeltaX%,Delta¥%

READING THE PLAYER’S MOVE 91

The first step, though, is to check that the move is into an empty square
(one where the Board$ () value of the square equals zero). A simple call
to the Boardout$%: procedure can do this:

IF BoardOut%: (X%,Y%)<>0
RETURN 0
ENDIF

A simple test, and if the value returned is non-zero, then we’ll leave this
procedure through the RETURN system, and pass back the value of 0. This
isn’t used in the player checks, but will be used in the computer move
routines (of which more later).

When we place a piece, it must have at least one opposition piece
next to it. If you follow that line up, then it needs to come across another
player’s piece before reaching an empty square or the end of the board.
The passed value User% lets us know whether we are testing for the
player (User%=1) or the computer (User%=2):

LOCAL DeltaX%,DeltaY¥Y%, FooX%, FooY%, Opponent%, Captured%

IF User%=1
Opponent%=2
ELSE
Opponent %=1
ENDIF
DeltaX%=-2
DO
DeltaX%=DeltaX%+1
Delta¥%=-2
DO
DeltaY%=Delta¥Y%+1
IF DeltaX%<>0 AND Delta¥Y%<>0
rem Check Surrounding piece for opponent
IF BoardOut%: (X%+DeltaX%,Y%+Delta¥%)=Opponent$%

DO
rem Found an opponent’s piece, let’s carry on up
the line
FooX%=X%+ (2*DeltaX%) : FooY%=Y%+ (2*DeltaY¥Y%)

IF BoardOut$%: (FooX%, FooY%)=Opponent%
FooX%=FooX%+DeltaX% : FooY%=FooY%+DeltaY%
ELSEIF BoardOut%: (FooX%,FooY%)=User%
rem reverse direction and turn pieces over
DO
BoardIn: (FooX%,FooY%,User%)
Captured%=Captured%+1
FooX%=FooX%-DeltaX% :
FooY%$=FooY%-DeltaY%
UNTIL (FooX%=X% AND FooY%=Y%)
ELSEIF BoardOut%: (FooX%,FooY%) =0
FooX%=-2 : REM Quick way to fulfill the UNTIL
conditions
ENDIF

92 USING GRAPHICS IN AN OTHELLO GAME

UNTIL (FooX%=X% AND FooY%=Y%) OR FooX%=-1 OR
FooX%=KGridWidth% OR FooY%=-1 OR
FooY%$=KGridHeight%
ENDIF
ENDIF
UNTIL DeltaY¥Y%=1
UNTIL DeltaX%=1
RETURN Captured%
ENDP

We've two or three things going on in here. The principle is that we will
check the eight possible directions that a line could result from. We use
DeltaX% and DeltaY% for this — they show the change that needs to be
applied to the coordinates of the nominated square (the delta) to check
the direction. See Figure 5.5.

If we come across an opponent’s piece, we'll follow that direction
(using the delta values that represent the direction) down that line until
we come across one of four things:

e another of our opponent’s pieces — in which case we’ll loop around
again to check the next piece in line

e ablank square — in which case this line is not a sandwich, and doesn’t
count as part of a legal move. We stop checking down this line

e the edge of the board — which naturally stops us following this line

e we find a player’s piece (a sandwich is made) —so this is a legal
move, and we need to turn some pieces over. We begin a new
loop, starting with this far end of the sandwich, working back to
where the player made the move (the original X%,Y% coordinates),
changing the value of all the pieces on the way in Board$% () by using
BoardIn: (FooX%, FooY%,User%) .

i

=

=
£, ¥ 5h | X1, 71
X1, Y+0 || X+1, ¥+0
21,741 T | X+, A

==

=

+

*

Figure 5.5 Delta values

READING THE PLAYER’S MOVE 93

At the end of this, we return the number of captured pieces. If it was
an illegal move, then no pieces were captured and we RETURN 0.
The routine calling MakePlayerMove%: will then know if it has to
wait for another move to be made, or if the computer can make its
move now.

Showing the Move

Now we’ve completed the move, and turned over any pieces that we've
captured, we need to show this on the screen (remember, all we've
been doing so far is changing values in the array). We'll set up two
new procedures, one similar to BoardIn: that will display the piece
in a selected square, and a second to step through all the squares
in order:

PROC ShowBoard:
LOCAL FooX$%,FooY%, FooPiece%
PlayerScore%=0 : ComputerScore%=0

FooX%=-1

DO
FooX%$=FooX%+1
FooY%=-1
DO

FooY%=FooY%+1
FooPiece%=BoardOut%: (FooX%, FooY%)
ShowPiece: (FooX%, FooY%, FooPiece$%)
IF FooPiece%=1
PlayerScore%=PlayerScore%+1
ELSEIF FooPiece%=2
ComputerScore$=ComputerScore%+1
ENDIF
UNTIL FooY%$=KGridHeight%-1
UNTIL FooX%=KGridwidth%-1
ShowAllScores:
ENDP

PROC ShowPiece: (X%,Y%, Type%)

gUSE KBoardWindow$%

gAT X%$*KGridSize%, Y$*KGridSize%

gCOPY Id% (KPlayingPieces%,0,0,KGridSize%,KGridSize%, 3)
ENDP

Yet again we're using the two nested DO. . . UNTIL loops to allow us to
check through each square on the board. We use KGridwidth% and
KGridHeight$, the constants we defined for the size of the board. Note
that because we start at 0 and not 1, we need to subtract one to get 8
squares (square 0 to square 7). As we step through, we look up what piece
is in that square (through the array), and then call the ShowPiece%:

94 USING GRAPHICS IN AN OTHELLO GAME

routine. This will cause a ripple effect through the whole board, ending
up with all the new pieces on display.

Cleaning up the Board

One advantage in a computer version of a board game such as Othello
is that computers are great at keeping score. Inside the ShowBoard:
procedure is an IF...ELSEIF...ENDIF statement, which counts the
number of pieces the player and the computer have. These are GLOBAL
variables, and when we call PROC ShowAllScores: at the end of this
procedure, these will be displayed on the screen.

5.5 The Computer’s Move — Doing A.l.
5.5.1 Creating Rules of Thumb

Making a computer play a good game is one of the most interesting
challenges to a programmer. At each move, Othello offers a small number
of choices. What we need to give the computer is a way to determine
which choice is the best choice.

As with any programming task, you need to break down the task, and
think about how you decide on your move. Because the aim of the game
is to have as many pieces as possible at the end of the game, one valid
strategy is to capture the most number of pieces on every move, and it is
this ‘rule’ that we will use to make the computer’s move.

5.5.2 A Simple Rule

So how do we do this? Well, how do you do it when you're playing? You
look at every square you can make a move to and then count the number
of pieces that you would capture. Then you make the move that captures
the most. This is what we will program into the computer.

The Main Loop

PROC MakeComputerMoves :
LOCAL RecordMove%, WhichSquare%, BestMove$%, BestMoveSquare$%
rem Go through all the squares...
WhichSquare%=0
DO
WhichSquare%=WhichSquare%+1
RecordMove%=CheckComputerMove%: (WhichSquare%)
IF RecordMove%>BestMove%
BestMove%=RecordMove%
BestMoveSquare%=WhichSquare%
ENDIF

THE COMPUTER’S MOVE - DOING A.l. 95

UNTIL WhichSquare%=KGridWidth%*KGridHeight$%

rem if there is no move, then pass.

IF BestMove%<>0
PlayComputerMove: (BestMoveSquare%)
RETURN 1

ELSE
dINIT "Pass"
dTEXT "","I have no move"
dBUTTONS "OK",KABUTTONEnter%
LOCK ON
DIALOG
LOCK OFF
RETURN 0

ENDIF

ENDP

Checking Each Square’s Value

So here we go through the 64 squares on the board, and each time through
we call another procedure CheckComputerMove% :, which returns the
number of pieces that would be captured if the move was made. This is
similar to the MakePlayerMove : procedure:

PROC CheckComputerMove: (Target%)
LOCAL DeltaX%,Delta¥%, FooX%, FooY%,X%, Y%, Captured%
Y%$=INT ((Target%-1) /KGridwidth%)
X%=(Target%-1) - (Y$*KGridWidth%)
IF BoardOut: (X%,Y%)<>0

RETURN 0
ENDIF
DeltaX%=-2

DO
DeltaX%=DeltaX%+1
Delta¥%=-2
DO
DeltaY%=Delta¥Y%+1
IF DeltaX%<>0 AND DeltaY¥Y%<>0
rem Check Surrounding piece for opponent
IF TBoardOut: (X%+DeltaX$%,Y%+Delta¥Y%)=1

DO
rem Found an player’s piece, let’s carry on up the
line
FooX%=X%+ (2*DeltaX%) : FooY%=Y%+ (2*DeltaY¥Y%)

IF BoardOut: (FooX%,FooY%) =1
FooX%=FooX%+DeltaX% : FooY%=FooY%+DeltaY¥%
ELSEIF BoardOut: (FooX$%,FooY%) =2
rem reverse direction - no need to turn
pieces over
DO
Captured%=Captured%+1
FooX%=FooX%-DeltaX%
FooY%$=FooY%-DeltaY%
UNTIL (FooX%=X% AND FooY%=Y%)
ELSEIF BoardOut: (FooX%, FooY$%) =0

96 USING GRAPHICS IN AN OTHELLO GAME

FooX%=-2 : rem Quick way to fulfill the UNTIL
conditions
ENDIF
UNTIL (FooX%=X% AND FooY%=Y%) OR FooX%=-1 OR
FooX%=KGridWidth% OR FooY%=-1 OR
FooY%$=KGridHeight%
ENDIF
ENDIF
UNTIL DeltaY¥Y%=1
UNTIL DeltaX%=1
RETURN Captured%
ENDP

There are only a few changes in this, compared to the one in the
MakePlayerMove: . It's worth pointing out that while we still continue
to use the main Board% () array, we don’t actually change anything in
the array (this is only done in our code through BoardIn:, which isn’t
called anywhere in the above code).

The first two lines calculate the (X%,Y%) coordinates of the square from
the position in the array, and we then do a check to see if the square
is occupied. If it is, there’s no need to go through the long process of
checking around the square as it's going to be impossible to play a piece
there, hence the RETURN 0 as soon as possible.

We then have an eerily similar procedure for PlayComputerMove:,
but can dispense with the two DO. . .UNTIL loops as we know which
square we'll be playing in (BestMoveSquare%).

And that’s how the computer moves.

5.5.3 Mini-Max: Advanced A.l.

While we’re not going to go into depth on actually programming the
Mini-Max method of doing A.l., we'll talk about the principles here and
leave the actual coding of the system as a project for you.

Mini-Max is named after the principle of minimizing your opponent’s
chances, while maximizing your own. We’ve actually already done half
of this operation in our simple rule, where the computer always plays the
best move available, maximizing its opportunity. What the computer fails
to do here is to take into account what the board will look like for the
player after their move. If you are playing Othello, you would visualize
the board and make sure that your opponent doesn’t have a ‘killer’ move
available. You would make sure this isnt available — you’re minimizing
his opportunities.

So, ideally, once the computer has found a ‘max’ move, it needs
to complete this move in a separate temporary array, and then check
every resulting move available to the player after that. The best move

PUTTING IT TOGETHER — THE MAIN GAME LOOP 97

available to the player should be stored. We would do this for every
computer move.

At the end of this, we’ll have a list of moves and be able to see which
one gives the best results for the computer. In Othello’s case, we would
see which computer move (coupled with the best player move) gives the
computer the greatest advantage in the score.

Even looking two moves ahead (the computer and the player) you can
see that the memory requirements to store all the information are much
greater than for just looking at the best computer move. There is also
a trade-off in speed, as we have many, many more states of the board
to consider.

5.6 Putting it Together — the Main Game Loop

5.6.1

5.6.2

Initializing Everything

We've got a lot of bits of code now, all ready to be glued together. Before
we do that, we need to set up a few things in our PROC InitApp:.

The main one here is to clear the board of pieces, and to reset the
scores. While these will be at zero the first time the game is run, they
need to be reset when a new game is started from within the application:

PROC InitApp:
Foo%=0
DO
Foo%=Foo%+1
Board$% (Foo%) =0
UNTIL Foo%=KGridWidth%*KGridHeight$%
PlayerScore%=0
ComputerScore%=0
CursorX%=0 : CursorY¥%=0
01dX%=KGridwWwidth%+1, 0ldY%=KGridHeight%+1
ENDP

The initial cursor values are inside the visible window, but we don’t call
the procedure that displays the cursor until after a cursor key has been
pressed. This is so that if the pen tap method is used by the player, the
cursor is never displayed — but when any cursor key is pressed, up pops
the cursor as expected. The old position is set outside the grid so it will
not interfere with the drawing process.

Showing the Cursor

This is similar to ShowPiece:, but overlays the cursor on the square
passed to this routine. Note the change in the graphics mode here, it

98 USING GRAPHICS IN AN OTHELLO GAME

overwrites, not replaces, thus any playing piece under the cursor will still
be seen:

PROC ShowCursor: (X%,Y%)

gUSE KBoardWindow$

gAT X%$*KGridSize%, Y$*KGridSize%

gCOPY Id% (KCursorPiece%,0,0,KGridSize%,KGridSize%,2)
ENDP

5.6.3 The Game Loop

Previously in Event Core, we simply looped around the call to read events
in the main procedure. Here it is in plain English:

PROC Main:
GLOBAL rem We'll fill these in as we plan the program
LOCAL rem We'll fill these in as we plan the program
Init:
InitApp:
DO
rem Get a key press (an event)
rem Act on this key press
UNTIL rem we need to exit the program
Exit:
ENDP

For Othello, we need to loop around the player move, and then the
computer move, until all the squares are full:

PROC Main:
GLOBAL rem We'll fill these in as we plan the program
LOCAL rem We'll fill these in as we plan the program
Init:
InitApp:
DO
rem Player Move
DO
rem Get a key press (an event)
rem Act on this key press
UNTIL a move is made
rem Computer Move
rem Apply the A.l. rules
rem make the move
UNTIL all 64 squares are filled
Show who the winner is

SUMMARY 99

Exit:
ENDP

This now needs to be translated into full OPL code, and all the elements
we’ve discussed in this chapter need to be added in as well. You should
now be able to do this with little assistance, although the full source code
as always is on the supporting website www.symbian.com/books/rmed/
rmed-info.html

5.7 Summary
This chapter showed you how to use graphics in an OPL program, namely:

e creating the graphics on your PC

e using bmconv.exe to create Symbian mbm graphics files from win-
dows bitmaps

e loading mbms into memory to use them in a program

e copying mbms in memory to a visible window.

We then started again with Event Core, and this time created a graphically
rich game of Othello. We looked at reading pen taps on the screen, or
reading in key presses to move a cursor. This way the program could be
used on any platform.

We looked at representing a board and the pieces on the board in an
array, how to read and act on this array, and how to display it. Using
Mini-Max, you learned how to make a basic computer A.l. player and
how to apply this to other games.

Finally, we showed you how to put this all together to make your
Othello game.

6

Databases and a Notepad Program

For our final OPL project in this book, we will bring together elements
from our previous three projects by building a Notepad program. Although
a similar application may already be present in your phone, programming
your own will allow you to use all your new OPL skills, from working
through an interface, moving a cursor around information where there is
more than one screen, accessing variables, presenting information, and
making your own program look and feel like a built-in one.

It will also allow us to look in depth at using databases under OPL.
Databases are powerful little creatures that can be used to store huge
amounts of information that never change (like an encyclopedia), or
rapidly changing information (like your diary/calendar). Learning to
manipulate databases in OPL is an important step in creating genuinely
useful programs.

6.1 What is a Database?

A database, like everything else on a computer, is a collection of 1s and
0s; don’t forget that. The power in a database is how OPL can read and
manipulate the information that is stored inside it.

One way of visualizing a database is to think of a pile of index cards
representing the database, just as we did in Chapter 3 with the Event
Core’s INI file. Each index card has on it the same information in the
margin. These are the headings. If you were creating a database of names
and telephone numbers, then the two headings may be NAME and TEL.
Note that the headings must be the same on every index card in the
pile. On each card is written the name of one person, and one telephone
number. In a database, this is called an entry, or a record.

How big is a database? As big as it needs to be is the short answer.
In our analogy above, we can use as many index cards as we like, as
long as the first one is always regarded as number one, and the rest are
numbered in sequential order.

While we don’t have the physical card holder in the file on our com-
puter, we still have the database that holds all the records of information,

102 DATABASES AND A NOTEPAD PROGRAM

tied to their headings. Databases on a computer work in a very similar
way to their real-life counterparts. (Note: You should know what we have
here is a ‘flat file’ database, i.e. the structure is consistent. There are more
complex databases called relational databases, but these are beyond the
scope of this book.)

6.2 Our First OPL Database
6.2.1 The INI File

We've already created our first database, and many of the commands
we’re going to use have been seen already. Inside Event Core are all the
relevant procedures to create, open, and save a simple database. So what
are the differences between the INI database and the one we’re going to
create and use in this program? The main difference is that the Notepad
database will have more than one record, so we’ll need to be aware
where we are in the database at any point in time; more on that in a
moment. For now, let’s have a look at the procedures and methods we’re
going to use on the Notepad database.

6.2.2 Construction

The headings in any program database need to be decided right at the
start of the process — once we have CREATEd the database for the first
time, we will not be able to change the headings. For our Notepad,
this isn’t too complicated, but you need to be aware of this issue when
creating your own databases.

A Notepad database will have two fields. Heading (which will be
displayed on the main screen for the user to choose) and Text, which is
what will hold the actual information.

6.2.3 Creating or Opening our Notepad Database

In a similar way to the LoadINI: procedure, here’s how we open our
Notepad database:

PROC OpenFile: (Filename$)
IF NOT EXIST (FileNames$)
CreateFile: (FileNames)
RETURN
ENDIF
CloseFile:
OPEN FileNames$,B,Heading$, Text$
FileOpen%=1
rem Set Other Stuff
TrueCursor%=1 : TopCursor%=1
ENDP

OUR FIRST OPL DATABASE 103

PROC CloseFile:
IF FileOpen%=0 : RETURN : ENDIF
TRAP USE B
TRAP CLOSE
FileOpen%=0
ENDP

This routine will commonly be called from inside the InitApp: proce-
dure. In Notepad, we will only ever use one database, but it is possible
to extend the program at a later date to be able to use more than one file,
and switch between them as required.

Firstly in the code, we check to see if the file actually exists. If it
does not (perhaps because this is the first time the program has been
run), we jump to the CreateFile: procedure (which we’ll come to in
a moment).

Let’s assume it does exist. Unlike the INI file, we have to keep our
Notepad database open throughout the time the program is running, as it
will need to be constantly read and edited. Therefore we have a variable
(FileOpens%) to track this, where O=closed and 1=open. We open the
database, and assign it the reference letter "B" (remember that when we
use the INI file, we use the letter "A"). After that we note what names
we are going to use to look up the two fields, using as descriptive (to us)
names as possible. We also set our two cursors to 1. We'll discuss why
we have two cursors once we have all our database procedures in place.

PROC CloseFile: is simply a procedure to close the open database
file referenced as B. Not strictly needed when we are hard-coding a
single database to the program, but it will give you ideas for creating
an app that can have more than one file. We have a check to ensure
that the database is really closed (if it is, FileOpen% will equal zero,
and we can safely return from this procedure). We then ensure we are
using the correct database reference (TRAP USE B) and then CLOSE the
file, TRAPping any error if there is one. Finally we set the FileOpen%
variable to zero:

PROC CreateFile: (FileNames)
CloseFile:
TRAP DELETE FileName$
rem *** Create File Here
CREATE FileName$,B,Heading$, Text$
USE B
rem Add Two 'default' records.

INSERT

B.Heading$="Welcome to Notepad"

B.Text$="This is a simple database notepad application"
PUT

INSERT
B.Heading$="Feel free to delete these"

104 DATABASES AND A NOTEPAD PROGRAM
B.Text$="After all, this is your own app"
PUT
CLOSE

OpenFile: (FileNames$)
ENDP

In CreateFile:, we again check to see if the database already
exists — something a multi-file program will need, but this means we
can also use this to ‘reset’ our database from a menu option if we want to
(i.e. start again from scratch). We then create the two initial entries into
the Notepad so when the user opens the app they see something other
than a white screen. Finally we CLOSE the database to ensure all the
changes are saved, and then call OpenFile: to re-open the database.

6.2.4 The Position and Other Database Commands
One of the things you'll need to always keep in mind with your database
is that each database can only reference one entry (with all the fields in
that one entry) at a time. That entry will be whatever the current position
in the database is. If your database is a stack of index cards, then the
position is the index card that is currently on top of the pile.
You can find out where your position is in the database with
CurrentPosition%=POS
You can jump to a specified position:

POSITION NewPosition%

or move through the records one at a time, both forwards and back-
wards using

NEXT

and

BACK
Jumping the position to the start or end of the database can be done with
FIRST

and

LAST

OUR FIRST OPL DATABASE 105

All these commands (and other database commands) are, as usual, in
the command list Appendix. They affect only the current database. To
change to another database (if you have two or more databases open) use
the USE command with the reference letter:

USE B

Whenever you first open a database, it is set to be the current database,
which is why the INI procedures never really needed the USE command.
However, here we will begin to introduce it anyway because we have
more than one database — and of course it's good programming style!

6.2.5 Displaying a Cursor

In the Othello program, we had a constant representing the height of the
playing squares so we knew just how many pixels we had to move the
cursor. In Notepad, we will have a variable to represent this — because
the fonts we use on each Ul are different heights. We set this PROC Init:
just after working out which Ul we are running on.

Let’s say (for example) that our screen can see seven lines of text. The
cursor method we used in Othello will happily cope with seven lines of
text, but what happens at eight lines of text? The cursor value would be
increased to eight, and it would still be printed, but outside the visible
area of the window.

We overcome this with a dual cursor method:

Top Cursor Position

True Cursor Position

Three values are used, and are stored as GLOBAL variables:
GLOBAL TrueCursor%, TopCursor%, MaxCursor$%

True Cursor

This is the cursor value that you are most familiar with. It represents
which entry the cursor is on. So if you have 100 entries in the database,

Top Cursor

Max Cursor

106 DATABASES AND A NOTEPAD PROGRAM

and the cursor is on record 99, then the TrueCursor$ will equal 99.
TrueCursor$% cannot have a value less than one or more than the total
number of entries.

In our diagram, the thin box over one line (which is a single entry in
the database) represents the true cursor position. The box covering seven
entries shows the seven entries that can be shown on the screen at any
one time.

Going back to the question, what happens when we move the cursor
down to the eighth entry? Well we simply shift this ‘visible display box’
down to make sure the eighth entry is inside the box. In other words, if
TrueCursor$ is going to drop out the visible display, then move down
the visible display one entry.

To represent where this box is in the list of entries, our second cursor
value is used. TopCursor% keeps track of the top entry in the visible
display box.

TopCursor% cannot have a value less than one, or allow itself to be
moved so far down the entries that there are less than (in this example)
seven entries in the display box. This job is helped by MaxCursors,
which is calculated in the Init: procedure. It holds the maximum
number of entries that can be seen on the screen at any one time. In this
case, MaxCursor%=7. How do we work it out?

MaxCursor%=INT (ScreenHeight%/FontHeight%)

This will be entered into PROC InitApp:, which we'll discuss once
we’ve looked at all the individual elements.

Coding the Cursor Movement

The following lines need to be added into the KeyboardDriver:
procedure:

ELSEIF Key&=KKeyUpArrow%
rem CursorUp:
IF TrueCursor%=1 : RETURN : ENDIF
TrueCursor%=TrueCursor%-1
IF TopCursor%>TrueCursor%

TopCursor$=TrueCursor$%

ENDIF
POSITION TrueCursor%

OUR FIRST OPL DATABASE 107

ShowEntries:
ELSEIF Key&=KKeyDOwnArrow$
IF TrueCursor%=COUNT : RETURN : ENDIF
TrueCursor%=TrueCursors+1
IF EOF : TrueCursor%=TrueCursor%-1 : RETURN : ENDIF
POSITION TrueCursor%
IF TopCursor$%+MaxCursor$<TrueCursor%
TopCursor$=TopCursor%+1
ENDIF
ShowEntries:

As well as the similar commands to move the TrueCursor% that are
familiar from Othello, we have added the code to move the ‘window’ of
entries around depending on where the TrueCursor% lies.

On UIQ devices, you would also add in the Keys value for the
scrolling wheel. These are KKeyCBAl& and KKeyCBA2&.

Displaying the Entries

Thanks to one of the cursor values, we know which database entry will
be at the top of the screen (TopCursor%), and the number of entries we
need to show (MaxCursor%). A simple DO. . . UNTIL loop will suffice:

PROC ShowEntries:
LOCAL FooY%,Gnu%
FooY%$=FontHeight$%
gUSE Id% (KMainWindow$)
USE B : POSITION TopCursor%
Gnu%=0
DO
Gnu%=Gnu%+1
FooY%$=FooY%+FontHeight%
gAT 0, FooY%
IF POS=TrueCursor% : gSTYLE 4 : ELSE : gSTYLE 0 : ENDIF
gPRINTB B.Heading$, Text$, 2
ENDIF
NEXT
UNTIL MaxCursor%=Gnu% OR EOF
ShowEntries:
ENDP

EOF, end of file, will be true when the position in the database is at
the very end of the database, i.e. if NEXT is called when there are no
more entries. We call up the values of the heading and text fields by
B.Headings and B.Text$, which reference the database through the
letter "B" and the fields by the names that were given to them when the
database was opened in this program.

We only show the contents of the heading field in this main screen view.

Just before the gPRINTB command (first used back in the Event Core
chapter), there is the command gSTYLE. A full breakdown of all the styles

108 DATABASES AND A NOTEPAD PROGRAM

can be found in the command list, but the IF statement here decides if
the current entry is the entry with the cursor on it. If so, the entire entry is
inversed to represent the cursor.

On moving the cursor (back in the KeyboardDriver: procedure)
we simply ask the whole screen to be redrawn. It would be a simple
exercise for the reader to optimize this code by only redrawing the whole
screen if TopCursor% is altered — and only reprinting two entries for a
normal cursor move.

6.2.6 Editing Entries

Editing an entry is a simple matter of pulling the two pieces of infor-
mation out of the database using B.Headings, placing these LOCAL
string variables into Dialog, and then writing the changes back out to
the database:

PROC EditNote:
LOCAL Foo%,Headings$ (255) ,Texts$ (255),
USE B
POSITION TrueCursor$
Heading$=B.Heading$
Text$=B.Text$
dINIT "Edit Note"
dEDIT Heading$, "Heading", 100
dEDIT Text$, "Text",230
dBUTTONS "Close",KdBUTTONEnter$%
LOCK ON
Foo%=DIALOG
LOCK OFF
IF Foo%<>0
MODIFY
B.Heading$=Headings$
B.Text$=Text$
PUT
ShowEntries:
ENDIF
ENDP

The first half of this procedure should be recognizable from both the
INI procedures from the Event Core, and constructing a Dialog from the
Convert chapter.

Again, we're doing some defensive coding, and making sure that
we assume nothing. That's why we make sure we are using the "B"
database, and that the POSITION inside the database corresponds with
the TrueCursor$% position.

Once we exit the Dialog (and we’ve not left it with a cancel or an
escape key press, which would see us RETURNed to the main program
loop), we need to save the changes held in the LOCAL (and temporary)
variables back into the database. Firstly, we let the database know that
we are about to change something in the current record by using the

OUR FIRST OPL DATABASE 109

MODIFY command. We then list all the fields, including those where
there are changes we want to make. Note that even if there is a field with
no changes, we still need to include it here.

Once all our changes are in place, we then commit the changes to the
database entry with the PUT command. Finally, in case the heading was
changed, we re-display the screen by calling

ShowEntries:

Note that when you add or edit a record, this record goes to the end of
the database, so your cursor may be in the same position, but it will be
on a different record.

6.2.7 Adding Entries

Not surprisingly, adding a new record to a database is very similar to
editing a record:

PROC AddNote:
LOCAL Foo%,Heading$ (255) , Text$ (255)
USE B
dINIT "Create New Note"
dEDIT Heading$, "Heading",100
dEDIT Text$, "Text", 230
dBUTTONS "Close", KABUTTONEnter%
LOCK ON
Foo%=DIALOG
LOCK OFF
IF Foo%<>0
INSERT
MODIFY
B.Heading$=Headings$
B.Text$=Text$
PUT
LAST
ShowEntries:
ENDIF
ENDP

The first of the two changes is that we don’t need to load in any existing
values, because there aren’t any. So once we make sure we’re using the
correct database, we can go straight into the Dialog box.

The second change is the use of the INSERT command, which, rather
obviously, inserts a new blank record into the current database, which
we can then MODIFY and PUT information into in the same way as when
we were editing a record. Note that INSERT will add the blank record
at the end of the database (like adding a new index card to the back
of a pile), so your cursor will be in the same position at the end of this
procedure, but on a different record.

110 DATABASES AND A NOTEPAD PROGRAM

6.2.8 Deleting Entries

The final operation we need to be able to do is to delete an entry from
the database when we no longer want it:

PROC DeleteNote:
USE B
POSITION TrueCursor%
rem *** Check if it can be deleted
IF COUNT=1
GIPRINT "Cannot Delete Last Note."
RETURN
ELSE
ERASE
ENDIF
ShowEntries:
ENDP

As with our other ‘editing’ routines, we start by making sure we are at
the correct position in the correct database. We then check to see if
there is only one record in the database. While it is possible to write
your program so it can handle the display and the cursor controls when
there are no variables, that is left as an exercise for the reader. Here we
have a simple one-line check that stops the user from deleting the last
entry, using the COUNT command (which returns the number of entries in
the database). If there is one record, then we RETURN with no changes
(after displaying a status message using GIPRINT), otherwise we use the
ERASE command. This acts on the entry at the current POSITION (which
of course we made sure was matched up to the value of TrueCursor$%
at the start of the procedure).

When you delete a record, the position in the record is moved to
the next entry in the database, which is also where TrueCursor% now
points to. Note that if you make a lot of changes to the database (e.g.
deleting many entries or editing a lot of data), the file size can sometimes
grow as ‘dead’ space is left in the file on disk. This can be reclaimed
immediately using the COMPRESS command. See the command listing
for more details.

6.2.9 Putting Everything in Place

So now we've looked at all the code sections we’ll need to write
our Notepad program. Way back when we started the Event Core, we
showed you that the key to making a program is breaking it down into
sections — exactly what we’ve done here in looking at the things we need
for the Notepad program.

What's left is to tie everything together in the main loop inside Event
Core, and this means adding in the menu system and the hot keys (we’ve
already shown the cursor controls you'll need).

OUR FIRST OPL DATABASE 111

The InitApp: Procedure

This is where you will make the main changes from the Event Core. Ask
yourself what you need to do before you go into the main loop:

e open the database
e set the cursor position

e display the entries.

PROC InitApp:
rem Load Database
OpenFile: ("C:\System\Apps\OPLPad\OPLPad.db")
rem Set Cursor Positions and values
TrueCursor$=1
TopCursor%=1
MaxCursor%=INT (ScreenHeight%/FontHeight%)
rem Display Entries
ShowEntries:

ENDP

Because InitApp: is called after Init :, the variables for the Screen-
Height% and FontHeight$% will have been calculated when we
checked the screen sizes (we’ll add in the font information as we need
it). What differentiates the Init: and InitApp: procedures? Init-

App: may be called again during the running of the program, Init:
cannot.

6.2.10 Adding Menus and Hot Keys

We'll be using the standard menu layout used in the Event Core, and
adding in the options we'll need for the Notepad. We'll do this by adding
in either a new menu card (for UIQ or Series 80 Ul machines) or a
cascading menu on a Series 60 machine.

We need to add in "New Note", "Edit Note" and "Delete Note". If you're
adding this as a menu card, then something like:

mCARD "New Note",%n, "Edit Note", %$a,"Delete Note", %d

and for Series 60 devices:

mCASC "Notes", "New Note", %n, "Edit Note", %a,"Delete Note", %d
rem Call this Cascading menu from inside your menu system

You'd then add the three hot keys into the Act ionHotKey: procedure,
which call the procedures we’ve worked on above.

112 DATABASES AND A NOTEPAD PROGRAM

6.3 Summary

From the INI database in the Event Core (Chapter 3) we took these
principles and introduced the OPL database commands:

e POSITION, NEXT, BACK, FIRST, LAST — used to move the database
cursor around a database

e USE - switch between open databases

e INSERT —insert a new blank record at the end of a database

e MODIFY - change the contents of a record in a database

e ERASE - remove a record from a database.

Using these, and the idea of a cursor from Chapter 5, we looked at

creating a Notepad style application that would be saved to disk so it is
available when you open it again.

7

Publishing your OPL Application

OPL applications tend to be written for three main purposes. The first
will be as a handy tool for yourself to use, in which case once you have
the code working, you can quite happily carry on using it as is. The
second will be if you are programming an application for use inside your
own business environment — once it is coded, tested, and deployed to
your users, you can move on to the next project. But a large number of
OPL applications will be released on the Internet, some of them as freely
available tools for other Symbian OS phone users, some as shareware
applications, and some as commercial applications. In this chapter, we're
going to look at the difference between these terms and how you can go
about marketing your OPL applications to other Symbian OS users.

7.1 Types of Application

There are basically four ways you can make your OPL application
available.

1. Open Source: You make the source code to your application available
to other people who can then modify it or use it as an example for
their own programs. There are various ways to do this and these come
with too many intricacies to cover here — a quick Google search for
‘open source’ should give you lots of advice.

2. Freeware: These are full applications that do not require any payment
to the author for usage. Freeware exists for a variety of reasons — for
example, there is no longer any support from the author, the product
has limited appeal, or the author is simply being philanthropic! As
the author, you retain the copyright to the product and ownership of
it, as well as the source code, but you make the binaries available,
for free, for other people to use.

3. Shareware: This is the traditional ‘try before you buy’ concept, where
you (as the author) provide a limited version of your application

114 PUBLISHING YOUR OPL APPLICATION

to anyone who wants it. This is the working demonstration version
which you should aim to make available to as many people as
possible. What this version should do is make the user want to
continue using it (or get access to more functionality). They do this by
registering the software with you for a fee. This shareware registration
fee is up to you, but generally basic games should start at around
$5-$8, and a very detailed application (such as a complex Accounts
Manager or Financial Planning tool) could go up to $25-$30. Getting
the shareware fee right is a balancing act, and you should ask your
testers what they think is a reasonable price once they’re testing the
final version. Similarly, deciding what works in the demonstration
version is a balancing act too. Obviously, you don’t want to put
so many features in your demonstration version that people never
register, but you want to make it attractive and indicative of the full
application.

4. Commercial: Very similar to shareware, but normally produced by
companies rather than individual developers. Commercial applica-
tions normally require the user to purchase them before use.

7.2 How Distribution Affects your Application Design

Testing

Bugs

Once you’ve coded your application, you need to test it. This means
trying every menu option and every hot key, in every combination. You
should actually try to make the program crash. Not only that, but you
should also try keys that you (as the programmer) know will not work.

It's a good idea to ask some other people to look over the program and
test it as well, because they won’t be as familiar with the application as
you are, and may do things slightly differently. Before you release your
application, you need to realize that your program will be running on
other people’s phones, and it must not have bugs (errors).

The applications in this book aren’t the most complicated, but even
then you may have some bugs appearing when you go to expand
the applications to try out your new skills. Bugs are a fact of life for
programmers, and even with all your testing, it's probable that some bugs
will be found after you release your application to the public. It's vital
that once found, you correct them, and release an updated version of the
application as soon as possible. It will give people confidence in you as a
programmer, and ensure that anyone else who downloads and uses your
application from then on doesn’t come across the same old problems.

HOW DISTRIBUTION AFFECTS YOUR APPLICATION DESIGN 115

The First 20 Seconds

Something to bear in mind: while you may have the greatest application
in the history of applications, it will be judged by the average user within
20 seconds of running. If it's not obvious what to do, if it looks horrible,
then they won’t continue looking at your program — and the user won’t
look at the program again. That's a lost registration or sale.

New Features

Very often, you will get emails from people saying that they think your
application is wonderful, “but wouldn’t it be great if you could make it
do this...” For example, in our Othello application, you might want the
option of having two human players, and using the program simply as an
electronic board.

While you don’t have to listen to these suggestions, if you get a lot
of people asking for the same thing, and you’re trying to promote your
application as widely as possible (and gain shareware registrations or
sales), then these feature requests are obviously for things in demand, and
should help your sales if you add them.

Packaging your Application

Feedback

It goes without saying that you should use a SIS file to put together all
the files your application will need. But you shouldn’t just present the
end user with a SIS file. At the very least you need to have two files, the
SIS and a Readme text file. The latter lets the user know how to install
the SIS file (don’t assume they know), what the application is, and your
contact details. Both of these files should be placed in a standard ZIP file
for distribution (which keeps the download size as small as possible).

Also remember that OPL applications require the OPL Runtime to be
installed before they will work. At the very least, you should include a
link in your Readme file to where users can download this. Alternatively,
you can package the Runtime .SIS file as an ‘embedded’ file inside your
own .SIS file — see Chapter 8 for more details.

Whenever someone emails you, make sure to respond — even if it is
simply to acknowledge that they’ve got in touch. Keeping in touch with
people using your application will pay dividends in the long run. Keep
track of all their emails, and ask (in the reply) if you'd like them to be
emailed when a new version of the application (or a completely new
application) is released.

In other words, like any business, make sure you keep your customers
happy, make sure you can talk to them, and listen to their views.

116 PUBLISHING YOUR OPL APPLICATION

7.3 How to Make your Application Available

7.3.1

Your Own Site

Finding web space on the Internet nowadays is not difficult. Most ISP
hosting packages come with a few megabytes of web space you can use
to upload the ZIP file, and host a few information pages about yourself,
the application, and how to register or pay for it. At the very minimum
you'll need to have the following pages:

e the main page, with links to all these other pages, and listing your
latest new product and most recent updates to your applications
e one page for each of your applications

e a page where users can contact you, by a web form or your email
address (be warned, putting an email address here means it will get
spammed a lot, so you might not want to use your main email address).

7.3.2 Collecting Registration Fees

There are two main ways to collect the money from users. Both have
advantages and disadvantages. You don’t need to exclusively choose one
or the other, you can use both. Browse them all and see which suits you.

PayPal (www.paypal.com)

This is an online service that allows small payments to be made by
credit card between two people. It grew up from the Online Auction
services, and it's perfect for collecting small shareware fees. There is a
low commission rate, and you get the money almost immediately after
your user sends it to you. Once you get the money, it is up to you to
generate and send out either a registration code or the full version of your
application to that user.

RegNet (www.reg.net)

Very similar to PayPal, RegNet allows you to create individual ‘accounts’
for your applications, each with its own unique link. Users can then visit
the link you give them and pay by credit card for the product, resulting in
an email to you so you can follow-up with them and provide a registration
code or full version.

Handango and Others (www.handango.com/)

While there are quite a few online stores that allow you to post your
shareware and freeware games, Handango is the largest and most rec-
ognizable. Once you sign up with them, you can upload to their server

HOW TO MAKE YOUR APPLICATION AVAILABLE 117

both the demonstration version of your application, and either the full
version or a registration code generation scheme. The advantage of this
is that once you’ve uploaded everything to Handango, you don’t need to
do anything else in the sale process. They will process the money, move
it to your account, and provide the user with what they need for the
full application. Do note, however, that online stores can take a larger
percentage of any shareware fees (up to 40%) and they may hold back
sending you the fees until a certain minimum limit is reached (e.g. $100)
or a certain period has elapsed (e.g. one quarter).

7.3.3 Programming in Limits for Demonstration Versions

There are lots of ways to build in limitations in your application, but one
simple method that is easy to employ is to have a constant at the start of
your source code:

CONST KRegistered%=0

When you compile your code, if KRegistered$ is O, then you are
creating the demonstration version, and if it is 1, then it is the full version.
You can then use this constant in your code to employ the main methods
of limiting your demonstration version.

Using this method does mean that you will have two versions of
the application, and you will need to provide anyone who registers the
application with the full version. On sites such as Handango, you can
upload a demonstration and a full copy, and they’ll take care of it. If
you're doing everything yourself, you’ll need to email them (or make
available) the full version as soon as possible after they register.

Nagging
You can make sure that someone using your demonstration version knows
they are using the demonstration version. In small applications, this can
sometimes be just enough to get people to register. For example, in PROC
Init: you can add a simple IF statement around an information dialog:

IF KRegistered%=0
dINIT "Please Register"

dTEXT "","This version of "+KAppNames$+" is",2
dTEXT "", "not registered. Please visit",2
dTEXT "", "http://www.yourwebsite.com/",2

BUTTONS "OK", KABUTTONEnter%
DIALOG
ENDIF

Crippling

118 PUBLISHING YOUR OPL APPLICATION

There may be one or two features in your application that aren’t vital to
the running of the application, but are useful — for example, the Undo
feature in a game. This is a good way to put in a crippled feature. When
someone tries to use a feature in the demonstration version that you
want to cripple (i.e. make the user aware that if they buy the full version
they can have this feature), an IF statement and the constant come into

play again:

PROC UndoLastMove:
IF KRegistered%=0
dINIT "Disabled Feature"

dTEXT "","This version of "+KAppNames$+" is",2
dTEXT "", "not registered. Please visit",2
dTEXT "","http://www.yourwebsite.com/",2
BUTTONS "OK",KdBUTTONEnter$%

DIALOG

RETURN

ENDIF

ENDP

Always take care when using crippled functionality in an application.
The end user must be able to judge the program fairly. There’s no point
in creating a great Notepad application, then crippling it by only letting
the user save two notes. This means there’s no way the user can judge
the application before getting frustrated.

Maintaining a Single Version

Another approach to unlocking demonstration versions is to provide only
a single program file, but make it respond to a registration code. The
approach is very similar to the one outlined above, but instead of a CONST,
you'd make KRegistered% a GLOBAL variable called Registered,
which is set to zero by default. You then offer the user a registration menu
option which takes a code based on some set formula chosen by you
and, if the correct code is entered, sets Registered% to 1 and persists
this value in the INI file for future program launches. For example, a
common approach is to generate a code based on the user’s name to
make it specific to them. Implementing this in code is too complex to go
into here, but there are several examples available on the web, and many
existing OPL authors are happy to offer you advice. See below for some
links to websites with appropriate discussion forums.

When a user registers, you simply generate the appropriate code using
the appropriate algorithm and send this to them — they can then unlock
the version of the program already on their phone.

PROMOTION — TELL EVERYONE IT’S AVAILABLE 119

Warez and Pirates

A quick note about Warez — this is the practice of providing full versions
of other people’s applications for free. There’s not much you can do to
stop this, so the best advice | can give is to put some effort into protecting
your application, but don’t kill yourself over it — someone is going to pass
the full version around at some point in time. As long as you make it very
easy to find your demonstration version, and make it easy to purchase,
you’ll still gather registrations.

7.4 Promotion — Tell Everyone it’s Available

7.4.1 Symbian Themed Websites

Once you release your application, you need to let people know that it is
available. There are two main websites you should approach and get in
touch with, both of which will help promote your site and application.

My-Symbian (http://mysymbian.com/)

Primarily a site for software, My-Symbian aims to host or link to every
Symbian-based application out there. Contact details are shown on the
front page, and generally your application will be posted in the front page
news section, and in the main database after a few days of notifying them
of its existence.

All About Symbian (www.allaboutsymbian.com/)

Mainly news articles and community information, All About Symbian
do post news on applications, but do not post every application to the
front page. They rely heavily on Handango to pass over details to their
dedicated software section. Again, contact details are available on the
front page.

Handango

If you are signed up with Handango, there are a number of Symbian
sites on the Internet that will automatically pick up on the new and
updated applications Handango host (for example, All About Symbian
as mentioned above). This is a great way of getting your product out to
more places.

Symbian Gear

Another online store, similar to Handango. Recently launched and there-
fore not as well known, as of the writing of this book. They have a huge
amount of experience with their Palm OS and Microsoft Pocket PC stores.

120 PUBLISHING YOUR OPL APPLICATION

7.4.2 Newsgroups and Forums

Most of the main websites (see above) have forums and bulletin boards.
A short, polite note on these boards saying you have a new application
will do wonders for your visibility to both users and other developers in
the community.

7.5 Summary

Now you know about programming applications, this chapter took you
through some common sense advice on distributing your applications.
We looked at the things you need to consider when distributing your
application, namely:

e test your program thoroughly

e make sure the first 20 seconds of use are perfect for a new user

e use a SIS file, and package the ZIP with everything required

e listen to feedback from your users and reply to everything.

We looked at registration fees and the best way to collect them if you
decide to make your programs. You also need to think about how you
will limit any demonstration application and how this works in your
source code.

Finally, we talked about where you can go to host your program on
the Internet, and the best places to promote your application.

3

Creating Applications and Installers

It's all well and good using file managers and Bluetooth to transfer files
and run your OPL programs while developing your application, but when
it comes to other people using them in the real world, there are more
issues to consider. The two we will look at in this chapter are how they
will get the application and all the files onto their phone in the correct
place (installing it), and how they will run it when it is installed.

Symbian OS and OPL offer facilities to do both of these with very
little work.

8.1 Creating an OPL Application

There are two considerations you need to have when making an OPL
program (a .opo file) into a full application that is easy for users to install
and run, without doing any of the manual file copying you as a developer
have been doing so far. The first is to make sure your application behaves
responsibly, and responds to all the requests from the phone. This has
been taken care of already in our Event Core (where we talk about system
commands and messages), so as long as you follow that method, then
you do not need to worry about interacting with the system as a bona
fide application.

The second is that you will need to uniquely identify your application
in the Symbian OS environment, using a so-called ‘UID’. This enables
Symbian OS to keep track of your application individually, distinct from
all the rest.

8.1.1 UID Numbers

The UID (unique identifier) number is a number that you obtain from
the Symbian Developer Network. If you email uid@symbiandevnet.com
and request a UID, you will be issued a UID at no cost, and this is
your number forever, nobody else will be issued with it. Note that UID
numbers less than 0x10000000 are never issued, and can be used as a

122 CREATING APPLICATIONS AND INSTALLERS

temporary stop-gap when testing or developing your application on your
own phone.

When you do release your application, always double-check you use
the official UID you have applied for, and not one of the low-numbered
test UIDs.

8.1.2 Creating an Application from OPL Source Code

We create an OPL application (as opposed to a compiled .opo file) by
adding in a new command at the very start of your code (before any
INCLUDESs or CONST declarations). Here’s what Event Core would have
at the start:

APP Core, 270488647
ENDA

The two elements following the APP command give the title of the
application as it will appear in any Task Manager listings, and then the
UID number. You can specify this in decimal (as above) or hex (using
the standard OPL Hex format of &10000000). We then show we are
finished defining the application with the ENDA command. Note the UID
number here is Event Core’s UID number, and you should change it
before releasing your own applications.

When you compile OPL source code to an .opo file, the resulting
.opo file is produced in the same directory as the source code. If you
have added the APP. . .ENDA commands, then the compiled files will
not appear in the same directory as the source code. They will be placed
in the C:\ directory of your phone (or in the SDK Emulator File Structure
if you are using OPLTran on the PC). The rule of thumb is that the
compiled OPL application will always be placed in the correct place to
be run. It will also create two files, rather than a single .opo file as before.
Continuing to use Event Core as an example, on our phone (either in
the emulator or on the device) you will find the following two files have
been created:

C:\System\Apps\Core\Core.app
C:\System\Apps\Core\Core.aif

The actual compiled code is in the .app (APP. lication) file and is directly
equivalent to any .opo code the same source code would generate
without the APP. . . ENDA construct at the start.

The .aif is the application information file, and contains the UID, the
caption for display on the system screen, and the details of the program
icon that is shown on the system screen.

SYMBIAN INSTALLATION SYSTEM — SIS FILES 123

B

Figure 8.1 Graphic icon and mask

8.1.3 Creating an Icon for your Application

In the next chapter you'll see how to create a graphical file called an MBM
(multiple bitmap file). You can create an application icon to be shown
on the system screen by using the ICON command in the APP. . . ENDA
structure:

APP Core,270488647
ICON "CoreIcon.mbm"
ENDA

Each icon will need to have a graphic, and be accompanied by a mask,
which is a computer graphics term for a silhouette. An icon and its mask
are illustrated in Figure 8.1.

You'll also know that there are various zoom levels on the system
screen. You will need to have an icon for each zoom level as appropriate
for the phone you're targeting.

Under the UIQ interface, the icon sizes are 20 x 16 pixels and 32 x 32
pixels. The Standard UIQ color depth is 8 bits (256 colors), so use the /c8
(8-bit color) switch when creating your mbm file. Series 60 uses two sizes
(44 x 44 for the large icon and 42 x 23) and Series 80 uses another two
sizes (64 x 50 and 25 x 20 respectively). When you have more than one
icon in your mbm file, you should order them {lcon, Mask, Icon, Mask}
with the smallest size first, going to the largest size last.

8.2 Symbian Installation System - SIS Files

You can’t ask the end user to move the individual files into the correct
directory. We’d be looking (for a simple application) at three files (the
.app, the .aif, and the .mbm file), and there would be a strong chance
that the connectivity package they are using would not allow them the
opportunity to see the underlying directory structure of their phone.

This is where we can harness the Symbian Installation System (SIS)
method. On your PC you would gather together all the files that need to
be installed, and run a command line tool, makesis.exe, that would
put these together in one file (much like a ZIP file) along with a text file of
instructions that say where all the files go on the phone, which the phone
itself will read and follow like a script. This single file can then be sent to
the phone through IrDA, Bluetooth, downloaded via WAP, emailed, or
any other valid method. It should appear on the phone as a received file

124 CREATING APPLICATIONS AND INSTALLERS

in the messaging application. By selecting and running this file, the end
user will install your application.

8.2.1 Putting Together your SIS Package File

Looking at our suggested directory structure on the PC, you'll see there is
a directory called SIS. We're going to use this directory as we construct
the SIS file.

Firstly, copy all the files that you need to be in the SIS file into this
directory. We'll use the Event Core as our example application to create
a SIS file. These files are:

Core.app
Core.aif

When we create the SIS file, we should use the full path name to these
files on our PC, which gives us:

C:\OPL\Core\SIS\Core.app
C:\OPL\Core\SIS\Core.aif

We also need to know where to put these files on the phone when it
is installed:

C:\System\Apps\Core\Core.app
C:\System\Apps\Core\Core.aif

This isn’t exactly right, as applications should be able to be installed to
any drive on the phone. When a SIS file is installed, the user is asked
which drive to install the application onto (if more than one is available).
This gives us the letter to use at the start of the path name, so we have a
wild card symbol (an exclamation mark) for the path name:

! :\System\Apps\Core\Core.app
! :\System\Apps\Core\Core.aif

There may be circumstances when a file has to go onto the C:\ (e.g. you
might provide an initial INI file that, by convention, must be on the C:\
drive). If this was the case, we’d have the following paths:

! :\System\Apps\Core\Core.app
! :\System\Apps\Core\Core.aif
C:\System\Apps\Core\Core. ini

SYMBIAN INSTALLATION SYSTEM — SIS FILES 125

The text file that goes into the SIS file is called the package file (.pkg) and
contains the information we have gathered above:

"C:\System\Apps\Core\Core.app"-"!:\System\Apps\Core\Core.app"
"C:\System\Apps\Core\Core.aif"-"!:\System\Apps\Core\Core.aif"

The only thing we are missing now is the name of the application and the
UID number.

Package Header Information

Languages

We now add the UID and the name of the application to the package file:

#{"Event Core"}, (0x101F5447),1,0,0
"C:\System\Apps\Core\Core.app"-"!:\System\Apps\Core\Core.app"
"C:\System\Apps\Core\Core.aif"-"!:\System\Apps\Core\Core.aif"

The line we’ve added is made up of four sections, each doing a specific
job in the installation process.

#: This signifies that the rest of this line will contain the application
name, the UID number, and the three-part version number.

{"Event Core"}: This is the name of the application which will be shown
to the user at install-time.

(OxT01F5447): This is the UID number of the application. Note that
this is the actual UID number of the Event Core application, so you should
not use this number in your own applications. Also note the number is in
hexadecimal format here.

1,0,0: This is the version number of your application. If you open up
the Applications Manager on your phone, you'll see that each installed
application also has a version number (you might need to look for a menu
option for ‘further details’ on some phones). The three numbers show
the major number, minor number, and build number. So 1,0,0 would be
version 1.0(000). 2,51,188 would be versions 2.51(188). Note that if you
want to make your application 1.10(188), you must specify 1,10,188 in
your PKG file, rather than 1,1,188 — the latter corresponds to a version of
1.01(188) instead.

When you release an updated version of your application (perhaps
because you found some bugs and have now fixed them) you should
increment the major or minor numbers, and the build number, so that
when the end users install the newer version, the phone knows it is a
newer version.

Symbian OS is a multi-language operating system, so it is important to
say which language your SIS file supports. While it is possible to have SIS

126 CREATING APPLICATIONS AND INSTALLERS

files support multiple languages, we’re not looking at the more in-depth
options for SIS files here, so we’ll specify just one language, which is
UK English.

We start a language option line with "&" and then the two-letter
language code, in this case "EN" for UK English. A full list of language
codes can be found in the documentation that came with the SDK you
downloaded. While the docs will be primarily for C++ coders, there
is a section for creating SIS files, and if you feel ready to make more
complicated SIS files in the future, this is the best place to start.

Platform Dependency

One thing to remember with SIS files is that a SIS file can in theory be
installed on any Symbian OS user interface platform, no matter which Ul
it uses (Series 60, UIQ, etc.). While OPL programs can be written that
will run on all the platforms from one compiled version, there may be
circumstances when you want to only have a SIS file installed if it is being
targeted at a specific platform.

Each Ul of Symbian has its own UID (after all, the Ul is a type of
program as well) and you can specify inside a SIS file to only install
the file if you are on a certain Ul version. For UIQ you would use the
following command:

(0x101F617B),2,0,0, {"UIQ20ProductID"}

Here we see the UID number, the minimum version number that the
target platform should be, and the application name. A full list of the
UID numbers, versions, and names can be found in the SDK document-
ation.

If you do not have a dependency line, then two things will happen.
Many phones will require a dependency line to be included, in which
case your SIS file would not be installed, and an error message dis-
played to the user saying that an incorrect version is being installed will
be shown.

Products that do not require a dependency will install the file, but
there may be a conflict of interest here as a UIQ OPL application may
not run correctly on a Nokia Communicator (depending on how you
programmed it, of course).

Our Finished Package File

So here it is, our finished package file for Event Core. The final command
shown here is the semi-colon, which acts just like rem in OPL. Anything
on the line after the semi-colon is ignored, so it can be used to put in
comments and aide memoirs as you go along:

SYMBIAN INSTALLATION SYSTEM — SIS FILES 127

; Package File For EVENT CORE.

; Specify the supported language.
&EN

; Installation name and header data

#{"Event Core"}, (0x101F5447),1,0,0

i

<BEGINS>

;Files to remove on uninstallation
nn_nc:\System\Apps\Core\Core.ini", FN

<ENDS>

; Files to install

; "Path on PC"-"Path on phone"
"C:\System\Apps\Core\Core.app"-"!:\System\Apps\Core\Core.app"
"C:\System\Apps\Core\Core.aif"-"!:\System\Apps\Core\Core.aif"

; Which UI Platform is this intended for

i
(0x101F617B) ,2,0,0, {"UIQ20ProductID"}

8.2.2 Generating the SIS File

Our SIS folder now has the following files:

Core.pkg
Core.app
Core.aif

The OPL SDK will have placed a copy of the command line utility
makesis.exe in the correct directory path, so open a command line
prompt and navigate to your SIS directory. Now use the command:

makesis Core.pkg Core.sis

This creates the SIS file Core.sis, which can be sent to the phone,
packaged up in a ZIP file for downloading on the Internet, or whatever
else is required of it.

8.2.3 Notes on SIS Files

The SIS file is a powerful facet of Symbian OS, and not every feature of SIS
files has been covered here. The main area not covered here is security
certificates. These provide a method to authenticate a SIS file using a pair
of digital keys (one private, one public) and are used to identify the author
of a SIS file, and to verify that a SIS file has not been tampered with since
it was created.

128 CREATING APPLICATIONS AND INSTALLERS

Details on using certificates in SIS files can be found in the SDK
documentation.

8.3 Summary

SIS files are the key to making a good user experience. They make
your program much easier to install, and should be used whenever you
distribute an application. We looked at how Symbian provides a unique
number for every application, and how to include this in your SIS file.

We also looked at how to make an OPL program appear as an
application on the main screen of icons on a phone, and how to include
your own icon.

Finally, some extra features of SIS files (specifying languages and
platform dependencies) were introduced.

9

Where Now With OPL?

Over the years, as we've seen, OPL has appeared on many different
platforms, and over 2000 applications have been released online — with
countless more being used as bespoke applications in business. Starting
from a list of commands and basic principles, hundreds of authors have
become programmers in their own right, using OPL on their pocket
computers and smartphones. To give you an idea of what OPL can do,
let’s look at three applications written in OPL, to inspire you.

9.1 RMRBank, by Al Richey (RMR Software)

Al Richey has been around and seen almost every computer platform
since the ZX81 and BBC B Micro in the early 1980s. He got to grips with
OPL on the Psion Series 3a. Why? Because of the Money application that
came with the Psion Series 3.

The first version of ‘Psion Money’ suited Al and his needs perfectly.
He was also writing OPL programs to use himself to track shares, fuel
consumption in his car, and the gas and electricity in his house. All
these apps were originally just for his own use — exactly the type of thing
OPL is so useful for. On moving up to the Series 3a, he also upgraded
his copy of Money to the new computer. He was looking for a simple
Home Accounts application, but this new version (along with the new
‘Accounts and Expenses’) insisted on double-entry bookkeeping, which
he felt wasn’t necessary. So he wrote his own, using OPL.

Al designed S3aBank (as it was originally called) to mirror the look
and feel of the original Money program. After six months of working
and tweaking it, he felt that S3aBank was good enough to be compared
with the professional applications, and he released it onto the fledgling
Internet, secretly hoping it would garner enough registrations to pay for
the Series 3a. It is now recognized as one of the most popular pieces of
OPL software ever, with over 10,000 sales across the myriad platforms
it runs on. When the Psion Series 5 launched, S5Bank was available the
same day. It was reworked with the Series 5mx, using the powerful new
OPL Database Management System, and continued to sell very well.

130 WHERE NOW WITH OPL?

RMRBank is now available for the Communicator and UIQ phones,
and continues to be a popular application. After 10years of coding,
RMRBank is still doing exactly what its author needs, and is helping
thousands of people manage their finances as well.

9.2 Fairway, by Steve Litchfield

Steve Litchfield is a full-time ‘PDA Specialist’ now, but back in the early
1990s he was still working for a living! Unable to be away from any type
of computer over a two-week holiday in Scotland, Steve purchased a
Psion Series 3. In those days, the paper manuals weighed more than the
machine, and with the help of the enclosed OPL documentation, Steve
had a working prototype of a golf game. Pitch and Putt, written purely
for his own enjoyment, was uploaded to a few bulletin boards to see
what sort of reaction it would get. It got a very good reaction, as Psion
themselves got in touch with Steve, and ‘Pitch and Putt’ was packaged
on the first Games Compilation disk released for the Series 3. Steve then
explored the Shareware route, providing ‘the first hole free’ and asking
for the registration fee to get the rest of the holes.

The success of this led to a full 18-hole tournament version. Called
Fairway, it has been one of the most long-lived OPL games, going
through three major versions, adding in features for digital sounds, to
support different devices, and continuing to be marketed in official
Games Compilations for the Series 3a and the Series 5 machines. Fairway
now lives on in versions for both the Communicator and UIQ, in full
color, ready to continue to provide an excellent game of golf in the
mobile world.

9.3 EpocSync, by Malcolm Bryant

Malcolm Bryant isn’t a programmer, but he’s still created one of the most
unusual OPL programs out there. Malcolm found that he was constantly
beaming the same files between his Psion netBook and Revo during the
day. So he decided to automate the process. EpocSync was the result. On
lining up the infrared ports of the two machines and running EpocSync
on both machines, they would connect to each other, and ensure that
the latest copy of each file (in a list the user creates) is on each machine.
EpocSync has the unusual distinction of being a program that has to talk
to itself (when it is running on another machine). At each stage of the
sync operation, each copy of the program needs to know where the other
program is so the correct messages and packets of information can be
sent between the machines.

FINAL SUMMARY. .. MOVING FORWARDS YOURSELF 131

After its release, EpocSync proved itself in two areas that Malcolm
had never considered, but was then able to improve upon in subsequent
releases. The first was that, because EpocSync was written completely in
OPL, it would run happily on the Windows-based Symbian OS emulators.
This meant that using EpocSync on both machines allowed users to
synchronize the files on their Psion directly onto the PC, bypassing the
connectivity suite. In essence, EpocSync and the SDK could be used
as a ‘Desktop PDA Companion’ program. Finally, Malcolm added in
support for FTP syncing with a third-party OPL extension. This used the
same EpocSync engine, but now instead of copying the files to and from
another Psion, the files were backed up to a regular FTP server on the
Internet, providing remote backup for those on the move and travelling
around a lot.

9.4 Final Summary. .. Moving Forwards Yourself

So now you have an understanding of OPL, what can you do? Well, as
with any programming language, it's what you make of it that counts. You
could build up a huge suite of applications for use inside your business,
or in your personal life. You might just code something that already
exists, but that's missing a key feature for you. And you may program
and release apps on the Internet to gain recognition, or for profit. There
are a large number of OPL programmers who have happily made a living
programming in OPL — with even more Symbian OS phones out there,
perhaps this could be you?

No matter what, OPL is now something you’ll be able to use in your
daily life. If you're unsure about something, then try it. If you need to
ask for help, then the best starting point is the website for this book, or
the OPL Forums on All About Symbian (www.allaboutsymbian.com/),
My Symbian (http://my-symbian.com/), and the OPL Wiki Website
(www.allaboutopl.com/wiki). And when you do release an application,
be sure to send an email to myself and the OPL Development Team to
let us know! You’ll find details on how to do this at the above sites.

Part 2

Introduction to Part 2: Command
Listing

As well as a structured introduction to programming, this book will
continue to act as an ongoing reference as you program OPL in the
months and years ahead. The core of OPL is the commands that are
available in the runtime for you to use. No matter what version of
OPL (UIQ, Series 60, or the Communicators) you use in the future, this
command list will always remain current.

In fact, if you look back at the version of OPL that featured on the Psion
Series 3 Organizer in 1992, almost all the commands available then are
featured in the current Symbian OS runtimes.

Alphabetical Command Listing

Every OPL command is listed here, in a common format.

Command Name

This is the command name as typed into any OPL source code.

Command Syntax

A one-line example of the command, showing all the flags, variables,
and their type, i.e. if they are integer variables, strings, etc. You may have
the same command listed more than once. Some OPL commands have
optional variables and flags, and each combination of these is listed. A
good example of this is the banner print command, gPRINTB.

Short Description

A brief outline of the command and what it does.

134 INTRODUCTION TO PART 2: COMMAND LISTING

Full Description

Some commands will need little more than the short description. Others
need explaining in more depth. Here we break down each command,
and show code examples where required.

Related Commands

As it says, OPL commands that are connected to the command you are
looking up.

Const.oph Listing

The Const.oph file is a header file full of constants, that you can use to
make your source code easier to read. More details on using constants
can be found in Chapter 2. This list provides you with all the constants,
and the values that they take, grouped by function.

Appendix 1

OPL Command List

(Derived from last Symbian OS v5 OPL Documentation, shipped with
initial Series 80 OPL Release)

ABS

ACOS

ADDR

Absolute value of a floating point number
Usage: a=ABS(x)

Returns the absolute value of a floating point
number, that is, without any +/— sign. For example
ABS(—10.099) is 10.099.

If x is an integer, you won’t get an error, but the
result will be converted to floating point. For example
ABS(—6) is 6.0. Use IABS to return the absolute value
as a long integer.

Arccosine
Usage: a=ACOS(x)

Returns the arc cosine, or inverse cosine (COS-1) of x.

x must be in the range —1 to +1. The number
returned will be an angle in radians. To convert the
angle to degrees, use the DEG function.

Address of variable
Usage: a&=ADDR(variable)

Returns the address at which a variable is stored
in memory.

The values of different types of variables are stored in
bytes starting at ADDR(variable). See PEEK for details.
The return type of this function should be a long integer,
however, if the 64K memory limit is set via SETFLAGS,
a& is guaranteed to fit into an integer.

See UADD, USUB.

136

OPL COMMAND LIST

ADJUSTALLOC Adjust memory allocation

ALERT

Usage: pcelln&=ADJUSTALLOC (pcell&,off&,am&)

Opens or closes a gap at off& within the allocated cell
pcell&, returning the new cell address or zero if out of
memory. off& is 0 for the first byte in the cell. Opens
a gap if the amount am& is positive, and closes it if
negative. An error will be raised if the cell address
argument is not in the range known by the heap.

See also SETFLAGS if you require a 64K limit to be
enforced on 32-bit target devices. If the flag is set
to restrict the limit, pcelln& is guaranteed to fit into
an integer.

See ALLOC.

Alert dialog
Usage: any of

r%=ALERT(m1$,m2$,b1$,b2$,b3$)
r%=ALERT(m1$,m2$,b1$,b2$)
r%=ALERT(m1$,m2$,b1$)
r%=ALERT(m1$,m2$)
r%=ALERT(m1$)

Presents an alert — a simple dialog — with the messages
and keys specified, and waits for a response. m1$ is the
message to be displayed on the first line, and m2$ on
the second line. If m2$ is not supplied or if it is a null
string, the second message line is left blank.

Up to three keys may be used. b1$, b2$ and b3$
are the strings (usually words) to use over the keys. b1$
appears over an Esc key, b2$ over Enter, and b3$ over
Space. This means you can have Esc, or Esc and Enter, or
Esc, Enter and Space keys. If no key strings are supplied,
the word CONTINUE is used above an Esc key.

The return value, r%, is one of the following:

KAlertEsc% 1 Escape key

KAlertEnter% 2 Enter key

KalertSpace% 3 Space bar

These constants are supplied in Const.oph.

ALLOC

APP

APPEND

OPL COMMAND LIST 137

Allocates a cell on the heap
Usage: pcell& = ALLOC(size&)

Allocates a cell on the heap of the specified size,
returning the pointer to the cell or zero if there is not
enough memory.

See also SETFLAGS if you require a 64K limit to be
enforced on 32-bit target devices. If the flag is set
to restrict the limit, pcelln& is guaranteed to fit into
an integer.

See ADJUSTALLOC, REALLOC, FREEALLOC. See also
Dynamic Memory Allocation.

Defines an application

Usage:

APP caption,uid&
ENDA
Begins definition of an OPL application.
caption is the application’s name (or caption) in the
machine’s default language. Note that although caption
is a string, it is not enclosed in quotes.
uid& is the application’s UID. For distributed appli-
cations, official reserved UIDs must be used. These
can be obtained by contacting Symbian Ltd (see OPL
applications for details of how to do this).
All information included in the APP...ENDA struc-
ture will be used to generate a. aif file, which specifies

the applications caption in various languages, its icons
for use on the System screen, and its setting of FLAGS.

See CAPTION, ICON, FLAGS.

Adds a record to a data file
Usage: APPEND

Adds a new record to the end of the current data file.
The record that was current is unaffected. The new
record, the last in the file, becomes the current record.

The record added is made from the current values
of the field variables A.field1$, A.field2$, and so on, of
the current data file. If a field has not been assigned a
value, zero will be assigned to it if it is a numeric field,
or a null string if it is a string field.

138

ASC

ASIN

AT

OPL COMMAND LIST

Example:

PROC add:
OPEN "address",A,f1$,2$,3$
PRINT "ADD NEW RECORD"
PRINT "Enter name:",
INPUT Af1$
PRINT "Enter street:",
INPUT A.f2$
PRINT "Enter town:",
INPUT A.f3$
APPEND
CLOSE
ENDP

To overwrite the current record with new field values,
use UPDATE.

See Database File Handling for more details. See also
INSERT, MODIFY, PUT, CANCEL, SETFLAGS.

Gets a character code from a string
Usage: a%=ASC(a$)

Returns the character code of the first character of
a$. Alternatively, use A%=%char to find the code for
char—e.g. %X for ‘X". If a$ is a null string (") ASC
returns the value 0.

Example: A%=ASC("hello") returns 104, the code
for h.

Arcsine
Usage: a=ASIN(x)

Returns the arc sine, or inverse sine (SIN-1) of x.

x must be in the range —1 to +1. The number
returned will be an angle in radians. To convert the
angle to degrees, use the DEG function.

Positions the text cursor
Usage: AT x%,y%

Positions the cursor at x% characters across the text
window and y% rows down. AT 1,1 always moves to
the top left corner of the window. Initially, the window
is the full size of the screen, but you can change its size
and position with the SCREEN command.

ATAN

BACK

OPL COMMAND LIST 139

A common use of AT is to display strings at particular
positions in the text window. For example:

AT 5,2 :PRINT "message".

PRINT statements without an AT display at the left
edge of the window on the line below the last PRINT
statement (unless you use, or;) and strings displayed at
the top of the window eventually scroll off as more
strings are displayed at the bottom of the window.

Displayed strings always overwrite anything that is
on the screen — they do not cause things below them
on the screen to scroll down.

Example:

PROC records:
LOCAL k%
OPEN "clients",A,name$,tel$
DO
CLS
AT 1,7
PRINT "Press a key to"
PRINT "step to next record"
PRINT "or Q to quit"
AT 2,3 :PRINT A.name$
AT 2,4 :PRINT A.tel$
NEXT
IF EOF
AT 1,6 :PRINT "EndOfFile"
FIRST
ENDIF
k%=GET
UNTIL k0/0=0/0Q OR k0/0=0/0q
CLOSE
ENDP

Arctangent
Usage: a=ATAN(x)

Returns the arc tangent, or inverse tangent (TAN-1) of x.
The number returned will be an angle in radians. To
convert the angle to degrees, use the DEG function.

Moves back one record in the data file

140

BEEP

BEGINTRANS

OPL COMMAND LIST

Usage: BACK

Makes the previous record in the current data file the
current record.

If the current record is the first record in the file, then
the current record does not change.

Sounds the buzzer
Usage: BEEP time%,pitch%

Sounds the buzzer. The beep lasts for time%/32 sec-
onds, so for a beep a second long make time%=32, etc.
The maximum is 3840 (2 minutes).

The pitch (frequency) of the beep is 512/
(pitch%+1) kHz.

BEEP 5,300 gives a comfortably pitched beep.

If you make time% negative, BEEP first checks
whether the sound system is in use (perhaps by another
OPL program) and returns if it is. Otherwise, BEEP waits
until the sound system is free.

Example (a scale from middle C):

PROC scale:
LOCAL freq,n% REM n% relative to middle A
n%=3 REM start at middle C

WHILE n%<16
freq=440*2**(n%/12.0) REM middle A = freq
440Hz
BEEP 8,512000/freg-1.0
nN%=n%+1
IF n%=4 OR n%=6 OR n%=9 OR n%=11 OR
n%=13
n%=n%+1
ENDIF
ENDWH
ENDP

Alternatively, sound the buzzer with this statement:
PRINT CHR$(7). This produces a click sound.

Note: This command is deprecated from Symbian OS
v6.0 onwards. Instead, developers should look at the
MediaServer OPX or similar to generate sounds.

Begins a transaction on a database
Usage: BEGINTRANS

BOOKMARK

BREAK

BUSY

OPL COMMAND LIST 141

Begins a transaction on the current database. The pur-
pose of this is to allow changes to a database to be
committed in stages. Once a transaction has been
started on a view (or table) then all database keywords
will function as usual, but the changes to that view will
not be made until COMMITTRANS is used.

See also COMMITTRANS, ROLLBACK, INTRANS.

Places a bookmark on the current record
Usage: b%=BOOKMARK

Puts a bookmark at the current record of the current
database view. The value returned can be used in
GOTOMARK to make the record current again. Use
KILLMARK to delete the bookmark.

Breaks out of a control loop
Usage: BREAK

Makes a program performing a DO...UNTIL or
WHILE...ENDWH loop exit the loop and immediately
execute the line following the UNTIL or ENDWH
statement.

Example:

DO

IF a=b
BREAK
ENDIF

UNTIL a=b
Rem BREAK command will take you to here
X%=3

Busy message

Usage: any of

BUSY str$,c%,delay%
BUSY str$,c%

BUSY str$

BUSY OFF

142

BYREF

CANCEL

CAPTION

OPL COMMAND LIST

BUSY str$ displays str$ in the bottom left of the screen,
until BUSY OFF is called. Use this to indicate ‘Busy’
messages, usually when an OPL program is going to be
unresponsive to key presses for a while.

If c% is given, it controls the corner in which the
message appears:

KBusyTopLeft% 0 top left
KBusyBottomLeft% 1 bottom left (default)
KBusyTopRight% 2 top right
KBusyBottomLeft% 3 bottom right

These corner value constants are supplied in Const.oph.

delay% specifies a delay time (in half seconds) before
the message should be shown. Use this to prevent ‘Busy’
messages from continually appearing very briefly on
the screen.

Only one message can be shown at a time. The
maximum string length of a BUSY message is 80 charac-
ters, given by Const.oph’s KBusyMaxtext%. An ‘Invalid
argument’ error is returned for any value of str$ longer
than this.

KBusyMaxtext% 80 maximum length of a
BUSY message

Passes a variable by reference

Usage: BYREF variable

Passes a variable by reference to an OPX procedure
when used in a procedure argument list. This means
that the value of the variable may be changed by
the procedure.

See the OPX header files for more details.

Cancels a database transaction
Usage: CANCEL

Marks the end of a database’s INSERT or MOD-
IFY phase and discards the changes made during
that phase.

Sets an application’s caption

Usage: CAPTION caption$,languageCode%

OPL COMMAND LIST 143

Specifies an application’s public name (or caption) for
a particular language, which will appear below its icon
on the Extras bar and in the list of ‘Programs’ in the
‘New File’ dialog (assuming the setting of FLAGS allows
these) when the language is that used by the machine.
CAPTION may only be used inside an APP..ENDA
construct.

The language code specifies for which language
variant the caption should be used, so that the cap-
tion need not be changed when used on a different
language machine. If used, for whatever language,
CAPTION causes the default caption given in the APP
declaration to be discarded. Therefore CAPTION state-
ments must be supplied for every language in which
the application is liable to be used, including the lan-
guage of the machine on which the application is
originally developed.

The values of the language code should be one of
the following:

KLangEnglish% 1 KLangPortuguese% 13
KLangFrench% 2 KLangTurkish% 14
KLangGerman% 3 KLanglcelandic% 15
KLangSpanish% 4 KLangRussian% 16
KLangltalian% 5 KLangHungarian% 17
KLangSwedish% 6 KLangDutch% 18
KLangDanish% 7 KLangBelgianFlemish% 19
KLangNorwegian% 8 KLangAustralian% 20
KLangFinnish% 9 KLangBelgianFrench% 21
KLangAmerican% 10 KLangAustrian% 22
KLangSwissFrench% 11 KLangNewZealand% 23
KLangSwissGerman% 12 KLanglInternationalFrench% 24

CHR$

These constants are supplied in Const.oph.

The maximum length of caption$ is 255 characters.
However, you should bear in mind that a caption longer
than around 8 characters will not fit neatly below the
application’s icon on the Extras bar.

See APP. See also OPL applications.

Converts a character to a string
Usage: a$=CHR$(x%)

Returns the character with character code x%.

144

CLEARFLAGS

CLOSE

CLS

CMD$

OPL COMMAND LIST

You can use it to display characters not easily avail-
able from the keyboard. For example, the instruction
PRINT CHR$(133) displays an ellipsis (...).

Clears system flags
Usage: CLEARFLAGS flags&

Clears the flags given in flags& if they have previously
been set by SETFLAGS, returning to the default.

See SETFLAGS.

Closes the current database view
Usage: CLOSE

Closes the current view on a database. If there are no
other views open on the database then the database
itself will be closed. See SETFLAGS for details of how
to set auto-compaction on closing files.

If you've used ERASE to remove some records,
CLOSE recovers the memory used by the deleted
records, provided it is held either in the internal mem-
ory, or on a memory disk.

Clears the text window
Usage: CLS

Clears the contents of the text window.

The cursor then goes to the beginning of the top
line. If you have used CURSOR OFF the cursor is still
positioned there, but is not displayed.

Command line arguments
Usage: c$=CMD$(a%)

Returns the command line arguments passed when
starting a program. Null strings may be returned. a%
is one of the constant values KCmdAppName%, KCm-
dUsedFile%, or KCmdLetter% defined in Const.oph.
CMD$(KCmdUsedFile%) and CMD$(KCmdLetter%)
are only defined for OPL applications.

The value returned by CMD$ and its meaning
depends on the value of a%:

OPL COMMAND LIST 145

KCmdAppName% 1 returns the full path name used to start

KCmdUsedFile%

running the program

2 returns the full path name of the file to
be used by an OPL application. For
example, if CMD$(3)=R (see below), a
default filename, including path, is
passed in CMD$(2)

KCmdLetter% 3 returns one of the values below, and
indicates the kind of command that
was used to start the application
If an application passes KCmdLetter% to CMD$, the
return value is one of:
KCmdLetterCreate$ "c" application was started as a result of a
Create new file command in the shell
KCmdLetterOpen$ "o application was started by opening a
file belonging to it in the system
screen
KCmdLetterRun$ "R" application was run directly from the

COMMITTRANS

COMPACT

Extras bar, by opening the application
itself in the system screen, or from the
Program editor

The constants are defined in Const.oph.

See also GETCMD$ and OPL applications.

Commits the current database transaction
Usage: COMMITTRANS
Commits the transaction on the current view.

See also BEGINTRANS, ROLLBACK, INTRANS.

Compacts a database file
Usage: COMPACT file$

Compacts the database file$, rewriting the file in place.
All views on the database and hence the file itself
should be closed before calling this command. This
should not be done too often since it uses considerable
processor power.

Compaction can also be done automatically on clos-
ing a file by setting the appropriate flag using SETFLAGS.

146

CONTINUE

CONST

COPY

OPL COMMAND LIST

Jump to loop test condition
Usage: CONTINUE

Makes a program immediately go to the UNTIL...
line of a DO...UNTIL loop or the WHILE... line of
a WHILE...ENDWH loop, i.e. to the test condition. In
this example the CONTINUE will take you back to the
WHILE statement:

WHILE a<b

IF a=c
CONTINUE
ENDIF

ENDWH
See also BREAK.

Declares a constant
Usage: CONST KConstantName=constantValue

Declares constants that are treated as literals, not
stored as data. The declarations must be made out-
side any procedure, usually at the beginning of the
module. KConstantName has the normal type specifi-
cation indicators (%, &, $, or nothing for floating point
numbers). CONST values have global scope, and are
not overridden by LOCAL or GLOBAL variables with
the same name: in fact the translator will not allow
the declaration new variables with a duplicate name.
By convention, all constants should be named with a
leading K to distinguish them from variables.

It should be noted that it is not possible to define
constants with values smaller than —32768 (for inte-
gers) and —214748648 (for long integers) in decimals,
but hexadecimal notation may be used instead (i.e.
values of $8000 and &80000000, respectively).

Copies files
Usage: COPY src$,dest$

Copies the file src$, which may be of any type, to
the file dest$. Any existing file with the name dest$ is

COS

COUNT

CREATE

OPL COMMAND LIST 147

deleted. You can copy across devices. You can also
use wildcards if you wish to copy more than one file at
a time.

If src$ contains wildcards, dest$ may specify either
a filename similarly containing wildcards or just the
device and directory to which the files are to be copied
under their original names.

Example (to copy all the files from internal memory

(in \opl) to d:\me\):
COPY "c:\opl*","d:\me\"

(Remember the final backslash on the directory name.)

Cosine
Usage: c=COS(x)

Returns the cosine of x, where x is an angle in radians.
To convert from degrees to radians, use the RAD
function.

Counts records in the current data file
Usage: c%=COUNT

Returns the number of records in the current data file.
This number will be 0 if the file is empty.

If you try to count the number of records in a
view while updating the view an ‘Incompatible update
mode’ error will be raised (this will occur between
assignment and APPEND/UPDATE or between MOD-
[FY/INSERT and PUT).

Creates a table in a database
Usage: CREATE tableSpec$,log,f1,f2,...

Creates a table in a database. The database is also
created if necessary. Immediately after calling CRE-
ATE, the file and view (or table) is open and ready
for access.

tableSpec$ contains the database filename and
optionally a table name and the field names to be
created within that table. For example:

CREATE "clients FIELDS name(40), tel TO phone", D,
n$, t$

148

CURSOR

OPL COMMAND LIST

The filename is clients. The table to be created within
the file is phone. The comma-separated list, between
the keywords FIELDS and TO, specifies the field names
whose types are specified by the field handles (i.e.
n$, t$).

The name field has a length of 40bytes, as
specified within the brackets that follow it. The
tel field has the default length of 255bytes. This
mechanism is necessary for creating some indexes.
See dBase.opx — Database handling for more details on
index creation.

The filename may be a full file specification of up to
255 characters. A field name may be up to a maximum
of 64 characters long. Text fields have a default length
of 255 bytes.

log specifies the logical filename A to Z. This is used
as an abbreviation for the filename when you use other
data file commands such as USE.

Sets the text cursor

Usage: any of

CURSOR ON

CURSOR OFF

CURSOR id%

CURSOR id°/o,asc°/o,w%,h°/o
CURSOR id%,asc%, w%,h%, type%

CURSOR ON switches the text cursor on at the current
cursor position. Initially, no cursor is displayed.

You can switch on a graphics cursor in a window
by following CURSOR with the ID of the window. This
replaces any text cursor. At the same time, you can also
specify the cursor’s shape, and its position relative to
the baseline of text.

asc% is the ascent — the number of pixels (—128 to
127) by which the top of the cursor should be above
the baseline of the current font. h% and w% (both from
0 to 255) are the cursor’s height and width.

If you do not specify them, the following default
values are used:

asc% current font’s ascent
h% current font’s height
w% KCursorTypeNotFlashing%

DATETOSECS

DATIM$

OPL COMMAND LIST 149

If type% is given, it can have these effects:

KCursorTypeNotFlashing% 2 not flashing
KCursorTypeGrey% 4 grey

These constants are supplied in Const.oph.

You can add these values together to combine
effects — if type% is 6 a grey non-flashing cursor is
drawn. Using 1 for type% just displays a default graph-
ics cursor, as though no type had been specified.

An error is raised if id% specifies a bitmap rather
than a window.

CURSOR OFF switches off any cursor.

Gets the number of seconds since 1/1/1970

Usage: s&=DATETOSECS(yr%,mo%,dy%,hr%,
mn%,sc%)

Returns the number of seconds since 00:00 on 1/1/1970
at the date/time specified.

Raises an error for dates before 1/1/1970.

The value returned is an unsigned long integer.
(Values up to +2147483647, which is 03:14:07 on
19/1/2038, are returned as expected. Those from
+2147483648 upwards are returned as negative
numbers, starting from —2147483648 and increasing
towards zero.)

See also SECSTODATE, HOUR, MINUTE, SECOND.

Current date and time
Usage: d$=DATIM$

Returns the current date and time from the system clock
as a string — for example: "Fri 16 Oct 1992 16:25:30".
The string returned always has this format — 3 mixed-
case characters for the day, then a space, then 2 digits
for the day of the month, and so on.

The string returned by DATIM$ can be parsed with
MID$ using the following values for offsets within
the string:

150

KDatimOffDayName%
KDatimOffDay%
KDatimOffMonth%
KDatimOffYear%
KDatimOffHour%
KDatimOffMinute%
KDatimOffSecond%

OPL COMMAND LIST

1 offset of the day name (Fri)
5 offset of the day of the month (16)
8 offset of the month name (Oct)

12 offset of the year number (1992)
17 offset of the hour (16)

20 offset of the minute (25)

23 offset of the second (30)

These constants are supplied in Const.oph.
Date.opx provides a large set of procedures for
manipulating dates and for accurate timing.

DAY Current day of the month
Usage: d%=DAY

Returns the current day of the month (1 to 31) from the
system clock.

DAYNAME$ Converts a number to a day name
Usage: d$=DAYNAME$(x%)

Converts x%, a number from 1 to 7, to the day
of the week, expressed as a three-letter string. E.g.
d$=DAYNAME$(1) returns MON.

Example:

PROC Birthday:
LOCAL d& m&,y& dWk%

DO

dINIT

dTEXT "","Date of birth",2

dTEXT ™ "eg 23 12 1963",$202

dLONG d&,"Day",1,31

dLONG m&,"Month",1,12

dLONG y&,"Year",1900,2155

IF DIALOG=0 :BREAK :ENDIF

dWk%=DOW(d& m&,y&)

CLS :PRINT DAYNAME$(dWk%),

PRINT d& m&,y&

dINIT dTEXT ", "Again?",$202

dBUTTONS "No",%N,"Yes", %Y
UNTIL DIALOG<>%y

ENDP

See also DOW.

DAYS

DAYSTODATE

dBUTTONS

OPL COMMAND LIST 151

Gets the number of days since 1/1/1900
Usage: d&=DAYS(day%,month%,year%)

Returns the number of days since 1/1/1900.

Use this to find out the number of days between
two dates.

Example:

PROC deadline:
LOCAL a%,b%,c%,deadlin&
LOCAL today&,togo%
PRINT "What day? (1-31)"
INPUT a%
PRINT "What month? (1-12)"
INPUT b%
PRINT "What year? (192?2)"
INPUT c%
deadlin&=DAYS(a%,b%,1900+c%)
today&=DAYS(DAY,MONTH,YEAR)
togo%=deadlin&-today&
PRINT togo%,"days to go"
GET

ENDP

See also dDATE, SECSTODATE.
Date.opx provides a large set of procedures for
manipulating dates and for accurate timing.

Converts the number of days since 1/1/1900 to a date
Usage: DAYSTODATE days&,year%, month%,day%

This converts days&, the number of days since 1/1/1900,
tothe corresponding date, returning the day of the month
to day%, the month to month% and the year to year%.
This is useful for converting the value set by dDATE,
which also gives days since 1/1/1900.

Defines exit keys
Usage: dBUTTONS p1$,k1%, p2$,k2%, p3$,k3%,...

Defines exit keys to go at the bottom or side of a dialog.

One or more exit keys can be defined with a p$,k%
pair. Each pair specifies an exit key; p$ is the text to be
displayed on it, while k% is the keycode of the shortcut

152

OPL COMMAND LIST

key. DIALOG returns the keycode of the key pressed
(in lowercase for letters).

For alphabetic keys, use the % sign — %A means
‘the code of A’, and so on. The shortcut key is then
Ctrl+alphabetic_key. Character codes lists the codes
for keys (such as Tab) that are not part of the character
set. If you use the code for one of these keys, its name
(e.g. Tab, or Enter) will be shown in the key.

The following option flags can be applied to a
button by adding the appropriate constant to the short-
cut’s keycode:

KDButtonNoLabel% $100 button is displayed with no shortcut

key label

KDButtonPlainKey% $200 the key by itself — without the Ctrl

modification — is used for the
shortcut key

There are also constants for some key values:

KDButtonDel% 8 Del
KDButtonTab% 9 Tab
KDButtonEnter% 13 Enter
KDButtonEsc% 27 Esc

KDButtonSpace% 32 Space

These constants are supplied in Const.oph.

If a k% argument is negative, then the key is a
‘Cancel’ key. The corresponding positive value is used
for the key to display and the value for DIALOG to
return, but if you do press this key to exit, the var
variables used in the commands like dEDIT, dTIME,
etc. will not be set. You must negate the shortcut
together with any added flags.

The Esc key will always cancel a dialog box, with
DIALOG returning 0. If you want to show the Esc key
as one of the exit keys, use —KDButtonEsc% as the k%
argument so that the var variables will not be set if Esc
is pressed.

There can be only one dBUTTONS item per dialog.

The buttons take up two lines on the screen. dBUT-
TONS may be used anywhere between dINIT and
DIALOG; the position of its use does not affect the
position of the buttons in the dialog.

This example presents a simple query, returning
‘False’ for No, or ‘True’ for Yes, providing shortcut keys

dCHOICE

OPL COMMAND LIST 153

of N and Y, respectively and without labels beneath
the keys:

PROC query:
dINIT
dTEXT """FORGET CHANGES",2
dTEXT "","Sure?",$202
dBUTTONS "No",-(%N OR $300),"Yes",%Y OR $300
RETURN DIALOG=%y
ENDP

See also dINIT.

Defines a choice list

Usage:

dCHOICE var choice%,p$,list$, matching%

or:

dCHOICE var choice%,p$,list1$+",..."
dCHOICE var choice%,"" list2$+",..."

dCHOICE var choice%,"" listN$

Defines a choice list to go in a dialog.

p$ will be displayed on the left side of the line.
list$ should contain the possible choices, separated by
commas — for example, "No,Yes". One of these will be
displayed on the right side of the line, and the left and
right arrows can be used to move between the choices.

choice% must be a LOCAL or a GLOBAL variable.
It specifies which choice should initially be shown — 1
for the first choice, 2 for the second, and so on. When
you finish using the dialog, choice% is given a value
indicating which choice was selected — again, 1 for the
first choice, and so on.

dCHOICE supports an unrestricted number of items
(up to memory limits). To extend a dCHOICE list, add
a comma after the last item on the line followed by "..."
(three full stops), as shown in the usage above. choice%
must be the same on all the lines, otherwise an error
is raised. For example, the following specifies items i1,
2,3, 4, i5, i6:

154

dDATE

OPL COMMAND LIST

dCHOICE ch%,prompt$,"i1,i2,..."
dCHOICE ch%,","i3,14,..."
dCHOICE ch%,","i5,i6"

If matching% is set to true (KTrue% in Const.oph),
incremental matching will be enabled on the choice
list. If matching% is set to anything else OR omitted
entirely from the dCHOICE line, the choice list will be
constructed with incremental matching turned off.

See also dINIT.

Defines a date edit box
Usage: dDATE var Ig&,p$,min& max&

Defines an edit box for a date, to go in a dialog.

p$ will be displayed on the left side of the line.

lg&, which must be a LOCAL or a GLOBAL vari-
able, specifies the date to be shown initially. Although
it will appear on the screen like a normal date, for
example 15/03/92, Ig& must be specified as "days since
1/1/1900".

min& and max& give the minimum and maximum
values that are to be allowed. Again, these are in days
since 1/1/1900. An error is raised if min& is higher than
max&.

When you finish using the dialog, the date you
entered is returned in Ig&, in days since 1/1/1900.

The system setting determines whether years,
months, or days are displayed first.

See also DAYS, SECSTODATE, DAYSTODATE, dINIT.

DECLARE EXTERNAL Forces error reporting if procedures are used

before they are declared
Usage: DECLARE EXTERNAL

Causes the translator to report an error if any vari-
ables or procedures are used before they are
declared. It should be used at the beginning
of the module to which it applies, before the
first procedure. It is useful for detecting ‘Unde-
fined externals’ errors at translate time rather than
at runtime.

For example, with DECLARE EXTERNAL com-
mented out, the following translates and raises the

OPL COMMAND LIST 155

error Undefined externals, i at runtime. Adding
the declaration causes the error to be detected at
translate time instead:

REM DECLARE EXTERNAL
PROC main:

LOCAL i%

i%=10

PRINT i

GET
ENDP

If you use this declaration, you will need to
declare all subsequent variables and procedures
used in the module, using EXTERNAL.

See also EXTERNAL.

DECLARE OPX Declares an OPX name
Usage:

DECLARE OPX opxname,opxUid&,opxVersion&

END DECLARE

Declares an OPX. opxname is the name of the OPX,
opxUid& its UID, and opxVersion& its version number.

Declarations of the OPX’s procedures should be
made inside this structure.

dEDIT Defines a string edit box
Usage:

dEDIT var str$,p$,len%

or:

dEDIT var str$,p$

Defines a string edit box, to go in a dialog.

p$ will be displayed on the left side of the line.

str$ is the string variable to edit. Its initial contents
will appear in the dialog. The length used when str$
was defined is the maximum length you can type in.

156

dEDITMULTI

OPL COMMAND LIST

len%, if supplied, gives the width of the edit box
(allowing for widest possible character in the font). The
string will scroll inside the edit box, if necessary. If
len% is not supplied, the edit box is made wide enough
for the maximum width str$ could possibly be.

See also dTEXT.

Defines a multi-line edit box

Usage: dEDITMULTI var pData&,p$,widthInChars%,
numLines%,maxLen%,readOnly%

Defines a multi-line edit box to go into a dialog. Nor-
mally the resulting text would be used in a subsequent
dialog, saved to file, or printed using the Printer OPX
(see Printer.opx — Printer and text handling). It is also
possible to paste text into the buffer from other appli-
cations and vice versa, although any formatting or
embedded objects contained in text pasted in will
be removed.

pData& is the address of a buffer to take the edited
data. It could be the address of an array as returned by
ADDR, or of a heap cell as returned by ALLOC (see
ADDR and ALLOC). The buffer may not be specified
directly as a string and may not be read as such. Instead
it should be peeked, byte by byte (see PEEK). The
leading 4 bytes at ptrData& contain the initial number
of bytes of data following. These bytes are also set
by dEDITMULTI to the actual number of bytes edited.
For this reason it is convenient to use a long integer
array as the buffer, with at least 1+(maxLen%+3)/4
elements. The first element of the array then specifies
the initial length.

If an allocated cell is used (probably because more
than 64K is required), the first 4 bytes of the cell must
be set to the initial length of the data. If this length is
not set then an error will be raised. For example, if a
cell of 100 000 bytes is allocated, you would need to
poke a zero long integer in the start to specify that there
is initially no text in the cell. For example:

p&=ALLOC(100000)
POKEL p&,0 REM Text starts at p&+4

Special characters such as line breaks and tab charac-
ters may appear in the buffer:

OPL COMMAND LIST 157

KParagraphDelimiter% $06 paragraph delimiter

KLineBreak% $07 line break

KPageBreak% $08 page break

KTabCharacter% $09 horizontal tab

KNonBreakingTab% $0a non-breaking horizontal tab

KNonBreakingHyphen% $0b non-breaking hyphen

KPotentialHyphen% $0c words will break here with a
hyphen at the end of the line,
if necessary

KNonBreakingSpace% $10 non-breaking space

KPictureCharacter% $0e a picture

KVisibleSpaceCharacter% $0f visible space

These constants are supplied in Const.oph.

The prompt, p$ will be displayed on the left side
of the edit box. widthInChars% specifies the width of
the edit box within which the text is wrapped, using a
notional average character width. The actual number of
characters that will fit depends on the character widths,
with e.g. more ‘i's fitting than ‘w’s. numLines% specifies
the number of full lines displayed. Any more lines will
be scrolled. maxLen% specifies the length in bytes of
the buffer provided (excluding the bytes used to store
the length). readOnly% is an optional argument — if
specified and set to true (KTrue% in Const.oph), the
edit box will be made read only. If omitted or set to
another value, the edit box will not be read only.

The Enter key is used by a multi-line edit box that
has the focus before being offered to any buttons. This
means that Enter can’t be used to exit the dialog, unless
another item is provided that can take the focus without
using the Enter key. Normal practice is to provide a
button that does not use the Enter key to exit a dialog
whenever it contains a multi-line edit box. The Esc key
will always cancel a dialog, however, even when it
contains a multi-line edit box.

The following example presents a three-line edit
box that is about 10 characters wide and allows up to
399 characters:

CONST KLenBuffer%=399

PROC dEditM:
LOCAL buffer&(101)
REM 101=1+(399+3)/4 in integer arithmetic
LOCAL pLen&,pText&

158

DEFAULTWIN

OPL COMMAND LIST

LOCAL i%
LOCAL c%
pLen&=ADDR(buffer&(1))
pText&=ADDR(buffer&(2))

WHILE 1

dINIT "Try dEditMulti"
dEDITMULTI pLen&,"Prompt",10,3,KLenBuffer%
dBUTTONS "Done",%d REM button needed to
exit dialog
IF DIALOG=0 :BREAK :ENDIF
PRINT "Length:";buffer&(1)
PRINT "Text:"
1%=0
WHILE i%<buffer&(1)
Cc%=PEEKB(pText&+i%)
IF c%>=32
PRINT CHR$(c%);
ELSE
REM just print a dot for special characters
PRINT "."
ENDIF
1%=i%+1
ENDWH
ENDWH

ENDP

See also dINIT.

Changes the default window’s color mode
Usage: DEFAULTWIN mode%

Changes the default window’s color mode. The default
window has ID=1, and uses a mode specific to the
hardware capabilities of the Symbian OS phone it
is running on. For example, a 4-grey window (2-
bit, KColorDefWinWin4GrayMode%) is created on
grey-scale machines, and a 256-color (8-bit, KColorDe-
fWin256ColorMode%) window is created on color
screen machines.

The default can be overridden using DEFAULTWIN.

mode% specifies the new color mode:

KColorDefWin2GrayMode% 0 2-grey mode
KColorDefWin4GrayMode% 1 4-grey mode

OPL COMMAND LIST 159

KColorDefWin16GrayMode% 2 16-grey mode
KColorDefWin256GrayMode% 3 256-grey mode
KColorDefWin256ColorMode% 5 256-color mode

DEG

DELETE

Note: The existing constants, KDefWin4ColorMode%
and KDefWin16ColorMode%, are retained for back-
wards compatibility (see below).

These constants are supplied in Const.oph.

Using high-color mode uses more power than using
modes with fewer colors.

You are advised to call DEFAULTWIN once near the
start of your program and nowhere else if you need to
change the color mode of the default window. If it fails
with an ‘Out of memory’ error, the program can then
exit cleanly without losing vital information.

Converts from radians to degrees
Usage: d=DEG(x)

Converts from radians to degrees.

Returns x, an angle in radians, as a number of
degrees. The formula used is: 180*x/PlI.

All the trigonometric functions (SIN, COS, etc.) work
in radians, not degrees. You can use DEG to convert
an angle returned by a trigonometric function back to
degrees. For example:

PROC xarctan:
LOCAL arg,angle
PRINT "Enter argument:";
INPUT arg
PRINT "ARCTAN of",arg,"is"
angle=ATAN(arg)
PRINT angle,"radians"
PRINT DEG(angle),"degrees"
GET

ENDP

To convert from degrees to radians, use RAD.

Deletes files
Usage: DELETE filename$
Deletes any type of file.

160

DELETE

FILE

DFileEditBox%

OPL COMMAND LIST

You can use wildcards, for example, to delete all the
files in D:\OPL:

DELETE "D:\OPL*"
See also RMDIR.

Deletes a table from a database
Usage: DELETE dbase$,table$

This deletes the table table$ from the database dbase$.
To do this all views of the database, and hence the
database itself, must be closed.

Defines a filename edit box or selector

Usage:

dFILE var file$,p$,f%

or:

dFILE var file$,p$,f%, uid1&,uid2&,uid3&

Defines a filename edit box or selector, to go in a
dialog. A ‘Folder” and ‘Disk’ selector are automatically
added on the following lines.

By default no prompts are displayed for the file,
folder, and disk selectors. A comma-separated prompt
list should be supplied. For example, for a filename
editor with the standard prompts use:

dFILE f$,"File,Folder,Disk",1

Flags

% controls the type of file editor or selector, and the
kind of input allowed. You can add together any of the
following values (from Const.oph):

0 use a selector
use an edit box

1
KDFileAllowFolders% 2 allow directory names
4

KDFileFoldersOnly%

directory names only

OPL COMMAND LIST 161

DFileEditorDisallowExisting% 8 disallow existing files
KDFileQueryExisting% 16 query existing files
KDFileAllowNullStrings% 32 allows null string input
KDFileAllowWildCards% 128 obey/allow wildcards
KDFileSelectorWithRom% 256 allow ROM files to be selected

KDFileSelectorWithSystem% 512 allow files in the System folder
to be selected

The first of the list is the most crucial. If you add 1 into
%, you will see a file edit box, as when creating a new
file. If you do not add 1, you will see the ‘matching file’
selector, used when choosing an existing file.

If performing a ‘copy to’ operation, you might use
142416 to specify a file edit box, in which you can
type the name of a directory to copy to, and that will
produce a query if you type the name of an existing file.

If asking for the name of a directory to remove, you
might use 4, to allow an existing directory name only.

‘Query existing’ is ignored if ‘disallow existing’ is
set. These two, as well as ‘allow null string input’, only
work with file edit boxes, not ‘matching file’ selectors.

Restriction by UID

For file selectors, dFILE supports file restriction by UID,
or by type from the user’s point of view. Documents
are identified by three UIDs, identifying which appli-
cation created the document and what kind of file it
is. Specifying all three UIDs will restrict the files as
much as is possible, and specifying fewer will pro-
vide less restriction. You can supply O for uid1& and
uid2& if you only want to restrict the list to uid3&.
This may be useful when dealing with documents from
one of your own applications: you can easily find
out the third UID as it will be the UID you speci-
fied in the APP statement. Note that UIDs are ignored
for editors. For example, if your application has UID
KUidMyApp&, then the following will list only your
application-specific documents:

dFILE f$,p$,f%,0,KUidOplDoc&, KUidMyApp&
REM KUidOplDoc& for OPL docs

Some OPL-related UID values are given in Const.oph.

162

OPL COMMAND LIST

KUidOplInterpreter& 268435575 the OPL interpreter

KUidOplApp&
KUidOplDoc&
KUidOPO&

KUidOplFile&
KUidOpxDII&

dFLOAT

DIALOG

268435572 an OPL app
268435573 an OPL document
268435571 an OPO
268435594 an OPL file
268435549 an OPX

You can always press Tab to produce the full file
selector with a dFILE item.

file$ must be declared to be KDFileNameLen% bytes
long, since filenames may be up to this length. If it is
shorter, an error will be raised.

KDFileNamelLen% 255 maximum filename length
for dFILE

See also dINIT.

Defines an edit box for a floating point number
Usage: dFLOAT var fp,p$,min,max

Defines an edit box for a floating point number, to go
in a dialog.

p$ will be displayed on the left side of the line.

min and max give the minimum and maximum
values that are to be allowed. An error is raised if min
is higher than max.

fp must be a LOCAL or a GLOBAL variable. It
specifies the value to be shown initially. When you
finish using the dialog, the value you entered is returned
in fp.

See also dINIT.

Presents a dialog
Usage: n%=DIALOG

Presents the dialog prepared by dINIT and commands
such as dTEXT and dCHOICE. If you complete the
dialog by pressing Enter, your settings are stored in the
variables specified in ILONG, dCHOICE, etc., although
you can prevent this with dBUTTONS.

If you used dBUTTONS when preparing the dialog,
the keycode that ended the dialog is returned. Other-
wise, DIALOG returns the line number of the item that
was current when Enter was pressed. The top item (or
the title line, if present) has line number 1.

dINIT

KDlgButRight%
KDIgNoTitle%
KDlIgFillScreen%
KDIgNoDrag%

OPL COMMAND LIST 163

If you cancel the dialog by pressing Esc, the variables
are not changed and KDIgCancel% is returned:

KDIgCancel% 0 return value: dialog
was cancelled

See also dINIT.

Initializes a dialog

Usage: any of

dINIT
dINIT title$
dINIT title$,flags%

Prepares for definition of a dialog, canceling any exist-
ing one. Use dTEXT, dCHOICE, etc. to define each item
in the dialog, then DIALOG to display the dialog.

If title$ is supplied, it will be displayed at the top of
the dialog. Any supplied title$ will be positioned in a
grey box at the top of the dialog. flags% can be any
added combination of the following constants:

buttons on the right rather than at the bottom
no title bar

use the full screen

don’t allow the dialog box to be dragged

KDlgDensePack% pack the dialog contents (not buttons) densely

These constants are supplied in Const.oph. Sometimes
these values will be ignored in certain Uls.

It should be noted that dialogs without titles cannot
be dragged regardless of the ‘No drag’ setting. Dense
packing enables more lines to fit on the screen for
larger dialogs.

If an error occurs when adding an item to a dialog,
the dialog is deleted and dINIT needs calling again.
This is necessary to avoid having partially specified
dialog lines. The following code will raise a ‘Structure
fault’ error:

REM ** Faulty OPL fragment **
dINIT
ONERR el
REM bad arg list gives argument error:

164

DIR$

dLONG

OPL COMMAND LIST

dCHOICE ch%, "ChList", "a,b,,,,c"
el:
ONERR OFF
dLONG 1&,"Long",0,12345
DIALOG
Lists files that match a specification

Usage: d$=DIRS$(filespec$)
then d$=DIR$("")

Lists filenames, including subdirectory names, match-
ing a file specification. You can include wildcards in the
file specification. If filespec$ is just a directory name,
include the final backslash on the end, for example,
"\TEMP\". Use the function like this:

DIRS(filespec$) returns the name of the first file match-
ing the file specification

DIR$("") then returns the name of the second file in
the directory

DIR$(") again returns the third, and so on

When there are no more matching files in the directory,
DIR$(") returns a null string.

Example (listing all the files whose names begin with
A in C:\ME\):

PROC dir:
LOCAL d$(255)
d$=DIR$("C:\ME\A*")
WHILE d$<>""
PRINT d$
d$:DIR$(|II|)
ENDWH
GET
ENDP

Defines an edit box for a long integer
Usage: dLONG var Ig&,p$, min& max&

Defines an edit box for a long integer, to go in a dialog.
p$ will be displayed on the left side of the line.
min& and max& give the minimum and maximum

values that are to be allowed. An error is raised if min&

is higher than max&.
lg& must be a LOCAL or a GLOBAL variable. It
specifies the value to be shown initially. When you

DO...UNTIL

DOW

OPL COMMAND LIST 165

finish using the dialog, the value you entered is returned
in lg&.

See also dINIT.

Conditional loop

Usage:

DO
statements...

UNTIL condition

DO forces the set of statements that follow it to exe-
cute repeatedly until the condition specified by UNTIL
is met.

This is the easiest way to repeat an operation a
certain number of times.

Every DO must have its matching UNTIL to end
the loop.

If you set a condition that is never met, the program
will go round and round, locked in the loop forever.

You can escape by pressing Ctrl+Esc, provided you
haven’t set ESCAPE OFF. If you have set ESCAPE OFF,
you will have to return to the Task list, select your
program in the list, and tap ‘Close file’.

See also WHILE...ENDWH.

Gets the day of the week from a date
Usage: d%=DOW!(day%,month%,year%)

Returns the day of the week from 1 (Monday) to 7
(Sunday) given the date.

day% must be between 1 and 31, month% from 1
to 12, and year% from 1900 to 2155.

For example, D%=DOW(4,7,1992) returns KSatur-
day. Values for DOW are supplied in Const.oph:

KMonday%
KTuesday%
KWednesday%
KThursday%
KFriday%
KSaturday%
KSunday%

NO Uk W=

166

dPOSITION

dTEXT

OPL COMMAND LIST

Positions a dialog
Usage: dPOSITION x%,y%

Positions a dialog. Use dPOSITION at any time between
dINIT and DIALOG.

dPOSITION uses two integer values. The first speci-
fies the horizontal position, and the second the ver-
tical. dPOSITION —1,—1 positions to the top left
of the screen; dPOSITION 1,1 to the bottom right;
dPOSITION 0,0 to the center, the usual position for
dialogs.

dPOSITION 1,0, for example, positions to the right-
hand edge of the screen, and centers the dialog half-way
up the screen.

Constants for these values are supplied in Const.oph.

See also dINIT.

Defines text to be displayed in a dialog

Usage: dTEXT p$,body$,t%
or dTEXT p$,body$

Defines a line of text to be displayed in a dialog.

p$ will be displayed on the left side of the line, and
body$ on the right side. If you only want to display
a single string, use a null string ("") for p$, and pass
the desired string in body$. It will then have the whole
width of the dialog to itself. An error is raised if body$
is a null string and the text line is not a separator
(see below).

body$ is normally displayed left-aligned (although
usually in the right column). You can override this by
specifying t%:

KDTextLeft% 0 left-align body$
KDTextRight% 1 right-align body$
KDTextCentre% 2 center body$

Alignment of body$ is only supported when p$ is null,
with the body being left-aligned otherwise. In addition,
you can add any or all of the following three values to
t%, for these effects:

KDTextLineBelow% $200 draw a line below this item
KDTextAllowSelection% $400 allow this item’s prompt (not its

body text) to be selected

OPL COMMAND LIST 167

KDTextSeparator% $800 specify this item as a text

dTIME

KDTimeWithSeco

KDTimeDuration%

separator. p$ and body$ must
both be the null string for this to
take effect

The separator counts as an item in the value returned
by DIALOG.
These constants are supplied in Const.oph.

See also dEDIT, dINIT.

Defines an edit box for a time
Usage: dTIME var Ig&,p$,t%,min&, max&

Defines an edit box for a time, to go in a dialog.

p$ will be displayed on the left side of the line.

Ig&, which must be a LOCAL or a GLOBAL vari-
able, specifies the time to be shown initially. Although
it will appear on the screen like a normal time, for
example 18:27, 1g& must be specified as seconds after
00:00. A value of 60 means one minute past midnight;
3600 means one o’clock, and so on.

min& and max& give the minimum and maximum
values that are to be allowed. Again, these are in
seconds after 00:00. An error is raised if min& is higher
than max&.

When you finish using the dialog, the time you
entered is returned in Ig&, in seconds after 00:00.

The display in the time editor can be controlled via
the t% argument. Add together one or more of the
following constants from Const.oph to form t%:

time editor shows seconds
editing a duration

nds%

1
2

KDTimeNoHours% 4 time editor does not show hours
8

KDTime24Hour%

time editor uses the 24-hour clock

This can be bulky to specify, however, so the following
convenience constants are also defined:

KDTimeAbsNoSecs% 0 absolute + no seconds

KDTimeAbsWithS

ecs% absolute + seconds

1
KDTimeDurationNoSecs% 2 duration + no seconds
3

KDTimeDurationWithSecs%

duration + seconds

For example, 03:45 represents an absolute time, while
3 hours 45 minutes represents a duration.

168

dXINPUT

EDIT

OPL COMMAND LIST

Absolute times are displayed in 24-hour or a.m./p.m.
format according to the current system setting. 8 dis-
plays the time in 24-hour clock, regardless of the
system setting.

Absolute times always display a.m. or p.m. as appro-
priate, unless the 24-hour clock is being used. Dura-
tions never display a.m. or p.m. Note, however, that if
you use the flag 4 (no hours) then the a.m./p.m. symbol
will be displayed and the flag 2 must be added if you
wish to hide it.

See also dINIT.

Defines an exit box for a secret string
Usage: dXINPUT var str$,p$,seed%

Defines a secret string edit box, such as for a password,
to go in a dialog.

p$ will be displayed on the left side of the line.

str$ is the string variable to take the string you type.

KDXInputMaxLen% 16 maximum length
of str$

This constant is supplied in Const.oph.

Initially the dialog does not show any characters
for the string unless seed% is set to true (KTrue%
in Const.oph); if seed% is omitted or set to another
value, the initial contents of str$ are ignored. A special
symbol will be displayed for each character you type,
to preserve the secrecy of the string.

See also dINIT.

Displays a string for editing
Usage: EDIT a$

Displays a string variable that you can edit directly on
the screen. All the usual editing keys are available: the
arrow keys move along the line, Esc clears the line, and
so on.

When you have finished editing, press Enter to con-
firm the changes. If you press Enter before you have
made any changes, then the string will be unaltered.

If you use EDIT in conjunction with a PRINT state-
ment, use a comma at the end of the PRINT statement,

OPL COMMAND LIST 169

so that the string to be edited appears on the same line
as the displayed string:

PRINT "Edit address: ",
EDIT A.address$
UPDATE

TRAP EDIT

If the Esc key is pressed while no text is on the input line,
the ‘Escape key pressed’ error (—144) will be returned
by ERR provided that the EDIT has been trapped. You
can use this feature to enable the user to press the Esc
key to escape from inputting a string.

See also INPUT, dEDIT.

ELSE/ELSEIF/ENDIF See IF

ENDA

ENDV

ENDWH

EOF

See IF.

See APP
See APP.

See VECTOR
See VECTOR.

See WHILE
See WHILE.

Checks for end-of-file
Usage: e%=EOF

Finds out whether you're at the end of a file yet.

Returns —1 (true) if the end of the file has been
reached, or O (false) if it hasn’t.

When reading records from a file, you should test
whether there are still records left to read, otherwise
you may get an error.

Example:

PROC eoftest:
OPEN "myfile",A,a$,b%
DO

170

ERASE

ERR

ERRS

OPL COMMAND LIST

PRINT A.a$
PRINT A.b%
NEXT
PAUSE -40
UNTIL EOF
PRINT "The last record"
GET
RETURN
ENDP

Erases a record in the current data file
Usage: ERASE

Erases the current record in the current file.

The next record is then current. If the erased record
was the last record in a file, then following this com-
mand the current record will be null and EOF will
return true.

Number of last error
Usage: €%=ERR

Returns the number of the last error which occurred, or
0 if there has been no error.
Example:

PRINT "Enter age in years'
age:
TRAP INPUT age%
IF ERR=-1
PRINT "Number please:"
GOTO age
ENDIF

You can set the value returned by ERR to O (or any
other value) by using TRAP RAISE 0. This is useful for
clearing ERR.

See also ERR$, ERRX$. See Runtime errors — Hand-
ling errors reported while running programs for full
details, and OPL error values for the list of error numbers
and messages.

Looks up an error message by number
Usage: e$=ERR$(x%)

ERRX$

ESCAPE OFF

OPL COMMAND LIST 171

Returns the error message for the specified error
code x%.

ERRS$(ERR) gives the message for the last error that
occurred. Example:

TRAP OPEN "\FILE" A field1$
IF ERR

PRINT ERR$(ERR)

RETURN
ENDIF

See also ERR, ERRX$. See Runtime errors — Handling
errors reported while running programs for full details,
and OPL error values for the list of error numbers
and messages.

Gets an extended error message
Usage: x$=ERRX$

Returns the current extended error message (when an
error has been trapped), e.g.

"Error in
MODULE\PROCEDURE,EXTERNT,EXTERN2,...”

which would have been presented as an alert if the error
had not been trapped. This allows the list of missing
externals, missing procedure names, etc. to be found
when an error has been trapped by a handler.

See Runtime errors — Handling errors reported while
running programs for full details, and OPL error values
for the list of error numbers and messages.

Disables Ctrl+Esc
Usage:

ESCAPE OFF
ESCAPE ON

ESCAPE OFF stops Ctrl+Esc being used to break out of
the program when it is running. ESCAPE ON enables
this feature again.

ESCAPE OFF takes effect only in the procedure in
which it occurs, and in any subprocedures that are

172

EVAL

EXIST

OPL COMMAND LIST

called. Ctrl+Esc is always enabled when a program
begins running.

If your program enters a loop that has no logical exit,
and ESCAPE OFF has been used, you will have to go
to the Task list, move to the program name, and select
Close file.

Evaluates a mathematical expression
Usage: d=EVAL(s$)

Evaluates the mathematical string expression s$ and
returns the floating point result. s$ may include any
mathematical function or operator. Note that floating
point arithmetic is always performed.

EVAL runs in the "context" of the current procedure,
so globals and externals can be used in s$, procedures
in loaded modules can be called, and the current
values of gX and gY can be used, etc. LOCAL variables
cannot be used in s$ (because the translator cannot
deference them).

For example:

DO
AT 10,5 :PRINT "Calc:",
TRAP INPUT n$
IF n$="":CONTINUE :ENDIF
IF ERR=-114 :BREAK :ENDIF
CLS :AT 10,4
PRINT n$;"=":EVAL(n$)
UNTIL O

See also VAL.

Checks if a file exists
Usage: e%=EXIST(filename$)

Checks to see that a file exists. Returns KTrue% if the
file exists and KFalse% if it doesn’t.

Use this function when creating a file to check that
a file of the same name does not already exist, or when
opening a file to check that it has already been created:

IF NOT EXIST("CLIENTS")
CREATE "CLIENTS", A,names$
ELSE

EXP

EXTERNAL

OPL COMMAND LIST 173

OPEN "CLIENTS",A,names$
ENDIF

Exponential
Usage: e=EXP(x)

Returns ex — that is, the value of the arithmetic constant
e (2.71828...) raised to the power of x.

Declares procedure prototypes and external variables

Usage: EXTERNAL variable
or EXTERNAL prototype

Required if DECLARE EXTERNAL is specified in the
module.

The first usage declares a variable as external. For
example, EXTERNAL screenHeight%.

The second usage declares the prototype of a proce-
dure (prototype includes the final : and the argument
list). The procedure may then be referred to before
it is defined. This allows parameter type-checking to
be performed at translate time rather than at runtime,
and also provides the necessary information for the
translator to coerce numeric argument types. This is
reasonable because OPL does not support argument
overloading. The same coercion occurs as when calling
the built-in keywords.

Following the example of C and C++, you would
normally provide a header file declaring prototypes of
all the procedures and INCLUDE this header file at the
beginning of the module that defines the declared pro-
cedures to ensure consistency. The header file would
also be INCLUDEd in any other modules that call these
procedures. Then you should use DECLARE EXTERNAL
at the beginning of modules that include the header file
so that the translator can ensure these procedures are
called with correct parameter types, or types that can
be coerced.

The following is an example of usage of DECLARE
EXTERNAL and EXTERNAL:

DECLARE EXTERNAL
EXTERNAL myProc%:(i%,1&)

174

FIRST

FIX$

OPL COMMAND LIST

REM or INCLUDE "myproc.oph" that defines all your
procedures

PROC test:
LOCAL i%,j%,s$(10)

REM j% is coerced to a long integer
REM as specified by the prototype.
myProc%:(i%,j%)

REM translator ‘Type mismatch’ error:
REM string can’t be coerced to numeric type
myProc%:(i%,s$)

REM wrong argument count gives translator error
myProc%:(i%)
ENDP

PROC myProc%:(i%, &)
REM Translator checks consistency with prototype
above

ENDP
See DECLARE EXTERNAL.

Positions to the first record
Usage: FIRST

Positions to the first record in the current view.

Converts a number to a string
Usage: f$=FIX$(x,y%,z%)

Returns a string representation of the number x, to y%
decimal places. The string will be up to z% charac-
ters long.

Example: FIX$(123.456,2,7) returns "123.46".

If z% is negative then the string is right-justified,
for example FIX$(1,2,-6) returns "1.00" where there are
two spaces to the left of the 1.

If z% is positive then no spaces are added, for
example FIX$(1,2,6) returns "1.00".

If the number x will not fit in the width specified by
z%, then the string will just be asterisks, for example
FIX$(256.99,2,4) returns "****",

FLAGS

OPL COMMAND LIST 175
See also GEN$, NUM$, SCI$.

Sets an application’s system flags
Usage: FLAGS flags%

Used within an APP...ENDA construct to provide the
OPL application’s system flags. Possible values for
flags% are:

KFlagsAppFileBased% 1 this application can create files. It will

be included in the list of applications
offered when the user creates a new
file from the System screen

KFlagsApplsHidden% 2 this application does not appear on the

FLT

FONT

Extras bar. It is very unusual to have
this flag set

These constants can be added together to combine their
effects. They are supplied in Const.oph.

FLAGS may only be used within the APP...ENDA
construct.

See also APP and OPL applications.

Converts an integer to a floating point number
Usage: f=FLT(x&)

Converts an integer expression (either integer or long
integer) into a floating point number. Example:

PROC gamma:(v)

LOCAL c

c=3E8

RETURN 1/SQR(1-(v*v)/(c*c))
ENDP

You could call this procedure like this: gamma:
(FLT(a%)) if you wanted to pass it the value of an integer
variable without having first to assign the integer value
to a floating point variable.

See also INT and INTF.

Sets the text window’s font and style

Usage: FONT id&,style%

176

KgStyleNormal%
KgStyleBold%
KgStyleUnder%
KgStylelnverse%

KgStyleDoubleHeight%
KgStyleMonoFont%

KgStyleltalic%

FREEALLOC

gAT

gBORDER

OPL COMMAND LIST

Sets the text window’s font and style. Font constants
are provided in Const.oph, as they can be machine-
dependent.

Standard font styles are:

0 normal style

1 bold

underline

inverse video

double height

mono-spaced (typewriter) font
italic

N OO~ DN

1
3
All these constants are provided in Const.oph.

Frees a previously allocated cell
Usage: FREEALLOC pcell&
Frees a previously allocated cell at pcell&.

See also SETFLAGS if you require the 64K limit to be
enforced. If the flag is set to restrict the limit, pcell& is
guaranteed to fit into a short integer.

Sets the drawing position using absolute coordinates
Usage: gAT x%,y%

Sets the current position using absolute coordinates.
gAT 0,0 moves to the top left of the current drawable.

See also gMOVE.

Draws a border

Usage: gBORDER flags%, width%, height%
or gBORDER flags%

gBORDER is included for compatibility with older
versions of OPL, however, it is recommended that pro-
grammers use gCREATE and gXBORDER in preference
to this function (see below).

Draws a one-pixel wide, black border around the
edge of the current drawable. If width% and height%
are supplied, a border shape of this size is drawn with
the top left corner at the current position. If they are not
supplied, the border is drawn around the whole of the
current drawable.

OPL COMMAND LIST 177

flags% controls three attributes of the border: a
shadow to the right and beneath, a one-pixel gap all
around, and the type of corners used. Its value can be
built from:

KBordSglShadow% 1 single pixel shadow
KBordSglGap% 2 removes a single pixel shadow
KBordDblShadow% 3 double pixel shadow
KBordDblGap% 4 removes a double pixel shadow
KBordGapAlIRound% $100 one pixel gap all round
KBordRoundCorners% $200 more rounded corners
KBordLosePixel% $400 less rounded corners (only one

gBOX

pixel missing at the corner)

These constants are supplied in Const.oph.

These shadows do not appear in the same way
that shadows on other objects, such as dialogs and
menu panes, appear. To display such shadows on a
window, you must specify them when using gCREATE.
Hence you should use gCREATE (and gXBORDER) in
preference to gBORDER.

You can combine the values to control the three
different effects. (1, 2, 3, and 4 are mutually exclusive;
you cannot use more than one of them.) For example,
for rounded corners and a double pixel shadow, use
flags%=$203.

Set flags%=0 for no shadow, no gap, and sharper
corners.

For example, to de-emphasize a previously empha-
sized border, use gBORDER with the shadow turned
off:

gBORDER 3 REM show border
GET
gBORDER 4 REM border off

See also gXBORDER.

Draws a box
Usage: gBOX width%,height%

Draws a box from the current position, width% to
the right and height% down. The current position
is unaffected.

178

KButtS5%

KButtS5Raised%

OPL COMMAND LIST
any of

gBUTTON text$,type%, w%,h%,state%

gBUTTON text$,type%, w%,h%,state%,bmpld&

gBUTTON text$,type%, w%,h%,state%,bmpld&,
maskld&

gBUTTON text$,type%, w%,h%,state%,bmpld&,
maskld&,layout%

Draws a 3D black and grey button at the current
position in a rectangle of the supplied width w% and
height h%, which fully encloses the button in all its
states. text$ specifies up to 64 characters to be drawn
in the button in the current font and style. You must
ensure that the text will fit in the button.

The type% argument specifies the type of button
to be drawn. For Symbian OS, this type% should be
KButtS5%, although different values are supported by
gBUTTON for backwards compatibility. Not all button
states are supported by older button types.

2 the standard Symbian OS button
type. This is the style of button
used on the 9210 and other
devices

The state% argument gives the button state:

0 a raised button

KbuttS5SemiPressed% 1 a semi-depressed (flat) button

KbuttS5Sunken%

gCIRCLE

gCLOCK

2 a fully-depressed (sunken) button
These constants are provided in Const.oph.

Draws a circle

Usage: gCIRCLE radius%
or gCIRCLE radius%,fill%

Draws a circle with the center at the current position in
the current drawable. If the value of radius% is negative
then no circle is drawn.

If fill% is supplied and if fill%<>0 then the circle is
filled with the current pen color.

See gELLIPSE, gCOLOR.

Draws or removes a clock

OPL COMMAND LIST 179
Usage: any of

gCLOCK ON/OFF

gCLOCK ON,mode%

gCLOCK ON,mode%,offset&

gCLOCK ON,mode%,offset&,format$

gCLOCK ON,mode%,offset&,format$,font&
gCLOCK ON,mode%,offset&,format$,font&,style%

Displays or removes a clock showing the system time.

The current position in the current window is used.

Only one clock may be displayed in each window.
mode% controls the type of clock:

KgClockS5System% 6 black and grey medium, system
setting

KgClockS5Analog% 7 black and grey medium, analog

KgClockS5Digital% 8 second type medium, digital

KgClockS5LargeAnalog% 9 black and grey, extra large,
analog

KgClockS5Formatted% 11 formatted digital

The digital clock (mode%=KgClockS5Digital%) auto-
matically displays the day of the week and day of the
month below the time. The extra large analog clock
(mode%=KgClockS5LargeAnalog%) automatically dis-
plays a second hand.

Warning: Do not use gSCROLL to scroll the region
containing a clock. When the time is updated, the
old position would be used. The whole window may,
however, be moved using gSETWIN.

Digital clocks display in 24-hour or 12-hour mode
according to the system-wide setting.

offset& specifies an offset in minutes from the system
time to the time displayed. This allows you to display
a clock showing a time other than the system time. A
flag that has the value $100 may be ORed with mode%
so that offset& may be specified in seconds rather than
minutes. The offset is a long integer to enable a whole
day to be specified when the offset is in seconds.

If these arguments are not supplied, mode% is taken
as 1 and offset& as 0.

The system setting for the clock type (i.e. digital or
analog) can be changed by an OPL program using the
procedure LCSETCLOCKFORMAT: in the Date OPX

180

OPL COMMAND LIST

(see Date.opx — Date and time manipulation). This
function should be used to implement, for example,
tapping a toolbar clock to change its type.

format$, font%, and style% are used only for format-
ted digital clocks (mode% 11 on EPOC). The values for
font& and style% are as for gFONT and gSTYLE. The
default font for gCLOCK is the system font. The default
style is normal (0).

For the formatted digital clock, a format string (up
to 255 characters long) specifies how the clock is to
be displayed. The format string contains a number of
format specifications in the form of a % followed by a
letter. Uppercase or lowercase may be used.

The format string may contain the following symbols
to obtain the required effects:

%%
Insert a single % character in the string

0/0*

Abbreviate following item. (The asterisk should be
inserted between the % and the number or letter,
e.g. %*1.) In most cases this amounts to omitting any
leading zeros, for example, if it is the first of the month
"%F %*M" will display as 1 rather than 01.

%:n

Insert a system time separator character. n is an inte-
ger between zero and three inclusive, indicating which
time separator character is to be used. For European
time settings, only n=1 and n=2 are used, giving the
hours/minutes separator and minutes/seconds separa-
tor, respectively.

%/n

Insert a system date separator character. n is an inte-
ger between zero and three inclusive, indicating which
date separator character is to be used. For European
time settings, only n=1 and n=2 are used, giving the
day/month separator and month/year separator, respec-
tively.

%1

Insert the first component of a three-component date
(i.e. a date including day, month, and year) where the
order of the components is determined by the system
settings. The possibilities are: dd/mm/yyyy (European),
mm/dd/yyyy (American), yyyy/mm/dd (Japanese).

OPL COMMAND LIST 181

%2

Insert the second component of a three-component
date, where the order has been determined by the
system settings. See %!1.

%3

Insert the third component of a three-component date,
where the order has been determined by the system
settings. See %1.

%4

Insert the first component of a two-component date
(i.e. a date including day and month only), where the
order has been determined by system settings. The pos-
sibilities are: dd/mm (European), mm/dd (American),
mm/dd (Japanese).

%5

Insert the second component of a two-component date,
where the order has been determined by the system
settings. See %4.

%A

Insert a.m. or p.m. according to the current language
and time of day. Text is printed even if 24-hour clock
is in use. Text may be specified to be printed before
or after the time, and a trailing or leading space as
appropriate will be added. The abbreviated version
(%*A) removes this space.

Optionally, a minus or plus sign may be inserted
between the % and the A. This operates as follows:
%-A causes a.m./p.m. text to be inserted only if
the system setting of the a.m./p.m. symbol position
is set to display before the time. Similarly, %-+A causes
a.m./p.m. text to be inserted only if the system setting
of the a.m./p.m. symbol is set to display after the time.
No a.m./p.m. text will be inserted before the time if
a + is inserted in the string. For example, you could
use "%—-A%H%:1%T%+A" to insert the a.m./p.m. sym-
bol either before or after the time, according to the
system setting. %+A and %-A cannot be abbrevi-
ated.

%B

As %A, except that the a.m./p.m. text is only inserted
if the system clock setting is 12 hour. (This should be
used in conjunction with %).)

182

OPL COMMAND LIST

%D
Insert the two-digit day number in month (in conjunc-
tion with %1, etc.).

%E
Insert the day name. Abbreviation is language-specific
(3 letters in English).

%F

Use this at the beginning of a format string to make the
date/time formatting independent of the system setting.
This fixes the order of the following day/month/year
component(s) in their given order, removing the need
to use %1 to %5, allowing individual components of
the date to be printed. (No abbreviation.)

%H
Insert the two-digit hour component of the time in
24-hour clock format.

%l

Insert the two-digit hour component of the time in 12-
hour clock format. Any leading zero is automatically
suppressed, regardless of whether an asterisk is inserted
or not.

%)

Insert the two-digit hour component of time in either
12- or 24-hour clock format depending on the corre-
sponding system setting. When the clock has been set
to 12-hour format, the hour’s leading zero is automati-
cally suppressed, regardless of whether an asterisk has
been inserted between the % and J.

%M
Insert the two-digit month number (in conjunction with
%1, etc.).

%N

Insert the month name (in conjunction with %1, etc.).
When using system settings (i.e. not using %F) this
causes all months following %N in the string to be writ-
ten in words. When using fixed format (i.e. when using
%F), %N may be used alone to insert a month name.
Abbreviation is language-specific (3 letters in English).

%S
Insert the two-digit second component of the time.

OPL COMMAND LIST 183

%T
Insert the two-digit minute component of the time.

%W
Insert the two-digit week number in year, counting the
first (part) week as week 1.

%X

Insert the date suffix. When using system settings (i.e.
not using %F), this causes a suffix to be put on any date
following %X in the string. When using fixed format
(i.e. using %F), %X following any date appends a suffix
for that particular date. Cannot be abbreviated.

%Y

Insert the four-digit year number (in conjunction with
%1, etc.). The abbreviation is the last two digits of
the year.

%”Z
Insert the three-digit day number in year.

Some examples of the use of these format strings
are as follows. The example use is 1:30:05 p.m. on
Wednesday, 1st January 1997, with the system setting
of European dates and with a.m./p.m. after the time:

"%-A%I:%T:%S%+A" will print the time in 12-hour
clock, including seconds, with the a.m./p.m. either
inserted before or after the time, depending on the
system setting. So the example time would appear as
1:30:05 p.m.

"%F%E %*D%X %N %Y" will print the day of the
week followed by the date with suffix, the month as
a word, and the year. For example, Wednesday 1st
January 1997.

"%E %D%X%N%Y %1%2%3" will use the locale
setting for ordering the elements of the date, but will
use a suffix on the day and the month in words. For
example, Wednesday 01st January 1997.

"%*E %*D%X%*N%*Y %1 %2 '%3" will be similar
to 3, but will abbreviate the day of the week, the day,
the month, and the year, so the example becomes "Wed
Tst Jan 97".

"%M%Y %D % 1%/0%2 %/0%3" will appear as 01/01/
1997. This demonstrates that the ordering of the %D,
%M, and %Y is irrelevant when using locale-dependent
formatting. Instead the ordering of the date components
is determined by the order of the %1, %2, and %3
formatting commands.

184

gCLOSE

gCLS

gCOLOR

OPL COMMAND LIST

style% may take any of the values used to specify
gSTYLE, other than 2 (underlined).

A note should also be made that a ‘General failure’
error will result if you attempt to use an invalid format.
Invalid formats include using %: and %/ followed by
0 or 3 when in European locale setting (when these
separators are without meaning) and using %+ and
%— followed by characters other than A or B.

Closes a drawable
Usage: gCLOSE id%

Closes the specified drawable that was previously
opened by gCREATE, gCREATEBIT, or gLOADBIT.

If the drawable closed was the current drawable, the
default window (ID=1) becomes current.

An error is raised if you try to close the default
window.

Clears the current drawable
Usage: gCLS

Clears the whole of the current drawable and sets the
current position to 0,0, its top left corner.

Sets the pen color
Usage: gCOLOR red%,green%,blue%

Sets the pen color of the current window. The red%,
green%,blue% values specify a color that will be
mapped to white, black, or one of the greys on non-
color screens. Note that if the values of red%, green%,
and blue% are equal, then a pure grey results, ranging
from black (0) to white (255).

See also gCOLORBACKGROUND, gCOLORINFO.

gCOLORBACKGROUND Sets the background color

Usage: gCOLORBACKGROUND red%,
green%,blue%

Sets the background, or ‘paper’ color of the
current graphics window. Subsequent graph-
ics commands in the window will use this
background color. The red%,green%,blue%
values specify a color that will be mapped to

OPL COMMAND LIST 185

white, black, or one of the greys on non-
color screens. Note that if the values of
red%, green%, and blue% are equal, then
a pure grey results, ranging from black (0) to
white (255).

For example:

gUSE 1

gCOLOR $ff,0,0

gCOLORBACKGROUND 0,0, $ff

gAT 20,20

gPRINTB "Red text on a blue
background",250

See also gCOLORINFO, gCOLOR.

gCOLORINFO Gets the Symbian OS phone’s color information
Usage: gCOLORINFO var cinfo&()

Interrogates the system to find the maximum num-
ber of colors available on the Symbian OS phone.
cinfo&() must be at least seven elements long, and
on gCOLORINFO’s return will contain information
indexed by the following values:

gColorInfoADisplayMode% 1 default window mode
gColorInfoANumColors% 2 number of colors supported
gColorInfoANumGreys% 3 number of greys supported

The remaining four elements are reserved for future use.
The default window mode will be one of the follow-
ing values:

KDisplayModeNone%

KDisplayModeGray2% 2 greys
KDisplayModeGray4% 4 greys
KDisplayModeGray16% 16 greys
KDisplayModeGray256% 256 greys
KDisplayModeColor16% 16 colors
KDisplayModeColor256% 256 colors

KDisplayModeColor64K%
KDisplayModeColor16M%
KDisplayModeRGB%
KDisplayModeColor4K%

65,536 colors (16-bit color)
16,777,216 colors (24-bit color)

QWO NOODULhA W —=O

—_

4096 colors (12-bit color)

For example, to find out about the color depth of the
display on your device:

186

gCOPY

gCREATE

OPL COMMAND LIST

include "Const.oph"

proc ColTest:
local c&(3)
gColorinfo c&()
print c&(gColorInfoADisplayMode%),
print c&(gColorinfoANumColors%),
print c&(gColorinfoANumGreys%)
get

endp

See also gCOLORBACKGROUND, gCOLOR.

Copies a rectangular area
Usage: gCOPY id%,x%,Yy%,w%,h%,mode%

Copies a rectangle of the specified size (width w%,
height h%) from the point x%,y% in drawable id%, to
the current position in the current drawable.

Itis inadvisable to use gCOPY to copy from windows
as it is very slow. It should only be used for copying
from bitmaps to windows or other bitmaps.

As this command can copy both set and clear pixels,
the same modes are available as when displaying text.
Possible values for mode% are:

KtModeSet% 0 Set
KtModeClear% 1 Clear
KtModelnvert% 2 Invert
KtModeReplace% 3 Replace

Set, Clear, and Invert act only on set pixels in the
pattern; Replace copies the entire rectangle, with set
and clear pixels.

The current position is not affected in either window.

Creates a window

Usage: either of
idO/O:gCREATE(XO/O,YO/O,WO/O,hO/O,VO/O)
id%:gCREATE(x%,y"/o,W"/o,h°/o,v%,f|ags°/o)

Creates a window with specified position and size
(width w%, height h%), and makes it both current and
foreground. The current position is set initially to (0,0),
the top left corner.

OPL COMMAND LIST 187

The v% argument specifies whether the window is
initially visible:

KgCreatelnvisible% 0 invisible window
KgCreateVisible% 1 visible window

gCREATE returns the ID of the window. Window [Ds
are used as arguments to other functions and keywords,
and refer to the newly created window.

Window mode flags

The flags% argument specifies the graphics mode and
shadowing style to use on the window. The defaults are
2-color, with no shadow.

It is simplest to specify flags% as a hexadecimal
number, as its value is a bitwise OR of significant
values.

The least significant 4 bits of flags% (masked by
$000F) give the color mode. The next 4 bits (masked by
$00F0) specify the window’s shadowing. The following
constant values can be added, or ORed to give the first
8 bits of flags%:

KColorgCreate2 GrayMode% $0000 2-grey mode
KColorgCreate4GrayMode% $0001
KColorgCreate16GrayMode% $0002
KColorgCreate256GrayMode% $0003 256-grey mode
KColorgCreate16ColorMode% $0004 16-color mode
KColorgCreate256ColorMode% $0005 256-color mode
KgCreateHasShadow% $0010 window has a shadow

These constants are provided in Const.oph. The old
constants, KgCreate2ColorMode%, KgCreate4Color-
Mode%, and KgCreate16ColorMode%, are still retained
for backwards compatibility.

Note: It is not an error to create a window with
features not supported on the hardware, but it is
inefficient and should be avoided. This is similar to
the concept of copying a 4-grey bitmap into a 2-
grey window on greyscale machines: processor time is
wasted dithering the colors down to the same level as
the window.

Bits 8—11 (masked by $0F00) give the shadow height
relative to the window behind it as a left-shifted 4-
bit number. A height of N units gives a shadow of
N*2 pixels.

188

OPL COMMAND LIST

Examples:

flags% description

$412 16-color mode ($2), shadowed window ($1), with height 4 units
($4) above the previous window with a shadow of 8 pixels

$010 2-color mode (black and white) shadowed window at the same
height as the previous window

$101 4-color mode window with no shadow (height ignored if
shadow disabled)

$111 4-color mode window with shadow of 1 unit above window
behind, i.e. 2 pixel shadow

gCREATEBIT

gELLIPSE

Note that 63 windows may be open at any time and
it is recommended that you use many small windows
rather than a few large ones.

See also gCLOSE, gCOLOR, DEFAULTWIN.

Creates a bitmap

Usage:

id%:gC REATEB IT(WO/O, ho/o)
id%=gCREATEBIT(W%,h%,mode%)

Creates a bitmap with the specified width and height,
and makes it the current drawable. Sets the current
position to 0,0, its top left corner.

Returns id%, which identifies this bitmap for other
keywords.

gCREATEBIT may be used with an optional third
parameter that specifies the graphics mode of the
bitmap to be created. The values of these are as given
in gCREATE. By default the graphics mode of a bitmap
is 2-color.

See also gCLOSE, gCREATE.

Draws an ellipse

Usage: gELLIPSE hRadius%,vRadius%
or gELLIPSE hRadius%,vRadius%,fill%

Draws an ellipse with the center at the current position
in the current drawable. hRadius% is the horizontal
distance in pixels from the center of the ellipse to the

GENS

GET

GET$

OPL COMMAND LIST 189

left (and right) of the ellipse. vRadius% is the vertical
distance from the center of the ellipse to the top (and
bottom). If the length of either radius is less than zero,
then no ellipse is drawn.

If fill% is supplied and if fill%<>0 then the ellipse is
filled with the current pen color.

See gCIRCLE, gCOLOR.

Converts a number to a string
Usage: g$=gen$(x,y%)

Returns a string representation of the number x. The
string will be up to y% characters long.

Example: GEN$(123.456,7) returns "123.456" and
GEN$(243,5) returns "243".

If y% is negative then the string is right-justified — for
example, GEN$(1,-6) returns "1" where there are five
spaces to the left of the 1.

If y% is positive then no spaces are added, for
example GEN$(1,6) returns "1".

If the number x will not fit in the width specified by
y%, then the string will just be asterisks, for example
GEN$(256.99,4) returns "****!",

See also FIX$, NUM$, SCI$.

Waits for and returns the keycode for the next key
pressed

Usage: g%=GET

Waits for a key to be pressed and returns the character
code for that key.

For example, if the A key is pressed with Caps Lock
off, the integer returned is 97 (a), or 65 (A)if A was
pressed with the Shift key down.

The character codes of special keys, such as Pg Dn,
are given in Appendix D.

You can use KMOD to check whether modifier keys
(Shift, Ctrl, Fn, and Caps) were used.

See also KEY.

Waits for and returns the next key pressed as a string

Usage: g$=GET$

190

GETCMDS$

OPL COMMAND LIST

Waits until a key is pressed and then returns which key
was pressed, as a string.

For example, if the A key is pressed in lowercase
mode, the string returned is "a".

You can use KMOD to check whether any modifier
keys (Shift, Ctrl, Fn, and Caps) were used.

See also KEYS.

Gets new command line arguments
Usage: w$=GETCMD$

Returns new command line arguments to an OPL appli-
cation, after a change files or quit event has occurred.
Usually this is called after GETEVENT32 has returned a
system command.

The command line arguments are returned as a
string. The first character of the return value has the
following meaning:

KGetCmdLetterCreate$ "C" close down the current file, and create

the specified new file

KGetCmdLetterOpen$ "O" close down the current file, and open the

specified existing file

KGetCmdLetterExit$ "X" close down the current file (if any) and

GETDOCS$

GETEVENT

quit the app

These constants are defined in Const.oph.

If the first character is KGetCmdLetterCreate$ or
KGetCmdLetterOpen$, then the rest of the returned
string is a filename.

You can only call GETCMD$ once for each sys-
tem message.

Gets the name of the current document
Usage: docname$=GETDOC$

Returns the name of the current document.

See also SETDOC.

Deprecated version of GETEVENT32

This keyword is included for compatibility with older
versions of the OPL language.

GETEVENT32

OPL COMMAND LIST 191

[t is strongly recommended that you use
GETEVENT32 rather than GETEVENT. GETEVENT is
supported only for backward compatibility and cannot
be used to handle pen events in a satisfactory way.

Synchronous wait for event

Section contents

Key press events

Foreground, background, and switch on events
Command events (exit or file switch)

Key down and key up events

Pen point events

Event notes

Usage: GETEVENT32 ev&()

Waits for an event to occur, and returns with
ev&() specifying the event. The data returned in
ev&() depends on the type of event that occurred.

All events return a 32-bit time stamp. The window
ID mentioned below refers to the value returned by the
gCREATE keyword. The modifier values and scancode
values for a key press (which specify a location on the
keyboard) are given in the Character codes.

Const.oph supplies the following constants for index-
ing ev&():

KEvAType% 1 type of the event
KEVATime% 2 32-bit time stamp

These event index numbers and their meanings are the
same for all possible kinds of event. ev&(KEvAType%) is
always the event type, and ev&(KEvVATime%) is always
the time stamp for the event. The meanings of other
values in ev&() are dependent on the type of event.

Keypress events

Note that keycodes are returned in the first element
of ev&(), ev&(KEVAType%). To recognize a key press
event, you have to use a bit mask. Key press events are
masked by KEvNotKeyMask&.

For a key press event, (ev&(KEvAType%) AND KEv-
NotKeyMask&) is always 0.

KEvNotKeyMask& &400 masks out non-key press events

192 OPL COMMAND LIST
The index values for a key event are:
- 1 key code (cooked)
- 3 scan code (raw)
KEvAKMod% 4 index for the key modifier
KEvAKRep% 5 index for the repeat value
ev&(KEVATime%) is the time stamp, as with any other
event.
Foreground, background, and switch on events
For these events, ev&(KEvAType%) is one of:
KEvFocusGained& &401 program has moved to
foreground
KEvFocusLost& &402 program has moved to
background
KEvSwitchOn& &403 machine is switched on

Note that KEvSwitchOn& is only returned by
GETEVENT32 if the appropriate flag is set by a call to
SETFLAGS. GETEVENT32 ignores the machine being
switched on if the flag is not set.

Command events (exit or file switch)

This kind of event should be handled specially by
programmers. For this event, ev&KEvAType%) is

KEvCommand& &404 a command

A command is passed to an application when the
Operating System wants the application to switch files
or exit. If this event is received, GETCMD$ should be
called to find out what action should be taken.

Key down and key up events

For these events, ev&(KEvAType%) is either of:

KEvKeyDown& &406 key pressed down
KEvKeyUp& &407 key released

It is only possible to extract the scancode of a key up
or key down event. However, for each user key press,
three events are generated: key up, key down, and key
press. The keycode can be extracted from the key press
event (see above).

ev&() indices for these event types are:

- 3 key down or key up event’s scancode
- 4 key modifiers

OPL COMMAND LIST 193

Pen point events

For pen events, ev&(KEvAType%) is one of:

KEvPtr&

&408 pen event

KEvPtrEnter& &409 pen point enters a window

KEvPtrExit&

&40A pen point leaves a window

The ev&() for a pointer event is a nine-element array
indexed by the following values:

KEVAPtrOplWindowld% 3

KEvAPtrWindowld%
KEvAPtrType%
KEvAPtrModifiers%
KEvAPtrPositionX%
KEvAPtrPositionY %
KEvAPtrScreenPosX%
KEvAPtrScreenPosY%

3
4
5
6
7
8
9

ID of parent window

synonym for KEVAPtrOplWindowld%

type of pointer event (see below)

modifiers

X coordinate

Y coordinate

X coordinate relative to the parent window
Y coordinate relative to the parent window

ev&(KEvAPtrType%) contains the type of pointer event.
A given device may not support all types of pointer
event, because of the wide range of possible pointer
input devices. ev&(KEVAPtrType%) will contain one of
the following values:

KEvPtrPenDown&
KEvPtrPenUp&
KEvPtrButton1Down&
KEvPtrButton1Up&
KEvPtrButton2Downé&
KEvPtrButton2Up&
KEvPtrButton3Down&
KEvPtrButton3Up &
KEvPtrDrag&
KEvPtrMove&

KEvPtrButtonRepeat&
KEvPtrSwitchOn&

Event notes

NOOUh W = O = 0O

o<}

pen down

pen up

button 1 down

button 1 up

button 2 down

button 2 up

button 3 down

button 3 up

pointer drag (while button held down)
pointer move (without any button
being pressed)

button repeat

machine turned on by a screen touch

Constants for event codes and subscripts are supplied
in Const.oph.

Some pointer events, and pointer enters and exits,
can befiltered out to avoid being swamped by unwanted
event types. See POINTERFILTER.

194

GETEVENTA32

GETEVENTC

gFILL

gFONT

OPL COMMAND LIST

For unknown events, ev&(1) contains &1400 added
to the code returned by the window server. ev&(2) is
the timestamp, ev&(3) is the window ID, and the rest
of the data returned by the window server is put into
ev&(4), ev&(5), etc.

If a non-key event such as ‘foreground” occurs while
a keyboard keyword such as GET, INPUT, MENU,
or DIALOG is being used, the event is discarded. So
GETEVENT must be used if non-key events are to
be monitored. If you need to use these keywords in
applications, use LOCK ON/LOCK OFF around them,
so that the System screen won’t send messages to switch
files or shutdown while the application cannot respond.

See also GETEVENTA32.

Waits for an event asynchronously
Usage: GETEVENTA32 status%,ev&()

Asynchronous version of GETEVENT32. GETE-
VENTA32 returns the same codes to the array ev&() as
GETEVENT32.

The exist status of GETEVENTA32 is placed into
status% when an event is received. For this reason,
status% should probably be a global variable.

See GETEVENTC, GETEVENT32, GETEVENT.

Cancels an outstanding GETEVENT32
Usage: GETEVENTC(var stat%)

Cancels the previously called GETEVENTA32 function
with status stat%. Note that GETEVENTC consumes the
signal (unlike IOCANCEL), so IOWAITSTAT should not
be used after GETEVENTC.

Draws a filled rectangle
Usage: gFILL width%,height%,gMode%

Fills a rectangle of the specified size from the current
position, according to the graphics mode specified.
The current position is unaffected.

Sets the current drawable’s font
Usage: gFONT fontUid&

Sets the font for current drawable to fontld&. The font
may be one of the predefined fonts in the ROM or a user-
defined font. See Graphics for more details of fonts.

gGMODE

gGREY

gHEIGHT

gIDENTITY

OPL COMMAND LIST 195

Constants for the font UIDs are supplied in
Const.oph.

User-defined fonts must first be loaded by gLOAD-
FONT, then the font UIDs of the loaded fonts may be
used with gFONT. Note that this is not the ID returned
by gLOADFONT (which is the font file ID), but the UID
defined in the font file itself.

See also gLOADFONT, FONT.

Sets the effect of subsequent drawing commands
Usage: gGMODE mode%

Sets the effect of all subsequent drawing commands
gLINEBY, gBOX, etc. on the current drawable.

KgModeSet% 0 pixels will be set
KgModeClear% 1 pixels will be cleared
KgModelnvert% 2 pixels will be inverted

These constants are supplied in Const.oph.

When you first use drawing commands on a draw-
able, they set pixels in the drawable. Use gGMODE to
change this. For example, if you have drawn a black
background, you can draw a white box outline inside
it with either gGMODE 1 or gGMODE 2, followed
by gBOX.

Changes pen color between black and grey

Usage: gGREY mode%

Changes the pen color between black and grey. mode%
has the following effects:

mode%=1 sets the foreground color of the current
drawable to light grey. This is the same color as would
be achieved by using gCOLOR $aa,$aa, $aa.

mode% of any other value sets the foreground color
to black (the default).

See also DEFAULTWIN and gCREATE.

Height of the current drawable
Usage: height%=gHEIGHT

Returns the height of the current drawable.

ID of the current drawable

196 OPL COMMAND LIST

Usage: id%=gIDENTITY

Returns the ID of the current drawable.
The default window has ID=1.

gINFO32 Gets information about the current drawable
Usage: gINFO32 var i&()

Gets general information about the current drawable
and about the graphics cursor (whichever window it is
in) changed. The information is returned in the array
i%(), which must be at least 32 integers long. i&() must
have 48 elements, although elements 37 to 48 are
currently unused.

) reserved

) reserved

) height of font

) descent of font

) ascent of font

) width of '0' character

) maximum character width

) flags for font (see below)

) the font UID as used in gFONT

-17) unused

) current graphics mode (gGMODE)

) current text mode (gTMODE)

) current style (gSTYLE)

) cursor state (ON=1,0OFF=0)

) ID of window containing cursor (-1 for text
cursor)

) cursor width

) cursor height

) cursor ascent

) cursor x position in window

) cursor y position in window

) 1 if drawable is a bitmap

) cursor effects

)

i% graphics color mode of the current window. This
will be one of the values described in
DEFAULTWIN

i%31) gCOLOR red% of foreground

i%(32) gCOLOR green% of foreground

i%(33) gCOLOR blue% of foreground

i&(34) gCOLOR red% of background

i1&(35) gCOLOR green% of background

1&(36) gCOLOR blue% of background

gINVERT

GIPRINT

gLINEBY

OPL COMMAND LIST 197

The value given for i%(8) is a combination of the fol-
lowing values:

1 font uses standard ASCII characters
(32-126)

2 font uses Code Page 1252 characters
(128-255)

4 font is bold

8 font is italic

16 font has serifs

32 font is monospaced

$8000 font is stored expanded for quick drawing

i1%(29) has bit 1 set (1%(29) AND 2) if the cursor is not
flashing, and bit 2 set (i%(29) AND 4) if it is grey.

If the cursor is off (i%(21)=0) or is a text cur-
sor (i%(22)=-1), i%(23)to i%(27) and i%(29) should
be ignored.

See also gFONT, gCOLOR, gCREATE.

Draws an inverted rectangle
Usage: gINVERT width%, height%

Inverts the rectangle width% to the right and height%
down from the cursor position, except for the four
corner pixels.

Displays an information message

Usage: GIPRINT str$,c%
or GIPRINT str$

Displays an information message for about two sec-
onds, in the bottom right corner of the screen. For
example, GIPRINT "Not Found" displays Not Found. If
a string is too long for the screen, it will be clipped.

If c% is given, it controls the corner in which the
message appears. Corner constants for the information
message are as given for BUSY.

Only one message can be shown at a time. You can
make the message go away — for example, if a key has
been pressed — with GIPRINT "".

Draws a line

Usage: gLINEBY dx%,dy%

198

gLINETO

gLOADBIT

OPL COMMAND LIST

Draws a line from the current position to a point dx%
to the right and dy% down from the starting point.
Negative dx% and dy% mean left and up, respectively.
The end point is not drawn, so for gLINEBY dx%,dy%,
point gX+dx%,gY+dy% is not drawn. Note, however,
that OPL specially plots the point when the start and
end point coincide.

The current position moves to the end of the line
drawn. gLINEBY 0,0 sets the pixel at the current
position.

See also gLINETO, gPOLY.

Draws a line to an absolute position
Usage: gLINETO x%,y%

Draws a line from the current position to the point
X%,Y%. The current position moves to x%,y%. The
end point is not drawn, so for gLINETO x%,y%, point
X%,Y% is not drawn. Note, however, that OPL spe-
cially plots the point when the start and end point
coincide.

To plot a single point on all machines, use gLINETO
to the current position (or gLINEBY 0,0).

See also gLINEBY, gPOLY.

Loads a bitmap

Usage: any of

id%=gLOADBIT(name$, write%,index%)
id%=gLOADBIT(name$,write%)
id%=gLOADBIT(name$)

Loads a bitmap from the named bitmap file and makes
it the current drawable. Sets the current position to 0,0,
its top left corner.

gLOADBIT loads Symbian OS Picture files, which
are naturally in the same file format that is saved
by gSAVEBIT. Symbian OS Picture files can also be
generated by exporting files created by the Sketch appli-
cation. These are called multi-bitmap files (MBMs),
though often containing just one bitmap as in the case
of gSAVEBIT or Sketch files, and are often given an
extension .MBM.

gLOADFONT

GLOBAL

OPL COMMAND LIST 199

The bitmap is kept as a local copy in memory.

gLOADBIT returns id%, which identifies this bitmap
for other keywords.

A write% argument of KglLoadBitReadOnly% sets
read-only access. Attempts to write to the bitmap in
memory will be ignored, but the bitmap can be used
by other programs without using more memory. Using
KgLoadBitWriteable% for write% allows you to write
to and re-save the bitmap, which is the default.

KglLoadBitReadOnly% 0 read-only access
KgLoadBitWriteable% 1 read and write access

Constants are supplied in Const.oph.

For bitmap files that contain more than one bitmap,
index% specifies which one to load. For the first bitmap,
use index%=0, which is also the default value.

See also gCLOSE.

Loads a font
Usage: fileld%=gLOADFONT(file$)

Loads the user-defined fonts specified in the file file$
and returns the file ID of the font file, which can be used
only with gUNLOADFONT. The maximum number of
font files that may be loaded at any one time is 16.

To use the fonts in a loaded font file you need to use
their published UIDs, which will be defined in the font
file itself, for example:

fileld%=gLOADFONT("Music1")
gFONT KMusic1Font1&

gUNLOADFONT fileld%

gFONT itself is very efficient, so you should normally
load all required fonts at the start of a program.

Note that the built-in fonts are automatically avail-
able, and do not need loading.

See gUNLOADFONT.

Declares global variables

Usage: GLOBAL variables

200

gMOVE

OPL COMMAND LIST

Declares variables to be used in the current procedure
(as does the LOCAL command) and (unlike LOCAL)
in any procedures called by the current procedure, or
procedures called by them.

The variables may be of four types, depending on
the symbol they end with:

Variable names not ending with $, %, &, or () are
floating point variables, for example price, x

Those ending with a % are integer variables, for
example x%, sales92%

Those ending with an & are long integer variables, for
example x&, sales92&

Those ending with a $ are string variables. String vari-
able names must be followed by the maximum length
of the string in brackets, for example names$(12), a$(3)

Array variables have a number immediately following
them in brackets that specifies the number of elements
in the array. Array variables may be of any type, for
example: x(6),y%(5),f$(5,12),z&(3).

When declaring string arrays, you must give two
numbers in the brackets. The first declares the number
of elements, the second declares their maximum length.
For example, surname$(5,8) declares five elements,
each up to eight characters long.

Variable names may be any combination of up to 32
numbers and alphabetic characters and the underscore
character. They must start with an alphabetic character
or an underscore.

The length of a variable name includes the %, &, or
$ sign, but not the () in string and array variables.

More than one GLOBAL or LOCAL statement may be
used, but they must be on separate lines, immediately
after the procedure name.

See also LOCAL.

Moves the current position
Usage: gMOVE dx%,dy%

Moves the current position dx% to the right and dy%
downwards, in the current drawable.

A negative dx% causes movement to the left; a
negative dy% causes upward movement.

See also gAT.

gORDER

gORIGINX

gORIGINY

GOTO

GOTOMARK

OPL COMMAND LIST 201

Moves the selected window
Usage: gORDER id%,position%

Sets the window specified by id% to the selected fore-
ground/background position, and redraws the screen.
Position 1 is the foreground window, position 2 is next,
and so on. Any position greater than the number of
windows is interpreted as the end of the list.
On creation, a window is at position 1 in the list.
Raises an error if id% is a bitmap.

See also gRANK.

Window’s X position
Usage: x%=gORIGINX

Returns the gap between the left side of the screen and
the left side of the current window.
Raises an error if the current drawable is a bitmap.

Window’s Y position
Usage: y%=gORIGINY

Returns the gap between the top of the screen and the
top of the current window.
Raises an error if the current drawable is a bitmap.

Jumps to a labeled line

Usage:

GOTO label or GOTO label::
label::

Goes to the line following the label:: and continues
from there. The label:

Must be in the current procedure

Must start with a letter and end with a double colon,
although the double colon is not necessary in the
GOTO statement

May be up to 32 characters long, excluding the
colons

Makes a bookmarked record the current record

202

gPATT

gPEEKLINE

OPL COMMAND LIST

Usage: GOTOMARK b%

Makes the record with bookmark b%, as returned by
BOOKMARK, the current record. b% must be a book-
mark in the current view.

Draws a pattern-filled rectangle
Usage: gPATT id%,width%,height%,mode%

Fills a rectangle of the specified size from the current
position with repetitions of the drawable id%.

As with gCOPY, this command can copy both set
and clear pixels, so the same modes are available as
when displaying text. Set mode%=0 for set, 1 for clear,
2 for invert, or 3 for replace. 0, 1, and 2 act only on set
pixels in the pattern; 3 copies the entire rectangle, with
set and clear pixels.

If you set id%=-1 a predefined grey pattern is used.

The current position is unaffected.

Reads a horizontal line from a drawable
Usage: gPEEKLINE id%,x%,y%,d%(),In%,mode%

Reads a horizontal line from the black plane of the
drawable id%, length In%, starting at x%,y%. The
leftmost 16 pixels are read into d%(1), with the first
pixel read into the least significant bit.

gPEEKLINE has an extra optional parameter mode%
to specify the color mode:

mode% color mode color of pixel that
sets bits
-1 black and white black
0 black and white white
1 4-color mode white
2 16-color mode white

The default mode% is —1. For 4- and 16-color modes,
2 and 4 bits per pixel, respectively are used. This is to
enable the color of the pixel to be ascertained from the
bits that are set. White results in all 2 or 4 bits being
set, while black sets none of them. For example, in a
4-color window, with the color set by

gCOLOR 16,16,16

gPOLY

OPL COMMAND LIST 203

a pixel of a line would peek as 0001 in binary. Similarly,
a pixel of a line with the color set to

gCOLOR 80,80,80

would result in the value 0101 in binary when peeked.

The array d%() must be long enough to hold the
data. You can work out the number of integers required
with ((In%+15)/16) (using whole-number division).

If the optional parameter mode% is used, the array
size allowed must be adjusted accordingly: it must be
at least twice as long as the array needed for black and
white if the line you wish to peek is in 4-color mode,
and four times as long in 16-color mode.

Draws a polygon
Usage: gPOLY a%!()

Draws a sequence of lines, as if by gLINEBY and
gMOVE commands.
The array is set up as follows:

(1) starting x position

(2) starting y position

(3) number of pairs of offsets
300(4) dX1 %

(5)

(6)

(7)

a% dy1 %
a% dx2%
a% dy2%, etc.

}

} further pairs...

The following constants can be used for the first five
array indices:

KgPolyAStartX%
KgPolyAStartY%
KgPolyANumPairs%
KgPolyANumDx1%
KgPolyANumDy1%

G~ W =

Each pair of numbers dx1%,dy1%, for example, spec-
ifies a line or a movement. To draw a line, dy% is the

204

gPRINT

gPRINTB

OPL COMMAND LIST

amount to move down, while dx% is the amount to
move to the right multiplied by two.

To specify a movement (i.e. without drawing a
line) work out the dx%,dy% as for a line, then add
1 to dx%.

(For drawing/movement up or left, use negative
numbers.)

gPOLY is quicker than combinations of gAT,
gLINEBY, and gMOVE.

Example (to draw three horizontal lines 50 pixels
long at positions 20,10, 20,30, and 20,50):

a%(1)=20 :a%(2)=1 REM 20,10

a%(3)=5 REM 5 operations

a%(4)=50*2 :a%(5)=0 REM draw right 50
a%(6)=0*2+1 :a%(7)=20 REM move down 20
a%(8)=-50*2 :a%(9)=0 REM draw left 50
a%(10)=0*2+1 :a%(11)=20 REM draw left 50

a%(12)=50*2 :a%(13)=0 REM draw right 50
gPOLY a%!()

Prints a list into a drawable
Usage: gPRINT list of expressions

Displays a list of expressions at the current position in
the current drawable. All variable types are formatted
as for PRINT.

Unlike PRINT, gPRINT does not end by moving
to a new line. A comma between expressions is
still displayed as a space, but a semicolon has no
effect. gPRINT without a list of expressions does noth-
ing.

See also gPRINTB, gPRINTCLIP, gTWIDTH, gXPRINT,
gTMODE.

Prints text into a cleared box

Usage: any of

gPRINTB t$,w%,al%,tp%,bt%,m%
gPRINTB t$,w%,al%,tp%,bt%
gPRINTB t$,W%,al%, tp%
gPR[NTB t$,w%,a|%

gPRINTB t$,w%

gPRINTCLIP

gRANK

OPL COMMAND LIST 205

Displays text t$ in a cleared box of width w% pixels.
The current position is used for the left side of the box
and for the baseline of the text.

al% controls the alignment of the text in the box:

KgPrintBRightAligned% 1 right alignment
KgPrintBLeftAligned% 2 left alignment
KgPrintBDefAligned% 2 default alignment (left)
KgPrintBCentredAligned% 3 centered

tp% and bt% are the clearances between the text and
the top/bottom of the box. Together with the current
font size, they control the height of the box. An error is
raised if tp% plus the font ascent is greater than 255.

m% controls the margins. For left alignment, m% is
an offset from the left of the box to the start of the text.
For right alignment, m% is an offset from the right of
the box to the end of the text. For centering, m% is an
offset from the left or right of the box to the region in
which to center, with positive m% meaning left and
negative meaning right:

KgPrintBDefTop% 0 default top clearance
KgPrintBDefBottom% 0 default bottom clearance
KgPrintBDefMargin% 0 default margin

These constants are supplied in Const.oph.
See also gPRINT, gPRINTCLIP, gTWIDTH, gXPRINT.

Prints text that fits within defined area
Usage: w%=gPRINTCLIP(text$, width%)

Displays text$ at the current position, displaying only
as many characters as will fit inside width% pixels.
Returns the number of characters displayed.

See also gPRINT, gPRINTB, gTWIDTH, gXPRINT,
gTMODE.

Gets foreground/background position of the current
window

Usage: rank%=gRANK

Returns the foreground/background position — from 1
to 64 — of the current window. Raises an error if the
current drawable is a bitmap.

206

gSAVEBIT

gSCROLL

gSETPENWIDTH

gSETWIN

OPL COMMAND LIST

See also gORDER.

Saves the current drawable

Usage: gSAVEBIT name$,width%,height%
or gSAVEBIT name$

Saves the current drawable as the named bitmap file. If
width% and height% are given, then only the rectangle
of that size from the current position is copied.

gSAVEBIT does not add a default filename extension
to the input argument name if none is provided on
the machine.

Scrolls pixels

Usage: gSCROLL dXO/o,dyo/o,Xo/o,yo/o,Wdo/o,hto/o
or gSCROLL dx%,dy%

Scrolls pixels in the current drawable by offset dx%,
dy%. Positive dx% means to the right, and positive
dy% means down. The drawable itself does not change
its position.

If you specify a rectangle in the current drawable,
at x%,y% and of size wd%,ht%, only this rectangle
is scrolled.

The areas dx% wide and dy% deep ‘left behind’ by
the scroll are cleared.

The current position is not affected.

Sets the pen width
Usage: gSETPENWIDTH width%

Sets the pen width in the current drawable to width%
pixels.

Changes position/size of the current window

Usage: gSETWIN x%,y%,width%,height%
or gSETWIN x%,y%

Changes position and, optionally, the size of the cur-
rent window.

An error is raised if the current drawable is a bitmap.

The current position is unaffected.

If you use this command on the default window, you
must also use the SCREEN command to ensure that the
area for PRINT commands to use is wholly contained
within the default window.

gSTYLE

gTMODE

OPL COMMAND LIST 207

Sets the style of text used in subsequent print commands
Usage: gSTYLE style%

Sets the style of text displayed in subsequent gPRINT,
gPRINTB, and gPRINTCLIP commands on the current
drawable. Values for style%:

KgStyleNormal% 0 normal
KgStyleBold% 1 bold
KgStyleUnder% 2 underline
KgStylelnverse% 4 inverse
KgStyleDoubleHeight% 8 double height
KgStyleMonoFont% 16 monospaced font
KgStyleltalic% 32 italic

You can combine these styles by adding their val-
ues, for example, to set bold, underlined, and double
height, use:

gSTYLE KgStyle-
Bold%+KgStyleUnder%-+KgStyleDoubleHeight%

This command does not affect non-graphics com-
mands, like PRINT.

Sets the character display mode

Usage: gTMODE mode%

Sets the way characters are displayed by subsequent
gPRINT and gPRINTCLIP commands on the current
drawable. Values for mode%:

KtModeSet% 0 pixels will be set
KtModeClear% 1 pixels will be cleared
KtModelnvert% 2 pixels will be inverted
KtModeReplace% 3 pixels will be replaced

When you first use graphics text commands on a draw-
able, each dot in a letter causes a pixel to be set in the
drawable, i.e. the default gTMODE is KtModeSet%.

When mode% is Clear or Invert, graphics text com-
mands work in a similar way, but the pixels are cleared
or inverted. When mode% is Replace, entire character
boxes are drawn on the screen — pixels are set in the
letter and cleared in the background box.

208

gTWIDTH

OPL COMMAND LIST

This command does not affect other text display
commands.

Constants for the modes are supplied in Const.oph.
Calculates the screen width of a string
Usage: width%=gTWIDTH(text$)
Returns the width of text$ in the current font and style.

See also gPRINT, gPRINTB, gPRINTCLIP, gXPRINT.

gUNLOADFONT Unloads a font

gUPDATE

Usage: gULOADFONT fileld%

Unloads a user-defined font that was previously loaded
using gLOADFONT. Raises an error if the font has not
been loaded.

The built-in fonts are not held in memory and cannot
be unloaded.

See also gLOADFONT.

Controls screen updates

Usage: any of

gUPDATE ON
gUPDATE OFF
gUPDATE

The screen is usually updated whenever you display
anything on it. gUPDATE OFF switches off this feature.
The screen will then be updated as few times as possible
(though note that some keywords will always cause an
update). You can still force an update by using the
gUPDATE command on its own.

This can result in a considerable speed improvement
in some cases. You might, for example, use gUPDATE
OFF, then a sequence of graphics commands, followed
by gUPDATE. You should certainly use gUPDATE OFF
if you are about to write exclusively to bitmaps.

gUPDATE ON returns to normal screen updating.

gUPDATE affects anything that displays on the
screen. If you are using a lot of PRINT commands,
gUPDATE OFF may make a noticeable difference
in speed.

gUSE

gVISIBLE

gWIDTH

gX

gXBORDER

OPL COMMAND LIST 209

Note that with gUPDATE OFF, the location of errors
that occur while the procedure is running may be
incorrectly reported. For this reason, gUPDATE OFF is
best used in the final stages of program development,
and even then you may have to remove it to locate
some errors.

Sets the current drawable
Usage: gUSE id%

Makes the drawable id% current. Graphics drawing
commands will now go to this drawable. gUSE does
not bring a drawable to the foreground (see gORDER).

Sets the visibility of the current window

Usage: gVISIBLE ON
or gVISIBLE OFF

Makes the current window visible or invisible.
Raises an error if the current drawable is a bitmap.

Current drawable’s width
Usage: width%=gWIDTH

Returns the width of the current drawable.

X position in the current drawable
Usage: x%=gX

Returns the x current position (in from the left) in the
current drawable.

Draws a border

Usage: gXBORDER type%,flags%,w%,h%
or gXBORDER type%,flags%

Draws a border in the current drawable of a specified
type, fitting inside a rectangle of the specified size
or with the size of the current drawable if no size
is specified.

type% should always be the constant value KgXBor-
derS5Type%. Other border types are implemented for
backwards compatibility, but should not be used with
Symbian OS.

210

gXPRINT

KgXPrintNormal%

KgXPrintInverse%

KgXPrintInverseRound%
KgXPrintThinlnverse%
KgXPrintThinlnverseRound%
KgXPrintUnderlined%
KgXPrintThinUnderlined%

OPL COMMAND LIST

KgXBorderS5Type% 2 the standard border type

Values for flags% are:

None $00
Single black $01
Shallow sunken $42
Deep sunken $44
Deep sunken with outline $54
Shallow raised $82
Deep raised $84
Deep raised with outline $94
Vertical bar $22
Horizontal bar $2a

Constants for these flags and types are supplied in
Const.oph. The following values of flags% apply to all
border types:

0 for normal corners

Adding $100 leaves 1 pixel gap around the border
Adding $200 for more rounded corners

Adding $400 for losing a single pixel

If both $400 and $200 are mistakenly supplied, $200
has priority

See also gBORDER.

Prints a string with precise highlighting or underlining
Usage: gXPRINT string$,flags%

Displays string$ at the current position, with precise
highlighting or underlining. The current font and style
are still used, even if the style itself is inverse or under-
lined. If text mode 3 (Replace) is used, both set and
cleared pixels in the text are drawn.

Possible values for flags% are:

0 normal, as with gPRINT

1 inverse

2 inverse, omitting corner pixels

3 thininverse

4 thin inverse, omitting corner pixels
5 underlined

6 thin underlined

gY

HEX$

OPL COMMAND LIST 211

These constants are supplied in Const.oph.
Where lines of text are separated by a single pixel,
the thin options maintain the separation between lines.
gXPRINT does not support the display of a list of
expressions of various types.

Y position in the current drawable
Usage: y%=gY

Returns the y current position (down from the top) in
the current drawable.

Converts an integer to a hex string
Usage: h$=HEX$(x&)

Returns a string containing the hexadecimal (base 16)
representation of integer or long integer x&.
For example, HEX$(255) returns the string "FF".

Notes

To enter integer hexadecimal constants (16-bit) put a $
in front of them. For example, $FF is 255 in decimal.
(Don’t confuse this use of $ with string variable names.)

To enter long integer hexadecimal constants (32-
bit) put a & in front of them. For example, &FFFFF is
1048575 in decimal.

Counting in hexadecimal is done like this: 0 1 2 3
456789 ABCDEF10 .. where A stands for
decimal 10, B for decimal 11, C for decimal 12 ... up to
F for decimal 15. After F comes 10, which is equivalent
to decimal 16. To understand numbers greater than
hexadecimal 10, again compare hexadecimals with
decimals. In these examples, 102 means 10 x 10, 103
means 10 x 10 x 10, and so on.

253 in decimal is:

(2 x 102) + (5 x 101) + (3 x 100) = (2 x 100) +
(5 x 10) + (3 x 1) = 200 + 50 + 3

By analogy, &253 in hexadecimal is:

(&2 x 162) + (&5 x 161) + (&3 x 160) = (2 x 256) +
(5x16)+ (3 x 1) =512+ 80 + 3 = 595 in decimal

Similarly, &A6B in hexadecimal is:

(&A% 162) + (&6 x 161) + (&B x 160) = (10 x 256) +
(6x16)4+(11x1)=25604+96+11=2667 in decimal

212

HOUR

IABS

ICON

OPL COMMAND LIST

You may also find this table useful for converting
between hex and decimal:

Hex decimal -

&1 1 =16"0
&10 16 =16"1
&100 256 =1672
&1 000 4096 =16"3

For example, &20F9 is:

(2 x &1000)+(0 x &100)+(15 x &10)+9, which in dec-
imal is: (2 x 4096)+(0 x 256)+(15 x 16)+9=8441.

All hexadecimal constants are integers ($) or long
integers (&). So arithmetic operations involving hexadec-
imal numbers behave in the usual way. For example,
&3/&2 returns 1, &3/2.0 returns 1.5, 3/$2 returns 1.

Gets the current hour
Usage: h%=HOUR

Returns the number of the current hour from the system
clock as an integer between 0 and 23.

Absolute value of an integer expression
Usage: i&=IABS(x&)

Returns the absolute value, i.e. without any sign, of the
integer or long integer expression x&.
For example, IABS(-10) is 10.

See also ABS, which returns the absolute value as a
floating point value.

Sets an application’s icon
Usage: ICON mbm$

Gives the name of the bitmap file mbm$, also known
as an Symbian OS Picture file, to use as the icon for an
OPL application.

If the ICON command is not used inside the APP...
ENDA structure, then a default icon is used, but the
rest of the information in the APP... ENDA construct
is still used to specify the other features of the OPL
application.

IF...ENDIF

OPL COMMAND LIST 213

mbm$ is a multi-bitmap file, which can contain up
to three bitmap/mask pairs — the sizes are 24, 32, and
48 squares. These different sizes are used for the differ-
ent zoom levels in the system screen. The sizes are read
from the MBM and the most suitable size is zoomed
if the exact sizes required are not provided or if some
are missing.

In fact, you can use ICON more than once within
the APP...ENDA construct. The translator only insists
that all icons are paired with a mask of the same size
in the final ICON list. This allows you to use pairs
of MBMs containing just one bitmap, as produced by
the Sketch application. For example, you could specify
them individually:

APP ...

ICON "icon24.mbm"
ICON "mask24.mbm"
ICON "icon32.mbm"
ICON "mask32.mbm"
ICON "icon48.mbm"
ICON "mask48.mbm"
ENDA

or with pairs in each MBM:

APP ...
ICON "iconMask24"
ICON "iconMask32"
ICON "iconMask48"
ENDA

or with all the bitmaps as just one MBM, as would
normally be the case if prepared on the PC using
bmconv and aiftool.

This command can only be used between APP
and ENDA.
Conditional loop

Usage:

IF condition1

ELSEIF condition2

214

INCLUDE

OPL COMMAND LIST

ELSE
ENDIF
Does either
the statements following the IF condition

or
the statements following one of the ELSEIF conditions
(there may be as many ELSEIF statements as you like,
none at all if you want)

or
the statements following ELSE (or, if there is no ELSE,
nothing at all). There may be either one ELSE statement
or none.

After the ENDIF statement, the lines following ENDIF
carry on as normal.
IF, ELSEIFs, ELSE, and ENDIF must be in that order.
Every IF must be matched with a closing ENDIF.
You can also have an IF..ENDIF structure within
another, for example:

IF conditionT
ELSE
IF condition2
ENDIF
ENDIF
condition is an expression returning a logical value,
for example a<b. If the expression returns logical true
(non-zero) then the statements following are executed.
If the expression returns logical false (zero) then those
statements are ignored.
Includes a header file

Usage: INCLUDE file$

Includes a file, file$, which may contain CONST defi-
nitions, prototypes for OPX procedures, and prototypes
for module procedures. The included file may not
include module procedures themselves. Procedure and

INPUT

OPL COMMAND LIST 215

OPX procedure prototypes allow the translator to check
parameters and coerce numeric parameters (that are not
passed by reference) to the required type.

Including a file is logically identical to replacing the
INCLUDE statement with the file’s contents.

The filename of the header may or may not include a
path. If it does include a path, then OPL will only scan
the specified folder for the file. However, the default
path for INLCUDE is \ System\Opl\, so when INCLUDE
is called without specifying a path, OPL looks for the file
firstly in the current folder and then in \System\Opl\
in all drives from Y: to A: and then in Z:, excluding any
remote drives.

See CONST, EXTERNAL.

Reads a value from the keyboard

Usage: INPUT variable
or INPUT log.field

Waits for a value to be entered at the keyboard, and
then assigns the value entered to a variable or data file
field.

You can edit the value as you type it in. All the usual
editing keys are available: the arrow keys move along
the line, Esc clears the line, and so on.

If inappropriate input is entered, for example a
string when the input was to be assigned to an inte-
ger variable, a ? is displayed and you can try again.
However, if you used TRAP INPUT, control passes on
to the next line of the procedure, with the appropriate
error condition being set and the value of the variable
remaining unchanged.

INPUT is usually used in conjunction with a PRINT
statement:

PROC exch:
LOCAL pds,rate
DO
PRINT "Pounds Sterling?",
INPUT pds
PRINT "Rate (DM)?",
INPUT rate

216

INSERT

INT

OPL COMMAND LIST

PRINT "=",pds*rate,"DM"
GET
UNTIL O
ENDP

Note the commas at the end of the PRINT statements,
used so that the cursor waiting for input appears on the
same line as the messages.

TRAP INPUT

If a bad value is entered (for example "abc" for a%) in
response to a TRAP INPUT, the ? is not displayed, but
the ERR function can be called to return the value of
the error that has occurred. If the Esc key is pressed
while no text is on the input line, the ‘Escape key
pressed” error (number —114) will be returned by ERR
(provided that the INPUT has been trapped). You can
use this feature to enable someone to press the Esc key
to escape from inputting a value.

See also EDIT. This works like INPUT, except that it
displays a string to be edited and then assigned to a
variable or field. It can only be used with strings.

Inserts a blank record into a database
Usage: INSERT

Inserts a new, blank record into the current view of
a database. The fields can then be assigned to before
using PUT or CANCEL.

Gets the integer part of a floating point value (as
an integer)

Usage: i&=INT(x)

Returns the integer (in other words the whole number)
part of the floating point expression x. The number is
returned as a long integer.

Positive numbers are rounded down, and negative
numbers are rounded up. For example, INT(-5.9) returns
-5and INT(2.9) returns 2. If you want to round a number
to the nearest integer, add 0.5 to it (or subtract 0.5 if it
is negative) before you use INT.

See also INTF.

INTF

INTRANS

IOA

10C

IOCANCEL

OPL COMMAND LIST 217

Gets the integer part of a floating point value (as a
floating point number)

Usage: i=INTF(x)

Used in the same way as the INT function, but the
value returned is a floating point number. For example,
INTF(1234567890123.4) returns 1234567890123.0.

You may also need this when an integer calculation
may exceed integer range.

See also INT.

True if the current view is in a transaction
Usage: i&=INTRANS

Finds out whether the current view is in a transaction.
Returns —1 if it is in a transaction or O if it is not.

See also BEGINTRANS.

Asynchronous I/O request
Usage: r%=10A(h%,{%,var status%,var al,var a2)

This has the same form as IOC, but it returns an error
value if the request is not completed successfully. I0C
should be used in preference to I0A.

I/O request with guaranteed completion
Usage: |IOC(h%,f%,var status%,var al,var a2)

Make an I/O request with guaranteed completion. The
device driver opened with handle h% performs the
asynchronous 1/O function f% with two further argu-
ments, al and a2. The argument status% is set by
the device driver. If an error occurs while making a
request, status% is set to an appropriate value, but IOC
always returns zero, not an error value. An IOWAIT or
[OWAITSTAT must be performed for each 10C. I0C
should be used in preference to IOA.

Cancels an outstanding 1O request
Usage: r%=I0CANCEL(h%)

Cancels any outstanding asynchronous /O request
(I0C or IOA). Note, however, that the request will
still complete, so the signal must be consumed using
IOWAITSTAT.

218

IOCLOSE

IOOPEN

IOREAD

IOSEEK

IOSIGNAL

OPL COMMAND LIST

Closes a file
Usage: r%=IOCLOSE(h%)
Closes a file with the handle h%.

See also 1/0 functions and commands.

Creates or opens a file
Usage: r%=IO0OPEN(var h%,name$,mode%)

Creates or opens a file called name$. Defines h% for
use by other I/O functions. mode% specifies how to
open the file. For unique file creation, use IOOPEN(var
h%,addr%,mode%).

See also 1/0 functions and commands.

Reads from a file
Usage: r%=IOREAD(h%,addr&, maxLen%)

Reads from the file with the handle h%. address% is the
address of a buffer large enough to hold a maximum of
maxLen% bytes. The value returned to r% is the actual
number of bytes read or, if negative, is an error value.

Seeks to a position in a file opened for random access
Usage: r%=IOSEEK(h%,mode%,var off&)

Seeks to a position in a file that has been opened
for random access. mode% specifies how the offset
argument off& is to be used. Values for mode% may
be found in the /O functions and commands. off&
may be positive to move forwards or negative to move
backwards. IOSEEK sets the variable off& to the absolute
position set.
Note the following example when you use #:

ret%=IOSEEK(h%,mode%, #ptrOff&)
passing the long integer ptrOff&.

Signals completion of asynchronous I/O function
Usage: IOSIGNAL

Signals an asynchronous 1/0O function’s completion.

IOW

IOWAIT

IOWAITSTAT

IOWAITSTAT32

IOWRITE

IOYIELD

OPL COMMAND LIST 219

Synchronous 1/O request
Usage: r%=I0W(h%,func%,var al,var a2)

The device driver opened with handle h% performs
the synchronous 1/O function func% with the two fur-
ther arguments.

Waits for an asynchronous 1/O function to complete
Usage: IOWAIT

Waits for an asynchronous I/O function to signal
completion.

Waits for an 10C or IOA to complete

Usage: IOWAITSTAT var stat%

Waits for an asynchronous function, called with 10C
or IOA, to complete.

Waits for asynchronous OPX procedure 32-bit status
word to complete

Usage: IOWAITSTAT32 var stat&

Takes a 32-bit status word. IOWAITSTAT32 should be
called only when you need to wait for completion of a
request made using a 32-bit status word when calling
an asynchronous OPX procedure.

Note: The initial value of a 32-bit status word while it
is still pending (i.e. waiting to complete) is &80000001
(KStatusPending32& in Const.oph. For a 16-bit status
word the ‘pending value’ is —46 (KErrFilePending%).

Writes bytes in a buffer to a file

Usage: r%=IOWRITE(h%,addr&,length%)

Writes length% bytes in a buffer at address% to the file
with the handle h%.

Ensures asynchronous functions have a chance to run
Usage: IOYIELD

Ensures that any asynchronous handler set up with 10C
or IOA is given a chance to run. IOYIELD must always
be called before polling status words, i.e. before reading

220

KEY

KEY$

KEYA

KEYC

OPL COMMAND LIST

a 16-bit status word if IOWAIT or IOWAITSTAT have
not been used first.

Gets the last key pressed as a character code
Usage: k%=KEY

Returns the character code of the key last pressed, if
there has been a key press since the last use of the
keyboard by INPUT, EDIT, GET, GET$, KEY, KEYS$,
MENU, and DIALOG.

If no key has been pressed, zero is returned.

See Character codes for a list of special key codes. You
can use KMOD to check whether modifier keys (Shift,
Ctrl, Fn, and Caps Lock) were used.

This command does not wait for a key to be pressed,
unlike GET.

Gets the last key pressed as a string
Usage: k$=KEY$

Returns the last key pressed as a string, if there has been
a key press since the last use of the keyboard by INPUT,
EDIT, GET, GET$, KEY, KEY$, MENU, and DIALOG.

If no key has been pressed, a null string (") is
returned.

See Character codes for a list of special key codes. You
can use KMOD to check whether modifier keys (Shift,
Ctrl, Fn, and Caps Lock) were used.

This command does not wait for a key to be pressed,
unlike GETS$.

Reads the keyboard asynchronously

Usage: err%=KEYA(var stat%,var key%(1))

This is an asynchronous keyboard read function.
Cancel with KEYC.

Cancels a KEYA

Usage: err%=KEYC(var stat%)

Cancels the previously called KEYA function with sta-
tus stat%. Note that KEYC consumes the signal (unlike
IOCANCEL), so IOWAITSTAT should not be used
after KEYC.

KILLMARK

KMOD

OPL COMMAND LIST 221

Removes a bookmark
Usage: KILLMARK b%

Removes the bookmark b%, which has previously been
returned by BOOKMARK, from the current view of
a database.

See BOOKMARK, GOTOMARK.

Gets the state of the modifier keys
Usage: k%=KMOD

Returns a code representing the state of the modifier
keys (whether they were pressed or not) at the time of
the last keyboard access, such as a KEY function. The
modifiers have these codes:

KKmodShift% 2 Shift down
KKmodControl% 4 Ctrl down
KKmodCaps% 16 Caps lock on
KKmodFn% 32 Fn down

These constants are supplied in Const.oph.

If there was no modifier, the function returns 0. If a
combination of modifiers was pressed, the sum of their
codes is returned — for example, 20 is returned if Ctrl
(4) was held down and Caps lock (16) was on.

Always use immediately after a KEY/KEY$/GET/GETS$
statement.

The value returned by KMOD has one binary bit
set for each modifier, as shown above. By using the
logical operator AND on the value returned by KMOD
you can check which of the bits are set, in order to see
which modifier keys were held down. For more details
on AND, see Operators and logical expressions.

Example:

PROC modifier:
LOCAL k%, mod%
PRINT "Press a key" :k%=GET
CLS :mod%=KMOD
PRINT "Key code" k%,"with"
IF mod%=0
PRINT "no modifier"
ENDIF

222

LAST

LCLOSE

LEFTS

LEN

OPL COMMAND LIST

IF mod% AND KModShift%
PRINT "Shift down"

ENDIF

IF mod% AND KModControl%
PRINT "Control down"

ENDIF

IF mod% AND KModCaps%
PRINT "Caps Lock on"

ENDIF

IF mod% AND KModFn%
PRINT "Fn down"

ENDIF

ENDP

Positions to the last record

Usage: LAST

Positions to the last record in a view.

Closes the device opened with LOPEN
Usage: LCLOSE

Closes the device opened with LOPEN. The device is
also closed automatically when a program ends.

Gets the leftmost characters of a string
Usage: b$=LEFT$(a$,x%)

Returns the leftmost x% characters from the string a$.
For example, if n$ has the value Charles, then
b$=LEFT$(n$,3) assigns Cha to b$.

Length of a string
Usage: a%=LEN(a$)

Returns the number of characters in a$.

E.g. if a$ has the value 34 Kopechnie Drive then
LEN(a$) returns 18.

You might use this function to check that a data file
string field is not empty before displaying:

IF LEN(A.client$)
PRINT A.client$
ENDIF

ENALLOC

LN

LOADM

LOC

OPL COMMAND LIST 223

Gets the length of a previously allocated cell
Usage: len&=LENALLOC(pcell&)

Returns the length of the previously allocated cell at
pcell&. An error will be raised if the cell address
argument is not in the range known by the heap.

See also SETFLAGS if you require a 64K memory limit
to be enforced. If the flag is set to restrict the limit, len&
is guaranteed to fit into an integer.

ARM

Cells are allocated lengths that are the smallest multiple
of four greater than the size requested because the
ARM processor requires a 4-byte word alignment for its
memory allocation.

Natural logarithm
Usage: a=LN(x)

Returns the natural (base e) logarithm of x.
Use LOG to return the base 10 log of a number.

Loads a translated OPL module
Usage: LOADM module$

Loads a translated OPL module so that procedures in
that module can be called. Until a module is loaded
with LOADM, calls to procedures in that module will
give an error.

module$ is a string containing the name of the
module. Specify the full filename only where necessary.

Example: LOADM "MODUL2"

Up to 8 modules can be in memory at any one time,
including the top-level module; if you try to LOADM
a ninth module, you get an error. Use UNLOADM to
remove a module from memory so that you can load a
different one.

By default, LOADM always uses the folder of the
top-level module. It is not affected by the SETPATH
command.

Locates a substring within a string

Usage: a%=LOC(a$,b$)

224

LOCAL

OPL COMMAND LIST

Returns an integer showing the position in a$ where b$
occurs, or zero if b$ doesn’t occur in a$. The search
matches upper and lowercase.

Example: LOC("STANDING","AND") would return
the value 3 because the substring AND starts at the
third character of the string STANDING.

Declares procedure-local variables
Usage: LOCAL variables

Used to declare variables that can be referenced only
in the current procedure. Other procedures may use
the same variable names to create new variables.
Use GLOBAL to declare variables common to all
called procedures.

The variables may be of four types, depending on
the symbol they end with:

Variable names not ending with $, %, &, or () are
floating point variables, for example price, x

Those ending with a % are integer variables, for
example x%, sales92%

Those ending with an & are long integer variables, for
example x&, sales92&

Those ending with a $ are string variables. String vari-
able names must be followed by the maximum length
of the string in brackets, for example names$(12),

a%$@3)

Array variables have a number immediately following
them in brackets, which specifies the number of ele-
ments in the array. Array variables may be of any type,
for example: x(6),y%(5),{$(5,12),z&(3).

When declaring string arrays, you must give two
numbers in the brackets. The first declares the number
of elements, the second declares their maximum length.
For example, surname$(5,8) declares five elements,
each up to eight characters long.

Variable names may be any combination of up to
32 numbers, alphabetic letters, and the underscore
character. They must start with a letter or an underscore.
The length includes the %, &, or $ sign, but not the () in
string and array variables.

More than one GLOBAL or LOCAL statement may be
used, but they must be on separate lines, immediately
after the procedure name.

LOCK

LOG

LOPEN

LOWER$

OPL COMMAND LIST 225

See also GLOBAL, CONST.

Blocks system requests to change files or quit

Usage: LOCK ON
or LOCK OFF

Marks an application as locked or unlocked. When an
app is locked with LOCK ON, the System screen will
not send it events to change files or quit.

If, for example, you move to the task list or the
document name in the System screen, try to stop that
running app by using the ‘Close file” button or Ctrl+E,
a message will appear, indicating that the app cannot
close down at that moment.

You should use LOCK ON if your application uses
a command, such as EDIT, MENU, or DIALOG, which
accesses the keyboard. You might also use it when the
app is about to go busy for a considerable length of
time, or at any other point where a clean exit is not
possible. Do not forget to use LOCK OFF as soon as
possible afterwards.

An application is initially unlocked.

Logarithm
Usage: a=LOG(x)

Returns the base 10 logarithm of x.
Use LN to find the base e (natural) log.

Opens a device for printing
Usage: LOPEN device$

Opens the device to which LPRINTSs are to be sent.

No LPRINTs can be sent until a device has been
opened with LOPEN.

You can open any of these devices:

The serial port, with LOPEN "TTY:A"

A file on the Symbian OS device. Any existing file of
the name given will be overwritten when you print to it

Only one device may be open at any one time. Use
LCLOSE to close the device. LOPENned devices also
close automatically when a program finishes running.

Converts a string to lowercase

Usage: b$=LOWERS$(a$)

226

LPRINT

MAX

mCARD

OPL COMMAND LIST

Converts any uppercase characters in the string a$ to
lowercase and returns the completely lowercase string.
E.g. if a$="CLARKE", LOWERS$(a$) returns the string
"clarke".
Use UPPERS$ to convert a string to uppercase.

Prints a list to the device opened using LOPEN
Usage: LPRINT list of expressions

Prints a list of items, in the same way as PRINT, except
that the data is sent to the device most recently opened
with LOPEN.

The expressions may be quoted strings, variables, or
the evaluated results of expressions. The punctuation of
the LPRINT statement (commas, semicolons, and new
lines) determines the layout of the printed text, in the
same way as PRINT statements.

If no device has been opened with LOPEN you will
get an error.

See PRINT for displaying to the screen.
See LOPEN for opening a device for LPRINT.

Maximum value

Usage: m=MAX(list)
or m=MAX(array(),element)

Returns the greatest of a list of numeric items. The
list can be either:

A list of variables, values, and expressions, separated
by commas

or

The elements of a floating point array.

When operating on an array, the first argument must
be the array name followed by (). The second argument,
separated from the first by a comma, is the number of
array elements you wish to operate on. For example,
m=MAX(arr(),3) would return the value of the largest of
elements arr(1), arr(2), and arr(3).

Defines a menu card

Usage: mCARD title$,n1$,k1%
or mCARD title$,n1$,k1%,n2$,k2% etc.

OPL COMMAND LIST 227

Defines a menu. When you have defined all of the
menus, use MENU to display them.

title$ is the name of the menu. From one to eight
items on the menu may be defined, each specified by
two arguments. The first is the item name, and the
second the keycode for a shortcut key. This specifies a
key which, when pressed together with Ctrl, will select
the option. If the keycode is for an uppercase key, the
shortcut key will be Shift+Ctrl.

The options can be divided into logical groups by
displaying a separating line under the final option in a
group. To do this, pass the negative value correspond-
ing to the shortcut key keycode for the final option in
the group. For example, — %A specifies shortcut key
Shift+Ctrl+A and displays a separating line under the
associated option in the menu.

Menu items without shortcuts can be specified using
shortcut values between 1 and 32. For these items the
value specified is still returned if the item is selected.
Any item with a shortcut of zero will NOT be added to
the menu.

Other properties can be specified by adding one
or more of the following flags to the shortcut key-
code:

KMenuDimmed% $1000 menu item is dimmed

KMenuSymbolOn% $2000 checkbox option button
symbol on

KMenuSymbolindeterminate% $4000 checkbox or option button
symbol indeterminate

KMenuCheckBox% $0800 item has a checkbox

KMenuOptionStart% $0900 item starts an option button
list

KMenuOptionMiddle% $0A00 in the middle of an option
button list

KMenuOptionEnd% $0BO0 ends an option button list

These constants are supplied in Const.oph.

The start, middle, and end option buttons are for
specifying a group of related items that can be selected
exclusively (i.e. if one item is selected then the others
are deselected). The number of middle option buttons
is variable. A single menu card can have more than
one set of option buttons and checkboxes, but option
buttons in a set should be kept together. For speed,

228

mCARDX

mCASC

OPL COMMAND LIST

OPL does not check the consistency of these items’
specification.

If a separating line is required when any of these
effects have been added, you must be sure to negate
the whole value, not just the shortcut key keycode.
For example:

mCARD "Options","View1",%A OR $2900,"View2",-
(%B OR $B00), "Another option",%C

Here, the second shortcut key keycode and its flag
value is correctly negated to display a separating line.

A ‘Too wide’ error is raised if the menu title length
is greater than or equal to 40. Shortcut values must
be alphabetic character codes or numbers between the
values of 1 and 32. Any other values will raise an
‘Invalid arguments’ error.

If any menu item fails to be added successfully, a
menu is discarded. It is therefore incorrect to ignore
mCARD errors by having an ONERR label around an
mCARD call. If you do, the menu is discarded and a
‘Structure fault’ will be raised on using mCARD without
first using mINIT again. See MENU for an example
of this.

See also mCARDX.

Defines a menu card with graphic

Usage: mCARDX BitmaplD&, BitmapMasklD&, Item1$,
Item1key%, ltem2$, Item2Key%

The mCARDX keyword is essentially the same as
mCARD but with the difference that instead of sup-
plying a string caption for the menu card, you supply a
bitmap and bitmap mask instead.

This above example will add a pane to the menu
with the images in BitmaplD& and BitmapMaskID&
as its caption. Note that for Series 80 (where this
command is normally used), the recommended size for
these bitmaps is 25x20 pixels in 256 colors (i.e. specify
the/c8 flag when using the BMCONV tool provided on
all Symbian OS v6.0 SDKs).

See also mCARD.

Defines a menu cascade

MEAN

OPL COMMAND LIST 229

Usage: mCASC title$,item1$,hotkey1%,item2$,
hotkey2%

Creates a cascade for a menu, on which less important
menu items can be displayed. The cascade must be
defined before use in a menu card. For example, a
‘Bitmap’ cascade under the File menu of a possible
OPL drawing application could be defined like this:

mCASC "Bitmap","Load",%L,"Merge",%M
mCARD "File","New",%n,"Open",%o0,"Save", %s,
"Bitmap>",16,"Exit", %e

The trailing > character specifies that a previously
defined cascade item is to be used in the menu at this
point: it is not displayed in the menu item. A cascade
has a filled arrow head displayed along side it in the
menu. The cascade title in mCASC is also used only
for identification purposes and is not displayed in the
cascade itself. This title needs to be identical to the
menu item text apart from the >. For efficiency, OPL
doesn’t check that a defined cascade has been used in
a menu and an unused cascade will simply be ignored.
Todisplay a > in a cascaded menu item, you can use >>.

Shortcut keys used in cascades may be added to
the appropriate constant values as for mCARD to
enable checkboxes, option buttons, and dimming of
cascade items.

As is typical for cascade titles, a shortcut value of
16 is used in the example above. This prevents the
display or specification of any shortcut key. However,
it is possible to define a shortcut key for a cascade title
if required, for example to cycle through the options
available in a cascade.

If more menu items are displayed in a menu card or
cascade than are displayable on the screen, the menu
will be drawn with a scroll bar. It is recommended that
programmers do not define menus that scroll to keep
the pen actions the user has to make to use the program
to a minimum: see Defining the menus.

See also mCARD, mCARDX, MENU, mINIT.

Calculates a mean value

Usage: m=MEAN(list)
or m=MEAN(array(),element)

230

MENU

OPL COMMAND LIST

Returns the arithmetic mean (average) of a list of
numeric items. The list can be either:

A list of variables, values, and expressions, separated
by commas

or

The elements of a floating point array.

When operating on an array, the first argument must
be the array name followed by (). The second argument,
separated from the first by a comma, is the number of
array elements you wish to operate on. For example,
m=MEAN(arr(),3) would return the average of elements
arr(1), arr(2), and arr(3).

This example displays 15.0:

a(m=10
a2)=15
a(3)=20
PRINT MEAN(a(),3)

Displays a menu

Usage: val%=MENU
or val%=MENU(var init%)

Displays the menus defined by mINIT, mCARD, and
mCASC, and waits for you to select an item. Returns the
shortcut key keycode of the item selected, as defined
in mCARD, in lowercase.

If you cancel the menu by pressing Esc, MENU
returns 0.

If the name of a variable is passed, it sets the initial
menu pane and item to be highlighted. init% should
be 256*(menu%)+item%,; for both menu% and item%,
0 specifies the first, 1 the second, and so on. If init%
is 517 (=256*2+5), for example, this specifies the sixth
item on the third menu.

If init% was passed, MENU writes back to init%
the value for the item that was last highlighted on the
menu. You can then use this value when calling the
menu again.

It is necessary to use MENU(init%), passing back the
same variable each time the menu is opened if you
wish the menu to reopen with the highlight set on the
last selected item.

MID$

MIN

OPL COMMAND LIST 231

[tis incorrect to ignore mMCARD and mCASC errors by
having an ONERR label around an mCARD or mCASC
call. If you do, the menu is discarded and a ‘Structure
fault’” will be raised on using mCARD, mCASC, or
MENU without first using mINIT again.

The following bad code will not display the menu:

REM ** example of bad code **

mINIT

ONERR errlgnoreT

mCARD "Xxx" "ltemA",0 REM bad shortcut
errlgnorel::

ONERR errlgnore2

mCARD "Yyy","

REM “Structure fault’ error (mINIT discarded)
errlgnore2::

ONERR OFF

MENU REM ‘Structure fault’ again

See also mCARD, mCASC, mINIT.

Gets the middle part of a string
Usage: m$=MID$($,x%,y%)

Returns a string comprising y% characters of a$, starting
at the character at position x%.

E.g. if name$="McConnell" then MID$(name$,3,4)
would return the string Conn.

Minimum value

Usage: m=MIN(list)
or m=MIN(array(),element)

Returns the smallest of a list of numeric items. The list
can be either:

A list of variables, values, and expressions, separated
by commas

or

The elements of a floating point array.

When operating on an array, the first argument must
be the array name followed by (). The second argument,
separated from the first by a comma, is the number of
array elements you wish to operate on. For example,

232

mINIT

MIME

OPL COMMAND LIST

m=MIN(arr(),3) would return the minimum of elements
arr(1), arr(2), and arr(3).

Initializes menus
Usage: mINIT

Prepares for definition of menus, cancelling any existing
menus. Use mMCARD and mCASC to define each menu,
then MENU to display them.

It is incorrect to ignore mMCARD or mCASC errors by
having an ONERR label around an mCARD or mCASC
call. If you do, the menu is discarded and a ‘Structure
fault’ will be raised if there is an occurrence of mMCARD,
mCASC, or MENU without first using mINIT again. See
MENU for an example of this.

See also mMCARD, mCARDX, mCASC and Menus.

Associates an OPL application with a MIME type
Usage: MIME pri%, dtype$

Associates an OPL application with the Internet MIME
content type dtype$, using priority pri%. This command
can only be used in the scope of an APP...ENDA con-
struct. The priority value specifies how proficient the
application is at handling the named data type. dtype%
is the name of the data type this app is declaring that it
can handle, e.g. text/html, image/png, or text/plain.

Declaring a MIME association indicates to the sys-
tem that the application allows the user to view or
manipulate files and data of the named type.

pri% can take any of the following values:

KDataTypePriorityUserSpecified% KMaxInt% reserved for future use
KDataTypePriorityHigh% 10000 this app is superbly

capable of handling
his data type

KDataTypePriorityNormal% 0 typical priority. App is

proficient at handling
this data type

KDataTypePriorityLow% —10000 app is merely capable

of handling this
document type

OPL COMMAND LIST 233

KDataTypePriorityLastResort% —20000 app should only

handle this data type
if there are no other
apps available that
can use it

KDataTypePriorityNotSupported% KMinInt% -

MINUTE

MKDIR

MODIFY

These constants are supplied in Const.oph. Note that
KDataTypePriorityUserSpecified% is reserved for future
use.

The .aif file (application information file) for the app
is used to store this information once the app has been
translated. Only one MIME association is allowed per
application, so only one MIME statement can be made
in an OPL application’s APP...ENDA declaration.

There are recognizers in the ROM for the following
MIME types:

text/plain
text/html
image/jpeg
image/gif
text/X-vCard
text/X-vCalendar

Gets the current minute

Usage: m%=MINUTE

Returns the current minute number from the system
clock (0 to 59).
E.g. at 8.54 a.m. MINUTE returns 54.

Creates a new folder

Usage: MKDIR name$

Creates a new folder/directory. For example, MKDIR
"C:\MINE\TEMP" creates a C:\MINE\TEMP folder, also
creating C:\MINE if it is not already there.

Changes a record without moving it

Usage: MODIFY

Allows the current record of a view to be modified
without moving the record. The fields can then be
assigned to before using PUT or CANCEL.

234

MONTH

MONTH$

mPOPUP

OPL COMMAND LIST

Gets the current month
Usage: m%=MONTH

Returns the current month from the system clock as an
integer between 1 and 12.

E.g. on 12th March 1992 m%=MONTH returns 3
(KMarch%) to m%.

Converts a numeric month to a string
Usage: m$=MONTH$(x%)

Converts x%, a number from 1 to 12, to the month
name, expressed as a three-letter mixed case string.
E.g. MONTHS$(KJanuary%) returns the string Jan.

See MONTH for the month number constants.

Presents a popup menu

Usage: mPOPUP(x%,y%,posType%,item1$,key1%,
item2$,key2%,...)

Presents a popup menu. mPOPUP returns the value of
the key press used to exit the popup menu, this being 0
if Esc is pressed.

Note that mPOPUP defines and presents the menu
itself, and should not and need not be called from
inside the mINIT...MENU structure.

posType% is the position type controlling which
corner of the popup menu x%,y% specifies and can
take the values:

KMPopupPosTopLeft% 0 top left
KMPopupPosTopRight% 1 top right
KMPopupPosBottomLeft% 2 bottom left
KMPopupPosBottomRight% 3 bottom right

These constants are supplied in Const.oph.
item$ and key% can take the same values as for
mCARD, with key% taking the same constant values to
specify checkboxes, option buttons, and dimmed items.
However, cascades in popup menus are not supported.
For example:

mPOPUP (0,0,0,"Continue",%c,"Exit",%e)

NEXT

NUMS$

ONERR

OPL COMMAND LIST 235

specifies a popup menu with 0,0 as its top left-hand
corner, with the items ‘Continue’ and ‘Exit’, with the
shortcut keys Ctrl+C and Ctrl+E, respectively.

See also mCARD.

Positions to the next record
Usage: NEXT

Positions to the next record in the current data file.

If NEXT is used after the end of a file has been
reached, no error is reported but the current record is
null and the EOF function returns true.

Converts a floating point number to a string
Usage: n$=NUMS(x,y%)

Returns a string representation of the integer part of
the floating point number x, rounded to the nearest
whole number. The string will be up to y% charac-
ters wide.

If y% is negative then the string is right-justified,
for example NUM$(1.9,—3) returns "2" where there are
two spaces to the left of the 2.

If y% is positive no spaces are added: e.g.
NUMS$(—3.7,3) returns "—4".

If the string returned to n$ will not fit in the width
y%, then the string will just be asterisks; for example
NUM$(256.99,2) returns "**"

See also FIX$, GEN$, SCI$.
Establishes an error handler
Usage:

ONERR label::

ONERR OFF

or just:

ONERR label

ONERR OFF

236

OPEN

OPL COMMAND LIST

ONERR label:: establishes an error handler in a proce-
dure. When an error is raised, the program jumps to
the label:: instead of the program stopping and an error
message being displayed.

The label may be up to 32 characters long starting
with a letter or an underscore. It ends with a double
colon (::), although you don’t need to use this in the
ONERR statement.

ONERR OFF disables the ONERR command, so that
any errors occurring after the ONERR OFF statement
no longer jump to the label.

It is advisable to use the command ONERR OFF
immediately after the label:: which starts the error
handling code.

Opens an existing table in a database
Usage: OPEN query$,log f1,f2, ...

Opens an existing table (or a ‘view’ of a table) from an
existing database, giving it the logical view name log
and handles for the fields {1, f2. log can be any letter
in the range A to Z.

query$ specifies the database file, the required table
and fields to be selected.

For example:

OPEN "clients SELECT name, tel FROM
phone",D,n$,t$

The database name here is clients and the table name is
phone. The field names are enclosed by the keywords
SELECT and FROM and their types should correspond
with the list of handles (i.e. n$ indicates that the name
field is a string).

Replacing the list of field names with * selects all the
fields from the table.

query$ is also used to specify an ordered view
and if a suitable index has been created, then it will
be used.

OPEN "people SELECT name,number FROM
phoneBook ORDER BY name
ASC, number DESC",G,n$,num%

OPENR

PARSE$

OPL COMMAND LIST 237

would open a view with name fields in ascending
alphabetical order and if any names were the same
then the number field would be used to order these
records in descending numerical order.

If the specification of the database includes embed-
ded spaces, for example in the name of the folder, the
name must be enclosed in quotes, so for example the
following correctly fails:

OPEN "c:\folder with spaces\file with
spaces",a,name$

whereas the following works:

OPEN ""'c:\folder with spaces\file with
spaces"",a,name$

See also CREATE, USE, OPENR.

Opens a table as read-only in an existing database
Usage: OPEN query$,log f1,f2, ...

This command works exactly like OPEN except that the
opened file is read-only. In other words, you cannot
APPEND, UPDATE, or PUT the records it contains.

This means that you can run two separate programs
at the same time, both sharing the same file.

Parses a filename
Usage: p$=PARSES$(f$,rel$,var off%!())

Returns a full file specification from the filename f$,
filling in any missing information from rel$.

The offsets to the filename components in the returned
string is returned in off%(), which must be declared with
at least 6 integers. Index values for off%!() are:

KParseAOffFSys% 1 filing system name offset
KParseAOffDev% 2 device name offset
KParseAOffPath% 3 path offset
KParseAOffFilename% 4 filename offset
KParseAOffExt% 5 file extension offset
KParseAOffWild% 6 flags for wildcards in

returned string. See below

238

PAUSE

OPL COMMAND LIST

The flag values in offset%(KParseAOffWild%) are:

KParseWildNone% 0 no wildcards
KParseWildFilename$ 1 wildcard in filename
KParseWildExt$ 2 wildcard in file extension
KParseWildBoth$ 3 wildcard in both

These constants are supplied in Const.oph.

If rel$ is not itself a complete file specification, the
current filing system, device, and/or path are used as
necessary to fill in the missing parts.

f$ and rel$ should be separate strings.

p$=PARSES$("NEW","C:\Documents\ *.MBM",x%())

sets p$ to C:\Documents\NEW.MBM and x%() to
(1,1,3,14,17,0).

Waits for a length of time

Usage: PAUSE x%

Pauses the program for a certain time, depending on
the value of x%:

0 waits for a key to be pressed
+ve pauses for x% twentieths of a second
-ve pauses for x% twentieths of a second or

until a key is pressed

So PAUSE 100 would make the program pause for
100/20 = 5 seconds, and PAUSE —100 would make the
program pause for 5 seconds or until a key is pressed.

If X% is less than or equal to 0, a GET, GET$, KEY,
or KEY$ will return the key press that terminated the
pause. If you are not interested in this key press, but in
the one that follows it, clear the buffer after the PAUSE
with a single KEY function: PAUSE —10 :KEY

You should be especially careful about this if x%
is negative, since then you cannot tell whether the
pause was terminated by a key press or by the time
running out.

PAUSE should not be used in conjunction with
GETEVENT or GETEVENT32 because events are dis-
carded by PAUSE.

PEEKB

PEEKW

PEEKL

PEEKF

PEEK$

Pl

POINTERFILTER

OPL COMMAND LIST 239

Reads a short integer from a byte of memory

p%=PEEKB(x&)
The PEEK functions find the values stored in specific
bytes. PEEKB returns the integer value of the byte at
address x&.

Reads an integer from memory

p%=PEEKW(x&)
Returns the integer at address x&.

Reads a long integer from memory

p&=PEEKL(x&)
Returns the long integer value at address x&.

Reads a floating point value from memory

p=PEEKF(x&)
Returns the floating point value at address x&.

Reads a string from memory

p$=PEEK$(x&)
Returns the string at address x&.

Returns the value of Pl
Usage: p=PI
Returns the value of (3.14...).

Sets the pointer event mask
Usage: POINTERFILTER filter%,mask%

Filters pointer events in the current window out or
back in. Add the following flags together to achieve the

240

POKEB

POKEW

POKEL

OPL COMMAND LIST

desired filter% and mask%:

$0 none
KPointerFilterEnterExit% $1 enter/exit
KPointerFilterMove% $2 move
KPointerFilterDrag% $4 drag

These constants are supplied in Const.oph.

The bits set in filter% specify the settings to be used,
1 to filter out the event and O to remove the filter. Only
those bits set in mask% will be used for filtering. This
allows the current setting of a particular bit to be left
unchanged if that bit is zero in the mask (i.e. mask%
dictates what to change and filter% specifies the setting
to which it should be changed). For example:

mask% = KPointerFilterEnterExit% +
KPointerFilterDrag%

REM allows enter/exit and drag settings to be
changed

POINTERFILTER KPointerFilterEnterExit%, mask%

REM filters out enter/exit, but not dragging

POINTERFILTER KPointerFilterDrag%, mask%
REM filters out drag and reinstates enter/exit

Initially the events are not filtered out.

See also GETEVENT32, GETEVENTA32.

Stores a short integer in a byte of memory

POKEB x&,y%

The POKE commands store values in specific bytes.
POKEB stores the integer value y% (less than 256) in
the single byte at address x&.

Stores an integer in memory

POKEW x&,y%
Stores the integer y% across two consecutive bytes,
with the least significant byte in the lower address, that

is x&.

Stores a long integer in memory

POKEF

POKES$

POS

OPL COMMAND LIST 241

POKEL x&,y&

Stores the long integer y& in bytes starting at address
x&.

Stores a floating point value in memory

POKEF x&,y

Stores the floating point value y in bytes starting at
address x&.

Stores a string in memory

POKE$ x&,y$

Stores the string y$ in bytes starting at address x&.
Use ADDR to find out the address of your declared
variables.

Gets the position in the current view
Usage: p%=POS

Returns the number of the current record in the current
view. POS (and POSITION) exist mainly for compati-
bility with older versions of OPL and you are advised
to use bookmarks instead.

A file has no limit on the number of records. How-
ever, integers can only be in the range —32768 to
+32767. Record numbers above 32767 are therefore
returned like this:

record value returned by POS
32767 32767

32768 32768

32769 32767

32770 32766

65534 2

To display record numbers, you can use this check:

IF POS<0
PRINT 65536+POS
ELSE

242

POSITION

PRINT

OPL COMMAND LIST

PRINT POS
ENDIF

Note: The number of the current record may be greater
than or equal to 65535, and hence values may need
to be truncated to fit into p%, giving inaccurate results.
You are particularly advised to use bookmarks when
dealing with a large number of records. Note, however,
that the value returned by POS can become inaccurate
if used in conjunction with bookmarks and multiple
views on a table. Accuracy can be restored by using
FIRST or LAST on the current view.

See BOOKMARK, GOTOMARK, KILLMARK.

Sets the position in the current view
Usage: POSITION x%

Makes record number x% the current record in the
current view. By using bookmarks and editing the same
table via different views, positional accuracy can be
lost and POSITION x% could access the wrong record.
Accuracy can be restored by using FIRST or LAST on
the current view.

POSITION (and POS) exist mainly for compatibility
with older versions of OPL and you are advised to use
bookmarks instead.

See BOOKMARK, GOTOMARK, KILLMARK.

Displays a list of expressions
Usage: PRINT list of expressions

Displays a list of expressions on the screen. The list can
be punctuated in one of these ways:

If items to be displayed are separated by commas,
there is a space between them when displayed.

If they are separated by semicolons, there are no
spaces.

Each PRINT statement starts a new line, unless the
preceding PRINT ended with a semicolon or comma.

There can be as many items as you like in this
list. A single PRINT on its own just moves to the
next line.

PUT

RAD

OPL COMMAND LIST 243

Example: On Tst January 1997

Code display
PRINT "TODAY is", :PRINT TODAY is 1.1.1997
DAY;".";MONTH;".";YEAR

PRINT 1 1
PRINT "Hello" Hello
PRINT "Number",1 Number 1

Seealso LPRINT, gUPDATE, gPRINT, gPRINTB, gPRINT-
CLIP, gXPRINT.

Writes changes into a database
Usage: PUT

Marks the end of a database’s INSERT or MODIFY
phase and makes the changes permanent.

See INSERT, MODIFY, CANCEL.

Converts from degrees to radians
Usage: r=RAD(x)

Converts x from degrees to radians.

All the trigonometric functions assume angles are
specified in radians, but it may be easier for you to
enter angles in degrees and then convert with RAD.

Example:

PROC xcosine:
LOCAL angle
PRINT "Angle (degrees)?:";
INPUT angle
PRINT "COS of",angle,"is",
angle=RAD(angle)
PRINT COS(angle)
GET
ENDP

(The formula used is (PI*x)/180.)
To convert from radians to degrees use DEG.

244

RAISE

RANDOMIZE

OPL COMMAND LIST

Raises an error
Usage: RAISE x%

Raises an error.

The error raised is error number x%. This may be
one of the errors listed in OPL error values, or a new
error number defined by you.

The error is handled by the error processing mecha-
nism currently in use — either OPL’s own, which stops
the program and displays an error message, or the
ONERR handler if you have ONERR on.

Seeds the random number generator
Usage: RANDOMIZE x&

Gives a ‘seed’ (start value) for RND.

Successive calls of the RND function produce a
sequence of pseudo-random numbers. If you use RAN-
DOMIZE to set the seed back to what it was at the
beginning of the sequence, the same sequence will
be repeated.

For example, you might want to use the same ‘ran-
dom’ values to test new versions of a procedure. To
do this, precede the RND statement with the statement
RANDOMIZE value. Then to repeat the sequence, use
RANDOMIZE value again.

Example:

PROC SEQ:
LOCAL g$(1)
WHILE 1
PRINT "S: set seed to 1"
PRINT "Q: quit"
PRINT "other key: continue"
g$=UPPER$(GETS$)

IF g$:IIQII
BREAK
ELSEIF g$="5"
PRINT "Setting seed to 1"
RANDOMIZE 1
PRINT "First random no:"
ELSE
PRINT "Next random no:"
ENDIF

PRINT RND

REALLOC

REM

RENAME

OPL COMMAND LIST 245

ENDWH
ENDP

Changes the size of a previously allocated cell
Usage: pcelln&=REALLOC(pcell&,size&)

Change the size of a previously allocated cell at pcell&
to size&, returning the new cell address or zero if there
is not enough memory.

See also SETFLAGS if you require the 64K limit to be
enforced. If the flag is set to restrict the limit, pcelln& is
guaranteed to fit into an integer.

See also Dynamic memory allocation.

ARM

Cells are allocated lengths that are the smallest multiple
of four greater than the size requested because the
ARM processor requires a 4-byte word alignment for its
memory allocation.

Comment marker
Usage: REM text

Precedes a remark you include to explain how a pro-
gram works. All text after the REM up to the end of the
line is ignored.
When you use REM at the end of a line you need
only precede it with a space, not a space and a colon.
Examples:

INPUT a :b=a*.175 REM b=TAX
INPUT a :b=a*.175 : REM b=TAX

Renames files
Usage: RENAME file1$,file2 $

Renames file1$ as file2$. You can rename any type
of file.

You cannot use wildcards.

You can rename across directories: RENAME
"\dat\xyz.abc","\xyz.abc" is OK. If you do this, you
can choose whether or not to change the name of
the file.

246

REPTS$

RETURN

RIGHTS$

ROLLBACK

OPL COMMAND LIST

Example:

PRINT "Old name:" :INPUT a$
PRINT "New name:" :INPUT b$
RENAME a$,b$

Repeats a string
Usage: r$=REPT$(a$,x%)

Returns a string comprising x% repetitions of a$.
For example, if a$="ex", r$=REPT$($,5) returns
exexexexex.

Returns from a procedure

Usage: RETURN
or RETURN variable

Terminates the execution of a procedure and returns
control to the point where that procedure was called
(ENDP does this automatically).

RETURN variable does this as well, but also passes
the value of variable back to the calling procedure. The
variable may be of any type. You can return the value
of any single array element —for example, RETURN
X%(3). You can only return one variable.

RETURN on its own, and the default return through
ENDP, causes the procedure to return the value 0 or a
null string.

Gets the rightmost characters of string

Usage: r$=RIGHT$(a$,x%)

Returns the rightmost x% characters of a$.
Example:

PRINT "Enter name/ref",
INPUT c$
ref$=RIGHT$(c$,4)
name$=LEFT$(c$,LEN(c)$-4)

Cancels the current transaction on the current view
Usage: ROLLBACK

Cancels the current transaction on the current view.
Changes made to the database with respect to this

RMDIR

RND

SCI$

OPL COMMAND LIST 247

particular view since BEGINTRANS was called will
be discarded.

See also BEGINTRANS, COMMITTRANS.

Removes directories
Usage: RMDIR str$

Removes the directory given by str$. You can only
remove empty directories.

Gets a pseudo-random floating point number
Usage: r=RND

Returns a pseudo-random floating point number in the
range O (inclusive) to 1 (exclusive).

To produce random numbers between 1 and n, e.g.
between 1 and 6 for a dice, use the following statement:
f%=1+INT(RND*n).

RND produces a different number every time it is
called within a program. A fixed sequence can be
generated by using RANDOMIZE. You might begin
by using RANDOMIZE with an argument generated
from MINUTE and SECOND (or similar), to seed the
sequence differently each time.

Example:

PROC rndvals:
LOCAL i%
PRINT "Random test values:"
DO
PRINT RND
1%=i%+1
GET
UNTIL i%=10
ENDP

Converts a number to scientific format
Usage: s$=SCI$(x,y%,z%)

Returns a string representation of x in scientific format,
to y% decimal places and up to z% characters wide.
Examples:

SC1$(123456,2,8)="1.23E+05"
SCI$(1,2,8)="1.00E+00"
SCI$(1234567,1,-8)="1.2E+06"

248

SCREEN

SCREENINFO

KSinfoALeft%
KSinfoATop%

KSinfoAScrW%
KSinfoAScrH%
KSinfoAReserved1%

KSinfoAFont%
KSinfoAPixW%
KSinfoAPixH%
KSinfoAReserved2 %
KSinfoAReserved3% 1

OPL COMMAND LIST

If the number does not fit in the width specified then
the returned string contains asterisks.
If z% is negative then the string is right-justified.

See also FIX$, GEN$, NUMS.

Changes the size of the text window

Usage: SCREEN width%,height%
or SCREEN width%,height%,x%,y%

Changes the size of the window in which text is dis-
played. x%,y% specify the character position of the top
left corner; if they are not given, the text window is
centered in the screen.

An OPL program can initially display text to the
whole screen.

See SCREENINFO.

Gets information about the text screen
Usage: SCREENINFO var info%!)

Gets information on the text screen (as used by PRINT,
SCREEN, etc.).

This keyword allows you to mix text and graphics.
It is required because while the default window is the
same size as the physical screen, the text screen is
slightly smaller and is centered in the default window.
The few pixels gaps around the text screen, referred to
as the left and top margins, depend on the font in use.

On return, info%() contains the information.
info%() must have at least 10 elements. The information
is returned at the following indices in info%!():

left margin in pixels

top margin in pixels

text screen width in character units

text screen height in character units
reserved (window server ID for default
window)

unused (font ID for older systems)

pixel width of text window character cell
pixel height of text window character cell
least significant 16 bits of the font ID
most significant 16 bits of the font ID

TR WK =

[eNeR BN N

These constants are supplied in Const.oph.

SECOND

SECSTODATE

SETDOC

OPL COMMAND LIST 249

The font ID is a 32-bit integer under Symbian OS,
and therefore would not fit into a single element of
info%(). Hence, the least significant 16 bits of the font
ID are returned to info%(9) and the most significant 16
bits to info%(10).

Initially SCREENINFO returns the values for the
initial text screen. Subsequently, any keyword that
changes the size of the text screen font, such as FONT
or SCREEN, will change some of these values and
SCREENINFO should therefore be called again.

See also FONT, SCREEN.

Gets the current time in seconds
Usage: s%=SECOND

Returns the current time in seconds from the system
clock (0 to 59).
E.g. at 6:00:33 SECOND returns 33.

Converts seconds to date

Usage: SECSTODATE s&,var yr%,var mo%,var dy%,var
hr%,var mn%, var sc%,var yrday%

Sets the variables passed by reference to the date corre-
sponding to s&, the number of seconds since 00:00 on
1/1/1970. yrday% is set to the day in the year (1-366).

s& is an unsigned long integer. To use values
greater than +2147483647, subtract 4294967296 from
the value.

See also DATETOSECS, HOUR, MINUTE, SECOND,
dDATE, DAYS.

Sets a file to be a document
Usage: SETDOC file$

Sets the file file$ to be a document. This command
should be called immediately before the creation of
file$ if it is to be recognized as a document. SETDOC
may be used with the commands CREATE, gSAVEBIT,
and IOOPEN.

The string passed to SETDOC must be identical to
the name passed to the following CREATE or gSAVEBIT
otherwise a non-document file will be created. Example
of document creation:

250

OPL COMMAND LIST

SETDOC "myfile"
CREATE "myfile",a,a$,b$

SETDOC should also be called after successfully open-
ing a document to allow the System screen to display
the correct document name in its task list.

In case of failure in creating or opening the required
file, you should take the following action:

Creating —try to re-open the last file and if this
fails display an appropriate error dialog and exit. On
reopening, call SETDOC back to the original file so the
Task list is correct.

Opening — as for creating, but calling SETDOC again
is not strictly required.

Database documents, created using CREATE, and
multi-bitmap documents, created using gSAVEBIT, will
automatically contain your application UID in the file
header. For binary and text file documents created
using IOOPEN and LOPEN, it is the programmer’s
responsibility to save the appropriate header in the
file. This is a fairly straightforward process and the
following suggests one way of finding out what the
header should be:

Create a database or bitmap document in a test run
of your application using SETDOC as shown above.

Use a hex editor or hex dump program to find the
first 16 bytes, or run the program below which reads
the four long integer UIDs from the test document.

Write these four long integers to the start of the file
you create using IOOPEN.

INCLUDE "Const.oph"
DECLARE EXTERNAL
EXTERNAL readUids:(file$)

PROC main:

LOCAL f$(255)

WHILE 1
dINIT "Show UIDs in document header"
dPOSITION 1,0
dFILE f$,"Document,Folder,Drive",0
IF DIALOG=0

RETURN

ENDIF

OPL COMMAND LIST 251

readUids:(f$)
ENDWH
ENDP

PROC readUids:(f$)

LOCAL ret%,h%

LOCAL uid&(4),i%

ret%=I0O0PEN(h%,f$,KloOpenModeOpen% OR

KloOpenFormatBinary%)

IF ret%>=0
ret%=IOREAD(h%,ADDR(uid&()),16)
PRINT "Reading ";f$
IF ret%=16

WHILE %<4
i%=1%-+1
PRINT " Uid"+num$(i%, 1)+"=",hex$(uid &(i%))
ENDWH
ELSE
PRINT " Error reading: ";
IF ret%<0
PRINT err$(ret%)
ELSE
PRINT "Read ";ret%;" bytes only ";
PRINT "(4 long integers required)"
ENDIF
ENDIF
IOCLOSE(h%)

ELSE
PRINT "Error opening: ";ERR$(ret%)

ENDIF

ENDP

Creating text file documents using IOOPEN or LOPEN
has two special requirements:

You will need to save the required header as the first
text record. This will insert the standard text file line
delimiters CR LF (hex OD 0A) at the end of the record.

The specific 16 bytes required for your application
may itself however contain CR LF. Since you should
know when this is the case, you will need to read
records until you have reached byte 16 in the docu-
ment. This is clearly not a desirable state of affairs, but
is inescapable given that text files were not designed
to have headers. It is recommended that you request a
new UID for your application if it contains CR LF.

252

SETFLAGS

SETHELP

OPL COMMAND LIST

See also GETDOCS$.

Sets an application’s flags
Usage: SETFLAGS flags&

Sets flags to produce various effects when running
programs. Use CLEARFLAGS to clear any flags that
have been set. flags& is formed by adding one or more
of the following values:

KRestrictTo64K& 1

restricts the memory available to your application to
64K, emulating an older 16-bit machine. This setting
should be used at the beginning of your program only,
if required. Changing this setting repeatedly will have
unpredictable effects.

KAutoCompact& 2

enables auto-compaction on closing databases. This
can be slow, but it is advisable to use this setting when
lots of changes have been made to a database.

KTwoDigitExponent& 4

enables raising of overflow errors when floating point
values are greater than or equal to 1.0E+100 in mag-
nitude, instead of allowing three-digit exponents (for
backwards compatibility).

KSendSwitchOnMessage& $10000

enables GETEVENT, GETEVENT32, and GETEVENT32A
to return the event code $403 to ev&(1) when the
machine switches on.

These constants are supplied in Const.oph.

By default these flags are cleared.

See also GETEVENT32, CLEARFLAGS.

Sets the help context to be displayed
Usage: SETHELP ViewType%,HelpText$

Sets the current help context. For example, to show the
help for the current view/state of your application (in
the main event-handler):

SETHELPUID

SETPATH

OPL COMMAND LIST 253

IF (Key&=KKeyHelp32&) AND (Mods&=0)
IF View%=KMainView%
SETHELP KHelpView%,KMyHelpMainView$
ELSEIF View%=KOtherView%
SETHELP KHelpView%,KMyHelpOtherView$
ELSE
SETHELP KHelpView%,KMyHelpQuickStart$
ENDIF
SHOWHELP
ENDIF

To ensure that a given topic is displayed if the Help
key is pressed while a dialog is on display (you cannot
‘trap” the key itself while the dialog is on show — OPL
does this for you):

SETHELP KHelpDialog%,KMyHelpSettingsDialog$
dINIT "Settings"

..other dialog controls, etc. as normal..
Dia%=DIALOG

To ensure that a given topic is displayed if the Help key
is pressed while a menu is on display (again, OPL will
‘trap’ the key for you):

SETHELP KHelpMenu%,KMyHelpMainMenu$
mINIT

mCARD "File",..etc..

..other menu controls, etc. as normal..
Menu&=MENU(LastMenuValue%)

See also SETHELPUID, SHOWHELP.

Sets the help file to be displayed by your application
Usage: SETHELP KHelpFileUID$

Sets the help file to be displayed by your application,
using the unique identifier of that help file. This UID
would normally be the same as that of your own
application. It can be set on the PC using the SDK at
the time of building the help file.

See also SETHELP, SHOWHELP.

Sets the path for file access

254

SHOWHELP

SIN

SIZE

OPL COMMAND LIST

Usage: SETPATH name$
Sets the current path for file access. For example:
SETPATH "C:\Documents\"

SETPATH needs the final backslash to be passed oth-
erwise it ignores everything beyond the last backslash.
LOADM continues to use the path of the initial program,
but all other file access will use the new path.

Shows the help file
Usage: SHOWHELP

Displays the help file currently associated with your
application, using the context most recently set by
SETHELP.

See also SETHELPUID, SETHELP.

Sine
Usage: s=SIN(angle)

Returns the sine of angle, an angle expressed in radians.
To convert from degrees to radians, use the RAD
function.

Size of a string
Usage: S%=SIZE(String$)

Returns the size of string, not just its length (to allow
for the fact that under Symbian OS all strings are
stored in Unicode format). For example, the following
code demonstrates the difference between the SIZE and
LEN keywords:

PROC Main:

LOCAL String$(13)
String$="How Big Am [2"
PRINT "Length =",LEN(String$)
PRINT "Size =",SIZE(String$)
PRINT "Press any key to continue."
GET

ENDP

This should result in the following console output:

SPACE

SQR

STD

STOP

STYLE

OPL COMMAND LIST 255

Length = 13
Size =26
Press any key to continue

See also LEN.

Gets space available on the current file’s device
Usage: s&=SPACE

Returns the number of free bytes on the device on
which the current (open) data file is held.

Square root
Usage: s=SQR(x)

Returns the square root of x.

Standard deviation

Usage: s=STD(list)
or s=STD(array(),element)

Returns the standard deviation of a list of numeric items.

The list can be either:
A list of variables, values, and expressions, separated
by commas

or

The elements of a floating point array.

When operating on an array, the first argument must
be the array name followed by (). The second argument,
separated from the first by a comma, is the number of
array elements you wish to operate on. For example,
m=STD(arr(),3) would return the standard deviation of
elements arr(1), arr(2), and arr(3).

Stops the running program

Usage: STOP

Ends the running program.

Note that STOP may not be used during an OPX
callback and will raise the error ‘STOP used in callback’
if it is. See Callbacks from OPX procedures.

Sets the text window character style

256

SUM

TAN

TESTEVENT

TRAP

OPL COMMAND LIST

Usage: STYLE style%

Sets the text window character style. style% can be 2
for underlined, or 4 for inverse.

Sums a list of numeric items

Usage: s=SUM(list)
or s=SUM(array(),element)

Returns the sum of a list of numeric items.

The list can be either:

A list of variables, values, and expressions, separated
by commas

or

The elements of a floating point array.

When operating on an array, the first argument
must be the array name followed by (). The second
argument, separated from the first by a comma, is the
number of array elements you wish to operate on.
For example, m=SUM(arr(),3) would return the sum of
elements arr(1), arr(2), and arr(3).

Tangent
Usage: t=TAN(angle)

Returns the tangent of angle, an angle expressed in
radians.

To convert from radians to degrees, use the DEG
function.

Tests if an event has occurred
Usage: t%=TESTEVENT

Returns ‘True’ if an event has occurred, otherwise
returns ‘False’. The event is not read by TESTEVENT — it
may be read with GETEVENT, GETEVENT32, or
GETEVENTA32.

Warning: It is recommended that you use either
GETEVENT32 or GETEVENTA32 without TESTEVENT
as TESTEVENT may use a lot of power, especially when
used in a loop as will often be the case.

Traps errors

Section Contents

TRAP RAISE

UADD

OPL COMMAND LIST 257

Trapping data file commands
Trapping file commands
Trapping directory commands
Trapping data entry commands
Trapping graphics commands

Usage: TRAP command

TRAP is an error handling command. It may precede
any of these commands:

Trapping data file commands

APPEND, UPDATE, BACK, NEXT, LAST, FIRST, POSI-
TION, USE, CREATE, OPEN, OPENR, CLOSE, DELETE,
MODIFY, INSERT, PUT, CANCEL

Trapping file commands
COPY, ERASE, RENAME, LOPEN, LCLOSE, LOADM,
UNLOADM

Trapping directory commands
MKDIR, RMDIR

Trapping data entry commands
EDIT, INPUT

Trapping graphics commands
gSAVEBIT, gCLOSE, gUSE, gUNLOADFONT, gFONT,
gPATT, gCOPY

For example, TRAP FIRST.

Any error resulting from the execution of the com-
mand will be trapped. Program execution will continue
at the statement after the TRAP statement, but ERR will
be set to the error code.

TRAP overrides any ONERR.

Clears the trap flag

Usage: TRAP RAISE x%

Sets the value of ERR to x% and clears the trap flag.

Adds two unsigned integers
Usage: i%=UADD(val1%, val2%)

Add val1% and val2%, as if both were unsigned integers
with values from 0 to 65535. Prevents integer overflow
for pointer arithmetic when the 64K memory restric-
tion is set (see SETFLAGS), e.g. UADD(ADDR(text$),1)
should be used instead of ADDR(text$)+1.

258

UNLOADM

UNTIL

PDATE

OPL COMMAND LIST

One argument would normally be a pointer and the
other an offset expression.

Note that UADD and USUB should not be used for
pointer arithmetic unless SETFLAGS has been used to
enforce the 64K memory limit. In general, long integer
arithmetic should be used for pointer arithmetic.

See also USUB.

Unloads a module
Usage: UNLOADM module$

Removes from memory the module module$ loaded
with LOADM.

module$ is a string containing the name of the
translated module.

The procedures in an unloaded module cannot then
be called by another procedure.

UNLOADM causes any procedures in the module
that are not still running to be unloaded from memory
too. Running procedures are unloaded on return. It is
considered bad practice, however, to use UNLOADM
on a module with procedures that are still running.

Once LOADM has been called, procedures loaded
stay in memory until the module is unloaded. Modules
are not flushed automatically.

See DO
See DO.

Deletes the current record and saves as a new record
at the end of the file

Usage: UPDATE

Warning: This function is deprecated and included only
for compatibility with older versions of the OPL lan-
guage. INSERT, PUT, and CANCEL should be used
in preference to APPEND and UPDATE, although
APPEND and UPDATE are still supported. However,
note that APPEND can generate a lot of extra (inter-
mediate) erased records. COMPACT should be used
to remove them, or alternatively use SETFLAGS to set
auto-compaction on.

Deletes the current record in the current data file
and saves the current field values as a new record at
the end of the file.

UPPER$

USE

USuUB

OPL COMMAND LIST 259

This record, now the last in the file, remains the
current record.
Example:

A.count=129
A.name$="Brown"
UPDATE

Use APPEND to save the current field values as a
new record.

Converts a string to uppercase
Usage: u$=UPPER$(a$)

Converts any lowercase characters in a$ to uppercase,
and returns the completely uppercase string. Example:

CLS :PRINT "Y to continue"
PRINT "or N to stop."
g$=UPPERS$(GET$)
IF g$="Y"

nextproc:
ELSEIF g$="N"

RETURN
ENDIF

Use LOWERS$ to convert to lowercase.

Selects a data file
Usage: USE logical name

Selects the data file with the given logical name (A-Z).
The file must previously have been opened with OPEN,
OPENR, or CREATE, and not yet be closed.

All the record handling commands (such as POSI-
TION and UPDATE, and GOTOMARK, INSERT, MOD-
[FY, CANCEL and PUT) then operate on this file.

Subtracts two unsigned integers
Usage: i%=USUB(val1%,val2%)

Subtract val2% from val1%, as if both were unsigned
integers with values from 0 to 65535. Prevents integer

260

VAL

VAR

VECTOR

OPL COMMAND LIST

overflow for pointer arithmetic when the 64K memory
restriction is set (see SETFLAGS).

Note that UADD and USUB should not be used for
pointer arithmetic unless SETFLAGS has been used to
enforce a 64K memory limit. In general long integer
arithmetic should be used.

See also UADD.

Converts numeric string to floating point number
Usage: v=VAL(numeric string)

Returns the floating point number corresponding to a
numeric string.

The string must be a valid number, e.g. not"5.6.7" or
"196f". Expressions such as "45.6*3.1" are not allowed.
Scientific notation such as "1.3E10" is OK.

E.g. VAL("470.0") returns 470.

See also EVAL.

Gets variance of a list of items

Usage: v=VAR(list)
or v=VAR(array(),element)

Returns the variance of a list of numeric items.

The list can be either:

A list of variables, values, and expressions, separated
by commas

or

The elements of a floating point array.

When operating on an array, the first argument must
be the array name followed by (). The second argument,
separated from the first by a comma, is the number of
array elements you wish to operate on. For example,
m=VAR(arr(),3) would return the variance of elements
arr(1), arr(2), and arr(3).

This function gives the sample variance.

Jumps to a numbered label

Usage:

VECTOR i%
label1,label2,...,labelN
ENDV

WEEK

HILE...ENDWH

OPL COMMAND LIST 261

VECTOR i% jumps to label number i% in the list. If i%
is 1 this will be the first label, and so on. The list is
terminated by the ENDV statement. The list may spread
over several lines, with a comma separating labels in
any one line but no comma at the end of each line.

If i% is not in the range 1 to N, where N is the number
of labels, the program continues with the statement after
the ENDV statement.

See also GOTO.

Gets the week in which a specified day falls
Usage: w%=WEEK(day%, month%,year%)

Returns the week number in which the specified day
falls, as an integer between 1 and 53.

day% must be between 1 and 31, month% between
1 and 12, year% between 0 and 9999.

Each week is taken to begin on the ‘Start of week’
day, as specified in the Control Panel. When a year
begins on a different day to the start of the week, it
counts as week 1 if there are four or more days before
the next week starts.

The System setting of the ‘Start of week’
may be checked from inside OPL by using the
LCSTARTOFWEEK&: procedure in the Date OPX. The
week number in the year may also be calculated by
different rules and also with your own choice of the start
of year by using the procedure DTWEEKNOINYEAR&:
in Date OPX.

Conditional loop

Usage:

WHILE expression
ENDWH
Repeatedly performs the set of instructions between
the WHILE and the ENDWH statement, so long as
expression returns true (non-zero).
If expression is not true, the program jumps to the
line after the ENDWH statement.

Every WHILE must be closed with a matching
ENDWH.

262

YEAR

OPL COMMAND LIST

See also DO...UNTIL.

Gets the current year
Usage: y%=YEAR

Returns the current year as an integer from the sys-
tem clock.
For example, on 5th May 1997 YEAR returns 1997.

Appendix 2

Const.oph Listing

rem CONST.OPH 6.01
rem Constants for OPL - Last updated 31 May 2004

rem GENERAL CONSTANTS

CONST KTrue%=-1
CONST KFalse%=0

rem Data type ranges

CONST KMaxStringLen%=255

CONST KMaxFloat=1.7976931348623157E+308

CONST KMinFloat=2.2250738585072015E-308 rem Minimum with full precision in
mantissa

CONST KMinFloatDenorm=5e-324 rem Denormalised (just one bit of precision
left)

CONST KMinInt%=$8000 rem -32768 (translator needs hex for maximum ints)

CONST KMaxInt%=32767

CONST KMinLong&=&80000000 rem -2147483648 (hex for translator)

CONST KMaxLong&=2147483647

CONST KMaxdTIMEValue&=86399

rem Data type sizes
CONST KShortIntWidthé&=2
CONST KLongIntWidth&=4
CONST KFloatWidth&=8

rem Error codes

CONST KErrNone%=

CONST KErrGenFail%=-1
CONST KErrInvalidArgs$%$=-2
CONST KErrOs%=-3

CONST KErrNotSupported$=-4
CONST KErrUnderflow%=-5
CONST KErrOverflow$%=-6
CONST KErrOutOfRange%=-7
CONST KErrDivideByZero%=-8
CONST KErrInUse%=-9

CONST KErrNoMemory%=-10
CONST KErrNoSegments$=-11
CONST KErrNoSemaphore%=-12
CONST KErrNoProcess%=-13
CONST KErrAlreadyOpen%=-14

264

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

CONST.OPH LISTING

KErrNotOpen%=-15
KErrImage%=-16
KErrNoReceiver%=-17
KErrNoDevices%=-18
KErrNoFileSystem%=-19
KErrFailedToStart%=-20
KErrFontNotLoaded%=-21
KErrTooWide%=-22
KErrTooManyItems%=-23
KErrBatLowSound%=-24
KErrBatLowFlash%=-25
KErrExists%=-32
KErrNotExists%=-33
KErrWrite%=-34
KErrRead%=-35
KErrEof%=-36
KErrFull%=-37
KErrName%=-38
KErrAccess%=-39
KErrLocked%=-40
KErrDevNotExist%=-41
KErrDir%=-42
KErrRecord%=-43
KErrReadOnly%=-44
KErrInvalidIO%=-45
KErrFilePending%=-46
KErrVolume%=-47
KErrIOCancelled%=-48

rem OPL specific errors

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

KErrSyntax%=-77
KOplStructure%=-85
KErrIllegal%=-96
KErrNumArg%=-97
KErrUndef%=-98
KErrNoProc%=-99
KErrNoFld%$=-100
KErrOpen%=-101
KErrClosed%=-102
KErrRecSize%=-103
KErrModLoad%=-104
KErrMaxLoad%=-105
KErrNoMod%=-106
KErrNewVer%=-107
KErrModNotLoaded%=-108
KErrBadFileType%=-109
KErrTypeViol%=-110
KErrSubs%=-111
KErrStrTooLong%=-112
KErrDevOpen%=-113
KErrEsc%=-114
KErrMaxDraw%=-117
KErrDrawNotOpen%=-118
KErrInvalidWindow$%=-119
KErrScreenDenied%=-120
KErrOpxNotFound%=-121
KErrOpxVersion%=-122
KErrOpxProcNotFound%=-123
KErrStopInCallback%=-124
KErrIncompUpdateMode%=-125
KErrInTransaction%=-126

CONST.OPH LISTING

rem -127 to -133 translator errors

CONST

KErrBadAlignment$%=-134

rem Month numbers

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

KJanuary%=
KFebruary%=2
KMarch%=3
KApril%=4
KMay$%=5
KJune%=6
KJuly%="7
KAugust%$=
KSeptember%=9
KOctober%=10
KNovember%=11
KDecember%=12

rem For DOW

CONST
CONST
CONST
CONST
CONST
CONST
CONST

KMonday%=1
KTuesday%=2
KWednesday$%=3
KThursday%=4
KFriday$%=5
KSaturday%=6
KSunday%=7

rem DATIMS offsets

CONST
CONST
CONST
CONST
CONST
CONST
CONST

KDatimOf fDayName%=1
KDatimOf fDay%=
KDatimOffMonth%=
KDatimOffYear%$=12
KDatimOffHour%=17
KDatimOffMinute%=20
KDatimOffSecond%=23

rem Help location values

CONST
CONST
CONST

KHelpView$%=0
KHelpDialog%=1
KHelpMenu%=2

rem For BUSY and GIPRINT

CONST
CONST
CONST
CONST
CONST

KBusyTopLeft%=0
KBusyBottomLeft%=1
KBusyTopRight%=2
KBusyBottomRight%=3
KBusyMaxText%=80

rem For CMDS$

CONST KCmdAppName%=1 rem Full path name used to start program

CONST
CONST

KCmdUsedFile%=2
KCmdLetter%=3

rem For CMDS$S (3)

CONST
CONST
CONST
CONST
CONST
CONST

KCmdLetterCreates="C"
KCmdLetterOpen$="0"
KCmdLetterRun$="R"
KCmdLetterBackground$="B"
KCmdLetterViewActivateS$S="V"
KCmdLetterRunWithoutViews$="W"

rem For GETCMDS

265

266 CONST.OPH LISTING

CONST KGetCmdLetterCreate$="C"

CONST KGetCmdLetterOpen$="0O"

CONST KGetCmdLetterExit$="X"

CONST KGetCmdLetterBroughtToFGroundS$="F"
CONST KGetCmdLetterBackup$="S"

CONST KGetCmdLetterRestart$="R"

CONST KGetCmdLetterUnknown$="U"

rem PARSES array subscripts
CONST KParseAOffFSys%=1
CONST KParseAOffDev%=2
CONST KParseAOffPath%=3
CONST KParseAOffFilename$%=4
CONST KParseAOffExt%=5
CONST KParseAOffwild%=6

rem Wild-card flags

CONST KParseWildNone%=0
CONST KParseWildFilename$%=1
CONST KParseWildExt$%=2
CONST KParseWildBoth%=3

rem For CURSOR
CONST KCursorTypeNotFlashing%=2
CONST KCursorTypeGray%=4

rem For FINDFIELD

CONST KFindCaseDependent%=16
CONST KFindBackwards%=0
CONST KFindForwards%=

CONST KFindBackwardsFromEnd%=2
CONST KFindForwardsFromStart$%=3

rem SCREENINFO array subscripts
CONST KSInfoALeft%=

CONST KSInfoATop%=2

CONST KSInfoAScrW%=3

CONST KSInfoAScrH%$=4

CONST KSInfoAReservedl%=
CONST KSInfoAFont%=

CONST KSInfoAPixW$%=

CONST KSInfoAPixH%=

CONST KSInfoAReserved2%=9
CONST KSInfoAReserved3%=10

rem Unicode ellipsis, linefeed and carriage-return
CONST KEllipsis&=&2026

CONST KLineFeed&=10

CONST KCarriageReturn&=13

rem For SETFLAGS

CONST KRestrictTo64K&=&0001

CONST KAutoCompact&=&0002

CONST KTwoDigitExponent&=&0004

CONST KMenuCancelCompatibility&=&0008
CONST KAlwaysWriteAsciiTextFiles&=&0016
CONST KSendSwitchOnMessage&=&10000

rem To aid porting to Unicode OPL
CONST KOplAlignment%=1
CONST KOplStringSizeFactor%=2

CONST.OPH LISTING

rem
rem EVENT HANDLING
rem

rem Special keys
CONST KKeyDel%=
CONST KKeyTab%=
CONST KKeyEnter%=13
CONST KKeyEsc%=27
CONST KKeySpace%=32

rem Scan code values
CONST KScanDel%=1
CONST KScanTab%=2
CONST KScanEnter%=3
CONST KScanEsc%=4
CONST KScanSpace%=5

rem GETEVENT32 array indexes
CONST KEVAType%=
CONST KEVATime%=2
CONST KEvAScan%=3
CONST KEvVAKMod%=
CONST KEVAKRep%=5

rem Pointer event array subscripts
CONST KEVAPtrOplWindowId%=3

CONST KEvAPtrWindowId%=3

CONST KEVAPtrType%=4

CONST KEvAPtrModifiers%=

CONST KEVAPtrPositionX%=6

CONST KEvAPtrPositionY%=

CONST KEvVAPtrScreenPosX%=8

CONST KEvAPtrScreenPosY%=

rem Event types

CONST KEvNotKeyMask&=&400
CONST KEvFocusGained&=&401
CONST KEvFocusLost&=&402
CONST KEvSwitchOn&=&403
CONST KEvCommandé&=&404
CONST KEvDateChanged&=&405
CONST KEvKeyDowné&=&406
CONST KEvKeyUp&=&407

CONST KEvPtr&=&408

CONST KEvPtrEnter&=&409
CONST KEVPtrExit&=&40A

rem Pointer event types

CONST KEvPtrPenDown&=0

CONST KEvPtrPenUpé&=1

CONST KEvPtrButtonlDowné&=KEvPtrPenDowné&
CONST KEvPtrButtonlUp&=KEvPtrPenUp&
CONST KEvPtrButton2Downé&=2

CONST KEvPtrButton2Upé&=3

CONST KEvPtrButton3Down&=4

CONST KEvPtrButton3Upé&=5

CONST KEvPtrDrag&=6

CONST KEvPtrMoveé&=7

CONST KEvPtrButtonRepeat&=8

267

268 CONST.OPH LISTING

CONST KEvPtrSwitchOn&=9

rem For PointerFilter

CONST KPointerFilterEnterExit%=S1
CONST KPointerFilterMove%=S$2
CONST KPointerFilterDrag%$=$4

rem Key constants (for 32-bit keywords like GETEVENT32)
CONST KKeyHelp32&=&£f83a

CONST KKeyMenu32&=&£836

CONST KKeySidebarMenu32&=&£700
CONST KKeyPageLeft32&=&£802
CONST KKeyPageRight32&=&£803
CONST KKeyPageUp32&=&£804

CONST KKeyPageDown32&=&£805
CONST KKeyLeftArrow32&=&£807
CONST KKeyRightArrow32&=&£808
CONST KKeyUpArrow32&=&£809

CONST KKeyDownArrow32&=&f80a

rem For the command button array
CONST KKeyCBAl&=&£842

CONST KKeyCBA2&=&£843

CONST KKeyCBA3&=&f844

CONST KKeyCBA4&=&£845

rem Special keys

CONST KKeyZoomIn32&=&£703

CONST KKeyZoomOut32&=&£704

CONST KKeyIncBrightness32&=&£864

rem For 32-bit status words IOWAIT and IOWAITSTAT32
rem Use KErrFilePending% (-46) for 16-bit status words
CONST KStatusPending32&=&80000001

rem For KMOD

CONST KKmodShift%=2
CONST KKmodControl%=4
CONST KKmodCaps$%=16
CONST KKmodFn%=32

rem
rem DIALOGS
rem

rem For ALERT

CONST KAlertEsc%=1
CONST KAlertEnter%=2
CONST KAlertSpace%=3

rem For dBUTTON

CONST KDButtonNoLabel%=$100
CONST KDButtonPlainKey%=$200
CONST KDButtonBlank$=""
CONST KDButtonBlank$%=

CONST KDButtonDel$%=

CONST KDButtonTab%=

CONST KDButtonEnter%=13
CONST KDButtonEsc%=27

CONST KDButtonSpace%=32

rem DIALOG return values
CONST KDlgCancel%=0

CONST.OPH LISTING 269

rem For dEDITMULTI and printing
CONST KParagraphDelimiter&=$2029 rem $06 under ASCII

CONST KLineBreak&=$2028 rem $07 under ASCII
CONST KPageBreak&=$000c rem $08 under ASCII
CONST KTabCharacter&=$0009 rem $09 under ASCII

CONST KNonBreakingHyphen&=$2011 rem $0b under ASCII
CONST KPotentialHyphen&=$00ad rem $0c under ASCII
CONST KNonBreakingSpace&=$00a0 rem $10 under ASCII
CONST KPictureCharacter&=$fffc rem $0e under ASCII
CONST KVisibleSpaceCharacter&=$0020 rem $0f under ASCII

rem For dFILE

CONST KDFileNameLen%=255

rem flags

CONST KDFileEditBox%=$0001

CONST KDFileAllowFolders%=$0002

CONST KDFileFoldersOnly%=$0004

CONST KDFileEditorDisallowExisting%=$0008
CONST KDFileEditorQueryExisting%=$0010
CONST KDFileAllowNullStrings%=$0020

CONST KDFileAllowWildCards%=$0080

CONST KDFileSelectorWithRom$=$0100

CONST KDFileSelectorWithSystem%=$0200
CONST KDFileSelectorAllowNewFolder%=$0400
CONST KDFileSelectorShowHidden%=$0800

rem Current OPL-related UIDs (for 4dFILE UID restriction)
CONST KUidDirectFileStore&=&10000037

CONST KUidOplInterpreter&=&10005D2E

CONST KUidOpo&=&100055C0

CONST KUidOplApp&=&100055C1

CONST KUidOplDoc&=&100055C2

CONST KUidOplFile&=&1000008A

CONST KUidOpxD11l&=&10003A7B

rem dINIT flags

CONST KDlgButRight%=1
CONST KD1lgNoTitle%=2
CONST KDlgFillScreen%=4
CONST KDlgNoDrag%=
CONST KDlgDensePack%=16

rem For dPOSITION

CONST KDPositionLeft%=-1
CONST KDPositionCenter%=0
CONST KDPositionRight%=1
CONST KDPositionTop%=-1
CONST KDPositionBottom$%=1

rem For dTEXT

CONST KDTextLeft%=

CONST KDTextRight%=1

CONST KDTextCenter%=2

CONST KDTextBold%=$100 rem Currently ignored
CONST KDTextLineBelow%=$200
CONST KDTextAllowSelection%=$400
CONST KDTextSeparator%=$800

rem For dTIME

CONST KDTimeAbsNoSecs$%=0

CONST KDTimeAbsWithSecs%=1

270 CONST.OPH LISTING

CONST KDTimeDurationNoSecs%=2

CONST KDTimeDurationWithSecs%=3

rem Flags for dTIME (for ORing combinations)
CONST KDTimeWithSeconds%=

CONST KDTimeDuration%=2

CONST KDTimeNoHours%=4

CONST KDTime24Hour%=

rem For dXINPUT
CONST KDXInputMaxLen%=32

rem For Standard No/Yes dCHOICEs
CONST KNoYesChoiceNo%=1
CONST KNoYesChoiceYes$%=2

rem
rem MENUS
rem

rem For mCARD and mCASC

CONST KMenuDimmed%=$1000

CONST KMenuSymbolOn%=$2000

CONST KMenuSymbolIndeterminate%=$4000
CONST KMenuCheckBox%=$0800

CONST KMenuOptionStart%=$0900

CONST KMenuOptionMiddle%=3$0a00

CONST KMenuOptionEnd%=$0b00

rem mPOPUP position type - Specifies which corner
rem of the popup is given by supplied coordinates
CONST KMPopupPosTopLeft%=

CONST KMPopupPosTopRight%=

CONST KMPopupPosBottomLeft%=2

CONST KMPopupPosBottomRight%=

rem
rem GRAPHICS
rem

rem For DEFAULTWIN

CONST KDefaultWin2GrayMode%=
CONST KDefaultWin4GrayMode%=1
CONST KDefaultWinléGrayMode%=2
CONST KDefaultWin256GrayMode%=3
CONST KDefaultWinléColorMode%=4
CONST KDefaultWin256ColorMode%=5
CONST KDefaultWiné64KMode%=
CONST KDefaultWinléMMode%=7
CONST KDefaultWinRGBMode%=
CONST KDefaultWin4KMode%=

CONST KDefaultWin%=
CONST KgModeSet%=0
CONST KgModeClear$=
CONST KgModeInvert%=2
CONST KtModeSet%=
CONST KtModeClear%=1
CONST KtModeInvert%=2
CONST KtModeReplace%=3

CONST
CONST
CONST
CONST
CONST
CONST
CONST

CONST.OPH LISTING

KgStyleNormal%=0
KgStyleBold%=1
KgStyleUnder%=
KgStyleInverse%=4
KgStyleDoubleHeight%=
KgStyleMonoFont%=16
KgStyleItalic%=32

rem RGB color masking

CONST
CONST
CONST
CONST

KRgbRedPosition&=&10000
KRgbGreenPosition&=$100
KRgbBluePosition&=$1
KRgbColorMask&=$ff

rem RGB color values

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

rem Easy mappings to the above RGB color combinations

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

KRgbBlack&=&000000
KRgbDarkGray&=&555555
KRgbDarkRed&=&800000
KRgbDarkGreen&=&008000
KRgbDarkYellow&=&808000
KRgbDarkBlue&=&000080
KRgbDarkMagenta&=&800080
KRgbDarkCyan&=&008080
KRgbRed&=&££0000
KRgbGreen&=&00££00
KRgbYellow&=&E£££00
KRgbBlue&=&0000££
KRgbMagenta&=&£ff00£ff
KRgbCyan&=&00f£f£ff
KRgbGray&=&aaaaaa
KRgbDitheredLightGray&=&cccccc
KRgblin4DitheredGray&=&ededed
KRgbWhite&=&ff£££ff

KColorSettingBlack%=1
KColorSettingDarkGrey%=2
KColorSettingDarkRed%=3
KColorSettingDarkGreen%=4
KColorSettingDarkYellow%$=5
KColorSettingDarkBlue%=6
KColorSettingDarkMagenta%=7
KColorSettingDarkCyan%=
KColorSettingRed%=
KColorSettingGreen%=10
KColorSettingYellow%=11
KColorSettingBlue%=12
KColorSettingMagenta%=13
KColorSettingCyan%=14
KColorSettingGrey%=15
KColorSettingLightGrey%=16
KColorSettingLighterGrey%=17
KColorSettingWhite%=18

rem For gBORDER and gXBORDER

CONST
CONST
CONST
CONST
CONST

KBordSglShadow%=1
KBordSglGap%=2
KBordDblShadow%=
KBordDblGap%=4
KBordGapAllRound%=$100

271

272 CONST.OPH LISTING

CONST KBordRoundCorners$%$=$200
CONST KBordLosePixel%=$400

rem For gBUTTON

CONST KButtSinglePixel$%=

CONST KButtSinglePixelRaised%=
CONST KButtSinglePixelPressed%=
CONST KButtDoublePixel%=1

CONST KButtDoublePixelRaised%=0
CONST KButtDoublePixelSemiPressed%=
CONST KButtDoublePixelSunken%=2
CONST KButtStandard%=2

CONST KButtStandardRaised%=
CONST KButtStandardSemiPressed%=

CONST KButtLayoutTextRightPictureLeft%=0
CONST KButtLayoutTextBottomPictureTop%=1
CONST KButtLayoutTextTopPictureBottom$%=2
CONST KButtLayoutTextLeftPictureRight%=3
CONST KButtTextRight%=0

CONST KButtTextBottom%=

CONST KButtTextTop%=2

CONST KButtTextLeft%=

CONST KButtExcessShare%=$00

CONST KButtExcessToText%=$10

CONST KButtExcessToPicture%=$20

rem For gCLOCK

CONST KClockLocaleConformant%=

CONST KClockSystemSetting%=KClockLocaleConformant$%

CONST KClockAnalog%=7

CONST KClockDigital$%=

CONST KClockLargeAnalog%=9

rem gClock 10 no longer supported (use slightly changed gCLOCK 11)
CONST KClockFormattedDigital%=11

rem For gCREATE

CONST KgCreateInvisible%=0

CONST KgCreateVisible%=1

CONST KgCreateHasShadow$%=3$0010
rem Color mode constants

CONST KgCreate2GrayMode%=$0000
CONST KgCreate4GrayMode%=$0001
CONST KgCreatel6GrayMode%=$0002
CONST KgCreate256GrayMode%=$0003
CONST KgCreatelé6ColorMode%=$0004
CONST KgCreate256ColorMode%=$0005
CONST KgCreate64KColorMode%=$0006
CONST KgCreateléMColorMode%=$0007
CONST KgCreateRGBColorMode%=$0008
CONST KgCreate4KColorMode%=$0009

rem gCOLORINFO array subscripts
CONST gColorInfoADisplayMode%=
CONST gColorInfoANumColors%=2
CONST gColorInfoANumGrays%=

rem DisplayMode constants

CONST KDisplayModeNone%=

CONST KDisplayModeGray2%=1
CONST KDisplayModeGray4%=2

CONST.OPH LISTING 273

CONST KDisplayModeGraylé6%=3
CONST KDisplayModeGray256%=4
CONST KDisplayModeColorlé%=
CONST KDisplayModeColor256%=6
CONST KDisplayModeColor64K$=
CONST KDisplayModeColorléM%=8
CONST KDisplayModeRGB%=

CONST KDisplayModeColor4K%=10

rem For gINFO

CONST KgInfoSize%=32

CONST KgInfoLowestCharCode%=1
CONST KgInfoHighestCharCode%=2
CONST KgInfoFontHeight%=

CONST KgInfoFontDescent%=4
CONST KgInfoFontAscent%=5
CONST KgInfoWidthOChar%=6
CONST KgInfoMaxCharWidth%=
CONST KgInfoFontFlag%=

CONST KgInfoFontName$%=9

rem 9-17 Font name

CONST KgInfogGMode%=18

CONST KgInfogTMode%=19

CONST KgInfogStyle%=20

CONST KgInfoCursorState%=21
CONST KgInfoCursorWindowId%=22
CONST KgInfoCursorWidth%=23
CONST KgInfoCursorHeight%=24
CONST KgInfoCursorAscent%=25
CONST KgInfoCursorX%=26

CONST KgInfoCursorY%=27

CONST KgInfoDrawableBitmap%=28
CONST KgInfoCursorEffects%=29
CONST KgInfogGray%=30

CONST KgInfoDrawableId%=31

rem For gINFO32

CONST KgInfo32Size%=48

rem 1,2 reserved

CONST KgInfo32FontHeight%=KgInfoFontHeight$%

CONST KgInfo32FontDescent%$=KgInfoFontDescent%
CONST KgInfo32FontAscent%=KgInfoFontAscent$%

CONST KgInfo32WidthOChar%$=KgInfoWidthOChar%

CONST KgInfo32MaxCharWidth$=KgInfoMaxCharWidth%
CONST KgInfo32FontFlag%=KgInfoFontFlag%

CONST KgInfo32FontUID%=9

rem 10-17 unused

CONST KgInfo32gGMode%=KgInfogGMode%

CONST KgInfo32gTMode%=KgInfogTMode%

CONST KgInfo32gStyle%=KgInfogStyle%

CONST KgInfo32CursorState%=KgInfoCursorState%
CONST KgInfo32CursorWindowId%=KgInfoCursorWindowId%
CONST KgInfo32CursorWidth%=KgInfoCursorWidth%
CONST KgInfo32CursorHeight%=KgInfoCursorHeight%
CONST KgInfo32CursorAscent%=KgInfoCursorAscent%
CONST KgInfo32CursorX%=KgInfoCursorX%

CONST KgInfo32CursorY%$=KgInfoCursor¥Y$%

CONST KgInfo32DrawableBitmap%$=KgInfoDrawableBitmap%
CONST KgInfo32CursorEffects%=KgInfoCursorEffects%
CONST KgInfo32GraphicsMode%=30

274 CONST.OPH LISTING

CONST KgInfo32ForegroundRed%=31
CONST KgInfo32ForegroundGreen%=32
CONST KgInfo32ForegroundBlue%=33
CONST KgInfo32BackgroundRed%=34
CONST KgInfo32BackgroundGreen%=35
CONST KgInfo32BackgroundBlue%=36

rem For gLOADBIT
CONST KgLoadBitReadOnly$%=0
CONST KgLoadBitWriteable%=1

rem For gRANK
CONST KgRankForeground%=1
CONST KgRankBackGround%=KMaxInt%

rem gPOLY array subscripts
CONST KgPolyAStartX%$=
CONST KgPolyAStart¥%=2
CONST KgPolyANumPairs%=3
CONST KgPolyANumDx1%=
CONST KgPolyANumDyl$%=5

rem For gPRINTB

CONST KgPrintBRightAligned%=1

CONST KgPrintBLeftAligned%=2

CONST KgPrintBCenteredAligned%=3

rem The defaults

CONST KgPrintBDefAligned%$=KgPrintBLeftAligned%
CONST KgPrintBDefTop%=

CONST KgPrintBDefBottom%=

CONST KgPrintBDefMargin%=0

rem For gXBORDER

CONST KgXBorderSinglePixelType%=
CONST KgXBorderDoublePixelType%=
CONST KgXBorderStandardType%=2

rem For gXPRINT

CONST KgXPrintNormal%=

CONST KgXPrintInverse%=

CONST KgXPrintInverseRound%=2
CONST KgXPrintThinInverse%=3
CONST KgXPrintThinInverseRound%=4
CONST KgXPrintUnderlined%=5

CONST KgXPrintThinUnderlined$%=6

rem For gFONT
rem (Only suitable for devices using EON14.GDR e.g. Series 5, 9210)

CONST KFontArialBold8&= 268435951
CONST KFontArialBoldllé&= 268435952
CONST KFontArialBoldl3&= 268435953

CONST KFontArialNormal8&= 268435954
CONST KFontArialNormalll&= 268435955
CONST KFontArialNormall3&= 268435956
CONST KFontArialNormallS5&= 268435957
CONST KFontArialNormall8&= 268435958
CONST KFontArialNormal22&= 268435959
CONST KFontArialNormal27&= 268435960
CONST KFontArialNormal32&= 268435961

CONST.OPH LISTING 275

CONST KFontTimesBold8&= 268435962
CONST KFontTimesBoldllé&= 268435963
CONST KFontTimesBoldl3&= 268435964
CONST KFontTimesNormal8&= 268435965
CONST KFontTimesNormalll&= 268435966
CONST KFontTimesNormall3&= 268435967
CONST KFontTimesNormall5&= 268435968
CONST KFontTimesNormall8&= 268435969
CONST KFontTimesNormal22&= 268435970
CONST KFontTimesNormal27&= 268435971
CONST KFontTimesNormal32&= 268435972

CONST KFontCourierBold8&= 268436062
CONST KFontCourierBoldll&= 268436063
CONST KFontCourierBoldl3&= 268436064

CONST KFontCourierNormal8&= 268436065
CONST KFontCourierNormalllé&= 268436066
CONST KFontCourierNormall3é&= 268436067
CONST KFontCourierNormall5é&= 268436068
CONST KFontCourierNormall8é&= 268436069
CONST KFontCourierNormal22é&= 268436070
CONST KFontCourierNormal27&= 268436071
CONST KFontCourierNormal32é&= 268436072
CONST KFontCalcl3né&= 268435493
CONST KFontCalcl8né&= 268435494
CONST KFontCalc24n&= 268435495
CONST KFontMonl8né&= 268435497

CONST KFontMonl8bé&= 268435498

CONST KFontMon9né&= 268435499

CONST KFontMon9b&= 268435500

CONST KFontTinylé&= 268435501

CONST KFontTiny2&= 268435502

CONST KFontTiny3&= 268435503

CONST KFontTiny4&= 268435504

CONST KFontEiksyml5&= 268435661
CONST KFontSquashed&= 268435701
CONST KFontDigital35&= 268435752
rem

rem The following font consts are for Series 60 devices only
rem e.g. Nokia 7650
rem

CONST KFontS60LatinPlainl2&=&10000001
CONST KFontS60LatinBoldl12&=&10000002

CONST KFontS60LatinBold13&=&10000003

CONST KFontS60LatinBoldl7&=&10000004

CONST KFontS60LatinBoldl19&=&10000005

CONST KFontS60NumberPlain5&=&10000006
CONST KFontS60ClockBold30&=&10000007

CONST KFontS60LatinClockl14&=&10000008
CONST KFontS60Custom&=&10000009

CONST KFontS60ApacPlainl2&=&1000000c

CONST KFontS60ApacPlainlé&=&1000000d

276 CONST.OPH LISTING

rem
rem The following font consts are for UIQ devices only
rem e.g. Sony Ericsson P800

rem

CONST KFontUigSwissABeta&=&017B4B0D

rem
rem End of font info.
rem

rem
rem I/O ACCESS
rem

rem For IOOPEN

rem Mode category 1

CONST KIoOpenModeOpen%=$0000
CONST KIoOpenModeCreate%=$0001
CONST KIoOpenModeReplace%=$0002
CONST KIoOpenModeAppend%=3$0003
CONST KIoOpenModeUnique$%$=$0004

rem Mode category 2
CONST KIoOpenFormatBinary%=$0000
CONST KIoOpenFormatText%=$0020

rem Mode category 3

CONST KIoOpenAccessUpdate%=3$0100
CONST KIoOpenAccessRandom%=$0200
CONST KIoOpenAccessShare%=$0400

rem
rem APPLICATION CREATION
rem

rem For FLAGS
CONST KFlagsAppFileBased$=1
CONST KFlagsAppIsHidden%=2

rem Language code for CAPTION
CONST KMaxLangsSupported$%=33
CONST KLangEnglish%=

CONST KLangFrench%=2

CONST KLangGerman%=3

CONST KLangSpanish%=4

CONST KLangItalian%=5

CONST KLangSwedish%=6

CONST KLangDanish%=

CONST KLangNorwegian%=

CONST KLangFinnish%=

CONST KLangAmerican%=10
CONST KLangSwissFrench%=11
CONST KLangSwissGerman%=12
CONST KLangPortuguese%=13
CONST KLangTurkish%=14

CONST KLangIcelandic%=15
CONST KLangRussian%=16

CONST KLangHungarian%=17
CONST KLangDutch%=18

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

CONST.OPH LISTING

KLangBelgianFlemish%=19
KLangAustralian%=20
KLangBelgianFrench%=21
KLangAustrian%=22
KLangNewZealand%=23
KLangInternationalFrench%=24
KLangCzech%=25
KLangSlovak%=26
KLangPolish%=27
KLangSolvenian%=28
KLangTaiwanChinese%=29
KLangHongKongChinese%=30
KLangPRCChinest%=31
KLangJapanese%=32
KLangThai%=33

rem MIME priority values

CONST
CONST
CONST
CONST
CONST
CONST

rem

KDataTypePriorityUserSpecified%=KMaxInt%
KDataTypePriorityHigh%=10000
KDataTypePriorityNormal%=0
KDataTypePriorityLow%=-10000
KDataTypePriorityLastResort%=-20000
KDataTypePriorityNotSupported%=KMinInt$%

rem END OF CONST.OPH

rem

277

Appendix 3

Symbian Developer Network

A look at the resources, tools, SDKs and support that is available to the
Symbian developer online.

A3.1 Symbian OS Software Development Kits

SDKs are built based on a particular reference platform (sometimes known
as a ‘reference design’) for Symbian OS. A reference platform provides
a distinct Ul and an associated set of system applications for such tasks
as messaging, browsing, telephony, multimedia, and contact/calendar
management. These applications typically make use of generic applica-
tion engines provided by Symbian OS. Reference platforms intended to
support the installation of third-party applications written in native C++
have to be supported by an SDK that defines this reference platform, or at
least a particular version of it. Since Symbian OSv6.0, four such reference
platforms have been introduced, resulting in four flavors of SDK that can
be found at the websites listed here:

e UIQ (www.symbian.com/developer)
e Nokia Series 90 (www.forum.nokia.com)
e Nokia Series 60 (www.forum.nokia.com)

e Nokia Series 80 (www.forum.nokia.com)

Prior to this, SDKs were targeted at specific devices, such as the Psion
netPad. Symbian no longer supports these legacy SDKs, but they are still
available from Psion Teklogix at www.psionteklogix.com.

For the independent software developer, the most important thing to
know in targeting a particular phone is its associated reference platform.
Then you need to know the Symbian OS version the phone is based on.
This knowledge defines to a large degree the target phone as a platform for
independent software development. You can then decide which SDK you
need to obtain. In most cases you will be able to target — with a single

280 SYMBIAN DEVELOPER NETWORK

version of your application — all phones based on the same reference
platform and Symbian OS version working with this SDK. The Symbian
OS System Definition papers give further details of possible differences
between phones based on a single SDK:

e Symbian OS System Definition
www.symbian.com/developer/techlib/papers/SymbOS_def/
symbian_os_sysdef.pdf

e Symbian OS System Definition (in detail, inc Symbian OS v8.0)
www.symbian.com/developer/techlib/papers/SymbOS_cat/
SymbianOS_cat.html

A3.2 Getting a UID for your Application

A UID is a 32-bit number, which you get as you need from Symbian. Every
UIKON application should have its own UID. This allows Symbian OS
to distinguish files associated with that application from files associated
with other applications. UIDs are also used in other circumstances, such
as to identify streams within a store, and to identify one or more of an
application’s views.

Getting a UID is simple enough. Just send email to uid@symbiandevnet.
com, titled ‘UID request’, and requesting clearly how many UIDs you
want — 10 is a reasonable first request. Assuming your email includes
your name and return email address, that's all the information Symbian
needs. Within 24 hours, you'll have your UIDs.

If you’re impatient, or you want to do some experimentation before
using real UIDs, you can allocate your own UIDs from a range that
Symbian has reserved for this purpose: 0x01000000-0xOfffffff. However,
you should never release any programs with UIDs in this range.

Don’t build different Symbian OS applications with the same appli-
cation UID - even the same test UID - on your emulator or Symbian
OS machine. If you do, the system will only recognize one of them,
and you won'’t be able to launch any of the others.

A3.3 Symbian OS Developer Tools

As well as the following tools offerings from Symbian DevNet partners,
Symbian DevNet provides a number of free and open source tools:

www.symbian.com/developer/downloads/tools.html|
AppForge

Develop Symbian Applications Using Visual Basic and AppForge. App-
Forge development software integrates directly into Microsoft Visual

SYMBIAN OS DEVELOPER TOOLS 281

Basic, enabling you to immediately begin writing multi-platform applica-
tions using the Visual Basic development language, debugging tools, and
interface you already know.

www.appforge.com

Borland

Borland offers C++BuilderX Mobile Edition and JBuilder Mobile Edition
as well as the more recent Borland Mobile Studio for developers that
want to develop rapidly on Symbian OS using C++, Java or both. These
multi-platform IDEs offer on target debugging, GUI RAD, and a unifying
IDE for Symbian OS SDKs and compilers.

www.borland.com

Forum Nokia

In addition to a wide range of SDKs, Forum Nokia also offers various
development tools to download, including the Nokia Developer Suite for
J2ME, which plugs into Borland’s JBuilder MobileSet or Sun’s Sun One
Studio integrated development environment.

www.forum.nokia.com

Metrowerks

Metrowerks offer the following products supporting Symbian OS devel-
opment:

e CodeWarrior Development Tools for Symbian OS Professional Edition
e CodeWarrior Development Tools for Symbian OS Personal Edition

e CodeWarrior Wireless Developer Kits for Symbian OS
www.metrowerks.com

Sun Microsystems

Sun provides a range of tools for developing Java 2 Micro Edition
applications, including the J2ME Wireless Toolkit and Sun One Studio
Mobile Edition.

http://java.sun.com

Texas Instruments

Development Tools for the OMAP Platform Easy-to-use software develop-
ment environments are available today for OMAP application developers,
OMAP Media Engine developers, as well as device manufacturers.

282 SYMBIAN DEVELOPER NETWORK

Tool suites that include familiar third-party tools and TI’'s own indus-
try leading eXpressDSP DSP tools are available, allowing developers to
easily develop software across the entire family of OMAP processors.

http://focus.ti.com

Symbian DevNet Tools
Symbian DevNet offers the following tools as an unsupported resource to
all developers:

e Symbian OS SDK add-ons
www.symbian.com/developer/downloads/tools.html

e Symbian OS v5 SDK patches and tools archive
www.symbian.com/developer/downloads/archive.html|

A3.4 Support Forums
The Symbian DevNet offers two types of support forum:

e Support newsgroups
www.symbian.com/developer/public/index.html

e Support forum archive
www.symbian.com/developer/prof/index.html

Symbian DevNet partners also offer support for developers:

Sony Ericsson Developer World

As well as tools and SDKs, Sony Ericsson Developer World provides a
range of services including newsletters and support packages for develop-
ers working with the latest Sony Ericsson products, such as the Symbian
OS powered P900.

http://developer.sonyericsson.com

Forum Nokia

As well as tools and SDKs, Forum Nokia provides newsletters, the Knowl-
edge Network, fee-based case-solving, a Knowledge Base of resolved
support cases, discussion archives, and a wide range of C++ and Java-
based technical papers of relevance to developers targeting Symbian OS.

forum.nokia.com/main.html

Sun Microsystems Developer Services

In addition to providing a range of tools and SDKs, Sun also provides
a wide variety of developer support services including free forums,
newsletters, and a choice of fee-based support programs.

e Forums
http://forum.java.sun.com

DEVELOPER COMMUNITY LINKS 283

e Support and newsletters
http://developer.java.sun.com/subscription

A3.5 Symbian OS Developer Training

Symbian’s Technical Training team and Training Partners offer public and
on-site developer courses around the globe.

e Course dates and availability
www.symbian.com/developer/training

Early bird discount: Symbian normally offers a 20% discount on all
bookings confirmed up to 1 month before the start of any course. This
discount cannot be used in conjunction with any other discounts.

Course Level Language
Symbian OS essentials Introductory C++
Java on Symbian OS Introductory Java
Symbian OS: Application engine development Intermediate ~ C++
Symbian OS: Application Ul development Intermediate C++
Symbian OS: Internals Advanced C++
Symbian OS: Ul system creation Advanced C++

Please note

Intermediate and advanced courses require previous attendance of OS
Essentials. Ul system creation course also requires previous attendance of
Application Ul course.

A3.6 Developer Community Links

These community websites offer news, reviews, features and forums, and
represent a rich alternative source of information that complements the
Symbian Development Network and the development tools publishers.
They are good places to keep abreast of new software, and of course to
announce the latest releases of your own applications.

My-Symbian

My-Symbian is a Poland-based website dedicated to news and informa-
tion about Symbian OS phones. This site presents descriptions of new
software for Symbian OS classified by UL It also features discussion
forums and an online shop.

http://my-symbian.com

284 SYMBIAN DEVELOPER NETWORK

All About Symbian

All About Symbian is a UK-based website dedicated to news and informa-
tion about Symbian OS phones. The site features news, reviews, software
directories, and discussion forums. It has strong OPL coverage.

www.allaboutsymbian.com

SymbianOne

SymbianOne features news, in-depth articles, case studies, employment
opportunities and event information all focused on Symbian OS. A weekly
newsletter provides up-to-date coverage of developments affecting the
Symbian OS ecosystem. This initiative is a joint venture with offices in
Canada and New Zealand.

www.symbianone.com

NewlC

NewLC is a French-based collaborative website dedicated to Symbian
OS C++ development. It aims to be initially valuable to developers just
starting writing C++ apps for Symbian OS, and with time cover more
advanced topics.

www.newlc.com

infoSync World

infoSync World is a Norway-based site providing features, news, reviews,
comments, and a wealth of other content related to mobile information
devices. It features a section dedicated to Symbian OS covering new
phones, software, and services — mixed with strong opinions that infoSync
is not afraid to share.

symbian.infosyncworld.com

Your Symbian

Your Symbian (YS) is a fortnightly magazine distributed exclusively by
email. YS takes a lighthearted look at the Symbian OS world. Major news
is covered in its editorial and it includes a software round-up. To sign up,
browse the archives, or get in touch with the editorial team.

www.yoursymbian.com
TodoSymbian (Spanish)
TodoSymbian is a Spain-based website for everyone wanting to read in

Spanish about Symbian OS. It provides news, reviews, software directo-
ries, discussion forums, tutorials, and a developers section.

www.todosymbian.com

OPEN SOURCE PROJECTS 285

A3.7 Symbian OS Books

Symbian OS C++ for Mobile Phones, Vol. 2
Richard Harrison et al.
John Wiley & Sons, ISBN 0470871083

Symbian OS C++ for Mobile Phones, Vol. 1
Richard Harrison et al.
John Wiley & Sons, ISBN 0470856114

Symbian OS Explained
Jo Stichbury
John Wiley & Sons, ISBN 0470021306

Programming Java 2 Micro Edition on Symbian OS
Martin de Jode et al.
John Wiley & Sons, ISBN 047092238

Wireless Java for Symbian Devices
Jonathan Allin et al.
John Wiley & Sons, ISBN 0471486841

Symbian OS Communications Programming
Mike Jipping
John Wiley & Sons, ISBN 0470844302

Programming for the Series 60 platform and Symbian OS
Digia, Inc.
John Wiley & Sons, ISBN 0470849487

Developing Series 60 Applications
Edwards, Barker
Addison Wesley, ISBN 032126875X

A3.8 Open Source Projects

Many open source projects are happening on Symbian OS. They are
a rich source of partially or fully functional code, which should prove
useful to learn about use of APIs you're not yet familiar with. Please also
consider contributing to any project that you have an interest in.

Repository Websites

SymbianOS.org
http://symbianos.org

Community website dedicated to the development of open source pro-
grams for Symbian OS. Hosted projects include: Vim, Rijndael encryption
algorithm, MakeSis package for Debian GNU/Linux, etc.

286 SYMBIAN DEVELOPER NETWORK

Symbian open source
http://www.symbianopensource.com/

Repository for Symbian OS open-source software development. It pro-
vides free services to developers who wish to create, or have created,
open source projects.

Open source for EPOC32
http://www.edmund.roland.org/osfe.html|

Website of Alfred Heggestad, where he maintains a list of open source
projects for Symbian OS.

Appendix 4

Specifications of Symbian OS Phones

Notes on the Ul, screen size, and other attributes of Symbian OS phones
relevant to OPL programmers. Technical information can also be found
at: www.symbian.com/phones

Please note that this is a quick guide to Symbian OS phones, some
of which are not yet commercially available. The information contained
within this appendix was correct at time of going to press. For full,
up-to-date information refer to the manufacturer’s website.

288 SPECIFICATIONS OF SYMBIAN OS PHONES

symbnaolg

IR

BenQ P30

OS Version

Ul

Built-in memory available
Storage media

Screen
Data input methods

Camera
Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0
uIQ 2.1

32 MB

MMC and SD

208x320 pixels
65,536 colors TFT
Keypad

Pointing device
640x480 resolution

GSM E900/1800/1900
HSCSD
GPRS (Class 10, B)

Infrared
Bluetooth
USB

WAP 2.0
xHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES

¥

HETECRINLNRY

Motorola A920/A925

OS Version
ul

Built-in memory available

Storage media

Screen

Data input methods

Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0
ulQ 1.0

8 MB

MMC and SD

208x320 pixels
65,536 colors TFT

Small number of keys

Pointing device
640x480 resolution
GSM 900/1800/1900
HSCSD

GPRS (Class 4)
3G

Infrared

Bluetooth (A920 No/A925 Yes)

USB
Serial

xHTML (MP)

289

290 SPECIFICATIONS OF SYMBIAN OS PHONES

Motorola A1000
OS Version
Ul

Built-in memory available
Storage media

Screen
Data input methods

Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0
ulQ 2.1

24 MB

Triflash-R

208x320 pixels
65,536 colors TFT
Small number of keys
Pointing device
1280x960 resolution
4xdigital zoom

GSM 900/1800/1900
WCDMA 2100
HSCSD

GPRS (Class 10, B)
EDGE

3G

Bluetooth
USB

WAP
XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 3230

OS Version

Ul

Built-in memory available
Storage media

Screen

Data input methods
Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0s
Series 60 v2

6 MB

RS-MMC

176x208

65,536 colors

Keypad

1.3 megapixel resolution
3 xdigital zoom

GSM 900/1800/1900
HSCSD

GPRS (Class 10)
EDGE

Bluetooth
Infrared
USB

WAP 2.0
xHTML
HTML

291

292 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 3600/3650
OS Version Symbian OS v6.1
Ul Series 60 v1
Built-in memory available 3.4MB
Storage media MMC
Screen 176x208
4096/65,536 colors
Data input methods Keypad
Camera 640x480 resolution

Network Protocol(s) 3600 GSM 850/1900
3650 GSM 900/1800/1900

HSCSD

GPRS (Class 8; B)
Connectivity Infrared

Bluetooth
Browsing WAP 1.2.1

xHTML

SPECIFICATIONS OF SYMBIAN OS PHONES 293

Nokia 3620/3660

OS Version

Ul

Built-in memory available
Storage media

Screen

Data input methods
Camera

Network Protocol(s) 3620
3660

Connectivity

Browsing

Symbian OS v6.1
Series 60 v1

4 MB

MMC

176x208
4096/65,536 colors
Keypad

640x480 resolution

GSM 850/1900

GSM 900/1800/1900
HSCSD

GPRS (Class 8; B)

Infrared
Bluetooth

WAP 1.2.1
XHTML (MP)

294 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6260
OS Version
Ul

Built-in memory available
Storage media

Screen

Data input methods
Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0s
Series 60 v2
3.5MB

MMC

176x208

65,536 colors TFT
Keypad

640x480 resolution
4xdigital zoom

GSM 900/1800/1900
GSM 850/1800/1900
HSCSD

GPRS (Class 6, B)

Infrared
Bluetooth
USB

HTML
xHTML
WAP 2.0

SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6600

OS Version
Ul

Built-in memory available

Storage media

Screen

Data input methods
Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0s
Series 60 v2

6 MB

MMC

176x208

65,536 colors TFT
Keypad

640x480 resolution
2 xdigital zoom

GSM 900/1800/1900
HSCSD

GPRS (Class 8; B and Q)

Infrared
Bluetooth

WAP 2.0
XHTML (MP)

295

SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6620

OS Version
Ul

Built-in memory available

Storage media

Screen

Data input methods
Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0s
Series 60 v2

12 MB

MMC

176x220

65,536 colors TFT
Keypad

640x480 resolution

GSM 850/1800/1900
GPRS (Class 8; B)
HSCSD

EDGE

Infrared
Bluetooth
USB

WAP 2.0
XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6630
OS Version
Ul

Built-in memory available
Storage media

Screen

Data input methods
Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v8.0
Series 60v2.6
3.5MB

MMC

176x208 pixels
65,536 colors TFT
Keypad

1280%x960 resolution
6xdigital zoom

GSM 900/1800/1900
WCDMA 2000
GPRS (Class 10, B)
EDGE

3G

Bluetooth
USB

WAP 2.0
HTML
xHTML

297

298 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6670

OS Version Symbian OS v7.0s

Ul Series 60

Built-in memory available 8 MB

Storage media RS-MMC

Screen 176x208 pixels
65,536 colors

Data input methods Keypad

Camera 1152x864 resolution
4xdigital zoom

Network Protocol(s) GSM 850/900/1800/1900
GPRS (Class 6, B)
HSCSD

Connectivity Bluetooth
USB

Browsing WAP 2.0
HTML

xHTML

SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 7610

OS Version

Ul/Category

Built-in memory available
Storage media

Screen

Data input methods
Camera

Network Protocol(s)
Connectivity

Browsing

Symbian OS v7.0s
Series 60v2.1

8 MB

RS-MMC

176208 pixels
65,536 colors TFT
Keypad

1152x864 resolution
4xdigital zoom

GSM 850/900/1800/1900
GPRS (Class 10; B)

Bluetooth
USB

WAP 2.0
XHTML

299

300 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 7650

OS Version Symbian OS v6.1

ul Series 60 v1

Built-in memory available 4MB

Storage media MMC

Screen 176x208 pixels
4096 colors

Data input methods Keypad

Camera 640x480 resolution

Network Protocol(s) GSM 900/1800
HSCSD
GPRS (Class 6; B and C)

Connectivity Infrared
Bluetooth

Browsing WAP 1.2.1

SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 7710

OS Version

Ul

Built-in memory available
Storage media

Screen
Data input methods

Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0s
Series 90

80 MB

MMC

640x320 pixels
65,536 colors TFT
Keypad

Pointing device
1152x864 resolution
2 xdigital zoom

GSM 900/1800/1900
HSCSD

GPRS (Class 10)
EDGE

Bluetooth
USB

HTML
xHTML

301

302 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 9210i

OS Version Symbian OS v6.0
ul Series 80
Built-in memory available 40 MB
Storage media MMC
Screen 640x200 pixels
4096 colors
Data input methods Keypad
Keyboard
Customizable buttons beside screen
Camera No
Network Protocol(s) GSM 900/1800
HSCSD
Connectivity Infrared
Serial
Browsing WAP 1.1

xHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 9300

OS Version
Ul

Built-in memory available

Storage media

Screen

Data input methods

Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0s
Series 80

80 MB

MMC

Two displays, both 65,536 colors
main screen: 200x640 pixels
secondary screen: 128x 128 pixels
Keypad

Full keyboard

Customizable buttons beside screen
No

GSM E900/800/1900
EDGE

GPRS (Class 10, B)
HSCSD

Infrared
Bluetooth
USB

HTML 4.01
xHTML

303

304 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 9500
OS Version Symbian OS v7.0s
Ul Series 80
Built-in memory available 80MB
Storage media MMC
Screen Two displays, both 65,536 colors

main screen: 200x640 pixels

secondary screen: 128x128 pixels
Data input methods Keypad

Full keyboard

Customizable buttons beside screen
Camera 640x480 resolution

Network Protocol(s) GSM 850/900/1800/1900
HSCSD
GPRS (Class 10, B)
EDGE
WiFi

Connectivity Infrared
Bluetooth
USB

Browsing HTML 4.01
xHTML

SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia N-Gage

OS Version

Ul

Built-in memory available
Storage media

Screen

Data input methods
Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS vé.1
Series 60 v1

4 MB

MMC

176x208
4096 colors
Keypad

No

GSM 900/1800/1900
HSCSD
GPRS (Class 6, B and C)

Bluetooth
USB

WAP 1.2.1
xHTML (MP)

305

306 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia N-Gage QD

OS Version Symbian OS v6.1
Ul Series 60 v1
Built-in memory available 3.4MB
Storage media MMC
Screen 176x208 pixels
4096 colors
Data input methods Keypad
Camera No
Network Protocol(s) GSM 850/900/1800/1900
HSCSD
GPRS (Class 6, B)
Connectivity Bluetooth
Browsing WAP 1.2.1

XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES

Panasonic X700

OS Version

Ul/Category

Built-in memory available
Storage media

Screen

Data input methods
Camera
Network Protocol(s)

Connectivity

Browsing

Symbian OS v7.0s
Series 60

4 MB

miniSD

176x280 pixels
65,536 colors TFT
Keypad

640x480 resolution

GSM E900/1800/1900
GPRS (Class 10; B)

Infrared
Bluetooth
uUsSB

WAP 2.0
xHTML (MP)

307

SPECIFICATIONS OF SYMBIAN OS PHONES

OS Version

ul

Built-in memory available

Storage media

Screen

Data input methods
Camera
Network Protocol(s)

Connectivity

Browsing

Symbian OS v6.1
Series 60

12 MB

MMC and SD

176x220

65,536 colors
Keypad

640x480 resolution

GSM 900/1800/1900
GPRS (Class 8; B)

Infrared
Bluetooth
USB

Serial

WAP 2.0
xHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES

Siemens SX1

OS Version
Ul

Built-in memory available

Storage media

Screen

Data input methods
Camera

Network Protocol(s)

Connectivity

Browsing

Symbian OS vé.1
Series 60

3.5MB

MMC

176%x220

65,536 colors TFT
Keypad

640x480 resolution

GSM 900/1800/1900
HSCSD
GPRS (Class 10; B)

Infrared
Bluetooth
USB

WAP 2.0
xHTML (MP)

309

310 SPECIFICATIONS OF SYMBIAN OS PHONES

Sony Ericsson P800
OS Version Symbian OS v7.0
ul ulQ 2.0
Built-in memory available 12 MB
Storage media Sony MS Duo
Screen 208x%320 pixels (Flip
Open); 208x 144 pixels (Flip Closed)
4096 colors TFT
Data input methods Flip keypad
Pointing device
Jog dial
Camera 640x480 resolution
Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 8, B)
Connectivity Infrared
Bluetooth
USB support
Browsing WAP 2.0

xHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES

Sony Ericsson

symbi%lg

HFTECRINLIRY

Sony Ericsson P900
OS Version
ul

Built-in memory available
Storage media

Screen

Data input methods

Camera

Network Protocol(s)

Connectivity

Browsing

311

Symbian OS v7.0 (4 security
updates and MIDP2.0)

uIQ 2.1

16 MB

Sony MS Duo

208x320 pixels (Flip
Open); 208x208 pixels (Flip Closed)
65,536 colors TFT
Flip keypad
Pointing device
Jog dial
640x480 resolution
GSM 900/1800/1900
HSCSD
GPRS (Class 10; B)

Infrared
Bluetooth
USB support

WAP 2.0
XxHTML (MP)

312

SPECIFICATIONS OF SYMBIAN OS PHONES

symbl%g

HITELROAR

Sony Ericsson P910

OS Version

ul

Built-in memory available
Storage media

Screen

Data input methods

Camera

Network Protocol(s) PI910i
P910c
P910a

Connectivity

Browsing

Symbian OS v7.0
ulQ 2.1

64 MB

Memory Stick Duo Pro

208x320 pixels
262,000 colors TFT
Flip keypad

Thumb keyboard
Pointing device

Jog dial

1152x864 resolution
4x digital zoom

GSM 900/1800/1900
GSM 900/1800/1900
GSM 850/1800/1900

Bluetooth
Infrared
USB support

WAP 2.0
cHTML

$ usage 11

% usage 11

& usage 11

:usage 11,27-8,51-3

; usage 126-7

=usage 12

()usage 12,13-14

""usage 11-14,28,39,71-2

.aif files 21,122-8

.app files 21, 122-8

bmp files 83-4

.exe files 83

.ini files 103, 124-8

.mbm files 21, 39, 41-4, 47-8,
80-4, 123

.oph files 20

.opl files 19-20, 62

.opo files 20-2, 24-5, 29-31,
67,84,121-3

.pkg files 125-8

.sis files xv, 21-2, 24, 25, 84,
115, 120-8

.tph files 20

tpl files 19-20, 24-5, 27-31, 62

A: drive 38

ABS 135

absolute positions, drawing
176

absolute times 168

absolute values, integer expressions
212

AcCOs 135

ActionHotKey 58-9, 64-5,
74-5,111

198,

Index

ActionKey 64-5
additions, integers
ADDR 135, 156,
251-2
addresses, variables 135, 156-8
ADJUSTALLOC 136-7
Al see artificial intelligence
ALERT 38-9, 48, 136
Allin, Jonathan 285
ALLOC 136-7, 156
analog clocks 179-84
APP 137,161,175
APPEND 44-5,137-8, 147,
258-9
APP. . .ENDA structure 21,
122-3,137, 143, 175,
212-13,232-3
AppForge 7, 280-1
Apple Script 7
applications
see also OPL...
availability processes 116-19
compiled code 21-2, 24,
25-31
distribution effects
EpocSync 130-1
Fairway 130
feedback benefits 115, 120
first 20 seconds 115, 120
icons 21,123-4
initialization procedures
49-51, 97-9
installation methods
120-8

257-8

114-15

115,

Internet 113-20
new features 115

package considerations 115,
124-8

pirate copies 119

practical examples 129-31

promotion 119-20
public names 143
published applications xiv,
113-28
registration issues
RMRBank 129-30
source code 122-3
system flags 47-8, 135-7,
138, 142, 144, 145, 175,
252
testing needs 114
types 113-14, 129-31
UIDs 121-8,137,161-2,
250-3, 280
arccosine 135
arcsine 138
arctangent 139
ARM 223,245
array variables 13-17, 46-8,
56-7, 85-99, 200, 203 -4,
224-6,229-32, 255-6, 260
concepts 13-17, 46-8, 56-7,
85-7
strings 13-14
artificial intelligence (Al) xiv,
94-9
concepts

114, 116-19

94-7

314

artificial intelligence (Al) xiv
(continued)
Mini-Max method 96-7
rules of thumb 94-5
ASC 59,74-5,138, 236-7

ASCII (ANSI) text files 22-5
ASIN 138
Assembly language xii, 6-7, 8

asynchronous waits, events 194,
217-20
AT 138-9

ATAN 139

BACK 104-5,139-40
background 56, 184-5, 192-3,
205-6
color modes 184-5
events 56, 192-3
backslashes, directory names
BASIC xii, 8, 86
BEEP 140
BEGINTRANS
BenQ P30 288
binary system 3-4, 5-6
bitmaps 21, 25, 41-4, 46-50,
79-99, 184, 188, 198-9,
205-6,212-13, 228-9,
250-1
see also graphics
concepts 21, 39, 41-4, 46-8,
79-99, 198, 250
copies 49-50, 81-4
creation 21, 25, 46-8, 804,
184, 188, 250-1
loading commands 47-8, 80,
198-9
MBMs 21,39, 41-4, 47-8,
80-4, 123, 198, 250
Othello 79-99
phone transfers 84
read-only access 80

147

1401, 145, 247

bits 3-4

blank records, databases 109-12,
216

Bluetooth 9, 20, 29, 121, 123-4,
288-311

BMConv 25, 83-4
board games, Othello 79-99,
105, 107, 115

INDEX

BOOKMARK 141, 202, 221
bookmarks 104-12, 141, 201-2,
221, 241-2
books, Symbian OS 285
borders 176-7,209-10
Borland 281
boxes 177-8
BREAK 16, 38-59, 141, 146, 158
Bryant, Malcolm xv, 130-1
buffers 156-8, 217-20
bugs
see also errors
types 30,37, 114
BUSY 141-2
buttons 53, 63-9, 72-7, 108-12,
151-3, 157-8, 162-3, 178,
227-8
buzzers 140
BYREF 142

bytes, concepts 3-4

C++ ix, xi—xiii,
advantages 7
concepts 7-8, 23
OPL Runtime 9, 23
SDK 23, 24-6, 30

C: drive 38

cameras 288-312

CANCEL 73,138, 142, 216, 233,

243
capitalization conventions, OPL
27

Caps Lock

CAPTION

cards, menus

226-8
cascades, menus 65-9, 111-12,
228-9, 231-2
CBA bars 34-5,82-3, 89-90,
107-8

CBAT key 34-5, 64, 66, 107-8

CBA2 key 34-5, 66, 107-8

CBA3 key 34-5

CBA4 key 34-5, 89-90

cells, length commands 223, 245

Central Processing Unit (CPU),

concepts 4-6
character codes

7,9,23,279, 285

189, 221-2
137,142-3
62-9, 111-12,

220
59,138, 143-4, 220
207-8

last keys
strings
character display modes
choice lists 72, 153-4
CHRS 143-4
circles 178
Clear key 34-5
CLEARFLAGS 144, 252
clocks 178-84
CLOSE 41-4,103-4, 138, 144
CLS 139, 144, 150, 221-2, 259
CMDS 144-5
colons, usage 9-10,27-8,51-3
color modes
background 46-8, 184-5,
202-3
information 185-6, 196-7
pens 184, 195
windows 46-8, 84, 158-9,
186-8
command line arguments
123-4, 144-5, 190
commands xv, 5-6,9, 24-5, 27,
34-5,55-9,70-7,133-260
see also individual
commands
comments 126-7, 140, 155-8,
163-4, 174, 231, 245
commercial applications 114
COMMITTRANS 141, 145, 247
Communicator range xiii, 20, 21,
23,25-6, 34-5, 48, 49-50,
58, 64, 66, 68-9, 88-9, 126,
133, 135, 279, 302-4
community links, Symbian OS

24-5,

283-6
COMPACT 110, 145, 258-9
compiled code, concepts 8,
20-2, 25-31
computers

see also languages; software
Al xiv, 94-9
basic principles
CPU 4-6
databases ix, xii—xiii, xiv,

40-1,101-12, 138,

140-2, 144-5, 216, 221,

236-7,241-3, 246-7
hardware 3-6

3-17

inputs/outputs 4-6, 33-59,
62-77,217-20, 257-9
memory 3-6
storage 3-6
conditional loops 3, 15-17,
38-59, 139, 140, 141, 146,
150, 158, 164, 165, 21314
see alsoDo...;While...
CONST 37,146, 157-8, 215, 225
constants xv, 14, 37,45-9, 62,
87-8, 117-18, 134,
142-205, 211, 215, 221,
225,227-8,232-8, 248-9

concepts 14,37, 45-7, 56, 62,
87-8, 134

declaration 14, 38-9, 45-6,
62, 87-8, 146

literals 146

Const.oph listing xv, 46-7, 50,
55-7, 134, 136, 144-5,
149-50, 152-4, 157, 161-8,
176-9, 191, 195, 199, 205,
211,221,227,233, 234, 238,
248

CONTINUE 136, 146

control loops 15-17, 141

conversion programs, Event Core
xiv, 61-77

coordinates 81-4, 86-99, 176,
201, 209

copies 81-4, 146-7, 186

COPY 146-7

Cos 147

cosine 147

COUNT 110-12, 147

CPU see Central Processing Unit

CREATE 43-4, 103-4, 1478,
172-3, 249-50

Crimson 22

crippling options, limitation
build-ins 118

Ctrl key 58-9, 63, 66, 165,
171-2,221-2,227

current documents 190-1

current windows, visibility
commands 46-8, 209

CURSOR 148-9

cursors

concepts 88-94, 102-12

INDEX

databases 102-12

dual cursors 105-12

keys 88-99, 107

movement code 106-8

position 58-9, 83-99,
102-12, 138-9, 148-9

setting commands 83-99,
148-9

types 105-12

d prefixes 27

data files 137-40, 257, 259

Database File Handling 138, 148

databases ix, xii—xiii, xiv, 40-1,
101-12, 138, 140-2, 144-5,
216, 221, 236-7, 241-3,
246-7

adding entries 109-12
blank records 109-12, 216
bookmarks 104-12, 141,

201-2, 221, 241-2

compact commands 110, 145,
258-9

concepts 40-8, 101-12

construction methods 102-12

creation 102-12

cursors 102-12

definition 101-2

deleting entries 110-12, 144,
170

displays 107-12

editing entries 108-12

INI files 38-48, 55, 102—4,

124-8

inserting entries 103-12, 138,
142, 147,216, 243

modifying entries 108-12,
138, 142, 147, 233, 243

open methods 102-5, 111-12

position commands 104-12

practical programs 101-12

queries 236-7

rollback command
246-7

tables 43-4,147-8, 160,
236-7

transactions 43-4, 103-12,
140-1, 142, 144-5, 216,
243, 246-7

141, 145,

315

types 102
uses 101-2
views 42-4,104-12, 144,
145,216-17, 233, 236-7,
241-2
149-51, 154, 165,
179-84, 234, 249
DATETOSECS 149, 249
DATIMS 149-50
DAY 150-1
DAYNAMESS 150
DAYS 151, 249
DAYSTODATE 151
dBUTTONS 53, 72—4, 76-7,
108-12, 151-3, 158, 162-3
dCHOICE 72,73-7,153-4,
162-3
dDATE 151, 154, 249
de Jode, Martin 285
debugging needs 30,37, 114
declaration
constants 14, 38-9, 45-6, 62,
87-8, 146
variables 11-14, 38-9,
154-5, 173-4
DECLARE EXTERNAL 30, 154-5,
173-4
DECLARE OPX 155
dEDIT 73-7,108-12, 152,
155-6, 167, 169
dEDITMULTI 156-8
default windows
color modes 158-9, 188
concepts 28, 44-8
DEFAULTWIN 158-9, 188
DEG 135,138, 139, 159
degrees, radians 159, 243
Del key 152
DELETE 43-4,103-4, 159-60
DESC 236-7
dFILE 160-2
dFLOAT 73-4, 162
DIALOG 53,70-7,95-9,
108-12, 117-18, 152, 158,
162-4, 166, 220, 253
dialogs 52-3,61-77,95-9,
108-12, 117-18, 136, 152,
155-8, 162-4, 166, 220
see alsod...

dates

316

dialogs (continued)
command types 72-4
concepts 69-77, 95-9,

108-12

construction methods 70-7
conversion programs 69-77
initialization 69-72, 97-9
OPL code 69-77, 99

returned values 72-3, 75-7,
95
text 71-7,95-9, 166-7
uses 69-70
Digia, Inc. 285
digital clocks 179-84

dINIT 53,69-77,95,108-12,
117-18, 152-4, 158, 162,
163-5, 1668
DIRS 164
directory names 22, 29, 37-8,
43-4,61-2,79-80, 160-2,
233,245-7, 257
backslashes 147
conventions 37-8
removals 247

disks, selectors 160-2
displays
characters 207-8

database entries 107-12
help context 252-3
information 110, 197
menus 111-12, 230-1
touchscreen displays 4-5, 34,
55-7, 64, 88-99
DLLs ix
dLONG 72-4,162-5
documents, files 249-52
DO...UNTIL loops 3, 15-17,
36-59,91-9,107-12, 139,
141, 146, 150, 165, 169-70,
172,215-16, 258
pow 150, 165
dPOSITION 166
drawables, concepts 46-7
drawing commands 93-9, 176,
184, 188-9, 194-8, 202-9
drives 37-8
dTEXT 27,53,69-77,95-6,
117-18, 153, 156, 162-3,
166-7

INDEX

dTIME 152,167-8
dual cursors, databases
dXINPUT 168
Dynamic Memory Allocation 137

105-12

EDIT 168-9, 216, 220, 225
editboxes 154-8, 160-2,
164-5, 167-8
editing
databases 108-12
software 22-4,26-31
ellipses, drawing commands

188-9
ELSE... see IF...
emails 123-4, 131

emulators, PCs
ENALLOC 223
END DECLARE 155
end-of-file checks 107, 139,
169-70, 235
ENDA see APP
ENDIF... see IF...
ENDP see PROC. ..
ENDV see VECTOR
ENDWH see WHILE. ..
English language 126
Enter key 34-5, 89-99, 136,
152, 157-8, 162-3
EOF 107,139, 169-70, 235
EPOC32 30, 286
Epocware, PC File Manager 26
ERASE 110-12, 144,170
ERRS 170-1
ERR 170-2, 216
errors 30, 38-48, 52-5, 81,
86-99, 136-7, 1545,
163-4, 166-7, 170-2, 184,
208-9, 216, 228, 231,
235-6, 244, 251-2, 256-7
graphics 81, 86-99
logic errors 30
testing needs 114

29-30, 131

trap commands 43-4, 52-3,
103, 169, 170-2, 215-16,
256-7

types 30, 43-4, 52-3

variables 30

ERRXS 171

Esc key 73,136, 152-3, 165,
168-9, 171-2
ESCAPE OFF 165, 171-2
ESCAPEON 171-2
EVAL 172,260
evaluations, mathematical
expressions 172
Event Core xiv, 33-59, 61-77,
79-80, 85, 89-91, 98-9,
110-12, 121-8
concepts 33-59, 61-77,
79-80, 98-9, 110-12
conversion programs 61-77
INI files 38-48, 102, 124-8
initialization 36-48, 62-5
initialize procedure 36-48
input receipts 55-9
planning needs 36-48, 62,
110-12
practical programs
uses 33-6, 61-77
events xii—xiii, 28, 33-59,
88-99, 190-4, 239-40, 256
see also inputs
concepts 33-59
reading methods 56-7, 88-99,
190-1, 238, 240, 252, 256
types 55-9
EXIST 38, 41-4,47-8,102-4,
172-3
Exit 54-5
exit boxes 168
exit keys 151-2
EXP 173
exponentials 173
Export text 20
extended error messages 171
extensions, files 19-31
EXTERNAL 30, 154-5, 173-4,
215
external drives 38
external prototypes, declaration
30,173-4
external variables, declaration 30,
1545, 173 -4

61-112

feedback benefits, published
applications 115, 120
FExplorer 25

FILE 160-2
file managers, Symbian OS 25-6,
29
files
see also databases; records
concepts 19-31
documents 249-52
end-of-file checks 107, 139,
169-70, 235
existence checks 38, 102-4,
172-3
extensions 19-31
header files xiii, 214-15
I/O requests 217-20, 225,
249-51,257-9
lists 164
paths 24-5,36-59, 126-7,

253-4
rename command 245-6
space available 255
trap command 43-4, 103, 257
filters, pointer events 239-40
FIRST 104-5, 139, 174
FIXS$S 76-7,174-5,248
FLAGS 137,142,175
flat-file database structures 102
floating-point numbers 11-12,
73-4,76-7, 135, 162, 175,
200, 216-17, 226, 231-2,
235, 239, 241, 247, 255
concepts 11-12,73-4, 76-7
integers 175, 216-17
string conversions 76-7, 235,
260
FLT 175
folders
conventions 37-8
creation 22,29, 43-4,61-2,
79-80, 233
project organization 21-2, 29
root folders 21-2, 29
selectors 160-2
FONT 175-6, 194-5
fonts 49-50, 111, 175-6, 194—5,
199, 208
foreground 56, 192, 205-6
Forum Nokia 23, 281, 282
forums/newsgroups, published
applications 120, 131

INDEX

Forward 29
FREALLOC 137
FREEALLOC 176
freeware 113-14
FROM 236-7

g prefixes 27

games, graphics 79-99

gAT 49-50, 93-4, 98, 10712,
176, 204

gBORDER 176-7, 210

gBOX 177-8

gBUTTON 178

gCIRCLE 178,189

gCLOCK 178-84

gCLOSE 80-1, 184, 188, 199

gcLs 184

gCOLOR 184, 188-9, 195-7,
202-3

gCOLORBACKGROUND 184-5

gCOLORINFO 184, 185-6

gCoPY 49-50, 81-4, 93-4, 98,
186

GCREATE 46-8, 49-50, 814,
176-7, 184, 186-8

gCREATEBIT 184, 188

gELLIPSE 188-9

GENS 76-7,175,189, 248

GETS 189-90, 220, 238

GET 27,28,151,155, 159, 164,
170,177, 189-90, 216, 220,

238
GETCMDS 55-6, 190, 192-3
GETDOCS 190, 252
GETEVENT 56-7, 1901, 238,
240, 252, 256

GETEVENT32 56-7, 88, 190-4,
238, 240, 252, 256

GETEVENTA32 194, 240, 252,
256

GETEVENTC 194

gFILL 194

gFONT 49-50, 180, 194-5

gGMODE 195

gGREY 195

gHEIGHT 44-8, 195

gIDENTITY 195-6

gINFO32 196-7

gINVERT 197

317

GIPRINT 37,47-8,110-12,
197

gLINEBY 197-8,203-4

gLINETO 198

gLOADBIT 47-8, 80, 184,

198-9
gLOADFONT 195, 199
GLOBAL 12, 36-59, 63-77,

85-6, 89-99, 105-6, 1534,
162, 164-5, 167-38,
199-200, 224-5
gMOVE 200, 203—4
Google 113
gORDER 201
gORIGINX 201
gORIGINY 201
GOTO 52-3, 201
GOTOMARK 141, 201-2, 221
gPATT 202
gPEEKLINE 202-3
gPOLY 198, 203-4
gPRINT 27,2045, 207
gPRINTB 49-51, 107-8, 204-5,
207
gPRINTCLIP 204, 205, 207
gRANK 201, 205-6
graphics xiv, 21-7, 37-59,
79-99, 107-12, 176-7, 179,
180, 204-11, 228, 249-50,
257
see also bitmaps; windows
Al 94-9
arrays 85-99
BMConv 25, 83-4
closure needs 80-1
concepts 79-99, 107-12
coordinates 49-50, 81-4,
86-99, 176, 201, 209
cursors 88-99, 102-12
databases 102-12
displayed moves 93-4
games 79-99
legal moves 90-3
Othello xiv, 79-99, 105, 107,
115
pens xiv, 28,34, 55-9, 66-7,
88-99, 184, 195, 206
uses 79-80
gSAVEBIT 206, 249-50

318

gSCROLL 179, 206

gSETPENWIDTH 206

gSETWIN 179, 206

GSM 288-312

gSTYLE 107-8, 180, 207

gTMODE 204, 207-8

gTWIDTH 204-5,208

gUNLOADFONT 199, 208

gUPDATE 208-9

gUSE 49-50, 81-4, 93-4, 98,
107-12, 209

gVISIBLE 209

gWIDTH 44-6,209

gx 209

gXBORDER 176-7,209-10

gXPRINT 204-5,210-11

gy 211

Handango 116-17, 119
hardware, computers 3-6
Harrison, Richard 285
header files xiii, 20, 214-15
heap 136-7, 156

height, drawables 195-6
help context 252-3

HEXS 211-12

hexadecimal notation 122, 146,
211-12, 250

high-level languages, concepts
7-9,19-20

highlighting/underlining
commands, strings

horizontal lines 202-3

hot keys 58-9, 63, 64-9, 74-5,
111-12

HOUR 149, 212, 249

HSCSD 288-311

HTML 288-312

210-11

I/O requests 33-59, 62-77,
217-20, 249-51, 257-9

IABS 212

ICON 137,212-13

icons 21,123-4,137,212-13

IF...ENDIF structure 3, 16-17,
39-59, 65-77, 88-99,
102-12, 117-19, 139,
140-1, 146, 158, 170-3,

INDEX

213-14,221-2, 244-5,

250-2, 259
Import text 20
Inboxes 29
INCLUDE 122, 173-4,214-15
information
color modes 185-6, 196-7
display messages 110, 197
drawables 196-7
text screens 72-7,248-9

infrared 29, 130-1, 288-312
INI files 38-48, 55, 102, 124-8
InitApp 49-52,98, 103,
106-8, 111-12
initialization
applications 49-51, 97-9
dialogs 69-72, 97-9
Event Core 36-48, 62-5
menus 62-5, 111,232
INPUT 138,151,159, 169,
170-2,215-16, 220
inputs
see also dialogs; events;
menus
computer concepts 4-6, 33,
33-59, 55-9, 62-77,
217-20, 257-9
INSERT 103-12,138, 142, 147,
216, 243
installation procedures xv,
24,25,84,115,121-8
INT 88-99,175,216-17
integers 11-12, 73-4, 135, 149,
164-5, 175, 200, 211-12,
239-41, 257-8
see also long...; short...
absolute values 212
additions 257-8
concepts 11-12, 73-4
floating-point numbers
216-17
hex strings 211-12
peek commands 239-40
poke commands 240-1
subtractions 259-60
types 11-12
Internet 4-5,9,22-6, 113-28,
131,232-3

21-2,

175,

computer inputs/outputs 4-5,
232-3
published applications 113-28

software tools 22-6
interpreted programs, concepts
8-9, 15, 19-20, 22, 28-9,

62,223
INTF 175,216-17
INTRANS 141, 145,217
inversions, rectangles 197
I0A 217,219
I0C 217,219

IOCANCEL 217-18, 220
IOCLOSE 218

IOOPEN 218, 249-50
IOREAD 218

IOSEEK 218

IOSIGNAL 218

Iow 219

IOWAIT 217-18,219-20
IOWAITSTAT 217-18,219-20
IOWAITSTAT32 219
IOWRITE 219

IOYIELD 219-20

J2ME see Java 2 Platform Micro
Edition

Java 7-8,282-3,285

Java 2 Platform Micro Edition
(J2ME) 7-8, 285

Jipping, Mike 285

joysticks 88-99

JustStop 54-5

K prefixes 14
KEYS$ 220,238
KEY 220,238
KEYA 220-1
KeyboardDriver 58, 89, 108
KEYC 220-1
keys 4-5, 20, 28, 34, 36-59,
63-9, 74-7, 88-99, 107-12,
151-3, 157-8, 162-3, 165,
189-90, 191-4, 215-16,
220-2,226-8
see also individual keys
concepts 55-9, 74-7, 88-99,
107-8

cursors 88-99, 107
hot keys 58-9, 63, 64-9,
74-5,111-12
KILLMARK 141, 221
kilobytes, concepts 4
KMOD 189, 2201

labels, goto commands
201, 260
languages 3-17, 125-8, 142-3
see also BASIC; C++; Java...;
OPL
captions 143
compilation/interpretation
contrasts 8-9
high/low-level languages
19-20
historical background 5-9
SIS 125-6
standards 8-9
LAST 104-5, 222
LCLOSE 222
LCSETCLOCKFORMAT
LEFTS 222
leftmost character, strings 222

52-3,

7-9,

179-80

legal moves, board games 90-3

LEN 222,254-5

LENALLOC 223

length, strings 12, 76-7, 222

libraries 37-8

limitation build-ins, published
applications 117-19

lines

absolute positions 198
drawing commands 197-8
horizontal lines 202-3
lists, files 164
Litchfield, Steve xv, 130
literals, constants 146

LN 223

load hl 6

LoadIniFile 40-8, 102-3
LOADM 223,254,258

LOC 223-4

LOCAL 12,36-59, 74-7, 86-99,

107-12, 139, 140, 1501,
153-5, 157-9, 162, 1645,
167-8, 174, 200, 224-5

INDEX

LOCK 53,69-70,73-7,95-6,
108-12, 225

logarithms 223

logic errors 30

long integers 11-12, 73-4, 135,
149, 164-5, 175, 200,
239-41

LOPEN 222,225-6,251-2

low-level languages, concepts
7-8

LOWERS 225-6

LPRINT 225-6

m prefixes 27
machine code, concepts 5-8
makesis.exe 25,123-4,127
Marks & Spencer ix
mathematical expressions,
evaluations 172
MAX 226
max cursor, concepts 106—-10
MBMs see multi-bitmap files
mCARD 27, 62-9,226-8, 230-2,
234-5
mCARDX 228
mCASC 65-9, 111, 228-9, 231
MEAN 229-30
megabytes, concepts 4
memory 3-6, 11-12, 136-7,
156, 239, 288-312
peek commands 239
transience 5
variables 11-12
MENU 62-5, 220, 225, 227-8,
230-1, 234-5, 253
Menu key 34-5

menus Xii—xiii, 27, 34-59, 53,
61-77, 111,220, 226-9,
230-1, 234-5

see alsom. ..

cards 62-9,111-12,226-8

cascades 65-9, 111-12,
228-9,231-2

concepts 59, 61-77,231-2

conversion programs 61-77

creation 62-5

default considerations 68
definition commands 62-5
displays 111-12,230-1

319

hot keys 58-9, 63, 64-9,
74-5,111-12

initialization 62-5, 111, 232

naming conventions 27

OPL code 65-7,99, 111

popups 234-5
Metrowerks 23, 281
Microsoft

Pocket PC stores 119
Windows Paint 83
MIDS 149-50, 231
middle part, strings 149-50, 231
MIDP see Mobile Information
Device Profile
MIME 232-3
MIN 231-2
Mini-Max method, Al 96-7
mINIT 62-9,230-2,234
MINUTE 149, 233, 249
MKDIR 43-4,233
mnemonics, concepts 6-7
Mobile Information Device Profile
(MIDP) 7-8
see also Java...
Mobile Visual Basic 7
modifier keys 221-2
MODIFY 108-12, 138,142, 147,
233,243
MONTHS 234
MONTH 151, 234
Motorola A920/A925 289
Motorola A1000 290
moves
current positions 200, 203-4
legal moves 90-3
selected windows
mPOPUP 234-5
multi-bitmap files (MBMs) 21, 39,
41-4, 47-8, 80-4, 123, 198,
250
see also bitmaps
multi-line edit boxes 156-8
My-Symbian 119, 131

201, 206

nagging options, limitation
build-ins 117

natural logarithms 223

newsgroups, published
applications 120

320

NEXT 104-12,139,170, 235
Nokia 3230 291
Nokia 3600/3650 292
Nokia 3620/3660 293
Nokia 6260 294
Nokia 6600 295
Nokia 6620 296
Nokia 6630 297
Nokia 6670 298
Nokia 7610 299
Nokia 7650 300
Nokia 7710 301
Nokia 9210i 302
Nokia 9300 303
Nokia 9500 304
Nokia
Forum Nokia 23, 281
SDKs 23,279-80
Nokia N-Gage 305
Nokia N-Gage QD 306
Notepad program xiv, 22-3,
101-12, 118
see also databases
NUM$ 76-7, 175, 235, 248
number conversions, strings
76-7,174-5, 189, 235,
247-8, 260

object code, concepts 7, 8-9,
20-1,24-5,121-3
ONERR 52-5, 86-99, 163-4,
228,231, 235-6, 244, 257
OPEN 42-4,102-4,138-9,
169-71, 173, 2367
open source
OPL xi, xiii, 113-20
projects 285-6
OPENR 237
OPL Development Team 131
OPL (Open Programming
Language)
see also applications; Event
Core
ASCII (ANSI)/Unicode
conversion 22-5

benefits ix—x, xi—xii, 7,9-17,

19-31, 129-31

capitalization conventions 27

INDEX

commands xv, 7,9,24-5,27,
34-5,55-9, 70-7,
133-260

compiled code 20-2, 25-31

concepts ix—x, xi—xiii, 7,
9-17,19-31, 33-59,
121-8, 129-31

conversion programs xiv,
61-77

developer’s pack 23, 26

development cycle 26-31,
33-59

editing software 22-4, 26-31

emulators 29-30, 131

EpocSync 130-1

Fairway 130

grammar 9-10, 27, 70-1

graphics xiv, 21-2, 25,27,
37-59, 79-99, 1767,
179, 180, 204—11, 228,
249-50, 257

historical background ix—x,
xii—xiii, 7

icons 21,123-4

naming conventions 14, 27

Notepad program xiv, 22-3,
101-12

organization processes 21-2

Othello game xiv, 79-99, 105,
107, 115

parts 19

practical programs 61-112,
129-31

procedures xiv, 9-10, 27,
36-59

programming steps 26-31

published applications xiv,
113-28

RMRBank 129-30

source code 19-22,24-5,
26-31,99, 113-20, 122-3

SourceForge Project page 23

Symbian OS xi-xii, xv, 9, 20,
23,234, 26,28-9, 34,
121-31

syntax 9-10, 27, 70-1, 133

tools xiv, 9, 19-31

transfers from PCs 29

translated programs 8-9, 15,
19-20, 22, 24-5, 28-9,
62,223

OPL Runtime 9, 23-4, 26, 28-9,
34, 55, 69-70, 82-3, 115
OPLTran 24-5,29-30, 122
OPXs ix—x, xii, 9, 140, 142, 155
ORDER BY 236-7
Othello xiv, 79-99, 105, 107,
115
see also graphics
outputs, computer concepts 4-6,
33-59,217-20

package considerations,
applications 115, 124-8
Palm OS 119
Panasonic X700 307
paragraphs, OPL grammar 9-10
PARSES 237-8
passed variables, concepts 75-6
paths, file access 24-5, 36-59,
126-7,253-4
pattern-filled rectangles 202
PAUSE 238
PayPal 116
PC Suite 21, 24, 28-9
PDAs 130-1
PDATE 258-9
PEEKS 239
PEEK 135, 156, 158
PEEKB 239
PEEKF 239
PEEKL 239
PEEKW 239
pens
colors 184, 195
events 55-9,88-99, 193-4
taps xiv, 28, 34, 55-9, 66-7,
88-99
width 206
Pg Dn key 189
PI 239
pirate copies, published
applications 119
pixels, scrolling commands 206
platform types
see also Communicator...;
Series...; UIQ

Symbian OS 34-5, 45-6, 67,
87-9,107, 123, 1267,
130-1
pointer events 57-8, 66-7,
88-99, 239-40
PointerDriver 57-8, 66-7
POINTERFILTER 193-4,
239-40
pointing devices
POKES 241
POKEB 240
POKEF 241
POKEL 240-1
POKEW 240
polygons 203-4
popup menus 234-5
POS 107-12,241-2
POSITION 104-12,241-2
positions
cursors 58-9, 83-99, 102-12,
138-9, 148-9
databases 104-12
first records 104-5, 174
last records 104-5, 222
records 104-12, 174, 235,
241-2
Price, Howard ix
PRINT 27,28, 39-50, 138-9,
140, 144, 150-1, 155,
158-9, 168-72, 204—6,
215-16,221-2, 242-3
procedures
see also paragraphs
naming conventions 27
OPL xiv, 9-10, 27, 36-59,
36-77
passed variables 75-6
returns 75-7,86-7,91-6,
102-12, 246
PROC...ENDP 9-10,27-8,
36-59, 86-99, 102-12
processor see central processing
unit
processor, Event Core xiv,
Program 26, 28-9
programs
see also languages; OPL...
Al xiv, 94-9

288-312

33-59

INDEX

conversion programs xiv,
61-77
CPU/memory interface 5-6

Event Core xiv, 33-59, 61-77,
79-80, 85, 89-91, 98-9,
101-12,121-8

practical programs 61-112,
129-31

principles xiv, 3-17

stop command 38-54, 255
promotion, published applications
119-20
prototypes, external prototypes
30,173-4
pseudo-random numbers 247
Psion ix, xii, 129-30, 133
public names, applications
published applications
see also applications
availability processes 116-19
design considerations 114-19
distribution effects 114-15
EpocSync 130-1
Fairway 130
feedback benefits 115, 120
first 20 seconds 115, 120
forums/newsgroups 120, 131
freeware 113-14
installation methods
120-8
limitation build-ins
open source xi, Xiii,
OPI applications xiv,
package considerations
124-8
phone transfers 121-8
pirate copies 119
practical examples
promotion 119-20
registration issues 114, 116-19
RMRBank 129-30
shareware 113-14
UlDs 121-8
PUT 103-4, 108-12, 138, 147,
216, 233, 243

143

115,

117-19
113-20
113-20
115,

129-31

QfileMan 25-6
queries 236-7

321

quotation marks, strings 11-14,
28,39, 71-2

QWERTY keyboards 3

RAD 159, 243, 254
radians, degrees 159, 243
RAISE 244
random access, files 218
random numbers 244-5, 247
RANDOMIZE 244-5
read-only access, bitmaps 80
REALLOC 137, 245
records 137-40, 141, 147, 170,
174,201-2, 233
see also files
counts 110, 147
positions 104-12, 174, 235,
241-2
rectangles
copies 186
drawing commands
202
inversions 197
pattern-filled rectangles 202
references, variable passes 142
registration issues, published
applications 114, 116-19
RegNet 116
relational databases 102
rem 10,12, 126-7, 140, 155-8,
163-4, 174, 231, 245
remarks 10, 12, 140, 155-8,
163-4, 174, 231, 245
RENAME 245-6
REPTS 246
RETURN 41-3,75-7, 86-7,
91-6, 102-12, 118, 153,
170, 175, 246
Richey, Al xv, 129-30
RIGHTS 246
RMDIR 160, 247
RMRBank 129-30
RND 244, 247
ROLLBACK 141, 145, 246-7
root folders, project organization
21-2,29
Runtime errors 170-1
runtimes, concepts 8-9, 23-4,
26,28-9,55,82-3, 115

194, 197,

322
SaveIniFile 40-8, 54-5
SCIs 175,247-8

scientific formats, string
conversions 247-8
SCREEN 138-9, 206, 248
screen width, strings 208
SCREENINFO 248-9
screens 4-5,34,37-59, 111-12,
138-9, 206, 208-9, 2489,
288-312
see also windows
computer concepts 4-5
information 72-7,248-9
sizes 44-8,67-8, 111-12,
138-9, 195, 206, 208-9,
248
Symbian OS platforms 34-5,
45-6, 67, 87-9, 107, 123,
126-7, 130-1
updates 208-9
scrolling commands
206
SDKs see Software Development
Kits
SECOND 149, 249
secret strings 168
SECSTODATE 149, 151, 249
security certificates, SIS 127-8
SELECT 236-7
selected windows, moves 201

107,179,

selectors 160-2

semi-colons, usage 126-7
Sendo X 308

sentences, OPL grammar 9-10
Series 60 xiii, 20, 21,23, 25-6,

29, 34-5, 48, 49-50, 55-6,
63, 64, 66-7, 87-8, 88-9,
126-7, 133, 279, 285,
291-309

Series 80 see Communicator range

Series 90 279

SETDOC 249-52

SETFLAGS 47-8, 135-7, 138,
144,145,176, 223, 245, 252,
257-60

SETHELP 252-3

SETHELPUID 253

SETPATH 253-4

shareware 113-14

INDEX

Shift key 58-9, 63, 66, 189, 227

short integers 11-12, 176,
239-40

SHOWHELP 253-4

SIBO operating system xiii

Siemens SX1 25, 309
SIN 254
sine 254
single versions, limitation build-ins
118
SIS see Symbian Installation
System
SIZE 254-5
sizes
screens 44-8,67-8, 111-12,
138-9, 195, 206, 208-9,
248
strings 12,222, 254-5
text windows 248
skeleton programs 33-59
Sketch application 198-9

software
see also applications;
computers; OPL...
editing software 22-4, 26-31
freeware 113-14
Internet tools 22-6
open source Xi, xiii, 113-20
published applications xiv,
113-28
shareware 113-14
tools xiv, 9, 19-31, 280-3
Software Development Kits (SDKs)
xiii, xiv, 23,24-6,29-30,
58,122,127,131,279-82
Sony Ericsson Developer World
282
Sony Ericsson P800 310
Sony Ericsson P900 26, 311
Sony Ericsson P910 312
Soundvol 42-8
source code
application-creation processes
122-3
concepts 7, 8, 19-22, 24-5,
26-31,61-2,99, 113-20,
122-3
open source Xi, Xiii,
Source Edit 22

113-20

SPACE 255
Space key 136, 152
special keys 34-5
Spence, Ewan xvii
SQR 175,255
square roots 255
standard deviations
standards, languages
STD 255
Stichbury, Jo 285
STOP 38-54,38-55, 255
storage, computers 3-6
strings 11-14,28,71-7,137-9,
143-4, 149-50, 155-6, 168,
189-90, 200, 208, 210-11,
220,222, 223-6, 231, 234,
239, 246, 255-6

255
8-9

arrays 13-14

character codes 59, 138,
143-4, 220

concepts 11-12, 13-14, 28,
71-7

conversions 76-7, 174-5,
189, 235, 247-8, 260
highlighting/underlining
commands 210-11
last keys 220
leftmost character 222
length 12, 76-7, 222
lowercase/uppercase
conversions 38-9,
225-6, 259
middle part 149-50, 231
number conversions 76-7,
174-5, 189, 235, 247-8,
260
quotation marks
39,71-2
repetitions 246
rightmost character
screen width 208
secret strings 168
sizes 12,222,254-5
substrings 223-4
STYLE 255-6
style commands, text
180, 207, 255-6
substrings 223-4
subtractions, integers

11-14, 28,

246

107-8,

259-60

SUM 256
Sun Microsystems 281, 282-3
support forums 131, 282-3
switch-on events 192-3
Symbian DevNet Tools 282-3
Symbian Gear 119
Symbian Installation System (SIS)
xv, 21-2,24,25,84, 115,
120-8
Symbian OS xi—xiii, xv, xxi, 7,
20-1, 135,279-86, 288-312
see also Communicator...;
Series...; UIQ
advantages 21
ASCII (ANSI)/Unicode
conversion 22-5
books 285
community links 283-6
developer network 279-86
developer tools 23, 26, 280-2
developer training 283
file managers 25-6, 29
OPL xi—xii, xv, 9, 20,23-4,
26,28-9, 34, 121-31
phone specifications 288-312
platform types 34-5, 45-6,
67,87-9, 107, 123,
126-7, 1301
themed websites 119-20
v5 xiii, 135
v6 xiii, 279
synchronous waits, events
191-4, 219-20
system commands 55-9, 67,
121, 190-3
system flags, applications 47-8,
135-7, 138, 142, 144, 145
175, 252

Tab key 152, 162

tables, databases
160, 236-7

TAN 256

tangent 256

TESTEVENT 256

testing needs, applications 114

Texas Instruments 281-2

text

43-4,147-8,

INDEX
dialogs 71-7,95-9, 166-7
dialogues 166-7

editing software 22-4, 26-31
windows 144, 175-6, 248
Texted 26
TextPad 22
times 149-51, 167-8, 178-84,
212,233,249
tools
command line tools
123-4
OPL xiv, 9, 19-31
software tools xiv,
280-3
Symbian OS developer tools
23,26,280-2
top cursor, concepts
touchscreen displays
55-7, 64, 88-99
transactions, databases 43 -4,
103-12, 140-1, 142, 144-5,
216, 243, 246-7
translated programs, concepts
8-9, 15, 19-20, 22, 24-5,
28-9, 62,223
TRAP 43-4,52-3, 81,103, 169,
170-2,215-16, 256-7
TRAP RAISE 257
true cursor, concepts

24-5,

9, 19-31,

105-12
4-5,34

105-12

UADD
UIDs

135, 257-8, 260

121-8, 137, 161-2,
250-3, 280

ulQ xiii, 20, 21, 23, 24, 25-6,
29-30, 34-5, 48, 49-50,
57-8, 64, 66-9, 107, 123,
126-7,130-1, 133, 279-80,
288-312

UK English 126

Unicode 22-5,57,254-5

UNLOADM 258

UNTIL see DO. ..

UPDATE 138, 147, 169, 258-9

updates, screens 208-9

UPPERS 38-9, 259

USB 288-312

USE 103-5, 107-12, 148,
259-60

USUB 135, 258, 259-60

323

VAL 172,260
VAR 260
variables 10-14, 27,36-77,
71-2
see also floating...; integers;
strings
addresses 135, 156-8

array variables 13-17, 46-8,
56-7,85-99, 200, 203 -4,
224-6,229-32, 255-6,
260

concepts 10-14, 27, 71-2

declaration 11-14, 38-9,
154-5,173-4

errors 30

external variables
173-4

global variables 12, 36-59,
63-77,85-6, 89-99,
105-6, 153-4, 162,
164-5, 167-8, 199-200,
224-5

local variables 12, 36-59,
74-7,86-99, 107-12
139, 140, 150—1, 1535,
157-9, 162, 164-5,
167-8, 174, 200, 224-5

memory usage 11-12

naming conventions 14, 27

passed variables 75-6

references 142

30, 154-5,

types 11-12
variances 260
VECTOR 169, 260

very low level programming 6
views, databases 42-4, 104-12,
144, 145, 216-17, 233,

236-7,241-2
visibility commands, current

windows 46-8, 209
Visual Basic 7

WAP 123-4,288-312

Warez 119

websites see Internet

WHILE. ..ENDWH loops 3,
15-17, 140, 141, 146, 158,
164-5,244-5, 2502

324 INDEX

width commands 44-6, 49-51, default windows 28, 44-8, X positions 57, 81-5, 88-99,
204-5, 208, 209 158-9, 188 201, 209
wildcards 147, 160 MBMs 81-4 xHTML 288-311
Windows 98 24 moves 201, 206
Windows 2000/XP 24 size changes 248
windows text 144,175-6, 248 Y: drive 38
see also graphics; screens types 46-7 Y positions 57, 81-5, 88-99,
advantages 80 visibility commands 46-38, 201, 211
color modes 46-8, 84, 158-9, 209 YEAR 151
186-8 X/Y positions 81-4, 201
concepts 28, 44-8, 79-99, www.symbian.com 22-4, 83, 99,
158-9, 188 131 7 drive 38
creation 28, 46—8, 80—4, www.wikipedia.org 4 ZIP files 11 6, 120/ 127
186-8

Indexed by TERRY HALLIDAY, Indexing Specialists Ltd.

