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Who Should Read This Book?

This book is for people who are curious about how debuggers work. It is
also for those brave individuals who are embarking on the creation of a
new debugger or a tool similar to a debugger. Even for developers who
are not building a debugger, this book has a lot to offer. Every developer
has spent—and will spend—an enormous time in front of one debugger
or another. And if you understand a complex tool—which debuggers
most certainly are—you can use it and understand what it is telling you
and why much better. Debuggers, very complex beasts, have direct inter-
actions with the CPU and intimate dealings with the operating system;
they must be built closely in conjunction with the compiler, linker, and
other application development tools. People interested in systems tech-
nology will find a lot to dig into in this book. Finally, anyone interested
in algorithms will find a lot of unique and interesting algorithms that
debuggers use to perform their normal functions.

What Will You Get Out of This Book?

You will see how hardware has evolved to support debugging. This
dimension is important because debugging keeps getting more and more
essential and the requirements on debuggers and the functionality they
offer keep rising. Similar to the hardware evolution, the operating sys-
tems and their support and understanding of debuggers have grown enor-
mously in the past ten years. But it is clear—and I will show why—that
operating systems have a long way to go to provide what debuggers real-
ly need to develop outstanding functionality for debugging the kinds of
applications now in demand. I will give you a much better understanding
of how these vital and very complex tools work—I will give you a
detailed look “under the hood.” If you should ever need to build a
debugger—from a simple, specialized debugging tool to be used only, by
you, all the way up to a battle-hardened, production-quality, mass market
debugger—I try to document here the collective knowledge of a broad
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array of debugger technology. And finally, you will learn about some
very interesting and sometimes very clever algorithms employed in debug-
gers. Wherever possible, I will call out, in a stylized fashion, the most
interesting, most important debugger algorithms,

Layout of This Book

» Chapter 1 is introductory and covers basic principals of debuggers and
the environments in which they operate.

¢ Chapter 2 gives an overview of debugger architecture—what the user
interface and paradigms are, how a debugger is put together, and how
the various companents interact.

¢ Chapters 3 and 4 cover basic underlying infrastructure: hardware and

operating system support needed by debuggers to be able to provide
the most basic functionality.

e Chapter § delves into the details of how a debugger controls the execu-
tion of a child process (which we will usually call the debuggee).

e Chapter 6 then explores the algorithms and data structures behind
breakpoints and single-stepping—the two most important ways in
which a debugger controls the execution of the debuggee. Breakpoints
are like probes placed into a running program to observe it during
operation (and without changing the program beforehand). Single-
stepping is a way to carefully “walk through” a program to watch its
behavior step-by-step and observe its control flow.

» Chapters 7 and 8 focus on three aspects of observing a program’s con-
text. First, [ examine stack back traces. Next I explore the why’s and
wherefore’s of disassembling hardware instructions and relating them
back to the user’s original source code. And finally, 1 explore in detail
the very large topic of inspecting program variables in the debuggee.
This includes symbol table lookup, scope resolution, address map-
pings, expression evaluation, function evaluation and more.

» Chapter 9 covers the complex and vitally important issues of multi-



threaded debugging. The modern operating systems provide “just
enough rope...” to start using threads and to quickly run into serious
programming—and debugging—issues with threads. Debuggers are
still supposed to help you solve the resulting difficult multithreaded

bugs.

Chapter 10 addresses the special circumstances of debugging GUI
(graphical user interface) applications. Because almost all applications
have a major user interface component and because almost all modern
GUI systems are event-based, there are a lot of important common
issues to cover.

Chapter 11 focuses on special uses of debuggers (or debugger-related
tools) such as memory corruption debugging, reverse execution, hook-
ing debuggers, remote debugging, debugging on parallel architecture
machines, and the debugging of distributed objects.

Chapter 12 covers the very complex issues surrounding debugging
optimized code. The microprocessor industry trend is toward more
and more RISC processors (even Intel is moving in this direction), and
RISC demands better and better compiler optimization work to meet
its performance goals, This will put more and more pressure on
debuggers to handle these optimizations, without having to pull out all
optimizations just to debug an application.
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Introduction

Debuggers are critical tools for the development of software. They are stud-
ied very little, as compared, for example, to compilers. But more hours are
typically spent debugging programs than compiling them. Debuggers are

very difficult tools to build robustly because they depend heavily on relatively
weak portions of operating systems and because they tend to stress the
underlying operating system’s capabilities. More sophisticated operating sys-
tem features and the relentless trend toward more advanced graphical pro-
grams put increased demands on debugger capabilities. This book is an
introduction to how debuggers operate, and it discusses algorithms used by
production debuggers.

Basic Concepts of Debuggers

The term debugger is something of a misnomer. Strictly speaking, a debugger
is a tool to help track down, isolate, and remove bugs from software pro-
grams. Bugs are software defects that have been affectionately known as
“bugs™ since the infamous moth of the Harvard Mark I days (ROCHESTER
1983). In truth, debuggers are tools to illuminate the dynamic nature of a
program—they are used to understand a program as well as find and fix
defects. Debuggers are the magnifying glass, the microscope, the logic ana-
lyzer, the profiler, and the browser with which a program can be examined.
In spite of the limited scope of the term debugger, 1 will still use this term to
describe these software analyzers.

*According to a possibly zpocryphal story told by Grace Hopper, the moth that caused the erroneous
program behavior in the Harvard Mark I that day is now enshrined in a log book housed in a Navy
museum in Virginia, forever to be known as the first computer “bug.”
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Debuggers are quite complex pieces of software. Their inner workings
require a suite of sophisticated algorithms and data structures to accomplish
their tasks. Debuggers also require an exceptionally close cooperation with
and intimate knowledge of the operating system. These algorithms and inter-
faces are one of the subjects of this book. To discuss debuggers adequately, 1
must first cover some background information and terminology. Here are
some basic questions about debuggers 1 will answer to provide the necessary
background from which to start:

e What are they?

* Who uses them?

* How are they used?
® Why are they used?
* When are they used?
¢ How do they work?

What Are They?

Debuggers are software tools that help determine why the program does not
behave correctly. They aid a programmer in understanding a program and
then in finding the cause of the discrepancy. The programmer can then repair
the defect and so allow the program to work according to its original intent.
A debugger is a tool that controls the application being debugged so as to
allow the programmer to follow the flow of program execution and, at any
desired point, stop the program and inspect the state of the program to verify
its correctness.

Who Uses Them?

Typically, the original developer uses a debugger, but later a maintainer, a
tester, or an adapter may. In any case, it is a programmer. A debugger can be
a useful way for someone new to a piece of code to get up to speed on that
code in preparation for maintenance or continued expansion of the code.

How Are They Used?

Debuggers are used by rerunning the application, sometimes after a special
compilation that prepares them for debugging, in conjunction with the
debugger tool itself. The debugger carefully controls the application using



special facilities provided by the underlying operating system to give the user
very fine control over the program under test (much the way a piece of elec-
tronic test equipment gives control over a circuit under test). The user con-
trols execution using commonly found debugger features such as breakpoints
and single-step. The state of the program is examined until the cause of the
defect is detected; then the programmer can attempt a fix and begin to search
for any other defects.

Why Are They Used?

Debuggers are a necessary part of the engineering process when dealing with
something as complex as software systems. All interactions cannot be pre-
dicted, specifications usually are not written to the level of programming
details, and implementation is an inherently difficult and error-prone process.
As software gets continuously more complex, debuggers become more and
more important in tracking down problems.

When Are They Used?

First, debuggers are used at program inception time, when only part of the
implementation of a design is complete. Second, when an identifiable module
or subsystem is completed and ready for use, a debugger can help make sure
this component is ready for integrarion with other components. Third, as
testing progresses on a completed program and uncovers new defects, the
debugger becomes increasingly important because the program’s bugs tend to
get more difficult to detect and isolate over time. Fourth, debuggers are used
as changes and adaptations are made to existing programs that introduce
new complexities and therefore destabilize previously working code.

How Do They Work?

How debuggers work and how they will change over time are the primary
subjects of this book. First, to present a complete overview, the various types
of debuggers, the vaniety of approaches used to accomplish debugging, and a
brief history of debugging are covered.

There are numerous approaches to debugging—perhaps as many as there are
bugs. A few of the techniques used include using print statements, printing to
log files, sprinkling the code with assertions, using post-mortem dumps, hav-
ing programs that provide function call stacks on termination (i.e. crash),
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profiling, heap checking, automated data flow analysis, reverse execution,
system call tracing tools, and, of course, interactive source-level debugging.

Interactive debugging tools also come in assorted flavors. One type is a ker-
nel debugger for dealing with problems with an OS kemel on its own (only
for OS developers) or for interactions between heavily OS-dependent appli-
cations and the OS. Another type is a basic machine-level debugger for
debugging the actual running code (that is, machine instructions) as they are
processed by the CPU. Similar to this is an in-circuit emulator (ICE), which
emulates the system services so all interactions between an application and
the system can be monitored and traced. Interpretive programming environ-
ments, such as those available for Basic, Smalltalk, and Java as well as other
high-level languages, provide very effective debugging solutions (LALONDE
1990) because the debugger is well integrated into the run-time interpreter
and has very tight control over the running application.

A very important class of debugging is source-level symbolic debugging—the
primary emphasis of this book. The model presented to the user is that the
user’s high-level language source code is executed directly by the CPU.
Source-level symbolic debugging proves to be the most effective and most
frequently used technique for debugging end-user applications.

The historical progression of debugging tools has gone from static post-
mortem dumps, to more interactive dump analyzers, to machine-level debug-
gers, to basic symbolic debuggers, to command-line symbolic debuggers, to
full-screen text mode debuggers, to graphical user interface (GUI) debuggers,
to the current state-of-the-art, full-fledged programming environments that
integrate editor, compiler, debugger, browser, profiler, and more.

Programmers typically spend large quantities of ime using debuggers. Debug-
ging is both analytic and intuitive, and these disparate approaches direct the
way debuggers must work. It must be easy for the user to switch very rapidly
from one mode to the other as progress is made in the investigation phase of a
perceived problem. When the programmer’s program manifests a bug, the
major problem is the difficulty of determining which of the user’s assumptions
about the program’s behavior have been violated. Frequently, the programmer
has trouble accepting that some assumption is being violated (GRAMLICH
1983). Thus, debuggers must be very reliable, feature rich, high performance,
and adaptive. Remember, unlike many other software systems, the focus of a
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debugger is a broken application. Garbage-in garbage-our is not an acceptable
guiding principle for debuggers. In short, tremendous demands are placed on
debuggers so they must exhibit all the very best attributes of any software and
be ready for any way in which an application may be broken. This is why the
examination of debuggers is so important— they need to be well-designed,
efficient, robust, and highly usable.

Current State-of-the-Art

In this section 1 will establish the sort of debugger we will study. The current
state-of-the-art is a graphical user interface (GUI) debugger with a rich set of
windows (or views), each of which supports a different aspect of debugging.
This debugger may be a stand-alone tool, or it may be integrated into a more
general programming environment that also includes compilers, linkers, edi-
tors, and more (LAZZERINT 1992). The state-of-the-art “debugger” covers a
lot more functionality than its name implies. For example, it may log all calls
to certain APIs, and it may provide sophisticated profiling capabilities as well
as other capabilities that stretch the traditional view of “debugging.”

Current debuggers can all control the execution of the program under
scrutiny by using breakpoints (available in a wide variety) and instruction-
level single-step. A breakpoint is a special code placed in the executing code
stream that, when executed, causes a special trap to occur that the processor
and the operating system report to the debugger. Most CPUs have special
instructions for this purpose, provided explicitly for use by a debugger. Sin-
gle-step allows the debugger to control the processor executing the subject
program at such a fine-grained level that only a single machine instruction
may be executed. Again, most modern processors have a special mode that
can be set by a debugger that causes the processor, when told to commence
execution, to execute only a single instruction before stopping and giving
control back to the debugger program.

Debuggers report back to the user how, why, and where the application
stopped. The application may have hit a user-inserted breakpoint, or it may
have caused an exception condition, or it may have stopped for some other
reason. Once stopped it is possible to examine the state of the application,
which includes the current stack back trace (a list of all the functions called
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in order), the values in the hardware registers, the contents of all the applica-
tion’s accessible memory, and any other state that may be pertinent to the
debugging process. Also while stopped, functions contained in the applica-
tion under test can be executed i situ to allow you to determine the behav-
ior that particular function will have at the current time.

In spite of how much can be gained by building debugging tools that model
the high-level source being directly executed, it is also important that debug-
gers show the underlying implementation (CArGiLL 1986). This is why
debuggers provide disassembly views and direct access to hardware registers.
The user gains a lot of confidence from these views because, when chasing a
bug, the user must believe that some aspects of the program or its environ-
ment are acting as expected and can be counted on. Users typically keep try-
ing out theories that explain a bug by checking all the things that must be
true in order to support thart theory.

The applications being debugged may be much more complex than the
debugger itself (this clearly is the trend) and are most often themselves GUI-
type applications. This means the debugger must take special care to remain
non-invasive, especially on platforms that provide, at best, very fragile win-
dowing systems.

A number of debuggers have provided modes where mixed interpreted and
compiled code can be handled (CARLE 1987). This approach allows for much
better control over the portion of the application being interpreted. This can
be important when dealing with high levels of compiler optimization or
sophisticated reverse execution schemes as well. If the compiler has so dis-
torted the final instruction stream through optimizations that the program-
mer cannot easily map this back onto the original source code, switching to a
mode where the actual source code is interpreted may remove a major source
of confusion for the programmer.

Another important debugging technology 1s called “fix-and-run.” The goal
of this approach is to minimize the turnaround time between creating a fix to
test and the ability to actually test the system with the modification in place.
This technique consists of modifying fragments of code and adding them to
or merging them into a running image. In larger applications, and for doing
exploratory investigations before a fix is merged into the source code, this
technique is very advantageous.
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It is starting to become clear that performance analysis should not be consid-
ered completely distinct from the correct operation of a program—for one
thing, it is a bug if an application runs too slowly. Therefore, debuggers are
emerging that fully embrace performance analysis, but this additional capa-
bility is not yet the accepted state-of-the-art. It is also becoming clear that
program browsing cannot be disjoint from the debugging process. Browsing
is the process of examining the content and meaning of the source code text
to better understand the program. Program understanding on the part of the
developer is essential to effective debugging. However, profiling (and other
sorts of analysis) and browsing deserve separate treatment and are not dis-
cussed in detail in this book.

Debugger Basic Principles

In this section, I present four key principles of debugger design and develop-
ment. First, the Heisenberg principle that says the debugger must intrude on
the debuggee in a minimal way. Second, at all costs, the debugger must be
truthful so the programmer always trusts it. Third, the debugger’s most
important role is the presentation of content information so the user always
knows where he is and how he got there in the debuggee. And fourth, unfor-
tunately, the debugger you have to use is almost always behind technologi-
cally where you need it to be.

The Heisenberg Principle

It is important to any sort of in-process testing or monitoring that the test
procedure does not unduly affect the normal operation of the system being
tested. Hardware or chip testers go to a lot of trouble to make sure that the
insertion of the probe into the circuit being tested does not affect that circuit.
Similarly, the act of debugging an application should not change the behavior
of the application. If this is not the case, the usefulness of the debugger falls
into question. Non-intrusiveness in these and other sorts of systems being
measured or tested has been formally defined by Heisenberg and is called the
Heisenberg Principle (GRAMLICH 1983).

In software debugging, a debugger violates the pure Heisenberg Principle in a
lot of ways. The simple fact that the debugger is in memory and is controlled
by the same operating system as the application being debugged can affect the
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application. Depending on the operating system, adding a new process to the
mix can change the addresses in the debugged application and the sequencing
of when the process gets access to the CPU as determined by the operating
system’s scheduling algorithm. Bugs that are affected by this sort of thing are
rare but extremely challenging and time-consuming because they are now so
elusive. Bugs of this sort may also disappear when print statements are added
to the source code of the debugged application and compiled in because the
addition of the print statement may shift objects around in memory just
enough to move the elusive bug somewhere else (or to mask it for now).

On windowing systems that depend fundamentally on event-based program-
ming, the intrusiveness of the debugger can be even more problematic, espe-
cially if the debugger is also a GUI application that depends on events flowing
into and out of the operating system. With Windows 3.1 and the Mac OS,

the debugger is in the same address space as the debuggee and, even worse,
the message queue is shared by all applications so messages for the application
and for the debugger are intermixed in the single input queue. This puts a
large burden on the debugger in attempting to minimize intrusiveness. On
newer and more robust operating systems a running application is better
protected. On these systems the debugger cannot directly manipulate the
process—instead, it must use the debug API to affect the debuggee in any way.

Operating system designers as well as debugger designers worry a lot about
the Heisenberg Principle. Their effort is worthwhile because the better they
are able to keep the debugger from being intrusive and from impacting the
behavior of the debuggee, the fewer bugs will disappear and become elusive
only when run under the auspices of a debugger, leaving the application
developer with no effective way to proceed.

Truthful Debugging

The second critical debugging prindple is to always provide truthful infor-
mation during debugging. Polle Zellweger, in her Ph.D. dissertation on
debugging optimized code (ZELIWEGER 1984), developed this theme and
defended its importance eloquently. This principle states that the debugger
must never mislead the user because the user is frequently testing out theories
of how the observed failure (bug) may be caused. Any misinformation will
devastate the user, send the user off in the wrong direction potentially, and



cause a general lack of trust to develop between the user and the debugging
tool that will put into question everything reported by the debugger and will
dramatically hamper effective progress. Zellweger focused on this principle
with respect to debugging optimized code. An optimizing compiler performs
some transformation on the code over-and-above the code produced for the
un-optimized version that must now be unwound by the debugger. It is very
difficult for the compiler and debugger to communicate effectively and com-
pletely enough to allow the debugger to give the user accurate information
about how the optimized code maps back to the original source code.

There is more to truthful behavior than just reporting the effects of optimiza-
tion accurately. When a stack back-trace gets corrupted, the debugger may
try to work around the problem and unwind the stack in spite of the mem-
ory corruption. But if the debugger attempts to do this, any information that
is not known with certainty must be presented honestly so as to maintain a
high degree of trust between the user and the debugger.

Another common way a debugger could stumble and not be truthful to the
user occurs when reporting the values of variables. After the location in the
source and the stack back-trace, the values of variables are the most impor-
tant information the user needs to determine the state of the debuggee. If the
debugger does not report a value correctly, the user is badly misled and may
spend countless hours tracking down the wrong bug. This can easily happen
with modern compilers; even when not doing a high degree of optimization,
they always do a certain amount of register allocation optimization. This is
especially true with RISC chips and other processors that have lots of regis-
ters and for whom memory access is relatively expensive. The debugger may
be fooled that the variable the user wishes to inspect is in memory when it
actually is in a register. The result is thar the debugger lies. In some cases, the
compiler eliminates a variable because it is never needed throughout the
remainder of the current function. In this case the debugger must show that
the variable is actually “dead.”

Context Is the Torch in a Dark Cave

This principle refers to the most important information the programmer
needs during debugging: program context information. Context can include
several different types of information such as source code, stack back-trace,
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variable values, thread information, and more. The first and most important
question the application developer asks is “Where did the bug manifest itself
and how did this happen?” To answer this question, the user wants the
debugger to show the line in the source code where the fault occurred. When
the application crashed, if the debugger has control over the application or
can attach to the process while it is still maintained by the operating system,
the debugger can determine this information and actually show the source
code and highlight the line that actually had the faulc. The program counter
stops advancing when the fault occurs, and the debugger can use this stop
point to determine the source location that corresponds. However, this may
not point to the actual cause of the bug. Many bugs occur in one place but
their effect (a crash) does not show up until much later.

After source code location the next most important component of context is
the stack back-trace. This tells the user “How did the program get here?”
This is done by showing the list of functions that the program passed
through on the way to the current location (and will have to pass back
through on the way back to the program’s origin point). Specifically, the cur-
rent function the program has stopped in is shown on the top of the stack
listing. Next is the function that called this function, and so on, back to the
original function that initiated the program’s startup.

In multithreaded and multiprocess systems, the debugger must also be able

to clearly and simply show the threads in the process as well as other processes
with which debuggee process interacts. This information is crucial because
multiprocess applications exist in the context of all the processes working
together toward a certain end; if a bug shows up in one process, it may actually
be caused by a problem with another cooperating process or by some commu-
nication problem between the processes. The same interactions also hold for
multithreaded applications. The thread of execution that actually displays the
fault may or may not be the source of the actual bug, and information about
all the threads in the process is needed as part of the context information.

The values of variables, both global and local, are the next most critical
component of the context picture presented to the application developer. If
the values of variables are wrong, that can certainly point directly to the
cause of the bug. Off-by-one is the most common programming error, and it
frequently shows up as a bug, such as memory corruption if an array is
accessed one element past its declared limit. That bug would be an illegal



memory reference, and the programmer might find this by inspecting the
loop variable, quickly seeing that the variable’s current value is one too
large to be correct.

Finally, the ultimate context authority is the information presented in what is
commonly called a CPU view. Here information about the actual machine
instructions currently about to be executed, the current register values, and
the current hardware stack (from which the software stack previously dis-
cussed is derived) is presented.

All of these topics as well as many more will be discussed as we proceed
through this book.

Debugging Tralis Systems Developments

The final principle I wish to present is the principle that system developments
occur long before any corresponding strong debugging support for the new
systems developments is available. This is important because the systems ven-
dors respond to the mass market, and the mass market requires certain tech-
nologies; the mass market also needs to debug applications as it tries to
employ these new technologies. However, there is almost no pressure from
the market to force vendors to build the necessary debugging support. For
example, it was not until Win 32 (the basis for Windows NT and Windows
95) that there was sufficient OS support for debugging Windows GUI appli-
cations. Previously, the mass market operating system was Windows 3.1,
which initially had no debugging support. Microsoft provided a Dynamic
Link Library (DLL) that offered marginal support for debugging Windows
applications. There are numerous examples like this one. Debugger develop-
ers need to push the systems vendors to provide the necessary infrastructure
to enable support of the latest technologies. Application developers need to
push not only for the technologies they need for the next great feature and
their next chance for competitive advantage but also for the debuggers they
will need to debug these ever increasingly complicated applications.

Debugger Classification

This section extends the introduction to debuggers by examining some of the
different classes of debuggers. Debugging is a very general activity, but each
specific application and bug require a special use of a debugger to locate and
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eliminate the fault quickly and decisively. To address all the different types
of applications and bugs that application developers attack, several
different types of debuggers have been built for fairly specialized uses.

Source-ievel (Symbolic) versus Machine-ievel

The developer of an application who is using a debugger has a lot to gain if
the original source code is mapped directly to the application’s machine code
executing within the debugger. The compiler’s job is to transform the source
text into machine instructions that execute directly on the hardware platform.
Mapping the machine instructions back to the original source text is not triv-
1al for the debugger to do. But the benefits are enormous because it is not the
machine instructions that are meaningful to the application developer—it is
the original, high-level language source code. Early debuggers were not able
to make the reverse mapping back from machine instructions to the original
source code. But as applications grew in complexity this became more and
more essential. The goal is to have the debugger give the illusion that the
source code is being directly executed as if the underlying machine is not an
Intel, SPARC, PowerPC, or whatever CPU, but is a C/C++, Pascal, COBOL,
Basic, or Java execution engine. The trick to doing this is to have the compiler
provide extensive debug information about the source code and how it was
mapped into machine code. The nature of this information is discussed in
detail later in Chapter 8. Even with this illusion that the debugger is directly
executing the source code for you, there are times when you still need to dip
down into the low-level, machine-specific details of how the program is actu-
ally running on the hardware. Therefore, every source-level debugger also
needs to provide the low-level information. This is usually done by providing
a CPU view that includes disassembly information, register values, a memory
dump facility, and perhaps other machine-specific information.

Stand-alone versus Integrated Deveiopment Environments
A stand-alone debugger is a program dedicated solely to debugging and is
separate from compiling and editing. A very established stand-alone debug-
ger known as Turbo Debugger is shown in Figure 1.1.

The reason to move from stand-alone debuggers to integrated development
environments that include debuggers is programmer productivity. It 1s much
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Figure 1.1

A stand-alone debugger. Using Turbo Debugger 32 as an example, this figure shows a
character-mode stand-alone debugger that works on Win 32 systems. This example shows the
source code annotated with which lines correspond to executable code, and it shows where
the instruction pointer stopped (near the top of the screen).

better for developers to have a single tool on which to do development. At
the developer’s fingertips are all the tools needed, integrated for consistency,
easier use, and higher levels of functionality.

In these integrated development environments (IDE), the developer quickly
goes from editing to compiling to debugging in that typical cycle that repeats
itself hundreds or thousands of times in large projects. In the editor view, you
can set breakpoints as well as make changes to the source code via normal
editing functions. From here you can also get feedback about where execu-
tion stopped and why. In the past, many developers have raised serious con-
cerns about intrusiveness of a GUI debugger integrated into an IDE itself
debugging a GUI application. On unprotected operating systems, especially
ones with a single shared input queue for messages from devices such as
mouse and keyboard, this was more of an issue than it is today. But there are
occasions when the GUI debugger is more intrusive than a simpler, character
mode debugger. However, the advantages overwhelmingly outweigh the dis-
advantages. GUI debuggers offer a more natural user environment: they
operate just like all the other applications running on this platform. Further,
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GUI debuggers integrated into a single environment offer a much higher level
of functionality than possible with stand-alone debuggers.

The integrated debugger has access directly to the same compiler that is used
to compile the application being debugged. While a stand-alone debugger
can be effectively integrated with the run-time library (for example, for C++
exception support), the major limitation of a stand-alone debugger is the lack
of access to the persistent compiler symbol tables and to the compiler itself.
Direct access to the compiler means that when it is necessary for the debug-
ger to evaluate an expression, that expression will be interpreted (that is,
parsed) in exactly the same way and with the exact same resulting behavior
as if that same code were part of the compiled application. The ability to
directly manipulate the debuggee from the editor is a huge win: The shift is
only in the user’s mind, from looking at the source to edit it to looking at the
debugger’s view of the source being executed.

The integrated GUI debugger uses a variety of views to show different
“slices” of the debuggee program. The editor view is also the source view. In
addition, the stack view shows the function call stack, the CPU view shows
the state of the low-level machine during execution, and the project manager
shows all the files used to build the debuggee that are also available to the
debugger for setting breakpoints and inspecting variables.

In terms of features offered, modern integrated debuggers have the same
basic set as that offered by stand-alone debuggers. In addition, some features
are not possible in stand-alone debuggers, such as integration with run-time
library support for memory allocation error detection and integrated break-
point-based profiling.

4GL versus 36L

Fourth-generation languages (4GL) are used primarily in high-productivity,
business-oriented application-generation tools with an emphasis on database-
based applications. Examples of 4GL tools include PowerBuilder, Delphi,
Visual Basic, and many others. Smalltalk is used as both a 3GL and a 4GL; 1
will treat it in this section. One characteristic of most 4GL tools is that they are
based on an interpreted language such as Basic or Smalltalk. Being based on an
interpreter offers distinct advantages. It enhances ease-of-use because it can
give direct and immediate feedback about what effect a change the user makes
will have. Debugging is made dramatically simpler because the interpreter
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provides a safe, protected environment in which both the target application
and the debugger can run. Some cases of truly compiled 4GL development
tools are now counteracting the advantages of interpreted systems with some-
thing much more compelling: productivity and performance. Delphi is a recent
good example of this approach, which I will discuss in this section. The grand-
daddy of these 4GL tools is Visual Basic, which I cover first.

Visual Baslc

BASIC is a simple language invented at Dartmouth in 1964 by Kemeney and
Kurtz (KEMENEY 1985) to “make it easy and pleasant for Dartmouth students to
learn programming.” Several commeraial tools have been developed based on
Basic over the past three decades. The only one that really became entrenched
and reached into the business applications arena was Visual Basic. The key to its
success has been “visual” programming paradigm for ease of use. The approach
it uses to debugging also has made this a very high productivity system.

The heart of Visual Basic is a Basic language interpreter. Each change made
in the source code is checked by the interpreter for correctness before run-
ning. For the new change to become part of the running program requires
the interpreter to re-generate a small amount of new p-code to be inserted
into the interpreted stream for the entire application.

Most of the necessary debugger functionality is available in an interpreted
system like Visual Basic. For example, Visual Basic 3.0 offers the debugging
capabilities listed in Table 1.1.

Figure 1.2 shows Visual Basic’s standard screen layout. The debug menu con-
tents are shown to give a feel for the debugger features provided.

Implementation of standard debugger functionality is much simpler in this
interpreted environment than in a native mode debugger. Breakpoints are just
special p-code entries inserted into the stream of codes being scanned by the
interpreter. When the special breakpoint code is seen, the interpreter stops
and interacts with the user. No special interactions with the operating system
or underlying hardware need take place.

Smalltalk
Smalltalk is a highly object-oriented language with a strong notion of class,
inheritance, and events (LEwis 1995) and yet is also implemented as an inter-

preted system.
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TABLE 1.1 Visual BASIC 3.0's Features

~ Breakpoints halt execution at certain points to look for problems,
such as incorrect vaniable types, mixups in variable
430 names, flaws in logical comparisons, endless loops,
) garbled oulput, problems with arrays, and so on

Watch expressions at code creation/editing time or while in break mode to
£ allow you to monitor the value of a particular expression
as your code execution progresses
‘Single step watches execution proceed one statement at a time
Procedure step traces execution proceeding through the application one
procedure at a time

Out-of-line interpreter  tests out new lines of code in a mini-interpreter, can
' have side effects that change variable values

Procedure call stack views the current execution context

Smalltalk is based on a virtual machine that executes p-code. Most Smalltalk
systems can also compile down to native machine code on a function-by-func-
tion basis. To set a breakpoint, you modify the source code to contain the halt
keyword and re-execute that function. This debugging approach is the same
one used in Basic interpreted systems. Smalltalk systems are very smart about
incrementally executing a function at a time. Inspecting variables is done by
nserting code that displays the values desired and re-executing. Several com-
mercial Smalltalk systems have become very popular in business application
development, especially within the financial community. Smalltalk’s object-
oriented power, combined with its ease-of-use (including debugging) and the
cross-platform nature of interpreted Smalltalk, has driven its success.

Delphi

Delphi is a Visual Rapid Application Development environment based on a
dialect of Pascal called ObjectPascal. Delphi fully compiles (not interprets)
ObjectPascal down to the native Intel machine code. It has an IDE (similar
to Visual Basic’s) and a debugger with the same capabilities as those we will
examine in more detail for C and C++. Figure 1.3 is a screen capture show-
ing Delphi in debugging mode. The source view (which is also the program-
mer’s editor) shows the execution being stopped. A separate call stack view
shows the history of functions called to get to the current stopping point.
And a breakpoint view shows the list of all currently active breakpoints.



0S Kernel versus Application-level

Kernel debugging is a necessary part of developing device drivers. Modern
operating systems have a robust set of APIs and tools to allow the modifica-
tion of OS behavior via the addition of specialized device drivers. Device

: Operator)

Click event procedure for operator keys (+, -, x, /, =). ¢
1f the immediately preceeding keypress was part of a }
nunber, increment Hunlps. TF one operand 1s present,
set Op1. IF twoe are present, set Opi equal to the
result of the operation on Dpt and the current

input string, and display the result.

- ® » on e e =

Sub Operator_Click (Index As Integer)
TempReadout = ReadDut
I1f Lastinput = "MUMS™ Then
Humllps = Mumllps « 1
End IF
Select Case Mumlps
Case @ e
[lf operater(Index).Caption = =" And Lastinput <> “NEG™ Then'
ReadOut = *-* & ReadDut
Lastinput = “MNEG™
End IFf
Case 1
Op1 = Readlut :
If Operator(Index).Caption = *-* find Lastinput <> “MUMS" And OpFlag
ReadOut = *=*
Lastinput = “NEG™
End 1F
Case 2
0p2 = TempReadout
Select Case OpFlag
Case "+

| 69 [CALC.FRM:Operator_Click] Lastinput: “HOME™
¢ [CALC.FRM:Operator_Click] Index: 2

j'éd'lcﬁl.t‘..l?m:ﬂperatnr__l:lick] Humllps: @
A
1 E’

Figure 1.2

Visual Basic debugger. Using Visual Basic 3.0 as an example of a 4GL system, shown here
is a screen showing an application stopped after a single-step operation with a watch win-
dow open on three variables being watched as the program runs.

Introduction
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ToDate) + "''>");:
SetReportPrevieu;
Run;

end:
end;
end;

e =

procedure THainForm.CustomerReport (Sender: TObject):
begin
with Report do
begin
\ InitislValues.Clear;
if MastData.Datebase.IsSCLBased then
FeportNeame := 'CUSTSCL.FFT’
elue

SetReportPreview:
Run;

Figure 1.3
Delphi 2.0 debugger. Using Delphi 2.0, we show here several debugger views with the
application being debugged stopped at a breakpoint.

drivers can be anything from a special timer module to aid a profiler to a
sophisticated driver for a specialized real-time hardware data collection
device. Kernel debugging is normally set up in such a way that two machines
are involved: the host machine and the target machine being debugged. This
gets the debugger completely out of the picture during debugging, which is
critical when debugging OS components such as device drivers. As the
machine crashes, there would be no way for a debugger on the crashing



machine to report the scenario, whereas the remote machine can capture this
critical information. Vendors such as Microsoft provide two versions of an
operating system to developers of device drivers, One is the retail version,
which is built with full optimization and without debug symbol information.
The other, which Microsoft calls the “checked” build, has optimizations
turned off or down and is built with full debugging symbols, which allows
for detailed stack traces and inspection of key variables during debugging.

The setup for WinDbg, the Microsoft NT kernel debugger, is to have two NT
machines connect via a serial cable. The target machine will have the checked
build (with full debug symbols), and the host machine will use the standard
retail version of NT. With the target machine enabling kernel debugging, the
host machine running WinDbg can completely control the target machine. The
checked build of NT running on the target machine has numerous ASSERTS
that will check various values, any of which evaluating to false will cause a trap
to the debugger. When an exception such as that caused by an ASSERT occurs,
all threads halt except a special thread that communicates with WinDbg.

Another way in which kernel debugging is used is to catch user application
problems in the way they deal with OS resources. If an application running
on the debugging version of the OS kernel makes illegal calls to the OS APIs,
the OS will log an error. Furthermore, as a process exits, the kernel will

report about resource leaks such as window or file handles not returned
(freed) back to the system.

Application-specific versus In-circuit Emulation
Application-specific debuggers are general-purpose, high-level debuggers that
control one or just a few applications at one time. They notify the OS of their
intentions and thereby get notifications from the OS when important events
occur within one specific application.

In-circuit emulators sit between the operating system and the bare hardware
and can watch and monitor all processes and all interactions between applica-
tions and the operating system. Typically these kinds of debuggers are lower-
level and are used for development of add-on hardware or for very special
types of heavily system-interacting applications (such as debuggers themselves).

At this point, I have completed the overview of debuggers and will now focus
on one particular type of debugger—the source-level symbolic GUI debugger.

Introduction -



Debugger
Architecture

Architecture Overview

Having presented some of the possible varieties of debuggers in Chaprer 1, 1
will focus the rest of this book on the algorithms, data structures, architec-
ture, and inner workings of the most commonly used type of debugger: the
symbolic (maps underlying machine representation back to user-created
source code), graphical user-interface-based (presents windows or views of
different aspects of the underlying application to the user in an interactive,
windows-based fashion), application-oriented debugger (focused on user-
written applications, not operating system components).

In this chapter I discuss a generic architecture for the state-of-the-art debug-
ger of our target type. No specific brand of debugger is assumed' but I have
found that most debuggers match the architecture presented here fairly
closely. Differences between debuggers are based more on what views they
present to the user and what features are exposed in those views than on
basic underlying architectural differences. First I present, in Figure 2.1, a dia-
gram that shows that a debugger must, at its core, be closely tied to the
underlying operating system; from there, it is built out to present a set of fea-
tures to users through some sort of user interface.

However, with permission, [ use screen shots from a current commercial debugger, Borland Interna-
tional's Borland C++ 5.0 integrated debugger, to show how various views look during a debugging
Session.
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Figure 2.1

Typical debugger architecture. Graphical representation of basic debugger architecture.
Outer-most ring represents user interface presented to user. Inner-most circle represents the
core of the debugger interfocing to the underlying operating system.

User Interface

This section describes the state-of-the-art graphical debugger user interface.
Following the diagram above, [ will work from the outer-most circle inward in
my discussion of the debugger’s architecture. The user interface for this graphi-
cal debugger consists of a series of views (or windows). Each view represents a
different “picture” of the program being debugged. At any point in time, when
the application is stopped, these “pictures™ represent some state the application
is in. A control view may provide a centralized locus of control for all debugger
funcrions and a place for status presentation, as shown in Figure 2.2.

Relating this screen shot to the architecture diagram (Figure 2.1), we have
here a source view that is also the program editor, where changes are made
to the source code for the application. Below the source view is general feed-
back to the user about modules loaded during execution, errors encountered,
and any other valuable information to aid the user in program understand-
ing. Finally, the bottom-most view is not directly related to debugging—it is
the project view that shows the user the major components (source files,
object modules, dynamically loaded libraries, executables, etc.) that comprise
the currently active application.
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The next screen shot, shown in Figure 2.3, shows two additional, important
control areas of the debugger: the main debug menu and the thread and
process view. The thread and process view allows monitoring of the various
processes that constitute a single working application. More and more in
modern applications, more than one process is involved in the correct execu-
tion of an application. And those processes may include multiple threads of
execution that require debugger visibility into their inner workings. Chapter
9 discusses issues of multiprocess and multithread debugging.

TCalc::CalcKey(char key)
i

key = (char)toupper (key) :

1f (key >= '0' £& key <= '9') |
CheckFirsc():

1f (atrcmp (Nuxicer, "0") == 0)
Nurmber[0] = *\0O';:

| FE
[ -xc]
TR

Figure 2.2

Debugger jumping-off points. Sample screen from Borland (++ IDE showing the sur
rounding control structures for the debugger. The source view 1s the same as the editor and
breakpoints, and other debugger annotations appear in the left margin. Messages from the
compiler, the operating system, and the debugger are maintained and give the user context
_ for what is happening to the program shown in the message view. The project view gives
both a graphical “make” facility and direct access to debugging of all parts of a project.
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1f (key >= '0' && key <= '9')
CheckFarst():

Nurber [0] = '\0':

| Insertkey(key);

Figure 2.3

Debugger control structures. A second sample screen from Borland C++ IDE showing the
more direct debugger controls, such as the process and threads view that shows all processes
and their respective threads that are under the debugger’s control. Also the menu used to
control the debugger is shown in its pulled-down state.

Source View

The source view, shown in Figure 2.4, is the most critical focal point for

the programmer during debugging. This is the view that gives the user the
illusion that the debugger is actually executing the originally typed source
code directly. In this view—which is also the programmer’s editor—the user
is presented with information about which statements are executable. The
color syntax highlighting editor is set up to show programming language
keywords in bold, comments in blue italic, and other program elements in
standard black type. Executable statements show a small red dot in the
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gutter, indicating where breakpoints may be set. Active breakpoints show
larger red stop signs. Breakpoints are probe points placed into the executable
via the debugger where the programmer wishes execution to halt so that
more information about the program can be ascertained. Breakpoints will

be discussed in detail in Chapter 6. Finally, the current location of the pro-
gram counter (or instruction pointer) is shown with a green arrow. It is the
debugger’s responsibility to map the underlying machine execution back to
this source view so that the illusion of direct execution of source code is
maintained for the user. When this is not possible, an alternate view must be

1T [key >= '0°
CheckFirsc ()

&6 key <= '9') {
if (atremp (Number, "CO™) == 0)

Number[0] = '\D';
InsercKey (key) :

)} else Af (key == '4' || key == i-! [| key == '®i ||
]my - I!i I‘ m? -— ! ll ny m=m VRV 'l kev = OxDD’ {

CalcStatus = CS FIRST:
double =¢;
GetDisplay(c):

if (key == *'3') {
switch(Operator) (
case '4':

Figure 2.4

Source code with breakpoints. This view shows the source code annotated in this case
with darker color to show the type of language syntax used in each language expression. It
also shows breakpoint locations and currently active breakpoints in the left margin. The cur
rent program counter location is also shown with the arrow and full-width dark highlight bar.
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shown that represents the machine-level execution directly. This is the CPU
or disassembly view, which I will show later.

Stack View

Probably the second-most important view during debugging is the stack
view. The stack view gives a representation of the function or procedure
stack trace. This view is thread-specific as there is a stack maintained for
each active thread in a process. A stack trace consists of a series of stack
frames. Each frame represents a single function call, also known as an activa-
don record. Stacks grow downward typically (from highest address to low-
est), so some debuggers mimic this and show the stack growing downward
textually as well. However, the user is better served if the most recent frame
is at the top of the list in the stack view; the user naturally looks first at the
top of the list, and the most recent function executed is the most important
imtial feedback.

Wherever possible, a stack frame is presented symbolically, showing the
name of the procedure called and its parameters. In cases where no symbolic
information is available (because it’s an operating system entry point or
because no debugging information is available) the entry is shown simply as
an address in the code space. Stack traces are critical during debugging. Fre-
quently the error in the program can immediately be discerned by noticing in
the stack view that the program “should never have gotten here”—thar is
enough information to go examine the most recent stack frame’s function to
see how the logic is wrong. Or, if the program halted with an unhandled fatal
exception, the top frame on the stack tells exactly what function it was in
when it faulted; examination of that function clearly shows the logic error.
These stack views should have a direct connection back to the source and
CPU views so that selecting a specific stack frame allows navigation back to
the appropriate view for more detailed examination of either the source for
that function or the machine-level context for it. Figure 2.5 shows a stack
view where the most recent stack frame is always on top and the point where
execution started is always at the bottom of the list.

Breakpoints View
The breakpoints view gives an overview of all the breakpoints set by the user
anywhere in the currently active processes. Breakpoints are critical tools that



Af (key >= ‘0 £& key <= '9') (
CheckFirat():

1f (atrcwp (Nunber, "0™) == ()
Nunber[0] = ‘\o';

Cale mmand ( -D0B735A4, 1d
00SELES7 . E \BCS\BINNOULSOF .DLL

00SEbaba . E:“BCS“BIN“OWLS0F DLL
005€bb4l . E:“BCS“BINNOVLSOF DLL

0056bas2 : E “BC5\BIN“OWLSOF LLL

bEE73663 . C:\WINDOVS\SYSTEM\KERNEL32 DLL
bE£928el . C-\WINDOVSNSYSTEM KERNEL32 DLL
00006952

:00058f64

Figure 2.5
Call Stack view. The Call Stack view shows the function troce back as mapped onto the
hardware stack. Wherever possible, the debugger shows the symbolic name of the function
and its arguments to help give context. The Stack View is also a way to get to a specific
point in the source code, usually by directly following a specific entry in this stack view.

Debugger Architecture « Z1

allow the programmer to control execution of the program and specify how
and where the application will stop to allow further examination. Break-
points displayed in this view show the source location of each breakpoint as
well as its status. The status of a breakpoint may be active, inactive, or
unverified. Active breakpoints will cause execution to stop if they are
reached. Inactive breakpoints are place holders that the user can turn active
but currently will not cause execution to stop if reached. Unverified break-
points have been set in code that has not yet been loaded into the process’s
address space. This might occur if the program source has been edited since
last execution and the location of existing or new breakpoints is no longer
known to map to a specific location in memory. These will become verified
when the code is recompiled to accommodate programmer changes and

the compiler-generated debug information is once again available to the
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TWindow® calcWin = new TCalc:
calcVin->Attr.AccelTable = "IDA CALC™;

nplessovlsappshcalchcalc cpp.
\th\emplw\ml\ap;u\cam\calc cpp.
AbcS\exanplesioviiappsicalchcale cpp.

K| = \bcS\exanples ovl\appsicalchcale cpp.

i % ﬁglm\mﬁl\aﬁ\mlc\m lc

Figure 2.6

Breakpoint dialog. The breakpoint dialog ollows details about a particular breakpoint to
be viewed and modified. Attributes associated with a breakpoint include its location in mem-
ory, whether an expression should be triggered when this breakpoint is activated, and if so
what is that expression, if the breakpoint when hit should actually allow control to proceed a
certain number of times, whether control should stop at all when this breakpoint is hit or
should some expression be evaluated insteed (to cause side effects) or if the result of some
expression should just be logged.

debugger. This view, shown in Figure 2.6, also shows that there are numer-
ous types of breakpoints including source, address, data watch, exception,
thread, and module. These types of breakpoints and many other features of
breakpoints will be discussed in detail in Chapter 6.

CPU View

The CPU or machine-level view is critical to most debugging situations
because while the source view gives an excellent mapping of the machine
representation back to the source code, it is rarely enough to completely
understand how the program is behaving. Almost any non-trivial program
will have issues in how it interacts with the operating system, and this
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requires looking at and stepping through low-level machine instructions.
Even with logic errors in strictly user-created code, frequently the quickest
way to uncover the problem is by examining the generated assembly-level
code and the current state of the hardware registers.

The CPU view contains several subviews or panes, as typified by Figure 2.7.
Typical among these are the disassembly pane, the registers pane, the mem-
ory dump pane, the flags pane, and the hardware stack pane. The disassem-
bly pane is where the currently selected range of code address machine
instructions are disassembled back into their textual assembly-language rep-
resentation. Here both the actual hex machine codes as well as the symbolic
assembly codes are shown, with the green arrow showing the current loca-
tion of the program counter. To help the programmer further discern the

Borland € I.:I'll' _I‘.'}'If']

oooooo3e
00401629 |;rJ|:| ecx : 0o0oDo3E
0040162 mov ebx.eax 0oo0003e

] cale _ 291 if (CalcStatus == CS_ERROR & gguognﬁ
00401630 inz  +0xDa : 00000000
00401632 movex edw bl ey OPB4FBIC
00401635 c X : DOB4FBOE
00401638 o . 0040162C
B5S - Ao
cale cpp. if (ltav e ‘0" & key <= '9') ¢
0040163C movsx emax,
0D40163F cmp  eax, ox30
004016¢2 3 0401678

oy ; | JFB3E
ey, Acwem ecy 2l 00B4FE18 00000457
004016¢A jnle Ox401678 goaLrels L29cani2
calc.cpp. 295 WII‘SI‘.(} || DDB4FB10 00B739A4
o S S
,2323}2:2 _ TCale “‘"“ & oosersos 00000036
sl B S

~ 4 0

00410008 7C 00 0 00 00 00 O s Soooaiae

00410010 CC 00 02 00 00 0O .. SOAED oneetab

00410016 1A 00 00 00 00 00 CBFTEC SODOD2EE

00410020 00 oo 70 04 00 0O _ e ="

DOoO00DOCOoOHOOHORD

annaEIEn

Figure 2.7

CPU view. The disassembly view shows machine-specific information as well as the actual
assembly-level instructions fcr a given region of code segment memory. Several panes are

put together to make up this disassembly or CPU view: the disassembled listing, stack, and
registers are shown here. Other panes might be included as well. The disassembled code pane
shows the source code, if avoilable, from which these instructions were generated.
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mapping between the executing code and the source code, wherever a sym-
bol or source code line is shown, it is interwoven into the listing. The regis-
ters pane shows the symbolic name (here using the Intel x86 standard names)
and their current values. These values can be changed by the programmer
directly through this pane. Next to this is the flags plane, which shows the
symbolic x86 names for the CPU flags and their current values. Below these
panes is the stack pane, which is actually just a specialized memory viewer
looking at the memory occupied by the stack. This shows the hex addresses
and the current values stored at those addresses. Finally, below the disassem-
bly pane is the memory dump pane. This is a general memory dumper that
shows the addresses of the memory being examined and the byte values of
the data stored at those locations,

Variabies View

Returning to the symbolic level, the variables view is closely tied to the
browser, which in turn is closely tied to the compiler-generated symbol
tables; the browser allows viewing of functions, types, variables, and classes
in a C++ source program. Examining variables is critical to understanding
program behavior. Second only to understanding program control flow, the
values of the program’s variables are critical to understanding the root causes
of program defects. Browsing, shown in Figure 2.8, gives a single view onto
lots of program data while the inspector (shown next) gives focus onto a spe-
cific variable.

Inspector and Evaiuator

An inspector allows the user to examine the structure of complex program
objects. An evaluator, as shown in Figure 2.9, is similar to an inspector, but it
allows the entry of any legal programming language expression that will be
evaluated by the debugger in the current running program context. The way this
view is typically used is to inspect or evaluate specific variables or objects when
the program has stopped at some point, such as a breakpoint or after a single-
step. The evaluator allows virtual “programming-on-the-fly” because additional
code that was not placed into the executing program can now be executed as if
it were in the executable. The evaluator also allows debuggee functions to be
called so very complex expressions that involve calls to functions can be entered.
I will go into more details on this complex debugger feature in Chapter 8.
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Browsin

Figure 2.8
Variables view. Browser views are shown looking at objects, and global variables, with a more
detailed view of a particulor cbject where methods and instance vaniables are shown os well.

Other views might exist as well. In later sections of the book, the views
shown here as well as others will be discussed in more detail as we delve into
the inner workings behind them.

The next layer in our abstract architectural description can best be labeled
the debugger kernel. This is the part of the debugger that services all the
views we just examined. It is here that process control takes place. The appli-
cation we wish to debug is, to the operating system, a process. The debugger
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Inspector. The inspector shows the value of some variable. It may also show some useful
type information and its physical location in memory. In many cases this view also allows
the current value of this variable to be modified.

may initiate process creation, or it may attach to an already running process,
but in either case, that process then becomes the debuggee. At the end of a
debug session, the debugger kernel must terminate the process being
debugged and disentangle the debugger from it. The kernel is also responsi-
ble for symbol table access. The symbol table is usually part of the file that
contains the executable code for the program the user wants to debug,. The
symbol table must be consulted to determine a mapping between source
statements and byte addresses of executable instructions, This “statement”
information provides necessary guidance for setting breakpoints. The symbol
table also contains information about program variables so that the debugger
can map a source-level variable or data structure to a specific location or
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locations in the data memory of the debuggee. Associated with this will be
type information provided by the compiler that gives the debugger guidance
on how to interpret the raw bits in debuggee memory correctly.

Using the statement information portion of the symbol table as a guide, the
execution control section of the debugger kernel can control the debuggee in
such a way that the user seems to actually watch the source code being exe-
cuted. Execution control includes running the debuggee to the next break-
point, single-stepping by instruction or by statement, dealing with
debuggee-generated exceptions, evaluating functions by executing them in
situ, and a few other ancillary operations.

Expression evaluation is the process of using the debugger to evaluate vari-
ables and to apply operators and call functions as specified by the user-
entered expressions. The user is “experimenting™ by typing in short code
fragments that should be evaluated in the context of the current execution
location in the debuggee. These expressions should act as if they actually
were in the program being debugged even though they are actually typed in
to the debugger. The debugger evaluator must access a compiler parser (or
have the equivalent functionality built-in) to parse the textual expression; it
must access the symbol table to look up addresses of variables; it must read
debuggee memory to get the current values of these variables; it must use the
execution engine to execute function calls in the expression; and it must com-
bine the subexpression results using the specified operators in order to pre-
sent to the user interface a final result. This is critical functionality for the
debugger: It allows the user to apply his or her “theories” against what is
really happening in the executing program. For example, the user “believes™
a variable should have a certain value or that a function if executed now will
produce an expected result, and if this is not the case the user can then alter
the course of investigation accordingly.

Operating System Interface

When the debugger kernel needs access to the debuggee, it must use a collec-
tion of routines provided by the operating system for this purpose. This
debug application program interface (API) portion of the operating system
provides the basic functions to create debuggable processes, to read and
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write this process’s memory, and to control the execution of this process. In
addition, this API provides a way of notifying the debugger whenever any-
thing “important” happens to the debuggee. Other than responding to this
special debugger API, the debuggee’s operation on and interaction with the
OS and underlying hardware are nort affected by its being debugged. This is
the Heisenberg nonintrusive principle in action. Nonintrusiveness is impor-
tant because the application the user really wants to debug is the one running
natively on the operating system, not the one running specially under the
control of the debugger. Therefore, it is an important goal of all operating
systems that the debug API be nonintrusive so that it has minimal impact on
the debugged application.

Debugger Main Loop

Let’s dive one level deeper in our architectural overview to gain a good
understanding of how the debugger does its job. A good way to do that is to
examine the way the debugger operates its basic “main loop” that is the
jumping-off point for all its activities. Again, we are assuming a full-featured
graphical user interface debugger for these purposes. One important charac-
teristic of graphical user interface systems like Motif, MS Windows, Mac OS,
or OS/2 is that these are “event-based” systems that spend most of their time
waiting for an event that requires action. The event may be a user action,
such as a mouse movement or button click or a keyboard button press. Or,
the event may be one coming from the OS or another application that
requires some kind of screen drawing action (for example, an expose event
that requires some screen redrawing for windows newly exposed). Because
basic windowing-based graphical user interface applications must be set up
to respond to all sorts of events in a completely general, asynchronous fash-
ion, this provides a handy mechanism for dealing with the other major type
of unpredictable, asynchronous “events” that a debugger will receive: those
events caused by significant changes of state in the application being
debugged. These events are things like stopping, receiving an exception, ter-
minating, and the like. We find that in widely disparate operating systems
like UNIX, Windows-16, Win 32, OS/2, and others that provide very differ-
ent models for debugging APIs, there are general similarities in how the
debugger’s main loop should run. The major differentiators are these:
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» Single-threaded versus multithreaded
* Debug OS call blocking versus non-blocking

» Direct use of OS message system versus separate notification
mechanism

Multithreaded applications are becoming the norm as the mass market oper-
ating systems support threads. A thread is a single path of execution with its
own context that includes program and hardware state. Multiple threads of
execution within a single process can easily share data and can be switched
back and forth relatively inexpensively. Processes are collections of one or
more threads; sharing data berween processes requires special calls to the
operating system. [ will go into much more detail on debugging multi-
threaded applications in Chapter 9.

Older operating systems are typically single-threaded. A single-threaded
operating system must have an alternative to a blocking OS debug call. That
is, when the call to the basic OS debugger control function is called, it must
return control to the caller immediately. This means there is some other
means to get notification that a material change of state has occurred in the
debuggee that requires action from the debugger or user. It also requires that
either the debugger main loop poll for normal windowing events and debug-
ger events or some mechanism exists to get notification of either. The follow-

ing algorithm presents the model for a debugger’s main loop on a
single-threaded GUI-based system.

If the OS provides basic support for multithreaded application construction,
this can be advantageous to use for the debugger’s main loop. This is required
if the OS debug call is blocking because the main UI loop of any GUI applica-
tion cannot block and remain unable to respond to Ul events. Multithreaded
systems allow the main loop ro look just like a normal GUI event-processing
thread because the blocking debuggee control is handled by a separate thread.
In the secondary thread a loop waits for a material event in the debuggee that
will cause a message to be sent to the main GUI loop. It is important to note
that this secondary thread has one and only one purpose in life: to intercept a
debuggee event and post it (as a message usually) to the normal queue of
events processed by the main GUI debugger thread. Then this main loop
handles this event (message) from the debuggee thread while the secondary
thread goes back to waiting—this time for the main thread to give it 2 new
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Algorithm 2.1  Single-threaded GUI debugger main loop

Input Windows messages as the asynchronous communication
mechanism.
Output Ul effects of windows messages or debugger actions due to
debugger internal functions.
Method This algorithm depends on the debug call being non-blocking or
else the debugger must be implemented as separate processes.
The call to initiate execution returns immediately and a separate
call is used to check on the status of the debugee. This latter call
is non-blocking and so operates in a polling fashion.
cause debuggee to run
loop {
check for windowing message // non-blocking call
if (gquit message) then
break out of leop
else
process windowing message
check debuggee for notification // non-blocking call
if (debuggee notification) (
handle notification
re-start debuggee
}
} forever

command. This secondary thread is always waiting, either for the debuggee to
cause an event to occur or for the main Ul thread for a new command.

Operating systems like Windows NT, Windows 95 (Win 32), and OS/2 oper-
ate in this fashion because they are multithreaded and have a blocking OS
debug API call. UNIX, up until three years ago when threads became part of
the UNIX standard, operated in this fashion using separate processes—one
for the UL, one for the debugger kernel, and one for the debuggee itself. Mac
OS debuggers use a polling approach that explicitly checks for debuggee
notifications frequently.

Further discussion of debugger design, features and algorithms requires
building up more understanding of the underlying basic mechanisms a debug-
ger requires. So next, in Chapter 3 we present hardware support for debug-
gers and subsequently, in Chapter 4, we present the operating system
debugger support that makes it possible for a debugger to function,
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Algorithm 2.2 Multithreaded GUI debugger main loop

Input Windows messages as the asynchronous communication mecha-
nism. Two separate threads of control.

Output Ul effects of windows messages or debugger actions due to
debugger internal functions.

Method The primary thread is the standard GUI windows messages pro-
cessing thread with the addition of having logic to handle
debuggee-related messages coming in from the secondary thread.
A secondary thread that is dedicated to waiting for the debuggee
communicates with the primary thread via specialized window
messages. When the primary thread is processing debuggee mes-
sages from the secondary thread, it is responsible for restarting
the debuggee when necessary.

secondary thread:
loop {

wait for debug event // blecking call
send message about debuggee state to main loop
) ferever

primary thread:

loop (

wait for message // blocking call
if (GUI windows message)

process GUL windows message
else if (debuggee message)

process debuggee message




Hardware
Debugger
Facilities

Necessary and Sufficient Hardware
Debugging Support

The debugger’s ability to control the execution of the debuggee depends
both on hardware support built into the processor and on sophisticated,
specialized debugging mechanisms built into the operating system. In this
chapter [ will discuss the hardware support typically provided to aid debug-
gers. Even though the details of the underlying processor are normally
accessible only through and via the operating system, debugging services is
one area where hardware details show through directly to the debugger. The
minimal basic requirements a debugger places on the underlying hardware
are quite simple:

1. A way to specify a breakpoint—a specific location in the executing
code such that when the processor reaches this location, execution
will stop; this can be provided for by simply writing some illegal
instruction into the code stream for the debuggee
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2. A notification system, also called an interrupt or a trap, that will notify
the operating system (and thereby the debugger) that an important
event has occurred with respect to the running process

3. The ability to read and write directly out of and into the hardware regis-
ters when the interrupt occurs; this includes the program counter register

Other hardware facilities allow additional useful debugger features but this
set will allow critical basic debugger functionality to be developed. Note that
the processor does not need to support a single-step or instruction trace
capability because that can be provided equivalently via breakpoints alone.

Generic Hardware Debugging Mechanisms

First I will describe the basic set of hardware debugging support. In this sec-

tion I will cover what CPU support for a basic set of debugger capabilities

would look like. The set of capabilities I will examine includes the following:
¢ Breakpointing

* Single-stepping
¢ Fault detection
* Watchpointing
e Multithread control

* Multiprocessor control

After that, we will describe the specific debug architectures of several
important modern CPUs.

Breakpoint Support

Breakpoints are usually implemented as a special instruction that causes a
trap to the operating system, which then can notify a special program that
has registered itself as a debugger. On architectures with varying length
instructions, it is normal for the trap—or breakpoint—instruction to be the
length of the shortest possible instruction. This makes it much simpler for the
debugger to guarantee breakpoints are placed on instruction boundaries.
Table 3.1 shows the format for breakpoint instructions on the various CPU
architectures we will be addressing.
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TABLE 3.1 Breokpoint Instructions

i%‘ | mnemonic Instruction
e B ~ length
| 7 3
Intel x86 INT3 INT3
PewerPC |  nospocial a1 0
breakpoint; musi .
el ot <illegal opcode> |
31 26.25 6.5 0
L [ special | [ code || [BREAK ]
Aipha BPT 31 0
l BPT |

The debugger, through special interface routines provided by the operating
system, has the ability to read and write the text (that is, executable code)
space of the debuggee process. Given an address in this text space where a
breakpoint needs to be set, the debugger can read the current instruction at
that location and save it for later replacement. Then, the debugger writes the
special breakpoint instruction at that location. Now, when execution of the
debuggee proceeds at Full processor speed, if the processor executes one of
these breakpoint instructions, a special trap occurs in the operating system
without the debuggee executing a single instruction past the breakpoint. The
operating system notifies the debugger that the debuggee stopped, why it
stopped, and where it stopped, including which thread of execution was run-
ning when the stop occurred. It is now up to the debugger to react accord-
ingly. Normally, the debugger will use other OS debug routines to gather up
a complete state description of the debuggee that includes copies of all the
important registers with their values as of the moment of the execution of the
breakpoint instruction. Sometimes, the debugger will want to proceed past
this breakpoint. In this case, the debugger must go back to the instruction it
saved earlier and replace it, have the debuggee single-step this one instruc-
tion, and then replace the breakpoint instruction before allowing the
debuggee to again proceed at full processor speed, This procedure is basic to
debugger operation and is described in Algorithm 3.1.
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Algorithm 3.1  Breakpoint replace and go

Input Previously inserted breakpoint instruction just trapped to the
OS. Original instruction at the breakpoint address was saved
when the breakpoint initially was inserted.

Output  Debugger must re-insert the saved instruction to proceed and
still replace breakpoint instruction as well so it can be hit again.

Method  After breakpoint processing has completed and the debugger is
instructed to continue execution of the debuggee, it must replace
the original instruction, single-step over that single instruction,
and then put the breakpoint back before letting the debuggee
proceed at full speed.

loc = current_address
address[loc] = saved_instruction
initiate single step in debuggee
when trap occurs (
if (trap was for single-step completion)
{
address|[loc] = breakpoint_instructicn
run debuggee full speed

else
standard handling for debuggee exceptions

when re-starting debuggee, re-start same
thread that stopped

Single-step Support

Single-step means that the processor is instructed to execute a single machine
mstruction when it is next processing instructions for the debuggee. Most
processors provide a mode bit that controls single-step operation. Typically,
this bit is directly manipulated only by the OS on behalf of the debugger
through a special debug routine. This bit is part of the processor state so one
thread (or process) being single-stepped does not cause other threads (or
processes) to also single-step when the OS decides to give control to another
thread (or process) not being debugged. When single-stepping, the processor
executes one instruction and then causes a trap back to the OS, which in turn
notifies the debugger that the requested single-step has completed. With the
move toward reduced instruction set computers (RISC), hardware support
for single-step has been disappearing because it slows all instruction execu-
tion (KANE 1989). That is not an unsolvable problem for debugger design
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because technically single-step is not needed. A debugger can simulate single-
step by decoding the instruction at the current program counter, setting a
breakpoint on the very next instruction, and causing the debuggee to run.' In
this way, “go” has the same effect as single-step. This low-level, single-step
functionality is important for several execution control debugger algorithms 1
will discuss in later sections.

Fault Detection Support

Catching faults in programs being debugged is one of the most critical
requirements for a debugger; after all, a debugger s asked ro control broken
programs most of the time. The major purpose of debuggers is to find pro-
gram faults. Usually some faults are detected by the processor, such as divide
by zero and memory access violations, while the OS detects some others (for
example, /O failure of some sort). In some cases, higher level softrware sys-
tems detect additional faults, such as stack corruption or array bounds check
violation. In any case, the OS notifies the debugger that its debuggee has
received a fault before the debuggee actually is allowed control again. This is
critical to the user as the user wants to see what caused the fault before any
reactions to that fault can begin. The fault may cause lots of damage to the
debuggee environment so that after the fault occurs it may be impossible to
detect it any longer. The debugger or its user may decide that some faults are
not critical and can be allowed to pass on to the debuggee without causing
the program to stop. This is important with faults such as alarm clock that
may be necessary for correct operation of the program and should nort be
considered a fault. In other cases, serious faults also need to be allowed
through to the debuggee without intervention by the debugger because the
issue being addressed by the programmer in the program is fault handling.

Watchpoint (Data Breakpoint) Support

Watchpoints are notifications presented to the debugger when specified por-
tions of the debuggee’s address space are modified. Their purpose is to point
out locations in the application where these writes to memory occur, presum-
ably because the results are not as expected; for example, a variable changes
value unexpectedly and incorrectly. These are some of the most difficult and

'But there are times when determining the next instruction is not straightforward, and this mecha-
nism can break down. Such a situanon might occur, for example, when the current instruction isa
privilege transition imstruction.
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insidious bugs to detect and fix because their point of detection may not be
anywhere near their point of origin. In other words, the place in the code
that corrupts some memory is frequently not related to or even near the place
that actually faults from using the corrupted memory location.

Hardware support for watchpoints can take on a variety of forms. The most
direct is to have special base / limit registers in the processor that specify
starting address and run-length.” It is then the processor’s responsibility to
trap on any modifications of data in these addresses and stop the processor
before the write occurs. A less common approach—necessary in the absence
of data breakpoint registers—is to mark a complete data page as read only,
and then, when a page access violation occurs, check to see if the address in
that page being accessed is part of the offending data range. In either case the
OS notifies the debugger that a watchpoint “fired™; the debugger can then
present this information to the user.

Standard uniprocessors—the ones normally discussed—are architecturally
known as single instruction single data (SISD). That is, a single instruction
operates on at most a single data store at a time. Two types of parallel archi-
tectures are typically employed today. There are multiple instruction multiple
data (MIMD) and single instruction multiple data (SIMD) parallel machines.
MIMD machines have a small to medium array of processors, each with their
own local store, All processors operate on separate instruction streams quasi-
independently but in cooperation on a single program. SIMD machines, also
known as massively parallel, have a large array of relatively simple identical
processors, each with a local store. In SIMD, all processors operate in lock-
step executing the same instruction but using different local data stores.

In both types of multiprocessor systems stall detection is very important to
debuggers. To provide a controlled debugging environment, debuggers con-
trolling asynchronous multithreaded programs may need to operate only one
thread at a time so that no thread can “run away” in an uncontrolled fash-
ion. This works only if there is good notification when the thread being con-
trolled suddenly stalls because it requires some sort of synchronization with

*Some CPUs have only a single address register (e.g., MIPS) or none (e.g., Alpha) so only one or no
out-of-line, non-code-inserted breakpoints can be handled by the hardware.
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another thread that is already stopped by the debugger. If this situation is
detected, then the debugger can switch control from the thread just stalled to
the thread it is now waiting on. If this situation cannot be detected, or if
these two threads are actually waiting on each other, deadlock occurs and the
debugger then needs to report it as a major program flaw. This same prob-
lem exists with thread deadlocks on uniprocessor systems, but the problem is
more common and the result more deadly on multiprocessor systems.

A significant issue for debuggers on multiprocessor systems is how or
whether other processors stop when a fault occurs in one. On SIMD archi-
tectures, by definition, all processors operate in lock step and so this is guar-
anteed. The problem can occur in MIMD systems because the processors are
complex and are more loosely coupled and synchronized. It is a critical issue
to address because having a deterministic debugger on MIMD systems is
vital to the debugging process.

Contemporary CPU Debug Architectures

All contemporary CPUs provide a similar set of basic support for debugging
that gives the operating system and the debugger the tools it needs to provide
debugging features to programmers. This basic set includes the following:

» A special instruction thar halts execution

* A special mode of the processor to execute a single instruction
* Page protection mechanisms

* Exception or fault detection mechanisms

* In some cases, special debug registers

In this section, | will delve into how a common set of contemporary CPUs
implement their debugging support. The CPUs covered include: Intel x86
including Pentium® and Pentium Pro®, the MIPS family of RISC processors,
the Motorola / IBM PowerPC® architecture, and Digital Equipment’s Alpha®
RISC processor.

Intel x86 and Pentlum
Most of this description also applies to the x86 family, but the Pentium does
introduce some special debugging facilities that the older processors do not have.
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First, it should be noted that the x86 family is an extremely complex proces-
sor as characterized by the following attributes.

* Variable length instructions: very complex instruction makeup consist-
ing of optional prefixes, one or two primary opcode bytes, possibly an
address specifier consisting of the ModR/M byte and the SIB byte, a
displacement, if required, and an immediate data field, if required
(INTEL 1994).

* Three distinct processing modes: protected mode, virtual-8086 mode,
real mode

o Addressing flexibility: addressing of 16- or 32-bit locations

® Breakpoint instruction: [INT 3—traps to the debugger interrupt routine

¢ Debug registers: four registers that contain addresses of code break-
points allow debugger to not modify the code space for breakpoints;
also provide support for data breakpoints (also known as warchpoints)

* Trap flag (TF): single-step mechanism as a mode switch on the CPU
status word accessible to the debugger

Code breakpoints are the highest priority processor faults to guarantee they
are serviced before any other faults and therefore cannot be preempted. The
processor [P (instruction pointer—also known as the PC, for program
counter) address will be decremented to the beginning of the breakpoint
instruction so that when processing is resumed the instruction that caused
the debug fault will be re-executed. In the case of the in-line form of break-
point (INT 3), the debugger must replace it with the original instruction
when processing is resumed.

The processor’s TF flag is set directly by the debugger when it needs a hard-
ware-level single-step to occur. This flag in the CPU causes a debug trap to
occur as soon as the next instruction completes execution. This will be used
whenever the user is in hardware assembly debug mode and wants to
advance the processor. It can also happen internally when the debugger is
trying to complete a source-level single-step as it executes occasional
machine-level single-step operations as it tries to complete a more granular
type of step (more details in Chapter 6).

Stack implementation on the x86 processors is very straightforward and sim-
ilar to older generation minicomputer layouts. Multiple stacks are supported
via a stack segment (SS) register. The ESP register points to the top of the
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stack. Operations that PUSH or POP are relative to and modify the ESP reg-
ister. The stack-frame base pointer (EBP) usually points to data structures

passed on the stack, such as parameters passed to a subroutine. Figure 3.1
shows how the Intel x86 stack is laid out.

MIPS

The dramatic cost/performance advantages offered by RISC CPUs are based
on simplifying the instruction set and the ability to process these instructions
extremely rapidly. RISC systems demand that sophistication and complexity
of design be balanced among CPU, operating system, compiler, and debug-
ger, as opposed to putting an unbalanced emphasis on sophistication in the
instruction set. The design philosophy is to maximize instruction pipeline
speed, instruction fetch, and register operations on a larger set of fast regis-
ters while minimizing the use of slower RAM. This design point results in
much higher levels of sophistication in compiler optimizations and some
debugger complexity.

The MIPS processor family has specialized calling conventions different from
those of other RISC processors (KANE 1989) to meet its paramount objective:
speed of execution. Each procedure call tries to optimize performance and

. le———Previous ESP
Subroutine
passed
variables
f——{ EBP |
Top of stack ESP |
| Stack grows this way -
toward lower addresses
Figure 3.1

The Intel x86 stack. The stack layout for the x86 architecture shows the relationship
between the stack-related registers and the layout of the stack in memory. The stack grows
toward lower addresses while heap memory grows from lower to higher addresses.
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uses only the portions of the calling convention absolutely needed. This trade-
off favors execution performance over complexity of debugger design. For
example, the compilers will avoid using a register as a frame pointer whenever
possible. Instead, the debugger must synthesize the frame pointer from ancil-
lary information generated by the compiler (that is, debug information).

On the MIPS architecture, the compiler and debugger follow important
implicit rules as opposed to communicating directly through certain dedi-
cated registers. The debugger looks at symbol table information placed there
explicitly by the compiler via a “.frame” directive that gives the debugger
enough information to synthesize the frame pointer from what it already
knows. This way, when there is a leaf routine that does not call any other
routines and that does not require any stack local storage, there is no need
for frame information and therefore no work need be done to set up a new
frame. When a frame pointer is needed it exists only as a virtual frame
pointer that consists of the stack pointer register value added to the framesize
(stored in the symbol table). A symbol table where the debugger can find
these synthetic frame pointers must be accessible, or the debugger will not be
able to present a stack back-trace. Figure 3.2 shows how frames are synthe-
sized by the debugger.

The other complicating issue with the MIPS processors for debuggers is the
branch delay slot. Here again, the design trade-off was to speed execution of
instructions at the expense of additional compiler and debugger complexity.
The rationale is that branch instructions cause the processor to go back to
memory and fetch the target address. This causes the instruction pipeline to
halt while the address is being fetched. Instead of stalling the instruction
pipeline like this, in the MIPS architecture branch instructions are delayed
and do not take effect until after one or two more instructions immediately
following the branch instruction. It is usually a trivial effort for the compiler
designer to handle this because most instructions cause a one-instruction
delay. It is easy to move the instruction that would have preceded the branch
into the slot afterwards. However, moving an instruction this way causes sig-
nificant complications for the debugger and its designer. Figure 3.3 shows
an example instruction sequence with a typical branch delay slot filled. This
branch instruction also happens to be the target of a breakpoint because

this instruction is a source code boundary (such as the beginning of an if-
statement).
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high memory

argument n
argument 1
virtual frame pointer ($fp) —

frame local & temporaries )

offset saved registers framesize
(including returnreg)

akck pokiter: (Sp) —b argument build
low memory
Figure 3.2

MIPS stack layout. The stock layout and the use of a virtual frame pointer on the MIPS
architecture are shown. A leaf function that calls no other functions is simpler. And simpler
still is a leaf function that also requires no stack space for local storage.

Now, if the debugger should stop at this location, if it does not do anything
special the instruction

move a0, sO

will not have been executed, which almost certainly is wrong (if a variable is
inspected it will not have been updated in this example). The debugger must
always check to see if the instruction at which it is stopping is a branch
instruction; if so, it must check to see if the branch delay slot is filled by
other than an NOP." If there is a valid instruction in the branch delay slot it
must move the program counter to point to that instruction and execute one
single-step to make sure this instruction takes effect before reporting the stop
to the user. When execution is about to resume some time later, the debugger
must notice that it is about to start with a branch instruction; if the branch
delay slot is filled, it realizes that this instruction has already been executed
and must replace this with an NOP, do a single-step to execute the branch

No-op (NOP) a “do nothing™ instruction designed to take up time and space but which causes no
side effects.
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A: move s0, a0
<moved below>
zgme addiu 50,50,1\
9 ——*beq s0,zero,D
boundary — move a0,s0 +—
target of
breakpoint C:

<moved below>
jal X
move al,sl

addiu s0,s0,1
bne s0, zero,C

Figure 3.3

MIPS branch delay slot. Sample code generated for @ MIPS processor. Two move instruc-
tions are shown moved from their logical positions down into the slot after a subsequent
branch instruction.

instruction, and then replace the original instruction so that next time this
sequence is executed the correct thing happens. This algorithm is specified in
Algorithm 3.2.

Algorithm 3.2 MIPS branch delay slot breakpoint stop

Input Debugger stopping at a breakpoint on a MIPS processor.
Output  Correct behavior such that all instructions that should be exe-
cuted have been before stop is reported to the user.

Method

on initial stop at breakpoint:

i. As initial stop is reported by OS to debugger, check to see
if current instruction pointed to by the program counter is
a branch instruction that has a branch delay slot.

ii. If the instruction has a branch delay slot, advance the

program counter to the slot following the branch.

Execute a single-step operation.

When the debuggee returns from the single-step operation,

reset the program counter back to its correct position at

the branch instruction.

1il.
iv.
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on restart after stop at breakpoint:

i. If the current instruction is a branch instruction with a
branch delay slot, save the instruction in the delay slot and
replace it with an NOP.

ii. With the program counter still pointing to the branch
instruction, execute a single-step operation,

iii. When the debuggee returns from the single-step operation,
replace the NOP with the saved instruction.

iv. Allow the debuggee to proceed at full speed as required by
the current execution control operation.

PowerPC

The PowerPC is a RISC processor derived from IBM’s POWER workstation
architecture (Motorola 1993). Like the other RISC processors, the instruc-
tions on the PowerPC are all the same length, 32 bits. There is, however, very
little debugger support built into the PowerPC architecture.

The Machine State Register (MSR) has a bit that can be set by the debugger
for single-step of individual instructions. When this bit (bit 21) in the MSR is
set, as the processor restarts execution, it executes a single instruction and
then generates a single-step trace exception that will be processed by the
operating system and eventually will get back to the debugger for handling.
The PowerPC supports out-of-order instruction dispatch to allow much
faster execution by processing some simple instructions while waiting for
longer memory-access instructions (like branches) to complete. This is done
invisibly by the CPU and is not the responsibility of the debugger. When sin-
gle-stepping individual instructions, the instructions are processed by the
CPU strictly in program order. This does mean that debugging is changing
behavior when single-stepping somewhat—this is something for debugger
developers and users on PowerPC to watch closely.

There is no special breakpoint instruction on the PowerPC. However, there
are special registers that support debugging. HID1 is the Debug Modes Reg-
ister. This is a supervisor-level register that defines debugging modes—how
the registers and exceptions generated during debugging behave. HID2 is the
Instruction Address Breakpoint Register. This is the supported way to specify
breakpoints in user code. It is advantageous to have breakpoints in a special
register, as opposed to inserted into the executable instruction stream,
because this avoids issues of instruction caches and interactions between a
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debugger and page faults. But with only a single register, a debugger cannot
provide generalized breakpoint support where multiple breakpoints are set at
the same time. To build a standard application debugger that supports multi-
ple breakpoints, some other mechanism will have to be used. One alternative
is to use an illegal instruction that when executed will cause an illegal
instruction exception, which will halt the processor at the offending instruc-
tion. When such an exception occurs during debugging, the debugger must
first look at the location of the program counter; if this is the value the
debugger uses for special breakpoints and this address matches one the
debugger set, then this illegal instruction is actually a breakpoint.

The PowerPC supports address breakpoints through the HIDS Data Address
Breakpoint Register. For each instruction that accesses memory, the memory
address is compared to the Data Address Breakpoint Register. A march will
cause an exception, as determined by how the HID1 register is set. Again,
this supports only one data access breakpoint and users will not always be
content with just one. At this point, the debugger would need to fall back on
the page fault mechanism previously described.

Alpha

The Alpha is also a RISC processor (Sites 1992). Unlike the PowerPC and
MIPS RISC processors (prior to the MIPS R4000), the Alpha is a true 64-bit
processor. Registers are all 64-bit quantities. There are 32 integer and 32
floating-point registers. All addressing is via 64-bit byte addresses. All
instructions are 32-bit quantities. Instructions are always aligned on long
word boundaries. The Alpha has a very simple instruction set: All memory
operations are load or store. Multiple instructions are issued per clock cycle,
but this will be transparent to a debugger. To get the highest possible execu-
tion speeds, there is branch prediction support so that the highest probability
next instruction is being pre-fetched. Again, this should not be an issue for a

debugger.

There is a special breakpoint instruction provided called BPT. Execution
of this instruction causes a switch to kernel mode and saves the values in
registers R2..R7, the program counter (PC) and the processor status (PS)
registers. All are saved to the currently active stack as a stack frame. The PC
value saved is the next PC after the BPT instruction so that the debugger, to
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continue execution after a breakpoint, will have to back up the PC when the
original instruction at the breakpoint location is replaced.*

There is no instruction-level single-step support. This means that to perform
a single-step of a single instruction, the debugger must insert a BPT instruc-
tion right after the instruction to be stepped. There are also no specialized
instruction or data breakpoint registers so the benefits of out-of-line break-
points cannot be realized on this processor. Additionally, the only way to
implement data access breakpoints will be via the page fault mechanism
described previously.

Future CPU Debug Architecture Trends

As CPUs evolve, the need for debugging support will evolve as well. Unfortu-
nately, debugging can often be an afterthought of systems design. And yet, as
systems get more and more complex the expectations and requirements
placed on debuggers grow substantially.

The general trends for CPUs are toward longer words (64-bits), multiple
instruction pipelines, systems built with multiple processors working in coop-
eration, and special performance features such as branch prediction and
speculative execution. Specifically to support debuggers, these architectures
will provide more debug registers, special performance monitoring, and pro-
filing registers that enable a debugger to track execution sequencing, timing,
and patterns. This allows a “debugger” to actually do profiling of the execut-
ing code where the amount of time spent in certain portions of code can be
reported back to a user. Further, this kind of information could be used to

aid a debugger in reporting on test coverage statistics. Other uses for these
registers are planned as well.

“Note that some processors like the x86 back up the instruction pointer when a breakpoint is hit, and
others like the Alpha do not.
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System
Debugger
Infrastructure

Necessary and Sufficient 0S—Debugger
Cooperation

To control a debuggee process, a debugger needs a mechanism to notify the
operating system about the executable program it wishes to control. Once
this is done, the debugger needs to be able to modify that debuggee’s code
memory in order to modify the instruction stream with the special break-
point instructions. Then the debugger needs to be able to tell the operating
system to run the debuggee but norify the debugger if any sort of exceptions
(or traps) occur before the debuggee itself gets notified or terminated. Once
the debuggee does stop for some reason, the debugger needs to be able to
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gather information from the debuggee’s register set and data memory. The
debugger needs enough information to know what address in data memory
should be read to present stack and variable value information. These are the
most basic facilities a debugger must have in order to function. All produc-
tion operating systems provide this much debugger support and more. There
are important distinctions in the way these mechanisms are presented. I will
now compare and contrast some of the most prevalent operating system
debugging application programming interfaces (APIs).

Generic 0S—Debugger Interaction Model

A debugger is a user-level (bur highly specialized) application; it is not part of
the operating system and it is not even a privileged application. It uses special
calls to alert the OS that it is a debugger and that it wants to debug some
application or applications. By so doing, the debugger sets itself up ro get
special notifications of important events in the life of the process it is set up
to debug. On contemporary operating systems, for security reasons, interac-
tions between the debugger and the debuggee must go through the operating
system. To allow the debugger to run and then give control over to the
debuggee requires a context switch that is much mare expensive than just a
system call. In a context switch, the OS scheduler data structures must be
adjusted to reflect which process and thread now has control and the context
for that process and thread must be reloaded into memory after the context
for the previous one has been saved. On a simple breakpoint, where the
debuggee is running and the debugger is waiting for some notification, there
are six significant (and expensive) transitions between debugger and
debuggee before the debuggee is completely stopped and the debugger is
ready to deal with the user’s next request.’

* Debuggee running hits breakpoint. Transition #1 to OS to deal

with trap.
e Transition #2 to debugger waiting for event. Debugger now running.

* Debugger requests state info on debuggee. Transition #3 to OS to
deal with request.

"This is one reason why, as we shall explore in detail later, we try to minimize the usage of machine-
level single step which can easily be 1000 rimes slower than letting the debuggee process run full
speed up to the next breakpoint.
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* Transition #4 to debuggee context to get information. Debuggee
context now active.

¢ Transition #5 to OS to return information.

e Transition #6 to debugger to handle information. Debugger active.

The picture gets significantly more complex once we factor in graphical user
interface (GUI) applications and 2 GUI debugger dealing with those applica-
tions. In operating systems like UNIX, a context switch entailed saving only
the processor state (registers and the virtual memory system mappings) and
process-specific state information created by the operating system. In the
GUI environment a lot more additional state is involved in a context switch.
The active window, which window has focus, mouse capture information,
and a host of other window-related states must be saved and restored on
each context switch.

For a debugger to minimally support debugging of a multithreaded applica-
tion, the debugger must be notified as soon as the application creates or
destroys a thread; it must be able to inquire and set thread-specific program
state; and it must be able to detect when the application stops and which
thread was executing when it stopped. In Chapter 9 1 focus on issues with
debuggers and threads.

Like most powerful programming paradigms, threads complicate program-
mers’ lives and are the cause of many complex programming problems
requiring special and powerful debugging assistance. In addition to the basic
debugging support already mentioned, additional thread-specific debugging
support is desirable. The area most likely to need this additional support is
interthread communication. Interthread communication may consist of sem-
aphores, queues, pipes, shared memory, or some other mechanism. There is
not yet a lot of support for tracking these mechanisms in debuggers, but we
may begin to see this as threaded support becomes a mainstream operating
system feature.

The following sections describe specific operating systems and the APIs and
other facilities they provide for debuggers. I will work in roughly chrono-

logical order starting with “legacy™ systems and how they supported
debuggers.
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Legacy 0S Debugging Support

Three major systems constitute our examination of legacy systems debugger
support. We cover Windows 3.1 augmented by TOOLHELP, the UNIX
ptrace () approach and finally the Mac OS debugging support.

Windows 3.1 and TOOLHELP

Microsoft provided TOOLHELP.DLL long after Windows 3.x was shipping
after it realized that people needed a way to get at “internal™ OS functional-
ity to build debugging aids and when books were published that were essen-
tially documenting “undocumented” features (SCHULMAN 1992).
TOOLHELPDLL allows an application to obtain state information about
Windows internals as well as all applications running on Windows. This
information was not available previously except to Microsoft-built applica-
tions. Additionally, TOOLHELP provides critical functions necessary to
build a debugger. Unfortunately, this interface is completely different from
the Win32 debug API (or the 16-bit debugging interfaces within the newer
Win32-based operating systems).

It is especially critical for a GUI debugger that uses the same basic Window
messaging system as GUI applications to have excellent control over the
tasks in the system as well as the message flow for itself and its child
processes. Table 4.1 describes the important debugger TOOLHELP facilities.
The TOOLHELP call is listed on the left with the resulting behavior next to
it on the right.

TABLE 4.1 TOOLHELP Calls and Behaviors

call Behavlor
InterruptRegister The heart of a TOOLHELP debugger.
InterruptUnRegister Needed for handling interrupts and exceptions to the

debugges; enables debugger to “hook” and chain inter-
rupts. Exceptions the debugger typically cares about:

Divide by 0 (and other math errors)
Single-step instruction
Breakpoint
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Stack fault
General protection fault
User attention

Enables the debugger to read and write to any
address in the form of selector:offset. This pair of calls
is not technically necessary because the debugger
and debuggee are in the same memory space, and
they are unprotected from each other. But using these
calls leads to better discipline—unfortunately, at the
cost of noticeably poorer performance.

This pair of calls is for debug notifications; the de-
bugger registers what events it wants a callback on:

NFY_LOADSEG need to save breakpoints in the

code segment just being
reloaded

NFY_STARTDLL  need to get debug information
for the module (DLL) just being
loaded

NFY_STARTTASK a new task has been loaded,
but its first instruction has not
yet been executed

NFY_EXITTASK a task is exiting, and this is a
chance to clean up

NFY_DELMODULE a DLL or EXE is being
removed so can clean up

NFY_RIP called when FatalExit is called
and when the system is termi-
nating the application

NFY_OUTSTR output strings captured by
debugger

NFY_INCHAR indicates whether to continue
after a system-detected API
usage error (e.g., invalid Win-
dow handle argument)

The debuggee's first stack frame, the
debugger's own stack, and the way to
get successive debuggee stack frames, respectively.
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TABLE 4.1 (Continued)

TaskGet(SIP Calls to obtain and modify the CSIP

TaskSet(SIP (program counter) of a task necessary for a debugger
each time debuggee stops for any reason other than
termination.

TaskSwitch Allows debugger to execute code in the debuggee

directly, which is needed by a debugger to evaluate

expressions within the environment of the debuggee.
Also necessary fo do /O in the context of the

debuggee.

TerminateApp Kill the debuggee without calling normal exit
procedures.

Lockinput Not in TOOLHELP but required by GUI debuggers.

Keeps control of the input queue so that the debugger
has complete control over all messages going to
debuggee. Lockinput prevents a context switch away
from the debugger, and this is critical for all produc-

tion GUI debuggers designed to handle GUI applica-
tions. Without this call, GUI debuggers will frequently
become hung or at best unstable when debugging

GUI applications even if these applications are “well-
behaved.”

UNIX ptrace()

UNIX ptrace () is an example of a true debugger application program
interfaces (API). It was one of the first dedicated APIs designed to support
production-quality debuggers. A call to ptrace () is considered non-
blocking. This means that calls to ptrace () made by the debugger retumn
immediately—the OS has all the information and resources it needs to sat-
isfy this request; the debugger may continue whatever processing it needs
to do. This usually means the debugger goes back into some Ul processing
loop looking for events caused by the user pressing keyboard or mouse
buttons. The debugger finds out when the debuggee stops or in some
important way changes state through the wait () system call. The

wait () call can be either blocking or non-blocking, giving the debugger
designer a lot of flexibility in how the debugger should be set up. An
important point about ptrace () is that the debugger must instantiate a
process to be debugged using ptrace () so that the OS can set the “trac-
ing” flag on the process to know how to behave when the process gets
exceptions. More recent flavors of UNIX have offered a ptrace ()
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“attach” capability that substantially relaxes this restriction. UNIX
ptrace () and wait () are described next.

The function prototypes for prrace and wait are as follows:

int
ptrace {PTRACEREQ request, int pid, char* addr, int data, char *addr2);
int wait (kwstatus);

Table 4.2 lists the possible values of PTRACEREQ on the left and the result-
ing behavior on the right.

Algorithm 4.1. describes how a debugger based on UNIX ptrace () would
function.

Mac0S Debug API

Mac OS employs debugger technology based on a series of callbacks. This is
an old code base that, like Windows 3.1, seems not to have built-in debugger
support from the beginning.? Additionally, the rather simple—and not very
robust—debugging model is that the debugger runs in the same process con-
text as the OS services it requires. This is why the debugger APl is largely
made up of callbacks—the debugger uses certain APls to “register” itself as a
special agent—that the OS service routines will call as certain events of inter-

est to the debugger occur. Those exceptions and their meanings in MacOS
are listed in Table 4.3.

A debugger for System 7.5 or Mac OS will share a similar internal architec-
ture to one built for Windows 3.1 using TOOLHELP. In both cases, the sup-
port is minimal and not very clean. The interfaces are based on “hooking™
existing OS routines for the debugger’s purposes or on callbacks. Both systems
are not capable of very robust operation because the debugger and the
debuggee as well as the OS are in the same process context. Table 4.4 lists the
main functions used to set up debugging using the MacOS callback approach.

Contemporary 0S Debugging Support

In this section we will delve into the contemporary operating systems support
for debuggers. Things have changed dramatically and debug APIs are now
robust and full-featured. I will cover UNIX’s more modern /proc debugging

"This will cha:
1997.
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TABLE 4.2 Possible PTRACEREQ Values in Calls to ptrace () and Their Behaviors

- PTRACEREQ
Values

The debugger forks () itself into two processes, one
of which makes this call on behalf of the debuggee. It
registers the debuggee as wanting to be traced.
Immediately after making this call for the debuggee,
that version of the debugger process overlays itself
(using exec () ) with the debuggee process.

This is the way to inspect a single word in the
debuggee’s code or data address space. The TEXT
form is the way to get at instructions and is part of the
breakpointing mechanism.

A single word is written to the debuggee’s code or
data space.

The debuggee's execution is continued from wherev-
er it stopped previously. The program counter can be
reset at the same time optionally.

This forces the debuggee to terminate.

Similar to PTRACE_CONT, this continues execution
of the debuggee but if possible only a single machine
instruction is executed before it stops and notifies the
parent process (debugger).

This is a very useful capability for monitoring or hooking
system calls. The debugger can be instructed 1o stop
on certain system calls, all calls, or none and can be
further directed to stop on entry, exit, or both. And the
debugger can “hook” a call and change parameters to
it or return values from it.

If a process is already running it can become the
debuggee via ATTACH. DETACH will release a
debuggee to be an untraced process.

Whenever the debuggee stops, the debugger may
want to examine or modify its registers.

interface, OS/2’s debugging API called DosDebug(), and finally the Win32
debug API used for both Windows NT and Windows 935.
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Algorithm 4.1  UNIX ptrace debugging algorithm

Input Debugger process and the full path name of debuggee process
desired.

Output  Debuggee under full control of debugger process via ptrace.

Method From initial debugger (parent), create new (child) process

When the child exists but is still just a copy of parent, establish
that it wants to be a traced process.

Child portion of this pair now execs the debuggee process overlay-
ing that process on itself.

Meanwhile, parent process waits until new child debuggee process
is ready.

Parent debugger can now control child debuggee via ptrace()
calls waiting (or polling) whenever child debuggee is running. Par-
ent’s wait call returns whenever the child debuggee process stops
or terminates,

fork(): // create second process
if (pid == 0 ) // new process has special pid
{ // this is the child

ptrace( PTRACE_TRACEME ) ;
exec( new process that will be debuggee ):

{ // this is the parent
wait( pid, &status );

}

while (!TERMINATED(status))

{ // the main debugger loop
...... // do things to debuggee
ptrace (PTRACE_CONT); // start the debuggee running
wait( pid, kstatus );

UNIX /proc

Newer UNIX systems support /proc instead of (or in addition to)
ptrace() (FAULKNER 1991). /proc is a device driver interface to all sys-
tem processes, It presents all processes as files in a directory called /proc
within the standard UNIX file system. With /proc, the debugger can just
use standard accesses to a device driver to control any process in the sys-
tem according to standard UNIX file protection mechanisms. Typical sys-
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TABLE 4.3  Mac 0S Exceptions and Their Meanings

MAC 08

Exceplions

unknownException
illegalInstructionException

trapException

acceegException
unmappedMemoryException

excludedMemoryException

readOnlyMemoryException

unresolvablePageFaultException

privilegeViolationException

traceException

instructionBreakpointException

dataBreakpointException

integerException

floatingPointException

etackOverflowException

terminationException

Moanings
An unknown exception occurred.

An illegal instruction opcode was
executed.

The processor trapped. This may be for
special OS functions, or it may be an
application fault.

Memory access violation ocurred.
A violation of memory mapping occurred.

An attempt to access excluded memory
oceurred.

An attemnpt to write to read-only
memary occurred.

An unresolvable page fault occurred,
probably a system-level problem.

An attempt was made by the application
to violate established privileges—a priv-
ileged instruction was executed.

A single-step operation completed.

A breakpoint was hit.

A data breakpoint fired (watchpoirt).

Some type of integer math exception
occurred (e.g., divide by zero, overflow).

Some type of floating point math excep-
tion occurred.

The applications stack overflowed, that
is, it exceeded its allotted space or ran
into memory allocated for some other
program structure (e.g., heap).

Exception occurred at termination to allow
the debugger to catch exiting processes.
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TABLE 4.4 Mac 0S Debugging Functions and Their Purpose
m s
- MAC 0S DEBUG
KillProcess These are process control APIs.

FraghddNotifyProc The debugger installs callbacks here to
"ag eNo! get notifications from the Code Frag-
ment Manager that notify the debugger
when code gets loaded and unloaded
on behalf of the debuggee.

|
i
‘iwutm_tim The debugger installs callbacks via this
! function into the Thread Manager.

These callbacks will notify the debugger
: when a new thread is created or if one
4 is terminated.
This is a critical function whereby the
debugger is notified when an exception
oceurs and all the information the debug-
ger needs about the exception is passed
in via an exception structure at this time.,

tem calls used to access /proc are open(), close(), lseek(),
read(),write (), and ioctl (). This is 2 much more general interface
than ptrace (), and one of its benefits is that the debugger need not have
set up a process for debugging ahead of time as with most ptrace()s.
This is a big advantage because now a debugger can “attach™ to any
process, even one that was not initiated by the debugger.

Most of the debugger execution control mechanisms are implemented in
/proc via special ioctl () operations listed in Table 4.5.

A process being traced through /proc will stop due ro events of interest as
specified by one of the above ioctl () calls, when it is specifically directed to
stop via PIOCSTOP, or due to reasons external to /proc such as ptrace ()
or job-control stop. Unique to UNIX via this /proc interface, and some vari-
ants of ptrace ( ), is the system calling control afforded a debugger. As you can
see above in PIOCSENTRY, the debugger can control stop on entry and/or stop
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on exit from system calls. This allows the debugger to modify arguments on
entry to a specific system call and to modify return values on return from system
calls and thus gives a powerful “hook™ mechanism to debuggers or similar tools
potentially completely changing system call behavior invisibly to the debuggee.
It also provides a way for user-level code to simulate obsolete system calls with-
out making the system support a feature forever. Perhaps an even more power-
ful use of this capability to trace entry and/or exit from system calls is the ability
of the debugger to have the debuggee execute any system call on its behalf with
any arguments the debugger requires. This means that anything not provided
explicitly via /proc but needed by the debugger in the debuggee’s address
space, is still accessible if it is available via system call at all. Of course, not pre-
turbing the debuggee here is difficult and becomes a big intrusiveness issue.

UNIX’s /proc does not explicitly provide a breakpoint mechanism.
Instead, it provides very general non-specific read and write system calls to

TABLE 4.5 UNIX ioctl() Commands and Their Behavior

locti() commands Behavior
PIOCSTATUS Get general process status.
PIOCSTOP Direct a process to stop.
PIOCWSTOP Wait for a process to stop.
PIOCRUN Make stopped process run again.
- PIOCETRACE Define a set of fraced signals (software exceptions).
PIOCSFAULT Define a set of traced machine faults (hardware
exceptions).
PTOCSENTRY Define a set of traced syscall entries (OS calls belng
traced).
~ PIOCEEXIT Define a set of traced syscall exits (OS call tracing).
PIOCGREG Get values of process registers (hardware state when
stopped).
! PIOCSREG Set values of process registers.
PIOCMAP Get virtual memory address mappings (for debuggee’s

memory).
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the user application’s code address space. The debugger must determine the
address in code space to place the breakpoint, and it then reads that location
to save the existing instruction and writes the breakpoint instruction into
that location. Usually, the hardware dictates what breakpoint instruction is
used, but sometimes it is defined by the operating system as a special form of
illegal opcode. Execution of this instruction causes a trap to the OS kernel. If
the debugger using /proc has specified this type of fault (exception) to be
of interest, then the process will stop and the debugger will become active
because it was waiting (blocked) in a PIOCWSTOP ioctl() call?

UNIX’s /proc provides the debugger with the capability to control multi-
ple processes. When a process being controlled forks a child process, the
debugger can arrange to be notified so that it can also control the new child
process. As UNIX adopts a multithreaded programming model, /proc
needs some work to keep up and provide the necessary level of control over
all threads in all controlled processes. Fortunately, the /proc model is suffi-
ciently general and sufficiently flexible to allow this.*

0S/2 DosDebugl()

08/2 provides a very different debug AP, one that is blocking. The DosDe-
bug () call to make a debuggee start executing does not return control to the
caller (that is, debugger) until the debuggee process has stopped or termi-
nated. This means that an OS/2-based debugger that needs to continue to
process user input—such as respond to mouse events—must be implemented
using separate threads of execution. This way one thread can block after call-
ing DosDebug () while a second thread continues to process standard win-
dowing events. An OS/2-based debugger must deal with separate address
spaces for each debuggee and must deal with multithreaded applications. The
DosDebug () interface provides support for these aspects of debugging and

is the only way for a debugger to interact with its debuggee (PIETREK 1993).
The two most basic APIs needed to initiate a debugging session are listed in

Table 4.6.

'Alternatively, the /proc file descriptars can be considered in the same way other file descriptors are
used in the select () system call, which allow a debugger to wait for multiple events (such as key-
board and mouse) at the same time as waiting for the debuggee to stop.

*Iproc could present process files as hierarchical with “subfiles” representing threads. This model has
been implemented in some UNIX kernels recently.

67
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TABLE 4.6 The Two 05/2 APIs Used to Set up and Then Control Debuggee Processes along
with Descriptions of Their Behavior

=
0S/2 debug APIs Behavior r
|

DosStartBession() This is used to initiate the child process establishing
the debugger as its controlling parent. !

DosDebug () This is the synchronous OS AP for debugging interac-

tions. It takes a pointer to a debugger buffer that con-
tains information about the process and thread fo be
queried or controlled. On successful return, informa-
tion in the structure is filled in by the operating system
fo give feedback to the debugger on the results of the
last command or query

PVOID pDbgbuf;
APIRET rc;
rc = DosDebug () (pDbgBuf) ;
struct DbgBuf {
ULONG Pid;
ULONG Tid;
ULONG Cmd;
ULONG Value;
ULONG Addr;

)i

Table 4.7 lists possible values of the DbgBuf.Cmd parameter passed to Dos-
Debug () on the left with the behavior resulting from DosDebug () when
called in this fashion.

Weaknesses In tho 08/2 Debug Support

There are several problems in the debug support on OS/2 that make building
a robust debugger all bur impossible. We briefly outline them here. Several of
these problems are not unique to OS/2 but plague the other curent OSs as
well. In particular, lack of adequate thread debugging support and lack of
adequate debugger/debuggee context switching() support in the GUI man-
ager is pervasive.

1. OS/2 has only a single input queue that all threads and processes
share. This includes a GUI debugger. This makes a debugger on OS/2
as primitive and unreliable as GUI debuggers on TOOLHELP Win-
dows 3.x systems. This brings in all sorts of problems and deadlocks

'w



TABLE 4.7  Possible Values of the Dbg Buf. Cmd Command Parameter to DosDebug with
the Resulting Behavior of DosDebug()

| DBG_C_ReadMen
DBG_C_WriteHem

'DBG_C_ReadReg

- BBG_C_Connact

- DBG_C_SetWatch

|_--m_:‘:'_c1eamzun

DOS Debug behavior

The word specified by the Addr field in DbgBuf is
returned in the Value field (for read) or is written into
debuggee memory (for write).

This reads or writes the register set of the specified
thread in the debuggee. The DbgBuf contains the fields
corresponding to the register set that gets filled in.

This is the connect to debuggee command. This is the
first DosDebug () command issued by the debugger
and allows it to establish communication with the
debuggee child process.

This initiates execution of the debuggee. All non-frozen
threads are allowed to execute user code immediately.

This is the way to continue debuggee execution after the
debuggee has caused some notification to the debugger
that stopped the process's execution.

This terminates the debuggee prematurely.

This causes the specified thread to execute only one
machine instruction and then cause a notification.

This prevents specified threads from executing (freeze)
or reverse this action (resume). This, if exposed to the
user, allows users to specify which threads shall be
allowed to execute next time the debuggee is run.

This gets thread status information on the specified
thread with respect to its frozen/thawed state as well as
its runnable/blocked state.

These are watchpoint control commands that allow
the setting and clearing of data access breakpoints.

that make debugging flaky programs (the ones that need debugging
the most) almost impossible.

2. There is no notification given by this or any multithreaded OS to
the debugger when one or more of the independent threads con-
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trolled by the debugger blocks. This is serious because it makes the
debugger freeze and gives no feedback to the user about why or
where there is a problem. This is exacerbated by the fact that the
API gives (and encourages) debuggers to allow users to zero in on
and control individual threads by freezing all other threads—a
handy thing to be able to do.

3. The GUI system on OS/2 is called Presentation Manager. It runs very
much like a user application as opposed to being integrated into the
operating system. However, to applications like a GUI debugger, PM is
very much a systems service. When a GUI application and the debug-
ger are both using PM simultaneously and one of them gets into trou-
ble and grabs a critical drawing semaphore, other applications that
need to draw on the screen to function are frozen out. Until PM and its
critical system resources are integrated into the OS, OS/2 will continue
to be a non-robust environment on which to build debuggers.

Win32 Debug API

With the advent of Microsoft Windows NT and its common Win32 AP, and
with the more recent incarnation of Win32 through Windows 95, a new
debug API has come into prevalent use. Like DosDebug () this is a blocking
debug API meaning thar the system call does not return to the caller until the
request is satisfied. So, in a similar fashion to DosDebug () systems, a call to
WaitForDebugEvent () is used to block and wait for an event. Unlike
both UNIX ptrace () and OS/2 DosDebug (), the debuggee does nothing
special to allow itself to be debugged. Instead, the debugger (parent) calls
CreateProcess () with a special flag or uses DebugActiveProcess ()
on an existing process. Win32 assumes a multithreaded process model so
individual thread contexts of a debuggee—the register values—can be exam-
ined using GetThreadContext () and their state altered using Set-
ThreadContext ().

Breakpoints or code patching uses ReadProcessMemory () and
WriteProcessMemory (). The debugger must explicitly wait for a state
change in the debuggee by blocking or polling in WaitForDebugEvent ().
A pointer to a DEBUG_EVENT structure is passed to and filled in by wait-
ForDebugEvent () that indicates why the state of the debuggee changed.
Because NT and its newer Windows cousins are multithreaded operating



systems, this will typically be done by having one thread in the debugger ded-
icated to waiting for the executing debuggee to change state, while all other
debugger threads go off and process user interface events or perform some
other actions. This is vastly preferable to any sort of polling approach that is
also supported by the API and that has been necessary in UNIX ptrace ()
models to date.

The types of events that cause a debuggee’s state change are listed on the left
in Table 4.8 with their meanings described to the right.

Weaknesses in the Win32 Debug Supporl
There are several weaknesses or omissions in the debug support on Win32
that make building a robust debugger difficult.

1. Windows 95 fails to save the debug registers of the Intel x86 proces-
sor on context switches. This means that they are effectively unusable
by the debugger because their state will not be saved on context
switches and whatever information the debugger placed in them will
disappear the next time the OS switches to a different process.

2. The OS gives the debugger no notification when one or more of the
independent threads controlled by the debugger blocks. This is a
shared omission with the OS/2 operating system, as described earlier.
This reflects the early state of support by all vendors for effective
debugging of multithreaded applications.

3. No abstraction is provided for single-step and data breakpoints or
watchpoints so the debugger must dive down into hardware register
details to provide these capabilities. And in so doing, the debugger
loses its ability to remain nicely modular and thereby makes portabil-
ity more difficult.

4. There is no support for a 32-bit debugger on Windows 95 to debug a
16-bit application. On NT, there is a special API called VDMDBG
for doing this. On Windows 95, you must only use a 16-bit hosted
debugger to debug 16-bir applications.

5. Another Win 95 bug, which makes development on that platform
difficult is the inability to terminate a multi-threaded application
when a thread has a pending but unreported debug event.

6. While Win32 provides on attach capability, there is no detach which
is limiting. It is very useful when you suspect an application is hung
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TABLE 4.8 Possible Win32 Debug Events and Their Meanings

CREATE_PROCESE_DEBUG_EVENT
' CREATE_THREAD DEBUG_EVENT

EXCEPTION DEBUG_EVENT

EXIT_THREAD_DEBUG_EVENT

Meaning

Generated whenever a new process is cre-
ated, the debuggee spawns a new process
or the debugger attaches to a running
process.

Generated whenever a new thread is cre-
ated in a process already being debugged
and once for each existing thread when the
debugger attaches to a running process.

Generated whenever an exception occurs
in the process being debugged. These
exceptions include programming errors
such as access to inaccessible memory
and divide by zero. They also include spe-
cial debugging exceptions such as break-
point, single-step, and watchpoints.
Generated whenever the last thread in the
debuggee process has exited.

Generated whenever a thread that is part
of the debuggee process exits.

Generated whenever a new DLL Is loaded
by the debuggee process.

Generated whenever the debuggee exe-
cutes the special APl QutputDebug
String; the debugger can capture the
string and print it out as directed

Generated whenever the debuggee
unioads a DLL.

to attach to it, monitor its state, and detach without disturbing its
operation. UNIX supports this while Win32 does not.

The Win32 debug API is sketched out in Table 4.9. This is not a complete

description of the APL
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The basic algorithm for a debugger’s main loop on Win32 is described next
in Algorithm 4.2.

This basic algorithm is also shown in Figure 4.1.

Hybrid 0S Debugging Support

In this third section describing various OS support for debugging we will
look at what I call “hybrid” debugging support. By this I mean 16-bit debug-
ging on a natively 32-bit operating system. This is a temporal phenomenon,
as we are in the middle of a massive transformation of 16-bit systems becom-
ing 32-bit systems and thousands of 16-bit applications will continue to be
built and debugged to run on both the older 16-bit as well as the newer 32-
bit operating systems. [ examine two very different such hybrid systems: 16-
bit debugging on NT and on Windows 95.

16-bit Debugging under Windows NT

The Windows-on-Windows (WOW) subsystem on NT” creates a self-con-
tained 16-bit environment within the 32-bit operating system. This 16-bit
DOS/Win16 subsystem is a complete simulated x86 environment. There is
aspecial debug API specifically designed to allow 32-bit debuggers to
debug 16-bit applications running within this WOW subsystem. A 16-bit
debugger running within the WOW subsystem can debug another 16-bit
application within the same WOW subsystem via TOOLHELP as if it were
Window 3.1 (at least theoretically). The special debug API for 32-bit
debuggers acting on 16-bit NT applications is called VDMDBG. At issue is
the fact that the 16-bit environment is a simulated protected-mode DOS
environment and the 32-bit debugger is in another process’s context. As
such, this debugging mechanism needs to provide some code within this
simulated environment for protected-mode interrupt handling. Back in the
32-bit NT environment specialized APIs are needed to field information
from the simulated environment and send it to the debugger as well as code
for handling it within the debugger and for special service routines to help
assist the debugger in its tasks.

"WOW is now more frequently referred to as the VDM—Virtual DOS Machine interface.

73
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TABLE 4.9 Win32 Debug API Functions and Their Behaviors

WaitForDebugEvent

Behavior

Continues the thread in the debuggee that pre-
viously reported a debugging event.
Allows attaching to an active process and from

er, does not provide a detach facility. The debug-
ger now has control until process termination.

Can be placed in the source code of a program
to be debugged. If called when being debugged
it forces an exception that stops the process
and gives control to the debugger.

When called from the debuggee, transfers con-
trol to the debugger. This function terminates
the application and has no return back to the
calling thread.

The thread context is the set of information
saved on behalf of a thread whenever it is stopped.
This information includes all the processor reg-
ister values. On x86 architectures, it is possible
to get the thread's selector entry as well.

Same as freeze and suspend thread in 0S/2;
allows explicit suspension of a thread so that it
will not run. Can be reversed using resume.

Reads and writes debuggee process memory.

Can be placed in the debuggee that when exe-
cuted will cause the process to stop and give
control over to the debugger. It passes a string
as a side effect.

The blocking call that the debugger executes
while the debuggee is running that will return
only when the debuggee stops and causes a
debug nofification to be passed to the debugger.

Our standard two-thread Win32 debugging main loop is used. When the
debug event is being processed after a return from WaitForDebugEvent (),
if it is the special value STATUS_VDM_EVENT, then the debugger knows
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Algorithm 4.2 Win32 debugging algorithm

Input  Debugger process and the full path name of debuggee process
desired.

Output  Debuggee under full control of debugger process.

Method Use two threads; one for tracking the debuggee and one for track-
ing the user. Messages pass between the two threads using special
codes.

Primary thread (thread1):

// Send message to Thread2 to create new debuggee
// Set up debuggee as needed (breakpoints, etc.)
// Send message to ThreadZ to start debuggee
PostMessage(); // to Thread 2
// to create debuggee

for (;:)
{
wWaitForSingleObject();
if [special debug message)
<process debug message>

else
<process normal windows message>
PostMessage () ; // to Thread2
// to continue debuggee
5
Secondary thread (thread2):
CreateProcess( <path name of .EXE> , debug_flag );
WaitForDebugEvent ( );

// can now set breakpoints, inspect, modify memory
// and initiate execution control
for(;;
{
WaitForMessagel ); // from Threadl
ContinueDebugEvent();
WaitForDebugEvent () ;

// process exception that stopped debuggee
PostMessage(); // to Treadl on why debuggee
stopped

this is an event from the 16-bit environment. From here on, the debugger
needs to operate on this debuggee using the special API from the
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Primary thread Secondary thread
Wait for message Wait for message
{Windowsmsg)  (Debug |:
event} H 4
1 [Stan{cominm: debuggzl
Normal
Windows :
dapatel [ Wait for debug event |
— :
Debugger kernel
event processing

Figure 4.1
Win32 debugging loop. Diagram showing basic two-threaded algorithm for inner debug-
ger processing loop.

VDMDBG.DLL that specializes in dealing with a debuggee running in the
16-bit DOS/Win16 simulated environment.

Because the debugger and the debuggee are in completely different environ-
ments, the method of communicating between has to be via exceptions.
NTVDM is the name of the simulated environment. If NTVDM detects it is
being debugged, it will raise exceptions on behalf of the debuggee and the
Win32 debugger should receive them. The exception returns to the debugger
a 4 DWORD value. Word 1 contains the type of event that has occurred out
of the list of possibilities shown in Table 4.10.

The set of functions unique to NTVDM that are used either in addition to
the standard Win32 debugging APIs or in some cases instead of those in
Win32 are described in Table 4.11.

VDMDBG allows a 32-bit N'T-based debugger to extend its capabilities and
continue to debug 16-bit DOS and Windows applications. But the cost in
design and special-case code is high because once the event comes back as STA-
TUS_VDM_EVENT the debugging logic is quite specialized to the NTVDM
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subsystem. And, unfortunately, as we are about to revisit, this same subsystem
is not provided on the other major platform for Win32: Windows 95.

16-bit Debugging under Windows 95

On Windows 95, there is absolutely no support for a 32-bit debugger to con-
trol a 16-bit process. No VDMDBG support is provided (and, I am told,
there never will be). Microsoft’s position is that 16-bit debuggers can control
16-bit applications by using TOOLHELP and 32-bit debuggers can control
32-bit processes using the standard Win32 debug APIL But, Microsoft cau-
tions, do not try to mix the two: Do not write a 32-bit debugger that will try
to control a 16-bit process. This leaves Win32 debugger developers with a
complex development matrix, shown in Table 4.12.

Java Debugging Support

Because Java is so new to the programming landscape, I need to begin with a
brief overview of Java [SUN 1995].% Java is a programming language that

has naturally evolved from C++ to address some specific needs of program-
mers and application users. Those needs include a higher degree of simplicity,
platform independence, network awareness, and security, among others. Java
is an interpreted environment currently, and Java applications run unmodi-
fied on a host of platforms including UNIX, Mac, and Windows variants.
Applications written in Java can either be stand-alone or can occur as applets
that operate typically within an Internet browser. A Java “compiler™ cur-
rently transforms Java-written text into a well-defined standard byte stream.
On each platform, a virtual machine receives this byte stream and executes
native code on that specific CPU on behalf of the byte stream in interpreted
fashion (like Smalltalk). The byte stream is compact and efficient so that
applets streaming down off the Internet execute as rapidly as the interface to
the Net allows, and even stand-alone Java applications read from local disk
run reasonably efficiently. There are just-in-time compilers, and there will be
direct-to-hardware implementations of Java compilers over time to get higher
degrees of efficiency. The distinction is that a just-in-time compiler takes a
stream of byte-codes (either from disk or coming down off the Net) and on-

*For the latest, up-to-date, publically accessible information about Java including debugging support,
vasit http-/fjava.sun.com,
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TABLE 4.10 The List of All Possible Exceptions Raised in the 16-bit Simulated NTVDM
Environment and the Meanings of Those Exceptions

Word 1 of NTVDM exceptions Meaning

DBG_SEGLOAD

Segment Load Notification
A Win16 selector has just been created,
and it maps to a module's segment.

Segment Move Notification

A segment has changed from one selector
number to another (or it has been dis-
carded).

Segment Free Notification

A segment is being released.
Module Load Notification

An event signifies that a module is going to
take up a range of memory.

Module Free Notification
A module is being freed.

Int 01h break

This special debugger-specific event
needs to be tied back into the debugger’s
breakpointing and single-step logic.

Int 03h break

Typically, the special event signifying a
breakpoint was hit. Typically this will be a
breakpoint set by the debugger and as
such will be part of the debugger's break-
pointing and single-step logic.

General Protection Fault

This is probably a fatal error in the applica-
tion (or some other serious error). The
debugger will want to intercept these and
give the standard application fault handling
such as showing the location and stack
where the fault occurred.

Divide Overflow

This needs to be tied into the standard
debugger logic for serious application fault
presentation.



| DBG_INSTRFAULT Invalid Opcode Fault

I An application error has ocurred that
needs to be reported to the user in the
standard ways.

DBG_TASKSTART Task starting

All of an application’s image has been
loaded but it has not yet executed the first
instruction so that the debugger can insert

any breakpoints or do other housekeeping
functions before debuggee execution

begins.

DBG_TASESTOP Task stop
This is provided so the debugger can
clean up and do necessary housekeeping
after an applications image has been
uniloaded.

DBG_DLLSTART DLL starting
A DLL has been loaded, but none of its
code has been executed yet. This allows
the loading of new symbols into the debug-
ger's symbol maps and allows any neces-
sary setting of breakpoints destined for
code in this DLL

DBG_DLLSTOP DLL stop

A DLL has been unloaded so the debug-
! ger can and should clean up its symbols,
| breakpoints, etc.
the-fly, a class at a time, generates native machine code for the byte codes. A
native Java compiler would treat Java as a language like C, C++, or Pascal
and would translate the textual representation directly into a specific hard-
ware instruction set.

A debugger for Java applications (or Java applets running within a browser)
runs as part of the Java run-time system local to the user. The Java applica-
tion being debugged may be running locally, running remotely, or a combina-
tion of both. The client and server (or local and remote) portions of the
application may be running on completely different platforms. Java is a mul-
tithreaded application system so each portion of a complex client-server
application may execute in multiple threads.
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TABLE 4.11 The NTVDM Functions Used by a Debugger and the Descriptions

of Those Functions

VDMProcessException

VDMGetPointer

Description

Every exception is passed to this function. If
it's extraneous and rot important to the
debugger it will return FALSE and the
debugger can continue execution. If it
returns TRUE then analysis of the exception
arguments tells the debugger how to act.

This is used to get the descriptor table
entry for the specified VDM thread corre-
sponding fo the specified selector. This Is
just like the TOOLHELP function
GetThreadSelectorEntry() except
that this works irl the simulated
DOS/Win16 environment.

This function is used to convert 16-bit
addresses into fiat 32-bit addresses.

The context (all register values and relat-
ed state) of the specified thread in the
simulated DOS/Win16 environment is
retrieved. No matter what system NT is
running on, the simulated environment is
always x86.

This is the API to modify the thread con-
text (that is, change the value of a register
or change the state of the processar) in
the simulated environment,

This is a helper function for a debugger in
this environment to enable the debugger
o map a code or data address to the
module it belongs to.

This is the opposite of
VDMGetSelectorModule—the selector is
retumed for the given module.

This begins enumerating all the modules
currently loaded in the 16-bit Windows
environment. it's basically the same func-
tion as the TOOLHELP ModuleFirst.



Four key requirements for a debugger for the Java programming language
are as follows:
1. The interface should be object-oriented in the same manner as
the language.
2. Java language runtime features such as threads should be fully
supported.
3. Remote debugging should be possible.
4. Security should not be compromised under normal operation.

To fulfill these requirements, the Java debugger API is included as part of the
standard system packages.” This APl is a set of Java Objects (written in Java
and fully integrated into the Java system) that assumes all Java applications
run remotely (local is just a special loop-back case). The debugger API uses
the notion of a proxy for objects under observation so that, for example,
there are classes in this API for RemoteObject, RemoteStackFrame, etc.
This means that the remote debugger that our client user interface is talking
to will, on our behalf, create references to objects we wish to examine.
Because Java is a “garbage collection” environment, this is necessary to make
sure these objects are not destroyed by the remote run-time’s garbage collec-
tor if all other references to an object disappear.

The basic class used by a Java debugger is the RemoteDebugger class,
which is a “viewer” for the Java Runtime being debugged. The methods in
the RemoteDebugger class perform general operations, such as returning

"One debug API for Java is provided by SUN and is supported by the virtual maching shipped by
SUN. However, other vendors such as Microsoft Symantec and even Netscape are shipping VMs
with very different debug APIs. This area is developing rapidly and will remain confused until one
vendor dominates.
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instances of RemoteClass or RemoteThread. Then, more specific data
inquiry operations are supported through the methods of these returned
classes. To get a class's methods, for example, the RemoteClass method
getMethod () would be used. To print one of those method’s names, its
getName () method would be used. The RemoteDebugger class and its
methods are described in Table 4.13.

The debugger communicates with the Java interpreter being debugged via a
socket-based, proprietary protocol that is not extensible by debugging clients,
for security reasons, The Java interpreter doing the debugging needs notifica-
tion of debugging events that occur in the remote Java interpreter, and this is
set up via the DebuggerCal lback interface. Through this interface’s meth-
ods, the local Java debugger is notified of breakpoints and exceptions in the
debuggee. The class DebuggerCal lback is described in Table 4.14.

The other classes in package java.tools.debug with brief descriptions of their
methods are listed in Table 4.15. First, class RemoteValue, which is the
basic class for dealing with (that is, inspecting) remote variables is described.
The RemoteValue class gives the debugger access to a copy of a value in
the remote Java interpreter. This value may be a primitive type, such as a
Boolean or float, or an object, class, array, and so on.

Next, we show the set of classes that extend RemoteValue for dealing with
basic types. Clearly, because these classes extend RemoveValue, any meth-
ods of RemoteValue are available and three additional methods (get,
toString and typeName) are provided. See Table 4.16.

public clasg extends RemoteValue
public class extends RemoteValue
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public class extends RemoteValue
public class extends RemoteValue
public class RemoteFloat extends RemoteValue
public class extends RemoteValue
public class extends RemoteValue
public class extends RemoteValue

The RemoteObject class allows access to an object in a remote Java inter-
preter. Remote objects, like remote values, are not created by the local debug-
ger—the remote agent creates a reference to the requested object and returns
to the local debugger this RemoteObject class for querying. Each remote
object has a reference cached by the remote Java interpreter, to protect
against being garbage-collected during examination. The Remote

Debugger’s gc () operation is used to free references to objects that are no
longer being examined. See Table 4.17.

For the aggregate types, a set of classes extends RemoteObject. These
classes include RemoteArray, RemoteClass, and RemoteString. See
Table 4.18.

The class RemoteClass includes methods to manipulate breakpoints within a
class. In Java, breakpoints are much easier to deal with for a debugger than in
C, C++, Pascal, or similar languages. All code resides in one class or another—
there are no header files—so breakpoints are always specified with respect to a
class and a line number within that class. See Tables 4.19 and 4.20.

The way in which execution control, variable access, and context informa-
tion are all so seamlessly accessible as part of the built-in system makes Java
an ideal environment in which to build a debugger. For example, each vari-
able and method—generically referred to as fields—within a Remoteclass
are accessible as RemoteField. The description of class RemoteField
follows in Table 4.21.

The stack in Java, in principle, is like a stack in any procedural language.
However, more like Smalltalk than the compiled to native code languages,
the stack is maintained exclusively in the Java run-time machine. Classes that
provide all the necessary infrastructure to completely present stack informa-
tion to the Java debugger user are provided through classes StackFrame,
RemoteStackFrame, and RemoteStackVariable. See Table 4.22
through 4.24.
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TABLE 4.13  (loss Remoteﬂebugger with All of Its Methods Descnbed

gger extends Object g
ger {Serimﬁasr., String password,
ient, PrintStrean console, boolean verbose) E

int
freeMemory ()

void
ge()

get (int)
stringl) |
getExceptionCatchList ()

getSourcePatch()

itrace(boolean)

RemoteClass[]
listClasses()

RemoteThreadGroup[]

listTreadGroups
(RemoteThreadGroup)

Mothod description

Closes the connection to the remote
debugging agent.

Finds a specified class by its string

name, First the remote debugger will try to
find the class in its known set and if not suc-
cessful, the request will be passed to the
remote interpreter.

Reports the free memory available to
the Java interpreter being debugged.

Frees all unreferenced objects. While

the remote debugger is examining objects, it
keeps a reference so that no objects can be
garbage-collected during examination. This
method allows those objects to now be
freed.

Gets an object from the remote object
cache identified by ID.

Retums the list of the exceptions the
debugger will stop on.

Retums the source file path the Agent
is currently using.

Tums on/off instruction tracing. Thisis a
printout control for each instruction executed
by the remote interpreter. This is not infor-
mation accessible to the remote debugger.

Lists the currently known classes.

Lists threadgroups given a
RemoteThreadGroup tag.
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- RemoteThreadGroup Loads and runs a runnable Java class,

run(int, String(]) with any optional parameters. The class is
started inside a new threadgroup in the Java

' interpreter being debugged. Although it is

| possible to run multiple runnable classes
from the same Java interpreter, there is no
guarantee that all applets will work cleanly

| with each other. For example, two applets
may want exclusive access to the same

'.| shared resource, such as a specific port.

{ void Specifies the list of paths to use when
‘setSourcePath(String) searching for a source file.
int Reports the total memory usage of the
il Java interpreter being debugged.
~woid Turns on/off method call tracing. This is
. trace(boolean) just a printout control. If on, each method

call of the remote interpreter is printed out.

The class RemoteStackFrame provides access to the stack frame of a sus-
pended thread.

A RemoteStackvariable represents a method argument or local
variable. It is similar to a RemoteField, but it is much more transient
in nature.

Lastly, the final two classes that make up the Java debug API complete

the picture by bringing in the concept of threads as a fundamental aspect

of the Java language. These final two classes are RemoteThread and
RemoteThreadGroup; see tables 4.25 and 4.26. Because the fundamental
unit of execution in Java is the thread, it is here that we finally see the execu-
tion control methods such as step and continue. First we will take a look at
class RemoteThread.

A Thread group can contain a set of Threads as well as a set of other
Thread groups. A Thread can access its Thread group, but it can't access
the parent of its Thread group. This makes it possible to encapsulate a
Thread in a Thread group and stop it from manipulating Threads in the
parent group.



B6 - CHAPTER 4

TABLE 4.14  (lass Debugger Callback with All of Its Methods Described

Debugger Callback hod Method descrintl
void A breakpoint has been hit in the speci-
breakpointEvent (RemoteThread) fied thread.
void An exception has occurred in the speci-
. (RemoteThread, String) fied thread; the error text is specified in
the given String.

TABLE 4.15 (lass RemoteValue with All Fits Methods Described

PUBLIC CLASS REMOTEVALUE EXTENDS OBJECT

Remote Vaiue methods Method description

String description () Returns a description of the RemoteValue.

int fromHex (String) Converts hexadecimal strings to ints.

int getType() Returns the RemoteValue's type.

boolean isobject() Returmns whether the Remotevalue is an Object
(as opposed to a primitive type, such as int).

String toHex(int) Converts an int to a hexadecimal string.

8tring () Returns the Remotevalue's type as a string.

TABLE 4.16 (lass Remote* and All the Shared Methods Described

char get() Returns the appropriate type’s value.

8tring toString() Returns the appropriate type's value as
a string.

String typeName() Retums this RemoteValue's type as a

string



TABLE 4.17  (lass RemoteObject and All of Its Methods Described

Ny

. T

A full-featured debugger can be built in Java that deals with local and remote
Java applications. A screen-shot for such an early Java debugger is shown in
Figure 4.2.
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TABLE 4.18 (lass RemoteArray and All of Its Methods Described

PUBLIC CLASS EXTENDS REMOTEOBJECT
String Returns the element type as a string.

arrayTypeName (int)
Btring description ()

RemoteValue
getElement (int)

int getElementType ()
RemotevValue[]
getElements ()

RemoteValue(]
getBlements (int, int)

int getSize ()
string toString ()
String typeName ()

Retums a description of the array.

Retums the array element whose index
in the array is specified as an argument.

Retums the element type as a “TC_" con-
stant, such as “TC_CHAR".

Retumns a copy of the array as
instances of RemoteValue.

Retumns a copy of a portion of the array
specified by the arguments representing the
range of elements as instances of
RemoteValue.

Returns the number of elements in the array.
Retums a string version of the array.

Returns this RemoteValue's type (“array”).

Table 4.19 (lass RemoteObject and All of Its Methods Described

PUBLIC CLASS REMOTECLASS EXTENDS REMOTEOBJECT

void catchExceptions ()

8tring
clearBreakpoing (int)

String
clearBreakpoingLine (int)

String

Method descriptiens

Enters the debugger when an instance of
this class is thrown.

Clears a breakpoint at a specific
address in a class. Return an error string if
any.

Clears a breakpoint at a specified line.
Returns an error string if any.

Clears a breakpoint at the start of a



clearBreakpoingMethod
(RemoteField)

String description ()

RemoteObject
getClassLoader ()

_ RemoteField
 getField (int)

‘RemoteField
getField (String)

RemoteField
getFieldvalue (int)

RemoteField
getFieldvalue (String)

. RemoteField (]
getrields ()

RemoteField
getInstanceField (int)

RemoteField(]
getInstanceFileds ()

RemoteClass[]
getInterfaces ()
RemoteField
get¥ethod (String)
String(]
getMethodNames ()
RemoteField[]
getMethods ()
String getName ()

Operating System Debugger Infrastructure - B9

specified method. Return error string if
any.

Returns a String description of the class.
Returns the classioader for this class.

ClasslLoader is an abstract Class that can be

used to define a policy for loading Java
classes into the runtime environment. By
default, the runtime system loads classes

that originate as files by reading them from
the directory defined by the CLASSPATH
environment variable.

Returns the static field, specified by
index.

Returns the static field, specified by
name,

Returns the value of a static field, speci-
fied by its index.

Returns the value of a static field, speci-
fied by name.

Returns all the static fields for this class.

Returns the instance field, specified by
its index.

Returns all the instance fields for this
class.

Returns the interfaces for this class.

Returns the RemoteField for the
method specified by name.

Returns the names of all methods sup-
ported by this class.

Returns the class’s methods as a vector
of RemoteFields.

Retums the name of the class.
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Table 4.19  (Continued)

TABLE 4.20  (lass RemoteString and Al of Its Methods Described
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TABLE 4.21 (loss Remotefield and All of Its Methods Described

RemoteField methods Method description

String getModifiers [) Retumns a string with the field's modifiers,
such as "public,” "static,” “final,” etc.

String getName () Returns the name of the field.

String getType () Retums a type string describing the field.

RemoteValue Returns the value of the field as identi-

getValue (int) fied by the index given as an argument.

boolean inStatic ()

String toString ()

Returns whether the field is static (a class
variable or method).

Returns a String that represents the value of
this Object.

TABLE 4.22  (loss StackFrame and All of Its Methods Described

 PUBLIC CLASS STACKFRAME EXTENDS OBJECT

: String toString ()

Method descriptions
Returns a String representation of the value of this
Object.
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TABLE 4.23 (lass RemoteStackFrame and All of Its Methods Described

Remole StackFrame methods
int getLineNumber ()

RemoteStackVariable
getLocalvVariable
{String)

RemoteStackvariables(]
getLocalVariables ()

RemoteClass
. getRemoteClass ()

~ InputStream
getSourceFile ()

String
getSourceFfileName ()

Method description
Returns the source file line number.

Returns a specific (named) stack vari-
able. Facilities are provided in
RemoteStackVariable to indicate if the:
variable is out of scope currently.

Returns an array of all valid local vari-
ables and method arguments for this
stack frame.

Gets the class this stack frame
references.

Gets the source file referenced by this
stackframe,

Gets the name of the source file refer-
enced by this stackframe

TABLE 4.24 (loss RemoteStackVarioble and All of Its Methods Described

PUBLIC CLASS REMOTESTACKVARIABLE EXTENDS LOCALVARIABLE

String getName ()

RemcteValue getValue ()

boolean inScope ()

Method description

Retumns the name of a stack variable or
argurnent.

Retums the value of a stack variable or
argument.

Returns whether variable is in scope.

TABLE 4.25 (loss RemoteThread and All of Its Methods Described

PUBLIC CLASS REMOTETHREAD EXTENDS REMOTEOBJECT

RemoteThread methods

void cont ()

Methods description

Resumes this thread from a breakpoint,
unless it previously suspended.




void down (int)

wmrmtm ()

int
getCurrentFrameIndex ()

gtring getName ()
RemoteStackvVariable

~ getStackvVariable (String)
RemoteStackVariable[]
getStackVariables ()
Btring getStatus ()
boolean isSuspended ()
void
regetCurrentFrameIndex ()
void resume ()

yoid
‘petCurrentFrameIndex (int)

void step (boolean)

 wvold stop ()
void suspend ()

vold up {int)
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Changes the current stack frame to be
one or more frames lower (as in, toward
the current program courter).

Dumps the stack in the form of a vector
of RemoteStackFrame classes.

Gets the current stack frame.

Retumns the current stack frame index.

Relurns the name of the thread.

Returns a stack variable from the cur-
rent stack frame as named by the String
argument.

Retums the arguments and local vari-
able from the current stack frame.

Retums the thread status description.

Returns whether this thread is
suspended.

Resets the current stack frame index.

Resumes execution of this thread (that
is, “un-suspends” it).

Sets the current stack frame index.

Continues execution of this thread to the
next function (if arg is true) or line,

Stops the remote thread.

Suspends execution of this thread—it
will stay suspended until resume is called
onit.

Changes the current stack frame to be
one or more frames higher (as in, away
from the current pregram counter).
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TABLE 4.26 (lass RemoteThreadGroup and All of Its Methods Described

String () Returns the thread group's name.

RemoteThread[] (boolean) Lists a thread group's threads as a vector
of RemoteThreads.

void () Stops the remote thread group.

Choice choice;
bitherTest applet;

static LayoutManager dclayout = new Plowlayout (PlowlLayout

public DitherControls (DitherTest mpp, int =, int e, int ©

boolean vectical) |

applet = app;

setLeyout (deLayout) ;

add (new Label (vertical 7 "Vertaioal™ : "Horirontnl®™));

add(choice = new Choice()):

choice,addItem( " Hoop™) ;

choice.addItem (" Fed”) ;

choice,.addItem | "Green”);

choice .addTtem("Elue") ;

choice,addItem|{"Llpha™);

Figure 4.2
Java debugger. The main context window in a Java debugger. Here a single window, which
is thread-specific, shows the annotated source code, the stack trace, and the current variables.




Controlling
Execution

The heart of a debugger is its process control or execution control “kernel.”
This is the portion of the debugger responsible for controlling the process or
processes being debugged. To do this the debugger must gain control of the
debuggee, be able to determine its state, set breakpoints, run the process, and
terminate it. This section examines in depth the key algorithms associated
with these debugger activities.

Initiating Program Execution

The first job of a debugger with respect to controlling execution is the cre-
ation of the debuggee from scratch or via attachment to an existing process.
Next up is to get that debuggee ready to run under the debugger’s control. In
this section we will explore how these steps are taken.

Creating the Debuggee

The first thing the debugger must do, once the user has specified what exe-
cutable is to be debugged, is to initiate the calls to the OS that create the
debuggee. The OS needs either to create the debuggee process for the debug-
ger explicitly through a special call or to attach the debugger to an existing
process. In either case, the OS must be able to control the debuggee com-
pletely as directed by the debugger. Typically, the new process is loaded such
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that it has all but executed its first instruction but is in every other way ready |
for execution. The debugger gets notifications from the OS whenever a mate-
rial event occurs with the debuggee; all notifications result in the debuggee
being stopped for examination. The debugger gets its first notification about

a new debuggee once all the setup is done and the debuggee is ready for
debugger control,

For execution control purposes, putting the debuggee under control of the
debugger in this fashion has one important goal: to change the behavior of
exceptions or signals generated in or by this debuggee process. Instead of the
normal handling of exceptions—where the application gets a chance to handle
an exception and then the OS does what it needs to with it—the debugger is
notified first. Exceptions cover a wide variety of events including “illegal instruc-
tion,” “user interrupt,” “floating point overflow,” and so on. Most importantly,
special events like “breakpoint hit” and “single-step completed” are exceptions
that notify the debugger that something of interest has happened.

This “event-driven” concept of debugging has been extended to include a
variety of non-exception events, but ones critical to effective debugging. A
list of typical events is shown in Table 5.1.

Attaching to Running Program

Attaching to a running program is a very important facility for multiprocess,
post-mortem, or just-in-time debugging (initiating a debugging session only
after a fault has occurred but before the OS has flushed the just-faulted
process). For some operating systems, it is also the way to control a process
spawned by the current debuggee.!

For multiprocess debugging, the debugger, needs to be able to debug any and
all processes that interact with the debuggee. To fully understand what is
going wrong, it may be necessary to have all interacting processes under the
control of the same debugger.

Post-mortem debugging is the process of examining the memory image of a
process that has faulted and was terminated. Its state at the time it faulted was
saved to disk for examination. Just-in-time debugging is related, but instead of

"Win32 does not require an artach in this case since it provides explicit events as child processes
spawn and die.
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TABLE 5.1 A List of Generic Debugger Events with the Causes of These Events

process created This event occurs whenever a debuggee is initially cre-
ated explicitly by the debugger or implicitly when an
aftach to a running process occurs. On some systems
this event also occurs if the debuggee spawns a new
process. The debugger will prebably have some internal
process data structures that must be created at this time.

thread created Whenever the debuggee causes a new thread to begin
execution this event occurs. If an aftach to a running
process occurs, one of these events arises for each
active thread in the new process. A debugger that han-
dles multiple threads must have an intemal structure that
tracks the state of each thread. This structure must be
created as a result of this event.

process exited This event occurs when the debuggee process termi-
nates. No other events from the debuggee can occur after
this. This event is a chance for the debugger to clean up
its internal record keeping and to release any resources it
maintained on behalf of the debuggee process.

thread exited As the debuggee terminates threads this event occurs. It
also occurs in conjunction with the process exited event
as an entire process shuts down. On some systems as
spawned processes exit this event is passed on. Again,
this is the opportunity for the debugger to release any
resources and clean up as a thread terminates.

- module loaded Modules, either DLLs or EXEs, are the compiler-gener-

I ated units that, combined, make up a working program.
When the initial process is getting started there is a mod-
ule-loaded event for the initial EXE. Subsequently there Is
a module-loaded event for each DLL asitis loaded. The
main activity within the debugger on module loaded
events is symbol table loading from the new module. New
symbols, breakpoint locations, files, etc. must be added to

\ the already loaded ones coming from the new module.

module unioaded As this event occurs, some module is being unloaded
| from the running process. This may occur during normal
execution or as the entire process itself is shutting down.
In either case, the debugger must deal with the fact that
some symbols are no longer mapped to any existing
module, and some breakpoints also may no longer exit.




88 - CHAPTER 5

TABLE 5.1 (Continued)

output string A special event exists in some OS debug APIs to allow
users to programmatically force debug events to occur. It
takes the form of a special ‘print' that is passed to the
debugger instead of printed out on any output device.
Usually the debugger is just expected to stop and show
the string that was just passed from the debuggee.

exception This is probably the most important event the debugger
ever receives from the debuggee. This event is used to
capture breakpoints, single-step completion, watch point
firings, and real faults in the running program. In all of
these cases, the debugger determines if the stop should
be made visible to the user, and if so, the state of the
debuggee at the time of the stop must be captured for
presentation to the user. The type of exception will deter-
mine further how the debugger behaves.

an image written to disk, when the OS issues a fatal exception but before the
process is flushed from memory, the OS allows a debugger to artach to the
process to examine its memory image. At this point, the user cannot continue
execution of the process but its registers, current stack trace, location of fault,
and its variables can all be examined by the user. Frequently this is enough for
the user to be able to tell what happened and go fix the problem.

When the debugger attaches to an existing process, it is able to “catch up”
with the state of the debuggee via a series of notifications. There will be a
notification at attach time for each module loaded and each thread created
that is currently active in the debuggee process.

Setting a Breakpoint

Breakpoints are special instructions inserted into the executable text image
by the debugger that, when executed by the debuggee, cause it to halt execu-
tion immediately and to “trap” to the operating system. These special
instructions are defined by the CPU architecture. Sometimes they are just a
special value of a general “interrupt” instruction (Intel 1990). Or it may be a
special dedicated breakpoint instruction (Kane 1989). In either case, it 1s an
instruction designed to trap immediately to a special OS breakpoint excep-
tion handler.



A lot of debugger issues revolve around breakpoints that may not be immedi-
ately obvious. Breakpoints are the basic mechanism used by a debugger to
control the debuggee process. Breakpoints can be used to aid single-step, pro-
vide special user convenience features such as “run-to-here,” allow function
evaluation, provide selective or conditional program control that stops the
debuggee only under user-defined conditions, and a whole host of other possi-
ble features. Table 5.2 is a quick synopsis of some of the uses for breakpoints.

Causing the Debuggee to Run

Once the programmer has set the necessary breakpoints and wishes to exe-
cute the program to the first breakpoint, the debugger will begin execution
of the debuggee. Execution may be either “run full speed until some debug
event occurs” or it may be “execute a single machine instruction” and then
generate a debug event, The latter is—as I have discussed—a convenience
to the debugger technically not needed and not even available on some
architectures. In either case, the operating system has been directed to con-
text switch from the debugger to the debuggee. What actually occurs is as
follows: The debugger is the active process and it makes a call into the oper-
ating system to initiate the debuggee; control switches over to the operating
system to complete this system call; the operating system gets the debuggee
process ready to run and context switches to it; the debuggee now is the
active process and runs according to the scheduling algorithms in the operat-
ing system. The debugger will still get its time-slice and become the active
process so that it can process user events, but a critical thread (or process)
within the debugger is idle until the debuggee stops. Usually the debuggee,
once executing, is able to achieve full processor speed with very little over-
head due to debugging. But once a debugging event occurs, the debuggee is
stopped, the operating system saves its stopped context (the values of all
hardware registers), and control transfers to the waiting debugger.” At this
point the debugger must discover why the debuggee stopped, where it
stopped, and what is its context. The why is usually indicated by a special
flag or value set in a return code either from the blocking debug execution
function or in the blocking wait function. The where is usually available in

*Actually, whenever any process is stopped or preempted by the operating system, its context must be
complerely saved so that it can be started up at a later time; for a debugger, the operating system just
gives casy access to that saved context.
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TABLE 5.2 Generic Breakpoints and How They Are Used by a Debugger

BREAKPOINT TYPE
user breakpoint

finish function

function evaluation

WHAT IT DOES

This is the most frequently used kind of breakpoint.
The user specifies a place in the code where he or
she wishes execution to stop, usually by pointing in
the source or edit view to the line where the break-
point should be set. Certain conditions can be

attached to this breakpoint that control when it actu-

ally activates and really stops the process.
Continuous instruction-level single-step is unaccept-
ably slow just because of the sheer number of
instructions that would need to be stepped in many
cases. Some processors do not even support single-
step mode. Breakpoints are used to advance the
execution short amounts to get the effect of state-
ment single-step. Even instruction step can be
accomplished using only breakpoints by decoding
the current instruction and placing a breakpoint on
This is a form of user breakpoint, but one that is fre-
quently referred to as a “once only” breakpoint. That
is, once the debuggee stops for any reason all these
“once only” breakpoints are permanently removed.

Frequently, this feature is offered to users as a con-
venient way to complete whatever function the cur-
rent execution point is in. The way this is
implemented usually requires finding the return
address of the current function and placing a tempo-
rary intemal breakpoint there.

When a function within the debuggee must be exe-
cuted in isolation from the normal path of execution
(as for breakpoint conditional expression evalua-
tion), the debugger must set up a very controlied
environment. The stack must be manipulated prior
to calling the function, and a breakpoint must catch
execution as the function exits so that only the
desired function is executed.

Message points, also known as windows message
breakpoints, are normal breakpoints placed in a spe-
cial place in the code that will capture Window mes-
sage events. In addition, these breakpoints know
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something about window messages so that the
arguments can be evaluated for adherence to some
required pattern for stopping.

* profiling Even profiling may in some cases use breakpoints if
the profiling strategy requires examining each func-
tion and recording some information as each one is
entered and/or exited. Profiling integrated into 2
debugger might use this sort of strategy.

the saved context that contains the values of all the processor registers at the
time debuggee execution halted, including the program or instruction
counter, which points to where in memory the debuggee was executing when
it stopped. And the context just requires reading an OS-maintained buffer of
all the registers saved when the debuggee halted. This typically includes all
hardware, general-purpose, floating-point, and status registers. A critical
piece of context information needed by the debugger and its user is the
debuggee program stack that shows the function call stack that traces the
history of execution up to the moment it stopped. One or more hardware
registers gives the debugger enough information to reconstruct the stack,
which itself resides in debuggee data memory.

Debhuggee-generated Events during Execution

From a design standpoint, the most challenging aspect of a debugger’s execu-
tion control is the event-driven nature of debug notifications. A characteristic
of debugging control APIs is that because they are notification based, the
debugger sets the debuggee running and must wait for a notification some
time later. Whenever the debuggee is executing, the debugger is waiting for
one of these notifications. As soon as the debuggee stops for any reason, a
notification is passed by the operating system to the debugger to break it out
of its wait state and alert it to take some sort of action. The debuggee will not
continue execution until the debugger directs it to do so. The types of action
taken for each type of notification are discussed in the following sections.

Breakpoint, Singie-step Evenis
When the notification is breakpoint, the debugger needs to check its stored
list of breakpoints to find out which breakpoint has been hit. It does this by
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getting the saved state for the debuggee and querying the stop location (that

is, the program counter). The list of breakpoints, typically not very large, is
scanned to look for this address. More than one may match. Some of the |
breakpoints in this list may be internal breakpoints for use by the debugger

as helpers in its execution algorithms. For example, statement stepping at the
source code level uses internal (not visible to the user) breakpoints so that
statement step operates faster (see Chapter 6 for more details). In some cases
the debugger may find no breakpoint in its list that matches this stop

address. This is possible because the breakpoint instruction may have been
inserted into the running program by an agent other than the debugger. The
user, for one, may have explicitly coded the special breakpoint instruction

into the debuggee. In this case the debugger should act still as if it hit an
explicitly set breakpoint but it will have to resort to a CPU view to show
where execution stopped instead of a source view.

Thread Creation/Deietion Evenis

When the debuggee process creates or deletes a thread of execution the user
interface must be notified so that user-visible changes can occur. Additionally,
thread-specific data structures maintained by the debugger will need to be
affected by thread creation and deletion. It is critical that the debugger is
aware of each thread and maintains context information abour each one
because one of the more important functions the debugger provides is its
ability to control these separate threads and to detect problems in multi-
threaded applications. Typically, the low-level wait in the debugger kernel
will return when the thread creation or deletion notification occurs, once the
appropriate data structure cleanup and user interface notification occur, the
kernel just restarts the debuggee with no other changes to debuggee or
debugger state. If the thread getting “deleted” is the main thread of execu-
tion, this is not just a matter of data structure cleanup; the process itself is
about to exit. A lot more work needs to be done here as all data structures
maintained on behalf of the debuggee need to reflect the fact that the process
will soon no longer exist.

Process Creation/Deietion Events
Some debuggers are designed to handle debugging multiple processes. In
this case, notification from the initially started process that it has spawned
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a new process is important for the debugger to be able to track the new
process. For this to work the debugger must be provided with the “attach”
capability. This allows a debugger to request an attachment to an already
running process, after which this new process is controlled in the same
fashion as the process that was initially created by the debugger. Normally,
the attach facility causes several notifications immediately after the attach
succeeds, including process created, thread created (for each active thread),
and module loaded (for each dynamic load library loaded). As processes
exit, the process-deleted notifications come in to the debugger, allowing it
to clean up all internal data structures related to the process just exiting.
And if it is the initially debugged process that is exiting, this is the last noti-
fication the debugger will get about the debuggee, and no further control
over this process is possible.

Data Access (Watchpeint) Events

The watchpoint feature (also known as data access breakpoints) is not one
that has been widely adopted and standardized. However, it is one of the
more important features a debugger can provide because data corruption is
acommon and very difficult type of bug to isolate. Watchpoints are
supported in more recent CPUs; that support is, in some cases, exposed
through the debug APIs in some operating systems. For example, some
versions of UNIX/ptrace () have a “data access breakpoint” interface. In
other operating systems, while not explicitly exposed, there are usually
mechanisms to bypass the operating system and work directly with the
hardware if it supports watchpoints. In this case, the notification may be
very similar to breakpoint. To detect the difference, the debugger must get
the entire state of the stopped debuggee and examine certain hardware sta-
tus registers that will specify the precise cause of the exception. Watchpoint
notification, whether direct or indirect through hardware register examina-
tion, indicates that a location or region in memory was accessed. The pro-
gram counter will point to the offending instruction or one instruction past
the offending instruction. This will probably cause a hard stop of the debug-
ger and get reported to the user as an attempt to modify the variable he or
she wanted to watch. Presumably, the programmer discovered a corrupted
memory location or variable and now wants to determine where and when
this corruption took place.
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Moduie Load/Uniead Events

Module load and unload notifications occur whenever a dynamic load
library (DLL) is loaded or unloaded by the debuggee. This is important
information to a debugger because code the user may want to debug may
exist in these DLLs. This means that symbol table information that conrains
important debugging information may need to be examined and processed
on module loads. Furthermore, the user may have set breakpoints in source
code for which the executable, residing in a DLL, has not yet been loaded. In
this case, at the moment the DLL load notification occurs, the debugger must
resolve these breakpoints—compute the correct location in the text space—
and immediately get them inserted into the newly loaded DLL text. Similarly,
when a DLL is unloaded, the corresponding symbol table information must
be noted by the debugger, and any breakpoints in this DLL must be re-
marked as unresolved in case this DLL gets reloaded at a later time, Once
this symbol table and breakpoint processing is completed, the debugger must
continue execution of the debuggee until the next notification.

Exception Events

True exception events—as opposed to breakpoint, watchpoint, or single-step
events disguised as exceptions—are program faults such as floating point
divide by zero or illegal memory access. These are the kinds of bugs the
debugger must help the user find and eliminate. These exceptions almost
always cause a hard stop that gets reported to the user but frequently indi-
cate such a serious problem that execution cannot proceed in any meaningful
way even if the user so desired. There are several classes of exceptions; some
are so severe that meaningful execution cannot proceed while others do not
prevent continued execution. Some of these may be automatically ignored by
the debugger with execution proceeding immediately, such as software timer
interrupts. But others point to severe programming errors like executing code
outside of the program’s text space (for example, following a bad pointer o
a function and executing this pointer indirectly), or attempting to access a
memory location that is not a legal address (which probably means a pointer
is bad or a memory location has been corrupted), or attempting to extend the

*The term DLL is a Win32 term for what is generically a shared library. The UNIX equivalent term is
shared object (SO). I will use the term DLL throughout but it can be thought of in the more generic

sEnse.
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stack beyond the limir set by the operating system (which probably means
infinite recursion). The various operating systems allow differing degrees of
selectivity on a debug exception. Win32 is one extreme with no degree of
selectivity—the debugger hears about everything. UNIX/proc and even
TOOLHELP allows some control ones which exceptions are passed along to
the debugger. OS/2 has an extremely high degree of selectivity in this regard.

Other Events

Many new operating systems present a special type of exception that allows
users to programmatically control when the debuggee generates an exception
through special system calls the user can insert in the source code of the pro-
gram being debugged. Usually this call accepts a string as an argument that is
then emitted to a special debug string monitoring tool; it also causes an
exception when run under the debugger. Under Windows and Win32 this OS
call is called outputDebugString().

Another type of debug exception provided by some operating systems allows
one to stop the debuggee whenever it is about to execute an operating system
call. This 1s a very useful type of event because frequently at issue is the inter-
face between the user’s program and the operating system. This “system call
exception” notification is available on some UNIX variants and may begin to
appear in PC systems as true protected operating systems begin to take over
the PC platforms.

Continuing Execution

Continuing execution after the debuggee has stopped is fairly straightfor-
ward. All of the debug APIs have a function to continue execution. However,
several options for the debugger do exist. First is the issue of changing the
program counter location. If the stop is at a breakpoint, the PC and break-
point must be dealt with, as I shall describe in detail in the next chaprer. If
the restart is to execute a function to be evaluated in the debuggee context,
the PC must be adjusted first and reset later. I will discuss function evaluation
m detail in Chapter 8.

‘Besides determining if the PC or current breakpoint must be manipulated,
there is the issue of whether to pass into the debuggee any idea of why it was
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stopped. If the stop was caused exclusively by what the debugger did (on
behalf of the user) you probably do not pass this information into the
debuggee as it is about to continue execution. But if the stop was due to an
exception caused within the debuggee’s executing environment, then a real
choice exists as to whether the debuggee should “see” the exception. For
example, a user may decide a divide-by-zero is not critical and more can be
learned by allowing execurion to continue, fooling the debuggee into think-
ing the fault never occurred.

Terminating Execution

Contrary to intuition, terminating a debuggee can be quite tricky and prob-
lematic. This may be simply because the logic in the operating system associ-
ated with process termination in conjunction with the debug APIs can be
fragile. Termination of the debuggee can occur in many ways. The process
itself can exit normally. A fatal exception may occur. Some other process can
cause it to terminate. The debugger can try to force early termination. Forc-
ing termination explicitly occurs under a couple of circumstances. The user
may request “termination” or “reset” of the process being debugged as
offered in some debugger Ul menu. This would occur when the user wants to
start the process again from the start or switch to a different process to
debug. It also is necessary if the same executable is to be rebuilt because if
the debugger has the file open, the linker will not be able to modify it.
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Breakpoints are key to all debugger execution control—almost all execution
control algorithms, at some point, involve breakpoints. These algorithms fre-
quently require a special breakpoint be set, perhaps completely invisible to
the user. This section describes a set of requirements for breakpoint algo-
rithms, data structures for breakpoints, and various scenarios and algorithms
that may be used by debuggers to fulfill the requirements stated.

Requirements for Breakpoint Algorithms
Following is a list of requirements for a debugger’s basic breakpoint mech-
anisms. Breakpoints must adequately support execution control function-
ality and provide the rich set of functionality nedeed for a modern
debugger:

* User may insert source-level or instruction level breakpoints.
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® Some high-level breakpoints may map onto many text addresses such
as breakpoints in C++ templates.

® Fach usercreated breakpoint must be represented and maintained
uniquely.

* There can be many user-created breakpoints at the same source code
or text address location.

» Some user-created breakpoints will be temporary (“once only”) and
must be removed at the next stop.

* Breakpoints may have associated conditions that must be evaluated by
the debugger to determine if the stop really should occur.

* Breakpoints may have side effects that must be acted on by the debug-
ger when activated but that may or may not actually be represented to
the user as a debuggee stop.

* Breakpoints set in not-yet-loaded modules must be resolved when
these modules get loaded.

e Internal breakpoints created by the debugger must be maintained so
that they are invisible to the user.

* On multiprocessor architectures, high-level breakpoints may require
interprocessor synchronization.

Breakpoint Data Structures

Typically there need to be at least two “levels” of breakpoint representation:
the logical and the physical. The logical breakpoints—usually corresponding
to those set by the user—are those associated with a point in the source code.
The physical breakpoints—those that relate directly to executable machine
instructions—are the points in the text space where actual hardware break-
point instructions get written. It is the physical level that must store the origi-
nal instruction (or part thereof) that must be replaced if the breakpoint is to
be removed. The logical level is responsible for representing a breakpoint as
fully resolved (that is, it has a mapping to a physical address) or as not yet
resolved as when a breakpoint is set in a module that will not be loaded
until some time later during debuggee execution. Special kinds of break-
points called “conditional breakpoints” may or may not actually stop when
the breakpoint “fires” depending on the value of an associated condition.



These conditions associated with a breakpoint are mamntained at the logical
level. This is true even for logical breakpoints set in disassembled instructions
presented to the user in a machine or CPU view. Conditions are Boolean
expressions that are evaluated by the debugger upon breakpoint activation.

If the Boolean expression evaluates to false, the breakpoint activation is
ignored and execution automatically resumes without the user ever being
notified of the stop. If the Boolean expression evaluates to true, the break-
point activates and the user is notified the process has stopped. Such condi-
tions as pass counts, window message received, and expressions that must
evaluate to true for valid stop are also maintained at the logical level.

A many-to-one relationship may exist between logical and physical break-
points, as shown in Figure 6.1. We do not restrict the user from setting two
distinct breakpoints (perhaps with different conditions) at a point in the
source code that maps to the same physical location. In fact, as we shall
explore later, C++ templates cause the logical to physical mapping to be
- many-to-many. Because we expect the number of breakpoints to remain rela-
~tively small, the most effective approach usually employed is to have two
separate structures for logical and physical breakpoints where the node in
each list maintains an address that is the link between the two. The down-
- ward mapping from logical to physical occurs when setting, deleting, or
modifying a breakpoint. This downward mapping results in a physical
address to be used as a lookup or search token in the physical breakpoint
list. The upward mapping occurs when a breakpoint triggers due to the
debuggee executing a breakpoint instruction. This upward mapping results in
a physical address from the OS that maps uniquely to one node in the physi-
cal breakpoint list. This same address is then used to search the logical break-
point list to find all logical breakpoints that mapped into the given physical
‘address. At this point, any associated conditions can be evaluated to deter-
‘mine if this stop of the debuggee should be reported to the user because some
usercreated breakpoint met all its conditions for stopping the debuggee.
' Because of the inherent many-to-one mapping between logical and physical,
itis necessary for the physical level to know when all logical breakpoints
referring to a single physical address are deleted or disabled. This is easily
‘accomplished with reference counts on the nodes in the physical breakpoint
ist. A node is actually deleted, removed from the list, and its original instruc-
tion restored only when its reference count drops to zero.
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Figure 6.1

Breakpoint two-way mappings. This figure shows that in some cases, several logical
breakpoints map onto a single physical breakpoint location. The mappings are used in bath
directions. Logical-to-physical on set, modify or deletion of breakpoints. Physical-to-logicol
whenever a hardware breakpoint event occurs.

Breakpoint Setting and Activation

The basic breakpoint setting algorithm, based on the data structures
described above, is shown in Algorithm 6.1. The user specifies that a source
line in the editor or source view should have a breakpoint set on it. This
algorithm is then run to map that to a physical breakpoint location in the
code space.

Algorithm 6.1 Breckpoint setting (source level)

Input File name and line number or file offset in source file.

Output  Physical location of breakpoint or error indication.

Method Map from file name plus line number to physical address using
symbol table, logical breakpoint, and physical breakpoint.

i. Request symbol table agent map given file name and line
number information into physical address (notify if given
module not yet loaded);
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ii. Create logical breakpoint object with this information con-
tained;

iii. Create (or increment reference count if already exists)
physical breakpoint object;

iv. Physical breakpoint agent must now insert breakpoint
instruction and save original instruction at that location;

The physical breakpoint object is very simple and looks like Figure 6.2.
These structures are probably kept in a linked list because there are never so
many of them that the linked list overhead becomes an issue.

There are two sides to this coin: setting the breakpoint and then hitting it
once the process starts executing. Algorithm 6.2 shows the steps necessary
once a breakpoint fires.

Breakpoint Vaildation

When a breakpoint is set by a user there may not be an address at which to
physically place the breakpoint instruction yet. This can occur because there
may not yet be a valid mapping from the source code the user can see and
manipulate and the executable code, which executes on the processor. The
breakpoint may be in code in a dynamically loaded library (DLL) that has
not yet been loaded. Or, perhaps no process is loaded at all because the user
is modifying the source code and the compiler has not yet translated the
source code into executable text. In either case, the breakpoint set by the
user, a logical breakpoint, will exist without any associated physical break-
point until some later time—it remains invalidated. In fact, it may never be a
valid breakpoint because it may have been set on a non-executable state-
ment. Unless the editor parses the text being edited, it cannot know, until a
statement table is built by the compiler, which places in the source text repre-
sent breakpointable locations. Once the process finally gets loaded or the
appropriate DLL is loaded, a validation algorithm must complete the map-
ping of invalidated logical breakpoint to physical.

Validation of breakpoints must get triggered at the earliest possible moment.
This is easy in the case of invalidated breakpoints in a process not yet loaded
as a debuggee. When the process is first created no instructions are executed
before the debugger has a chance to process all the invalidated breakpoints
and get physical breakpoints inserted. It is slightly more problematic for
DLLs loaded at run-time. More recent operating systems have provided a
debugging event or notification when a module load or unload occurs. This
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put the CPU-specific |
breakpoint instruction

Figure 6.2

Simple physical breakpoint structure. This structure holds the physical address in
instruction memory where the breakpoint instruction will be placed. The original instruction
is saved so that when the breakpoint must be removed the correct original instruction can be
replaced. There is also o reference count due to the fact that multiple logical breakpoints
may map to the same physical location. This allows the debugger to easily maintain the
breakpoint and this corresponding data structure until the ref_count drops to zero.

notification causes the debuggee to stop execution whenever a DLL is loaded
but before any instruction in that DLL actually executes. This gives the
debugger a chance to validate these DLL breakpoints in time to catch any
breakpoints that might get hit as the DLL executes. Provision needs to be
made within the debugger’s execution control algorithm to process this kind
of notification and validate all breakpoints in the source code associated with
a DLL. The same procedure will have to run on initial startup for statically
loaded libraries and on attach, where all previously loaded libraries will gen-
erate a series of module load events.

Older operating systems (like Windows 3.1 or before) required extensive
trickery to accomplish this—although they support DLLs there was no
debugger notification of these modules being loaded. Catching the call to the
run-time routine (LoadLibrary()) that causes these loads was necessary.
Debuggers would have to find this routine in the operating system’s list of
external entry points at debuggee startup time, set 2 special breakpoint in this
routine that would trigger whenever a load module was requested, and han-
dle this breakpoint being hit as if it were 2 module load notification. Algo-



Algorithm 6.2  Breakpoint activation

Input  OS notification that debuggee stopped at certain address due to
breakpoint.

Output  Stop or continue debuggee according to below method.

Methed Map from physical location back to source file and line number
using physical and logical breakpoint structures.

L

i,

iii.

iv.

V.
Vi,

Scan logical list of breakpoints for this address (there may
be more than one);

Apply any conditions associated with this breakpoint (this
may even involve more execution if the condition involves
expression evaluation);

If a condition does not evaluate to true move on to the
next item in the list, ignoring this one any further;

When no more breakpoints at this address are found,
determine if any had either no conditions or had conditions
that evaluated to true;

If so we report stop;

Else we continue the debuggee as if no stop occurred at all.

rithm 6.3, to perform breakpoint validation, should be used whenever a
debuggee process is created and at each subsequent module load event during
debugging. The unverified list may indeed not be empty at the end of this
process. This is because a file containing

1: #ifdef IN_EXE

2: 1=,

3: #telse /_IN_DLL

4:1=1;
5: #endif

B

is compiled into both an .EXE and DLL, a breakpoint on line 4 will show up
as invalid in the EXE but can later be verified when the DLL is loaded.

Temporary Breakpoints

Breakpoints can have numerous attributes associated with them. They can be

valid or invalid, as we have seen. They can be temporary or permanent. Tem-
‘ porary breakpoints—sometimes thought of as firing “once only”—are used

to implement features such as “run-to-main” or “run-to-here.” Run-to-main
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Algorithm 6.3  Breakpoint validotion

Input OS notification that a module load has occurred.

Output  Processing of breakpoint list validating as many as possible.

Method As processes are created and when modules are loaded, find all
unverified breakpoints and remap them from logical to physical.

i. Get module name being loaded either executable or DLL;
ii. Determine list of source files used to build this module
from the compiler-generated symbol table modules section;
iit. Find all not-yet-validated breakpoints that match a file
name from this list;
iv. For any matches, use the line number in the breakpoint
object to lookup in statement tables a breakpoint address;
v. Report failure on those breakpoints on line numbers not in

the list;

vi. Set physical breakpoints in executable code and mark
breakpoint as validated;

vii. Continue with step iv above until all list entries have been
examined.

is used at debuggee startup to quickly execute past all startup code and to
stop on a program’s main routine—logically considered by the programmer
to be where the program starts.! Run-to-here allows the user to point to
source code where he or she desires the program counter to be and quickly
have the debuggee execute up to that point. These and other examples of
temporary breakpoints are a convenient way to move execution to a certain
point but do not require explicit setting and unsetting of breakpoints by the
user. The debugger handles this invisibly. A temporary breakpoint is set, the
debuggee is started running, and once it stops the temporary breakpoint
removed. Typically, the temporary nature of the breakpoint is one of its
attributes. In other respects it is just like all other breakpoints. Thus, the
algorithm for cleanup of temporary breakpoints just requires a scan of all
breakpoints whenever the debuggee stops, wherein the normal algorithm for
breakpoints is applied to each one.

Internal Breakpoints
Like temporary breakpoints, internal breakpoints can be just an attribute
associated with a breakpoint object. Internal breakpoints are invisible to the

'Erroneously, however, because C++ static constructors are executed before main and can be a prob-
lemarical and error-prone area. Even in C, if # pragma startup is used the exact same problem occurs.
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user but are key to the debugger’s correct handling of many of its algorithms.
These are breakpoints set by the debugger itself for its own purposes. [ will
discus several situations where internal breakpoints are used.

The basic source-level single-step algorithm uses a combination of

internal breakpoints and full-speed run to key internal breakpoints placed
for optimal stepping speed, as compared to machine-stepping instruction-
by-instruction through hundreds or thousands of instructions. This is
especially critical on source statement step over. Step over is a statement
step in the context of the current function scope running any descendent
functions full speed to completion. For statement step over, we typically
use an internal breakpoint on a function’s return address to allow that
function and all its descendents to run at full speed. Step into is a state-
ment step that goes into any descendent functions found during the
current operation. Even step into uses internal breakpoints to quickly

run over stretches of code as long as possible up to some branch instruc-
tion, again for performance reasons. Both of these algorithms will be
described in much more detail later in this chapter.

Some processors, especially the newer generations of very high-performance
RISC processors, do not provide any hardware single-step support because it
can complicate a processor that is focused on simplicity and performance. In
this case, the debugger has no choice but to set internal breakpoints and run to
the next breakpoint to simulate the single-step functionality. To do this cor-
rectly, the debugger must decode the current, about-to-be-executed instruction.
If the next instruction is non-branching, the debugger may set the breakpoint
just past that instruction and run. If the debugger detects the next instruction as
a branch instruction it must decode the target of the branch and set a break-
point there to correctly “single-step” over the branch instruction, Or the
debugger could trace to both possible targets of the branch instruction and set
breakpoints at both addresses to avoid the prediction of the branch target.

During expression evaluation, when the debugger must use the debuggee

to evaluate a function in an expression entered by the user, internal break-
points are used to carefully control execution so that just the desired function
1s executed. An internal breakpoint must be placed at the return address of the
function being called so that once evaluation completes, the debuggee stops to
allow complete cleanup so that normal debuggee execution can proceed later.
More details on the expression evaluation algorithm appear in Chapter 8.
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If a very different model of stepping is required, internal breakpoints may be
employed to accomplish this different approach. For example, where a pro-
gram consists entirely of a collection of disjoint user-written, event-driven
small functions, stepping off the end of one of these functions may mean the
debugger must run the program to the beginning of the next user-written
function. This would require a special internal breakpoint to catch the run
from the end of one function to the beginning of the next function.

One additional consideration about internal breakpoints is critical in debug-
ger design. This is the question of when (if ever) these breakpoints are visible
to the user. In a disassembly view, where machine instructions are disassem-
bled into their mnemonic equivalents, we may want to ignore the existence
of internal breakpoints and show the underlying instruction instead. But a
hex memory dump may want to show the exact contents of memory even if
this includes the debugger-inserted internal breakpoints.

Side Effects

Breakpoints can be used for much more than just a way to stop the debuggee
program and give control to the user. Side effects on breakpoints allow a lot
of interesting debugging approaches. It is perhaps best to think of break-
points as probe points where test data can be extracted as the program runs
and does not necessarily stop. We can program the debugger to do anything
we deem useful when a breakpoint activates by associating actions to be
performed when a breakpoint evaluates its condition (if any) to be true.

Logging is a simple action that can be performed at a breakpoint. Frequently
all that is desired is a record of the activation of a breakpoint in some sort of
historical readout. All the debugger is directed to do is to emit some charac-
teristic information about the breakpoint that can be collected for the user to
review. The debugger may or may not be directed to stop at this particular
breakpoint. This is very similar to a debugging technique familiar to all pro-
grammers: inserting print statements directly in the source code that record
some sort of history of execution when the program runs. However, the
breakpoint history record approach via a debugger has the advantage of not
requiring the program to be recompiled.

Pass counts are another frequently used side effect. Pass counts are simple
expressions to be evaluated by the debugger upon breakpoint activation. The
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debugger must record the number of times this particular breakpoint has
activated. This information is compared against a threshold—the pass count
—specified by the debugger user. This is a common way to control a certain
number of passes through a programmed loop before execution of the
debuggee stops. This is for bugs that follow the pattern “it happens after N
times through the loop.”

A more general form of expression evaluation than pass counts is possible
and common as well. Everything from specialized expression languages using
debugger-created variables, to the full expression syntax of the debuggee’s
programming language using debuggee-based variables, is possible. This can
be an extremely complex and involved portion of the debugger, and it is cov-
ered in detail in Chapter 8. Here it suffices to say that as with other break-
point side effects, on breakpoint activation the expression may be evaluated.
If this is a conditional breakpoint, then the expression is evaluated for its
Boolean value. If true, the breakpoint will cause a stop; otherwise, execution
will continue. Or, the expression may be tied to the logging feature and the
value of the expression recorded in the viewable log. These uses of expres-
sion evaluation are a way to have the debugger “patch™ the debuggee pro-
gram without modifying the program or even compiling it at all. In the first
case, an expression evaluated at breakpoint activation may itself have side
effects that “fix™ some problem or deficiency in the program being
debugged. For example, the expression may set a variable to zero that was
previously uninitialized in the program that seems to fix a problem. This
“fix” can now be tested and verified before modifying the program itself.
The logging expression case is like having added a print statement to the pro-
gram and recompiled it except not as fast or in as flexible a manner as hav-
ing the debugger do it.

Other side effects are possible as well. For instance, it is useful in message-
based GUT program debugging to carefully track the GUI messages received at
a specific function. Specialized breakpoint side effects can be created that

track the GUI messages being processed when the breakpoint activates. Then
either evaluating this in a conditional sense to determine if a stop should occur
or simply logging the receipt of that message and proceeding is possible.

Finally, arbitrary “actions™ may be associated with a breakpoint as a further
side effect. These actions can consist of any of the capabilities of the debug-
ger that can be expressed in some type of macro language as a single or
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linked set of functions. For example, setting another breakpoint may be the
desired action when a special breakpoint activates. The trend is toward more
and more configurable tools that can be driven from a macro or embedded
programming language. Once a debugger can be driven in this fashion any of
its capabilities can then be associated as an action.

C++ Tempiates and One-to-Many Probiems

Breakpoints set in source code that is then replicated by the compiler pose
special problems. This scenario creates a one-to-many mapping from source
code to executable. Breakpoints in inlined code, some breakpoints on func-
tion returns (depending on the compiler), and some breakpoints on for-loops
(again, depending on the compiler) all share this characteristic. However, the
problem is extreme in C++ templates, and the debugger design must handle
this extreme case smoothly as C++ templates are becoming very prevalent.

As the breakpoint setting algorithm looks up a file name / line number pair it
may find that many executable modules have this mapping and that many
physical addresses correspond for locating the physical breakpoint instruc-
tion. At this point the debugger may opt to give the user a chance to filter
this down to select just the ones intended to receive the breakpoint. This may
work well for C++ templates because each of the C++ remplates represents
an instantiation for a distinct type and the user may be thinking of only one
of these types as he or she sets the breakpoint.

Code Patching by the Debugger

Breakpoints are also the basis for more extreme code modifications
attempted by some debuggers. Instead of inserting 2 special breakpoint
instruction at a given location and saving the original instruction away in
debugger memory, any instruction could be inserted into the executable code
stream by the debugger. Specifically, a branch or jump instruction could be
inserted. What this means is that very general code patching is possible. Sup-
pose, for example, a special monitor routine needs to be called upon entry to
every function. The debugger could place this monitor routine in code mem-
ory and then insert special stack manipulation and jump instructions to cause
in-line redirection to this monitor routine. This allows us to make these sig-
nificant changes to the debuggee program without a recompile. There are



lots of uses for code patching in debuggers and other tools related to debug-
gers such as profilers.

Using standard debugging techniques the user may have a theory about what
will fix the bug, but rebuilding the entire program may take so long that some
faster way to verify if the proposed fix works is frequently required. One way
to offer this capability is to allow users to modify the debuggee program with
new and/or different code without re-compilation. The most common way to
do this is through the function evaluation capability described in Chapter 8.
Used in conjunction with a breakpoint that allows an associated expression
evaluation, this kind of code patching support is straightforward. As long as
breakpoints have an option that allows the user to specify that execution does
not actually stop but some expression will get evaluated instead, and as long
as general expression evaluation includes debuggee function invocation, the
desired code patching capability is provided as desired. Further refinement
that provides one more level of support for incremental code modification is
to allow these function invocations to support breakpoints. This extra level of
generality allows a rich set of features to be offered to the debugger user,
which may lead to powerful debugging support for difficult debugging prob-
lems even in large, complex programs.

Single-step

Single-step is important because users need to be able to “watch™ execution
proceed. Frequently the failure mechanism, to be understood, must be “eased
into.” It is also important to understand the side effects occurring close to the
failure point, which stepping allows. To fully support breakpoints and single-
step in its various forms, the debugger needs to have a very sophisticated exe-
‘ cution control mechanism. The main reason for this is the asynchronous
nature of debug event notifications that occur whenever the debuggee stops.
Itis not correct to start a single-step assuming the next stop must be the com-
pletion of the just initiated single-step—it could stop instead for a breakpoint
or exception. This requires a fairly involved set of states maintained by the
debugger that correctly describes the state of the debuggee with respect to its
current execution algorithm. Motivation for this statement comes easily with
asimple example. During statement step, which requires many internal
breakpoints and instruction-level steps, a divide-by-zero occurs, but the sin-
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main()
{
int a, b;
float c;
Last stop ended
here. Fromhere printf("Enter a , b now please;\n");
doastfpovcro‘r scanf( "%d , %d", &a, &b );
astep into.

‘c—cnmpute(a,bn

Step overends _/'pxintﬂ"raault - %f\n", c );
)

here having run
compute()
float compute( int a, int b) -
{ oo
float ¢ - b; endering
compute()
for ( int i - 0; i < a; i++)
c -c¢c * b;
return c;
}
Figure 6.3

Sample code showing step over versus step into. This figure shows sample code to
explain the difference between step over and step into. When the program is stopped on a
statement containing a coll to a function, step into visits the function while step over stops
on the line after the functior returns.

gle-step initiation is forgotten as less important than the divide-by-zero. The
debugger must report the exception if this type of exception is supposed to
be reported and then stop after cleaning up all the state being maintained for
the statement step. Typically this is best handled by a finite state machine
that gets its initial state from the user-requested command. Each notification
from the OS about the debuggee stopping is a transition in this finite state
machine, possibly to a new state. Breakpoint notifications occur at several
points in the state diagram for this finite state machine. If the debugger was
executing a statement step and this was an internal breakpoint, then the
debugger must determine if the current location corresponds to a valid
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source statement boundary that represents the completion of one source step.
If not, execution proceeds either to another internal breakpoint or via
instruction level single-step.

Step Into versus Step Over

We define “step into” to mean execution proceeds into any function in the
current source statement and stops at the first executable source line in that
function. “Step over,” sometimes referred to as “skip” instead of step,’ treats
acall to a function as an atomic operation and proceeds past any function
calls to the textually succeeding source line in the current scope. Figure 6.3
shows the distinction on a simple code fragment.

Step into could be implemented by using machine step repeatedly checking at
each nstruction step to see if the current address matches a source state-
ment’s starting address. In practice it is a serious performance problem to do
this. This fact, plus the existence of processors that do not support machine-
level step, leads us to an algorithm that decodes instructions and advances
the processor via breakpoint plus full-speed run. More on this later in this
chapter, where we discuss smart, fast stepping algorithms. First, here is Algo-
rithm 6.4, the basic algorithm for stepping.

Algorithm 6.4  Source step into

Input Current statement and instruction pointer address.

Output A new statement and instruction pointer address for the next
statement to be executed.

Method

i. Note current statement location;

set moved_flag := false;

ii. On each debug stop notification (and after initial setup):

iii. Set simulated_pc := real_pc;

iv. If (moved_flag == true and simulared_pc points to begin-
ning of a statement) then
step into is completed so report new location to the user
and exit this algorithm;
else if (no source avail) we can either run or “run to first
source” (see page 128)

Step over, aka skip, is called “next™ in some older debuggers such as some variants of UNIXs dbx.
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vi.

vil.

viil,

Get and decode the instruction pointed to by the
simulated_pc in debuggee text address space;
If (this instruction is not any sort of branching instruction
and it is not an exact match for the beginning of a source
statement) then
advance our simulated_pc to the next instruction;
go back to step iii;
If (simulated_pc does match beginning of a new source
statement and real_pc != simulated_pc) then
set a temporary breakpoint here;
set the moved_flag := true;
set the debuggee running;
wait for the next debug notification;
clean up internal breakpoint just hit;
£0 to step iii;
If (this is a branching instruction) then
either
machine single-step one instruction;
or
decode the branch target;
set a temporary breakpoint at that address;
set the moved_flag := true;
start the debuggee running;
wait for the next debug notification;
clean up internal breakpoint just hit (if any);

£0 to step iii;

The algorithm for step over begins just like step into but it notes a “call”

instruction during instruction decode as special, and once the called function
has been entered, a breakpoint is inserted at the return address of this func-
tion by looking at the current stack frame. A full-speed run then gets the
debuggee rapidly through this function and any functions it calls (assuming
no breakpoints or exceptions are encountered along the way). Once this
return address breakpoint is reached, after breakpoint cleanup, the basic
source step algorithm is continued. The result will be to skip over a function
and to step to the textually next source statement within the current function
scope. Algorithm 6.5 for step over is shown next.



Breakpoints and Single Stepping - 123

Algorithm 6.5 Source step over

Input Current statement and instruction pointer address,

Output A new statement and instruction pointer address for the
textually ‘next’ statement.

Method

i. Note current statement location;
set moved_flag := false;
set in_function flag := false;
ii. On each debug stop notification (and after initial setup):
iii. Set simulated_pc := real_pc;
iv. If (moved_flag == true and in_function flag == false and
simulated_pc points to beginning of a statement) then
step over is completed so report new location to
the user and exir this algorithm;
v. If (in_function == true) then
use current stack frame to find return address for
the new current function;
set internal breakpoint at this return address;
set in_function := false;
set debuggee running;
wait for debug notification;
£0 to step iil;
vi. Get and decode the instruction pointed to by the
simulated_pc in debuggee text address space;

vii. If (this instruction is not any sort of branching instruction
and it is not an exact match for the beginning of a source
statement) then

advance our simulated_pc to the next instruction;
go back to step iv;
viii. If (this instruction is a function call instruction) then
set in_function := true;
machine single-step into this function;
wait for debug notification;
gO to step iii;

ix. If (simulated_pc does match beginning of a new source
statement and real_pc != simulated_pc) then

set a temporary breakpoint here;
set the moved_flag := true;
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set the debuggee running;
wait for the next debug notification;
clean up internal breakpoint just hir;

£0 to step iil;
x. If (this is a branching instruction) then
either

machine single-step one instruction;
or
decode the branch target;
set a temporary breakpoint at that address;
set the moved_flag to true;
start the debuggee running;
wait for the next debug notification;
clean up internal breakpoint just hit (if any);
£0 to step i;

Smart, Fast Source-Step

If a debugger implements source-step by using a series of machine single-
steps, checking the text address reached each time against the statement
address table, single-step will be painfully slow ar times and users will not
tolerate it. Typically, machine single-step is roughly 1000 times slower than
full-speed run to a breakpoint. There is a tremendous cost to a call to the OS
debug API due to several context switches (debugger to OS, OS to debuggee,
debuggee to OS, OS back to debugger) and OS scheduling delays as well as
CPU overhead. Second, the number of instructions to execute may be large.
If there is a call to a library routine such as print£ that does not have asso-
ciated source code to stop in and show the user, thousands of individual calls
to machine single-step would be required

This is why Algorithms 6.4 and 6.5 used instruction decoding as a funda-
mental part of the algorithm, as opposed to multitudes of instruction steps.
Skipping over entire functions by setting a breakpoint at the return address
and running full speed to this breakpoint dramatically decreases the number
of single steps attempted, which in turn dramatically speeds up source step.

Instruction decoding involves reading a debuggee text address (at the current
program counter usually) and applying a CPU-specific lookup to determine the
type of instruction at this location. If the instruction is a procedure call instruc-
tion, the debugger knows one machine step will execute that instruction and




end up at the first instruction inside that function. Now, typically obtaining the
value in a special register gives the debugger the return address where a break-
point can be set to enable skipping over the entire function rapidly.

More extensive instruction decoding can be used to decrease usage of

~ machine single stepping even more. Sequences of in-line, that is, non-branch-
ing, instructions can be grouped together and executed all at once by setting
a breakpoint at the end of such a block of instructions. If these sequences
tend to be long, this approach can save a large percentage of calls to the OS
debug APL This level of instruction decoding just requires detecting branch-
ing instructions versus non-branching instructions.

This can be taken a step further by decoding targets of branches and setting a
breakpoint only when an instruction decode requires dynamic data or a
statement boundary has been reached. In fact, this approach is required if the
processor does not support machine single-step. And even on processors that
- dosupport it, it may be faster not to use it and to fully decode instructions
always running full speed to the next breakpoint.

It is possible to go even further and completely emulate each instruction (for
those instructions where this is even possible) so that even data dependent
branches can be decoded correctly. In most cases this would allow a source
statement to be “executed” without ever running the CPU. It is not clear
whether this is important enough to justify the significant extra logic in a
debugger. One last important point about instruction decoding in debuggers
is that this area is one of only three in a typical debugger that are processor-
specific and non-portable. The three areas that are processor-specific and
non-portable are the following:

1. Instruction decoding as used in stepping algorithms

2. Stack back-trace unwinding or “walking”
3. Disassembly and CPU view register presentation

Itis worth keeping these aresa isolated from all other debugger functions to
enable easier porting to new processors.

Pathologlc Stepping Problems
Nothing is as simple as being able to uniformly apply the above simple
algorithms and get the correct behavior out of single-step in all cases. Many
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contemporary debuggers have anomalous stepping behavior under some cir-
cumstances. Two examples of commonly found anomalous behavior are sin-
gle-line for loops and attempting to step into “missing” routines. Because the
debugger’s basic approach to stepping is so simple, it can be argued that
these stepping problems stem from incomplete or inconsistent information
provided by the compiler. We will examine these issues in more detail in the
following sections.

Singie-line For Loops
Many C/C++ compilers given the source

for (i = 0; i < 1000; i++ )
a += 1;

generate this code (x86 variant shown):

xor eax, eax
@z:

add edx, eax

inc eax

cmp eax, 1000

31 short @2

and will generate only one breakpointable address for this single syntactic
language statement (even though it resides on two textually distinct lines).
This means that a user single-stepping from the beginning of the for-loop will
see the debuggee advance all the way through the for-loop, stopping on the
next line textually after the for-loop. The user might be surprised by this
result because if he or she had written

for ( i = 0; i < 1000; i++ ) {
a+= 1i;
b == 3;

}
stepping will naturally step to each line inside the {} 1000 times.

Debugger stepping algorithms need to be prepared to deal with this single-
line for-loop situation. If the compiler does not help the debugger, the debug-
ger can still behave correctly. A simple-minded approach would be to notice
if the CPU branch instruction within a single-source statement branches
backward to an address still within the same statement. Now the debugger
considers this branch instruction as a stoppable location (even though it does



not match the beginning of a source statement, as expected by our source-
stepping algorithm). This solution is not foolproof because compilers are not
prevented from generating backward branches within a statement.

Similar to the single-statement for-loop is multiple return instructions

from within a single function. In this case there is no one-to-one mapping
between source and statement line number tables. This situation has many
breakpointable locations for a single source line (the function’s closing }),
whereas the for-loop example had several source lines and only one break-
pointable location. The debugger must be able to deal with both types of
SCEnarios.

Step Inlo “Missing” User Routines

Source-level single step should present the “illusion” that the high-level lan-
guage is being executed directly, one statement at a time. But sometimes, the
reality of how a debugger implements single-step comes in direct conflict
with this illusion. Then, something has to give. Either the user will be
suprised—usually not in a positive way—or the debugger will have to do
something extraordinary to sansfy this conflict.

One example of this is the classic dilemma of source stepping through a
mixture of functions with debug information (the ones supplied by the user)
with functions without debug information (as supplied by a run-time library,
for example). If a user routine calls a library function that in turn calls a vser
routine (a “callback™), the standard step algorithm will not give the desired
results. The “hidden” user routine—the one called by the immediately con-
tained library (no debug) routine—will never be seen by source step. This is
not a contrived example. It is now extremely common, especially in event-
driven systems like Microsoft Windows and UNIX X-Windows, because a
user supplies user routine pointers to the basic event-processing loop. Top-
level user code calls the library event-processing routine, which on some
events calls these user-supplied dispatch routines. Because single-step into
promised to take you to the next executed source statement that has debug
information, it has broken its promise. Instead, as step into detects it has
entered a routine—the one in the library—it sets an internal breakpoint at
this function’s return address and runs full speed over this function and all
the functions it calls. It also just ran over the user function called from inside
the library routine. This is a serious flaw in single-step and one not easily
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solved.? Previously, debuggers that tried to solve this were unacceptably
slow as they machine-stepped (slowly) through the non-debug routines
until they detected a new routine that had debug information. The perfor-
mance penalty of this approach is so extreme as to make any debugger
employing it laughable.

There are two workable solutions to this problem. One is to build into the
stepping algorithms a “run to first source” feature. To implement this, a
breakpoint is placed on all procedure entry points. This way, stepping off the
end of a function or into code with no source will stop the next time a user-
written function is entered. This solution requires very fast lookup, setting and
unsetting of a large number of function entry point breakpoints. The alterna-
tive is to use page protection set for all user-written code pages that will cause
a page protection violation as soon as user code is about to execute again.

If the OS provides APIs to control the memory access permissions on a page-
by-page (in the OS sense) basis, these can be used to set the code pages of the
debuggee corresponding to the portion having debug information as not exe-
cutable and not readable. When step into lets the debuggee run full speed to
the internal breakpoint set at the non-debuggable function’s return address, if
user code gets called before that internal breakpoint is hit, a page protection
violation exception will cause the debuggee to stop. The debugger will then
be able to use this exception that stopped the debuggee to reset the page pro-
tection and to continue stepping as before into the user’s “hidden” routine as
desired. This is a major advancement for debuggers because this stepping
problem has plagued all debuggers to date. Algorithm 6.6 shows this modifi-
cation to the standard step into algorithm.

C++ Global Constructors and Destructors

A similar flaw in source step occurs at initial startup and on final shutdown
of a C++ application. As a C++ program starts up, after initial loading into
memory and execution of the run-time startup code, all C++ global construc-
tors must be executed before the function ‘main’ begins execution. However,
most debuggers run to main and stop there, presenting the illusion to the
user that program execution actually begins at ‘main.” The goal was to run to
the first user code, which was most easily accomplished by running to ‘main.’

*Currently, I know of only Borland’s Delphi and C++ debuggers as ones that specifically address this

issue.



Algorithm 6.6  Step into “hidden” debuggable routines

Method This is a modification to Algorithm 6.4.

i. Perform all steps of the step into algorithm up to and
including setting the breakpoint on the return address of
the first non-debug routine found;

il. Before letting the debuggee run full speed do the following:
iil, Set all code pages of debuggee as non-executable and/or
non-readable using the memory access API of the operating
system;
iv. Run the debuggee full speed;

v. If (internal function return address breakpoint hit) then

continue normal processing of step into algorithm;

else
set all debuggee code pages back to executable
go back ro step 1 of algorithm 6.4

This was reasonable for C-language debuggers, but in C++ the critical bug
may be in one of the constructors that execute before main. Therefore, run-
ning to main does not yield the expected or desired result. On the other
hand, machine-level stepping will be too slow to be usable to avoid this
problem. Here at least, unlike the previous scenario, it is possible to get help
from the run-time library as to where the constructor chain begins. The
global destructors executed after main returns present the same situation. (In
fact, bugs here are quite common as a user begins to track down memory
leak bugs.) The same technique used for hidden routines works here but it
critically depends on a page protection API provided by the OS.

Step-related Algorithms

There are a series of features a debugger may provide that superficially do
not appear directly related to stepping algorithms. But, in fact, a wide range
of these features do directly utilize the stepping algorithm. The list we will
briefly consider includes the following:

* Animation
* Software watchpoints
* Finish function

* Reverse execution
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¢ ‘Slime’ trail mode

¢ C++ exceptions

Animation

Animation is used to dynamically show the progress of execution through
the program. It is sort of a “watch the bouncing ball” for a computer pro-
gram. It 1s implemented by continuously executing the step-into algorithm
pausing at the end of each statement step to refresh the views but then imme-
diately resuming stepping. This is a marginally useful feature, usually used
for demonstrations, program learning, or testing. A debugger supporting a
scripting or macro capability—a very useful feature—can easily overlay ani-
mation on the standard step-into feature without engineering in animation.

Software Watchpoints

Software watchpoints are data access breakpoints that are not implemented
via hardware assist. A watchpoint “watches™ a range of data addresses in
debuggee memory and activates—stopping the debuggee—if any modifica-
tion is attempted. For memory corruption bugs this is a critical feature. There
may be no hardware assist or the limit on the number of locarions watchable
has been exceeded which causes the need for software implementation. One
approach to implementation in software is to invisibly, even on a “run”
request, use the single step algonthm checking the specified address ranges
for change on each step completion. Totally accurate results actually require
using machine-step granularity, but in practice this is much too slow. Even
using source step granularity is so slow that clear warning about slow step-
ping to the user is prudent.

Alternative implementation strategies may be more effective, depending on
the OS facilities provided. For example, if the debugger can mark a page of
debuggee data memory as read-only, then an attempt to write into that page
would cause an exception that the debugger would catch. On this type of
exception the debugger would check the exact address of the access attempt,
and if it intersects a watchpoint, activate that watchpoint, Otherwise, the
page must be made writable, the process stepped a bit, and then re-marked
read-only before a full-speed run can be resumed.

Finish Function
A feature that can be thought of as “finish the current function™ is very use-
ful at times. Once a user finds that he or she has stepped into a function



inadvertently he or she might like to run quickly to a point just after the call
to this function. There are two ways to offer this kind of functionality. One is
to require users to use the call stack to select one stack frame prior to the
current function. This will show the place from where the current function
was called. Here a breakpoint or “run-to-here” could be performed. Short-
hand for this—and more convenient to the user—would be an explicit “fin-
ish function.” The implementation of this is just the latter half of the
step-over algorithm. The result is to very quickly take the user to the source
line immediately succeeding the call to the current function.

Reverse Execution

Truly effective reverse execution would be a very valuable feature for a
debugger. Some interpretive language systems can perform true reverse exe-
cution because they have complete control over all program states. Debug-
gers in compiled language systems must settle for a very limited form at best.
When a bug is observed it would be very valuable to “back up” a little to
examine program state thoroughly just before the fault occurs. This would
allow the user to zero in very quickly on the cause of a fault. In a compiled
language system this would require noting all memory accesses and saving
memory state prior to any changes so these can be reversed. This requires
instruction single-stepping and decoding all instructions for their reversible
state. Even so, many instructions are simply nor reversible, such as /O
instruction or any calls to OS or library routines. Because it requires special
processing during single-step, reverse execution requires a mode set by the
user. Only when this mode is set does the debugger single-step and save the
state of each memory location about to be modified. These limitations make
reverse execution a practically useless feature. The goal of backing up from
where the fault occurred can almost never be met. In spite of its limitations,
users still request the feature in debuggers, and some commercial debuggers
(for example, Turbo Debugger) have attempted to implement it.

Slime Trall

Because “where am I™ and “how did I get here™ are perhaps the most fre-
quent debugging questions, a debugger should be prepared to answer them.
“Where am I” is covered by source views, disassembly views, and a stack
back-trace. But “how did I get here” is not completely answered by a stack
trace. Functions entered but already left do not appear on a stack back-trace.
For this reason, some debuggers have a “slime trail” mode that shows all
staternents and functions executed up to the current execution point. This is
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usually done just like animation using single-step—instead of showing the
user each step, a record is emitted for each statement that is viewable at a
later time by the user.

C++ Exceptions

C++ exceptions consist of a “throw” at the point of detection and a “catch”
of the prescribed type at some point programmed to handle the fault more
cleanly. The most important benefit of C++ exceptions is that the compiler
guarantees all destructors for all automatic objects will get called on the way
up the stack from the throw to the catch. Defects can occur anywhere includ-
ing in the throw logic, catch logic, or any destructors in between. Thus, the
debugger must aid in tracing through this code. An implementation strategy
for C++ exceptions is to have the debugger aware of a single, well-specified
run-time library special dispatch routine where all C++ throws are initiated.
From here, users can be given the option of running immediately to the catch
point or stepping through each destructor in succession. In this latter case,
the step algorithm is used once again to trace through the destructors as if
they were a series of nested routines.

Event-driven Stepping Models

The standard stepping model presented so far assumes 2 user builds pro-
grams by building up a series of routines, one directly calling another.
Another model occurs frequently in strictly event-driven systems such as that
provided by Visual Basic and Delphi. Each user function represents an action
taken on some system-specified event. The user associates one function with
each event. But these user functions are only directly called from system dis-
patch routines (which will not have debugging information and will thus be
“invisible” to debuggers). Our standard stepping algorithm will fail com-
plerely on this model. Even if a stop at a breakpoint occurred in one of the
user’s routines, stepping off the end of this function will end up back in sys-
temn code that was responsible for calling the user function. The simplest
algorithm for handling this type of programming model, and the one
employed in Visual Basic and Delphi, is to have the debugger detect when it
is about to step off the end of a user function and at that moment set break-
points at the beginning of every user routine in the entire system. Once the
user routine returns, the debugger must cause the debuggee to run at full
speed. Eventually, the debuggee will hit one of the special breakpoints and
stop at the start of another user routine. We specify this in Algorithm 6.7.
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Algorithm 6.7  Event-driven stepping model

Input Current statement and instruction pointer address.

Output A new statement and instruction pointer address for the ‘logical’
next statement.

Method The key is detecting stepping off the end of a user routine and
then catching the next time execution moves back into user
code.

i. Detect step off end of user routine;
ii. Get list of all user routine entry points from symbol tables;
iil. Set internal breakpoint at each entry point (or, if memory
protection is available, mark all debug information code
pages as inaccessible);
iv. Run debuggee full speed;
v. Stop at special breakpoint will occur some time later;
vi. Remove all special breakpoints;
vii. Revert to standard stepping algorithm.

I should note that one of the unsolved stepping problems mentioned earlier is
closely related to this stepping model issue. The problem of stepping from
user routine to system routine that calls another user routine is identical to
this VB model. However, in standard programming models, setting break-
points on each and every user routine whenever single-step needs to run full
speed to a breakpoint is impractical. Unfortunately, some other solution must
be employed to address this problem.



Discovering
Program
Context

Where am I? The most important thing a debugger can do to help the user

track down problems in the program being debugged is to provide easy-to-
understand context information.

Source-level View

The most important component of answering “Where am 1?” is the source
view. Users think in terms of their source code. They have a fairly detailed
map of their program or at least their subsystem in their minds. So, directory
location, file name, routine, and actual source line are all critical to answer-
ing the key context questions. Older UNIX command-line debuggers based
on dbx exemplified this problem by showing only one to three lines of source
context on a stop. It was intensely frustrating to use dbx because there was
never enough context—and context is critical in debugging.
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The Program Stack

The second most important part of the context story is the function call stack
back-trace. It tells you “How did I get here?” The program stack is a data
structure supported by the hardware, the operating system, and the compiler.
The register set of the CPU provides a stack and/or frame pointer,' and its
instruction set includes special instructions for calling sub-routines that uti-
lize and manipulate this stack pointer. The stack pointer points to a location
in memory that stores the currently executing address just before the CPU
jumps to the first instruction of a new routine; this then becomes the return
address. As each routine is called via these special instructions, more and
more return addresses are stored there in successive memory locations, creat-
ing a stack. As a routine executes its final instruction, the return, it resets its
instruction pointer to the return address stored on the stack and “pops” that
frame off the stack and discards it.

More than the return addresses are stored on the stack. Also stored there are
local variables used just within the associated function. This makes a conve-
nient way to keep track of variables local to a routine and allows that mem-
ory to be freed when the routine returns. Stack space is also used for other
similar, per-routine types of local storage such as thread-local storage,
destructor-chains for exception handling, and more. The operating system
usually sets up stack space for each process (thread) as it is created, and it
manages stack space limits so that when a process (thread) runs out of stack
space the operating system causes a system error to 0ccur.

A stack trace is a list of the procedure activation records or frames currently
on the call stack. The algorithm for finding the frames on the stack is called
stack unwinding. Like disassembly, unwinding is useful to both the user and
the debugger itself. When a fault or breakpoint occurs, the user needs a stack
trace to answer the question, “How did the program get here?” When the
debugger implements a command like “run the program until the current
function returns,” it needs to unwind the stack to find the parent procedure’s
frame pointer and return address.

'Some CPUs provide both a stack and a frame pointer; some RISC CPUs provide only a stack
pointer, and the frame pointer must be synthesized from symbol table information generated during
compilation. See Chapter 3.
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Each frame on the stack is delimited by a pair of addresses: a frame pointer
on the side nearest the base of the stack and a stack pointer nearest the top.
Rules called the procedure calling conventions dictate where various pieces
of data, such as the returm address, lie within each frame. Once the debugger
knows the boundaries of a frame, using the procedure-calling conventions,

it can retrieve the return address saved within that frame and map it to the
name of the procedure containing that address. At its simplest, a printed
stack trace might show only the procedure name, but a symbolic debugger
can also show the names of its formal arguments and the statement that it
was executing.

Once it has unwound the stack, the debugger can also retrieve the values of
local vaniables belonging to frames below the topmost. These variables have
values placed on the stack so with adequate symbol table information the
debugger can completely decode all necessary local variables information.

The algorithm for unwinding a stack varies depending on the calling conven-
tions for the machine and compiler in question. I will describe a traditional
set of conventions, but for almost every statement I make there is a coun-
terexample in some environment. Stacks may grow upward or downward;
registers may be saved by the parent or the child; arguments may be pushed
on the stack or passed in registers; and so on. To cope with this, the author

of a debugger has three recourses: first, teach the debugger to deal with the
general case; second, if possible, get the compiler to indicate via the debug-
ging tables whenever it diverges from the general case; third, teach the debug-
ger to disassemble the code and figure out for itself how the stack was built.

For a traditional stack, registers hold the frame pointer address and stack
pointer address for the current frame. Each procedure call pushes the return
address onto the stack, and the child procedure then pushes the parent’s
frame pointer address onto the stack before it alters the frame pointer and
stack pointer to build its own frame. This creates a stack that (omitting
details and assuming the stack grows downward) looks like the one shown in
Figure 7.1.

The debugger needs to “unwind” the stack, that is, follow the chain of stack
frames back to the initial program entry point, each time the debuggee stops.
Even if the stack view is not being displayed, this information is still needed for
variable inspection. Algorithm 7.1 describes the process of unwinding a stack.

137
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-—base of stack—-
FO = 0 ---frame 0---

PO return address
Fl1 = FO ~frame 1—-

P1 return address
F2 = Fl | -—frame2—

P2 return address
sp =2 F2 —top of stack-—

Figure 7.1

Traditional, downward-growing stack. A standard downward-growing stack is shown.
The most recent or current frame is at the bottom (lower address) while the origin is at the
top. Each frame includes the calling procedure’s return address.

Some systems store a sentinel value such as zero at the base of the stack. The
algorithm could test for this to decide when to stop, but because an errant
program can change the stack in unpredictable ways, the algorithm is more
robust if the debugger records the base address before the program starts
executing and uses the termination test in step iii.

If the debugger wants to show the values of local vanables in frames prior to
the topmost one, the unwinding algorithm must also restore saved registers.

Algorithm 7.1 Unwinding a (traditional, downward-growing) stack

Input Current registers and stack
Output  List of frames on stack
Method Follow the chain of frame pointers saved on the stack

i. Let S and F be the values of the stack pointer and frame
pointer for the current frame. Let P be the current program
counter.

il. Print a description of the frame based on S, F, and P.

iii. If F >= base_of_stack, stop.

iv. Let S =F + (size_of_pointer). Replace P with the value
stored at S.

v. Let S =S + (size_of_pointer). /now contains next function
address

vi. Replace F with the pointer stored at F.
vii. Go back to step i1.




This need arises because a parent procedure may have allocated a variable to
a register, and its child or grandchild may have saved that register in its own
stack frame and then changed the value of the register.

The procedure-calling convention gives rules about which registers need to
be saved, which procedures must save them, and where within the stack
frame the saved copies lie. Typically, the child must save the values of cer-
tain registers before changing them and must restore the saved values
before returning to the parent, (Sometimes the rules put the burden on the
parent, and sometimes they partition the register set so that parent and
child share responsibility.) Sometimes the calling convention pushes a bit
mask onto the stack to indicate which registers were saved; otherwise, you
must hope that the debugging tables contain this information, or you must
(as mentioned earlier) teach the debugger to disassemble the code and
decide for itself.

Dealing with saved registers makes the example and the algorithm a bit more
complicated. Figure 7.2 shows the same downward-growing stack, but this
time fills in more details including where saved registers are placed as the
stack grows.

We now expand our stack-unwinding algorithm to include dealing with
saved registers. The saved registers gives the debuggee context at the point
when that stack frame was created. For variable inspection, that saved

information is crucial to correct scope resolution. Algorithm 7.2 adds these
derails.

It's important to understand that R is not an accurate version of the value
thar the registers had when the corresponding procedure was active because
it only recovers the value of a register if it was saved; values of unsaved regis-
ters are lost if the registers are overwritten.

Special Problems in Unwinding the Stack

A robust debugger must handle some special cases not covered by the algo-
nthm above. For example, stopping during the procedure prologue, the code
that constructs the stack frame, requires special handling. If a program stops
at the first instruction of the procedure, the frame pointer still points to the
parent’s frame even though the program counter lies within the child; if it
stops part way through the prologue, the debugger may find that the stack
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FO=»0 ---base of stack---

---registers saved by PO---

-—frame 0 locals and temporaries---
---arguments passed from PO to P1---
F1=»F0 PO return address

—-registers saved by P1---

—-frame 1 locals and temporaries—--
—-arguments passed from P1 to P2-—
fp (F2)=»F1 | Pl return address

---registers saved by P2---
---frame 2 locals and temporaries——
sp=2> —top of stack-—-

Figure 7.2
Downward-growing stack with details. Further expansion of Figure 7.1, this figure
shows more details about what is contained within each frome.

pointer has not advanced to make room for local variables or that some reg-
isters remain unsaved. Similar problems occur during the epilogue, when the
procedure is in the process of removing its frame and restoring registers. The
solution is heuristic and implementation-dependent: As usual, it may involve
reading the debugging tables or disassembling code.

Also, a robust debugger must not fail or run unreasonably slowly when the
number of frames is large. If, for example, the stack overflows due to an
unlimited-recursion bug, the user will want to see the topmost few frames on
the stack while ignoring the thousands lying below. As I will remind you fre-
quently, the debugger is designed to work on buggy programs, not just ones
thar work totally as expected.

Tracing a Corrupted Stack

Bugs sometimes destroy part of the current stack frame. For example, if the
stack grows downward, writing past the end of a local array (stored on the
stack) can wipe out the return address and the saved copy of the caller’s
frame pointer. Because the normal stack-tracing algorithm starts with the
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Algorithm 7.2  Unwinding and restonng registers

Method Build on unwinding the stack the incorporation of the saved
registers and the evaluation of local variables using those saved
registers.

1.

ill.
iv.

vi.
vil,
viil.

ix.

X1

Let S and F be the values of the stack pointer and frame
pointer for the current frame. Let P be the current program
counter.

Let R be a copy of the current registers.

Print a description of the frame based on S, F, and P.
Evaluate local variables using R.

If F >= base_of_stack, stop.

For each data register saved in this frame, copy the saved
value into R.

Let S = F + (size_of_pointer). Replace P with the pointer
stored at S.

Let S = S + (size_of_pointer).

R is loaded from saved registers on the stack as specified
by the calling convention!

Replace F with the pointer stored at E

Go back to step iii.

current frame, damage to this frame can prevent it from showing any of the
earlier frames, even if they are undamaged. A similar problem occurs if the
operating system pushes a non-standard frame onto the stack. For example,
many UNIX implementations push a non-standard frame before invoking a
user-written exception handler. And both OS/2 and Windows 95 perform
special “thunking™ steps when passing from 32-bit code into 16-bit code
that obliterate the stack for the debugger.

When the normal algorithm fails, the debugger can often find the undam-
aged earlier frames by starting at the base and working “backward” toward
the top of the stack. Then at the point where the normal and “backward”
algorithms both fail, it can print out a message indicating that the stack is
corrupted. Almost no debuggers do this, yet it is extremely useful because
when debugging, context is everything: The user needs as much information
as possible as to where the program is and how it got there.

The backward Algorithm 7.3 is heuristic. It works by searching for saved
frame pointers and assumes a stack-construction convention that saves each
return address at a fixed offset relative to each saved frame pointer.

141
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Figure 7.3 shows a typical corrupted stack.
The normal algorithm would use the current frame pointer and program
counter to print:

<information for F4, procedure P4>
Then it would discover that the saved frame pointer and return address are
nonsensical due to corruption and would print:

<corrupt or nonstandard stack frame at F4>

Then the backward algorithm would decipher these frames:

<information for F0, procedure PO>

<information for F1, procedure P1>

<information for F2, procedure P2>
At this point, the backward algorithm would fail because it reaches the top
of the stack without finding a saved copy of F3. If possible, the debugger

should reverse the order of the frames deciphered by the backward algorithm
and print the entire stack in consistent order:

<information for frame F4, procedure P4>
<corrupt stack at memory location F4>

--base of stack—
FO= 0 —-frame 0—
PO return address
Fi1= FO —-frame 1—
P1 return address
F2= Fl —frame 2—
P2 return address
F3= F2 —frame 3—
—corrupted (formerly P3 return address)
F4 < —corrupted (formerly F3)
—frame 4
spP -—top of stack-—

Figure 7.3

A corrupted stack. Using the same type of stack as shown in figures 7.1 and 7.2, shown
here is one where at frame 3 the information necessary for unwinding the stack has been
corrupted. A normal stack unwind would show frame 4 and stop.




Algorithm 7.3 Backward stock trace

Input Current registers and stack
Output  List of frames on stack
Method Linear search for frame pointers saved on the stack

i.

Let F be the frame pointer for the initial frame at the base of
the stack and let P be the procedure corresponding to that
frame. (Typically the stack starts with a run-time procedure
or the main program, so that the debugger knows this infor-
mation a priori.) Set the search position S to match .

. Starting at S and working toward the top of the stack, look

for a copy of F within the stack. If the stack conventions
require that a saved frame pointer be aligned, use that
knowledge to speed the search.

. If S reaches the top of the stack, the algorithm has failed.

If the search finds what appears to be a saved copy of F at
position S, then examine the saved return address, which
should occur ar a fixed offset from the saved copy of F (the
offset depends on the conventions for the stack frame;
often the two are adjacent). If this does not appear to be a
plausible return address (for example, if it is improperly
aligned or does not lie within the executable section of the
program) then the search has not yet succeeded; advance S
toward the top of stack and go back to step ii.

If the search has succeeded, then print the appropriate
information for the frame whose frame pointer is F and
whose procedure is P. Set F to match S, set P to be the pro-
cedure containing the newly discovered return address,
advance S toward the top of stack, and go back to step ii.

<information for frame F2, procedure P2>

<information for frame F1, procedure P1>

<information for frame FO0, procedure PO>

Unwinding Nontraditional Stacks

In the past decade, some RISC architectures have diverged from the tradi-
tional stack mechanism. Architectures such as MIPS avoid using an explicit
frame pointer register. In the traditional scheme, the stack pointer address
changes during the execution of a procedure, providing extra storage for
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temporaries or for the construction of argument lists. The procedure must
address its local variables at offsets relative to the frame pointer, which
remains fixed. If the compiler can compute the maximum amount of storage
that the procedure requires, however, it can push that amount onto the stack
at the outset of the procedure and leave the stack pointer fixed. Then the pro-
cedure can use offsets from the stack pointer, eliminating the need for a frame
pointer.

Without a frame pointer, however, the debugger can no longer find the
boundary between a frame and its predecessor. Originally the MIPS compil-
ers provided the frame size within the debugging tables. Today they emit pro-
logue and epilogue code according to a set of rules that makes it easy for the
debugger to discover the frame size by disassembling code.

The SPARC architecture actually provides two separate stacks, one imple-
mented in memory and the other superimposed on a circular list of registers.
Each procedure sees only a small “window” of registers within the circular
list. A procedure call uses the memory stack to hold rerurn addresses and
data that the compiler does not allocate to registers. The call also pushes the
window forward toward the top of the register stack, exposing a new group
of registers. (The old and new windows overlap partially so that the compiler
can pass arguments using the registers in the overlapped region.) When the
register stack fills the circular list, this causes the operating system to copy
registers to the memory stack, freeing them for reuse.

Thus, a SPARC debugger needs to unwind both stacks in parallel, and it
needs to recognize that the series of frames on the memory stack may be
interrupted by a copy of registers caused by the register overflow trap.

Assembly-level Debugging

No matter how robust or how feature-rich the source-level symbolic GUI
debugger is, there will be critical times when it is necessary to dive down into
the details of how the actual instructions execute on the hardware. Several
types of information typically are provided relative to assembly-level debug-
ging. Disassembly is where the machine code generated by the compiler is
decoded back into mnemonic assembly code. The hardware registers and
flags are usually shown. Usually their values can be changed (carefully).
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Sometimes there are integer as well as floating-point registers, and both must
be shown. The stack as actually laid out in memory is shown. And several
sorts of memory views can be provided to allow raw memory to be viewed
and formatted in special ways.

Disassembly
Disassembling machine instructions is useful in several key algorithms in a
debugger. Obviously, certain difficult bugs require the user to examine the
instructions that implement the source program. And even if the user
never chooses to look at an instruction, the debugger itself will probably
rely on disassembly in implementing other operations. (For example, trac-
ing the stack may require the debugger to examine each function prolog to
decide which registers have been saved or which of several possible calling
sequences was used.) To implement fast statement stepping, the debugger
must allow the program to run at full speed, after first placing a tempo-
rary breakpoint instruction at each place where the program may leave
the confines of the current statement—whether by call, branch, or fall
through. And if the hardware provides no support for instruction-step-
ping, the debugger must operate as it would for fast statement-stepping,
placing temporary breakpoints at each instruction that would otherwise
- follow the current instruction. All of these operations involve decoding
instruction opcodes, decoding register fields, and computing branch tar-
gets. See Figure 7.4.

Because disassembly underlies so many other operations, instruction decode
performance matters. Fortunately, instruction formats are designed to let the
CPU hardware decode them rapidly without excessive complexity, and that
means that table lookup using multiple tables (which is the closest software
analog to hardware decoders) usually works well.

Itis wise to provide separate disassembler queries for use on behalf of the

user and by the debugger itself because the user’s needs and the debugger’s

l needs are very different, and the disassembler can thereby satisfy the debug-
ger’s needs more rapidly.

For example, the user may not know where instruction boundaries lie, may
want to disassemble backward through memory, and may need to see a
W string representation of the entire instruction. The debugger usually knows

L
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Disassembly view.
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The typical disassembly view shows what looks like symbolic assembler

code listings. However, this assembler code is synthesized by the debugger reading actual

instructions directly out of memory.

exactly where each instruction starts and only disassembles forward. Even
more important, the debugger often does not need to decode an instruction
completely. Instead, it needs answers to questions like “Does this instruction
alter the program counter?” or “Does this instruction alter memory?” When
the answer is negative, the debugger may proceed to the next instruction
without asking further about the current one.

Disassembling backward generally is not possible on many machines, either
because instructions vary in length or because the compiler and assembler
insert data between instructions; thus, the debugger must rely on external
clues or on heuristics. To understand why, consider that the CPU itself
decodes instructions only in the forward direction. Given an address that is
known to be the start of a legal instruction sequence, the instruction formats




are designed to allow one unique interpretation. But given an address that is
known to be the end of a legal instruction, there may be a large variety of
legal sequences having different starting addresses but the same ending
address. Even worse, the debugger often cannot assume that the beginning of
one legal sequence is the end of the previous legal sequence because the com-
piler or assembler may insert data (such as case statement dispatch tables or
constants) between a pair of instruction sequences when the earlier sequence
ends with an unconditional branch or return instruction. The best solution is
to use clues provided by the debug information: Each statement boundary
and each function entry point define the start of a legal sequence.

In the absence of any clues, a “windowing” heuristic is sometimes effective,
as described in Algorithm 7.4. The basic premise of this algorithm is to estab-
lish “windows™ over the instruction sequence and keep moving the window
until the forward disassembly at the top of the window ends up with the
observed ending sequence at the bottom of the window.

This heuristic relies on the existence of invalid instruction formats and the
assumption that data bytes within the instruction stream are unlikely. An
incorrect guess is likely to be interrupted by an invalid opcode, which will
cause the algorithm to shift by one byte and attempt a different sequence.
Each shift increases the probability of “synchronizing™ with the correct
sequence, but each pass takes time and risks making the presentation of the
disassembly view appear sluggish.

Viewing Registers

The registers view is simple and straightforward. The CPU defines the num-
ber, names, and lengths of its registers. The debugger must accurarely repre-
sent that. In addition, it needs to provide a means to change the value of a
register. Direct manipulation is best. This means allowing the user to edit the
printed value of the register directly within the view and not in a separate
edit dialog. It is good to show changed register values in a different color.
These changes will not actually be recorded in the hardware until the next
time execution of the debuggee begins, so no effect of these changes can be
observed until then. A debugger may want to allow different formatting
options such as octal, decimal, hex, or binary, on register values to help the
user correlate back to his or her expectations. It is worth noting that no CPU



148 - CHAPTER 7

Algorithm 7.4  “Windowing” reverse disassembly heuristic

Input Given current address is A.

Output  ASCII readable assembly language text for a series of instruc-
tions preceding A. Also output is the new starting address.

Method Keep moving a window backward until forward disassembly
correctly gets back to a known good place.

i. Choose the number of instructions you wish to disassemble
backward and multiply by the maximum instruction length
L to get a window size W
ii. Guess that there is an instruction boundary at address A-
2*W, and disassemble forward;
iii. If (we encounter an invalid instruction) then
treat its first byte as data and continue disassembling at the
next byte of memory;
iv. If (resulting sequence ends at A) then
return the set of instructions which fit within the window
between A-W and A
else
guess a new starting point A-2*W+1
v. Repeat the guessing process up to A-2*W+L until success;
vi. Or, if we do not succeed, return the sequence that has the

fewest data bytes between its last legal instruction and
address A.

view known to me displays the saved registers as one moves up the stack.
This would be extremely valuable.

Memory Dumps

Several sorts of memory dumps are useful. A specialized form of memory
dump is the stack view. It is very helpful to annotate the stack view with cur-
rent stack pointer, frame pointer, and, if possible, any symbolic routine
names known. Another memory view that is useful is the raw memory
dump, which shows address range and memory contents within that range.
Both scroll bars and explicit entry of hex address should be possible. When
memory is displayed corresponding to what is viewed in the disassembly
view, this should be noted. Formatting choices for memory values shown
should be provided including as bytes, words, long words, and then as
strings, floats, octal, hex, decimal, and binary. Frequently, hexadecimal math
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is needed during debugging so a simple hex calculator integrated into the
memory view is a nice feature. Finally, again it should be possible to modify
memory values through direct manipulation.




Inspecting Data
and Variables

The execution control algorithms we have just described perform half of the
task of debugging: letting the user run and stop the program at will and
inspect debuggee context via source, stack, and CPU information. Once the
program has stopped, data inspection algorithms perform the other half of
the task, letting the user examine and alter the program’s data structures.
Execution control lets the user understand the “where” of a bug; data inspec-
tion lets the user understand the “how.”

Evaluating Expressions

Ideally, a symbolic debugger can display data by evaluating an expression
that uses the same identifiers and syntax that appear in the source program.
This requires the debugger to implement an interpreter for the expression
syntax and semantics of one (or, in the case of a multilanguage debugger,
more than one) source language.

Many issues for the debugger’s interpreter are no different from those cov-

~ cred by the literature on conventional interpreters. The primary difference is
that the debugger’s interpreter does not allocate its own storage for variables,
but instead accesses them within the debugger’s child process at the addresses

specified by the debugging tables emitted by the compiler. This is critical
because what the user is after is the use of the actual values being used by the
running program.
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One obvious implementation is to adapt the parsing and semantics phases

of the compiler that emits the programs on which the debugger must operate.
The adapted compiler front-end reads the text typed by the user of the de-
bugger and builds its parse tree as usual. It consults the debugging tables to
obtain the identifier and data type information, which in the original compiler
would have been placed in the compiler’s own symbol table by declaration
statements. Then it performs its usual semantic checking and annotation.
Next, a new piece of debugger-specific code walks the tree, replacing variables
with values obtained from the child process. Finally, the usual constant-fold-
ing code within the compiler combines the values and delivers a result,

This approach saves some duplication of work, and it encourages the com-
piler and the debugger 1o behave alike; in partcular, the debugger can even
deliver the same error messages that the programmer is accustomed to receiv-
ing from the compiler. The most important advantage to this approach is
that the debugger evaluator is now guaranteed to use the same language syn-
tax and semantics as used in the construction of the underlying program. The
alternative is to build an expression evaluator and language parser as a spe-
cial dedicated piece of code in the debugger.

There are significant differences between the compiler’s needs and the debug-
ger’s. If possible, anticipating the debugger’s needs when designing the com-
piler will minimize difficulties.

For example, whereas a compiler always evaluates an expression in the con-
text of the current scope, a debugger may let the user point to any frame on
the stack and evaluate an expression as if that were the topmost frame. At
best this simply requires passing an extra parameter to the existing compiler
code, which maps identifiers onto symbolic information; at worst it requires
considerable new work. For example, one simple compiler symbol table
organization allocates a block of symbol table entries on a stack at the begin-
ning of each new scope and deallocates the block at the end of the scope. The
algorithm for searching the scoping hierarchy is implicit because relevant
scopes appear on the stack in the proper order and irrelevant ones have been
discarded. This scheme is not sufficient for a debugger, however, because all
scopes are present in the debugging tables all the time; the debugger must
therefore explicitly choose which scopes to search.
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Even within a particular scope, the debugging tables are unlikely to use the
same data structures as the normal compiler symbol table. One good solu-
tion to this problem is to provide pairs of symbol-table access methods, one
for the compiler and the other to translate the object file debugging tables
into the data structures the compiler expects to see.

Such translation may need to operate in a “lazy” or “as-needed” fashion.
Consider an expression that refers to a single data member of a C++ class, A
complete translation of the class would need to process its base classes and
then each of those classes’ base classes in turn. If the class hierarchy is highly
intertwined, this could ultimately require translating every user-defined type
in the entire program.

If the debugger supports more than one language, additional problems

arise because the user can attempt to evaluate an expression that combines
operators from one language with operands generated by different languages,
leading to undefined results. An easy solution is to tag each symbol with its
source language and to refuse to mix languages within a single expression,
but the user may consider this draconian: such a debugger would, for exam-
ple, refuse to copy a value from a Pascal global integer to a C global int. A
better solution is to build checks into the code that translates data structures
from the debugging tables into data structures within the compiler symbol
table. Gross mismatches are easy to exclude: for example, one cannot map a
C pointer onto any FORTRAN 77 data type. Subtle matches still require

~ care: for example, although it might seem that a Pascal tagged variant record
maps easily onto a C union embedded within a structure, that might not be
true if the C semantics phase assumes that such a union will have a name
(because the C parser would not permit its omission), and the absence of a
name causes a bug. Or consider the problems that might result if a C++ com-
piler, which assumes that any symbol named “this” will have a structured
data type, encounters a Pascal scalar global named “this.”

Adapting the compiler for use within the debugger may also require extra
work in constant folding; whereas a compiler-writer can decide that it isn’t
profitable to fold a difficult and rare combination of operator and operand

types, the user will complain if this causes the debugger to reject a legal
EXpression.
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Scope Resolution

If a debugger is meant to work with more than one language, it must avoid
the temptation to build into its symbol-access methods any assumptions
about identifier scoping because these differ among languages. Instead, each
language-specific evaluator must bind identifiers onto data items using the
rules for the language. For example, a Pascal evaluator that fails to find an
identifier in the scope of the current function will next search the statically
enclosing function; a C evaluator will next search the scope of the file; and a
C++ evaluator will next search for a data member belonging to the same
class as the function.

It is useful to extend the syntax of each language while in the debugger’s
evaluator subsystem to let the user specify variables that exist but that are
not currently in scope. For example, the special inspector syntax “#gcd#i”
might specify the variable “i” in function “gcd”, letting the user examine this
variable whenever a frame for “ged” exists on the stack. Or “##i” might per-
mit the user to examine a global variable named “i” even though the current
function redeclares the name “i” as a local variable.

If you allow the user to set a watchpoint (a data breakpoint) on a local vari-
able in procedure X, which is stack allocated, you must somehow ensure that
the watchpoint does not fire on some other variable that happens to use the
same memory when procedure X is not active. Either the debugger must
automatically disable the watchpoint when procedure X returns and reenable
it on the next call to procedure X, or it must ignore spurious firing of the
watchpoint when procedure X is inactive. It must also deal with the possibil-
ity that procedure X may be recursive.

A home table is a list of program-counter ranges where each range specifies
a variable’s location when the program is executing within that range. If
the debugger uses home tables to track when the compiler moves variables
into and out of registers, it may need to deal with the fact that the variable
spends part of its time in a register instead of memory. There is no hard-
ware or operating system support for an exception if a register’s value is
modified so the watchpoint will not fire and the debugger will not have
been truthful.
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Automatic Redisplay of Expressions

Some debuggers will automatically reevaluate an expression each time the
child process stops. This feature (sometimes called an “inspector™) can
require extra work to achieve both correctness and good performance.

First, the evaluator must separate the mapping of identifiers onto symbols
from the rest of the evaluation work. This ensures that each identifier has the
same meaning each time the debugger reevaluates the expression; it also
reduces the cost of reevaluation because only the first evaluation must search
scopes to resolve identifiers. Second, it must provide a list of the scopes
required, so that the debugger avoids reevaluating an expression unless the
stack contains a frame for each of those scopes.

Invoking Functions during Evaluation

The ability to invoke a function during expression evaluation is important in
languages like C++ because the user may inadvertently use an operator in an
expression that has been overloaded with a function. Following is a sample
fragment of C++ code showing function overloading that makes a simple
operator actually turn into a function call.

operator+ cadd(int,int);
c=a+ b; // this *+' calls function cadd()

Although the debugger can interpret most expressions, as opposed to gener-

. ating native code, an expression that invokes a function poses a problem. It is

~ generally not practical to parse the entire function, process it semantically, and
 then use the resulting tree to drive an interpreter. Even if all this was done, the
- debugger’s expression “language” must remain completely “bug compatible”

| with the compiler, and this is virtually and practically impossible.

Thus, most debuggers that permit expressions containing function calls
employ a trick. Instead of interpreting the function invocation, the debugger
builds an argument list using the stack within the child process, sets a break-
point at the function return address, and starts the child process running at
the beginning of the function. When the child process reaches the breakpoint,

B




156 - CHAPTER 8

Algorithm 8.1 Invoking a function during expression evaluation |

Input  Function and actual argument list
Output Function return value, plus side effects
Method Use the child process to execute the desired function

i. Evaluate each of the actual argument expressions and save
the resulting value in the debugger address space.
(Remember that any of these expressions may itself invoke
a function.)

Save the child process registers and program counter.

iii. According to the calling conventions of the target machine
and compiler, push onto the stack (or copy into a register)
each of the actual argument values. (For example, the rules
for a non-scalar return value may require you to allocate
space on the stack prior to pushing the arguments.) If the
language allows user-written exceptions, set up the neces-
sary machinery so that if the function throws an exception,
the run-time system will not unwind past this point with-
out giving control back to the debugger.

iv. Choose a “distinctive” return address. Set a breakpoint at
that address. As dictated by the calling conventions, push
the address onto the stack or copy it into a register.

v. Copy the starting address of the function into the program
counter register.

vi. Run the child process.

vii. When the child encounters the breakpoint, retrieve
the return value according to the calling conventions (a
non-scalar return value may lie within the space mentioned
in step iii.)

viii. Remove the breakpoint set in step iv.
ix. Restore the registers and program counter saved in step ii.

:F:

the debugger retrieves its return value and restores the child process stack
and registers to their original state.

The trick assumes that it is safe to invoke a function at a point where no
function invocation appeared in the original program. Fortunately, the
assumption is valid for most code generators today. (Given a sophisticated
optimizer, this can be invalid because it is equivalent to inserting the function
invocation at the current point in the program; even the techniques for
debugging optimized code fail to address this because they merely describe
the original program graph to the debugger.) As a concrete example, consider
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a function that makes up-level references to a variable that is dead or enregis-
tered at the current point in the program.

The return address used in this algorithm should be “distinctive” enough so that
neither recursive nor non-recursive calls to additional functions will erroneously
trigger the breakpoint. The debugger must also anticipate that the function may
not return: It may encounter a breakpoint set by the user, or may fault, or may
terminate execution of the child process, or may stop executing via a non-local
goto or C language “longjmp” that bypasses the normal return address.

An easy solution is to disable user-set breakpoints temporarily and to treat a
fault as an error that reports failure to the user and restores the child process
state. Process termination or non-local goto constitutes a more serious error
because it may be impossible to restore the state. I should emphasize that
encountering breakpoints during function evaluation, while it might add on
interesting set of capabilities to the user, is quite dangerous if not handled very
carefully in the debugger. The most significant issue is reentrancy. The debug-
ger itself has recorded a stop and recorded critical debuggee state information.
Now a disjointed path of execution is being followed where another stop is
encountered. What is shown on the stack? What are the other threads of exe-
cution doing? If they are not frozen they just got to run and create unforeseen
side effects. In general, I'd suggest the return on investment for this capability
is very low: don’t allow breakpoints during function evaluation.

Compiler-generated Debugging Information

A symbolic debugger depends on the compiler and linker to emit debugging
tables (often called a “symbol table,” but not to be confused with the symbol
table used within the compiler itself) that describe the mapping from names
and statements within the source program onto the object program
(MicrosorT 1993).' But a compiler usually emits the object program and the

debugging symbol table separately, so an error in the symbol table appears to
the user to be a “bug” in the debugger.’

Nearly all symbol table encodings are proprietary, an issue which makes it difficult for vendor X to
handle vendor Y’s encoding and for the encoding to improve through open review.

‘In fact, as a user of a debugger, many of the bugs you have encountered have almost certainly been
due to compiler-debug information problems, operating system bugs, or other issues not directly con-
trolled by the debugger developer.
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Ideally (as explained later in connection with the question of debugging
optimized code) the debugger might do better to access the same interme-
diate data structures that the compiler uses to represent the program, but
that approach is not common practice due to problems with bulk and
information hiding. Instead, the debugging symbol table provides only
the information the debugger is thought to need. Often the author of the
debugger has no voice in the design of the symbol table, and some debug-
gers must cope with a variety of formats, typically by translating them
into an internal form.

A debugging symbol table must deal with a number of issues:

* Does the symbol table cater to the compiler or to the debugger?

* How does it divide the work among compiler, linker, and debugger?
* Does it permit incremental processing and caching of information?
e Can it support a variety of target machines?

e Can it support a variety of compilers?

Catering to the Debugger

The symbol table is a database, and as with any database, the best organi-
zation depends on which queries need to be fast. Unfortunately, queries
that are important to the debugger may not occur at all within the com-
piler. For example, both the debugger and the compiler query variables by
name when they process expressions; only the debugger queries them by
memory address (for example, when it disassembles a memory-referencing
instruction and wishes to print the identifier corresponding to the operand
in memory).

The needs of the compiler and debugger also differ because the compiler
deals with one compilation at a time, whereas the debugger deals with the
entire executable. The debugger may, for example, be confronted with a
much larger number of global variables; it may need to acquire (and later
discard) additional symbolic information during execution of a program that
relies on dynamically linked libraries. We have found that most debuggers
have capacity problems due to these issues that must constantly be addressed
by the debugger developers.



Clearly someone—the linker, on one hand, or the debugger, on the other—
must reorganize the data to suit the needs of the debugger.

It might seem best to make the debugger perform all the work: Although the

first invocation of the debugger might be slow, the debugger could cache the
- reorganized data in case it is invoked again before recompilation. Compila-
tion can be fast, and the linker need incur no extra expense at all, provided
the debugger can retrieve individual symbol tables from the relocatable
object files and resolve relocations itself (a task that it must perform for
dynamically linked libraries anyway). Best of all, the debugger may be able
to avoid processing some relocatables if the user doesn’t refer to them during
the debugging session.

Most systems take the opposite approach, however: Linkers combine symbol
tables from the relocatable object files and perform at least some reorganiza-
tion before writing the information to the execurable file.

There are several reasons for this:
* Programmers may wish to delete relocatables after linking.

* Binding the symbol table to the executable reduces the chance of losing
or mismatching the symbol table.

® The debugger can avoid duplicating work (such as organizing public
symbols for rapid access by name) that the linker must perform anyway.

¢ The linker may reduce the volume of the symbol table dramatically by
eliminating duplications.

The last point is probably the strongest argument for involving the linker. The
data types, global variables, and procedure definitions that make up the inter-
faces between separate compilations are defined once by the exporter of the
interface and referenced repeatedly by the importers. In a language like Mod-
ula-2 - an early object-oriented language used frequently in Europe—which
describes the interface via a definition module, it is easy to represent the inter-
face once for the exporter without repeating it for any of the importers. But
for languages like C and C++, which rely on textual inclusion, symbol tables
can grow explosively. For example, consider that dozens of compilations in a
large program may include the same file “stdio.h” or “jostream.h.”
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Some systems attempt to treat the “.h” file like the Modula-2 definition
module; the compiler segregates symbol table information generated by the
“.h” file and the linker discards duplicate copies. The linker must ensure that
the copies are truly identical, however, because the programmer may have
legally used conditional compilation so that the same “.h” file generates dif-
ferent information in different compilations. Other systems require the linker
or a post processor to hash or sort all symbols and types in the program to
eliminate duplicates (MICROSOFT 1993). These horrendous complications
that plague C++—due to header files and executable code in these headers—
is one of the major motivating factors behind the design of Java.

incrementai Processing

Reading and processing the entire symbol table for a large program can
cause an annoying delay. Fortunately, a typical debugging session exhibits
a great deal of locality (LiNTON 1986). If the debugger can read the symbol
table in a lazy or incremental fashion, it may entirely avoid reading most
of the symbol table, and can divide the remaining processing into a
number of smaller, less noticeable, delays. Linton’s studies showed

that most debugging sessions required less than 1§ percent of the available
symbol table was needed.

Different Target Machines

Obviously different target machines will differ with respect to word size,
address range, registers, the use of segments, and so on. Less obviously, there
is a trade-off between minimizing the size of the symbol table and supporting
a variety of targets. For example, if a target machine has a hardware proto-
col for saving registers in the prologue of a procedure, or if the debugger can
easily infer the identity of saved registers by disassembling code, the symbol
table need not list them. But a symbol table that cannot represent the names
and locations of saved registers may be unusable on a machine whose proto-
col is complicated.

Compilers vary in the way they build runtime structures such as dope
vectors or C++ virtual function tables. Obviously, different compilers will
require different information, and again there is a trade-off berween size
and generality.
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Accessing Symbol Tables

How the debugger accesses the symbol table depends, of course, on which
services the debugger provides to the user, but most debuggers have a certain
set of queries in common. The following list describes each query and gives
one or more examples of its use.
1. Map instruction address onto the enclosing scope.
When the user asks to evaluate an expression, the debugger must use
the appropriate scope. When the user asks to trace the stack, the
debugger must show the scope or procedure corresponding to each
return address on the stack.

2. Map scope onto statically enclosing parent scope.
For statically scoped languages, evaluating an expression often
requires searching a hierarchy of scopes. When tracing the stack, the
debugger may prefer to show the innermost enclosing function in
place of an unnamed lexical scope.

3. Map scope plus identifier onto type and location.
When evaluating an expression, the debugger must search for an
identifier within a scope, and then use its type plus its location (which
may be a memory address, a register, a constant value, or some com-
bination) to fetch from the child process the number of bits indicated
by the data type. This query will need to find functions as well as
data and must handle global scope as a special case.

4. Map instruction address onto source statement.
When the program stops, the debugger must show the current source
statement.

5. Map code or data address onto statically allocated variable or
procedure.
When the debugger disassembles instructions, it may wish to show
the names of the variables and procedures to which they refer.

6. Map source statement onto instruction address range.
When the user sets a breakpoint on a source statement, the debugger
must find the first instruction of that statement. When the user asks
to step through a source statement, the debugger must find the end of
the statement.
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A Sample Symbol Table: STI

STI, also known as CodeView debug format, illustrates a typical debugging
symbol table. It is complicated somewhat by its need to support segmented
16-bit and 32-bit addresses for Intel x86 machines as well as simple 32-bit
addresses for non-Intel target machines. It is complicated further because the
compiler emits one set of tables, the linker combines these and rewrites them
into a different set, and a post-processor called CVPACK transforms that
into yet a third set. In the following discussion I’ll ignore some of the details
required solely for 16-bit machines or for segmentation, I'll concentrate on
the third set of tables, and I'll omit some less important details entirely.

The compiler uses two kinds of records to describe most program objects:

$$SYMBOLS Descriptions of procedures, variables,
named constants, and named types

$STYPES Descriptions of scalar, array, aggregate,
and enumerated types

The $$SYMBOLS section is a series of variable-length records. Each begins
with a 2-byte length field, followed by a 2-byte opcode field that indicates
the purpose of the record and dictates the set of fields that occupies the
remainder of the record.

For example, a record whose opcode is S_GDATA32 describes a 32-bit-
addressed global variable and contains the fields listed in Table 8.1.

As a second example, a record whose opcode is S_BPREL32 describes a 32-
bit-addressed local variable (Microsoft compilers address these relative to the
base pointer register of the Intel 80X86 machine, hence the opcode name), as

listed in Table 8.2.

Other record formats include the following:
S_REGISTER Register variable
S_CONST Constant
S_uDT User-defined type
S_LDATA32 C "static” variable
S_LPROC32 C “static” procedure
S_GPROC32 Global procedure

S_THUNK32 Thunk procedure
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TABLE 8.1 Encoding for 32-bit addressed Global Variable

Address of the variable (offset part)

Address of the variable (segmerit part)
Index of the data type within $§TYPES
Variable name (length-prefixed string)

TABLE 8.2 Encoding for 32-bit addressed Local Variable
= o -

INBYTES  PURPOSE
Same as above
 Signed offset from BP register

Index of the data type within $$TYPES

Variable name (length-prefixed string)
S_BLOCK32 Nested lexical scope
S_WITH32 Pascal “with" statement
S_END End of scope of procedure, lexical scope, or *with” statement
S_LABEL32 Statement label
S_VFTPATH32 C++ virtual function table path descriptor

. Records describing procedures, nested lexical scopes, and “with” statements
are threaded together to describe the scoping structure of the program. In

Beach of chese records, one field points to the parent scope and another

- field points to the next sibling scope within that parent’s scope. All records

I belonging to a scope must appear immediately after the record for the scope
itself. A third field within that record points to the last record belonging to it.
A record called S_SSEARCH, which must appear at the beginning of the
$$SYMBOLS section, points to the procedure at the head of the list.
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For example, Figure 8.1 shows the $$SYMBOLS records for the following
compilation:

procedure cuter;
var outer var(, outer varl: integer;
procedure inner(;
var inner_var: integer;
begin
end;
procedure innerl;
begin
end;
begin
end;

that of the $$SYMBOLS section, except that one record may contain a series
of leaf structures, each structure having one opcode and a variable number of
fields dictated by the opcode. The 2-byte length at the beginning of the
record counts the number of bytes in all the leaf structures.

|
|
The structure of individual records within the $$TYPES section is similar to
|
|

S_SSEARCH start !
| o |
I -~
| [
S_GPROC32 outer <-+ pParent pEnd pNext
- I
S_BPREL32 outer_var( [ | S + v ‘
|| | 0 |
S_BPREL32 outer_varl +=+| |
[ |
S_SPROC32 inner0 | pparent pEnd | pNext |
| I | |
S_BPREL32 inner_var | | | e —+ ‘
+-t I | [
S_END | <+ | 1
| | |
S_PROC32 innerl pParent pEnd | phlext <-+
I I
S_END T + v
0

Figure 8.1
Layout of $$SYMBOLS records in STI graphically. The layout and connections of the
$3SYMBOLS records for the compilation of a simple pascal procedure and two nested inner
procedures.
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For example, this record describes an array with default lower bound and
constant upper bound, as shown in Table 8.3.

As a second example (Table 8.4), this record describes a C++ class.
Other opcodes for type records include the following:

LF_POINTER Pointer to type

LF_ENUM Enumerated type

LF_PROCEDURE Procedure type

LF_METHODLIST List of C++ member functions

LF_FIELDLIST List of members of C or C++ struct, union, or class
LF_BITFIELD C bitfield member

LF_ARGLIST List of formal argumerits

LF_VFUNCTAB C++ virtual function table

Each record is assigned a number beginning at hexadecimal 1000. When a field
points to another record, it uses this number. Numbers below 1000 are reserved
for various intrinsic scalar types (such as integer or double-precision real).

STl requires a substantial amount of processing by the linker and the
CVPACK post-processor. Some of it makes access more convenient for the
debugger. For example, because type records vary in length and use record
numbers rather than byte offsets to point to one another, the debugger would
- have difficulty following these pointers. So CVPACK creates an array that
- maps type numbers onto offsets relative to the beginning of $$TYPES. In
addition, CVPACK separates global symbols from the rest of the symbols
and puts them in a separate table, optionally creating hash tables to reduce
the cost of searching the globals by name or by address.

Other post-processing is mandated by the design. For example, CVPACK
must eliminate redundant $$TYPES records generated by separate compila-
tions because the address of a C++ class method lies in a record separate

from the description of the C++ class itself, and it is not generally possible for
' the debugger to recognize the association between these records unless each
data type has a unique index.

When the linker and CVPACK are finished, the executable file has one set of
the following tables for each relocatable object:

i
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TABLE 8.3  Encoding for an array with the Default Lower Bound and Constant Upper Bound

FIELD SIZE INBYTES PURPOSE

length 2 Number of bytes in the record, excluding
the length field itself

LF_DIMCONU 2 Opcode describes type, dictates which
additional fields follow

rank 2 Number of dimensions

index Poirits to record describing the data type of
array index

bound rank* s Constants specifying upper bound of each

dimension; “s” is the number of bytes each
constant occupies, dictated by the index
type

TABLE 8.4 Encoding for a (++ Class

FIELD SIZE INBYTES  PURPOSE
length Same as above
LF_CLASS
' 2 Number of members
Eg:a:toanotlmrecordlisﬁmmemem

Bit mask describing atfributes of the class
(for example, whether it is packed, whether
it has overloaded operators, etc.)

2 Points to record describing the classes that
inherit this class

2 Poirits to record deseribing the virtual func-
tion table

variable Size in bytes of the class

e 1

variable Class name



Inspecting Data and Variables « 167

sstModule Address ranges of code and data emitted
sstAlignSym $$SYMBOLS records for non-globals
sstSrcModule Mapping from source statements to instructions

The executable has exactly one set of the following tables:
sstGlobalTypes $STYPES records for all types

sstGlobalPub $$SYMBOLS records for public data
ssiGlobalSym $$SYMBOLS records for global procedures

The sstSrcModule table consists of a header followed by an assortment of
file-information records and line-information records. The table contains

these fields:
cFile Number of source files contributing code to this compilation
cSeg Number of segments receiving code from this compilation
baseSrcFile Array [cFile] of pointers to file information records
; starvend Array [cSeg] of pairs of offsets (giving the range of
addresses for each segment)
seg Array [cSeg] of segment indices, corresponding to the
start/end pairs
file-information record for file 0
line-information records for file 0

| file-information record for file n

line-information records for file n

Fach file information record contains these fields:

cSeg Number of segments receiving code from this file

baseSrcln Array [cSeg] of pointers to line information records, one per
segmerit

startend Array [cSeg] of pairs of offsets (the range of addresses for
each segment)

Name Length-prefixed file name

‘Each line information record associates an array of line numbers with a par-
allel array of segment offsets. It contains these fields:

Seg Segment index
cPair Number of source lines
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offset Array [cPair] of 32-bit segmerit ofisets
linenumber Array [cPair] of 16-bit line numbers

In addition to $$TYPES records, the sstGlobalTypes subtable contains the
vector mentioned before that maps each type index onto the corresponding
byte offset.

The optional subtable sstGlobalSym provides hash functions to search the
symbols by address or by identifier.

Access Algorithms for STI

With this somewhat abridged description of the STI format, I can describe
how to implement an incremental access package for the typical database
queries 1 listed earlier. To simplify, I’ll assume there’s no need to remove
information from memory once we have read it fram the file, and I'll assume
that procedures and compilations are short enough that linear searching is
acceptably fast within any single procedure or compilation.

Our strategy is to establish a number of data structures in memory, each of
which is initially empty, but may later contain data read from the executable
file. Pointers between data structures indicate whether the target is in mem-
ory or the file. Whenever a query needs to use a data structure that is empty,
we read just enough information from the file to satisfy the query.

We build the data structures listed in Table 8.5 in a lazy fashion.

In Algorithm 8.2 we use module_map to build module_symbols, and then we
use that table to take an address and find the enclosing scope for that
address. This is critical as the first step in variable inspection.

Algorithm 8.2  Map instruction address onto the enclosing scope

Input Instruction address
Output  Pointer to $3SYMBOLS record for enclosing scope

i. If we have not already done so, read sstModules and con-
struct module_map.
ii. Use module_map plus the input address to find the mod-
ule.
iii. If we have not already done so, read the sstAlignSym table
for that module and construct the corresponding
module_symbols entry.



iv. Within the module_symbols entry, start with the
S_SSEARCH record and traverse the list of scopes to find
the one containing the desired address.

Now, given a scope we may need the statically enclosing parent’s scope.
Again, this is necessary in variable inspection and enables the debugger to
eventually get all the way out to global scope. Algorithm 8.3 shows how
this is done.

Algorithm 8.3  Map scope onto statically enclosing parent sccpe

Input Pointer to record in module_symbols for child scope
Output  Pointer to record in module_symbols for parent scope

i. If scope is “global” then return failure.
ii. If the “pParent” pointer in the input record is zero, return
“global.”
iii. Otherwise, follow the “pParent” pointer.

Then, having a scope and an identifier, Algorithm 8.4 is used to obtain the
record describing the type for this identifier as well as its location.

Algorithm 8.4 Map scope plus identifier onto type and location

Input Pointer to record for scope string representing identifier
Output  Pointer to record for type Location

i. If the input scope is not “global,” go to step iv.

ii. If we have not already done so, read sstGlobalSym and
sstGlobalPub and construct address_to_global and
name_to_global.

iii. Use name_to_global to find the appropriate record. Report
failure if there is none; otherwise go to step viii.

iv. Fetch the “pEnd” field of the scope record.

v. Start with the first record after the scope record.

vi. If the offset of this record matches the “pEnd” value of the
input scope, fail.

vii. If the name of this record does not match the input identifi-
er, go to step xii.
viii. If we have not already done so, read the vector at the
beginning of sstGlobalTypes and construct type_vector.
ix. Use type_vector plus the type index within the symbol
record to find the appropriate type record.
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TABLE 8.5 Basic Data Structures Built by Debugger for Access to Symbolic Information

DATA STRUCTURE BUILT
module_map

module_symbols

type vector

type_records

global

file_to_module

address_to_statement

statement_to_address

DATA STRUCTURE DESCRIPTION

Maps any address orito the corresponding
module, indicating whether to obtain the sym-
bols for that module from the file or from mod-
ule_symbols.

For each module, represerits the correspond-
ing sstAlignSym information.

For each data type index, points to the corre-
sponding record either in the file or in
type _records,

Types records that have been read from the
file.

Special, reserved pointer indicating global
scope.

For each file, gives the set of modules con-
taining code generated from that file. We
assume that a particular file is usually assoa-
ated with only one module, but to handle the

more general case we are willing to iterate
through a list of modules.

For each module, provides an array of
(address, file, statement) tuples, sorted by
address.

For each module, provides an array of (state-
ment, pointer) tuples, sorted by statement,
where each pointer indicates a tuple in the
address_to_statement entry for that module.
We assume that within a module, all state-
ments usually lie within the same source file,
but to handle the general case we are willing
to iterate through a list of tuples, selecting the
one having the appropriate file. Because the
STi format provides only the starting address
for a statement, we must infer its ending
address from the starting address of the next
statement in the symbol table. Thus, instead
of storing addresses within this data structure,
we store pointers into the address_to_state-
ment data structure, where the addresses

appear in order.
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f maps addresses onto global symbols.
 name_to_global Based on sstGlobalSym and sstGlobalPub,
: maps identifiers onto global symbols.

x. If we have not already done so, read the type record from
sstGlobalTypes and add an entry to type_records.

xi. Use the location fields within this symbol record to deter-
mine the location and return success.

xii. If this record is a procedure, scope, or “with” statement,
advance past its “pEnd” record; otherwise, merely advance
to the next record.

xiii. Go to step vi.

When a breakpoint fires and whenever we need to map an instruction
address onto the correct source statement, Algorithm 8.5 is needed.
This algorithm takes the instruction address and, using source line
information contained in sstModules, determines the correct file name
and line number,

The opposite mapping—from source statement onto instruction address
range—is used by the source view to show the breakpointable lines. It is also
used whenever the user sets a breakpoint on a source statement. This map-
ping is shown in Algorithm 8.6.

- Algorithm 8.5 Map instruction address onto source statement

l Input  Instruction address
Output  Source statement filename and line number

i. If we have not already done so, read sstModules and con-

struct module_map.

ii. Use the inpur address plus module_map to find the appro-
priate module.

iit. If we have not already done so, read sstSrcModule for
that module and construct address_to_statement and
starement_to_address entries for that module.

iv. Search address_to_statement for the highest address that
does not exceed the input address.
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Algorithm 8.6

Map source statement onto instruction address range

Input File name and line number
Output  Range of addresses for that statement

.
iii.

iv.

vil.

If we have not already done so, read the file information
records from each sstSrcModule and construct
file_to_module.

Use the file name plus file_to_module to select each module
that might contain the desired statement.

If there are no (more) candidate modules, report

failure.

If we have not already done so, read the sstSrcModule for
the candidate and construct statement_to_address and
address_to_statement.

Use the line number along with statement_to_address to
select all of the tuples having the desired line number. If the
set is empty, advance to the next candidate module and go
to step iii.

For each selected tuple, follow its pointer to the corre-
sponding tuple within the address_to_statement table, and
compare the file name with our input file name. If no tuple
matches, advance to the next candidate module and go to
step iil.

Use the offset from the address_to_statement tuple as the
low bound of the range. Return the offset of the next tuple
in address_to_statement as the high bound of the range.

Statically allocared variables have a simple mapping from a data address. Stat-
ically allocated procedures have the same mapping, shown in Algorithm 8.7.

Algorithm 8.7 Map code or data address onto statically ollocated vanable or procedure

Input Address
Output  Pointer to record in module_symbols

.
L.

il.

iii.

If we have not already done so, read sstGlobalSym and
sstGlobalPub and construct address_to_global and
name_to_global.

Search address_to_global for the highest address that does
not exceed the input address.

Use the data type of the selected symbol to determine the
range of addresses it covers. If the input address does not
lie within that range, return failure.




Multithreaded
Debugging

Some new and difficult issues are starting to become prevalent with multi-
threaded applications as threads become mainstream. In this chapter I will
discuss debugging issues unique to multithreaded applications. First [ will
introduce the concepts of threads and processes.

Threads and Processes

Applications will increasingly take advantage of multiple threads as multi-
threaded operating systems leave the realms of servers and workstations and
land on millions of desktops. With OS/2, NT, Windows 95, and some ver-
sions of UNIX, multiple-thread support has now reached the mainstream.
The additional complexity that multiple threads add to the programming
mix is mind boggling—and very few developers yet realize it. These complex-
ities stem from data sharing between threads in a process and the temporal
dependencies inherent in a system where two or more execution paths are
operating at times and sequences that are non-deterministic, i.e. controlled

by the operating system and other activity in the system.

Even the OS vendors do not seem to fully understand the unique debugging
issues brought about by supporting multiple threads, as evidenced by the
lack of adequate debugger support for threads in the contemporary
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mainstream operating systems. In this chapter, I will introduce threads and
discuss how they are presented to the programmer, then I will explore the
support given to debuggers for thread control, and finally 1 will explore the
unique kinds of bugs that surface in multithreaded applications.

In operating system parlance, the process is a unit of resource ownership and
of work to be done. In other words, the operating system uses the process as
a way of organizing its work and resource allocation. The responsibility of
the operating system is to guarantee that processes get a chance to execute in
an orderly and timely fashion and that processes are protected from each
other—the illusion is thar your process is the only process.

The thread is the smallest entity within the operating system—on systems
that support threads—that is scheduled for execution. As such, the thread is
one of many possible subtasks needed to accomplish the overall job of a
process. The thread is frequently defined as a single unit of execution. It rep-
resents an independent program counter, and it is the unit of execution that
is associated with a stack. The operating system time-slices between all of the
currently runnable threads in the system. A thread can have a priority that
promotes it to run more or less often than the default would provide. At any
given time, one and only one thread is executing. This gives the operating
system a way to synchronize threads entirely in software. Multithreading, by
definition, requires multitasking.

Multitasking is the ability of the operating system to run more than one task
(a process or a thread, depending on the operating system), cycling through
all runnable tasks and giving each its small slice of time in which to execute.
This gives the appearance of several user-visible processes each making
progress “simultaneously.” Multitasking operating systems are not necessar-
ily multithreaded. Classic UNIX systems have always been multitasking but
did not support threads.

Processes each have private, protected address spaces. One process
cannot access directly the data of another process. Only through OS-
provided special services like shared memory can one process directly
“see” another’s address space. Threads are not separate and protected
from each other. All threads within a process share the same address
space. This is crucial to understand: Threads normally share dara with
each other, but processes do not. Some thread data is local. Each thread
has its own stack and set of processor registers. Heap space is per process




normally so all threads within a process share data stored on the heap
(that is, its global).

Data shared berween threads is a major cause of problems. Because
threads are an indivisible unit of execution and form an important execu-
tion abstraction for programmers, sharing data between threads seems
“unnatural™—and because heap access must be synchronized, more
expensive. A special mechanism to give threads local private data thart sur-
vives across function boundaries exists to keep this execution abstraction
pure. It is called thread local storage. The stack is the mechanism used to
provide this private, non-shared data. This works because each thread has
its own copy of the register set and therefore its own private stack. Usu-
ally, special facilities are added by the operating system and run-time envi-
ronment to fully support thread local storage. Debugger must not only
understand threads at a fundamental level but must understand thread
local storage as well.

DWORD  TlsAlloc(VOID)
Allocates a thread local storage
(TLS) index. Any thread of the
process can subsequently use this
index to store and retrieve values
local to the thread.

BOOL TlsSetValue(DWORD dwTlsIndex, LPVOID IpTisValue)
dwtlsIndex is the index to set value
for IpTisValue is the value to be
stored.
This function stores a value in the
calling thread’s TLS slot for a
specified index. Each thread of a
process has its own slot for each
TLS index.

LPVOID TlsGetValue(DWORD dwTlsIndex)
dwTlsIndex is the index to retrieve
value for
This function retrieves the value in
the call thread’s TLS for a specified
index.

BOOL TlsFree(DWORD dwTlsIndex)
Releases a thread local storage
index making it available for reuse.
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Operating System Thread Gontrol

From the operating system’s perspective, every process begins life as a single
thread. That thread can create other threads. Once a thread exists it can cre-
ate as many additional threads as it needs. Usually the operating system has

some sort of priority scheme for deciding which thread gets to execute next

in the scheduling algorithm,

In addition to the operating system support for thread creation, the
operating system must provide many other thread controlling operations.
Threads must be able to synchronize with each other to coordinate their
activities. There are numerous mechanisms for thread synchronization
including events, semaphores, messages, timers, mutexes, critical sections
and others.

When a thread wishes to synchronize its activities with another thread, it
blocks. This means the thread made a call to an operating system routine
that causes the OS to mark the thread as unrunnable until its request is
satisfied. A blocked thread does not get scheduled by the operating system.
Modern multithreaded operating systems provide these synchronization
mechanisms based on special data structure objects, and the threads coordi-
nate with each other through these primitives by signaling and unsignaling
these objects.

A ser of basic operating system calls must be provided on any multithreaded
system to give programmers access to the system’s multithreaded nature.
We list and discuss these here. The names happen to be those used in
Win32 but are sufficiently generic to be applicable on any multithreaded
system.

CreateThread()

WinAPI CreateThread( arg arg );

——— = =

This is the call any thread makes to create a new thread within its same
address space. The first thread is created by the operating system, but any
threads created subsequently are done using this call. There is typically an
upper limit on the number of threads that can coexist in a single process, but
the unit is high enough to never impose a practical restriction.



ExitThread()

WinAPI ExitThread( arg arg );

— —

This call is the opposite of CreateThread (). The thread calling this func-
tion ceases to exist, and the call itself never returns to the calling process. All
resources specifically held by this thread are thereby freed.

SuspendThread()

WinAPI SuspendThread( arg arg );

When this function is called the thread that is targeted is marked within the
0S such that it will never be scheduled to run again. This is, of course, a very
dangerous call to make and is usually done only by utility programs and
debuggers. This sets up a situation where other threads depend on some
resource held by the thread just suspended, which in turn will suspend them.
The cascading effect can cause the entire process to become deadlocked.

ResumeThread()

WinAPI ResumeThread( arg arg );

= =

This is the call to undo the effects of the SuspendThread () call. Again, it
s usually programs like debuggers and very specialized utilities that would
do this. Users of debuggers may actually have direct access to this call via a
“freeze / thaw™ capability where specific threads can be suspended and
resumed at the programmer’s direct request.

TerminateThread()

WinAPI TerminateThread( arg arg );
i —
More extreme than ExitThread (), this call is not used by normal pro-
grams and is provided for OS and system-level utilities (debuggers again, of
course) to have complete control over possibly errant threads.

B
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Thread-created Problems (Bugs)

In the previous list of OS thread-control APIs, [ hinted that sometimes these
APIs themselves cause problems. Even without the ability to suspend and
resume threads that can cause total deadlock, programs trying to use threads
in a very narural and controlled way can get into a lot of difficulty. This is
partly because threads add complexity and that translates into more bugs.
Threads represent a completely new paradigm, and that causes a dramatic
increase in bugs and confusion. This section discusses typical classes of bugs
that occur in multithreaded applications. I will assume throughout this sec-
tion that the underlying system is a uniprocessor so that only one thread ata
time actually is running. All issues I raise here are even more “interesting” on
a multi-processor.

Data Corruption

The first class of problems is data corruption. Because each thread operates
in the same shared address space of the process, if one thread modifies data
that another thread was counting on not changing, this is a bug. Because it is
not deterministic which thread runs when, these types of bugs do not happen
in the same consistent fashion, which makes them extremely difficult to track
down. It is a serious logic and design flaw in the first place for the program-
mer to allow one thread to assume shared data won’t be modified by other
threads. In this case, thread local storage should be used to ensure that data
really is private to a particular thread and no other thread can see this data,
much less modify it.

Inadvertent Data Sharing

Because the vast majority of programs and programmers operate—and have
operated for decades—in a single threaded environment, it is narural for people
to think in these terms. This leads to thinking that the dara the program is using
now is not going to change in any unpredictable fashion. It also leads to think-
ing that sequences of steps must be taken one after the other. But once the envi-
ronment is multithreaded, data is shared; as threads are switched in and out of
the processor, steps that seem sequential in the source code are not operated on
in that way. Programmers who build or work with operating systems and highly
asynchronous event-based systems code learn to deal with this kind of asynchro-
nous behavior—behavior that will become more prevalent in all applications.



Synchronlzation

Multithreaded applications naturally have synchronization points that force
one thread to wait for another thread to finish its task. As described above,
numerous types of objects and events are used for synchronization, depend-
ing on the application. Special operating system calls are used to force the
calling thread to block if the object on which it wants to synchronize is not
yet available. The OS call waitForSingleObject () in Win32 is such a
call. This call does not return—thus is considered blocking—until the object
in question is available. The thread on which we are waiting will presumably
make the corresponding OS call SetEvent () or ReleaseSemaphore ()
to notify the waiting thread that the work on which it depends is complete.

Frequently these kinds of synchronizations are protection for shared data
that should not be modified until some necessary piece of work is complete.
If the producer has not yet completed and therefore signaled its completion
by releasing any waiting threads, but the consumer proceeds anyway, a bad
situation—a.k.a. a bug—is created because the shared data is now corrupted
or has not yet been updated for valid consumption.

The worst situation occurs when two or more threads find themselves in a
mutually unsatisfiable situation. To be explicit, if thread A is waiting on
thread B and thread B is waiting on thread A, neither thread can ever run
again and the application is deadlocked. Unfortunately, because most PC
applications grab OS resources that the system itself needs to be freed in a
reasonable amount of time, a deadlocked application can and does fre-
quently bring down the entire operating system, requiring a time-consuming
(and data-losing) reboot. Fortunately, PC operating systems are getting more
robust and with NT, this is no longer the case.

08 inadequacies

Even with thread-specific execution control, user-accessible thread freeze and
thaw, and thread-specific breakpoints there is a lot of complexity (and there-
fore potential bugs) associated with multithreaded applications that is not sup-
ported by debuggers or their host operating systems. One important hole
already mentioned is the lack of any debug notification when a thread blocks
(that is, becomes unrunnable due to its waiting for some other thread in the
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same process). This sort of notification would allow the debugger to stop the
debuggee definitively and return control to the user with the clear message that
the thread he or she is focused on is no longer running. Short of that, some sort
of time-out would have to be used, a step that is always fraught with difficul-
ties. Another hole is that there is no clear answer to the user’s question “So
what is this thread waiting for?” One reason this is such a hard question to
answer is that it is not usually possible to obtain a stack-trace for a thread
blocked in a system call because no stack frame is generated on a syscall.

In multi-threaded applications synchronization problems will be common. As
we gain more experience with multithreaded applications we will find pro-
gramming and debugging techniques to help avoid and detect these kinds of
problems. Debuggers need to provide all the support possible o get started
building next-generation multithreaded applications.

Threads Impact on Debugger Architecture

When built for and on a multithreaded system, usually the debugger
itself is multithreaded, with one thread dedicated ro the execution of the
debuggee process and one or more processing all Ul-related events. The
dedicated debuggee thread spends most of its time in a WaitForDe-
bugEvent () ' call that will return only when the debuggee process stops
for some reason.

Thread-specliic 0S Events

There are several possible DEBUG_EVENTS that relate specifically to threads
and require that the debugger internally modify its internal thread-related
data structures. The following sections will describe them.

EXCEPTION_DEBUG_EVENT

Exceptions can be divide-by-zero, illegal memory reference, hit a breakpoint,
complete single-step, or the like. These occur in one and only one thread at a
time and cause the entire debuggee to stop. This happens because all threads
but one are “suspended”™ at a given moment of time, and it is the one single

'Here we will use examples from MS Win32's debug API.




thread currently active on the processor that gets or generates the exception
that causes this event,

CREATE_THREAD_DEBUG_EVENT

This event is generated whenever a new thread is created in the process being
debugged (due to a call to CreateThread () ) or once for each thread that
already exists when the debugger “attaches” to an existing process. As with
CREATE_PROCESS_DEBUG_EVENT, this event allows the debugger to set up
any thread-specific data strucrures when the thread is first created but has
not yet been allowed to execute even one instruction.

CREATE_PROCESS_DEBUG_EVENT

This event is generated whenever a new process is created in a process being
debugged or when the debugger “attaches™ to an existing process. This event
allows the debugger to initialize its process-specific internal data structures
before any further debugging activity occurs.

EXIT_THREAD_DEBUG_EVENT

This event is generated whenever a thread in the process being debugged
exits (except for the last thread in a process). This is the inverse of CRE-
ATE_THREAD_DEBUG_EVENT and allows for cleanup of internal structures
as threads are destroyed and can no longer generate any more events or exe-
cute any more instructions.

EXIT_PROCESS_DEBUG _EVENT

As with EXIT_THREAD_DEBUG_EVENT, this is the inverse of CREATE_
PROCESS_DEBUG_EVENT. This occurs when the last thread of a process
exits or some thread explicitly calls the OS call to terminate a process. The

debugger must know when this happens so it knows that there is no longer
a debuggee to control.

When a debug event occurs, the debuggee process has all of its threads sus-

pended and the blocked thread of the debugger gets notified of the event

through WaitForDebugEvent () returning. A specific thread in the

‘ debuggee is always identified as being the thread that actually received the
event, but all the other threads are suspended as well.

There are, in addition to these debug events, a series of specialized OS APls
'l. related to threads. Here we discuss two of them—GetThreadContext ()

B
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and SetThreadContext () —that are critical to a debugger’s getting con-
text information on the stopped thread.

Thread-specific Program Context

When a debug event occurs the debugger is notified of which thread

caused the event and the context for that thread is obtained using Get -
ThreadContext (). Thread context contains all OS and CPU information
about the thread, including its program counter, stack pointer, and the other
processor register values. From this information the debugger can show the
source or disassembled listing current execution point; it can build the
procedure call stack back-trace; it can list the register set current values; and
it can know the context for variable and memory inspection. All of this
information is thread-specific because it comes directly from the thread con-
text information that applies only to the thread that just caused the most
recent debug event.

If the debugger (or the user of the debugger) wants to change any value of a
register in the thread context it may do so and write it back to the debuggee
using SetThreadContext ().

Thread Debugging Model

The addition of threads to the programming arsenal generates tremendous
new capabilities and power as well as enormous complexity (HO 1982). This
makes it imperative that debuggers are thread-aware; moreover, substantial
and powerful new features are needed to deal with complex bugs in multi-
threaded programs gone awry.

Isolating a Single Thread

At times, presenting the illusion that the separate threads are really indepen-
dent is ideal. By this we mean that the user should be able to stop one thread
in isolation from all other threads. The user interface should present certain

* In fact, all applications are assumed to be multithreaded so this is the only way to get debuggee con-

text. The single-threaded application is simply a process that happens to only one thread on which to
get context information.
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views that are thread-specific and that can be changed to view other
threads. This allows the programmer to view two different threads
simultaneously, along with all the context of each thread. Included in the
context view should be source view, stack, local variables, and thread
local storage all nicely tied together. Once viewing two or more threads
simultaneously, the user will want to act on one thread and then another
independently.

However, since when the process is running, all threads are runnable but
only one actually has the CPU and causes the next stop, any thread may be
the next to stop. So what does the debugger show in its source view? Does it
track one and only one thread or bounce around to that thread that most
recently stopped? To provide the illusion of separate independent threads
leads to a statement step that applies to one and only one thread in the
debuggee. Similarly, a thread-specific run isolates only one thread to run to
the next breakpoint or exception. On other occasions, the program needs to
run unconstrained by debugger control over individual threads.

User Freeze/Thaw of Threads

The freeze/thaw functionality of the QS needs to be exposed to the user so
sometimes all but two threads are frozen, for example. This gives users ade-
quate flexibility over control of their program’s threads. Now, a user can step
asingle thread, run a single thread, control precisely which threads are
frozen, and run or step all non-frozen threads.

The debugger controls threads through thread control APIs that typically
include a freeze (or suspend) function and the inverse. If the debugger needs
to run one thread in isolation, it must make sure all unaffected threads are
frozen. Now the debug API to run will only affect the single unfrozen thread.
The debug step API always affects only a single thread because at the instruc-
tion level executing only a single instruction in a single thread makes sense.
When only a single thread is executing it is very likely that this thread will
block because it is usually operating in cooperation with the other threads
and will probably synchronize with them at some point, which will result in
thread blocking. This means that multithreaded debuggers must have a very
reliable, user-accessible stop mechanism. A solution to this problem would be
for the OS to provide an exception when threads become blocked. However,
no OS yet provides this.

183
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Source-Stepping

The non-thread-specific source-step has the debugger freeze no threads and run
the source-step algorithm as previously presented. Any thread, at the OS sched-
uler’s control, that stops at a breakpointable statement, user-level breakpoint,
or exception will declare the step operation complete. Actually, this changes the
meaning of step slightly but significantly. Now, instead of execute to the next
line of source in my textual source view, it is execute until some thread hits the
next source statement in its context. Now, due to the nature of thread-switch-
ing timing, a debugger is much more intrusive than in other areas.

Breakpointing
Because breakpoints are special instructions placed in the executable text,
they are not intrinsically thread-specific. Any thread that executes the break-
point instruction will get the special breakpoint exception that will stop the
current thread as well as all the threads of its process. The illusion that
threads are independent is so valuable, however, that providing thread-spe-
cific breakpoints may be important. All that is required is a test at the time a
breakpoint is hit to see which thread just executed the breakpoint instruc-
tion. If it is not the user-specified thread, continue execution via the standard
four steps:

1. Replace breakpomt instruction with the original instruction.

2. Machine single-step over that instruction.
3. Re-insert the breakpoint instruction.
4. Continue the debuggee thread that stopped full speed.



Debugging GUI
Applications

Graphical User Interface (GUI) Applications

The key to GUI applications is that they are event-driven. These events are
time-independent messages—one for each different event. Mouse-down,
mouse-up, keyboard input, focus changes (Z-ordering) are examples of events
that each have special messages. There are also dedicated messages for higher
level constructs like dialog boxes, combo boxes, edit boxes, menus, and so on.
Special procedures written by the user but presented to and called by the sys-
tem get invoked as these events occur. These special procedures are called win-
dow procedures in Windows and PM-based systems. The same concept exists
in X-based UNIX systems as well. GUI applications, including a GUI debugger,
are completely dependent on these events (messages) for their correct behavior;
if messages are not properly processed bad behavior will resule—such as com-
plete unresponsiveness or a “hang.” Thus, tracking how these messages get
processed is a frequent task for someone debugging a GUI application.

An important distinction should be noted between the operating system and
the window manager. The operating system—as with UNIX—may have a
robust debugging API in place and yet if the window manager does not allow
a context switch to occur from one GUI application to another at any time,
the user will be unable to debug effectively. As noted earlier, Windows 3.1 and
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0S8/2 both had these issues making debuggers on these systems more intrusive
and much less robust than users find necessary. A well-designed GUI window
manager would allow a context switch to occur at any point. But, in practice,
all these systems fail in some situations, and the end result is a “hang” that
requires a reboot. This makes debugging these types of applications unreliable
when the bug involves advanced interactions with the windowing system. It
has led some users to opt for a remote dumb terminal to get the debugger out
of the way of this kind of complex GUI context switching.

The Heisenberg Principle in GUI Debuggers

The Heisenberg Principle refers to how difficult it is to completely measure
and observe a system without the observation itself perturbing the system
and changing its behavior. It is an extremely important principle for debug-
gers to fully understand and be vigilant about. GUI debuggers attempting to
debug event-based bugs in GUI applications have enormous problems in this
regard. The debugger changes the layout of memory, changes the number of
threads and processes in tables in the operating system’s data structures,
changes the scheduling behavior, and changes the ordering and volume of
windows messages traveling through the system. Also, focus issues, repaints
and the like change because the debugger windows and the debuggee win-
dows now interact in ways that do not occur when the debuggee is run inde-
pendently. All of these things and more can affect the debuggee. In the
extreme case, a bug can either appear or disappear only when run by the
debugger. We work hard to avoid this situation but it is sometimes unavoid-
able. This is why text-based debuggers that do not use messages are so valu-
able. A second machine controlling its debuggee can also solve this problem.'

Architectural Issues
Singie Input Queue

Any GUI application has a message loop, or more than one, that processes
GUI events. So does the GUI debugger. Some window systems have only one

'Remote debugging across the network is the best long-term solution as this prepares the debugger to
be used in a distributed application setting, which will be getting more and more common.



input queue shared by all applications. Each message is identified by the
window it is destined for unless it is a broadcast message to all windows.
Because of this, the GUI debugger and the GUI debuggee will interact some-
times in unfavorable ways. If the application is running and the user clicks
the mouse on a GUI debugger window, both the GUI debugger and the
debuggee will be affected. The debuggee will be notified that it is losing focus
and is having its window(s) Z-order changed. Many Windows messages are
simply posted to a queue for the target window, but some messages require
the sender to wait for a reply from the recipient. Unfortunately, Windows 3.x
contains a major flaw thar occurs in this scenario. The click on the GUI
debugger window caused a ‘reply requested’ message to be sent to the
debuggee. If a breakpoint stops the debuggee at that precise moment (easy
because putting breakpoints on the main event processing functions is com-
mon), there is no reply to that ‘reply requested’ message, which will hang the
sender. But the sender is the GUI debugger itself so it and the rest of the sys-
tem is completely hung by this scenario. Numerous OS issues like this will
come up for debugger designers. This may be because OS designers fre-
quently consider debuggers an afterthought.? Additionally, there are very few
debugger designers relative to the vast majority of OS consumers, so they are
not paid much attention. The only workaround for the scenario presented is
for the debugger to know very well that it is in trouble (easy because all the
information needed is readily available) and that the debuggee must immedi-
ately be continued or terminated.

Soft Mode versus Hard Mode

Because the mass market PC window systems have been based on a single
input queue system (Windows 3.x and OS/2 2.x), there is an important issue
for debugging GUI applications on these less advanced windowing systems.
At issue is whether normal processing of messages can proceed when the
application is stopped—soft mode—or if the entire system needs to become
locked to give exclusive control to the debugger—hard mode. Soft mode is
astate in which the debugger takes over message processing for the child
debuggee but otherwise all message processing for all other processes proceeds
normally—the system, except for the debuggee, all appear to operate as they
should. Hard mode is a special debugging state where only the debugger itself

 However, the user sees a failure in the debugger when the flaw is actually in the operating system.
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gets any messages—all other tasks will be suspended. Hard mode is used
whenever the debugger detects that the debuggee has the windowing system in
a state that will not allow normal operation. This may happen if the debuggee
is in the middle of receiving a Sent as opposed to a Posted message or if the
debuggee is using non-reentrant system resources (like system menus). The
way hard mode works is that the debugger makes a call to a LockInput ()
function. LockInput () does not allow the “locked™ debuggee to be
switched away from. Thus, once the debugger has locked input onto itself, no
other application (notably the debuggee) will have an opportunity to run.

Desirahle Features

Specific to GUI debugging, there are several features a debugger can and
should provide that specifically aid debugging messages flowing to and from
the GUI application.

Messagepoints

One important feature debuggers can provide specifically to aid the GUI
application developer is called messagepoints or Windows Message Break-
points. These are actually special “smart” breakpoints that are placed on
event handlers where window messages are being processed and that know
how ro “crack™ messages. Cracking messages is understanding the type of
message being passed and determining the meaning and contents of that mes-
sage’s parameters. Further refinements usually include the ability to select
which messages or classes of messages actually trigger the breakpoint to stop
the application. Some of the messages may not cause a stop but instead
might just be logged to some sort of textual log that records the events
received and their time ordering.

Event Logging

Tracing the flow of events is frequently an important clue to erroneous
behavior. A convenient mechanism to provide is an event-logging mecha-
nism. It may be closely related to the messagepoints feature just mentioned.
The debugger may place a special breakpoint at a key message-handling
procedure to implement this, or it may “hook™ into a system routine if the
operating system supports that. In any case, the messages as they flow into



and out of the debuggee are caprured in some textual log as the application
runs so that the user can peruse them later. Figure 10.1 shows a sample of

message logging.

Other Desirabie Features

A valuable utility called Winsight can and should be integrated into debug-
gers for GUI applications. The purpose is to discover the application’s win-
dow tree, the properties of each window, and the message traffic addressed
to each window. Additionally, when using a windowing class library such as
OWL or MFC, a source of confusion is the control flow path taken when
processing a particular message. This is especially confusing because the con-
trol flow may shift in and out of user written code. Inherent in the use of a
class library is the use of derivation. The natural question the debugger
should be able to answer is “ what is done at what level of derivation?” A
debugger could assist here by logging all entry points associated with the
processing of a message for example.
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Figure 10.1

Message logging view. A list of messages along with their types is shown. User interface
controls exist to “filter” down these messoges to just the desired type.
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Memory (Heap) Corruption Bugs

One sort of difficult, but common bug is memory overruns. Detection of this
sort of bug may occur a long time after and nowhere near its cause. This
makes it a very difficult class of bug to track down. And the standard break-
point/single-step/inspect scenario of debugging will not quickly help find the
cause of this type of bug. Instead, some sort of memory view may be needed,
especially if it can examine the special portion of memory where the program
heap is located. Cooperation from the run-time library may be required to
give the debugger a chance to correctly identify used versus free blocks of
memory in the heap. And if the debugger knows the format of heap headers
it can help detect where in the chain of used or free memory any corruption
occurs. Watchpoints placed judiciously may help determine where in the pro-
gram execution a detected corruption first occurs.
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Integrated Memory and Resource Tracking
A tool such as CodeGuard—a debugging tool included with Borland C++
5.0—that s integrated into the compiler and run-time library, can give a very
high degree of run-time debugging and can check for a variety of common
(but usually difficult-to-detect) errors. The kinds of errors that this sort of
tool can automatically detect includes the following:

¢ Wild pointers, including array bounds and heap corruption

e Stack overflow

e Memory and resource (e.g. file handles, window handles) leaks
¢ Function call parameter validation

e API return failures (even when not programmatically checked)
* Exceptions

® Uninitialized data access

¢ Constructor/destructor pairing

For all functions that CodeGuard will support, wrapper functions are created
that serve three purposes: resource leak detection, parameter validation, and
heap protection. These wrapper functions override the original versions. The
new overridden version adds information to the CodeGuard database,
checks passed parameters, and calls the original function. On return, before
the user call-site is given control, error returns from the function are noted.

At run-time, CodeGuard logs and reports any errors detected. If the debug-
ger is present these errors are shown via the debugger; otherwise, the errors
are logged to a file. Resources are tracked in a special-purpose database. It is
the responsibility of the wrapper functions to insert new resources into the
database with an associated handle and owner. As resources are freed the
handle and owner information is checked. And at program termination, all
unfreed resources are reported as “leaks.”

Memory regions get special treatment. All allocations and frees of memory
are closely tracked. Any attempts to access memory outside of its designated
boundaries will cause an error that either is logged or will look like an excep-
tion within the debugger. In addition, special patterns are written into unini-
tialized memory blocks so that later as these blocks are used, references

that use this memory as pointers or handles will fail. This is similar to the
strategy in the early 1980s used by Berkeley for UNIX, whereby they forced
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a non-zero value into virtual memory location 0 and suddenly masses of pro-
grams that had been behaving “correctly” suddenly broke horribly as all the
programs that had de-referenced null pointers got a rude surprise.

In order to correctly track accesses into user data areas and to the stack,
compiler support is needed. The compiler needs to emit special region infor-
mation that allows CodeGuard at run-time to verify that all accesses to user
data, including stack data, is not misbehaving and causing corruption.

Automatic Memory Corruption Detection

A completely different approach is used in tools like Nu-Mega’s Bounds-
Checker or a run-time library for error checking. This kind of tool inserts
code into the executable and hooks certain critical run-time library calls such
asmalloc () and free (). In addition, it inserts special breakpoints in the
executable that when hit cause the tool to make a series of special checks on
sentinel memory values and other structures that alert the user to memory
corruption problems. Unlike CodeGuard, BoundsChecker requires no recom-
pilation or relinking.

Reverse Execution

A user often overshoots the desired position in a program by erroneously
mvoking the “step” or “continue” command one time too many. The ability
to “undo”™ the most recent command or commands, sometimes described as
“executing the program backward,” is a seemingly appealing feature. But the
cost may not be warranted.

. The debugger must either record a trace of the execution of the program or
- checkpoint it periodically.

One method is to record a trace of each user-level command that alters the
state of the child process. By command, I mean a function of the debugger
that a user can selet such as “run to next breakpoint.” The “undo” com-
mand reruns the program from the beginning, re-executing all the saved
commands prior to the one the user wishes to stop at. This takes relatively

~ little time during normal execution, but the “undo™ operation itself may be
very slow if it takes a long time to re-execute the program to the desired
point. It may also fail if the program has side effects (such as the deletion of

|
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a file) that the debugger cannot reverse; this will cause the program to fail or
to execute differently the second time.

Another method is to record a checkpoint of the state of the child process
before performing each command that changes that state. The “undo” algo-
rithm then restores the appropriate checkpoint. This may require the debug-
ger to save a large amount of data, and it may make the normal execution of
each command much slower. It does allow the program to run ar full speed
between commands, and it fails only if irreversible side effects occurred after
the checkpoint in question.

Still another method is to trace the execution of the program at the machine
level, as shown in Algorithm 11.1,

For this algorithm, the “undo” command must read the trace backward,
restoring the recorded values as it does so, until it reaches the marker for the
desired command. Some optimizations are possible (for example, the trace
need only record the first change to a particular register or memory location
following the user’s command), but potentially it involves a very large

Algorithm 11.1  Reverse execution

Input Current instruction address.
Output  Adequate state saved to allow reverse execution later.

if (a user command alters the child process) then {
record a marker corresponding to this commanc;
if the command modifies a value directly ther {
record the value to be modified;
proceed with the modification;
} else if the cormand causes the child to execute {
for each instruction to be executed do {
if this instruction represents an edge of the flow
graph then
{
record its target address;
} else if this instruction modifies a register or
memory location then
{
record the address of the instruction and the
value prior to modification;
allow the instruction to execute normally;
)
) // end of do
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amount of information and makes normal execution much slower. Like the
other methods, it can fail if the program has irreversible side effects, but it is
better able to detect these side effects and warn the user about them (for
example, by noticing that the program is executing an instruction that traps
to the operating system).

Because each method has serious limitations, success in any particular situa-
tion depends on whether the user encounters those limitations. The first
method works well provided the program has no side effects and does not
take long to execute; the third method works well if restricted to situations
where the user is stepping the program a single instruction at a time, so that
its effect on execution speed is hidden. It’s probably wise to let the user dis-
able this feature in any case. In general, I believe this feature is so much work
and stll fraught with so much error that is not worth the engineering invest-
ment. It may be better to build an interpreter and allow a function to be
interpreted while the rest of the code is run natively at full speed. Implement-
ing reverse execution is much simpler on an interpreter because the inter-
preter affords a completely controlled run-time environment where complete
state snapshots and checkpoints are feasible.

Remote Debugging

Remote debugging is very useful to avoid the Heisenberg Principle and get
the debugger completely separated from the target application. Because no
debugger is using resources on the target machine there is almost no effect on
the target process that could change its behavior. Additionally, errors in the
remote program cannot impact the debugger and confuse it. Finally, using

. this rechnique you can debug very large programs and programs that destabi-
lize the operating system. In certain embedded application situations there is
no choice but to debug the embedded system remotely from a standard PC.
Many commercial debuggers provide some sort of remote debugging capabil-

| ity as do kernel debuggers, as we have just seen.

The remote debugger needs a small proxy debugger on the target machine
that has the basic hooks into both the operating system and the application
to enable debugging. But it can be kept extremely simple because it needs no
user interaction logic and no user interface elements whatsoever. The host
debugger, instead of creating a process and expecting the OS to notify it of

L
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debugging events, will instead send and receive commands via a serial cable
or the network to the target machine. This architecture is very simple, robust,
and easy to implement; however, it suffers from poor performance. Every-
where the debugger might initiate an action with the debuggee or wait for an
event from the debuggee it simply needs instead to communicate over the ser-
ial line to the target stub debugger via an established protocol. And usinga
language like C++ makes this especially simple because the user needs only to
create virtual methods for all the necessary debugger communications and
then implement each of them twice, once for the local debugging and once
for the remote.

Important tradeoffs must be considered when designing a remote debugging
system. Where does the source live? Where does the executable get created
on the local or remote system? Where should evaluation be done? And where
are symbols managed? These are not easy questions to answer but their
answers lead to very different design decisions and debuggee management.

Distributed Object Debugging

Applications constructed out of distributed objects will present new
challenges for debuggers. The programmer is thinking in terms of desired
behavior and functionality delivered to customers, not about the details of
what object resides where. This is similar to the way programmers think
about DLLs: There is a moment when the design of what goes in the DLL
is important but from then on, the fact that some function is in a DLL is
immaterial—the debugger should make this as transparent as possible. The
same fact holds for distributed objects. There was a point where the devel-
oper made a conscious decision to distribute the application’s objects in a
certain way but once that decision has been made, the debugger should not
make the details of the communication between objects visible—unless this
is what is being debugged.

This kind of transparent remote object debugging leads to additional burdens
on the debugger. When this application steps into the call to a remote object
function invocation, the debugger should stop the remote process, running
on a remote server across the network, at the first statement in the remote
function call. And when that function returns, the debugger step should next
stop back in the calling site on the client side of the network interface.



RPC is one mechanism used to implement distributed objects such as distrib-
uted COM objects in Network OLE from Microsoft. Given special notifica-
tions that a remote call is about to occur, plus the ability to attach over the
network to the remote object, the debugger is able to provide the necessary
functionality. Specifically, the debugger is subject to six notifications thar occur
during the round-trip of one COM RPC call. Three of these occur on the client
side, and three occur on the server side. The following is a distillation of infor-
mation from a specification of Network COM (MICROSOFT 1995).

Distributed object debugging is a much more complex issue and one that is
getting to be on the top of the “to do™ list for all development tool builders.
This 1s because the era of distributed objects is just about to begin. Several
approaches to distributed objects exist. RPC (Remote Procedure Call) was the
original approach. Using RPC, calls to functions performed locally are trans-
formed into requests passed over the network to a proxy object on the remote
end that reformulates these into the call to the desired function and then cap-
tures the result and passes it back to the initiator. The more sophisticated dis-
trnibuted object methods such as DSOM (Distributed System Object Model)
and Network OLE (a.k.a. Distributed OLE) use RPC internally so these
debugging discussions can focus on RPC and cover all these approaches.

Scenario: Singie-siep into Remote Function

Assume an application thar has some object or objects residing remotely is
being debugged. The developer is about to single-step into a function that
happens to exist on the remote machine. If this function were not remote, the
step would next stop execution at the first source statement inside the func-
tion. This i1s what should happen in the case where it is remote as well. The
developer has to assume the infrastructure of the RPC is essentially part of
the operating system and is not something to worry about—it should be
transparent to the debugging process. Thus, the scenarios that need to be
considered are stepping from the client to the server (where there may not yet
be a debugger active) and stopping in a breakpoint first in the server and

then stepping off the end of a function back to the client (where, again, there
may not yet be a debugger active). In both cases, as you can see, it may be
necessary to activate a new debugger after the fact. Thus, the architecture
must support the messages necessary to activate a new debugger remotely,
control that debugger remorely, get all the necessary notifications and data
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about the process remotely, and be able even to create a new debugger locally
if one is not already active.

RPC Debugging impiementation

Both the client and server sides of the RPC implementation must provide
hooks for a debugger. Through these hooks, the debugger must be able to
get information that a transfer from client to server or vice versa is about to
occur. A total of six norifications occur in the round-trip of one RPC call.

When a call to a remote function is made on the client side, the interface
proxy is actually executed. This proxy marshals the arguments into a
buffer and calls over to the server. As the interface proxy is acquiring the
buffer into which it will marshal the function arguments, it checks to see if
a debugger is active [ first notification] and, if so, it calls the first notifica-
tion function that an RPC transfer is about to happen. The debugger is
given a chance to add how much space it wants in the same buffer to be
used to control the remote debugger proxy. After the arguments are mar-
shaled into the buffer and as the interface proxy is about to send the buffer,
it again checks to see if a debugger is active [second notification] and, if so,
it allows the debugger now to fill its portion of the buffer with commands
to the remote debugger.

Now on the server side where this buffer of marshaled data with debugging
commands is being received, if there is a non-zero debug command portion
of the buffer or if debugging is already enabled on the server side [third noti-
fication), then either the debugger is started or the existing one is then noti-
fied to process its command. At this point the arguments are unmarshalled
and the function is invoked as requested. But the debugger has set special
breakpoints that cause the executing function to stop as if it had single-
stepped. Still on the server side, the return information is marshalled to be
sent back to the client. Again, if there is a debugger active [fourth notifica-
tion] the debugger is given the opportunity to make space in the buffer for its
command-response back to the client buffer. And after the return arguments
are marshalled, again [ fifth notification] the debugger places its command-
response into the buffer. The buffer now returns to the client side.

Back on the client side, as the RPC mechanism is about to return control to
the interface proxy, if a debugger is active or if the returning buffer contains




debugger commands [sixth notification), the debugger is given control to
deal with the command-response from the remote debugger.

Run-time Debugging Aids

In this section, I briefly touch on a specialized type of debugger that is
involved at run-time. I describe a type of in-circuit emulator call Soft-ICE,
window message monitors called Spy and Winsight and post-mortem analyz-
ers called Dr. Watson and Winspector.

In-circuit Emulators

Soft-ICE uses built-in facilities in the x86 CPUs to provide in-circuit emula-
tion (ICE)-like debugging functionality. To implement memory access break-
points (which we call watchpoints), Soft-ICE uses the paging and debug
registers built in to the 386 processor (which other debuggers use as well).
The key to how Soft-ICE works is that it runs before Windows runs—in fact,
Enhanced mode Windows runs on top of Soft-ICE. Soft-ICE can set a wide
variety of breakpoints, can disassemble code, and can control and inspect

| programs running on Windows as well as Windows itself [ScHULMAN 1992].
B So6:ICE is a low-level debugging tool very useful for debugging low-level
Windows interactions but is much less efficient in tracking down bugs in
high-level programs, as compared to the source-level debuggers discussed

.| throughout the rest of this book.

Spy Debuggers

Typical of message or event-based systems such as Windows, OS/2, or Motif
15 the need to monitor and track all events in the system, especially those
relating to the application being debugged. This kind of tool allows one to
track all messages and what actions cause which messages. Tools in this cate-
gory include Spy and Winsight. Figure 11.1 shows the output from Winsight.
Messages are usually broken down into categories such as mouse, keyboard,
and user-defined. The benefit of such tools is that in operating systems (or

- OS-like subsystems like Presentation Manager and Motif) that have graphi-
cal user interface systems built-in, messages control all applications, those
applications’ interactions with the operating system, and those applications’
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Figure 11.1
Winsight message spying.

interactions with the user. Given this, and given how difficult event-based
programming is to get right, messages frequently go awry in applications and
need to be debugged. Being able to monitor all system messages and their
handling in the running applications can be critical to solving these kinds of
problems. Most modern debuggers include a facility to watch messages inter-
acting with the program or programs that instance of the debugger is cur-
rently controlling but do not usually monitor all messages within the entire
operating system.

Post-mortem Debuggers

There is a class of diagnostic utilities that allow inspection of program
“dumps” after they have crashed. These are called post-mortem debuggers.
Dr. Watson and Winspector are diagnostic utilities closely related to debug-
gers. Unlike standard debuggers, tools like Dr. Watson and Winspector are
not tied to one running application. Instead, these kinds of utilities monitor
the operating system and its interactions with all running processes. This
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way, if a failure occurs that affects the operating system, the user can deter-
mine which application or combination of applications caused the problem.
Winspector is particularly powerful because it provides the call stack, func-
tions, and procedure names within the call stack, CPU register values, disas-
sembly of the instructions, and pertinent Windows information related to the
unhandled exception. Because operating systems are getting more robust and
protect themselves and other running applications from errant programs,
these kinds of tools will have less and less utility.

Parallel Architecture Debugging

Parallel processing uses multiple independent processing units joined together
in some network topology to speed execution of a single program (Fox
1987). The push for parallel processing is expected to increase as single-
processor computers get more difficult and expensive to build. In some cases
we have or will have shortly run into insurmountable physical barriers. Fun-
damentally diverging architectures—called Single Instruction Multiple Data
{SIMD) and Multiple Instruction Multiple Data (MIMD)}—exist as ways to
provide parallelism. SIMD—also sometimes referred to as massively paral-
lel—has a large number, typically over 1000, relatively simple processors all
acting in lock-step on different data but executing the same instruction at the
same time on that data. MIMD has a relatively smaller number of more
complex, even standard off-the-shelf microprocessors, each operating on
independent threads of execution, occasionally synchronizing with each

other to complete a single program. Debugging problems on these architec-
tures are numerous and difficult.

Huge Data Inspection Probiems

One of the foremost issues facing the debugger designer on parallel architec-
tures, especially massively parallel architectures, is the amount of data

involved in typical applications that the user may want to inspect or visualize.
Massively parallel machines and particularly, data parallel variants of these,
are by nature very data-intensive. Typical data inspection in standard architec-
tures uses a textual display, possibly adding a nice graphical layout, which is
completely impractical when the amount of data is 100,000 or even a million
times greater. For one thing, responsiveness if using the same approach for

201
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data access would be unacceptable. Imagine if, when you go to inspect a
variable used as an index into local data stored at each processor, you had
32,000 values displayed for you. At the very least, an incremental approach
to data access must be employed. In addition, some sort of graphical form of
dara inspection is a dramatic improvement to the user because the graphical
representation has a much higher information content, pixel for pixel.

A useful SIMD application to illustrate my point is seismic data reduction.
Each of 32, 768 processors has 4k of local data storing information about
whar was recorded abur a unique location in the earth in 3-D space. The
data was initially filled in from sonar seismic data sensing (thumping the
ground hard and listening to the echo). Now the algorithm starts looking for
patterns to determine if there might be a large space containing a valuble
resource such as gas or oil. Each processor starts comparing its local data to
its neighbors doing smoothing, error correction, noise reduction and the like,
But an error in the algorithm corrupts some data and the defect needs to be
located and corrected. This is now the task facing the debugger and its user
with 32, 768 times 4,000 data locations to examine as the program is break-

pointed or single-stepped.

One approach used in massively parallel debuggers is a simple two-dimen-
sional slice through the data where a dot is placed at the x,y position of the
data element if the value stored there when applied to a simple user-specified
expression resolves to true. The simplest expression might be x == <value>,
but thresholding works better for most queries. Color is useful, too. In
debugging situations, frequently what is desired is a quick visual inspection
for out-of-range values. Values outside some specified range can be displayed
in bright red to stand out.

The goal is to present large quantities of data in such a fashion that patterns
that point to problems can be discerned and isolated quickly. Arrays in FOR-
TRAN and parallel data in MPL are mapped onto the array of SIMD proces-
sors by the compilers. There the data elements interact with other data in
other processors. Over the course of a computation, the data may form dis-
tinct patterns, depending on the algorithms being applied. The user model is
to take a snapshot at some critical moment and to view this data to search
for patterns or anomalies that point to problems. A simple transformation on
the data can allow its presentarion graphically as color or gray-scale dots.



And, in the case of FORTRAN arrays, a subselection step can provide a 2D
slice of data that is presentable on a bit-mapped screen.

Various ways to subselect huge data sets are needed to make them manage-
able. FORTRAN programs written for parallel machines tend to use arrays
that are extremely large. One obvious way to slice the data is to retrieve only
that subset of the data currently viewed and only as the view is moved is
more data retrieved—another instance of lazy data retrieval. This is an appli-
cation of the deferred decision theme that impacts the user by providing bet-
ter interactive response. Using this technique, scrolling through massively
parallel data sets is possible and quite effective. Another technique of subse-
lection is direct use of FORTRAN 90 triplet array slice notation such that the
user specifies start, end, and step increment throughout the range to cut
down on the amount of data to view.

SIMD Architecture Issues

Multiprocessor Breakpoini issues

On some multiprocessor architectures, source statements generate code for
two or more cooperating processors. An example of this is the MasPar fam-
ily of SIMD Massively Parallel machines [NickoLLs 1990, BLANK 1990].
There the scalar front-end and the control unit for the parallel array both
receive instructions generated from a single FORTRAN 90 source statement.
An issue for a debugger then is the correct handling of a stop at a breakpoint
set on such a statement, This may mean that a logical breakpoint may need
to be able to refer to two quite different physical breakpoints on two dis-
anctly different processors. Further, it may be necessary for the debugger to
individually control the two different processors so that both match up with
the specified physical address in a logical breakpoint. And this may imply
that when one processor activates its physical breakpoint the logical activa-
tion must wait until the second physical activation occurs. Only then, when
both sides are stopped at the correct locations, is the breakpoint ready to
report a stop to the user.

Multiprocessor Source Stepping

Multiprocessors will be increasingly prevalent in the future. This will compli-
cate many debuggers’ algorithms, especially single-step. Loosely cooperating
processors can be debugged 1n a fashion similar to debugging separate
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processes on today’s uniprocessors, albeit with interesting synchronization
problems to work out. But it is the very closely cooperating multiprocessors
that will provide the most challenge to debuggers. The close level of coopera-
tion I refer to occurs when a single line of source code emits code that will be
executed either synchronously or asynchronously on more than one proces-
sor. The current and next generations of massively parallel SIMD architec-
tures fall into this category [ROSENBERG 1988]. Execution can be thought of
as passing the baton of control from one processor to another. Usually, one
processor passes the baton and idles until the other processor passes the
baton back (synchronous). The asynchronous case can be simplified to con-
form to the synchronous one.

Single-step must follow this baton. This is only possible if the single-step
algorithm focuses exclusively on the active processor and holds the other
processor fixed, unable to execute. Now as the baton is about to be passed
from one processor to the other the debugger must be notified. This is called
stall detection. The debugger gets a notification that the currently executing
processor is about to stall just as it gets notifications about breakpoints. The
stalling processor is now stopped so it cannot execute any further, and the
single-step algorithm proceeds on the newly activated processor. In other
respects the single-step algorithm behaves normally. It still looks at each stop-
ping point to see if execution has advanced to a breakpointable statement.
And special breakpoints are still used to proceed rapidly over large blocks of
instructions. The MasPar MP-1 and MP-2 debugger utilizes the stall detec-
tion built into the firmware of the MasPar architecture to implement this
modified single-step algorithm. A FORTRAN 90 compiler generates code
simultaneously for a standard workstation front-end and the special SIMD
array of processors. Source-level single-step may require stepping through
front-end code that switches to SIMD array code and back several rimes
before completing the step.



Debugging
Optimized
Code

Much prior work has been done on debugging optimized code on this sub-
ject [COPPERMAN 1993; COUTANT 1988; HENNESSEY 1982; ZELWEGGER 1984].
At issue is the importance of compiler optimizations for better performing
final applications and how these optimizations are in direct conflict with the
goal of a debugger in trying to present as much truthful information about
the application as possible back to the developer. In this chapter I will discuss
typical and high-impact optimizations and how RISC architectures make
these optimizations less and less optional. Then I will discuss the problems
these optimizations present for source-level symbolic debuggers. Yet, the goal
must be to keep as close to the same optimizations as will be used in the ship-
ping application as possible. I will briefly examine the optimizations that
work well with debuggers and finally will discuss the rew techniques that
must be applied to next-generation debuggers to allow them to handle higher
and higher levels of optimizations in applications.
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Importance of Optimizations

Optimizations are transformations performed on a program to decrease exe-
cution time or, in some cases, to decrease space utilization. These transforma-
tions are performed by the compiler or by a related component during the
compilation process. Compilation involves transforming human-readable
source text into machine-executable binary code. Optimizations can be per-
formed at any of the stages of the overall compilation process. The goal of
the optimizations is to create a program that has exactly the same behavior
as the un-optimized version but executes faster or takes up less space in

memory and on disk, or both.

Optimizations may cause statements to be moved or deleted. Variables may
be assigned at different times and may be assigned to registers as opposed to
memory as compared to the un-optimized version. The flow of control of the
program may be changed from the un-optimized version. Unused variables
may be eliminated.

The effects of these kinds of optimizarions can be quite significant in perfor-
mance or space requirements, or both. For example, if a variable assignment
located inside a loop is moved outside the loop, the effect will be dramatic
because that assignment will not occur for any iterations of the loop. If that
assignment is one of only two inside that loop, moving it outside the loop
will create a 2X speedup of that loop at run-time.

Impact of RISC on Optimizations

RISC chips have fewer instructions that execute faster. But to get these fixed-
size instructions to execute as fast as possible, there must be 2 minimum of
memory accesses. RISC machines tend to have a larger number of registers
and tend to have much simpler memory access models, which leads to want-
ing to keep as much data as possible in the much faster registers. Addition-
ally, RISC machines in use today also employ a variety of other techniques to
minimize memory accesses. One of these is branch delay slots, as described
earlier in the section on the MIPS architecture.

The RISC architecture requires and benefits from a much higher degree of
optimization than non-RISC chips. Optimizations that focus on minimizing



memory accesses and maximizing how long crucial variables are kept in reg-
isters give the biggest payoff. The performance penalty from not optimizing
for register usage is so severe on RISC architectures that users do not want to
turn off these optimizations, not even during debugging. Fortunately, these
register allocation optimizations are among the most straightforward opti-
mizations to handle within the debugger (see “Optimizations Debugged in
Practice,” later in this chapter).

Difficulty of Debugging Optimized Programs

When statements move during optimization, if the compiler and debugger are
not in very close communication about what changed, the debugger will not
be prepared ro aid the user in setting a breakpoint on that statement. Or
worse, the debugger will nor be truthful and will actually set the breakpoint at
the wrong location. The same issue arises when an exception occurs and the
debugger is responsible for reporting the source location for that exception
and again, it may not be truthful or be able to track down this moved source
statement at all. If variables get moved during optimization, either to new
memory locations or to registers, or if they get eliminated completely, the
debugger may not be able to report their values when the user needs them.

Why Keep Optimizations during Debugging?

In spite of best efforts, optimizations can and do frequently change the
behavior of a program. Performance problems become bugs if they are severe
enough. The better the performance of the application during debugging, the
faster the debugging process will proceed. These reasons, as well as others,
strongly mortivate application developers to want to keep the optimizations
on during debugging. However, the normal development paradigm has
always been to turn off optimizations during debugging; when the applica-
tion is fully debugged and ready to be deployed, the full optimizations are
tumed on and the application is shipped to its end users. With the advent of
RISC processors the motivation for debuggers that can handle significant
compiler optimizations becomes even more compelling. A side benefit of
debuggers that can “un-wind” a fairly high degree of optimizations is that
users would be more exposed to and would therefore learn more about and
appreciate these kinds of optimizations.
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Quick Overview of Compiler Optimizations

In this book we will nor discuss the details of any particular compiler opti-
mizations—for that treatment refer to either AHO 1986 or Fiscter 1988. In
this section we will list some common optimizations and briefly explain what
these optimizations do to the code and how that might affect the debugger.

Code Hoisting

If an expression is very busy at a particular point, the expression can be
computed and its value saved for subsequent use. This may not save time, but
it may by very effective in saving space because an expression that might have
been computed many times (but is invariant) is now computed once in a com-
mon ancestor basic block. Because this is a form of code motion, the debugger
will be fooled into thinking it can present the expression at the point where it
was originally computed, but, in fact, its value was precomputed. The debugger
would need to be told the new location of the code for this hoisted expression.

Code Motion

An important and very effective optimization is the movement of code that is
invariant from within the loop to outside the loop. If an expression will eval-
uate to the same value no matter how many times the loop is executed, the
expression inside the loop is wasted time. A good example of this would be:

while ( i <= limit-2 ) // note limit-2 never changes

Code motion would instead write this as two statements that would execute
much faster and would be especially beneficial if the loop is executed a large
number of times.

t = limit-2;

while (i <= t )
This would be a difficult situation for a debugger because as the user goes to
inspect limit at the original location, the expression involving limit is no
longer there. However, if the debugger is adequately informed about what
happened, this could be debugged correctly.

Constant Folding
The process of deducing ar compile time that the value of an expression is a
constant and saving that constant for use instead of the expression is called
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constant folding. This saves both time and space. Because the standard tech-
nique for constant folding is to detect the expression is a constant, evaluate
the expression by executing the code for it in place within the compiler, and
replace uses of it with the result, the debugger will not ever be able to find the
code for this expression. This means that the expression cannot be evaluated
at debug time and that the components of the expression cannot be examined.

Copy Propagation

We may choose to delay an assignment (or copy) from one variable to
another and instead use the right-hand value subsequently wherever the left-
hand value had originally been used.

A = B;
/* below here everywhere A is used substitute B and
* try to eliminate the need for this assignment at all
*/
The purpose of this is to eliminate the need to make the original assignment
at all and thereby eliminate some code we didn’t need. The debugger can eas-
ily get lost on this optimization because A may have no value in it at all (and
may be at risk of being eliminated itself).

Dead Store Elimination
If a variable or expression is stored in either a new variable or a register but
is never used again after that, the store was useless and should not occur.
Obviously, if the store is eliminated and the debugger is asked to inspect the
variable or register where the store was targeted, it will either find the wrong
. value or won’t be able to report at all. This can be handled the same way
| that standard register allocation optimizations are handled.

Dead Variable Elimination

Similar to dead store elimination—which is about removing unneeded code
that modifies either a memory location or a register—dead variable elimina-
tion is about removing the use of a variable (and any associated memory
assigned to it) that is never used after a certain point. The best that we can
hope for from a debugger in this case is that when inspected, the debugger
reports a dead variable as being “dead™ and perhaps gives us a pointer to
where it was last live.

b



overloaded operators). There is always a very important (and potentially
very expensive) trade-off between speed and space on this type of expansion
because an in-line’d procedure may get in-line’d every time it is used. This is
a very difficult problem for a debugger. Most debuggers are rold nothing by
the compiler, and it’s left up to the user to figure out how to debug the in-
line’d procedure. In most cases, the user sees the call in the source code and
the body is invisible; the surprise occurs when trying to “step into” the func-
tion body (which does not exist).

Leop Unrelling

Normally we try to move as much code as possible outside of the loop and
try to minimize the amount of code executed within the loop. But if the loop
iteration count is very low, the compuration on the index variable controlling
how many times to pass through the loop is actually substantial, and elimi-
nating it becomes the goal. So we may actually see the compiler take the
body of the loop and replicate it the number of times we were to pass
through the loop—all so that the index variable and the increment and test
of it can be eliminated. The debugger can be told by the compiler what has
happened and it can fairly easily go to each replicated body of the loop when
the loop index variable would have been incremented.

Cross Jumping

This is a control-flow optimization used only to minimize code storage space
- utilization. It creates a many-to-one mapping between the original source

code and the compiler-generated optimized code. In this optimization, the

compiler detects that two portions of code share a common tail of execution

so that one of the two is eliminated and its execution jumps to the common

thread instead of executing in-line as written.

i Problems Optimizations Create for Debuggers

 If statements move or the program’s flow of control changes it is hard to
report the correct location of exceptions and for the user to set breakpoints.
If variables are eliminated or the same storage location is used by several
variables, inspecting a variable may give incorrect results or correct results
for the wrong variable. Even single-step may just confuse the user if the
ordering of statements is changed sufficiently. Optimizations can sufficiently
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change things that, if not compensated for by the debugger, will leave the
user unable to trust the debugger’s context information. This violates the
most basic first step in diagnosing a bug: Determine that the program reaches
an incorrect state during execution. We now go through several examples of
the kinds of symptoms compiler optimizations can have on an unsuspecting
debugger (and its user).

Variable Is Unknown to Debugger

Table 12.1 lists three optimizations that can cause the variable to be
unknown to the debugger without careful work on the compiler information
provided to the debugger.

Reported Varlable Value Is Incorrect
A common problem data flow optimizations may cause the debugger is that
the variable as presented will actually have an incorrect value, This could be

TABLE 12,1 Why Variable May Be Unknown in the Face of Three Common Optimizations

OPTIMIZATION WHY VARIABLE MAY BE UNKNOWN
T0 DEBUGGER
Constant propagation The compiler, when presented with a vanable whose

value is invariant during its entire scope, may elimi-
nate the variable and instead use the constant value
wherever the variable value was used. A debugger
presented with this would then report the original

variable as unknown, which would be unexpected to

the user.
Induction variable The compiler performing induction variable elimina-
elimination tion may combine variables and simplify expres-

sions to improve efficiency. When the debugger
attempts to inspect the original variable, again it
appears as if this variable is unknown—as if it

never existed.
Dead variable A variable that is still technically in scope but is
elimination never referenced again can be eliminated and actu-

ally not have valid storage associated with it any
longer. Again, the debugger requesting its value
after elimination will be presented with information
implying the variable is unknown.



caused by having the compiler optimization delay the assignment so that
when the debugger inspects that location it has not yet been updated with the
actual value of the inspected variable. If an assignment is hoisted to an earlier
spot in the computation, the value is available earlier than one would expect
from the program as written. Storage allocation optimizations can mean that
the variable’s value is reported incorrectly because the value is actually being
stored somewhere else, such as in a register, at that point in the computation.
Some specific optimizations and the ways they make variable values incorrect
when inspected are listed in Table 12.2.

No Corresponding Object Code

The most obvious problem caused by eliminated code is that the user cannot
place breakpoints on the statement eliminated. Unless the compiler gets the
information back to the statement maps, the user will believe this statement is
still executable and the breakpoint placed here will acrually map to the textu-
ally next statement, which may not be a safe assumption. If the statement map
is updared correctly, an eliminated statement will look to the user like a com-
ment, which cannot have a breakpoint placed on it. The user may still be quite
confused about why this statement suddenly cannot be seen during execution.

One-to-Many and Many-to-One Mapping Problems
Control-flow optimizations can create non-monotonic mappings berween the
original source code and the optimized code. Many-to-one problems are cre-
ated in optimizations like cross-jumping, where duplicate code paths are
merged into one common tail and the duplicate path 1s deleted. And one-to-
many problems are created in optimizations like in-line procedure expansion
(and C++ templates), where a single piece of source code now exists in multi-
ple locations in the final optimizated executable code. Now setting a break-
point in the original source code can turn into many breakpoints for each
place that procedure was in-lined.

Optimizations Debugged in Practice

From the viewpoint of a symbolic debugger, the ideal compiler would gener-
‘ ate very straightforward machine code to implement the source program.
Every variable would exist in a single location in memory, and every source
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TABLE 12.2 Why Certain Optimizations Cause Variable Values To Be Incorrect

OPTIMIZATION
Storage overlaying

Copy propagation

Global register

Code motion

WHY VARIABLE VALUES MAY BE INCORRECT

If two variables, | and j, are never used at the same
point in the computation, the compiler may usethe
same memory location for them. If the debugger tries to
inspect i when that memory location actually is being
used by j, the user will not be getting what he or she
expected.

in copy propogation, when two variables have the
same value due to an assignment, the assignment can
be eliminated and use of the left-hand side vanable is
replaced by the value of the rght-hand side variable.
Therefore, inspection of the left-hand side vanabie wil
get the wrong result because the assignment never
actually occurred.

As the compiler determines that a vanable is in high
demand, it places the value of this vanable in a faster
register and does not force the value to be updated to
its permanent memory location until some later time. If
during this time, the debugger user inspects this vari-
able, the value will still be the value at the time it was
copied to the register, not its current value.

Moving code outside of a loop because it is invariant
saves a lot of time during computation of long loops,
but if the user goes to inspect the result of an assign-
ment hoisted outside of the loop before the loop has
actually run, the value Is incorrect (it shouldn't have
already been saved).

statement would generate a single, contiguous block of instructions. Obvi-
ously, the more aggressively a compiler optimizes the code, the further it
strays from this “ideal.” Unless the debugger can cope with optimizations, it
will either fail to help the user examine the program or—even worse—lead

the user astray.

The earliest answer to this problem was to tell the user not to turn on com-
piler optimizations until he or she had finished debugging the program. This
is unsatisfactory for two reasons. First, a compiler may perform transforma-
tions that look like “optimizations” to the debugger even when its optimiza-
tion phase is turned off. Second, many bugs manifest themselves only with
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optimizations enabled. Sometimes these signify bugs in the optimizer; more
often, they signify bugs in the source program. For example, consider a
program that refers to an uninitialized pointer. If the first reference tests for
anon-nil value, the unoptimized version may well proceed harmlessly on
many machines because the pointer is allocated to memory that is initially
zero; it will fail on the same machines once the pointer is allocated to a regis-
ter containing a non-zero value left over from the variable that previously

occupied that register.

As that example illustrates, there exists a legitimate need to debug optimized
code; further, the compiler writer has a vested interest in helping the debug-
ger to do so. That’s fortunate because half of the work takes place within the
compiler itself, which must give to the debugger a description of the transfor-
mations it has made.

The other half of the work takes place inside the debugger itself, which must
make use of the compiler’s description of these transformations. Sometimes
the debugger can use knowledge of the transformations to conceal them from
the user entirely. For example, if the debugger knows that a variable has been
allocated to a register during part of its lifetime, the debugger can read the
value from that register instead of from the usual location in memory.

But it’s important to acknowledge at the outset that in many cases, it is
impossible to provide transparent debugging of the original source code
(except by either de-optimizing the code or providing a duplicate unopti-
mized version—both of which defeat the intent of debugging the actual opti-
mized code).

For example, consider the “return” statements in this function:

float
find _coeff(float £, float x[], float yI[])
{
for (i = 0; i < (int) £; i++)
{
if (f < y[(int) £])
return x[(int) £1;
if (f == y[(int) £])
break;
)
return x[(int) f];
)
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The compiler may emit a single block of code that computes “x|(int) f]” and
returns from the function. It then replaces each “return”™ statement with a
jump to that block of code. If the user asks to set a breakpoint at one of these
return statements, there is no straightforward way to do so without stopping
at both. Even worse, if the program unexpectedly encounters a fault within
this block of code, the debugger cannot tell the user which source statement
was executing.

As another example, consider a loop containing an invariant assignment:

for (i = 0; i < limit; i++)
{
4 = limit / 2;
if {x[i] > x[3)])
swap(x, i, j):
]

The compiler may choose to execute the assignment to | before entering the
loop. In this case, the debugger can obey the user’s request to set a break-
point on the assignment statement; but if it does so, a user who expects to
stop there and print the values of 1 and x on each iteration will be confused
to find that i has not yet been defined and that the loop appears to execute
only once.

Two very different approaches have been proposed to deal with the impossi-
ble cases:
1. Let the user operate on the source program, but deny requests that
have no validity within the transformed program.

2. Let the user operate on the transformed program instead of the
source, requiring the user ro understand the correspondence.

The first approach would solve our example cases by showing the user a list
of source statements with markings to indicate which ones are “safe” for set-
ting breakpoints. The invariant assignment statement would not be “safe.”
Either the merged “return” statements would be marked unsafe, or the
debugger would show the user that setting a breakpoint on one will set
breakpoints on the others as well.

The second approach would show the user a set of statements where the
loop-invariant assignment actually preceded the loop, and where each retum
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statement was replaced with a goto statement targeting a common expres-
sion at the end of the function. The user would compare this with the origi-
nal program and decide where and how to set breakpoints. Stepping back
from the impossible cases for now, let’s consider how the compiler can
describe to the debugger the transformations it performs, many of which will
be more tractable. We will address only a few common ones; there is no limit
to the variety of optimizations that might occur, and by their nature, they
tend to require multiple, ad hoc solutions.

Register Allocation Optimizations

When a simple-minded compiler generates code for an expression, it loads
the value of each variable from its “home™ location in memory, performs
the computation, and (if the expression is assigned to a target variable)
stores the result back into the home location of the target. A good register
allocator strives to hold any frequently used value in a register to avoid the
cost of loading it from memory prior to each computation and storing it
back after each assignment. Thus, the value of a particular variable may
live in memory during some portion of its lifetime and in one or more reg-
isters during other portions. If the debugger were to look in memory at a
point where the value lives in a register, it would obtain at best a “stale”
value and at worst an undefined one. The debugging tables can solve the
problem by associating with each variable an array of triples, where the
first element gives an mstruction address, the second element gives a num-
ber of instructions, and the third gives a location (a memory address, a reg-
ister name, or a special value indicating the variable is not live during these
instructions). These are sometimes known as “home tables,” as shown in

Figure 12.1.

These home tables are convenient only for local variables because the linker
would need to coalesce tables from multiple compilations to describe global
variables. A better approach in this regard is to invert the home tables: For
each procedure, emit an array of triples for each register, showing which
variable lives in that register during each range of instructions within the pro-
cedure. The debugger would then use the home location associated with a
given variable unless overridden by the home table for a register within the
current function.
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Also relative to the Location rclative to
program counter the Start_location /_ the program counter
variables “end of that starts this
life” (not needed - “lifetime™
because next entry —/End_locatlon
gives this)
Location_type — Might be “memory”

If the variable is in or “register” or
memory this is its ndress “dead” — tells how to
address; ifits ina imterpret next field
register this is the _/
register number

Figure 12.1

Register allocation “home table.” Part of a linked list of “home tables” produced by
the optimizing compiler when doing register allocation that is placed in the debugging tables
to enable the debugger to determine the correct location for a variable.

Induction Varlable Ellmination

One can extend the format of home tables to indicate that a value is a func-
tion of one or more different variables; then the debugger can evaluate an
induction variable by looking up the value of the loop index and performing
a computation on that.

Common Subexpression Ellmination

As mentioned earlier, the compiler maintains data structures that describe the
generated program for use by the optimizer: Several problems can be solved
by annotating these data structures and passing them along to the debugger
[HENNESSEY 1979].

Typically an optimizer uses a flow graph whose nodes are basic blocks; each
basic block describes a series of computations that do not branch, and the
edges between basic blocks represent branching. Within each basic block, the
optimizer builds a directed acyclic graph (DAG) describing data dependen-
cies. Local optimizations use the DAG to rearrange computations within a
basic block; global optimizations move computations between nodes or
rearrange the structure of the graph.




Common subexpression elimination and value propagation can cause a value
both to be computed “early” and to appear in the “wrong” variable; instruc-
tion scheduling can cause it to be computed either early or late. These phe-
nomena cause problems when a fault during the computation requires the
debugger to report where the problem occurred, or when the user asks for
the value of a variable whose value exists but is in the wrong place. By anno-
tating each node of the DAG with a list of variables and the range of inter-
mediate-code operations over which the node represents each variable, the
compiler can tell the debugger where to find the value of a variable (or that
the value does not exist) at each point. This information could be presented
directly or translated into the home tables described earlier.



Future Trends

Expectations for debugger features are rising at a much faster pace by far
than the capability of production debuggers. In some cases, the items dis-
cussed in this chapter do exist in some debuggers. However, these items
either are just showing up in debuggers (and hence are not well debugged or
understood) or are still in the planning stages.

e C/S or distributed or n-tier debugging

¢ Mixed compiled-interpreted debugging

¢ Intimate knowledge of object-model and integration into debugging
processes

« Ever-tighter integration with other tools such as compilers, editors,
browsers, and IDEs in general

¢ Improvements in thread support
¢ Profiling and other performance monitoring functions
* More help with the obstreperous bugs such as memory corruption

* Higher levels of optimization thoroughly understood by the debugger
and presentation of scrupulously truthful information

¢ Much faster edit-compile-debug rurnaround time (at least 10X faster
necessary)

¢ Completely scriptable debugger that allows users to customize exten-
sively

* True and dependable firewall between the debugger, the application it is
debugging, and the operating system




Glossary

/proc  An interface to processes provided on many UNIX systems since
about 1988. An alternative to ptrace(), this is a more general process inter-
face that supports debuggers and other utilities needing information or con-
trol over running processes.

4GL  Short for fourth-generation language, it groups together a series of
languages—usually interpreted—that are used primarily for business types of
applications. 3GLs are the standard compiled programming languages like
C, C++, Ada. An example of a 4GL is Visual Basic.

activation record A term used interchangeably with “stack frame.” It is
the record stored in the per-program memory space called the stack that
keeps track of all information necessary during execution of a program
about a function as a new function is being called.

algorithms  Structured recipes or formulas for describing a series of steps
that must be performed to achieve a desired goal. This book describes
numerous algorithms used within debuggers that describe the steps per-
formed by the debugger to accomplish a desired function (e.g., source-level
single-step).

animation In this context, the automatic processing of slowed-down exe-
cution of a program showing the results of each step within the current
debugger views. All variable views are updated, and the source view shows
the current execution point so that the user gets a chance to see execution
proceed without continuously requesting single-step operations.

API Application Program Interface. A collection of function calls to a sub-
system (usually a DLL or class library) usually related in some way that a
program uses to build up functionality from well-defined, well-tested compo-
nents. The debug API provided by the operaring system is a series of function
calls with well-specified parameters giving the debugger writer a solid set of
functionality on which a working debugger can be built.
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assertion A programmatic approach to error detection. Typically, a pro-
grammer will place assertions within a program to be compiled prior to exe-
cution. During execution, usually under the control of some global
parameter, the assertions become test code checking for correctness of vari-
able values.

attach The ability for the debugger to gain control of a running applica-
tion. [nstead of having the debugger create the debuggee process and start its
execution, attach allows the debugger to gain complete debugging control of
a process started independently and perhaps stopped at a fault.

Basic A 4GL programming language usually interpreted as opposed to
being compiled. Debuggers for Basic therefore are much simpler than for
compiled languages because interpreters and debuggers can be tightly inte-
grated with complete control over the execution environment.

BoundsChecker A production debugging tool from Nu-Mega that checks
for memory corruption, overruns, and resource leaks on applications written
to run under flavors of the Windows operating system.

branch delay slot On some RISC processors, in order to optimize speed,
the instruction fetched after a jump or branch instruction is actually the
instruction that should have logically been executed before the branch, bur is
instead executed while the processor is fetching the memory addressed by the
branch instruction. This feature is a source of complication for debuggers.

branch prediction Some modern CPUs to optimize performance attempt
to predict which of two possible addresses will be the actual targer of a
branch based on a number of factors determined during execution and
prefetch the instructions at the predicted address to save time when the CPU
actually gets to computing the branch to take.

breakpoints Special points in the running code that are to be treated as
“probe points™ where special debugger-controlled events will occur. Typically
this will be a point where the execution of the application is to stop so that
the user can look around at context information to determine how the pro-
gram is behaving. The breakpoints may be actual special instructions placed
in the executing code stream, or they may be addresses stored in special regis-
ters that the processor checks to see if the current execution point and the
value in a debug register are a match.

browsing An activity related to debugging, browsing is the process of
examining the structure and current values of program variables.



bug A simple, colloquial term for an error or programming defect. The
term bug comes from a story that an early tube-based computer contained a
moth (which is not actually even a bug) that shorted out two leads and
caused the program to behave incorrectly.

(/C++ The most prevalent 3GL (general-purpose programming language)
in use today. These are compiled languages in which the compiler translates
the program text into native machine instructions. Many of the principles in
this book are focused on debugging these types of languages.

callback A type of function that is passed to a host function as a pointer
that the host function calls when certain conditions apply. If the host func-
tion has no debug information, most debuggers also lose track of the call-
back function as it “disappears” inside the host function. Because this style
of programming has become prevalent this debugger problem is severe and
needs to be addressed broadly.

calling conventions The specific information and sequencing of that
information on the stack as a new function is called must be known to sys-
tems that must interact with the compiled code such as debuggers.

child process A process that is initiated by an already existing process is
considered the child of the initiating process, which in turn is known as the
parent process. Typical debugging scenarios call for the debugger to be the

parent process of the debuggee process it creates, which is then its child.

code hoisting If an expression is very busy at a particular point, the
expression can be computed and its value saved for subsequent use. This may
not save time but may by very effective in saving space because an expression
that might have been computed many times (but is invariant) is now com-
puted once in a common ancestor basic block.

code motion An important and very effective optimization is the move-
ment of code that is invariant from within the loop to outside the loop. If an
expression will evaluate to the same value no matter how many times the
loop is executed, the expression inside the loop is wasted time.

code patching Breakpoints are also the basis for more extreme code modi-
fications attempted by some debuggers. Instead of inserting a special break-
point instruction at a given location and saving the original instruction away
in debugger memory, any instruction could be inserted into the executable
code stream by the debugger. Specifically, a branch or jump instruction could
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be inserted that jumps to an entire function patched into the program’s code
space by the debugger to change program behavior in some important way.

CodeGuard A debugging tool from Borland that, like BoundsChecker,
detects memory corruption and resource leaks. In this case, the tool is inte-
grated with a debugger so that detected problems are reported in the same
way as standard defects detected by the debugger.

COM Microsoft’s Common Object Model—a standard way in which soft-
ware is constructed into standard objects that have predictable interfaces.
Distributed-COM presents these same standard interfaces across a distrib-
uted network. This presents some challenges to debuggers, but the OS ven-
dors are trying to make these remote objects debuggable in the same way as
local ones. It remains to be seen how seamless this really is.

common subexpression elimination When a series of expressions contain
common components or subexpressions, these subexpressions can be com-
bined and not recomputed at run-time, saving both time and space. The issue
for the debugger is that when the user goes to examine the components of the
expression where the subexpression has been changed by the compiler, unless
the compiler went to great lengths to tell the debugger what it should do to
compensate, the user will not get truthful results.

compiler The tool that translates human-readable program text into exe-
cutable code. Typically a compiler directly generates machine-executable
code, but it may do so in conjunction with an assembler or it may generate
instructions for a “virtual machine.” In either case, the debugger is very
dependent on the compiler for substantial ancillary information necessary for
the debugger to make sense of and perform the necessary mappings during

debugging.

conditional breakpoint A breakpoint that has associated with it an
expression that is evaluated by the debugger once the physical breakpoint is
activated. If the expression evaluates to true the program will remain stopped
and the user will regain control, but if the expression evaluates to false the
debuggee is restarted immediately as if the stop never occurred.

constant folding The process of deducing at compile time that the value
of an expression is a constant and saving that constant for use instead of the
expression. This saves both time and space. Because the standard technique
for constant folding is to detect the expression is a constant, evaluate the
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expression by executing the code for it in place within the compiler, and
replace uses of it with the result, the debugger will not ever be able to find
the code for this expression.

context switch A term from the operating system domain that refers to
the events that occur in a multitasking operating system when one task relin-
quishes control over the CPU to another as directed by the operating system.
The debugger is just another process to the operating system so the context
switches to the debugger take away from and impede performance of the
application being debugged.

copy propagation We may choose to delay an assignment (or copy) from
one variable to another and instead use the right-hand value wherever subse-
quently the lefr-hand value had originally been used. The purpose of this is to
eliminate the need to make the original assignment at all and thereby elimi-
nate some code we didn’t need. The debugger can easily get lost on this opt-
mization because A may have no value in it at all (and may be at risk of itself

being eliminared).

CPU  Central Processing Unit—the brain of the computer that controls all
execution. Each CPU from each manufacturer is different. The debugger
must know in intimate detail about the CPU because it must understand how
to set breakpoints, single-step the debuggee, disassemble instructions, display
registers, and decode stack frames.

cross jumping This is a control-flow optimization used only to minimize
code storage space utilization. It creates a many-to-one mapping between the
original source code and the compiler-generated optimized code. In this opti-
mization, the compiler detects that two portions of code share a common tail
of execution so that one of the two is eliminated and its execution jumps to
the common thread instead of executing in-line as written.

data breakpoint A breakpoint that instead of being associated with a par-
ticular location in the executing code is associated with a particular variable
or data location. Thus, when the specified data location is modified, the
breakpoint is triggered and the location in code where that modification is
occurring is now easily detectable by the user.

data structure A well-specified collection of data that is laid out in mem-
ory as specified by a “template” that all creators and accessors of this struc-
ture follow.
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dead store elimination If a variable or expression is stored in either a
new variable or a register but is never used again after that, the store was use-
less and should not occur. Obviously, if the store is eliminated and the debug-
ger 1s asked to inspect the variable or register where the store was targeted, it
will either find the wrong value or won’t be able to report at all.

dead variable elimination Similar to dead store elimination, dead vari-
able elimination is about removing the use of a variable (and any associated
memory assigned to it) that is never used after a certain point.

deadlock A terrible situation thar occurs when two distinct execution units

(threads or processes) each are waiting for a resource that the other will not
release until its needs are satisfied.

debug API The application programming interface specifically created by
the OS vendors for debuggers and related utilities. These functions for
debuggers give special control over other processes to enable all the function-
ality expected of debuggers.

debug information Special information generated by the compiler and/or
linker to enable the debugger to make the mappings necessary between
source code and executable code that will allow the user to maintain the illu-
sion that the original source code is being executed and debugged directly.

debuggee The program being debugged. The child process of the debug-
ger. Some authors have referred to the debuggee process as the “inferior”
process.

debugger A special program built to control other programs in order to
enable programmers to understand, control, and track down defects in their
programs efficiently.

debugger kernel A term some debugger developers use to identify the cen-
tral core of the debugger. This is a useful abstraction because this is the por-
tion of the debugger that needs to be able to control execution, talks directly
to the operating system, and needs to understand not only the debug API but
the CPU specifics as well. The other portions of the debugger may be able to
be more OS and CPU independent and therefore more portable.

defect A flaw in an application. A programming error. Also more com-
monly known as a bug. The raison d’étre for debuggers.



Delphi An application development environment from Borland based on
the ObjectPascal programming language. It commonly competes with 4GL-
based systems and yet is compiled and therefore has a debugger more like the
C/C++ environments.

disassembly The process of mapping binary machine-level codes back to
the textual assembly-language mnemonics used by programmers. A very
important process within debuggers both for faster single-step and for the
presentation of disassembled instructions in a machine-state debugger view.

distributed objects A natural evolution of object-oriented programming
is the distribution of those objects across a network of computers so that
more sharing and better performance are possible. This creates numerous
challenges for debuggers.

DLL Dynamic Link Library—a common way to create shared libraries that
present a standard C-style functional interface or API accessible by programs
written in any language. The debugger must be aware of when a program
loads and starts execution code in a DLL.

dope vectors A FORTRAN term for an indirection used at run-time to get
to the desired functionality. Very similar to virtual function pointers in C++.

DosDebug() The primary debug interface routine used by the OS/2 operat-
ing system.

Dr. Watson A post-mortem debugging analysis tool from Microsoft.
Instead of being tied to one specific application this kind of utility monitors
the operating system and its interactions with all running processes. This
way, if a failure occurs that affects the operating system, you can determine
which application or combination of applications caused the problem.

evaluator A user interface module and an underlying subsystem of a
debugger designed to take a given expression and compute its current value.
It does this by passing the typed expression off to the associated compiler
and debugger, which use the current values of variables combined as speci-
fied by the expression to produce a final value.

event driven A style of programming prevalent in all GUI-based systems
where the behavior of the program is tied to asynchronous actions that
occur, usually driven by the user. The events are things such as keyboard
activity, mouse activity, or computer peripheral-generated activity.
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events, semaphores, messages, timers, mutexes, critical sections A
collection of data structures provided by operating systems as resources to
be used by applications for timing and synchronization. These can be used
between processes, but they are most commonly used between threads within
One Process.

exception A condition generated at run-time that is non-standard in some
way and must be handled appropriately. Events that occur within the
debuggee that do not allow it to execute unimpeded are exceptions presented
by the OS to the debugger. For example, a breakpoint hit by the debuggee
becomes an exception for the debugger to handle.

execution control The process of creating the debuggee process, starting
and stopping its execution and terminating it along with all the more fine-
grained control performed by a debugger constitutes execution control.

expression evaluation The process that is performed by the evaluator
described above.

file handle A unique reference to limited resource items. Files have han-
dles. So do Windows, threads, and many other OS-controlled resources.

finish function A feature of some debuggers that requests the debugger
continue execution of the debuggee such that the current function is com-
pleted and execution next stops at the point where the current function was
originally called. This makes sure all subfunctions of the current function are
quickly skipped over.

frame pointer A real or synthetic pointer to the place in the executing pro-
gram’s stack representing a stack frame or activation record. In most proces-
sors a register is dedicated to holding this value, but in some the value must
be synthesized from other information and maintained by the debugger itself.

function evaluation Some debuggers allow expressions that are to be
evaluated to contain calls to functions. When these expressions are evalu-
ated, the functions to be called must be executed within the debuggee by hav-
ing the debugger set up a fake stack frame and causing the debuggee to jump
to the specified function.

garbage collection Many interpreted systems employ a system of regain-
ing unused memory periodically called garbage collection. These systems
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must take some care to account for interactions between debuggers and
garbage collection systems because the debugger may be inspecting variables
that the garbage collector wants to eliminate.

GUI Graphical User Interface—the term used generically to describe the
windows, menus, and interaction paradigms used in all mouse-based sys-
tems. These are of particular concern to debuggers because these systems pre-

sent a host of issues for debuggers especially if the debugger itself is
GUI-based.

hard mode Because the mass market PC Window systems have been based
on a single input queue system (Windows 3.x and O$/2 2.x), there is an
important issue for debugging GUI applications on these less advanced win-
dowing systems. Hard mode requires the entire system become synchronous
to give exclusive control to the debugger, usually because of some problem
with the way the application and the OS are interacting.

heap Global, undifferentiated storage allocated and managed at run-time.

A source of lots of programming errors, the heap becomes important during
debugging, and specialized debugging tools such as CodeGuard and Bounds-
Checker have been created to focus on these types of errors.

Heisenberg Principle Non-intrusiveness in systems being measured or
tested has been formally defined by Heisenberg and is called the Heisenberg
Principle. It is important that the act of debugging an application does not
change the behavior of the application. If this is not the case, the usefulness
of the debugger falls into question.

home table A data structure commonly used to aid debuggers in
“unwinding” the register allocation optimizations commonly used even

when all other optimizations are turned off. This data structure tells the
debugger for any program counter value where is the current “home™ for the
value now: memory location or register.

hooking When a function call is replaced with a new call—usually at run-
time—the new function has “hooked” into the onginal. This was the way
early PC-based debuggers had to work because there were little or no OS-
supplied debugging facilities. This is also a common technique for other
types of systems, such as network file systems, printing systems, etc.

ICE In-Circuit Emulator—a system that takes over the base system’s capa-
bilities so that certain measurements or special control can occur. This
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applies to debugging as seen with Nu-Mega’s Soft-ICE product that takes
over the system from Windows and then runs Windows on top of Soft-ICE
so that the user has complete debugging not over just the application but also
over Windows itself and how the two interact.

induction variable elimination An induction variable is a variable within
a loop that each time through the loop is modified by some constant amount.
This is very common and as with all other analyses of loops, can have big
payoffs on loops with very high iteration counts. It is possible in many cases
to eliminate one induction variable because it is related to another and one
can always be derived from the other.

in-line procedure expansion This type of optimization was called “call-
by-name” in ALGOL. The procedure is treated as if it were a macro: Its body
is substituted for the call in the caller with the acrual parameters literally sub-
stituting for the formal parameters. This has become very prevalent with C++
because there are so many small methods that may need very high perfor-
mance.

input queue This term refers to the first-in first-out data structure main-
tained by the operating system or GUI framework to handle messages. A
windowing system bases its central processing control center on this queue
and the messages it contains. Having one queue for the entire system causes
deadlocks so the newer systems maintain input queues per process.

inspector A user interface element and associated debugger subsystem that
provides support for inspecting and changing the values of variables in the
debuggee’s address space. Many debuggers come up with sophisticated syn-
tax for inspectors to allow the user to be specific about the scope for the vari-
able being inspected.

instruction decoding Emulating the underlying CPU during debugging.
This is needed during single-step to determine the minimum number of
breakpoints to insert allowing the most high-speed straight-line execution of
instructions possible.

instruction pointer The Intel term for the program counter. A specific
register that the debugger must read and write during debugging to control
execution.

integrated development environments A single environment for appli-
cation development that contains programming editor, project manager, com-



piler, linker, debugger, and ancillary tools, all operating from within a single
environment and interacting with each other as appropriate to maximize the
user’s productivity. In particular, we see enormous benefits from having the
debugger tightly integrated with the editor, compiler, and heap checker.

interpreter A run-time system associated with a programming language
that translates intermediate code into machine-specific code. A debugger for
such systems must be tightly integrated into the run-time interpreter, but its
job is dramatically simplified compared to fully compiled systems. Basic,
Smalltalk, and Java are examples of interpreted systems.

Java Java is a relatively new programming language evolving from C++
that is interpreted (at least for now) and that runs on many different plat-
forms without programming changes. It has a unique debugging API, and the
debugger must be tightly coupled into the Java virtual machine (run-time
interpreter).

just-in-time compiler Java applets and applications are compiled into
byte-codes from the user-written textual form. The byte-codes are interpreted
into machine executable at run-time by the virtual machine. Attached to the
virtual machine is a just-in-time compiler that translates the byte-codes into
native instructions on the fly for dramatic speedups.

just-in-time debugging A program thar was running independent of any
debugger but whose faults can be just-in-time debugged if the OS catches the
fault before releasing the memory and resources for the faulting program and
if the OS debug API supports an after-the-fact attach capability.

kernel debugger Not to be confused with debugger kernel, the kernel
debugger is a specialized debugging subsystem provided by the OS vendor to
aid in the debugging of components to be added to the operating system such
as device drivers.

kernel mode When the operating system is executing, the processor (if it
supports special modes) will frequently be put into a special kernel mode
which implies certain special privileges and non-interruptability that can
affect debugging.

lazy processing An approach to gathering large quantities of information
in an “defer until we really need it” fashion. This is used typically by debug-
gers when gathering the large amounts of program symbol table information
so that debugger startup time is not terribly long.
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leaf routine A routine (or function) that does not call out to any other rou-
tines. It is the final destination down that branch of the call tree. This is some-
times noted during compilation so that the calling convention can be simplified
and made smaller and faster. The debugger, because it needs to understand the
calling conventions used, will need to understand about leaf routines.

linker A critical tool during the compilation process that takes all the
object modules and libraries created by the compiler and combines them into
a single executable ready to run. A critical job of the linker is to combine and
streamline the huge volumes of debugging information generated with each
object module by the compiler.

locality The principle that most execution and memory references that will
occur close to the current location. This also applies to symbol table infor-
mation, which can help guide the lazy processing of symbol tables.

LockInput() A function undocumented in Windows 3.1 that was critical
to getting a debugger to work on GUI applications. This was part of what
was necessary to implement “hard mode.”

logical breakpoint The debugger must maintain two distinct sets of
breakpoints: physical and logical. The physical correspond one-for-one to
physical addresses. The logical breakpoints are associated with source code
locations, and there may be more than one at a given source code location.

longjmp An old C-language routine that provided non-local gotos. A very
challenging issue for debuggers to deal with effectively.

loop unrolling If the loop iteration count is very low, the computation on
the index variable controlling how many times to pass through the loop is
actually substantial, and eliminating it becomes the goal. So we may actually
see the compiler take the body of the loop and replicate it the number of
times we were to pass through the loop so that the index variable and the
increment and test of it all can be eliminated.

machine code The actual binary codes that control the execution of the
CPU. This is the final output of a compiler.

Mac OS The current operating system running on Macintosh PowerPC com-
puters. It has a debug API similar to TOOLHELP as found on Windows 3.1.

massively parallel When a computer system is built out of a very large num-
ber exceeding 1000 distinct processors it is referred to as massively parallel.



memory corruption When an array is declared to be of length 10 and the
program writes at location 11 or when memory is freed and the program
continues to use it or a large number of other simple but serious errors occur
with memory, corruption ensues that is hard to track down using standard
debuggers.

messagepoints A specialized type of breakpoint that is associated with
specific GUI messages. Because these messages drive the core processing
loops of all GUI applications it is appropriate to have ways to carefully con-
trol execution based on the messages that messagepoints afford.

MIMD Multiple Instruction Multiple Data—a parallel computer architec-
ture characterized by an array of connected fairly powerful computers, each
executing its own individual instruction stream and each working from pri-
vate data stores.

mnemonic The textual shorthand used to describe machine instructions.
The target format for disassembly views in debuggers.

Motif The most prevalent windowing system for UNIX. It is based on X-
Windows for its basic graphics support and adds a rich powerful set of views
and widgets for GUI application construction.

multitasking An operating system that can switch from one task to
another, preserving the complete state of one task so that it can be safely
resumed later. Usually the scheduling of these tasks is preemptive.

multithreaded An operating system that supports the concept of a thread
of execution provides the capability to create applications that use multiple
threads. Debuggers on such a system need to have extensive and sophisti-
cated support for debugging these kinds of applications.

non-blocking When a call to an OS API returns immediately it is consid-
ered non-blocking. A blocking call will cause the process making the call to
hang until its request is satisfied.

nonlocal goto A programmatic jump to a location up the call stack to an
ancestor function from which we ultimately are derived. An example is the
(hopefully) now defunct C-based longjmp.

notification The term used by the OS vendors for getting information to
the debugger about how and why the debuggee stopped.
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object-oriented A programming concept based on the ideas of inheritance
and reuse. Objects created using such an approach are reusable in other con-
texts because they are general, flexible, and have a well-defined interface
whose internals are not important.

off-by-one The classic error of computer science. The cause of a lot of
bugs. Common in C and C++ because arrays are numbered starting at 0 but
also show up in other contexts.

once only A type of breakpoint that is very useful to debugger users.
When a once-only breakpoint is set, the next ime execution stops it is
removed even if it was not hit. This allows implementation of “run-to-here”
where we don’t ever get there but instead hit some other exception first.

operating system The base software running on the underlying hardware
that provides all the basic capabilities and APIs necessary to build working
applications. In particular, the access to the CPU and the debug API are both
provided to the debugger by the operating system.

optimizations Techniques applied to the compilation process to try to gain
incremental improvements in the execution speed of the compiled program.
Optimizations usually work in conflict with debugging because they typically
obscure the mapping from source code to machine code so that the debugger
can no longer present an accurate picture of the execution to the user.

0S/2 The PC-based operating system currently sold by IBM but that origi-

nally was under development by Microsoft. There are many similarities
between OS/2 and Windows.

page protection A security scheme implemented in multitasking operating
systems to keep one process from accessing a page of memory belonging to
another process. Can also be used by the debugger to implement data break-
points.

parallel architecture A computer construction scheme that arrays mula-
ple separate processors to work on a single problem at the same time.

pass counts A component of conditional breakpoints that is useful in
looping constructs. A pass count keeps track of how many times through the
loop execution has passed and determines if the requested count has been
reached to cause execution to stop.



p-code Processor independent code that is created by the first level of com-
piler and then either translated directly into native machine instructions or
interpreted at run-time.

physical breakpoint One of the two levels of breakpoints maintained
inside the debugger. The physical level breakpoints map directly one-for-one
onto physical memory address locations.

polling A “waiting” technique when a there is a non-blocking call into the
OS but the calling subsystem needs a special condition to exist before it
moves on to its next action. Very inefficient.

post-mortem dump When a process gets an exception and terminates it
may produce a complete memory image that can be analyzed with special
tools to help determine the cause of the fault.

Presentation Manager The GUI portion of OS/2.

process A unit of resource ownership and of work to be done. The
operating system uses the process as a way of organizing its work and
resource allocation. The responsibility of the operating system is to guarantee
that processes get a chance to execute in an orderly and timely fashion and
that processes are protected from each other. The focus of a debugging ses-
sion.

profiling In some ways related to debugging, profiling is the process of
analyzing the performance characteristics of the running program.

profiling registers Special registers in some CPUs allow profilers to keep
track of critical run-time information in these registers. This helps get accu-
rate information about how much time is spent in each routine or within
each source line.

program counter The special register in the CPU that points to the loca-
tion in memory for the next instruction to be executed. Its value changes
after each instruction is executed, either by incrementing by the length of the
previous instruction or due to a branch to a new address instruction. Also
called instruction pointer by some CPUs.

proxy An object or function that does something on someone else’s behalf.
In this context, its usually on behalf of a remote object that we are trying to
control or debug.
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ptrace() The older standard UNIX debugging interface function. It was
and is used extensively on systems prior to the newer /proc approach.

queues Data structures that implement a first-in first-out ordering to a list.

register The hardware storage locations tightly coupled into the CPU and
limited in number that are the fastest storage available. A precious commod-
ity that compilers try to optimize their use of.

register allocation optimization Probably the most important kind of
compiler optimization, especially for RISC machines that must maximize
their utilization of registers because memory access is so much slower than
register access. Can be easily dealt with by the debugger via the use of “home
tables.”

remote debugging When debugging an application thar is running par-
tially or entirely on a machine connected to but distinct from the machine
running the debugger some sort of remote protocol will be used where the
local debugger will send messages to a proxy debugger on the remote
machine that will actually control the debuggee process.

reverse execution A much-requested but dubious feature where the
debugger would actually back up the program counter and unwind all effects
of some number of CPU clicks.

RISC Reduced Instruction Set Computer—an approach to computer design
where simpler constant length instructions are executed much faster than
SISC instructions and thereby gain a performance advantage. The chips
themselves are smaller and cheaper to build as well.

RPC Remote Procedure Call—a call to a function is actually translated to a
protocol passed over the network to a proxy on a remote machine that trans-

lates that protocol back into a function call now made on that remote
machine.

run-to-here A debugger feature where the user can point to a source-code
location and request that the debugger run the debuggee up to that point. It
does not leave any breakpoint at this location.

scope The context for validity of a variable. Levels of scope may be global,
file, class, function, block.



semaphores A signaling mechanism used to aid synchronization of distinct
program units (processes or threads).

shared memory A controlled way to have otherwise non-interacting
processes be able to share information by using special facilities provided by
the operating system.

SIMD Single Instruction Multiple Data—a computer architecture that is nor-
mally also massively parallel (greater than 1000 processors) that all have local
data storage but executed the same instruction in lock-step with each other.

single-step The execution of a single instruction after which the processor
will stop and give control back to the debugger.

SISD Single Instruction Single Data—the standard model for non-parallel
processor architectures.

Smalltalk A programming language that is characterized by its strong
object-oriented nature, cross-platform interpreted run-time system, and
strong, integrated programming environment.

socket A mechanism for communication between processes even if those
processes are distributed across the network.

soft mode A state in which the debugger takes over message processing
for the child debuggee, but otherwise all message processing for all other
processes proceeds normally—the system, except for the debuggee, appears
to operate as it should.

Soft-ICE A debugging tool from Nu-Mega that is an In-circuit Emulator
and controls Windows and all applications running on Windows.

source view An important view within a GUI debugger that gives the pro-
grammer a view onto the source code showing breakpoint locations as well
as the location of the program counter.

speculative execution The next generation of CPUs are proposing a new
approach to higher performance where several execution units operate in
parallel and they each start executing down different paths, one of which will
be right and will be used to continue.

Spy A debugging tool that monitors and reports on all messages flowing
through the GUI system of Windows.
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stack The run-time data storage and control flow structure built and main-
tained through collaboration of the CPU and the compiler.

stack back-traces The series of activation records created on the stack cre-
ates a traceable history of all direct ancestor functions called on the current
execution tree. The debugger must unwind this stack and present it as a criti-
cal component of current program context.

stall detection In multiprocessor systems, when one processor stalls wait-
ing for something from another processor, it is important that the debugger
can detect and do something about this or the entire system can become
hung,.

statement step When single steps are grouped together to implement a
step over an entire source statement.

step into  When statement step on a statement containing a function call
steps to the first statement within the called function.

step over When statement step on a statement containing a function call
steps completely over the called function and stops at the textually next state-
ment within the current function context.

STI Symbol Table Information (previously known as CodeView)—
Microsoft’s debug information standard format. Borland uses an almost
identical format as well.

symbol table The information describing types and locations of symbols
generated by the compilation process and consumed by the debugger.

symbolic debugging Debugging based on user-defined symbol names and
source statements as opposed to strictly machine-code and numeric address
locations.

synchronization The process of making two separate threads of execution
come together at a specified point for the purposes of making sure a neces-
sary sequencing of events occurs.

system call A function call to a routine considered to be an operating sys-
tem facility.

temporary breakpoints Breakpoints that do not continue to exist past the
next stop of execution. These are useful for features like “run-to-here” and
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“finish function” that go away if a stop occurs for any other reason than hit-
ting the breakpoint.

thread The thread is the smallest entity within the operating system that is
scheduled for execution. The thread is a single unit of execution. It represents
an independent program counter, and it is the unit of execution that is associ-
ated with a stack. The operating system time-slices between all of the cur-
rently runnable threads in the system.

thread local storage Because threads all share the global per-process data,
problems occur when they do so carelessly. To prevent this, stack-based
thread local storage is used. Special APIs exist to create and maintain this

type of storage.

thunking The process of passing control from one domain to a very differ-
ent domain. Usually used for backward compatibility to use older code in a
new system. Currently it is most commonly seen in going from 32-bit flat
address space code to 16-bit segmented code.

TOOLHELP.DLL A special auxiliary system to 16-bit Windows to give access
to systemn services not part of the standard Windows API. The focus of this
DLL is debugging support.

tracing Another term for single-step. The single-step bit on the Intel CPUs
is called the trace bit.

trap An operating system term for a condition that occurs that is exceptional
and causes execution to take a different course to deal with the trap conditions.
The breakpoint instruction on some systems causes an OS trap to occur.

Turbo Debugger The PC industry’s long-standing standard debugger. A
text-mode debugger built originally for DOS but now running on all Win-
dows systems and OS/2 as well.

UNIX The Bell Labs-invented operating system that is now dominated by
Sun, HP, and IBM.

variable inspection A critical feature of debuggers that enables the user to
view the values of variables specified symbolically as they were originally
defined in the textual program.

VDMDBG A special debugging subsystem on Windows NT to support 16-
bit debugging in the WOW system.
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virtual frame pointer A synthesized frame pointer is needed on some
processors (e.g., MIPS) where no hardware register is provided but from the
debug information and the stack pointer a virtual frame pointer can be syn-
thesized.

virtual function tables In C++ and similar compiled object-oriented lan-
guages, the way late binding is implemented is that function calls go through
a table of pointers to functions so that at run-time the pointers can be
changed, changing the function called when that pointer is de-referenced
next time.

virtual machine Similar to an interpreter, it is a run-time system and accepts
a stream of bytes that it interprets to the local host native instruction set.

Visual Basic Microsoft’s version of the Basic programming language is a
programming environment that is simple to use for simple applications.

watch points Synonymous with data breakpoints. These breakpoints
“watch” a specified variable or memory location and cause a program stop
as soon as any instruction tries to access the location.

Win32 The name Microsoft has given to the API it exposes from its 32-bit
operating systems. In theory it means applications are portable, but debug-
gers must still be filled with specialized OS-specific code.

Windows 3.1 The predecessor operating system to Windows 95. It is a 16-
bit layer on top of DOS. TOOLHELP.DLL is needed to build a debugger. It
uses a completely different debugging approach from that of Win32.

Windows 95 The current mass-market Win32-based operating system for
PCs.

Windows NT  Also implements Win32 but in a more robust, secure operat-
ing system.

Windows-on-Windows (WOW) The 16-bit subsystem within Window NT
for executing 16-bit applications.

Winsight Similar tool to Dr. Watson.
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active breakpoints, 27
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breakpoint, 107-8
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Alpha processors, 52
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view, 28-30
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source view, 22, 24-26
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assembly-level debugging,
144-49
disassembly, 145-47
memory dumps and, 148-49
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automatic redisplay of
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blocking OS debug call, 35
BPT instruction, 52-53
branch delay slot, 48-50
breakpoint algorithms, 107-8
breakpoint(s), 5, 39, 107-19
active, 27
code patching by the debug-
ger and, 118-19
conditional, 108-9
C++ templates and one-to-
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many problems and, 118

data structures, 108-9

execution control and,

101-2

setting breakpoints, 98-99

hardware support for, 40-42

inactive, 27

internal, 114-16

logical, 108

physical, 108

PowerPC support for, 51-52

setting and activation of,

110-11

side effects on, 116-18

temporary, 113-14

threads and, 184

unverified, 27

validation of, 111-13
breakpoints view, 26-28
browsing, 7

C++ exceptions, 132

C++ global constructors and
destructors, 128-29

CodeGuard, 192

code hoisting, 208

code motion, 208

code patching by the debugger,
breakpoints and, 118-19

common subexpression elimina-
tion, 210, 218-19

compiler-generated debugging
information, 157-60

catering to the debugger, 158
different target machines,
160
dividing the work, 159-60
incremental processing, 160
conditional breakpoints, 108-9
constant folding, 208-9
constructors, C++ global,
128-29
context, 9-11
discovering information
about, 135-49
assembly-level debugging,
144-49
program stack, 136-44
source-level view, 135
tracing a corrupted stack,
140-43
unwinding nontraditional
stacks, 143-44
ContinueDebugEvent(), 74
controlling execution. See execu-
tion control
copy propagation, 209
corrupted stack, tracing a,
14043
corruption, memory (heap),
191-93
CPU support for debuggers. See
hardware support for debug-
gers
CPU view, 11, 28-30
CREATE_PROCESS_DEBUG_E
VENT, 181



CreateProcess() (Win32), 70

CreateThread(), 176

CREATE_THREAD_DEBUG_E
VENT, 181

cross jumping, 211

D
data corruption, 178
data inspection, 151-72. See
also evaluation of expressions
accessing symbol tables,
161-72
automatic redisplay of
expressions, 155
compiler-generated debug
ging information, 157-60
parallel architectures and,
201
scope resolution, 154
data sharing, inadvertent, 178
deadlock, 179
dead store elimination, 209
dead variable elimination, 209
DebugActiveProcess(), 74
DebugBreak(), 74
DEBUG_EVENTs, 180
debuggee
creating, 95-96
execution of. See execution
control
DebuggerCallback class, 82, 86
debuggers
basic principles of, 7-11
context, 9-11
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debugging trails systems
developments, 11
Heisenberg principle, 7-8
truthful debugging, 8-9
classification of, 11-19
4GL versus 3GL debuggers,
14-15
application-specific versus
in-circuit emulation
debuggers, 19
Delphi debuggers, 16
OS kernel versus applica
tion-level debuggers, 17-19
Smalltalk debuggers, 15-16
source-level (symbolic)
versus machine-level, 12
stand-alone debuggers
versus integrated develop-
ment environments, 12-14
Visual Basic debuggers, 15
current state-of-the-art, 57
overview of, 1-5
how they are used, 2-3
how they work, 3-5
what they are, 2
when to use them, 3
who uses them, 2
why they are used, 3
debugging tables (symbol
tables), 157-60
Delphi debuggers, 16
destructors, C++ global, 129
disassembly, 145-47
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disassembly views, 6

distributed object debugging,
196-99

DosDebug() (0S/2), 67-70

E
epilogue, 140
evaluation of expressions,
151-53
automatic redisplay of
expressions and, 155
invoking functions during,
155-57
evaluator, 30
event-driven stepping models,
132-33
event logging
by GUI debuggers, 188-89
EXCEPTION_DEBUG_EVENT,
180-81
exception events, execution con-
trol and, 104-5
execution control, 33, 95-106.
See also single-step
continuing execution, 105-6
debuggee-generated events
during execution, 101-5
breakpoint, single-step
events, 101-2
data access (watchpoint)
events, 103
exception events, 104-5
module load/unload events,
104

process creation/deletion
events, 102-3
thread creation/deletion
events, 102
initiating program execu-
tion, 95-101
attaching to running pro-
gram, 96, 98
causing the debuggee to
run, 99, 101
creating the debuggee,
95-96
setting a breakpoint, 98-99
terminating execution, 106
EXIT_PROCESS_DEBUG_EVE
NT, 181
ExitThread(), 177
EXIT_THREAD_DEBUG_EVE
NT, 181
expression evaluation, 33
expressions
automatic redisplay of, 155
evaluating, 151-53

F

FatalExit(), 74

fault detection, hardware sup-
port for, 43

finish function, 130-31

flags plane, 30

for-loops, single-line, 126-27

FORTRAN, 203

frame pointer, MIPS processors
and, 48



H
GetThreadContext(), 70, 74,
182
GetThreadSelectorEntry(), 74
Graphical User Interface (GUI)
applications, 185-89
GUI debuggers
architecture of, 186-88
desirable features of, 188-89
Heisenberg Principle in, 186
soft mode versus hard mode,
187-88
GUI messages, tracking, 117

H
hard mode, 187-88
hardware support for debug-
gers, 39-53
breakpoint support, 4042
contemporary CPU debug
architectures, 45-53
Alpha, 52-53
Intel x86 and Pentium,
45-47
MIPS processor family,
47-51
PowerPC, 51-52
fault detection, 43
future architecture trends,
53
minimal basic requirements,
3940
multiprocessors, 4445
single-step, 4243

INDEX

watchpoint (data break
point), 43
Heisenberg Principle, 7-8, 186
home tables, 154
hybrid OS debugging support,
72-77

inactive breakpoints, 27

inadvertent data sharing, 178

in-circuit emulation debuggers,
19

in-circuit emulation (ICE), 4,
199

incremental processing, 160

induction variable elimination,
210,218

in-line procedure expansion,
210-11

inspector, 30

instruction decoding, 124-25

integrated development environ-
ments, 12-14

Intel x86 CPUs, 4547

internal breakpoints, 114-16

interrupts, 40

ioctl() (UNIX), 65, 66

J
Java, debugging support, 77, 79,
81-94

K
kernel debuggers, 4, 17-19,
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31-33

L
logging
by GUI debuggers, 188-89
at a breakpoint, 116
logical breakpoints, 108
loop unrolling, 211

M
machine-level debuggers, 4, 12
machine-level view, 28-30
Mac OS debugger APL 61,
6465
main loop, 34-36
memory
automatic corruption
detection, 193
and resource tracking,
integrated, 192-93
memory dump pane, 30
memory dumps, 148-49
memory (heap)
corruption bugs, 191-93
messagepoints, 188
MIMD (Multiple Instruction
Multiple Data) architecture,
44, 45,201
MIPS processor family, 47-51

module load/unload events, 104
MSR (Machine State Register),

51
multiprocess applications, 10
multiprocessor architectures

breakpoint issues, 203
source stepping in, 203—4
multiprocessors, hardware sup-
port for, 4445
multitasking, defined, 174
multithreaded applications, 10,
35,57,173-84

N

non-intrusiveness, 7

NTVDM simulated environ-

ment, 76—77

ObjectPascal, 16

off-by-one error, 10-11

one-to-many and many-to-one

mapping problems, 213

operating system (OS), 55-94
generic OS-debugger
interaction model, 56-57
hybrid OS debugging
support, 72-77
interface, 33-34
kernel debuggers, 4, 17-19
minimum required
cooperation between
debugger and, 55-56
thread control, 176-77
thread-created problems
and, 179-80

0
optimized code, debugging
(optimizations), 205-19
difficulty of, 207



importance of, 206
keeping the optimizations on
during debugging, 207
overview of, 208-11
code hoisting, 208
code motion, 208
common subexpression
elimination, 210
constant folding, 208-9
copy propagation, 209
cross jumping, 211
dead store elimination, 209
dead variable elimination,
209
induction variable elimina-
tion, 210
in-line procedure expansion,
210-11
loop unrolling, 211
register allocation, 210
problems created by, 211-13
no corresponding object
code, 213
one-to-many and many-to-
one mapping problems, 213
reported variable value is
incorrect, 212-13
variable is unknown to
debugger, 212
RISC and, 2067
optimizing compiler, 9
0S/2
DosDebug(), 67-70
weaknesses in debug support,
68-70
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OutputDebugString(), 74

P
parallel architecture debugging,
2014
pass counts, 116-17
Pentium CPUs, 4547
performance analysis, 7
physical breakpoints, 108
post-mortem debuggers, 200-201
PowerPC, 51-52
Presentation Manager (OS/2), 70
procedure calling conventions,
137
processes, 35
creation/deletion events,
102-3
defined, 174
/proc (UNIX), 63, 65-67
program stack, 13644
prologue, unwinding the stack
and, 13940
ptrace(), 60-61

queues, single input, 186

R
ReadProcessMemory(), 74
register allocation, 210, 217
registers

pane, 30

viewing, 147-48
RemoteClass class, 83, 88-90
RemoteDebugger class, 81-82, 84
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remote debugging, 195-96
RemoteField class, 83, 91
RemoteObject class, 83, 87
RemoreStackFrame class, 85, 92
RemoteStackVariable class, 85,
92
RemoteString class, 83, 90-91
RemoteThread class, 85, 92-93
RemoteThreadGroup class, 85,
94
RemoteValue class, 82-83, 86
ResumeThread(), 74, 177
reverse execution, 131, 193-95
RISC architecture, 47
optimizations and, 2067
RPC debugging implementation,
198-99
run-time debugging aids,
199-201

S
scope resolution, 154
SetThreadContext(), 70, 74, 182
SIMD (Single Instruction Multi-
ple Data) architecture, 44, 45,
201, 2034
single input queue, 186-87
single-line for-loops, 126-27
single-step, 5, 119-33
algorithms related to,
129-32
event-driven stepping
models, 132-33
hardware support for, 4243

multiprocessor architectures
and, 2034
pathologic stepping
problems, 125-29
C++ global constructors
and destructors, 128-29
single-line for-loops,
126-27
step into “missing” user
routines, 127-28
smart and fast, 124-25
Step Into versus step over,
121-22
single-threaded operating sys-
tems, 35
slime trail, 131-32
Smallealk debuggers, 15-16
Soft-ICE, 199
soft mode, 187
software watchpoints, 130
source code, location of, 10
source-level symbolic debuggers,
4, 12. See also specific topics
source-stepping, 184
source view, 22, 24-26, 135
SPARC architecture, unwinding
a stack and, 144
Spy debuggers, 199
stack, 13644
corrupted, 14043
unwinding, 136-40
stack back-trace, 9, 10
stack frames, 26
stack pane, 30



stack traces, 26, 136
stack view, 26
stand-alone debuggers, 12-14
step into, 121
“missing” user routines,
127-28
step over, 122-24
STI formart (CodeView debug
format), 16268
access algorithms for,
168-72
SuspendThread(), 74, 177
symbol tables (debugging
tables), 32-33, 157-60
accessing, 161-72
sample symbol table,
162-68
synchronization, 179

T
temporary breakpoints, 113-14
TerminateThread(), 177
thread creation/deletion events,
102
thread local storage, 175
threads, 35, 57, 173-84
breakpoints and, 184
debugger architecture and,
180-82
debugging model, 182-84
defined, 174
freeze/thaw of, 183
isolaring single, 182-83
operating system thread

INDEX -

control, 176-77
problems created by, 178-80
source-stepping and, 184
TOOLHELP.DLL, 58-60
tracing a corrupted stack,
140-43
trap flag (TF), in Intel x86 and
Pentium CPUs, 46
traps, 40
truthful debugging, principle of,
8-9

U
UNIX
Iproc, 63, 65-67
ptrace(), 60-61
unverified breakpoints, 27
unwinding a stack, 136-40
nontraditional stacks,
14344
user interface. See architecture
of debuggers

V

validation of breakpoints,
111-13

variable length instructions, in
Intel x86 and Pentium CPUs,
46

variables, values of, 9, 10

variables view, 30

VDMDBG API, 73, 76,77

Visual Basic debuggers, 15
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wait(), in UNIX, 60-61
WaitForDebugEvent(), 70, 74
watchpoints (data breakpoint)
execution control and, 103
hardware support for, 43
software, 130
Win32
debug API, 70-72
weaknesses in debug
support, 71-72
WinDbg, 19
Windows 3.1, 58
Windows 95, 16-bit debugging
under, 77
Windows applications, 11
Windows NT, 16-bit debugging
under, 73-77
Windows-on-Windows (WOW)
subsystem, 73
Winsight, 189, 199
WriteProcessMemory(), 74





