TIMELY. PRACTICAL. RELIABLE.

Refactoring
in Large
Software Projects

Performing
complex
restructurings 4
successfully

Stefan Roock
Martin Lippert

Translated by Bettina von Stockfleth

Refactoring
in Large
Software Projects

Martin Lippert
and

Stephen Roock

%)

John Wiley & Sons, Ltd

Refactoring
in Large
Software Projects

Refactoring
in Large
Software Projects

Martin Lippert
and

Stephen Roock

John Wiley & Sons, Ltd

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on f¥ww.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher
should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern
Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@uwiley.co.uk, or faxed to
(+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product
or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Lippert, Martin.

Refactoring in large software projects : performing complex
restructurings successfully / Martin Lippert and Stephen Roock.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-470-85892-9 (pbk. : alk. paper)

ISBN-10: 0-470-85892-3 (pbk : alk. paper)
1. Software refactoring. 2. Computer software--Development. L.
Roock, Stephen. II. Title.

QA76.76.R42L56 2005

2005028993

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-85892-9 (PB)
ISBN-10 0-470-85892-3 (PB)

Typeset in 10pt Sabon Roman by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Bell & Bain, Glasgow

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

1

Contents

Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Architecture Smells

Large Refactorings

Refactoring and Databases
Refactoring and Published APIs
Recommended Reading

For Whom Was this Book Written?
The Background of this Book

Acknowledgments

References and Further Reading

Refactoring - An Overview

2.1
2.2
2.3
2.4
2.5

Emergent Design

What Does Refactoring Mean?
The Role of Tests

Tools Support for Refactorings
Experiences and Recommendations

References and Further Reading

Architecture Smells

3.1
3.2
3.3
3.4
3.5

Design Principles

Smells in Dependency Graphs
Smells in Inheritance Hierarchies
Smells in Packages

Smells in Subsystems

-

NN NN L W

11
20
22
26
27

29

33
35
41
48
52

| vi Contents

3.6
3.7
3.8

Smells in Layers
Locating Smells
Preventing Smells

References and Further Reading

4 Large Refactorings

4.1
4.2
4.3
4.4

Introduction

Best Practices for Large Refactorings
Fragments of Large Refactorings
Example: Lists

References and Further Reading

5 Refactoring of Relational Databases

5.1

5.2

5.3
5.4

5.5
5.6
5.7
5.8
5.9

Differences between Databases
and OO Programming Languages

Problems in the Interaction of Programs
and Database

Refactoring of Relational Database Schemas

Migration of Data between Different Versions
of a Database Schema

Refactoring Database Access Codes
Roles in a Project

Tools

Tips

Typical Data Models

5.10 An Example
References and Further Reading

6 API Refactorings

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Subsystems

Problems of API Refactorings
Compatibility Classes
Refactoring Tags

API Refactorings in Detail
Converter

Application Migration with Incompatible
Subsystem Changes

58
65
73
75

81

81
92
121
143
154

159

159

160
161

164
167
170
171
173
174
177
185

187

187
188
189
194
198
221

222

Contents

vii

6.8
6.9

Tips for Designing APIs
An Example

6.10 Another Approach: ‘Catch Up and Replay’
References and Further Reading

7 Tool-Based Detection and Avoidance
of Architecture Smells

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Specifications of an Analysis Tool

Architecture Analysis with Sotograph
Architecture Analysis Based on Cycles
Metrics-Based Architecture Analysis

Support for the Preparation of Large Refactorings
Support of the Refactoring Process

Conclusion

8 Conclusion

Glossary

Index

223
226
245
245

249

249
251
257
260
263
267
267

269

273

277

1
Introduction

Once, software developers believed it was possible to create the techni-
cal software design for a comprehensive system completely, correctly
and free of contradictions right at the beginning of a project. Many
projects proved though that this ideal approach can hardly be realized.
More often it causes significant problems.

A typical example of this fact are those requirements that were
either unknown or not taken into consideration at the beginning of a
project and thus were not integrated into the original system design.
Later on, integration of these disregarded requirements into the project
is much more difficult. If the developers are lucky, the requirements will
fit seamlessly into the existing system. However, this is rarely the case.
So-called ‘work-arounds’ are needed. These enable developers to meet
the requirements within the system, even though the actual software
design is not suitable for such an approach.

One problem of these work-arounds is that they cause a gradual
degeneration of the system design that leads to a loss of structure. The
more work-arounds are built into the system, the more difficult it
becomes to recognize and apply the original software design. Often
developers describe such a system as ‘historically grown.’

Today, many development methods have a different approach to
software design. Especially agile development methods — most promi-
nently extreme programming — no longer treat software design as a
clearly and rigidly defined constant that is defined at the beginning of
a development project. Instead, they assume that a software design
emerges step by step during the development process. If it is continu-
ously adapted and improved to meet present requirements, it is called
emergent design. Design improvements become established as an
important and independent activity during development and evolve
into an integral part of this process. This activity is called refactoring.

Big Upfront Design

Loss of Structure

1 Introduction

Refactoring

Refactoring Catalogues

First of all, refactoring means changing the internal structure of
software to make it easier to read and modify without altering its
observable behavior. Besides acknowledging this rather technical defi-
nition, many developers also associate a process-related aspect and a
certain attitude with the refactoring term. In the context of extreme
programming, refactoring means first and foremost an ongoing and
repeated reflection about the software’s structure and improving it in
small increments.

In his book on refactoring (Fowler, 1999), Martin Fowler gives
much advice on how refactorings can be accomplished. In this book he
refers to very basic modifications of an object-oriented system, like, for
example, ‘Rename Method’ or ‘Encapsulate Field.” For each of these
very small refactorings he describes — besides other aspects — the
‘mechanics’ of a refactoring. The mechanics of a refactoring describe
an exact sequence of very small steps necessary to perform the refactor-
ing. Small increments ensure that the system remains operable at any
given time. This procedure reduces the risk of introducing errors, cre-
ated by unwanted side-effects, into the software during refactoring. In
addition to the book, Martin Fowler’s refactoring homepage provides a
comprehensive list of refactorings.

Based on the refactorings depicted by Martin Fowler, Joshua
Kerievsky (Kerievsky, 2004) identified further refactorings focusing on
design patterns. These show how design patterns can be introduced
into an existing system (or separated and removed from it), e.g. ‘Intro-
duce Observer’ or ‘Replace Constructor with Factory.” Kerievsky pro-
vides depictions of ‘mechanics’ similar to those of Fowler.

The descriptions of concrete refactorings, such as ‘Rename Method’
or ‘Introduce Observer,” are very valuable for developers, because they
demonstrate when and how such a refactoring can be accomplished.
Today, many development environments support developers quite effi-
ciently during those small refactorings.

1.1 Architecture Smells

Refactorings are often executed in response to code smells. A certain
portion of the source code ‘smells like a problem.” This is, for exam-
ple, the case if the same code section occurs more than once in the
system.

Besides smells on the code level, smells can also be identified on a
higher level, e.g. if the defined interface of a subsystem has been cir-
cumvented. Since most people call this higher design level the architec-
ture of a system, we call these smells architecture smells. Both kinds of
smell refer to the design of the software, but on different levels. We

1.2 Large Refactorings

will provide a catalogue of architecture smells; some of which call for
larger restructuring measures.

1.2 Large Refactorings

Theoretically, we could continuously provide an optimal system struc-
ture via small refactorings, but in practice, when dealing with complex
projects, this is not realistic. Even projects involving skilled developers
with a lot of know-how occasionally require larger restructuring mea-
sures of the system — large refactorings. Ron Jeffries’ experiences con-
firm this observation:

Our feeling is that if we could stick to our XP rules, we wouldn’t need special
taxes or special times to clean things up. But realistically, can you play our best
game day in and day out?!

In his book, Fowler also explains the necessity of large refactor-
ings, called big refactorings by him and Kent Beck. Various examples
of such big refactorings can be found in his book, as well as on his
refactoring website (http://www.refactoring.com/rejectedExample.pdf,
Chapter 15: A Longer Example). In many object-oriented development
projects it poses a big challenge to handle these large refactorings.

Large refactorings often take longer than a day and change signif-
icant parts of a system. These properties of large refactorings create a
number of problems that the developers will have to deal with. Among
others, we observed the following problems:

Developers ‘lose track’ of large refactorings, because they are cre-
ated over a long period, and this process is frequently interrupted.
They remain incomplete. As a consequence, the software’s structure
is in worse shape than before the refactoring.

If a refactoring influences large parts of the system, a high demand
for merges is often the result. This situation occurs when a refac-
toring is supported by an IDE and many parts of the system are
altered at once; or when a big refactoring is not broken down into
smaller increments. Such high demand for merges quickly discour-
ages the developers’ use of large refactorings. Thus, much-needed
design modifications will not be made.

In many cases it is very difficult to foresee the consequences of sin-
gle steps of large refactorings. Frequently during the execution of a
large refactoring, developers realize that the separate increments
cannot be carried out as planned. There is still no easy-to-handle
means for dealing with such necessary changes of procedure.

L hetp://c2.com/cgi/wiki? TechnicalDebt.

1 Introduction

Because of the previously described difficulties, large refactorings
will often not take place parallel to the normal system development.
Instead, the team puts the system’s development process on hold for
a certain period to focus solely on the large refactoring. This method
of handling large refactorings does actually have more in common
with re-engineering than with refactoring. Also, many projects do
not allow for temporary interruptions of development processes.

These are the problems we wish to discuss in Chapter 4. Our attention
will center on the following questions:

How can large refactorings be broken down into smaller incre-
ments? Can large refactorings be assembled from small refactorings?
How can large refactorings be planned? How can existing refactor-
ing plans be adapted when it becomes clear that they cannot be
realized as planned? How can one obtain undo-functionality for
large refactorings during the actual refactoring process??

How long can/may large refactorings take? How can I further
proceed to develop (add functionalities to) the system during the
execution of a large refactoring? How can one make sure that the
development process does not counteract the refactorings?

How can plans for large refactorings be integrated into the devel-
opment process? What type of development process is suitable
here? Which prerequisites must the development process meet?
How can/must/should I document/communicate the present stage
of a large refactoring?

1.3 Refactoring and Databases

Today, there is hardly an application system in existence that works
without a (most common: relational) database to store the objects
of an application. If the storage structure of a class, or the interac-
tion of classes within the system is changed, this often means the
database structures as well as data present in the database need to
be accommodated too. Modifications of the database structure and
the stored data have the reputation of being a complex and tedious
task.

Many small or large refactorings can lead to frequent modifica-
tions of the system’s classes. Since we do not expect the design to be

2 Specialized support for undo and redo might become important if larger refac-

torings are performed in parallel to normal system development. A more
detailed discussion of this can be found in Chapter 4.

1.5 Recommended Reading

established at the beginning of development, the database schema can-
not be laid out at the project start. On the one hand this means that
refactorings of the program code can affect the database structures.
The structures need to be refactored together with the code. On the
other hand it may be necessary to additionally enhance the database
schemata themselves and thus refactor them.

In this book we will show how refactorings affect a system’s con-
nection with a database.

1.4 Refactoring and Published APIs

Refactorings do not alter the observable behavior of software. The
software is always treated as a whole. If, for example, we rename a
method in a Java system, all occurrences of the original name in that
system must be changed too.

Normally it is no problem to identify all references to a method
name in a system and adjust them accordingly. Many development
environments will do this automatically. The simple renaming of a
method will become difficult though if a system cannot be considered
as a whole. Typically this is the case when a system provides an API
that is also used by other systems. Such an API is also called a ‘pub-
lished API’ as opposed to a ‘public APL.’

If a method, which is externally visible through a system’s pub-
lished API, is renamed, the IDE or the developer cannot adapt all exist-
ing references for this method, because a number of these references
will lie within those systems that build on the published API.

As we can see, published APIs constitute a problem for an aggres-
sive refactoring approach. In many cases this means that a modifica-
tion of published APIs will be completely prohibited (or only be
allowed to a very limited extent). As a result, not all refactorings of a
system can be carried out, since some of them would alter the pub-
lished API.

In this book we will address these problems and describe methods
that will allow developers to integrate published APIs into their refac-
torings. At the same time we will aim to permit merciless refactoring,
even if this affects published APIs.

1.5 Recommended Reading

Chapter 2 provides a brief introduction to the refactoring topic. Those
readers who already have some practical experience with refactorings
can skip this chapter.

1 Introduction

Chapters 3 and 4 should be considered and read as a unit. They
constitute the book’s core.

Chapters 5, 6 and 7 can be read independently from each other.
Developers who have experience working on large refactorings in
projects will understand Chapters 5 and 6 without having read Chapters
2to4.

It is recommended that you read Chapter 3 before you start read-
ing Chapter 7.

1.6 For Whom Was this Book Written?

This book primarily targets developers who have had some first expe-
riences with refactorings and are familiar with the concepts Martin
Fowler presents in his book. For all others there is a brief introduction
to the topic at the opening of the book.

1.7 The Background of this Book

The book conveys experiences with specific refactoring situations and
offers readers a variety of tips as well as assistance for how to use these
refactorings in their own development projects.

The book is in part based on our own development project experi-
ences, but also to a large extent on discussions with other developers,
which took place on mailing lists, but also at conferences or workshops.

Acknowledgments

Repeatedly we discussed our problems and insights with other people
and tested them in projects. Therefore we would like to thank all those
who supported us, who participated in discussions and provided valu-
able ideas and suggestions. Our special thanks go to:

The employees and partners of it-wps GmbH (now C1-WPS
GmbH) for their committed collaboration on a number of projects.
Walter Bischofberger and Henning Wolf, whose work with the Sozo-
graph generated important input for Chapter 3. They also read early
texts for this book and gave us much appreciated feedback.

Marcel Bennicke has analyzed Eclipse with the Sotograph and
allowed us to publish the results. You will find them in Chapter 3.

The participants of the Workshop on Large Refactorings at the
OT 2003 Conference. During our discussion, they relayed impor-
tant and very interesting experiences, which further motivated us
to research this topic.

References and Further Reading

A number of authors have contributed their own articles to this book:
Walter Bischofberger, Sven Gorts, Berrin Ileri, Dierk Konig, Klaus
Marquardt, Jens Uwe Pipka, Markus Volter and Henning Wolf.

We would like to thank the following persons (in alphabetical order)
for their input regarding earlier drafts of this book as well as for their
constructive criticism: Walter Bischofberger, Christoph Kogl, Claus Lew-
erentz, Klaus Marquardt, Torsten Mumme, Jens Uwe Pipka, Joachim
Sauer, Bruno Schaeffer, Axel Schmolitzky, Kurt Schneider, Marco Schulz
and Robert Wenner. Special thanks go to Sven Gorts who provided a
huge amount of feedback for the translated version of the book.

References and Further Reading

Brant, J. & Roberts, D. Smalltalk Refactoring Browser.
http://st-www.cs.uiuc.edu/~brant/RefactoringBrowser. The first tool
to support refactorings. It enabled developers to realize many auto-
mated refactorings in Smalltalk and served as a blueprint for many
integrated development environments where refactoring-support
was pivotal.

Fowler, M. 1999. Refactoring — Improving the Design of Existing
Code. Addison-Wesley. The standard work in refactoring. It covers
the fundamental refactoring methods and is a standard tool for
every developer.

Kerievsky, J. 2004. Refactoring to Patterns. Addison-Wesley Signature
Series. In this book Joshua Kerievsky addresses the question of how
patterns can be inserted into an OO system step by step. The book
is a consequent continuation of Fowler (1999).

Opdyke, W.E. 1992. Refactoring Object-Oriented Frameworks Ph.D.
thesis, University of Illinois at Urbana-Champaign. The first com-
prehensive work dealing with refactoring. It focuses on refactoring
to push the development of frameworks.

Roberts, D.B. 1999. Practical Analysis for Refactoring, Ph.D. thesis,
University of Illinois at Urbana-Champaign. This work is about the
practical application of refactorings and analyzes how refactorings
can be automated through the use of appropriate development
tools. The implementation of the Smalltalk Refactoring Browser
constitutes the basis of this work.

Wake, W.C. 2003. Refactoring Workbook. Addison-Wesley. This book
contains many practical tips on how refactorings can be handled. It
can also be used as a workbook for simple refactoring.

1 Introduction

http://www.refactoring.com, 2004. A site created by Martin Fowler
that offers a collection of refactorings. Here, you will also find the
refactorings from Fowler (1999).

2
Refactoring - An Overview

This chapter provides an overview of the refactoring topic. To this
end, we will first address the basic idea behind agile development
methods, the idea that software is designed in a stepwise process
(Emergent Design). This view is in opposition to the classic demand to
create the entire software design prior to programming (Big Design
Upfront).

Refactoring is the main instrument used in a step-by-step design
process. A brief introduction of the basics will deal with the questions
of when and how refactorings should be carried out. Then we will pro-
ceed to look at the relationship between refactorings and tests and dis-
cuss how modern refactoring tools are changing the present refactoring
practice.

2.1 Emergent Design

The classic approach to software design is to come up with a complete
design at the beginning of a project. There follows a mostly exact
implementation of this design. People think of design as something
static throughout the project. However, in recent years it has become
clear that this procedure is rarely feasible. To keep the design of soft-
ware in a healthy state over a longer period, it is necessary to continu-
ously improve it. Otherwise, the software system will age, making it
increasingly difficult to realize modifications. At some point, no devel-
oper will dare change the running system.

But if developers improve the system design to meet current soft-
ware requirements, the ageing process can be stopped and even
reversed. In time, the software design can be improved. People start to
consider design as something dynamic rather than static. Refactoring
is one important technique to help developers improve the design.

[0

2 Refactoring - An Overview

2.1.1 Developing Software Is a Learning Process

For modern, evolutionary and iterative development processes, develop-
ers assume that software development is a learning process. Whereas
research results in this field strongly emphasize that it is a learning pro-
cess for all those involved in a project, we will focus on the system’s
developers here.

The longer a project progresses, the more developers will learn
about its requirements and the suitable software design. While some
design choices made in the course of the project will prove beneficial
and correct, others will turn out to be wrong or awkward. The rea-
son being that there is no such thing as a universal or best design for
software.

During recent years, new approaches in the context of object-ori-
entation have been researched as well, and new findings made
regarding how certain design problems can be solved elegantly. At
the same time, a software design is always created for a specific
application type; depending on both the context in which the appli-
cation is set and on the tasks it shall fulfill. If these factors change in
the course of a project (and for evolutionary and iterative develop-
ment processes it is assumed they do), the design must inevitably be
adapted.

Opinions regarding software design and design modifications
have changed due to these findings: design changes are no longer con-
sidered a necessary evil or proof of mistakes; they merely document
that software is able to meet the demands of changed prerequisites and
will do so.

2.1.2 No Design, Simple Design, Emergent Design

If you consequently follow this train of thought, it implies that the
developers don’t need to present a precise idea of the design for the
whole application at the beginning of a development project. Instead,
they should draft a rough design for the entire system, and a detailed
design for the portion of the system which is currently in development.
They should always make design adjustments and thus improve it. The
application’s design will then evolve gradually.

One important prerequisite for an emerging design is that it is
continuously adapted to the changing conditions. Developers should
not ignore recognized weaknesses in the system’s design, i.e. code
smells. It is common knowledge that the longer a smell exists in the
system, the more difficult it will eventually become to eliminate. In a
worst-case scenario this could mean that the developers do not refac-
tor at all during development, but execute a redesign of the system at

2.2 What Does Refactoring Mean?

1]

the end of a release cycle instead. There are a number of reasons why
ignored smells become worse over time:

Code smells are duplicated over time. This can happen because
developers copy and paste the smelly code parts, accidentally tak-
ing the smelly code as a blueprint for how to solve some problem
or for similar reasons.

Smelly code parts become more important. Because the appropri-
ate code parts become more important over time, more and more
references to this smelly code appear. Refactoring this code would
mean having to adapt more and more referring code.

Smelly code creates the need to implement work-arounds. The
more work-arounds exist, the worse the design becomes.

With the ongoing refactoring of the source code, we choose to take the
opposite route: refactoring and design will become parts of the daily
development work. This does not mean that less designing takes place.
The efforts are merely distributed more evenly over the whole period of
the development process. This approach has an important advantage:
having refactoring integrated as part of the daily work allows the team to
experience the gains of these small refactoring increments immediately.

2.2 What Does Refactoring Mean?

Today refactoring is an integral part of many development projects. It
is one of the tools a developer uses, just like a suitable programming
language or an integrated development environment.

Refactoring means improving the design! of software without
altering its observable behavior. The developers do not add any new
features during a refactoring, i.e. they don’t do any bug fixes or change
anything about the software that would be detected by the software
user. Instead, only the internal structure — the technological design of
the software — is changed.

Creating a design is a challenging task. Besides comprehensive
experience in software systems design, the developers first of all need
to know precisely the respective software system’s tasks and require-
ments to create a good design. Often it is not feasible to determine all
requirements in advance, because:

Too much time passes before programming begins and the soft-
ware can be utilized.

Design refers here exclusively to the software-technological design of soft-
ware, that is, its inner structure. It does not refer to the visual design of the
user interface.

Agile Methods and
Refactoring

M2~

2 Refactoring - An Overview

The requirements are changing in the course of the project.
Misunderstandings arise, which will only be recognized and elimi-
nated after the first couple of implementations.

In modern development processes, the project participants even act on
the premise that the project requirements will change during each iter-
ation, that new ones will emerge and old ones might be eradicated
altogether.

Changing requirements are one reason why changing the design
becomes important to keep the design up-to-date and healthy. In addi-
tion to that, the design might also be unhealthy because of forgotten
refactorings in the past or simply because the team hasn’t chosen a
good design solution for the given problem in the past.

As a result developers are forced to adapt the software design
again and again — through refactorings. This is the only way to keep
the software modifiable — ‘soft’ indeed. One might say that the soft-
ware’s aging is thus prevented.

2.2.1 AnExample

An example? will illustrate the underlying idea of the refactoring term.
We developed a class Movie for a video store’s rental system:

public class Movie {
static final double BASE PRICE = 2.00; // Euro
static final double PRICE PER DAY = 1.75; // Euro
static final int DAYS DISCOUNTED = 2;

public static double getCharge (int daysRented)
double result = BASE PRICE;
if (daysRented > DAYS DISCOUNTED) {
result += (daysRented - DAYS DISCOUNTED) *
PRICE_PER DAY;
}

return result;

}
}

Because there are various places in the system dealing with amounts,
these shall be calculated via a class of their own, labeled Euro, from
now on. The new Euro class ensures that amounts of money are cor-
rectly calculated, that they always have two decimal places, and devel-
opers will know that the amounts are calculated in the Euro currency.
We introduce this new class and replace the constants of the class

Movie.

2 This example is taken from Westphal (2005).

2.2 What Does Refactoring Mean? 13 |

public class Movie
static final Euro BASE PRICE = new Euro(2.00);
static final Euro PRICE PER DAY = new Euro(1l.75);
static final int DAYS DISCOUNTED = 2;

public static double getCharge (int daysRented) {
Euro result = BASE PRICE;
if (daysRented > DAYS DISCOUNTED) {
int additionalDays = daysRented - DAYS DISCOUNTED;
result = result.plus(
PRICE PER DAY.times (additionalDays)) ;
}

return result.getAmount () ;

}
}

Therefore, at first, the new class Euro will only be used in the internal
implementation of the class Movie. Consequently, Movie will not give
out the amount as double, but directly as Euro:

public class Movie {
static final Euro BASE PRICE = new Euro(2.00);
static final Euro PRICE PER DAY = new Euro(1l.75);
static final int DAYS DISCOUNTED = 2;

public static Euro getCharge (int daysRented) {
Euro result = BASE PRICE;
if (daysRented > DAYS DISCOUNTED) {
int additionalDays = daysRented - DAYS DISCOUNTED;
result = result.plus(
PRICE PER DAY.times (additionalDays)) ;
}

return result;

}
}

Unfortunately this modification leads to compile errors, because the
clients of the Movie class for getCharge will continue to expect the
return type double. Within a large system, this can create hundreds or
even thousands of compile errors at once. In order to make the refac-
toring process as pain- and risk-free as possible, it should be realized in
small increments

Thus we will make sure that our changes of the class Movie are
carried out without rendering all client classes invalid. An often-used
method to accomplish this is:

1. Extract the complete method body of getCharge into a new
getEuroCharge method. First, this new method will receive
the same signature as the old method.

[

2 Refactoring - An Overview

2. Change the signature of the new method to return Euro instead
of double and adapt the implementation of the old method to
convert the result of the new method into a double return
value of its own.

public class Movie
static final Euro BASE PRICE = new Euro(2.00);
static final Euro PRICE PER DAY = new Euro(1l.75);
static final int DAYS DISCOUNTED = 2;

public static Euro getEuroCharge (int daysRented) ({
Euro result = BASE PRICE;
if (daysRented > DAYS DISCOUNTED) {
int additionalDays = daysRented - DAYS DISCOUNTED;
result = result.plus(
PRICE PER DAY.times (additionalDays)) ;
}

return result;

}
/**

* @deprecated
*/
public static double getCharge (int daysRented) {
return getEuroCharge (daysRented) .getAmount () ;
}

}

Now we have two methods with different names and a different return
type that serve almost the same purpose. The compiler relays warnings to
all clients who use getCharge, providing us with a to-do list for the con-
version of the clients. Once all clients are using getEuroCharge, get-
Charge can be deleted from Movie. Using automated refactoring to sup-
port the old method can also be inlined automatically. This would
automatically adapt all invocations of the old method to use the new one.
If necessary, the method getEuroCharge can subsequently be
renamed getCharge, either via method duplication or — much easier —
with the aid of the development environment’s refactoring support.

2.2.2 Refactoring Categories

Refactorings can concern various parts of a software system. In his
book Refactorings, Fowler discriminates the following categories:

1. Composing methods. These refactorings serve restructurings at
the method level. Examples of refactorings from this group are:
Extract Method, Inline Temp or Replace Temp with Query.

2. Moving features between objects. These refactorings support
the moving of methods and fields between classes. Among them,

2.2 What Does Refactoring Mean?

~15]

refactorings like Move Method, Extract Class or Remove Mid-
dle Man can be found.

3. Organizing data. These refactorings restructure the data orga-
nization. Examples are: Self-Encapsulate Field, Replace Type
Code with Class or Replace Array with Object.

4. Simplifying conditional expressions. These refactorings simplify
conditional expressions, such as Introduce Null Object or
Decompose Conditional.

5. Making method calls simpler. These refactorings simplify
method calls, such as Rename Method, Add Parameter or Re-
place Error Code with Exception.

6. Dealing with generalization. These refactorings help to orga-
nize inheritance hierarchies, such as Pull Up Field, Extract In-
terface or Form Template Method.

For many refactorings, a reverse refactoring exists. For instance, a new
method can be extracted if an existing method seems to be too long
(Extract Method). On the other hand, a method can be dissolved if it
has become obsolete (Inline Method). A similar strategy exists at the

class level (Extract Class, Inline Class) or inside inheritance hierarchies
(Pull Up Field/Method, Push Down Field/Method).

2.2.3 Observable Behavior

If developers carry out a refactoring and thus change the software’s
structure, the software’s observable behavior should not change — one
could also say that refactorings do alter a program’s syntax, but not its
semantics.

When developers carry out a refactoring and thus modify soft-
ware’s structure, its observable behavior should not change. Opinions
regarding interpretation of the term ‘observable’ vary though. Strictly
speaking, each single refactoring influences a system’s dynamic behav-
ior, but usually these changes are merely marginal. The difference
would be measurable, but normally go unnoticed by the system user. A
run-time change in the tenth-of-a-second range would be considered
‘not observable’ in most applications.

The question of what exactly observable behavior is cannot be
answered independently from the system and its application context.
Pragmatically, one can settle for the definition that observable behav-
ior has changed when the system user notices it. In other words: a
refactoring may change any behavior that is not explicitly required by
the software.

Refactorings Do Not
Change Software’s
Observable Behavior

e

2 Refactoring - An Overview

2.24 WhenlsaRefactoring Carried Out?

Refactorings are not an end in themselves, but always aim at eliminat-
ing a weakness in design. Weaknesses are present when the existing
system structure hampers or even prevents modifications. Such weak-
nesses are also referred to as badsmelling code — so-called code smells.

A code smell can for example be a long and complex method in a
class, a cyclical uses relation between two classes, or a parallel inherit-
ance hierarchy. For a more comprehensive listing and depiction of
common bad smells, see Fowler (1999). Often developers will encoun-
ter code smells during their daily work — more specifically whenever
the system refuses to accept a modification.

Most code smells can be cured with the appropriate refactoring. A
method that is too long, for instance, can be broken down into many
smaller methods with the refactoring Extract Method.

When developers detect a code smell, it can be eliminated with the
aid of a refactoring at various stages of the project:

Before implementing a new feature, the developers analyze the
code and debate how this new feature can be realized. It is possible
that the new feature will integrate badly with the existing design,
or not at all. In this case, in a first step refactoring must be used to
rearrange the design to fit the new feature, followed by the devel-
opers’ incorporation of it in the software.

After a new feature has painfully been implemented into the exist-
ing design, the developers notice that the design no longer meets
the software’s requirements. Using suitable refactorings, the devel-
opers can continue to improve the software design until it meets
the required functional range.

In many cases both methods are used, so that the following program-
ming mini-cycle is created:

1. Cleaning up the code smells that prevents implementation of
the new requirements — with refactorings.

2. Implementation of the changes. If this turns out to be a com-
plex task, refactorings will be used during implementation.

3. Cleaning up the new code — of course with refactorings.

2.2.5 How s aRefactoring Carried Out?

Refactorings will alter executable software. This always implies a risk,
because there is the chance that new errors will find their way into the

2.2 What Does Refactoring Mean?

7]

software. Therefore two axioms, which should be observed for refac-
torings, have been established:

Refactorings are always to be broken down into small iterations
that constitute complete and testable entities.

Refactorings must only take place after the required automated unit
or acceptance tests have been conducted. With these tests develop-
ers check if the software displays the same behavior as it did prior
to refactoring.

Of course tests can only inspire some level of confidence (and do not
serve as a proof of correctness) that the behavior of the system hasn’t
changed.

While we are going to discuss the second axiom in greater detail
later in this chapter, we will now deal with the first axiom, which
states that refactorings should be broken down into small iterations.

Newcomers to refactorings show a tendency to bundle many small
restructurings and implement them in a single, big step. Instead of dis-
secting only one method at a time, a superclass is created simulta-
neously, some parameters are complemented, a float value is packed
into a value object, and two other classes are combined. Quite fre-
quently developers get lost in the growing jungle of structural changes.
The result is a system that will not be executable for a long period and
which is difficult to get running again. Often new errors will sneak
into the software. Due to the number of parallel introduced modifica-
tions, they are easily overlooked. As a result, the behavior of the soft-
ware is broken and the refactoring has failed.

But if a refactoring is executed step by step, significantly smaller
changes of the system can be committed back to the code repository,
each of which contributes to a fully functional system. The risk of intro-
ducing new errors into the software will clearly be reduced, because the
single alterations are straightforward and separately testable. Also, the
risk of merge conflicts, because other developers have changed the same
classes, is reduced.

Even a seemingly simple refactoring has the potential to influence
substantial parts of a system. If, for instance, the developers rename a
method, one of the consequences might be that substantial parts of the
program can no longer be compiled. If the refactoring is carried out in
one big step, the developers will spend a relatively long time finishing
it — at least as long as they don’t have a tool to support them. Also, the
danger of making mistakes increases.

It is not always easy to break down a refactoring into small
increments. At first sight, the renaming of a method seems to resist

EN

2 Refactoring - An Overview

deconstruction. Once the method has been renamed, all references
must be changed as well. In his book, Martin Fowler assigns so-
called ‘mechanics’ to each refactoring (Fowler, 1999). They describe
what steps are to be taken to execute a refactoring. For example, to
rename a method, the developer could proceed as follows:>

1. Create a new method with a new name and copy the imple-
mentation from the old method into the new method.

2. Compile.

3. Change the old method’s implementation so that it calls the new
method.

4. Compile and test.

5. Find all references to the old method and step-by-step change
them into the new method. Compile and test after each modifi-
cation.

6. Remove the old method.

7. Compile and test the system.

These mechanics show that even the renaming of a method can be car-
ried out in at least four separate steps (1, 3, 5, 6). After each step, the
system can be compiled and tested. Even if the method is used in many
places in the system, the developers can always check in modified ver-
sions of the source code into the shared repository. The step-by-step
procedure as well as the tests guarantee that the system will remain
functional at any given time.

Although today the renaming of a method is done automatically
by many development environments, and thus is a job that a developer
can finish within a few seconds (we will address this issue in a later sec-
tion of this chapter), this example shows that in principle it is possible
and useful to break down refactorings into many small increments.

Martin Fowler’s book on refactoring provides the respective
mechanics for the refactorings listed in his book. On the one hand they
can serve as instructions for refactorings, on the other hand they offer
ideas for how refactorings can basically be broken down into small
increments. Practice has proven that all refactorings can be treated in
this way, even if it seems impossible at first sight.

2.2.6 'Detours’

Breaking down refactorings into small increments is no trivial task.
Let’s have another look at the example from the previous section: the
old method continues to exist, while the new method has already been
implemented. Only when all references to the old method have been

3 This is a slightly simplified version of the mechanics used by Fowler (1999).

2.2 What Does Refactoring Mean?

~19]

replaced by references to the new method, will the old method be
removed. In this way the old method serves as a kind of detour. The
entire system stays functional, although parts of the code have not yet
been adapted for the new method.

Such detours are a typical characteristic of mechanics for refactor-
ings. The comparison with road construction is not too far-fetched:
here too, detours will be created to enable traffic to flow in spite of the
ongoing construction work.

For the example above this means that the old method no longer
contains implementations of its own, but calls the method with the
new name instead.

During a refactoring, detours will temporarily make the system
more complex. In the example above two methods for the same task
exist simultaneously during the refactoring process. Only after all ref-
erences to the old method have been modified, will the old method be
deleted and the desired structure be realized. Therefore it is of the
utmost importance to complete refactorings and conduct only a few
refactorings at the same time. If these rules are not observed, the sys-
tem’s structure will deteriorate due to the many remaining detours.

2.2.7 Refactoring Catalogues

Like for design patterns, for refactorings an attempt was made to find
and write down universal descriptions and instructions, which eventu-
ally became refactoring catalogues. These catalogues describe a num-
ber of essential refactorings, each with a brief explanation of when the
respective refactoring should be used, and how it can be realized.

The standard catalogue for refactorings can be found in Fowler
(1999). This catalogue describes in detail 72 refactorings for the restruc-
turing of object-oriented constructs. Supplementing the book, Martin
Fowler has put up an online catalogue with an extended list of refactor-
ings on his refactoring website (http://www.refactoring.com/).

While all the refactorings depicted by Martin Fowler in his book
focus on basic object-oriented concepts, Joshua Kerievsky has assem-
bled a catalogue of pattern-based refactorings (Kerievsky, 2003). The
refactorings in his catalogue are, for example, for adding an observer
pattern (Replace Hard-Coded Notifications with Observer) or a com-
posite (Replace Implicit Tree with Composite).

2.2.8 Practical Experience and Advice

Read Martin Fowler’s refactoring book completely and keep on using
it as a reference. It contains many tips and ideas, a comprehensive

20~

2 Refactoring - An Overview

refactoring catalogue, and it shows how refactorings can be broken
down into small increments.

Be open to the practice of executing refactorings in small steps.
Admonish yourself again and again to follow the small steps and
check those small changes regularly.

Even if it appears too difficult or not feasible at all to break down
each refactoring into small increments: go ahead and try it!

If you fail to break down a refactoring, carry out a review after-
wards. After refactoring you will know how you did it, which will
quite often make you realize how you could have broken it down.
Practice proves that one can always come up with small steps. One
of the underlying ideas is to build a detour first and then tear up
the road. This also implies that in the beginning the system will
become a bit more complex. Therefore refactorings should always
be completed. Never let refactorings drag on over a long period.

2.3 The Role of Tests

Automated tests play a significant role in refactoring. They serve to
check again and again if the entire system works exactly as it did before
single steps of a refactoring or a complete refactoring have been exe-
cuted. This security measure ensures that developers run a much lower
risk of introducing new errors into the software.

Of course this only works as long as the refactoring does not alter
the interface of a class. As soon as the interface of a class is modified as
part of a refactoring, the tests need to be adapted to the modified inter-
face. This raises the question of how the tests can function as a safety
net if we have to manipulate them ourselves.

There are two different approaches to dealing with tests during a
refactoring: either the developers conduct the actual refactoring first and
then customize the tests (Code-First Refactoring), or the tests are modi-
fied prior to the actual refactoring process (Test-First Refactoring).

2.3.1 Code-First Refactoring

For code-driven refactoring, the developers will carry out the refactor-
ing and use the still unchanged tests as a safety net. In the course of the
refactoring the tests are customized to fit the new code structure.

For renaming methods this means: as long as the old method still
exists, old tests of this class can be carried out without requiring mod-
ifications. During the refactoring process the old test class can be fitted
to the new method. This must happen before the old method is deleted
from the class.

2.3 TheRole of Tests

—21]

Detours are beneficial during test procedures: they ensure that one
can continue to use the old test classes, but when the detours have been
removed, the tests must be adapted to match the new structure as well.

23.2 Test-First Refactoring

Alternatively the fundamental idea behind test-driven development
can also be applied to refactoring.

In test-driven development the developers first write the test, fol-
lowed by implementation of the class, until the test turns out to be
successful. If we apply this idea to refactoring tasks, we will arrive at
test-first refactoring: the developers will first change the tests and
carry out the refactoring afterwards. This will be done until the mod-
ified tests are running successfully. Here the tests serve as a kind of
‘target’ for the refactoring.

Whereas developers will test a new or altered functionality during
‘normal’ test-driven development, followed by its implementation,
they will focus on the structure of the code during test-driven refactor-
ing. If, for example, a too long method is broken down, the test for the
new, extracted method will be implemented first. On this basis, the
developers will modify the original method and extract the new
method. The already modified test class enables them to immediately
test the old as well as the new method.

Test-driven refactoring has the same advantages we can also wit-
ness during test-driven programming: the new code structure is
designed and implemented with its exemplary use (for testing) in mind,
while for the new structure a test is readily available, etc.

2.3.3 Practical Application: A Combination of Both Approaches

In practice, both approaches will rarely occur by themselves, i.e. iso-
lated. In most cases, developers will combine the two procedures.

For renaming methods, for instance, first a test for the new method
is implemented within the existing test. This is accomplished by copy-
ing the test for the old method and changing the method used accord-
ingly. Afterwards, the new method can be added to the code, and one
can follow the mechanics described above. Finally, the old method is
deleted together with the test for the old method.

Even if a refactoring is automated completely through its develop-
ment environment (e.g. Rename Method), both approaches will be
combined. The development environment makes sure that both tests
as well as tested code are modified simultaneously.

22~

2 Refactoring - An Overview

23.4 Dependent Classes

In both cases, the test classes of dependent classes function as an addi-
tional safety net.

Let’s have a look at the example of the renamed method: the class’s
clients will first call the old method. The clients’ test classes check indi-
rectly if the old method is still working. Step by step, all clients are
adapted to the new method. Since these modifications only affect the
implementation details of the clients, the clients’ test classes don’t have
to be changed. They can also be used as a safeguard for the clients’ mod-
ified versions. Thus the developers can automatically check if they made
a mistake when they manipulated the clients.

This procedure will only work as long as the dependent classes
don’t use any Mock, Stub or Dummy objects. In that case, integration
tests must be utilized.

2.3.5 Refactoring of Tests

Test classes also need to be refactored from time to time. They are
prone to the same code smells that we might ‘scent’ in the application’s
normal code. For ‘normal’ refactorings we used the test classes as
safety nets to prevent the introduction of any new errors into the soft-
ware. What can serve as our safety net though if we are going to refac-
tor the tests themselves? After all, here too we can make mistakes.

The answer is simple: the class to be tested will serve as our safety
net. We proceed on the assumption that the test class ran successfully
prior to refactoring. If a test within the test class fails after the test class
has been refactored, an error must have been made during refactoring
(or we have found a new error in the class to be tested).

In addition, we can use test coverage tools (e.g. JCoverage, Clover)
to check test coverage before and after refactoring. However, it is only
possible in part to let the test coverage tools check the same functional-
ity after refactoring as before, and it requires a lot of tweaking. This is
because such testing simply isn’t the primary purpose of test coverage
tools.

2.4 Tools Support for Refactorings

Refactoring tasks can be supported effectively through the use of suit-
able refactoring tools. The first tool specifically for refactoring was the
Smalltalk Refactoring Browser, developed by John Brant and Don
Roberts at the University of Illinois at Urbana Champaign. With this
tool, many fundamental refactorings can be carried out automatically.

2.4 Tools Support for Refactorings

23]

TJBrowser - Smalltalk M
EButters Browse Category Class Prolocol Selector Tool

ein5-Privala-Lata Wodal
eng-Frivaie-Latabase Contes
Lens-Private-Object Managar
Lens-Private-Ouery Wanager
|Lens-Privala-Transpoter
Leng-Privale-Spplications-Sup,
Lens-Privaia-Tools- Suppor
Lens-Private-Tools-Broweing [
Lens-F'r'r-raIs-Tcluls-Cumpnnsnt

*initialize-raleasa adilndax-onTablaForin hd

checkDatalods Colurrnswith

LensDatabazeTabla
LansCatabaseTablatolumn
LensTablekey

defaul TablahlarnsFor:
definal oraignkieysForin
definePrimarybkzyForin:
ged Tablehamead:in

yFor
hd EcolumnaDiType: definition: Eor
[® catoguy O heraichy | @ instonee) class |7 | = b

Lipe + e n
create TableFor; iype in: aLensSession defiridion

“Agdd {he tzhle far type in alensSession. It's Ok f i already suisls.”

| definitior | 3
definition = ¥riteStream on: String new. - .

0= (=]

dafindion naxiPull: treate table ', iypa fable qusifisdiama , ' [TR e
Ipe fable columns do. | cokamn

dedinition skip: -1.
dafinion nexPul 1.
alensEes=mon conneclion doCommandSting: delinition conents

The refactoring browser for Smalltalk (see Figure 2-1) offers the
option of renaming a class, for example. If the developer assigns a new
name to a class with the aid of this function, all references will be auto-
matically updated to match the new class name. The developer no
longer needs to manually update clients of the respective class. The
same can be done for renaming methods. The refactoring browser also
enables the extraction of a method. To achieve this, the developer only
needs to highlight the code section that shall be extracted and assign a
name to the extracted method. The code will then automatically be
copied into a new method with the assigned name and replaced by a
call in the original method. Also, the refactoring browser automati-
cally determines which parameters and return values are required by
the new method.*

The refactoring browser for Smalltalk has significantly changed the
thinking about and work with refactorings. In the meantime, many inte-
grated development environments have started to offer similar function-
alities. Especially current Java-IDEs, like Intelli] IDEA or Eclipse (see
Figure 2-2), offer powerful refactoring support. Their implementations
have long surpassed the original refactoring browser for Smalltalk.

4 The Smalltalk refactoring browser also supports a variety of other refactor-

ings. We only introduce a few of them to illustrate the principal handling of
this tool.

Fig. 2-1
Smalltalk Refactoring
Browser

[z

2 Refactoring - An Overview

Fig. 2-2
The Refactoring Menu
of Eclipse

Refactor Mavigate Search Project Run ‘Window He
Lnda Ale+ShifEZ
Redo AlE+ShiEH

Ale+Shift+R

Move... Ale+Shift+4
Change Method Signature. ..

Convert Anonymous Class to Mested. ..

Move Member Type ko Mew File., ..

Push Down...

Full Up...

Extract Interface. ..

Generalize Type...

Use Supertype Where Possible. .,

Inline. .. Alt+5hift+1
Exbtact Method., . AlE-ShifEH
Extract Local Yariable. . Ale+-shift+L

Extract Constant...

Introduce Parameter. ..
Introduce Factory...

Convert Local Yariable to Field. ..
Encapsulate Field...

It is interesting to observe how this tool support has changed the
work with refactorings. Renaming a class, an interface, or an opera-
tion in the common IDEs is a matter of a few seconds. Just by pressing
a couple of keys, the old name will be replaced in the entire system.
The same is true for converting an expression into local variable, for
example (see Figure 2-3).

Tool support has advanced to the point of even correcting references
to the respective name in source code comments or other files (such as
XML files). However, this will only work with files that possess clearly
defined semantics that are known to the refactoring tool. For a refactor-
ing tool this is the only way of finding out if, for instance, a certain type
is referenced or not. For JSP files (JavaServer Pages), for example, this
can easily be done, because the semantics of the embedded source code
are clearly defined. For an XML file it will be more difficult: here the
IDE can only conduct a text search to find out if a certain type is refer-
enced. If the type is not fully qualified (with complete package identi-
fier), the refactoring tool will soon announce its defeat.

The number of supported refactorings in development environ-
ments grows with each new version. The current version of Eclipse for
example allows developers to extract interfaces. Here the IDE not only
creates the interface and lets the class implement it, moreover, all cli-
ents of the class are analyzed, and type references to the class are
replaced by the interface where this is feasible. Present research is one
step ahead: researchers are trying to automate design pattern-based
refactorings (Cinnéide, 2000).

This shows that a growing number of, and more complex, refac-
toring operations are supported by IDEs, making it easy for developers

2.4 Tools Support for Refactorings

~25]

to execute the desired refactorings. Refactoring is becoming a part of
their daily work with source code.

Il © Extract Local Yariable i F x|

‘ariable name: IlransfarmerCIassName|

¥ Replace all occurrences of the selected expression with references to the local variable
I Declare the local variable as 'final’

Signature Preview: String transformerClasshlame

Preview = | Ok I Cancel

= CONLEeXL.JELoELVICEREIELEnce || delransforme wice ., class. gethame () e
transformerService = (BytecodeTransformerService) context.getService (servicel

2.4.1 Incremental Refactoring vs. Tools-Supported Refactoring

A tool-based automation of refactorings seems to render the previ-
ously described mechanics and the step-by-step proceedings during
refactoring obsolete. As a matter of fact, it is no longer necessary to
rename a method in a series of single steps, because the IDE can
accomplish this completely in a few seconds. Nevertheless, the basic
idea behind incremental refactoring is not at all outdated.

There will always be refactorings that are either not supported by
an IDE or that cannot be supported by an IDE (see next section). In
these cases, it is still sensible to carry out refactorings step by step.
Here too, the examples in Fowler’s book can provide valuable advice
on how one’s own refactoring can be broken down.

2.4.2 Limitations of Tools Support

Unfortunately, refactoring tools have their limitations too. They can-
not support all possible refactorings. In this section, we will take a
brief look at some of these limitations and point to possible solutions:

Refactoring tools can only provide automated support for such
refactorings that can be generically described. This is the case with
most refactorings introduced in Fowler (1999), but the developer
still has to manually combine several refactorings to form a com-
posite refactoring. Refactorings like Extract Hierarchy or Separate
Domain from Presentation cannot be executed automatically by

Fig. 2-3
Refactoring ‘Extract
Local Variable'in
Eclipse

26~

2 Refactoring - An Overview

today’s software tools because they require too much context
information. For example, in the case of the Separate Domain
from Presentation refactoring, developers must decide which por-
tions of the code belong to the application’s domain model and
which ones to the presentation-specific part.

Refactoring tools rely on having the complete source code at their
disposal, which will potentially undergo change through the refac-
toring. Only then can the refactoring be executed safely. If, for
instance, a method that redefines a method from a library shall be
renamed, the redefined library method must be renamed too to
guarantee the same behavior. However, all popular refactoring
tools will alert developers to such situations instead of blindly
modifying the code. This problem not only emerges when external
libraries are used, but also when development takes place in differ-
ent locations or when the system is developed in subprojects for
one reason or another.

If the application itself possesses a published interface for other
systems, this interface can be changed with refactorings, but the
interface clients will need to be refactored as well. We will dedicate
an entire chapter labeled ‘API Refactorings’ to this problem.

A regular refactoring can alter an application’s source code. Per-
sistent data will usually not be included in such an automated
refactoring. Therefore it must be manually adapted to the appli-
cation’s new version. This problem is known for relational data-
base connections as well as for purely object-oriented persistence
mechanisms.

If an object-oriented system uses a relational database, a mapping of
object-oriented elements to the relational elements of that database
is necessary. If a part of the object-oriented application is refactored,
this can affect mapping to the database. This problem will also be
discussed in a whole chapter.

2.5 Experiences and Recommendations

Tests and refactorings constitute an inseparable unit. Automated
tests keep the risk of overlooking newly introduced errors low.

If the interface of a class is changed in the course of a refactoring,
the corresponding test class must also be adapted. In this case it is
recommended that you first modify the test class and then proceed
with the refactoring step (test-first refactoring).

A design can emerge and grow in the course of a project. A rough
outline of the architecture will often suffice in the beginning.

References and Further Reading

—27]

However, starting without any idea of a base architecture makes
the refactoring process more challenging. You continuously need
to evolve your design through refactorings to obtain a matching
architecture one day. Otherwise you risk falling back on hacking.
Refactorings are an essential part of software development. Only
continuous refactoring will help to change and improve the soft-
ware’s design during development.

Do not put off refactoring work. You can compare refactoring
work to taking out garbage. If you don’t regularly take out your
garbage, you will drown in it at some point.

Use the refactoring options offered by modern development envi-
ronments.

References and Further Reading

Cinnéide, M. O. 2000. Automated Application of Design Patterns: A
Refactoring Approach. Ph.D. thesis, Trinity College, Dublin, Octo-
ber. In his Ph.D. thesis, Mel O Cinnéide elaborates on how many of
the well-known design patterns can be integrated in the code with
refactoring techniques. Other than Kerievsky, Cinnéide is working
on a tool-based approach that will enable the automated introduc-
tion of design patterns into the code.

Clover: http://www.thecortex.net/clover. Clover is a commercial tool
for measuring the test coverage of Java programs.

FIT: http://fit.c2.com. FIT is a tool for the conduction of automated
acceptance tests (also function tests). These tests are specified via
HTML tables (e.g. using tables with input values and expected out-
put values for certain system functions) executed by a test runner.
Using fixtures, the test runner binds the application to be tested to
the tables containing the tests. The test result documentation is
then delivered in the form of HTML pages.

Fitnesse: http://www.fitnesse.org. Fitnesse is based on FIT and not
only offers FIT, but also a Wiki web that allows easier test specifi-
cation and organization.

Fowler, M. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley. Not only does Fowler depict basic refactor-
ings; he also introduces the distinction between public and pub-
lished interfaces.

JCouverage: http://www.jcoverage.com/.

28~

2 Refactoring - An Overview

JCoverage is a tool for measuring the test coverage of Java pro-
grams. It exists in two versions: an open source and a commercial
version.

Kerievsky, J. 2004. Refactoring to Patterns. Addison-Wesley. In his
refactoring-to-pattern catalogue, Joshua Kerievsky consequently
continues with Martin Fowler’s work and describes how a number
of popular design patterns can be treated during refactoring. The
catalogue contains instructions for introducing a specific design
pattern, but also a complementary refactoring for the respective
pattern’s removal.

NoUpnit: http://sourceforge.net/projects/nounit. NoUnit is a tool for
finding untested program sections.

Pipka, J.U. 2002. Refactoring in a “Test First® World. XP 2002.
http://www.agilealliance.com/articles/articles/JensUwePipka--
RefactoringinaTestFirstWorld.pdf. This article addresses the prob-
lem that test code is often changed by refactorings too, and there-
fore no longer applicable as a safety net for refactorings. We sug-
gest a refactoring procedure similar to the test-first approach, i.e.
to adapt the test first and then execute the refactoring.

Roberts, D., Brant, J. & Johnson, R. A Refactoring Tool for Smalltalk.
Published in Theory and Practice of Object Systems, special issue
on software re-engineering. http://st-www.cs.uiuc.edu/users/drob-
erts/. A description of the Smalltalk refactoring browser.

Westphal, F. 2005. Testgetriebene Entwicklung mit JUnit und FIT.
dpunkt Verlag. Westphal explains test-driven procedures in soft-
ware development. Of course he also touches upon the issue of
refactoring (in German).

~29]

3
Architecture Smells

When experienced developers look at the code and the structure of a
system, they very soon develop a feel for its weaknesses. They will say
that the system smells; it possesses distinct smells, which point to con-
spicuous design in the system. Whether these designs really pose a
problem or not must be decided in each individual case. If we follow a
smell and actually detect a problem, we will solve it using refactorings.

In his book about refactoring (Fowler, 1999), Martin Fowler
describes smells that can be cured with small refactorings. Examples of
causes for these smells are long methods, long case statements, etc.

Besides these code smells, architecture smells can frequently be
identified.! In contrast to code smells, architecture smells refer to bad
smells that occur on a higher level of the system’s granularity. Where
code smells, for example, might refer to bad references between single
classes. A similar architecture smell could reveal bad coupling between
subsystems or layers. Such architecture smells often require larger
refactorings.

The following sections will describe occurrences of architecture
smells that we repeatedly encountered. As with code smells, an archi-
tecture smell does not always inevitably indicate there is a problem,
but architecture smells point to places in the system’s architecture that
should be analyzed further. When we conduct architecture reviews, we
refer to architecture smells for guidance.

The term ‘architecture’ is used in this context focused on the architecture of
the software instead of covering the overall picture including the deployment
mechanisms, hardware choices, and so on. Whereas most of the discussion
that follows in this chapter makes sense for a system implemented homoge-
neously in one language, many of the underlying ideas should be valid for
other cases, too.

3o

3 Architecture Smells

Architecture smells can be found on various levels:

In uses and inheritance relations between classes: these smells refer
to the elemental relations between single classes.

In and between packages: for many programming languages, con-
cepts for grouping related classes exist, for example the package
concept in Java. In and between such packages, architecture smells
can also occur. We are going to address them here.

In and between subsystems: packages alone do not constitute a suf-
ficient concept for the structuring of larger systems, which is why
packages are often bundled in so-called subsystems or modules. In
and between such subsystems, architecture smells can occur.

In and between layers: besides subsystems, so-called layers are
often introduced into larger systems to control complexity. They
also serve to structure the system. Often these layers will serve to
separate the Ul model from the domain model. They can also be used
to separate, for example, a domain-specific platform of a system
from higher-level, application-specific parts. From our experience we
often find between 5 and 10 different layers in larger systems. We
have identified a number of architecture smells that can emerge in
as well as between layers.

The larger a system is, the more important are analyses of subsystems
and layers. In small systems, the interesting aspects of their architecture
express themselves in packages and classes, whereas subsystems and
layers often don’t exist at all. Nevertheless, smaller systems too will
become more clearly defined when they are divided into subsystems.

If the system is big enough to consist of a significant number of
subsystems, it is more important to ascertain that the relations
between the subsystems are clean than to ensure that the subsystems
possess an optimal internal structure. If a chaotic structure exists
within a subsystem, it will quasi be ‘quarantined’ by clear structuring
of the subsystems — chaos cannot spread to the remaining parts of the
system. Later on, the chaotic subsystem can be isolated from the rest of
the system and either be revised or completely newly developed.

Of course it is also important to select the correct size for each
level. Classes, packages, subsystems and layers should not contain too
many, but neither too few, elements. Figure 3-1 illustrates the resulting
tension between understandability and reusability. The more compo-
nents are part of a layer, the more of them can be reused by the layers
above them. It should not go unmentioned though that the layer will
become more difficult to understand as its number of components
increases.

3 Architecture Smells

~37]

Number of Elements

Figure 3-1 obviously simplifies the relationship between under-
standability and reusability. In practice, the optimum between both val-
ues does not always meet at an intersection. Instead, there is rather a
large ‘middle zone.” Moreover, it might happen that reusability deterio-
rates along with decreasing understandability, because everybody avoids
using items that are complicated or even not understandable at all.

It is not possible to provide general numbers, but there is a rule of
thumb that can serve as a guideline: if an element consists of more than
30 subelements, it is highly probable that there is a serious problem:?

(a) Methods should not have more than an average of 30 code
lines (not counting line spaces and comments).

(b) A class should contain an average of less than 30 methods, re-
sulting in up to 900 lines of code.

(c) A package should not contain more than 30 classes, thus com-
prising up to 27,000 code lines.

These numbers are drawn from personal experiences with analyzing large sys-
tems. Special thanks to Walter Bischofberger for discussing his experiences
with us.

Fig. 3-1

Tension between
Understandability
and Reusability

32~

3 Architecture Smells

(d)

(e)
(f)

Subsystems with more than 30 packages should be avoided.
Such a subsystem would count up to 900 classes with up to
810,000 lines of code.

A system with 30 subsystems would thus possess 27,000
classes and 24.3 million code lines.

If the system is divided into 3 to 10 layers, each layer com-
prises 3 to 10 subsystems.

These numbers cannot be used to characterize architecture smells, of

course.

smells.

But they can provide a meaningful hint where to find those

In view of these numbers it soon becomes clear that one can care-
fully approach the upper limit of 30. If this is done consistently for
each level though, the cumulative effect will lead to serious problems,
as clarity might be impaired. Therefore, in practice the average values
should stay visibly below the upper limit of 30.

The development environment Eclipse provides an apt example to
demonstrate how these numbers can look like in the real world:3

(a)

(b)
(c)
(d)

(e)
(f

-~

3

Eclipse counts about 1.5 million lines of source code including
line spaces and comments; without line spaces and comments
it has about 730,000 lines of source code.

This source code is distributed over c. 460 packages, c. 12,400
classes and interfaces, plus approximately 89,500 methods.
This means that a method has an average of about 8 lines of
source code — without comments and line spaces.

Classes and interfaces have an average of ¢. 7.2 methods.
Common packages contain about 27 classes and interfaces.
The Eclipse plugins can be viewed as subsystems. Conse-
quently, Eclipse consists of 48 subsystems. A subsystem com-
prises an average of 9.6 packages plus 260 interfaces and
classes.

Eclipse itself does not define layers. If one analyzes the static
dependencies of subsystems, a layering consisting of 10 layers
can be identified (see Figure 3-2, provided by Marcel Bennicke),
with approximately five subsystems assigned to one layer. The
illustration shows that extreme variances occur: from layers
with only one subsystem to layers with sixteen subsystems ev-
erything will be assembled here.

These numbers refer to Eclipse Version 2.1 with the plugins that are part of

the software’s standard package. We are grateful to Marcel Bennicke, who
generously provided them.

3.1 Design Principles

~33]

Figure 3-3 gives an overview of architecture smells in this chapter.

visible _-\. unused ™, cyeles between ™y
| dependency (N /. g L P,
. graphs / - -
- / treellke ;
e ,_\\: (" toosmall \'C mll:g:s) .'ga:kagesmdeep'
[l-‘-‘\'\:els beiween) _ graphs / _ packages ——e of nesting |
cosses (~ packages ™\ _ unbalanced J
—_— '._unclearly named ./ -~
.‘/ unused classes)
- J
/7 subsystem T\
. lized) APy
- __ bypassed ./
subsystem
— ¢ cycles between ™y
¢~ parallel \ \L‘mll/ S cy:ubsmms)
_hierarchies _ / list-like subsystem APT toomany
/——_ herita ~ (inheritance \ _ toolarge __subsystems /’7\
inheritance ™, hierarch: / / —
hiera!chyvtimm y C s:;o Ealgem) \hno subsyshems./

e } ~
_assignments ./ - fype queries)

/ inheritance \ T e faaaannre
“subclasses inheritance between \
(hierarchy / without \. \/ protocol-oriented e umi:i :;:znces)

. toodeep ./ \ redefinitions ./ layers / N nlyes ~
I e references between

(. too many layers vy | vertically separate |

' N layers /

(_ notayers ><_ striet layers violated ;\\ ve iy

3.1 Design Principles

Like code smells, architecture smells are caused by a violation of rec-
ognized design principles. This is the reason why design principles can
provide us with valuable tips for curing architecture smells. If the vio-
lated design principle can be identified, it will give us a first idea of

Fig. 3-2
Eclipse Subsystems:
Vertical Layers

Fig. 3-3
Architecture Smells

[

3 Architecture Smells

Fig. 3-4
Design Principles

how a better system structure might look. Therefore, we provide an
overview of today’s popular design principles in Figure 3-4.

Principle

Explanation

DRY - Don’t Repeat Yourself

Do not write the same or similar code more
than once. Also called ‘Once and Only
Once’ principle.

SCP - Speaking Code Principle

The code should communicate its purpose.
Comments in the code could indicate that
the code communicates its purpose insuffi-
ciently.

OCP - Open Closed Principle

A design unit should be open to adjust-
ments. Such adjustments shall not render
existing clients invalid. Inheritance is one of
the mechanisms that will let you achieve this
goal: the subclass can make adjustments
while the clients of the superclass remain
valid.

LSP - Liskov Substitution Principle

One instance of a class must be usable for
all instances where the type is the super-
class. Not only is it required that the com-
piler translates the source code, but after
the modification the system must still work
correctly.

DIP - Dependency Inversion Principle

High-level concepts shall not depend on
low-level concepts/implementations. The
dependency should be vice versa, because
high-level concepts are less liable to change
than low-level concepts. One can introduce
additional interfaces to adhere to the princi-
ple.

ISP - Interface Segregation Principle

Interfaces should be small. They should
contain only a few methods, but those meth-
ods that are contained in an interface
should be closely related.

REP: Reuse/Release Equivalency
Principle

The elements that are reused are the ele-
ments that will be released.

CRP: Common Reuse Principle

The classes of a package are reused as a
whole.

CCP: Common Closure Principle

The classes of a package shall be closed
against the same type of changes. If a class
must be changed, all classes of the pack-
age must be changed as well.

ADP: Acyclic Dependencies Principle

The dependency structure between pack-
ages shall be acyclic.

SDP: Stable Dependencies Principle

A package shall only depend on packages
that are at least as stable as itself.

3.2 Smellsin Dependency Graphs

~35]

Principle Explanation

SAP: Stable Abstractions Principle The more stable a package is, the more ab-
stract it should be. Instable packages
should be concrete.

TDA: Tell, Don’t Ask Don’t ask an object about an object, but tell
it what to do. Similar to the ‘Law of Deme-
ter’: each object shall only talk to ‘friends,’
i.e. only to objects that it retains as fields or
receives as parameters.

SOC: Separation Of Concerns Do not mix several concerns within one
class. This is also known as the ‘Single Re-
sponsibility Principle.

3.2 Smellsin Dependency Graphs

Classes can be coupled through use and inheritance. First, we will
only deal with use. If we look at the uses relations between the classes
of the system, we will see the static dependency graph. During system
runtime this will result in the dynamic dependency graph between
objects. In this chapter, we are only interested in the static dependency
graph.

3.2.1 Obsolete Classes

Classes that are no longer in use will burden the system with obviously
obsolete functionality. Most of this burden results from the fact that
developers spend more time searching for the right class. Build-times
get longer and in general the system becomes more difficult to under-
stand (because it is not obvious which classes are obsolete and which
ones are not).

In contrast to completely obsolete classes, more often you can find
classes that are partially obsolete. This often results from the fact that
a class implements more than a single responsibility and one of the
responsibilities becomes unused in the meantime. This situation can
easily be reduced to our obsolete class smell by refactoring the separate
responsibilities into separate classes.

Not only single classes can be no longer in use, but also entire class
graphs* (see Figure 3-5).

4 In our analyses, we will focus on complete applications. Naturally, ‘obsolete’

classes can easily emerge in frameworks and libraries if they are only provided
to service the client.

Fig. 3-4 (cont.)
Design Principles

| 36 3 Architecture Smells

Fig. 3-5 ,
Unused C’l-‘c]lsses: | Main |_ T _>|

D EF

Unused classes mainly emerge for two reasons:

1. Technology is hoarded as a supply: a developer speculates that
the class might eventually be used, although there is no evi-
dence of a concrete demand for it.

2. Refactorings: a formerly required class becomes obsolete due
to modifications of the system.

3.2.2 Tree-like Dependency Graphs

Tree-like dependency graphs (see Figure 3-6) indicate a functional
decomposition of the system. Each class of the tree is used by exactly
one other class.

Whereas functional decomposition in an object-oriented applica-
tion can often be judged as a code smell by itself, a tree-like depen-
dency structure also smells like code duplication. In the example in
Figure 3-6 the protocol class seems not to be reused for other pur-
poses, whereas the same protocol is used aside from the data storage.
That part of the system might reimplement the same protocol. Reuse
does not happen.

Fig. 3-6
The Tree-like
Dependency Graph

main -———3 datainput

data check data storage

|
Ay A/ Y/

context-free check context check protocol

3.2 Smellsin Dependency Graphs

~37]

3.23

Static Cycles in Dependency Graphs

Two classes using each other constitute the simplest imaginable cycle
in a dependency graph (see Figure 3-7). Cycles can also include various
classes (see Figure 3-8).

| order K———)l position

customer K---—-—---- T
|

|
N/ |

| order |»———>| position

The presence of many cycles in a system will lead to its lumping.
Cycles have negative effects on:

(a) Understandability: the classes cannot be understood ‘one after

another,” because they presuppose each other to be under-
stood. Instead, one has to alternate between classes to compre-
hend the graph in its entirety.

Maintainability: cyclic dependencies can have severe and un-
predictable consequences, thus making it harder to change the
systems affected by them.

Planability: cycles make it more difficult to anticipate the ef-
fects of changes. It will be more difficult to assess the effort
required for, and the complexity of, a change.

Clarity in design: often in one cycle each class can either di-
rectly or indirectly access any other class in the dependency
graph. Therefore, in principle, concerns can be arbitrarily dis-
tributed among these classes. The danger of placing methods
in ‘wrong’ classes is considerable, which in turn makes it more
difficult to comprehend the design.

Reusability: the class graph can only be (re)used as a whole. If
in a given context only one class from the graph is of interest,
this class cannot simply be reused.

Testability: the classes can only be tested in their totality as a
graph. This increases the demand for testing and error-
searching. If one wishes to isolate classes during the test, rela-
tively complex test patterns, such as Mock Objects (see Refer-
ences), must be utilized.

Fig. 3-7
A Cycle between
Two Classes

Fig. 3-8
A Cycle Including
Various Classes

ER

3 Architecture Smells

Fig. 3-9
Cycles in
Swing Packages

(g) Exception handling: often exceptions will accumulate in cy-
cles. If some method in the cycle throws an exception, this
event will potentially affect all other methods in that cycle.

(h) Dependency Import Problem: Each of the classes in a cycle is
(transitively) dependent on each of the dependencies imported
by either of the classes.

Obviously longer cycles have much stronger smells than short ones.
Especially cycles between exactly two classes can be desired — such
cycles are even conditional for some design patterns (for example iter-
ator, see References). Besides their length, interaction of the cycles is
also of interest. If several cycles share the same classes, the situation
will become much more complicated and soon lead to uncontrollable
chaos. An impression of this constellation is given in Figure 3-9,
although here ‘only’ the dependencies between packages are illus-
trated. If one tried to understand Swing in its entirety in order to mod-
ify it, no reasonable starting point could be found. Also, modifications
at any point in Swing might result in side-effects in any other location
in Swing.

3.24 \Visibility of Dependency Graphs

Object-orientation supports the principles of encapsulation and of
information hiding: the internal implementation is hidden behind an

3.2 Smellsin Dependency Graphs

~39]

interface.’ The client of the class does not ‘need to know’ anything
about the internal implementation of the API. Otherwise, the interface
or the implementation of the class is flawed. Many developers believe
that encapsulation and information hiding will emerge solely because
fields are declared private. This is not the entire truth though: in many
systems it is possible for clients of an object to receive field values from
the object via accessor methods (the typical ‘getters’). Based on the
delivered objects, the client can continue to navigate. As a matter of
fact, the dependency graph in the system is public and not at all hid-
den. A system with a public dependency graph will create more prob-
lems if one tries to change it, whereas changes to a private dependency
graph will only have local effects.

The Law of Demeter (see References), as well as the Tell, don’t ask
principle (see References), are pointing in the right direction: ideally a
client tells the used object what it is supposed to do. The client shall
not accept another object from the used object, nor work with it.

Let us, for instance, imagine a number of orders in various states.
We can especially differentiate between open or closed orders. Open
orders are the ones in which the company has invested some money,
but payment issues with the customer have not yet been settled. Thus it
is interesting to find out how much the total value of all open orders is.

If we spot a method calculatevValueOpenOrders somewhere
in the following form, the Tell, don’t ask principle has been ignored:

public float calculateValueOpenOrders
(ListOfOrders orders)

float totalValue = 0.0f;
for (int 1=0; i<orders.getNumber(); i++) {
Order a = orders.getOrder(i);
if (a.isOpen) {
totalValue += a.getValue() ;
!
!

return totalValue;

The reason is that the client Foo asks the Orders directly to
return information about their state instead of telling them what to do
(Figure 3-10).

5 In this context, ‘interface’ refers to the public API of a class rather than to the

Java interface construct.

[0

3 Architecture Smells

Fig. 3-10
A Violation of
‘Tell, don't ask’

Foo

+calculateValueOpenOrders()

[

!
N

List of Orders |- —

Now we move the case statement between open and not open
orders into the class Order and get:

public class ListOfOrders ({
public float calculateValueOpenOrders()
float totalvValue = 0.0f;
for (int i=0; i<getNumber(); i++) {
Order a = getOrder (i) ;
totalvalue += a.getOpenValue() ;
}
return totalValue;
}
}

public class Order {
public float getOpenvValue () {
if (isoOpen())
return getValue() ;
}
else {
return 0O;

}
}
}

We might be unhappy about the fact that in this example the order
returns the open value. If you decided to apply the Tell, don’t ask
principle one more time, you would supplement the class Order with
a method addOpenvalue and remove the method getOpenvalue.
However, this would mean that the class Order would know that a
certain number of orders exists. In this case, we would violate the

3.3 Smells in Inheritance Hierarchies

]

Separation of concerns principle. We should not forget that rather
than blindly applying design principles, we design the system by mak-
ing trade-offs. In this example we can decide whether to put the
method into the class or not by asking ourselves if the method would
fit into the domain-driven design of the class.

Not only is this new implementation a bit shorter, it also possesses
a number of additional advantages:

The functionality is where it belongs. It is no coincidence that in
the first example the name of the class containing the method
calculateValueOpenOrders has not been mentioned. In most
cases, such methods can be located directly in UI classes (e.g.
OrderEvaluatorDialogue) or in help classes with bizarre
names (e.g. OpenOrders Calculator).

The Tell, don’t ask principle ensures that types are only used
locally, plus they are no longer distributed all over the system.
Thus they will simplify the realization of optimizations.

What makes this smell so unpleasant is the fact that it cannot be found
by merely taking a close look at the package or class dependency
graph. One must take a look at the method dependency graph or read
the actual code to determine if many get methods exist, and if they are
used in an undesirable way.

3.3 Smells in Inheritance Hierarchies

Classes are not only coupled through use, but also inheritance. Inherit-
ance provides the advantage of polymorphism, but it comes with a
price. This price is paid in part with the coupling we get through inher-
itance. Inheritance results in a closer coupling than a compositional rela-
tionship. Since the discussion about design patterns, we know that in
case of doubt use is preferable over inheritance: the classes will be cou-
pled less closely, and the resulting structures can be used more flexibly.

This is why inheritance hierarchy problems are quite severe: due to
the close coupling of the classes in the hierarchy, problems will be
passed on from superclasses to their subclasses. Due to new require-
ments, a subclass requires a change to the superclass, for example.
Because all other subclasses also depend on the superclass, there is a
possible impact on all other subclasses as well.®

We could make the same reasoning for composition. However, in the case of
composition the problem is less severe because of a better encapsulation
through the public API of the class. This is also why people argue towards
explicit inheritance interfaces in addition to client APIs of classes.

| 42 3 Architecture Smells

3.3.1 Type Queries

Type queries in the system (instanceof) can be regarded as smells: the
inheritance relation expresses itself not only in the classes of the inher-
itance hierarchy, but in the clients too. If alterations in the inheritance
hierarchy are required, the type queries must be adapted as well (see
Figure 3-11). In regard to the design principles, type queries violate the
Once and only once principle:

Fig. 3-11
Inheritance Hierarchy List
and Type Queries

+getSize() : int
+get(in index : int) : Object

UnsortedList SortedList
+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(in index : int) : Object +get(in index : int) : Object
+insertAt(in index : int, in o : Object) +setComparator(in ¢ : Comparator)

The following code snippet demonstrates how client code for this
inheritance hierarchy could look:

public void doSomething (List 1)
{
Customer k = new Customer () ;
if (1 instanceof UnsortedList)
{
UnsortedList ul = (UnsortedList) 1;
ul.insertAt (0, k) ;

}

else

{

SortedList sl = (SortedList) 1;

3.3 Smells in Inheritance Hierarchies

=]

sl.add (k) ;

Actually, the smell is quite helpful here. The type queries are almost
begging for the developer to take a closer look at the inheritance hier-
archy. Indeed, the problem can be solved quite easily when the method
add has already been implemented in both List and UnsortedList
with the behavior depicted here.

A large system can hardly be realized without type queries. If a
high number of type queries can be found in a system though, this indi-
cates errors in an inheritance hierarchy. Maybe a subclass has been
derived from another class, because the latter showed some similarity
to it. As a matter of fact, a new superclass, from which both classes
will inherit, should have been extracted first.

Figure 3-12 shows a popular example of a flawed inheritance hier-
archy. It is plausible that a sorted list is a list and therefore permits the
formation of subclasses, but the method insertAt has sneaked into
the list class, and this method does not make sense in the subclass
SortedList. Secretly it has changed all the lists to be unsorted lists.
Finally, this is a violation of the Liskov substitution principle. The sub-
class SortedList now violates the contract of the superclass List
because it does not allow the insertion of elements into the list in spe-
cific positions. So what happens if a client calls insertAt via the
List type, but on an object created as SortedList?

Therefore a new superclass List must be created, which will com-
bine the characteristics shared by sorted and unsorted lists alike.

List
+addino: Otp::t}
+getSee() : int
+gein index : inf) : Objecl
List
+add(in o : Objed))
+getSize() 1 int I:>
+getfinindex : inf) : Object
+HnserdAlfin index : int, in o : Objed!]
JAN
Sortedl ist | T SoredL
rockiino: et add(n o Objec) +add(ino: Objec)
sgelinindex: n): Objec omaiicib o T Ot
+insertAlinindex:int,in o : Object) ‘gelinindex:in): Obedt Pl Ry
e +nsertAllinindex : int, ino: Object| | *setComparator(in ¢ : Comparator)

Fig. 3-12

Wrong Inheritance
Hierarchy

(on the left side)

[

3 Architecture Smells

Fig.3-13
List-like Inheritance
Hierarchy

3.3.2 List-like Inheritance Hierarchy

In a list-like inheritance hierarchy (see Figure 3-13) each class pos-
sesses a maximum number of one subclass. Such inheritance hierar-
chies either point to speculative generalizations or to too big classes.

«Type»
List

JAN

AbstractList

AN

Listimpl

AN

List of Orders

Speculative generalization means that superclasses were imple-
mented for a definitely required class in the hope that the created
abstraction might come in handy later on. This situation occurs quite
often when the class hierarchy only consists of two classes.

Unfortunately, we cannot foretell the future and don’t know for
sure which abstractions will be needed later on. Experience has shown
that speculative abstractions are not a good solution if an abstraction
is actually needed. Frequently one will find that, for instance, wrong
fields or methods were put in the superclass, or that the generalization
is required in an altogether different place, or that the design problem
can be solved much more elegantly with aggregation instead of inher-
itance. Usually, in such cases the speculative structures need to be
rearranged.”

List-like inheritance hierarchies occasionally also emerge when
classes become too long. Reducing the class’s size through subclass

The fact that our observations are always based on complete applications also
applies to this section, whereas in frameworks you will likely find superclasses
and interfaces with possibly only one single implementation. This will partic-
ularly be the case if the framework uses the respective class or class hierarchy
as API for clients.

3.3 Smells in Inheritance Hierarchies

=]

formation is especially seductive for newcomers to object-oriented
programming: some methods will stay in the original class, while
other methods will be put in a newly created subclass. This procedure
is so tempting because hardly anything can go awry. Besides, it
doesn’t require too much thought.

The close coupling of sub- and superclass will indeed reduce the
size of the superclass, but the subclass will actually stay too big. Its size
is not only determined by its own methods, but by those inherited
from the superclass too.

A subclass formation that is implemented due to the aforemen-
tioned motives will seriously impair the system’s structure: the concept
of inheritance is applied in an ‘alien’ context, which can seriously
impede the understandability of the system.

One indication of too long classes is the absence of redefined
methods inside the subclass (see next section).

3.3.3 Subclasses Do Not Redefine Methods

If subclasses do not redefine the methods of their superclass, this can
indicate that no abstraction is expressed through inheritance — we are
facing pure implementation inheritance. Often a uses relation between
classes will turn out to be more effective (see Figure 3-14).

List List of Orders
+add(in o : Object) +addOrder(to a: Order)
+getSize() : int +giveOrder(to index: int)
+get(in index : int) : Object] +giveOpenOrders() : float

_> 1
1
List of Orders List
+addOrder(to a: Order) +add(in o : Object)
+giveOrder(to index: int) +981$Iz§(): int _
+giveOpenOrders() : float +get(in index : int) : Object

3.3.4 Inheritance Hierarchies Without Polymorphic Assignments

Similar to the previously mentioned smell, inheritance hierarchies
without their respective polymorphic assignments point to the pres-
ence of unnecessary generalizations. The most significant advantage

Fig. 3-14
Implementation
Inheritance:

No Redefinition
of Methods

[

3 Architecture Smells

Fig. 3-15
Parallel Inheritance
Hierarchies

of inheritance as opposed to use is its flexibility, which is achieved
through polymorphism. If no polymorphic assignments exist, this
flexibility will not be used, and inheritance can be replaced by uses
relations.

This smell is difficult to detect, because it only emerges when two
situations are combined (inheritance hierarchy and assignments). A
first indication of its presence is when too few assignments exist for the
superclass type and too many for the subclass type, or when the super-
class type is not much used in the system.

3.3.5 Parallel Inheritance Hierarchies

You can find parallel inheritance hierarchies in many systems because
they are so beautifully symmetrical. For example, Figure 3-15 illus-
trates an existing domain-specific inheritance hierarchy between the
business objects Partner, Customer and Supplier. Partners, customers
and suppliers should be displayed on the UI level in list form. Thus,
one view class exists for each of the three business object classes. These
view classes inherit from each other according to the business object
classes’ hierarchy.

Last but not least, parallel inheritance hierarchies necessitate that
one and the same design choice (namely that of the abstractions) must
be expressed in two places. If a revision of this design choice needs to
be made, all parallel inheritance hierarchies must be adapted.

Partner
ListView Partner
Customer Supplier i
ListView ListView Customer Supplier

In many cases, parallel inheritance hierarchies can be resolved in
such a manner that only one inheritance hierarchy is left, while the
classes of other inheritance hierarchies are integrated through use.

Figure 3-16 shows a modified version of the system from Figure
3-15. The views for customers and suppliers are using the view for
partners now, which no longer inherits from them.

3.3 Smells in Inheritance Hierarchies 47 |

Partner Fig. 3-16
I Partner Parallel Inheritance
ListView . .
Hierarchies Have Been
| [F\ Removed
o 5 | |
Customer Supplier .
ListView ListView Customer Supplier

This smell is also mentioned in Martin Fowler’s refactoring book
(Fowler, 1999).

3.3.6 Too Deep Inheritance Hierarchy

Especially in the pioneer days of object-oriented programming, very
deep inheritance hierarchies could be found in systems, because if the
concept of inheritance is sound, more inheritance must be better than
less inheritance.

In fact, deep inheritance hierarchies can result in extremely flexible
systems. Unfortunately, at the same time the system’s understandabil-
ity and the adaptability of its inheritance hierarchies suffers. If inherit-
ance takes place across 10 levels, it is almost impossible to determine
which implementation of a method is called by reading the code.

If the superclass needs to be changed, this not only affects many
subclasses. It is also difficult to project how this change will affect the
classes at the bottom of the inheritance hierarchy (see Figure 3-17).

[Cotsion Fig. 317
Deep Inheritance
Hierarchy

[Set | Bag |

>

| sortedset | |unsortedset|

—

| TreeSet || HashSet |
AN

BTreeSet

[

3 Architecture Smells

Fig. 3-18
Shallow Inheritance
Hierarchy

Inheritance hierarchies always demand careful planning. Deep
inheritance hierarchies require a lot of attention to detail. This atten-
tion to detail will not always be delivered in a project’s daily business
routine. This is the reason why speculative and unnecessary generali-
zations are often found in deep inheritance hierarchies.

Easier to handle are shallow inheritance hierarchies, which tend to
be broader or have been united in the formerly separate classes (see
Figure 3-18).

Collection

0.1

| Sorter |

3.4 Smellsin Packages

Java and other programming languages offer concepts for the group-
ing of classes. We will call these groupings packages, in keeping with
Java terminology. A package can contain a number of classes.® The
complete class name consists of the package name and the class name.

In Java, packages can be nested syntactically. For instance, the
packages java.util and java. io are located in the package java,
or respectively in packages called java. While specific visibility rules
must be observed for classes within a package, this does not apply to
nested packages. If one decided to rename the package java.io in
jio and thus move it to the root level, this would not affect the classes
— merely the imports would need to be adapted.

In programming languages without a package concept, usually file
system directories will assume the role of packages. Naturally, in this
case specific package visibility is no longer provided.

A few of the smells introduced here can also be found in Marquardt
(2001). In addition, this article also provides solutions for some pack-
age smells discussed in this chapter.

3.4.1 Unused Packages

Packages that are not in use burden the system with clearly obsolete
functionality (see Figure 3-19).

8 We will summarize interfaces in Java or comparable constructs in other pro-

gramming languages under the term ‘class’ here because this is simpler.

3.4 Smells in Packages 49|

| Fig. 3-19
Main:a | 7] Unused Packages
1. e |
. 1 -
D o E
1
F

Unused packages, like unused classes, are created primarily for
three reasons:

1. Technology hoarded as a supply: a developer speculated that
the package will be required later on, although there is obvi-
ously no need for it.

2. Refactorings: modifications of the system rendered a formerly
required package obsolete.

3. Changed requirements: the package contains functionalities
that are obsolete due to new requirements.

3.4.2 Dependency Cycles between Packages

Cycles between packages can be created through use, inheritance, or
through a combination of use and inheritance (see Figure 3-20).

] Fig. 3-20

Cycles between
Packages

M —

B | > c

| 50 3 Architecture Smells

Apart from the fact that cyclic dependencies between packages are
typically easier to resolve than cyclic dependencies between classes,
they are not less important:

(a) Understandability: one cannot gain an understanding of pack-
ages through looking at them ‘one by one,” because they pre-
suppose each other to ensure understandability. Instead, one
must skip between packages and perceive the package graph
as a whole.

(b) Clarity in design: the dependency structure of the packages re-
sults in first restrictions for permissible dependencies between
classes. If packages are cyclically dependent, the permissible re-
lations between classes can no longer effectively be restricted.
Also, the assignment of classes to packages becomes less com-
pelling. If each package can be accessed by any other package,
it would in principle be feasible to place classes in any package,
but this in turn would impede the design’s understandability.

(c) Reusability: as a rule, the package graph can only be (re)used as
a whole. If actually only one package from the graph is of inter-
est in a given context, this package cannot be simply reused.

(d) Testability: packages can only be tested as a complete set. This
leads to a higher demand for testing and error-searching. If one
wishes to isolate packages during testing, relatively complex test
patterns such as Mock Objects (see References) must be utilized.

(e) Debugging: due to a cycle between packages, a problem might
be spread over different packages rather than remain local-
ized, which makes it more complicated to analyze and trace
problems in such (cyclic) settings.

Other than in cyclical relations between classes, exception handling is
not impaired by cycles between packages.

Often cycles between packages point to poorly arranged packages.
In most cases, this problem can be solved through simple restructur-
ing, for example by merging all packages participating in a cycle into
one package, which will then be arranged based on better criteria.

Cycles between packages will frequently lead to cycles between
subsystems (see below).

3.43 Too Small Packages

Packages with one or two classes are often not worth the effort of
introducing them: the complexity created by the package is not offset
by its additional structuring.

3.4 Smells in Packages

~51]

Such too small packages can easily be removed through relocation
of their classes to other packages. However, one must make sure that
in this process no new cycles between packages are created.

Of course packages should never be just organized by size. Instead,
we mostly arrange packages around responsibilities. Nevertheless,
the size of a package might be an indicator that the packaging is
misleading.

344 Too Large Packages

Packages with a high number of classes indicate that they serve more
than one specific responsibility. Splitting them up will lead to a better
separation of concerns and especially to better understandability.

Sometimes too large packages indicate missing subsystems. The
creation of a subsystem from a too large package can solve this problem
— for instance, if one splits the initially too large package into an inter-
face package and one or more implementation packages.

3.4.5 Package Hierarchies Unbalanced

If the package structure is unbalanced, understandability is also
impaired. Should all of the application’s business objects be located
under com.mycompany.myproject.bo, the fact that not all Ul
classes can be found in a different place under com.mycom-
pany.myproject.ui, but only packages containing subpackages
instead, might cause confusion.

A similar problem occurs if package hierarchies are too deep to be
easily understandable. The Java SDK, for example, requires just two-
level packages (e.g. java.util), in some rare cases even three-level
ones. Nevertheless, the JDK is able to usefully organize some thou-
sands of classes. Similarly to inheritance hierarchies, shallow package
hierarchies are more easily understandable than deep ones. Generally,
two to three layers below the first three should suffice for a system
structuring, also existing naming conventions (from Sun or within a
project) might influence these numbers.

3.4.6 Packages Not Clearly Named

Especially packages containing classes that are not domain-oriented
are often named ambiguously, and assigning of identical names occurs.
If various packages with names like util, base, framework and

52~

3 Architecture Smells

toolkit can be found side by side in the same system and on the
same level, it will be hard for developers to find the package contain-
ing the desired class right away.

Developers will face even greater difficulties when a new, not
domain-oriented class is created. Its placement does not seem to mat-
ter. This uncertainty might lead to the idea of introducing another
package — one that is equally vaguely named.

Ambiguously named packages frequently indicate that the devel-
opers had no real understanding of what is inside the packages, so it
will come as no surprise if such packages contain classes with work-
arounds or were simply miscreated.

3.5 Smells in Subsystems

Similar to packages, subsystems summarize classes. They differentiate
between internal realization and public interface. The internal realiza-
tion is invisible for other subsystems. The public interface is comprised
of a subset of the subsystem’s classes.

Packages also distinguish between public and private classes and
methods. However, usually a single package will not suffice to define
an entire subsystem. This requires a number of packages.

A large system should be divided into subsystems. This division
will contribute to the system’s learnability, maintainability, multi-
project development and deployment.

(a) Learnability: a first, superficial understanding of the system
can be acquired if one looks at the subsystems and how they
relate to each other.

(b) Maintainability: changes of a subsystem can be carried out in
relative isolation from other subsystems. If a subsystem pos-
sesses a poor internal structure, this will not affect the entire
system.

(c) Multi-project development: the development of single sub-
systems can take place in teams specifically assigned to that
subsystem.

(d) Deployment: if the system is not needed as a complete entity,
single subsystems can be delivered.

(e) Testability: subsystems can be tested as isolated units. This
also includes the option of defining and executing comprehen-
sive and isolated test scenarios (Figure 3-21).

3.5 Smells in Subsystems

~53]

Subsystem A----——---- |
|
I
| i
v o

-
Subsystem B - [SubsystemC
!

In very large systems, the subsystem principle can be applied recur-
sively, which will lead to a subsystem consisting of subsystems.

Unfortunately, the popular programming languages do not offer
any options for the definition of subsystems. Often suitable runtime
environments are applied to define and use subsystems. A mechanism
based on the language Java can be found as part of the Eclipse plat-
form’s plugin concept. Similar runtime environments are, e.g., the DLL
concepts, COM components or .NET assemblies.

If such a mechanism is not available, one must fall back on conven-
tions, for example by using the root packages as public interfaces of the
subsystems and interpreting all subpackages as internal realizations.

Some of the smells surrounding subsystems are caused by missing
subsystem concepts in programming languages. This is, for instance,
the case for the ‘Subsystem-API Bypassed’ smell.

Depending on the terminology used, subsystems are also called
components or plugins.

3.5.1 No Subsystems

From a certain size on, a system’s structure — if it is defined exclusively
on the package level — will become increasingly incomprehensible. If
the system consists of more than 100 packages, for example, it is
extremely difficult to recognize and define the structure between the
packages and to maintain it consistently.

3.5.2 Subsystem Too Large

The phenomenon that no subsystems are defined is a special case
of too large subsystems. From the subsystems’ perspective one

Fig. 3-21
Subsystems

5

3 Architecture Smells

Fig. 3-22
Too Many Subsystems

could say that the entire system constitutes a single (too large) sub-
system.

Like missing subsystems, too large subsystems run the danger of
becoming incomprehensible and containing too many concerns. In
many cases, the occurrence of very large subsystems is accompanied by
a loss of clarity: the subsystem is no longer responsible for a single
task, but it also takes on concerns in other areas.

3.5.3 Subsystem Too Small

Too small subsystems shift complexity from subsystems into the
dependencies among the subsystems themselves (see Figure 3-22). In
the most extreme case, each class represents its own subsystem. Obvi-
ously this will not lead to a reduction of complexity, instead develop-
ers are confronted with an impracticable tangle of dependencies
between subsystems (see also Section 3.5.4).

Usually it is possible to merge too small subsystems into larger
subsystems with little effort. However, developers must make sure that
no cycles are created between these new subsystems.

3.5.4 Too Many Subsystems

If a system consists of many more than 30 subsystems without further
grouping, the understandability of the system will be seriously impaired.
This many subsystems and their interrelations can no longer be han-
dled (see Figure 3-22).

ST Bie= R e Eee= ies N samm— 0
s iy =it s e A8 |:,r- = S}
I:In.m._::& -J::‘.:n .E:sﬂ-_._i:p_::n-
' [— c.'r:rr -t

. :’:1- 1—_5-3-
e e t;:n-
r:n--n:n
c::p—:p

—
b=

3.5 Smells in Subsystems

~55]

In such a case, further subsystems that encapsulate the existing
subsystems should be defined.

Sometimes the subsystems were only created too small (see previ-
ous subsection). Here, merging the existing subsystems will solve the
problem.

3.5.5 Subsystem-API Bypassed

Since the popular programming languages do not offer generic mecha-
nisms for the definition of subsystems, projects must fall back on con-
ventions. Consequently the subsystem’s public interface — the API — will
be defined through conventions.

Experience shows that such conventions are bypassed under pres-
sure, e.g. lack of project time — either by mistake or on purpose. Bypass-
ing the subsystem-API and directly accessing the internal implementation
of the component is a practice that is not only common, but also poten-
tially fatal (see Figure 3-23). The clients actually unauthorizedly expand
the subsystem-API. The originally exclusively internal interface, which is
now used by a client, becomes involved in the dependency relationship
between subsystems. The result is the ‘Subsystem-API Too Large’ smell
that we are going to describe in the next subsection.

Subsystem A -

Subsystem C
N IO Internal ‘
| Class X |
I
Subsystem B -

oy UL

This scenario will have even more negative implications if the sub-
system developers don’t notice the API’s expansion. Should they wish to
alter or exchange the internal realization of the subsystem, this will have
serious consequences for the clients that bypassed the subsystem-APL

Such violations can easily be detected or even prevented with the
aid of a suitable runtime environment. For instance, the Eclipse Plu-
gin Runtime will let you declare the visible packages (public API) of a

Fig. 3-23
Subsystem B
Bypasses the API of
Subsystem C

Suitable
Runtime Environments

56

3 Architecture Smells

Fig. 3-24
Too Large
Subsystem-API

plugin (subsystems). The runtime ensures that other plugins (sub-
systems) may exclusively use classes of those packages that have been
defined as visible.”

3.5.,6 Subsystem-API Too Large

When the API of a subsystem becomes too large in relation to the imple-
mentation, the main purpose of the subsystem is not served. A major
part of the system will be visible to all other subsystems. Therefore, no
significant complexity reduction has been achieved (see Figure 3-24).

Impl

This smell can be detected by a simple means: one only needs to
count the number of classes in the API and then compare the result to
the total number of classes in the subsystem.

What precise kind of relation between API and implementation
size is useful depends heavily on the context, so that we cannot provide
any rule of thumb values here. Library-like subsystems, for example,
will offer a very versatile API (e.g. a container library).

3.5.7 Cycles between Subsystems

Cycles between subsystems can be created via use, inheritance or
through a combination of use and inheritance (see Figure 3-25).

In the case of a mistake, the corresponding ClassNot FoundException
will be automatically released because a plugin can only ‘see’ such classes via
the class-loading mechanisms that have been declared public. In addition the
Eclipse-IDE warns the developer of such API violations right within the IDE via
the incremental compiler.

3.5 Smells in Subsystems

~57]

SubsystemA - -------- T

:

T |

| |

b I

Sl]
subsysternB | ; Subsystern C

At first sight, cycles between subsystems have less serious implica-
tions than cycles between classes:

(a) Understandability: subsystems cannot be understood by look-

ing at them in a sequential order, because they presuppose
each other to ensure understandability. Instead, one must skip
between subsystems and perceive the subsystem graph as a
whole.

Clarity of design: often cycles between subsystems hint at un-
clear concerns of the subsystems. In many cases it is impossi-
ble to resolve immediately in which subsystem the wanted
class is located, or where a new class could sensibly be placed.
Reusability: the subsystem graph can only be (re)used as a
whole. If, in a given context, only a single subsystem from the
graph is of interest, this subsystem cannot be reused as a
stand-alone, i.e. isolated from the other subsystems.
Testability: a subsystem cannot be tested in isolation from the
other subsystems.

Parallel development: cyclic dependencies between subsystems
make the parallel development of subsystems by different
teams and/or as part of different projects more difficult.

Exception handling is not affected by cycles between subsystems.
Although cycles between subsystems create fewer problems quantity-
wise than cycles between classes, they are much more problematic in
practice. The relations between subsystems are an important aspect of
software architecture and — contrary to cycles between classes — they
cannot be cured locally. To achieve that, the system’s architecture must

Fig. 3-25
Cycles between
Subsystems

ER

3 Architecture Smells

be modified. If we are dealing with a large system, the APIs between
the subsystems must be changed. However, sometimes the subsystems
are maintained by different teams. In that case, the teams must coordi-
nate their efforts.

Often cycles between subsystems point to unfavorably arranged
subsystems. The problem can be solved, for example, by merging all
subsystems participating in a cycle into a single subsystem, which then
can be broken down based on better criteria.

3.5.8 Overgeneralization

In order to assure that subsystems provide the greatest extent of reus-
ability, they must be flexibly applicable. This generalization can be
overdone though, which will result in the subsystem’s overgeneraliza-
tion. It will become more flexible than it actually needs to be. Not only
does this lead to additional subsystem development work; it also
makes using the subsystem more difficult. Overgeneralization occurs
when the clients — in relation to the size of the used subsystems —
require a large amount of code.

Another indicator of overgeneralization is violation of the Once
and only once principle. All clients of the subsystem write very similar
code to parameterize the subsystem for its purposes.

This problem can be tackled by trying to migrate the very similar
code into one common piece of code, which could then be moved
away from the clients into the subsystem. Afterwards, the subsystem
can be refactored internally, so that overgeneralization will not
become an issue. This requires that you will be able to refactor the sim-
ilar client codes into a common piece of code, which might not be triv-
ial to do.

Of course the problem of overgeneralization can also be found on
the methods, classes and packages levels.

3.6 Smellsin Layers

Besides the breaking down of large systems into subsystems, the order-
ing of subsystems in layers has proven to be efficient. Each layer is
assigned a specific aspect of the system. One of the most popular generic
layer models is the 3-tier model (3-tier architecture, see Figure 3-26). It
emphasizes that the Ul layer, domain model and persistence should be
kept separate.

3.6 Smellsin Layers

~59]

User Interface

Domain Model

Persistence

A more detailed layer model is that by Baumer (see Figure 3-27). It
distinguishes between three domain-independent layers: system base,
technology and handling & presentation. The three domain model lay-
ers business domain, business section and application context build on
the generic layers. In the business section layer different products are
located, which may not depend on each other (see dashed line in the
illustration). The stretched angles of the technology and handling &
presentation layers indicate that the layering is not strict: all three
domain model layers may use these two technical layers. More details
regarding this layer architecture can be found in Biumer (1998).

Application Context .
Buﬁiness ﬁection ‘ .

Business Domain .

Handling & Presentation

Technology

System Base .

Fig. 3-26
3-tier Model

Fig. 3-27
Bdumer's Layer Model

| 60 3 Architecture Smells

Domain-specific layer models are the ISO-OSI model!? for distrib-
uted systems (see Figure 3-28) or the layering of plugins in Eclipse!!
(see Figure 3-29).

Fig. 3-28
ISO-OSI Layer Model

Application (Top) Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical (Bottom) Layer

Fig. 3-29
The Layers of Eclipse |

Help | Update | Text

(optional) | (optional) (optional]‘

IDE

Ul (Generic Workbench)
| Resources
JFace (optional)

SWT

Runtime (OSGi)

The layer models assume different perspectives of the term layer.
Consequently, the layers of the 3-tier model as well as those of the
ISO-OSI model are strict: each layer may only access the layer directly
below it. Layers that are located farther down cannot be used. Thus
the UI layer of the 3-tier model is not entitled to directly access the

10
11

Details can be found in Kerner (1989).

Although the documentation for the Eclipse platform does not mention any
explicit layer architecture, the layering displayed inside the Eclipse platform
and the projects building on it are easily recognizable.

3.6 Smellsin Layers

~61]

persistence layer. Strict layers always apply the principle of informa-
tion hiding: each layer conceals all layers below it.

If a layer is allowed to access other layers, accessing it through the
layer directly below, it is called non-strict. Strict and non-strict layers
can both be utilized within the same layer model: for instance, in the
WAM!2 layer model the handling & presentation layer is non-strict,
whereas the technology layer is strict and hides the system basis layer
from other layers.

A second distinguishing criterion is the interface between the lay-
ers. For protocol-oriented layers, such as the ISO-OSI model, the inter-
faces between the layers are provided by functions. At the interface, no
classes for building subclasses are offered. The APIs of object-oriented
layers (e.g. in the Eclipse layer model) primarily include interfaces and
abstract classes that either should or should not be implemented. In
principle though, protocol-oriented and object-oriented layers can be
mixed.

The major advantage of object-oriented layers is their flexibility,
which is achieved through subclass-forming. Protocol-oriented layers,
on the other hand, offer more flexibility in layer implementation and
allow the use of non-object-oriented technologies for the realization of
layers. This can be a huge advantage if relevant portions of the layer
implementation already exist in a non-object-oriented programming
language like Cobol or are built from purchased systems that do not
possess an object-oriented interface. Thus, protocol-oriented layers
allow a much simpler exchange of complete layer implementations.

In very large systems some layers are also separated vertically in
addition to their horizontal separation, often to define a so-called
product line or to separate between different application areas on
top of a common platform. One example of this practice is the busi-
ness section layer in the layer model according to Baumer. The single
products in the business section layer are not allowed to depend on
each other. Typically for such product line architectures, the separa-
tion of products is not applied to all layers: the lower layers are used
by all products. Otherwise one would simply have completely sepa-
rate systems.

3.6.1 Nolayers

Demand for change can occur in different areas. Often layers are
formed based on the large areas in which modification requirements

12" The German acronym WAM stands for Werkzeug, Automat & Material,
which translates into ‘tools, machine & material’.

62~

3 Architecture Smells

Fig. 3-30
Upward References
between Layers

emerge. For example, the 3-tier model uses the areas user interface,
domain model and persistence.

This type of layering enables easy identification of those areas of
the system that will potentially be affected by a change. For instance,
will a change of only the domain model not affect persistence.

If no layers exist, this kind of orientation aid is missing. Should the
system consist of a large number of subsystems, it will be extremely
difficult to identify potentially affected subsystems without layers.

For most systems, developers can name a layering that was intended.
However, in many systems this intentional layering is violated so gravely
that in the end no layers can be identified anymore.

3.6.2 Upward References between Layers (Cycles between Layers)

If a layer uses a higher located layer, the basic principle of layering has
been ignored. Modifications of one layer cannot only have conse-
quences for the higher layers, but also for those that are located further
below (see Figure 3-30).

User Interface

< !
Domain Model

Persistence

Simultaneously, upward references also create cycles between lay-
ers. They have similar effects to those created by cycles between sub-
systems (see section 3.5.7) and might lead to the emergence of cycles
on the subsystem level. Other than subsystems, layers make it compar-
atively easy to identify which relation is the one that is not permitted:
namely always the one from bottom to top.

3.6.3 StrictLayers Violated

Since the common programming languages do not provide concepts
for the definition of layers, layers must be built based on conventions.
In this scenario, one cannot reliably prevent that strict layers are vio-
lated. It can always happen that a layer skips the one directly beneath

3.6 Smellsin Layers

~63]

it and accesses a layer further below instead, be it accidentally or on
purpose (see Figure 3-31).

User Interface
W |

Domain Mocie[
L r |

Persistence

If layers that are basically strict are violated, their alterability is
affected. The number of a layer’s potential clients will increase, and the
dependency between layers will grow.

Additional techniques allow the recognition of such layer viola-
tions at the time of development. Aspect], an aspect-oriented language
extension for Java, offers mechanisms for controlling method calls
between layers. One example of such an aspect can be found in Bodkin
et al. (2004).

3.6.4 Inheritance between Protocol-Oriented Layers

Inheritance between protocol-oriented layers is not allowed. Other-
wise a stricter than desirable coupling would occur. In particular it
would become impossible to reimplement the layer that inherited in a
non-object-oriented programming language later on. Moreover, inher-
itance generally restricts the alterability of the lower layer, because
changes to the superclasses can only to a certain extent be hidden from
subclasses.

3.6.5 Too Many Layers

As a rule of thumb, each layer in a system has to carry its own weight.
This means that each layer has a clear responsibility and that this
responsibility is rich enough — in terms of functionality, features or
abstractions — to justify the existence of the layer.

As a result, too many layers in a system often cause too many
indirections. One indication of unnecessary indirections are dumb del-
egations: one method simply invokes another method without imple-
menting any functionality of its own. Whereas the single occurrence of
a delegation is not necessarily to be considered bad, extensive use of

Fig. 3-31
Strict Layers Violated

Recognizing Violations
of Layers

[

3 Architecture Smells

delegations between many layers can point to problems. If many dele-
gations exist, most likely a number of negative effects will follow in
their wake:

A lot of effort must be invested in the programming of methods
without implementing any functionality if the functionality of one
layer has to be modified or extended. As a result, all delegator
methods in all layers must be adapted. Specifically, modifications of
parameter lists in a lower layer are painful because those changes
impact all higher layers.!3

Program understandability may suffer because an unnecessarily
high number of layers exists. In addition, the responsibility of each
layer may not be obviously recognizable and understandable. This
might not concern someone sitting on top of all layers using just
their API, but for someone working on the code within one of the
layers or for someone who has to take care of the overall structure,
too many layers make it harder to understand the overall picture
and the relationships between the layers.

3.6.6 References between Vertically Separated Layers

We already discussed that layers cannot only be arranged horizontally,
but also vertically (see the introduction to this section, p. 61). This is
often done to structure separate products or business sections. For
example, a product line is a set of software systems that share a com-
mon basis. Besides using the same basis, no further references between
these systems are allowed.

References (regardless of which kind) between vertically separated
layers create dependencies between layers (see Figure 3-32). Thus the
purpose of product lines can no longer be served:

Delivery: vertical layers shall be deliverable and applicable inde-
pendently from each other.

Parallel development: for each single vertical layer one team shall
be responsible, which does not have to confer with other layer
teams regarding changes.

13" Changing parameters across different layers might not be bad in all cases. If

the right layers are in place, this allows you to introduce API changes incre-
mentally, layer by layer. Nevertheless this would only be useful if the layering
itself was chosen wisely. If too many layers existed, you would not benefit
from the incremental introduction of the change. Instead you would just need
to modify layer after layer without gaining benefits from each modification.

3.7 Locating Smells

~65]

Core Concepts .

If fundamental relationships between different products in the system
exist, the described vertical separation between layers cannot be made.
In this case, these basic relationships (the stable domain layer model)
will be located in the core concept layer as represented in Figure 3-32,
on which the vertically separated layers are founded.

3.7 Locating Smells

The smells we have discussed so far can hardly be found through sim-
ple code reading. After all, they usually emerge not from a single class,
but from the interaction of many classes. Code reviews offer a good
framework for the detection of smells, but even for code reviews a suit-
able tool support is mandatory to visualize the system. Whereas simple
UML tools for code reviews will at least visualize the system on the
package level, more specialized tools are required for the detection of
numerous architecture smells.

Modern development environments (for instance Eclipse) offer
powerful semantic search functions. Thus we can easily determine
which classes inherit a specific class, or how many references to a
method exist. In this way, hypotheses about smells can be verified. For
example, if we suspect that only one subclass of class A exists, we can
easily check this: we simply ask for a display of A’s type hierarchy.

Unfortunately, these display options are not sufficient for the
detection of architecture smells. If you don’t know yet which classes
are involved in a smell, you have no venturing point from which to
start searching.

Besides development environments, a number of tools exist that
can help detect common smells in software systems.

A brief overview of these tools is listed in the following subsections
(the URLs for these tools are listed in Chapters 3-9).

Fig. 3-32
References between
Vertical Layers

Reading the Code
Is Not Enough

More Specific Tools

| 66 3 Architecture Smells

3.71 PMD

For Java systems, the open source tool PMD alerts developers to code
smells such as empty catch blocks or unused methods. However, PMD
analyses are restricted to only one class at a time and do not consider
relations between classes. Thus PMD analyses are not sufficient for the
identification of architecture smells. PMD is available as a plugin for
the popular Java development environments.

3.7.2 JDepend

JDepend analyzes the dependencies between packages and classes and
calculates Robert Martin’s metrics (Martin, 1997). JDepend possesses
an interface for the display of dependencies and couplings (see Figure
3-33), but it also offers a programming interface. The latter enables,
e.g., the formulating of JUnit tests that make sure that no unwanted
dependencies are introduced into the system.

Fig. 3-33 € 0epend =10ix|
JDepend: I
‘Depends Upon - Efferent Dependencies (6 F

Dependencres of [epaymentadapters (CC:2 AC:0 Ca:0 Ce:3 A0 11 D:0 V1)
Packages © [epayment framewark

@ [epayment response

® [epayment framework

D javalang

D javalang

|21 epaymentcommands (CC:5 AC:0 Ca:0 Ce:1 A0 L1 D:D V1)

| ©- [T epayment framework

O] epaymentframework (CC:1 AC:S Ca'5 Ce:2 A'0,83 110,29 D:0,12 V. 1)

iDenavmem processor (CC:2 AC:0 Ca0 Ce:3 A0 K1 DO VYY)

3 epaymentrequest (CC:1 AC:0 Ca:0 Cec2 AD E1 DiDVET)

\[epaymentresponse (CC:1 AC:0 Cal Ce:2 A'0 10,67 D:0,33 V: 1)

[} epayment.adapters (CC:2 AC:0 Ca:0 Ce:3 A0 11 D:0 V1) |
D epaymentcommands (CC:5 AC:0 Ca:0 Ce:1 AD LT DiD V1)

/[epayment framework (CC:1 AC:5 Ca:5 Ce:2 A0,83 1:0,20 D:012 V: 1)
[epayment adapters

D epayment commands

D epayment processor

[epayment request

© [epayment response

D epayment adaplers

|D epaymentprocessor (CC:2 ACI0 Car0 Cec3 A0 L1 DiO V1)

[} epaymentrequest (CC:1 AC:0 Ca0 Cer2 A0 111 Di0 V1)

EU epaymentresponse (CC:1 AC:0 Ca:i1 Ce:2 A0 110,67 D:0,33 V: 1)
[Eljavaio (CC:0 AC:0 Ca2 Ce:0 A0 D D1 Vi)

:lj!a\'a.lang (CC:0 AC:0 Ca:5 Ce:0 AD 10O D:1 V1)

[epaymentresnonse (CC:1 AC:0 Caz4 Ce:2 A:0 ED,67 D:0,33 V: 1)

3.7 Locating Smells

~67]

The following Java source code shows how you can test package Example
dependencies in JUnit tests (source code borrowed from JDepend):

import java.io.*;
import java.util.*;
import junit.framework.*;

public class ConstraintTest extends TestCase
private JDepend jdepend;

public ConstraintTest (String name) {
super (name) ;

protected void setUp() {
jdepend = new JDepend() ;
try {
jdepend.addDirectory
("/projects/util/classes") ;
jdepend.addDirectory
("/projects/ejb/classes") ;
jdepend.addDirectory
("/projects/web/classes") ;
} catch(IOException ioe)
fail (ice.getMessage()) ;

protected void tearDown()
jdepend = null;

/**
* Tests that the package dependency con-
straint

* is met for the analyzed packages.

*/
public void testDependencyConstraint ()

DependencyConstraint constraint =
new DependencyConstraint () ;

[68~

3 Architecture Smells

JavaPackage ejb =

constraint.addPackage ("com.xyz.ejb") ;
JavaPackage web =

constraint.addPackage ("com.xyz.web") ;
JavaPackage util =

constraint.addPackage ("com.xyz.util") ;

ejb.dependsUpon (util) ;
web .dependsUpon (util) ;

jdepend.analyze () ;

assertEquals ("Dependency mismatch",
true, jdepend.dependencyMatch (con-
straint)) ;

}

public static void main(String args([])
junit.textui.TestRunner.
run (ConstraintTest.class) ;

3.7.3 ClassCycle

ClassCycle is an open source tool for the detection of cycles between
classes. The detected cycles are displayed either in an XML or an
HTML report (see Figure 3-34). Based on the dependencies between
the classes, layers are generated and classes assigned to layers.

3.7.4 Eclipse Metrics Plugin

The Eclipse Metrics Plugin is an open source metrics tool that has been
realized as a plugin for the Eclipse development environment. In a first
step it supplies reference values that enable an evaluation of a software
system’s quality. One must keep in mind though that these values often
refer to the code level (e.g. average method length) and therefore offer
relatively little support for an examination of the architecture. More-
over, it often remains unclear where the problems are stemming from
and what must be done to solve them.

At least the Eclipse Metrics Plugin is able to graphically display the
relations between packages, so that one can detect one or another
architecture smell, given a bit of patience and some knowledge about
the targeted architecture (see Figure 3-35).

3.7 Locating Smells 69]

: k312 C Fig. 3-34
" E ClassCycle: An
Umemary Example of a Result
12 cuses : Generated by JUnit
100 classes (using 160 external classes.)
10% Interfaces 10 275 lﬁj 6.2 (29) 08(2) 21(4)
3% Abstract classes 3| 5380 (9417) 57(8) AT 16.7 (30)
87% Concrete classes 87| 2058 (24251) 22(23) 29(41) 7.2(64)
Cycles
Click on m behind a number and a will show more details.
1 unitrunner Sorter and inner classes 2m im 2 im 1 0
i junit awiu AboutDialog and inner Im 1n 2 1m 2 1
classes
a junit framework Assert et al Z2m 1m 2 1m 1 1
i junit swingui_TestSelector and inner oh 1. 2 1a 2 1 5
EN= LT Kz ' =r
Fig. 3-35
Eclipse Metrics Plugin:

Package Overview

[70-

3 Architecture Smells

Fig. 3-36
Dr. Freud: Package
Overview

3.7.5 RefactorIT

RefactorIT is a commercial refactoring tool that not only supports
refactorings, but also the preceding step of detecting smells. To this
end it provides the common metrics as well as some dependency
analyses.

3.7.6 Dr.Freud

Dr. Freud visualizes dependencies between packages and classes (see
Figure 3-36) and calculates Robert Martin’s metrics (Martin, 1997).
Currently, Dr. Freud is still being developed, but it worked quite
decently in our tests.

L el

0 o g i sarcn |
8 o g e snrcn
oo [Ty

T
€0 e et ke Sosd vt
-1 [e o ke ol et |
- |
-1 e o kr ool weste |
-1 e o ke ol et |
-1 e o tn o0l st |
= e e i ol verr.

A ¢ |5
| e—

3.7.7 SAA4J: Structural Analysis for Java

SA4] is a promising IBM technology preview. This tool visualizes the
dependencies between packages in different ways. Particularly inter-
esting is its highlighting of packages that are difficult to change as well
as its tracking of direct and indirect dependencies, starting with a class.
These functions allow developers to anticipate the consequences of
changes to a class.

3.7 Locating Smells

71

In addition, SA4] possesses an Auto Explore function that will run
a movie clip showing dependencies between packages (see Figure 3-38).
This feature provides an amazingly concise insight into the system’s
structure and quickly detects problematic dependencies.

nlI)Is
|
domain volue I theropy plonning
N ! -
\ |
/
X I /
N Y
\ | B
\
< ‘ s
gt e T outomoton Tospto
PR
Vs | AY
/ | AY
/ N
/ | N\
7/ | N
. . \
moteriols I medication

Fig. 3-37
SA4J: Dependencies

Fig. 3-38
SA4J: Dependencies of
Each Single Package

72~

3 Architecture Smells

Fig. 3-39
Sotograph: A Part of a
Subsystem Graph

3.7.8 Sotograph

The commercially available Sotograph!* was developed specifically

for the detection of architecture smells. It identifies the smells depicted
here with little effort and is thus an important aid in controlling the
architecture of a large software system. As far as we know, Sotograph
is the only tool that can analyze relations between subsystems and lay-
ers (see Figure 3-39).

«5ubsystems
Tock.result
1
asubsysieme T - :
ook verd ools.metric -> Base.tool - 15 Inheritances)
e Xxﬂ
ssubsysieme ssubsyslem»
Teck.graph Sting ped)
— ssubsystems —
ssubsysterny Base.tsol wsubsystems
Tcolks.subsystem Base.projeciiree
ubsysteme
] L1 ! ..]
xsubsysteme Bkl ~subsysiems Base.guiuti ssubsystems
ITack dbview i A Tgub,mgnager Plugire
— / «gubsystems
Base table
ssubgystems asubsystern» scubsysterms
Teok. externaleditor

Db Base wl
1 /

«subsystems
Tock.architecture

ssubsystermns
Base annctaton

Moreover, it is an interesting fact that Sotograph manages all

information obtained from a system analysis in a relational database,
thus making it easy to create individual queries and evaluations in

14 The name is a compound of software and tomograph. In effect, the Sotograph

is a tomograph capable of visually displaying the internal structure of a soft-
ware system.

3.8 Preventing Smells

~73]

Sotograph. Due to its own database storage, Sotograph also allows the
efficient analysis of extremely large systems (several million lines of
code). Sotograph is described in detail in Chapter 7.

3.8 Preventing Smells

In practice it is extremely hard to prevent all these smells. We have
analyzed a number of projects and we never(!) found a project without
any of the smells discussed here. The reasons for the occurrence of
smells are manifold:

15

Ignorance: a widespread reason is the fact that many development
projects that we have seen are not aware of the benefits of well-
managed dependencies within systems. Therefore they just don’t
take care of them. As a result, the dependency structure of these
systems is extremely hard to understand and changes often result
in negative side-effects.

Invisibility: most IDEs don’t have a mechanism yet to detect depen-
dency violations. Therefore developers tend to forget about them.
IDEs: modern development environments automatically insert the
imports for required classes and packages. Developers are no
longer forced to encode the imports manually and must not reflect
about whether the import is permitted, or if it might lead to a cycli-
cal dependency between subsystems.!?

Pressure of time: when the upcoming release of a system shall be
delivered as soon as possible, developers are frequently pressured
into violating the architecture. It is the only way of meeting the
deadline, they think. Due to time pressure, these violations of
architecture are often not documented, and often they will not be
removed after release.

Misunderstandings: sometimes developers do not fully understand
the scope and premise behind a system’s architecture. They con-
form with what they did understand and unintentionally violate
the architecture. This phenomenon occurs almost always during
the training of new employees or project members.

Changes in architecture: projects that run over a longer period usu-
ally require repeated adaptations of the software architecture.
These adaptations are not always done incrementally, so that exist-
ing code violates the new architecture.

Technological changes: the replacing of a technology component
with a new version or with a totally different component can cause
a whole series of deprecated warnings to occur at once.

This could also happen without the automatic import if developers copy &
paste import code from other sources.

[

3 Architecture Smells

In spite of these problems, some of them can be constructively pre-
vented. There exist a number of practices and tools that help to keep
track of some smells directly while programming;:

Different projects: many IDEs offer support for organizing systems
with multiple projects where the developer needs to define which
project can depend on which other project. This allows the com-
piler to check violations due to non-visible types.

Aspect]: by implementing a special aspect, the Aspect] compiler can
produce compiler warnings and errors, for example if calls across
layers are allowed or not. The rules (what is allowed and what is
not) are then implemented within the aspect using the pointcut pro-
gramming construct (see Bodkin e# al., 2004 for an example).
Sonar]: this is a commercial tool for the detection of architectural
flaws while programming. The architecture model is defined using
XML. The tool plugs into IDEs (currently Eclipse) and detects vio-
lations of the defined architecture right inside the IDE. This
improves the visibility of those smells while typing.

Eclipse Plugin Runtime and the PDE (Plugin Development Environ-
ment): the plugin runtime of Eclipse and the appropriate develop-
ment environment for plugin-based applications allow developers to
define dependencies between plugins. In addition to that, the code
of a plugin can explicitly be separated into a public API part and
the internal implementation. For both cases, the compiler inside
the environment produces special warnings and errors if they are
violated.

Excursion: You Have to Live Architectures

A contribution by Markus Volter (voelter@acm.org)

In the course of the development of an enterprise system (J2EE server,
rich client) with about 20 developers, soon a classic ‘dying’ of the
architecture set in. With ‘dying architecture’ I mean that the architec-
ture smells have such a severe impact that the quality level targeted
by the architecture can no longer be reached.

Alas, everything started out so well! The concepts were clear-cut.
The technical prototype was a success, the customer was thrilled and
Gartner Group decided that the architecture was flawless. Then real
life began to take its toll: the number of developers went up, the aver-
age qualification dropped, the architect always had other things on
his plate — and time pressure increased.

References and Further Reading

~75]

The consequence was that the architecture concepts were exe-
cuted less and less consistently. Dependencies were in a tangle, per-
formance dropped (too many client/server hops and too many single
database queries), and originally small modifications turned into
huge catastrophes. To a certain extent the architecture concepts were
circumvented on purpose. For example, classes were instantiated via
Reflection because the class was not accessible at compile-time.

One problem of architectures is the fact that traditional develop-
ment methods do not allow an automated checking of many architec-
tural specifications [with model-driven development and AOP
(aspect-oriented programming) some betterment can be expected].
The purpose of many specifications remains in the dark anyway as
long as developers can’t see the whole picture. Due to typical project-
related constraints, developers often have no chance to familiarize
themselves well enough with the architecture.

So What Is the Morale of this Story?

Architecture concepts are all very well, indeed they are very impor-
tant. Just as important is the training and coaching of the develop-
ers to ensure a correct implementation of the architecture.
Regular reviews of the code are essential to discover and eradi-
cate unintentional or wilful violations of architectural specifica-
tions as early as possible.

It is common knowledge that the correction of a mistake will
become more expensive the longer you wait with it in the process.
Since architectural concepts mostly define fundamental issues, it is
particularly important in this context to heed this principle.

References and Further Reading

Baumer, D. 1998. Software-Architekturen fiir die rabmenwerkbasierte
Konstruktion grofSer Anwendungssysteme. Ph.D. thesis, University
of Hamburg, Department. of Informatics, Software Engineering
Group. http://www.sub.uni-hamburg.de/disse/12/Beleg.pdf. Baumer
describes the architecture principles of large software systems and
presents a model architecture. We derived the distinction between
protocol-oriented and object-oriented as well as that between strict
and non-strict layers, which we used in this chapter from his book.

Biumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D. & Zillig-
hoven, H. 1997. Framework development for large systems. Com-
munications of the ACM, 40 (10). The authors describe a tier

76

3 Architecture Smells

architecture for large, object-oriented application systems. The tier
architecture introduced here clearly ventures beyond the scope of
common 3-tier models.

Bodkin, R. et al. Enterprise Aspect-Oriented Programming with
Aspect]. Presentation material for the tutorial, http://www.new-
aspects.com/. This tutorial about Enterprise Aspect-Oriented Pro-
gramming with Aspect] teaches, among other topics, how Aspect]’s
capabilities as a language can be utilized to determine at compile-
time whether there are method calls that illegally bypass layers.

ClassCycle. http:/iclassycle.sourceforge.netlindex.html. ClassCycle is an
open source tool for the detection of cycles between classes. It gen-
erates reports about class cycles in XML or HTML.

Code-Smells. http://c2.com/cgi/wiki?CodeSmell. This page of the C2-
Wiki is about code smells and contains a list of often-occurring
code smells. Besides code smells, one can also find references to a
couple of architecture smells.

Dr. Freud. http://www.freiheit.com/technologies/download. Dr. Freud
visualizes dependencies between packages and classes and calcu-
lates Robert Martin’s metrics (see Martin, 1997).

Eclipse. http://www.eclipse.org. Eclipse is an open source development
environment with refactoring support for Java. Its plugin architec-
ture allows for an easy expansion of its functionalities, so that
today a great variety of open source-plug ins as well as commercial
plugins for Eclipse exists.

Eclipse Metrics Plugin. http://sourceforge.net/projects/metrics. This is
an open source plugin for Eclipse that provides common metrics for
object-oriented systems, e.g. the average method length. The result-
ing values let developers — where this makes sense — directly navi-
gate towards the source of a smell, e.g. exceptionally long methods.

Fowler, M. 1999. Refactoring. Improving the Design of Existing
Code. Addison-Wesley. The standard work about refactorings.
Besides refactorings, this book contains a list of code smells — that
is, the little sisters and brothers of the architecture smells discussed
here. The comprehensive code examples refer to Java, but they can
relatively easily be applied to other object-oriented Programming
languages.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. 1997. Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison-
Wesley. This standard work on design patterns also contains patterns

References and Further Reading

771

which lead to some of the architecture smells addressed in this chap-
ter. This is, for instance, the case for the iterator pattern, which
results in cyclical relations between the container and the iterator.
The cycle could be eliminated, but this will lead to some loss of clar-
ity. This cycle is acceptable though, since only two classes are
involved in it. These are closely coupled anyway and will be put in
the same package.

Hunt, A. & Thomas, D. Tell, don't ask. http://www.pragmaticprogram-
mer.com/ppllc/papers/1998_05.html. A depiction of the Tell, don’t
ask principle.

JDepend. http://www.clarkware.com/software/JDepend.html. JDepend
analyzes the dependencies between packages and classes and calcu-
lates Robert Martin’s metrics (see Martin, 1997).

JDepend4Eclipse. http://andrei.gmxhome.de/jdepend4eclipse. JDepend
as an Eclipse plugin.

Kerner, H. (Hrsg.) 1989. Rechnernetze nach ISO-OSI, CCITT.
Describes the ISO-OSI layer model.

Lakos, J. 1996. Large-Scale C++ Software Design. Addison-Wesley.
This book introduces important architecture principles of compre-
hensive software systems that are relevant beyond the C++ context.

Law of Demeter. http://c2.com/cgi/wiki?LawOfDemeter. This page of
the C2-Wiki gives a description of the Law of Demeter, according
to which an object is supposed to communicate only with its direct
“friends.” Technically this means that an object shall not invoke a
method on an object that it received from another object: method
calls on objects which have been the results of functions are not
permitted.

Lieberherr, K. & Holland, 1. 1989. Assuring Good Style for Object-
Oriented Programs. IEEE Software. September, pp. 38—48. The arti-
cle depicts the Law of Demeter.

Mackinnon, T., Freeman, S. & Craig, P. 2000. Endo-Testing: Unit
Testing with Mock Objects. XP 2000 Conference. The online ver-
sion of this resource can be found at: http://www.connex-
tra.com/aboutUs/mockobjects.pdf. The original article about Mock
Objects was introduced at the XP 2000 conference.

Marquardt, K. 2001. Dependency Structures. Architectural Diag-
noses and Therapies. Proceedings of the Sixth European Confer-
ence on Pattern Languages of Programming and Computing

78~

3 Architecture Smells

(EuroPLoP 2001). In this article, a number of bad smells are dis-
cussed in the form of diagnoses and therapies. The collection of
diagnoses primarily focuses on architectural aspects and offers a
variety of possible therapies for each smell that will help remove it.

Martin, R.C. 1997. Stability. C++ Report. Although this article is sev-
eral years old, the content has neither collected dust, nor is it C++-
specific. Martin explains important architecture principles that can
also be found in this chapter’s architecture smells.

Martin, R.C. 2002. Agile Software Development. Principles, Patterns,
and Practices. Prentice-Hall. This book by Robert Martin contains,
aside from the main focus on agile software development, also a
more detailed description of most of the design principles that are
mentioned in this chapter.

Mock Object. http://c2.com/cgi/wiki?MockObject. This page in the
C2-Wiki depicts the Mock Object test pattern which allows iso-
lated testing of interdependent parts of the system. The use of
Mock Objects furthers the Law of Demeter and the Tell, don’t ask
principle.

PMD. http://pmd.sourceforge.net. PMD is an open source tool for the
detection of code smells in Java systems, such as empty catch
blocks. It can also be used to check portions of program conven-
tions. As a plugin, PMD can be integrated in various development
environments.

Produktlinien. http://www.sei.cmu.edu/plp/product_line_overview.html.
This source explains the concept of product lines. According to the
definition given here, a product line is a set of software systems that
share a common basis.

Refactoring website. http://www.refactoring.com. On the refactoring
website operated by Fowler, among other material, an online cata-
logue of refactorings, which has long exceeded the scope of
Fowler’s refactoring book, can be found. One can also find links to
other websites dealing with refactoring.

RefactorIT. http://www.refactorit.com. RefactorIT is a commercial
refactoring tool, which — as a plugin — can be integrated in various
development environments. Not only can RefactorIT execute
refactorings, but it is also able to create a number of metrics for
Java systems.

References and Further Reading

~79]

Sonar]. http://www.hello2morrow.com/. Sonar] is a tool for detecting
architecture violations within Java systems. It plugs into existing
IDEs (currently Eclipse) and detects violations right while typing.

SA4]. http://www.alphaworks.ibm.com/tech/sa4j. SA4] (Structural
Analysis for Java) is a promising IBM technology preview. This
tool visualizes the dependencies between packages in various ways.

Sotograph. http://www.sotograph.com. The sotograph supports the
quality assurance of large systems on the software architecture
level. Besides the system to be checked, the Sotograph also reads a
description of its architecture, against which it checks the system.
Thus architecture smells are easily identified.

Szyperski, C. 1997. Component Software. Addison-Wesley. The sub-
systems mentioned in this chapter can also be referred to as compo-
nents.

Tell, don’t ask. http://c2.com/cgi/wiki?TellDontAsk. This page of the
C2-Wiki gives an explanation of the Tell, don’t ask principle,
which can also be understood as a clarification of the Law of
Demeter: objects shall not be asked for information, which will
make the client act on it. Instead, the client shall tell the object
what it is supposed to do. Thus it is ensured that knowledge about
dependency graphs will not spread over the whole system.

81l

4
Large Refactorings

In this chapter, we are going to address refactorings that are not cov-
ered in Fowler’s work, i.e. those other than basic refactorings. To this
end, we will introduce the term large refactorings to clearly distinguish
them from Fowler’s basic refactorings.

Two exemplary collections of samples form the core of this chap-
ter. They reflect our experiences with and best practices for large refac-
torings. We differentiate between two types of samples: on the one
hand, we address organizational problems and solutions as well as
those that are part of the development process. This approach is gain-
ing more and more relevance, especially for large refactorings. The
solutions we offer can be applied to your own projects and help you
find adequate ways of dealing with large refactorings. On the other
hand, we analyze recurring fragments that you can use as elements of
your own large refactorings.

4.1 Introduction

During our participation in numerous projects we recurrently observed
that — besides small refactorings — larger restructurings are required. If,
for example, a pivotal inheritance hierarchy in the system must be rear-
ranged, the impact of such a change can significantly affect the system.
It might become necessary to adapt considerable portions of the code.
We will call such restructurings large refactorings.

Large refactorings may be needed for various reasons. These are
the most common ones:

Developers put off small refactorings too long. If software design is
not continuously improved, small design weaknesses will accumu-
late, and a more comprehensive rearrangement might eventually be
required.

Reasons for
Large Refactorings

[z~

4 Large Refactorings

Architecture smells emerge — unnoticed first — over time. If one
tries to cure them, the respective refactoring can very soon expand
beyond the scope of a small and basic refactoring.

New features or altered software requirements can necessitate large
refactorings. While some features will either integrate seamlessly
into software or after a couple of minor refactorings, others call for
a more elaborate restructuring.

Many development projects avoid executing large refactorings while a
project is underway. As a result, the outdated structures will often be
left in the system, or they will be tackled with a large redesign after
release. We pursue the goal of integrating large refactorings into an
ordinary, evolutionary development process.

While many developers possess an intuitive understanding of what
constitutes a large refactoring, it is difficult to come up with a precise
definition. Intuitively, the following characteristics are assigned to
large refactorings:

. Duration: large refactorings last longer than one day.

. Team: large refactorings affect the entire project team.

3. Unsafety: large refactorings cannot be completely replaced by
basic (safe) refactorings. Additional (unsafe) modifications are
required.

SN

Unfortunately, these characteristics prevent a totally clear distinction
between large and basic refactorings. The manual renaming of a cen-
tral method in a big system will take more than a day and concern the
entire team, but it can be fully realized through applying the basic
refactoring Rename Method. If the development environment sup-
ports the renaming of methods, the refactoring will be done in a few
minutes, so that at least the first characteristic of large refactorings
listed here no longer applies.

In this book, we will content ourselves with this loose definition
because we believe it does not impair the comprehensibility and useful-
ness of this chapter. The intuitive understanding based on the three
characteristics mentioned above offers a sufficiently clear framework.

Even while dealing with basic refactorings, we learned that these
are no trivial matter. We observed the same for large refactorings.
Often coming up with small steps that are self-contained (i.e. com-
pilable and testable) appears to be particularly complicated.

One of the reasons, among others, is that a large refactoring will
affect significantly more code in the system than a small one. Not all
effects that a refactoring has on the system will immediately be evident.

4.1 Introduction

~83]

The previously mentioned change impact analysis might be of some help
here. Moreover, the sections on mechanics in Martin Fowler’s book will
provide valuable advice on how refactorings should be broken down.

4.1.1 Important Terms

A number of terms will repeatedly come up in the following sections.
We wish to explain these briefly. First, we differentiate between basic
and non-basic refactorings:

Basic refactorings are those refactorings that are described in Fowler
(1999) and mostly refer to basic object-oriented constructs.

A non-basic refactoring is a refactoring that exceeds the scope of a
basic refactoring as addressed by Fowler. This category includes
the large refactorings discussed in this chapter as well as those
restructurings which Fowler (1999) calls big refactorings.

Besides distinguishing between basic and non-basic refactorings, the
safe execution of a refactoring is also very important to us. In this con-
text, ‘safe’ means that the developers can be certain not to introduce
any new errors in the course of their respective refactoring.

Safe refactorings are refactorings that can be executed without risk-
ing changes to the system’s behavior or creating new errors. If, for
example, a tried step-by-step instruction for a refactoring is avail-
able (such as the Mechanics in Fowler, 1999), the refactoring can
be carried out with no risk of creating new errors.

Unsafe refactorings are refactorings for which no tried step-by-step
instructions are available that would allow their safe, incremental
execution. One example of an unsafe refactoring is the renaming of
a class (for which no safe step-by-step mechanics exist if you
haven’t automated it with an IDE).

Modern, integrated development environments allow a completely
automated execution of certain refactorings. Such tools can turn
unsafe into safe refactorings. This is, for example, the case for renam-
ing a class. Whereas no mechanics exist for this refactoring that would
allow a safe manual execution, it can be carried out automatically via
an IDE, which guarantees that the system’s behavior will remain
unchanged. In consequence, in this case the renaming of a class with
an IDE belongs to the category of safe refactorings.

A modern IDE’s refactoring support has a quite significant impact
on many refactoring activities. Not only is it remarkable that unsafe
refactorings can quickly be made safe with the help of an IDE. More-
over, some refactorings can be carried out in a short time although

Basic Refactorings

Non-basic Refactorings

Safe Refactorings

Unsafe Refactorings

[ea

4 Large Refactorings

Automated
Refactorings

Manual Refactorings

Large Refactorings
Behave Differently

they change many lines of code in the system. For instance, if we
rename a method, this step can potentially affect many places in the
system (e.g. those calling that method). Even though this refactoring is
also considered safe if it’s done manually, the IDE’s refactoring support
changes the work with such a refactoring. We thus make a distinction
between automated and manual refactorings:

Automated refactorings are refactorings that are supported by an
IDE and therefore can be executed automatically. In this process,
the IDE ensures that the system’s behavior will not be changed. As
a rule, automated refactorings are always safe refactorings.! In
addition, automated refactorings can be carried out — regardless of
the system’s size — in a very short time.

Manual refactorings are not supported by the IDE and must be
conducted manually by the developers.

4.1.2 Beyond Automated Refactorings

Until now, theoretical works dealing with refactoring issues mainly
discussed the functional realization of refactorings. They focused on
the automation of basic or even quite complex refactorings or pro-
vided mechanics for refactorings. In contrast, the development process
aspect has rarely received any attention. While it is often stated that
refactorings fit in well with agile development processes, the effects of
refactorings on the development process are hardly ever considered.
This may not be necessary for many basic refactorings, because they
can easily be supervised and handled by a single developer. Here, nei-
ther a specific development process is required, nor must particular
organizational conditions be provided.

Large refactorings behave differently. As Fowler and Beck in Fowler
(1999) already remarked for big refactorings, large refactorings can
affect the whole team and create certain requirements that must be met
by a suitable development process, that is, for large refactorings we
must explicitly address problems of how to plan, communicate and exe-
cute large refactorings in a team.

4,13 CanlLarge Refactorings Be Avoided?

Large refactorings bring additional development challenges and thus
require additional efforts. Here, we notice that the added problems

1 We regard automated refactorings where the IDE does not gurantee not to

change the behaviour as manual refactorings with some IDE support.

4.1 Introduction

~85]

can be solved, but they do create an extra demand for planning, com-
munication and discussion, which leads us to the legitimate question
of whether there is a way to avoid large refactorings altogether.

First, one could state that continuous refactoring during develop-
ment renders large refactorings obsolete. This is the basic idea behind
refactoring technology as it is applied, for example, in Extreme Pro-
gramming. Occasionally larger refactorings are needed in XP projects
too though.

This is due to the underlying assumption that software develop-
ment is a learning process. It also means that developers must revise
design choices that were made earlier on if new software requirements
demand a new software-ergonomic design. Depending on how well
the new requirements fit the software’s existing structure, these refac-
toring measures will be smaller or bigger.

For instance, in one project it took us quite a while to find out that
we had, until then, misunderstood a part of the field of application.
Since our wrong model of that field of application naturally had become
a part of the software, the software design needed to be adapted to suit
our improved understanding of this field of application.

Surely such effects can be attenuated through the implementation
of either spike solutions or prototypes for the basic system’s architec-
ture at the beginning of a project. However, of course there is no guar-
antee that the assumptions leading to the implementation of the new
design, made at the beginning of the project, will prove to be right.

Thus we arrived at the conclusion that large refactorings cannot
always be avoided. Regular refactoring during ongoing development
helps to keep the design flexible and up-to-date. Design problems will
be noticed early on and therefore can be solved quickly. This protects
developers from postponing refactorings and thus letting the design
degenerate (which, in consequence, would require large refactorings).
Yet misunderstandings regarding the field of application cannot be
avoided entirely.

Furthermore, in connection with our use of the Sotograph, we
observed that violations of architecture can easily happen because
developers cannot always recognize them right away. If, for example,
developers integrate cycles on the subsystem level, there will be no
indication that something is wrong. The cycle remains unnoticed in
the system. Only a systematic analysis will reveal the potential prob-
lem. But even with the aid of the Sotograph, architecture smells can-
not be prevented. The Sotograph will help us realize the actual prob-
lem only after we have already detected the smell. Nevertheless, a
large refactoring will often be required to eliminate it.

Project Example

Spike Solutions

Violations of
Architecture

3

4 Large Refactorings

Excursion: Refactoring — Not as Hard as Expected

A contribution by Berrin Ileri (berrin.ileri@it-fws.com, it-FWS GmbH)
and Henning Wolf (henning.wolf@it-wps.de, it-WPS GmbH)

Motivation and Background

Together with ten colleagues we are involved in a project for a major
municipal utility. It is our task to develop an individual solution in
Java that mainly serves to support prearrangements for work pro-
cesses. Since altogether four different organizational units (OU) of
our employer are involved in this project, parts of our solution turn
out to be specific to certain fields of application, in addition to those
parts that serve all units.

Our development background is heavily influenced by the German
metaphors ‘Werkzeug® (tools), ‘Automat’ (automaton), services and
‘Material’ (materials) that constitute the WAM concept. Of course, we
also apply the JWAM framework (http://www.jwam.de), which
already offers a series of abstractions for these design metaphors.

The parts of the system we developed until today comprise
almost 550,000 lines of code with about 3500 classes (of which 1000
classes are anonymous inner classes). Nearly 1000 man-days were
needed to reach the current state. The scale of the scheduled system
upgrading is assessed to require another 3000 man-days.

Our First Target Architecture

In our project work, we adhere to a layered architecture (see figure
below) that was familiar to most developers from other projects.
Each class of a layer is allowed to access any other class of that layer
as well as all classes of the layers beneath, i.e. the layering is not
strict. The corresponding package structure looks as follows (in this
and in the following examples we always show two organizational
units; the other two behave accordingly):

de.customer.project

tools

oul

ou2

general
services
materials
values
util

4.1 Introduction

~87]

Tools

Automata and Services

Materials

Values

Util, Framework (JWAM)

The Original Layering

The First Disillusionment

A short while ago we had our first opportunity to have our software
architecture tested with Sotograph. Of course we had hoped that the
result would confirm our skills as software engineers. You may take
a look at the general survey graph below. The lines represent all kinds
of relations (inheritance, usage) between architectural units. The line
width as well as the width of the arrows convey the relative number

of relations.

=<subsystem=>>
PROJECT.tool

— ”
<<subsystem=>
PROJECT.material

<<subsystem>>
PROJECT.service|

-

<< > < <5l ne>

PROJECTutil | JWAM

<<subsystem>>
PROJECT.domainvalue

The First Survey Graph

ER

4 Large Refactorings

The high number of double arrows (regrettably) shows that the tar-
geted architecture was violated in many places. In defense of our
approach we would like to point out that the majority of violations
were caused by (JUnit) test classes that we always put in the package
next to the class to be tested.

With the aid of Sotograph we analyzed those violations in detail
and generated a to-do list containing a significant number of classes
to be moved to another package and a large refactoring for our cen-
tral tool. This tool had until then been insufficiently accessible to the
organizational units, forcing them to take turns in using it.

Our Second Target Architecture

Since the project shall become much more comprehensive in the
future, we at this point decided to alter organizational units to obtain
a clear-cut structure. The package structure now looks as follows :

de.customer.project

oul
tools
services
materials
values
ou2
tools
services
materials
values
general
tools
services
materials
values
util

4.1 Introduction 89 |

The logical structure is shown in the following diagram:

OE1 OE2

Automata and Services Automata and Services

GENERAL
Tools

Automata and Services

The Targeted Logical Structure

The First Large Refactoring

The already-mentioned to-do list formed the basis of our large refac-
toring. It mainly consisted of simple relocations of classes into other
packages. The big challenge here was the modification of a rather
complex tool that needed to be broken down into one general part
and specific parts for both organizational units to be supported. Con-
trary to our misgivings, this restructuring work was dealt with rather
smoothly, requiring little more than 100 hours (of which 90 were
dedicated to the tool’s modification). However, we were aware that
this would not solve all our problems, although it erased a remarka-
ble amount of ‘white noise’ during architecture analyses.

[oo

4 Large Refactorings

The result of our refactoring can be seen in the following figure if
you take a look at the top level. The organizational units are inde-
pendent of each other, but there are still two double arrows left,
which means two subsystems still depend on each other. To put this
result into perspective, it should not go unmentioned that only a sin-
gle reference exists between the subsystems GENERAL and OU2,
whereas subsystem JWAM displays six references to subsystem
GENERAL. Especially the latter references may be confusing, since
there can hardly be any calls from general framework classes that
address specific project code. The reason is that certain framework
classes are overshadowed and project-specific classes are referenced
within them. This can easily happen when today’s development envi-
ronments are used, due to the automated generation of import state-
ments. On the other hand, we could break down our project into
various source code projects for development purposes to construc-
tively prevent such impermissible calls on the compiler’s side.

[1 1 1 1
<<subsystem>> | | <<subsystem>> <<subsystem=> <<subsystem>>
OE1 OE2 OE3 OE4

<<subsystem>>
GENERAL

h

<<subsystem=>
JWAM

The Refactoring’s Result on the Top Level

Beneath the organizational unit level we still have the tool, services
and materials levels that we need to consider in context with the sub-
system GENERAL. When we did this for the organizational unit
(OU) 1, the outcome was what you see in the following figure. The
architecture we targeted allows the OU tools layer to access all other

4.1 Introduction 91 |

OU layers plus all GENERAL layers, while the OU services layer
should neither access the OU tools layer nor the GENERAL tools
layer. This rule also applies to the materials and values layers. This
aspect was observed, although we were confronted with the follow-
ing architecture violations:

5 references from OU services to OU tools

2 references from OU materials to OU services

71 references from GENERAL services to GENERAL tools
10 references from GENERAL values to GENERAL services

In addition, we discovered a reference between GENERAL services
and OU materials that points from GENERAL services toward OU
materials. References in this direction were not planned and thus
constitute another violation of architecture.

1
<<subsystem=>>
OE1.tool
1
<<subsystem=>>
GENERAL.tool
1
<<subsystem=>>
OE1.service
<<subsystem=>>
GENERAL service
1
<<subsystem=>
OE1.material

<<subsystem=>
GENERAL.material

<<subsystem=>>

e \

Dependencies on the Next, More Detailed Level

<<subsystem=>
GENERAL.value

o2~

4 Large Refactorings

If we add the details of architecture violations we detected when we
looked at other organizational units to the ones already discussed
here, we get a second to-do list which will become the venturing
point of our next refactoring.

Conclusion

Architectures provide an overview of complex software systems.
However, architectures are always tailored to meet the status quo.
They cannot apprehend changes that occur in the course of a project.
Without continuous checks if the targeted architecture’s require-
ments are met, the architecture will merely remain a UML diagram
or an outline on paper. It will not noticeably contribute to structur-
ing the source code. Contrary to our negative expectations, most
architecture violations could relatively easily be cured with little
effort. The less sophisticated refactorings were those most needed
though, as they concerned parts of the system that urgently required
adaptations of details.

4.2 Best Practices for Large Refactorings

We will dedicate this section to the difficulties that are either of an orga-
nizational nature or stem from the development process itself. Such
difficulties occur quite often during large refactorings. Typical prob-
lems of large refactorings are:

1. The effects of large refactorings: a large refactoring can affect
big parts of a system.

2. Breaking down large refactorings: large refactorings must be
broken down into smaller increments.

3. The use of basic refactorings: large refactorings can only partly
be constructed from basic refactorings. They are more than
just a series of basic refactorings.

4. The process of breaking them down: the breaking down of
large refactorings into single steps is a quite demanding task.

5. Detours in the code: the introduction of temporary detours in
the code is often necessary. The system structure must deterio-
rate first before it can be improved.

6. Assessment of consequences: it is difficult to predetermine the
consequences of single steps in large refactorings.

7. Unfavorable or wrong refactoring routes: it will frequently hap-
pen during a large refactoring that developers realize they have
chosen an unfavorable or even a completely wrong refactoring
route.

4.2 Best Practices for Large Refactorings

93]

8. Interruptions: large refactorings must repeatedly be interrupted
to meet new software requirements.
9. Loss of orientation: it is difficult to stay-up-to date as far as the
actual state and the goal of the large refactoring are concerned.
10. Large refactorings are teamwork: they should not be carried
out by single developers without continuously consulting the
project team.

To deal with these problems, a number of techniques that are widely
applicable have been established in the course of various projects.
They range from planning and project organization questions to con-
crete technical implementations. Because of the vast scope of this field,
these techniques are not as elaborate as Fowler’s basic refactorings.
Even when aided by the techniques described here, large refactorings
will still require a lot of thinking and creativity.

4.2.1 Practice: Scheduling Large Refactorings
Problem

Large refactorings might be needed in the course of an evolutionary
development process, and they can be executed in various ways. Apart
from that fact, in our projects it soon became clear that it is easy to
lose track of large refactorings, and that they will not be executed
completely if at the same time the project happens to be subject to fur-
ther development. One of the reasons thereof is probably that new fea-
tures appear to be more important than a refactoring. Time pressure
can contribute to further delay when certain functions need to be
urgently realized for a specific iteration.

However, it cannot be our goal to put off large refactorings indefi-
nitely. After all, we already learned that refactorings will become the
more difficult to execute the longer they are postponed. This is why we
have to make sure that even large refactorings will not perish in every-
day development work.

Solution

The ideal way of dealing with large refactorings would be to solve them
step by step during daily development while working on new features
or parts of the system that should participate in the large refactoring.
However, we seldom observe that large refactorings are really handled
in this way. Often this leads to unfinished refactorings, or they are
never started. Whereas the aforementioned approach might work bet-
ter in small teams than in larger ones, we tried to find additional ways
of making sure that those refactorings are implemented.

[oa-

4 Large Refactorings

Refactoring Budget
per Iteration

Refactoring Iterations

on Demand

Regular Refactoring
Iterations

This problem can be solved by implicitly integrating refactoring
work in the planning process. This means that we will include large
refactorings in the iteration and release schedules.

In practice, we observed three different options:

Option 1. For each iteration, we schedule roughly the same
amount of time for refactoring, thus allowing enough time for the
team to carry out refactoring work and to advance large refactor-
ings. We are quasi concealing refactorings behind technical
requirements.

The advantages: from the customer’s point of view, the project
progresses continuously. The customer will not get the impres-
sion that the developers interrupt the project in order to ‘clean
up’ and to eliminate earlier mistakes.

The disadvantages: refactorings are sacrificed due to technical
requirements. For this variety it is very likely that large refac-
torings will either be forgotten or not even begun.

Option 2. Specific refactoring iterations are introduced on demand.
These iterations only serve the execution of refactorings. In the
meantime, system development is on hold.

The advantages: this option constitutes a quite simple approach,
since the focus is exclusively on the required refactoring work.
Thus interferences between work on large refactorings and the
realization of functionalities are ruled out.

The disadvantages: the customer will not be able to observe
any technical progress. From the customer’s point of view, it
looks like the project is dormant while he/she is paying. In con-
sequence, it is possible that refactoring iterations cannot be
planned due to time pressure.

Option 3. Frequent refactoring iterations. In one project, for exam-
ple, we conducted three technical iterations and one refactoring iter-
ation of a week each and created a release from them.

The advantages: this procedure is simple and allows the team
to focus solely on refactoring work for a defined period. One
achieves an alternation between tense periods (technical itera-
tions) and relaxed periods (refactoring iteration).

The disadvantages: clearly defined refactoring iterations might
turn out to be too formal and too strict for the team. If, e.g.,
the code is very clean and no large refactorings seem necessary,
a rigidly scheduled refactoring iteration does not make sense.

4.2 Best Practices for Large Refactorings

~95]

In addition, this sort of planning invites the neglect of small
refactorings during routine development work. The developers
are possibly tempted to put off refactorings.

One cannot generally say that one of these options is better than
another. In practice, the decision of which one to choose must be made
based on the respective project situation.

4.2.2 Practice: Refactoring Planning Session
Problem

Large refactorings can be noticeably more difficult and complicated
than their smaller relatives. They clearly require more time and seri-
ously influence a team’s work. Therefore, large refactorings gain more
and more importance in the development process. It is no longer safe
to assume that they — like small refactorings — can be easily dealt with
as part of a developer’s everyday routine.

To be able to efficiently integrate large refactorings in an agile
development process, we have to bear in mind the larger picture and
think beyond the refactoring itself. After all, a large refactoring can
affect the work of an entire development team.

The execution of single, partial steps of a large refactoring which
are integrated in the common code repository of the development
team, creates uncertainties for developers who are not immediately
participating in the refactoring work. Once the team has carried out
one half of the refactoring, the code contains portions of the new as
well as of the old structure. In addition, detours are integrated in the
code to allow for these intermediate steps. For the developers it
becomes increasingly difficult to keep track of the entire refactoring.
The question, asked by developers, why a specific method is suddenly
deprecated is convincing evidence.

Solution

A simple and at the same time basic means is to discuss and plan
large refactorings with the entire team. Similar to a quick design ses-
sion in Extreme Programming, all developers shall participate in a
brief refactoring session, during which the design problem and the
objective of the refactoring can be discussed and a possible refactor-
ing route outlined. In addition, the developers can discuss a rough
time schedule for a large refactoring to permit a rather uncompli-
cated proceeding.

N

4 Large Refactorings

The refactoring session also fosters direct communication in the
team. After such a refactoring session, the design problem has been
made known to all team members, and they have all been informed
that the respective part of the system will undergo change. Also, all
team members are familiar with the goal of the large refactoring and
thus able to integrate it in their daily work. Last but not least, this
communicates how the system evolves.

For us it has become a significant part of the development process
to discuss major design modifications with the team and schedule
them as part of the process.

4.2.3 Practice: Refactoring Plan
Problem

Typically, a large refactoring will take place over a longer period. In
the course of their development work, the developers will frequently
interrupt the refactoring to further develop other parts of the system or
generally add new features.

Once the important core of a large refactoring has been imple-
mented, in some cases the refactoring is not completed, i.e. there is no
such thing as a ‘clean finish.” For large refactorings this means that, for
instance, implemented detours will remain in the code, or only parts of
the system will be adapted to the new structure. The large refactoring
is left incomplete, with the consequence that the system structure is
suspended in an intermediate state. This preliminary structure con-
tains parts of the new design as well as parts of the old one, including
detours. It becomes much more difficult to understand and change the
system.

If the developers totally forget about the refactoring and do not
finish it, the system will still be runnable, but it will possess a structure
that is inferior to its structure before the refactoring.

Solution

Besides conducting a common refactoring session, it has proven useful
for us to write down an outline of the previously discussed refactoring
route and put it up somewhere where everyone can read it. For our
work, such a refactoring plan typically contains the single steps of the
large refactoring. Developers shall place such a schedule in a promi-
nent location. Thus it will be visible and present for all developers.

4.2 Best Practices for Large Refactorings

~97]

The refactoring plan initially discussed in the team is by no means
written in stone for the whole refactoring period. First and foremost it
serves as a representation of the large refactoring, that is, to bring the
large refactoring to the developers’ attention. It can also serve as a
guideline for working on the large refactoring. As a consequence, the
single steps of such a refactoring schedule can be altered, or their order
can be rearranged. A refactoring plan is no work regulation, but an aid
for keeping track of the refactoring process.

It is important to point out that the single steps of a refactoring
plan do not exclusively depict modifications of a system (for example
changing class names), but also clarify the intention of that particular
step (class A inherits from class B). A mere listing of modifications
makes a refactoring schedule vulnerable for modifications of the sys-
tem that take place simultaneously.

It has proven especially helpful to check off which steps were
already successfully executed on the refactoring plan. In this way, all
developers of the team can see how far the refactoring has progressed,
and what steps will probably be tackled next.

However, a refactoring schedule does not substitute direct commu-
nication between the developers of a team. Instead it promotes aware-
ness of a large refactoring and its discussion. It helps to keep it in mind
and realize its progress.

Excursion: Electronic Refactoring Schedules

Martin Lippert’s Vision

The manual schedules we introduced in the previous section already
provide some support to the developers of a team for the execution of
a large refactoring. Realizing the effect of a refactoring on the system’s
concrete source code, however, remains difficult for developers. They
can see that a large refactoring is being carried out that is not yet fin-
ished, and they can recognize what intermediate state it is in. It
remains difficult though to reference, for instance, completed steps of
a refactoring plan to changes in the source code. The question why a
certain method is currently deprecated is not answered in this context.

To offer the developers even more comprehensive support, we
wish to create a connection between the refactoring schedule and the
system’s source code. To this end, it evidently makes sense to convert
the refactoring schedule into a digital version and make it an integral
part of the project’s source code.

N

4 Large Refactorings

First of all this means that the refactoring plan must be digitalized
and integrated in the shared code repository. Then it can be directly
accessed by each developer from his or her workplace.? A simple text
document would serve the purpose. A comparable result could be
achieved if the developers decide to manage their refactoring plans in
a project Wiki web.

A much better accessibility can be achieved when the digital
refactoring schedule is directly integrated and made visible in the
used IDE. In the Eclipse IDE, this could be realized via a special view.

& Refactoring Planner B3 | A o O w ZE

SRS E o track C1-Hierarchy
-- w| Step 1: Create Mew Subclass LargeConkainer in C1-Hierarchy

= Skep 2; Adapt Services to Mew Subclass LargeContainer

EIEE org.company. base, services

- BaseService

[—:IEE.‘ org.company.oel, services

& @ Calendarservice

ElG DE1MaterialService

: ----- @ getContainer CHumber)
----- @ getContainerInformationd CHNumber)

: b @ sendContainer{IContainer, CREceiver)

G TranspartService

EEI---EE.l org.Company,des, Services

[+- |+ Step 3: Adapt OE-1-Materials to Mew Subclass

Step 4 Make Use of New Subclass in QE-1-Tool
Step 5 Remove Old Classes and Wark-arounds

Refactoring Planner View in Eclipse (Mock-up)

The refactoring planner view in the figure above shows the five steps
of the ‘Extract C1-Hierarchy’ refactoring. The single steps are each
placed next to a check box which announces whether the respective
refactoring step has yet been executed or not. Below each refactoring
step the changes brought about by the refactoring are displayed
(grouped by packages). The changes are made visible down to the
level of single methods.

Optional navigation is possible from classes or methods to either
the corresponding editor or to a diff-viewer showing detailed changes
for each single refactoring step.

4.2 Best Practices for Large Refactorings

~99]

IDE integration enables easy changes of the refactoring plan and
committing it back to the common repository. Additionally, IDE
integration should allow checking off single steps in the refactoring
plan.

With a digitalized refactoring schedule as opposed to a handwrit-
ten plan on the development lab’s wall, not much has been won yet.
Of course it is easier for developers to modify a digital schedule, but
this plan does not possess the same charm as a handwritten plan on
the wall.

A nice advantage will be won by the adoption of a digital refac-
toring plan if it is linked to the system’s source code. In this case, the
developers can detect correlations between single steps of the refac-
toring schedule and modifications of the source codes. Consequently,
a step in a refactoring plan could be assigned certain code-modifica-
tions. A refactoring step would then hold the information as to which
places in the code were altered.

Once that information is available, a two-way navigation could
be realized. On the one hand, developers would get an overview of
the altered code sections based on the plan. On the other hand, they
could also navigate from the code to the refactoring plan if the former
was modified in the course of a large refactoring. If, for example a
method has been marked deprecated, the developer can find out to
which refactoring step this change can be attributed.®

Refactoring Maps

Electronic refactoring plans possess a number of advantages (see pre-
vious sections). While the refactoring plan serves to visualize the exe-
cution of a large refactoring and makes the single refactoring steps
transparent for each team member, it does not necessarily help the
developers in the team to assess the refactoring’s impact on their daily
work outside the refactoring context. Often I wish to know how a
refactoring will affect my daily routine. Do I have to look at the refac-
toring plan at all or can I do my job without keeping the refactoring
in mind?4

I want to be able to see at a glance if the refactoring concerns me,
if the part of the system on which I plan to work is already being
refactored, or if that part of the system is approaching refactoring. If
the latter is the case, the refactoring plan will help me get an idea of
the refactoring itself and let me recognize what I have to observe in
my work. Should the refactoring take place far away from my own
‘construction site,” I can probably ignore the refactoring plan.

|100

4 Large Refactorings

But how can I see at once whether the refactoring is ‘closing in’ or
already affecting the part of the system I am working on?

Our idea is to use a so-called refactoring map to present the
required information in a concise format. A refactoring map repre-
sents the system in two dimensions. On this level, the different parts
of the system are arranged based on a particular pattern. For very
small systems a class diagram will suffice; more comprehensive sys-
tems require a package or subsystem diagram.® The developer must
be able to identify his or her own ‘construction site’ right away on
this map. This can be achieved, for example, if the developer is able
to isolate the source code on the refactoring map.

Moreover, a refactoring in progress is visualized on the map
through the use of colors. The affected parts of the systems are tinted
the color assigned to the refactoring. Thus, each developer can easily
see what parts of the systems have already been altered.

OF.sarvices
—1
— «.«.suh?sherrb:,
S— CEvalues

e
DE1.tools —1

casUbEyStEm
CELsenIes
—1
subsysterms —1
! >
OE2.matertals <<sUbsystem x>
OE2tools

csuibsystemz.
El.materials

II

—1 —1
casUbEyStEm <<subsystamsz
CE3 toals CE2values
1 1

OE3sarvices OE3.materkals
1
a8 by St
> base.materlals
OF3values
1

—
Eosbepem>
basevalues

View of a Possible Refactoring Map

This figure shows a first version of a possible refactoring map. It rep-
resents the system on the subsystem level. The underlaid area of the
map indicates those parts of the system that have already been
changed by the refactoring. In our example, until now the refactoring
seems to have primarily affected materials systems. A single tools
subsystem has also been included.

In this manner, team members working in different locations can benefit from
a refactoring schedule.
We used the Wiki web option in one of our projects and learned that the Wiki

web is easy to handle but does not offer the same immediate visibility as a
poster on a wall or the source code in the IDE though.

4.2 Best Practices for Large Refactorings

101|

The technical realization could be accomplished with meta tags or annotations
in the source code. The refactoring annotations could either automatically be
submitted to the central repository at check-in, or manually inserted in the
code. As of yet, no implementation of this mechanism does exist.

This should not replace direct and personal communication among the team
members. In fact most of the information should also be disseminated directly
in the team, although it would be nice to have a single place to look for
backup.

The various display formats introduced here are only the first proposals.
Other formats are also conceivable.

4.24 Practice: Refactoring Detail Plan
Problem

A publicly posted refactoring plan that has been discussed by the team
is an important instrument for the coordination of work on a large
refactoring. However, since it is kept somewhat vague on purpose, it is
hard to determine which risks are involved and how demanding the
refactoring will actually turn out to be.

During our project work, we were in for a few nasty surprises: our
refactorings proved to be very complex although they had looked
rather harmless in their flip chart versions.

Solution

The refactoring plan is supplemented by a chart of refactoring details.
This chart should be created by a single developer or a pair of develop-
ers (in keeping with the Extreme Programming approach of utilizing
pairs of programmers) rather than the entire team. The refactoring
plan must be written down, breaking down single steps into basic
refactorings as far as possible.

Nevertheless, this does not mean that a large refactoring merely
consists of a series of basic refactorings. Additional modifications are
required, for example, if one wishes to exchange the superclass of a
class.2 Modifications for which no safe refactorings are available pose
the main risk for a large refactoring. Often it is not clear how such a
step shall be executed and what consequences would follow in its
wake, i.e. during and after refactoring. In the chart of refactoring

Tests can help to make the replacement of a superclass as safe as possible. But
there are no mechanics that allows us to safely replace a superclass following
the predefined steps easily. The exchange of a superclass will be discussed in
more detail later.

High-Risk and Low-Risk
Steps of a Large
Refactoring

|102

4 Large Refactorings

Visualizing Intermedi-
ate Results

Automating
Large Refactorings

details, the distinguishing criterion is whether the single steps qualify
as (low-risk) basic refactorings or as (high-risk) other modifications.

Especially high-risk modifications must be analyzed thoroughly.
Often it makes sense to begin by simply taking one single step or
another. In many cases, the source of the problem will become obvious
in a matter of minutes. Once this observation has been made, the
respective changes can be discarded.

It helps to create a graphic representation of the targeted interme-
diate results as part of the chart of refactoring details (typically using
class diagrams). This will help to visualize the larger picture and to
stay on top of the overall large refactoring process.

Often large refactorings reach stages where the system structure
has already significantly improved. If a large refactoring has
reached such a point but is then interrupted, the system structure
will nonetheless be better. If a refactoring is stopped prior to reach-
ing a point of improvement, the system will often still contain
detours, and the system structure will have deteriorated compared
to the original version. In that case, it is advisable to either undo
the refactoring completely or at least revert it to its last stage.

The stages that mark improvements of the system structure are
called save points. They should be highlighted in the refactoring plan
as well as in the chart of refactoring details. If you work with
branches, make sure to integrate the branches into the main trunk as
soon as you reach a save point.

When a large refactoring is carried out, the developers will use a
number of basic refactorings as a rule, although a large refactoring
does not exclusively consist of a series of basic refactorings. It also
requires additional development work.

This observation lets us arrive at the conclusion that large refac-
torings can only be insufficiently automated. It is not enough to plan a
large refactoring beforehand, then break it down into small refactor-
ings that can be automated and proceed to apply the sequence of the
basic refactorings to the code with the aid of a specialized tool. The
developers can execute some steps of a large refactoring aided by
refactoring tools, but other steps need to be executed manually. Never-
theless the goal must be to execute as many steps as possible using
automated refactorings. The detailed plan can help us find the way
through the refactoring that is as close to small automated refactorings
as possible.

4.2 Best Practices for Large Refactorings

103|

Excursion: Refactoring Thumbnails

A contribution by Sven Gorts (Sven.Gorts@refactoring.be)

Though modern tool support has made refactoring a lot easier, what
remains difficult is expressing one’s refactoring ideas to other team
members. Especially within the context of a large refactoring, effec-
tive communication of the strategic decisions and underlying princi-
ples is crucial to a successful completion.

Drawing informal design sketches often helps to visualize refac-
toring ideas. When developers talk a refactoring through, they sketch
small class diagrams, each representing a different stage within the
ongoing refactoring. Because these sketches tend to be relatively small,
they are called refactoring thumbnails.

form Aost- repeatedly
:u;”érd - Pu// up fea/ure until

El E EE EE

Thumbnail Sequence: Eliminating Duplication by Inheritance

Whether drawn on a whiteboard or a sheet of paper, refactoring
thumbnails are drawn as visual additions, not as a replacement for
the story being told. In order to enhance communication, thumb-
nail diagrams are intentionally kept small and concise. This both
keeps the noise low and ensures the drawings remain fast and easy to
sketch.

Using the thumbnail notation encourages developers to think
about a refactoring problem in a more abstract way. At the same
time, keeping the diagrams limited to the bare essentials of the refac-
toring helps to keep the discussion focused.

During the ongoing discussion of a refactoring problem, the
informal notation ensures that the sketches retain a tentative flavor.
Because of this, developers are less inhibited to grab the sheet of
paper and contribute their own thumbnail sketches. The tentative
look also causes developers to become less attached to their draw-
ings. If an idea doesn’t turn out as expected, only a piece of scribbling
paper is thrown away.

|104

4 Large Refactorings

Thumbnail sketches are usually short-lived. Indeed, although
refactoring thumbnails are being used intensely, adapted and refined
for a large refactoring in progress, outdated drawings typically end
up in the waste basket once a design smell is factored out.

When a similar situation occurs, the sketches are drawn all over
again, which is good. Refactoring thumbnails are about communica-
tion. With each sketch we tell a little story about the design. We com-
municate, discuss and improve.

A Refactoring Conversation

The controlled data flow project (CDF) is an ambitious project that
aims to integrate FancyBizz’s different data processing systems. Our
developers Phil and Steve have been involved with this project for a
couple of months. In the upcoming iteration, they need to integrate
their software with the automated report generation system (ARG).
The ARG code base, known for its legacy, suffers from many prob-
lems. During a brief design session, Phil and Steve talk through some
of the issues.

Steve: Phil, can we talk? I have some design issues we need to sort out.
Phil: Sure (smiles). It’s about the integration with ARG, isn’t it?

Steve: How did you guess? (grabs a sheet of paper) What bothers me
is this:

c Legacy

We definitely need the ARG functionality for report generation. If,
however, we call ARG directly from our CDF model, large parts of it
will inevitably become dependent upon ARG’s implementation.

Phil: Yeah, I know. I used to work on the ARG code base during the
early days of FancyBizz. Even though the code is rather messy, it has
proven stable.

Anyway, we need to prevent dependencies to the ARG abstrac-
tions spreading over our domain model. How about encapsulating the
ARG functionality with some wrapper classes? Something like this:

c - wl-ftegacy

4.2 Best Practices for Large Refactorings

105|

Steve: I see, introducing an indirection level will allow us to deal with
those legacy abstractions locally. That’s good. 'm more concerned
about the runtime dependencies though. The ARG functionality
won’t run unless it is properly configured and we need to provide its
configuration file at startup.

Phil: Indeed, reading the configuration file is part of the initialization
sequence. It sets up a connection to the database, initializes the sin-
gletons and starts the threads.

C legacy| - 3

For our CDF unit tests, these dependencies are problematic. Now
what do you have in mind? Something with an interface, right?

Steve: Exactly, by using the dependency inversion principle we can
break the dependency. At least that would allow us to keep our CDF
tests running without carrying the burden of the ARG code. Basically
it comes down to this:

c LzI;-

Lego<y

Phil: And we use the interface to write stubs to run our tests against.
Seems alright to me.

|106

4 Large Refactorings

Steve: Well, maybe not. Let me clarify. (sketches packages)

(e

[277]

Something’s not quite right here. I mean, where does the interface
live? According to the interface segregation principle, it should go
with the client.

Phil: And then the ARG code would become dependent on us. Na,
that’s no good. We can’t afford the ARG code to become dependent
on project-specific code.

Steve: The alternative — keeping the interface with the ARG code
base — is not much better. Well, at least it gives us a substitution point
for stubbing.

Phil: Wait a minute. The ARG class doesn’t have to implement the
interface directly. Using a wrapper, there was no need to do so. (grabs

his first sketch)

C) W |—>jLegacy

W —>iLegocy

Here. If we extract an interface out of the wrapper solution, we can
break the dependency on the ARG module.

4.2 Best Practices for Large Refactorings

107|

Steve: (adds packages) And keep the interface with the client. Brilliant.

[c.

I
[\73/: Legacy

How about the wrapper class?

Phil: We can’t move it to either of the packages without reintroducing
our dependency problem. So, it needs to live in a separate package, I
guess. Which leaves us with the question how to get the wrapper in
place.

Steve: That’s simple. We pass it as a constructor argument during the
creation of the client class.

C I

- — W |>{eegacy

:

Doing so, the only code dependent on the wrapper, and thus the
ARG code, will be the initialization code.

Phil: Hmm, neat. Seems like we’re out of dependencies.

Steve: (looks at the entire drawing)

Yeah, guess we’re done too. Thanks for helping me sort this out.

|108

4 Large Refactorings

Phil: Any time, Steve.

Conclusion

Refactoring thumbnails are a simple means to visualize and discuss
software evolution. Using a terse, yet informal notation enables
developers to express a refactoring more abstractly while leaving
enough room for further clarification and interaction. Such refactor-
ing thumbnails are an effective, lightweight tool which allows the
explanation of a refactoring idea in a matter of minutes.

4.2.,5 Practice: Assessing Consequences
Problem

In many cases, a refactoring consists of two parts: on the one hand, we
alter the structure of the code. On the other hand, we also adapt parts
of the system to that altered structure.

Both parts of a refactoring may concern varying amounts of code.
Either the changed or to be changed structure itself contains a large
amount of code, so that the refactoring will become complicated and
comprehensive, or those parts changed via refactoring are used by many
other portions of the code. If we modify an interface or a type depen-
dency in the course of a refactoring, the clients of the involved class need
to be adapted as well. This may turn out to be a task of considerable
scope if many clients exist in the system (see also Section 4.2.8).

The consequences of single refactoring steps are partially hard to
assess. Quite often during a large refactoring one will notice that the
scheduled single steps cannot be carried out in the originally planned
way.

While a refactoring route may be fundamentally wrong, it can also
(and quite often) happen during large refactorings that only certain
steps turn out to be faulty, or that other necessary steps have been
overlooked in the first considerations regarding the refactoring. Those
particular refactoring steps must be reorganized and/or supplemented.
In a worst-case scenario, the developer team is unable to plan each sin-
gle step of a refactoring ahead. Whereas the status quo of the system
and the goal of the change are clearly defined, the approach to getting
there will be established in the process.

In our development processes, we always assume that software
development is a learning process. However, this is not only the case
for the implementation of new features. Large refactorings are more

4.2 Best Practices for Large Refactorings

109|

time-intensive and will restructure complex and/or central parts of the
system. Thus it doesn’t come as a surprise that large refactorings are
subject to a learning process, which is not always completely planna-
ble. What we are learning on our way influences the choices for our
further proceedings.

Solution

One source of the problem is that we cannot foresee all consequences
of a refactoring beforehand. The larger the system, the more compli-
cated it will be to apprehend even a few refactoring steps.

Modern IDEs allow us to display a system’s call graph. This fea-
ture enables developers to determine from which other methods in the
system a particular method is called.

This function can be used to get a first impression of the possible
complexity of changes to a method. Through the call graph’s visualiza-
tion, developers can learn with little effort how many places in the sys-
tem access the scrutinized method, and how this method is typically
used.

Of course this function is only useful when the effect of changes to
a single method shall be analyzed. Changes to a class hierarchy cannot
be analyzed with this function.

Many IDEs offer functions for displaying the inheritance hierar-
chies of a class, but the majority of these tools are not able to analyze
the effect of changes to such a hierarchy. Often developers are left with
the sole option of prototyping single refactoring steps in a branch. The
resulting refactoring prototypes will be able to analyze the impact of
changes. Such refactoring prototyping can become quite time-consum-
ing. In order to be able to anticipate future steps, the first ones must
have been executed almost completely.

A similar problem exists in the software maintenance debate. Here,
the approach towards mastering the situation is the use of sophisticated
impact analysis algorithms. Impact analysis aims at enabling an analy-
sis of the effects that modifications of a software system create. Not
only are changes to an already modified system analyzed (comparative
impact analysis), but also the possible impact of future modifications
(predictive impact analysis).

The equivalents of these tools can be utilized for more compre-
hensive refactoring work. They let developers analyze how single
refactoring steps will affect a system. This can be useful for recogniz-
ing complicated refactoring routes as early as possible. Further infor-
mation can be found, for example, in Hoffman (2003).

Refactoring Prototyping

Predictive Impact
Analysis

Recognizing a Bad
Strategy Early On

|110

4 Large Refactorings

Advantages of Branches

4.2.6 Practice: Branches
Problem

In fact small steps should support us in breaking down a large refac-
toring. This procedure also aims at reducing the required merge work,
because the small increments can continually be integrated in the
shared code repository.

However, some refactoring steps can be executed in a couple of sec-
onds with the aid of modern IDEs. In those cases, taking small steps will
not be necessary. If a central method or class is changed though, this will
potentially lead to many automated modifications to the rest of the sys-
tem. If the developers commit these changes back to the shared code
repository, comprehensive merge work will very likely be the result.

Today, automated refactorings can be found as part of each pro-
fessional IDE. They permit modifications of many source code texts at
once (for example, if we wish to rename a central class). As simple and
comfortable as this functionality appears to be — in some scenarios it
can turn out to be quite tricky. If, after such a refactoring, we find out
that we took the wrong step, we have to undo that refactoring. Should
the IDE neither support such an undo-functionality, nor the comple-
mentary refactoring exist in an automated version, the developers will
face a lot of work to undo the refactoring.

If developers have proceeded with implementation of application
requirements, the new classes may interfere with the refactoring steps.
That makes is very hard to undo the refactoring just by going back in
the version control system — the application requirements would be
undone too.

Solution

If a certain point a branch is separated from the team’s current devel-
opment work, then the team’s developers proceed to carry out the
refactoring in that branch, while the whole system is further developed
in the repository’s HEAD. As soon as the refactoring in the separate
branch is completed, it is committed back to the up-to-date version of
the system.

This option of conducting large refactorings has a number of
advantages:

The large refactoring can be carried out step by step, and developers
can continue to work on a system that runs without interruptions.

4.2 Best Practices for Large Refactorings

111|

The current working version of the system does not contain any
detours, which would otherwise be required because of the refac-
toring.

A refactoring can simply be ‘rolled back’ when the developers dis-
cover they’ve decided on a totally wrong refactoring route.

While this option initially sounds quite attractive, it also harbors a
couple of disadvantages:

Developers involved in the refactoring are forced to switch between
two different versions of the system if they continue to work on it
after the implementation of a refactoring increment, or after inte-
gration of a new feature to further the refactoring. This switching
between contexts is difficult and can delay a large refactoring.

If the large refactoring is integrated in the current system, a sub-
stantial demand for merges is created, because the system develop-
ment has advanced. Depending on how strong the refactoring’s
impact on the system is, the merge demands can be rather high.
The further the refactoring progresses, the higher these merge
demands will become. One of the major risks of such a proceeding
is that a refactoring that has been in progress for a long time will
no longer be integrated due to the high merge demand, and thus
will eventually be discarded.

As the case may be, a merging of the current system version and
the large refactoring can take a relatively long time. During that
time, the whole system is no longer runnable. The more time devel-
opers need for the merging, the higher is the risk for the entire team
of creating a not fully runnable system.

Once the refactoring has been fully integrated in the system, the
developers who are not directly involved in the refactoring work
have to familiarize themselves with the new system, because a lot
of code may have changed literally from one day to another.

Our experiences made us realize that separate branches are better
suited for larger refactoring projects when the changes brought about
by that refactoring can be restricted to a part of the system. This is the
case, for instance, if a large refactoring only affects the implementation
of a fraction of the system. This situation can be evoked by preparing
refactorings first (see Section 4.2.8).

Here, it is important to observe that the interface to other parts of
the system remains unchanged. In the ideal case the respective part of
the system can be replaced with the modified version — as long as its
functionality has not been altered during refactoring. If this part has

Disadvantages
of Branches

|112

4 Large Refactorings

Fig. 4-1
Exchanging Eclipse
Runtime

been changed, these changes must be integrated in the refactored ver-
sion, but the merge demand will be limited.

Eclipse Runtime: An Example

In the course of the Eclipse project, an alternative runtime has been
developed as part of the work on the software’s version 3.0. The new
runtime was developed parallel to the scheduled development of
Eclipse version 3.0. Halfway between Milestone M5 and M6, the old
Eclipse runtime was replaced with the new Equinox runtime. This was
accomplished with minimal effort, because the runtime is accessed by
other parts of the system via a fixed interface. In order to ensure an
even smoother transition, the developers of the Equinox runtime
attached great importance to making sure that compatibility with the
old interface was guaranteed (Figure 4-1).

old
Eclipse
Runtime

Eclipse M6

Equinox
Runtime

Eclip§e
nti

Eclipse M6

Equinox
Runtime

oy o o

Even though the new Eclipse runtime is a new feature rather than
a refactoring of the old runtime, this example demonstrates that the
part of the system that shall be modified can be particularly well devel-
oped in a separate branch and merged later on, when only implemen-
tations are modified.

4.2 Best Practices for Large Refactorings

113|

Unfortunately, large refactorings are not limited exclusively to
implementations of system fractions. This seems logical if the refactor-
ing shall improve the system’s structure in a significant part of the
system. For such modifications, the disadvantages of the branching
approach clearly outweigh the advantages. Under these circumstances,
we therefore prefer the integration of large refactorings in the main
development branch.

4.2,7 Practice: Acceptance Tests
Problem

In our introduction to the refactoring topic we learned that tests and
refactorings are inseparable. Refactorings can only be carried out
securely when a good test coverage is guaranteed. Of course, a good
test coverage is also one of the prerequisites for the success of large
refactorings.

Nevertheless, large refactorings do not only require various modi-
fications of the program code, but also modifications of the test code.
The effort for the large refactoring will diminish if one occasionally
throws away the odd test and executes a new implementation after
refactoring.

A similar approach seems to have been chosen by the developers of
the C3 project. On the Wiki web, Chet Hendrickson writes:

About every 3 or 4 iterations we do a refactoring that causes us to toss or oth-
erwise radically modify a group of classes. The tests will either go away or be
changed to reflect the classes’ new behavior. We are constantly splitting classes
up and moving behavior around. This may or may not affect the UnitTests.

This is why the traditional unit tests no longer offer a stable frame-
work for large refactorings. In each individual case the developers
must decide what a unit test failure during a large refactoring means.
Was the last refactoring step faulty, or does the test have to be adapted
or deleted?

Solution

Automated acceptance tests (as well as function tests) will prove useful
here. They will check the system’s behavior from the users’ point of
view, whereas unit tests check the functionality of single classes from
the developers’ point of view. Thus modifications of unit tests are
often needed during refactorings. Changes to acceptance tests are only
permissible to a very limited extent though, because otherwise the
refactoring would alter the observable system behavior, not just the

Experiences from the
C3 Project

Automated
Acceptance Tests

|114

4 Large Refactorings

Fig. 4-2
Acceptance Tests with
FIT/Fitnesse

internal program structure. Let us resume: in the course of large refac-
torings, modifications of unit tests are allowed, but modifications of
acceptance tests are not.

For automated acceptance tests, FIT or Fitnesse can be used quite
elegantly (see References). Both tools read tests from HTML tables,
conduct tests on the application level and document the results in
HTML. At the same time, the test results are connected with the appli-
cation via fixtures. The fixtures receive their input values from the
HTML tables. With these values, they then call system functions and
return their function results. TestRunner compares the return values to
the expected values based on the test specifications, and again the
result is documented. This process is visualized in Figure 4-2.

-
6: Compare

function results

to expected values

I I

—_—

2: Call fixtures

with tests’
input values
TestRunner Fixture
5: Returned
] . function results |
1: Read 7: Record test results 3: Call the application's 4 4 Returned
testspecs | functions function results
v
Test l Test lication
Specifications Results C_)%pec_
(HTML) L (HTML
4.2.8 Practice: Refactoring-Enabling Refactorings®
Problem

We already discussed that some large refactorings might affect many
parts of the system. This makes it a lot more difficult to implement
those refactorings because developers have to adapt too many pieces of
code. The system shows some kind of resistance against the refactoring.

3 Thanks to Sven Gorts who came up with this concept of refactoring-enabling

refactorings.

4.2 Best Practices for Large Refactorings

115|

Solution

It would be nice if we could lower this resistance against the refactor-
ing. This means, for example, to reduce the scope of the refactoring,
the affected parts of the system, to a minimal set.

To realize this, we begin a large refactoring by implementing some
smaller refactorings with the goal to reduce the set of affected pieces of
code. Therefore the first steps are not aimed directly at reaching the
desired design. We first try to refactor the system into a state that makes
it easier for us to refactor it.

If the system, for example, makes heavy use of global variables,
this could make larger refactorings a lot more difficult than absolutely
necessary. In such situations, we first encapsulate those global vari-
ables via singletons. This makes it easier for us to start a larger refac-
toring because access to the previously global variable is now localized
in the singleton.

4,29 Practice: Detours
Problem

If changes to vital parts of the system are required (e.g. renaming of a
vital method), many dependent parts of the system must be adapted as
well. During this transition period, the system will neither be com-
pilable nor runnable. Since it is desirable to have a runnable version of
the system in the central source code repository, changes can only be
integrated when they are complete and the system is runnable again.

Because these changes are rather time-consuming, considerable
merge requirements may follow in their wake. Moreover, only after
the refactoring is complete, tests can be run to determine if the refac-
toring process was executed correctly and the system is indeed opera-
tional. If the system does not run correctly, it will be very difficult to
identify the one error or the errors. In principle, any class that has been
changed in the course of the refactoring could be responsible for its
misbehavior.

Solution

In order to break down a large refactoring in small increments, detours
are built into the code (analogue to the detours for basic refactorings if
they are executed stepwise). At the end of a refactoring, these detours
must be removed from the code. If the developers additionally integrate
single steps of their large refactoring into the shared code repository,

|116

4 Large Refactorings

Fig. 4-3
One Step Back,
Two Forward

the detours that have been introduced into the code will also become
visible for other developers.

This leads to a situation that at first sight seems paradox: the
detours will first impair the system structure with the goal of eventu-
ally improving it. In many cases, the course of a more comprehensive
refactoring will look somewhat like Figure 4-3.

Design Improvement

Refactoring Steps

The graphic illustrates that most steps of a large refactoring will
improve the software’s design and bring the developers closer to the
design they are targeting with their refactoring. However, developers
will always have to deal with small steps actually leading in the oppo-
site direction. Usually these steps are identified as being wrong at
some point and corrected. However, it is important to recapitulate
that a large refactoring can, as a rule, not be planned 100%, from
start to end.

Based on the aforementioned observation, we pointed out that sin-
gle steps of a refactoring might turn out to be wrong. Moreover, in the
course of a large refactoring, developers may find that an entirely dif-
ferent refactoring route would have been preferable.

Example: Detours in the Code

The simple refactoring for renaming a method is — unless this is done
automatically by an IDE - a good example of such a detour. Let us

4.2 Best Practices for Large Refactorings

117|

assume that the following method print shall be renamed print-
Document:

public void print (Document obj) ({

implementation of print

In a first step we create a new method with the desired name and move
the implementation of print. We will get:

public void print (Document obj) ({

this.printDocument (obj) ;

}

public void printDocument (Document obj) {

implementation of print

In our next step, we mark print as deprecated:

/**

* @deprecated use printDocument instead

*/

public void print (Document obj) {
this.printDocument (obj) ;

public void printDocument (Document obj) {
implementation of print

In the next step, we can adjust all places in the code that until now
used print. In these places we are simply going to exchange the call
print with the call printDocument.

Once all calls have been replaced, the old method can be deleted. It
served as a detour for as long as we were not able to use the new method
consistently. During this transitional phase, two versions of the print
method existed simultaneously. The system’s structure was worse than
before in this period. Only after the refactoring was complete, was the
old method deleted and a better system structure emerged.

|118

4 Large Refactorings

A Consistent Number of
Compile Errors

4.2.10 Practice: Errors and Warnings as To-do Lists
Problem

Large refactorings harbor the danger of getting lost in minute details.
With each step, the number of compile errors grows, and it becomes
more and more difficult to integrate a completely functional version of
the system into the shared repository. If you are finding yourself in
such a situation, you are definitely in trouble rather than accomplish-
ing a refactoring. This is a clear indicator that we are taking too big
steps.

In contrast, we want to be able to break down even extremely
large refactorings in such small increments that a functional system is
guaranteed after each implementation step. We will adhere to this goal
even if a large refactoring is carried out in a branch.

Deprecated warnings are a popular way of implementing step-
wise changes. The old method or class is marked deprecated, and the
compiler highlights all sections of the code which still bear references
to the element marked deprecated. The purpose of this mechanism is
an incremental transition of the marked references from the old
structure or method to the new one. It is easily possible though that
the sections marked deprecated in the source code cannot be arranged
in any desired order. If, for example, a class with Inline Class is
removed, all references to this class must be replaced with references
to the new class. Should a method call another method while simul-
taneously passing an object of the old class, the calling class must be
modified first and generate an object of the old class prior to the
other method’s call. If the method of the called class is changed first,
the calling method must be adapted as well, because it will expect a
parameter of the new class’s type. Regarding the calling method, the
question arises from where it should get the new class’s object. The
calling method can no longer simply generate the object because it
may need to contain more information than the fields of the class to

be deleted.

Solution
Do large refactorings in such a way that:

After each refactoring step, a consistent number of compile errors
shall occur. This particularly means that the number of compile
errors shall not correlate with the size of the respective system, but
exclusively with that of the refactoring step. Thus the single steps
of a large refactoring can be carried out in as little time as possible.

4.2 Best Practices for Large Refactorings

119|

We will often work with deprecated warnings in order to execute
successive refactorings. It must be irrelevant in which order depre-
cated warnings are processed because otherwise it will become
very hard to determine their correct sequence in large systems.
Some system cycles might even prevent a stepwise processing of the
deprecated warnings. Moreover, arbitrary removal of deprecated
warnings significantly simplifies planning and - last, but not least —
allows the team parallel removal of deprecated warnings. You
should be aware of the fact that marking something as deprecated
is just a step towards the solution — not the solution itself. The
refactoring is not finished until after the deprecations are removed,
which is the responsibility of each team member. Be aware of using
deprecation to put off the ‘boring’ refactoring work.

The single refactoring steps shall leave the system runnable, so that
integration is possible on a daily basis.

Behavior Conflicts

If we change the type structure of a class hierarchy or single classes of
the system, different kinds of conflicts can arise. On the one hand,
structure or type conflicts, which are noticed by the compiler, can
occur. An example hereof are polymorphic assignments. On the other
hand, behavior conflicts that will not be found by the compiler can
emerge. For instance, this is the case when methods inside the inher-
itance hierarchy get overloaded, or when the type is checked via
instanceof, and, as the case may be, a downcast takes place.

Modifications of the type hierarchy are extremely problematic.
They must be thoroughly analyzed and planned. Choosing the
right refactoring route is of utmost importance.

The overloading of methods in an inheritance hierarchy can lead to
unsolicited behavioral changes during large refactorings. For
instance, if we change a method’s signature, a number of problems
will follow in the wake of this change: if the original method over-
rode a method from the superclass, this must not necessarily be the
case with the changed method. The opposite can also occur: a
changed method in its new version unintentionally overwrites a
method from one of the superclasses. Fortunately, modern tools
warn the developer if used for such a signature change.

The relocation of a method to a superclass can cause difficulties
when the same method already exists in the superclass, but with a
different kind of implementation. This raises the question if the
implementation can also be adopted in the superclass. If not, the
method cannot simply be moved to the superclass.

No Specific Order for
Deprecated Warnings

Continuous Integration

Structure and Behavior
Conflicts

Modifications of the
Type Hierarchy

Additional Problems
through Overloading

Relocating Methods

|120

4 Large Refactorings

Example

4.2.11 Practice: Inline Method
Problem

During stepwise refactorings, in most cases old and new structures will
exist side by side for a limited time. The old structures are marked with
the deprecated tag. This procedure primarily serves to track references
to the old structure and incrementally remove it. In a Java environ-
ment this is particularly easy to do, because the compiler lists refer-
ences to deprecated classes and methods with corresponding warnings.

Developers will often proceed to search all references for the dep-
recated class or method and adjust the according code to the new
method or class. For a very comprehensive system this can cause a lot
of work.

Solution

In an article for the XP-2003 conference, Tammo Freese suggests using
the inline method refactoring in such a refactoring process. The basic
idea is an implementation of the method marked deprecated based on
the new method. The next step is to disperse the deprecated method
via the inline method.

Let us look at a brief example: we wish to replace the method
print with printDocument. For this purpose, we already marked
the old method print as deprecated and moved its implementa-
tion into the new method printDocument.

/**
* @deprecated use printDocument instead
*/

public void print (String doc)
printDocument (new Document (doc)) ;

public void printDocument (Document obj) {
implementation

Now, we will find several calls of the old method print in our sys-
tem’s source code, for example:

String myDocument = ...;

4.3 Fragments of Large Refactorings

121|

myPrinter.print (myDocument) ;

If we proceed to conduct an inline method refactoring of the method
print with the aid of the correlating IDE, all calls of the old method
will be replaced by its implementation. Cleverly, we implemented the
old method in such a way that it simply calls the new method (while
converting parameters or return types, if these have changed, where
applicable). Thus, after inline method refactoring, the reference to the
old method will be directly replaced by a call of the new method:

String myDocument = ...;

myPrinter.printDocument (
new Document (myDocument)) ;

In his article, Freese takes this approach even further and shows how
refactorings can also be used for APIs. For the large refactorings we
are surveying in this chapter, the simple handling of the case described
here will be sufficient in most situations. The inline method refactoring
lets us elegantly alter those incidents in the code that call deprecated
methods. Since for an inline method refactoring it doesn’t matter how
many occurrences in the code must be modified, this refactoring is very
helpful in the restructuring of big systems.

Of course the inline method refactoring will work only if the old
method, marked deprecated, can be implemented based on the new
method. Should it not be feasible to move the implementation into the
new method because both implementations are needed, an inline
method refactoring does not make sense.

The example we just gave also shows that the inline method refac-
toring can in some cases introduce exactly the kind of ‘pollution’ that
was supposed to be eradicated by the new method (here the use of the
string instead of the class Document) to the calls.

4.3 Fragments of Large Refactorings

After we have discussed organizational and development process-
relevant aspects of large refactorings, we will now deal with functional
patterns that can help us with our large refactoring work. However,
we must admit that the field of large refactorings is as yet very young.
Therefore, we are unable to provide a catalogue similar to Fowler’s
refactoring catalogue (Fowler, 1999). It may well be possible that there

Using Inline Method for
Large Refactorings

Limitations

|122

4 Large Refactorings

Fig. 4-4
Moving Classes

are too many variations of large refactorings to allow the creation of a
refactoring catalogue.

Nevertheless, we would like to take a first step towards creating a
refactoring catalogue and present fragments of large refactorings. In
the last chapter, we saw that architecture smells accumulate in rela-
tionships between classes, packages, subsystems and layers: often
lumps must be disentangled.

A project-specific analysis of what refactoring route makes sense
to remove an existing architecture smell is required. In these refactor-
ing routes, certain fragments will recur.

43.1 Moving Classes

It is amazing how many architecture smells can be eliminated by sim-
ply moving classes. Often cycles between packages, subsystems and
layers do not imply the existence of cycles between classes (Figure 4-4).

1 1
Customer = Order
Bestseller : Product
1 —
Customer Order
Product = Bestseller

One should be careful though not to make the mistake of moving
classes around without heeding their meaning, before all cycles have
been eradicated. If single packages, subsystems or layers lose their
internal coherence, the damage will be greater than the benefit.

In Java, the moving of a class usually means that the class is put
into a new package. Since the package name is part of the fully quali-
fied name of the class, moving means first merely changing the name
of the class. In the case of Java, it should be taken into account that

4.3 Fragments of Large Refactorings

123|

package-wide visibility is given (protected modifier or leaving out
package visibility). Thus moving a class into another package could
cause visibility problems.

The single steps for moving a class or an interface are:

1. If the class or the interface are merely visible package-wide: set
class/interface to public.

2. Set all attributes and methods in the class/interface that are vis-
ible package-wide to public.

3. For all attributes and methods that are protected, check if they
are used via classes/interfaces of the same package. Also, set at-
tributes and methods to which this applies to public, too.

4. Change the package of the class/interface.

If you are dealing with a development environment that offers refac-
toring support or a refactoring browser, consider yourself lucky. It will
allow you to alter the package name automatically.

Should there be no support available for automatically changing
package names, this process will be quite arduous. This is because
the package name of a class cannot be changed in small steps; just
as this is impossible for renaming a class [the reason why Fowler
(1999) does not offer a refactoring labeled rename class].

In this case, you have to swallow the bitter pill: change the package
of the class/interface and then — one by one - fix all error messages.
You can either do that in a branch, or you commit the class with a
new package name. Afterwards all developers have to adapt all ref-
erences in a single, concerted effort.

The renaming of a class with IDE support can be made easier if
you use the following little trick: Instead of renaming the class directly,
introduce a new class with the respective name. The old class’s method
declarations are copied into the new class and a delegation will be
implemented. To this end, an object of the new class must be refer-
enced to an object of the old class, and a temporary cyclic uses relation
between the old and the new class be introduced. This uses relation
enables skipping between types within the system. It is indispensable
to generate a new type for each object of an old type (and vice versa).
Thus, all references to the old class can be adapted to the new class
step by step.

This approach will be problematic though if the class to be renamed
possesses subclasses, because subclasses can either only inherit from the
old class or from the new class.

|124

4 Large Refactorings

Fig. 4-5
Introducing a Facade

4.3.2 Introducing a Dependency Graph Facade

In order to structure dependencies between packages, subsystems and
layers it can be useful to hide a number of classes behind a facade.
Whereas in Gamma et al. (1994) facades are employed to simplify the
handling of multiple classes, we can also use a facade to hide a subsys-
tem’s dependency graphs from the client of that subsystem. This allows
easier modifications of relations between single classes within that sub-
system without having these modifications affect the subsystem’s clients.

In the context of the refactoring described here, we assume that
the client only depends on the class graph via uses, but not via inherit-
ance. If inheritance relations exist, these must first be removed, for
example by replacing them with uses relations (Figure 4-5).

=
T]
&

‘ Client } ﬁ| Facade |

1
We proceed on the assumption that the client requests all objects to
be encapsulated directly or indirectly from a root object. This means that
the client uses the class of the root object as well as those classes used by
the root object via get methods. This situation can easily emerge if the
“Tell don’t ask’ principle has been violated.
The facade can be introduced in the following steps. The first three

steps introduce a level of indirection. The remaining steps ensure that
the new level of indirection is used by the rest of the code:

1. Create the facade class, which will generate a root class ob-
ject in the constructor. The facade class contains the same

4.3 Fragments of Large Refactorings

125|

constructors as the root class. Add a method to the facade
class that can request the encapsulated object.*

2. For each method that is called by the client on the root class,
create an identical method in the facade class. The methods in
the facade class call the respective methods in the root class.

3. Step by step, change all instantiations of the root class to the
facade class. Then directly invoke the encapsulated root object
on the facade object and proceed to work with the latter.

4. Delay the calling of the root object incrementally and change
the method calls from the root object to the facade object. Pro-
ceed stepwise. Depending on the circumstances, it might be
possible to ease the search for method calls that must be altered
by temporarily setting the root class methods to deprecated.
Add a comment to the source code stating that the deprecated
tags are only transitional. Otherwise, some over-eager colleagues
of yours might accidentally delete them.

5. Proceed similarly to step 4 with all objects that are directly or
indirectly referenced to the root class.

6. Remove the temporary deprecated tags.

7. Reduce the visibility of the root class to the package, so that
the class can only be accessed indirectly via the facade.

The introduction of a facade resembles the ‘Hide Delegate’ refactoring
described in Fowler (1999, p. 157).

43.3 Moving a Class within the Inheritance Hierarchy

Errors in inheritance hierarchies can have quite unpleasant conse-
quences. While the hierarchy might be okay for a while, changes to the
superclass, particularly semantic shifts, often cause subclasses to be no
longer good citizens of the hierarchy. As a result, the system often gets
flooded with instanceof type checks to adapt the semantic differ-
ences on the client side. The inheritance hierarchy will become difficult
to understand and to extend. The desired flexibility through polymor-
phy becomes a source of errors.

Therefore, classes must sometimes be moved within the inherit-
ance hierarchy (see Figure 4-6).

4 We assume that the root class itself is not going to be used as a facade here to

affect its interface as little as possible.

|126

4 Large Refactorings

Fig. 4-6
Moving a Class in an
Inheritance Hierarchy

Setting Inheritance
Relations to deprecated

| List
UnsodedLBt\
A
SortedList \

$

LA

UnsoﬁedLBt\ | SonédLBt

Modifications of the inheritance hierarchy are problematic, partic-
ularly the moving of classes within an inheritance hierarchy. The
resulting problems and type errors of polymorphic assignments are
often not curable in a step-by-step revision. The complete system will
only be flawlessly compilable when all type errors have been erased.

This situation can significantly be improved by refactoring clients
to use List instead of UnsortedList or SortedList. Unfortunately
this is not possible for all cases, for example if clients make use of addi-
tional methods that are introduced in one of List s subclasses.

The following single steps can at least contribute to alleviating this
problem:

1. To move a class within an inheritance hierarchy, first create a
new class in the selected place.

2. Copy the old class’s implementation into the new class.

3. Set the old class to deprecated.

4. Work off the deprecated warnings and step by step adapt all
occurrences of the old class in the code.

5. Once the old class is no longer in use, it can be deleted.

To support step 4 in a more elegant fashion, we would like to see the
compiler alerting us to all polymorphic assignments of the old class as
well as their superclasses. Instead of setting the old class to depre-
cated, we would rather mark the inheritance relation between the old
class and its superclass as deprecated. The compiler should then issue

4.3 Fragments of Large Refactorings

127|

warnings to indicate where the obsolete inheritance hierarchy is still
in use. This is, for example, the case with polymorphic assignments.

We have implemented an Eclipse plugin as a prototype functional-
ity in the course of the JMigrator project.

In addition, an adapter construct can help to simplify the transi-
tion from the old subclass to the new one. The trick is to introduce a
temporary uses relation between the old and the new subclass. A
method geto1d that is also temporary can request an according object
of the old subclass from an object of the new one. At runtime, there
will always be an object of the new subclass and an object of the old
subclass as a pair, and the new subclass delegates its methods to the old
subclass (Figure 4-7).

List
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object

—

UnsortedList ' SortedList

+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(in index : int) : Object +get(in index : int) : Object

+ insertAt(in index : int, in o : Object)

+setComparator(in ¢ : Comparator)

%
GG ortedi-iot
+add(in o : Object)

+getSize() : int e
+get(in index : int) : Object

+getComparator(in ¢ : Comparator)

If a class has until now used the old subclass 01dsortedList, the
method can be adapted to SortedList in a rather segregated manner.
If an invoked method still expects an object from the old subclass, the
respective object can be requested from OldSortedList via getOld
and passed on to the calling method. The opposite proceeding is also
feasible.

Comparisons can be problematic if you use the adapter solution.
Naturally, the methods equals and hashcode must be implemented in
Java in such a way that the old object and new object are identical. If
you check for identity in the system using ==, disparity between the old
and the new object will be stated. For each single occurrence, you must
decide whether this behavior is desired or not.

Adapters Ease the
Refactoring Process

Fig. 4-7
Temporary Uses
Relation between
SortedList and
OldSortedList

|128

4 Large Refactorings

Fig. 4-8
Changing Class
Inheritance to Interface

Since == does not constitute a method, it is usually not possible in
development environments to get a report of all occurrences in the
source code where objects of a type are compared via ==.

43.4 Changing Class Inheritance to Interface

Inheritance couples classes more strongly than the implementation of
interfaces. The reason is that in inheritance relations between classes
the subclasses must in principle know the superclass’s supervisory con-
trol flow. This is not the case for the implementation of interfaces.
After all, an interface alone will not implement a supervisory control
flow. Of course a class that implements an interface must often know
in which context the single interface methods are called by clients. All
in all, the dependency is expressed more explicitly though.

Of course inheritance between classes continues to be useful.
When dealing with inheritance between classes from different subsys-
tems, you should check if it isn’t smarter to have the subsystem define
an interface via the superclass (Figure 4-8).

1

A
A
Client

«Interface»
B

Client

Taking the example from Figure 4-9, we think of class A as a
member of a subsystem. The client of the subsystem subclasses A in
order to specialize some of the behavior. The functionality of the sub-
class is used through the superclass A by some other parts of the
subsystem in which A is defined. In order to replace the inheritance

4.3 Fragments of Large Refactorings

129|

relationship between A and the subclass, you can utilize the follow-
ing steps (see also Figure 4-9):

1.

Create an interface B with all redefined methods from A.

2. Let all subclasses of A that are located outside this subsystem

implement interface B.

Step by step, add default implementations from B’s methods to

each client which has not yet implemented them. The default

implementations must display the same behavior as those

methods of the same name in A.

. Adapt A incrementally in such a manner that instead of hook
methods, methods from B will be called. This will temporarily
create a situation in which A will know the clients via inherit-
ance and use them at runtime (step 3 in Figure 4-9).

. If A no longer calls any methods on itself which may have re-
defined clients, delete inheritance relations between the clients
and A.

. In the second step, the new methods of the clients have been
implemented in such a way that they adopted the behavior of
A’s methods of the same name. This may have created redun-
dancies that can be removed by placing the redundant imple-
mentations in a help class.

—1 —|
«Interface»
A :
:{) :
i .

1

@
«Interface» «Interface»
| R

% Client

The switching from class inheritance to interfaces is a typical step to be
executed when a white box framework is further developed into a
black box framework (see Foote & Opdyke, 1995).

Fig. 4-9
The Single Steps of the
Refactoring

|130

4 Large Refactorings

Fig. 4-10
A General Procedure for
Removing Cycles

4.3.5 The Classic Removing of Cycles

Software engineering knows a classic, universal procedure for remov-
ing cycles between two artifacts A and B. To this end, B is split into
two segments B1 and B2, so that A depends on B1 and B2 depends on
A. Depending on the situation, either B1 and B2 are independent from
each other, or B2 must depend on B1 (see Figure 4-10, here the variant
on the left-hand side). The opposite case — having B1 depending on B2 —
would be a mistake in the selection of B1 and B2. Then A would again
be part of a cycle (A->B1->B2->A, see Figure 4-10, the variant on the
right).

[“} B1 [> B1

A _ A A \I/
l— B2 — B2

An example for the left variant is the observer pattern (see Gamma
et al. 1994). There the direct dependency between the subject (A) and
the observer (B) is resolved by using an interface Observable (B1).

It is also thinkable that a cyclic dependency exists between B1 and
B2. Then the procedure depicted here must also be applied to B1 and
B2. In this way, the cycles can iteratively be made smaller and smaller
until they eventually disappear altogether (see Figure 4-11).

5 While this approach removes cycles in dependency relationships, it does not

break dependencies. You still need all pieces in order to test one piece, for
example.

4.3 Fragments of Large Refactorings 131 |

Fig. 4-11

A B Iterative Removing of

Cycles

B2

A L

o
B2a B2b

This method can be used to remove cycles between classes, pack-
ages, subsystems or layers.

The previously described moving of classes works like the proce-
dure depicted here, if the moved class is delegated to a new package or
subsystem.

The procedure presented here will work universally, but without
utilizing the possibilities object-orientation offers: the removing of cycles
with DIP (see next section) utilizes the inheritance relation for the
removal of cycles. This method will often let you remove cycles between
classes in a smart fashion.

43.6 Removing Class Cycles with DIP

Cycles between two classes A and B can be removed in an elegant man-
ner when DIP (Dependency Inversion Principle, see Martin, 1997) is
used. For this purpose, we introduce a new interface that contains all
methods that A calls on B. A only knows the interface that is imple-
mented by B (see Figure 4-12).

|132

4 Large Refactorings

Fig. 4-12
Removing Class Cycles
with DIP

A B

«Interface»
- Bl

8

B

If you compare Figure 4-12 with the structure depicted in Figure 4-
10, it becomes obvious that the dependency relations turn out to be
identical after restructuring. Only the nature of B2’s dependency from
B1 will have changed.

This refactoring requires the following proceeding:

1. Extract interface BI from class B. The interface must contain
all methods of B that are needed by A. B implements BI.

2. In A, set all references that are not required for object genera-
tion from B to BI.

3. If references exist in A for the generation of B, introduce a plu-
gin (see next section).

You will experience the limitations of this refactoring when A does not
only use class B, but also generates instances of B. After all, A cannot
generate instances of the newly introduced interface BI. Clearly, the
generation must be relegated from A. This can happen if, for example,
the client of A generates instances of B and passes them on to A.
Another approach would be to use a subclass of A to create the appro-
priate instances or to use factories. Alternatively, you can introduce
plugins (see next section).

4.3.7 Introducing a Plugin

It is possible to use interfaces to reduce couplings — particularly
between subsystems. A client will then no longer directly use a certain
class, but only an interface. Thus it is feasible to use any classes at
runtime, as long as these classes implement the used interface.

4.3 Fragments of Large Refactorings

133|

However, this does not answer the question of where the objects
implementing the interface come from. If the client itself generates the
objects, it must know the concrete classes for their generation (and
thereby reintroduce the dependency the interface intended to circum-
vent). On top of everything, the client must also implement the case
statement which serves to determine from which class the object shall
be generated.

One solution to this problem can be found in the Plugin pattern
(see Fowler 2003, p. 499). The interface defines an extension point
into which plugins — the classes implementing the interface — can be
plugged. To enable the plugin’s integration into the system with as lit-
tle effort as possible, the classes are registered in a PluginRegistry.
Objects of the plugin classes can be generated using the PluginRegis-
try (see Figure 4-13).

«Interface»
Client | IdGenerator

IdGenerator gen; [N MJ InMemory Dbld
if IN_MEMORY_COUNTER) = C £ G t
gen = new InMemoryCounter(); | ounter enerator
else —
| gen = new DbldGenerator();
~

: [«Interface»
Client | “| IdGenerator
JA

Inl'\.l'le.mor},r Dbld
Counter Generator

A A

PluginRegistry i
getPlugin(Class type):0bject | j

The following single steps must be taken for this refactoring:

1. Search for all references to those classes that implement the
interface. Replace all references that are not used for object
generation with the interface. If the interface does not provide
a required method, pull it up into the interface. Please note: the
method should make sense in the context of the interface.

2. Implement the class PluginRegistry. The PluginRegistry
will be parameterized with information that allows you to find

Fig. 4-13
Introducing a Plugin

|134

4 Large Refactorings

the suitable class for a requested interface. Alternatively, the
PluginRegistry itself can get the needed information (for ex-
ample from a property file). Please make sure not to introduce
a mechanism that makes it more complicated to test those
classes.

3. Search for all remaining references to the concrete classes that
implement the interface. These references can only be object
generations, since all other references have been eliminated in
the first step. Replace these generations with calls of the P1ug-
inRegistry’s generation method.

4. To prevent the direct instantiation of subclasses in the future, it
is in many cases advisable to set the subclasses or at least their
constructors to package-wide visibility. It is recommended that
you place the interface, the PluginRegistry and the classes
implementing the interface in the same package.

The development of plugins is a logical consequence of DIP. They also
facilitate the reduction of dependencies during object generation (see
also Fowler, 2004).

Today, the plugin concept is discussed in various literary sources.
Besides Fowler, Evans describes a similar design for domain modeling
with his Pluggable Component Framework (see Evans, 2003, p. 475).

The Eclipse development environment offers a plugin model that
enables third-party vendors to expand the development environment
by their own plugins (see Bolour, 2003]). The Eclipse development
environment itself is based on plugins. Therefore, it is possible to use
the Eclipse plugin mechanism without the development environment
for application development. The developers of Eclipse used this ability
to build the Eclipse Rich Client Platform for application development.

Excursion: Refactorings are the Work of Human Beings

A contribution by Dierk Konig, Canoo Engineering AG
(dierk.koenig@canoo.com)

In dealing with refactorings, organizational and functional aspects
must be observed. These can be described by scrutinizing the pro-
cesses and tools that are involved. This is the objectively comprehen-
sible side of refactoring processes.

Moreover, there is another side that is much more elusive: this is
the part concerned with the people involved and their interactions?.
This is the area that I will try to chart here, and I am going to intro-
duce an explanatory framework which helped me at least to find
some direction.

4.3 Fragments of Large Refactorings

135|

In the year 2003, we conducted a nice project: about 7 develop-
ers dealt with web technology and a strong database component for
more than 5 months. On the agile practice side, we had soon
installed automated testing, continuous integration, short release
cycles as well as incremental/iterative development. We could coop-
erate locally and also were in close proximity to our customer. Pair-
ing took place only in part. And the planning procedure was an
entirely different story...

The ‘basic’ refactorings didn’t pose a problem. Thanks to the
support of conventional tools, only a few errors occurred. Those
were recognized and intercepted by functional tests. Typical error
sources were the symbolic references in Struts/JSP.

We even managed to get a grip on the ‘common’ database refac-
torings including adjustments to the schemas. Here, the first human
aspect came into play: all of us had to simultaneously work on the
same database instance, and we constantly stepped on each others’
toes. This fact continued to get on our nerves until at last one devel-
oper took the initiative and — without it being scheduled — extended
the database abstraction layer in such a way that everyone could ‘vir-
tually’ use their own database instance.” Time needed: about half a
day.

Now we were able to completely erase our own databases prior
to each test run, newly construct the schemas and populate them
with data. Afterwards, this part ran smoothly.

In the middle of the third iteration, things started to become
critical...

Our database abstraction layer and our entire shared work on the
code base — our architecture, if you will — became increasingly unclear.
Our developer with the strongest knack for architecture took on the
task of changing that, saying he wished “to clean up here.”

This task had a clear-cut, functional aspect, the usefulness of
which was unquestioned. But our developer decided to tackle
another aspect that was more about how ‘one’ can solve such a prob-
lem ‘correctly’ and ‘elegantly.’

Our efforts to solve the problem dragged along. For many days
no commit would be entered into the repository. A week passed. A
second week went by. The developer didn’t explicitly refuse pairing
offers, but he clearly preferred to work alone. He was also against
committing intermediary increments that weren’t ‘perfect’ yet. Team
members piped up: “What is he actually doing there?”, “Do we really
need this?” and so on.

He repeatedly had to interrupt his work to provide support in his
field of specialization. This led to further delays.

|136

4 Large Refactorings

To keep up with team’s progress, he had to increase his synchro-
nization efforts.¢

In the end, the required integration demand was extremely high
by our standards.

We all acknowledged that the new solution actually was an
improvement. However, we regretted that it had arrived so late it
could no longer be fully effective, and that it had cost so much pre-
cious project time.

No-one was really happy with that large refactoring. The solu-
tion was not ‘perfect’ yet. The effort that had gone into it wasn’t jus-
tified by the result. Spirits were low. Should we have opted for
another architecture right from the start? Should we have done with-
out the refactoring altogether? Both seemed wrong alternatives to us.

We certainly would have obtained a better result if we had been

able to read this book before taking on that project. Then we would
have had:

the whole team plan the large refactoring; and
conducted it in pairs; and
realized it in small increments.

However, the question of how we could have dealt with different ten-
dencies in the team remains: is efficiency more important (‘good
enough’ and quickly developed), or perfection (the only way to do it
‘right’). What is valid? What is better?

I am not able to take sides with one party. Both are right. In my
view, a fifty—fifty compromise is not an adequate solution here.
Instead, I tried to look at the positions from a systemic standpoint.

Efficiency < > Perfection
A A
Y >.<r A 4
‘Ugly’ Solution Waste of Resources

Development and Value Diagram

4.3 Fragments of Large Refactorings

137|

This is a development and value diagram according to Schulz von
Thun (1989).

Efficiency is a value, and it is good to achieve it. Let’s say: E rep-
resents this value.

Perfection is also a value, and it is good to achieve this value too.
Let’s say: P represents this value.

If you overdo your striving for efficiency, you will obtain a solu-
tion that is ‘ugly.’

If you overdo your striving for perfection, you will waste
resources.

The arrows in this diagram are pivotal. The diagonal arrows repre-
sent fears and (possibly unspoken) accusations:

P accuses E of building ‘unclean solutions,” having no sense of
quality, etc. At the same time, P is afraid of being reproached for
the same things.

Vice versa, E accuses P of wasting resources. On the other hand,
E fears that he could face the same accusations.

One should keep in mind that “fear and aspiration are siamese
twins” (Schulz von Thun, 1989).

P would like to be as efficient as E, if he could only maintain his
quality level at the same time.

E would like to be as perfect as P, if this were possible without
losing time.

This recognition forms the basis for a development approach that
unites the striving for perfection with the striving for efficiency.

This approach does not imply that you do less of what you think
is important. It is about uniting one’s own position with the other’s
point of view, so that you — speaking in terms of our diagram —
‘develop upwards.’

How can this be accomplished?

Sometimes it is enough to let all team members participate in the
creation of the development and value diagram, to let them find their
own solution. If no solution is found, here are a few suggestions:

The advice to take small steps is backed up by another argument:
small steps lead to an added value within a short time, and this
will appease E. Smaller tasks can be handled more easily in suffi-
cient quality. This will alleviate P’s fears.

|138

4 Large Refactorings

The team’s ‘Go!’ in favor of a refactoring usually diminishes the
risk of accusations.

E and P team up in a pair for the refactoring to keep each other in
line. This is not possible if both — which is often the case — have
problems on the relationship level. Such problems must be settled
first. “[The] technology [group] (detached, controlling, bent on
proving themselves and aggressive-debasing) [has] to learn most
in this scenario: Used to operating argumentatively and solution-
oriented on the content level, they will often oscillate between
exaggerated distancing themselves from others, dogmatism, help-
lessness and aggression on the relationship level” (Schulz von
Thun, 1989, p. 248).

A coach can help to hear voices coming from the lower corners of
the diagram, to put them into perspective and offer possible sup-
plementing values. Typical phrases are: “let’s finish it quickly
before...,” «
rectly,”

<«

only this one here” and on the other end “one,” “cor-
elegant,” “architecture,” etc.

As our project’s coach, I wasn’t as successful with this approach as I
would have liked to be. As far as I can judge, I could contribute to
fostering the mutual understanding and appreciation between those
involved, but their actual behavior did not change visibly for the
short term.

Mutual respect is the basis for each progress in a dialogue.
Once Kent Beck and I had a long e-mail discussion with differing
opinions. He finally replied: “Progress comes from the disagreement
of friends.” There is a whole world of meaning summed up in this
one sentence.

What is valid for a team can also be valid for a single person.
Friedemann Schulz von Thun explains in his book the analogy
between a team that consists of various persons and the various
‘voices’ that are united inside a single person (see Schulz von Thun,
1998). He calls this phenomenon ‘the inner team.’

Whenever I am facing a refactoring, I can feel the dispute
between E and P in myself. At best, a programming partner will be at
my side, with whom I can discuss openly to resolve stalemate situa-
tions. At worst, I will reproach myself until I have a bad conscience
or until I suppress any thought of either E or P.

If the previously described model finds your favor, you can find
an even wider field for its application, for example:

To counteract the fear of an unnoticed introduction of mistakes
through refactorings and of ‘encrusted’ code.

4.3 Fragments of Large Refactorings

139|

To counteract project-bureaucracy (fear of loss of control) and
hacking (fear of loss of freedom).

To obtain a concrete, detailed view of the code, e.g. through unit
tests that deliver fast feedback and an abstract, architectural view
— for example with the aid of Sotograph.d

Etc.

Where do I stand in this system if I either adamantly refuse to apply
Big Design Upfront, the Life Cycle model, or MS project charts, or if
I think that they are indispensable?

4 The Agile Manifesto: “...people and interactions over pro-

cesses and tools....”

Realized with conventions for the table names.
¢ Merging of the HEAD with its branch.

d- 1 call it ‘programming distance.’

Excursion: Sustainable Architecture
A contribution by Klaus Marquardt, marquardt@acm.org

Redesign

You may be familiar with the following situation because of your
own, painful experiences: a project has been finished, but with a lot
of stress for all involved. Many goals have been reached, but the
more experienced developers are left with a very bad feeling: they
know that the code basis will continue to exist, but on the way to the
last milestone, too much of the originally wanted structure has been
changed and undermined by faulty, half-hearted solutions. They’ll
walk up to their boss or customer and ask for two team months to
carry out a ‘redesign,’ i.e. to ‘clean up’ — and they won’t get permis-
sion to do so.

When I assume the customer’s position, I can perfectly under-
stand this decision. The project came dangerously close to failing,
now it’s time for it to make money. If I were in the customer’s posi-
tion, I wouldn’t allow any further budgeting without seeing clear cut
advantages for my business either. What value can an investor possi-
bly gain from a struggling team that even admits to working sloppily,
if not even new functions are being added?

Dependency Management

There are projects where the software’s internal structure directly
serves to achieve business success. I will use the project Olymp? as an
example here: Olymp is a plugin architectureP for the software of a

|140

4 Large Refactorings

family of medical devices. The basis of all these devices forms a
framework for shared functions and abstractions. Via this frame-
work, specific domain components (applications) are implemented
as plugins. Products are created by ‘plugging together’ various appli-
cations with as little integration effort as possible. The software
required for integration is also realized as a plugin.

This architecture suits the underlying organizational structure
very well. Each department can manifest its specialized knowledge in
an application software. Each single department is responsible for its
software. Each product has a definite source, which is also responsi-
ble for production, marketing and customer relations. However, all
applications profit from the extension of the framework, and all
products will potentially profit from powerful applications. The
architecture enables parallel development as well as congruency of
tasks and competencies; the placing of functions rather ‘low’ in this
building set system increases their reusability and also fosters a uni-
form exposure of the products to and behavior in the market.

On this level, the architecture of Olymp consists almost entirely
of the definition of responsibilities, dependencies and their manage-
ment. All further technology and complexity are secondary to these
aspects. This level directly supports the organization and its internal
business model. Thus the existence and maintenance of the architec-
ture makes sense. Refactorings that serve to maintain the structure or
increase its reuse will be actively supported by the investor.

Recognition

Each of these different plugins contributes to a series of layers,
among others, data, rules, algorithms, displays and operating ele-
ments. This view builds orthogonally on the separation of single plu-
gins. In its entirety, the structure of the whole software is almost ideal
for a static analysis. As a matter of fact, I built a kind of software
tomograph for my own purposes and used it to analyze the system in
rather long intervals. Due to the system’s clear organizational struc-
ture, [was very rarely surprised.

If T feel that dependency structures are important, these viola-
tions will document a communication problem. Violations that are
discovered in the course of formal checks are always found too late,
and pointing them out will only be partially convincing. This is why
I always perceived the use of these tools as a last resort which would
offer me an apparently objective justification for my goals.

It is much more difficult to assess if a class or a package have
been assigned to the correct unit regarding its task. I have not yet
come up with an idea for an automated test for this purpose. Instead,

4.3 Fragments of Large Refactorings

141|

I made the question of what would be the right location into a stan-
dard issue in design reviews. For each possible placement, I worked
out criteria and defined a specific order, stating which unit should
preferably contain classes.

Relocation within the logical structure frequently occurred in the
course of the project. It was suitably infamous, and eventually it was
dubbed ‘Cat-Ball.”® Relocation wishes stated in the design reviews
were not always popular, but for the sake of the greater good they
were accepted and the refactorings executed.

No Change Without Suffering

Actually, several projects are part of the Olymp architecture: one for
each plugin. The plugins in turn contain subprojects, because these
usually comprise code for various processors and embedded sys-
tems. In such a complex system, it is hard to make progress, espe-
cially during the early learning phases, because each change caused
by a refactoring has political consequences. To reach easier control-
lability and escalation paths, the first of these projects were united
under a common management. For some projects, this would hap-
pen by and by.

Nevertheless, fundamental changes concern many places in the
code of various subprojects. In most cases, the developers that are
involved perceive refactorings as disturbances of their routine — after
all, their own code works well, and they will not experience any
improvements that concern them. This perception goes as far as hav-
ing an imaginary barbed wire fence run around one’s ‘own’ field of
work; a fence that has even been established by the immediate
project manager. Our motto for compromises made under a common
project management was: Those who want to bring about change
must suffer. The person who carries out a refactoring is also respon-
sible for modifying the entire code of all affected plugins right away
and for getting the refactoring to run properly.

In spite of this at first glance frightening prospect, this proceed-
ing has proven to work well in the Olymp project. It reduced the
developers’ fear of interferences, because no-one could be accused of
having introduced thoughtless and arbitrary changes. At the same
time, the path was cleared for really important changes. We decided
we would (and wanted to) do without aids such as deprecated tags.
Last but not least, deprecated means that we are dealing with a
‘slow’ refactoring — one that has been partly put off to maintain com-
patibility. Such a careful approach was not necessary for a clear-cut,
comprehensive project under common management. The prerequisites

|142

4 Large Refactorings

for our approach were a certain amount of shared code ownership,
continuous integration, automated build & test, active support by
the version control system, as well as a team with a common goal.

Inside the Booth

Developments and modifications that cannot be completed in the
course of a few days or that require the combination of various expert
competencies are separated from the normal development process
and relegated to a booth. A booth is a separate branch of the version
control system that is being run parallel to the main development
process. As a rule, each developer (or pair of developers) will have
their own branch and deliver their results into the integration stream.
Here, a baseline will be drawn every couple of hours or days. Prior
to delivery, each developer must synchronize with the latest base-
line and carry out the required merges.d This leads to pressure in
exactly the right place: synchronization with colleagues can be timed
individually, but those who neglect synchronization for a longer
period will eventually have a lot to catch up with. However, it is
important that the decision when to synchronize can be made indi-
vidually and is thus able to suit each project situation as well as each
work style.

Bigger refactorings, like those that concern an API and several
components, can even take a couple of weeks. Afterwards, the col-
leagues in the booth must merge a lot — unless they had the foresight
to regularly synchronize with the current stage of integration during
this period. This synchronization cannot only affect the main branch,
but also occur inside the booth.

The booth creates a setting which makes sure that customers
who use a component or interface will not notice the modifications
that are going on, nor are they forced to make the necessary adjust-
ments themselves. Instead, they can go through with their original
plan. As long as all projects and partial projects can be handled as a
unit, no compatible interface must be serviced.

Active, But Patient Waiting

Once the software architect working with such a system has com-
pleted the preparatory work of creating a fitting structure and mutual
understanding and has established an adequate work process, he can
lean back and relax a bit. Further interventions are not productive as
long as the developers are coping well — on the contrary, it is more
likely that they would evoke defensive reactions from the developers.

4.4 Example: Lists

143|

Nevertheless, the architect must be alert at all times and respond at
once when problems or irregularities emerge.

This status quo reminds us of the work technique that is occa-
sionally dubbed ‘active, but patient waiting’ in the medical profes-
sion.® It is a matter of one’s personal experience to keep the balance
between waiting and intervening and to recognize when threshold
values have been reached.

Many aspects that an architect must consider in the course of the
project can wait until the right moment for dealing with them has
arrived. I like to document the points of recognition when these
moments have arrived in the form of diagnoses and the according
remedies as therapies. The advantage of this description method is
that very different solution strategies from different points of view
that are all valuable on their level of application (technological,
process-oriented and that of human interaction) are all summarized
in one place. Similar to a doctor of human medicine, a software
architect can treat problems solely based on their symptoms or try to
find the cause of these symptoms. He or she can work in an exclu-
sively technical way or choose a holistic approach. Some of the
smells in this book are also depicted as diagnoses.f

Sustainable Architecture

The blend of a decent technical solution, two-way adaptations of
both architecture and organizational structure, compliance of tech-
nology and a process that heeds the developers’ pace, the architect’s
attitude, as well as far-sighted concepts for handling the software’s
entire lifecycle — all these aspects account for a sustainable architec-
ture in my opinion. Such an architecture meets today’s needs without
existing at the expense of future releases or the developers.

Depicted in Marquardt & Volter (2003).

See Marquardt (1999).

Derived from the tossing of a category.

This is the typical mode of work under ClearCase UCM.
Thanks to Dr. Kerstin Marquardt for this verbalization.
See Marquardt (2001).

"m0 a0 o

4.4 Example: Lists

Let us take a look at an example to illustrate the discussions in this
chapter. This example is similar to a real-life large refactoring in one of
our projects.

a3

4 Large Refactorings

Fig. 4-14
List and
SortedList

Fig. 4-15
insertAtinList

4.4.1 The Starting Point

Initially, a system contains a class List® to allow the saving of objects
in lists. During development, it turns out that a sorted list is also
required. Its behavior is very similar to that of the already existent
class List. Consequently, we will derive SortedList from List (see

Figure 4-14).

The problems we depicted in the List class example also recur in
domain-specific classes. We, too, had trouble cracking these nuts. We

List
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object]

SortedList
+add(in o : Object)
+getSize() : int

+get(in index : int) : Object
+setComparator(in ¢ : Comparator)

had the following experience.

System development proceeds and the method insertat is intro-

duced to the class List (see Figure 4-15).

List

+add(in o : Object)

+getSize() : int

+get(in index : int) : Object
+insertAt(in index : int, in o : Object)

i

SortedList

+add(in o : Object)

+getSize() : int

+get(in index : int) : Object
+insertAt(in index : int, in o : Object)
+setComparator(in ¢ : Comparator)

Naturally, one will very rarely implement one’s own list classes. There is no
need to, because the required container classes are provided by standard
libraries for all popular programming languages. List classes are well suited
for our example though, because they are easy to understand.

4.4 Example: Lists

145|

In practice, it can take a lot of time until somebody realizes that
the design is somewhat crooked: insertat is meaningless in Sort-
edList, since the sort sequence specifies its position. Imagine you are
inserting an object into a list in a specific position and afterwards ask
for the object in that position. You would assume to get exactly the
same object you put into the list (as this is the contract with the inter-
face). In case you have created a SortedList, this contract would be
violated. As there is no reasonable way of not inheriting methods
from superclasses, something must be wrong with the inheritance
hierarchy.

The inheritance hierarchy though can effortlessly be corrected by
introducing another class labeled UnsortedList, which contains the
method insertat (see Figure 4-16).

List
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object

A
| |

UnsortedList SortedList
+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(in index : int) : Object +get(in index : int) : Object
+insertAt(in index : int, in o : Object

Getting there is not quite that simple, because the classes List and
SortedList are already being used all over the system and other
design smells (like the use of instanceof) impair a straightforward
refactoring. A quick sanity check to verify the impact of a refactoring
is to put the insertat method in comments and then compile. The
compile errors give an indication of the size of a refactoring and hint at
places where you may want to clean up first.

In one project, we were facing a related problem and chose the fol-
lowing (dangerous) approach.

4.4.2 TheFirst Approach

The class List is renamed UnsortedList to emphasize the problem in
the inheritance hierarchy (see Figure 4-17). It is worth integrating this
change to avoid merge conflicts because of double meanings of
UnsortedList before and after refactoring.

Fig. 4-16

Target Design:
insertAtin
UnsortedList

36 4 Large Refactorings

. F'g_' 4'1.7 UnsortedList
Renaming List in +add(in o - Object)

UnsortedList +getSize() : int
+get(in index : int) : Object
+insertAt(in index : int, in o : Object)

T

SortedList

+add(in o : Object)

+getSize() : int

+get(in index : int) : Object
+insertAt(in index : int, in o : Object)
+setComparator(in ¢ : Comparator)

Now the new class List is introduced as the superclass of Unsort -
edList. List receives the common methods add, getSize and get
(see Figure 4-18). In most cases the new class List should be declared
abstract to indicate that implementation subclasses are expected.

Fig. 4-18
New Superclass List

List
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object

UnsortedList

+add(in o : Object)

+getSize() : int

+get(in index : int) : Object
+insertAt(in index : int, in o : Object)

T

SortedList
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object
+insertAt(in index : int, in o : Object)
+setComparator(in ¢ : Comparator)

Positive is the fact that until now the changes of the inheritance
hierarchy took place mainly locally. Only the renaming affected other
parts of the system. Since most development environments carry out
renamings automatically and adjust all references, no significant effort
on our side was required.

The next step will be to move the class UnsortedList within the
inheritance hierarchy (see Figure 4-19).

4.4 Example: Lists 147 |

List List Fig. 4-19
+add(in 0 : Oblect) +add(in 0 : Object) Correct Insertion of
+getSize() : int +getSize() : int ;
Mnme%m Object +ged(n index: i) : Objec] UnsortedList
Unsortod

+add(in o : Objedt)

+etSize() : int I:>

+getfinindex : int) : Object

+insertAlfin index : int, in o : Object)

SortedList e— SortedLit
o 5 O +addino: Obiec) +addino: Objec)
ioelnidex:): Ot i - Ot oo Ot
FnseriAlfinindex : int,no: Objed] +nseAffnindex - int,ino: Object] | +eetComperatorfin ¢+ Cormperaio)

+setComparator(in ¢ : Comparator)

The class UnsortedList is moved in a split second. And now the The Drama Unfolds
drama unfolds: we get pelted with hundreds of error messages. Soon
enough, the reason becomes clear: some hundred or thousand times
we find method declarations of the following sort:

public void doSomething (UnsortedList list)

Originally, the parameter type List was in this place, but now it’s been
changed to UnsortedList in the course of renaming the classes. Not
only unsorted, but also sorted lists were generated in the system. The
latter create type problems:

SortedList list = new SortedList () ;

doSomething(list); // here the typo occurs

So, what can be done now? The initial impulse might be to swallow
this bitter pill and eradicate the type errors one after another. Unfor-
tunately this means that no compilable system state will be available
for quite some time. Depending on the number of occurrences that
need to be corrected, it might take unacceptably long for all errors to
be eliminated.”

Of course a better way would be to switch back right away and think of a bet-
ter way to perform the change. This is definitely what we would suggest. Nev-
ertheless, sometimes you get caught in the trap. This is what we wanted to
demonstrate here.

|148

4 Large Refactorings

Actually, things can get even worse, because faulty inheritance hier-
archies are often accompanied by very unpleasant long-term conse-
quences. The inheritance hierarchy will be straightened out in the client
code; usually with direct type queries (instanceof) and downcasts.

Most likely, our project example will present us with code of the
following kind:

public void doSomething (UnsortedList list) {
if (list instanceof SortedList) {
SortedList sl = (SortedList) list;
sl.setComparator (comp) ;

}

doSomethingElse (list) ;

}

However, we do remember that the parameter type was originally
called List, and the method implementation did not always look so
devastated.

Of course, another type error arises here. The compiler knows that
UnsortedList cannot be casted after SortedList. After all, Unsort-
edList is no longer a superclass of sortedList.

It is obvious how the method is supposed to look like instead. For-
tunately, we did correct the parameter of doSomethingElse before-

hand.

public void doSomething (SortedList sl) ({
sl.setComparator (comp) ;
doSomethingElse (sl) ;

}

Now, the whole matter is getting weird: two type errors have disap-
peared because the initially protested call and the invalid cast were
corrected. Instead, ten brand-new type errors have popped up. All of a
sudden, new portions of the code show type errors. A closer look
reveals code like this one:

UnsortedList list = new UnsortedList () ;
doSomething (list) ;

Wait a second — what is going on here? doSomething always used to
work with sorted lists, although this could not be deduced from the
method declaration. Now, this must be some glitch: due to the if-
construct in the original method implementation of doSomething, the
method call was without effect. Accordingly, it seems safe to delete the
doSomething call in this instance. If we weren’t so busy eliminating all
those type errors, we could run our tests now. And they would clearly

4.4 Example: Lists

149|

prove that our assumption of a useless method call is wrong. There
was a trick hidden in the original implementation of doSomething: the
method basically executed dosomethingElse — for the sorted as well
as for the unsorted lists. Only if a method with a sorted list was called
as a parameter, would the comparator produce a certain sort sequence.

Thus we find ourselves in major chaos with our refactoring. The
only means of escape from this scenario seems to be this one: we’ll
throw away our entire refactoring work, retrieve the latest working
version from the version control system and start over with a different
strategy. Admittedly, this is a worse idea than it appears to be at first
sight, because we have not only carried out the refactoring in a single
branch of the system, but also integrated at least its first steps into the
shared repository. This means that all developers have to return to the
last status quo prior to refactoring. Thus a couple of man weeks or
even months can easily be completely lost. Alternatively, one can try to
reverse the commenced refactoring step by step or execute it in a
branch, but the latter procedure is not without its drawbacks either.
We will come back to the discussion of branches later on.

Perhaps you will first deem the representation of this refactoring
somewhat hypothetical. Who would assemble such a messed-up sys-
tem without noticing it? We have actually repeatedly seen such systems
(and worse). Especially during long-term projects, unspeakable accu-
mulations of oddities appear to be the rule rather than the exception.

Interruptions of Large Refactorings

We already talked about how large refactorings can be broken down
in small increments. Furthermore, large refactorings often cannot be
completed within a short time frame. A development team will need
several days or even weeks until the whole large refactoring is finished.

In many projects, the developers do not have the option of dedicat-
ing several days or even weeks exclusively to one large refactoring. At
the same time, the software system’s development is supposed to
progress as well. To enable this, developers will put down the large
refactoring after a few steps have been carried out and continue with
another task (e.g. work on a new feature). Normally, they will resume
the refactoring at a later date.

4.4.3 The Second Approach

Let’s have another look at our list example. How should we have exe-
cuted it otherwise to successfully circumvent the cited pitfalls? Look at
Figure 4-20.

Starting All Over

[150 4 Large Refactorings

Fig. 4-20 List List
Start and Goal of the +add(in o : Object) +add(n o : Objed!)
i +getSizel) : int +getSize() : int
Refactoring s get(n ndex -) Obiect +getfnindex- i) : Obiect
+insertAt(in index : int, in 0 : Object) Q
a =
SortedList UnsortedList SortedList

+add(in o : Objec)) +add(in o : Object) +add(in o : Object)
+getSize() : int +getSize) : int +getSize() : int
+getfin index - int) : Object +gel{in index - int) : Object +getfinindex - in) : Object
+HnsertAl(in index : int, in o : Object) +nsertAlfin index : int, in o : Object)| +setCormparator(in ¢ : Comparator)
+setComparator(in ¢ : Comparator)

In our first attempt, we argued that List actually is an unsorted
list and renamed the class. Then we extracted a new superclass List.
Step 1 Now we’ll assume a slightly different perspective and argue that
there is nothing wrong with the class List. Only the method inser-
tat has no business in this particular class. We set the method to dep-
recated. In our next step, we generate a new subclass of List that we
label UnsortedList. The implementation of the insertaAt method is
copied to UnsortedList. See Figure 4-21.

Step 1: New Subclass
UnsortedList

+add(in o : Object)
+getSize() : int
+get(in index : int) : Object

A~

UnsortedList SortedList
+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(in index : int) : Object +get(in index : int) : Object
+insertAt(in index : int, in o : Object) +setComparator(in ¢ : Comparator)

In our first step, we followed the advice not to move classes inside
inheritance hierarchies, but to expand the hierarchy instead by creating
new classes. Immediately, we can see one positive effect of our action:
we didn’t get any compile errors. In their place we merely received a

4.4 Example: Lists

151|

number of deprecated warnings. They point to uses of the method
insertat under the type List in our system.’

Step by step, we can now analyze the calls of List.insertat and Step2
adapt them to UnsortedList.insertat. This process can be quite
time-consuming, if the method insertat is called on the type List.
However, it doesn’t matter in which order the deprecated warnings are
processed.

Let us take a closer look at various code sections in the system that
use insertAt. These sections reveal to us how these sections of the
code can be rearranged.

Replacing insertat with add

The simplest option is to substitute the insertat call with the call add.
This is only feasible though if it doesn’t matter in which position the
new object is inserted.

public void whatever (List list) {

list.insertAt (O, myobject) ;

}
... becomes ...

public void whatever (List list) {

list.add (myobject) ;

}

Adapting Parameter Types

Naturally, we cannot replace all calls of insertat with add calls. If we
did this, we could delete the method insertat altogether from List.
Therefore, we will again use a method that calls insertat and gets an
object of the type List as parameter:

public void something (List list) {

list.insertAt (i, myobject);

}

As nice as the use of deprecated warnings is, these warnings always harbor the
risk of never getting tackled. Therefore the use of the deprecation feature
requires some discipline to make sure the refactoring is not finished until all
deprecations are resolved.

|152

4 Large Refactorings

For this method, the method insertat is called on purpose to allow
insertion of the object myObject in a certain position in the list. This
means that in future the method will no longer get an object of the List
type, but one of the type UnsortedList instead. We want the method
something to look like this:

public void something (UnsortedList list)

list.insertAt (i, myobject);

}

If we change the parameter type of this method in a single step to
UnsortedList though, it is very likely that we will be confronted with
a multitude of compile errors, because the method is still used in its old
version in some places in the system. For instance:

public void uselList () {
List list = new List();

something(list) ;

}
Or:

public void useList (List list) {

something (list) ;

}

Now, we actually need to adapt all these references to our recently
altered method something to make the system compilable again.
However, such a proceeding is against both the principle of taking
many small steps rather than a single big one and the principle of
adhering to a consistent number of compile errors. So what can we do
instead?

Let us recall what our method looks like:

public void something (List list) {

list.insertAt (i, myobject);

}

As an alternative to simply changing the parameter type to Unsort-
edList, we will create a new method with the parameter Unsort-
edList and proceed to copy the old implementation.

4.4 Example: Lists

153|

public void something (List list) {

list.insertAt (i, myobject);

}
public void something (UnsortedList list) {

list.insertAt (i, myobject);

}

Initially, the new method is not going to change the system’s behavior,
because the methods are bound to the parameters via static types. It is
only applied where the new type UnsortedList is also already being
used, which suits us just fine here.

Now we only have to set the old something method to deprecated
and incrementally adapt its references to the new method.

/**
* @deprecated
*/

public void something (List list) {

list.insertAt (i, myobject);

}
public void something (UnsortedList list)

list.insertAt (i, myobject);

}

instanceof

In the section about the first refactoring route the following piece of
code gave us quite a headache:

public void doSomething (List list) {
if (list instanceof SortedList) {
SortedList sl = (SortedList) 1list;
sl.setComparator (comp) ;

}

doSomethingElse (1list) ;

}

The new refactoring route has rendered the same code less critical. As
long as the method doSomethingElse continues to expect an object of
the type List as parameter, the method can remain as it is. If doSome -
thingElse is adapted to require a parameter of the type Unsort-
edList, the method doSomething must be duplicated as well.

|154

4 Large Refactorings

Step 3

Once we have removed all calls of deprecated methods, we can fin-
ish the refactoring in a third step. To this end, we must merely remove
those methods that are obsolete and marked deprecated.

References and Further Reading

Bolour, A. 2003. Notes on the Eclipse Plugin Architecture.
http://www.eclipse.org/articles/Article-Plugin-architec-
ture/plugin_architecture.html. Article about the Eclipse plugin model.

Coplien, J.O. & Schmidt, D.C. 1995. Pattern Languages of Program
Design. Addison-Wesley. Contains many important articles about
software architectures and patterns.

Eclipse. http://www.eclipse.org. Website focusing on the open source
development environment Eclipse. Here you can download Eclipse
itself. You will also find documentations about various aspects of
Eclipse.

Evans, E. 2003. Domain Driven Design. Addison-Wesley. This excellent
book discusses domain driven design. For the context of this chapter,
the Pluggable Component Framework is relevant. (see p. 475).

FIT. http://fit.c2.com. FIT is a tool for conducting automated accep-
tance tests (including function tests). The tests are specified via
HTML tables (e.g. for tables containing input values and expected
output values for specific system functions), which are executed by
a test runner. Using fixtures, the test runner binds the application to
be tested to the tables containing the tests. In turn, the test results
are documented in HTML pages.

Fitnesse. http://www.fitnesse.org. Fitnesse is based on FIT. In addition
to FIT, it also offers a Wiki web which allows easier specification
and organization of tests.

Foote, B. & Opdyke, W.F. 1995. Lifecycle and refactoring patterns
that support evolution and reuse. In Coplien, J.O. & Schmidt, D.C.
(eds); Pattern Languages of Program Design. Addison-Wesley,
pp. 239-257. Groundwork article about frameworks.

Fowler, M. 1999. Refactoring—Improving the Design of Existing
Code. Addison-Wesley. This standard work on refactorings con-
tains a chapter about big refactorings that belong in the category of
the large refactorings addressed in this chapter of our book. Fowler
describes big refactorings as significant and recurring refactorings.

References and Further Reading

155|

Moreover, four typical larger refactorings are explained, but there
is no information whatsoever available on how large refactorings
should be treated in general.

Fowler, M. 2003. Patterns of Enterprise Application Architecture.
Addison-Wesley. Contains many important design patterns for the
programming of comprehensive business applications, also the plu-
gin pattern (among others).

Fowler, M. 2004. Inversion of Control Containers and the Dependency
Injection Pattern. http://martinfowler.com/articles/injection.html.
Here, Fowler focuses on the inversion of control containers and dis-
cusses several approaches to the generation of plugins.

Freese, T. 2003. Inline method considered belpful: an approach to
interface evolution. In Marchesi, M. & Succi, G. (eds), Proceedings
of the 4th International Conference on Extreme Programming and
Agile Processes in Software Engineering, XP 2004, Genova, Italy.
Springer, LNCS 2675. In this article, Freese depicts how the Inline
Method Refactoring can be used to enable a stepwise evolution of
interfaces. In our book, we are using a simplified variety of that
technique to resolve deprecated methods.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. 1994. Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison-
Wesley. The design pattern bible. Also contains the facade pattern.

Hoffman, M.A 2003. Automated impact analysis of object-oriented
software systems. In OOPSLA 2003 Companion. ACM Press. In
this extension of his abstract, Hoffman writes about a tool that
allows the conduction of several types of impact analyses. Particu-
larly interesting is the predictive impact analysis option to antici-
pate the impact of changes.

JMigrator. htip://sourceforge.net/projects/imigrator. JMigrator is an
open source project that provides support for modifications to sub-
system APIs. Parts of its functionality can be utilized for large
refactorings, e.g. for the detection of polymorphic assignments.
JMigrator is realized as an Eclipse plugin. At press time of this book,
JMigrator is still in an early stage of development.

Lippert, M. 2004. Towards a proper integration of large refactorings
in agile software development. In Proceedings of XP 2004 Interna-
tional Conference on Extreme Programming and Agile Processes in
Software Engineering. Springer, LNCS. This XP-2004 conference
contribution elaborates on the problems of large refactorings in an

4 Large Refactorings

agile development process. It focuses on the organizational aspects
and obstacles and suggests the use of refactoring plans.

Marquardt, K. 2001. Patterns for plug-ins. In Dyson, P. & Devos, M.
(eds), Proceedings of the Fourth European Conference on Pattern
Languages of Programming and Computing (EuroPLoP 1999).
Universitats-Verlag Konstanz. This article describes typical pat-
terns of a plugin architecture and offers a number of patterns. In
addition to patterns on the architectural level, it contains patterns
for organizational and process-related issues and scrutinizes some
design decisions.

Marquardt, K. 2002. Dependency structures. Architectural diagnoses
and therapies. In Ruping, A., Eckstein, J. & Christa, S. (eds). Pro-
ceedings of the Sixth European Conference on Pattern Languages
of Programming and Computing (EuroPLoP 2001). Universitats-
Verlag Konstanz. In this article, a series of bad smells is portrayed
in the shape of diagnoses and therapies. The collection of diagnoses
primarily refers to architectural aspects and offers a series of possi-
ble therapies for each smell that will help to cure it.

Marquardt, K. & Voélter, M. 2003. Plug-ins—Applikationsspezifische
Erweiterungen. In JavaSpektrum 2/2003. Available online at:
http://www.sigs-datacom.de/sd/publica-
tions/pub_article_show.htm?& AID=1117& TABLE=sd_article.
The functional concepts of plugin architectures are introduced in
this source and compared to those of other component architec-
tures. The main topic is the impact of a plugin architecture and
related contract issues as well as a decision guidance, if this archi-
tecture type is useful for a specific project or not.

Martin, R.C. 1997. Stability. C++ Report. Even though this contribu-
tion is several years old, its content has neither collected dust, nor
is it C++-specific. In this article, DIP (Dependency Inversion Princi-
ple) is also described.

Schulz von Thun, E. 1998. Miteinander reden, Vol. 2. Rowohlt Taschen-
buch. Volume Two of this bestselling series. How to develop a
systemic view of mutual restraints and vicious circles in commu-
nication. Development and Value Diagram, personal ways of com-
munication, approaches to communication improvement.

Schulz von Thun, E 1998. Miteinander reden, Vol. 3. Rowohlt
Taschenbuch. Volume Three of this bestselling series. Analogies
between teams consisting of several persons and the inner team, the

References and Further Reading

157|

various voices within one person. Work methods of these teams:
side by side (without contact), disordered (without structure),
against each other (restraining), with one another (fostering). How
to remove blockades, integration of all members, team develop-
ment, coherent presentation of the (inner) team to the external
world.

159|

5
Refactoring of Relational Databases

In application development, mostly relational databases are employed
nowadays. Other than object-oriented programming languages, rela-
tional databases hardly offer any options for building modules. There-
fore, there is no way of locally limiting the effect of changes to a single
module.

Changes to relational database schemas (e.g. removal of a foreign
key from a table) will often affect expansive areas of the schemas and
thus create a need for comprehensive adaptations of the program.

This chapter addresses what modifications of relational database
schemas occur, and how these can effectively be embedded in large
refactorings.

Modifications of relational database schemas and the required
work in their wake (program adaptations, data migration, etc.) were
much discussed in the context of agile methods. This chapter will sur-
vey several of the discussion results, which means that the authors of
the concepts quoted here should be honored rather than us. We merely
assembled the information.

5.1 Differences between Databases and 00
Programming Languages

Before we get started, it is helpful to take a closer look at the differ-
ences between relational databases and object-oriented programming
languages:

The focus of relational databases is on the definition of data struc-
tures. Encapsulation through methods or the like is not possible. In
consequence, data access cannot be sensibly restricted.

Tables are connected via foreign key relations. These links too can-
not be encapsulated.

5 Refactoring of Relational Databases

Data in databases is persistent and outlasts a program run. If the
database schema is altered, the data must migrate.

If more than one installation of the system exists (e.g. at different
customers), there will also be different databases. Should the data-
base schema be changed, the respective change must be made for
each installation and the data of each schema must migrate.
Different users can access data simultaneously, while conceptually
each single user has his or her own copy of the program.

Classes can inherit from each other; tables and data can’t.

Source code can be changed locally from the developers’ terminals
and tested prior to reintegration in the shared code repository. Con-
flicts can be recognized and eradicated with the aid of powerful tools.
In most projects, the database is run centrally for all developers.
Source code can be managed with the support of version control
systems and administrated in variants. Database structures and
data can only be versioned with significantly greater effort.
Accessing data in the database takes a multiple of the time required
for accessing objects in the RAM.

The data structures in relational databases are shallow, whereas
they are deep and interlaced in OO systems.

5.2 Problems in the Interaction of Programs
and Database

The interaction of programs and database creates additional problems:

Program and database are often not coupled typesafe (as hap-
pens to be the case with JDBC, for example). The compiler has
no means of assessing if program and database are structurally
compatible. Suitable mapper classes or persistence layers will
take the problem elsewhere without solving it. Typesafety will be
lost inside the mapper classes or the persistency layer, not already
outside.

Databases will ‘hide’ objects when in one place of the program
objects are written to the database and then read out somewhere
else. Thus objects can be exchanged between parts of the program
without this process becoming visible at the program’s interfaces.
Frequently, a 1:1 relation between classes and tables is assumed,
which is often not correct for data-intensive applications. Specifi-
cally for reading in objects from the database, several tables must
be joined, or certain views must be applied for performance rea-
sons. As a result, there is no simple way of determining which
classes must be adapted in the course of database modifications.

5.3 Refactoring of Relational Database Schemas

161|

Conversely, it is not always clear how changes of class will affect
queries and views.

There is the odd case where a mapping between types in the data-
base and the primitive data types of the programming language
used will cause difficulties. For instance, the granularity of time
stamps (TIMESTAMP), floating point numbers of varying preci-
sion or strings of various character sets can deviate (milliseconds
versus nanoseconds).

In object-oriented systems, containment relations are modeled
based on the container (i.e. an account will know its balance). In
relational databases, 1:N relations are modeled precisely and vice
versa (due to foreign key relations balances knowing to which
account they belong). This means that there is no predefined
course of action for a refactoring.

Thus we have to consider three major areas for refactoring:

1. Refactoring of the database schema/the data model.

2. Migration of data between different versions of the database
schema.

3. Refactoring of the database access code.

5.3 Refactoring of Relational Database Schemas

In practice, a number of database schemas will exist in parallel. There
are at least fwo variations: one for the developers (the development
database) and one for the users (the production database).

Thus developers can try out modifications of a database without
affecting the system’s users. Only when the changes to the database
have been thoroughly tested and adapted to the system on which the
database is built, will the program and the new database schema be
made available to users with the next release.

Moreover, each developer should have his or her own database
instance to be able to test changes to the database in isolation from the
rest of the team. The existence of several database instances makes the
migration of data between various types of database schemas a pivotal
topic. We are going to discuss this topic in the following section.

In many refactorings a central principle of a stepwise evolution of
programs as well as of data structures is recurring: old structures are
not immediately replaced with new ones. Instead, old and new struc-
tures will exist side by side for some time. The old structure will be
marked deprecated to keep new parts of the program from accessing
it. Then the existing programs are modified; step by step they will be
adapted from the old structure to the new one. Once this has been

Development and
Production Database

One Database for
Each Developer

Refactoring a
Database Schema

|162

5 Refactoring of Relational Databases

Fig. 5-1
Coexistence of Old and
New Fields in a Table

accomplished, the old data structure will finally be deleted. Figure 5-1
shows the evolution of the table Customer. Initially, first and last name
were stored together in one field labeled Name. The two pieces of
information shall now be submitted to the fields First Name and Last
Name. To this end, both fields are added to the Name field and the lat-
ter marked. After all programs have been adapted to use First Name
and Last Name, the Name field is deleted.

In its intermediate state, the table Customer contains redundant
information (Name). Either the application can ensure that the data
will be consistent, or the problem is solved with the support of suitable
triggers.

Customer Customer Customer
Number Number Number
Name Name
Last Name Last Name
First Name First Name
Street Street Street
Zip Code Zip Code Zip Code
Town Town Town

In Java, program elements can be marked obsolete with the depre-
cated tag. In other programming languages as well as in the database
field, the search for an equivalent of this tag will be fruitless in most
cases.

In the relational database field, columns, tables, views or even
entire schemas will be marked deprecated, depending on the refactor-
ing that is applied. How these elements are marked as being obsolete is
primarily determined by how the database is accessed. If, for example,
an OR mapping tool that generates Java access classes is used (such as
Apache’s Torque), the generated classes or single methods can simply
be marked deprecated — on the one condition that no other system
directly accesses the database. Figure 5-2 shows this proceeding. The
application only accesses the database via mapper classes. Therefore, it
suffices to mark the access methods for the field Name as deprecated
in the second version (crossed-out methods).

If access does not take place strictly channeled via specific access
classes, one usually will have to make do with conventions. One can
either maintain a list of all obsolete elements or add comments to the
elements that state that those elements are deprecated. Of course it is
important that all developers know the convention agreed upon and
observe it.

5.3 Refactoring of Relational Database Schemas

163|

CustomerMapper

CustomerMapper

+getNumber():int
+getName():String
+setName(String n)

+getNumber():int

+getFirstName():String
+getlLastName():String
+setFirstName(String n)
+setLastName(String n)

CustomerMapper

+getNumber():int
+getFirstName():String
+getLastName():String
+setFirstName(String f)
+setLastName (String I)

+... +... +...
Customer Customer Customer
Number Number Number
Name Name
Last Name Last Name
First Name First Name
Street Street Street
Zip Code Zip Code Zip Code
Town Town Town
5.3.1 Database Refactorings

On his website, Ambler (2003b) has collected frequently required
refactorings for relational database schemas. The refactorings depicted
there are a useful reference source.

Ambler’s refactorings aim at improvements of database schemas.
Therefore, the addition of a column alone does not constitute a refactor-
ing. The added column by itself will not improve the database schema.

Database refactorings fall into various categories: refactorings that
will either improve the data quality, structure, performance, referential
data integrity, or the database architecture.

The descriptions of refactorings refer to the database structure. The
adaptation of programs or the migration of existing data is only men-
tioned as a side note.

The deprecated concept is also applied to database refactorings.
Since tables and columns cannot be marked as being deprecated in
relational databases, another way for communicating what is depre-
cated must be found (see previous page).

Fig. 5-2

A Database Access Layer
Makes the Marking of
Deprecated Elements in
Data Structures Easier

|164

5 Refactoring of Relational Databases

5.4 Migration of Data between Different Versions
of a Database Schema

As soon as the system has been released for users, a refactoring of only
the development database schema will no longer be sufficient. For
instance, if a column is moved from one table into another, this will be
realized with SQL. The column is deleted in the source table and newly
generated in the target table. As soon as the restructured system is
released, we must face the problem of migrating the data from the old
to the new version of the database schema. We will also have to observe
how the selected migration strategy impacts the database refactoring.

5.4.1 Versioning Database Schemas

Therefore, we need to migrate the existing data to the new schema
after the database schema has been changed. Of course the old and the
new schema need to exist side by side during migration. Only after
data migration has been completed, can the old database schema be
deleted.

The coexistence of two schema versions can be realized in different
ways. One option is to define a schema exclusively for the respective
version. The version number is then incorporated into the schema’s
name, i.e. schema V1, schema V2, etc.

Alternatively, the version number can also be incorporated into the
table name, e.g. Customer V1, Product V2, but this will also have con-
sequences for the refactoring of the database schema. After all, foreign
key relations, constraints and triggers all contain references to the
tables’ names. Once a new version of a schema has been created, all
these references must be adjusted.

For this purpose, we assume that for each schema version a corre-
sponding database schema is created.

The schema name enables the application to identify in which ver-
sion the schema exists. This is an important prerequisite for the data
migration of software products that are used by numerous customers.
In such a scenario, one cannot take for granted that each customer uses
the most recent version of the system. Thus it should be possible to
migrate data from any older version to the newest one. To achieve this,
one has to discern in which schema version the data originally exists.

5.4.2 Connecting Migration Steps

As mentioned before, when developing software products for a greater
number of customers, it is not safe to expect that each customer uses

5.4 Migration of Data between Different Versions of a Database Schema

165|

the most recent version of a system software. Customers are likely to
skip one or another version of the system.

Each migration transfers a database schema’s data into the new
version of that schema. This new version will be the starting point of
the next migration.

Consequently, the newly installed system version must determine
in which schema version the data is available and then proceed to
carry out all required migrations until the process is complete for the
youngest version. This presupposes that each installation must contain
all migration programs that were ever created. For very expansive sys-
tems which have been in use for a long time, this can pose a problem,
because very old migration programs might not work, for example,
with the current version of the operating system. In such cases, the sys-
tem must be broken down into generations and only deliver those
migration programs as part of the installation which belong to the
youngest generation.

The customer cannot expect that a migration from an older gener-
ation to the most recent one can be executed in a single step. If neces-
sary, several migration steps must be carried out.

Figure 5-3 illustrates the principle of connected migration. If migra-
tion takes place from one version to the next, only one of the migration
programs MigA, MigB or MigC will be carried out. Should migration
happen from V2 to V4, the application system will first execute the
migration program MigB and then MigC.

MigA ﬂ MigB m MigC ﬂ

I e T e B e

V1 V2 V3 V4 Time

5.4.3 Migration of Very Large Data Amounts

When dealing with very large amounts of data, a single migration pro-
gram can cause time problems: the migration of one billion data sets is
hardly a feat that will be casually accomplished. Shutting down, for
example, the main system of a bank house or an insurance company
for 24 hours in the middle of the week to migrate their data is out of
the question.

However, this problem can be approached either from an organiza-
tional or a technical perspective. For the organizational solution, one

Fig. 5-3
Connecting
Migration Steps

Problem: Very Large
Amounts of Data

Organizational
Incorporation

|166

5 Refactoring of Relational Databases

Incremental Migration

Parallel Versions of
Database Schemas

Many Parallel Versions
of Database Schemas

has to precisely schedule modifications of the database system and con-
duct the migration when there is enough time. The Christmas and Easter
holidays are ideal for this purpose.

If the overall technical conditions allow such a proceeding, the
migration can be executed incrementally. The data will be migrated
only when the system needs it. The migration period is thus prolonged,
but the system’s operation will not be interrupted. In a scenario with
strict 7 X 24 runtime requirements, an incremental migration is often
the only feasible solution.

One prerequisite for incremental migration is that the application
system is able to handle various versions of the database schema simul-
taneously. When accessing the database, the system must know in
which schema to find the required data. Altered data will always be
committed back to the new database schema though, and then deleted
from the old one. Once the old schema no longer contains any data, it
can be deleted.

If the incremental migration takes longer than one release cycle,
more than two variations of the database schema will exist at the same
time.

An elegant way of keeping data simultaneously in different data-
base schemas is to save the objects in BLOBs as well as fieldwise saving
(see Section 5.9).

5.4.4 Data Migration Techniques

ETL tools can greatly simplify data migration. ETL stands for Extract,
Transform, Load. ETL tools support the extraction of data from a
data source, transformation of that data, plus loading it to another
data storage. ETL tools are generally used to exchange data between
applications which are not integrated. This makes them important
tools in the EAI (Enterprise Application Integration) field.

Using ETL tools for data migration between different versions of
database schemas was originally only a by-product — as a matter of
fact, ETL tools have capabilities that go far beyond such application.
Unfortunately, herein also lies the main disadvantage in utilizing them
for data migration: they are very expensive. Buying them solely to deal
with typical migration tasks is often not worth the money.

Fortunately, a less costly ETL tool is available for each relational
database: SQL. With the help of SQL, data can easily be extracted
(SELECT) and reloaded into the database (INSERT, UPDATE). How-
ever, SQL does not offer any direct support for transformation tasks,
but often recoding tables or stored procedures will come in handy
here. In such recoding tables, source and target values are specified for

5.5 Refactoring Database Access Codes

167|

single fields. A problem-free migration of field contents is enabled by
the Insert-Select command. This course of action is recommended if
one decides to change the display of enumeration types. If a field was,
for instance, coded with the character M for ‘male’ and ‘F’ for ‘female’
and is now supposed to be displayed with the digits 0 for ‘male’ and 1
for ‘female’, we have an ideal area of application for a recoding table.
If more complicated data migrations are necessary, programs that
will carry out the data transfer must be written. Today, many databases
allow the running of Java programs directly in the database. This can be
beneficial for data migration, because the data no longer needs to be
transferred from the database server to the machine handling the migra-
tion over the network. Thus migration can be speeded up noticeably.

5.5 Refactoring Database Access Codes

One of the oldest demands in software development is the call for
encapsulating database access in a database access layer. A database
access layer provides the option of exchanging the persistence medium.
The developers only have to adapt the database access layer instead of
rewriting the whole application system.

With agile methods and large refactorings, the demand for a data-
base access layer is supported by another argument: the effects of
changes to the database schema will be limited to the database access
layer. This is the only means of keeping the subsequently needed
efforts sufficiently small. Figure 5-4 shows the schematic architecture
of an application with a database access layer.

Application

, Call

DB Access Layer
. Call

5.5.1 Synchronized Changing of the Database Schema
and Database Access Code

Generally speaking, application systems store data in databases to
read them out later on (see Figure 5-5).

Fig. 5-4
Database Access Layer

|168

5 Refactoring of Relational Databases

Fig. 5-5
Dataflow of the
Database Connection

Redundant Structures of
Business Objects

Application
2 b‘g'b

At least when integrating relational databases, structures that are in
part redundant will be created: the structures of business objects in the
application as well as in the database bear a strong resemblance to each
other. This is why usually both application and database must be
adapted in the course of refactorings of such business object structures.

This means there are four potential places that must be modified
during refactoring:

1. The portions of the database schema that are relevant for the
altered business object structure.

2. The classes that define the modified business object structure
in the application.

3. The database read-in operation for the business object.

4. The database write operation for the business object.

In principle, the read and write operations addressing the business
objects can be arbitrarily distributed over the whole system. A well-
designed system will at least ensure that there is only one place in the
system where a business object is stored in the database. During read-
in from the database this is unfortunately not always possible, because
for performance reasons entire business object graphs are at once
loaded in the select instructions via joins.

The most common case for refactorings of business object struc-
tures is execution of the following procedure:

1. Changing the table in the database exclusively in increments.

New fields are added.
Fields to be deleted remain in the code and are marked
deprecated.
Modified fields are duplicated; the old fields are marked
deprecated.
2. New fields in the database are assigned appropriate default
values.

5.5 Refactoring Database Access Codes

169|

3. Business object classes are changed in such a manner that the
new data fields from the table can be stored in the business ob-
ject and values for the deprecated fields can still be delivered; if
necessary, the fields of the business object class must be set to
deprecated.

4. All database write operations must be extended by the option
to fill new fields.

5. All database read operations must be adapted to allow the
read-in of these new fields; all read access to deprecated fields
in the table must be eliminated.

6. All write access must be removed from deprecated fields.

Deprecated fields must be deleted from the table.

8. Deprecated fields must be deleted from the business object class.

N

This procedure does not constitute a generic, universal solution. It
should specifically be amended for the respective refactoring.

Let us now assume that we wish to add a new field for country
codes to the class Customer (so far, we only had German customers;
now we will deal with customers from all over the world). To this end,
we will first introduce the new field into the class Customer. Here it is
assigned the default value ‘G’ for Germany. As of yet, the field will not
be saved and loaded.

In the next step, the new field is added to the database schema, and
all existing data sets are assigned the default value ‘G’ for the new
field. Now the loading of customers will be adapted, followed by sav-
ing. Finally the new field is made visible in the GUI.

Here is a short version of each single step:

1. Add a new field to the class and assign the default value.

2. Introduce a new field to the database schema and assign the de-
fault value.

3. Enable loading of the new field.

4. Enable saving of the new field.

5. Make the new field visible in the GUIL

After each single step, the system is in a consistent state.! The desired
effect will be achieved with the last step. Until this step has been taken,
the system can only handle customers from Germany.

Things are not always so simple: let us assume that we wish to
store the country code no longer as a character code, but as a number
instead. To realize this, the country code field must be changed from

1 Steps 1 and 2 as well as 3 and 4 can also be executed in reverse order.

A Simple Example

A More Complex
Example

5 Refactoring of Relational Databases

the type String to Integer in the database as well as in the program
code. At the same time, the persistent data must be recoded.
The following refactoring steps will render the desired result:

1. Add a new field to the class and assign the default value.

2. Introduce a new field to the database schema and assign the
default value. Add the new field to saving.

Add the new field to loading.

Switch the GUI and all other access to the old field to the new
field.

Remove the old field from loading.

Remove the old field from saving.

Delete the old field from the class.

Delete the old field from the database schema.

Al

PN

Concerning points 1 and 2: here a static default value cannot be
employed because the default value depends on the existing country
code. A recoding algorithm is required to calculate the numeric coun-
try codes for the existing string country codes. For this purpose, the
recoding algorithm will probably have to access a recoding table in the
database.

A closer look at the single steps makes it clear that the modifica-
tions for loading and saving cannot be finalized in one step. As a mat-
ter of fact, both parts of the system must be adapted several times.

Of course making the final adaptation in one step is extremely
seductive. If loading of the field in step 3 is removed at once, the sys-
tem initially appears to be in a consistent state (no compile errors will
be reported, and tests working with the new field will also run error-
free). Admittedly, after loading, the field in the objects would show a
default value that does not match the field’s new value. This constella-
tion can create all kinds of problems in the rest of the program code.

5.6 Rolesin aProject

In projects that use agile methods, the previously described database
refactorings and the procedures following in their wake (data migra-
tion) are the rule, not the exception. The whole procedure must be
organized without impairing its progress.

Foremost this means that the understanding of the DBA’s (database
administrator’s) role undergoes change. He or she will not personally
make every single change to the database. This would encumber the
developers’ work and overburden them with the sheer number of mod-
ification requests.

5.7 Tools

171|

Instead, the DBA has to accept the role of the person who sup-
ports the developers with changes to the databases. After all, he or
she usually has a more detailed knowledge. As a side-effect, the DBA
can also keep track of which modifications to the database are made
and can intervene, if — in his or her opinion — development takes a
wrong turn.

This changed understanding of the DBA’s responsibilities will last
but not least be reflected in the allocation of rights. Developers in agile
projects need more database rights. At least for their local database
and the shared development database they must have the right to make
changes to the database schema. Modifications of other schemas can,
as before, be executed by the DBA, who will also function as a quality-
ensuring checkpoint.

5.7 Tools

Graphical administration tools are available for most database types.
Normally, they also allow changes of database structures. However,
these tools cannot be considered refactoring tools for databases. On
the one hand, the effects of modifications are simply ignored, on the
other hand they don’t offer any mechanisms to take back changes or to
version them, etc.

However, the majority of projects that apply refactorings will not
execute changes of the database schema with the aid of such tools.
Should no other tools be at the developers’ disposal, SQL scripts will
serve instead to realize modifications of the database schema. The
scripts are versioned in the version control system. The gradual execu-
tion of these scripts enables migration of a database schema existing in
any version to any successive version. Thus, writing additional migra-
tion programs for the migration of production databases will often be
unnecessary.

5.7.1 ORMapping

The mapping of objects to relational databases is supported by a vari-
ety of commercial and open source tools. For Java, often Torque, Cas-
tor or Hibernate from the open source field as well as the commercially
available TopLink are used. With the introduction of JDO (Java Data
Objects), a standardized programming interface for such an OR map-
per in a Java environment has now also been defined. For the future it
is expected that the existing OR mappers will be able to support JDO.

Most OR mappers generate SQL scripts and source code for data-
base access from a description of persistent data structures. Rarely will
the application developer have to deal with SQL directly.

|172

5 Refactoring of Relational Databases

The source code generated in such a way constitutes a good basis
for the database access layer and significantly improves typesafety of
the database access. Access is not always 100% typesafe, because
direct changes of the generated classes or the database schema will
again result in a loss of typesafety. In addition, the formulation of que-
ries can lead to type errors.

Overall, the generated source code brings about a clear enhance-
ment of the situation compared to direct database access. In this way,
code-generating OR mappers support large refactorings in a minimal-
ist way: the effects of changes to persistent data structures will become
visible as soon as the OR mapping source code is newly generated. The
affected parts of the application will now display compile errors. We
are yet far away from having achieved a refactoring in small steps, let
alone an automation. The application developer must still ponder
which refactoring steps he or she wishes to take.

Equally, OR mappers are of little help for the migration of existing
data. Here again, the application developers must decide what is to be
done.

5.7.2 ETLTools

ETL tools (see also Section 5.4.4) read out data from a data source,
transform this data and load the results into another data source. ETL
tools are, for example, used in the EAI field (Enterprise Application
Integration) to synchronize the data of different applications.

A welcome side-effect is the usefulness of ETL tools for data migra-
tion between different versions of a database schema. In comparison
with the writing of individual migration programs, the application of
ETL tools saves a lot of work. However, it should not go unmentioned
that the licensing costs for commercial ETL tools range in the five-digit
dollar zone. Many projects will discard such an investment that will
‘merely’ speed up development in a fringe area right away.

Should ETL tool licences have been purchased for other reasons
though, their application is an extra benefit.

5.7.3 Scripting

If no ETL tool is at the developers’ disposal, most of the data migra-
tion for refactoring purposes should be done with scripts. After all, the
migration programs/scripts will be used only once for data migration
and then never again. Thus their maintenance requirements are not as
high as those for the actual production system.

5.8 Tips

173|

5.8 Tips

Develop a database access layer that hides the database structures
completely from the application. As a result, modifications of the
database schema will be limited to the database and the database
access layer.

Define all table and column names as constants and use the con-
stants for database access. Typical OR mappers will generate the
constants from the description of persistent data structures. If no
OR mapper is at your disposal, write your own program to gener-
ate the constants from the database.

Adhere to the naming conventions for primary and foreign keys to
enable easier detection of dependencies in the database schema.
Use different database instances or at least different database sche-
mas for staging: Unit test DB per developer, DB for integration
testing, DB for acceptance testing, DB for production.

Do not use the database manufacturer’s tool to change the data-
base schema. Write SQL scripts instead for changing the schema.
Write the scripts in such a way that existing data can be migrated.
Developers can use these scripts to adopt modifications of the local
database instance to the development database, but also to migrate
the database schema and data from the production database.
Apply the following strategy in regard to the database: make sure
that each database instance contains both an old and a new version
of the database schema. It is the only way of migrating the data with
minimal effort when switching the schema.

If you are using OR mappers, version the definition of persistent
data structures in the version control system.

If you are not using OR mappers, version the SQL scripts for creat-
ing and changing the database schemas in the version control sys-
tem. Alternatively, in many cases you can let the database itself gen-
erate the description of its structure (SQL Create Statements) and
then version it.

Ensure that your source code stays independent from the concrete
data that is stored (i.e. it should not presuppose the existence, for
instance, of customer no. 999). Should this not be feasible, proceed
to make the dependency explicit, e.g. let the program verify the
existence of the required data at program start.

Unit tests should see to the existence of the required data them-
selves. They should either generate the data directly from the pro-
gram code or load it to the database, using a script. Then the script
must be versioned together with the source code.

|174

5 Refactoring of Relational Databases

Searching for BLOBs in
the Database

Fig. 5-6
Saving Objects as BLOBs

More complex data models do not always permit that tests gener-
ate their own required data. Thus the tests will depend on data in
the database. In such cases, make sure that the tests will exclusively
depend on the data in the unit test database instance.

When the system expands, the performance of database-dependent
unit tests can become problematic. In these cases, design patterns
such as ObjectMother or MockTypes are useful. Where appropri-
ate, an in-memory database can be utilized for testing.

5.9 Typical Data Models

If an application system requires extremely flexible data structures (for
example, because the users need to be able to change the data struc-
tures themselves), developers will often work with data modeling on a
meta level. They will create a data model that allows saving any type
of data structure. In principle, this can be realized in two ways: saving
of BLOBs and fieldwise saving.

Such data models enable a flexible handling of constantly chang-
ing data structures and simplify the refactoring process.

5.9.1 Saving of BLOBs

When saving BLOBs (Binary Large Objects), information about the
actual data structures is only present in the application system. Only
the application knows how these BLOBs are structured internally.
Often such systems work with two tables: a data table and a search
table. The data table possesses only two columns: ID and object. In the
ID column the unique ID of the saved object can be found, whereas the
object can be found in the object column as a BLOB. The ID column is
the primary key.

All criteria which are potentially searched for are listed in the
search table. The search table has two columns too: the ID as well as
the search criterion. The ID column is a foreign key to the data table
ID. For each search criterion which can be looked for with an object, a
data set is stored in the search table. The primary key consists of ID
and search criterion. Figure 5-6 gives an overview of the two tables.

Search Table Data Table

ID: INTEGER ID: INTEGER
Search Crit.: VARCHAR Object: BLOB

5.9 Typical Data Models

175|

When saving in BLOBs is desired, developers must decide how

uses relations between objects can be circumvented. Here, a distinction
is made between containment relations and references. Objects that
are contained in other objects will be saved and also read as a whole in
a BLOB with the parent object.

References in class definitions are specially marked (e.g. through

saving only the referenced object’s ID in the field instead of applying a
uses relation). In this way, at first only the original object will be
loaded. The referenced objects will either be loaded directly afterwards
or when they are actually required.

The advantages of this type of modeling are:

Changes of the data structure require only modifications of classes
in the application system, not of the database schema itself. There-
fore, no simultaneously active database schema variations are
needed.

A refactoring of data structures is limited to changes of the pro-
gram code and the migration of existing data.

Data can be migrated stepwise from an old to a new data struc-
ture during loading. The old and new BLOB-Mapper* versions
are required for migration, but only one database schema.

OR mapping is simplified altogether.

Objects with a complex structure can be read and written easily.

It is easy to realize flexible data structures that allow adjustments
by the user.

The disadvantages are:

2

The stored data cannot be used without the application system.

As a rule, the stored data cannot be used by other systems, i.e. such
that were written in other programming languages. The database
cannot be utilized as an integration medium for different systems.
Report and list generators based on the database cannot be applied.
Data can only be analyzed as far as this function has been pro-
grammed into the application.

Inconsistent data cannot be repaired manually via the provided
database mechanisms.

The saved objects constitute the smallest locking level.

Where high transaction rates are present, search and data tables
can turn into a bottleneck for locking.

If, for instance, Java serialization is used directly, the classes must be able to
load objects of earlier class versions.

References between
BLOBs

|176

5 Refactoring of Relational Databases

Fig. 5-7
Fieldwise Saving

The number of data sets, especially in the search table, can be very
trying regarding the database’s performance capacity when a large
amount of data is involved.

5.9.2 Fieldwise Saving

For fieldwise saving, like for saving with BLOBs, basically two tables
exist: the search table and the data table. However, the data table con-
tains no BLOBS, but a data set for each stored field instead, so that for
each field of each saved object a data set is created. The number of
data sets in this table is easy to calculate: number of objects * average
number of fields for each object. To make sure that objects can be
reconstructed from the data table, at least columns for the object ID
and the field name are needed besides the ID and field value columns.

Figure 5-7 shows both tables. The ID in the data table constitutes
the unique primary key. This key is not imperative though. It is also
possible to define the primary key as a composite of object ID and field
name.

Data Table

ID: INTEGER

Object ID: INTEGER
Field Name: VARCHAR
Field Value: VARCHAR
Field Type: INTEGER

Search Table

Object ID: INTEGER
Search Crit.: VARCHAR

The advantages of this type of modeling are:

Changes of the data structure require only modifications of classes
in the application system, not of the database schema itself. There-
fore, no simultaneously active variations of the database schema
are needed.

A refactoring of data structures is limited to changes of the pro-
gram code and the migration of existing data.

Data can be migrated stepwise from an old to a new data structure
during loading.

OR mapping is simplified altogether.

It is easy to realize flexible data structures that allow adjustments
by the user.

Advantages as compared to saving in BLOBs:

The data can be used by other systems and tools.
Inconsistent data can be manually repaired.
Ad hoc analyses can be carried out directly with SQL.

5.10 AnExample

177|

In contrast, these are the disadvantages:

Where high transaction rates are present, search and data tables
can turn into a bottleneck for locking.

The number of data sets, especially in the search table, can be very
trying regarding the database’s performance capacity when a large
amount of data is involved.

Access to the database is slowed down, because now not only one
data set per object, but many data sets must be processed.

In comparison, the ratio between the share of user data and the
overhead is relatively bad. For many values less bytes would suffice
for storage (e.g. for integer fields), but storage capacity is always
reserved for string saving. Moreover, for each persistent field its
own key information is stored. Sometimes this key information
requires more storage than the actual, saved data.’

5.10 An Example

This section will use a more comprehensive example to further elabo-
rate on the previously introduced principles for refactoring with data-
bases. We will use a time recording system for IT consultants, which
lets all consultants access a web interface to enter their actual work
hours. This input serves as the basis for calculating the consultants’
salaries as well as for billing their customers.*

5.10.1 Our Starting Point

The subsystems are depicted in Figure 5-8. The consultants access the
systems via the subsystem Web. The accounting department uses the
subsystem Report to generate the necessary print lists and analyses.

The subsystem Web works with the subsystem Business Objects,
which provides concepts such as Employees and Time Entries. These
business objects are saved in the database and reconstructed from the
database with the subsystem Administration. To this end, a purchased
subsystem DB (the driver for accessing the concrete database; for Java
this will usually be JDBC) is utilized.

The subsystem Report employs the subsystem Analysis in order to
carry out all necessary analyses for the print lists (e.g. all hours for

This problem can be solved by placing field name and field type in a table of
their own (normalized variation).

This example is also used in Chapter 6. We decided to reprint it here in its
entirety, so that both chapters can be read independently of each other.

Subsystems in a Time
Recording Example

Subsystem Web

Subsystem Report

|178

5 Refactoring of Relational Databases

Fig. 5-8
Subsystems of the
Time Recording
Example

each employee for one project). Of course, the subsystem Analysis uses
the subsystems Business Objects and Administration to access the per-
sistent business objects. The print lists are created with the aid of a
commercially available report tool (subsystem Report Tool).

/
ul
: Report Web
T T
1 I
1 I
| |
T T
| A e A
) 1 | |
1 1 |]
] T I I
! ol ! N
1 I
: | [Jr__________> 4
! Analyses == | Administration
]
: RNV
T f T
I s 5 .
I Business Objects €-——-————-)
i
H I
i I
1 |
L i
frmmmmm e |
. |
T |
T
Tech | :
i
L :
I
_]
Report Tool DB K---——-—-----

The subsystems are arranged in three non-strict layers: user inter-
face (UI), domain model and technology.

Essentially, the time recording system is based on the business
objects from Figure 5-9. Time Entries has a vital position here: besides
date, start and end time, Time Entries also displays references to Project,
Activity of the project, as well as to Employees.

Figure 5-10 shows a simple data model for storing business
objects.

5.10.2 Motives for a Refactoring

The modeling of the subsystem Business Objects strongly influences
the API of the subsystem Administration and thus also the interaction
between Analysis and Administration.

Basically we have to implement the respective low-level functions
for most analyses in Administration. The business objects are too ‘stu-
pid’ to allow the subsystem Analysis to execute complex functions on
them. Theoretically, it is also possible for the subsystem Analysis to

5.10 AnExample 179|

directly access the database. However, this would also mean that the
subsystem Administration no longer encapsulates the database, thus
making modifications of the database schema more difficult.

Time Entries F lg..5-9 .
date Business Objects
-start time

-end time

«Table» Fig.5-10
«Table» Employee Data Model for
Time Entries +D Business Objects
+D 1 +Name
+Date
+Start time «Table»
+End time " Project
+Employee ID|— 7D
+Acitivity ID —
citivity — +Name 1
«Table»
Activity
—+ID
+MName "
+Project ID

Therefore, the subsystem Business Objects should be restructured
in such a way that it becomes ‘smarter’ and the API of the subsystem
Administration does not inflate so strongly.

5.10.3 Goal of the Refactoring

This object model of the subsystem Business Objects shall now be mod- ~ The New Object Model
ified in such a manner that the model of the core business objects will ~ for Business Objects
look as follows: each one of the Employees has got a Month Folder for

5 Refactoring of Relational Databases

Fig.5-11
Business Objects After
Restructuring

The Refactoring
Challenge

each month with a Calendar Sheet for every work day. On the Calendar
Sheet all Time Entries are recorded, including start and end time,
Project and Activity in the project (see Figure 5-11).

Employee
Month Folder

Time Entries

+start time
* +end time

¢

Figure 5-12 shows the corresponding data model.

With this restructuring of the subsystem Business Objects we ven-
ture deeply into the system’s vocabulary. We can expect a demand for
comprehensive restructuring measures of the entire system. Here, we
are going to focus on the refactoring’s impact on database access, that
is, on the data model and the Administration subsystem.

5.10.4 Refactoring Proceeding

The difficulty this refactoring poses lies in the coordination of changes
to the classes and those to tables. Both have to match for each separate
step.

Unfortunately it is impossible to first view the class structure or
the data model isolated from the rest and then deduce the respective
other model from it. The main obstacle is that the uses relations in 1:N
relations of the class model constitute a reversal of the data model. The
Calendar Sheet does have a number of Time Entries, whereas in the
data model Time Entries knows to which Calendar Sheet it belongs. If

5.10 AnExample

181|

you transfer this example to the whole model, you will get a smell
because cyclical relations are present.

«Table»
Employee
+ID
1+ Name

«Table»
Month Folder
+D
+Year
+Month
+Employee ID

«Table»
Calendar Sheet
+D
1 +Day
+Month Folder ID |—

«Tablex»
Project

«Table»
Time Entries +ID
+Name
+D

+Start time

* |+End time
+Calendar Sheet ID
+Activity 1D

«Table»
Activity

1
| 1
+ID

+Name "
+Project 1D —

Therefore, we will proceed step by step, as we are used to. First,
we are going to reverse the relations between Time Entries and
Employees in the class model: now Time Entries will no longer know
the Employees, but Employees is assigned a certain amount of Time
Entries. Figure 5-13 illustrates this refactoring step.

The class structure we just created must correspond with the data
model, of course. Interestingly, no modification of the data model is
required to achieve this. The data model shown in Figure 5-10 can also
display the new class model.

We will now extract the date information from Time Entries and
put it in the class Calendar Sheet. For now, we will work without the
Month Folder and store the complete date in Calendar Sheet. Figure
5-14 visualizes this refactoring step on the class model.

Fig. 5-12

Data Model After

Restructuring

The First Step

The Second Step

|182

5 Refactoring of Relational Databases

Fig. 5-13

Reversing the Relation
between Employee
and Time Entries

Fig. 5-14
Calendar Sheet
Contains Date
Information

Time Entries

-date
-start time
-end time

’

Employee

Time Entries

-date
-start time
-end time

Employee

Activity

Employee

Activity

Time Entries

-date

-start time
-end time

Activity

Calendar
Sheet

1

-date

b

Time Entries

-start time
-end time

Activity

Figure 5-15 describes the matching data model. If the data model’s
tables have been used exclusively to load and save the business objects,

5.10 AnExample

183|

the restructuring explained in Figure 5-15 can be executed as described,
together with the class model’s restructuring:

1. Add the new table Calendar Sheet to the data model.

2. When existing data shall be adopted: copy data per SQL script
from the existing tables into the new table.

3. Delete the fields Date and Employee ID from the Time Entries
table.

4. Rearrange the business objects’ class structure.

5. Adapt the mapping functionality in the subsystem Administra-
tion.

«Table»
«Table» Employee
Time Entries 1 D
D +Name
+Date
+Start time «Tablen
+End time * Project
+Employee ID — D
+Activity ID u +Name 1
«Table»
Activity
—+ID
I +Name .
N +Project ID
«Table»
Employee
+ID 1
+Name
«Table»
Calendar Sheet|
T +ID
+Date *
+Employee ID
«Table»
Project
+1D 1
aTable» +Name
Time Entries
+ID
+Start time
. +End time «Tables
L_| +Calendar Sheet ID 1 1 Activity
+Activity ID +D
+Name «
+Project ID

Should, however, several parts of the system access the tables, one can-
not simply remove fields from the tables (Date and Employee ID from
the Time Entries table). In this case, the fields must be set to depre-
cated, resulting in the data model shown in Figure 5-16.

Fig. 5-15
Calendar Sheet
Contains Date
Information

5 Refactoring of Relational Databases

Fig.5-16 «Table»
Calendar Sheet Employee
Contains Data 71+° 71
Information: hame
Deprecated Fields
«Table»
Calendar Sheet
1+D
1 +Date *
+Employee ID |—
«Table»
Project
v «Table» +ID T
Time Entries +Name
+ID
“Bate
+5tart time
+End time «Table»
—| +Calendar Sheet ID 1 Activity
* +i;ti:alit§ D B 1 [P
+Name *
+Project ID —

The following steps are executed during this refactoring:

1. Add the new table Calendar Sheet to the data model.

2. Set the Date and Employee ID fields in the Time Entries table to
deprecated (e.g. through an entry in the file deprecated_db.txt).

. Rearrange the business objects’ class structure.

4. Adapt the mapping functionality in the subsystem Administra-
tion so that it will also write the new table and its fields; if nec-
essary using INSERT, should the respective set of data not yet
exist in the Calendar Sheet table.

5. Step by step adjust all other write access instances in the system
in such a way that old and new fields are written parallel.

6. When existing data shall be adopted: copy data per SQL script
from the existing tables into the new table.

7. Adapt the mapping functionality in the subsystem Administra-
tion so that none of the deprecated fields will be read any more.

8. Step by step delete all other read access to the deprecated fields.

9. Step by step delete all other write access to the deprecated fields
— thus enabling reading from the new fields.

10. Delete deprecated fields.

|8}

Here it becomes clear that modifications of database structures can
become quite tedious if access is not unambiguously channeled by few
classes: in the beginning, all write access instances must be modified in

References and Further Reading

185|

such a way that they will write to old and new fields. Only then the
read access instances can be adapted stepwise.

It is crucial not to deliver any releases to customers between single
refactoring steps. Otherwise, there is a high risk that the fields won’t
be completely written to. Inconsistent data would be the consequence.

The third big step is extraction of the Month information from the
Calendar Sheet. This step follows the same pattern as the second one
and therefore isn’t described here.

References and Further Reading

Agile Databases, mailing list:
http://groups.yahoo.com/group/agileDatabases.
This mailing list discusses database-related topics with a focus on
agile methods.

Ambler, S.W. 2003a. The process of database refactoring.
http://www.agiledata.org/essays/databaseRefactoring.html.
An article that gives an overview of database refactorings, includ-
ing descriptions of the development processes.

Ambler, S.W. 2003b. Catalog of database refactorings.
http://www.agiledata.org/essays/databaseRefactoringCatalog.html.
A catalogue of frequently used refactorings of database schemas.

Celko, J. 1999. SOL for Smarties — Advanced SQL Programming, 2nd
ed. Harlekijn. This book provides an introduction to advanced SQL
concepts and presents suggestions for solutions for recurring model-
ing problems, such as the mapping of tree structures to relational
databases.

Fowler, M. & Sadalage, P. 2003. Evolutionary database design.
http://www.martinfowler.com/articles/evodb.html.
This article explains the basic concepts of evolutionary database
design. Refactorings of database schemas, the migration of data as
well as refactorings of database access codes are examined.

Sadalage, P. & Schuh, P. 2002. The agile database: tutorial notes. Pre-
sented at XP/Agile Universe 2002, www.xpuniverse.com. Here,
among other issues, the deprecated marker of database elements is
discussed.

The Third Step

187|

6
API Refactorings

In this chapter, we are going to examine the effects of refactorings on
application programming interfaces (APIs) and the clients based on
them. We will primarily focus on Java in this context. With justifiable
effort, the results should be transferable to other object-oriented pro-
gramming languages.

6.1 Subsystems

In each non-trivial software system, partitions can be found that are
used by other partitions of the same system. Often this kind of structur-
ing is specified: we talk about subsystems, class libraries, frameworks
or components. To simplify matters, we will from now on summarize
all these different partition types under the label subsystems. They all
have in common that they are clearly distinguished from other sub-
systems. A class always belongs to precisely one subsystem and is used
by the rest of the system via an interface (API, i.e. application program-
ming interface). See Figure 6-1.

The division into subsystems as well as the API’s definition can
either be implicit or explicit. For implicit subsystems, there is no speci-
fication of which subsystems exist, what these subsystems are called,
which classes belong to them, or which classes and methods constitute
their APIL. The system’s structure becomes much clearer when all these
things are explicitly defined. For the explicit definition of subsystems,
so-called component models are used, such as the Eclipse plugin model,
CORBA, COM, or a business/project-specific component model.

Besides ensuring a clean structuring of the system, subsystems sup-
port reuse. First of all, they can be reused in a company’s different
projects. If a subsystem is rather common, it can either be commer-
cially marketed or distributed as an open source component.

Subsystems

Subsystems for Reuse

|188

6 API Refactorings

Fig. 6-1
Dependency between
Subsystems

Anonymous Sub-
system Users

6.2 Problems of APl Refactorings

Unfortunately, modifications of subsystems cannot always be limited
to internal implementations. Occasionally, an API must be adapted as
well in the course of a refactoring.

At first this sounds paradoxical, since refactoring means changing
the design without changing the observable behavior. Now if you
regard the API of a subsystem as a part of its observable behavior, a
change to the API would mean that you change the behavior and
therefore do something different than refactoring. But what happens if
you recognize that the name of an API’s method is misleading? Natu-
rally you would refactor it to a better name and therefore do a refac-
toring. The difficulty arises because you cannot adapt all clients of the
API right away.

If a subsystem is not only used for one project (internal reuse), but
for various projects instead, maybe even in different companies (exter-
nal reuse), the refactoring of APIs will become more difficult because
the concrete code, which is based on the API, is unknown. This is the
reason why code based on that subsystem cannot be changed instanta-
neously in the course of an API refactoring. If the API is broken, the
dependent code has to migrate. A subsystem A depends on a sub-
system B when interfaces or classes of subsystem B are used in sub-
system A’s source code. See Figure 6-2.

For the purpose of API modifications, often a distinction between
source code and binary compatibility is made. A modification is source
code-compatible if the system can be compiled and its runtime behavior
will still be the same after it has been modified. A modification is
binary-compatible if the system will be operable without prior new
compilation. Interestingly, neither does source code compatibility imply

6.3 Compatibility Classes

189|

binary compatibility or vice versa. However, we are concerned with
source code compatibility, not binary compatibility in this chapter (the
latter is discussed in Riviéres, 2001).

A A —: : > EA
v v Migratio | V2
Y

B B B
v1 v2 v2

Sometimes, demands are made not to change a subsystem’s API
any further after its publication. In practice, it soon becomes clear that
meeting this demand would be purpose-defeating: on the one hand,
the API will not be altered any more; on the other hand, increased
usage of the subsystem results in new requirements that can only be
met through changing the API. Hence, we will try to build as stable
APIs as possible, although we know that we’ll have to modify them
sooner or later.

6.3 Compatibility Classes

Fig. 6-2
Evolution and
Migration

Stability of APIs

Not every change of a subsystem’s API will generate a demand for Compatible and Incom-
migration. At worst, compatible changes to the API will require a new patible Changes

compilation of the dependent code.! Regrettably, many more changes
are incompatible than one would expect at first sight. Therefore, add-
ing methods appears not to be a critical step. If an abstract method is
added to an API class though, subclasses can be rendered invalid: they
lack the implementation for the new, abstract method. The following
tables convey an impression of compatibility classes® (we assume that
non-constant fields are private and can thus be disregarded in this con-
text). Non-private attributes can, if applicable, be adapted using the
Encapsulate-Field refactoring.

In Java, usually not even a new compilation is necessary. There are a couple of
interesting exceptions though, e.g. the changing of constant values, which is
generated by the compiler in the client classes.

The comments on each compatibility class can be found in the descriptions of
the different changes (see Section 6.5).

[190 6 APl Refactorings

Changes to Interfaces

No. Change Compatibility
1 Adding an interface Incompatible
2 Removing an interface Incompatible
3 Renaming an interface Incompatible

(also: moving an interface
into another package or
renaming a package)
4 Adding a superinterface Incompatible, because dependent
classes can become abstract
5 Removing a superinterface Incompatible
Changes to Classes

No. Change Compatibility
1 Adding a class Incompatible
2 Removing a class Incompatible
3 Renaming a class Incompatible

(also: moving a class into
another package or renaming
a package)

4 Changing a superclass Incompatible
5 Adding an interface Incompatible
6 Removing an interface Incompatible
7 Expanding visibility Compatible
8 Restricting visibility Incompatible
9 Setting a class from Compatible

final to non-final
10 Setting a class from Incompatible

non-final to final
11 Setting a class to abstract Incompatible
12 Setting a class from Compatible

abstract to non-abstract

6.3 Compatibility Classes

191|

Changes to Constants in Classes and Interfaces

No. Change Compatibility
1 Adding a constant Compatible
2 Removing a constant Incompatible
3 Changing a constant type Incompatible
4 Changing a constant value Compatible

Changes to Methods in Interfaces

No. Change Compatibility
1 Adding a method Incompatible
2 Removing a method Incompatible
3 Renaming a method Incompatible
4 Changing a method’s parameter list Incompatible
5 Changing a method’s return type Incompatible
6 Adding an exception to a method Incompatible

in the interface
7 Removing an exception from Incompatible
a method in the interface
Changes to Constructors in Classes

No. Change Compatibility

1 Adding a constructor Incompatible, if the classes until now did

not have an explicit constructor

2 Removing a constructor Incompatible

3 Changing a constructor’s Incompatible
parameter list

6 Expanding a constructor’s visibility Compatible

7 Restricting a constructor’s visibility Incompatible

12 Weakening a constructor’s Compatible
precondition

13 Strengthening a constructor’s Incompatible
precondition

18 Adding an exception to the constructor Incompatible

19 Removing an exception Incompatible

from the constructor

|192

6 API Refactorings

Changes to Methods in Classes

No. Change Compatibility

1 Adding a method Incompatible, if the method is abstract;
also incompatible, if the new method
is final and ‘accidental’ redefinitions

take place in subclasses

2 Removing a method Incompatible

3 Renaming a method Incompatible

4 Changing a method’s Incompatible

parameter list
5 Changing a method'’s return type Incompatible

6 Expanding a method’s visibility

7 Restricting a method’s visibility

8 Setting a method from
final to non-final

9 Setting a method from
non-final to final

10 Setting a method from

static to non-static
11 Setting a method from

non-static to static
12 Setting a method to abstract

13 Setting a method from
abstract to non-abstract

14 Weakening a method’s
precondition

15 Strengthening a method’s
precondition

16 Weakening a method’s
postcondition

17 Strengthening a method’s
postcondition

Incompatible, if the method
is redefined in subclasses

Incompatible
Compatible
Incompatible, if the method
is redefined in subclasses
Incompatible
Incompatible, if the method
is redefined in subclasses
Incompatible

Compatible

Incompatible, if the method is redefined

Incompatible, if the method is called

Incompatible, if the method is called

Incompatible, if the method is redefined

6.3 Compatibility Classes

193|

No. Change Compatibility

18 Setting method to synchronized Incompatible, if the method is
used in a multi-threaded context

19 Setting method from Incompatible, if the method is
synchronized to used in a multi-threaded context
non-synchronized

20 Adding an exception Incompatible
to a method in a class

21 Removing an exception from Incompatible
a method in a class

It turns out that most API changes are incompatible. In Java, the
deprecated tag will provide some first assistance: it allows us to mark
interfaces, classes and methods as obsolete. A class that shall be
deleted will not be deleted right away but identified as deprecated. The
class can still be used, although the compiler will generate a warning
each time this happens. The dependent code can migrate step by step
while staying compilable and executable at all times.

The following source code depicts how the deprecated tag denotes
deletion of the class MyClass:

/**
* @deprecated
*/
public class MyClass

[...}

Use of the deprecated tag creates a new compatibility class. Such
‘denoted’ incompatible changes are called deferred-incompatible.

When we take a closer look at the table above, we will see that, in
principle, the renaming of interfaces, classes and methods could be
carried out automatically. One would merely need a machine-readable
description of the changes to the API plus a program that reads in
these descriptions and makes the necessary changes to the client. Espe-
cially for renamings, a simple mapping file in which the old as well as
the new name is listed would suffice. Such a function for automated
migration when package names are altered is already integrated in
some development environments.

Deprecated Tag

Deferred-Incompatible
Changes

|194

6 API Refactorings

Changes that Can Be
Automated

In this case, we speak of automatable changes and get the follow-
ing compatibility classes:

No. Compatibility Class Migration
1 Compatible No migration required
2 Automatable Automatic migration is possible
in a single step, rather
little effort needed
4 Deferred- Stepwise migration is possible.
incompatible The system stays compilable

and executable all the time

5 Incompatible Migration must be carried out
completely. During migration, the
system is neither compilable
nor executable

6.4 Refactoring Tags

To simplify the migration of dependent subsystems and enable merciless
refactorings’ also for published interfaces, we are going to introduce the
concept of refactorings tags (see Roock, 2004), which serve to improve
the compatibility of changes. Incompatible changes will become either
deferred-compatible or even automatable.

In the following subsections, we will show how the new meta tags
affect the refactoring work on published APIs. Based on possible mod-
ifications of APIs, we will also show in detail how these can be exe-
cuted in such a manner as to ensure compatibility.

6.4.1 The Future Tag

The Future tag demonstrates which form an interface, a class or a
method will have in the future. If an API client uses an element with a
Future tag, the developers can verify whether their usage of the ele-
ment will still be valid in the future.*

The term Merciless Refactoring is derived from agile methods practice and
emphasizes that here refactorings are a central part of everyday development
work.

This requires that the developers adapt those tags if they change their opinion
regarding the modification.

6.4 Refactoring Tags

The simplest form of the Future tag specifies that the respective
element will be deleted in the future. The following source code sample
shows how the Future tag announces deletion of the class MyClass:

/**
* @future #undefined
*/

public class MyClass

{..}

With the deprecated tag, Java offers a similar mechanism. The depre-
cated tag can be used as an acronym for the Future tag displayed above,
supplemented with #undefined. The deprecated tag is interpreted by the
Java compiler. Whenever an element marked deprecated is referenced,
the compiler will give out a warning. The element will be compiled cor-
rectly though, and the system will remain completely operational.

However, no warning will be generated if the obsolete element as
well as the referencing element can be found in one and the same class.

For classes, the Future tag can also denote changes to the modifier
(visibility, final), as well as changes to the superclass and to implemented
interfaces. For interfaces, this tag can also be used to mark changes to
superinterfaces.

The inheritance relation between Customer and Partner can be
marked as obsolete in the Customer class’s comment. Here, the Future
tag is used to denote that the inheritance relation will be deleted at
some point:

/**
* @future public class Customer
*/

public class Customer
extends Partner

Thus, all direct uses of Customer and Partner stay valid. It is important
that the client will no longer be allowed to make use of the inheritance
relation between Customer and Partner, as is the case with polymor-
phic assignments, for instance.

Even several changes can be described with the Future tag. In the
following example, in the future the class Customer will no longer
inherit from Partner and also no longer implement the Serializable
interface. Instead, only the Comparable interface will be implemented:

/**

* @future public class Customer implements Comparable

An Example

|196

6 API Refactorings

*/
public class Customer
extends Partner

implements Serializable, Comparable

For methods, changes of the modifiers can be described. Especially
switches from non-final to final as well as changes of visibility can be
elegantly expressed with the Future tag.

The following example shows how the Future tag denotes that the
method setName will become final in the next version. Until the next
subsystem version release, the client developers can eliminate all redef-
initions of setName.

/**
* @future public final void setName (String name)
*/

public void setName (String name)

Additionally, the tag can be supplemented with an informal descrip-
tion of what is to be done now that the element can no longer be used
in the old way.

6.4.2 The Past Tag

Whereas the Future tag shows what an element will look like in the
future, the Past tag describes what the element looked like in the past.
This enables developers to see what the element’s name was in the pre-
vious version. For classes and interfaces, it also contains information
about the packages in which the classes and interfaces were stored
before.

The Past tag serves to visualize renamings and moves. In principle,
the changes thus become automatable. The following example shows
the Past tag for renaming a method setName to setLastName:

/**
* @past public void setName (String name)
*/

public void setLastName (String name)

Migration can be accomplished in an even smoother manner not sim-
ply through renaming the method, but through duplicating it. The new

6.4 Refactoring Tags

197|

version will refer to the old one via the Past tag, and the old version
will be marked deprecated:

/**
* @deprecated
*/

public void setName (String name) {
setLastName (name) ;

}
/**

* @past public void setName (String name)
*/

public void setLastName (String name)

In JDK, the succession method is often directly and informally appended
to the deprecated tag:

/**
* @deprecated Replaced by setLastName (String)
*/

public void setName (String name) {
setLastName (name) ;

}

public void setLastName (String name)

6.4.3 Working with Refactoring Tags

The refactoring tags introduced here can also be applied usefully with-
out the aid of special tools. The search options offered by modern devel-
opment environments (e.g. Eclipse) are completely sufficient here.

First, the source code of a subsystem can be searched for all Future
tags. Based on the elements found and supported by the development
environment, one can determine in which places they are used. The
developer must check the elements used and adapt them where necessary.

Similarly, Past tags in subsystems can be searched with the source
code search function. The results will let developers conclude how
these elements used were labeled before. The uses of the renamed ele-
ments can be roughly determined with a source code search, followed
by a check of the detected uses and — if required — changes of their use.

Using the deprecated tag is even simpler. The compiler will point at
the places in the client code where deprecated elements are used. These
places must merely be analyzed. The more information that has been

Future Tag

Past Tag

|198

6 API Refactorings

added to the deprecated tag (e.g. ‘replaced with’), the easier migration
will be.

6.4.4 Tools for Migration

Specialized tools facilitate the handling of refactoring tags. Aided by
the Past taglet, the subsystem developers can analyze the subsystem
APIs’ Past tags. The Past taglet will write the detected renamings to a
file. Then this file is — together with the new subsystem version —
delivered to the subsystem’s clients. Here, the renaming file serves as
input for the Renamer, which carries out the required renamings in
the client code.

A first version of these open-source tools is available for download
as an Eclipse plugin at https://sourceforge.net/projects/jmigrator.

In addition, we plan to implement the Future Warner: it will check
the client code for future invalid use of the API. Whenever such an
invalid use is identified, a warning will be issued. Then the client devel-
opers could change the client code in such a way that it would function
with a future subsystem version.

6.5 API Refactorings in Detail

If a subsystem’s API is modified, two kinds of conflicts can emerge:
structural conflicts and behavior conflicts. Structural conflicts prevent
the system’s compilability. In the case of a behavior conflict, the system
will still be compilable, although its execution will be faulty. However,
a clean test coverage will at least help to identify and systematically
eradicate behavior conflicts.

In this section, we are going to explain for each API modification
which conflicts it will create and how it can best be carried out com-
patibly.

The goal of changes to APIs is always to maintain compatibility
with existing clients. 100% security can hardly ever be reached. Many
of the techniques for API refactorings presented here function based
on copying a method and then pasting it with a new name. Admittedly,
the generation of a method in turn will be incompatible. In practice
though, such change hardly ever leads to problems. Therefore, we
accept that there is no such thing as 100% security. We will content
ourselves with a high compatibility probability.

Next, we describe typical modifications. We always adhere to the
premise that non-constant attributes in classes are private. That is why

6.5 APl Refactorings in Detail

199|

we won’t consider the possible changes to attributes and their conse-
quences any further.

During the following refactorings, you will frequently encounter
situations in which methods are not simply deleted or modified.
Instead, they are copied and saved with a new name. Only later on
will the old version of the method be deleted. The problem here is to
find good, i.e. meaningful, names for the methods. Let us assume
that the old name was meaningful. Now we have to find an equally
good, i.e. meaningful, name to replace the old one. Alternatively, we
can mark the new name as temporary, adhering to the respective
convention (for example, the old name could be supplemented with
the ending _TEMP) and change it back in the next version of the
subsystem.

6.5.1 Changes to Interfaces

Adding an Interface

In most cases, adding an interface is compatible. The change will
become incompatible though if an interface of the same name already
exists in another package. Should the client import both packages with
*, an ambiguity will result, and the client can no longer be compiled.

The change will not even become compatible when a subsystem’s
interface names are unambiguous without package names. Last but
not least, an interface with an identical name can also be defined in
another subsystem. Nevertheless, interface names should be unique for
each subsystem. Thus the risk of ambiguities will not be entirely elimi-
nated, but at least reduced.

Removing an Interface

The removal of interfaces is incompatible. If the interface is not imme-
diately removed but set to deprecated instead, the change becomes
deferred-incompatible.

Renaming Interfaces

The renaming of an interface is incompatible. One could copy the
interface with the new name and set the old version to deprecated.
However, this approach could easily create type problems, even if the
new interface inherits from the old one or vice versa.

If the interface is renamed and the old name annotated with the
Past tag, the change will become automatable.

New and Temporary
Method Names

6 API Refactorings

Here is an example for renaming the Customer interface into
Partner:

/**
* @past public interface Customer
*/

public interface Partner

It should not go unmentioned that a change carried out with the Past
tag is not always automatable. If an interface of the new name does
already exist in another package, this can lead to an ambiguity (see
also ‘Adding an Interface’).

Adding a Superinterface

When another interface is added to the list of interfaces that inherited,
we will receive an incompatible change. Client classes that implement
this interface will become abstract because they do not implement the
methods of the new superinterface.

If the client class previously owned methods that now ‘coinciden-
tally’ implement the superinterface’s methods, a behavior conflict can
emerge.

The change will become deferred-incompatible when the interface
is not directly added to the interfaces that inherited and the change is
denoted only with the Future tag instead. The Future warner can
detect those classes that must implement the new interface in the
future. In this way, the client developers can adapt their code before
the actual change is executed.

Here is an example of how the Future tag is used:

/**

* @future public interface Customer
* extends Partner

*/

public interface Customer

Removing a Superinterface

If an interface is removed from the list of those interfaces that inher-
ited, we are faced with an incompatible change. Client classes that use
the interface for typing demand more methods than the interface will
offer after the change.

6.5 APl Refactorings in Detail

201 |

This change will become deferred-incompatible if the interface is
not directly removed from the list of interfaces that inherited, but the
change is merely denoted with the Future tag instead. The Future
warner can detect those classes that will expect methods which no
longer exist in the future. The client developers can adapt their code
before the actual change is executed.

An example of the Future tag’s use:

/**
* @future public interface Customer
*/

public interface Customer extends Partner

6.5.2 Changes to Classes
Adding a Class

Normally the addition of a class is compatible. The change will become
incompatible though when a class of the same name already exists in
another package. If the client imports both packages with *, an ambigu-
ity will emerge, and the client can no longer be compiled. The only
exception to this rule is the occurrence of a client coincidentally com-
piled with the wrong class. In such a case it is very likely that a behavior
conflict will emerge.

The change will not even become compatible if the class names of
a subsystem are unique without being assignable to package names.
After all, a class of the same name can also be defined in another sub-
system. Nevertheless, class names should be unique for each sub-
system. The risk of ambiguities will not be eradicated entirely, but at
least reduced.

Removing Classes

The removal of classes is incompatible. If the class is not immediately
removed but set to deprecated instead, the change will become deferred-
incompatible.

Renaming Classes

The renaming of a class is incompatible. Theoretically, one could
copy the class, assign it the new name and set the old version to dep-
recated. This can easily lead to type problems though, even if the new
class inherits from the old one or vice versa.

6 API Refactorings

If the class is renamed and the old name annotated with the Past
tag, the change will become automatable.
Look at the example for renaming the class Customer in Partner:

/**
* @past public class Customer
*/

public class Partner

Unfortunately, changes using the Past tag cannot always be auto-
mated. If a class with the new name already exists in another package,
an ambiguity might be created (see also ‘Adding a Class’).

Changing a Superclass

Changes of the superclass are incompatible. At first, polymorphic
assignments will become invalid. For example: if Customer is a sub-
class of Partner, and Partner is exchanged as a superclass, all assign-
ments of Customer to variables of the Partner type will become
invalid. Moreover, the subclasses of the modified classes will become
abstract if the new superclass defines abstract methods. Should the
subclasses ‘coincidentally’ define the abstract methods, a behavior
conflict will be the outcome.

If the Future tag is used to denote changes, it will be rendered
deferred-incompatible. The Future warner can identify those classes
which will either expect methods that no longer exist in the future or
no longer implement defined abstract methods. This allows client
developers to adapt their code before the actual change is made.

The following is an example of the Future tag’s use:

/**

* @future public class Customer
* extends Person

*/

public class Customer extends Partner

Adding an Interface

The adding of an interface to the list of interfaces that are implemented
by the class is incompatible: existing subclasses will become abstract.
If the subclasses ‘coincidentally’ define the methods, a behavior con-
flict will emerge.

6.5 APl Refactorings in Detail

203|

The change will become deferred-incompatible if the addition of
the interface is denoted with the Future tag.
For example:

/**
* @future public class Customer
* implements Storable
*/

public class Customer

Removing an Interface

The removal of an interface from the list of interfaces implemented by
the class is incompatible: the class’s objects are no longer assignable
to the remote type.

The change will become deferred-incompatible if the removal of
the interface is denoted with the Future tag.

For example:

/**

* @future public class Customer
*/

public class Customer implements Storable

Expanding Class Visibility

The expansion of class visibility is compatible.

Restricting Class Visibility

The restriction of class visibility is incompatible.

The change will become deferred-incompatible if the visibility
restriction is denoted with the Future tag.

For example:

/**
* @future class Customer
*/

public class Customer

Setting a Class from Final to Non-final

If a class that is declared final is set to non-final, the change is compatible.

|204

6 API Refactorings

Setting a Class from Non-final to Final

If a class is set from non-final to final, a structural conflict will be the
result: existing subclasses will be rendered invalid.

The change will become deferred-incompatible if it is not executed
directly, but denoted with the Future tag instead.

Here is an example of the Future tag’s use:

/**
* @future final public class Customer
*/

public class Customer

Setting a Class to Abstract

If a concrete class becomes abstract, we are faced with an incompatible
change. When objects of this class are created, those create statements
will become invalid.

The change will become deferred-incompatible if it is denoted with
the Future tag.

For example:

/**
* @future public abstract class Customer
*/

public class Customer

Setting a Class from Abstract to Non-abstract

If an abstract class becomes concrete, we are faced with a compatible
change — at least as long as no new methods that were previously
abstract must be added to the class. If that was the case, we could get
a behavior conflict.

6.5.3 Changes to Constants in Interfaces/Classes

Adding a Constant

The addition of a constant is compatible.

Removing a Constant

If a constant is removed, a structural conflict will occur.

6.5 APl Refactorings in Detail

205|

The change will become deferred-incompatible if the constant is
not deleted, but marked as deprecated instead.

Changing a Constant Type

The changing of a constant type is incompatible.

The change will become deferred-incompatible if a new con-
stant with the desired type is created while the old constant is set to
deprecated.

For example:

interface Printer ({
/**
* @deprecated
*/
public static final int LASERPRINTER=1;
/**
* @deprecated
*/
public static final int INKJETPRINTER=2;

public static final String
LASERPRINTER TYP=“laser"“;
public static final String
INKJETPRINTER TYP=“ink";

Changing a Constant Value

In most cases, the changing of a constant value is compatible. However,
if a number of constants constitutes the value range of an enumeration
type, the change can create a behavior conflict. This is the case when
the client’s value range has been expanded by constants of its own and
the values used there are in conflict with the new constant value.

6.5.4 Changes to Methods in Interfaces
Adding a Method to an Interface

If a method is added to an interface, a structural conflict will be cre-
ated. Existing implementations of the interface will become abstract,
because they don’t possess an implementation of the new method. If, by
chance, a suitable method already happens to exist in an implementa-
tion, this method will be implemented ‘accidentally.” This can lead to a
behavior conflict.

|206

6 API Refactorings

The change will become compatible if the interface is not directly
implemented in the application, but application classes are derived
from default implementations instead. Then the subsystem develop-
ers can provide a suitable method implementation in the default
implementation.

For example:

public interface Window
public void setWidth (int w) ;
public void setHeight (int h);

// new method: setSize
public void setSize(int width, int height) ;

public class DefaultWindow implements Window {
private int width, height;

public void setWidth(int w)
width = w;

public void setHeight (int h) {
height = h;

}

// new method: setSize
public void setSize(int w, int h) {
setWidth (w) ;
setHeight (h) ;
}
}

Removing a Method from an Interface

The removal of a method from an interface is incompatible. The change
will become deferred-incompatible if the method is not directly deleted,
but set to deprecated instead.

Renaming a Method in an Interface

If a method in an interface is renamed, a structural conflict will be the
result. Generally, the change will become automatable if the method’s
previous name is defined in the Past tag.

6.5 APl Refactorings in Detail 207 |

For example:

public interface Customer
/**
* @past void setName (String name)
*/
public void setLastName (String name) ;

}

Yet it is possible to experience situations where the changes will

remain incompatible. This is going to be the case if a method of the

same name and parameters but with a different return type already

exists in either a subinterface or an implementation of this interface. If

a method with the same parameters and a matching return type exists

in an implementation, a behavior conflict can occur because the

renamed method will be implemented automatically by the method in

that implementation. If a default implementation exists for the inter- Default
face and classes are never directly implemented in that interface, but Implementations of
succeed the default implementation instead, the change can also be /nterfaces
handled with the deprecated tag: in this case, the method must be
duplicated in both the interface and the default implementation. Also,

the old method must be set to deprecated.

Changing the Parameter List of a Method in the Interface

If the parameter list of a method in an interface is changed, a structural

conflict will emerge. The change will become deferred-incompatible

unless it is executed directly. Instead, the method will be copied and

the copy will be changed. The old method must be set to deprecated.
For example:

public interface Customer ({
/**
* @deprecated
*/
public void setName (String name) ;
public void setName (String lastname,
String firstname) ;

Changing the Return Type of a Method in the Interface

If the return type of a method in an interface is changed, the change
will be incompatible. Existing implementations of this method in the cli-
ent will become invalid.

|208

6 API Refactorings

The change will become deferred-incompatible when a new
method with a new name and the desired return type is created. The old
method will be marked with the deprecated tag.

We will have to find a new name for the new method if the pro-
gramming language (in this case Java) does not allow for defining a
number of methods in one class that can only be distinguished by their
return type.

For example:

public interface Customer ({
/**
* @deprecated
*/
public String getName () ;
public Name getCustomername () ;

}

Adding an Exception to a Method in the Interface

The addition of an exception to a method is incompatible because the
client code will have to catch this exception.

The change will become deferred-incompatible if the method is
copied and generated together with the desired exception list under a
new name. The old method must be set to deprecated.

For example:

public interface Printer (
/**
* @deprecated
*/
public void print (Document d);
public void printDoc (Document d)
throws PrinterException;

Removing an Exception from a Method in the Interface

The removal of an exception from a method is incompatible because
the client code is not allowed to catch this removed exception. In addi-
tion, redefinitions of the method will become invalid because they
expand the exception list.

6.5 APl Refactorings in Detail

209|

The change will become deferred-incompatible if the method is
copied and generated with a new name together with the desired excep-
tion list. The old method will be set to deprecated.

For example:

public interface Printer {
/**
* @deprecated
*/
public void print (Document d)
throws PrinterException;
public void printDoc (Document d) ;

}

6.5.5 Changes to Constructors in Classes

Adding a Constructor

When a new constructor is added to a class, incompatibilities will
emerge, as long as no explicit constructor exists. In this case, the com-
piler will no longer generate the default constructor. Clients that until
now have been using the default constructor will become invalid.

The change will become compatible if one always creates an
explicit default constructor whenever the first constructor is inserted.
This problem can be avoided right from the start when always at least
one explicit constructor is created.

Removing a Constructor

The removal of a constructor from a class is incompatible. The change
will become deferred-incompatible if the constructor is not directly
deleted, but set to deprecated instead.

Changing a Constructor’s Parameter List

If the parameter list of a constructor is changed, a structural conflict
will occur. The change will become deferred-incompatible unless the
change is made directly. Instead, the constructor will be copied and the
copy will be changed. The old constructor will be set to deprecated
and call the new constructor.

|210

6 API Refactorings

For example:
public class Customer

/**
* @deprecated
*/

public Customer (String name) {
this (name, ,“);

public Customer (String lastname,
String firstname)

Expanding Constructor Visibility

If constructor visibility is expanded, the change will be compatible.

Restricting Constructor Visibility

If constructor visibility is restricted (e.g. from public to protected), an
incompatible change will be the result. Clients that use the respective
constructor will become invalid because the constructor is no longer
visible to them.

The change will become deferred-incompatible if the restriction of
the constructor’s visibility is denoted with the Future tag.

For example:

public class Customer
/**
* @future protected Customer (String name)
*/
public Customer (String name)
}

Weakening of a Constructor’s Precondition

If a constructor’s precondition is weakened, a compatible change will
be the outcome.

5 Pre- and postconditions refer to the contract model based on the design-

by-contract principle (Meyer, 1992).

6.5 APl Refactorings in Detail

211|

Strengthening of a Constructor’s Precondition

If a constructor’s precondition is strengthened, its uses will become
invalid. Thus the change will be incompatible.

Adding an Exception to a Constructor

The addition of an exception to a constructor is incompatible because
the client code has to catch this exception.

Removing an Exception from a Constructor

The removal of an exception from a constructor is incompatible because
the client code is not allowed to catch this removed exception.

6.5.6 Changes to Methods in Classes
Adding Methods to a Class

If a new, non-private method is added to a class, incompatibilities will
arise. If a method of the same name and parameters but with a differ-
ent return type exists in a subclass, a structural conflict will emerge.
Even if the method is defined with identical parameters and an identi-
cal return type in the subclass, the structural conflict will be inevitable
if the method in this subclass is less visible. Should the method’s signa-
ture happen to be the same as the signature of the new method, a
behavior conflict is likely to result, because the new method will acci-
dentally be overwritten by the subclass.

Removing Methods from Classes

The removal of a method from a class is incompatible. The change will
become deferred-incompatible if the method is not directly deleted but
set to deprecated instead.

Renaming Methods in Classes

If a method in a class is renamed, a structural conflict will be the result.
As a rule, the change will become automatable if the method’s previ-
ous name is defined in the Past tag.

For example:

public class Customer {
/**
* @past void setName (String name)
*/
public void setLastName (String name) ;

}

|212

6 API Refactorings

Alternatively, the old method can also be copied and saved with the
new name. Then the old method must be set to deprecated. In this
case, the change will not become automatable, but at least it will be
deferred-incompatible. Yet it is possible to experience situations where
the changes will remain incompatible. This is going to be the case if a
method of the same name and parameters but with a different return
type already exists. Should a method of the same name, the same
parameters plus a matching return type exist in the subclass, a behav-
ior conflict can emerge because the renamed method will be overwrit-
ten by the method in the subclass.

Changing Parameter List of a Method in a Class

If the parameter list of a method in a class is changed, a structural con-
flict will emerge. The change will become deferred-incompatible unless
the change is not made directly. Instead, the method will be copied and
the copy will be changed. The old method will be set to deprecated and
call the new method.

For example:

public class Customer

/**
* @deprecated
*/

public void setName (String name) {
setName (name, ,“);

}

public void setName (String lastname,
String firstname)
{..}
}

Changing the Return Type of a Method in a Class

If the return type of a method in a class is changed, the change is incom-
patible. Existing redefinitions of this method in the client will become
invalid. If the new return type is no subtype of the old one, the uses of
the respective methods will also be rendered invalid.

The change will become deferred-incompatible if a new method
with the new name and the desired return type are created. The old
method will be marked deprecated and their implementation will refer
to the new method.

6.5 APl Refactorings in Detail 213 |

For example:

public class Customer

/**
* @deprecated
*/
public String getName () {
return getCustomername () .toString() ;

}

public Name getCustomername ()
{..}
}

Expanding Method Visibility in a Class

If method visibility in a class is expanded (e.g. from protected to pub-
lic), we will get an incompatible change. Existing redefinitions of this
method will become invalid because they restrict visibility.

The change will become deferred-incompatible if a copy of the
method with the desired visibility is generated and saved with another
name. The old method will be set to deprecated. The new method will
refer to the old method.

For example:

public class Customer

/**
* @deprecated
*/
protected String getName ()

{..}

public String getCustomername () {
return getName () ;

}
}

Restricting Method Visibility in a Class

If method visibility in a class is restricted (e.g. from public to pro-
tected), an incompatible change will result. Clients of this method will
become invalid, because the method will no longer be visible to them.

|214

6 API Refactorings

The change will become deferred-incompatible if a copy of the
method with the desired visibility is generated and saved with another
name. The old method will be set to deprecated and refer to the new
method.

For example:

public class Customer

/**
* @deprecated
*/

public String getName ()
return getCustomername () ;

}

protected String getCustomername ()
{..}
}

Setting a Method in a Class from Final to Non-final

If a method declared final is set to non-final, the change will be
compatible.

Setting a Method in a Class from Non-Final to Final

If a method is set to final, the change will be incompatible because
existing redefinitions of that method have become invalid.

The change will become deferred-incompatible if the old method is
copied and inserted under a new name. The new method will be

declared final and call the old method.

For example:
public class Customer

/**
* @deprecated
*/
public String getName ()

{..}

public final String getCustomername () {
return getName () ;

}
}

6.5 APl Refactorings in Detail

215|

Setting a Method in a Class from Static to Non-static

If a method is set from static to non-static, the change will be incom-
patible. Calls via the class name will be rendered invalid through the
change. Now, one instance of the class will always be required.

The change will become deferred-incompatible if a new, non-static
method is generated under a new name. At the same time, a static vari-
able that contains a default instance of the respective class will be
introduced into the class. The old method will be set to deprecated and
call the new method on this default instance.

For example:

public class Printer ({

private static Printer defaultPrinter =
new Printer () ;

/**
* @deprecated
*/

public static void print (Document d)
defaultPrinter.printDoc (d) ;

}

public void printDoc (Document d)

{..}

Setting a Method in a Class from Non-static to Static

If a method is set to static, the change is incompatible. Redefinitions
of methods in client classes will be rendered invalid through the
change.

The change will become deferred-incompatible if a new, static
method is generated under a new name. The old method will be set to
deprecated and call the new method.

For example:

public class Printer ({

/**
* @deprecated
*/

public void print (Document d) {

|216

6 API Refactorings

printDoc (d) ;

}

public static void printDoc (Document d)
{..}
}

Setting a Method to Abstract

If a method that was until now concrete is changed into an abstract
method, the resulting change will be incompatible: existing subclasses
will become abstract.

The change will become deferred-incompatible if the change is
denoted with the Future tag.

For example:

public abstract class Printer ({
/**
* @future abstract print (Document d)
*/
public void print (Document d)
{
printDoc (d) ;
}
}

Setting a Method from Abstract to Non-abstract

If an abstract method becomes non-abstract, we will get a compatible
change.

Weakening of a Method’s Precondition in a Class

If a method’s precondition is weakened, uses of this method will remain
valid. However, redefinitions of this method will become invalid,
because they expect the old precondition. It is not permissible though to
strengthen the precondition in a class. Thus the change is incompatible.

The change will become deferred-incompatible if a new method
with the desired precondition is created under a new name.

6.5 APl Refactorings in Detail

217|

For example:

public class Printer {

/**
* @deprecated
* @require d != zero
*/
public void print (Document d) {
printDoc(d) ;

}

/**
* @require true
*/
public void printDoc (Document d)

{-}

Strengthening of a Method’s Precondition in a Class

If a method’s precondition is strengthened, redefinitions of this method
will remain valid. However, uses of this method will become invalid.
Thus the change is incompatible.

The change will become deferred-incompatible if a new method
with the desired precondition is created under a new name.

For example:

public class Printer ({

/**
* @deprecated
* @require true
*/
public void print (Document d)

{-}

|218

6 API Refactorings

/**
* @require d != zero
*/

public void printDoc (Document d) {
print (4d) ;

}

}

Weakening of a Method’s Postcondition in a Class

If a method’s postcondition is weakened, redefinitions of this method
will remain valid. However, uses of this method will become invalid.
Thus the change is incompatible.

The change will become deferred-incompatible if a new method
with the desired postcondition is created under a new name.

For example:

public class Printer ({

/**
* @deprecated
* @ensure d.hasbeenprinted()

*/
public void print (Document d)
{..}
/**
* @ensure true
*/
public void printDoc (Document d) {
print (d) ;

}
}

Strengthening of a Method’s Postcondition in a Class

If a method’s postcondition is strengthened, uses of this method will
remain valid. However, redefinitions of this method will become invalid.
Thus the change is incompatible.

6.5 APl Refactorings in Detail

219|

The change will become deferred-incompatible if a new method
with the desired postcondition is created under a new name.
For example:

public class Printer {

/**
* @deprecated
* @ensure true
*/
public void print (Document d) {
printDoc (4d) ;

}
/**
* @ensure d.hasbeenprinted()
*/
public void printDoc (Document d)
{..}

Setting a Method in a Class to Synchronized

If a method that is declared non-synchronized is set to synchronized,
there will be the rare case in which this change is incompatible. It can
trigger deadlocks, and a behavior conflict will be the consequence.
The change will become deferred-incompatible if the method is cop-
ied and inserted as synchronized under a new name. The old method
will be set to deprecated.
For example:

public class Printer {

/**
* @deprecated
*/
public void print (Document d)

{-}

|220

6 API Refactorings

public synchronized void printDoc (Document d)
{..}
}

In contrast to the usually applied duplicating of methods, the original
method will not be simply delegated to the new method. If this was
done, the aforementioned deadlock situation would occur. Instead, the
new method can either call the old one or the implementation itself
will be copied.

Setting a Method in a Class from Synchronized to Non-synchronized

If a method that declared synchronized is set to non-synchronized, the
change will be incompatible. Multi-threaded applications can display
an aberrant behavior after this change has been made. A behavior con-
flict will emerge.

The change will become deferred-incompatible if the method is
copied and inserted as non-synchronized under a new name. The old
method will be set to deprecated.

For example:

public class Printer {

/**
* @deprecated
*/
public synchronized void print (Document d)

{..}

public void printDoc (Document d) {
print (4d) ;
}
}

Adding an Exception to a Method in a Class

The addition of an exception to a method is incompatible because the
client code must catch this exception.

The change will become deferred-incompatible if the method is cop-
ied and generated under a new name with the desired exception list. The
old method will be set to deprecated.

6.6 Converter

2ﬂ|

For example:

public class Printer {

/**
* @deprecated
*/
public void print (Document d)

{-}

public void printDoc (Document d)
throws PrinterException ({
print (d) ;

}

}

Removing an Exception from a Method in a Class

The removal of an exception from a method is incompatible because
the client code is not allowed to catch this removed exception. More-
over, the method’s redefinitions will become invalid because they
expand the exception list.

The change will become deferred-incompatible if the method is
copied and generated under a new name with the desired exception
list. The old method will be set to deprecated.

For example:

public class Printer ({

/**
* @deprecated
*/

public void print (Document d)
throws PrinterException
printDoc(d) ;

}
public void printDoc (Document d)
{3

}

6.6 Converter

The refactoring tags described here clearly aim at keeping the new inter-
face of the modified subsystem temporarily backwards-compatible with

I 222

6 API Refactorings

the old version. Thus the interface gets ‘polluted” with methods that are
not needed by the new client in the subsystem.

Converters that convert object structures between different ver-
sions are an alternative here. If they are used, the subsystem’s API will
not be altered. The subsystem is copied instead, so that the old as well
as the new version of the subsystem can be used in parallel. Often the
new version of the subsystem will receive the suffix ‘2.

Since in many cases it is not possible to adapt the entire application
at once, some parts of it will continue to work with the subsystem’s old
version for the time being, while other parts are already using the new
subsystem version. If the different parts of the application have to
communicate with each other, the object structures of the old and the
new subsystem versions must be bidirectionally convertible.

For this purpose, developers of a duplicated subsystem can supply
one converter or more. In this way, the system’s ‘pollution’ will be
limited, and the convention of adding the suffix ‘2’ will make it suffi-
ciently clear to anyone that the old subsystem version will soon be
history. Moreover, all classes of the old subsystem version will be set
to deprecated, of course.

Converters do display definite limitations though, if classes of the
modified subsystem have been inherited by other subsystems. In such a
case, it will no longer be feasible to construct a general converter with
simple means.

6.7 Application Migration with Incompatible
Subsystem Changes

Unless the subsystem developers alleviated their modifications of the
subsystem API by using the aforementioned tags, the application devel-
opers will be in for an unpleasant surprise: after the subsystem’s new
version has been installed, the application will no longer be compilable.
The compiler will generate countless error messages. Unfortunately, the
number of error messages provides little valuable information. Several
of them will be sequence errors, so that fewer changes must be made
than the mass of messages at first suggests. But single migration steps
can in turn produce new sequence errors — for example, because a devel-
oper notices that a parameter list of a method in the application must be
adapted. All in all, the demand for adaptation can hardly be projected
precisely. This creates a lot of insecurity for further project planning.
Thus the migration to a new subsystem version becomes a relevant risk.

In addition, the application will remain uncompilable during the
entire migration period. This means that neither the application itself
nor tests can be executed. Whether all single parts of the application

6.8 Tips for Designing APIs

migrated correctly or not will only become clear at the very end of the
migration process.

This problem can be countered with a stepwise, new construction
of the application. Please proceed as follows:

1. Install the new version of the subsystem.

2. Create a new, empty version of the application project, includ-
ing references to the new subsystem version.

3. Copy the application’s lowest layer into the new project.

. Make the copied application classes compilable again.

5. Change the copied application classes so that they will pass the
tests again. The tests will also let you discover and resolve se-
mantic conflicts (which requires a good test coverage, of course).

6. Copy the next application layer. Proceed with step 4.

N

Figure 6-3 visualizes this procedure. However, of course the migration
effort will not become smaller when these instructions are being fol-
lowed, but at least the already migrated parts of the application will be
compilable and run the according tests. This migration method will
significantly reduce the risks involved.

~1 Application ™] Application

[Layer2 [WBUO"I\ [Layer2
vy L
1 Application " [Application] Application
Layer 1 Migration > [Layer 1 [Layer 1
L ' / — vz — vz
§ Subsystem Evoh le;,\) Subsystem) Subsystem) Subsystem

6.8 Tips for Designing APIs

Only a few, simple tips will help to design APIs in such a manner that
they will be stable regarding changes.

Design Tip 1: Planning Inheritance

Inheritance must be planned. If inheriting from an API class hasn’t
been explicitly planned and scheduled beforehand, the class should be
set to final. Methods that are not explicitly meant for overwriting
should be declared final or private. Methods that in principle inherit
from subclasses but do not belong to the class’s normal API, can be
labeled protected.

Migrating
an Application
Layer by Layer

Fig. 6-3

New Construction of
the Application for
Migration

I 224

6 API Refactorings

The keyword final constitutes a very powerful restriction for cli-
ents and can thus lead to problems. Especially when writing tests with
JUnit, often scenarios will be created where a referenced class must be
replaced by a specific version (e.g. Mock or Dummy). If the referenced
class has been declared final, the testability via Mock or Dummy
classes (which, as a rule, inherit from the class) will be impaired. Inter-
faces come in handy here: the actual implementation class is declared
final, whereas the interface can be utilized for Mock and Dummy
implementations.

Design Tip 2: Avoiding Inheritance

If inheritance between API classes can be avoided, it should be avoided:
otherwise API clients can build on these inheritance relations.

Design Tip 3: Abstract Implementations for Interfaces

API clients that implement an API interface will become more stable
regarding changes to the interface if they do not directly implement the
interface, but inherit from an abstract class. If a new method is added
to an interface, a default implementation will be defined in the abstract
class, so that API clients must not be adapted.

Here, we are facing an area of potential conflict: in the chapter
about architecture smells, we argued that list-like inheritance hierar-
chies point at speculative generalization. Now, in this chapter, we are
suddenly suggesting use of exactly these list-like inheritance hierar-
chies. The reason for this suggestion is easily explained: in the case
depicted here, the list-like inheritance hierarchy has deliberately been
applied in order to smooth the way for modifications of subsystem
interfaces. This is an ostensive example of the fact that not every smell
automatically signals the existence of a problem.

Of course the abstract implementations for interfaces will func-
tion only as long as the client classes implement only a single interface
(Figure 6-4). If several interfaces are supposed to be implemented,
inheritance from several abstract implementations will prove impossi-
ble (at least in languages with single inheritance).

A way out of this dilemma is provided by the Adaptable pattern
used in Eclipse (see Gamma and Beck, 2003).

Design Tip 4: Small APIs

The smaller the AP1 is, the lower the probability that the API must be
changed incompatibly. Subsystems should be designed in such a way

6.8 Tips for Designing APIs

Component

<<Interfacess
Customer

JAN

|AbstractCustomer|

Application

| MyCustomer|

that as many classes as possible are hidden behind an as small as

possible API.

All elements should have as little visibility as possible.

Design Tip 5: API in Its Own Packages

If the API as well as the implementation of a subsystem are respectively
organized in packages of their own, changes to the implementation
can more easily be kept separate from the API (Figure 6-5).

—

Application

—

ComponentAPT

[1V

ComponentImpl

Fig. 6-4

Abstract
Implementations for
Interfaces

Fig. 6-5
Division between API
and Implementation

I 226

6 API Refactorings

Subsystems in the Time
Recording

Subsystem Web

Design Tip 6: Unambiguous Class Names

Class names in a subsystem API should be unambiguous, even without
package names. Otherwise, problems can arise during migration when
classes are moved into other packages.

Design Tip 7: Avoid Wildcard Imports

The problem that the previous design tip addresses can be attenuated
by avoiding wildcard imports (as from implicit imports). Instead use
explicit imports, maybe using an automated import feature of an IDE
to remove wildcard imports.

Design Tip 8: Explicit Default Constructor

Each class should have at least one explicit constructor to prevent the
compiler from generating the default constructor. Otherwise, the com-
piler-generated default constructor can be deleted ‘accidentally’ when
a parameterized constructor is added.

6.9 AnExample

This section aims at clarifying the previously explained principles of
API refactoring, using the framework of a more comprehensive exam-
ple. To this end, we will choose the example of a time recording system
for IT consultants. The consultants can access the system via a web-
based interface to feed in their work hours. The values fed into the sys-
tem form the basis for payroll accounting as well as for generating
invoices to customers.®

6.9.1 Our Starting Point

The subsystems are displayed in Figure 6-6. The consultants access the
system via the subsystem Web. The accounting department uses the
subsystem Report to produce the required print lists and analyses.

The subsystem Web works with the subsystem Business Objects
which provides concepts such as Employees and Time Entries. These
business objects are saved in the database and reconstructed from the
database with the subsystem Administration. To this end, a purchased
subsystem DB is utilized.

6 This example is also used in Chapter 5. It is described here in its entirety so

that one can read both chapters independently.

6.9 AnExample

227 |

The subsystem Report employs the subsystem Analysis in order to
carry out all necessary analyses for the print lists (e.g. all hours for each
employee and for one project respectively). Of course, the subsystem
Analysis uses the subsystems Business Objects and Administration to
access the persistent business objects. The print lists are created with the
aid of a commercially available report tool (subsystem Report Tool).

Of course, the subsystem Analysis uses the subsystems Business
Objects and Administration to access the persistent business objects.
The print lists are created with the aid of a commercially available
report tool (subsystem Report Tool).

ul
Report Web
.' |
I I
1 I
T T
| A A [ml
] 1 1 1
| I 1 |
| T T T
: Domain N i AP
\ (Model) | _______. L__________>
I I
| Analyses - l Administration
I 1
| W
| T T
e S .
! _ Business Objects - ——————— -
I I
! i
I I
' |
I I
T]
T
Tech | !
e i
I
I
_ Report-Tool DB (----------

The subsystems are arranged in three non-strict layers: user inter-
face (UI), domain model and technology.

At its core, the time recording system builds on the business objects
displayed in Figure 6-7: Time Entries holds a central position. Besides
date, start and end time, it contains references to the Project, the
project’s Activity and the Employees.

The subsystem Business Objects has a special role in our example.
It is used by many other subsystems, and its API contains many classes
of the subsystem. Consequently, we are confronted with the architec-
ture smell ‘subsystem API too large’ here. In our example, this smell is
wanted though. The subsystem Business Objects shall provide the
vocabulary for the other systems’ communication among each other.

Subsystem Report

Fig. 6-6
Subsystems of the
Time Recording
Example

The Business Objects

|228

6 API Refactorings

Fig. 6-7
Business Objects

APl of the Subsystem
Administration

Time Entries

-date
-start time
-end time

¢
[]

Based on this vocabulary, the API of the subsystem Administration
looks as follows:

public interface Administration {
public void enter (Time Entries z);
public void cancel (Time Entries z);
public Time Entries[] getEntry
(Project p, int year, int month) ;
public Time Entries[] getEntries
(Employee m, int year, int month) ;
public Time Entries[] getEntries
(Employee m,
int year, int month, int day);

6.9.2 The Reasons for this Refactoring

The modeling of the subsystem Business Objects strongly influences
the subsystem Administration’s API and thus also the interaction of
Analysis and Administration.

Basically, we have to implement the respective low-level functions
for most analyses in Administration. The business objects are too ‘stu-
pid’ to allow the subsystem Analysis to execute complex functions on
them.” Theoretically, it is also possible for the subsystem Analysis to

7 This could also be a smell in the design: maybe the business objects are merely

data structures.

6.9 AnExample

229|

access the database directly. However, this would also mean that the
subsystem Administration no longer encapsulates the database, thus
making modifications of the database schema more difficult.

Therefore, the subsystem Business Objects should be restructured
in such a way that it becomes ‘smarter’ and the API of the subsystem
Administration does not inflate so strongly.

6.9.3 The Goal of this Refactoring

This object model of the subsystem Business Objects shall now be
modified in such a manner that the model of the core business objects
will look as follows: each one of the Employees has got a Month
Folder for each month with a Calendar Sheet for every work day. On
the Calendar Sheet all Time Entries are recorded, including start and
end time, Project and Activity in the project (see Figure 6-8).

Employee

Month Folder

Time Entries

-start time
* -end time

¢

With this restructuring of the subsystem Business Objects, we ven-
ture deep into the whole system’s vocabulary. We should expect a

demand for comprehensive restructuring measures of the entire system.

Here, we are going to focus on the refactoring’s impact on the API of

the Administration subsystem. We can imagine the new API as follows:

public interface Administration
public void save (Employee m) ;

The New Object Model
of the Business Objects

Fig. 6-8
Business Objects after
Restructuring

The New API of the
Administration
Subsystem

[230 6 APl Refactorings

public Employee getEmployee
(String name) ;

public Employee[] getProjectEntries
(Project p);

In principle, it would be possible to leave the old methods in Admin-
istration and simply set them to deprecated:

Backwards-Compatible public interface Administration {
AMofMeQ@gm@m public void save (Employee m) ;
Administration public Employee getEmployee
(String name) ;
public Employee[] getProjectEntries
(Project p);

/**
* @deprecated
*/

public void enter (Time Entry z);

/**
* @deprecated
*/

public void cancel (Time Entry z);

/**
* @deprecated
*/
public Time Entry[] getEntries
(Project p, int year, int month) ;

/**
* @deprecated
*/
public Time Entry[] getEntries
(Employee m, int year, int month) ;

/**
* @deprecated
*/
public Time Entry[] getEntries

6.9 AnExample

231 |

(Employee m,
int year, int month, int day);

Regrettably, this does not solve the problem of how changes of the sub-
system Business Objects’ API should be dealt with. There, not only the
interfaces of the classes have changed, but also the relations between
the classes themselves were completely rearranged.

6.9.4 Refactoring Procedure: Business Objects Omnipotent

We will proceed based on the assumption that the single subsystems in
our example are developed by different teams. In the course of a sub-
system’s refactoring, it is therefore not feasible to reconstruct all this
subsystem’s dependent subsystems. We must find a way to execute the
refactoring step by step, and in such a manner that the subsequent
migration will cause as little effort as possible.

The evident refactoring course would be to model the subsystem
Business Objects in such a fashion that it can be used like the old sub-
system. To this end, all classes with their respective methods would be
kept and the new methods merely added to them. Naturally, the old
methods would be set to deprecated to indicate that migration must be
directed at the new methods. The outcome would be the class structure
that can be seen in Figure 6-9.

This example too proves that a large refactoring will often lead to
an initial deterioration of the system’s structure. Here, we have pro-
voked two extremely bad smells because we created two cyclical rela-
tions. For this reason it is pivotal that we finish our refactoring: in the
next version of the subsystem Business Objects, the cyclical references
will be gone, as will the deprecated methods.

Anyhow, the ‘deteriorated’ version of the subsystem will enable
us to adapt the remaining application to the business objects’ new
structure. Likewise, we will let the API of the subsystem Administra-
tion ‘deteriorate,’ so that both the old and the new structure can be
processed.

Afterwards, the deprecated methods are removed from the API.
We will get the targeted API of the subsystem Administration:

public interface Administration
public void save (Employee m) ;
public Employee getEmployee
(String name) ;

Different Teams for
Each Subsystem

Omnipotent Business
Objects

New AP of the Sub-
system Administration

I 232

6 API Refactorings

Fig. 6-9

Backwards-
Compatible Subsystem
Business Objects

Duplication of the Sub-
system Business Objects

Preconditions for Pro-
gramming a Converter

Employee

Month Folder

¢

Time Entries

-start time
* -end time

¢

public Employee[] getProjectEntries
(Project p);

}

6.9.5 Refactoring Procedure: Duplicating Business Objects

Another option for a step-by-step restructuring is duplication of the
subsystem Business Objects. First, a new subsystem labeled Business
Objects2 is created in the same location as the subsystem Business
Objects.

In this subsystem Business Objects, all classes are then set to depre-
cated. The new subsystem Business Objects2 contains — besides the
new business object classes — a converter that is capable of transferring
object structures of the subsystem Business Objects into object struc-
tures of the subsystem Business Objects2 and vice versa. This gives us
the opportunity to restructure the remaining parts of the application
step by step. Once the application has been completely restructured,
both the converter and the subsystem Business Objects will be deleted
and the subsystem Business Objects2 renamed into Business Objects.

To enable programming of such a converter for object structures
while keeping the effort to this end acceptable, the object graphs
must be rendered convertible without information loss. In our exam-
ple, the conversion of a time entry of the old model into Employee
with his or her Time Eniries is only feasible if access to the database

6.9 AnExample 233 |

is possible. There, all further time entries for Employee must be deter-
mined. During reverse conversion, the opposite can easily occur: too
much information is provided for one class Time Entries. In that case,
several Time Entries for one Employee, based on the old model, must
be generated.

This problem can be addressed by creating a ‘streamlined’ model
of the new business objects, i.e. one that allows conversion without
information loss (see Figure 6-10).

In this ‘streamlined’ model, one employee is always assigned one
calendar sheet, and each calendar sheet only one time entry. In effect, the
time entry’s date information has been moved to a class of its own: the
class Calendar Sheet. Additionally, the uses relation between Time
Entries and Employee has been reversed. Now, the business objects’ new
structure can be changed relatively simply with the help of a converter.

Fig.6-10
The ‘Streamlined’
1 Model of the New

Calendar Sheet

Business Objects

Time Entries

-start time
1 -end time

As soon as we deployed the new object structure, we can install the
new API of the Administration system:

public interface Administration New AP of the Sub-
public void save (Employee m) ; system Administration
public Employee getEmployee
(String name) ;
public Employee[] getProjectEntries
(Project p);

|234

6 API Refactorings

Option 1

Option 2

In the next step, the refactoring of the business objects will be com-
pleted. The new class Month Sheet and the transition from 1:1 relations
to 1:N relations is relatively easily accomplished.

6.9.6 Evaluation of Both Approaches

The application of the first refactoring option did not require any par-
ticular amount of creativity. It did have the disadvantage of degenerat-
ing the system structure though. In a very large system, this can have
significant negative consequences. Therefore, this kind of ‘pollution’
must be eradicated as soon as possible.

The second option created far less ‘pollution’ of the system due to
use of the converter. Especially the dependent system’s APIs did not
inflate. The duplication of the subsystem Business Objects definitely
constitutes a smell (code duplication), but both units are kept strictly
separate. Of course, it is important to finally delete the old version of
the subsystem as soon as possible. Since ‘as soon as possible” harbors
the danger of getting deferred for ever (in favor of more urgent mat-
ters), it is often advisable to set an explicit target version where the old
version will be removed.

The second option seems to be more appealing for migration, but
unfortunately it is not universally valid. If classes from the subsystem
Business Objects had inherited from other subsystems, writing a uni-
versally applicable converter would have become impossible. Convert-
ers will work well if it is guaranteed that no subclasses exist. This is the
case if at least all dependent subsystems are available for analysis, or if
constructive subclasses have been excluded, for example through
declaring the classes of one’s subsystem final.®

Excursion: Black Box Refactoring

A contribution by Jens Uwe Pipka

(jens-uwe.pipka@daedalos.com, Daedalos Consulting)

One often-made implicit assumption during a refactoring process is
that the entire code basis of a software system is at the programmers’
disposal. If this is the case, all relations and uses of a subsystem to be
refactored are known. They can be analyzed and adapted accordingly.
This procedure constitutes a so-called White Box Refactoring,
because the changes are made to the whole system. After the whole
system has been adapted, the refactoring is complete. No further steps
are required. This scenario is shown in the following figure:

8 See the comments regarding testability in Section 6.8.

6.9 AnExample

235 |

System
“under Refactoring”

N -

White Box Refactoring

We face a more difficult situation if a refactored system has a number
of potential clients that are not familiar, as is e.g. the case when
object-oriented libraries or a framework are applied. In such a situa-
tion, different systems use the common code basis. Therefore, we
speak of a base system. An external subsystem that uses and specifies
this base system is called the using system (see next figure).

If a refactoring is carried out in the base system, it is in most cases
not feasible to identify all potential effects on the using systems,
because multiple couplings between systems are possible. Thus, not
all options can be taken into account fully during refactoring pro-
cesses concerning the base system: a so-called Black Box Refactoring
takes place, since there is no guarantee that each combination of the
refactored base system and the using system will display the same
semantic behavior in the future.

Base System
“under Refactoring”

Limit

Using System

el
\ Refactoring
Ll Ll

Black Box Refactoring

|236

6 API Refactorings

The complexity of identifying possible effects on a using system
during the refactoring process is caused by the fact that object-ori-
ented systems in principle allow two orthogonal ways of base system
usage and specialization:

1. Call of those methods that are accessible via the interface of a
class; also called Black Box Usage.

2. Specialization of a class through inheritance; also known as
White Box Usage.

In the first-mentioned case, a refactoring in the base system can be
executed with relatively few problems, because the internal structure
is to a large degree encapsulated and changes are thus transparent.
Only changes to the public interface of a class are critical, such as e.g.
the removal or addition of a method. However, the use of refactoring
tags enables proactive communication of these modifications and
even — as described in Section 6.4 — mostly automated adaptation in
the using system.

The second case, however, has yet another aspect that must be
considered when refactoring the base system: changes in the system
structure can have additional semantic effects on the using system,
because the latter is implemented based on a specific syntactical
structure. Inheritance causes the structure of the code basis to lie
open and thus forms the basis for developing the using system. As a
consequence, changes to this structure can affect the conditions
present at implementation and therefore directly affect the pro-
gram’s semantics. Modifications of the program’s semantics cannot be
completely handled with refactoring tags alone, because refactoring
tags are only meant to deal with changes of a class’s interface. The
complete, implicit interaction of base system and using system is not
covered by the capabilities of refactoring tags.

Thus it is necessary to establish some additional procedures to
ensure that a refactoring will not alter the semantics of the whole sys-
tem: to this end, information for changes to the public interface of a
class must be checked — not only in regard to its callers, but also in the
context of the inheritance hierarchy, while keeping the using system in
mind. Possible conflict situations have already been addressed in Sec-
tion 6.3. It should not go unmentioned though that conflicts in the
inheritance hierarchy cannot be sufficiently solved by ‘mechanically’
changing all references, because such an action may create significant
semantic conflicts.

In effect, not only the isolated migration efforts in the base sys-
tem must be considered, but moreover their impact as well as the
required migration steps in the using system. In the following, we will

6.9 AnExample

237|

discuss this problem and illustrate it using two examples. We will
examine how far usage and specialization must be distinguished in
the refactoring process, and whether a semantic conflict analysis is
required or not.

Semantic Conflict Scenarios through Black Box Refactoring

The difficulties encountered in Black Box Refactoring can be demon-
strated with a simple example. In our example, the base system
implements an accounting system that generates invoices when one
or more products are purchased. One component of the accounting
system is the discount module: this module allows calculation of a
certain discount based on a product price. In our example, the dis-
count functionality is implemented as follows:

public class DiscountOffer (
int individualDiscount;
public DiscountOffer ()
individualDiscount = this.initialDiscount () ;

}

public int initialDiscount () {
return O;

}

public void setDiscountUser (Customer customer) {
this.individualDiscount =
this.initialDiscount () + O;

public int getDiscount (int price, Customer customer) (
this.setDiscountUser (customer) ;
return price * individualDiscount / 100;

public int getDiscount (int price) ({
return price * individualDiscount / 100;

}
}

The customer discount is composed of an initial discount granted to
all buyers, whether they are registered customers or not. This per-
centage is determined by the method initialDiscount (). Persons
who are already registered customers can be given an additional dis-
count. This percentage must be determined with the method set-
DiscountUser (Customer). Within the generic functionality of the
base system, both values are set to 0%.

This base system is distributed to various users, who can define
different specifications for the generic discount function provided by
the base system, depending on the kind of discount offer they wish to
create. The concrete discount offer is implemented with the aid of the
inheritance mechanism in the using system.

|238

6 API Refactorings

A company wishes to give all its buyers an additional discount of
5% t as part of their summer discount offer. Regular customers (who
are already registered) are not supposed to get this extra discount.
Accordingly, only the initial discount must be adapted and set to 5%.
This requirement will be implemented in the using system:

public class SummerDiscountOffer extends DiscountOffer {
public int initialDiscount () {
return 5;

}
}

A test of the using system shows that the requirement is met as
desired. The call summerDiscountOffer.getDiscount (100) returns
the result that a discount of 5 Euro has been given based on a price of
100 Euro.

Independent from the tests, the developers of the base system
continue to work on the accounting system’s implementation. To pre-
pare the implementation and usage of the class Discountoffer for
extensions, they move the predefined values into two new instance
variables: initialDiscount and customerDiscount. They apply
the Inline Method refactoring in the constructor to achieve a more
efficient and clearly-structured implementation. Since the public
interface shall not deviate from that of the earlier version, the method
initialDiscount () is kept and adapted to the new structure. For
better legibility, only changes to the class Discountoffer are listed
below:

public class DiscountOffer ({

int initialDiscount = 0;
int customerDiscount = 0
public DiscountOffer ()
individualDiscount = i
//Inline Method

i
nitialDiscount;

}

public int initialDiscount () ({
return initialDiscount;

}

public void setDiscountUser (Customer customer) {
this.individualDiscount =
initialDiscount + customerDiscount;

}

The behavior of the class Discountoffer in the base system is iden-
tical to the class’s behavior in the previous version, i.e. all tests return
the same results as before. The new version of the base system is now
ready for distribution.

6.9 AnExample

239|

The first step of integration with the system that implements the
summer discount offer initially appears to be successful, since no syn-
tactical errors occur and the whole system can be compiled without
problems. Nevertheless, the program semantics have changed, so
that the requirement is no longer met correctly. The call summerDis-
countOffer.getDiscount (100) now generates the result that no
discount will be given.

The reason for that error is that — due to the Inline Method refac-
toring — the specialization of the method initialDiscount () is no
longer considered in the system, thus leading to a faulty initialization
of instances of the class SummerDiscountOffer and generating the
incorrect program behavior.

This altered behavior is caused by the fact that the call graph has
been changed during refactoring: the method initialDiscount ()
which was originally called in the constructor, is no longer called on.
Therefore, the specialization in the class SummerDiscountOffer is
disregarded. This conflict will only be recognized when the base sys-
tem and the using system are analyzed together. As part of the refac-
toring process on the base system level, this change poses no problem.

Even the application of refactoring tags will not help in this case:
the public interface of the class Discountof fer has stayed the same.
In effect, no refactoring tags are defined and thus no changes are trig-
gered in the using system.

This example clearly demonstrates that an exclusively proactive
approach for describing the impact of a refactoring in the base sys-
tem is neither sufficient for the using systems, nor will an analysis
and test of the base system alone suffice. Only a comprehensive
function test of the whole system will bring certainty that an inte-
gration of basic and using system was truly successful. But even this
approach will only be partially helpful for error analysis: in order
to analyze the cause of the system’s semantic misbehavior, compre-
hensive knowledge of the entire system is required. For that reason,
integration of an automated, semantic analysis in the refactoring
process is advisable to offer programmers additional support dur-
ing development of a distributed system.

Gray Areas in Black Box Refactoring

Besides direct changes to the call graphs, especially so-called ‘Big
Refactorings’ will lead to constellations that literally provoke seman-
tic conflicts. The combination of different changes that are made in
the course of a refactoring will often lead into ‘gray areas’ that can

|240

6 API Refactorings

not be resolved in the base system and that will only become visible
in combination with the using system.

Particularly modifications that are meant to prepare the ground
for extending the base system are often dangerous. To illustrate such
a situation, we will now return to our accounting system example.
Based on the now familiar implementation, first a new discount offer
for the coming Christmas season is implemented in the user system,
granting a 5% discount to all buyers as well as an extra 5% to regu-
lar customers:

public class ChristmasDiscountOffer
extends DiscountOffer {
public ChristmasDiscountOffer () {
individualDiscount = initialDiscount = 5;
}

public void setDiscountUser (Customer customer) {
customerDiscount = 5;
super .setDiscountUser (customer) ;

}
}

In the basesys&nn a method getDiscount (price, customer)
already exists to calculate a customer’s discount in a single step.
For a price of 100 Euro a customer will accordingly receive a dis-
count of 10 Euro.

The introduction of the class Person as superclass of Customer
shall prepare the base system for future extensions. This plan is also
reflected in the implementation of the class Discountoffer: the
interface for the method getDiscount (price, customer) is altered
and the parameter of the type Customer is changed to a parameter of
the superclass’s Person type. No change takes place for the callers,
since the generalization of a parameter for using this method is trans-
parent.

public class Person { .. }
public class Customer extends Person { .. }
public class DiscountOffer {

public void setDiscountUser (Person person) {
this.individualDiscount =
initialDiscount + customerDiscount;

public int getDiscount (int price, Person person) {
this.setDiscountUser (person) ;
return price * individualDiscount / 100;

}

6.9 AnExample

241 |

This change is in itself uncritical, but in connection with the user sys-
tem it results in a changed discount calculation because the specializa-
tion for setDiscountUser (customer) from the class Christmas-
DiscountOffer will no longer be called on. Thus customers will
receive the wrong discount amount of 5% instead of the offered 10%.

This example clarifies that gray areas which cannot always be
eliminated inherently exist in refactoring processes. The application
of refactoring tags can help in this case: the Past tag is implemented
for the method set DiscountUser (Person) here. Unfortunately, this
approach also has a disadvantage. All callers of this method must
execute an extra type cast of the object Customer after Person. This
contradicts the original idea of utilizing the options object-orienta-
tion has to offer and keeping modifications of the base system trans-
parent for all callers through generalization of this method, while
also creating as little as possible (ideally no) demand for migration
within the using systems.

Support of the Black Box Refactoring through Semantic Conflict Analysis

Both examples underline that distributed development in Black Box
Refactoring harbors the danger of creating semantic conflicts that
stem from the combination of base system and using system. These
conflicts can hardly be avoided by documenting the changes alone.

Here we must differentiate between two scenarios: in the first
scenario, we are dealing with changes of a class’s interface that have
to be communicated to the using system. This can be done via refac-
toring tags. Changes to certain categories of classes, their effects on
the using system as well as possible measures for avoiding or remov-
ing conflicts have been discussed in detail in Section 6.5. In this
respect, this scenario is clearly structured and can be handled.

Things are different for the second scenario, where changes occur
in the inheritance interface itself: the using system must be informed
of these changes. The number of potentially possible conflicts
exceeds that of those possible in the public interface: adding to them
are the effects of changes to the internal structure and the implemen-
tation of the base system itself. For example, changes to the call
graph can lead to errors in the combination of base system and using
system. The same is true for generalizations or specializations on the
class and method level that are not entirely alleviated by classic doc-
umentation concepts for a class’s interface. Their effects will vary
strongly, depending on which specializations are implemented in the
using systems.

I 242

6 API Refactorings

Since the number of possible effects of changes in the inheritance
interface is fairly large — even for simple refactorings — a reactive
innocuousness check is required besides a documentation of the
changes: on the one hand, this can be achieved by running an as com-
prehensive function test as possible of the using system; on the other
hand, a semantic error analysis for certain error classes following the
integration of the modified base system will ensure that the system’s
behavior has remained semantically unaffected.

Semantic Error Analysis in the Refactoring Context

In order to recognize the semantic conflict situations discussed here,
information about inheritance structures as well as the call graph is
required — information also needed by refactoring tools to enable a
mostly automated execution of refactorings. One peculiarity of
semantic error analysis is that changes between the status quo prior
to a refactoring and the status quo after a refactoring do matter.
Without this differentiation, it is not possible to identify the conflict
situation depicted here.

This prerequisite proves critical, particularly for the execution of
a refactoring in a base system without direct relationships to possible
using systems: the data needed for recognizing the conflict must be
obtained from both systems. Therefore, the call graph of the system
plays a pivotal role that goes beyond the scope of the actual refactor-
ing. In our first example, the conflict originated from the fact that a
call was removed from the base system and thus a specialization from
the using system was no longer observed.

Yet another obstacle must be taken into account: it does not suf-
fice to consider the current combination of the system consisting of the
refactored base system and the using system. Moreover, the condition
created by their combination must be compared for the base system as
well as for the using system before and after refactoring. These prereq-
uisites make it clear that recognition of a conflict based on a concrete
misbehavior can only take place on the using system’s side. In addi-
tion, both variants of the base system must be available to allow a
comparison.

Stepping over the system boundary between basic and using sys-
tem has yet another consequence: the release and thus integration of
the base system is not restricted to a single, atomic refactoring. To
enable an efficient development cycle on the one hand and a reward-
ing integration scenario on the other, a new version of the base sys-
tem must contain a series of changes. Here, we can distinguish between

6.9 AnExample

243 |

an exclusive refactoring, exclusive continuous development and a
blend of the two. All variations have in common that modifications
of the source code will bring about a large number of changes in the
program structure.

This distinction hardly matters for semantic conflict analysis,
because occurrences of the described conflict situations are thinkable
for all variations. However, evaluations showed that the number of
possible semantic conflicts in a refactoring cycle is particularly high,
because in a refactoring cycle most work takes place in existing
classes and methods which already supply their functionality to using
systems. The realization of new functionalities will rather lead to the
implementation of new classes and methods that are not yet in use —
a fact that reduces the danger of semantic conflicts. This confirms
that semantic conflict analysis, especially for large refactorings, is an
indispensable means of support for controlling and limiting the num-
ber of a refactoring’s possible consequences.

Further evaluations prove that a separation between pure refac-
toring cycles on the one hand and development cycles on the other
makes sense when developing a universal base system with a series
of possible clients. The integration of base and using system can be
treated in different ways in the base system, depending on the type
of change: suitable integration steps (depending on the type of
change), for example the execution of a semantic conflict analysis
exclusively in the course of the refactoring cycle, can lower the risk
of running headfirst into an unrecognized misbehavior of the whole
system without losing the option of quickly integrating new func-
tionalities.

Tool-Based Recognition of Semantic Conflicts

Changes in the call graph of the base system can hardly be monitored
manually. Especially when the execution of a complete refactoring or
development cycle is examined, it is impossible to document all
changes in the form of additional tags. This is also the case for neces-
sary evaluations that must be carried out in the using system during
integration of the refactored base system.

Therefore, it is necessary to automatically record the data, for
example by extracting the relevant data from the source code and
transferring it to a suitable meta model or by using the existing meta
information offered by a refactoring tool. In the next step, the actual
states before and after a refactoring must be evaluated to identify
possible conflict situations.

[23a

6 API Refactorings

This procedure can be realized algorithmically as follows:

1. Determination of the potential for conflicts as the amount of
all changes of the base system before and after refactoring or,
respectively, the development cycle.

2. Analysis of the dependencies between the potential for con-
flicts and the using system.

3. Identification of concrete conflicts based on the identified de-
pendencies while applying adequate rules for conflict recogni-

tion.

g —

Refactored
Base System

.

Refactoring

Base System

Potential®
for
Conflict

L L

Using System

Potential for Conflicts through a Refactoring of the Base System

In this context, the definition of a rule depends on the specific error
scenario. For our first example that does disregard method special-
ization, a suitable rule looks like this:

1. Determine the potential for conflicts consisting of all method
calls that have been removed from inside the modified basic
module.

2. Find all methods that have been overwritten by the basic mod-
ule in the using system and therefore have been specialized.

3. Identify the potential for conflicts as the amount of all meth-
ods found in step 2 that are also part of the potential for con-
flicts determined in step 1.

Analogously, rules for the recognition of further conflicts can be
created and integrated in the recognition algorithm. Here, most rules
operate based on a straightforward number of basic operations and

References and Further Reading

245 |

structural information provided by the software system. If these are
available, the definition of new recognition rules is in most cases fea-
sible with calculable effort.

This principle of conflict recognition is realized in combination
with additional semantic analyses in JaMB, the Java Migration
Browser. JaMB is a tool for the detection of semantic conflicts that
occur during the further development and migration of object-oriented
systems. It obtains its required information directly from the Java
byte code and stores it in a suitable meta model. More information
about JaMB can be found in Pipka and Mezini (2000).

Another approach to recognizing conflicts and making them
transparent during the development process is the backward compat-
ibility tester. Here, the interfaces of the contained classes are analyzed
and incompatible changes are pointed out. However, this analysis is
exclusively syntax-based. More information about this tool can be
found on IBM’s Alphaworks website
(http://www.alphaworks.ibm.com).

6.10 Another Approach: ‘Catch Up and Replay’

Another approach to support API refactorings is presented by Johannes
Henkel and Amer Diwan in their work ‘CatchUp! Capturing and
Replaying Refactorings to Support API Evolution’. They follow the
idea of recording refactorings that are made to APIs. In their case, this
is done automatically whenever the developer uses the automatic refac-
toring support of the IDE and this way changes the API. To adjust cli-
ents of the API, they replay those scripts on the client code using auto-
mation. Developers do not need to change the client code manually.

Since this degree of automation is extremely useful for refactor-
ing published APIs, this approach is limited to those changes that
are done via the automatic refactorings of the IDE. Otherwise the
script recorder has no chance to pick up those refactorings. You can
find more information on this approach at http://www-plan.cs.col-
orado.edu/diwan/icse2005.pdf

References and Further Reading

Bloch, J. 2001. Effective Java. Addison-Wesley. Bloch argues that
inheritance must be planned. If inheritance from a class has not
explicitly been provided for, it should rather be prevented (for
example through setting the class to final). In this book you will
find — besides a number of very useful tips for Java programming — an

I 246

6 API Refactorings

instruction for realizing typesafe and expandable enumeration
types (typesafe enums) in Java.

Fowler, M. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley. Not only does Fowler describe basic refac-
torings here, he also introduces the distinction between public and
published interfaces.

Gamma, E. & Beck, K. 2003. Contributing to Eclipse — Principles,
Patterns, Plug-ins. Addison-Wesley, Eclipse Series. In this standard
work about plugin development with Eclipse the authors depict
very diverse mechanisms realized in the Eclipse framework. Among
them are patterns that simplify evolution between subsystems, such
as, for example, the Adaptable mechanism.

Gosling, J., Joy, B. & G. Steele, G. 1997. The Java Language Specifica-
tion. Addison-Wesley. A language specification for Java.

Havenstein, A. 2003. Werkzeuge fiir die Migrationsunterstiitzung von
Anwendungen auf neue Rahmenwerksversionen. Diploma thesis,
Software Engineering Group, Dept. of Informatics, University of
Hamburg, Germany. Here, tools for the handling of refactoring
tags as well as implementation methods for these tools are pre-
sented. Also discusses how much help converters can provide for
migration.

Havenstein, A. & Roock, S. 2002. Refactoring tags for automatic
refactoring of framework. In Proceedings of Extreme Program-
ming Conference 2002, Villasimius, Cagliari, Italy. This article is
the first one to introduce the concept of refactoring tags.

JavaSoft, 2000. How and When to Deprecate APIs.
Part of the Java2 Documentation. Describes work with the depre-
cated tag.

Lippert, M., Roock, S. Wolf, H. & Ziillighoven, H. 2001. JWAM and
XP - using XP for framework development. In Succi, G. &
Marchesi, M. (eds). 2001 Extreme Programming Examined. Addi-
son-Wesley. Conference publication of the XP-2000 Conference,
pp. 103-117. Tllustrates various experiences in the use of XP tech-
niques (such as refactoring) for frameworks.

Meyer, B. 1992. Eiffel: The Language. Prentice-Hall. Meyer intro-
duces the reader to the language Eiffel, which offers an option for
marking classes and methods as deprecated with the keyword
obsolete. Just like with using the deprecated tag in Java, the com-
piler will generate warnings for obsolete elements.

References and Further Reading

247 |

Pipka, J.U. & Mezini M. 2000 Weiterentwicklung objektorientierter
Softwaresysteme: Risiken und deren Vermeidung. In: Informatik
2000, Springer-Verlag. This work provides an overview of impor-
tant migration conflicts in literature and practice, which are further
scrutinized using Java. The focus is on conflict scenarios that can
emerge during the integration of more complex subsystem ver-
sions. To support the integration process, a tool-based solution for
the recognition of such conflicts is introduced as an example: the
Java Migration Browser JaMB.

Rivieres, J. des. 2001. Evolving Java-based APIs. http://www-
eclipse.org/eclipse/development/java-api-evolution.html. Depicts pos-
sible API changes and their compatibilities. The focus is only on
binary compatibility, not on source code compatibility though.

Roock, S. 2001. : eXtreme frameworking — how to aim applications at
evolving frameworks. In Succi, G. & Marchesi, M. (eds). 2001.
Extreme Programming Examined. Addison-Wesley. Conference
publication of the XP-2000 Conference, pp. 71-82. Analyses of
problems related to API changes and some ideas for solutions.

Szyperski, C. 1997. Component Software. Addison-Wesley. Standard
work about components that also offers insights on some of the
aspects discussed here.

249 |

7
Tool-Based Detection and Avoidance
of Architecture Smells

By Walter Bischofberger and Henning Wolf

Architecture smells are difficult to detect ‘manually,” since to this end
information from the entire source code must be collected and con-
densed. As we already pointed out in Chapter 3, IDEs cannot be used
for architecture analyses because they visualize relations between classes
and packages. For an analysis of architectural aspects, developers must
work on the levels of class, package and subsystem relations and not on
the method call level.

In this chapter, we will demonstrate how architecture smells can be
found with tool support and how large refactorings can be closely
monitored. Our tool of choice will be Sotograph, a product of Soft-
ware-Tomography GmbH. We decided to focus on a commercially
available tool because as far as we know there are currently no other
tools in existence that support both architecture analysis and visualiza-
tion for object-oriented systems in a similarly comprehensive manner.

7.1 Specifications of an Analysis Tool

Chapter 3 discusses how architecture smells can be found on different
abstraction levels (class, package, subsystem and architecture). In con-
sequence, tools for the detection of architecture smells must be able to
handle these or related abstraction levels. Depending on the abstraction
mechanisms offered by the supported programming language, more or
less high-level abstraction levels must be user-definable.

Based on the abstraction levels at the developers’ disposal, the fol-
lowing analyses can be executed:

Architecture analysis, i.e. an analysis of how well the source code
observes the restrictions specified in the architecture model (who is
allowed to use whom, and who is allowed to inherit from whom),
and where these restrictions are not observed.

Introduction

Levels of Abstraction

Types of Analyses

|250

7 Detection and Avoidancel of Smells

Interpretation of
Analysis Results

Continuous

Monitoring

Ad hoc Analyses

Support of the
Refactoring Process

Cycle analysis, to analyze the cyclic relations between artefacts.
More precisely, this means the search for classes, packages and sub-
system groups that are strongly coupled in cyclic relations.
Metrics-based analysis, in order to identify potential architectural
problems using metrics.

All three analysis types deliver distinct indications of a multitude of
problems that will range from those that can be neglected to those that
are quite serious. To assess the seriousness of a problem as efficiently
as possible, it is important that the tool provides explanations, or at
least the basic data of its analysis. In this context, visualization — for
example with class diagrams or package graphs — is a major issue. Par-
ticularly since architectural problems, after all, become manifest in
unexpected and unwanted cooperation of artefact groups, graphs can
make it much easier to understand such cooperation structures.

It is very laborious to analyze a version of a software system in
detail. In most cases, the members of a project team who possess the
required knowledge to conduct such an analysis will be highly in
demand. This is another reason why it is unrealistic to continuously
monitor a software system’s quality without adequate tool support,
even though continuous monitoring would be the most useful approach
in such a situation.

Tools that are suited for the continuous monitoring of large soft-
ware systems will only issue information that has changed since the
last analysis was conducted and will also filter it based on its rele-
vance. A metrics tool, for instance, will only show those metrics values
that were already bad a week ago and have gotten either worse or bet-
ter since. An architecture tester will merely display new architecture
violations. In an ideal case, the weekly time exposure for interpreting
the obtained data can be reduced to under half an hour.

In big projects, frequently questions will come up that cannot be
answered with the aid of predefined analyses. Therefore, a tool for
large-scale software analysis should offer users an easy-to-learn mech-
anism to enable them to formulate new metrics and ad hoc queries.

Depending on the kind of restructuring that is needed, the execu-
tion of a large refactoring can take place over a rather long period.
Without careful organizing it will soon become difficult to determine
what parts of the refactoring have already been carried out, and to
what extent the architecture’s status quo already approximates the
targeted architecture. The latter question can be answered precisely
with the right tool. Furthermore, a tool can provide a lot of useful
information about a refactoring’s present stage if it has monitored the

7.2 Architecture Analysis with Sotograph

251 |

development of a software system over a longer period. For example,
it can point out what classes have been modified in which subsystems,
and which methods of these classes have been newly created, deleted
or changed.

Typically, modern software systems consist of distributed systems
which are tied into different processes on various machines and man-
aged at runtime by application servers, for instance.

If one considers only the static relations of such a system exclu-
sively from a language point of view, one will see a quantity of isolated
parts, e.g. Enterprise Java Beans or .Net components. Apparently these
are not cooperating, because they don’t use each other directly, but
solely communicate via the application server. Architectural analyses
of such systems will only make sense if the tool for the analysis of dis-
tributed systems can handle various interprocess communication
mechanisms and component models. Then distributed systems, includ-
ing their relations beyond processes, can be analyzed and visualized as
a whole.

7.2 Architecture Analysis with Sotograph

In this chapter, we will elaborate on how to use the Sotograph as a tool
for analysis and scrutinize its role as an analyzing software system, that
is, we will apply Sotograph to versions 0.90, 0.95 and 0.96 of Soto-
graph’s source code. We will use relatively old versions because from
version 0.96 onward Sotograph has been used to further its own devel-
opment. Thus the newer versions will deliver less interesting results for
architecture testing.

The underlying concept of the Sotograph is derived from comput-
erized tomography as it is applied in medicine, i.e. it extracts — just like
a computer tomograph — as much information as possible about the
system it examines, before it commences actual analysis. For software
systems, its analyses comprise byte and source code, which will yield
information about references, artefacts on the method level, fields,
classes, packages and relations between these elements. Sotograph
stores this information in a relational database and then proceeds to
make available a number of closely integrated tools in order to analyze
and visualize the gathered information. At present, Sotograph pos-
sesses analyzers for Java, C++ and C.

In addition, Sotograph can manage information that encompasses
a series of a software system’s versions in a database, thus enabling
analysis of a system’s changes over time.

Analysis of Distributed
Systems

The Underlying
Concept

|252

7 Detection and Avoidancel of Smells

Abstraction Support

Identifiable
Architecture Smells

Definition of a
Subsystem Model

Moreover, information about the (desired) architecture model can
be fed into Sotograph’s database. This extra information will serve as
a basis for analyzing the system’s architecture.

With classes, files, packages, subsystems and tier architectures, Soto-
graph supports five abstraction levels on which analyses can be con-
ducted. Whereas in object-oriented languages classes are surveyed on
the lowest abstraction level, for procedural languages — such as C — it
is important to have the abstraction level ‘file’ at hand. Moreover, files
(and directories) constitute the entities that physically structure the
code (e.g. several classes in one file).

For systems implemented in Java, the packages defined in the
source code are used directly as an abstraction level. Since only very
few programming languages offer an abstraction level that is equiva-
lent to the Java package, Sotograph will aggregate all files located in
the same directory in a package of the same name as the directory for
these languages.

Packages can be combined to form subsystems using a subsystem
description language. For each subsystem, it can be defined where its
explicit API is located (if applicable). For example, a subsystem should
only be used via certain interfaces that are placed either in a subpack-
age ‘interface’ or directly in the subsystem’s root directory. Other refer-
ences from outside this subsystem constitute an architecture violation.
The subsystems form the abstraction level on which the system’s archi-
tecture can be reviewed. For small and medium-sized software sys-
tems, one subsystem model will normally suffice. For large software
systems, often several subsystem models are needed for the modeling
of architectural levels that are relevant for analyses.

Building on one subsystem model each, tier architectures can be
specified. These tier architectures serve the purpose of limiting the
amount of relations that are permissible between subsystems.

Architecture testing with Sotograph allows identification of the
following architecture smells:

Subsystem-API bypassed (Section 3.5.5).

Upward references between layers (Section 3.6.2).

Strict layering violated (Section 3.5.3).

Relations between product-specific subsystems of product line
architecture (briefly mentioned in Section 3.5.5).

Figure 7-1 exemplifies these architecture smells in a 3-tier architecture.
Before we can begin with the actual architecture analysis, we must
first define at least one subsystem model and one architecture model.

7.2 Architecture Analysis with Sotograph

Tier Architecture

Strict layering

violated Product 1 Product 2
TR N Dependency - Surface
within a layer
\ / (optional)
Violation of the
subsystem API:
always illegal
L e e e " Interface
= \ Dom
A ain
L S i Ny
Upward
reference:
always illegal

lllegal Uses Relati =

Sotograph defines subsystem models with a simple subsystem
description language. Basically, there are two ways of describing a sub-
system:

1. There are rules that specify how package trees will be aggregated
in subsystems. The following rule, for instance, leads to the gen-
eration of one subsystem for each of the three package trees:

RuleBasedSubsystem Public {
InterfacePath "";
Packages "com.sotogra.' (util|guiutil|plugins)'";

Using a regular expression, the packages statement defines
the root packages of the package trees that are combined
into subsystems.

The name of a generated subsystem will be derived from
the rule’s name and the name of the package tree’s root
package, e.g. Public.util.

The interface path statement defines the path from the pack-
age tree’s root to the package that contains the subsystem’s
API classes. In our example this is the root package.

2. Through counting the packages contained in it. This sort of
definition is mainly used in generated subsystem models or in
such exceptional cases where a subsystem cannot be defined by
rules.

Fig. 7-1
Architecture
Violations

| 254

7 Detection and Avoidancel of Smells

Fig. 7-2
A Section of a

Subsystem Graph

Definition of an

Architecture Model

Once a subsystem model has been defined and set as an effective sub-
system layer, the subsystems defined in this layer can be employed anal-
ogously to classes, files or packages in all tools offered by Sotograph.
For instance, all inheritance relations between subsystems can be visu-
alized (see Figure 7-2). The thicker the lines in the image, the greater the
number of inheritance relations existing between the subsystems.

«subsystemn:
Tools.metric

1
«subsystem»
Tools.graph

- %

«subsystem» «subsystem:
Base.annotation Tools.manager

] s.metric -> Base.tool - 15 Inheritances|

«subsystem» «subsystem»
Tools subsystem «subsystems» <subsystem» Base _util

| Db Base table

1
«subsystems
Tools.dbview

«subsystem:
Base projecttree

«subsystems
Base guiutil

1 1
«subsystem» «subsystems

Tools.browser ~subsystem~ Plugins

Base tool
[1] 1

«subsystem» «subsystems
Tools.architecture Sting pidj

—1
«subsystermn:
Tools.externaleditor

Sotograph defines tier architectures with a simple architecture
description language. In this language, one

defines the underlying subsystem model;

assigns subsystems or packages to single layers;

defines if the subsystems or packages of a layer are allowed to use
each other mutually, and whether the layer model is subject to strict
interpretation or not.

7.2 Architecture Analysis with Sotograph

255|

For comprehensive software systems, developers will often define sev-
eral architecture models that focus on various aspects as well as sepa-
rate architectures for large or complex structured subsystems.

The following is an excerpt from Sotograph’s architecture model
description:

ArchitectureModel Overview {

Uses Default; // used subsystem model

ArchitecturelLayer Manager {

// layer may use all deeper layers
InterlLayerUsage = True;

// the layer’s subsystems may

// mutually use each other
IntralayerUsage = True;

// subsystems contained in the layer
Subsystem Tools.manager;

Subsystem Access;

}

Architecturelayer ToolsAndServices {
InterLayerUsage = True;

// the layer’s subsystems may

// not mutually use each other

IntralayerUsage = False;

// selection of subsystems belonging to the layer
// with a regular expression

Subsystems "Tools. ([*m] |met) .*";

}

ArchitectureLayer ToolInfrastructure {
InterLayerUsage = True;
IntralayerUsage = True;

Subsystem Base.annotation;
Subsystem Base.dbupdate;
Subsystem Base.migration;

}

Architecturelayer Frameworks

Once an architecture model has been defined and evaluated, the illegal
relations that were found can be examined. First, we will take a look at
the list of illegal relations between subsystems (see Figure 7-3). The
table shows the number of architectural deviations between subsystem
pairs, sorted based on architecture smells. The last three columns con-
tain the values for Sotograph versions 0.95 and 0.96 as well as changes
that occurred between these versions.!

1. One prominent feature of tables displayed in Sotograph is that they often con-
tain Id columns. Based on these Id columns, commands can be given, evalua-
tions started and graphs generated. This feature allows programmers to use
the same generic visualization infrastructure for the results of preconfigured
and user-specific evaluations.

Analysis of
Architecture Violations

I 256

7 Detection and Avoidancel of Smells

Fig. 7-3
Overview:
Architecture

of Trend Architecture Model

graph for v =095 and v2 = 0.96 & | W |

subRefin...| subRefing | subrete... | v | v | fan |
6595 Defaut Db 65962 829 e 41
65966 Defaut Tool 65976 Detfautt Tools subsystem 30 28 -2
65356 Defautt Base annotstion 85359 Defaut Base guati 39 =39 0
65353 Defautt Base guiti 85372 Defaul Tocls manager UPWARD 1" 11 0
65951 Defaut Baseprojectires 65963 Defaul.Tools.dbview UPWARD 11 1 0
= {65658 DefoutBaseguidi INTERFACE & 8 o
65963 55969 Default Tools dbview UPWARD 2 2 o
65963 Defa 100 65971 |Defaut Tools graph \UPWARD hs ls o
65963 Detfautt Base tool B5975 Default Tools resut LUPWARD 2 il 0
65963 Default Base tool 65976 Default Tools subsystem INTERFACE 2 2 0
596t Defoult Bass bl 55850 JUPAARD ___ H9_ i o
65965 Default Db 65358 UPWARD 123 123 o
65365 Defaut Db 65964 Defaut Basetil INTERFACE |7 7 [
65955 Detfautt Ob 65972 Default Tocls manager UPVWARD 26 26 0
65965 Defaut Db 65976 [Defaut Tools subsystem INTERFACE 6 3 0
B5665 [Deft Db lesa77__ Detaut Tosts trend ewarD 28 2 0
65973 Detaust Tools metric B5977 Defaul Tools frend INTRA 139 139 o
65975 Defaul Tools resut 85972 Defautt Tools manager UPWARD 3 2 0
65976 Default Tools subsystem £5964 Default Base util INTERFACE 42 42 0
65964 Defaut Base.utl 65963 Defaut Base ool UPWARD 10 2 2
§5674__[Defaut Toals.query {5664 DetatBaseuti INTERFACE 94 s 12
65964 Defautt Base util 65972 Detaut Tools manager UPWARD 56 B0 4
55966 Defaut Tools.archieclure 65964 Defoull Basedi INTERFACE 38 a2]
65953 Defaut Base tool 55359 Default Base guitil INTERFACE 31 3B 5
65966 Default Tools archdecture 65977 Detfaut Tools trend INTRA 74 &0]
65365 Detautt Db 65363 Detault Base tool UPAWARD 738 802 B4

If you analyze a system for the very first time, it is recommended
that you get an idea of how badly the system is afflicted by architecture
violations. This will be accomplished by marking the illegally refer-
enced subsystems in a subsystem graph (see Figure 7-4). Here, you can
see clearly that about onethird of all subsystems of Sotograph are used
in a manner that is not permitted. At first sight, this might come as
something of a shock. However, our practical experiences have proven
that this result ranks rather low on the scale of software systems that
were developed without architecture testing.

In the next step of your architecture analysis, we will take a close
look at the list of architectural deviations to identify the sources of the
detected problems (again, see Figure 7-3). Usually we will encounter
quite a variety of problems that can easily be solved by moving classes
into another package or by moving packages into another subsystem.
In most cases, more than enough architecture smells will remain that
can only be cured with more complex refactorings.

Architecture testing should always take place parallel to other
project-related work. Therefore, it is important that the ongoing mon-
itoring process is not too time-consuming — at least not after the first
comprehensive analysis. Thanks to Sotograph’s Trend support this
demand is also realistic. The table’s last column (see Figure 7-3) dis-
plays those changes that took place between the last two selected ver-
sions of the Isystem. In the context of a continuous monitoring it will

7.3 Architecture Analysis Based on Cycles

257 |

do to scrutinize the new ones as well as the eliminated architecture
violations. Double-click on a table row to zoom in on the package
level first, the level of basic references next, and the source code last.
Figure 7-5 lists all basic references for illegal relations between the
packages architecture and jflex of the subsystems Tools.architecture
and Base.util. You will immediately recognize those illegal relations
that were already present in version 0.95 as well as the four illegal
relations that have crept into the system in version 0.96.

7.3 Architecture Analysis Based on Cycles

Sotograph allows the identification of cyclic relations between
classes, files, packages and subsystems. The related architecture
smells and their negative effects are depicted in Sections 3.1.3, 3.3.2
and 3.5.2.

Fig. 7-4
A Marked Subsystem
Graph

[258

7 Detection and Avoidancel of Smells

Fig. 7-5
Architecture Violation
on the Package Level

Fig. 7-6
Analysis of Cycles on
the Package Level

[Trend archtecture exceptions between package archtecture and [flex for vi = 0.95 and v2 = 095 @ | e |

| Fiter | - | Help |
refingid_| retedid_| | yoe | locaty |+ changes |

139622 ._parseArchitectureModel() 189206 cl_SyntaxErrorException TYPEACCESS :LOCAL New

189622 me_parsefrchitectureModel) 189206 ol _SyntexErrorException TYPEACCESS LOCAL NEW

189622 ._parseArchitectureModel() 189212 me_getLine() '@LLL iLCcAL New

189622 me_parsefrchitecturedodei() 189213 me_getCohenng) L LOCAL NEw

189622 F}usuhcmdwml') 189206 cl_SyntaxErrorException TYPEACCESS ;LCCAL 'SAME

189622 me_parse) (189206 el : epbion TYPEACCESS LOCAL __ [SAME

189622 _parsel 0 (189206 el ! i TVPEACCESS LOCAL 'SAME

189622 seArchitectureModel) 189208 cl_SyritaxErrerException TYPEACCESS :LC(.‘AL SAME

189622 me p 10 [189206 ol ¢ . TYPEACCESS |LOCAL 'SAME

189622 seArchitectureiodel’) 189206 £l_SyritaxErrerException TYPEACCESS :LC(.‘AL SAME

189622 ,_parsefrchitecturehodel() 189206 cl_SyntaxErrorException TYPEACCESS ;LOCAL [SaME

189622 me_peae e ArchitecturebModel) 189206 cl_SyrtaxErrorException TYPEACCESS LOCAL SAME

139622 ._parseArchitectureModel() 189206 cl_SyntaxErrorException TYPEACCESS iLOcAL [SAME

189622 me_parseArchitectureModel() 189206 ol _SyntexErrorException [CATCH LOCAL SAME

189622 ._parseArchitectureModel() 189212 me_getLine() | ;LC(:AL 'SAME

189622 me_parsefrchitecturebodel) 189212 me_getline() E::.Jl: LOCAL SAME

183622 :_parseArchitectureModel() 189213 me_getCokumn() ;LC_C&.L _ SAME

189622 P 0 (189213 me_getCohsmn() L LocAL samE

189622 E parseArchitecturedodel’) 189213 me_getCokamn() LOCAL [SAME

One fundamental problem of cycle analysis is combinatorial
explosions. Most of the commercial systems we have analyzed until
now are so closely coupled that thousands of cycles will be detected.
Thus Sotograph will search all cycles of length 2 in a first step, then
eliminate those for further searching, and scan for continuously
longer cycles. This procedure enables interpretation of the cycle anal-
ysis results within a reasonable time frame without losing relevant
information.

At the beginning of any cycle-based architecture analysis, the most
sensible approach is to search for package cycles across subsystem
boundaries. Figure 7-6 shows the results of that query. One line repre-
sents a relation in a cycle, and all lines of the same cycle Id represent
the entire cycle.

|Package Cycles - Restricted to Focus: No , Locaity Al @ | - |
l ter | - | oo |
pcngr...l package from name pckgToldI package to name I cycle refs]_
279 tool 230 udil o 215 a
280 util 279 fool o 2 [
300 manager 230 util 1 264

280 il 300 manager 1 60

272 |guiudil 280 il 2 184

280 il 272 guiudil 2 19

339 registry 2380 util 3 19

280 util 339 registry 3 3

300 manager 265 server 4 2

265 server 300 manager 4]

277 table 279 tool 5 174 T
273 ftool 277 table 5 663

7.3 Architecture Analysis Based on Cycles

259|

The first two lines point at a cyclic relation between the tool and
util packages. Since only two references exist from util to tool, but 215
references in the other direction, it is safe to assume that the references
from wutil to tool should be eliminated. For further analyses, you can
zoom in on the basic references level with a double-click. A second
double-click will display the corresponding source code. This view
works well if you start to break up cycles. Since Sotograph will break
down long cycles into short ones during analysis to avoid combinato-
rial explosions, you must make a survey of where critical amassments
of cycles are present.

For this purpose, you must sort the table, listing the detected cycles
by package name. When this is done, you will recognize at a glance
which packages are involved in what number for many cycles. The
tangle surrounding such critical packages can best be viewed in a
graph. Figure 7-7 shows the graph that contains all packages which
maintain cyclic relations with the package tool. This graph exemplifies
very well how software systems start to ‘lump’ due to their constantly
growing number of cycles in the course of their evolution. It is pretty
obvious that it will take new developers quite an effort to familiarize
themselves with such a chaotic dependency graph.

1
—'! projecttree —
guiutil license
| table
preference
tool
L . db
implementation

1

result

util

]
model

In practice, it is not always wise to eliminate all cyclic relations from
a software system. On the one hand, it can be advantageous to have two
classes using each other on the class level. On the other hand, it often
takes too much effort to eliminate all unwanted cycles in systems that

Fig. 7-7
Packages in Relation
to the “tool” Package

I 260

7 Detection and Avoidancel of Smells

were not developed with the aid of cycle analyses from the very begin-
ning. This is why support of a cycle analysis is indispensable: it helps to
distinguish existing cycles from newly introduced ones. This kind of
information is provided by Sotograph’s metrics tool.

7.4 Metrics-Based Architecture Analysis

The central problem of any type of metrics-based software analysis is
the huge amount of metrics values that will be generated even for
medium-sized software systems. All this information must be examined
and interpreted.

The fundamental prerequisite for an efficient metrics-based first
analysis is sophisticated tool support. Here are examples of what such
tool support can do:

Fast elimination of metrics results for parts of the system that have
already been recognized as being irrelevant or basically problematic.
Explanation of a metrics value. Without an explanation, one has to
search the reason for each suspicious metrics value in the source
code and the IDE.

Visualization of metrics values. Particularly for high numbers of
couplings the graph is best suited for determining what a certain
value means.

For a regular analysis that proceeds parallel to other project work, it is
first and foremost important that developers review only ‘relevant’
values. In our experience, these will normally be metrics values that
were bad before and have now become worse, or metrics values which
were bad but have improved.

Figure 7-8 shows a part of the Trend metrics tool of Sotograph
with its ‘Problems Worse’ filter activated. Metrics underlaid with dark
shading contain values that have not been filtered out. The selected
PckgCyclicRefPckg metrics calculates the number of packages with
which a single package maintains a cyclic relation. In this example, we
can see that the package base.tool that already caught our attention in
the cycle analysis described in the previous section has been cyclically
coupled with a new package between releases 0.95 and 0.96.

In this case, it would be interesting to learn if the number of pack-
ages which have cyclic relations with base.tool increases constantly.
This information can best be obtained from the diagram in Figure 7-9.
This diagram proves that the increase occurred already between
releases 0.90 and 0.95 — another indication that the package base.tool

7.4 Metrics-Based Architecture Analysis 261 |

[Problems worse | [not Fitered = | isplayed [Total [73 Fig. 7-8
T T A Section of the Trend
e | = I = I 4 Ivm'} il R = Metrics Tool
1... PekgExdernalClassCycles
1... PckoFiles
1... PekginboundCallPcky
1... |PckginternalClassCycles
1... PckgMethMainRule |
and the packages closely coupled with it should be examined much
more closely in the future, prior to any changes and expansions. In this
way we can prevent new problems being introduced to the system, and
eventually establish a more orderly system.
—— Fig.7-9
™] Trend for PckgCyclicRefPckg : tool Trend Chart

Actions
Trend chart for artifact tool

12.0
11.0

Metric value for metric PckgCyclicRefPcka
~

0.95
Version name

After the diagram window has been closed, it makes sense to care-
fully analyze what exactly has changed in base.rool’s vicinity. A double-
click on the metrics value will take us to the explanation in Figure 7-10.

| 262 7 Detection and Avoidancel of Smells

Here we can see that a cyclic relation with package base.util has been
newly inserted. The package base.util could now be highlighted in the
last generated package graph, or one could look at the relations between
base.tool and base.util in detail.

ot oyce [aansn ot _a | o |
Explanation of Cycle Expl jon for metric PckgCyclicRefPckg for tool
Metrics

Filter I = | Help |

sourceld | targetid idertityer | Scope 4 chan...|

279 |280 il lcom sotogra.qualit base util NEWY '
279 |1267 db \com sotogra qualit base db SAME
279 272 il \com.sotogra.gualt base guiutil SAME
279 1273 implementation fcom.sotogra qualit base guidtil imple... SAME
279 275 [preference _icom.sotogra qualit base preference |SAME
279 1276 projecttree fcom.sotogra.qualit.base.projecttree SAME
279 277 table fcurn.sotogra.qua!it.base.tabie SAME
279 1293 dbwviewvw \com.sotogra qualit tools dbview SAME
279 |29 graph |com.sotogra qualt tools.graph ISAME
279 [312 result com.sotogra.qualit tools result SAME
279 1314 model \com .sotogra.qualtt tools subsystem... SAME
279 331 license \com sctogra tools license SAME

After the cycles have been analyzed, one can proceed to survey the

critical values of other metrics. The procedure is quite similar to that

used for the PckgCyclicRefPckg metrics.
Other Smells that Basically, the following architecture smells can be detected auto-
Can Be Detected matically with metrics or specific analysis queries:
with Metrics

Unused artefacts (Section 3.4.1).

Too small artefacts (Section 3.4.3, 3.5.3).

Too big artefacts (Section 3.4.4).

Tree-like dependency graphs between classes (Section 3.2.2).
Type queries (Section 3.3.1).

List-like inheritance hierarchy (Section 3.3.2).
Too deep inheritance hierarchy (Section 3.3.6).
Packages too deep or unbalanced (Section 3.4.5).
Packages not clearly named (Section 3.4.6).

Too many subsystems (Section 3.5.4).

Subsystem API too big (Section 3.5.6).

In contrast to the results yielded by architecture-based and cycle-based
analysis, the values calculated for these metrics will only point at
potential problems, each of which must be examined in detail. Arte-
facts that are recognized as not being in use are not necessarily unused.
For instance, it is possible that objects created via reflection at runtime

7.5 Support for the Preparation of Large Refactorings

263 |

and used polymorphically are not recognized as being in use. For many
metrics the main question concerns the upper and lower boundaries: at
which point does a metrics value begin to indicate a problem, e.g. at
which point does a class or a package become too big?

To usefully apply metrics in projects, it is in our experience recom-
mended to let the team decide which metrics are beneficial for this spe-
cific project and thus should be pursued further in the course of the
project. Then, project-specific, commonly accepted upper and lower
boundaries must be defined for the selected metrics. The calculation
of, e.g., too small and too big artefacts only makes sense if the team
manages to agree on upper and lower boundaries. Otherwise, the
determination of such metrics values will lead to futile discussions, or
the metrics will simply be ignored.

7.5 Support for the Preparation of Large Refactorings

As the name already indicates, large refactorings can have a noticeable
effect on large parts of a software system. Therefore, it is all the more
important to understand which code sections will be affected in what
manner before beginning with a refactoring. Especially where restruc-
turings of libraries are concerned, this sort of information can hardly
be obtained with the tools that are available today. Sotograph can
make it much easier to understand software systems in general, as well
as the effects of changes specifically. This is demonstrated here using
an analysis of the internal API of Sotograph’s tool framework. For lack
of space, we will focus exclusively on the inheritance interface. The
call interface can be analyzed analogously.

Before the actual analysis of the interface is carried out, we have to
get an idea of how broadly the framework will be used. In our exam-
ple, we are dealing with the subsystem Base.tool. Here, we can let the
Crossreferencer identify all classes that use Base.tool and have them
displayed in a subsystem graph. Likewise, it is possible to generate a
graph that shows which classes inherit from classes in Base.tool. Figure
7-11 depicts two sections of each of the two graphs. Right away it will
become clear that changes of Base.tool can affect significant parts of
the system. It is remarkable that most subsystems do not merely use
Base.tool, but also inherit from it. However, it is not surprising that
the central tool framework is widely used for the implementation of
software analysis tools.

In the next step, we are going to call up a display of the inheritance
hierarchy of the subsystem Base.tool classes. In this graph, we will
then highlight the classes which were overwritten outside the sub-
system and insert the overwritten methods, as depicted in Figure 7-12.

I 264

7 Detection and Avoidancel of Smells

Fig.7-11
Marked Subsystem
Graph 1

| #subsystem:
|Teols.subsystem

+ Classes

|Calculatelllegal eferences &
Decodaicion
bsystem
[Mewhd odalAction -

L4 3

| «subsystems

|Tools.xrel

Classes

DetailsT abloMenuProvider:
Xel
XreiDetaiDisiog =
4 3

| «subsystem:

Tool:

+ Classes

| AddCategol ion =
[Delate Categorphction
[Oelete Query
DupicataQuery -
&

FlsLocCounter
LicenseDescriptions enerat
LicarseMessagePanslFac »

—_—

CloseQuaitDBAtion &)
[CompareDBsAction

\
~ Classes
Database Corverter =
DatabaseComnvert TaVersior

D 2
CatabaseConvenToVarsiors

[wsubsystems
|Tools.architecture)
Classes
ArchitectuneActon
ArchitectureGUIL
ArchitectureGUIST

4 Classes
DbV iewDbManipulator
|[bviewGUI
ObViewGLI§12

4

| «subsystems
Tools.metric

4 Ciasses

Abstractielric
AddAnnctationAction

[addMetricModelaction

1 I—

X

NN

mm..
\|Base.guiutit

= 4 Classes
Exitable. Frame

g
eCodel v -AMDIT colF rame
¥ F'_mgossaar
ALA

NG A
X

«aubayslems
L]

Al

a4
AT\ AdA
Ko
wsubaystems:
Base.table

4 Classes

Fiterabl
‘l
G ~

eTabieModel

]
«Subsystams

Plugins

7

»

Support for the Preparation of Large Refactorings

265 |

£ Classes
Kret
e iU
XrefGUI1§S
HrefGUI$9
HroboruManager |
waubaystems
Tools.query
Classes
[serytction ;I
QuenDeveloper J
CueryDeveloperGUl
QuenyDeveloperGUIS10 +|
| | =
\ * Classes
CreatePLSFromByteCode/ & .
wsubsyslomn CreatePLSFromSniffActio \
i) «subsystems
Sotegralools license DEToolContainer | \“} = Slung?ia:i
DBToolContainer$ =l WL‘
1 L4 A7 o <]
«subsystems» . - ‘\ vy
Tools.browser h“\\\, ‘\g_'\’gf:"v = «subsyslems»
I -
y :
EBrowser | Db Bam.table 5
BrowserAction T # Classes L.:-:| —
BrowsenGUI ~{MigrationstanGUl / GenericldRow bsyste
ErowsemenuManager | RootPathSelectionGU| 3 9_ projecttrea
TrendSelectionGUI

«subsystems
Tools.architecture «subsystems»
Plugins
+ Classes

ArchitecturaAction
ArchitectureGUI

ArchitectureMenubanager
ArchitecturaT ool

waubaystems
Tools.dbview |
+ Classes
CbviewGUI
DbViewGUI$12
DbViewGUIS13
CbViewGUIF14

| S—

waubaystems
Tools.metric

Classes
MetricsAction
MetricScope
MetrcScopaGl|
MetricService

4

The disadvantage of this form of presentation is that no difference
between often and rarely overwritten classes and methods is visible.

In this way Sotograph also offers the option of identifying all those
classes and methods of a subsystem or package which are typically
overwritten, i.e. those that are overwritten by most of N most impor-
tant clients. Figure 7-13 depicts the resulting graph, which shows far

Fig.7-11 (cont.)
Marked Subsystem
Graph 2

[266

7 Detection and Avoidancel of Smells

Fig. 7-12

Marked Inheritance

Hierarchy

Fig.7-13
Marked Hierarchy,

Based on Frequency

Export ResultArgument
ExternalCueryArgument

MetricCommandArgumeant
}Q__iy.m..m.r‘ g |
—

|>(nifH esultlternCommandArgument |

|Service Sniff

* Methods

CommandDispatcher =
KT i

Tool DbTool | DbToolComposite

* Methods - Methods l—1* methods

aboul ToClose Tool = gelDatabase | doExecule Command
ADbtiem i Dibioms Updols
el Tille ale re

more clearly than the previous image what changes should be avoided
if one does not wish to provoke severe side-effects. It also proves
clearly that — in spite of generous use of the tool framework — only few
methods are overwritten by a relevant part of the clients, at least in the
section of the graph displayed here.

ExportResultArgument
ExtemalQueryArgument

IternCormmandArgurment |-<]—-|><raf0ueryComandArg.rnent |
<—

sintarfacan
CommandArgument |><ralRes~.llltemComma ndArgument |

VW S
\ LoadQuery TreeArgument

Service Sniff
P dDispatch
= Methods I Tool | DbTool DbToolComposite
doExecuteCommand * Methods |<1"_' ~ Methods
getld 7inrt | update
update update
wrapUpBeforeClosing /

Based on such graphs, a rough assessment of the effects of a refac-
toring on a part of the tool framework can be made. Prior to the actual

7.7 Conclusion

267 |

refactoring, one should proceed further to get an in-depth impression
of the analysis done with Sotograph and examine various aspects in
greater detail.

7.6 Support of the Refactoring Process

A fundamental problem of large refactorings is that often clients of the
restructured code are also affected by changes. This will have quite an
impact on much-used libraries, whose users are no longer in touch with
the developers, and for which the developers are unable to directly
adapt the customer code in the course of their refactoring. In this case,
it is pivotal that the users learn what has changed in between the differ-
ent versions of the respective library.

Sotograph possesses a variety of query options which help devel-
opers to find out which artefacts were generated, deleted or modified
between two versions. The overview for Base.tool will result in the fol-
lowing figures on the class and method levels for differences between
versions 0.90 and 0.96:

New classes 3
Deleted classes 0
Modified classes 49
New methods 21

New public methods + public methods with changed signature | 11
Deleted methods 0
Modified methods 88

Modified public methods without changed signatures (new + 69
modified)

The data on which these figures are based can then be visualized. Figure
7-14 pictures all new public methods and all public methods with
changed signatures in the inheritance hierarchy’s context. All modified
classes are marked.

7.7 Conclusion

This chapter shows that a tool such as Sotograph allows continuous
monitoring of a software system’s architectural quality during devel-
opment without much effort. Thus it is feasible to cure many architec-
ture smells before they become so firmly rooted in the system that they
can only be eradicated with very sophisticated refactorings.

I 268

7 Detection and Avoidancel of Smells

Fig. 7-14
Changed Classes,
Marked

e — |
¢ Memods
ek iy |

=)
[fwemeos]

GraphiegendDiaiog

fExpontP mametecDasog gt

a5 olrtnoose gl

[A5F e Dt
[Brapt egarsiato gimpt |

e sph eppretuig T

LoteediPostontande
Leemsnun orreconnine
| .

For several years now, the Sotograph has been in for professional
analyses of large software systems. Apart from a few exceptions, a high
number of architecture violations and cycles were found in the exam-
ined systems. These analyses clearly proved that architectural decay in
most cases begins with the first code lines and not later on, in the main-
tenance phase. This also held true for the implementation of Sotograph
itself, as this chapter showed.

Furthermore, it is an interesting experience that architecture anal-
yses and large refactorings contribute to enabling economic mainte-
nance of such projects which have been declared not maintainable,
and this with only a few manmonths of work. Of course, these experi-
ences are only transferable to projects that concern software systems
of a decent technical quality.

In this chapter, the Sotograph was used as a vehicle for illustrating
the technological possibilities of architecture analysis as well as for
supporting the preparation and execution of large refactorings. Fur-
ther information about Sotograph can be found at www.software-
tomography.com.

269 |

8
Conclusion

Object-oriented programming has been around for a couple of decades.
In its early days, it was quite difficult for this approach to become
established. Lack of tool support as well as performance concerns often
led to the continued use of ‘classic’ programming languages such as
Cobol or C, in spite of the propagated superiority of object-oriented
concepts.

Over the years, object-orientation succeeded in entering the world
of commercial software development; venturing there from small, not
business-critical systems. Today, object-oriented programming lan-
guages offer — besides exclusively object-oriented concepts — everything
that makes them perfect for application in extremely comprehensive
projects:

A standardized programming language.

Platform independence.

Performance.

Support from popular manufacturers.

Libraries and frameworks for all significant technologies, such as
databases, network communication, etc.

Powerful tools plus highly integrated development environments.
Products for application with high transaction rates, transaction
monitors and application servers.

Developers with the necessary know-how.

Moreover, a substantial part of the available tools and libraries is open
source software. Now, we can finally roll up our sleeves and get to
work on switching the no longer maintainable systems from the good
old days of Cobol and C to the seemingly superior object-oriented
technologies.

But wait a second here! The already existing object-oriented sys-
tems should serve as a warning: a considerable number of these

Object Orientation for
Large Projects

Object-Oriented
Legacy Systems

|270

8 Conclusion

Recognizing & Solving
Architecture Problems

Architecture Smells

Refactoring Plans

Database Refactorings

object-oriented systems fall in the category of legacy software, which is
difficult to maintain. These systems quite clearly prove that not much
will be gained with object-oriented programming languages and tech-
nologies alone. The newly won flexibility will not automatically result
in easy-maintenance systems. If this flexibility is wrongly applied, it can
even make system maintenance harder than it would have been using
classic, non-object-oriented technologies.

We hope that this book will contribute to making object-oriented
systems easier to maintain. We don’t pursue the goal of delivering a per-
fect system design at as early a stage as possible — we think this approach
is illusional anyway, particularly for large systems. Instead, we hope that
the contents of this book will help to point at ways for recognizing and
solving architecture problems in systems with the aid of various refac-
toring techniques.

Architecture smells indicate where architectural issues might be
present. Especially the ‘lumping’ problem drastically reduces the main-
tainability of large systems. While we are still smiling mildly at pro-
grams written in Basic, which — thanks to the goto statement — happily
and frequently turn into spaghetti code, similarly critical spaghetti struc-
tures are not rarely present in more complex systems these days. This
phenomenon will not occur on a single method’s or statement’s level,
but on higher ones, such as classes, packages and subsystems. Here,
clearly defined structures are often lost. Since recently though, adequate
tools — like, for example, Sotograph — are available that can identify
these smells in a system.

Whereas finding potential architecture smells with the aid of avail-
able tools is mostly a rather menial task, evaluating smells requires a
lot of architecture experience. Whether there really is a problem or not
depends strongly on the system context.

Minor structural weaknesses can be eliminated in the course of
our everyday development work. We use small refactorings, preferably
aided by a suitable IDE, to keep the structure clean and easily change-
able. However, should architectural problems that call for more com-
prehensive code restructurings arise, creativity is needed more than
anything else. In such situations, we must look for ways to solve the
architecture problem on the one hand and modify the system in small
steps on the otherhand. We can create refactoring plans that will guide
us in solving the problem. These plans must constantly be adapted to
reflect the refactoring’s progress. During a large refactoring, we will
always learn something new that will lead us to further adapt our plan.

Large refactorings are rarely limited exclusively to the program
code. Most commercial systems work with (relational) databases.
Therefore, data structures too must often be modified in the course of

8 Conclusion

271 |

a refactoring. Problems will arise because relational databases hardly
offer any options for concealment: the effects of changes to the data
model can hardly be restricted to merely one partition. In addition, not
only must the data structures of an already running system be altered,
but the existing persistent data must migrate to the new data schema.

In the course of this book, we came a step closer to our goal of
improving database structures in the course of an evolutionary devel-
opment process. We also gained and discussed some expert knowledge
that shows how evolutionary changes to an object-oriented system can
affect the database connection, and how this task too can be solved
using an evolutionary approach.

Subsystems are important instruments for structuring large systems:
they hide their internal realization behind a published interface (pub-
lished API). Other subsystems access this subsystem exclusively over the
API. When architecture problems exist on the subsystem level or even in
layers, the subsystems’ interfaces usually must be adapted as well.

This poses special challenges for refactoring. After all, the sub-
systems have entered into contracts with each other via the interfaces
that govern their collaboration. These contracts cannot be changed by
one side alone: the client subsystems must migrate to the altered inter-
face. With a few simple tricks and tools, the developers of the sub-
system to be changed can make life (that is: migration) much easier for
the developers of the using subsystems. The techniques discussed here
can also be applied for restructuring frameworks, for example, with-
out provoking a high migration demand for the applications.

Agile methods negate the validity of large architecture designs (Big
Upfront Design). Consequently, this also implies some criticism of
those who create such big architecture designs: the software architects.
We do not believe that agile methods do away with the need for soft-
ware architects. Of course, systems developed with agile methods do
have a software architecture too, and of course this architecture must
meet present requirements. In an agile project, the architecture can
develop in the course of the project period, but in a more complex
project somebody must monitor this development and alert others to
emerging problems, i.e. architecture smells. Problems on the architec-
ture level cannot efficiently be found by simply reading the code. Here,
we clearly see the task of software architects in agile projects: they
should not merely define the architecture, but first and foremost pro-
vide their architectural experience as a service to other team members.

The discussion about large refactorings certainly won’t end with this
book. The concepts and procedures presented here are derived from our
project experiences. Their application in further projects will create new
incentives for future discussion in the field of large refactorings.

API Refactorings

The Architect’s Role

Outlook

273 I

Glossary

Acceptance Tests

Tests assuming the user’s perspective that describe the
system’s acceptance criteria. Ideally, as large a number of
these tests as possible shall be automatically executable.
Of course there are limitations to this approach, particu-
larly where the system’s ergonomics is concerned. See
Chapter 4.

Architecture Smell

An architecture smell is a smell that indicates a problem
in the software architecture. Whether such a problem
does exist or not must be verified through detailed test-
ing. See also Code Smell. See Chapter 3.

Automated Refactoring

Automated refactorings are refactorings which are sup-
ported by an IDE and therefore can be executed automat-
ically. The IDE guarantees that the system’s behavior will
remain unchanged. In consequence, automated refactor-
ings are also always safe refactorings. Moreover, auto-
mated refactorings can be carried out in a very short
time, regardless of the system’s size.

Basic Refactoring

Code Smell

Refactorings that are primarily based on elementary,
object-oriented constructs. Most refactorings introduced
in Fowler (1999] are basic refactorings.

A code smell is a smell that indicates a problem in the
code. Whether such a problem does exist or not must be

| 274

Glossary

verified with detailed testing. See also Architecture Smell.
See Chapter 3.

Detailed Refactoring Plan

The detailed refactoring plan specifies details of a refac-
toring plan. It breaks down single refactoring steps into
basic refactorings wherever this is feasible and analyzes
the remaining modifications in detail. See Chapter 4.

Function Test

In the context of this book, the term function test is used
synonymously with acceptance test.

Large Refactoring

Refactorings are considered large refactorings if the fol-
lowing criteria are met: they last longer than a day; they
alter significant parts of the system; and they become vis-
ible to all developers involved in the project even while
the refactoring is being executed. See Chapter 4.

Manual Refactoring

Manual refactorings are not supported by the IDE, which
means that developers have to conduct them manually.
They are the opposite of automated refactorings.

Merciless Refactoring

Merciless refactoring reflects a particular attitude and
practice in software development: developers will not
wait with refactorings until a system structure has degen-
erated. Instead, even minor flaws will be eradicated at
once. See Chapter 2.

Merge
Merging is the incorporation of parallel changes to one
and the same class. One can only partly automate this
process with merge tools. See Chapter 4.

Merge Tool

Merge tools support the merging of two simultaneously
altered versions of a class. They serve to point out differ-
ences between both classes and thus enable developers to
either manually incorporate changes to one class in the
other one or to let the merge tool automatically integrate
these changes. However, automatic merging is not safe. It

Glossary

275 I

is possible that merging results in a non-compilable class.
See Chapter 4.

Public Interface

The public interface of a class. The public interface
includes all public methods and attributes. We must distin-
guish between public and published API. See Chapter 3.

Published API

Refactoring

The published interface of a component, which allows us
to use the components’ services. See Chapters 3 and 6.

Refactoring means changing the internal structure of a
software in such a manner as to make it more under-
standable and changeable without affecting its visible
behavior at runtime. See Chapter 2.

Refactoring Plan

A refactoring plan sketchily lists the single steps required
in the course of a large refactoring. The plan is discussed
by all members of a team. It should fit onto a flip chart
and be posted publicly, i.e. clearly visible to all those
involved in the project. The large refactoring’s progress
will be visualized on the refactoring plan (by checking off
the single steps). The refactoring plan is further specified
by the detailed refactoring plan. See Chapter 4.

Safe Refactoring

Save Point

Smell

Safe refactorings are refactorings that can be executed
without risking changes to the system’s behavior or creat-
ing errors. If, for example, a tried step-by-step instruction
for a refactoring is available (such as the Mechanics in
Fowler, 1999), the refactoring can be carried out with no
risk of creating new errors.

A save point is one stage of a large refactoring at which
the system structure is definitely better than prior to
refactoring or, respectively, better than before the previ-
ous save point. See Chapter 4.

A smell hints at a potential problem in the system. See
Chapter 3.

| 276

Glossary

Unit Test

A unit test tests the components on which a system is
based. In non-object-oriented imperative programming,
single procedures and functions are tested. In object-
oriented systems, classes and sets of classes are tested.
There are open source tools available that allow develop-
ing and running unit tests for almost every programming
language. See Chapter 2.

Unsafe Refactoring

Refactorings for which no tried step-by-step instructions
are available that would allow their safe, incremental
execution. One example of an unsafe refactoring is the
renaming of a class.

Index

A

Acceptance test 17, 113, 273

Acyclic dependencies principle 34

ADP. See Acyclic dependencies principle 34

Apache Torque 162

API 5, 55-56, 56-58, 61, 187-245

AP refactorings 187-245

APT refactorings, problems of 188-189

Application programming interface. See API 1

Architecture analysis 249, 251, 252, 256,
257-260

Architecture reviews 29

Architecture smells 2, 29-75, 82, 249-267,
270,273

Architecture smells, overview of 33

Architecture, violations of 73, 85, 91, 92, 252,
256,268

Atypical data models 174-177

Automated acceptance test 113

Automated refactoring 7, 14, 84, 110, 273

Automated test 20, 26

Bad smells 16, 29, 231

Behavior conflict 119, 198, 205, 207

Big Design Upfront 139

Big Upfront Design 271

Binary compatibilities 188

Binary large objects. See BLOBs 174

BLOB-Mapper 175

BLOBs 174-176

Branches 102, 109, 110, 111, 112, 113, 123,
142

Business objects 46, 168, 177, 178, 179, 180,
227,228,229, 231, 231-232

C

C3 project 113
Call-graph analysis 109, 239, 241, 242, 243
Castor 171

CCP. See Common closure principle 34
ClassCycle 68

Classic cycles 130-131

Code review 65

Code smells 2, 11, 16, 22, 29, 36
Code-first refactoring 20-21
Code-Smell 273

COM 53, 187

Common closure principle 34
Common reuse principle 34
Compatibility class 194
Compatibility classes 189-194
Complicated data migration 167
Component test 276

Composing methods 14
Containment relation 161, 175
Continuous design 9, 10

Converter 221-222

CORBA 187

CRP. See Common reuse principle 1
Cycle analysis 250, 258, 260
Cycle-based architecture analysis 258
Cycles 37-38, 57

Cycles between layers 62

Cycles between packages 49-50
Cycles between subsystems 50, 56-58
Cycles in Swing packages 38

Cycles with DIP 131

Cycles, longer vs. shorter ones 38
Cycles, prevention of 119

Cycles, removal of 130-132

D

Database access layer 167, 172, 173

Database administrator 170

Database refactorings 163

DB schemata 173

Dealing with generalization 15

Dependency graph facade, introduction of
124-125

Dependency graph, dynamic 35

Dependency graph, static 35

|278

Index

Dependency inversion principle 34, 131-132

Dependent classes 21

Design principles 33-35

Designing incrementally 11

Detours 18-19

Development database 161, 171, 173

DIP. See Dependency inversion principle 34

Don’t repeat yourself 34
Dr. Freud 70

DRY. See Don’t Repeat YourselfEclipse 70

Eclipse 23, 24, 32

Eclipse Metrics Plugin 68-69
Eclipse plugin model 134, 187
Eclipse Rich Client Platform 134
Eclipse runtime 112-113
Eclipse subsystems 32
Electronic refactoring plan 99
Elementary refactorings 273
Emergent design 1, 9, 9-11
ETL SQL 166

ETL tools 166, 172

Extreme programming 1, 2, 95

F

Fieldwise saving 176-177

FIT 114

Fitnesse 114

Forgotten refactorings 12

Fragments of large refactorings 121-143
Function test 113, 239, 242, 274

G
Generated code 172

H
Hibernate 171

Impact analysis 109

Incremental design 11

Incremental migration 166

Inline method 15, 120, 121, 238, 239
Intelli] IDEA 23

Interface segregation principle 34, 106
ISP. See Interface segregation principle 34

J

JDepend 66-68
JDO 171
JMigrator 127

L

Large refactorings 34, 81-154, 274
Large refactorings, automatability of 102
Large refactorings, avoiding of 84-92
Large refactorings, best practices 92-121
Large refactorings, reasons for 81

Law of Demeter 35, 39

Layer model 58, 60

Layer model according to Baumer 59, 61
Layer model based on ISO-OS 60

Layer model of Eclipse 61

Layers 30, 58-65, 62, 64

Liskov substitution principle 34, 43

LSP. See Liskov substitution principle 34
Lumping 37, 270

M

Making method calls simple 15

Manual refactorings 84, 274

Mechanics 2, 18, 19

Merciless refactoring 5, 194, 274

Merge 3, 17, 50, 54, 274

Merge tools 274

Metrics-based analysis 250

Metrics-based architecture analysis 260-263

Migration 194

Migration effort 223, 236

Migration of data between versions of a
database schema 164-167

Migration of very large data amounts 165-166

Migration, incremental 166

Mini-cycle 16

MockTypes 174

Modern development processes 12

Moving a class in an inheritance hierarchy
125-128

Moving features between objects 14

Moving of classes 122-123

279 I

Never change a running system 9
Non-strict layers 61, 178, 227

(o)

ObjectMother 174

Object-oriented programming 269
Observable behavior 15

OCP, see also Open-closed principle 15
Open closed principle 34

OR mapping 171-172

Organizing data 15

Overgeneralization 58-61

P

Persistent data 26, 170, 171, 172
Plugin 132-134

Plugin, introduction 132-143
PMD 66

Predictive impact analysis 109
Preventing smells 73-74

Primary key 174, 176

Product lines 61, 64

Production database 161, 171, 173
Protocol-oriented layers 63
Prototypes 74, 85, 109, 127
Prototyping 109

Public interface 52, 55,275
Published API 5, 275

Published interface 26, 194, 271

Q
Quick design session 95

R

Redesign 10, 82, 139

Refactoring 1, 275

Refactoring catalogues 19

Refactoring categories 14-15

Refactoring detours 18-19

Refactoring iteration 94-95

Refactoring map 100

Refactoring maps 99

Refactoring mechanics 2, 18, 19
Refactoring of relational database 159-185

Refactoring of the database access code
167-170

Refactoring of unit tests 113

Refactoring plan 96, 275

Refactoring planning session 95

Refactoring prototyping 109

Refactoring route 95, 108, 122, 153

Refactoring support 22-26, 83

Refactoring tags 194-198

Refactoring, definition of 11-20

Refactoring, detailed plan for 102, 274

Refactoring, introduction to 9-28

RefactorIT 70

REP. See Reuse/release equivalency
principle 62

Reusability 30, 31, 37, 50, 57, 58

Reuse/release equivalency principle 34

Reversed refactorings 15

Roles 170-171

S

SA4]. See Structural analysis for Java 170

Safe point 259

Safe refactoring 83, 273, 275

SAP. See Stable abstraction principle 83

Save point 102, 275

Scheduling refactoring 93

SCP. See Speaking code principle 1

Scripting 172

SDP. See Stable dependencies principle 172

Separation of concerns 35, 41

Simplifying conditional expressions 15

Small refactoring 2, 270

Smalltalk refactoring browser 22

Smells in dependency graphs 3541

Smells in inheritance hierarchies 41-48

Smells in layers 58-65

Smells in packages 48-52

Smells in subsystems 52-58

Smells, finding of 32, 65

Smells. See also Code smells 2, 29, 42, 65, 73,
275

SOC. See Separation of concerns 1

Software architect 142, 143, 271

Software-Tomography GmbH 249

Sotograph 6, 7273, 249, 251-260, 263, 265,
267

Source code compatibility 188

Speaking code principle 34

| 280 Index

Spike solution 85 Test coverage 22, 113, 198

SQL scripts 171, 173 Test-first refactoring 20, 21

Stable abstractions principle 35 Tests 20-22

Stable dependencies principle 34 To-do lists 118

Static cycles 3743 Tool support, limits of 25-26

Strict layers 60, 61, 62-63 Tools 171-172

Structural analysis for Java 70-71 Tools-supported refactoring 25

Structure conflicts 119 TopLink 171

Structure loss 1 Tree-like dependency graph 36

Subsystems 187 Trend metrics tool 260

Support for the preparation of large Type queries 42-43
refactorings 263-267

Support of the refactoring process 267 U

Switching class inheritance to interface 129 »
Understandability 30, 31, 37, 50, 51, 54, 57

T Unit test 276
Unsafe refactoring 83, 276
TDA. See Tell, don’t ask principle 124 Unused classes 36, 49

Tell, don’t ask principle 39, 40, 41, 124 Upfront design 9, 271

