

S60 SMARTPHONE
QUALITY ASSURANCE

A Guide for Mobile Engineers
and Developers

Saila Laitinen
Nokia, Finland

S60
SMARTPHONE

QUALITY
ASSURANCE

S60 SMARTPHONE
QUALITY ASSURANCE

A Guide for Mobile Engineers
and Developers

Saila Laitinen
Nokia, Finland

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
 West Sussex PO19 8SQ, England
 Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988
or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher.
Requests to the Publisher should be addressed to the Permissions Department, John Wiley &
Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed
to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks.
All brand names and product names used in this book are trade names, service marks, trade-
marks or registered trademarks of their respective owners. The Publisher is not associated with
any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required,
the services of a competent professional should be sought.

 Other Wiley Editorial Offi ces
 John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

 Jossey-Bass, 989 Market Street, San Francisco, CA 94103–1741, USA

 Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

 John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

 John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore
129809

 John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

 Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifi co

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 978-0-470-05685-1 (PB)

Typeset in 11/13pt Zapf Humanist 601 by SNP Best-set Typesetter Ltd., Hong Kong.
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, England.
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Table of Contents

About the Author .. xiii

Preface ... xv

Chapter 1: Introduction to S60 1
 1.1 The Competitive Advantage of the S60

Platform .. 3
 1.2 S60 Architecture ... 5
 1.2.1 The Symbian Operating System

(Symbian OS) .. 6
 1.2.2 Domestic Operating System (DOS) 6
 1.2.3 User Interface (UICon) .. 7
 1.3 Summary ... 7

Chapter 2: Selecting the Baseline 9
 2.1 Manny Lehman’s Law ... 10
 2.2 What is so Challenging about Selecting

the Best Baseline? .. 11
 2.3 How should the Baseline be Selected? 12
 2.3.1 Baseline Maturity .. 13
 2.3.2 Customization Maturity 13
 2.3.3 Least Stable Sub-system 14
 2.3.4 Program Timing .. 14
 2.4 Summary ... 14

Chapter 3: Release Management 17
 3.1 The Build Cycle .. 19
 3.2 Required Testing Activities 23
 3.3 Summary ... 23

Chapter 4: Binary Compatibility 25
 4.1 API Categorization ... 28
 4.2 Maintaining Compatibility 30
 4.2.1 Platform Compatibility 30
 4.2.2 Platform-based Phone Compatibility 31
 4.2.3 Application Compatibility 32
 4.2.4 Compatibility Dimensions 32
 4.3 Binary Compatibility Scenario 33
 4.4 Binary Compatibility Verifi cation 35
 4.4.1 The Binary Compatibility Verifi cation Process 35
 4.4.2 The Binary Compatibility Verifi cation Suite 36
 4.4.2.1 The SDK Analyser ... 36
 4.4.2.2 The Source Analyser ... 38
 4.4.2.3 The Binary Analyser .. 39
 4.4.2.4 The Application Launcher 39
 4.4.2.5 Binary Compatibility Applications 40
 4.4.2.6 Third-Party Applications 40

 4.5 Possible Future Tools ... 40
 4.5.1 DepInfo Tool .. 41
 4.5.2 Header Checker Tool ... 41
 4.5.3 Ordinal Checker ... 42
 4.6 Summary .. 42

Chapter 5: Certifi cates and Standards 43
 5.1 Technology Certifi cates 44
 5.1.1 Java/TCK ... 44
 5.1.2 Bluetooth ... 47
 5.1.2.1 BT Certifi cation Areas ... 47

vi S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

 Table of Contents vii

 5.1.3 Other Technology Licences 48
 5.1.4 Security Certifi cates .. 49
 5.1.5 Universal Serial Bus ... 50
 5.1.6 Infrared Connectivity ... 50
 5.1.7 Multimedia Cards (MMC) 51
 5.2 The Open Mobile Alliance (OMA) 52
 5.2.1 Process and Principles .. 52
 5.3 Cellular Standards and Operators 55
 5.3.1 Government and Quality Certifi cates 56
 5.3.1.1 Mandatory .. 56
 5.3.2 Optional .. 58
 5.4 Summary .. 61

Chapter 6: What Quality Means 63
 6.1 Quality Culture .. 64
 6.2 Quality Standards ... 66
 6.2.1 ISO 9000 .. 66
 6.2.2 Six Sigma ... 67
 6.3 Quality in a Product ... 68
 6.3.1 Quality in Manufacturing 69
 6.3.2 Quality in Service .. 70
 6.3.3 Getting Better Quality .. 71
 6.4 Quality in the S60 Platform and

S60-based Phones ... 73
 6.4.1 Choosing the Process .. 73
 6.4.2 The Waterfall Process 73
 6.4.3 The Incremental Process 74
 6.4.4 Agile Software Development 75
 6.4.5 Concurrent Engineering 76
 6.4.6 Other Things to Consider 77
 6.5 Summary ... 78

viii S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Chapter 7: Stumbling Blocks 79
 7.1 Stumbling Blocks General to All Projects 79
 7.2 Stumbling Blocks Specifi c to a Software

Program ... 80
 7.2.1 Contradictory, Overwhelming or Too

Many Requirements .. 83
 7.2.2 Unstable, Incomplete and Informal

Requirements ... 83
 7.2.3 Poor Planning and Project Management 84
 7.2.4 Unrealistic Estimates and Unjustifi ed

Expectations .. 84
 7.2.5 Lack of Knowledge on New

Technologies .. 84
 7.2.6 Lack of Proper Risk Management 85
 7.2.7 Lack of Organisational Integrity 86
 7.3 Ways to Avoid Stumbling Blocks in a

Software Program .. 87
 7.3.1 Overview of COCOMO 87
 7.4 Stumbling Blocks Specifi c to a S60-based

Phone Program .. 88
 7.4.1 Program-level Risks ... 89
 7.4.1.1 Integration Competence 89
 7.4.1.2 Testing Environment ... 90
 7.4.1.3 Amount of Differentiation 90
 7.4.1.4 Baseline Selection .. 91
 7.4.1.5 Defect Fixing Order ... 91
 7.4.2 Component-level Risks 91
 7.4.2.1 Coding Style and Culture 92
 7.4.3 Fixing Speed .. 94
 7.4.3.1 Testing Activities and Extent 94
 7.4.3.2 Insuffi ciency of the Specifi cation 96
 7.4.3.3 Adaptation Layer Implementation 96

 7.5 Provider Components 97
 7.6 Summary .. 97

 Table of Contents ix

Chapter 8: Platform Testing versus
Platform-based Phone Testing 99

 8.1 The S60 Testing Process 100
 8.1.1 Platform Test Execution Process 100
 8.1.1.1 Module/Component Testing 102
 8.1.1.2 Sub-system Integration Testing 102
 8.1.1.3 Basic Acceptance Testing (BAT) 102
 8.1.1.4 Functional Testing ... 103
 8.1.1.5 System, Localization, Binary Compatibility

and Interoperability Testing 103
 8.1.1.6 Release Testing ... 104
 8.1.1.7 Regression Testing .. 104
 8.1.1.8 Maintenance Testing ... 104
 8.1.1.9 S60-based Phone Testing 104
 8.1.1.10 Planning based on Baseline Maturity Analysis 107
 8.1.1.11 Planning based on Fix Analysis 108

 8.2 Summary ... 108

Chapter 9: Testing as a Tool 109
 9.1 Testing in Different Processes 111
 9.1.1 Testing in an Iterative Process 113
 9.1.2 Testing in an Incremental Process 114
 9.1.3 Testing in an Agile Process 114
 9.1.4 Testing in an Extreme Programming

Process .. 115
 9.2 Testing Techniques .. 115
 9.3 Testing Phases ... 120
 9.3.1 Documentation Testing 121
 9.3.2 Module Testing .. 121
 9.3.3 Integration Testing in the Small 124
 9.3.4 Functional Testing .. 126
 9.3.5 Non-functional Testing 126
 9.3.6 Integration Testing in the Large 127
 9.3.7 The Real User Experience (TRUE) 128

x S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

 9.4 What then? .. 131
 9.5 Summary .. 132

Chapter 10: The Testing Environment 133
 10.1 Module Testing .. 134
 10.2 Integration Testing in the Small 135
 10.3 Functional Testing ... 135
 10.3.1 Common .. 136
 10.3.2 UI Customization and Personalization 137
 10.3.3 Local Connectivity .. 138
 10.3.4 Networking and Data Bearers 138
 10.3.5 Telephony .. 139
 10.3.6 Multimedia ... 140
 10.3.7 Personal Information Management (PIM) 141
 10.3.8 Messaging .. 141
 10.3.9 Browsing .. 143
 10.4 Performance Testing 144
 10.5 Interoperability Testing 145
 10.6 Miscellaneous Testing Activities 146
 10.6.1 Certifi cation .. 147
 10.6.2 Usability ... 147
 10.7 Summary .. 148

Chapter 11: Defect Analysis 149
 11.1 Focused Testing .. 152
 11.2 Defect Analysis and Reporting 153
 11.2.1 Defect Database ... 154
 11.2.2 The Defect Management Process 154
 11.2.3 Defect Priority .. 156
 11.2.3.1 Show Stopper ... 156
 11.2.3.2 Critical .. 158

 Table of Contents xi

 11.2.3.3 Major ... 159
 11.2.3.4 Minor ... 159
 11.2.4 Defect Reporting .. 160
 11.3 Summary .. 161

Chapter 12: Integration and Build
Environment .. 163

 12.1 Software Confi guration Management 163
 12.2 Changing the Code .. 164
 12.2.1 Confi guration Management 166
 12.3 Build Environment ... 167
 12.3.1 Delivery Structure ... 167
 12.3.2 Build Process ... 168
 12.3.3 Build Tools ... 169
 12.4 S60 Integration ... 171
 12.4.1 Stage 1 ... 171
 12.4.1.1 Step 1: Successful Boot to Textshell 171
 12.4.1.2 Step 2: Simple Application and Launch

via WSER .. 172
 12.4.1.3 Step 3: Starter Integration and Calculator

Launch ... 172
 12.4.1.4 Step 4: Complete the S60 Boot 172
 12.4.2 Stage 2 ... 172
 12.4.3 Stage 3 ... 173
 12.4.4 Stage 4 ... 173
 12.4.5 Stage 5 ... 173
 12.5 Summary .. 173

Appendix A: Examples of S60 Devices 175

Appendix B: Glossary .. 179

xii S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Appendix C: References .. 187
 Chapter 4: Binary Compatibility 187
 Chapter 5: Certifi cates and Standards 187
 Chapter 6: What Quality Means 188
 Chapter 7: Stumbling Blocks 189
 Chapter 8: Platform Testing versus

Platform-based Phone Testing 189
 Chapter 9: Testing as a Tool 189
 Chapter 11: Defect Analysis 190

Appendix D: Further Reading 191

Index ... 193

About the Author

Saila Laitinen, an engineer, grew up and went to school in Oulu from
where she moved to the capital area of Finland in 1995. She is
married and has two children. She graduated from Oulu University,
from where she gained an M.Sc. in computer engineering.

She joined Nokia in 1995 and has worked in a variety of positions
and organizations within the company since then. She started in
Nokia Networks and worked as a software engineer for three years.
This gave her a solid base including an overall understanding of
software and development challenges as well as network technolo-
gies. During those three years she also worked as a project manager
on two software projects. This provided her with fi rst-hand under-
standing and know-how of how challenging it is to run a project both
to budget and to a given schedule.

After Networks Saila joined the Nokia Ventures Organisation to
lead testing activities in one venture. Then she gained international
experience and worked in Nokia Hungary as an expatriate. In Hungary
her responsibility was to manage the overall testing activities of
Nokia’s very fi rst presence server-product. After Hungary she moved
back to Finland and joined the S60 product line, where she led the
testing, triage and technical consultancy teams. These teams worked
on a daily basis in response to S60 customer products and provided
them with platform expertise in different technologies and activities.
Lastly Saila joined Forum Nokia where she currently leads the global
consultancy function to serve the biggest developer community
innovating on top of Nokia platforms.

Working in all these organizations and both in Finland and abroad
has given her very clear insight into mobile technologies and cultural
differences. Several years experience working with S60 customer
programs has given her the fi rst hand knowledge needed to write
this book.

In addition to this book she has publications in different testing
and quality assurance related conference proceedings.

Preface

The idea of writing this book came to me in 2002. Since then it
slowly matured into a state where I knew exactly what I wanted to
write and fi nally into an agreement with the publisher John Wiley &
Sons Ltd. S60 is without any doubt the world’s leading smartphone
platform and it is indeed a remarkable one. My dream and target is
to help customers to write programs that create mobile phones on
top of the S60 platform and to help them understand and see the
huge value of it to their businesses. This book explains the S60 plat-
form, platform-based device programs and quality assurance factors
for such programs in sequence, so that the reader gets an under-
standing of how to prepare and organize the development of a
platform-based mobile device. I have tried to share my experience
and the way I felt while working on S60 so that the reader can dis-
cover the fascination of smartphones and also be prepared to handle
the most demanding issues and risks in his project.

The book consists of four parts. The fi rst part starts by comparing
the smartphone concept with the feature phone. The smartphone is
explained naturally through S60 and its architecture. S60 architecture
consists of a cellular modem controlled by modem software, the
Domestic Operating System (DOS), and an application processor
engine controlled by Symbian OS and S60 software. All these parts
are explained to the reader so as to give a comprehensive understand-
ing of the main S60-based device building blocks. In addition I have
explained two of the most important challenges in implementing an
S60-based mobile phone, Binary Compatibility and Certifi cates.

The second part concentrates on quality, what it means, how to
gain it and what the pitfalls are in gaining the required quality for dif-
ferent product programs. Quality can mean different things to differ-
ent people. The meaning also varies between products. However, the
one and only common element of quality is the way the consumer or
customer sees the product and how well it fi ts its use.

The third part explains the most common stumbling blocks in
implementing a high-quality product, with special attention naturally
being given to an S60-based phone program.

xvi S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

The fourth part explains the tools used to tackle the challenges
that end with a product with very few errors in the marketplace.
This part starts by introducing testing as a tool to show how far a
program is in its quality targets. Testing alone never increases quality,
it only makes it visible. To understand a product’s quality state makes
it easier to understand how much work is still needed before the
product can be shipped. Increasing quality equals fi xing existing
defects. Fixing the right defects is one thing but another one is the
timing of the fi xes. Both of these elements are introduced in the
fourth part.

Acknowledgements
Writing this book unaided would not have been possible at all. It is
the result of the very best teamwork one could have. Luckily I have
had a tremendous team to support me every step of the way. This
team not only provided me with lots of material but also generated
new material whenever needed. Even though I might have forgotten
someone, I would still like to highlight the following as part of the
critical chain behind this book: Samuli Paavola, Antti Saukko, Veli
Sertti, Sandor Szilagyi and Mirkka Ylisuvanto. Samuli’s skills and
know-how in error handling enabled me to explain the importance
of proper error management as a success factor in a mobile device
program. Antti brought his invaluable and professional platform and
tools knowledge that helped me with related parts in this book. Veli
gave his expert advice on certifi cation related parts. Sandor provided
his competence beyond comparison to the binary compatibility
related parts of this book. Mirkka helped me understand testing
processes as well as other platform-specifi c testing-related topics so
that I was able to explain them correctly.

To really understand the issues customers face in their projects
requires fi rst-hand experience. This was given to me by Heidi Melen
and Kalevi Ratschunas. I was honoured to work side by side with
them in one of the Licensee’s device programs. That program opened
my eyes to the challenges that customers have in creating a phone
with S60 on it.

I also feel the need to give my deepest thanks to my employer
Nokia. After being privileged to work for this company for over
eleven years, I appeciate everything this company has given me. It
has given me so much, usually everything I have ever asked for:

 Preface xvii

enough challenges to keep me motivated, enough support and rest
to encourage me when tired and during diffi cult days plus enough
feedback to become better than I was. I have been fortunate to see
this company from many angles, from the purest R&D work to cus-
tomer support and strategy work. And I am still humbly looking
forward to all the years to come that hopefully we will share.

Last but not least I need to mention three main supporters of
mine, my husband Hannu, daughter Veera and son Lauri. Hannu has
given me so much inspiration by showing me that one can get results
only by having a hard working mentality. Since this book is a personal
project, I have written it in my spare time. This has unfortunately
meant unforgivable neglect of my most loved ones, Veera and Lauri.
While writing this during weekends, evenings, nights, early morning
hours and holidays, you two asked me whether I would ever have
time for you? I am now happy and relieved to tell you, this project
is fi nally completed and I am all yours!

Chapter 1: Introduction to S60

It can be surprising to realize how complex a device a mobile phone
really is, and how diffi cult it is to create one. Because of that, it is not
at all surprising to see how diffi cult it is for any manufacturer to succeed
in the mobile phone market. The purpose of this chapter is to describe
the tip of the iceberg of why that is so, by describing the elements of a
typical smartphone from a logical architecture point of view. Later
chapters will go into further detail about creating an S60-based device.
The general architecture of an S60-based smartphone consists of a
cellular modem controlled by the modem software, the Domestic
Operating System (DOS) and the application processor engine con-
trolled by the Symbian Operating System (OS) and S60 software.

What is it that makes a device a smartphone? The simplest mobile
phone (Figure 1-1) enables voice calls and short messaging (SMS). In
addition, a contact list can be considered as a fundamental feature
of any mobile device. The next step from ‘any’ device is a feature
phone, which contains some signifi cant additional functionality:

• calendar for keeping track of appointments

• a web or WAP (Wireless Application Protocol) browser

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

2 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• multimedia messaging support (MMS)

• email

• games and other pieces of application software

• a colour display

• a digital camera

• support for additional memory through the use of a memory
card

• etc.

A feature phone has a relatively simple, but effective, proprietary
software environment based on a real-time operating system (RTOS).
Smartphones, on the other hand, use a more advanced, open
high-level operating system with support for multitasking, expand-
ability, multimedia or convergence features, application interaction
and so on.

Feature phone functionality may have support for additional
extensibility through installable software applications, usually based
on the Java 2 Micro Edition (J2ME) technology and the Java program-
ming language from Sun Microsystems. Smartphones, while support-
ing J2ME, also support software development through direct, native
access to the underlying operating system and its functions (through,
for example, software written using the C+ + programming language).
Perhaps the most notable difference, however, between a smart-
phone and a feature phone is the way the applications use the phone
resources. In feature phones only one application can be run at any
given time, whereas in a smartphone the execution of multiple

Any mobile phone
-Voice calls

-SMSs
-Contacts

Feature phone
-Voice calls

-SMSs
-Contacts

-MMSs
-Email
-WAP

-Camera
-Colour Display

Smartphone
-Voice calls

-SMSs
-Contacts

-MMSs
-Email
-WAP

-Camera
-Colour Display
-Access to OS

-Application
background
execution

Figure 1-1. Mobile phone evolution.

 Chapter 1: Introduction to S60 3

applications happens in the foreground (visible to the phone user on
the display) or in the background, and all the applications can access
phone or operating system resources simultaneously, including other
applications and network services.

1.1 The Competitive Advantage of the
S60 Platform

The S60 Platform is the world’s leading smartphone software plat-
form, offering a feature-rich software base for phones with advanced
data capabilities. It includes the Symbian OS and the Nokia S60 UI
(user interface). This UI is the most extensively researched and thor-
oughly developed graphical user interface (GUI) ever created by
Nokia. Its inclusion in the S60 Platform ensures UI consistency across
all phones based on the S60 Platform from all device manufacturers.
The S60 UI is designed for one-hand operation of advanced and
consumer-friendly data services. It supports a variety of different
functions, including two softkeys, fi ve-way navigation and an appli-
cation launching and swapping key, as well as Call creation and Call
termination keys. To improve and facilitate text input, it includes a
Clear key and an Edit key. In addition, it uses the standard 12-key
number keypad with alpha printing.

S60 now includes scalable UI support for the following screen
resolutions (in pixels):

• 176 × 208 (classic)

• 240 × 320 (QVGA)

• 352 × 416 (double)

Scalable UI also supports each screen resolution in either portrait or
landscape view and introduces a scalable graphics (SVG) format for
icons and themes.

In addition to the quality assurance of an S60-based phone, this
book guides the reader through the concept, idea and competitive
advantage of S60 in the global smartphone markets. Nokia’s Mobile
Software (MSW) is the organization behind the S60 platform. The
Product Creation Community (PCC) members represent the leading
third-party companies in different regions when it comes to manu-
facturing a mobile phone. They get the full S60 release at the same

4 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

time as the device programs, and are entitled to use it for internal
competence development purposes. There is a Developer Commu-
nity of developers around the world who are innovating on top of
the Nokia platform. A commonly used description for all these is the
S60 ecosystem. The entire S60 ecosystem is shown in Figure 1-2.
This licensing model enables the platform to be used in different
manufacturers’ device programs.

In addition to the platform itself, MSW works on a reference
hardware that contains the platform as well as modem software.
Developers of customer programs can buy and utilize this pre-
integrated product as a base for their fi nal product. The usage of the
reference hardware is highly recommended as it provides a half-
ready product and allows the developer to dedicate resources to
differentiation only.

The term ‘Licensee’ in this book can mean either a Nokia device
program or another manufacturer’s device program. Another name
that is used in this book for the Licensee is customer program.
All customer programs are treated equally. In practice, this means
that all of them have equal access to all platform releases and
documentation.

The Product Creation Community (PCC) is composed of technol-
ogy integrators and other companies competent to participate in the
customer product program of making a phone. PCC companies can
provide help to Licensees in platform integration, testing and devel-
opment activities, just to mention a few. S60 Product Creation Com-
munity members are divided into four categories:

S60 Platform

Licensees
Licensees

Licensees
Licensees

Licensees
Licensees

Licensees
Licensees

Licensees
PCC

member

Licensees
Licensees

Licensees
Licensees

3rd party
developer

Licensees
Licensees

Licensees
Licensees

3rd party
developer

Figure 1-2. The S60 Ecosystem.

 Chapter 1: Introduction to S60 5

• Boutiques – experts in designing complete S60 phones and man-
aging entire S60 phone projects

• Competence Centers – top-tier software companies with deep
S60 end-to-end understanding and extensive S60 project support

• Wireless Technology Providers – experts on the hardware plat-
forms or hardware components upon which S60 phones are built

• Contractors – skilled software companies offering focused exper-
tise in specifi c technology areas

Each member is carefully selected and required to meet stringent
qualifi cation criteria.

The third-party developer community represents the biggest
entity in terms of the number of participants. Forum Nokia is the
entity in Nokia that supports these 2.5 million developers world-
wide. It arranges training throughout the world, manages the discus-
sion board on technical topics and provides case-based technical
support for independent issues as well as tailored technical consul-
tancy for customer projects. Developers can implement applications
on top of the S60 platform by utilizing both JAVA and C+ + interfaces.
Developers make their profi t by selling these applications. Together
these applications represent one of the widest mobile application
portfolios in the world.

The ecosystem is like a chain with equally important pieces.
Together they create a unique and strong base for a special competi-
tive advantage amongst platform providers. If one piece breaks, the
entire chain is paralysed.

1.2 S60 Architecture
S60 consists of numerous architectural units, for example the Symbian
OS, the Domestic OS adaptation and UICON. This section explains
in turn the platform’s main building blocks and their purpose. Other
important concepts are also briefl y introduced below. The overall
architecture of a smartphone is introduced in Figure 1-3.

Once a customer program receives a platform release, it needs
to integrate it into the hardware and the Domestic OS. Base Port is
the exercise of adapting the Symbian kernel to a particular hardware.
Kernel port consists of providing the Symbian kernel access to the
necessary hardware functionality. Symbian runs in the following two
modes:

6 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• User mode – kernel services can only be accessed through the
EUSER.DLL. The lack of a proper kernel port does not stop the
development of user-side components because the platform pro-
vides a complete Kernel Port for the PC environment under the
Windows Operating System. This is called the emulator.

• Kernel mode – EUSER.DLL is an interface between common
code and hardware-specifi c code. In the other words, kernel
mode means that the software is run on the target hardware.

1.2.1 The Symbian Operating System (Symbian OS)
S60 is based on the Symbian operating system, which provides
several services to the platform and to platform-based devices. Such
services are, for example, the User Interface (UI), applications and
middleware.

1.2.2 Domestic Operating System (DOS)
The Domestic Operating System (DOS) is the proprietary operating
system and no interfaces in it are open to third-party developers.
DOS plug-ins are device specifi c and need to be implemented by
the customer program.

Phone

Symbian OS

S60

Domestic OS

HardwareDSP SW

PC

Accessory

Mobile User

Network

GSM/
WCDMA

BLUETOOTH

GPRS

Network
InterfaceDOS

Interface

Figure 1-3. Smartphone architecture.

 Chapter 1: Introduction to S60 7

1.2.3 User Interface (UICon)
S60 includes the user interface components needed by an applica-
tion. UICon is a graphical user interface (UI) library for reference-
design (DFRD) independent functions based on EIKON, which is the
original graphical user interface library for the Symbian OS. Use of
such components guarantees the implementation of the application
of the user interface by developers.

1.3 Summary
This chapter has briefl y introduced the smartphone, what it is, its
architecture and how it differs from other device types. The basic
components of the S60 Symbian operating system, the domestic
operating system adaptation and the user interface library are all
explained in this chapter. The overall architecture of the S60 consists
of the Symbian Operating System, the User Interface components
and adaptation to a device-specifi c Domestic Operating System plus
telephony software. The S60 ecosystem consists of Nokia’s Mobile
Software, platform Licensees (device manufacturers), the product
creation community and third-party developers, which together
provide a strong basis for the success of the platform.

Chapter 2: Selecting the
Baseline

The software industry has had to adapt to a very new mindset since
the early 1990s. Software began to play a key role in very many
products after consumers had started to appreciate the ever-growing
number of new features in these products. As a result of the new
features and technologies, the average size of the software in a
mobile phone has grown quite a lot. This increase is not only due
to the new complex functionality (often described as ‘digital con-
vergence’) required in these new products, but also because of
the need to put more structure and discipline into the software
system in order to make it more controllable. Well-known features
such as modularity, scalability and decoupling form part of this.
Engineers are also facing challenges in introducing an operating
system on the signal-processor side, in order to be able to meet
new demands.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

10 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

2.1 Manny Lehman’s Law
As a program evolves, its structure will become more complex. Just as in
physics, this effect can, through great cost, be negated in the short term.

Michael W. Godfrey and Qiang Tu based their case study on the
evolution of open-source software on Manny Lehman’s law:

When a software system gets bigger, its resulting complexity tends to limit
its ability to grow. As an advice to this; the complexity needs to be well
managed and maybe even the entire system needs to be redesigned every
now and then.

MSW releases the S60 platform at a very early stage in the develop-
ment of a platform program. The maturity and stability can therefore
be quite unreliable. These early versions are described as being of
research and development (R&D) quality. The MSW follows an incre-
mental process in developing the S60 platform. In practice, this
means that the program increases the maturity of one feature at a
time before anything else is included into the release.

In practice, the development process of a platform, like that of
any similar sized software product, is a bit more complicated and
not as straightforward as this sounds. The platform program proce-
dure includes elements from both iterative and incremental develop-
ment processes. This can be seen in two ways:

• the overall increasing maturity throughout the program, which
indicates that iterative process are being followed

• the sequential development of the main features, which clearly
indicates that an incremental process is being used

As shown in Figure 2-1, each feature is considered as an individual
sub-system. This sub-system can only be verifi ed when other sur-
rounding sub-systems are available. In order to minimize the number
of stubs and drivers needed during testing, both implementation and
verifi cation orders need special planning and scheduling at an early
enough stage.

As an example, release 2.8 introduced the Scalable UI as a new
feature. It has been structured so that the layout information cannot
just be hard-coded anywhere. Instead, the Conversion Description
Language (CDL) interfaces, which allow access to the layout data

 Chapter 2: Selecting the Baseline 11

based on the Look-And-Feel (LAF) specifi cations, enables it to be
stored. Since this applies to all applications, the implementation
order of the sub-systems should be the following:

1. Scalable Vector Graphics Tiny

2. Core Services

3. UI Framework Core

4. UI Framework Extensions

After all the sub-systems are in place, the implementation of
other sub-systems or applications using the scalable UI feature can
begin.

2.2 What is so Challenging about Selecting the
Best Baseline?

The baseline in this context means the bi-weekly release that is the
most recent to be fully integrated in the customer program as a
complete platform. As simple as this sounds, fi guring out which out
of many releases should be treated as the baseline for the entire
system is not a very simple task. The program needs to balance two
things, time and maturity. The earlier the baseline that is selected,
the higher is the probability of shipping the product on time. However,
there are tradeoffs. The earlier the baseline, the more unstable it is.
The customer programs then receive even earlier versions of S60, in
which the maturity of the scalable UI-related sub-systems is debat-

Release n Release n + 1 Final release

Fea
tu

re
 se

t 1
 o

f

co
m

m
er

cia
l

qu
ali

ty
Fea

tu
re

 se
t 1

 o
f

co
m

m
er

cia
l

qu
ali

ty
an

d

fe
at

ur
e

se
t 2

of
 R

&D

qu
ali

ty Fea
tu

re
 se

ts
1&

2

of
 co

m
m

er
cia

l

qu
ali

ty

Two weeks

Figure 2-1. Release cycle.

12 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

able. The phone program should consider using these early versions
only for evaluation and rehearsal purposes and not for manufacture
of the fi nal product. This is because the architecture of the S60 is
very complex and contains many relations and internal dependen-
cies, both obvious and obscure, within the sub-system components
and Dynamic Link Libraries (DLL). These relations can cause many
headaches and a diffi cult situation during the period while they are
fi xed. During this fi xing period the program is obliged to build the
system from bits and pieces, i.e. ‘gluing’ together some components
and fi les from week x release, some components from week x + y
release etc.

On the other hand, if the program waits until the platform has
reached the level of commercial quality and there are no implemen-
tations by the manufacturer available in the mean while, it may miss
the market window. Deciding this without losing out either way
requires both deep technical and business knowhow.

2.3 How should the Baseline be Selected?
Once the baseline has been selected, in later versions newer parts
only replace separately selected parts of the release. This selection
is one of the key decisions in the S60-based phone program. The
decision has a signifi cant impact on the success of the whole project.
It is good to include the following in the preliminary decision work:

1. The maturity of the platform – the maturity should be high
enough to avoid an unnecessarily large amount replacement of
components and sub-systems in the program.

2. Maturity of the Licensee’s own implementations – the maturity
should be high enough to avoid an unnecessarily large amount
of correction in the interfaces between the platform and develop-
ers’ own components.

3. Least stable sub-system – the least stable sub-system/feature can
be the one with the lowest risk of affecting other parts of the
system when it is fi xed. If the least stable sub-system or feature
has several dependencies on other parts, every fi x on it may
damage functionalities that are already working. If, on the other
hand, it is a relatively ‘independent’ component/sub-system, the
low maturity (= quite a lot of fi xes yet to come) should not be too
risky.

 Chapter 2: Selecting the Baseline 13

4. Program timing – the program should choose the baseline early
enough to avoid missing the markets window by providing an
outdated product to the market. This can force the product
program to include additional features by porting from later ver-
sions of the platform, which of course is not desirable.

2.3.1 Baseline Maturity
Every platform release goes through Basic Acceptance Testing (BAT)
before it is shipped. Each release also contains the results of the BAT
round. These results indicate the overall functional stability of that
release. It is highly recommended that the BAT pass rate of the
chosen baseline release is high enough to minimize the work of
integrating the individual fi xes.

2.3.2 Customization Maturity
The customer program naturally wants to include some customiza-
tion so as to make the fi nal version look more like their own product.
This can be done in many ways, some fast to implement and others
diffi cult, some without risk and others very risky. Below are intro-
duced three of many possible examples of customization:

• Adding one’s own or third party applications/features on top of
the platform represents relatively simply customization. It is the
safest way to customize as long as the changes in the platform
are very limited and well controlled.

• Another option, with a greater degree of freedom, is also to cus-
tomize the UI on the platform side. This means that the platform
needs some modifi cation. If the program manages to make such
modifi cations wisely, the risk is manageable.

• The most demanding customization activities are those in which
some existing features/technologies are to be removed from the
platform. This should be done very carefully and in a controlled
way in order to not to affect any remaining functionalities.

An example: The Licensee program decides to remove Bluetooth
(BT) from its product. This can be done in two ways, either by
removing the BT enabler implementation or by muting the BT.
Although the Bluetooth implementation in the platform shares many
resources with other connectivity options such as infrared and USB,

14 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

removing BT needs to be done in a prudent way. If it is done un -
professionally, other connectivity types can be disturbed.

2.3.3 Least Stable Sub-system
When choosing the baseline, the program should be fully aware of
the least stable sub-system and its importance for the entire product.
It does not matter whether it is on the platform side or in the
licensee’s own implementations. What matters is whether it imple-
ments a critical interface, i.e. between the platform and the licensee’s
own customizations, or otherwise has several dependencies on other
parts of the software. As this is the weakest link, it is very probable
that most fi xes will take place in that part. If one expects to have
relatively many changes made to the intermediate components of
the software, it is good to be aware of them and prepare the project
organization to tackle the need for major changes.

2.3.4 Program Timing
That the early bird catches the worm applies to the mobile phone
industry. Therefore, choice of the baseline has a natural link to the
success of the program. In the other words, nobody wants intention-
ally to sell out-dated terminals with a feature set that has been
introduced on other available phones several months earlier. In addi-
tion, operators’ requirements are very tough and they would like to
see most, if not all, features included in all terminals sold via their
sales channels. If the program waits for the platform version to be
of commercial quality level (i.e. its quality has reached the level that
was business-wise clever enough to stop further maturing) and
chooses that to be the baseline, consumers may pick a competitor’s
product with a more complete feature set. The earlier the program
chooses the baseline the better, as long as maturity-related aspects
are also considered and analysed.

2.4 Summary
In all complex multi-supplier software programs, the software base-
line selection is the core of the matter. It is certainly one cornerstone
of the program and therefore it is vital that the architects control it.
This chapter provides detailed information on the special challenges

 Chapter 2: Selecting the Baseline 15

that each S60 customer program faces when making this important
decision. The S60 release cycles are described, as well as the poten-
tially contradictory facts when the critical choice of the baseline is
made. This chapter tries to provide an overview of proper baseline
selection, by introducing the most common pitfalls in the process.
Selecting the best possible baseline is without doubt one of the
cornerstones in having a successful S60 product, while it is one of
the trickiest decisions for the program to make.

Chapter 3: Release
Management

A phone program normally involves several software suppliers, as
shown in Figure 3-1. Release management can be very demanding
in such a multi-supplier environment. Internal teams can also be
considered suppliers if such teams do not communicate and interact
with each other in a daily basis. Scheduling and mapping the infl ow
of different sub-system releases and combining them together, can
turn out to be one of the biggest risk factors in a program. Therefore
release management requires very strict processes and policies as
well as everybody’s commitment to follow them. A non-analyzed
risk in one sub-system maturity can have tremendous impact on the
program success. The challenging variables having direct impact on
the release management are for example overall complexity of an
architecture and software, size of a software system (number of lines
in code), estimated number of individual fi xes accepted to be inte-
grated after code complete and number of used suppliers.

Let us start by taking the above examples one by one. Software
complexity can be divided into two aspects, architectural complexity

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

18 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

and code complexity. Architectural complexity has become an issue,
especially concerning Object Oriented (OO) software where the
importance and value of software reusability, maintainability and
adaptability to small chips (as in the mobile phone industry) has been
recognized. Unfortunately, the drawback of this is that managing
shared resource fi les can be a huge task, especially in a defect-fi xing
mode. Code complexity can be measured, for example by using
McCabe’s cyclomatic complexity formula, which measures the com-
plexity of a particular function by checking the number of branches
in the code. A method with no branches has a complexity of one;
a method with one branch has a complexity of two, etc. There are
tools available that can be used in measuring the complexity of
particular functions/code.

Both of these complexity aspects have an impact on the impor-
tance of release management in a program.

System size is in most cases measured in terms of the Lines of
Code (LOC) measurement. LOC is probably the clearest metric for
indicating size, but it is not necessarily the most useful one. System
size can also be exemplifi ed by the number of sub-systems, com-
ponents or Independent Software Vendors (ISV) used in the program.
These measures can often be more controversial than the simple
LOC, but effective use of them in release management can be worth
every penny.

MSW providing the
S60 platform

Supplier B providing
sub-systems 4 and 5 Supplier C providing

testing services

Customer Company
codes 50% of the

software and does the
integration work itself

D
elivery every

w
eek

D
elivery
tw

ice a
w

eek

Consta
nt

co
-operatio

n

Figure 3-1. Multi-supplier program architecture.

 Chapter 3: Release Management 19

Nobody can turn dross into gold. The estimated number of
acceptable fi xes that can be integrated into the baseline is a good
metric to keep in mind. The more fi xing that is needed, the worse
the original and resulting codes. It has also been said that one fi x
creates fi ve new defects in the system. Some hints on deciding what
to fi x and what not is discussed in more detail in later chapters.

In order to guarantee equal access to the software plus the pos-
sibility of following the overall maturity development of the platform,
MSW releases a new platform package every two weeks to all cus-
tomer programs. This means two deliveries every month for each
incremental release. If it wishes to do so, a customer program can
integrate each new software package every two weeks into its own
development environment, but that may cause a signifi cant amount
of work as well as increasing the complexity of reverse engineering
if regression is necessary. Whether integrating everything in each
release is worth doing depends on the number of modifi cations
made to the platform as well as to other procedures in the program,
but it certainly adds extra managerial challenges to the building
process. The following chapters provide different viewpoints on how
to evaluate which releases should be integrated as a complete
package and which may be worth neglecting completely.

3.1 The Build Cycle
First, a customer product program needs to defi ne which platform
increment fulfi ls most of the program’s expectations. This defi nition
requires a knowledge of resource availability and a wide under-
standing of the markets, as well as deep expertise about the tech-
nologies. After all, this is always going to be a business decision. The
evaluation phase can take months and meanwhile the markets can
change.

It is easier to follow the progress of a program if enough indicators
have been identifi ed for describing its status. One quite widely
accepted way is to use specifi c milestones with corresponding identi-
fi ers, as shown in Figure 3-2. Each such milestone is introduced
below:

• Project initiation (L-1):

• S60: program project manager nominated

• Customer: business case (high-level)

20 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• Customer and S60: key features and target market segment
identifi ed (overall schedule – time-to-market)

• Customer: main feature set decision made

• Customer and S60: key suppliers defi ned (dependencies)

• Project high-level targets agreed (L0):

• Customer: product program business-case feasibility study
approved

• Customer and S60: critical chain understood and back-up
plans made so that realistic targets can be set to balance
the business requirements and the capability

• Customer and S60: customer architectural specifi cation
analysis carried out and reviewed

• Customer and S60: fi rst program plan established (from L1
to L3 including resource commitments in place)

• Customer and S60: suppliers and PCC members identifi ed

• Customer and S60: S60 licensing agreement ready

• S60: Project team nominated

• Key features frozen and project plan ready (L1):

• S60: release and support plan established

• S60: readiness to deliver pre-releases established

L3 L4

En
d

of
 c

us
to

m
er

 p
ro

je
ct

Fi
rs

t c
al

l d
on

e

L1.2
K

ey
 fe

at
ur

es
 fr

oz
en

 a
nd

 p
ro

je
ct

 p
la

n

re
ad

y

Pr
oj

ec
t h

ig
h-

le
ve

l t
ar

ge
ts

 a
gr

ee
d

Pr
oj

ec
t-i

ni
tia

tio
n

L1.1

P
re

-in
te

gr
at

io
n

do
ne

D
at

a
se

rv
ic

es
 in

te
gr

at
ed

L1.3
L2L2

A
ll

ap
pl

ic
at

io
ns

 in
te

gr
at

ed

Fi
rs

t p
ro

du
ct

 s
hi

pm
en

ts

L2.3

Fr
ie

nd
ly

 u
se

r t
es

tin
g

st
ar

te
d

L2.4

TA
 a

nd
 o

pe
ra

to
r t

es
tin

g
st

ar
te

d

L2.2

Fi
el

d
te

st
in

g
st

ar
te

d

L2.1

Ph
on

e
in

 in
te

rn
al

 u
se

L0 L1L-1

Figure 3-2. An example of phone program milestones.

 Chapter 3: Release Management 21

• S60: product specifi cation frozen and all processes (error
management, change management, testing, etc.) agreed
with customer

• Customer and S60: pre-integration done (L1.1)

• Customer and S60: Stand-alone applications integrated
on the top of the Baseport (target device running in
PDA mode), S60 starts from shell, communication between
systems works at basic level

• First call done (L1.2):

• Voice communications work (or fi rst connection to the
network; can be also sms, data, etc.); additional features
such as camera working

• (L1.3):

• CSY pre-integration done

• second-level connections work (browsing, mms, mail), data
services integrated, all the remaining applications integrated
(L2)

• integration completed

• code completed

• customer code line management planned

• error management taken into use

• all S60 and third-party applications and features integrated
and verifi ed; localisations ready

• full BAT rounds can be started

• full system test rounds can be started

• fi nal L3 targets agreed

• Phone in internal use (L2.1):

• Proto phone is used as primary phone within project
team

• Field tests started (L2.2):

• testing on different operators’ networks started

22 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• friendly user tests started (L2.3):

• testing with selected internal and partly external end users
organized and started

• Type approval and operator tests started (L2.4):

• type approval testing (e.g. GSM, Bluetooth and Java certi-
fi cations and qualifi cations) started

• testing with selected key operators started

• The fi rst customer product is shipping to market (L3):

• software maturity in all areas at a commercial quality level

• all approvals passed

• preparing for maintenance mode started

• End of customer project (L4):

• handover to maintenance mode completed

• Update practices agreed (new versions etc.)

Reaching a milestone can also be used to show appreciation to
the employees and thus further motivate them to face the remaining
tasks and challenges. As seen in Figure 3-2, the word integration
pops up several times. Integration often equals building and there-
fore the build cycle should already be considered in the evaluation
phase of the program before any code has been implemented.

As the platform is released every two weeks, it can be assumed
that customers most probably make a new build minimum every two
weeks as well (at least at the beginning of the program). In addition,
customers most probably do some in-house development of, for
example, telephony and adaptation layer software and therefore
they may to carry out additional builds between the S60 bi-weekly
releases.

Figure 3-3 shows how the build cycle varies during the phone
program; at the beginning it can be quite long, in the middle of the
program it tends to shorten and at the end of the program the cycle
is again very short. What is noteworthy is that, as the program gets
closer to shipping, only those parts of the system that need to be
re-built are re-built. The organization needs to be aware of the need
to check and change the build cycle at any point in the program. In

 Chapter 3: Release Management 23

addition, the overall environment needs to be planned so that it can
easily accommodate these changes. Chapter 12 on the build environ-
ment goes into more detail.

3.2 Required Testing Activities
As every R&D project is aimed at producing something for the market,
there is no time to waste. However, no matter what release is chosen
to be the baseline and how long the build cycle is, proper testing
needs to be planned and performed. Determining the extent and
focus of the testing is an ever-changing process. The very fi rst testing
activity with the whole build is called the build sanity check. There is
more discussion of the principles of the sanity principals and other
issues related to testing procedure in Chapter 8 on platform testing
versus platform-based phone testing and the build environment.

3.3 Summary
The more suppliers there are in a program, the greater the complex-
ity of release management. In a multi-supplier environment the
program can be affected by the different maturity levels of each

N
um

be
r

of
 b

ui
ld

s
pe

r
w

ee
k

Months

Figure 3-3. Build cycle example.

24 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

sub-system. This chapter has introduced some ways in which the
program’s release management can be carried out more effectively.
Issues such as the maturity levels of sub-systems, the least-stable
sub-system and program timing should all be taken into account
when the baseline is selected.

Chapter 4: Binary Compatibility

All platform products used for the purpose of further development
cannot be described as part of a platform unless they can keep the
promise of compatibility. In S60 this means that the platform itself
needs to fulfi l the compatibility requirements as well as the devices and
the applications. In the other words, each device must maintain the
platform compatibility and each application developer should respect
the public API set up for implementation purposes. The APIs intro-
duced in the present version are expected to be available in the same
place with the same attributes and service in later versions. This is
called platform compatibility. MSW has made a promise to the entire
ecosystem to keep the public API set untouched from release 3.0
onwards. Naturally, the same promise is expected from each product
program, and thus each product program must pass the binary com-
patibility verifi cation before the device is shipped. Although this
chapter presents the challenges and the ways in which they can be
tackled from a S60 platform perspective, many of the things included
here can be copied with slight adjustments to any platform product.

In S60, the architecture itself has been designed so that the com-
patibility challenges are minimized. What does this mean and how

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

26 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

is it accomplished in practice? First of all, the platform, including all sub-
systems, is designed to accommodate a layered architecture and,
second, the integration of the platform is done in relatively small steps.

The MSW wants the S60 to be widely used and accepted among
different terminal manufacturers, end users and developer communi-
ties. This is to be achieved by ensuring that, no matter what phone
the end user is using, he or she can download applications developed
with the platform and use them without any problem in a meaningful
way. To minimize any inconvenience in the target, the platform has
set tight compatibility criteria, not only for itself but also for the cus-
tomer programs. The reasoning for binary compatibility can be sum-
marized as follows:

• Operators want to decrease their operational expenditure through
portability for their applications, services and content.

• Licensees want to leverage their own and third-party applications
in various products.

• According to the business case for third parties, contractors and
partners, every new version of an application means additional
costs.

• End users want to have applications running, because they have
paid for them.

• Licensees want R&D productivity on the basis of stable develop-
ment interfaces.

• A decrease in the amount of work required for application main-
tenance on the third-party developer side is desirable.

• Consumers are happier because applications are more portable
among devices (switching).

The aim is that, whenever a new S60 platform is released, its
components or applications already developed by the phone pro-
grams and third-party developers on top of the previous S60 plat-
form version can be reused in their binary form without any alteration.
In other words, binary compatibility means that all S60 public inter-
faces must be supported in upcoming versions of the S60 platform
in such a way that there is no need to rebuild executables that are
already working and that have been developed and built for some
previous version of the S60 platform.

 Chapter 4: Binary Compatibility 27

Sometimes, mainly for very important business reasons, the orga-
nization can deliberately create binary breaks. This has been seen in
3rd edition of the S60 platform, where a whole new architecture took
over from the old one. The third edition of S60 is based on Symbian
9.0 with the implementation of platform security. From version 3.0
onwards MSW is again committed to maintaining the compatibility.

The challenge comes from the fact that each version of S60 (e.g.
the second edition feature pack) has its own public SDK, which is
made available to the third-party developer community. With every
new version there are most probably new APIs included in the public
SDK. This naturally contradicts full application compatibility if the
application is using some API that was absent from the earlier version
and the user tries to use it with a phone that is based on that earlier
version.

Again, the nature of the software and the release policy put some
constraint on the full binary compatibility requirement. The nature
of software is rather special since there is always room for new fi xes
and some of these fi xes most probably also need to take place in
the components used in application development. The release policy
on the other hand guarantees that the Licensees may use the R&D
quality platform for application development. Because of these two
factors, there is a need to further specify what binary compatibility
really means and how much it covers in the world of S60.

There are two compatibility aspects to the S60 platform: source
compatibility and binary compatibility.

Source compatibility means that the application or a client code
can be rebuilt without a need to modify the code. Source incompat-
ibilities are introduced for example when;

• The most deprecated APIs are removed – because backward
binary compatibility with the S60 2nd Edition cannot be main-
tained, most deprecated APIs have also been removed from the
3rd Edition, while a number of new replacement APIs have also
been introduced. Platform Security and a new application archi-
tecture have been introduced.

• The biggest change in the Symbian OS v9.1 and in the S60 3rd
Edition is the Platform Security concept. Its main building blocks
are Capabilities (set of privileges for applications), Data Caging
(secure storage of data), Secure Interprocess Communication
(IPC) and memory management. Platform Security also requires
a number of changes to the application architecture.

28 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• A real-time kernel (EKA2) is introduced – EKA2 is the only kernel
version supported by Symbian from Symbian OS v9.1 onwards.
The compatibility impacts of EKA2 are mainly focused on the
need to rewrite device drivers, but there are otherwise a very
limited number of source-code breaks.

Binary compatibility means that no rebuild is needed and the
application or a client code thus runs on the S60 phone. Potential
issues come along when there is a new compiler and tool chain; The
S60 3rd Edition introduces new compilation tools (RVCT, GCC EABI),
which cause a full binary break.

4.1 API Categorization
Both the nature of software and the platform release policy have a
signifi cant impact on how easily binary compatibility can be achieved.
The platform can never be fully and 100 per cent binary compatible.
Therefore, there is a need to have different categories for the APIs
to indicate different compatibility commitments. API categorization
also helps R&D personnel to understand better how they should
treat different APIs.

The APIs still at the R&D maturity stage are not guaranteed to
remain the same throughout the program as shown in Figure 4.1. It is
already specifi ed in platform specifi cation and design phases which
APIs are to be open in the public SDK. The rule of thumb is that, once

First API set in
the first release

Second API set
in the second

release

Full API set in
the third release

R&D Release;
no BC

commitments

R&D Release;
BC

commitments
to the first API

set

R&D
Release; BC
commitments

to the first
and second

API set

Full API set of
commercial

quality

Full BC
commitment
+ Developer

SDK
published

Figure 4-1. API BC commitments.

 Chapter 4: Binary Compatibility 29

these APIs are of commercial quality, they can be published to the
third-party developer community for application development pur-
poses. This, of course, is not always the complete truth since, if the
developers need to wait until the SDP APIs are of commercial quality,
they may miss the market window. Therefore, the platform provider
should consider publishing an immature (alpha version) SDK to at least
a selected number of developers for study purposes. In this way the
developer can create the needed competencies before the applica-
tion implementation starts. When R&D-quality APIs are published to
developers, it is made clear that some changes to them are expected
and developers should be prepared for these changes.

Sometimes the public API set does not please the developer and
the developer needs access to private APIs for its project. Such
requests are studied carefully and decisions are made case by case.
If the request is approved, the developer needs to understand the
risk of using an API that can potentially undergo changes in future
releases.

Figure 4-2 shows four main categories of APIs and other interfaces
of the platform and platform-based products. Each resource element
should fi nd its way into one of the four categories. The APIs in the
left-hand boxes have direct impact on the amount of work to be
done by each Licensee and Developer, because, if some of the APIs

APIs published in Public
SDK for ISV

OEM APIs implemented by the
Licensee for feature and
application development

purposes

IFs used internally in one SW
implementation entity

Maintain BC
and SC

Maintain SC,
minimize BC

breaks

Minimize BC
and SC breaks

Your sandbox

IFs published internally to
other implementation entities

Figure 4-2. API categories.

30 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

in these categories are changed, the Developer or Licensee needs
to check if he or she needs to make the changes adopted to his
or her code as well. To manage the left-hand side requires well-
documented design specifi cations as well as good verifi cation of the
APIs to be published. The right-hand side, in contrast, has an impact
on the overall stability of the platform. To make the right-hand side
stable and to keep things under control, open and effective com-
munication is needed among different the various software entities.
This requirement applies to all phone programs equally, while the
fi rst requirement is particularly crucial in platform development.

4.2 Maintaining Compatibility
To guarantee the benefi ts of a unifi ed smart phone base that can be
widely used all over the world, several parties need to conform to
the existing compatibility criteria. These parties are naturally the
platform itself, but platform-based phones and individual application
developers also need to commit to follow certain rules. If any of
these parties fail in their development, the whole structure could
collapse.

Once a new platform version is in the pipeline, the new APIs
need to be introduced as extensions to, and not embedded in, the
previous releases by changing, for example, the function ordinals in
DLLs. All new implementations should be made by following the
compatibility scenario in Figure 4-3, where X represents the platform
and Y an application developed with the help of the platform
SDK.

This can sometimes feel like trying to come up with a jigsaw
puzzle where the shape of the pieces is constantly changing. The
following sections introduce each player’s responsibilities and give
some practical hints on how to maintain control in building this
‘big picture’.

4.2.1 Platform Compatibility
Naturally, the platform needs to provide stability along with the APIs
it has already published and to try to avoid making further changes
to them in later versions. Nevertheless, at the same time, some fi xes
may make it necessary to change these APIs. All such changes need
to be clearly communicated to all parties for further analysis if they

 Chapter 4: Binary Compatibility 31

need to make any compensating changes to their implementations.
Binary compatibility is verifi ed in every platform release and possible
breaks are communicated accordingly.

4.2.2 Platform-based Phone Compatibility
No S60-based phone program is permitted to carry out any customi-
sation on these public APIs. All phone programs are informed about
such APIs, which have been made open to third-party developers
and the immunity of these APIs should be respected. The ability to
install and execute third-party applications is ensured by this.

If a licensee wants to publish their own SDK, they should not
make available any S60 APIs that have not already been published
by MSW. This is because the platform only provides integrity to the
public SDK APIs and, if a licensee publishes other APIs for the plat-
form, it will be possible to change them in other S60-based phones
as well. Furthermore, the licensee should make possible extensions
available very carefully since developers will most probably assume

X (v.1.0)

Version X (v.1.0)
interface

Y (v.1.0)

Y (v.1.0)X (v.2.0)

Version X (v.2.0)
interface

Figure 4-3. Binary compatibility scenario.

32 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

automatically that application compatibility applies on their SDK as
well. How Licensee-specifi c APIs are communicated is very impor-
tant for the sake of smart-phone harmony because such APIs are
naturally missing from other devices.

4.2.3 Application Compatibility
If all other parties carry out their responsibilities, it can be assumed
that an independent application developer has no need to consider
compatibility issues at all. In theory, this is the case, but in practice
coding style can have a signifi cant impact on application compatibil-
ity with different S60-based phones.

Some companies may focus too much on implementing the appli-
cation on one phone model only and forget that consumers having
other models may also be interested in the same application. In the
other words, the more compatible their application is, the greater
the number of consumers who have the possibility of buying their
application. Furthermore, some terminal manufacturers publish rela-
tively detailed information on an individual phone model and its
capabilities. Together these two things can cause incompatibility
within certain applications and this can lead developers to code
applications with unnecessary dependencies on a certain phone. An
example of such dependencies is, for instance, not making the appli-
cations check the state of the phone before carrying out a certain
action, the application assuming that all phones have similar states
and state transitions. This supports fragmentation and is in contradic-
tion to the overall smart phone platform ideology.

4.2.4 Compatibility Dimensions
As already mentioned in previous sections, in an ideal world all
applications work with all phones. This should be the case regardless
of what public SDK version was used in application development as
well as what platform version the phone uses. Of course, if the
application is using some newly introduced APIs, it will not work on
phones based on older versions of the S60 platform.

Backward compatibility means compatibility when applications
developed in an earlier version of the SDK also work in the later
version of the SDK. In this case the later version of the SDK is back-
ward compatible. An application is backward compatible if it is com-
patible with phones based on older platform versions than that on

 Chapter 4: Binary Compatibility 33

which the application was developed. In the other words, the appli-
cation uses no extensions introduced in later versions of the SDK.

Forward compatibility means compatibility if no changes have
been made to the SDK APIs of the later versions of the SDK. In this
case, the earlier version of the SDK is forward compatible. An appli-
cation is forward compatible if it runs on terminals based on later
versions of the SDK; this is automatically the case if the platform is
backward compatible.

4.3 Binary Compatibility Scenario
Let us take a deeper look at to what causes binary breaks and why
they occur. As an example, component X (a DLL or a collection of
DLLs) presents version 1.0 of an interface to its clients. Client Y
version 1.0 is built using X version 1.0. In the next release component
X presents a new interface, version 2.0. The question is whether the
X version 2.0 is compatible with X version 1.0, i.e. does Y version
1.0 run using interface X version 2.0 or not?

From Y’s point of view, the X’s interface consists of:

• Header fi le(s):

• used by Y at compile time

• contains X’s class and function declarations as well as inline
function defi nitions

• defi nes X’s set of exported functions (those with
IMPORT_C)

• Import Library (X.lib):

• used by Y at link time

• contains a list of all functions exported by X

• Exports table (contained in X.dll):

• used by Y at run time

• contains addresses of all functions exported by X

• The behaviour of X’s exported functions:

• used by Y at run time

• implemented in X.dll

34 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

1. CPU Architecture scenario: The ARM Instruction Set Architecture has six versions. A break is
created if the ARM v4 code calls the Thumb subroutine or ARM v4 code returns control to
the Thumb subroutine. To prevent this happening, the developer should force the compiler to
use ARM Internetworking (ARMI).

2. Dynamic Linking Library: Functional ordinal number linking is allocated by either tool chain
action or defi nition fi les. A break is created if function ordinal numbers change in an uncon-
trolled manner. To prevent BC breaks, the defi nitions fi les should be frozen; if that is not fea-
sible, the additions needed should be implemented by using the ‘Ordinal growth and the
Extension DLLs’ design pattern.

3. Class Data Members: Data members represent some property of the class and access to data
members is resolved into an offset from the beginning of the object. Binary compatibility is
broken if the client contains code that accesses data members directly and the order of the
class members has changed since the last version. To prevent breaks, the developer should
consider each modifi cation of the data member type, use setters/getters to hide the class
structure from clients and not use inline functions becasue they are expanded into client code
when the client is compiled.

4. Class size: The size of object is determined from the header fi le at compile time. Binary
compatibility is broken if the client contains code that allocates memory for objects and the
size of the class has changed since earlier versions. To prevent breaks, the developer should
consider each modifi cation of the data member type and use class derivation or the design
pattern ‘factory method’.

5. Enumeration: An enumeration is a distinct integral type that defi nes named constants. The
compiler replaces each enumeration name constant with the corresponding integer number.
Binary compatibility is broken if the integer value associated with a named constant is changed
in the enumeration. To prevent breaks, the developer should not remove enumeration con-
stants or insert new ones in the middle of the enumeration sequence. A partial solution to
overcome the breaks caused by the insertion case is to reserve sequences of values for future
use.

6. Virtual function: Polymorphism is the ability to process objects differently depending on their
class. Binary compatibility is broken if the client instantiates/derives changes in virtual classes
and virtual function table compared to the previous versions (for example, virtual function
removed, order of virtual functions changed, a new virtual function added). There is no good
solution for enabling these kinds of change without breaking the binary compatibility. However,
using the design-pattern ‘factory method’ and making virtual classes non-derivable may help
in some cases.

7. Function signature: The signature assists the compiler to organize function calls. Binary com-
patibility is broken if the signature is changed. To prevent breaks, the developer should not
modify function signatures. The overload approach should be used instead.

8. Function behaviour: Clients may rely on certain function behaviour including a certain set of
function input/output values. Binary compatibility can be broken if the developer changes the
function behaviour, narrows the set of input values for a function or widens the set of output
values for a function.

 Chapter 4: Binary Compatibility 35

Binary compatibility can be broken if there is a mismatch
between:

• the part of the interface Y built using (header fi les and import
library) and

• the part of the interface Y running using (DLL, containing export
table)

In order to provide a deeper understanding of different binary
compatibility breaks, eight different scenarios are introduced briefl y
on page 34. Each of these cases are based on the Binary Compatibil-
ity Theory Training Material.1

4.4 Binary Compatibility Verifi cation
Each S60-based phone must pass a predefi ned verifi cation set
prior to shipping. It is enough to run the tests only once, right before
shipping is expected to take place, but if that is the case and
the verifi cation reveals a signifi cant number of breaks, the whole
phone program schedule will be delayed. It is highly recommended
that immediate attention should be paid to possible binary breaks
and they should be fi xed at an earlier stage. To achieve this, the
program should use the verifi cation suite as part of the development
work.

4.4.1 The Binary Compatibility Verifi cation Process
MSW provides the binary compatibility test suite to all its customers.
The test suite is release specifi c because each release most probably
introduces some extensions that were not present in previous SDK
versions and these extensions need to be covered.

Customer projects can start using the test suite at their earliest
convenience. Once the program is close to shipping and no changes
to the software are planned, it is time to carry out the fi nal verifi ca-
tion round.

As shown in Figure 4-4, the test suite produces a report, which
should be sent to MSW for fi nal acceptance. The phone can be
shipped if no problems are discovered during testing. All possible

36 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

breaks need to be corrected and the test suite to be re-run until full
binary compatibility can be guaranteed.

4.4.2 The Binary Compatibility Verifi cation Suite
The S60-based phone Binary Compatibility verifi cation suite consists
of several tools, applications and steps. The usage of the tools is very
straightforward and automatic.

The tools are called:

• SDK Analyser

• Source Analyser

• Binary Analyser

• Application Launcher

The following sections describe what each tool does, as well as
how and why it does it.

4.4.2.1 The SDK Analyser
The SDK Analyser identifi es changes between two different versions
of the S60 platform or between a S60 platform version and the
phone full software package. In other words, it requires two source
code packages as input and produces a data fi le containing informa-
tion on the differences between the two input data sets as shown
in Figure 4-5. This report is then used as one of the two inputs to
both the source analyser and binary analyser tools.

MSW

Customer program

Provide the
BC test suite

Evaluate
product status

Conduct
compatibility

tests

Proceed with
shipping

Compatibility
results

Verify
results

Consultance in
compatibility

problems

Resolve
compatibility

problems

Provide
assistance

Figure 4-4. Binary compatibility verifi cation process.

 Chapter 4: Binary Compatibility 37

The SDK analyser uses certain criteria for its analysis work. The
criteria considered are:

• changes in exported public/static function signatures

• changes in function ordinals

• changes in class size

• addition/deletion of exported public/static functions including
virtual functions

• changes in the order of virtual functions

• changes in order/size of data members

• changes in constant values

• changes in multi-bitmap defi nitions

• changes in resource defi nition

As a result the SDK analyser generates two data fi lea, a normal one
and a compact one. The difference between these two report fi le is
that the normal report includes specifi c information on the identifi ed
differences in defi nitions of functions, constants, resources and
multi-bitmaps defi nition, whereas the compact fi le only lists the dif-
ferences in ordinal numbers. The generated report (a text fi le) has
the following structure:

Source Analyser

Compatibility report

Normal data file

C:\...

Test
Application's
source codes

Y:\...

Figure 4-5. SDK Analyser.

38 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• incompatible libraries

• incompatible resources

• incompatible multi-bitmaps

4.4.2.2 The Source Analyser
The source analyser uses the normal report as an input together with
the source codes for the chosen application. It checks if the applica-
tion uses any of the exported functions listed in the report fi le, as
shown in Figure 4-6.

The report source analyser generates lists of the following fi nd-
ings, if any:

• changes in the order, number and type of function parameters

• changes in the return type of the function

• changes in constant values

The user can select any fi le from the report, which enables the fol-
lowing options:

• Show Details, which displays a dialogue containing the line
numbers where there was a compatibility failure and the reason
for it

SDK Analyser

Compatibility report

Normal data file

C:\...

Test
Application's
source codes

Y:\...

Figure 4-6. Source Analyser.

 Chapter 4: Binary Compatibility 39

• Show Source; using this portion the user can browse through the
source code of the selected fi le and view each compatibility
failure in turn

4.4.2.3 The Binary Analyser
While the source analyser uses the normal report from the SDK
analyser, the binary analyser uses the compact report. In addition,
the application binaries are also needed to run the binary analyser.
Figure 4-7 shows the functioning of the binary analyser, which can
be run on either a PC or the target hardware.

The binary analyser reads the header of the ARMI/ARM4/THUMB
binary to fi nd the following information:

• the names of the imported DLLs

• the ordinal numbers of the exported functions from each imported
DLL

It generates a simple report on the compatibility of the application
binaries with the base terminal, the source code which was originally
used as an input to the SDK Analyser.

4.4.2.4 The Application Launcher
The application launcher is run on the target hardware only and it
performs the following analysis:

Binary
analyser

Compact
data file

C:\.. or
E: \...

Compatibility
report

BCTestApps
(Binaries)

Test
Application's

Binaries

Figure 4-7. Binary Analyser.

40 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• It identifi es all imported DLLs.

• It gets the path information.

• It checks for the presence of the resource fi le path.

In addition, it launches an already installed test application and
generates a report if there are missing libraries or resources. The
application launcher is a quick and dirty way to check possible
binary breaks and therefore it could be used on a regular basis as
soon as the target hardware is available. What it does not do is any
further analysis if a break is found.

4.4.2.5 Binary Compatibility Applications
The scope of binary compatibility (BC) applications is such as to
enable a full coverage of the APIs that need to be checked. These
applications are grouped into three main categories:

• the BCApps, which handle the BC testing of specifi c APIs

• the BCAppLogEngine, which is used by the BCApps to log the
test results in a text fi le (C:\BcAppLog.txt)

• BCAppMain, which is a test driver application enabling auto-
mated testing by launching each application from the list of
selected BCApps

The user should install all binary compatibility applications in the
S60 device. It is recommended that they should be installed into the
MMC, so that the MMC contents can be easily reused in some other
device binary compatibility verifi cation.

4.4.2.6 Third-Party Applications
With the help of some real applications, the overall logic of the APIs
can be verifi ed. Some third-party developers have agreed with MSW
that their applications can be used as part of the binary compatibility
verifi cation suite. Today, there are over 30 such applications included
and, even though it is very diffi cult to say how much of the SDK they
cover, it is very strongly recommended that they should be run.

4.5 Possible Future Tools
Despite how well the tools described above cover the DLLs, the
libraries and the resources of the public APIs, there is always room

 Chapter 4: Binary Compatibility 41

for improvement. For example, what these tools cannot do is to test
the logic of how an application is using a certain DLL or function,
and therefore if a phone program changes the contents of a DLL in
such a way that no visible marks are created, the change in the logic
of the DLL can make the application behave strangely.

New tools and procedures, such as the following, may replace
the tools introduced in the above sections, either fully or partially.
This could make verifi cation faster and more convenient.

4.5.1 DepInfo Tool
A DepInfo tool performs a basic binary comparison between two
builds, as shown in Figure 4-8. DepInfo runs on a PC and it compares
two builds, copies the resulting differences into the appropriate place
and launches Internet Explorer to display the results. The results
include differences in the function exports of the DLLs. If the option
‘all’ is used, then the comparison only covers those DLLs that occur
in both builds and the rest are ignored.

4.5.2 Header Checker Tool
The HeaderChecker tool reports possible breaks between two sets
of header fi les. The report can be fi ltered by using different options
such as ‘New Exported Functions’ or ‘Removed Classes’.

DepInfo

S60 SDK
version1

S60 SDK ver2

Y:\epoc32\
release\armi\urel

z:\epoc32\
release\armi\urel

Report file

Figure 4-8. DepInfo.

42 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

4.5.3 Ordinal Checker
The Ordinal Checker performs a basic binary interface comparison
between two builds by comparing exported function ordinals.

These three tools, DepInfo, Header Checker and Ordinal Checker,
have all been evaluated and proved to work well. Whether these
tools will replace ever the current binary compatibility verifi cation
package is still undecided. The phone program needs to consider
whether it will get any value-added by using these tools.

A tool that could verify the differences between the logical behav-
iour of two SDK’s does not exist today. Most probably there will not
even be one available soon, because, on the basis of current under-
standing, implementing such tool requires fuzzy logic to be used and
therefore this would not only be time-consuming but also money-
consuming. It would most probably contain too many faults and
therefore the value added by such a tool would be very debatable
and not worth implementing.

4.6 Summary
Keeping binary compatibility among different S60-based devices is
an absolute requirement if S60 is to really take off. S60 has therefore
created a set of tools that verify the device against previously defi ned
BC requirements; these tools have been described in this chapter.
These previously defi ned requirements are basically derived from
the set of APIs published on the Forum Nokia web pages so that
everyone can utilize them in application development. In addition,
the verifi cation process has been explained. Binary compatibility
verifi cation uses tools such as the SDK analyser, the binary analyser,
the source analyser and the application launcher. Using these
tools as suggested provides useful information on a device’s
compatibility.

Chapter 5: Certifi cates and
Standards

Some of the S60 technologies may need separate certifi cation and
some of the features may require third-party licensing plus manda-
tory third-party acceptance prior to the terminal being shipped. This
chapter introduces such features, but, since every Licensee holds its
own contracts with these third parties, they should check their liabili-
ties concerning licensing and certifi cation responsibilities as set out
in the agreements with the owners of the IPR (Intellectual Property
Rights). The sections in this chapter should therefore be read as if
they are describing a case, in which the areas listed are understood
to be the liabilities of the phone program. Special attention should
be paid to Java, which in most cases requires both certifi cation and
third-party licensing.

Common to all these separately licensable technologies is that it
is very unlikely that any international legal agreement will be reached
within a reasonable time. Thus, it may be necessary to involve several
lawyers to make all clauses in the contract acceptable to both
parties.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

44 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

The Open Mobile Alliance (OMA) technologies described later in
this chapter are based on optional interoperability and verifi cation
events for terminal manufacturers, but are highly recommended to
each phone program. The S60 Platform introduces some parts of
the cellular standards that may be totally new to licensees or have
not been taken into use by some operators.

In addition to the above, government and quality certifi cates
are described even where they are not S60 specifi c because
smartphones may have some additional requirements prescribed
by different authorities that are not relevant to feature phones.

Some technologies/features may be optional in S60-based phones.
However, if a particular feature is used, a license or certifi cate may
be required. Table 5-1 describes all the technologies that either are
known to require a specifi c licence, certifi cation (SW versus HW) or
supplementary letter of agreement or are otherwise recommended
for offi cial interoperability testing by a third party and with other
enabling products such as servers.

5.1 Technology Certifi cates
Java and Bluetooth are seen as independent technologies requiring
licences and/or certifi cation.

5.1.1 Java/TCK
S60 Platform version 3.0 contains among other software the follow-
ing Java implementation (JSRs):

• CLDC 1.1 (JSR-139)

• MIDP 2.0 (JSR-118)

• JTWI 1.0 (JSR-185)

• Wireless Messaging API (JSR-120)

• Mobile Media API (JSR-135)

• Java APIs for Bluetooth (JSR-82)

• Mobile 3D Graphics API for J2ME (JSR-184)

• PDA Optional Packages for the J2ME Platform (JSR-75)

• Location API for J2ME (JSR-179)

• J2ME Web Services Specifi cation (JSR-172)

 Chapter 5: Certifi cates and Standards 45

• Security and Trust Services API for J2ME (JSR-177)

• Wireless Messaging API 2.0 (JSR-205)

• SIP API for J2ME (JSR-180)

• Scalable 2D Vector Graphics API for J2ME (JSR-226)

• Advanced Multimedia Supplements (JSR-234)

• Nokia UI API

TECHNOLOGY S60- HARDWARE SIDE LETTER LICENCE CERTIFICATE IOP
 SPECIFIC

Java X X X

Bluetooth X X X

PC X X
connectivity

Predictive X
text input

Chinese fonts X

Chinese X
dictionary

MIDI engine X

Audio & video X
Decoder
release 2.1

Security X X X
certifi cates

OMA X X

MMS X

WAP X

IMPS X

SyncML X

Content X
download

DRM X

Client X
provisioning

Government & X
cellular

Table 5-1. S60 certifi cates and licences.

46 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

All of these JSRs need to be separately licensed by the Licensee prior
to being released as part of the platform.

Symbian tests its own OS release as a software product and the
platform does the same for its implementations. If a phone has Java,
the phone most probably must execute and pass the Technology
Compatibility Kit (TCK) test suite for each JSR. If that is the case, then
the Licensee has to license the TCK test suite from Sun Microsystems
and self-certifi cation forms have to be sent to Sun.

TCK testing verifi es that all Java APIs in the device are correctly
implemented. For each API there is TCK and all TCKs need to pass
before the JAVA certifi cate can be obtained. Each TCK includes
certain number of test cases. For example, CLDC 1.1 includes 11 500
test cases and MIDP 2.0 over 600 automated cases, which have to
be run in the so-called Trusted and Entrusted security domains.

Nearly all test cases are automated and they are run using the
JavaTest harness provided with the TCK. Before these tests are run,
the TCKs must be installed; in the other words, the testing environ-
ment needs to be built.

Running the tests and exercising the necessary troubleshooting
with the failed cases requires special know-how on TCK and the
JavaTest harness and thus Java programming skill as such does not
guarantee that a person is capable of completing these activities. In
most cases improperly implemented APIs are not the cause of the
problems, but more probably problems in the test environment (e.g.
problems in fi rewalls or poor GPRS connection). The special com-
petencies in TCK testing include, for example, the following: testing
profi ciency in demanding industrial settings; understanding of PC
and mobile hardware; connectivity and compatibility issues; and a
thorough understanding and knowledge of TCK testing and its large
volume of documentation.

Very often, the extent of the things mentioned above surprises
the management of the phone program. Therefore it is recom-
mended that enough time should be reserved for planning and
testing the TCK environment and for guaranteeing that the required
competencies for running the test and possibly analysing the results
are in place and available when needed, as well as that consideration
should be given to out-sourcing this part of the program to a pro-
fessional company fully dedicated to this sort of testing activities
with the needed know-how on building the environment, running
the tests and carrying out the necessary troubleshooting for failed
cases.1

 Chapter 5: Certifi cates and Standards 47

5.1.2 Bluetooth
Bluetooth is a wireless connectivity standard. It is becoming more
and more popular in mobile devices as well as in offi ce environ-
ments. Bluetooth can be used for transferring fi les and data packages
between two devices, for example for printing or when a wireless
mouse is used. S60 contains the following profi les in Bluetooth:

• Dial Up Networking Profi le (Gateway)

• Fax Profi le (Gateway)

• Object Push Profi le (Server and Client)

• File Transfer Profi le (Server)

• Hands Free Profi le (Audio Gateway)

• Headset Profi le (Audio Gateway)

• Basic Imaging Profi le (Image Push Server and Client)

• Sync Profi le (OMA DS)

• Remote SIM Access Profi le

A Bluetooth (BT) qualifi cation is needed for all BT products. In
order to obtain one, the Licensee needs to be a member of the
Bluetooth SIG.

5.1.2.1 BT Certifi cation Areas
BT consists of three layers, one layer each falling into the territory of
Nokia, Symbian and the Licensee. These three layers are:

• Physical level, radio part

• Protocol and profi le

• Application level profi le

A phone program should carry out the physical-level certifi cation,
as it is very hardware dependent. The physical-level qualifi cation
consists of radio frequency and base band measurements. Typically,
BT component suppliers have certifi ed the components. If this is the
case, a phone manufacturer only needs to make sure that antenna,
clock signal and heat range fulfi l the requirements.

48 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

The protocol-level certifi cation involves the Licensee, S60 and
Symbian. The protocols are implemented in Symbian OS. S60 needs
to state that the platform implementation complies with the Symbian
implementation, while the Licensee has to make sure that it does
not negatively affect the BT functionality when modifying those parts
of the S60 platform.

Responsibility for the application-level profi le certifi cation belongs
to the phone program. The Implementation Conformance Statement
(ICS) of profi les in the S60 platform can be used. Some profi les may
require implementation in DOS, for example the SIM Access Profi le
(this applies only to platform versions 2.6 and earlier), while the
majority of OBEX-based profi les are implemented in Symbian and
the S60 Platform. However, this information should be verifi ed from
the related documentation, such as the product specifi cation.

Since Bluetooth devices use radio signals in the Industrial, Scien-
tifi c and Medical (ISM) band, they must pass the regulatory tests.
There are different national and international regulations in this area.
Even if it is not illegal, the use of Bluetooth devices that have not
passed the tests is not recommended. In some countries it may not
even be possible to get type approval for Bluetooth. More informa-
tion to be found in the following standards: ETS 300-328 and ETS
300-826 European Telecommunications Standard (Europe) and
FCC&15 Federal Communications Commission (USA).

A Bluetooth sniffer is a useful tool for testing at the protocol and
profi le levels. At present, there is some automatic BT test equipment
available but unfortunately some of these tools may give different
results for the same tests. It is therefore recommended that enough
time be reserved for BT certifi cation so that possible interpretations
of the differences can be resolved.

The Bluetooth SIG arranges ‘unplugged test fests’ so as to provide
a cost-effi cient way to test BT products. In addition, the BT device
manufactures get to check the interoperability of their devices with
the latest BT devices from other manufacturers. The test fests are
arranged every three months.2

5.1.3 Other Technology Licences
Other optional technologies requiring a separate licence are, for ex -
ample, PC Suite, the Midi Engine and the Predictive Text input engine.

The IPR of the PC connectivity involves several parties. Further-
more, there are signifi cant differences between the S60 releases

 Chapter 5: Certifi cates and Standards 49

because of the connectivity software dependencies for the version
of the Symbian OS that is used. In the S60 Platform Release 2.1
the PC Suite is made by Nokia and is licensed under a separate
agreement between Nokia and the Licensee. This PC Suite uses
OBEX and SyncML standards. OBEX and SyncML both come from
Symbian/Nokia and do not require separate agreements to be in
place.

The MiniBAE 1.6 MIDI engine can be obtained from Beatnik Inc.
It is necessary if playback of MIDI fi les is required,or example to
enable MIDI ringing tones in the phone.3

With predictive text input it is possible to enter text on a mobile
phone using just one key press per letter. Predictive text input is a
common replaceable component from Tegic Communications Inc.
If a terminal has the feature, a licence agreement with the relevant
third party is obligatory.4

5.1.4 Security Certifi cates
A supplementary letter of agreement between the S60 Licensees and
Nokia is necessary to fulfi l the requirements of the following three
certifi cate issuers: Verisign, Baltimore, and Entrust. In practice, it
includes Verisign requirements for trademarks as well as Entrust war-
ranty requirements:

• Verisign: Verisign delivers infrastructure services that make the
Internet and telecommunications networks more reliable and
secure.5

• Baltimore: the Baltimore UniCERT, Certifi cate Authority (CA), has
been extended to produce WAP digital certifi cates (WTLS certifi -
cates). WAP gateways and servers need these certifi cates to
authenticate themselves to mobile device users.6

• Entrust: Entrust creates software to secure digital identities and
information.7

Delivery of Nokia’s Verisign, Baltimore and Entrust certifi cates is
not included in the S60 Platform OEM delivery as a default. The
certifi cates will be delivered separately to the licensees that have
signed the supplementary letter of agreement. Certifi cates are docu-
mented in the S60 product specifi cation.

50 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

5.1.5 Universal Serial Bus
Universal Serial Bus (USB) can be used to connect S60-based phones
to other devices such as peripherals and computers. USB is optional
in S60. Furthermore, certifi cation is not required even if a terminal
has USB.

If a phone implements USB, the manufacturer can turn to the
USB Implementers Forum (IF) Inc., which is a non-profi t corporation
founded by the group of companies that developed the Universal
Serial Bus specifi cation. The USB-IF Forum facilitates the develop-
ment of high-quality compatible USB peripherals (devices) and pro-
motes the benefi ts of USB and the quality of products that have
passed compliance testing.

The USB-IF instituted Compliance Program provides reasonable
measures of acceptability. Compliance Workshops are held about
once a quarter in various locations and typically run for three days.
The USB-IF provides special test teams who perform the tests devel-
oped for the Compliance Program. Private test sessions are also
scheduled for system vendors and peripheral vendors. During these
test sessions, the vendors check that their products work well
together. Products that pass this level of acceptability are added to
the Integrators List and have the right to license the USB-IF Logo. If
a product is not on the product list, it does not mean there is any-
thing wrong with the product; instead it proves that any product on
the list has passed the tests and is in a way an additional marketing
element.8

5.1.6 Infrared Connectivity
Infrared certifi cation is fully optional. The mission of the Infrared
Data Association (IrDA) is to promote interoperability between IrDA
devices. It is the responsibility of each S60 licensee to obtain the
needed product compliance in accordance with IrDA specifi cations.
IrDA compliance relies on self-testing by device manufacturers.

IrDA Data protocols consist of a mandatory and optional set of
protocols. These protocols are:

• PHY (Physical Signalling Layer)

• IrLAP (Link Access Protocol)

• IrLMP (Link Management Protocol and Information Access Service
IAS)

 Chapter 5: Certifi cates and Standards 51

The PHY protocol implementation belongs to the licensees. The
following profi les are supported in the S60 platform release 2.0:

• IrDA Stack: IrLAP v1.1, IrLMP v1.1, IrTinyTP v1.1, IrComm v1.0

• Obex: IrObex v1.2

• Digital Camera Connectivity: IrTranP v1.0

The IrReady trademark is optional. The Infrared Data Association
has its IrReady program, which defi nes the minimum set of require-
ments that will lead to interoperability and an acceptable user expe-
rience. The IrReady qualifi cation is then awarded to devices that
meet those standards.

The IrReady Program Reference Document, Test Specifi cations
and Profi les will help to properly certifi cate products. Under the
direction of the IrDA Test and Interoperability Committee, IrDA has
authorized Interoperability Test Labs to provide testing for devices
that wish to have the IrReady trademark. This is part of the certifi ca-
tion process and is a requirement for obtaining the intellectual prop-
erty rights to use the IrDA IrReady trademark.9

5.1.7 Multimedia Cards (MMC)
The S60 Platform supports MMC cards. S60 licensees are recom-
mended to contact the Multi Media Card Association (MMCA) but
there are no certifi cation requirements. The MMCA develops and
regulates open industry standards that defi ne all types of multimedia
cards and drives worldwide acceptance of multimedia cards as an
industry standard across multiple host platforms and markets. The
organization works toward full interchangeability and compatibility
(including backward compatibility) between the cards produced by
all MMCA members.

MMCA defi nes the testing procedure for MMC card manufactur-
ers only. There are no specifi ed conformance testing or acceptance
requirements for mobile phone manufacturers.

MMCA organizes ‘plug fests’ for members and non-members. A
large array of host and card products compatible with the Multime-
dia Card standards are brought together in one place. Participating
companies have an opportunity to test and verify the interoperability
of host platforms and multimedia cards. Test results are always con-
fi dential between card manufacturer and host manufacturer. MMCA

52 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

will not collect or monitor test results. Actions to correct interoper-
ability issues are worked out manufacturer to manufacturer rather
than through the MMCA.10

5.2 The Open Mobile Alliance (OMA)
The Open Mobile Alliance verifi cation and interoperability sessions
are optional for S60 Platform licensees. There are no formal certifi -
cates required after successful verifi cation sessions. OMA defi nes
its mission as ‘to grow the market for the entire mobile industry by
ensuring seamless application interoperability while allowing busi-
ness to compete through innovation and differentiation’.

It is recommended that all S60 licensees familiarize themselves
with OMA IOP policy and process. Nokia MSW tests the S60
platform delivery. Responsibility for the testing of functionalities and
interoperability of market-ready terminal products belongs to the
S60 licensees even though there are no formal certifi cation require-
ments. Chapter 9 on Testing as a Tool provides more information on
the OMA and on overall interoperability testing.

5.2.1 Process and Principles
Chapter 9 describes the interoperability process, policies and prin-
ciples of OMA. The interoperability activities in OMA provide for
the verifi cation of technologies in products against the technical
specifi cation requirements and acceptance of results. The aim is to
avoid multiple testing structures and to achieve cost effi ciencies. It
is intended that the OMA Interoperability Program will evolve as
the OMA Enabler Releases evolve. It will be extended and modifi ed
to encompass future technologies as determined by OMA. Readers
should therefore verify the up-to-date process directly with the
OMA.

Interoperability is the key to the success of services based on the
standards defi ned by OMA.

OMA IOP programme includes several methods:

• OMA Test Fest

• Manufacturer bilateral testing

• Testing in a test house

 Chapter 5: Certifi cates and Standards 53

The testing process when the Test Fest approach is used has two
phases: Test Fest preparation and Test Fest operations. Test respon-
sible is the administrative group authorized by OMA.

Up-to-date information about current events, their scope and
schedule can be found from the OMA web pages at 〈http://www.
openmobilealliance.org/〉.

To schedule the OMA test fest as part of the phone program,
management should take the schedule in Table 5-2 into account.

OMA technologies in the S60 Platform include the following:

• Multimedia messaging (MMS). The MMS features of a S60
platform release are tested by Nokia on reference hardware. A
Licensee needs to decide how extensive additional MMS IOP
testing it plans to be carry out.

• Wireless Application Protocol (WAP). The OMA board of direc-
tors made a decision that the WAP1.2.1 certifi cation program
should be shut down. The OMA conformance and interoperabil-
ity testing replaces this former WAP certifi cation. OMA also pro-
vides a test suite for testing WAP. This test suite is available to all
OMA members and it also contains tests that are not applicable
to S60-based phones.

ITEM TIME

Test Fest schedule −12 weeks (before test fest)

Fest announcement −8 weeks

Event venue −8 weeks

Test documentation approval −8 weeks

Registration opens −8 weeks

Registration closes −2 weeks

Deadline for submitting test material −1 week

On-site information sent to participants −1 week

Detailed on-site information available to –
participants

Test Fest testing –

Notifi cation of Test Fest results +1 week

Publishing Test Fest information on OMA +1 week (after Test Fest)
website

Table 5-2. OMA Test Fest preparation guidelines.

54 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

The S60 Platform release 2.0 contains an XHTML mobile browser,
which enables users to access services related to the WAP 2.0 speci-
fi cation. The S60 Platform WAP Implementation Conformance State-
ment will include the Static Conformance Requirements (SCR) from
all of the June2000 WAP specifi cations.

The Instant Messaging and Presence Server (IMPS) is also covered
by OMA and therefore does not require any additional license
or certifi cate. OMA has arranged optional interoperabilities (IOPs)
since November 2002.

Registration usually ends two weeks before an event. Members
can register for these events on the OMA web page.

SyncML in S60 supports the following synchronization types:

• two-way synchronization

• slow synchronization

The protocols supported are:

• HTTP 1.1

• WSP (WAP 1.2.1)

• SSL/TSL can be used for security

• WTLS is not supported

• VCalendar v1.0

• VCard v2.1

SyncML testing is optional. The SyncML client, which is a core
component of Symbian OS, is an open standard that uses a common
language for communications between devices, applications and
networks. The SyncML open standard ensures a consistent set of
data that is always available on any device or application at any time.
SyncML Device Management (SyncML DM) enables OTA administra-
tion of devices and applications, simplifying confi guration, updates
and support.11

When the SyncML initiative was assimilated into OMA, it was
accommodated into the OMA interoperability (IOP) process. At the
same time the SyncML acceptance procedure was terminated. The
purpose of the OMA fest and bilateral IOP testing is to improve
the interoperability of the specifi cation by testing the interoperability

 Chapter 5: Certifi cates and Standards 55

of separate devices. Passing the tests successfully at an OMA fest no
longer entitles a product to be listed, as was the case when the
SyncML initiative was used.

Digital Rights Management (DRM) enables content providers to
associate certain rights with the content objects that defi ne how the
content can be used. The OMA DRM 2.0 standard, which is sup-
ported in S60 version 3.0, provides various levels of DRM methods
for mobile content delivery: forward lock, combined delivery, and
separate delivery. Forward lock prevents an end user from sending
DRM-protected content to other end users.

The DRM implementation on the S60 Platform is ready for CMLA,
but it is not certifi ed, since only devices can be certifi ed by the
Content Management License Administrator (CMLA).

5.3 Cellular Standards and Operators
Not only cellular standards, but also operators set additional
requirements for terminal manufacturers both in technology and in
usability.

The European Telecommunications Standard Institute (ETSI) is a
non-profi t-making organization whose mission is to produce tele-
communications standards. The GSM standard requirements can be
obtained from ETSI. The S60 Platform supports the ETSI 3GPP TS
51.010-1 V5.1.0 test specifi cation. Support in this case unfortunately
does not guarantee that a Licensee’s S60-based phone will also fulfi l
those requirements; instead it only guarantees that the platform does
not contain anything that prevents the requirements from being ful-
fi lled. This is natural since the Licensee has their own implementa-
tion for the telephony parts of the phone as well as its own RF
solution. Most of the phones aimed at the GSM markets need to
pass some version of the ETSI 3GPP tests. In most cases it is the
operator who defi nes the version that needs to be passed for each
phone.12

Code Division Multiple Access (CDMA) phone programs should
plan CDMA features carefully and reserve enough time for operator
acceptance. This is because of the nature of the CDMA standard,
which concentrates fully on defi ning the air interface in which, at
the same time, many network interfaces are proprietary. Each opera-
tor has to certain extent a unique solution for the composition of
the network and the major operators may have different service

56 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

platform requirements. Whereas some carriers support standard
OMA implementations, others use non-OMA deployment. As a
result of the fragmentation in the CDMA world, there may be a need
for operator-specifi c software versions. In fact, there are more opera-
tor-specifi c requirements than generic CDMA requirements.

From a licensee point of view, one of the advantages of the S60
platform is that the majority of diffi cult operator-specifi c require-
ments are already implemented in the platform software. However
the IOP, certifi cation and acceptance have to be done for the each
terminal product separately.13

5.3.1 Government and Quality Certifi cates
Government-based certifi cates are typically common to all phones
irrespective of their feature set. This section provides a look at what
kind of additional requirements based on different governmental
legislations terminal manufacturers may have to face when trying to
sell the product. Several authorities and organizations may have
some ‘certifi cation by similarity’ procedures for ‘copy’ products, but
the licensees should not assume that the terminals automatically
fulfi l these similarity defi nitions, which vary between organizations.
Further more, the Licensee should treat this list as incomplete because
the legislation is ever-evolving and ever-changing. Thus, every phone
program should acknowledge its responsibility in fi guring out the
prevailing requirements for the phones to be the shipped.

5.3.1.1 Mandatory
EU Directive RTTE 1999/5/EC is mandatory for obtaining the CE
mark. The licensees who wish to self-certify products can use the
method described in Annex V, which is one of the alternative ways
to demonstrate compliance with the requirements of the Radio and
Telecommunications Terminal Equipment Directive (R&TTE 99/5/EC).
The route using Annex V is known as ‘Full Quality Assurance Approval’,
because it is based on the evaluation of the whole quality system. In
practice, this means that a vendor can self-certify new GSM products
quickly by testing them in their own or an external accredited test
laboratory and send the results to the notifi ed body.14

European Commission Automotive Directive 95/54/EC describes
how to obtain the e-mark that is mandatory for devices that are to
be connected to the power supply of a vehicle. Some testing is also
required for this.

 Chapter 5: Certifi cates and Standards 57

The Restriction of Hazardous Substances (RoHS) is an EU directive.
It may be extended to other geographical areas some day as it has an
environmental aspect. Products containing lead, mercury, cadmium,
hexavalent chromium, polybrominated biphenyls and polybromi-
nated diphenyl ether must not be sold in the EU after 1 July 2006.
Producers will be responsible for taking back and recycling electrical
and electronic equipment. This will provide incentives to design elec-
trical and electronic equipment in an environmentally more effi cient
way that takes waste management aspects fully into account. Con-
sumers will be able to return their equipment free of charge. There
may be some restrictions on the materials used in terminals.15

Waste Electrical and Electronic Equipment (WEEE) is a draft EU
directive. It instructs the user to dispose of WEEE separately from
other waste.

Local Approvals for Games
Since the S60 Platform enables licensees to include a broad-
spectrum of games in the terminals, it is recommended that licensees
verify the local requirements for game approvals from the relevant
authorities. The latter include:

• Interactive Software Federation of Europe (ISFE)

• Entertainment Software Rating Board in the USA (ESRB)

Prior approval for games is required currently in approximately
15 countries in the Europe and Africa region. After ESRB approval is
granted, a sticker and registration number with an age limit is received
for sales packages.

The Federal Communications Commission is a mandatory certi-
fi cation required in the USA. The Federal Communications Commis-
sion (FCC) is an independent United States government agency. The
FCC is charged with regulating interstate and international com-
munications by radio, television, wire, satellite and cable. Required
actions are testing against FCC requirements paperwork and type
approvals.16

The PCS 1900 Type Certifi cation Review Board is a certifi cation
that can be required by operators and US market. The purpose of
the PTCRB is to provide the framework within which GSM Mobile
Equipment Type Certifi cation can take place for members of the
PTCRB. This includes, but is not limited to, determination of the test

58 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

specifi cations and methods to implement the Type Certifi cation
process for GSM Mobile Equipment. Required actions are testing
against PTCRB requirements, paperwork and type approvals.17

China approvals and certifi cations can in some cases set addi-
tional requirements for terminal programs trying to get into Chinese
markets. They may require testing against local requirements, paper-
work and type approval.18

Local approvals and certifi cations may be needed for areas where
EU, USA, Canada, China approvals are not enough. As an example
these could be required by:

• Australian Communications Authority

• Canada (see 〈http://www.crtc.gc.ca〉)

• Japan (see 〈http://www.soumu.go.jp/〉)

5.3.2 Optional

Global Certifi cation Forum (GCF)
Participation and membership in the Global Certifi cation Forum
is voluntary. GCF is a partnership between operators and termi-
nal manufacturers. It provides an independent program to ensure
global interoperability of 2G and 3G mobile terminals. In addition,
other parties involved in terminal development, including test
houses and testing equipment manufacturers, may participate as
observers.

Benefi ts of membership are as follows:

• restricted PRDs

• meetings and meeting documents

• 3G activities

• test cases

• fi ve- and ten-day rule document approval process

• fi eld trial (FTQ) documents

• terminal information and documents

• membership database

• other GCF internal documents

 Chapter 5: Certifi cates and Standards 59

The current membership includes over 140 network operators
worldwide, 30 leading terminal manufacturers and 48 test equip-
ment manufacturers, test laboratories and other observers.19

Cellular Telecom Industry Association (CTIA)
CTIA is an optional certifi cation in the US market. Involvement in
the discussion forum and in testing activities is required in the CTIA.
When a phone passes certifi cation, the manufacturer has the right
to exhibit the CTIA Certifi cation Seal on the phone and its packaging
and to use the CTIA Seal in its advertising.

Certifi cation applies for the following technology platforms in
North America:

• CDMA

• GSM

• TDMA

• analogue

CTIA-certifi ed products must pass a rigorous three-part technical
evaluation. All test plans can be downloaded from the CTIA web
pages:

• Part 1 tests the product’s conformance to the wireless industry’s
technology platform standards. These tests, which are conducted
by a CTIA Authorized Testing Laboratory, are defi ned in the test
plans available from CTIA.

• Part 2, which is also conducted by a CTIA Authorized Testing
Laboratory, tests a product’s over-the-air performance and is
defi ned in a test plan.

• Part 3 of this evaluation is the FCC Type Acceptance Testing. An
FCC authorized testing laboratory conducts this testing.

CTIA Certifi ed products are required to include information for
consumers about important health and safety information related to
the use of wireless products.20 This information includes:

• driver safety information

• consumer safety information

60 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• audio accessibility

• hands-free capability

Entertainment & Leisure Software Publishers Association
Europe (ELSPA)
ELSPA was founded to establish a specifi c and collective identity for
the British computer and video games industry.21

ELSPA addresses the following issues:

• industry promotion

• sales charts and reports

• conferences and seminars

• anti-piracy enforcement

• reviewing proposed legislation

• content ratings

• research reports

• careers promotion

• ISO Standardization

International Organization for Standardization (ISO)
ISO is the world’s largest developer of standards. It is the world
leader in providing widely accepted quality-related standards to the
market. Some of these quality standards, if followed, can provide
company-wide certifi cation and therefore can be applied to S60-
based terminals as well as to any product a company produces. The
licensee’s task is to determine which standards are applicable to their
products. The following are some of the possible certifi cates:22

• The ISO/IEC 17025 Laboratory Quality Standard enables labora-
tories to issue accredited test reports with traceability to national
and international measurements standards.

• ISO 9000 Certifi cation requires quality manuals and internal
audits, as well as that management reviews take place as part of
every project.

• The ISO/TS 16949:2002 certifi cate is an international technical
specifi cation for the car industry, specifying the quality-

 Chapter 5: Certifi cates and Standards 61

management system requirements for development, production,
assembly and service of automotive-related products.

5.4 Summary
S60 includes numerous features that need either separate certifi ca-
tion or a license from a third party. Such a feature is, for example,
Java Specifi cation Requests (JSRs). In addition, there are features and
technologies that do not require certifi cation, but for which it is
highly recommended that certain interoperability verifi cations be
carried out in order to confi rm correct functionality. This chapter has
introduced many of the requirements of the certifi cation and interop-
erability verifi cation processes. The list of technologies covered is by
no means a complete one as the actual requirements are as stated
in the contracts between the licensing parties and not, therefore,
necessarily as described here.

Chapter 6: What Quality Means

People defi ne quality in many ways. A high-quality product to one
person can mean unacceptable quality to somebody else. Very often
people identify quality with a lack of defects in a product or service.
In addition, what the term ‘defect’ means different things to different
people. Equally, the product feature set is an important aspect of
the defi nition of a high-quality product, as well as the timing of when
these features are made available. This chapter provides a look at
quality from different perspectives such as quality culture, quality
standards and quality in a software product.

The American National Standards Institute (ANSI) and the Ameri-
can Society for Quality (ASQ) defi ne quality as follows:

the totality of features and characteristics of a product or service that bears
on its ability to satisfy given needs.

All self-respecting companies agree that the main reason to pursue
quality is to satisfy customers. This is also called fi tness for use. In
highly competitive markets, those who succeed do not only meet
customer expectations but generally exceed them. Thus, one of the

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

64 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

most popular defi nitions of quality is meeting or exceeding customer
expectations.1

Quality expectations and the challenge in fulfi lling them are
shown in Figure 6-1.

Organizational culture has a defi nite impact on the success of a
company in the markets that it serves. Kimberley Kingsley wrote:2

A relational based quality is grounded in organizational integrity and offers
a strategy for organizations to realize their full potential. No matter is it a
physical product or a service the quality is either built in it or not by the
individual employees.

6.1 Quality Culture
Quality culture indicates, as mentioned above, the organizational
integrity in failing, meeting or exceeding customer expectations. An
organization, whether it is small or big, if it is led properly, can have
a common goal that is well-communicated widely understood. This
is necessary if business success is to be achieved. According to
Kimberley Kingsley’s paper,2 the fi ve underlying principles of rela-
tionship-based quality offer clarity of purpose and a path by which
any organization can discover its potential:

1. Adopt a global perspective; the birth of Internet has shrunk the
world and made accessing anyone, anytime, anywhere very simple
and easy. If this is understood correctly, the organization can
better interpret what customers expect and when they expect it.

2. Invoke organizational integrity; people tend to perceive the moti-
vation and character of other people. In the other words, teams
or groups of people have been able to reach tremendous targets
mainly because they were so focused and motivated.

Known customer
expectations

Unknown customer
expectations

Quality
target
setting

Process
planning &

documentation

Program work

Organization culture

The
product

Figure 6-1. Product quality diagram.

 Chapter 6: What Quality Means 65

3. Apply core values; the company values need to be defi ned, dem-
onstrated and disseminated. Subsequently, it may also need to
be refl ected and modifi ed.

4. Inspire leadership; relationship-based quality inspires leadership
at every level by bringing out the leader in each person.

5. Embrace transformation; once values and targets have been
embedded into the organization, people start to work together
towards the one target. Their working preferences automatically
become synchronized.

Before the industrial revolution, craftspeople surely understood
that customers expect high-quality products. At some point in
history, some companies tried to infl uence their markets and cus-
tomers by manufacturing goods to meet customer needs, which
either existed or did not exist at all. This still happens, but in a
more effective way, and a real customer-oriented approach has
developed in all world-class companies irrespective of the industry
concerned.

How can the understanding of the customer arise? James R. Evans
and James W. Dean Jr in their book Total Quality1 introduce the fol-
lowing principles for encouraging better understanding of the ulti-
mate expectations of customers:

• Collect customer information. The usage of customer satisfac-
tion surveys has increased signifi cantly over the past decade. It
seems nowadays that you cannot visit a restaurant without being
given a customer feedback form and asked to fi ll it in and return
it to reception. This is easy to understand since one of the most
popular ways to collect customer information is customer surveys.
Who else can provide more truthful feedback on a product than
the person using it? If a survey is well designed, it can provide
vital information on existing customer penchants for a specifi c
product group. The Japanese automobile industry has taken this
even further. Teams of automobile designers visit people’s homes
and observe how they live in order to anticipate their automotive
needs. For example, one executive vice-president of Honda
has said: ‘We should not try to sell things just because the market
is there, but rather we should seek to create a new market by
accurately understanding the potential needs of customers and
society’.

66 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• Disseminate customer information. Too often an engineer
designs his or her product for another engineer even though the
potential customer may be in a totally different profession. The
‘bigger’ the product, the more distance there is between the indi-
vidual employee of the manufacturer and the customer. This creates
a potential gap in employee understanding of the customer and it
is why it is vital that the information received through surveys is well
communicated to all employees. This information must be trans-
lated into the features of the organization’s products and services.

• Use customer information. After the customer satisfaction infor-
mation has been communicated to everyone, the following ques-
tion needs to be answered by all employees: how can we as a
company improve customer satisfaction?

• Manage customer relationships. One of the most critical roles
in any company is that which has responsibility for the customer
interface. Customer contact employees are the people whose
main responsibilities bring them into regular contact with custom-
ers – in person, by telephone or through other means. Despite
all efforts to satisfy customers, every business experiences unhappy
customers. That is why customer contact people should also be
well trained to receive customer complaints.

6.2 Quality Standards
As quality has become a major issue in business, various organiza-
tions have published standards and procedures about the topic.
Probably the most well known quality standard, the ISO 9000-
family, is introduced in this chapter. In addition, the Six Sigma
method is briefl y introduced in Section 6.2.2.

6.2.1 ISO 9000
The International Standardization Organization (ISO) was founded
in 1946. It is made up of representatives from the national standard-
ization bodies of 91 nations. The agency adopted a series of written
standards on quality in 1987. The outcomes were revised in 1994.

The ISO 9000 standard family defi nes quality system standards
and its structure is shown and in detail in Table 6.1.

The ISO standards were originally intended to be advisory and
to be used for two-party contractual situations between a customer

 Chapter 6: What Quality Means 67

and supplier as well as for internal auditing. However, the standards
quickly evolved into criteria for companies that wished to be certifi ed
by a third party on their quality management procedure.

6.2.2 Six Sigma
Six Sigma is a widely known and accepted statistical measure typi-
cally used in measuring the variability of a given process. The Ameri-
can Society for Quality Six Sigma states the following:3

It could measure for example the number of defects in a subassembly or
in a service environment; it could quantify delays in end of month recon-
ciliation procedures. According to leading estimates most companies today
are operating at levels of around four sigma, or approximately 6000 defects
per million. When a company has achieved a Six Sigma rate of improve-
ment, it has reduced defects to 3.4 per million, which is virtually defect
free performance.

Six Sigma is a committed management approach to quantifi ably solve
problems and optimise critical processes. Adapting and applying the six

ISO FOCUS
STANDARD
NUMBER

9000 Principal concept of quality assurance

 Objectives of quality

 Responsibilities for quality

 Stakeholder expectations

 The concept of process

 The role of processes

 The roles of documentation and training in support

 How to apply different standards

9001 A model for QA in fi rms that design, develop, produce, install and service
products

9002 A model to fi rms engaged only in production and installation

9003 Applies to fi rms engaged only in fi nal inspection and test

9004 Guides the development and implementation of a quality system

 Examines each of the elements of the quality system in detail

 Can be used for internal auditing purposes

Table 6-1. ISO standards for quality assurance.

68 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

sigma method can lead to dramatically improved business performance
and bottom-line profi tability.

As an example, Samsung Electronics Co. Ltd. published a paper in
2004 that describes how to combine quality and speed to market.4
According to the paper, the Six Sigma’s Defi ne, Measure, Analyze,
Improve and Control (DMAIC) method was adopted by the company
in 2000 to prevent anticipated problems and to gather feedback data
relating to mass production. As a result of the experiment, Samsung
Electronics Co. Ltd confi rmed that Design for Six Sigma (DFSS) was a
powerful method for designing new products and procedures.

6.3 Quality in a Product
The customer, of course, always has certain expectations about the
product he or she has purchased. If these expectations are not fulfi lled,
it is very probable that the customer will choose some other manufac-
turer next time. Earning back customer respect and trust costs money
and time and therefore, once the customer has chosen a certain
manufacturer or service provider, this company will most probably try
to do everything to please the customer with its product.

As already stated in the beginning of this chapter, quality has very
many meanings and dimensions. Probably the most widely accepted
depiction of high quality is a lack of defects in the most frequently
used functionalities, combined with price compliance. In addition,
the feature set and timing, in other words when the product hits the
market, are two dimensions of quality.

CASE STUDY

This case study explains how customer expectations have a direct link to cus-
tomer satisfaction and product quality: Person A and person B are both con-
sidering buying a new car. Both want to invest only in a high-quality car. Person
A is ready to invest lots of money on it and chooses a top model of a well
known make of car. Person B has less money to invest and chooses a less
prestigious make of a car. Both cars have a cruise functionality, which holds the
speed without a need to keep the foot on the accelerator pedal. Person A’s
cruise control is behaving in an inconvenient way by increasing the speed
whenever the car travels down hill. Person B’s cruise control is not working at
all. However, Person A may be more disappointed than person B. This is
because person A expected to get a perfectly functioning feature, which was
important to him. Person B instead thinks that the quality resides more in the
low price and therefore accommodated easily to the defi ciency of some
features.

 Chapter 6: What Quality Means 69

Different aspects of quality apply to manufacturing and to ser-
vices. The following chapters defi ne these two types of product and
the quality in them.

6.3.1 Quality in Manufacturing
To most of us, a Mercedes Benz probably represents a high-quality
automobile. For some of us this can be fairly diffi cult to justify.
However, the car’s reputation is such as to confi rm, even for someone
who has never driven a Mercedes Benz, that it represents a fi ne-
quality car. Even though different consumer groups put different
weights on different dimensions of quality, they all share certain
common elements. Below are some of the quality dimensions that
are common to manufactured products:

• Product feature set defi nes aspects of functionalities that the end
user could fi nd benefi cial. Features in most cases are the number
one reason behind the ultimate decision to purchase. For example,
in the mobile phone business the features could include digital
camera, WLan, instant messaging and a certain set of connectivity
features. The manufacturer naturally tries to choose the feature
set to be as attractive as possible to attract the widest potential
customer group.

• Product performance defi nes how the chosen feature set works
in practice in real life. In the software world this has at least three
dimensions, the basic functionality of an independent feature, the
overall capability of the whole product, which essentially means
parallel usage of the features, and the reliability of the product
over the long term. More on the performance issues can be found
in Chapter 9.

• Usability is one of the most important quality dimensions and
unfortunately it sometimes seems as though it has been over-
looked in the mobile phone business. Other words for usability
are conformance and fi tness for purpose. The importance of a
product’s usability will dramatically increase for smart phones as
it is unreasonable to expect the mass of the potential phone
buyers to be able to fi gure out how the technicalities of the phone
works and how to get certain technologies into use. The com-
plexities of the newest technologies should be hidden from the
end user so that usage of them is simple, convenient and easy. It

70 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

is not enough simply to have such technologies; they are only
worth using if how to use them can be easily discovered.

• Serviceability means how easy it is for the customer to have the
product repaired and how long such repair takes. The customer
does not get a good impression if he or she has bought a product
that is meant to be used in daily basis and after several weeks of
use no longer works. The customer takes it to the merchandiser,
who then says that the product needs to be sent to the manu-
facturer and it may take four to six weeks to have it fi xed. No
matter how appealing the product is and how well it worked ini-
tially, the chance of the customer choosing other manufacturer
next time has increased.

• Look and feel is also an important thing in certain commodity
groups such as mobile phones. When phones were fi rst widely
available, most value was put on the aesthetics of the hardware,
but nowadays the software user interface plays an important role
too. A colour display is about to become standard and more
attention is to be paid to the attractiveness of the application
icons.

6.3.2 Quality in Service
It is said that tourism will be one of the most rapidly increasing
industries in the whole world in the next few years. People’s ever-
evolving mobility has brought in many service providers around the
world and will continue to do so. The competition over the customer
base will be tough. Who out of many service providers will be suc-
cessful and who will fail? The world is about to shrink even more
and an increasing number of people from different parts of the world
will have the chance to travel abroad and broaden their understand-
ing of the foreign countries around us. Tourism is directly linked to
services and understanding the importance of a high-quality service
being available is vital for service providers all over the world. High-
quality service is very often seen to be linked to certain countries
and nations. For example, many Asian countries are known for their
excellence in service; they have somehow managed to build this into
their culture and genes. How do they do that? Is there something
other countries could learn from them? Most probably, yes. The
following list of quality dimensions in service businesses is common
to all service-based products:

 Chapter 6: What Quality Means 71

• Timeliness: is the service that is promised really delivered on
time? How much time must the customer wait? People have a
right to expect that, if something has been agreed with the service
provider, the contents and schedule will hold at least unless they
are otherwise informed before the expected delivery time.

• Exactness: is the service being performed right the fi rst time? Are
all items in an order in place or is something missing?

• Accessibility to the service is how easy the service is to get.
Nowadays almost anything can be found on the Internet, which
has been taken into use as a marketing channel by almost all
service providers in the world. However, some older people may
still not have access or a willingness to log on to the Internet and
therefore prefer paper advertisements instead. Therefore a
company whose main business is to provide, for example, clean-
ing services to the elderly, will most probably still prefer old-
fashioned leafl ets to be sent directly to the target customer group
and use that as a primary advertising channel.

• Behaviour: every time a human interaction is involved in the
service, the quality of behaviour plays a vital role. Friendliness,
empathy and an eye to seeing what the customer wants are more
valuable than anything else. However, friendliness can mean dif-
ferent things in different cultures and therefore very many service
providers choose to have local employees to take care of local
customers.

6.3.3 Getting Better Quality
Quality either is inbuilt or it is missing from a company. As mentioned
in Section 6.1, the key element is what kind of quality culture a
company has and whether it is well communicated to the entire
organization, because, after all, it is the individual employees who
hold the power to make the difference in product quality.

Culture has been defi ned in different ways at different times.
Throughout the history of the changing notions of culture, it is appar-
ent that anthropologists have long questioned the discreteness and
boundedness of culture as something that can be fi xed to a particular
group located in space and time.

Globalization, information availability and transnationalism are
forcing us to re-think the concept of culture. Cultural differences

72 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

have started to vanish as information availability became so effi cient
with the help of the Internet and international travel. Accommodat-
ing different consumer habits into one’s own life is more likely to
happen than ever before.

Quality culture, like any other culture, is evolving over time.
Culture is very often mixed up with geographical areas and reference
is made to the culture of Asia versus European culture. After all, one
thing is common to all cultures and that is that a group of people
align their behaviour with a particular culture, that is, a set of beliefs,
penchants and values shared by a group of people. For example, an
average high-school culture includes fashions in clothing, music and
hobbies, as well as a special language that is used by most of the
pupils in the school.

Company culture is used as a tool to build a quality procedure,
which includes the target, processes, tools and people. Target means
that in a private company nothing should be done without a fi nancial
reason. The quality procedure target could, for example, be to
reduce the number of defects found by customers in the product
by 30% starting from the beginning of next year. The process is a set
of steps, states and actions, which describe how the target is met.
Tools means a list of supporting tools that can be used to make
transitions take place faster and be more error free. People then
means individual responsibility for following the procedure and
making sure that all steps are done correctly and in time.

A company culture is naturally infl uenced by the organization’s
structure. Some companies organize their teams in functional way,
so that each function is carried out by a team specifi c to the task.
The positive thing about functional structures is that each task is
performed by people who are specialists in the area of the task and
therefore fewer errors are likely to occur. The disdavantage is that it
may separate the people carrying out the task from customers, which
leads to a situation where customer understanding is at risk. This, in
turn, may increase the possibility of misunderstanding customer
expectations and to a decrease in quality.

No matter what kind of organizational culture is chosen, the fol-
lowing things should be recognized in order to create a quality
culture within the company:

• The focus must be kept on quality processes. Many companies
have their own defi ned and documented quality strategy. Person-
nel should always be very well trained in this strategy.

 Chapter 6: What Quality Means 73

• Customers must be widely understood. If bringing an external
customer to all employees is impractical, at least the internal
customers need to be identifi ed for each work task. Enabling
people to ‘walk a mile’ in the customers’ shoes often pays back
by improving fi tness-for-purpose.

• The use of steering groups can also help in identifying immediate
needs for resources, tools or processes.

6.4 Quality in the S60 Platform and
S60-based Phones

The S60 platform has gone through extensive usability tests and rep-
resents, therefore, one of the best smartphone user interfaces in the
world. This section gives some hints at a high level for understanding
the tools that should be used when making a high quality S60 based
phone. As explained in chapter 3 on release management and base-
line selection, a phone program has access to very early platform
releases, the stability and overall quality of which can be debatable.
This is due to MSW wanting to provide open communication and to
enable customers to start their own activities as soon as they want, in
other words when the customers fi nd it more advantageous than
disadvantageous to start making their own implementation or plans
based on the platform version they have in their hands.

6.4.1 Choosing the Process
The overall quality of the S60 based phone is infl uenced by the
process on which the project is based. As the chosen process can
have a tremendous impact on a program’s success, it should be
chosen carefully. One should not forget to tailor the chosen process
appropriately so that they fi t the organization and the product,
because the published processes are always just a base. At best, a
process truly serves the whole organization when it meets the given
quality targets within schedule and within budget.

Some most widely known development processes are analyzed
in the following sections.

6.4.2 The Waterfall Process
The waterfall process, shown in Figure 6-2, is probably the most well
known software development process in the world. It has widely

74 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

used for decades, but its popularity has started to decrease as soft-
ware size and complexity has increased. Based on Graig Larman and
Victor R. Basili’s paper in IEEE Computer Science,5 Winstow Royce’s
waterfall model has been misinterpreted many times, because
originally Royce recommended that the process should be fol-
lowed twice. However, the basic elements and activities remain in
almost every software project even if the frequency and swiftness
nowadays have to accommodate the requirements set by the soft-
ware industry.

The absolute strength of the waterfall method is the clear impor-
tance of different activities. In addition, as the fi gure indicates, it
allows a step back to the previous activity to be taken. On the other
hand, following the waterfall process slavishly most probably puts
the overall schedule at risk as the process tends to be very heavy
and awkward.

6.4.3 The Incremental Process
The incremental process, which is shown in Figure 6-3, generally
provides more confi dence about quality as the idea of it is to make
the fi nal product in small pieces and bring each piece or feature to
maturity before any further development is undertaken.

The advantage of the incremental process is that, when the
product ships, one can be sure that the functionality is of good

System
Requirements

Software
Requirements

Analysis

Program Design

Coding

Testing

Operations

Figure 6-2. Waterfall process model.

 Chapter 6: What Quality Means 75

quality. There is, of course, a trade-off in that some functionality may
be completely.

This process brings most value-added rather late of the program
when there is no longer a place for sudden drops in stability.

6.4.4 Agile Software Development
The agile method is particularly appropriate when new innova-
tive prototypes are created. The Agile Alliance 〈http://www.
agilemanifesto.org/〉 has published a manfesto that includes valuing
the following four principles:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration

4. Responding to change over following the plan

Agile process activities are shown in Figure 6-4.
In brief, the agile process allows lots of fl exibility so that changes

in activities and the focus of the project can be accommodated as

A
rc

hi
te

ct
ur

al
 d

es
ig

n

P
ro

je
ct

 m
an

ag
em

en
t

Test planning

Feature List

Time scale

Test scenario design

HW/SW Req. Spec.

Test planning

Feature List

Test planning

Feature List

Test planning

Feature List

Test scenario design

HW/SW Req. Spec.

Test scenario design

HW/SW Req. Spec.

Test scenario design

HW/SW Req. Spec.

Test case design

Implementation

Test case design

Implementation

Test case design

Implementation

Test case design

Implementation

Test execution

Corrective
implementation

Test execution

Corrective
implementation

Test execution

Corrective
implementation

Test execution

Corrective
implementation

Change Control Board

Program Steering Board

Release
testing

Release
testing

First increment ready Second increment ready

Figure 6-3. Incremental development process.

76 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

the project moves towards maturity. A drawback of this is that it sets
additional requirements on the project management, which needs
to keep up to date with status of the project, its sub-systems and
completion of components. The agile method was invented mainly
for the following reasons;

• The time given to make a product has decreased.

• The given requirements change over time.

• Quality criteria contradict many aspects of ‘old-fashioned’ soft-
ware products.

• It is sometimes crucial to be the fi rst to get the product out to
the market.

6.4.5 Concurrent Engineering
In product development programs nowadays the chosen process
should adopt very easily to the what is called concurrent engineering.
This applies especially to smartphone programs. Concurrent engi-
neering means that all key activities are contributing to the project
at the same time. This sounds a bit chaotic but is in fact the only

Planning

Implementing

Testing
Planning

Implementing

Testing

Planning

Implementing

Testing

Figure 6-4. The agile process model.

 Chapter 6: What Quality Means 77

process worth following in multi-supplier projects of relatively
large size.

In concurrent engineering, activities within the project are given
weight values, as shown in Figure 6-5.

Making a S60 phone sets additional requirements on process fl ex-
ibility, because activities should accommodate quickly to the some-
times unpredictably changing maturity of different components and
sub-systems. Unpredictability can be caused by, for example, the
possible internal dependencies of the sub-systems and components,
which had not been recognized when the decision on making a
certain type of modifi cation or extension to the phone took place.

Very often, none of the approaches described above are used as
such within a project. As mentioned in chapter 3, the S60 platform
development follows a process combination of several approaches.

6.4.6 Other Things to Consider
Let us assume that the chosen method seems to fi t the organization
just fi ne. This section introduces some other aspects that may need
extra consideration in each S60-based phone program as they may
have an effect on the achievements of the program.

Many companies tend to sub-contract parts of the production
to other companies and there are different practices in how sub-
contracting is performed. As Evans and Dean write in their book:1

Although the principles of the Customer-Supplier-Relationships (CSRs) are
the same with suppliers as they are with the customers, the practises are
somewhat different. In general the fundamental practises for dealing with
suppliers are (1) to base purchasing decisions on quality as well as cost, (2)
to reduce the number of suppliers, (3) to establish long-term contracts, (4)

0

0.5

1

1.5

1 2 3 4 5 6

Project Timeline

A
ct

iv
it

y
w

ei
g

h
t

va
lu

e

Testing

Coding

Design

Planning

Figure 6-5. Weight values of concurrent engineering activities.

78 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

to measure and certify suppliers’ performance, and (5) to develop coopera-
tive relationships and strategic alliances.

The sizes of terminal software programs have grown and more
and more people are involved in different activities in the program.
The same principles to some extent could be applied within a
company. Each entity should have a clear understanding of who their
customers are, what do these customers expect from them, when
do they expect it and what are their quality expectations concerning
the sub-product that entity is responsible for. The sub-product can
be part of documentation, part of the system, part of service or
anything the program organization needs that forms one link of the
full chain.

To sum up this chapter into a couple of sentences: Quality has
many dimensions and the manufacturer has a direct impact on the
quality of the product. Manufacturers need to understand, agree and
communicate the quality targets based on customer expectations to
all personnel in the program. The correct process also needs to be
chosen and modifi ed to fi t into the organization, including possible
sub-contractors and suppliers.

6.5 Summary
The quality concept has become a fashionable keyword in every
product around the world. However, quality can mean very different
things to different people. Often it is linked to the word ‘faultless’,
but a problem arises when people are asked to defi ne a fault in a
product. According to current knowledge and understanding, the
word quality has multi-dimensional meanings and therefore quality
can be measured in numerous ways. Other possible ways to describe
product quality are, for example, time to market, feature richness
and usability, just to mention a few. The quality concept in service
businesses needs a different description. Timeliness, availability,
behaviour and accuracy are maybe the most common words to
indicate quality in service. There are many different quality standards
in the world today and, with the help of these standards, both the
consumer and the product or service provider can understand better
what the quality means.

Chapter 7: Stumbling Blocks

The term ‘quality’, together with ways of improving it, was introduced
in the previous chapter. In this chapter, the focus is on things that nor-
mally prevent manufacturers fom obtaining good product quality in
terms of both time and errors. First, the focus is kept at a more general
level, but later sections address in detail the potential stumbling blocks
that may threaten the success of a S60-based phone program.

7.1 Stumbling Blocks General to All Projects
In any product program, despite of whether it is a software project,
an embedded project or a pure hardware project, there are certain
stumbling blocks that can cause increasees in the schedule and/or
the budget.

These stumbling blocks can vary quite much depending on:

• the nature of the product

• the company manufacturing it

• possible suppliers in the supplier chain

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

80 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

The nature of the product itself can make it more liable to certain
types of risk. For example, a program making an expensive and criti-
cal part for a space shuttle most probably focuses its risk analysis on
defects, which can cause danger for the pilots. Therefore, the National
Aeronautics and Space Administration (NASA) has created its own
tool for risk analysis. This tool is probably the most highly developed
risk analysis tool in the modern world and it is called the Space
Architecture Failure Evaluation (SAFE) tool. It is a Probabilistic Risk
Assessment (PRA) tool, which addresses the physical risk of the space
transportation system. SAFE performs Monte Carlo simulations of a
system through its operational phases. The system is represented by
its risk-driving components and a schedule of the state of the system.
These components, along with a failure database developed as part
of the tool, enable calculation of mean failure probabilities, uncer-
tainty estimates, identifi cation of the relative risk contribution of the
systems and generation of risk intensity plots. The results allow
designers to quickly identify high-impact areas for redesign or pos-
sible mitigation. Because the architecture is represented by its risk
drivers, it is possible to perform high-level trades before all of the
design details are fi nalized, impacting the design early enough to
make changes if needed.1

For consumable products such as disposable goods, where the
cost per piece is low, it is not that critical if, for example, the handle
of a disposable cup comes loose. The cup can be easily replaced
with a new one and the consumer may still choose the same trade-
mark next time when buying disposable coffee cups. Instead, what
may be critical for such products is whether it is appropriate for for
mass manufacturing at speed. The model should therefore accom-
modate production-line machines so that no big investments are
needed when there are changes.

Whatever the identifi ed stumbling blocks are, the program man-
agement should concentrate fully on the critical path of the product
program and make the necessary plans to tackle possible realizations
of the risks.

7.2 Stumbling Blocks Specifi c to
a Software Program

Every software product program tries its best to produce a high-
quality product as fast as possible, i.e. at minimum cost. Is it possible
to make quality at low cost? Is this not a contradiction? Not neces-

 Chapter 7: Stumbling Blocks 81

sarily, but producing an error-free product within a relatively low
budget certainly requires fully optimized working processes and very
competent resources. Building such procedures and getting highly
competent people on board of course needs investment, but once
this investment has been made, the resources can also be utilized
in future product programs.

Certain things and elements have proved to be common in almost
all software product programs. This chapter introduces the most
common stumbling blocks in today’s software product programs,
those that cause the program to fail to deliver what is expected
within the given budget.

One software defect can have an enormous impact on a huge
number of people. Understanding of the severity and importance of
software failures has been globally recognized and is being intensely
studied.

Construx Software Builders, Inc.2 state that only 26 per cent of
business system software projects are fi nished on time. How late the
remaining 74 per cent of such projects are can be seen in Figure 7-1
The discussion in this section is also based on the same paper, which
also introduces reasons why almost three-quarters of software proj-
ects either are late or cancelled.

Amrit Tiwana and Mark Keil3 have introduced a quick and simple
tool to calculate a project’s collective risk value. The formula is
shown in Table 7-1:

1. On a scale of 1 to 10, where 1 is low and 10 is high, how would
you characterize this project compared to other projects in your
organization?

26%

6%

8%

9%16%

6%

29%

On time 26 %

Less than 20 % late
6 %
21-50 % late 8 %

51-100 % late 9 %

101-200 % late 16 %

More than 200 % late
6%
Cancelled 29 %

Figure 7-1. Typical project outcomes.

82 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

2. Add the six weighted ratings (see the worked example in Table
7.1).

3. A lower overall project risk score indicates a higher project risk
with a range from 10 (most risky) to 100 (least risky).

4. Use Table 7.2 as a guide for interpreting of this score.

As this formula is very much simplifi ed, it provides only trendsetting
information on how risky or riskless a project is.

More detailed reasons for program failure should be identifi ed
within each new program in order to avoid making the same mis-
takes time after time in the future programs. One very good approach
to learning from mistakes is to have a ‘lessons learnt’ session after
the project has ended. In this session everybody should have a pos-
sibility to step back from the work done and analyse together things
that went well and things that did not go too well. The program
management needs to have a proper back-up plan for each risk
identifi ed in this way. Both risks and plans should be updated on a
regular basis. A couple of already introduced ideas concerning soft-

Table 7-1. The one-minute risk assessment tool.3

PROJECT CHARACTERISTIC QUESTION 1. RATING WEIGHT = 2.

Fit between the chosen methodology and type of project 5 × 3.0 = 15

Level of customer involvement 6 × 1.9 = 11.4

Use of formal project management practices 1 × 1.7 = 1.7

Similarity of previous projects 3 × 1.5 = 4.5

Project simplicity /lack of complexity) 7 × 1.1 = 7.7

Stability of project requirements 9 × 0.8 = 7.3

3. Overall project risk score (higher score indicates lower project risk) 48

OVERALL RISK SCORE PROJECT RISK LEVEL

10–28 High

29–46 Moderately high

47–64 Medium

65–82 Moderately low

83–100 Low

Table 7-2. Interpreting the risk score.

 Chapter 7: Stumbling Blocks 83

ware program risks and ways to control them are introduced in
chapter 2. The following sections introduce the most common pitfalls
in any software project.

7.2.1 Contradictory, Overwhelming or Too Many
Requirements

Requirements can be excessive in many different ways. For example
too many, and too demanding, requirements are naturally excessive.
In addition, requirements that are technically impossible to imple-
ment are also of that kind. A technical feasibility study can save the
program aiming too high and failing totally as the program turns out
to be too expensive. Cancelling a program is not only fi nancially
frustrating, but it also demotivates the people in the program. In the
worst case it may completely disable the whole organisation for
some time.

Very rarely is the problem having too few goals in the project;
too many goals are more likely. Sometimes the requirements can be
technically or logically impossible to implement. Risk of that being
discovered too late exists in every project. The less technical the
people involved in the planning are, the bigger this risk is.

The goals in some cases are just too ambitious in comparison with
the resources available and the expertise in the program. These
things should be analysed by highly technical people, who have an
inside knowledge of the development work.

The expectations of a product program, when compared with
the available resources, both human and time, are very often too
ambitious and unreasonable. Being able to identify this in a project
can actually save the entire program.

7.2.2 Unstable, Incomplete and Informal Requirements
Another risk is ever-changing requirements. Sometimes this happens
because the requirements were incompletely defi ned in the fi rst
place. Sometimes the customer wants to change the ultimate require-
ments in the middle of the program. Sometimes these changes are
introduced within the program because, for example, market condi-
tions change or a competitor releases a new version with a more
attractive feature set. Whatever the reason, the following approaches
to handling this kind of challenge are introduced in the Construx
Software Builders paper 10 Keys to Successful Software Projects:1

84 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• user interface prototyping

• requirements workshop

• user interview

• use cases

• user manual as specifi cation

• usability studies

• requirements reviews and inspections

• incremental delivery

7.2.3 Poor Planning and Project Management
Poor planning and project management have been identifi ed as the
second most common risks in software projects. A good project
manager has good knowledge and experience in estimation of time
and resources, life-cycle selection, quality assessment (QA) planning,
technical staffi ng, project tracking, risk management and data
collection.

One of the most important tasks of a program manager is to keep
a constant eye on the state of the resources and on outputs. Evalu-
ation of resource needs should be done regularly and should also
be one of the very fi rst and last activities in the program.

7.2.4 Unrealistic Estimates and Unjustifi ed Expectations
On estimation, the Construx Software Builders say that the state of
the art is dramatically better than the state of practice. Another
practice worth trying to improve the quality and accuracy of esti-
mates is to consider estimation as a mini-project. Periodically during
the program the project management should re-estimate project
characteristics. Unfortunately, this can sometimes be seen as a point-
less task and a waste of money. However, it is the only way to guar-
antee readiness to act fast if the risk is realized.

7.2.5 Lack of Knowledge on New Technologies
Many projects tend to suffer from poor adoption of new technolo-
gies. A very new technology in a product automatically means a risk
in a project. Implementing such a technology should be kept under
special observation throughout the program.

 Chapter 7: Stumbling Blocks 85

7.2.6 Lack of Proper Risk Management
With active and competent risk management, it is easier to keep small
problems from turning into big project-killing disasters. The more
time-critical the project is, the more important is good risk manage-
ment. In addition, if the program concerns an error-critical product,
such as a medical device or space equipment, an absolute must is to
follow rigorous and professional risk management practices.

In some areas, it is quite normal for a company to take risks, but
if the company is beset by risks of all kinds, it may lose control over
risk prioritizing. A key success factor for such a company is to sepa-
rate non-strategic risks from strategic risks and keep control of the
strategic ones. Risk analysis can also be viewed from a different point
of view, as introduced in COCOMO/SCM Forum #17 Tutorial, 2002.
Barry Boehm, USC.4 A program should always decide ‘How much
is enough?’ for the product and processes. What is the risk of doing
too much versus what is the risk of doing too little? A program should
tailor and adapt its life-cycle processes and determine what to do
next. Boehm agrees that the risk management activity should start
on day one. He also introduces a diagram showing the risk of delay-
ing risk management in a program, which can be found as Figure
7-2.

The most critical risks are architectural ones as one unwanted
‘feature’ in the architectural specifi cations can have effects on system

Conceptual-
Preliminary Design

Detail Design and
Development

Construaction and/or
Production

System use, Phaseout,
and Disposal

25

50

75

100

System Specific
Knowledge

Cost incurred

Ease of change

Commitment to Technology,
Configuration, Performance, Cost, etc.

N
eed

Figure 7-2. Risk of delaying risk management in a program.4

86 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

performance, interface integrity and other aspects such as adapt-
ability and portability. Architectural risk analysis can be done in
various ways, for example by reviews, simulation, modelling, proto-
typing and instrumentation.

One example of a risk analysis is to do it on paper, for example
in the format introduced in Table 7.3.

It does not matter what sort of template is used in risk analysis
as long as the results of the analysis are stored informally and reviewed
on a regular basis. All of the elements introduced in Table 7.3 are
good for inclusion in any risk analysis.

7.2.7 Lack of Organisational Integrity
As the average size of software has grown a lot over recent decades,
more and more developers and teams need to be involved in a
program before targets can be achieved. Organizational integrity is
an absolute must for a successful business. Successful in this case
means having the capability to manufacture products that are to be
widely used and keeping the customers happy so that they want to
choose the same manufacturer next time.

TECHNOLOGY XXX

Risk description: A totally new technology is introduced for the fi rst time in the program. People
have no previous knowledge of it or experience working with it. The technology is important
and therefore the success of the product pretty much relies on this technology being smoothly
implemented into the product.

Risk symptoms:

1. Poor stability of the product
2. A large number of errors found
3. Implementation of corrections cause damage in other parts of the system
4. People get demotivated and frustrated if it does not work quickly

Corrective actions:

1. Strict gatekeeping of new fi xes and implementation to be started
2. Prioritizing errors and fi xing them one at a time
3. See above (point 2)
4. More resources to be involved or schedule to be replanned, people to be trained and no

overtime permitted

Probability: 0.6 Impact: Severe

Table 7-3. Example of a risk analysis table.

 Chapter 7: Stumbling Blocks 87

The things discussed in Chapter 6 on quality culture defi nitely
have a key role when organisational integrity is considered. If the
common goal is clearly communicated to all and widely accepted
by those involved in a project, the targets are more probably going
to be achieved.

Equally, the more people think that the company cares for them
and is interested in their opinions, the better the results they achieve.
Caring can mean, for example, providing people with the opportu-
nity to attend training courses, treating them fairly and providing
them with a pleasant working environment. All of these, of course,
require some investment, but, on the other hand, if no attention as
paid to this aspect, most likely the results will start deteriorating in
one way or another.

7.3 Ways to Avoid Stumbling Blocks in a
Software Program

Software professionals have invented several tools to avoid the most
typical traps in a software project. These tools use different techniques
such as algorithmic and parameter models, expert judgement, analogy
and rules of thumb, to name a few. Unfortunately, each one of these
suffers from a number of drawbacks. One tool relatively widely used
for risk evaluation is the Constructive Cost Model (COCOMO) pub-
lished by Dr Barry Boehm in 1981. Since then the nature of software
project has changed quite signifi cantly and therefore COCOMO
needed to be re-evaluated. After several years of combined efforts by
the University of Southern Carolina Center for Software Engineering
(USC-CSE), IRUS at UC Irvine <http://www.ics.uci.edu/> and the
COCOMO II Project Affi liate Organizations <http://sunset.usc.edu/
research/COCOMOII/#researchsponsors> COCOMO II was intro-
duced. COCOMO is widely used and several companies worldwide
provide consultancy on it. For example, a company called SoftStar
has published several papers on COCOMO. The following section
summarizes SoftStar’s overview of COCOMO.5

7.3.1 Overview of COCOMO
The COCOMO cost estimation model has been used by thousands
of software project managers and is based on a study of hundreds
of software projects. COCOMO includes the following:

88 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• the underlying cost estimation equations

• every assumption made in the model (for example, the project
will enjoy good management)

• every defi nition (for example, the precise defi nition of the Product
Design phase of a project)

• the costs included in an estimate are explicitly stated (for example,
project managers are included, secretaries are not)

COCOCO is seen to benefi t it users in the following ways:

• COCOMO estimates are more objective and repeatable than
estimates made by methods relying on proprietary models.

• COCOMO can be calibrated to refl ect your software develop-
ment environment, and to produce more accurate estimates.

The basic COCOMO model originally had a three-level
hierarchy:

• Model 1. The basic COCOMO model computes software devel-
opment effort (and cost) as a function of program size expressed
in estimated lines of code (LOC).

• Model 2. The intermediate COCOMO model computes software
development effort as a function of program size and set of cost
drivers that include subjective assessments of the product, hard-
ware, personnel and project attributes.

• Model 3. The Advanced COCOMO model incorporates all char-
acteristics of the intermediate version with an assessment of the
impact of the cost drivers on each step (analysis, design, etc.) of
the software engineering process.6

7.4 Stumbling Blocks Specifi c to a S60-based
Phone Program

A S60-based phone program is naturally subject to all those stum-
bling blocks introduced in earlier sections. In addition, it has some
other special risks due to the industry and the nature of the platform.
The following sections introduce some of the issues that need to be

 Chapter 7: Stumbling Blocks 89

carefully considered in each product program, even if they do not
seem to have be particularly signifi cant. Figure 7-3 shows the ele-
ments of the S60-based phone program, which should play an
important role in program risk analysis, in addition to those men-
tioned in previous sections. Each of the elements in the fi gure is
explained in more detail in the following sections.

7.4.1 Program-level Risks
There are two levels of risk in a broad organization, where each team
is solely responsible for implementing one or more specifi c compo-
nents. First are the risks that should always be considered at the
program level; if such a risk occurs in a program, it will destabilise
the whole program and not only a limited number of components.
This type of stumbling block should be recognized and analysed on
a regular basis at the-program management level. The program level
stumbling blocks are introduced in below.

7.4.1.1 Integration Competence
Overall system integration is seen as a program-level risk and there-
fore managing it in a proprietary way is essential in a successful
product program. In a program in which the software development
is that of a size appropriate to a smart phone, one of the three key
activities is without any doubt the integration, and, to be more
precise, when, how often, by whom and in which order it is decided
the system should be built. Integration competence requires know-
how on the order of the integration, i.e. which sub-systems are built

Program level risks

Coding style
and culture

Testing
activities

and extent

Excessive
requirements

Specification's
sufficiency

Adaptation
layer

implementation

Baseline Selection

Testing Environment

Amount of Differentiation

Integration Competence

Application/
component
level risks

Fixing
speed

Figure 7-3. Things to consider in a S60-based phone program risk analysis.

90 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

fi rst and what kind of impact one sub-system can have on other
parts of the full software package functionality. Optimizing the inte-
gration requires knowledge of the internal dependencies of the
components as well as practical-level knowledge on the usage of
stubs and drivers.

Integration of S60 based phone software should happen stepwise
and it should follow a certain order and structure, as described in
chapter 12 on integration and the build environment.

7.4.1.2 Testing Environment
Testing as an activity is widely recognized to be one of the key activi-
ties in any product program. No testing can be executed without a
proper environment. The nature of the product sets the require-
ments for the testing environment, but, whatever the product is, the
testing environment is defi nitely a program-level risk.

The testing environment can turn out to be one of the issues
causing delays in a S60-based phone program. This is especially the
case if the environment required is considered for the fi rst time after
L1.2 (see Figure 3-2, showing the Licensee Milestones). Verifying a
successfully integrated adaptation component task requires access
to a live network and, if the location where the development takes
place does not have network coverage, no tests can be run in a real
environment.

The relatively massive requirements, both fi nancially and techni-
cally, for the testing environment can really surprise the program,
especially if all resources have been devoted to implementation tasks
and no one has considered the environmental requirements in
enough detail.

Plans for the testing environment should start at the same time
as the test planning activities. For the majority of testing-related
processes, test planning should be a parallel activity with the require-
ments management. This means that testing environment planning
and budgeting should start more or less right after the very fi rst
product specifi cation is available. Chapter 10 contains more a
detailed description of the required testing environment.

7.4.1.3 Amount of Differentiation
A third potential program-level stumbling block in a S60-based
phone program is an insuffi cient amount of differentiation. The more
features a phone program decides to drop or disable from the plat-
form, the bigger the risks are in getting the product stable. This is

 Chapter 7: Stumbling Blocks 91

due to the internal dependencies of the components, as was
explained in detail in chapter 2.

Each phone program naturally wants to have a terminal that con-
tains something special compared to others. Specialities are pro-
duced either by dropping some features (in most cases some
connectivity features) from the platform or by adding new pieces of
functionality into the product. However the differentiation is done,
it should be planned together with people who have a deep knowl-
edge both about the internal dependencies of the platform and
about how to exploit existing components and sub-systems in order
to optimize the code.

7.4.1.4 Baseline Selection
Selecting the baseline wisely is one of the most important things
when making a S60-based phone. Picking an arbitrary early platform
version can create a need to integrate an extensive amount of fi xes
in-house. This makes it very diffi cult to integrate any fi xes that come
along with later releases of the platform.

As already mentioned in chapter 2, managing the program is by
itself a relatively demanding task, as it can feel as though all the
pieces in a multi-supplier environment are changing their shape all
the time and the person in charge has to create a complete picture
out of such pieces. Stabilizing the pieces as much as possible can
dramatically ease the task. One way of stabilizing them is to avoid
establishing one’s own branch too early and making one’s own fi xes
on the platform itself.

7.4.1.5 Defect Fixing Order
Very often a phone program, once it has discovered a set of defects
in the code, starts fi xing them without fi rst prioritizing them. This
can cause unwanted regression, especially once the code has reached
its completed state. After the program has really reached a code-
complete state, the program management should be very careful as
to which fi xes are to be integrated into the software. Tools and
advice for doing the prioritizing of defects are introduced in more
detail in chapter 11 on defect analysis.

7.4.2 Component-level Risks
Component-level risks are such that, if they occur in a program, they
will not necessarily destabilize the whole program but instead cause

92 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

additional problems in one or more components or sub-areas. Man-
aging such stumbling blocks can take place in each team separately.
The following sections introduce such component-level risks that are
common to all S60-based phone programs.

7.4.2.1 Coding Style and Culture
MSW guides the customer programs in implementing uniform and
easy to manage and maintain applications and solutions for specifi c
markets. Coding style can be defi ned as the way that the program-
mer brings clarity, maintainability, testability, reliability and effi ciency
to the code of a module. This defi nition sets the objectives of good
programming style, but what it does not do is to defi ne whether a
piece of software is good or bad style. No matter how perfect the
software design is, the fi nal product will be expensive to maintain
and test if its implementation, the code, is of poor quality.

Some of the following principles are very general and therefore
applicable to all software projects. Equally, they should be consid-
ered in a S60 based phone prior in order to get a fi ne product out
as planned.

• Reusability. Avoid rewriting and copying verbatim code written
by someone else. If you feel the need for a common module,
communicate this to the whole team. In this way, the code size
and ROM consumption can be reduced, which leads to cost
savings in hardware and production time.

• Maintainability. One of the good qualities of good code is that
it is understandable and easy to read. Sometimes the original
programmer has moved to a new job and the maintainer has no
history with the implementation.

• Modularity, Encapsulation and Information Hiding. If the code
of a module becomes very long and complex, whether the func-
tionality should be re-organized should be checked. Constant
monitoring of the module sizes could be worth doing, especially
in the most critical areas.

• Assumptions about the user of the code. The implementation
should be done so that it can protect itself from possible misuses.
As a minimum, documenting all restrictions is necessary if they
cannot all be implemented.

 Chapter 7: Stumbling Blocks 93

• Commenting the Code. Simple comments can easy the main-
tainability of the code. However, if the code needs to be explained
in detail, then it is probably not clear enough.

• Modifying the code. If the maintainer of the code is different
from the implementer, the maintainer should use the same coding
style or, if that is not possible, then change the entire coding style
to new one.

• Compilation. There must be a well-known and clearly justifi ed
reason to ignore warnings during compilation.

• Internationalization issues. It is very important to write code that
can be easily localised to different languages without having to
make major engineering changes. The main principles in keeping
the code easy to localise are:

• Keep code and content separate

• Use Locales

• Allow for test expansion

• Do not concatenate

• Do not reuse strings

• Use re-orderable parameters in strings

• Do not use test in graphics

• Comment the text strings

• Follow the formats and use the templates provided

 In addition to above, the licensee will receive an internationaliza-
tion guide along with the deliveries; it is highly recommended
that programmers study the document carefully.

• Symbian-specifi c things. The Symbian OS is designed to contain
a highly functional application in a resource-constrained environ-
ment. Robustness is the key for the end-users’ acceptance. The
Symbian OS resource management and cleanup framework
provides the needed robustness and scalability that is unparallel
in the application sector. Therefore, every programmer should
be familiar with the cleanup and memory management in
Symbian OS.

94 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• Miscellaneous. The following list of coding hints represents some
guidelines for development in the Symbian environment:

• Do not use any white spaces or non-ASCII characters in
fi lenames.

• Do not rely on case-sensitiveness in fi lenames.

• Avoid references to physical fi le system paths.

• All new classes should be stored in separate fi les.

 In cases where multiple clients need access to a shared resource,
a client – server interface needs to be implemented.

• Isolate machine- or compiler-dependent code sections into
separate fi les.

7.4.3 Fixing Speed
One of the most signifi cant stumbling blocks in S60-based phone
programs has been the surprisingly large amount of regression after
the code-complete stage. No single root cause for the regression has
been identifi ed but it seems that a combination of several unfortu-
nate false actions simply decrease the overall manageability. One
can cut corners and say that regression is generated by uncontrolled
integration of new fi xes into the builds. In such cases regression
could be avoided by taken a strict gate-keeping process into use. The
program maturity curve in Figure 7-4 shows how the system maturity
evolves in comparison with time and what sort of activities should
be planned and when.

In cases where the gate keeping is neglected partially or com-
pletely, the curve after code-complete can become jagged. In
the worst case the maturity of the system can collapse to a level that
correlates with the maturity at a very early phase of the implemen-
tation. In such a case some features can be blocked and reverse
engineering the situation to fi nd out which fi x or fi xes caused the
sudden loss of stability can be technically very demanding and
time-consuming.

7.4.3.1 Testing Activities and Extent
It can be surprisingly diffi cult to determine how much testing is
enough. The average stumbling blocks around testing activities can
be divided into three:

 Chapter 7: Stumbling Blocks 95

• Too extensive testing. Too extensive testing means that, because
of the lack of technical judgement on which parts of the code
are either the most important or the most faulty can lead to a
situation where too many resources are tied to different testing
activities. One symptom of this is the relatively low test-case hit-
rate. The way to manage this is to check the percentage hit rate
of tests, i.e. how many of the test cases run actually found a
defect. If the percentage is very low, it may be worth analysing
the current testing activities and trying to fi nd a more effi ciency
test procedure to follow.

• Too little testing. Too little testing means that for some reason
(for example, that the program may have too optimistic assump-
tions about the quality of the product) the planned testing activi-
ties are not able to discover the defects that need to be found.
The risk with this is that if an unstable product is shipped, in the
worst case it can harm the reputation of the entire company. It
is very diffi cult to say if planned testing activities are too light or
not; one way of fi nding out is to set clear targets for testing, such
as the number of defects it needs to discover, and then check
whether the target is achieved or not.

Code Complete L2 Shipping L3

S
ys

te
m

 M
at

u
ri

ty
Timeline

Implementation starts L1

Target quality level

As yet
undiscovered

defects

Non-critical defects

Defect
analysis and
prioritizing

Fixing
Gate-keeping

Integration
Building

All components
contaminated by

defects

Total on number
of discovered

defects

Figure 7-4. System maturity evolution.

96 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• Wrong type of testing. The wrong type of testing is very prob-
lematic to discover as it can look appear that the planned testing
activities are just the right and adequate ones. Nevertheless, what
is diffi cult to understand is whether these activities are checking
the components that either play the most signifi cant role in the
product or otherwise probably contain many defects. Seeing the
difference between too much testing and the wrong type of
testing can be somewhat diffi cult as they can have a similar
symptom, a relatively low defect hit rate in the executed tests.
More detailed information and hints on proper testing activities
for a project is provided in chapter 9.

7.4.3.2 Insuffi ciency of the Specifi cation
The importance of a high-quality product requirement specifi cation
of course applies to all product programs and is not specifi c to a
S60-based phone.

The most critical component and sub-system interfaces need to
be documented in a very detailed way to ease interoperability and
integration. One way of checking whether this problem is occurring
is to make an early integration round just to see whether all teams
are going in a common direction. This, of course, does not discover
any incompatibilities implemented in a later phase.

7.4.3.3 Adaptation Layer Implementation
In order to make the S60 platform software run with the licensee’s
cellular hardware and software, special adaptation software is
required. The adaptation software integrates the S60 platform on
the underlying cellular platform. This software is referred to as the
adaptation layer. The successful implementation of this rather big
layer can sometimes be a stumbling block in a project. Those who
are to be given this task need to know both the platform telephony
API and the licensee-specifi c modem software.

S60 licensees need to implement the adaptation layer, although
some reference implementations are provided along with both
Symbian OS and the S60 platform.

The adaptation layer consists of the following parts:

• Provider Modules

• Hardware-specifi c Symbian software

 Chapter 7: Stumbling Blocks 97

7.5 Provider Components
Provider modules are licensee specifi c software that link the S60
platform services to customer terminal cellular software such as
Domestic OS software.

7.6 Summary
Each product development program has its specifi c challenges. Very
often these challenges come from the organization, but the product
itself can also bring some special issues to the program. S60 brings
special potential stumbling blocks to the program that will cause
problems if they are ignored. The S60 architecture is relatively
complex and this, combined with the fact that customers get the
earliest versions of the platform, means that the challenges are
focused on how to manage the integration. Some tools for extensive
program-level risk analysis should be used to at least identify poten-
tial risks and prepare for the risk to occur.

Chapter 8: Platform
Testing versus Platform-based

Phone Testing

Some decades ago testing was often considered as a useless, time-
and money-consuming activity in a software project. However, since
the sizes and complexities of the average software program have
grown along with the time, testing has become recognized as one
of the three main activities (together with design and implementa-
tion) in all software projects throughout the world. This turn-around
point occurred approximately three decades ago. Nowadays, no
self-respecting organization will carry out any signifi cant implemen-
tation until the required test plans have been documented, reviewed
and approved.

As shown in Figure 8-1, S60 full delivery includes a full set of
documented test cases. These test cases describe the tests that have
been run on the platform, or are to be run on the platform prior to
the fi nal delivery of the release. In part, these documents are deliv-
ered in order to make the testing quality visible to the customer so

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

100 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

that the customer can decide how probable it is that their program
inherits new defects from the platform. This chapter focuses on
platform test planning and the execution processes.

The platform-based phone program will fi nd that some of the
tests that come along with the platform delivery are worth copying
to the phone program test plans. However, the very important dif-
ference between platform testing and platform-based phone testing
should be fully recognized.

8.1 The S60 Testing Process
As described in chapter 2, the platform development follows both
incremental and iterative methods. This also applies to testing. Once
a new release program (for example 3.1) is started, the feature set is
frozen and the tests necessary to guarantee visibility on the quality
are planned. Test planning can take place in parallel with implemen-
tation up to some point and it is normally completed by E2, after
which the customer programs will have received all test documenta-
tion. Figure 8-2 shows the overall Test Management process in S60.

In addition to the documentation and consultancy delivered to
the customer, some test classes are also included in releases. These
test classes can be utilized in the customer program either by ebing
exceuted as they are or as a basis for the customer’s own test class
design and implementation.

8.1.1 Platform Test Execution Process
Platform testing follows the most commonly known testing phases
on a one-to-one basis. These phases follow the ISEB 7925-21 stan-

Platform
testing

requirements

Customer
master test

plan

Platform test
strategy

S60 master
test plan

Platform
testing

requirements

Customer test
planning

Customer test
execution

Customer test
reporting

Platform test
planning

Platform test
reporting

Platform test
execution

Test planning
support

FUTE
plans

SYTE
plans

FUTE test
progres

BAT
env.

BAT
results

BC test
plans and

results

BAT
test
data

Open/
fixed

defects

Test execution
consulting

Quality reports

Customer testing support and interface

Figure 8-1. Customer testing support.

 Chapter 8: Platform Testing versus Platform-based Phone Testing 101

dard activities, even though some of them might be given a different
name. However, since the ISEB standard is the only testing terminol-
ogy standard in the world, it is used as a reference point in this
chapter when describing the platform testing activities.

The progress of the platform testing procedure follows the pattern
shown in Figure 8-3. The Basic Acceptance Testing (BAT) is the only
testing done on every individual bi-weekly release. The rest of the
couple of thousand of cases are run only once during the program
if the following two things are true: fi rst, the test is passed and,
second, there is no further risk of regression caused by fi xes to any
other components that would make it necessary to re-run this test
case.

Master Test
Plan

Maintenance
release

candidate

Milestone
maturity
criteria

Regression
test plans

Area test
specs and

plans

SW supplier
release test

results

1. Module and
component

tests

2.Perform
S60 module

tests

3.S60 sub-
system

integration tests

4. Sub-system
release tests

No

No

Yes Yes

No

Yes

Yes

No

5. Integration
tests

Yes

No

6. Basic
Acceptance Tests

Yes

No

Exit
Criteria

Exit
Criteria

Exit
Criteria

Exit
Criteria

Exit
Criteria

Exit
Criteria

7. Functional
tests

Exit
Criteria

Yes

Bi-weekly
release

8. System,
Variant, BC, True,
Localization and

IOP tests

10. Regression
tests

11. Maintenance
tests

Bi-weekly/
increment
candidate

Defect
analysis

Inputs: Outputs:

No

Exit
Criteria

Yes

No
Exit

Criteria
Yes

No

Maintenance
release

9. Release
tests

Yes

No

Exit
Criteria

Yes

No

Exit
Criteria

Increment
release

Test
results

Figure 8-2. The S60 test management process.

0

200

400

600

800

1000

1200

1 5 9 13 17 21 25 29 33 37 41 45 49

Weeks

N
u

m
b

er
 o

f
te

st
 c

as
es

Non-FUTE

FUTE

Release Tests

BAT

Figure 8-3. S60 test execution example.

102 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

8.1.1.1 Module/Component Testing
Module testing, also known as Component Testing or Unit Testing,
is the very fi rst testing activity in the platform development and it is
done for all classes. In S60 it is planned and executed by the devel-
oper, who implements the code. In most cases the module testing
takes place in the developer’s PC by utilizing stubs and/or drivers
that have been coded in separate classes. In some cases these ‘pro-
grams’ are included in the platform deliveries. The only instruction
on their usage can very often only be found in the comments relating
to implementation.

Each component and module needs to pass a preliminary testing
criterion before it is accepted for integration. This criterion is related
to two issues: testing code coverage and test pass rate.

8.1.1.2 Sub-system Integration Testing
After the component or module has passed the module-testing
phase, it is pre-integrated with other components to make a bigger
entity called a sub-system. This sub-system is tested within the inte-
gration testing activity. Since the entity only represents one part of
the whole software package, it very likely needs either stubs or
drivers, or both, around it to act as neighbour components. The
purpose of integration testing is to check how well the component’s
APIs are implemented and how well two or more components work
together.

Integration testing is only applied to chosen sub-systems that are
found to be either most critical or otherwise risky to the entire soft-
ware. Those that go through the sub-system integration testing phase
also need to fulfi l certain predefi ned criteria.

8.1.1.3 Basic Acceptance Testing (BAT)
Basic Acceptance Testing (BAT) represents the alpha acceptance
testing in the ISEB-standard. It is a relatively small sub-set of all
functional test cases and it is the only test set that is executed on
every software packet before delivery. BAT covers all features but is
a very light test package, as the ultimate purpose of it is to provide
fi rst-hand information on how successful the build process was and
to discover any possible blocked features in the build. In the other
words, one can consider BAT as a kind of sanity check tool that
provides quick and dirty information on the success of the build. To
save time and avoid unnecessary testing activities, the number of
BAT test cases should be kept relatively low.

 Chapter 8: Platform Testing versus Platform-based Phone Testing 103

BAT cases are delivered to customers together with the results of
the BAT test round.

Figure 8-4 gives an example of the extent of BAT cases in a plat-
form release. The numbers are not exact.

8.1.1.4 Functional Testing
Functional testing (FUTE) is the same as its namesake in the ISEB
standard. The purpose of FUTE is to discover errors in code that
cause a malfunctioning of some platform feature or application. S60
FUTE cases are planned by utilizing predefi ned use cases and use
case scenarios. The majority of these tests are communicated to
customers. For all platform releases the number of FUTE cases has
grown to be over ten thousand test.

Functional test cases are run sequentially. Since, for example, the
Contacts application is most probably ready before, for example,
telephony, the functional tests of the Contacts application are run
before those for telephony and for a different release or build.

8.1.1.5 System, Localization, Binary Compatibility and
Interoperability Testing

System, localization and binary compatibility represent non-func-
tional tests in the ISEB world, where interoperability generally relates
to integration testing.

System testing concentrates on overall platform performance,
power management, memory, stress, volume and speed. Localization
testing focuses on fi nding possible problems in localization builds,
because localizing a build to different languages very often causes
unpredictable changes. An average 35 per cent of the totally new

FUTE for
VideoTelephony

300 test
cases

FUTE for
Contacts
250 test
cases

FUTE for
Notepad
40 test
cases

FUTE for
DRM

250 test
cases

FUTE for
EMail

270 test
cases

FUTE for
WAP

250 test
cases

Release Functional Test Set For All Features

30 test
cases

30 test
cases

30 test
cases

30 test
cases

5 test
cases

30 test
cases

Figure 8-4. BAT test set.

104 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

features of a platform release’s functional tests and BAT are therefore
included into this testing activity for each localized build. As an
example, for version 2.0 the total number of localization tests was
2250, in which a little over 100 were Basic Acceptance Tests and
the rest were a collection of functional tests for new features.

Interoperability (IOP) testing verifi es how the platform implements
public interfaces towards other phones, networks, servers and ser-
vices. IOP testing is mainly done in a laboratory environment that
contains real network elements and servers plus an administrative
right to them so as to guarantee log-collection for further problem
solving. There is more discussion on the IOP test environment in
chapter 10.

8.1.1.6 Release Testing
Release testing is a sub-set of functional tests, localization and system
tests. For version 3.0 it includes over 1000 tests and its purpose is
to verify whether a release is ready to be called an increment or not.
It provides knowledge on whether or not the release has the maturity
an increment needs.

8.1.1.7 Regression Testing
Regression testing takes place if some fi x potentially carriers a risk of
damaging some other functionality. Regression testing is a collection
of different carefully selected test cases. It consists of BAT and fi xes
specifi c functional test cases plus, of course, a fi x-specifi c verifi cation
test.

8.1.1.8 Maintenance Testing
Maintenance testing is done once the platform is in maintenance
mode, i.e. once it has been proved to be at a commercial quality
level and is publicly available. Maintenance testing consists of two
parts: BAT and fi x-specifi c extensions, which can be regression test
cases or just fi x-specifi c test casse.

8.1.1.9 S60-based Phone Testing
Once a customer gets a platform good enough to be used as their
baseline, they also get the information on what kind of testing the
release has undergone before delivery. It is quite natural that exactly
the same test set is not worth carrying out because most results will
remain the same as during testing of the plain platform. Customers
should therefore consider carefully the extent of testing in their pro-

 Chapter 8: Platform Testing versus Platform-based Phone Testing 105

grams and avoid extra testing that does not bring any new informa-
tion to the program. Figures 8-5 and 8-6 show the difference between
platform testing and platform-based phone testing.

Figure 8-5 shows that the platform is thoroughly tested with the
help of the lead environment. The lead environment is a chosen
phone program that is developed in parallel with and with the help
of the platform program. Any customer program can become a lead
program for the platform release if the program fulfi ls certain criteria.
The criteria include requirements on things like the number of
prototypes availability to MSW. The maturity of the lead terminal
increases along with the increase in the platform maturity. The lead
environment provides the otherwise missing parts of the full product,
such as telephony components, the radio-layer, hardware, etc.

Figure 8-6 shows how testing should be targeted in a platform-
based product program. Clearly there is very little risk in the
platform components already proved to work by MSW and having
very few dependencies on other modifi ed or otherwise risky phone
components.

To simplify a little, every program should do their own test plan-
ning, which can be optimized by taking the required test cases from
platform deliveries and running them together with the program-

Series60 code

System Under Test (SUT)

Symbian OS

Lead hw, TSY and RF components

Testi
ng

Testing

Platfrom testing with the lead environment

Platform quality metrics
- Test Cases

- Test Results
- Test Coverage

- Test Execution Status
- Found Defects

etc...

= Testing Focus

Figure 8-5. Platform testing targets.

106 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

specifi c test cases. Optimizing a healthy balance between these
two can be tricky, but, if it is done properly, guarantees that no
time is wasted on useless testing and the same time provides a
full understanding and visibility of the maturity and defects of the
phone.

How can an optimum usage of a given test cases be approached?
The following three types of planning need to be in place and fol-
lowed for the success:

1. Planning based on architectural analysis

2. Planning based on baseline maturity analysis

3. Planning based on fi x analysis

Planning Based on Architectural Analysis
This includes areas in system architecture that

Series60 code

Symbian OS

Te
st

in
g

Testin
g

Product Program's solution

Figure 8-6. Platform-based phone-testing target.

 Chapter 8: Platform Testing versus Platform-based Phone Testing 107

• have most dependencies on other sub-systems

• have been modifi ed by the customer program

• play a critical part in a system

These areas also need to get most attention from a testing per-
spective too. On the platform side the testing has already been pri-
oritized so that the most critical parts get to be tested most, but if
a customer program affects these implementations, they also need
to be given additional attention; either enough test cases should be
picked from the platform delivery for re-running or the customer
program should plan their own test cases. More information on this
topic is included in chapter 9.

8.1.1.10 Planning based on Baseline Maturity Analysis
As already explained in chapter 2, choosing a baseline should be a
result of analytical thinking and technical intelligence. The following
two things should be taken into account:

• release quality, overall run rate so far and the number of defects
found; also the minimum number of fi xes that need to be inte-
grated into the previous release of the system

• timing, i.e. how much longer can a product program wait until it
has a solid platform on top of which to build the product

As shown in Figure 8-7, the later the baseline is selected, the
smaller the number of fi xes that need to be integrated into the
system. Yet, at the same time, this decision must take into account
the cost of guaranteeing the correctness of the APIs.

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19

Time

Number of new
defects found

per release *100 /
Risk of waiting in

customer
program to
choose the

baseline

New defects found from the
platform

Risk in customer schedule

Figure 8-7. Baseline impact on test planning.

108 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

8.1.1.11 Planning Based on Fix Analysis
Fix analysis plays probably the most important role in successful test
planning. More detailed hints and tools for a proper fi x and defect
analyses are to be introduced in later chapters, but, because it plays
an important role in test planning, it is also introduced here.

No matter where the fi x originally comes from (Nokia, sub-
contractor or in-house product program), there are two things at
stake:

• the risk that this fi x will cause either too many new general defects
or unwanted regression concerning the critical features

• the risk that omitting this fi x from the system will cause to cus-
tomer satisfaction, to the company’s reputation and the company
brand

8.2 Summary
The platform goes through an extensive testing during the develop-
ment program. Testing is done with the help of a lead product, which
provides the hardware and modem software to the platform program.
Once the platform reaches commercial quality, it has passed thou-
sands of test cases and, in that way, proved to fulfi l and even exceed
predicted customer expectations. For the sake of time and money,
the S60 customer program should not run all the same tests again;
instead it needs to focus testing on the areas that have been modi-
fi ed or added or otherwise feel uncertain in the product. Test plan-
ning techniques based on the architecture, baseline maturity and fi x
analysis are all recommended processes to be followed in any S60-
based customer program.

Chapter 9: Testing as a Tool

It has been said that there is not a single line of code with no defects
and the many implications of the word quality have already been
considered in earlier chapters. The ways to make high-quality prod-
ucts were also explained earlier. Even though these suggestions are
worth following, they do not provide enough information. Software
programs have a special nature; no matter how defect-free is the
code one tries to implement and no matter how well quality-ori-
ented the organization is, everyone who programs creates defects
while coding. This chapter and the following chapters provide infor-
mation about tools that help to create software that is more error
free in general. However, it is important to understand that testing
by itself can never improve product quality. There are unfortunate
examples where the testing team has been blamed because they
found too many defects, as if they had had something to do with
the fault creation. The testers’ role is very simple: they create aware-
ness about product maturity, nothing else. Another interesting fact
is that defects seem to address themselves to the same components.
Roughly speaking, 20 per cent of the entire system can contain 80
per cent of all defects.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

110 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Figure 9-1 shows an overall plan of the activities that are needed
in high-quality product implementation. The dark grey boxes in the
fi gure are those that are discussed in the upcoming chapters.

It is very diffi cult to decide which way to go unless you have a
clear vision on where you are standing now. In other words, good
testing reveals the current weaknesses and strengths in a product; it
makes the quality visible at a certain point in time. By analysing the
test results, the project management should have a better view on
what is needed to make the product complete. All of this applies to
software programs too. There are three things needed to create
software that is more error-free:

• Implement the product so that the number of created defects is
minimized.

• Make quality visible by testing, i.e. discovering in a timely manner
the most important defects generated in the product. This requires
testing covering most effectively those features that are vital for
end-users.

• Improving quality by fi xing in a controlled manner, i.e. so that the
regression is minimized.

The concept of testing is a subject that is discussed throughout
this book. At the beginning of an informal design process, the
approved requirements can be very easily misunderstood, which can
produce defects in the fi nal product. Product quality improves if the
contradictions in a product description, or between two such descrip-
tions, are successfully eliminated. In order to carry out very high
quality testing, the program has to understand the root causes of
defects in the product.

Business
analysis

Competence
analysis

Resource
analysis

Product analysis

Implementation FixingDefect analysisTesting

Before implementation

During implementation

Figure 9-1. The phases in Quality Assurance.

 Chapter 9: Testing as a Tool 111

The structure of this chapter is as follows. The fi rst part introduces
testing in different development processes. In the second part dif-
ferent testing techniques and tools are introduced, while in the last
part the different testing phases are explained one at the time.

9.1 Testing in Different Processes
All testing activities need to fully take into account the development
process. There are certain rules that apply to every product develop-
ment program such as a software program. The V-model in Figure
9-2 was developed to regulate the software development process
within the German federal administration. It describes the activities
that take place and the results that have to be produced during
software development.

The challenge comes when the requirements of an informal
design process are misunderstood in later phases of the program.
That is why all intermediate products such as documentation should
be tested against the outcome of an earlier stage. Figure 9-3 intro-
duces the activities that can prevent these defects from remaining
undiscovered in the product. But how can tester test documenta-
tion? As boring as they sound, formal reviews are a good approach
to discovering defects. In a good review, a group of people read the
documentation and try to discover all the illogicalities in a single

Requirement
Specification

System
Testing

Functional
Specification

Design
Specification

Implementation

Module
Testing

Integration
Testing

Figure 9-2. The V-model.

112 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

program specifi cation and the contradictions between two or more
specifi cations.

The V-model needs some updates to become a more complete
model. These updates are documentation conformity testing between
each pair of activities and specifi cation tests carried out in review
sessions.

Sometimes the program management carries out the documenta-
tion conformity testing but in an informal way and they may not
recognize it as being a testing activity at all. Because of the informal-
ity, this activity tends to have some holes in it. There are some tools
that can help in achieving more complete reviews. Even if the people
involved are competent, the program can probably still help to
achieve the best results.

In the mid-1990s, when the role of testing became more widely
recognized, Rick Craig introduced the term ‘testware engineering’.1
Figure 9-4 explains the comparison between software engineering
and testware engineering.

Test objectives could be a combination of a company level
Test Strategy and product-specifi c objectives, which specify the target
in terms of the defect hit-rate, resources, processes and other
product-specifi c aspects. Processes play an important role in any
product program. If processes are too formal, they can decrease the
innovation and overall fl exibility in a program, while, on the other
hand, if they are too informal they can lead to a situation where

Requirement
Specification

System
Testing

Functional
Specification

Design
Specification

Module
Testing

Integration
Testing

Requirements testing

Functional Specification
Testing

Design
Spec.
Test.

Documentation conformity testing

Documentation conformity testing

Documentation conformity
testing

Implementation

Figure 9-3. V-model with the testing activities.

 Chapter 9: Testing as a Tool 113

the original requirements are misunderstood during some phase of
development.

Well accomplished testware engineering can be very demanding.
The things that make it demanding are the following:

• the complexity of a software product

• the nature of a software product

• the nature of the problems in a software product

• the amount of information and know-how needed

In addition, people-related issues, such as frustration with the docu-
mentation, schedules, requirements, changes and attitudes, make it
very challenging.

Chapter 6 explained different development processes, while this
chapter explains in more detail testing in each of these processes.

9.1.1 Testing in an Iterative Process
In the purest iterative process, at least in theory the same resources
can be used for both coding and some testing, because these two
activities are more or less sequential. The techniques used in iterative
development depend fully on the testing phase. Testing in an itera-
tive process is quite well organized and easy to manage. The bigger
the product program, the more testing teams there are involved. A
program can have separate test teams for module, integration and
system testing activities. Each of these teams can act rather freely if
the exit criteria for each test phase are well defi ned.

Software Requirements

Software Design

Code and Data

Test Objectives

Test Design

Procedures and Data

Software Engineering Testware Engineering

Figure 9-4. Software Engineering versus Testware Engineering.1

114 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

9.1.2 Testing in an Incremental Process
Incremental development means that the program implements the
product stepwise, a few features at a time. Maturation of a limited
number of features prior to implementing any other features guar-
antees that, even if further implementation fails to deliver, the earlier
good-quality set of features can be used and put onto the market.
To achieve this, all features need to be prioritized at the beginning
of the program. The challenge in an incremental process comes in
the parallel activities that need to be managed all the time. Figure
9-5 shows these activities in a timeline.

9.1.3 Testing in an Agile Process

Most agile methods attempt to minimize risk by developing software in
short timeboxes, called iterations, which typically last one to four weeks.2

Since agility emphasizes real-time communication, the testing
personnel should sit near the developers and the overall process
should focus on effective face-to-face communication over formal
documentation. The agile process is the most fl exible process
when it comes to the order and punctuality of activities. It sets
extra requirements for project follow-up and management while
providing potentially very good results. This process sets specifi c
requirements on testing. Testing must always be prepared well in
advance, but be ready to be modifi ed and to start whenever the
need occurs.

Specifying Designing Implementing Testing

Specifying Designing Implementing Testing

Specifying Designing Implementing Testing

Specifying Designing Implementing Testing

Specifying Designing Implementing Testing

Specifying Designing Implementing Testing

Specifying Designing Implementing Testing

Figure 9-5. Testing in an incremental process.

 Chapter 9: Testing as a Tool 115

9.1.4 Testing in an Extreme Programming Process
Extreme programming (XP) was fi rst introduced in the early 1980s.
Testing has quite a singular role in XP. XP does things in reverse; the
tests are written fi rst and after that the code is implemented. The
coding is fi nished after it has passed all tests and the programmers
cannot think of any more tests. XP aligns well with adaptability but
the trade-off is predictability. The benefi t of XP is that the program-
mer really must think and understand what he or she is about to
implement before carrying out the coding.

9.2 Testing Techniques
Since the software developer or software architect creates defects
unintentionally in an unsystematic way, the testing should be an
intentionally systematic activity. Early test preparation should detect
errors from the corresponding construction phase. Defects could
and should be detected when tests are prepared, not when they are
run. In this way the program can decrease the risk of not being able
to keep to schedule or budget, because the earlier a defect is fi xed,
the smaller the potential risks. With this approach the program can
potentially save signifi cant amounts of money and time and still
come up with a fi nal high-quality product. Very late testing phases
simply cannot fi nd all the defects in the product. Unfortunately, this
does not mean that end-users will not fi nd them. It is not very
unusual for the project to decrease the time planned for testing as
a result of the development phase being prolonged. Too many times
we have seen where this kind of approach ends up.

Testing effi ciency means that the tester detects the most signifi -
cant defects fi rst with a minimum test effort.

The success of testing is not only dependent on the testers’ skills
but also on the testability of the product. Testing a bad product is a
waste of time, because not enough defects are found anyway and
there will never be enough time to fi x all those that are found. Some
products are more testable that others. Testability describes how
easy it is to test a product. It is a composition of two things:3

• controllability: the ease of setting all data used by the program
into a known state

• observability: the ease with which all relevant details of the
program under execution can be observed

116 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Things that decrease a product’s testability are:

• average function/class length

• cyclomatic complexity

• dependencies

• usage of unnecessary data

There is only one method of fi nding nearly all defects: long-term
use by many users. However, the goal is not to fi nd all the defects,
but to fi nd as many errors as possible and, in particular, those errors
that it is economically wise to fi x.

There are numerous software testing techniques that have been
introduced over the years. Some of these techniques have undeni-
ably become obsolete as software processes have evolved and
changed. In addition, the terminology around software testing is very
wild and colourful. This section introduces some elements of basic
testing techniques. The vocabulary used is based on the ISEB Stan-
dard number 7925-1.4 Testing can be constructive or destructive
depending on the tester’s mindset and targets.

Constructive testing means that testing is trying to prove that
some piece of functionality works and not to show that it does not
work. Constructive testing is very often based on predefi ned use
cases. In the most blatant case, constructive testing is effectively
proving to the potential customer that the software works. Construc-
tive testing can be a very risky choice if it represents the only testing
approach in an entire program.

Breaking the functionality by doing things to the product that can
be described as hacking is called destructive testing. Destructive
testing can either be well-planned or be a very ad-hoc type of activ-
ity. The benefi t of so-called ‘monkey testing’ is a relatively high hit
rate in discovering defects. The drawback of unplanned testing is
the diffi culty in documenting the actions that caused the failure.
This can rebound during fi xing, where understanding the root cause
is vital.

White-box testing (also known as glass-box, structural, clear-box
and open-box testing) is a software testing technique whereby
explicit knowledge of the internal workings of the item under test
are used to select the test cases and data. Unlike black-box testing,
white-box testing uses knowledge of specifi c programming code to

 Chapter 9: Testing as a Tool 117

examine outputs. The test is accurate only if the tester knows what
the program is supposed to do and how it does it. He or she can
then see if the program diverges from its intended goal. White-box
testing does not account for errors caused by omission, and all visible
code must be readable. It means that the tester has a clear knowl-
edge of how the software is built and how it has been implemented.
The benefi ts of white-box testing are the predictability concerning
potential defects, although sometimes this can also turn out to be a
restricting factor. The earlier the testing phases in question take
place, the more they utilize white-box techniques.

Black-box testing (also known as functional testing) is a software
testing technique whereby the internal workings of the item being
tested are not known by the tester. For example, in a software-design
black-box test the tester only knows what the inputs are and what
the expected outcomes should be and not how the program arrives
at those outputs. The tester does not ever examine the programming
code and does not need any program knowledge other than the
specifi cations. This means that the tester does not need to under-
stand the software design or the implementation. The only thing that
is known is the requirement on how a certain feature should function
from the user perspective.

Defect Amount Estimation is a recommended technique for use
in focusing tests on those components and sub-systems that most
probably contain the most defects and the most critical defects. Such
sub-systems are, for example, those that implement one or several
of the following ‘rules’:3

1. It is easy for programmers to become confused as to just what a
pointer is pointing at. Manipulation of pointers often requires an
understanding of, and dependence on, the underlying processor
architecture.

2. Dynamic memory allocation and de-allocation are often closely
connected with the use of pointers.

3. Unstructured programming, including the use of GOTO is perhaps
the most widely recognized source of programming failure.

4. Multiple entry points and exit points, loops, blocks and functions
are really just a variation of unstructured programming. However,
there are cases in which carefully controlled use of more than
one exit can simplify code.

118 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

5. Variant data, meaning cases where the data in a variable changes
or the structure of a record changes is diffi cult to analyse. It can
easily be misunderstood and lead to a programming error.

6. Implicit initialization: a simple spelling mistake can result in soft-
ware that compiles but does not execute correctly.

7. Concurrency and interrupts can be source code problems. It is
easy to forget about parallel execution when designing or coding
a limited number of components.

Defect seeding can be used to verify the extent of testing. In
defect seeding the programmer purposely adds defects into the code
before testing. This is based on a concept where the seeded defects
are populated homogeneously throughout the product in the same
way as the other non-intentional defects. The ratio of the number
of seeded defects detected to the total number of defects seeded
provides a rough indication of the total number of unseeded defects
that remain undetected:

IndigenousDefectsTotal = (SeededDefectsPlanted/
 SeededDefectsDetected) × IndigenousDefectsFound

Although defect seeding can only provide an estimate of the remain-
ing unknown defects in the product, it is mostly used for academic
research purposes.

Estimated Degree of Functional Usage (EDFU) is a numeric
value that provides a simple estimate of how often the end-user
uses a certain piece of functionality. To determine this one needs to
understand consumers’ behaviour very well. If the value is one, it is
estimated that the end user uses this particular piece of functionality
every time he or she uses the product. If the value is close to zero
(for example,. 0.01), it is very unlikely that an average user ever uses
such functionality. A good question to ask at this point is how to
defi ne an average user. In the mobile phone industry devices are
targeted to certain customer groups. This helps end-user under-
standing a little. In any case, the program needs to create a customer
profi le based on the price, feature set and when the product is avail-
able on the market. Then the program needs to fi nd a group of
people that match this profi le and either give these people the fi rst
version of the prototype product for use and watch how this poten-
tial customer group uses the product or, if a prototype is not avail-
able, ask the group to complete a questionnaire on how they think
they would use the product.

 Chapter 9: Testing as a Tool 119

Naturally, the higher the EDFU, the more important it is for that
part or function to work properly. However, even such features that
have a value 1 for EDFU are not automatically equally important
from a testing viewpoint. Those features whose implementation
results in architecturally complex solutions should receive the most
testing attention.

Data-driven testing aims to fi nd defects in which certain data is
incorrectly processed. It focuses on every data area of interest in a
product. Equivalence class partitioning, boundary value analysis,
domain test, special value test, category partitioning test, depen-
dency test, random test and syntax test are all types of data-driven
testing. For example, using values above a higher boundary or below
a lower boundary can be very effective in fi nding defects. In addi-
tion, using correct or wrong data types and special values can be a
good testing approach.

Logic-driven techniques try to identify all incorrect handling of
the logic. This can be done by, for example, testing certain combina-
tions of inputs to every logical expression. Logic-driven testing exam-
ples are, for example, testing every condition using cause – effect
graphing and doing meaningful impact strategy or minimal multi-
condition tests.

Event-driven testing discovers incorrect handling of events. The
time sequence and arrival time of different inputs may introduce
failures. For two input events, testing only with event 1 or with event
2 may be worth doing. In addition, the time distance between dif-
ferent arrivals may be changed. The following events are good when
testing time-outs:

• arrival before timer is set

• arrival before time out

• arrival at time out

• arrival after time out

State-driven tests aim to fi nd all incorrect state transitions. They
are always based on state transition diagrams. All critical states and
critical transitions need to be tested. Trying to execute combinations
of transitions is also a good approach.

Datafl ow-driven testing focuses on problems in component
interfaces. A data element receives a value in one place and uses it
in another place. Sometimes the value is misinterpreted by the
receiving element. A good tool in datafl ow testing is a CRUD (Create,

120 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Read, Update, Delete) table, which defi nes who has what rights to
the data element. Datafl ow testing can also be based on fl ow dia-
grams. Both the CRUD table and fl ow diagrams make it easier to
understand how the software is supposed to function. In addition,
control-fl ow-driven testing can bring additional viewpoints to test
planning that might otherwise be forgotten.

Message Sequence Charts are used in component design speci-
fi cations for the S60 platform. These same charts are potentially
valuable in understanding the client – server architecture better.

Extreme programming, despite the programming alternatives in
it, has proved to be an excellent programming procedure that also
includes testing. Another name for it is the buddy system, because
not a single line of code of a complex component is written by just
one programmer. The person sitting next to the programmer is con-
stantly reading the code and is surprisingly able to discover most of
the faults in it immediately.

Code review has for years been one of the most effi cient defect
fi nding techniques. Because it is a very slow technique, it should be
focused only on the most risky components. The average progress
of a code review is around 100 lines of code per hour. Unfortunately,
this technique is not followed as often as it should be; because many
people fi nd it a very boring activity.

Static analysis utilizes tools to check the program. Nowadays,
tools can check at least the following things:

• operations: write-read-write-read

• errors in CALL statements

• code impossible to execute

• risky constructs (such as pointers)

• unused variables

What can be quite frustrating sometimes is the fact that only very few
of all the warnings received are really worth further investigation.

9.3 Testing Phases
The most common testing phases are introduced one at a time in
this section with some tips on how to execute them. Though each

 Chapter 9: Testing as a Tool 121

test phase has its own special nature, they have many similarities.
The phases covered in this book follow the V-model.

9.3.1 Documentation Testing
Program documentation plays an essential role in the success of
testing. Documentation is often used as the only input when the
testing activities are planned. Therefore the quality of documenta-
tion has a direct impact on the success of testing. The documenta-
tion can be improved in many ways. The following activities help in
creating good-quality documents:

• Use of a template helps to keep all documentation consistent.
Once the tester knows how to read the feature specifi cation and
where to fi nd all information he or she can plan tests more easily
and faster. The entire program personnel must naturally be trained
in template usage, so that people know into which template
to use.

• Maintaining documents in one place, where the tester can
always fi nd the latest version. In this way the risk of using an
outdated version of a specifi cation is removed.

• Using pictures instead of words, especially in User Interface (UI)
design, is very much recommended. One picture says more than
a thousand words.

• A formal review process helps the program to discover faults in
the documentation before they are actually coded into the soft-
ware. This is because, if the implementation has followed a com-
plicated architectural design, it can turn out to be impossible to
make any further corrections in the code. In the other words,
defects that originate from the architectural design phase can be
very expensive to correct. All architectural documentations should
go through defi nitive review and approval processes.

9.3.2 Module Testing
A module is a set of programs that serves a predefi ned purpose
within the entire system and is always owned by one single program-
mer. What this predefi ned purpose is in practice can vary a lot in
different programs. It can be a single class for instance or a single

122 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Dynamic Linked Library (dll) fi le. A bottom-up testing approach
means that each component is fi rst tested in isolation.

Module testing is very often given a name such as unit testing or
component testing. In all cases it aims to discover how a particular
module/unit/component is working compared to its specifi cation.
The module testing procedure is to write test scripts for all functions
and methods so that, whenever a change causes a regression, it can
be quickly identifi ed and fi xed.

The goal of unit testing is to isolate each part of the program and
show that the individual parts are correct (Figure 9-6). Unit testing
provides a strict, written contract that the piece of code must
satisfy.

According to Wikipedia,5 properly accomplished module testing
affords several benefi ts.

• Facilitation of changes. Once the module test cases are created,
the programmer can start using them. It is very likely that the
module needs to be changed after the fi rst test rounds. Good-
quality module test cases encourage the programmer to change
the implementation if needed, as re-running tests is very simple.
A good set of module test cases covers the entire module; in
other words, every line of code is executed during testing.

• Documentation. Module testing provides a sort of ‘living docu-
ment’. Clients and other developers aiming to learn how to use
the module can look at the module tests to determine how to
use the module to fi t their needs and gain a basic understanding
of its API and services. Module test cases embody characteristics
that are critical to the success of the module. These characteristics
can indicate appropriate and inappropriate use of a module,
as well as negative behaviours that are to be trapped by the
module.

Module under
test

Figure 9-6. Module testing.

 Chapter 9: Testing as a Tool 123

• Simplifi cation of integration. By testing the parts of a program
fi rst and then testing the sum of its parts, integration testing
becomes much easier.

• Separation of interface from implementation. Since the
module testing is only aimed at verifying the module’s internal
behaviour, it is vital to understand the difference between
internal and external interfaces. Wikipedia explains this in the
following way:

 A common example of this is classes that depend on a database: in order
to test the class, the tester often writes code that interacts with the
database. This is a mistake, because a unit test should never go outside
of its own class boundary.

Module testing only tests the functionality of units separately. It
cannot provide any information on integration, performance or
feature-level defects. Since its success depends 100 per cent on the
quality of the documentation and the programmers’ competencies,
its result varies from program to program.

There are several good framework tools in today’s world to speed
up module testing. Some of these tools are textual and some graphi-
cal: Textual means that the test cases are written with, for example,
NotepadOne and run in MS-DOS, whereas graphical means that
there is a graphical dialogue and some graphical progress indicator.
One such tool is JUnit, which is intended for Java-coded modules.
JUnit is a freeware tool available over the Internet. Use of JUnit
requires Java coding knowledge plus module testing and architecture
knowledge. It is introduced briefl y below.

Writing test code in JUnit involves the following:

• Create an instance of Test Case.

• Override the method runTest().

• When you want to check a value, call assert() and pass a Boolean
value = true if the test succeeds.

Running two or more tests that operate on the same or similar
sets of objects involves the following:

• Create a subclass of Test Case.

• Add an instance variable for each part of the fi xture.

124 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• Override setUp() to initialize the variables (e.g. establish a network
connection).

• Override tearDown() to release any permanent resources you
allocated in setUp.

Running several tests at once involves the following:

• Create a test suite OR.

• Let JUnit extract a suite from a Test Case.

• Run JUnit tests and collect test results.

• Make your suite accessible to a TestRunner tool with a static
method suite that returns a test suite.

• The graphical user interface presents a window with:

• a fi eld to type in the name of a class with a suite
method

• a Run button to start the test

• a progress indicator that turns from red to green in the case
of a failed test

• a list of failed tests

• The textual Test Runner shows the results on the system
console.

9.3.3 Integration Testing in the Small
The ISEB standard differentiates integration testing between modules
and integration testing between systems. The former is called integra-
tion testing in the small and the latter integration testing in the large.
Sometimes this activity is called integration and testing and abbrevi-
ated as I&T. Integration testing takes as its input modules that have
been checked during module testing, groups them intp larger aggre-
gates, applies tests defi ned in an integration test plan to those aggre-
gates and delivers as output test results the possible holes in the
integrated system (Figure 9-7).

The different types of integration testing are Big Bang, Top Down,
Bottom Up and Back bone:

 Chapter 9: Testing as a Tool 125

• Big Bang means that the entire pool of modules is integrated at
one time and integration testing is done on the whole system.

• Top Down practice equates to a situation in which the modules
that architecturally make up the lowest level of the system are
integrated and tested fi rst, whereas bottom up constructs the
system in the opposite order.

• Back Bone means that the modules that are used most are com-
bined fi rst; such a sub-system is called a system back bone. This
back-bone sub-system is tested fi rst and after that other modules
and sub-systems are integrated within it.

Where module testing is done by programmers, integration testing
is often accomplished by a separate testing team specialized in
system integration defect discovery.

Module 3

Module 2Module 1

Sub-system under test

A = (Function A); Function A (...return x);

B = (Function B);

Function B (...return y);
c = (Function C);

Function C (...return z);

Figure 9-7. Integration testing in the small.

126 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

There are also tools available for integration testing purposes.
Most of the module testing tools and frameworks are also suitable
for integration testing purposes. The usage of such tools is very
common nowadays.

9.3.4 Functional Testing
Functional testing covers how well the system executes the functions
it is supposed to execute – including user commands, data manipula-
tion, searches and business processes, user screens and integrations.
Functional testing also covers the obvious surface type of function,
as well as the back-end operations (such as security and how upgrades
affect the system).

In some product programs functional testing may capitalize on
using functional testing tools and frameworks. Sometimes fi nding a
suitable tool is diffi cult because of the special nature of the product.
For example, testing the functionality of a smartphone is very differ-
ent from testing the functionality of domestic appliances.

Functional testing is very practical task to carry out. It is also easily
understandable by people who are used to similar kinds of product.

9.3.5 Non-functional Testing
Non-functional testing aims to fi nd defects in product performance,
stability and other things that are not measurable in terms of func-
tional correctness. Performance testing can be carried out in many
ways, some of them being as follows:

• The maximum load the product can handle. For this one needs
to defi ne the selection of the stimulus to be used to load the
product as well as the maximum acceptable response time. This
is also called a product’s high watermark (HWa) defi nition.

• The performance of the product under high load for a longer
time. For this one needs to defi ne how what percentage of the
HWa is to be used and for how long a time. The duration varies
a lot from one product to another. Sometimes the load is changed
during the load period, as shown in Figure 9-8.

• A combination of several very time-critical user actions with a
predefi ned load. This approach is very important in testing prod-
ucts with strict response requirements.

 Chapter 9: Testing as a Tool 127

One testable item not related to functional correctness is, for
example, security. Product security can be measured in numerous
ways. A few can be explained as follows:

• Loss of confi dentiality of information means that the product
erases or allows some other entity to erase confi dential informa-
tion or data.

• Compromise of integrity of information means that the product
allows modifi cation of information or data in a wrong way either
by itself or by some other entity.

• Denial of Service (DoS) verifi es whether the product becomes
jammed under a high enough load. This is an important test in
smartphones as sooner or later hackers will try to harm mobile
phone users in one way or another.

• Misuse of service, systems or information means that the
product allows an unauthorized entity or application access to
confi dential data or information.

9.3.6 Integration Testing in the Large
When larger entities are combined, it is necessary to verify how they
work together. Within one system or product that activity is called
Integration testing in the small (ITS). Among several products the
activity is called integration testing in the large (ITL).

In software, we are normally concerned with integration at two
levels. First there is the integration of components at the module
level into a system – sometimes known as component integration
testing or integration in the small. Second there is the integration of
systems into a larger system – sometimes known as system integra-
tion testing or integration testing in the large.

Product’s HWaDay 1 Day 2 Day 3 Day 4

Load

Time

Figure 9-8. Example of a performance test load.

128 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

In a mobile ecosystem environment ITL verifi es how a device
functions with other devices and different networks and servers. This
is illustrated in Figure 9-9.

Common standards help in implementing compatible products,
but, especially in the software world, this is easier said than done.

9.3.7 The Real User Experience (TRUE)
As mentioned earlier in this book, the only way of discovering all
defects in a product is long-term use by many users. Unfortunately
this can only be achieved after the product is on the market. Since
this kind of feedback would be very valuable to the program, user
experience is often simulated.

Testing real user experience (TRUE) is normally carried out as
soon as the product can be used in a meaningful manner, in other

System 3

System 2System 1

Ecosystem under test

Service request 1

Service 1

Service 2

Service request 2 Service request 3

Service 3

Figure 9-9. Integration testing in the large.

 Chapter 9: Testing as a Tool 129

words, once the product has enough functionality to be used by
anyone. It provides feedback from real-life usage during the R&D
phase, when fi xing is still possible.

How many users are required to bring enough information to the
program? For example, in a mobile phone program there are nor-
mally around 150 to 300 users selected.

TRUE testing does not need any test cases because a selected set
of people from a target consumer group are using the product pro-
totype in the way they want to. These people are trained to report
all defects they discover in the product.

There are certain preparations that the entire product program and
its test manager need to do or have before TRUE testing can start:

• global system specifi cation

• clearly defi ned development requirements

• controlled system maintenance

• global control via TRUE central enabling visibility of test user
resources

• visibility of networks used (network elements and features
supported)

• understanding TRUE tester preferences

• common support process

• common reporting process

• very early batch feedback to confi rm that TRUE test failure sta-
tistics correlate with fi eld feedback results

• fault symptom codes easy to use and able to correlate with fi eld
feedback

• TRUE testing maturity checklist for TRUE ramp-up

• measured fl ashing support to maintain quality of service

• software version always maintained according to the actual phone
state

• TRUE user’s profi le to include operator system capabilities

• defi ned process for sim-card provisioning to maintain needed
features

130 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• use regional requirements to defi ne TRUE priorities

• minimum level of TRUE users defi ned

TRUE testers need to be trained in numerous things such as:

• the quality of the TRUE reporting system

• program commitment to planning and analysis of TRUE test
output

• use of mobile functionality in varied bearer networks

• early batch feedback through extended TRUE testing

• market visibility through extended presence and scope of the test
users

• special focus tests to prioritize usage of the most critical
applications

• standard statistics defi ned as program measures and quality
metrics (understanding of what programs actually need)

• central support for data delivery, analysis and comment

• quality reporting through defi ned feedback channels

• structured reporting criteria, tailored to meet program needs

• clear entry criteria for programs entering TRUE testing

• management commitment to single feedback solution

• commitment to program and support resources

• high volume of active TRUE testers

• structured software fl ashing support

• clear roadmap for planning TRUE test support per site

• clear understanding of TRUE users and operator system
capabilities

• effective sim-card provisioning across operators, updated with the
latest features

• product prioritisation based on regional requirements

• global visibility and control of available TRUE test users

 Chapter 9: Testing as a Tool 131

9.4 What Then?
Once testing discovers a defect, it is automatically assumed to be
the result of an error in the product. However, testing can also
contain defects; especially if people other than designers and pro-
grammers carry out the testing. The tester may misunderstand the
specifi cations or make assumptions about a product’s behaviour and
therefore report a defect that does not really exist at all. Testers
should always follow the commonly agreed rules and procedures
when planning, executing and reporting testing activities.

After the very fi nal test round, when the product has proved to
have reached commercial quality, it is deployed. The maintenance
requirements are decided and tailored into each program. Figure 9-10

Perform testing

Determine reliability
objective

Develop
operational profile

Collect failure data

Apply software
reliability tools

Select appropriate
software maturity

models

Use software
maturity models to
calculate current

maturity

Reliability
objectives

met?

Yes

No

Continue testing

Start to deploy

Feedback to the
next release

Validate maturity in
the field

Figure 9-10. System deployment process.

132 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

shows at a high level the actions needed for deciding the requirements
for maintenance work.

More information on defect handling and management is given
in chapter 11.

9.5 Summary
Testing that is done professionally is the only way to discover defects
in a system. In the history of software testing was introduced as an
equal activity to coding not too long ago, and negative attitudes can
still be seen in various projects and organizations. However, most
projects are ready to pronounce testing as being an undisputable
activity for fi nding the holes in a product. This chapter has discussed
testing from various perspectives, fi rst testing in different develop-
ment processes; second the different testing techniques and tools
and third different testing phases one by one.

Chapter 10: The Testing
Environment

Smartphone testing involves quite extensive requirements, in terms
of both money and competence, on the equipment and environ-
ment needed. In the earlier testing phases, such as module and
integration testing, the requirements are mostly competence-related
ones such as knowledge of module testing tools and scripts. The later
the testing phase is, there is no question that more money needs to
be invested in external tools and other elements. Figure 10-1 shows
an example of the required elements in an average phone program
as far as test equipment and competencies in each testing phase are
concerned. For example, the minimum requirement to carry out
good and extensive interoperability testing is that there is access to
all needed servers and network elements. If the program has admin-
istrator access to these elements, so much the better. Owning
such a network and servers is very expensive and not vital since all
tests can be executed over a publicly available network. The ques-
tion is how diffi cult troubleshooting will be without access to the
network logs.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

134 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

The testing environment can be divided into two:

• External equipment. Over-the-air (OTA) testing is enabled with
different servers. Different tools are required to help, for example,
in test execution automation and test result analysis.

• Test data. Data is needed to speed up test case execution both
in FUTE and NOFTE.

Both of these elements are introduced in this chapter for each test
activity.

10.1 Module Testing
Module testing has an indisputable and genuine role in every soft-
ware program. It is one of the most important testing activities and
it normally has the cheapest requirements for the test equipment
required. It is also the cheapest testing activity as the defects found
during module testing are very cheap to fi x. The S60 customer pro-
gram’s module testing does not set any extraordinary requirements,
such as servers and test tools, for the external equipment. Of course,
some external test automation tools can be used to speed up the
test execution, but, since the module testing are always based on

Deep code level
competence
importance

External equipment and
(sub-)system level

competence importance

Module
Testing

Integration
Testing

Functional
Testing

Non-Funct.
Testing

Interoper.
Testing

Figure 10-1. Phone program needs for equipment and competencies in different
test phases.

 Chapter 10: The Testing Environment 135

pre-written test code that can be run whenever needed, the added
value of a test automation tool or framework can be very little.

The biggest investment required in carrying out the most effi cient
module testing in the S60 customer program is to make sure that
the programmers have the required knowledge of Symbian, S60 and
the module testing techniques introduced in chapter 9. In addition
to above, programmers should also have a clear understanding of
what kinds of test classes are available in a platform release as this
may help the implementation of the required test code.

10.2 Integration Testing in the Small
Since Integration Testing in the Small (ITS) is aimed at fi nding defects
on a module’s APIs, it is one step more complex than module testing.
ITS focuses tests on the ‘external’ APIs and services of components.
As mentioned in chapter 2, the platform is implemented either one
feature or some features at a time.

As indicated in Figure 10-2, sometimes the implementation orders
of platform and customer APIs do not accommodate each other. This
can cause a situation where the customer program is ready to start
testing in areas where there is either no implementation at all or
there is only half-ready code of a counterpart on the platform side
that can be used. In such cases the customer program needs either
to delay the testing activities until the platform has delivered mature
enough components or to build their own stubs and/or drivers to be
used to replace the missing APIs.

10.3 Functional Testing
As stated in chapter 1, functional testing starts to have relatively large
fi nancial requirements for the program. The external equipment
needed to run all functional tests delivered with the 2.x-platform
deliveries is listed below. In those cases where a GSM network with
General Packet Radio Service (GPRS) access is required, such access
is a minimum requirement to enable execution of the test. If admin-
istrative access can also be obtained, possible troubleshooting of
those cases that fail is possible. Sometimes this can be extremely
valuable, especially if there is a question whether the defect is on
the network side and not in the terminal.

136 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

10.3.1 Common
The required elements (both environment and data) for the func-
tional testing of common parts of the S60-based phone are intro-
duced in this section.

Memory Card Application testing needs a Windows environ-
ment, terminals (prototypes), several of the chosen type of MMC
cards with at least one corrupted one to test exceptions and a MMC
card reader. On the data side, some fi les to store to the MMC cards
are also needed.

Enabling MMC Hot Swap testing needs a Windows environment,
terminals, a MMC card and a MMC card reader.

The Application Installer testing needs a Windows environment,
a terminal SIM card supporting Java MIDlet downloading and a

Symbian OS

Lower level components that play API towards
stand alone applications

Applic-
ation Z

Applic-
ation X

Applic-
ation X

Applic-
ation X

Applic-
ation Y

Applic-
ation X

Connectivity
API

Telephony
API

Implemented first

Implemented second

Implemented third

Customer Specific UI changes

Customer Specific Implementations

Platform Implementations

Customer Specific Solutions
Customer
Specific

Solutions

Figure 10-2. An example case of the implementation order of the components.

 Chapter 10: The Testing Environment 137

server to download Java MIDlets. As data the Java Midlets are
needed in testing.

Device Manager testing needs a Windows environment, terminal
prototypes, a Device Manager (DM) server and a Nokia Terminal
Management Server (NTMS) with verifi cation page. This server needs
to support all following: WAP Push using SMS bearer, HTTP 1.1,
Secured HTTP SSL v. 3.0 and TLS 1.0, OMA Provisioning (OTA) and
SyncML version 1.1.

General Settings testing needs a Windows environment, terminal
prototypes, a SIM card that supports alternate line service, a SIM
card that does not support alternate line services, a Network Identity
and Time Zone (NITZ) and OMA provisioning. As data some ani-
mated, corrupted and large gif images are necessary.

Application Shell testing needs terminal prototypes and the
chosen type of MMC cards. As data also some applications for
installing on the MMC card are necessary.

Context sensitive Help testing requires terminal prototypes.
Offl ine mode testing needs terminal prototypes, at least a full

coverage of GSM networks with GPRS, MMSC and Email servers, as
well as IR and BT capable devices.

Location application testing needs terminal prototypes, as well
as a network that supports the location service.

10.3.2 UI Customization and Personalization
The functional testing of elements (both environmental and data)
related to UI customization of the S60-based phone are introduced
in this section.

Profi les application needs terminal prototypes, ALS, MMC
and coverage of a GSM Network. As data, different tone formats
are needed. These exist by default in the device, can be created
by the user with a voice recorder, can be received as Smart mes-
sages and saved to phone, can be received as mail attachments
and saved to the phone, can be received as MMS messages and
saved to the phone or can be transferred to the phone via PC
connectivity.

UI themes testing needs terminal prototypes and, as data, differ-
ent kind of images and themes are need to run the tests.

Personalization applications testing needs a Winsows environ-
ment, terminal prototypes and the generated images and imple-
mented themes as test data.

138 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Testing of preset download folders in browser bookmarks needs
terminal prototypes, a SIM card with network connection enabled
Circuit Switched Data (CSD), High Speed Circuit Switched Data
(HSCSD), GPRS access points, GSM network and dialling servers. As
data the bookmarks are needed.

Testing of embedded download links in applications needs ter-
minal prototypes.

Pinboard testing needs terminal prototypes and the chosen type
of MMC cards. As data, some images, a notepad memo, voice
recorder fi les and WAP bookmarks, as well as saved WML cards, are
needed.

10.3.3 Local Connectivity
The functional testing elements (both environment and data) of the
S60-based phone local connectivity are introduced in this section.
Naturally, if the device does not contain, for example, a Bluetooth
port, the BT-related aspects do not apply in the program.

Bluetooth connectivity testing needs terminal prototypes as well
as BT-enabled devices. As data, some fi les to be transferred via BT
are needed.

Infrared connectivity testing needs terminal prototypes as well
as IrDA-supported devices. As data, some fi les to be transferred via
IR post are needed.

Universal Serial Bus (USB) connectivity testing needs terminal
prototypes and a USB cable, as well as other USB devices. As data,
some fi les to be transferred via USB are needed.

10.3.4 Networking and Data Bearers
The functional testing elements (both environmental and data) of
networking and data bearers of the S60-based phone are introduced
in this section.

HTTP Protocol testing needs terminal prototypes and a World
Wide Web server. As data, some HTML and XHTML test material is
needed, as well as HTTP error codes.

WAP Protocol testing needs terminal prototypes, a WAP server
and, as data, some material that supports WAP.

Testing of GSM Circuit Switched Data needs terminal prototypes
and a GSM network with CSD capability.

 Chapter 10: The Testing Environment 139

Testing of GSM High-Speed Circuit Switched Data needs termi-
nal prototypes and a GSM network with HSCSD capability.

General Packet Radio Service (GPRS) testing needs terminal
prototypes, GSM network coverage with GPRS capabilities, two
other terminals with GPRS capabilities and three SIM cards (one
with a GPRS subscription, one without a GPRS subscription and
one with a static IP address), as well as a PC with Email, Web
browser, File Transfer Protocol (FTP) and modem driver for phone
and fax.

Testing of Enhanced Data Rates for Global Evolution (EDGE)
needs terminal prototypes, EDGE network coverage, two other
terminals with EDGE capabilities, the latest S60 phone software
available and three SIM cards (one with an EGPRS subscription, one
without an EGPRS subscription and one with a static IP address), as
well as a PC with Email, Web browser, FTP and modem driver for
phone.

Connection manager testing needs terminal prototypes, two SIM
cards (one with multiple PDP contexts, MMS, GPRS and CSD enabled
and one with no support for multiple PSP context) and a laptop with
Bluetooth and IRDA settings. As data, the settings need to be in
place prior to testing.

10.3.5 Telephony
The functional testing elements (both environmental and data) of the
S60-based phone telephony-related features are introduced in this
section.

Telephony testing need terminal prototypes, a GSM network
(with support for conference calls, call charging, call transfer and
alternate line service (ALS)), one blocked SIM card (with the PIN
code locked), one rejected SIM card (the PUK code is rejected), one
unsubscribed SIM card (without connection to the network) and a
clock for testing the duration between redial call attempts.

Testing of Fax and Data calls needs GSM network coverage (with
CSD capability), terminal prototypes, a laptop with BT, IrDA and
ProComm fax, two other terminals with the capability of receiving
data calls, two other devices with the capability of sending and
receiving faxes and a SIM card that supports waiting data and fax
calls. As data, the fax content is needed.

Logs application testing needs terminal prototypes, two other
S60 terminals, two different SIM cards (one that supports ALS and

140 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

one that supports CLIR) and a stopwatch. As data, SMS messages
(incoming and outgoing SMS messages, delivered and pending SMS
messages, SMS messages with failures), data calls, fax calls and voice
calls without a number, with a private number and generated by SIM
ATK are needed.

General Log testing needs terminal prototypes, two different SIM
cards (one with support for ALS and one with support for CLIR). As
data, SMS messages (incoming and outgoing SMS messages, deliv-
ered and pending SMS messages, SMS messages with failures), data
calls, fax calls and voice calls without a number, with a private
number and generated by SIM ATK are needed.

10.3.6 Multimedia
The functional testing elements (both environmental and data)
of the S60-based phone multimedia features are introduced in this
section.

Camcorder application testing needs terminal prototypes or
emulator environments.

Image Viewer testing needs terminal prototypes, a GSM network
with MMSC, Email servers, IR and BT capable devices and the
chosen type of MMC card.

Media Player testing needs terminal prototypes, a GSM network
(with the capability for streaming over EGPRS, GPRS and HSCSD
bearers), MMSC, Email servers, an IR- and BT-capable device, the
chosen types of MMC cards (normal and locked), a headset, a stereo
headset, a Bluetooth headset, SIM cards with (E)GPRS and HSCSD
support, a PC as a streaming server, content creation tool(s) and a
USB cable. As data, a wide range of supported and unsupported
fi les for both local and streaming playback (supported fi le formats
for video include: 3gp, MP4 and RM – note: only MP4 fi les contain-
ing supported codecs can be played; supported fi le formats for audio
include: AAC, AMR, AU, AWB, MID, MP3 and WAV) and streaming
links (RTSP URLs) stored in RAM fi les.

Media Gallery testing needs terminal prototypes, a GSM Network
with MMSC, Email servers, an IR- and BT-capable device and the
chosen type of MMC cards (normal, locked, corrupted and read-
only). As data, some images (in, for example, the following formats:
jpeg, gif 87 & 89a, png, tiff/f, mbm, bmp, wbmp, Smart Messaging
OTA Bitmap – GMS pictures –wmf, exif and ico), some audio fi les
(in, for example,. the following formats: rng, wav, au, amr, awb, midi,

 Chapter 10: The Testing Environment 141

mp3 and aac), some video clips (in, for example, the following
formats: 3gp and rm), a streaming link (ram fi le), some non-media
fi le types (for example, HTML, text, EXE and DLL), fi les that are too
large in size, video clip in NIM format and some media fi les that are
application-specifi c/proprietary.

Voice Recorder testing needs terminal prototypes, a GSM
network, MMSC and Email servers, as well as an IrDA and BT device.
As data, some contacts need to be created in the prototype.

10.3.7 Personal Information Management (PIM)
The functional testing elements (both environmental and data) of the
S60-based phone PIM features are introduced in this section.

Contacts testing needs terminal prototypes, several SIM cards
with different maximum sizes for memory entities (one SIM card with
full memory), an IrDA device to receive contact cards, a Bluetooth
device to receive contact cards, another S60 or GSM phone to
receive SMS messages and SIM cards with and without service
numbers.

Calendar testing needs terminal prototypes, a GSM Network,
MMSC, Email servers and IrDA- and BT-capable devices.

Notes testing needs terminal prototypes, a GSM network, MMSC
and Email server.

Clock testing needs terminal prototypes and a GSM network that
supports NITZ.

File Manager testing needs terminal prototypes, a GSM network,
MMSC, Email server, IrDA and BT devices and the chosen types of
MMC card. As data, some images (in, for example, the following
formats: jpeg, gif, bmp, wbmp and tiff), a GSM picture fi le, a link
fi le, a sound fi le (that can be played with MediaPlayer), a play list, a
ringing tone fi le, a sis fi le, a video fi le, one corrupted fi le and one
unsupported fi le are needed as well.

Remote Synchronization testing needs terminal prototypes, a
GSM network, a remote sync server and a PC.

10.3.8 Messaging
The functional testing elements (both environmental and data) of
the S60-based phone messaging features are introduced in this
section.

142 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Messaging center testing needs terminal prototypes, GSM
network coverage and MMSC and Email servers. As data, access
rights to a remote mailbox need to be in place for at least one
server.

Short Messaging (SMS) testing needs terminal prototypes and
GSM network coverage. As data some test messages are also
needed.

Smart Messaging testing needs terminal prototypes, GSM
network coverage with GPRS, MMSC and Email servers. The chosen
type of MMC card, a hands-free device and IrDA and BT devices.

Multimedia messaging testing needs terminal prototypes, GSM
network coverage with GPRS, MMSC and Email servers, the chosen
type of MMC card, a hands-free device and IrDA and BT devices.
As data, some images (in both supported formats, such as jpeg, gif,
png and wbmp and unsupported formats), images with the following
sizes: 640 × 480 pixels and 160 × 120 pixels, audio fi les in the AMR
format, video clips (in the following formats: 3gp, nim and mp4 as
well as some other audio formats) and a SIS package of the XAMPLE4
testing tool are needed.

Email testing needs terminal prototypes, GSM network coverage,
an Email server, GPRS and HSCSD access points and four different
remote mailboxes (POP3, POP3-SSL/TLS, IMAP4 and IMAP4-SSL/
TSL). As data some pictures and other attachment fi le types are
needed.

Cell Broadcast testing needs terminal prototypes and GSM
network coverage that supports cell broadcasting.

Testing receiving and sending messages via IrDA and BT needs
terminal prototypes, a GSM network and other IrDA and BT devices.
As data, some messages are needed.

Testing of OMA Instant Messaging needs terminal prototypes,
GSM network coverage with the IM service availability, the chosen
type of MMC card and another IM device.

OMA Presence Server testing needs terminal prototypes, GSM
network coverage with the Presence Service (PS) availability, the
chosen type of MMC card and another PS device.

Presence application testing needs terminal prototypes, GSM
network coverage with PS availability and MMSC. As data, MyLogo
fi les of different sizes and some wireless village user IDs are
needed.

Presence API testing needs terminal prototypes and GSM network
coverage with PS availability.

 Chapter 10: The Testing Environment 143

Testing of OMA client provisioning needs terminal prototypes,
GSM network coverage with OMA client provisioning service and a
SIM card.

10.3.9 Browsing
The functional testing elements (environmental and data) of the S60-
based phone browsing features are introduced in this section.

Browser testing needs terminal prototypes, GSM network cover-
age with GPRS, CSD, HSCSD capabilities, another S60 phone, a SIM
card with only GSM Voice Call service, a SIM card with only GSM
data service, a SIM card with HSCSD data service, a SIM card
without HSCSD data service, a SIM card with GPRS data service
and a SIM card without GPRS data service. As data, XHTML, I-Mode
and HTML pages, background images and WAP push messages are
needed.

Security testing needs terminal prototypes, GSM network cover-
age and several SIM cards with the known PIN, PIN2, PUK, PUK2
codes, security codes and pre-programmed master code.

Digital rights management testing needs terminal prototypes,
GSM network coverage, the Nokia content publishing toolkit, another
S60 phone or another phone that supports DRM, two SIM cards
from different operators with all possible data services support, a
website for the content, an MMS centre, a Multimedia sender tool
and a WAP push tool. As data, several different types of DRM mes-
sages are needed (for example, gif, animated and not animated,
jpeg,, progressive and sequential, png, midi Audio, sp-midi, amr and
amr-wb).

Fax testing needs terminal prototypes, GSM network coverage, a
fax device, two other terminals with fax support, a PC with Windows
NT/2000 OS, a connectivity pack (BT, ProComm and Winfax Pro)
and at least two SIM cards for different operators. As data, a three-
page test sheet is needed.

Testing of Synchronized Multimedia Integration Language
(SMIL) needs terminal prototypes, GSM network coverage, a SIM
card that contains Service Dialling Numbers (SDN) storage, a SIM
card that does not contain SDN storage and a SIM card that contains
empty SDN storage.

Service Dialling Numbers (SDN) testing needs terminal proto-
types, a GSM network, a SIM card that does not contain SDN storage
and a SIM card that contains empty SDN storage.

144 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

10.4 Performance Testing
As explained in chapter 9, performance testing has many aspects.
The maximum load a product can handle is one measurement of
performance testing; another is how long the product can function
under a certain load. Comprehensive performance testing was not
part of too many phone programs until the early 1990s. Its role has
become more important in connection with the latest phone models
that contain more and more features.

The extent of performance testing of a S60-based phone is purely
a program’s decision. Figure 10-3 shows some of the common ele-
ments needed in doing basic performance testing on a smartphone
by using multimedia messages as the load.

A general load generator is a good tool for creating loads on the
device in a controlled way. With a good load generator tool, the
maximum load a device can handle with the predefi ned response
times can be defi ned. In product performance testing it is very
important to include all modules in the System Under Test (SUT) as
the default is that all modules can contain a performance defect and
that defect can cause failures in the overall functionality of the
product. This means that the load generator should be able to trans-
fer the load over the air to the phone. This load can be, for example,

Message generator
generates e.g. 200
MMSs per minute

Live Network

MMS
Center

Phone
Under
Test

Figure 10-3. MMS message generator example.

 Chapter 10: The Testing Environment 145

a combination of short messages, multimedia messages, smart mes-
sages and different voice calls (both incoming and outgoing), as well
as other connectivity traffi c.

10.5 Interoperability Testing
Smartphone compatibility with the external world is very crucial for
its success. Therefore correctly performed interoperability testing is
highly recommended, even though it can be relatively expensive.

Table 10-1 describes at a high level what network elements are
needed for the execution of interoperability tests on a smartphone.
Interoperability is a condition achieved among elements of the Open
Mobile Alliance (OMA) System Architecture when services and
content can be exchanged directly and satisfactorily between them.
Figure 10-4 introduces the elements needed for Multimedia mes-
saging IOP testing on a S60-based phone.

Figure 10-4 shows clearly that to execute IOP tests for MMS
functionality, the program needs access to several very expensive
network elements. Very many publicly available networks already
support multimedia messaging and therefore running the tests on
their networks is, of course, possible, but, as mentioned earlier, the
troubleshooting of failed cases is very diffi cult, if not impossible,
without access to the log fi les for the network elements.

Nokia has its own IOP laboratory in Finland with the latest
technologies and this laboratory can also be used for Licensee S60-
based phone IOP testing activities if the fees and timing have been
mutually agreed. The same laboratory not only has Nokia’s own

Table 10-1. Hardware needed for IOP testing.

FEATURE UNDER TEST (FUT) NEEDED HARDWARE

Smart messaging SMS Center

Instant messaging IM group server including dynamic
phonebook, terminal gateway and WAP
gateway

Presence Presence server and subscriber database

Voice calls Network

Multimedia messaging Multimedia messaging center and picture
messaging center (e.g. NAMP)

146 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

network elements but also other vendors’ servers, which provide
very comprehensive IOP testing possibilities for customer programs.
If agreed, the troubleshooting can also be done by Nokia IOP labora-
tory personnel.

10.6 Miscellaneous Testing Activities
A smartphone product program should also consider other testing
activities in addition to thise discussed above. Some of these activi-
ties may have requirements related to the environment where the
testing is done. One kind of miscellaneous testing activities is certi-
fi cation. Certifi cation certainly sets some requirements on the exter-
nal equipment needed and this equipment is introduced below.

Terminal TerminalCellular
network

Cellular
network

GGSN GGSNWAP
Gateway

WAP
Gateway

MMSC MMSC

IOP Critical point for terminal

IOP Critical point for WAP gateway

IOP Critical point for MMSC

Physical layer

Link layer

Network layer

GTPSNDCP SNDCPGTP

IP

Transportation layerUDP

WSP/HTTP

MMC Content

MMC
enc data

MMC encapsulation data MMC encapsulation data

Not related to IOP

IOP reqs related to connection

IOP reqs related to protocol

IOP reqs related to content

IP

UDP

WSP/HTTP
HTTP/
SMTP HTTPHTTP

Figure 10-4. Example of S60-based phone MMS IOP elements.

 Chapter 10: The Testing Environment 147

10.6.1 Certifi cation
The overall requirements of S60-based phone certifi cation were
explained in chapter 5. This chapter provides some information on
what kind of environmental requirements there are in certifi cation
procedures.

One of the most signifi cant environmental requirements in certifi -
cation testing comes along with Java certifi cation. Running a full certi-
fi cation test set, which covers all JSRs, requires as minimum one server
equipped with Windows 2000 or XP Professional, terminal prototypes
and network coverage. In practice, up to four servers and six prototypes
reduce the time needed for testing. The other certifi cation area that
imposes additional requirements on the equipment needed is Blue-
tooth certifi cation. However, since there are many companies around
the world that provide Bluetooth certifi cation testing as a service and
they have all the necessary equipment in place, the terminal program
should consider using one of these houses for the purpose.

10.6.2 Usability
Usability verifi cation is also a very important testing activity in a
smartphone program. It tries to fi nd possible logic problems in the
product’s user interfaces that might cause end-user dissatisfaction in
its usage. Although the S60 platform provides UI components that
are already usability tested and verifi ed, the customer program may
still want to change the UI layout. The program needs to decide
whether further usability testing is needed or not. If the program
ends up deciding that they also need to carry out usability testing as
one testing activity, they should also consider what kind of require-
ments are necessary in the testing environment.

The basic environmental requirements in doing proper usability
tests are the following:

• Product prototype to be used by the tester:

• an isolated room where the tester can use the product in
piece and quiet

• microphones and speakers for hearing the tester speaking
and for making possible comments as well as for commu-
nicating with the tester

• a room for observers

148 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• Video recorder:

• a recorder to record which buttons testers pushed while
testing and when they pressed them

In addition to the above, appropriate data analysis tools are also
needed for decompressing how the user used the phone.

10.7 Summary
A meaningful test environment is an absolute must for realizing
testing activities in any product program. In a smartphone program
this should be taken into consideration early on, because building a
test environment is not an easy task. It requires proper network
access, numerous server accesses, other devices and lots of test data
and tools. This chapter has introduced those elements that have to
be in place and those that would be benfi cial but are not absolutely
mandatory to test a S60-based device.

Chapter 11: Defect Analysis

There are two things that can enable a product to achieve the neces-
sary quality and freedom from error, if they are done right. One is
the testing and the other one is sensible error fi xing. Testing is
intended to fi nd defects in priority order and sensible fi xing corrects
them in priority order. However, these two priority orders can be
different. In a product program, it may not always be wise to fi x all
the defects discovered, but instead handle them as known issues.
This, of course, raises the question of why we did the testing to dis-
cover defects that we do not plan to fi x. Sometimes defects in very
complex components can be very safe and simple to fi x. However,
understanding what pieces of the functionality are so critical and
important to the customer that they should be error free, no matter
how big the risk of regression, is as important as recognizing which
defects are very safe to fi x.

At a certain stage in a program it can be worth fi xing all dis-
covered defects and, then, after that analysing which fi xes are to be
integrated and which not. This activity is called gatekeeping and the
person responsible for it is called the gatekeeper. Figure 11-1 shows
the sorts of issues a gatekeeper should consider for each fi x.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

150 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Fix

Showstopper ?
No

Yes

Immediate
CRQ?

No

Yes

Change in UI?
No

Yes

Immediate
CRQ?

Change in UI?

No

Yes

Component a
standalone?

No

Yes

No
Integration

To
Integration

Figure 11-1. A simplifi ed gatekeeping decision table.

Figure 11-2 shows how to prioritize the order of fi xing. To simplify
the elements of prioritizing, the product program should be clear
about how the customer uses the product. In a smartphone, of
course, a voice call remains one of the most used features in spite
of all the newer features. And short messaging is another widely used
functionality. These two features and related applications need to
be very error-free or phone usage may lead to high dissatisfaction

 Chapter 11: Defect Analysis 151

and rebate rates, whereas the customer can ignore a misfunction in
some feature or application that is not often needed.

The person in charge of deciding which defects are to be fi xed fi rst
is called an error manager. The error manager needs to be in place
before testing starts. He or she should follow the ‘three-D-rule’; The
words decide, defi ne and distribute make up the ‘three-D-rule’:

• Decide means that the error manager should decide defect
priority.

• Defi ne means that the error manager needs to defi ne character-
istics and descriptions for each category (maybe even use simple
and practical use-case examples).

• Distribute means that the error manager should share the infor-
mation with all parties as well as monitor that the distribution
rules are followed.

This section explains the importance of proper prioritizing activity
on the known discovered defects and describes some tools to achieve

FixFix if time allows

Fix, but with careful
regression testing

Do not fix

Estimated Degree of
Functional Usage (EDFU)

Level of Risk
in Fixing

1.

2.

3.

4.

High

Low

Low High

Figure 11-2. Fixing order.

152 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

this. The following sections explain both how to have the best pos-
sible testing so that a tight schedule is kept and what to do with the
discovered defects.

One, very often forgotten, standpoint in defect analysis is the
impact that a particular defect, if remaining unfi xed, will have on the
product’s Field Failure Rate (FFR) and Mean Time Between Failures
(MTBF). MTBF is a future value, which can be estimated based on
known defects, testing coverage, product complexity and the use of
the product. FFR is a measurement of product quality and reliability
after shipping. It is the average time between customer-reported
defects.

11.1 Focused Testing
Testing activities should be focused on areas that are commercially
the most important to the company. Such areas are, for example,
those pieces of functionality that hold the biggest estimated degree
of functional usage (EDFU). Another viewpoint that can be used in
focusing testing is to consider the most problematic and risky
components.

Figure 11-3 shows one way to estimate defect criticality. The
darker the area, the more critical the defect is. Naturally, the greater
the EDFU, the more important it is for the component to work.

Estimated Degree of
Functional Usage (EDFU)

Module
complexity

High

Low

Low High

Figure 11-3. Defect criticality example 1.

 Chapter 11: Defect Analysis 153

However, even the features having a high EDFU (such as making a
voice call with a mobile phone) are not automatically equally impor-
tant from a testing point of view.

A software product normally contains some components with a
complex architecture and other components with relatively simply
architecture. The greater the complexity in a component, the more
critical a defect is (see Figure 11-4), because such defects tend to
have more interdependencies with other components. The com-
plexity (see chapter 2) can be caused by two things, code complexity
and the large number of shared resources (either because the com-
ponent uses different resource fi les or because other components
use its resources). More information on how to improve the focus of
testing can be found in chapter 9.

11.2 Defect Analysis and Reporting
Testing ideally fi nds all defects that damage the product usability in the
most used functions and guarantees that the most complex parts have
been well covered. This sounds simple, but it still cannot be guaran-
teed. However, in most product programs the problem is not to fi nd
too few defects but to be able to fi x them in a managed way. A managed
way means fi xing the right defects without causing regression.

Estimated Degree of
Functional Usage (EDFU)

Module
complexity

High

Low

Low High

Figure 11-4. Defect criticality example 2.

154 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Once the testing has checked the most important components
and the most important defects have been discovered, it is time to
start prioritizing and fi xing the defects. In order to be able to do this,
the program needs to have the following three things well under-
stood and in place:

• a defect database

• a defect management process

• a defect priority description

11.2.1 Defect Database
Details of all defects should be stored in one place, where they can
be managed and updated easily and whenever needed. Typically,
this storage is either a shared fi le or database. The benefi ts of one
well-planned defect storage area are:

• Impact analysis can be done faster when all entities are using the
same database.

• Everybody can be informed of the existing failures.

• Fast reaction to errors entered into the database can be ensured.

• It will be possible to focus on the errors and to follow-up correc-
tive actions.

• It can be ensured that defect correction is planned, implemented
and verifi ed.

• It speeds up the defect correction process.

• It gives information about defect status for product maturity
estimations.

• Databases and processes should be consistent and not changed
too often.

11.2.2 The Defect Management Process
Once discovered, a defect is reported into a common system. This
means that a defect report exists. A defect report can have several
statuses. A simplifi ed set of statuses is shown in Figure 11-5.

 Chapter 11: Defect Analysis 155

The process can be considered as a road and the lifecycle tells
where (in which phase) a car (the defect) is on that road. Once it is
known what the defect status is, what happens next and who is
responsible for the action are also known.

Figure 11-6 shows an example of a defect process with the activi-
ties and statuses. Status is a defect-specifi c indicator in the fi le or
database that tells a person what is expected to happen to the defect
next. Activity describes the phase of work around the defect. Activity
needs to be assigned to a named person so that interested people
can direct their questions to the right address.

Analyse

Correct

Verify

Deliver

Reject

Analyse

Correct

Verify

Deliver

Reject

Detected

In progress

Corrected

Verified

Closed

<Status>

<Activity>

Figure 11-5. Simply defect report status lifecycle.

Figure 11-6. Defect process example.

156 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

11.2.3 Defect Priority
It is very important to be sure that those defects that have a major
impact on customer satisfaction are corrected fi rst. At the same time,
it is equally important that non-business-critical defects in complex
components are fi xed last if time allows. Fixing priority order has
three dimensions and all of them should be weighted equally:

• Severity describes how the defect impacts the system and how
permanent the effect is.

• Frequency describes whether the failure occurs every time when
using the piece of functionality.

• Probability describes how many customers have met with the
problem and how likely the use case in question is.

Severity can have for example three levels: high, medium and
low. High indicates that the product is unusable because of an error,
or the software requires a heavy user interaction to recover from the
failure (for example, removing the power supply). Medium indicates
that the failure impact affects working with the product or recovery
requires minor user interaction such as the system recovers when
some button is pressed. Low indicates that the failure can be annoy-
ing but does not require any user interaction to recover from it. Such
defects are for example UI issues, spelling errors and localization
problems.

The scale of frequency levels used is very much product specifi c.
In a mobile terminal, which can be assumed to be in use for a couple
of hours per day, the frequency levels should be rather small (for
example every minute, daily or weekly).

The probability should indicate the EDFU with the maximum
frequency level.

Defect priority should tell how urgent it is for the defect to be
fi xed. There are different ways to describe the priority and one pos-
sible way is described here. A defect can be given one of the fol-
lowing four priorities: Show Stopper, Critical, Major and Minor. Each
of these priorities is analysed below from three viewpoints: effect on
customer, effect on business case and effect on R&D.

11.2.3.1 Show Stopper
Show Stopper is the highest priority. It is used if an error is really
preventing/endangering something commercially important such as

 Chapter 11: Defect Analysis 157

sales to a certain region or operator, ramp-up, the ability of the
program to proceed or program milestones. Every defect having a
show stopper status will have a severe effect on the customer, the
business, R&D and the schedule and resources.

Effect on Customer
End users will not buy, or will return, the product if the error exists.
End users will be very unhappy or angry about the usage of the
product if the defect remains unfi xed:

• Severity. The device is dead, needs fl ashing or rebooting to get
it to function again. No workaround available.

• Frequency. Occurs very frequently, i.e. daily or even more often.
This would have a severe impact on the FFR.

• Probability. The problem happens every time the basic function-
ality is used. A signifi cant number of end-users experience the
problem.

Effect on the Business Case
• There is no business for the product at all (major confl ict with

authority requirements) if these defects are not fi xed before the
product enters the market.

• There are hundreds of thousands of euros or more in lost revenue
due to the error.

• The sales to certain regions or operators would be prevented.

• The progress of the program would be endangered.

Effect on R&D
• The project development depends on this functionality or fi x.

• The project cannot go on until the error is corrected.

• Testing on a large scale would be prevented.

• Program milestones would be at stake.

• Open show stoppers in a late phase of the project will cause
slippage in the project schedule.

Show stopper defects must be fi xed as soon as possible and all
resources should be used if needed in fi xing show stopper defects.

158 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

11.2.3.2 Critical
Critical is the second highest priority. Priority Critical is used if an
error is such that it does not prevent sales but has a major impact
on customer satisfaction. Critical can also be used if an error causes
problems to the program (e.g. prevents parts of the testing or endan-
gers the milestones).

Effect on End-user
The end-user will buy the phone, but will be very dissatisfi ed with
the product performance and functionality. The basic functionality
is not OK. It is very likely that product will be returned to the service
point. A minor problem that recurs all the time can be a critical error,
as can an error with a heavy impact on the system, even if the error
case is not likely to happen:

• Severity. Requires reboot or the device boots itself. Workaround
may be available.

• Frequency. Occurs frequently. Frequency varies from hours to a
week. The problem is likely to happen during normal usage, i.e.
the MTBF is relatively high if this defect remains unfi xed.

• Probability. Perhaps 5 per cent of end-users experience the
problem.

Effect on Business Case
• The business and brand risk is unbearable.

• There are tens of thousands of euros in lost revenue due to the
error.

Effect on R&D
• Product development and/or testing are partly prevented as a

result of the problem.

• Open critical problems in a late phase of the project may cause
slippage in the project schedule.

• Critical defects must be fi xed as soon as possible, once no show
stopper defects exist. However, solving the problem should not
take up all available resources.

 Chapter 11: Defect Analysis 159

11.2.3.3 Major
Major is the third highest priority. Priority Major is used if an error
causes serious problems but the use case is not common or the fre-
quency of the error occurrence is rare.

Effect on End-user
End users will buy the phone, but they will be unhappy with the
functionality of the product. If end-users fi nd the error, only a few
of the end-users will return the product.

• Severity. Very annoying behaviour of the device. Application
shuts down itself. Workaround is available.

• Frequency. Occurs every now and then. In normal use, this failure
is not very likely to happen, i.e. the MTBF is low even if this defect
remains unfi xed.

• Probability. Perhaps 5 per cent or fewer of the end-users experi-
ences the problem.

Effect on Business Case
• Business and brand risks are signifi cant.

• There are thousands of euros in lost revenue due to the error.

Effect on R&D
• There are effects only if there are a large number of major errors

to be fi xed before large-scale system testing starts.

All Major defects should be fi xed before the system test phase,
but there is currently no majr effect on development. Fixing should
not require any new resource allocations.

11.2.3.4 Minor
Minor is the lowest priority level in this example. Priority Minor
should be used in cases where the defect would hardly be noticed
by the end-user or if it remains unfi xed, it will not cause dissatisfac-
tion with the product.

Effect on End-user
A Minor error is more a matter of taste or cosmetic in nature, so the
end-user is not likely to notice it:

160 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• Severity. Annoying behaviour of the device. Workaround is
available.

• Frequency. Occurs very rarely. It may occur during heavy usage
of the device, i.e. the MTBF would be very long if this defect
remains unfi xed.

• Probability. Only a nominal number of end-users experience the
problem, not a normal use case.

Effect on Business Case
• There is neither brand risk nor signifi cant risk of losing revenue

as a result of the error.

Effect on R&D
• There is no effect on R&D.

Minor defects should be fi xed if time allows and they should be
resolved with the resources available at the time.

11.2.4 Defect Reporting
Even the very best defect reporting tool cannot replace the need for
open communication between a tester and a developer. Neither can
it replace a missing working procedure for defect handling (common
rules) in the program. There will always remain things that the tester
(the person who discovered the defect) does not put into the system
either because he or she does not remember, because he or she
does not consider them important or because it is diffi cult to explain
them in a formal way. Such things can still be very vital for making
a proper fi x. Jason Yip opens this up in a very clear way in has article
in the magazine Better Software.1

Writing only a formal defect report allows room for mistakes.
These mistakes can cause extra delay in solving cases. A mistake in
the use-case description can cause a developer to reject a critical
defect report because he or she is not able to reproduce the defect.
Therefore, a demonstration of the failure makes it easier to under-
stand how the system behaves. As Yip describes in his paper:

There is much tacit knowledge transferred in a conversation and demon-
stration (i.e. show and tell) that does not come across in a failing test case.
For example watching the tester step through the problem allows the

 Chapter 11: Defect Analysis 161

observation of important details that the tester may not have thought useful
to provide. Such details sometimes lead to the serendipitous discovery of
related issues or even to the realization that the ‘bug’ is not actually a
problem.1

Sometimes the discovered defect is actually a symptom of an
underlying process problem, which will be left unknown unless a
tester communicates this clearly to the developer:

Defects don’t appear by themselves – they are injected. When a defect
is detected, it may be an indication of an underlying process problem
that will continue to inject additional defects. So the longer it takes to
address the defect, the higher the likelihood that additional defects will be
injected.1

A third fact to support open communication between tester and
developer is that these two activities, being equally important, have
very different natures. Development is constructive work, whereas
testing is destructive work. Being human beings, it is understandable
that, once the tester informs te developer that the code the latter
has created is not working, the developer can easily become defen-
sive. In such a case, it may be worth trying to introduce a human
touch into the communication between these two roles, for example,
making them sit close to each other and allowing them to get to
know one another as a person. Regular meetings with both parties
may also help to bring the needed consistency to the project.

11.3 Summary
Once testing has successfully discovered the most important
defects in a product, programmers need to start fi xing them one by
one. This phase is often called the fi xing period. In order not to
create multiple new defects as a result of each fi x, one needs to be
sure what to fi x, when to fi x it and how to fi x at. This chapter has
introduced tools and processes to ease this important phase; pro-
fessional defect handling is essential in the creation of a credible
smartphone.

Chapter 12: Integration and
Build Environment

S60-based phone integration needs to follow certain predefi ned
steps. If the order is not followed, build creation fails. Such steps are
introduced in this chapter. All middle-sized (and larger) software
projects tend to set quite strict expectations on both Software
Confi guration Management (SCM) and build environment. This
chapter introduces some general targets concerning confi guration
management.

12.1 Software Confi guration Management
Whenever there is a need to maintain software, there is a need for
software confi guration management. Software maintenance can be
both a long-term activity and a short-term activity. Long term means
that a product needs to be reusable without there being major
changes needed in the future. Short term means the activities within
one product program, i.e. implementing the very fi rst versions of

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

164 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

modules and after that making the needed updates to the module
in order to increase maturity. Every time a modifi cation is made to
a software fi le, then a check in and check out are needed. A proper
software confi guration management process contains as a minimum
two things:

• rules for changing the code

• rules for the confi guration management tool

12.2 Changing the Code
The larger the software under development, the more important it
is to have good and reliable control over code changes. Following
certain approved rules in the project enables this. Such rules are, for
example:

• Keep all source code under version control.

• Use minor version numbers to distinguish between different ver-
sions of the same fi le and major version numbers to distinguish
between different major versions of the project.

• Have named owners for each fi le.

• Control the access rights to the existing fi les.

• Have each potential change analysed before implementation.

In the state where all code exists (although the maturity of the
code can still be low), in other words when the code-complete phase
is reached, it becomes crucial to pay attention to making only
managed changes that increase the stability. Sometimes a change
correcting an important piece of behaviour creates several new
defects. This is called regression. Most large software projects face
regression at some point. However, if it happens too often, it can
indicate loose change control in the program. On the other hand,
if no regression is discovered at any point, the program should
re-evaluate its testing effi ciency.

At the point when a tester or programmer discovers a new defect,
there is also a need for reverse engineering the case. Without having
all changes recorded in one way or another, reverse engineering the
situation back to the original version can be very diffi cult, if not
impossible. Figures 12-1 and 12-2 show cases of reverse engineering.

 Chapter 12: Integration and Build Environment 165

Reverse Engineering Example 1.

Build processSource code
management

Testing

Build A Test Set A

60 % of the
tests pass

90 % of the
tests pass

Change in
several

components
with all

previous
versions

overwritten

Build B Test Set A

Discontinue
the project

N

Y
Heavy troubleshooting

and re-coding

Termination

Figure 12-1. Reverse engineering example in an environment with no SCM.

Reverse Engineering Example 2.

Build process
Source code
management

system
Testing

Build A Test Set A

60 % of the
tests pass

90 % of the
tests pass

Change in
some

components
with all

previous
versions

remaining

Taking most of
the old versions
back into use

Build B Test Set A

85 % of the
tests pass

Build C Test Set A

Figure 12-2. Reverse engineering example in an environment with SCM.

166 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

The difference between these examples is the usage of a software
confi guration management system.

12.2.1 Confi guration Management
Confi guration management is suitable not only for managing soft-
ware confi gurations but also for controlling a wide variety of other
things such as documentation, specifi cations and sub-systems. A
version control system can save a project from complete disaster
in the case of regression. Nevertheless, a simple system without
rules on when and how changes can take place is not much of
a help.

The program management should carefully plan moving the orga-
nization from a manually controlled procedure to the usage of a
software confi guration management tool. The following three phases
provide one guideline for this transition:

1. Copy the currently followed manual process of teams integrating
their code and transfer the completely integrated software into
the selected SCM tool as one block.

2. Train each individual engineer to use the new SCM tool so
that everybody checks in his or her own changes into the
system.

3. The usage of team branches versus personal branches needs to
be decided and personnel trained in their use.

Developers can have different roles in many SCM tools. Such
roles are for example:

• developer, an ordinary programmer, who can store new versions
of his or her own code in the system

• integration engineer, who is entitled to integrate the team’s code
into one sub-system for further testing and usage

• build manager, who integrates all code into the main line and
does builds on a regular basis

• policy manager, who can can decide the variety of different sub-
mission policies

 Chapter 12: Integration and Build Environment 167

In many terminal programs the software is built of pieces from
different sources. Sometimes these pieces are fully outsourced and
the company is not using the same SCM tool as the program. There
is a need for a procedure describing what, how and when such
pieces of software are to be integrated into the base.

12.3 Build Environment
The S60-based smartphone software needs to be built many times
within each product program. As the software is rather signifi cant,
it sets some limitations and guidelines on both delivery structure and
program processes. This section introduces all the hardware require-
ments as well as describing one process the customer can follow.

12.3.1 Delivery Structure
The program needs to acknowledge that each S60 delivery includes
many things and has a predefi ned structure. The content of an
example delivery is:

• S60 source codes

• sources of the adaptation layer stubs

• integrated Symbian OS sources for the platform

• S60 binaries

• release note

• change log

• structure changes log

• build tools

The S60 development environment consists of development
computer software and the S60 release on an otherwise empty
drive. The S60 drive contains the platform plus the Symbian OS
combination and an engine (adaptation, base port and modem soft-
ware), which should come from the phone program.

The directory structure of the development environment is the
following:

168 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

\S60 – Pure S60 sources
\src\beech\generic
\src\common\generic – Symbian OS release for the S60
\adaptation – Adaptation layer stubs
\epoc32

\epoc32\release – Release binaries for different platforms (ARM4,
Thumb, Wins and WinCW)

\epoc32\Rom – Rom creation kit
\epoc32\data – emulator data (background image, .ini fi le etc)
\epoc32\gcc – Compiler for target builds (thumb, arm4)
\epoc32\include – All header fi les

The S60-related components should have the following
structure:

\S60\About
\S60\Data\ – resource fi les
\S60\Group\ – build info fi les
\S60\Inc\ – Header fi les
\S60\Src\ – cpp fi les

S60 build tools play an essential role in customer programs’ build
procedures. The build managers need to be well trained in using
these tools. The build tools are the Rom image creation tool, the
Symbian decentralization tool and the Symbian basic build tools:

The Rom image creation tool S60Rom.cmd generates an image
for the hardware. There are two section Rom images in S60:

• Core Image contains executable code (EPOC SW) and all the
epoc resources excluding localized bitmaps.

• Variant Image contains language resources and all such software
that has country- or operator-specifi c settings.

12.3.2 Build Process
The build process should be able to provide a guide to resources
throughout the product program when it comes to having the latest
version of the software available whenever needed. The frequency
of building should be accommodated to a project’s requirements.
As mentioned in chapter 2, a project’s need for a new build varies
over time along with the overall stability increase. For a build cycle
to be fl exibly changeable, a process needs to be defi ned and strictly
followed. Figure 12-3 shows a possible build process in a S60-based
phone program.

Localization needs to be done whenever a product is targeted at
non-English markets. There are two different types of localization:

 Chapter 12: Integration and Build Environment 169

• language variants, such as the Chinese variant

• cultural variants, in which some features may need to be removed
before shipping the phone in that country

Figure 12-4 shows a localization process in a product program.

12.3.3 Build Tools
Building a S60-based software package requires the use of a certain
set of tools. Some of these tools are Symbian based and some
platform based.

There are two types of Symbian basic build tools, the decentral-
ized and basic build tools.

Decentralized means that the tool can be opened by a command.
For example, Genxml.pl generates xml input for the build server,
i.e. generates Buildserver.pl and buildclient.pl fi les.

Basic build tools are:

Build Process

SW
Configuration
Management

Building

LOC file
delivery from

the build team

Errors Binary Files

.exe, .dat,
.dll, .rsc,

etc...

Applications work in
emulator/target

SW
Development

Source files

.h, .cpp,
.mmp, .rss,

.loc, etc.

.h, .cpp,
.mmp, .rss,

.loc, etc.

.loc/.ris

Localisation
process

Translated LOC files

French
.loc files

English
.loc files

Start building localised
resources

Yes

No

Yes

No

Figure 12-3. Build process.

170 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

• Bldmake bldfi les, which creates the abld.bat-fi le

• Abld build, which runs the abld makefi le, abld export, abld library,
abld target, abld fi nal (i.e. builds the component in directory)

• Abld thumb, which creates only thumb binaries

• Abld build –w, which lists all that has been built in the
directory

• Abld build –c, which checks that every component in the direc-
tory has been built

There are two kinds of S60-based build tools, the basic build tool
and a set of Rom image creation tools

1. Build_S60.cmd, which cleans and builds S60 binaries from the
input fi les specifi ed in build scripts Averell30_bld.txt and
Averell30_rc.txt.

2. Rom image creation tools.

3. S60Rom.cmd, which generates image for the hardware. In S60
the Rom images are two section rom-images:

a. Core Image contains executable code (Epoc sw) and all the
Epoc resources that are not localized plus the bitmaps.

Localization Process

Localized build
environment

creation
Build Errors

Localized
resources

.R01, .R02,
…, .R99

Applications work in
emulator/target

SW
Development

Source files
(.mmp)

Binaries from
“Engineering
English” build

Translated
LOC files

Release

Yes

No

Yes

No

Figure 12-4. Localization process.

 Chapter 12: Integration and Build Environment 171

b. Variant Image contains language resources and all software
country or operator variant settings. Variant image is nor-
mally fl ashed in Label-place in the production line.

4. The localized_sc.iby fi le contains the information on all localized
resources needed to be included in rom-image (the rule is that if
the text is seen in the UI it needs to be localized).

5. The program itself defi nes how many languages and variants it
needs to implement.

In addition, the use of some other tools for checking the
building success is highly recommended. Such tools, which can
carry out some level of build sanity check, are especially valuable
in the busiest phase of the program. An example of such a tool
could be one that analyses the S60 build against the master compila-
tion oby fi le. It reports possible missing fi les according to the speci-
fi cations in confi guration fi le. This kind of tool is normally a shell
tool.

Another valuable tool is the AppDep-tool, which resolves which
libraries a certain component uses as well as which components are
utilizing this component.

12.4 S60 Integration
12.4.1 Stage 1

Stage 1 is a kind of backbone to the rest of the integration activities.
If it is not successfully completed, there is no reason to continue the
procedure. Stage 1 contains the following steps:

12.4.1.1 Step 1: Successful Boot to Textshell
The fi rst step can be considered as a base test for Baseport delivery
and it verifi es text shell image creation and successful boot with
S60 clean build and BSP-delivery. The only things in the ROM in
this step are the started operating system, the loaded required
device drivers and the launched textshell via the operating system’s
WSERV.

It is highly recommended that this step is executed every time
before any S60 integration into the hardware. This is because it
already says a lot about the fi rst phases of boot in terms of the func-
tionality, starting the lower-level implementations, which are the

172 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

base assumption for S60. It should anyway be kept in mind that
there are different implementations of some drivers etc. for the
textshell and for the graphical UI. This phase is not part of the S60
integration process but more likely a pre-requisite for it.

The current S60 implementation includes stub components for
adaptation layer drivers etc. These stubs enable the software to boot
to the application shell with the minimal driver set.

12.4.1.2 Step 2: Simple Application and Launch via WSER
The recommended way to start integration of S60 into hardware is
to launch some simple application (for example, the calculator) via
WSERV after a successful boot to textshell. When this is done, all
the required components need to be in ROM and some dependen-
cies need to be removed since only small part of S60 is taken into
use. In addition, the integration team may fi nd it useful to enable
DLLResource loading debug-prints.

12.4.1.3 Step 3: Starter Integration and Calculator Launch
Now, if previous steps were successfully completed and the hard-
ware contains a keyboard, more and more software can be inte-
grated into a build. The following sub-steps are recommended at this
stage:

1. Remove changes made to WSERV in previous step.

2. Modify Starter’s start-up list so that it will take care of starting the
calcsoft and all needed components.

3. Take all required fi les into ROM.

12.4.1.4 Step 4: Complete the S60 Boot
This step can be achieved by debugging the boot process to see how
the previous steps succeeded.
The success of Stage 1 is often called milestone 1.1, which is dis-
cussed in chapter 3.

12.4.2 Stage 2
Stage 2 is aimed at integrating the adaptation components and, if it
is successfully completed, a simple voice call can be established.
After successfully completion of stage 2, milestone 1.2 can be con-
sidered as having been reached.

 Chapter 12: Integration and Build Environment 173

12.4.3 Stage 3
Data connections are the next things to include in the build. The
order of different connections is recommended to be as follows:

1. CSD/HSCSD data connection integration.

2. GPRS connection.

3. WCDMA connection.

After stage 3 has been successfully completed, milestone 1.3 can be
considered as having been reached.

12.4.4 Stage 4
Local connectivity is next targeted for inclusion into the build. After
stage 4 all connectivity protocols that the phone supports, such as
Bluetooth, Infrared and USB, should work.

12.4.5 Stage 5
Finally, and yet importantly, the components implementing multime-
dia such as the camera and audio should be included into the
build.

12.5 Summary
Creating a software build out from the source code can be demand-
ing. What complicates this in the world of S60 is the platform archi-
tecture combined with the size of the system. This chapter has
explained what preparations are needed for the build and how a
build is created. In addition, the integration order of the components
has been explained.

Appendix A: Examples of
S60 Devices

S60 is without any doubt the world’s leading smartphone platform.
It has been delivered to consumers within a variety of different
mobile devices. Overleaf is a collection of Nokia S60 devices in the
market at the time of writing.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

Figure A-1. The Nokia N80 smart multimedia device is a 3G world phone with EGSM
850/900/1800/1900 and WCDMA 2100 for Europe, Africa and APAC regions and
EGSM 850/900/1800/1900 for China. A three-megapixel digital camera, email,
digital music player, personal organizer, game console, UPnP and WLAN connectiv-
ity, makes the N80 Nokia’s most advanced all-in-one device yet.

Figure A-2. The Nokia N73 is a stunning multimedia computer with powerful pho-
tography features and integrated stereo speakers with 3D sound. In addition to
providing the standard range of Nokia N series multimedia experiences, the Nokia
N73 includes a 3.2 megapixel camera with Carl Zeiss optics, auto focus, two-way
video call capability and MPEG-4 Video capture at 15 fps.

Figure A-3. The Nokia N93 features a 3.2 megapixel camera, Carl Zeiss optics, 3× optical zoom and
digital video stabilization. Create DVD-like videos at 30 frames per second with MPEG4 technology and
share them on the 2.4” display. For a big screen experience, connect the N93 to a compatible TV using
direct TV out connectivity or via Wireless LAN and UPnP technology. The N93 also features a digital
stereo microphone, music player and FM stereo radio, dual mode WCDMA/GSM and triband GSM
coverage on up to fi ve continents (EDGE/GSM 900/1800/1900 + WCDMA 2100 MHz networks).

Appendix B: Glossary

API: Application Programming Interface, a set of services an applica-
tion developer can utilise when implementing applications on top
of a platform.

Back bone testing: the core components are implemented and
tested fi rst. Only once a stable enough set of core components
is obtained, are the components that utilize these core compo-
nent services integrated and tested.

Backward compatibility: if an application implemented with
the help of SDK release x runs on a device based on platform
version x + 1, that device is backward compatible with the
application.

Baseline: the release that has been integrated as a whole in the
customer device software.

Base porting: the exercise of adapting the Symbian kernel to par-
ticular hardware.

Basic Acceptance Testing (BAT): a small sub-set of all functional test
cases of the platform BAT cases is run on every single release;
the result indicates whether a particular release is mature enough
for further testing.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

180 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Big bang testing: the entire code is tested at one time.
Binary compatibility: all versions of one platform conform in terms

of the API set.
Black-box testing: testing activity accomplished without knowing

the code’s internal architecture. Black-box testing approach can
be applied in all testing phases (module, integration, functional,
non-functional and interoperability testing).

Bluetooth (BT): an industrial specifi cation for wireless personal area
connectivity. In smartphones the user can connect to external
devices such as PCs or printers by establishing a Bluetooth
connection.

Bottom-up testing: a testing approach where the system architec-
ture is built from the bottom. In other words, the components
that create the base of the system are integrated and tested
fi rst.

Camcorder application: a digital audio video encoder and player
application in a device.

Cellular Telecom Industry Association (CTIA): an international
organization representing all wireless sectors and providing non-
profi t memberships to service providers, manufacturers, wireless
data and Internet companies, as well as other contributors to the
wireless universe.

Client provisioning: managing applications and content for net-
worked devices. All mobile devices are unique in one way or
another and have different features enabled. This means that
application and content providers have to know the device spe-
cifi c capabilities before loading an application into a device.

Code complete: all needed software has been implemented and is
ready to be integrated.

Code Division Multiple Access (CDMA): a technique in which radio
transmissions using the same frequency band are coded in such
a way that a signal from a certain transmitter can be received only
by certain receivers.

Code reviews: a testing technique in which highly competent engi-
neers print out the code and read it together to fi nd illogicalities
and defects.

Constructive testing: testing in which the tester tries to show that
the system works. The tester is not interested in discovering the
defects. Constructive testing is often based on real use cases.

Conversion Description Language (CDL): an interface allowing
access to the layout data. This layout data is based on the S60

 Appendix B: Glossary 181

look-and-feel specifi cations. Layout data for an application can
be stored by utilizing the CDL interface.

Customer program: any device program that is based on the
S60 platform. It can be from Nokia or from some other device
manufacturer licensing the platform from the Mobile Software
(MSW).

Data-driven testing: a testing technique aiming to fi nd defects in
which certain data is wrongly processed. It focuses on every data
area of interest in a product.

Datafl ow driven testing: a testing technique focusing on problems
in component interfaces.

Defect estimation: a method to evaluate the success of testing in a
program.

Defect frequency: a metric indicating how often a defect occurs
in a product. For example, with a defect frequency of 1/2, the
defect occurs every second time the user uses the device in a
certain way.

Defect probability: a metric indciating how probable it is that the
user comes up against a defect when using the product. It
describes how many customers meet the problem and how likely
the use case in question is.

Defect seeding: a method for verifying testing success and effi -
ciency. If, for example, 100 defects are seeded into a system and
during testing 70 out of these 100 defects plus 70 extra defects
are discovered, one can assume that the system contains a further
30 unknown defects.

Defect severity: describes how a defect impacts the system and
how permanent the effect is.

Denial of Service attack (DoS): a security hack often caused by an
extensive load on a product. This load can cause the product to
block all its services and functionalities.

Destructive testing: a testing approach in which the intention is to
break the system under test. In other words, testing showing
that the system does not work in the way that it is supposed
to work.

Digital Rights Management (DRM): a rights management
system that ensures that content can only be used when the
relevant conditions, determined by the copyright owner, have
been met.

Dynamic Link Libraries (DLL): a function library that can be loaded
into memory once and called by one or more applications so that

182 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

the operating system dynamically resolves at run time the entry
points, or the addresses, of the routines that are called.

Enhanced Data Rates for Global Evolution (EDGE): a radio inter-
face modulation technique that increases HSCSD (high-speed
circuit-switched data) and GPRS (general packet radio service)
data rates.

Estimated Degree of Functional Usage (EDFU): a numeric value
indicating how probable it is that an end user uses a particular
service/functionality/application in a product. For example, a
value of one indicates that the product is never used without the
usage of this service/functionality/application.

European Telecommunications Standard Institute (ETSI): Euro-
pean organization that produces standards that are applied and
accepted in the area of telecommunications.

Event driven testing: an approach that tries to reveal incorrect han-
dling of events.

Extreme programming: a development process depending on clear
communication, simplicity, feedback and courage. These four
topics are ensured by having programmers sitting in pairs while
coding.

Feature phone: a common term for a phone that has a relatively
simple but effective, proprietary software environment based on
a real-time operating system (RTOS).

Field Failure Rate (FFR): a measure of product quality and reliability.
It indicates how soon after the product being available the very
fi rst defect is discovered by the end user.

Forward compatibility: if an application implemented with the
help of SDK release x runs on a device based on previous version
x – 1 of a platform, that device is forward compatible with the
application.

General Packet Radio Service (GPRS): a GSM data transmission
technique that transmits and receives data in packets. GPRS offers
a permanent connection between the wireless device and the
network.

Global Certifi cation Forum (GCF): an organization that aims to
maintain confi dence in new mobile wireless terminals by means
of product certifi cation. Manufacturers are encouraged to certify
their products in accordance with a series of agreed criteria.

GSM circuit switched data: data that is transferred via a circuit-
switched network using the Global System for Mobile Communi-
cations (GSM).

 Appendix B: Glossary 183

GSM high-speed circuit switched data: a data transmission con-
nection that is few times faster than the GSM data connection.
It uses multiple channels for data transmission.

High-water mark defi nition: an operation defi ning the maximum
load a product can handle with a predefi ned service level.

Independent software vendors: suppliers that are independent
developers and resellers of products based on a particular com-
puter hardware or operating-system platform.

Java 2 Micro Edition (J2ME): a Java application environment that
forms a framework for the deployment and use of Java technology
in the post-PC world.

JUnit: a freeware testing framework used by developers who imple-
ment unit tests in Java.

Lead environment: the device program used for development and
testing purposes in a platform development program.

Licensee: the person or company licensing the rights to use the
licensor’s proprietary application.

Logic driven testing: a testing technique aimed at identifying all
incorrect handling of the logic in a product.

Look-And-Feel (LAF): (1) the effect that the appearance and func-
tions of a program’s user interface have on the user; (2) user
interface guidelines for platform application developers.

McCabe’s cyclomatic complexity: a measure of the number of
linearly-independent paths through a program module. It is the
most widely used member of a class of static software metrics.
Cyclomatic complexity may be considered a broad measure of
soundness of and confi dence in a program.

Mean Time Between Failures (MTBF): an expected time between
failures. For example, the expected operating time between two
consecutive system failures of a unit.

Mobile Software (MSW): an organization within Nokia providing
the S60 platform to all customer programs.

Multimedia Card (MMC): a fl ash memory card standard. Typically,
an MMC card is used as a storage medium for a portable
device.

Open Mobile Alliance (OMA): an industry forum for developing
market-driven, interoperable mobile service enablers.

Platform security: a feature of S60 3rd edition ensuring, for example,
data caging.

Product Creation Community (PCC): community of technology
integrators and other companies potentially interested in, and

184 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

capable of helping out, the customer product program in making
a phone.

R&D quality: a product quality level during development.
Real-Time Operating System (RTOS): an operating system that

performs data processing in real time, or at least with a low delay
time.

Reference hardware: a semi-smartphone with basic S60 functional-
ity. Reference hardware is used in S60 testing and it can be used
as a base in a S60-based device program.

Software Development Kit (SDK): a set of programming tools for
creating applications and enhancing the use of certain software.
In S60 it is a product that provides tools, documentation and end-
to-end application examples that support the development of
applications, mediations and adaptations on top of the platform.

S60 ecosystem: the entire set of different players in the S60 platform
community. It contains PCC members, technology integrators,
third-party developers, product programs and the platform
organization.

S60 third edition: the S60 release 3.0.
Smartphone: an electronic device that integrates the functionality

of a mobile phone and a personal digital assistant (PDA) or other
information appliance. A key feature of a smartphone is that
additional native applications can be installed on the device. One
signifi cant characteristic is its multi-processing capability.

Source compatibility: an application or client program can be rebuilt
without the need to modify the program.

State-driven testing: a testing approach aimed at fi nding all incor-
rect state transitions.

Static analysis: a testing technique performed without actually exe-
cuting programs built from that software.

System Under Test (SUT): the set of code being tested.
Technology Compatibility Kit (TCK): a suite of tests, tools and

documentation that determines whether or not a product com-
plies with a particular JavaTM technology specifi cation.

Testability: the degree to which a system or component facilitates
the establishment of test criteria and the performance of tests to
determine whether those criteria have been met.

Testware engineering: a full-life-cycle process that must be initiated
when the project begins to be maximally effective.

Third-party developer: an independent entity innovating on top of
some platform.

 Appendix B: Glossary 185

Three-D-rule: a process for testers. It is based on the three words;
Decide, Defi ne and Distribute.

Top down testing: a testing approach in which the system under
test is built from the top to bottom. For example, the user inter-
face is created and tested fi rst and only after that is successful are
the rest of the underlying components integrated.

TRUE testing: a beta testing technique for verifying that the product
functions in real use by using end-users to detect errors. It requires
the involvement of volunteers who agree to use the product on
a daily basis. TRUE testers need to provide feedback to the
product program.

Universal Serial Bus (USB): a plug-and-play interface between a
computer and a compatible add-on device, such as an audio
player, joystick, keyboard, phone, scanner, digital camera or
printer. With a USB, a new device can be added to a compatible
computer without having to add an adapter card or even having
to turn the computer off.

White-box testing: a testing technique in which the tester has a
clear understanding of how the system under test has been
structured.

Wireless Application Protocol (WAP): an open, global standard for
total mobile solutions, including communication between a
mobile handset and the Internet or other computer application.

Appendix C: References

Chapter 4: Binary Compatibility
1 Szilagyi, Sandor (2003) Binary Compatibility Theory Training

Material. Nokia/MSW [available to S60 Licensee]

Chapter 5: Certifi cates and Standards
1 More on Java available at <http://java.sun.com/j2me/>

2 More on BT available at <http://www.bluetooth.com>

3 More on MiniBae available at <http://www.beatnik.com>

4 More on T9 available at <http://www.t9.com/>

5 More on VeriSign available at <http://www.verisign.com/>

6 More on Baltimore available at <http://www.baltimore.com/
unicert/technology/wtls.asp>

7 More on Entrust available at <http://www.entrust.com/>

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

188 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

8 More on USB available at <http://www.usb.org>

9 More on InfraRed available at <http://www.irda.org>

10 More on MMC available at <http://www.mmca.org/>

11 More on SyncML available at <www.syncml.org>

12 More information on ETSI available at <www.etsi.org>

13 More information on CDMA available at <http://www.cdg.org>

14 More on RTTE1999/5/EC available at <http://europa.eu.int/
comm/enterprise/rtte/dir99-5.htm>

15 More on RoHS available at <http://europa.eu.int/comm/
environment/docum/00347_en.htm>

16 More on FCC available at <http://europa.eu.int/comm/enter-
prise/automotive/directives/vehicles/dir70_156_cee.html>

17 More on PCS available at <www.ptcrb.org>

18 More on China Approvals available at <http://www.mii.gov.cn>

19 More on GCF available at <http://gcf.gsm.org>

20 More on CTIA available at <http://www.ctia.org>

21 More on ELSPA available at <http://www.elspa.com>

22 More on ISO available at <http://www.iso.org>

Chapter 6: What Quality Means
1 Dean, James W. Jr and Evans, James R. (2000) Total Quality.

South-Western College Publishing.

2 Kingsley, Kimberley (2005) A Foundation of Trust. American
Society of Quality/Quality Progress.

3 Six Sigma Excellence Brochure (2004) American Society for
Quality.

4 Kim, Seong-Ho, Yoon, Yeo-Han and Zeon, Gyu-Tae (2004)
‘Combine Quality and Speed’ Six Sigma Forum Magazine avail-
able at <www.asq.org>.

 Appendix C: References 189

5 Larman, Graig and Basili, Victor R. (2003) ‘Iterative and Incre-
mental Development: a Brief History’ IEEE Computer Science 3,
0018-9162.

Chapter 7: Stumbling Blocks
1 See <http://www.nasa.gov/centers/ames/research/technology-

onepagers/risk-analysis.html>.

2 Construx Software Builders, Inc. (2000–2001) ‘10 Keys to
Successful Software Projects’ available at <http://www.issre2001.
org/10KeysToSuccess.pdf>

3 Tiwana, Amrit and Keil, Mark (2004–2005) Programming
Languages 2(9).

4 Boehm, Barry (2002) Software Risk Management COCOMO/
SCM Forum # 17.

5 Softstar Systems (1986–2005) Available at <http://www.
softstarsystems.com/overview.htm>.

6 Pressman, Roger S. (1997). Software Engineering – A Practitioner’s
Approach, Fourth edn. McGraw-Hill.

Chapter 8: Platform Testing versus Platform-based
Phone Testing

1 ISEB Practitioner Certifi cate in Software Testing. ISEB 7925-2.
British Computer Society.

Chapter 9: Testing as a Tool
1 Craig, Rick (1995) Software Quality Engineering. Nokia Research

Center.

2 ‘Agile Software Development’. Wikipedia the free encyclopedia,
Wikimedia Foundation, Inc. Available at <http://en.wikipedia.
org/wiki/Agile_software_development>.

190 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

3 Schaefer, Hans (1999) SOFT-ED: Become an Expert in software
testing

4 See <http://www.testingstandards.co.uk/>.

5 See <http://en.wikipedia.org/wiki/Unit_testing>.

Chapter 11: Defect Analysis
1 Yip, Jason (2005) ‘I don’t Want a Bug Report-I’d Rather We Talk’

Better Software, July/August.

Appendix D: Further Reading

Amler, Scott (2002) Agile Modelling. New York: Wiley.

Beizer, Boris (1983) Software Testing Techniques. New York: Van
Nostrand Reinhold.

Beizer, Boris (1984) Software System Testing and Quality Assurance.
New York: Van Nostrand Reinhold.

Beizer, Boris (1995) Black-Box Testing: Techniques for Functional
Testing of Software and Systems. New York: Wiley.

Crosby, Philip B. (1980) Quality is Free, Mentor.

Evans, James R. and Dean James W. Jr. (2000) Total Quality,
Management, Organization and Strategy. South-Western College
Publishing.

Gilb, Tom (1988) Principals of Software Engineering Management.
Addison-Wesley.

Gilb, Tom and Graham, Dorothy (1993) Software Inspection.
Addison-Wesley.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

192 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Harrison, Richard (2003) Symbian OS C+ + for Mobile Phones, Volume
One. Wiley.

Myers, Glenford (1978) The Art of Software Testing. New York. Wiley.

Schaefer, Hans (2001) Software Testing Days - Training Material, see
www.soft-ed.net.

Index

A
adaptation layer software 96, 172
agile development process 75–6, 114
API (Application Programming

Interface) 179
categorization 28–30
testing 135, 142
see also binary compatibility

AppDep-tool 171
Application Installer testing 136–7
Application Shell testing 137
applications

application launcher analysis 39–40
compatibility of 32
testing 135–43

architecture of smartphones 5–7
as basis for test plans 106–7
complexity of 18, 97, 153

ARM Instruction Set 34
Australia 58
Automotive Directive (1995/54/EC) 56

B
back bone testing 125, 179
backward compatibility 32–3, 179
Baltimore UniCERT 49
base porting 5, 179
baseline selection 9–15, 91, 107, 179
basic acceptance testing (BAT) 13, 101,

102–3, 179

big bang testing 125, 180
binary analysers 39
binary breaks 27, 28, 33–5
binary compatibility 25–42, 103, 180
binary compatibility applications 40
black-box testing 117, 180
Bluetooth (BT) 47, 173, 180

certifi cation 47–8, 147
testing 138, 142

boot process 171–2
bottom-up testing 125, 180
browser testing 143
BT see Bluetooth
build cycle 19–23, 168
build process 168–9
build sanity checks 23, 102–3, 171
build tools 168, 169–71

build_S60.cmd 170
business culture 64–6, 71–3, 86–7

C
calendar testing 141
camcorder applications 140, 180
Canada 58
car regulations and standards 56,

60–1
CDMA (Code Division Multiple Access)

55–6, 180
CE marks 56
cell broadcast testing 142

Page numbers in bold refer to the glossary.

S60 Smartphone Quality Assurance Saila Laitinen
© 2007 John Wiley & Sons, Ltd

194 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Cellular Telecom Industry Association
(CTIA) 59–60, 180

certifi cation and licensing 43–4
CTIA 59–60
governmental 56–8
IOP 52–5, 58–9
ISO standards 60–1, 66–7
operator-defi ned 55–6
for technology 44–52, 146–7

China 58
client provisioning 143, 180
clock testing 141
COCOMO (Constructive Cost Model) 87–8
code

change control 164–6
complexity 18
good quality 19, 92–4
review 120, 180

code complete stage 164, 180
Code Division Multiple Access

(CDMA) 55–6, 180
communications between testers and

developers 114–15, 160–1
company culture 64–6, 71–3, 86–7
compatibility see binary compatibility
component (module) testing 102, 121–4,

134–5
concurrent engineering 76–7
confi guration management 163–7
connection manager testing 139
connectivity

certifi cation 47–8, 50–1, 147
integration 173
testing 138, 142

Constructive Cost Model (COCOMO)
87–8

constructive testing 116, 180
contacts testing 141
context sensitive Help testing 137
Conversion Description Language 10–11,

180–1
CRUD tables 119–20
CTIA (Cellular Telecom Industry

Association) 59–60, 180

customer programs 181
see also Licensees

customers see end-users

D
data connections 139, 173
data-driven testing 119, 181
datafl ow-driven testing 119–20, 181
defect analysis

management systems 94, 149–52, 153–5
prioritising fi xes 91, 150–2, 156–60
reporting procedures 154–5, 160–1
test planning and 108, 152–3

defect estimation 117–18, 181
defect frequency 156, 181
defect probability 156, 181
defect seeding 118, 181
defect severity 156, 181
Denial of Service (DoS) 127, 181
DepInfo tool 41
destructive testing 116, 181
Device Manager testing 137
differentiation of phone programs 90–1
Digital Rights Management (DRM) 55, 143,

181
DLL (Dynamic Link Libraries) 6, 34, 181–2
documentation testing 111–12, 121
DoS (Denial of Service) 127, 181
DOS (Domestic Operating System) 6
download folder testing 138
Dynamic Link Libraries (DLL) 6, 34, 181–2

E
EDFU (estimated degree of functional

usage) 118–19, 152–3, 182
EKA2 kernel 28
email testing 142
end-users

defect priority and 157, 158, 159, 160
EDFU 118–19
testing by 128–30, 147–8
understanding customer needs 65–6

Enhanced Data Rates for Global Evolution
(EDGE) 139, 182

 Index 195

Entertainment and Leisure Software
Publishers Association Europe
(ELSPA) 60

Entertainment Software Rating Board
(ESRB) 57

Entrust 49
error managers 151
estimated degree of functional usage

(EDFU) 118–19, 152–3, 182
European legislation 56–7
European Telecommunications Standard

Institute (ETSI) 55, 182
EUSER.DLL 6
event-driven testing 119, 182
extreme programming (XP) 115, 120, 182

F
fax testing 139, 143
feature phones 1–3, 182
Federal Communications Commission

(FCC) 57
Field Failure Rate (FFR) 152, 182
fi le manager testing 141
fi xes

code quality and 19
gatekeeping control 94, 149–50
prioritising 91, 150–2, 156–60
test planning and 108
see also defect analysis

Forum Nokia 5
forward compatibility 33, 182
functional testing (FUTE) 103, 126, 135–43

see also black-box testing

G
games, regulation of 57
gatekeepers 94, 149–50
General Log testing 140
General Packet Radio Service (GPRS) 135,

139, 182
General Settings testing 137

Global Certifi cation Forum (GCF) 58–9,
182

goal-setting 83–4
GSM Circuit Switched Data 138, 182
GSM High-Speed Circuit Switched Data

139, 183
GUI see user interface

H
hacking see destructive testing
hazardous substances 57
Header Checker tool 41
high watermark defi nition 126, 183
HTTP protocol testing 138

I
Image Viewer testing 140
incremental development process 10,

74–5, 114
independent software vendors 183
infrared connectivity 50–1, 138, 142, 173
installation testing 136–7
Instant Messaging and Presence Server 54,

142, 145
integration 89–90, 171–3

adaptation layer 96, 172
testing in the large (ITL) 127–8
testing in the small (ITS) 102, 124–6, 135

International Organization for
Standardization (ISO) 60–1, 66–7

internationalization of code see localization
interoperability (IOP)

GCF 58–9
OMA 52–5, 104, 145–6

IrDA (Infrared Data Association) 50
ISO (International Organization for

Standardization) 60–1, 66–7
iterative (waterfall) development

process 10, 73–4, 113
ITL (integration testing in the large) 127–8
ITS (integration testing in the small) 102,

124–6, 135

196 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

J
Japan 58
Java

J2ME (Java 2 Micro Edition) 2, 183
JUnit testing tool 123–4, 183
licensing & certifi cation 43, 44–6, 147

K
kernels 5–6, 28

L
language variations 93, 103, 169, 171
lead environment 105, 183
least stable sub-system 12, 14
legislation 43, 56–8
Licensees 4, 183

customization and compatibility 13–14,
31–2

platform update deliveries 19, 167–8
platform-based phone testing 99–100,

104–8
licensing see certifi cation and licensing
Lines of Code (LOC) 18
load, testing of 126, 127, 144–5
localization 93, 103–4, 168–9, 171
location application testing 137
logic-driven testing 119, 183
logs application testing 139–40
look-and-feel (LAF) 11, 70, 183

M
maintenance testing 104, 131–2
management tools see project management
Manny Lehman’s Law 10
marketing

baseline selection 13, 14
customer surveys 65–6
defect priority and 157, 158, 159, 160

McCabe’s cyclomatic complexity 18, 183
Mean Time Between Failures (MTBF) 152,

183
Media Gallery testing 140–1
Media Player testing 140
message sequence charts 120

messaging, testing of 53, 141–3, 145–6
MIDI engine 49
MMC (multimedia cards) 40, 51–2, 136,

183
MMS (multimedia messaging) 53, 142,

145–6
mobile phones 1
Mobile Software (MSW) 3, 183

platform update deliveries 19, 167–8
module testing 102, 121–4, 134–5
multimedia

integration 173
testing 140–1

multimedia cards (MMC) 40, 51–2, 136,
183

multimedia messaging (MMS) 53, 142,
145–6

N
Nokia N73 Smartphone 177
Nokia N80 Smartphone 176
Nokia N93 Smartphone 178
non-functional (performance) testing

126–7, 144–5
notes testing 141

O
offl ine mode testing 137
Open Mobile Alliance (OMA) 183

client provisioning 143
Instant Messaging and Presence

Server 54, 142, 145
IOP testing 52–5, 104, 145–6

Ordinal Checker tool 42
organizational culture 64–6, 71–3, 86–7

P
PC Suite 48–9
PCC (Product Creation Community) 3–5,

183–4
PCS 1900 Type Certifi cation Review Board

(PTCRB) 57–8
performance (non-functional) testing

126–7, 144–5

 Index 197

Personal Information Management
(PIM) 141

personalization application testing 137
pinboard testing 138
platform security 27, 183

see also security
platform testing 100–4, 105
platform-based phone testing 100, 104–8
predictive test input 49
presence API testing 142
presence application testing 142
Presence Server 54, 142, 145
Product Creation Community (PCC) 3–5,

183–4
profi les application testing 137
project management

build cycle 19–23, 168
change control 121, 163–7
defect analysis 94, 149–52, 153–5
hazards specifi c to S60 programs 88–97
quality culture 64–6, 71–3, 86–7
risk analysis 79–82, 87–8
software development 10–11, 73–8,

82–8, 111–15
software testing 115–30

provider modules 97
PTCRB (PCS 1900 Type Certifi cation

Review Board) 57–8
public key infrastructure see Baltimore

UniCERT

Q
quality

of code 19, 92–4
defi nitions 63–4, 68–71, 78
designing in 73–8, 109–10
organizational culture 64–6, 71–3,

86–7
standards 60, 66–8
see also risk analysis and management;

testing

R
R&D quality 27, 184

Radio and Telecommunications Terminal
Equipment Directive (RTTE
1999/5/EC) 56

real-time operating systems (RTOS) 2, 184
reference hardware 4, 184
regression 91, 94, 104, 164
release management 17–24

S60 updates 19, 167–8
release testing 104
remote synchronization testing 141
repair, ease of 70
Restriction of Hazardous Substances

Directive (RoHS 2002/95/EC) 57
reverse engineering 94, 164–5
risk analysis and management 79–80

COCOMO cost estimation model 87–8
S60-specifi c 88–97
software development 80–7

Rom image creation tools 168, 170–1

S
S60 ecosystem 3–5, 184
S60 platform

architecture 5–7
biweekly updates 19, 167–8
build environment 167–71
integration 171–3
potential problems in

development 88–97
testing 99–108, 134–48
third edition 27, 28, 184
user interface 3, 7

S60Rom.cmd tool 168, 170–1
SCM (Software Confi guration

Management) 163–7
SDK see Software Development Kits
security

certifi cation 49
platform security on the S60 27, 183
testing 127, 143

Service Dialling Numbers (SDN)
testing 143

service industries 70–1
serviceability 70

198 S60 Smartphone Quality Assurance: A Guide for Mobile Engineers and Developers

Short Messaging testing 142
Six Sigma 67–8
Smart Messaging testing 142, 145
smartphones 1–3, 184

Nokia models 176–8
Software Confi guration Management

(SCM) 163–7
Software Development Kits (SDK) 184

analysers 36–8
compatibility of 29, 32–3

software production
COCOMO cost estimation model

87–8
development processes 10–11, 73–8,

111–15
potential problems 80–7
testing methods 115–20
see also code

source analysers 38–9
source compatibility 27–8, 184
Space Architecture Failure Evaluation

(SAFE) 80
specifi cation-setting 83–4
standards

IOP 52–5
ISO 60–1, 66–7
quality 60, 66–8
telecommunications 47–8, 55–6
see also certifi cation and licensing

state-driven testing 119, 184
static analysis 120, 184
sub-contractors 18, 77–8
sub-systems

integration 89–90, 102, 124–6, 135,
171–3

least stable 12, 14
testing 102, 117–18

Sun Microsystems 46
suppliers 18, 77–8
Symbian OS (Operating System)

build tools 169–70
good quality code for 93–4
kernels 5–6, 28
testing 46

Synchronized Multimedia Integration
Language (SMIL) 143

SyncML 54–5
system testing 103
System Under Test (SUT) 144, 184

T
Technology Compatibility Kits (TCK) 44–6,

184
telephony

regulations and standards 47–8, 55–6,
57, 59–60

testing 139–40, 145
testing 23

BAT 13, 101, 102–3, 179
binary compatibility 35–40, 103
build sanity checks 23, 102–3, 171
certifi cation and 46, 48, 50, 51–2,

59–60, 146–7
communicating results of 154–5,

160–1
documentation 111–12, 121
environmental requirements 90,

133–48
functional 103, 126, 135–43
identifying critical areas 111–15, 152–3
integration 102, 124–8, 135
IOP 52–5, 104, 145–6
modules 102, 121–4, 134–5
performance 126–7, 144–5
problems with 90, 94–6, 131
S60 testing 46, 99–108, 133–48
techniques 115–20
testability 115–16, 184
TRUE 128–30, 185

testware engineering 112–13, 184
third-party developers 5, 40, 184
three-D-rule 151, 185
top down testing 125, 185
TRUE testing 128–30, 185

U
UI see user interface
UICon library 7

 Index 199

unit (module) testing 102, 121–4, 134–5
Universal Serial Bus (USB) 50, 138, 173,

185
USA 57–8, 59–60
usability 69–70, 147–8
user interface (UI)

customization 137–8
S60 platform 3, 7
usability testing 147–8

V
V-model of software development 111–12
vehicle regulations and standards 56, 60–1
verifi cation

of binary compatibility 35–40
of IOP 52–5, 58–9, 104, 145–6

Verisign 49
Voice Recorder testing 141

W
WAP (Wireless Application Protocol) 53–4,

138, 185
waste management 57
waterfall (iterative) development

process 10, 73–4, 113
white-box testing 116–17, 185
Wireless Application Protocol (WAP) 53–4,

138, 185

X
XP (extreme programming) 115, 120, 182

