RN

John Davies, |

Semantic

« NS - | INJIVUUJILD

e ———————
y

trends and research in ontology-based systems

Semantic Web Technologies

Semantic Web Technologies
Trends and Research iIn
Ontology-based Systems

John Davies
BT, UK

Rudi Studer
University of Karlsruhe, Germany

Paul Warren
BT, UK

John Wiley & Sons, Ltd

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex, PO19 85Q, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Depart-
ment, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19
85Q, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the Publisher is not engaged
in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore
129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Library of Congress Cataloging-in-Publication Data

Davies, J. (N. John)

Semantic Web technologies : trends and research in ontology-based systems

/ John Davies, Rudi Studer, Paul Warren.

. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-470-02596-3 (cloth : alk. paper)

ISBN-10: 0-470-02596-4 (cloth : alk. paper)

1. Semantic Web. 1. Studer, Rudi. II. Warren, Paul. III. Title: Trends
and research in ontology-based systems. IV. Title.

TK5105.88815.D38 2006
025.04-dc22 2006006501

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-02596-3
ISBN-10: 0-470-02596-4

Typeset in 10/11.5 pt Palatino by Thomson Press (India) Ltd, New Delhi, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Foreword

1. Introduction
1.1. Semantic Web Technologies
1.2. The Goal of the Semantic Web
1.3. Ontologies and Ontology Languages
1.4. Creating and Managing Ontologies
1.5. Using Ontologies
1.6. Applications
1.7. Developing the Semantic Web
References

2. Knowledge Discovery for Ontology Construction

2.1. Introduction

2.2. Knowledge Discovery

2.3. Ontology Definition

2.4. Methodology for Semi-automatic Ontology Construction

2.5. Ontology Learning Scenarios

2.6. Using Knowledge Discovery for Ontology Learning
2.6.1. Unsupervised Learning
2.6.2. Semi-Supervised, Supervised, and Active Learning
2.6.3. Stream Mining and Web Mining
2.6.4. Focused Crawling
2.6.5. Data Visualization

2.7. Related Work on Ontology Construction

2.8. Discussion and Conclusion

Acknowledgments

References

3. Semantic Annotation and Human Language Technology
3.1. Introduction
3.2. Information Extraction: A Brief Introduction

[elie IR e NV T I 5.

=]

10
11
12
13
14
16
18
18
19
22
24
24
25

29
29
31

Vi

CONTENTS

3.3.

3.4.

3.5.

3.2.1. Five Types of IE

3.2.2. Entities

3.2.3. Mentions

3.2.4. Descriptions

3.2.5. Relations

3.2.6. Events

Semantic Annotation

3.3.1. What is Ontology-Based Information Extraction
Applying ‘Traditional’ IE in Semantic Web Applications
34.1. AeroDAML

3.4.2. Amilcare

3.43. MnM

34.4. S-Cream

3.4.5. Discussion

Ontology-based IE

3.5.1. Magpie
3.5.2. Pankow
3.5.3. SemTag
3.54. Kim

3.5.5. KIM Front-ends

3.6. Deterministic Ontology Authoring using Controlled Language 1E
3.7. Conclusion
References

4. Ontology Evolution

4.1.
4.2.

43.
44.

Introduction

Ontology Evolution: State-of-the-art
4.2.1. Change Capturing

4.2.2. Change Representation
4.2.3. Semantics of Change

4.2.4. Change Propagation

4.2.5. Change Implementation
4.2.6. Change Validation

Logical Architecture

Data-driven Ontology Changes
4.4.1. Incremental Ontology Learning

4.5. Usage-driven Ontology Changes

4.5.1. Usage-driven Hierarchy Pruning
4.6. Conclusion
References

32
33
33
34
34
34
35
36
37
38
38
39
39
40
40
40
41
41
42
43
45
48
49

51
51
52
53
54
56
58
59
60
60
62
64
66
67
68
69

5. Reasoning With Inconsistent Ontologies: Framework, Prototype,
and Experiment

5.1
5.2.

Introduction
Brief Survey of Approaches to Reasoning with Inconsistency
5.2.1. Paraconsistent Logics

71
71
73
73

CONTENTS vii
5.2.2. Ontology Diagnosis 74
5.2.3. Belief Revision 74
5.2.4. Synthesis 75

5.3. Brief Survey of Causes for Inconsistency in the Semantic Web 75
5.3.1. Inconsistency by Mis-representation of Default 75
5.3.2. Inconsistency Caused by Polysemy 77
5.3.3. Inconsistency through Migration from Another Formalism 77
5.3.4. Inconsistency Caused by Multiple Sources 78

5.4. Reasoning with Inconsistent Ontologies 79
5.4.1. Inconsistency Detection 79
5.4.2. Formal Definitions 80

5.5. Selection Functions 82

5.6. Strategies for Selection Functions 83

5.7. Syntactic Relevance-Based Selection Functions 85

5.8. Prototype of Pion 87
5.8.1. Implementation 87
5.8.2. Experiments and Evaluation 88
5.8.3. Future Experiments 91

5.9. Discussion and Conclusions 91

Acknowledgment 92

References 92

6. Ontology Mediation, Merging, and Aligning 95

6.1. Introduction 95

6.2. Approaches in Ontology Mediation 96
6.2.1. Ontology Mismatches 97
6.2.2. Ontology Mapping 97
6.2.3. Ontology Alignment 100
6.2.4. Ontology Merging 102

6.3. Mapping and Querying Disparate Knowledge Bases 104
6.3.1. Mapping Language 106
6.3.2. A (Semi-)Automatic Process for Ontology Alignment 108
6.3.3. OntoMap: an Ontology Mapping Tool 110

6.4. Summary 111

References 112

7. Ontologies for Knowledge Management 115

7.1. Introduction 115

7.2. Ontology Usage Scenario 116

7.3. Terminology 117
7.3.1. Data Qualia 119
7.3.2. Sorts of Data 120

7.4. Ontologies as RDBMS Schema 123

7.5. Topic-ontologies Versus Schema-ontologies 124

7.6. Proton Ontology 126
7.6.1. Design Rationales 126

viii

CONTENTS

7.6.2. Basic Structure

7.6.3. Scope, Coverage, Compliance

7.6.4. The Architecture of Proton

7.6.5. Topics in Proton

7.6.6. Proton Knowledge Management Module
7.7. Conclusion
References

8. Semantic Information Access

8.1. Introduction

8.2. Knowledge Access and the Semantic WEB
8.2.1. Limitations of Current Search Technology
8.2.2. Role of Semantic Technology
8.2.3. Searching XML
8.2.4. Searching RDF
8.2.5. Exploiting Domain-specific Knowledge
8.2.6. Searching for Semantic Web Resources
8.2.7. Semantic Browsing

8.3. Natural Language Generation from Ontologies
8.3.1. Generation from Taxonomies
8.3.2. Generation of Interactive Information Sheets
8.3.3. Ontology Verbalisers
8.3.4. Ontogeneration
8.3.5. Ontosum and Miakt Summary Generators

8.4. Device Independence: Information Anywhere
8.4.1. Issues in Device Independence
8.4.2. Device Independence Architectures and Technologies
8.4.3. DIWAF

8.5. SEKTAgent

8.6. Concluding Remarks

References

9. Ontology Engineering Methodologies
9.1. Introduction
9.2. The Methodology Focus
9.2.1. Definition of Methodology for Ontologies
9.2.2. Methodology
9.2.3. Documentation
9.2.4. Evaluation
9.3. Past and Current Research
9.3.1. Methodologies
9.3.2. Ontology Engineering Tools
9.3.3. Discussion and Open Issues
9.4. Diligent Methodology
9.4.1. Process
9.4.2. Argumentation Support

127
128
130
131
133
135
136

139
139
139
140
142
143
144
146
150
151
152
153
154
154
154
155
156
157
160
162
164
166
167

171
171
172
172
173
174
174
174
174
177
178
180
180
183

CONTENTS ix
9.5. First Lessons Learned 185
9.6. Conclusion and Next Steps 186
References 187

10. Semantic Web Services — Approaches and Perspectives 191
10.1. Semantic Web Services — A Short Overview 191
10.2. The WSMO Approach 192

10.2.1. The Conceptual Model — The Web Services Modeling
Ontology (WSMO) 193
10.2.2. The Language — The Web Service Modeling Language (WSML) 198
10.2.3. The Execution Environment — The Web Service Modeling
Execution Environment (WSMX) 204
10.3. The OWL-S Approach 207
10.3.1. OWL-S Service Profiles 209
10.3.2. OWL-S Service Models 210
10.4. The SWSF Approach 213
10.4.1. The Semantic Web Services Ontology (SWSO) 213
10.4.2. The Semantic Web Services Language (SWSL) 216
10.5. The IRS-III Approach 218
10.5.1. Principles Underlying IRS-III 218
10.5.2. The IRS-III Architecture 220
10.5.3. Extension to WSMO 221
10.6. The WSDL-S Approach 222
10.6.1. Aims and Principles 222
10.6.2. Semantic Annotations 224
10.7. Semantic Web Services Grounding: The Link Between SWS
and Existing Web Services Standards 226
10.7.1. General Grounding Uses and Issues 226
10.7.2. Data Grounding 228
10.7.3. Behavioural Grounding 230
10.8. Conclusions and Outlook 232
References 234

11. Applying Semantic Technology to a Digital Library 237
11.1. Introduction 237
11.2. Digital Libraries: The State-of-the-art 238

11.2.1. Working Libraries 238
11.2.2. Challenges 239
11.2.3. The Research Environment 241
11.3. A Case Study: The BT Digital Library 242
11.3.1. The Starting Point 242
11.3.2. Enhancing the Library with Semantic Technology 244
11.4. The Users’ View 248
11.5. Implementing Semantic Technology in a Digital Library 250
11.5.1. Ontology Engineering 250

X CONTENTS
11.5.2. BT Digital Library End-user Applications 251
11.5.3. The BT Digital Library Architecture 252
11.5.4. Deployment View of the BT Digital Library 255

11.6. Future Directions 255
References 257
12. Semantic Web: A Legal Case Study 259
12.1. Introduction 259
12.2. Profile of the Users 260
12.3. Ontologies for Legal Knowledge 262
12.3.1. Legal Ontologies: State of the Art 263
12.3.2 Ontologies of Professional Knowledge: OPJK 265
12.3.3. Benefits of Semantic Technology and Methodology 267
12.4. Architecture 272
12.4.1. Turiservice Prototype 272
12.5. Conclusions 278
References 278
13. A Semantic Service-Oriented Architecture for the
Telecommunications Industry 281
13.1. Introduction 281
13.2. Introduction to Service-oriented Architectures 282
13.3. A Semantic Service-orientated architecture 284
13.4. Semantic Mediation 286
13.4.1. Data Mediation 287
13.4.2. Process Mediation 287
13.5. Standards and Ontologies in Telecommunications 287
13.5.1. eTOM 289
13.5.2. SID 289
13.5.3. Adding Semantics 290
13.6. Case Study 290
13.6.1. Broadband Diagnostics 292
13.6.2. The B2B Gateway Architecture 292
13.6.3. Semantic B2B Integration Prototype 294
13.6.4. Prototype Implementation 297
13.7. Conclusion 298
References 299
14. Conclusion and Outlook 301
14.1. Management of Networked Ontologies 301
14.2. Engineering of Networked Ontologies 302
14.3. Contextualizing Ontologies 303
14.4. Cross Media Resources 304
14.5. Social Semantic Desktop 306
14.6. Applications 307

Index

309

Foreword

Semantically Enabled Knowledge Technologies—Toward a New
Kind of Web

Information technology has a surprising way of changing our culture
radically—often in ways unimaginable to the inventors.

When Gutenberg developed moveable type in the middle of the
fifteenth century, his primary goal was to develop a mechanism to
speed the printing of Bibles. Gutenberg probably never thought of his
technology in terms of the general dissemination of human knowledge
via printed media. He never planned explicitly for printing presses to
democratize the ownership of knowledge and to take away the mono-
poly on the control of information that had been held previously by the
Church—which initially lacked Gutenberg’s technology, but which had
at its disposal the vast numbers of dedicated personnel needed to store,
copy, and distribute books in a totally manual fashion. Gutenberg sought
a better way to produce Bibles, and as a result changed fundamentally
the control of knowledge in Western society. Within a few years, anyone
who owned a printing press could distribute knowledge widely to
anyone willing to read it.

In the late twentieth century, Berners-Lee had the goal of providing
rapid, electronic access to the online technical reports and other docu-
ments created by the world’s high-energy physics laboratories. He
sought to make it easier for physicists to access their arcane, distributed
literature from a range of research centers scattered about the world. In
the process, Berners-Lee laid the foundation for the World Wide Web. In
1989, Berners-Lee could only begin imagine how his proposal to link
technical reports via hypertext might someday change fundamentally
essential aspects of human communication and social interaction. It was
not his intention to revolutionize communication of information for
e-commerce, for geographic reasoning, for government services, or for
any of the myriad Web-based applications that we now take for granted.

Xii FOREWORD

Our society changed irreversibly, however, when Berners-Lee invented
HTML and HTTP.

The World Wide Web provides a dazzling array of information
services—designed for use by people—and has become an ingrained
part of our lives. There is another Web coming, however, where online
information will be accessed by intelligent agents that will be able to
reason about that information and communicate their conclusions in
ways that we can only begin to dream about. This Semantic Web
represents the next stage in the evolution of communication of human
knowledge. Like Gutenberg, the developers of this new technology have
no way of envisioning the ultimate ramifications of their work. They are,
however, united by the conviction that creating the ability to capture
knowledge in machine understandable form, to publish that knowledge
online, to develop agents that can integrate that knowledge and reason
about it, and to communicate the results both to people and to other
agents, will do nothing short of revolutionize the way people disseminate
and utilize information.

The European Union has long maintained a vision for the advent
of the "information society,” supporting several large consortia of
academic and industrial groups dedicated to the development of infra-
structure for the Semantic Web. One of these consortia has had the
goal of developing Semantically Enabled Knowledge Technologies
(SEKT; http://www.sekt-project.com), bringing together fundamental
research, work to build novel software components and tools, and
demonstration projects that can serve as reference implementations for
future developers.

The SEKT project has brought together some of Europe’s leading
contributors to the development of knowledge technologies, data-mining
systems, and technologies for processing natural language. SEKT
researchers have sought to lay the groundwork for scalable, semi-
automatic tools for the creation of ontologies that capture the concepts
and relationships among concepts that structure application domains; for
the population of ontologies with content knowledge; and for the
maintenance and evolution of these knowledge resources over time.
The use of ontologies (and of procedural middleware and Web services
that can operate on ontologies) emerges as the fundamental basis for
creating intelligence on the Web, and provides a unifying framework for
all the work produced by the SEKT investigators.

This volume presents a review and synopsis of current methods for
engineering the Semantic Web while also documenting some of the early
achievements of the SEKT project. The chapters of this book provide
overviews not only of key aspects of Semantic Web technologies, but also
of prototype applications that offer a glimpse of how the Semantic Web
will begin to take form in practice. Thus, while many of the chapters deal
with specific technologies such as those for Semantic Web services,
metadata extraction, ontology alignment, and ontology engineering, the

FOREWORD Xiii

case studies provide examples of how these technologies can come
together to solve real-world problems using Semantic Web techniques.

In recent years, many observers have begun to ask hard questions
about what the Semantic Web community has achieved and what it can
promise. The prospect of Web-based intelligence is so alluring that the
scientific community justifiably is seeking clarity regarding the current
state of the technology and what functionality is really on the horizon. In
this regard, the work of the SEKT consortium provides an excellent
perspective on contemporary research on Semantic Web infrastructure
and applications. It also offers a glimpse of the kinds of knowledge-based
resources that, in a few years time, we may begin to take for granted—
just as we do current-generation text-based Web browsers and resources.

At this point, there is no way to discern whether the Semantic Web will
affect our culture in a way that can ever begin to approximate the
changes that have resulted from the invention of print media or of the
World Wide Web as we currently know it. Indeed, there is no guarantee
that many of the daunting problems facing Semantic Web researchers
will be solved anytime soon. If there is anything of which we can be sure,
however, it is that even the SEKT researchers cannot imagine all the ways
in which future workers will tinker with Semantic Web technologies to
engineer, access, manage, and reason with heterogeneous, distributed
knowledge stores. Research on the Semantic Web is helping us to
appreciate the enormous possibilities of amassing human knowledge
online, and there is justifiable excitement and anticipation in thinking
about what that achievement might mean someday for nearly every
aspect of our society.

Mark A. Musen
Stanford, California, USA
January 2, 2006

Infroduction

Paul Warren, Rudi Studer and John Davies

1.1. SEMANTIC WEB TECHNOLOGIES

That we need a new approach to managing information is beyond doubt.
The technological developments of the last few decades, including the
development of the World Wide Web, have provided each of us with
access to far more information than we can comprehend or manage
effectively. A Gartner study (Morello, 2005) found that ‘the average
knowledge worker in a Fortune 1000 company sends and receives 178
messages daily’, whilst an academic study has shown that the volume of
information in the public Web tripled between 2000 and 2003 (Lyman
et al., 2005). We urgently need techniques to help us make sense of all
this; to find what we need to know and filter out the rest; to extract and
summarise what is important, and help us understand the relationships
between it. Peter Drucker has pointed out that knowledge worker
productivity is the biggest challenge facing organisations (Drucker,
1999). This is not surprising when we consider the increasing proportion
of knowledge workers in the developing world. Knowledge management
has been the focus of considerable attention in recent years, as compre-
hensively reviewed in (Holsapple, 2002). Tools which can significantly
help knowledge workers achieve increased effectiveness will be tremen-
dously valuable in the organisation.

At the same time, integration is a key challenge for IT managers. The
costs of integration, both within an organisation and with external trad-
ing partners, are a significant component of the IT budget. Charlesworth
(2005) points out that information integration is needed to ‘reach a better
understanding of the business through its data’, that is to achieve a

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

2 INTRODUCTION

common view of all the data and understand their relationships. He
describes application integration, on the other hand, as being concerned
with sharing ‘data, information and business and processing logic
between disparate applications’. This is driven in part by the need to
integrate new technology with legacy systems, and to integrate technol-
ogy from different suppliers. It has given rise to the concept of the service
oriented architecture (SOA), where business functions are provided as
loosely coupled services. This approach provides for more flexible loose
coupling of resources than in traditional system architecture, and
encourages reuse. Web services are a natural, but not essential, way of
implementing an SOA. In any case, the need is to identify and integrate
the required services, whilst at the same time enabling the sharing of data
between services.

For their effective implementation, information management, informa-
tion integration and application integration all require that the under-
lying information and processes be described and managed semantically,
that is they are associated with a machine-processable description of their
meaning. This, the fundamental idea behind the Semantic Web became
prominent at the very end of the 1990s (Berners-Lee, 1999) and in a more
developed form in the early 2000s (Berners-Lee et al., 2001). The last half
decade has seen intense activity in developing these ideas, in particular
under the auspices of the World Wide Web Consortium (W3C)."! Whilst
the W3C has developed the fundamental ideas and standardised the
languages to support the Semantic Web, there has also been considerable
research to develop and apply the necessary technologies, for example
natural language processing, knowledge discovery and ontology man-
agement. This book describes the current state of the art in these
technologies.

All this work is now coming to fruition in practical applications. The
initial applications are not to be found on the global Web, but rather in
the world of corporate intranets. Later chapters of this book describe a
number of such applications.

The book was motivated by work carried out on the SEKT project
(http: // www.sekt-project.com). Many of the examples, including two of
the applications, are drawn from this project. However, it is not biased
towards any particular approach, but offers the reader an overview of the
current state of the art across the world.

1.2. THE GOAL OF THE SEMANTIC WEB

The Semantic Web and Semantic Web technologies offer us a new
approach to managing information and processes, the fundamental
principle of which is the creation and use of semantic metadata.

1Gee: http: // www.w3.org/2001/sw/

THE GOAL OF THE SEMANTIC WEB 3

For information, metadata can exist at two levels. On the one hand, they
may describe a document, for example a web page, or part of a
document, for example a paragraph. On the other hand, they may
describe entities within the document, for example a person or company.
In any case, the important thing is that the metadata is semantic, that is it
tells us about the content of a document (e.g. its subject matter, or
relationship to other documents) or about an entity within the document.
This contrasts with the metadata on today’s Web, encoded in HTML,
which purely describes the format in which the information should be
presented: using HTML, you can specify that a given string should be
displayed in bold, red font but you cannot specify that the string denotes
a product price, or an author’s name, and so on.

There are a number of additional services which this metadata can
enable (Davies et al., 2003).

In the first place, we can organise and find information based on
meaning, not just text. Using semantics our systems can understand
where words or phrases are equivalent. When searching for ‘George W
Bush’ we may be provided with an equally valid document referring to
‘The President of the U.S.A.”. Conversely they can distinguish where the
same word is used with different meanings. When searching for refer-
ences to ‘Jaguar’ in the context of the motor industry, the system can
disregard references to big cats. When little can be found on the subject of
a search, the system can try instead to locate information on a semanti-
cally related subject.

Using semantics we can improve the way information is presented. At
its simplest, instead of a search providing a linear list of results, the
results can be clustered by meaning. So that a search for ‘Jaguar’ can
provide documents clustered according to whether they are about cars,
big cats, or different subjects all together. However, we can go further
than this by using semantics to merge information from all relevant
documents, removing redundancy, and summarising where appropriate.
Relationships between key entities in the documents can be represented,
perhaps visually. Supporting all this is the ability to reason, that is to
draw inferences from the existing knowledge to create new knowledge.

The use of semantic metadata is also crucial to integrating information
from heterogeneous sources, whether within one organisation or across
organisations. Typically, different schemas are used to describe and
classify information, and different terminologies are used within the
information. By creating mappings between, for example, the different
schemas, it is possible to create a unified view and to achieve interoper-
ability between the processes which use the information.

Semantic descriptions can also be applied to processes, for example
represented as web services. When the function of a web service can
be described semantically, then that web service can be discovered
more easily. When existing web services are provided with metadata
describing their function and context, then new web services can be

4 INTRODUCTION

automatically composed by the combination of these existing web
services. The use of such semantic descriptions is likely to be essential
to achieve large-scale implementations of an SOA.

1.3. ONTOLOGIES AND ONTOLOGY LANGUAGES

At the heart of all Semantic Web applications is the use of ontologies. A
commonly agreed definition of an ontology is: ‘An ontology is an explicit
and formal specification of a conceptualisation of a domain of interest’
(c.f. Gruber, 1993). This definition stresses two key points: that the
conceptualisation is formal and hence permits reasoning by computer;
and that a practical ontology is designed for some particular domain of
interest. Ontologies consist of concepts (also knowns as classes), relations
(properties), instances and axioms and hence a more succinct definition
of an ontology is as a 4-tuple (C, R, I, A), where C is a set of concepts, R a
set of relations, I a set of instances and A a set of axioms (Staab and
Studer, 2004).

Early work in Europe and the US on defining ontologies languages has
now converged under the aegis of the W3C, to produce a Web Ontology
Language, OWL.?

The OWL language provides mechanisms for creating all the compo-
nents of an ontology: concepts, instances, properties (or relations) and
axioms. Two sorts of properties can be defined: object properties and
datatype properties. Object properties relate instances to instances.
Datatype properties relate instances to datatype values, for example
text strings or numbers. Concepts can have super and subconcepts,
thus providing a mechanism for subsumption reasoning and inheritance
of properties. Finally, axioms are used to provide information about
classes and properties, for example to specify the equivalence of two
classes or the range of a property.

In fact, OWL comes in three species. OWL Lite offers a limited feature
set, albeit adequate for many applications, but at the same time being
relatively efficient computationally. OWL DL, a superset of OWL Lite, is
based on a form of first order logic known as Description Logic. OWL
Full, a superset of OWL DL, removes some restrictions from OWL DL
but at the price of introducing problems of computational tractability. In
practice much can be achieved with OWL Lite.

OWL builds on the Resource Description Framework (RDF)® which is
essentially a data modelling language, also defined by the W3C. RDF is
graph-based, but usually serialised as XML. Essentially, it consists of
triples: subject, predicate, object. The subject is a resource (named by a

2See: http: //www.w3.org/2004/OWL/
3Gee: http: // www.w3.org/RDF/

CREATING AND MANAGING ONTOLOGIES 5

URI), for example an instance, or a blank node (i.e., not identifiable
outside the graph). The predicate is also a resource. The object may be a
resource, blank node, or a Unicode string literal.

For a full introduction to the languages and basic technologies under-
lying the Semantic Web see [Antoniou and van Harmelen, 2004].

1.4. CREATING AND MANAGING ONTOLOGIES

The book is organized broadly to follow the lifecycle of an ontology,
that is discussing technologies for ontology creation, management and
use, and then looking in detail at some particular applications. This
section and the two which follow provide an overview of the book’s
structure.

The construction of an ontology can be a time-consuming process,
requiring the services of experts both in ontology engineering and the
domain of interest. Whilst this may be acceptable in some high value
applications, for widespread adoption some sort of semiautomatic
approach to ontology construction will be required. Chapter 2 explains
how this is possible through the use of knowledge discovery techniques.

If the generation of ontologies is time-consuming, even more is this the
case for metadata extraction. Central to the vision of the Semantic Web,
and indeed to that of the semantic intranet, is the ability to automatically
extract metadata from large volumes of textual data, and to use this
metadata to annotate the text. Chapter 3 explains how this is possible
through the use of information extraction techniques based on natural
language analysis.

Ontologies need to change, as knowledge changes and as usage
changes. The evolution of ontologies is therefore of key importance.
Chapter 4 describes two approaches, reflecting changing knowledge and
changing usage. The emphasis is on evolving ontologies incrementally.
For example, in a situation where new knowledge is continuously being
made available, we do not wish to have to continuously recompute our
ontology from scratch.

Reference has already been made to the importance of being able to
reason over ontologies. Today an important research theme in machine
reasoning is the ability to reason in the presence of inconsistencies. In
classical logic any formula is a consequence of a contradiction, that is
in the presence of a contradiction any statement can be proven true. Yet in
the real world of the Semantic Web, or even the semantic intranet,
inconsistencies will exist. The challenge, therefore, is to return mean-
ingful answers to queries, despite the presence of inconsistencies.
Chapter 5 describes how this is possible.

A commonly held misconception about the Semantic Web is that it
depends on the creation of monolithic ontologies, requiring agreement
from many parties. Nothing could be further from the truth. Of course,

6 INTRODUCTION

it is good design practice to reuse existing ontologies wherever possible,
particularly where an ontology enjoys wide support. However, in many
cases we need to construct mappings between ontologies describing the
same domain, or alternatively merge ontologies to form their union. Both
approaches rely on the identification of correspondences between the
ontologies, a process known as ontology alignment, and one where
(semi-)automatic techniques are needed. Chapter 6 describes techniques
for ontology merging, mapping and alignment.

1.5. USING ONTOLOGIES

Chapter 7 explains two rather different roles for ontologies in knowledge
management, and discusses the different sorts of ontologies: upper-level
versus domain-specific; light-weight versus heavy weight. The chapter
illustrates this discussion with reference to the PROTON ontology.*

Chapter 8 describes the state of the art in three aspects of ontology-
based information access: searching and browsing; natural language
generation from structured data, for example described using ontologies;
and techniques for on-the-fly repurposing of data for a variety of devices.
In each case the chapter discusses current approaches and their limita-
tions, and describes how semantic web technology can offer an improved
user experience. The chapter also describes a semantic search agent
application which encompasses all three aspects.

The creation of ontologies, although partially automated, continues to
require human intervention and a methodology for that intervention.
Previous methodologies for introducing knowledge technologies into the
organisation have tended to assume a centralised approach which is
inconsistent with the flexible ways in which modern organisations
operate. The need today is for a distributed evolution of ontologies.
Typically individual users may create their own variations on a core
ontology, which then needs to be kept in step to reflect the best of the
changes introduced by users. Chapter 9 discusses the use of such a
methodology.

Ontologies are being increasingly seen as a technology for streamlining
the systems integration process, for example through the use of semantic
descriptions for web services. Current web services support inter-
operability through common standards, but still require considerable
human interaction, for example to search for web services and then to
combine them in a useful way. Semantic web services, described in
Chapter 10, offer the possibility of automating web service discovery,
composition and invocation. This will have considerable impact in
areas such as e-Commerce and Enterprise Application Integration, by

* http:/ / proton.semanticweb.org/

APPLICATIONS 7

enabling dynamic and scalable cooperation between different systems
and organizations.

1.6. APPLICATIONS

There are myriad applications for Semantic Web technology, and it is
only possible in one book to cover a small fraction of them. The three
described in this book relate to specific business domains or industry
sectors. However, the general principles which they represent are rele-
vant across a wide range of domains and sectors.

Chapter 11 describes the key role which Semantic Web technology is
playing in enhancing the concept of a Digital Library. Interoperability
between digital libraries is seen as a ‘Grand Challenge’, and Semantic
Web technology is key to achieving such interoperability. At the same
time, the technology offers new ways of classifying, finding and present-
ing knowledge, and also the interrelationships within a corpus of knowl-
edge. Moreover, digital libraries are one example of intelligent content
management systems, and much of what is discussed in Chapter 11 is
applicable generally to such systems.

Chapter 12 looks at an application domain within a particular sector,
the legal sector. Specifically, it describes how Semantic Web technology
can be used to provide a decision support system for judges. The system
provides the user with responses to natural language questions, at the
same time as backing up these responses with reference to the appro-
priate statutes. Whilst apparently very specific, this can be extended to
decision support in general. In particular, a key challenge is combining
everyday knowledge, based on professional experience, with formal
legal knowledge contained in statute databases. The development of
the question and answer database, and of the professional knowledge
ontology to describe it, provide interesting examples of the state of the art
in knowledge elicitation and ontology development.

The final application, in Chapter 13, builds on the semantic web
services technology in Chapter 10, to describe how this technology can
be used to create an SOA. The approach makes use of the Web Services
Modelling Ontology (WSMO)® and permits a move away from point to
point integration which is costly and inflexible if carried out on a large
scale. This is particularly necessary in the telecommunications industry,
where operational support costs are high and customer satisfaction is a
key differentiator. Indeed, the approach is valuable wherever IT systems
need to be created and reconfigured rapidly to support new and rapidly
changing customer services.

5Gee http://www.wsmo.org/

8 INTRODUCTION

1.7. DEVELOPING THE SEMANTIC WEB

This book aims to provide the reader with an overview of the current
state of the art in Semantic Web technologies, and their application. It is
hoped that, armed with this understanding, readers will feel inspired to
further develop semantic web technologies and to use semantic web
applications, and indeed to create their own in their industry sectors and
application domains. In this way they can achieve real benefit for their
businesses and for their customers, and also participate in the develop-
ment of the next stage of the Web.

REFERENCES

Antoniou G, van Harmelen F. 2004. A Semantic Web Primer. The MIT Press:
Cambridge, Massachusetts.

Berners-Lee T. 1999. Weaving the Web. Orion Business Books.

Berners-Lee T, Hendler], Lassila O. 2001. The semantic web. In Scientific American,
May 2001.

Charlesworth I. 2005. Integration fundamentals, Ovum.

Davies], Fensel D, van Harmelen F (eds). 2003. Towards the Semantic Web:
Ontology-Driven Knowledge Management. John Wiley & Sons, Ltd. ISBN:
0470848677.

Drucker P. 1999. Knowledge worker productivity: the biggest challenge. California
Management Review 41(2):79-94.

Fensel D, Hendler JA, Lieberman H, Wahlster W (eds). 2003. Spinning the Semantic
Web: Bringing the World Wide Web to its Full Potential. MIT Press: Cambridge,
MA. ISBN 0-262-06232-1.

Gruber T. 1993. A translation approach to portable ontologies. Knowledge
Acquisition 5(2):199-220, http://ksl-web.stanford.edu/KSL_Abstracts/KSL-
92-71.html

Holsapple CW Eds. 2002. Handbook on Knowledge Management. Springer:
ISBN:3540435271.

Lyman P, et al. 2005. How Much Information? 2003, School of Information
Management and Systems, University of California at Berkeley, http://
www.sims.berkeley.edu/research/projects/how-much-info-2003/

Morello D. 2005. The human impact of business IT: How to Avoid Diminishing
Returns.

Staab S, Studer R (Eds). 2004. Handbook on Ontologies. International Handbooks on
Information Systems. Springer: ISBN 3-540-40834-7.

2

Knowledge Discovery for
Ontology Construction

Marko Grobelnik and Dunja Mladenié

2.1. INTRODUCTION

We can observe that the focus of modern information systems is moving
from ‘data-processing’ towards ‘concept-processing’, meaning that the
basic unit of processing is less and less is the atomic piece of data and is
becoming more a semantic concept which carries an interpretation and
exists in a context with other concepts. As mentioned in the previous
chapter, an ontology is a structure capturing semantic knowledge about a
certain domain by describing relevant concepts and relations between
them.

Knowledge Discovery (KD) is a research area developing techniques
that enable computers to discover novel and interesting information from
raw data. Usually the initial output from KD is further refined via an
iterative process with a human in the loop in order to get knowledge out
of the data. With the development of methods for semi-automatic
processing of complex data it is becoming possible to extract hidden
and useful pieces of knowledge which can be further used for different
purpose including semi-automatic ontology construction. As ontologies
are taking a significant role in the Semantic Web, we address the problem
of semi-automatic ontology construction supported by Knowledge
Discovery. This chapter presents several approaches from Knowledge
Discovery that we envision as useful for the Semantic Web and in
particular for semi-automatic ontology construction. In that light, we
propose to decompose the semi-automatic ontology construction process

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

10 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

into several phases. Several scenarios of the ontology learning phase are
identified based on different assumptions regarding the provided input
data. We outline some ideas how the defined scenarios can be addressed
by different Knowledge Discovery approaches.

The rest of this Chapter is structured as follows. Section 2.2 provides a
brief description of Knowledge Discovery. Section 2.3 gives a definition
of the term ontology. Section 2.4 describes the problem of semi-automatic
ontology construction. Section 2.5 describes the proposed methodology
for semi-automatic ontology construction where the whole process is
decomposed into several phases. Section 2.6 describes several Knowl-
edge Discovery methods in the context of the semi-automatic ontology
construction phases defined in Section 2.5. Section 2.7 gives a brief
overview of the existing work in the area of semi-automatic ontology
construction. Section 2.8 concludes the Chapter with discussion.

2.2. KNOWLEDGE DISCOVERY

The main goal of Knowledge Discovery is to find useful pieces of
knowledge within the data with little or no human involvement. There
are several definitions of Knowledge Discovery and here we cite just one
of them: Knowledge Discovery is a process which aims at the extraction
of interesting (nontrivial, implicit, previously unknown and potentially
useful) information from data in large databases (Fayad et al., 1996).

In Knowledge Discovery there has been recently an increased interest for
learning and discovery in unstructured and semi-structured domains such
as text (Text Mining), web (Web Mining), graphs/networks (Link Analy-
sis), learning models in relational/first-order form (Relational Data Min-
ing), analyzing data streams (Stream Mining), etc. In these we see a great
potential for addressing the task of semi-automatic ontology construction.

Knowledge Discovery can be seen as a research area closely connected
to the following research areas: Computational Learning Theory with a
focus on mainly theoretical questions about learnability, computability,
design and analysis of learning algorithms; Machine Learning (Mitchell,
1997), where the main questions are how to perform automated learning
on different kinds of data and especially with different representation
languages for representing learned concepts; Data-Mining (Fayyad et al.,
1996; Witten and Frank, 1999; Hand et al., 2001), being rather applied area
with the main questions on how to use learning techniques on large-scale
real-life data; Statistics and statistical learning (Hastie ef al., 2001) con-
tributing techniques for data analysis (Duda et al., 2000) in general.

2.3. ONTOLOGY DEFINITION

Ontologies are used for organizing knowledge in a structured way in
many areas—from philosophy to Knowledge Management and the

METHODOLOGY FOR SEMI-AUTOMATIC ONTOLOGY CONSTRUCTION 11

Semantic Web. We usually refer to an ontology as a graph/network
structure consisting from:

1. a set of concepts (vertices in a graph);

2. a set of relationships connecting concepts (directed edges in a graph);

3. a set of instances assigned to a particular concepts (data records
assigned to concepts or relation).

More formally, an ontology is defined (Ehrig ef al., 2005) as a structure
O0=(,T,R,ALV,<c,<r,0Rr,04,\C, T, R, La). It consists of disjoint sets
of concepts (C), types (1), relations (R), attributes (A), instances (I), and
values (V). The partial orders <c¢ (on C) and <7 (on T) define a concept
hierarchy and a type hierarchy, respectively. The function og: R — C>
provides relation signatures (i.e., for each relation, the function specifies
which concepts may be linked by this relation), while 64: A — Cx T
provides attribute signatures (for each attribute, the function specifies to
which concept the attribute belongs and what is its datatype). Finally,
there are partial instantiation functions ic: C2! (the assignment of
instances to concepts), ur: T2V (the assignment of values to types), wg: R
— 2"T (which instances are related by a particular relation), and 14: A —
2'*V (what is the value of each attribute for each instance). Another
formalization of ontologies, based on similar principles, has been
described by Bloehdorn et al. (2005). Notice that this theoretical frame-
work can be used to define evaluation of ontologies as a function that
maps the ontology O to a real number (Brank et al., 2005).

2.4. METHODOLOGY FOR SEMI-AUTOMATIC ONTOLOGY
CONSTRUCTION

Knowledge Discovery technologies can be used to support different
phases and scenarios of semi-automatic ontology construction. We
believe that today a completely automatic construction of good quality
ontologies is in general not possible for theoretical, as well as practical
reasons (e.g., the soft nature of the knowledge being conceptualized). As
in Knowledge Discovery in general, human interventions are necessary
but costly in terms of resources. Therefore the technology should help in
efficient utilization of human interventions, providing suggestions, high-
lighting potentially interesting information, and enabling refinements of
the constructed ontology.

There are several definitions of the ontology engineering and con-
struction methodology, mainly based on a knowledge management
perspective. For instance, the DILIGENT ontology engineering metho-
dology described in Chapter 9 defines five main steps of ontology
engineering: building, local adaptation, analysis, revision, and local
update. Here, we define a methodology for semi-automatic ontology

12 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

construction analogous to the CRISP-DM methodology (Chapman et al.,
2000) defined for the Knowledge Discovery process. CRISP-DM involves
six interrelated phases: business understanding, data understanding,
data preparation, modeling, evaluation, and deployment. From the
perspective of Knowledge Discovery, semi-automatic ontology con-
struction can be defined as consisting of the following interrelated
phases:

1. domain understanding (what is the area we are dealing with?);

2. data understanding (what is the available data and its relation to semi-
automatic ontology construction?);

3. task definition (based on the available data and its properties, define
task(s) to be addressed);

4. ontology learning (semi-automated process addressing the task(s)
defined in the phase 3);

5. ontology evaluation (estimate quality of the solutions to the addressed
task(s)); and

6. refinement with human in the loop (perform any transformation needed

to improve the ontology and return to any of the previous steps, as
desired).

The first three phases require intensive involvement of the user and are
prerequisites for the next three phases. While phases 4 and 5 can be
automated to some extent, the last phase heavily relays on the user.
Section 2.5 describes the fourth phase and some scenarios related to
addressing the ontology learning problem by Knowledge Discovery
methods. Using Knowledge Discovery in the fifth phase for semi-auto-
matic ontology evaluation is not in the scope of this Chapter, an overview
can be found in (Brank et al., 2005).

2.5. ONTOLOGY LEARNING SCENARIOS

From a Knowledge Discovery perspective, we see an ontology as just
another class of models (somewhat more complex compared to typical
Machine Learning models) which needs to be expressed in some kind of
hypothesis language. Depending on the different assumptions regarding
the provided input data, ontology learning can be addressed via different
tasks: learning just the ontology concepts, learning just the ontology
relationships between the existing concepts, learning both the concepts
and relations at the same time, populating an existing ontology/struc-
ture, dealing with dynamic data streams, simultaneous construction of
ontologies giving different views on the same data, etc. More formally,
we define the ontology learning tasks in terms of mappings between
ontology components, where some of the components are given and
some are missing and we want to induce the missing ones. Some typical
scenarios in ontology learning are the following;:

USING KNOWLEDGE DISCOVERY FOR ONTOLOGY LEARNING 13

. Inducing concepts/clustering of instances (given instances).

. Inducing relations (given concepts and the associated instances).

. Ontology population (given an ontology and relevant, but not asso-
ciated instances).

4. Ontology generation (given instances and any other background

information).
5. Ontology updating/extending (given an ontology and background
information, such as, new instances or the ontology usage patterns).

W N =

Knowledge discovery methods can be used in all of the above typical
scenarios of ontology learning. When performing the learning using
Knowledge Discovery, we need to select a language for representation
of a membership function. Examples of different representation lan-
guages as used by machine learning algorithms are: Linear functions
(e.g., used by Support-Vector-Machines), Propositional logic (e.g., used
in decision trees and decision rules), First order logic (e.g., used in
Inductive Logic programming). The representation language selected
informs the expressive power of the descriptions and complexity of
computation.

2.6. USING KNOWLEDGE DISCOVERY FOR
ONTOLOGY LEARNING

Knowledge Discovery techniques are in general aiming at discovering
knowledge and that is often achieved by finding some structure in the
data. This means that we can use these techniques to map unstructured
data sources, such as a collection of text documents, into an ontological
structure. Several techniques that we find relevant for ontology learning
have been developed in Knowledge Discovery, some of them in combi-
nation with related fields such as Information Retrieval (van Rijsbergen,
1979) and Language Technologies (Manning and Schutze, 2001). Actu-
ally, Knowledge Discovery techniques are well integrated in many
aspects of Language Technologies combining human background knowl-
edge about the language with automatic approaches for modeling the
‘soft’ nature of ill structured data formulated in natural language. More
on the usage of Language Technologies in knowledge management can
be found in Cunningham and Bontcheva (2005).

It is also important to point out that scalability is one of the central
issues in Knowledge Discovery, where one needs to be able to deal with
real-life dataset volumes of the order of terabytes. Ontology construction
is ultimately concerned with real-life data and on the Web today we talk
about tens of billions of Web pages indexed by major search engines.
Because of the exponential growth of data available in electronic form,
especially on the Web, approaches where a large amount of human

14 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

intervention is necessary, become inapplicable. Here we see a great
potential for Knowledge Discovery with its focus on scalability.

The following subsections briefly describe some of the Knowledge
Discovery techniques that can be used for addressing the ontology
learning scenarios described in Section 2.5.

2.6.1. Unsupervised Learning

In the broader context, the Knowledge Discovery approach to ontology
learning deals with some kind of data objects which need to have some
kind of properties—these may be text documents, images, data records
or some combination of them. From the perspective of using Knowledge
Discovery methods for inducing concepts given the instances (ontology
learning scenario 1 in Section 2.5), the important part is comparing
ontological instances to each other. As document databases are the
most common data type conceptualized in the form of ontologies, we
can use methods developed in Information Retrieval and Text Mining
research, for estimating similarity between documents as well as simi-
larity between objects used within the documents (e.g., named entities,
words, etc.)—these similarity measures can be used together with
unsupervised learning algorithms, such as clustering algorithms, in an
approach to forming an approximation of ontologies from document
collections.

An approach to semi-automatic topic ontology construction from a
collection of documents (ontology learning scenario 4 in Section 2.5) is
proposed in Fortuna et al. (2005a). Ontology construction is seen as a
process where the user is constructing the ontology and taking all the
decisions while the computer provides suggestions for the topics (ontol-
ogy concepts), and assists by automatically assigning documents to the
topics, naming the topics, etc. The system is designed to take a set of
documents and provide suggestions of possible ontology concepts
(topics) and relations (sub-topic-of) based on the text of documents.
The user can use the suggestions for concepts and their names, further
split or refine the concepts, move a concept to another place in the
ontology, explore instances of the concepts (in this case documents), etc.
The system supports also extreme case where the user can ignore
suggestions and manually construct the ontology. All this functionality
is available through an interactive GUI-based environment providing
ontology visualization and the ability to save the final ontology as
RDF. There are two main methodological contributions introduced in
this approach: (i) suggesting concepts as subsets of documents and
(ii) suggesting naming of the concepts. Suggesting concepts based on
the document collection is based on representing documents as word-
vectors and applying Document clustering or Latent Semantic Indexing
(LSI). As ontology learning scenario 4 (described in Section 2.5) is one

USING KNOWLEDGE DISCOVERY FOR ONTOLOGY LEARNING 15

of the most important and demanding, in the remaining of this subsec-
tion we briefly describe both methods (clustering and LSI) for suggesting
concepts. Turning to the second approach, naming of the concepts is
based on proposing labels comprising the most common keywords
(describing a subset of documents belonging to the topic), and alterna-
tively on providing the most discriminative keywords (enabling classi-
fication of documents into the topic relative to the neighboring topics).
Methods for document classification are briefly described in subsection
2.6.2.

Document clustering (Steinbach et al., 2000) is based on a general data
clustering algorithm adopted for textual data by representing each
document as a word-vector, which for each word contains some weight
proportional to the number of occurrences of the word (usually TFIDF
weight as given in Equation (2.1)).

; D
d" = TF(W;,d)IDF(W;), where IDF(W;) = 1ogW (2.1)
where D is the number of documents; document frequency DE(W) is the
number of documents the word W occurred in at least once; and TF(W, d)
is the number of times word W occurred in document d. The exact
formula used in different approaches may vary somewhat but the basic
idea remains the same—namely, that the weighting is a measure of how
frequently the given word occurs in the document at hand and of how
common (or otherwise) the word is in an entire document collection.
The similarity of two documents is commonly measured by the cosine-
similarity between the word-vector representations of the documents
(see Equation (2.2)). The clustering algorithm group documents based on
their similarity, putting similar documents in the same group. Cosine-
similarity is commonly used also by some supervised learning algo-
rithms for document categorization, which can be useful in populating
topic ontologies (ontology learning scenario 3 in Section 2.5). Given a
new document, cosine-similarity is used to find the most similar docu-
ments (e.g., using k-Nearest Neighbor algorithm (Mitchell, 1997)).
Cosine-similarity between all the documents and the new document is
used to find the k most similar documents whose categories (topics) are
then used to assign categories to a new document. For documents d; and
dj, the similarity is calculated as given in Equation (2.2). Note that the
cosine-similarity between two identical documents is 1 and between two
documents that share no words is 0.

> dixdjx
cos(d;, dj) = ————=— (2.2)
Sy ds,
1 m

Latent Semantic Indexing is a linear dimensionality reduction tech-
nique based on a technique from linear algebra called Singular Value

16 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

Decomposition. It uses a word-vector representation of text documents
for extracting words with similar meanings (Deerwester et al., 2001). It
relies on the fact that two words related to the same topic more often
cooccur together than words describing different topics. This can also be
viewed as extraction of hidden semantic concepts or topics from text
documents. The results of applying Latent Semantic Indexing on a
document collection are fuzzy clusters of words each describing topics.

More precisely, in the process of extracting the hidden concepts first a
term-document matrix A is constructed from a given set of text docu-
ments. This is a matrix having word-vectors of documents as columns.
This matrix is decomposed using singular value decomposition so that
A x USV', where matrices U and V are orthogonal and S is a diagonal
matrix with ordered singular values on the diagonal. Columns of the
matrix U form an orthogonal basis of a subspace of the original space
where vectors with higher singular values carry more information (by
truncating singular values to only the k biggest values, we get the best
approximation of matrix A with rank k). Because of this, vectors that form
this basis can also be viewed as concepts or topics. Geometrically each
basis vector splits the original space into two halves. By taking just the
words with the highest positive or the highest negative weight in this
basis vector, we get a set of words which best describe a concept
generated by this vector. Note that each vector can generate two
concepts; one is generated by positive weights and one by negative
weights.

2.6.2. Semi-Supervised, Supervised, and
Active Learning

Often it is too hard or too costly to integrate available background
domain knowledge into fully automatic techniques. Active Learning and
Semi-supervised Learning make use of small pieces of human knowledge
for better guidance towards the desired model (e.g., an ontology). The
effect is that we are able to reduce the amount of human effort by an
order of magnitude while preserving the quality of results (Blum and
Chawla, 2001). The main task of both the methods is to attach labels to
unlabeled data (such as content categories to documents) by maximizing
the quality of the label assignment and by minimizing the effort (human
or computational).

A typical example scenario for using semi-supervised and active
learning methods would be assigning content categories to uncategor-
ized documents from a large document collection (e.g., from the Web or
from a news source) as described in (Novak, 2004a). Typically, it is too
costly to label each document manually—but there is some limited
amount of human resource available. The task of active learning is to

USING KNOWLEDGE DISCOVERY FOR ONTOLOGY LEARNING 17

use the (limited) available user effort in the most efficient way, to assign
high quality labels (e.g., in the form of content categories) to documents;
semi-supervised learning, on the other hand, is applied when there are
some initially labeled instances (e.g., documents with assigned topic
categories) but no additional human resources are available. Finally,
supervised learning is used when there is enough labeled data provided in
advance and no additional human resources are available. All the three
methods can be useful in populating ontologies (ontology learning
scenario 3 in Section 2.5) using document categorization as well as in
more sophisticated tasks such as inducing relations (ontology learning
scenario 2 in Section 2.5), ontology generation and extension (ontology
learning scenarios 4 and 5 in Section 2.5).

Supervised learning for text document categorization can be applied
when a set of predefined topic categories, such as ‘arts, education,
science,” are provided as well as a set of documents labeled with those
categories. The task is to classify new (previously unseen) documents
by assigning each document one or more content categories
(e.g., ontology concepts or relations). This is usually performed by
representing documents as word-vectors and using documents that
have already been assigned to the categories, to generate a model for
assigning content categories to new documents (Jackson and Moulinier,
2002; Sebastiani, 2002). In the word-vector representation of a docu-
ment, a vector of word frequencies is formed taking all the words
occurring in all the documents (usually several thousands of words)
and often applying some feature subset selection approach (Mladenic
and Grobelnik, 2003). The representation of a particular document
contains many zeros, as most of the words from the collection do not
occur in a particular document. The categories can be organized into a
topic ontology, for example, the MeSH ontology for medical subject
headings or the Yahoo! hierarchy of Web documents that can be seen
as a topic ontology.! Different Knowledge Discovery methods have
been applied and evaluated on different document categorization
problems. For instance, on the taxonomy of US patents, on Web
documents organized in the Yahoo! Web directory (McCallum et al.,
1998; Mladenic, 1998; Mladenic and Grobelnik 2004), on the DMoz Web
directory (Grobelnik and Mladenic 2005), on categorization of Reuters
news articles (Koller and Sahami, 1997, Mladenic et al., 2004).
Documents can also be related in ways other than common words
(for instance, hyperlinks connecting Web documents) and these con-
nections can be also used in document categorization (e.g., Craven and
Slattery, 2001).

! The notion of a topic ontology is explored in detail in Chapter 7.

18 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

2.6.3. Stream Mining and Web Mining

Ontology updating is important not only because the ontology construc-
tion process is demanding and frequently requires further extension, but
also because of the dynamic nature of the world (part of which is
reflected in an ontology). The underlying data and the corresponding
semantic structures change in time, the ontology gets used, etc. As a
consequence, we would like to be able to adapt the ontologies accord-
ingly. We refer to these kind of structures as ‘dynamic ontologies’
(ontology learning scenario 5 in Section 2.5). For most ontology updating
scenarios, extensive human involvement in building models from the
data is not economic, tending to be too costly, too inaccurate, and too
slow.

A sub-field of Knowledge Discovery called Stream Mining addresses
the issue of rapidly changing data. The idea is to be able to deal with the
stream of incoming data quickly enough to be able to simultaneously
update the corresponding models (e.g., ontologies), as the amount of data
is too large to be stored: new evidence from the incoming data is
incorporated into the model without storing the data. The underlying
methods are based on the machine learning methods of on-line learning,
where the model is built from the initially available data and updated
regularly as more data becomes available.

Web-Mining, another sub-field of Knowledge Discovery, addresses
Web data including three interleaved threads of research: Web content
mining, Web structure mining, and Web usage mining. As ontologies are
used in different applications and by different users, we can make an
analogy between usage of ontologies and usage of Web pages. For
instance, in Web usage mining (Chakrabarti, 2002), by analyzing
frequencies of visits to particular Web pages and/or sequences of
pages visited one after the other, one can consider restructuring
the corresponding Web site or modeling the users behavior (e.g., in
Internet shops, a certain sequence of visiting Web pages may be more
likely to lead to a purchase than the other sequence). Using similar
methods, we can analyze the usage patters of an ontology to identify
parts of the ontology that are hardly used and reconsider their for-
mulation, placement or existence. The appropriateness of Web usage
mining methods for ontology updating still needs to be confirmed by
further research.

2.6.4. Focused Crawling

An important step in ontology construction can be collecting the
relevant data from the Web and using it for populating (ontology
learning scenario 3 in Section 2.5) or updating the ontology (ontology

USING KNOWLEDGE DISCOVERY FOR ONTOLOGY LEARNING 19

learning scenario 5 in Section 2.5). Collecting data relevant for the
existing ontology can also be used in some other phases of the semi-
automatic ontology construction process, such as ontology evaluation or
ontology refinement (phases 5 and 6, Section 2.4), for instance, via associ-
ating new instances to the existing ontology in a process called ontology
grounding (Jakulin and Mladenic, 2005). In the case of topic ontologies
(see Chapter 7), where the concepts correspond to topics and documents
are linked to these topics through an appropriate relation such as
hasSubiject (Grobelnik and Mladenic 2005a), one can use the Web to
collect documents on a predefined topic. In Knowledge Discovery, the
approaches dealing with collecting documents based on the Web data are
referred in the literature under the name Focused Crawling (Chakrabarti,
2002; Novak, 2004b). The main idea of these approaches is to use the
initial ‘seed” information given by the user to find similar documents by
exploiting (1) background knowledge (ontologies, existing document
taxonomies, etc.), (2) web topology (following hyperlinks from the
relevant pages), and (3) document repositories (through search engines).
The general assumption for most of the focused crawling methods is that
pages with more closely related content are more inter-connected. In the
cases where this assumption is not true (or we cannot reasonably assume
it), we can still use the methods for selecting the documents through
search engine querying (Ghani ef al., 2005). In general, we could say that
focused crawling serves as a generic technique for collecting data to be
used in the next stages of data processing, such as constructing (ontology
learning scenario 4 in Section 2.5) and populating ontologies (ontology
learning scenario 3 in Section 2.5).

2.6.5. Data Visualization

Visualization of data in general and also visualization of document
collections is a method for obtaining early measures of data quality,
content, and distribution (Fayyad et al., 2001). For instance, by apply-
ing document visualization it is possible to get an overview of the
content of a Web site or some other document collection. This can be
useful especially for the first phases of semi-automatic ontology con-
struction aiming at domain and data understanding (see Section 2.4).
Visualization can be also used for visualizing an existing ontology or
some parts thereof, which is potentially relevant for all the ontology
learning scenarios defined in Section 2.5.

One general approach to document collection visualization is based
on clustering of the documents (Grobelnik and Mladenic, 2002) by
first representing the documents as word-vectors and performing
k-means clustering on them (see Subsection 2.6.1). The obtained clusters
are then represented as nodes in a graph, where each node in the
graph is described by the set of most characteristic words in the

20 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

I, taa0iwWords-Graph-vizuslizer =101 x|

Bow data lie: |L' Aurger e M arko D E uPropect Dl ata’ Browse I
Documnerts to chuster 1700
Chustors lo visualee: [10
Y |

INDICATORS Toa3a TRADENG
ECONOMC MEMS
BENCHAARING LANGUAGE

AGENT A
ECONaMY BOUCA,
LABORATORES Bt
ENTAL e i
—_——T— ’ “pazog | OEVICES
oz2as
o e DISTREUTED
DATA COLLABORATIVE
SOFTWARE HNCYWEDOE
T0 WVIRTUAL
STATISTICAL i
SUPPLY
LNGUAL | PROCESS o303

! P

Figure 2.1 An example output of a system for graph-based visualization of docu-
ment collection. The documents are 1700 descriptions of European research projects
in information fechnology (6FP IST).

corresponding cluster. Similar nodes, as measured by their cosine-
similarity (Equation (2.2)), are connected by a link. When such a
graph is drawn, it provides a visual representation of the document
set (see Figure 2.1 for an example output of the system). An alternative
approach that provides different kinds of document corpus visualiza-
tion is proposed in Fortuna et al., 2005b). It is based on Latent Semantic
Indexing, which is used to extract hidden semantic concepts from text
documents and multidimensional scaling which is used to map the high
dimensional space onto two dimensions. Document visualization can
be also a part of more sophisticated tasks, such as generating a semantic
graph of a document or supporting browsing through a news collection.
For illustration, we provide two examples of document visualization
that are based on Knowledge Discovery methods (see Figure 2.2 and
Figure 2.3). Figure 2.2 shows an example of visualizing a single docu-
ment via its semantic graph (Leskovec et al., 2004). Figure 2.3 shows an
example of visualizing news stories via visualizing relationships
between the named entities that appear in the news stories (Grobelnik
and Mladenic, 2004).

USING KNOWLEDGE DISCOVERY FOR ONTOLOGY LEARNING

21

increase
Richter scale every
magnitude
tenfold
whole number

damage
quake
serious

eartquake
hundred

register
strong
year

Figure 2.2 Visual representation of an automatically generated summary of a news
story about earthquaoke. The summarization is based on deep parsing
used for obtaining semantic graph of the document, followed by machine learning
used for deciding which parts of the graph are to be included in the document

summary.

Web_Consortium

Technology

World_Wide_Web

[Massachusettesflnslitute]

7

1

[Artificial_Intelligence_Lab |

Founders_Chair

Figure 2.3 Visual representation of relationships (edges in the graph) between the
named entities (vertices in the graph) appearing in a collection of news stories. Each
edge shows intensity of comentioning of the two named entities. The graph is an
example focused on the named entity ‘Semantic Web’ that was extracted from the

11.000 ACM Technology news stories from 2000 to 2004.

22 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

2.7. RELATED WORK ON ONTOLOGY CONSTRUCTION

Different approaches have been used for building ontologies, most of
them to date using mainly manual methods. An approach to building
ontologies was set up in the CYC project (Lenat and Guha, 1990), where
the main step involved manual extraction of common sense knowledge
from different sources. There have been some methodologies for building
ontologies developed, again assuming a manual approach. For instance,
the methodology proposed in (Uschold and King, 1995) involves the
following stages: identifying the purpose of the ontology (why to build it,
how will it be used, the range of the users), building the ontology,
evaluation and documentation. Building of the ontology is further divided
into three steps. The first is ontology capture, where key concepts and
relationships are identified, a precise textual definition of them is written,
terms to be used to refer to the concepts and relations are identified, the
involved actors agree on the definitions and terms. The second step
involves coding of the ontology to represent the defined conceptualiza-
tion in some formal language (committing to some meta-ontology,
choosing a representation language and coding). The third step involves
possible integration with existing ontologies. An overview of methodol-
ogies for building ontologies is provided in Fernandez (1999), where
several methodologies, including the above described one, are presented
and analyzed against the IEEE Standard for Developing Software Life
Cycle Processes, thus viewing ontologies as parts of some software
product. As there are some specifics to semi-automatic ontology con-
struction compared to the manual approaches to ontology construction,
the methodology that we have defined (see Section 2.4) has six phases. If
we relate them to the stages in the methodology defined in Uschold and
King (1995), we can see that the first two phases referring to domain and
data understanding roughly correspond to identifying the purpose of the
ontology, the next two phases (tasks definition and ontology learning)
correspond to the stage of building the ontology, and the last two phases on
ontology evaluation and refinement correspond to the evaluation and
documentation stage.

Several workshops at the main Artificial Intelligence and Know-
ledge Discovery conferences (ECAI, IJCAI, KDD, ECML/PKDD)
have been organized addressing the topic of ontology learning. Most
of the work presented there addresses one of the following problems/
tasks:

e Extending the existing ontology: Given an existing ontology
with concepts and relations (commonly used is the English lexi-
cal ontology WordNet), the goal is to extend that ontology using
some text, for example Web documents are used in (Agirre et al.,
2000). This can fit under the ontology learning scenario 5 in
Section 2.5.

RELATED WORK ON ONTOLOGY CONSTRUCTION 23

e Learning relations for an existing ontology: Given a collection of text
documents and ontology with concepts, learn relations between the
concepts. The approaches include learning taxonomic, for example isa,
(Cimiano et al., 2004) and nontaxonomic, for example ‘hasPart’ rela-
tions (Maedche and Staab, 2001) and extracting semantic relations
from text based on collocations (Heyer et al., 2001). This fits under the
ontology learning scenario 2 in Section 2.5.

¢ Ontology construction based on clustering: Given a collection of text docu-
ments, split each document into sentences, parse the text and apply
clustering for semi-automatic construction of an ontology (Bisson et al.,
2000; Reinberger and Spyns, 2004). Each cluster is labeled by the most
characteristic words from its sentences or using some more sophisticated
approach (Popescul and Ungar, 2000). Documents can be also used as a
whole, without splitting them into sentences, and guiding the user
through a semi-automatic process of ontology construction (Fortuna
et al., 2005a). The system provides suggestions for ontology concepts,
automatically assigns documents to the concepts, proposed naming of
the concepts, etc. In Hotho ef al. (2003), the clustering is further refined by
using WordNet to improve the results by mapping the found sentence
clusters upon the concepts of a general ontology. The found concepts can
be further used as semantic labels (XML tags) for annotating documents.
This fits under the ontology learning scenario 4 in Section 2.5.

¢ Ontology construction based on semantic graphs: Given a collection of
text documents, parse the documents; perform coreference resolution,
anaphora resolution, extraction of subject-predicate-object triples, and
construct semantic graphs. These are further used for learning sum-
maries of the documents (Leskovec et al., 2004). An example summary
obtained using this approach is given in Figure 2.2. This can fit under
the ontology learning scenario 4 in Section 2.5.

e Ontology construction from a collection of news stories based on
named entities: Given a collection of news stories, represent it as a
collection of graphs, where the nodes are named entities extracted
from the text and relationships between them are based on the context
and collocation of the named entities. These are further used for
visualization of news stories in an interactive browsing environment
(Grobelnik and Mladenic, 2004). An example output of the proposed
approach is given in Figure 2.3. This can fit under the ontology
learning scenario 4 in Section 2.5.

More information on ontology learning from text can be found in a
collection of papers (Buitelaar et al., 2005) addressing three perspectives:
methodologies that have been proposed to automatically extract informa-
tion from texts, evaluation methods defining procedures and metrics for a
quantitative evaluation of the ontology learning task, and application
scenarios that make ontology learning a challenging area in the context of
real applications.

24 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

2.8. DISCUSSION AND CONCLUSION

We have presented several techniques from Knowledge Discovery that
are useful for semi-automatic ontology construction. In that light, we
propose to decompose the semi-automatic ontology construction process
into several phases ranging from domain and data understanding through
task definition via ontology learning to ontology evaluation and refinement. A
large part of this chapter is dedicated to ontology learning. Several
scenarios are identified in the ontology learning phase depending on
different assumptions regarding the provided input data and the
expected output: inducing concepts, inducing relations, ontology popu-
lation, ontology construction, and ontology updating/extension. Differ-
ent groups of Knowledge Discovery techniques are briefly described
including unsupervised learning, semi-supervised, supervised and
active learning, on-line learning and web-mining, focused crawling,
data visualization. In addition to providing brief description of these
techniques, we also relate them to different ontology learning scenarios
that we identified.

Some of the described Knowledge Discovery techniques have
already been applied in the context of semi-automatic ontology con-
struction, while others still need to be adapted and tested in that
context. A challenge for future research is setting up evaluation
frameworks for assessing contribution of these techniques to specific
tasks and phases of the ontology construction process. In that light, we
briefly describe some existing approaches to ontology construction
and point to the original papers that provide more information on the
approaches, usually including some evaluation of their contribution
and performance on the specific tasks. We also related existing work
on learning ontologies to different ontology learning scenarios that we
have identified. Our hope is that this chapter in addition to contribut-
ing by proposing a methodology for semi-automatic ontology con-
struction and description of some relevant Knowledge Discovery
techniques also shows potential for future research and triggers
some new ideas related to the usage of Knowledge Discovery techni-
ques for ontology construction.

ACKNOWLEDGMENTS

This work was supported by the Slovenian Research Agency and the IST
Programme of the European Community under SEKT Semantically
Enabled Knowledge Technologies (IST-1-506826-IP) and PASCAL Net-
work of Excellence (IST-2002-506778). This publication only reflects the
authors’ views.

REFERENCES 25

REFERENCES

Agirre E, Ansa O, Hovy E, Martinez D. 2000. Enriching very large ontologies using
the WWW. In Proceedings of the First Workshop on Ontology Learning OL-
2000. The 14th European Conference on Artificial Intelligence ECAI-2000.

Bisson G, Nédellec C, Cafilamero D. 2000. Designing clustering methods for
ontology building: The Mo’K workbench. In Proceedings of the First Workshop
on Ontology Learning OL-2000. The 14th European Conference on Artificial
Intelligence ECAI-2000.

Bloehdorn S, Haase P, Sure Y, Voelker J, Bevk M, Bontcheva K, Roberts 1. 2005.
Report on the integration of ML, HLT and OM. SEKT Deliverable D.6.6.1, July
2005.

Blum A, Chawla S. 2001. Learning from labelled and unlabelled data using graph
mincuts. Proceedings of the 18th International Conference on Machine Learn-
ing, pp 19-26.

Buitelaar P, Cimiano P, Magnini B. 2005. Ontology learning from text: Methods,
applications and evaluation. frontiers in Artificial Intelligence and Applications,
IOS Press.

Brank], Grobelnik M, Mladenic D. 2005. A survey of ontology evaluation
techniques. Proceedings of the 8th International multi-conference Information
Society 1S-2005, Ljubljana: Institut “JoZef Stefan”, 2005.

Chakrabarti S. 2002. Mining the Web: Analysis of Hypertext and Semi Structured Data.
Morgan Kaufmann.

Chapman P, Clinton], Kerber R, Khabaza T, Reinartz T, Shearer C, Wirth R. 2000.
CRISP-DM 1.0: Step-by-step data mining guide.

Cimiano P, Pivk A, Schmidt-Thieme L, Staab S. 2004. Learning taxonomic relations
from heterogeneous evidence. In Proceedings of ECAI 2004 Workshop on
Ontology Learning and Population.

Craven M, Slattery S. 2001. Relational learning with statistical predicate invention:
better models for hypertext. Machine Learning 43(1/2):97-119.

Cunningham H, Bontcheva K. 2005. Knowledge management and human
language: crossing the chasm. Journal of Knowledge Management.

Deerwester, S., Dumais, S., Furnas, G., Landuer, T., Harshman, R., (2001).
Indexing by Latent Semantic Analysis.

Duda RO, Hart PE, Stork DG 2000. Pattern Classification (2nd edn). John Wiley &
Sons, Ltd.

Ehrig M, Haase P, Hefke M, Stojanovic N. 2005. Similarity for ontologies—A
comprehensive framework. Proceedings of 13th European Conference on
Information Systems, May 2005.

Fayyad, U., Grinstein, G. G. and Wierse, A. (eds.), (2001). Information Visualiza-
tion in Data Mining and Knowledge Discovery, Morgan Kaufmann.

Fayyad U, Piatetski-Shapiro G, Smith P, Uthurusamy R (eds). 1996. Advances in
Knowledge Discovery and Data Mining. MIT Press: Cambridge, MA, 1996.

Fernandez LM. 1999. Overview of methodologies for building ontologies. In
Proceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving
Methods (KRR5).

Fortuna B, Mladenic D, Grobelnik M. 2005a. Semi-automatic construction of topic
ontology. Proceedings of the ECML/PKDD Workshop on Knowledge Discov-
ery for Ontologies.

Fortuna B, Mladenic D, Grobelnik M. 2005b. Visualization of text document
corpus. Informatica journal 29(4):497-502.

26 KNOWLEDGE DISCOVERY FOR ONTOLOGY CONSTRUCTION

Ghani R, Jones R, Mladenic D. 2005. Building minority language corpora
by learning to generate web search queries. Knowledge and information systems
7:56-83.

Grobelnik M, Mladenic D. 2002. Efficient visualization of large text corpora.
Proceedings of the seventh TELRI seminar. Dubrovnik, Croatia.

Grobelnik M, Mladenic D. 2004. Visualization of news articles. Informatica Journal
28:(4).

Grobelnik M, Mladenic D. 2005. Simple classification into large topic ontology
of Web documents. Journal of Computing and Information Technology—CIT 13
4:279-285.

Grobelnik M, Mladenic D. 2005a. Automated knowledge discovery in advanced
knowledge management. Journal of Knowledge Management.

Hand DJ, Mannila H, Smyth P. 2001. Principles of Data Mining (Adaptive
Computation and Machine Learning). MIT Press.

Hastie T, Tibshirani R, Friedman JH. 2001. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics. Springer Verlag.

Heyer G, Lauter M, Quasthoff U, Wittig T, Wolff C. 2001. Learning Relations using
Collocations. In Proceedings of IJCAI-2001 Workshop on Ontology Learning.

Hotho A, Staab S, Stumme G. 2003. Explaining text clustering results using
semantic structures. In Proceedings of ECML/PKDD 2003, LNAI 2838, Springer
Verlag, pp 217-228.

Jackson P, Moulinier I. 2002. Natural Language Processing for Online Applications:
Text Retrieval, Extraction, and Categorization. John Benjamins Publishing Co.
Jakulin A, Mladenic D. 2005. Ontology grounding. Proceedings of the 8th
International multi-conference Information Society 15-2005, Ljubljana: Institut

“Jozef Stefan’’, 2005.

Koller D, Sahami M. 1997. Hierarchically classifying documents using very few
words. Proceedings of the 14th International Conference on Machine Learning
ICML-97, Morgan Kaufmann, San Francisco, CA, pp 170-178.

Leskovec], Grobelnik M, Milic-Frayling N. 2004. Learning sub-structures of
document semantic graphs for document summarization. In Workshop on Link
Analysis and Group Detection (LinkKDD2004). The Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

Maedche A, Staab S. 2001. Discovering conceptual relations from text. In
Proceedings of ECAI'’2000, pp 321-325.

Manning CD, Schutze H. 2001. Foundations of Statistical Natural Language Proces-
sing. The MIT Press: Cambridge, MA.

McCallum A, Rosenfeld R, Mitchell T, Ng A. 1998. Improving text classification by
shrinkage in a hierarchy of classes. Proceedings of the 15th International
Conference on Machine Learning ICML-98, Morgan Kaufmann, San Francisco,
CA.

Mitchell TM. 1997. Machine Learning. The McGraw-Hill Companies, Inc.

Mladenic D. 1998. Turning Yahoo into an Automatic Web-Page Classifier.
Proceedings of 13th European Conference on Artificial Intelligence (ECAI'9S,
John Wiley & Sons, Ltd), pp 473-474.

Mladenic D, Brank J, Grobelnik M, Milic-Frayling N. 2002. Feature selection using
linear classifier weights: Interaction with classification models, SIGIR-2002.
Mladenic D, Grobelnik M. 2003. Feature selection on hierarchy of web documents.

Journal of Decision support systems 35:45-87.

Mladenic D, Grobelnik M. 2004. Mapping documents onto web page ontology. In
Web Mining: From Web to Semantic Web, (Berendt B, Hotho A, Mladenic D,
Someren MWV, Spiliopoulou M, Stumme G (eds). Lecture notes in artificial

REFERENCES 27

inteligence, Lecture notes in computer science, Vol. 3209. Springer: Berlin;
Heidelberg; New York, 2004; 77-96.

Novak B. 2004a. Use of unlabeled data in supervised machine learning. Proceed-
ings of the 7th International multi-conference Information Society 1S-2004,
Ljubljana: Institut “Jozef Stefan’, 2004.

Novak B. 2004b. A survey of focused web crawling algorithms. Proceedings of the
7th International multi-conference Information Society I1S-2004, Ljubljana:
Institut “Jozef Stefan”, 2004.

Popescul A, Ungar LH. 2000. Automatic labeling of document clusters. Depart-
ment of Computer and Information Science, University of Pennsylvania,
unpublished paper available from http://www.cis.upenn.edu/~popescul/
Publications/popescul00labeling.pdf

Reinberger M-L, Spyns P. 2004. Discovering Knowledge in Texts for the learning
of DOGMA-inspired ontologies. In Proceedings of ECAI 2004 Workshop on
Ontology Learning and Population.

Sebastiani F. 2002. Machine learning for automated text categorization. ACM
Computing Surveys.

Steinbach M, Karypis G, Kumar V. 2000. A comparison of document clustering
techniques. Proceedings of KDD Workshop on Text Mining (Grobelnik M,
Mladeni¢ D, Milic-Frayling N (eds)), Boston, MA, USA, pp 109-110.

Uschold M, King M. 1995. Towards a methodology for building ontologies. In
Workshop on Basic Ontological Issues in Knowledge Sharing. International
Joint Conference on Artificial Intelligence, 1995. Also available as AIAI-TR-183
from AIAI, the University of Edinburgh.

van Rijsbergen CJ. 1979. Information Retrieval (2nd edn). Butterworths, London.

Witten IH, Frank E. 1999. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann.

3

Semantic Annotation and Human
Language Technology

Kalina Bontcheva, Hamish Cunningham, Atanas Kiryakov and
Valentin Tablan

3.1. INTRODUCTION

Gartner reported in 2002 that for at least the next decade more than 95%
of human-to-computer information input will involve textual language.
They also report that by 2012, taxonomic and hierarchical knowledge
mapping and indexing will be prevalent in almost all information-rich
applications. There is a tension here: between the increasingly rich
semantic models in IT systems on the one hand, and the continuing
prevalence of human language materials on the other. The process of
tying semantic models and natural language together is referred to as
Semantic Annotation. This process may be characterised as the dynamic
creation of inter-relationships between ontologies (shared conceptualisa-
tions of domains) and documents of all shapes and sizes in a
bidirectional manner covering creation, evolution, population and doc-
umentation of ontological models. Work in the Semantic Web (Berners-
Lee, 1999; Davies et al., 2002; Fensel et al., 2002) (see also other chapters in
this volume) has supplied a standardised, web-based suite of languages
(e.g., Dean et al., 2004) and tools for the representation of ontologies and
the performance of inferences over them. It is probable that these
facilities will become an important part of next-generation IT applica-
tions, representing a step up from the taxonomic modelling that is now
used in much leading-edge IT software. Information Extraction (IE), a

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

30 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

form of natural language analysis, is becoming a central technology to
link Semantic Web models with documents as part of the process of
Metadata Extraction.

The Semantic Web aims to add a machine tractable, repurposeable
layer to complement the existing web of natural language hypertext. In
order to realise this vision, the creation of semantic annotation, the
linking of web pages to ontologies and the creation, evolution and
interrelation of ontologies must become automatic or semi-automatic
processes.

In the context of new work on distributed computation, Semantic Web
Services (SWSs) go beyond current services by adding ontologies and
formal knowledge to support description, discovery, negotiation, media-
tion and composition. This formal knowledge is often strongly related to
informal materials. For example, a service for multimedia content deliv-
ery over broadband networks might incorporate conceptual indices of
the content, so that a smart VCR (such as next generation TiVO) can
reason about programmes to suggest to its owner. Alternatively, a service
for B2B catalogue publication has to translate between existing semi-
structured catalogues and the more formal catalogues required for SWS
purposes. To make these types of services cost-effective, we need auto-
matic knowledge harvesting from all forms of content that contain
natural language text or spoken data.

Other services do not have this close connection with informal content,
or will be created from scratch using Semantic Web authoring tools. For
example, printing or compute cycle or storage services. In these cases the
opposite need is present: to document services for the human reader
using natural language generation.

An important aspect of the world wide web revolution is that it has
been based largely on human language materials, and in making the shift
to the next generation knowledge-based web, human language will
remain key. Human Language Technology (HLT) involves the analysis,
mining and production of natural language. HLT has matured over the
last decade to a point at which robust and scaleable applications are
possible in a variety of areas, and new projects like SEKT in the Semantic
Web area are now poised to exploit this development.

Figure 3.1 illustrates the way in which Human Language Technology
can be used to bring together the natural language upon which the
current web is mainly based and the formal knowledge at the basis of the
Semantic Web. Ontology-Based IE and Controlled Language IE are
discussed in this chapter, whereas Natural Language Generation is
covered in Chapter 8 on Knowledge Access.

The chapter is structured as follows. Section 3.2 provides an overview
of Information Extraction (IE) and the problems it addresses. Section 3.3
introduces the problem of semantic annotation and shows why it is
harder than the issues addressed by IE. Section 3.4 surveys some
applications of IE to semantic annotation and discusses the problems

INFORMATION EXTRACTION: A BRIEF INTRODUCTION 31

KEY
MNLG: Multilingual Natural Language Generation
OBIE: Ontology-Based Information Extraction
AIE: Adaptive & Mixed-Initiative |IE
CLIE: Controlled Language IE

(MINLG

Semantic
Human Formal Knowledge Web;
Language OBIE (ontologies and ‘ Semantic
T instance bases) Grid;
Semantic
Web
Services

Controlled
Language

Figure 3.1 HLT and the Semantic Web.

faced, thus justifying the need for the so-called Ontology-Based IE
approaches. Section 3.5 presents a number of these approaches, including
some graphical user interfaces. Controlled Language IE (CLIE) is then
presented as a high-precision alternative to information extraction from
unrestricted, ambiguous text. The chapter concludes with a discussion
and outlines future work.

3.2. INFORMATION EXTRACTION: A BRIEF INTRODUCTION

Information extraction (IE) is a technology based on analysing natural
language in order to extract snippets of information. The process takes
texts (and sometimes speech) as input and produces fixed format,
unambiguous data as output. This data may be used directly for display
to users, or may be stored in a database or spreadsheet for later analysis,
or may be used for indexing purposes in information retrieval (IR)
applications such as internet search engines like Google.
IE is quite different from IR:

e an IR system finds relevant texts and presents them to the user;
¢ an IE application analyses texts and present only the specific informa-
tion from them that the user is interested in.

For example, a user of an IR system wanting information on trade group
formations in agricultural commodities markets would enter a list of
relevant words and receive in return a set of documents (e.g., newspaper
articles) which contain likely matches. The user would then read the

32 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

documents and extract the requisite information themselves. They might
then enter the information in a spreadsheet and produce a chart for a
report or presentation. In contrast, an IE system would automatically
populate the spreadsheet directly with the names of relevant companies
and their groupings.

There are advantages and disadvantages with IE in comparison to IR.
IE systems are more difficult and knowledge-intensive to build, and are
to varying degrees tied to particular domains and scenarios. IE is more
computationally intensive than IR. However, in applications where there
are large text volumes IE is potentially much more efficient than IR
because of the possibility of dramatically reducing the amount of time
people spend reading texts. Also, where results need to be presented in
several languages, the fixed-format, unambiguous nature of IE results
makes this relatively straightforward in comparison with providing the
full translation facilities needed for interpretation of multilingual texts
found by IR.

Useful overview sources for further details on IE include: Cowie and
Lehnert (1996), Appelt (1999), Cunningham (2005), Gaizauskas and Wilks
(1998) and Pazienza (2003).

3.2.1. Five Types of IE

IE is about finding five different types of information in natural language
text:

1. Entities: things in the text, for example people, places, organisations,
amounts of money, dates, etc.

2. Mentions: all the places that particular entities are referred to in the
text.

3. Descriptions of the entities present.

4. Relations between entities.

5. Events involving the entities.

For example, consider the text:

‘Ryanair announced yesterday that it will make Shannon its next European
base, expanding its route network to 14 in an investment worth around
€180m. The airline says it will deliver 1.3 million passengers in the first year
of the agreement, rising to two million by the fifth year’.

To begin with, IE will discover that ‘Shannon’ and ‘Ryanair” are entities
(of types location and company, perhaps), then, via a process of reference
resolution, will discover that ‘it’ and ‘its’ in the first sentence refer to
Ryanair (or are mentions of that company), and ‘the airline” and ‘it’ in the
second sentence also refer to Ryanair. Having discovered the mentions
descriptive information can be extracted, for example that Shannon is a
European base. Finally relations, for example that Shannon will be a base

INFORMATION EXTRACTION: A BRIEF INTRODUCTION 33

of Ryanair, and events, for example that Ryanair will invest €180 million
in Shannon.

These various types of IE provide progressively higher-level informa-
tion about texts. They are described in more detail below; for a thorough
discussion and examples see Cunningham (2005).

3.2.2. Entities

The simplest and most reliable IE technolog is entity recognition, which
we will abbreviate NE following the original Message Understanding
Conference (MUC) definitions (SAIC, 1998) NE systems identify all the
names of people, places, organisations, dates, amounts of money, etc.

All things being equal, NE recognition can be performed at up to
around 95 % accuracy. Given that human annotators do not perform to
the 100 % level (measured by inter-annotator comparisons), NE recogni-
tion can now be said to function at human performance levels, and
applications of the technology are increasing rapidly as a result.

The process is weakly domain-dependent, that is changing the subject
matter of the texts being processed from financial news to other types of
news would involve some changes to the system, and changing from
news to scientific papers would involve quite large changes.

3.2.3. Mentions

Finding the mentions of entities involves using of coreference resolution
(CO) to identify identity relations between entities in texts. These entities
are both those identified by NE recognition and anaphoric references to
those entities. For example, in:

“Alas, poor Yorick, I knew him Horatio’.

coreference resolution would tie “Yorick” with “him’ (and ‘I” with Hamlet,
if sufficient information was present in the surrounding text).

This process is less relevant to end users than other IE tasks (i.e.
whereas the other tasks produce output that is of obvious utility for the
application user, this task is more relevant to the needs of the application
developer). For text browsing purposes, we might use CO to highlight all
occurrences of the same object or provide hypertext links between them.
CO technology might also be used to make links between documents.
The main significance of this task, however, is as a building block for TE
and ST (see below). CO enables the association of descriptive information
scattered across texts with the entities to which it refers.

CO breaks down into two sub-problems: anaphoric resolution (e.g., ‘T
with Hamlet); proper-noun resolution. Proper-noun coreference identi-
fication finds occurences of same object represented with different

34 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

spelling or compounding, for example ‘IBM’, IBM Europe’, ‘Interna-
tional Business Machines Ltd’, ---). CO resolution is an imprecise
process, particularly when applied to the solution of anaphoric reference.
CO results vary widely; depending on domain perhaps only 50-60 %
may be relied upon. CO systems are domain dependent.

3.2.4. Descriptions

The description extraction task builds on NE recognition and coreference
resolution, associating descriptive information with the entities. To
match the original MUC definitions as before, we will abbreviate this
task as ‘TE’. For example, in a news article the ‘Bush administration” can
be also referred to as ‘government officials’—the TE task discovers this
automatically and adds it as an alias.

Good scores for TE systems are around 80 % (on similar tasks humans
can achieve results in the mid 90s, so there is some way to go). As in NE
recognition, the production of TEs is weakly domain dependent, that is
changing the subject matter of the texts being processed from financial
news to other types of news would involve some changes to the system,
and changing from news to scientific papers would involve quite large
changes.

3.2.5. Relations

As described in Appelt (1999), ‘The template relation task requires the
identification of a small number of possible relations between the
template elements identified in the template element task. This might
be, for example, an employee relationship between a person and a
company, a family relationship between two persons, or a subsidiary
relationship between two companies. Extraction of relations among
entities is a central feature of almost any information extraction task,
although the possibilities in real-world extraction tasks are endless’. In
general good template relation (TR) system scores reach around 75 %. TR
is a weakly domain dependent task.

3.2.6. Events

Finally, event extraction, which is abbreviated ST, for scenario template,
the MUC style of representing information relating to events. (In some
ways STs are the prototypical outputs of IE systems, being the original
task for which the term was coined.) They tie together TE entities and TR
relations into event descriptions. For example, TE may have identified
Mr Smith and Mr Jones as person entities and a company present in a

SEMANTIC ANNOTATION 35

news article. TR would identify that these people work for the company.
ST then identifies facts such as that they signed a contract on behalf of the
company with another supplier company.

ST is a difficult IE task; the best MUC systems score around 60 %. The
human score can be as low as around 80+ %, which illustrates the
complexity involved. These figures should be taken into account when
considering appropriate applications of ST technology. Note that it is
possible to increase precision at the expense of recall: we can develop ST
systems that do not make many mistakes, but that miss quite a lot of
occurrences of relevant scenarios. Alternatively we can push up recall
and miss less, but at the expense of making more mistakes.

The ST task is both domain dependent and, by definition, tied to the
scenarios of interest to the users. Note however that the results of NE, TR
and TE feed into ST, thus leading to an overall lower score due to a
certain compounding of errors from the earlier stages.

3.3. SEMANTIC ANNOTATION

Semantic annotation is a specific metadata generation and usage schema
aiming to enable new information access methods and to enhance
existing ones. The annotation scheme offered here is based on the
understanding that the information discovered in the documents by an
IE system constitute an important part of their semantics. Moreover, by
using text redundancy and external or background knowledge, this
information can be connected to formal descriptions, that is, ontologies,
and thus provide semantics and connectivity to the web.

The task of realising the vision of the Semantic Web will be much
helped, if the following basic tasks can be properly defined and solved:

1. Formally annotate and hyperlink (references to) entities and relations
in textual (parts of) documents.

2. Index and retrieve documents with respect to entities/relations
referred to.

The first task could be seen as a combination of a basic press-clipping
exercise, a typical IE task, and automatic hyper-linking. The resulting
annotations represent a method for document enrichment and presenta-
tion, the results of which can be further used to enable other access
methods (see Chapter 8 on Knowledge Access). The second task is just a
modification of the classical IR task—documents are retrieved on the
basis of relevance to entities or relations instead of words. However the
basic assumption is quite similar—a document is characterised by the
bag of tokens constituting its content, disregarding its structure. While
the basic IR approach considers word stems as tokens, there has been
considerable effort in the last decade towards using word-senses or
lexical concepts (see Mahesh et al.,, 1999; Voorhees et al., 1998) for

36 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

:rXYE announced profits in Q3, planning to
" build a $120M plant in Bulgaria,-.. and
more and more and more and more textrm

KIM Ontology & KB

Location
Company

type City Country

: type
ARSI
Londeon sYps Syps

establon partof

“03/11/1978" UK Bulgaria o
___——'-'-'-‘-/

Figure 3.2 Semantic annotation.

indexing and retrieval. Similarly, entities and relations can be seen as a
special sort of a token to be indexed and retrieved.

In a nutshell, Semantic Annotation is about assigning to entities and
relations in the text links to their semantic descriptions in an ontology (as
shown in Figure 3.2). This sort of semantic metadata provides both class
and instance information about the entities/relations.

Most importantly, automatic semantic annotation enables many new
applications: highlighting, semantic search, categorisation, generation of
more advanced metadata, smooth traversal between unstructured text
and formal knowledge. Semantic annotation is applicable to any kind of
content—web pages, regular (nonweb) documents, text fields in data-
bases, video, audio, etc.

3.3.1. What is Ontology-Based Information Extraction

Ontology-Based IE (OBIE) is the technology used for semantic annota-
tion. One of the important differences between traditional IE and OBIE is
the use of a formal ontology as one of the system’s resources. OBIE may
also involve reasoning.

Another substantial difference of the semantic IE process from the
traditional one is the fact that it not only finds the (most specific) type of
the extracted entity, but it also identifies it, by linking it to its semantic
description in the instance base. This allows entities to be traced across
documents and their descriptions to be enriched through the IE process.
When compared to the ‘traditional” IE tasks discussed in Section 3.2, the
first stage corresponds to the NE task and the second stage corresponds

APPLYING "TRADITIONAL" [E IN SEMANTIC WEB APPLICATIONS 37

to the CO (coreference) task. Given the lower performance achievable on
the CO task, semantic IE is in general a much harder task.
OBIE poses two main challenges:

e the identification of instances from the ontology in the text;
e the automatic population of ontologies with new instances in the text.

3.3.1.1. Identification of Instances From the Ontology

If an ontology is already populated with instances, the task of an OBIE
system may be simply to identify instances from the ontology in the text.
Similar methodologies can be used for this as for traditional IE systems,
using an ontology rather than a flat gazetteer. For rule-based systems,
this is relatively straightforward. For learning-based systems, however,
this is more problematic because training data is required. Collecting
such training data is, however, likely to be a large bottleneck. Unlike
traditional IE systems for which training data exists in domains like news
texts in plentiful form, thanks to efforts from MUC, ACE (ACE, 2004) and
other collaborative and/or competitive programs, there is a dearth of
material currently available for semantic web applications. New training
data needs to be created manually or semi-automatically, which is a time-
consuming and onerous task, although systems to aid such metadata
creation are currently being developed.

3.3.1.2. Automatic Ontology Population

In this task, an OBIE application identifies instances in the text belonging
to concepts in a given ontology, and adds these instances to the ontology
in the correct location. It is important to note that instances may appear
in more than one location in the ontology because of the multidimen-
sional nature of many ontologies and/or ambiguity which cannot or
should not be resolved at this level (see e.g., Felber, 1984; Bowker, 1995
for a discussion).

3.4. APPLYING ‘TRADITIONAL’ IE IN SEMANTIC WEB
APPLICATIONS

In this section, we give a brief overview of some current state-of-the-art
systems which apply traditional IE techniques for semantic web applica-
tions such as annotating web pages with metadata. Unlike ontology-
based IE applications, these do not incorporate ontologies into the
system, but either use ontologies as a bridge between the IE system
and the final annotation (as with AERODAML) or rely on the user to
provide the relevant information through manual annotation (as with the
Amilcare-based tools).

38 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

3.4.1. AeroDAML

AeroDAML (Kogut and Holmes, 2001) is an annotation tool created by
Lockheed Martin, which applies IE techniques to automatically generate
DAML annotations from web pages. The aim is to provide naive users
with a simple tool to create basic annotations without having to learn
about ontologies, in order to reduce time and effort and to encourage
people to semantically annotate their documents. AeroDAML links most
proper nouns and common types of relations with classes and properties
in a DAML ontology.

There are two versions of the tool: a web-enabled version which uses a
default generic ontology, and a client-server version which supports
customised ontologies. In both cases, the user enters a URI (for the
former) and a filename (for the latter) and the system returns the DAML
annotation for the webpage or document. It provides a drag-and-drop
tool to create static (manual) ontology mappings, and also includes some
mappings to predefined ontologies.

AeroDAML consists of the AeroText IE system, together with compo-
nents for DAML generation. A default ontology which directly correlates
to the linguistic knowledge base used by the extraction process is used to
translate the extraction results into a corresponding RDF model that uses
the DAML+OIL syntax. This RDF model is then serialised to produce the
final DAML annotation. The AeroDAML ontology comprises two layers:
a base layer comprising the common knowledge base of AeroText, and
an upper layer based on WordNet. AeroDAML can generate annotations
consisting of instances of classes such as common nouns and proper
nouns, and properties, of types such as coreference, Organisation to
Location, Person to Organization.

3.4.2. Amilcare

Amilcare (Ciravegna and Wilks, 2003) is an IE system which has been
integrated in several different annotation tools for the Semantic Web. It
uses machine learning (ML) to learn to adapt to new domains and
applications using only a set of annotated texts (training data). It has
been adapted for use in the Semantic Web by simply monitoring the
kinds of annotations produced by the user in training, and learning how
to reproduce them. The traditional version of Amilcare adds XML
annotations to documents (inline markup); the Semantic Web version
leaves the original text unchanged and produces the extracted informa-
tion as triples of the form (annotation, startPosition, endPosition) (stand-
off markup). This means that it is left to the annotation tool and not
the IE system to decide on the format of the ultimate annotations
produced.

APPLYING "TRADITIONAL" [E IN SEMANTIC WEB APPLICATIONS 39

In the Semantic Web version, no knowledge of IE is necessary; the user
must simply define a set of annotations, which may be organised as an
ontology where annotations are associated with concepts and relations.
The user then manually annotates the text using some interface con-
nected to Amilcare, as described in the following systems. Amilcare
works by preprocessing the texts using GATE’s IE system ANNIE
(Cunningham et al., 2002), and then uses a supervised machine learning
algorithm to induce rules from the training data.

3.4.3. MnM

MnM (Motta et al., 2002) is a semantic annotation tool which provides
support for annotating web pages with semantic metadata. This support
is semi-automatic, in that the user must provide some initial training
information by manually annotating documents before the IE system
(Amilcare) can take over. It integrates a web browser, an ontology editor,
and tools for IE, and has been described as ‘an early example of next-
generation ontology editors’ (Motta et al., 2002), because it is web-based
and provides facilities for large-scale semantic annotation of web pages.
It aims to provide a simple system to perform knowledge extraction tasks
at a semi-automatic level.
There are five main steps to the procedure:

the user browses the web;

the user manually annotates his chosen web pages;

the system learns annotation rules;

the system tests the rules learnt;

the system takes over automatic annotation, and populate ontologies
with the instances found. The ontology population process is semi-
automatic and may require intervention from the user.

3.4.4. S-Cream

S-CREAM (Semi-automatic CREAtion of Metadata) (Handschuh et al.,
2002) is a tool which provides a mechanism for automatically annotating
texts, given a set of training data which must be manually created by the
user. It uses a combination of two tools: Onto-O-Mat, a manual annota-
tion tool which implements the CREAM framework for creating rela-
tional metadata (Handschuh et al., 2001), and Amilcare.

As with MnM, S-CREAM is trainable for different domains, provided
that the user creates the necessary training data. It essentially works
by aligning conceptual markup (which defines relational metadata)
provided by Ont-O-Mat with semantic markup provided by Amilcare.
This problem is not trivial because the two representations may be
very different. Relational metadata may provide information about

40 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

relationships between instances of classes, for example that a certain
hotel is located in a certain city. SSCREAM thus supports metadata
creation with the help of a traditional IE system, and also provides
other functionalities such as web crawler, document management sys-
tem, and a meta-ontology.

3.4.5. Discussion

One of the problems with these annotation tools is that they do not
provide the user with a way to customise the integrated language
technology directly. While many users would not need or want such
customisation facilities, users who already have ontologies with rich
instance data will benefit if they can make this data available to the IE
components. However, this is not possible when ‘traditional’ IE methods
like Amilcare are used because they are not aware of the existence of the
user’s ontology.

The more serious problem however, as discussed in the S-CREAM
system (Handschubh et al., 2002), is that there is often a gap between the
annotations and their types produced by IE and the classes and proper-
ties in the user’s ontology. The proposed solution is to write some kind of
rules, such as logical rules, to achieve this. For example, an IE system
would typically annotate London and UK as locations, but extra rules are
needed to specify that there is a containment relationship between the
two (for other examples see (Handschuh et al., 2002)). However, rule
writing of the proposed kind is too difficult for most users and a new
solution is needed to bridge this gap.

Ontology-Based IE systems for semantic annotation, to be discussed
next, address both problems:

o The ontology is used as a resource during the IE process and therefore
it can benefit from existing data such as names of customers from a
billing database.

e Instance disambiguation is performed as part of the semantic annota-
tion process, thus removing the need for user-written rules.

3.5. ONTOLOGY-BASED IE
3.5.1. Magpie

Magpie (Domingue et al., 2004) is a suite of tools which supports the
interpretation of webpages and ‘collaborative sense-making’. It annotates
webpages with metadata in a fully automatic fashion and needs no
manual intervention by matching the text against instances in the
ontology. It automatically populates an ontology from relevant web
sources, and can be used with different ontologies. The principle behind

ONTOLOGY-BASED IE 41

it is that it uses an ontology to provide a very specific and personalised
viewpoint of the webpages the user wishes to browse. This is important
because different users often have different degrees of knowledge and/
or familiarity with the information presented, and have different brows-
ing needs and objectives.

Magpie’s main limitation is that it does not perform automatic popula-
tion of the ontology with new instances, that is, it is restricted only to
matching mentions of already existing instances.

3.5.2. Pankow

The PANKOW system (Pattern-based Annotation through Knowledge
on the Web) (Cimiano et al., 2004) exploits surface patterns and the
redundancy on the Web to categorise automatically instances from text
with respect to a given ontology. The patterns are phrases like: the
(INSTANCE) (CONCEPT) (e.g. the Ritz hotel) and (INSTANCE) is a
(CONCEPT) (e.g., Novotel is a hotel). The system constructs patterns by
identifying all proper names in the text (using a part-of-speech tagger)
and combining each one of them with each of the 58 concepts from their
tourism ontology into a hypothesis. Each hypothesis is then checked
against the Web via Google queries and the number of hits is used as a
measure of the likelihood of this pattern being correct.

The system’s best performance on this task in fully automatic mode is
249 % while the human performance is 62.09 %. However, when the
system is used in semi-automatic mode, that is, it suggests the top five
most likely concepts and the user chooses among them, then the
performance goes up to 49.56 %.

The advantages of this approach are that it does not require any text
processing (apart from POS tagging) or any training data. All the
information comes from the web. However, this is also a major dis-
advantage because the method does not compare the context in which
the proper name occurs in the document to the contexts in which it
occurs on the Web, thus making it hard to classify instances with the
same name that belong to different classes in different contexts (e.g.,
Niger can be a river, state, country, etc.). On the other hand, while IE
systems are more costly to set up, they can take context into account
when classifying proper names.

3.5.3. SemTag

The SemTag system (Dill et al., 2003) performs large-scale semantic
annotation with respect to the TAP ontology." It first performs a lookup

Thttp:/ /tap.stanford.edu/tap/papers.thml

42 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

phase annotating all possible mentions of instances from the TAP
ontology. In the second, disambiguation phase, SemTag uses a vector-
space model to assign the correct ontological class or determine that this
mention does not correspond to a class in TAP. The disambiguation is
carried out by comparing the context of the current mention with the
contexts of instances in TAP with compatible aliases, using a window of
10 words either side of the mention.

The TAP ontology, which contains about 65,000 instances, is very
similar in size and structure to the KIM Ontology and instance base
discussed in Section 5.5. (e.g., each instance has a number of lexical
aliases). One important characteristic of both ontologies is that they are
very lightweight and encode only essential properties of concepts and
instances. In other words, the goal is to cover frequent, commonly
known and searched for instances (e.g., capital cities, names of pre-
sidents), rather than to encode an extensive set of axioms enabling deep,
Cyc-style reasoning. As reported by (Mahesh et al., 1996), the heavy-
weight logical approach undertaken in Cyc is not appropriate for many
NLP tasks.

The SemTag system is based on a high-performance parallel architec-
ture -Seeker, where each node annotates about 200 documents per
second. The demand for such parallelism comes from the big volumes
of data that need to be dealt with in many applications and make
automatic semantic annotation the only feasible option. A parallel
architecture of a similar kind is currently under development for KIM
and, in general, it is an important ingredient of large-scale automatic
annotation approaches.

3.5.4. Kim

The Knowledge and Information Management system (KIM) is a product
of OntoText Lab which is currently being used and further developed in
SEKT (Kiryakov et al., 2005).

KIM is an extensible platform for semantics-based knowledge manage-
ment which offers IE-based facilities for metadata creation, storage and
conceptual search. The system has a server-based core that performs
ontology-based IE and stores results in a central knowledge base. This
server platform can then be used by diverse applications as a service for
annotating and querying document spaces.

The ontology-based Information Extraction in KIM produces anno-
tations linked both to the ontological class and to the exact individual
in the instance base. For new (previously unknown) entities, new
identifiers are allocated and assigned; then minimal descriptions
are added to the semantic repository. The annotations are kept
separately from the content, and an API for their management is
provided.

ONTOLOGY-BASED IE 43

The instance base of KIM has been pre-populated with 200 000
entities of general importance that occur frequently in documents. The
majority are different kinds of locations: continents, countries, cities, etc.
Each location has geographic co-ordinates and several aliases (usually
including English, French, Spanish and sometimes the local transcrip-
tion of the location name) as well as co-positioning relations (e.g.,
subRegionOf.).

The difference between TAP and KIM instance base is in the level of
ambiguity—TAP has few entities sharing the same alias, while KIM has a
lot more, due to its richer collection of locations. Another important
difference between KIM and SemTag is their goal. SemTag aims only at
accurate classification of the mentions that were found by matching the
lexicalisations in the ontology. KIM, on the other hand, is also aiming at
finding all mentions, that is coverage, as well as accuracy. The latter is a
harder task because there tends to be a trade-off between accuracy and
coverage. In addition, SemTag does not attempt to discover and classify
new instances, which are not already in the TAP ontology. In other words,
KIM performs two tasks—ontology population with new instances and
semantic annotation, while SemTag performs only semantic annotation.

3.5.5. KIM Front-ends

KIM has a number of different front-end user interfaces and ones
customised for specific applications are easily added. These front-ends
provide full access to KIM functionality, including semantic indexing,
semantic repositories, metadata annotation services and document and
metadata management. Some example front-ends appear below.

The KIM plug-in for Internet Explorer” provides lightweight delivery
of semantic annotations to the end user. On its first tab, the plug-in
displays the ontology and each class has a color used for highlighting the
metadata of this type. Classes of interest are selected by the user via
check boxes. The user requests the semantic annotation of the currently
viewed page by pressing the Annotate button. The KIM server returns
the automatically created metadata with its class and instance identi-
fiers. The results are highlighted in the browser window, and are
hyperlinked to the KIM Explorer, which displays further information
from the ontology about a given instance (see top right window).

The text boxes on the bottom right of Figure 3.3 that contain the type
and unique identifier are seen as tool-tips when the cursor is positioned
over a semantically annotated entity.

Selecting the ‘Entities’ tab of the plug-in generates a list of entities
recognised in the current document, sorted by frequency of appearance,
as shown in Figure 3.4. This tab also has an icon to execute a semantic

2KIM Plug-in is available from http://www.ontotext.com/kim

44

SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

Fls Edt View Favorites Tooks Help
¢ address | (8] betp:flnews. b co.uk 1 business 1450235, stm . George W. Bush, a parson, [Trusted™]
KM Fhugn * |us budget to be u "George W. Bush”
Mia © Wlewr P Abak President Bush Is to u hasalias Gearge W. Bush
ETemy | |budgetforthe hasalias George William Bush
[Abmact | FEREEY vith concdirn about)] hasdlias G.W. Bush
% [Happening 8l record gap bet: hasalias Bush
= 4 Obiect _| a andfl hasai Gearge Bush
= B Agert 5l spending. hasalias Bush Jr.
B Digarczation 5 hasPosition President
= [Pesson _| In contragf to the Clinton HasPostion ot
4 Man _| years ernment spending :
B4 woman | has riJs sharply and tax hasPositian incumbent)
[BusinessObiect W reveryles fallen so producing l|
&[4 Informatiorfiesouce B recil budgat deficit. S
= [Locston _| :
+ [Astronomcallbiect ol Mr Bush has pledged to reduce the $500bn deficit by a third in
- g Facity m a year.
GlobaFegon &l
= [LandRegon - As spending on military and security increases, Democrats
s g Nuﬁmuml.:m M| | foar it will be projects for the poor that suffer. et
th Poguat ’: ' .ontotext rfs#Conkinent T.6
T E Shesthd .J The conventional wisdom used to be that the | Espsnt and i
5 Walefiegon _| the right reigned spending in, says the BEl's North America
® é P .M business correspondent Staphen Evans. Type: TVComparty
[Statement _|
[Vehice m But that world has been 66 He's promising a trillion-
turned upside down under tax cut and a trip to
Fresident Bush, he adds., he has a half-
trillion-: llll' deficit
B Cisses [Evies | 6 Corbp] | American conservatives are .y pon |l emmontotet comps Tt
= =aid tn feel lat down hv a —
¥ Placa Links B
& © Intermet 7

Figure 3.3. KIM plug-in showing the KIM ontology and KB explorer.

WHEL ne |
|| Fle Edt vew Favortes Toos Hel
|} Address .,']hmu:rudm.- - s
KIM Phugin %
GArEee) i Cee] 3 fout
(D George W. Bush - (8) s} Docurment Query Result
D riten - (4) o
) st (1) @ | o pate Come
(D) Uniked States - (3) | | o4712/2003 21:01 Quotes on Bush's Steel Tanff Dacizion
0 Howard Dean Excuses - (2) Bl | g4/12/2003 22:31
Drears -2) Bl | os/12/2003 03:31
bt | 220082301
el @ | 24/mu/zo0e 22001
@ 2005+ (1) m| | 09/12/200321:58
Dsc-(1) @ | Da/i2/z00a 1s:32
@ o8 Grkon- (1) m| | 29/01/200418:45
D coming year - {1) m| | D3/12/2003 05i17
@ tonday - (1) @| | 02/12/2003 18:54 Brotests Grest fush at Steel-Country Fund-Raisar
(D Harth Amanca - (1) m| | o2rizrzoos 21:24 Bush Raises Steel Money Before Tariff Decision
(D November - (1) @f | 24/12/2003 12:10 Rillignaire Sorps, Independent Groups Target Bush
(@) stephen Evens - (1) @| 13f12/2003 15:22 Revigwing 2003, Bush Emphasizes Madicare, Not War
D stephen tocre - (1) @ | 0s/12/2003 15:48 Bush Names Baker Envay on Iragi Debt
Dwe-(1) @] | o07/01/2004 16:16 Bush Campaign Has $99 Million in the Bank
(@ washington - (1) |
1-150f 5131 Documents per page: 15 L) | Ned
[Clasess @ Erewies [£ Conlig] - . . -
© e Pigfine Ouery | | NewOuery | | EdilOuery
a D intermet

Figure 3.4

KIM plug-in: viewing recognised entities.

DETERMINISTIC ONTOLOGY AUTHORING 45

query. The result is then shown as a list of documents. The goal is to
enable users, while browsing and annotating, to find seamlessly other
related documents by selecting one or more entities from the current
document.

Another front-end is the KIM Web UI, which offers a powerful
semantic search interface. This facet of KIM’s capabilities is discussed
further in Chapter 8.

3.6. DETERMINISTIC ONTOLOGY AUTHORING USING
CONTROLLED LANGUAGE IE

Formalising knowledge in ontologies is a high initial barrier to entry for
small organisations and individuals wishing to make data available to
semantic knowledge technology, due to the complexity of the standards
involved and the high level of experience and engineering skills required
by existing ontology authoring environments.

Human language, the most natural method of communication for
people, has very complex structures and a large degree of ambiguity.
As already discussed in earlier sections, this makes it difficult to process
automatically and machines can currently extract a limited amount of the
information therein. On the other side of the coin, formal data that is
rigidly structured is easily processed by machines but hard and unna-
tural for people to use. The approach proposed by us bridges that gap by
defining a controlled language which, while restricted, still feels natural
to people and at the same time is simple enough and unambiguous for
the machines to process.

A controlled language is a subset of a natural language which is
generally designed to be less ambiguous than the complete language
and to include only certain vocabulary terms and grammar rules which
are relevant for a specific task. The idea of controlled languages is not new,
early controlled languages can trace their roots to 1970s Caterpillar
Fundamental English (CFE). The aim there was to restrict the complexity
of the language used (CFE only had 850 terms) so that the text is
unambiguous enough that it can reliably be translated automatically into
a variety of other languages. Further examples are the Caterpillar Techni-
cal English (CTE) which had 70 000 carefully chosen domain-specific terms
or the KANTOO system developed at Carnegie Mellon University.

Though controlled languages can restrict the colourfulness of expres-
sion, they can be used to efficiently communicate concrete information.
In most cases using a CL is an exercise in expressing information more
consistently and concisely.

In order to facilitate knowledge acquisition and maintenance, we
defined a controlled language CLIE CL, modelled to allow maximum

46 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

expressibility within the smallest set of syntactic structures. The limited
number of allowed syntactic sentence structures makes the language
easier to learn, much easier to use than OWL, RDF, or SQL for instance.
While the syntactic structure of the sentences is constrained, the voca-
bulary permitted is unrestricted: apart from a small number of key
phrases that are used to mark phenomena of interest, any terms can be
used freely. This allows for the ontologies created to be open-domain.

The types of actions that are possible are definition of new classes,
creation of hierarchies between classes, definition of object and data-type
properties, creation of instances and setting of property values for
instances.

The greatest advantage of this approach is that it requires essentially no
training; there are no complicated user interfaces to be learnt, there are no
complex formalisms to be understood. The user can simply start from a
simple example which shows all the types of utterances accepted by the
system and continue the ontology authoring work by re-using and modify-
ing those examples provided. After the editing is finished, the resulting
ontology can then be previewed using a simple ontology viewer imple-
mented for this scope. Once the output has been validated, the ontology can
be saved into a variety of formats including RDF(S) and OWL variants.

The language analysis is carried out by an Information Extraction
application based on the GATE language processing framework (Cun-
ningham et al., 2002). It comprises some existing GATE components, that
is the English tokeniser, part-of-speech tagger and morphological analy-
ser, followed by a cascade of finite-state transducers, based on GATE’s
JAPE pattern matching language. The role of the transducers is to search
for patterns over annotations looking for constructs conforming with the
controlled language. In successfully parsed sentences specific tokens are
used to extract information.

The tokeniser separates input into tokens. It identifies words within a
sentence and separates them from punctuation. For example in the
sentence:

There are deliverables.
The tokens are:

[There] [are] [deliverables] [.]

The tagger finds the parts of speech for each of the tokens. In other
words it finds out what kind of a word each of the tokens is; whether it is
a noun, an adjective, a verb, etc.

[There]: existential quantifier
[are]: verb—3rd person singular present
[deliverables]: noun—plural

DETERMINISTIC ONTOLOGY AUTHORING 47

The morphological analyser gives the roots of all the words.

[There]: root—there
[are]: root—be
[deliverables]: root—deliverable

The morphological analyser allows these general types of sentences
which announce existence of classes without the need for using artificial
singular expressions, that is There is deliverable.

The JAPE transducers take the above annotated sentence and look for
and mark noun patterns which are likely candidates for CLASS,
INSTANCE, and other ontological objects. They also look for specific
patterns to extract the information, such as:

There are ———.

which triggers the creation of one or more new classes in the ontology.

The Controlled Language IE (CLIE) application employs a determinis-
tic approach, so that each sentence can be parsed in one way only.
Allowed sentences are unambiguous, so each sentence type is translated
to one type of statement. If parsing fails it will result in a warning and no
ontological output. In certain cases where the input is invalid, the system
will try a less strict analysis mode in order to suggest how such repair
may be effected.

For example the text:

There are projects. There are workpackages, tasks and deliverables.

SEKT is a project. MUSING, ‘Knowledge Web’, and ‘Presto Space’ are projects.

Projects have workpackages. Workpackages can have tasks. WP1, WP2, WP3, WP4,
WP5 and WP6 are workpackages.

SEKT has WP1. MUSING has WP2, WP3 and WP4. ‘Knowledge Web" has WP5
and WP6.

generates the ontology shown in Figure 3.5, which is then saved as
OWL:

The use of linguistic analysis allows for small variations in the surface
form used to name objects (for instance the use of plurals where it feels
appropriate from a linguistic point of view) without affecting the cap-
ability of the system of identifying different references for the same
entity. For example the sentence ‘There are animals’ will create a new
ontology class with the name ‘Animal” and the sentence ‘Cat is a type of
animal” will create a new class with the name ‘Cat’ as a subclass of the
‘Animal’ class. The ‘Animal’ class is referred to in two different ways:
one capitalised and in plural form and another lower case and singular.
There is also support for listing items; so a sentence like ‘There are

48 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

["Messages ® CLIE-1 = 2] CLIE Test Document @ Ontology |

¥ (C) Thing w Direct Types
() Deliverable (€ Project
¥ (! Project wAll Types
I Knowledge Web {C) Project
I MUSING (C] Thing
I Presto_Space W Properties
I Sekt has_Workpackage(WP_2)
© Task has_Workpackage(Wr_3)
v éiWorkna(kage has_Workpackage(WP_4)
I WP_1
I Wp_2
I WP_3
I WP_4
T WPS
I WP_E

Figure 3.5 Ontology generation from natural language.

projects, work packages and deliverables” will lead to the creation of
three new classes: ‘Project’, ‘Work Package’” and ‘Deliverable’. The
names of entities are normalised—first letters are capitalised, spaces
are replaced with underscores and the head word in the case of noun
phrases is shown un-inflected. If this is undesirable, names can be
included in single quotes which will cause them to be used as they
appear in the text.

CLIE can be used in one of two modes—to create a new ontology or to
add information to an existing one. Extending an existing ontology
requires that names of concepts, instance and properties in the text are
first checked against those already in the ontology and only added if
necessary. The domain and range restrictions of properties are also
checked to ensure consistency.

3.7. CONCLUSION

This chapter motivated the need for Semantic Web enabled Human
Language Technology tools and discussed existing systems and out-
standing challenges in this area. It introduced the idea of a ‘language
loop” and showed how HLT can be used to bridge the gap between the
current web of language and the Semantic Web.

A number of practical semantic-based applications using HLT-based
automatic annotation have already been developed successfully in areas
such as market intelligence, financial analysis, media monitoring, etc. For
instance, Ontotext have now released a product for recruitment intelli-
gence, which automatically discovers and consolidates jobs vacancies by
crawling company web pages. The results from the web mining process
are stored in an ontology and conceptual search provides users with
information about the latest vacancies by industry sector, region,

REFERENCES 49

required skills, etc. In addition, analysts can glean market intelligence
from the data by tracking which companies are most active in a given
industry sector; what types of expertise they are looking for; and
consequently what types of services or products might be of interest to
them.

Progress in the development of the Information Society has seen a truly
revolutionary decade. Dot com crash notwithstanding, all our lives have
been radically changed by the advent of widespread public networking.
We believe that a new social revolution is imminent, involving the
transition from Information Society to Knowledge Society.

REFERENCES

ACE. 2004. Annotation Guidelines for Entity Detection and Tracking (EDT).
Available at http://www.ldc.upenn.edu/Projects/ACE/.

Appelt D. 1999. An introduction to information extraction. Artificial Intelligence
Communications 12(3):161-172.

Berners-Lee T. 1999. Weaving the Web. Orion Business Books, London.

Bowker L. 1995. A multidimensional approach to classification in Terminology: Working
with a computational framework. PhD thesis, University of Manchester, England.

Cimiano P, Handschuh S, Staab S. 2004. Towards the self-annotating web. In
Proceedings of WWW'04.

Ciravegna F, Wilks Y. 2003. Designing adaptive information extraction for the
semantic web in Amilcare. In Handschuh S, Staab S, (eds) Annotation for the
Semantic Web, I0S Press, Amsterdam.

Cowie], Lehnert W. 1996. Information extraction. Communications of the ACM
39(1):80-91.

Cunningham H. 2005. Information Extraction, Automatic Encyclopedia of Language
and Linguistics (2nd edn).

Cunningham H, Maynard D, Bontcheva K, Tablan V. 2002. GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applica-
tions. In Proceedings of the 40th Anniversary Meeting of the Association for
Computational Linguistics (ACL’02).

Davies], Fensel D, van Harmelen F (Eds). 2002. Towards the Semantic Web:
Ontology-Driven Knowledge Management. John Wiley & Sons, Ltd: New York.
Dean M, Schreiber G, Bechhofer S, van Harmelen F, Hendler J, Horrocks I,
McGuinness D L, Patel-Schneider P F, Stein L A. 2004. OWL web ontology
language reference: W3C recommendation, W3C, February, available at:

www.w3.org/TR/owl-ref/.

Dill S, Eiron N, Gibson D, Gruhl D, Guha R, Jhingran A, Kanungo T, Rajagopalan
S, Tomkins A, Tomlin JA, Zien JY. 2003. SemTag and Seeker: Bootstrapping the
semantic web via automated semantic annotation. In Proceedings of WWW’ 03.

Domingue], Dzbor M, Motta E. 2004. Magpie: Supporting Browsing and
Navigation on the Semantic Web. In Nunes N, Rich C, (eds). Proceedings
ACM Conference on Intelligent User Interfaces (IUI), pp 191-197.

Felber H. 1984. Terminology Manual. Unesco and Infoterm, Paris.

Fensel D, Hendler J, Wahlster W, Lieberman H (Eds). 2002. Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential. MIT Press: Cambridge,
MA.

50 SEMANTIC ANNOTATION AND HUMAN LANGUAGE TECHNOLOGY

Handschuh S, Staab S, Ciravegna F. 2002. SS~CREAM—Semi-automatic CREAtion
of Metadata. In 13th International Conference on Knowledge Engineering and
Knowledge Management (EKAWO02), Siguenza, Spain, pp 358-372.

Handschuh S, Staab S, Maedche A. 2001. CREAM—Creating relational metadata
with a component-based, ontology-driven framework. In Proceedings of K-CAP
2001, Victoria, BC, Canada.

Humphreys K, Gaizauskas R, Azzam S, Huyck C, Mitchell B, Cunningham H,
Wilks Y. 1998. Description of the LaSIE system as used for MUC-7. In
Proceedings of the Seventh Message Understanding Conference (MUC-7). http://
www.itl.nist.gov/iaui/894.02/-related projects/muc/index.html.

Kiryakov A, Popov B, Terziev I, Manov D, Ognyanoff D. 2005. Semantic
annotation, indexing and retrieval. Journal of Web Semantics 2(1).

Kogut P, Holmes W. 2001. AeroDAML: Applying Information Extraction to
Generate DAML Annotations from Web Pages. In First International Conference
on Knowledge Capture (K-CAP 2001), Workshop on Knowledge Markup and
SemanticAnnotation, Victoria, B.C.

Mahesh K, Kud], Dixon P. 1999. Oracle at TREC8: A Lexical Approach. In
Proceeding of the Eighth Text Retrieval Conference (TREC-8).

Mahesh K, Nirenburg S, Cowie J, Farwell D. 1996. An Assessment of Cyc for
Natural Language Processing. Technical Report MCCS Report, New Mexico
State University.

Moldovan D, Mihalcea R. 2001. Document Indexing Using Named Entities. In Studies
in Informatics and Control, Vol. 10, No. 1.

Motta E, Vargas-Vera M, Domingue J, Lanzoni M, Stutt A, Ciravegna F. 2002.
MnM: Ontology driven semi-automatic and automatic support for semantic
markup. In 13th International Conference on Knowledge Engineering and Knowledge
Management (EKAWO02), Siguenza, Spain, pp 379-391.

Pazienza M T (ed.). 2003. Information Extraction in the Web Era. Springer-Verlag:
New York.

Pustejovsky J, Boguraev B, Verhagen M, Buitelaar P, Johnston M. 1997. Semantic
Indexing and Typed Hyperlinking. In Proceedings of the AAAI Conference, Spring
Symposium, NLP for WWW, Stanford University, CA, pp 120-128.

SAIC. 1998. Proceedings of the Seventh Message Understanding Conference
(MUC-7), http://www.itl.nist.gov/iaui/894.02/related projects/muc/index.
html.

Voorhees E. 1998. Using WordNet for text retrieval. In WordNet: An Electronic
Lexical Database, Fellbaum C (ed.). MIT Press.

4

Ontology Evolution

Stephan Bloehdorn, Peter Haase, York Sure and Johanna Voelker

4.1. INTRODUCTION

In our knowledge-intensive economy, the amount of available knowl-
edge stored, for example, in digital libraries and other knowledge
repositories, increases ever more rapidly, as does our reliance on being
able to locate and exploit relevant information. Knowledge workers rely
heavily on the availability and accessibility of knowledge contained in
such repositories. The sheer mass of knowledge available today, how-
ever, requires sophisticated support for searching and, often considered
as equally important, personalization.

Ontology and metadata technology is one approach for addressing
such challenges (Davies et al., 2005). Ontologies (Staab and Studer, 2004)
enable knowledge to be made explicit, formalise the relevant underlying
view of the world (domain model) and make such models machine
processable and interpretable. The use of ontologies and associated
metadata offers the prospect of significant improvement to the informa-
tion retrieval task, as discussed in more detail in Chapter 8. The
classification of documents according to a given topic hierarchy facil-
itates structuring and browsing of huge document collections; semantic
annotation of individual documents improves the precision of search
queries or even allows for sophisticated question answering; and seman-
tic user profiles representing the current working context of the user can
be used to guide searching, browsing, and alerting.

Ontologies, to be effective, need to change as fast as the parts of the
world they describe. There are two main challenges in adapting ontologies.

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

52 ONTOLOGY EVOLUTION

The evolution of ontologies should reflect both the changing interests of
people and the changing data, for example the documents stored in a
digital library. In this chapter, we present an overview of the state-of-the-
art in ontology evolution with a special focus on change discovery for
ontologies. We would like to mention that our approach supports specific
steps of the DILIGENT methodology for ontology engineering, described
in Chapter 9.

In this work, we will distinguish change capturing and change discovery.
The task of change capturing can be defined as the generation of ontology
changes from explicit and implicit requirements. Explicit requirements
are generated, for example, by ontology engineers who want to adapt
the ontology to new requirements or by the end-users who provide
explicit feedback about the usability of ontology entities. We call
the changes resulting from this kind of requirements top-down changes.
Implicit requirements leading to so-called bottom-up changes are reflected
in the behavior of the system and can be induced by means of change
discovery methods. While usage-driven changes arise out of usage
patterns of the ontology, data-driven changes are generated by modifica-
tions of the reference-data such as text documents or a database which
contains the knowledge modeled by the ontology.

The remainder of this chapter is structured as follows. In Section 2, we
present an overview of the state-of-the-art in ontology evolution. In
Section 3, we present a logical architecture for ontology evolution,
exemplified in the context of a digital library. The main components of
this logical architecture are then described in detail. In Sections 4 and 5,
we illustrate techniques that deal with usage-driven ontology changes
and data-driven ontology changes, respectively. In the former approach,
changes are recommended based on the actual usage of the ontologies; in
the latter approach we make use of the constant flows of documents
coming into, for example a digital library to keep ontologies up-to-date.
Finally, we conclude in Section 6.

4.2. ONTOLOGY EVOLUTION: STATE-OF-THE-ART

In this section, we provide an overview of the state-of-the-art in ontology
evolution. In Stojanovic ef al. (2002), the authors identify a possible
six-phase evolution process (as shown in Figure 4.1), the phases being;:

Capturing —» Representation—» %??ﬁ:,:':: —» Propagation —» Implementation| —» Validation

Core component

Figure 4.1 Ontology evolution process.

ONTOLOGY EVOLUTION: STATE-OF-THE-ART 53

(1) change capturing, (2) change representation, (3) semantics of change,
(4) change implementation, (5) change propagation, and (6) change
validation. In the following, we will use this evolution process as the
basis for an analysis of the state-of-the-art.

4.2.1. Change Capturing

The process of ontology evolution starts with capturing changes either
from explicit requirements or from the result of change discovery methods,
which induce changes from patterns in data and usage. Explicit require-
ments are generated, for example, by ontology engineers who want to
adapt the ontology to new requirements or by the end-users who provide
the explicit feedback about the usability of ontology entities. The changes
resulting from such requirements are called top-down changes. Implicit
requirements leading to so-called bottom-up changes are reflected in the
behavior of the system and can be discovered only through the analysis
of this behavior. Stojanovic (2004) defines different types of change
discovery, we put in this work a focus on usage-driven and data-driven
change discovery.

Usage-driven changes result from the usage patterns created over a
period of time. Once ontologies reach certain levels of size and complex-
ity, the decision about which parts remain relevant and which are
outdated is a huge task for ontology engineers. Usage patterns of
ontologies and their metadata allow the detection of often or less often
used parts, thus reflecting the interests of users in parts of ontologies.
They can be derived by tracking querying and browsing behaviors of
users during the application of ontologies as shown in Stojanovic et al.
(2003b).

Stojanovic (2004) defines data-driven change discovery as the problem
of deriving ontological changes from the ontology instances by applying
techniques such as data-mining, Formal Concept Analysis (FCA) or
various heuristics. For example, one possible heuristic might be: if no
instance of a concept C uses any of the properties defined for C, but only
properties inherited from the parent concept, C is not necessary. An
implementation of this notion of data-driven change discovery is
included in the KAON tool suite (Maedche et al., 2003).

Here we use a more general definition of data-driven change discovery
based on the assumption that an ontology is often learned or constructed
in order to reflect the knowledge more or less implicitly given by a
number of documents or a database. Therefore, any change to the
underlying data set, such as a newly added document or a changed
database entry, might require an update of the ontology. Data-driven
change discovery can be defined as the task of deriving ontology changes
from modifications to the knowledge from which the ontology has been
constructed. One difference between these two definitions is that the

54 ONTOLOGY EVOLUTION

latter always assumes an existing ontology, while the former can be
applied to an empty ontology as well, but requires an evolving data set
associated with this ontology.

Ontology engineering follows well-established processes such as
described by Sure et al. (2002a). So far, one has distinguished between
manual and (semi-)automatic approaches to ontology engineering. If the
ontology creation process is done manually, for example by a knowledge
engineer in collaboration with domain experts supported by an ontology
engineering system such as OntoEdit (Sure et al., 2002b), then both
general and concrete relationships need to be held in the mind of this
knowledge engineer. This requires a significant manual effort for codify-
ing knowledge into ontologies. On the other hand, if the process of
creating the ontology is done semi- or fully automatically with the help of
an ontology learning system such as Text20nto (Cimiano and Vélker,
2005) these general and concrete relationships are generated and repre-
sented explicitly by the system. Of course, the first kind of knowledge is
always given by the specific implementation of the ontology learning
algorithms which are used. However, in order to enable an existing
ontology learning system to support data-driven change discovery, it is
necessary to make it store all available knowledge about concrete
relationships between ontology entities and the data set.

4.2.2. Change Representation

To resolve changes, they have to be identified and represented in a
suitable format which means that the change representation needs to be
defined for a given ontology model. Changes can be represented on
various levels of granularity, for example as elementary or complex
changes.

The set of ontology change operations depends heavily on the under-
lying ontology model. Most existing work on ontology evolution builds
on frame-like or object models, centred around classes, properties, etc.

Stojanovic (2004) derives a set of ontology changes for the KAON
ontology model. The author specifies fine-grained changes that can be
performed in the course of the ontology evolution. They are called
elementary changes, since they cannot be decomposed into simpler
changes. An elementary change is either an add or remove transformation,
applied to an entity in the ontology model. The author also mentions that
this level of change representation is not always appropriate and there-
fore introduces the notion of composite changes: a composite change is
an ontology change that modifies (creates, removes or changes) one and
only one level of neighborhood of entities in the ontology, where the
neighborhood is defined via structural links between entities. Examples
for such composite changes would be: ‘Pull concept up,” “Copy Concept,
‘Split Concept,” etc. Further, the author introduces complex changes: a

ONTOLOGY EVOLUTION: STATE-OF-THE-ART 55

complex change is an ontology change that can be decomposed into any
combination of at least two elementary or composite ontology changes.
As a result, the author places the identified types of changes into a
taxonomy of changes.

Klein and Noy (2003) also state that information about changes can be
represented in many different ways. They describe different representa-
tions and propose a framework that integrates them. They show how
different representations in the framework are related by describing
some techniques and heuristics that supplement information in one
representation with information from other representations and present
an ontology of change operations, which is the kernel of the framework.
Klein (2004) describes a set of changes for the OWL ontology language,
based on an OWL meta-model. Unlike the previously mentioned set of
KAON ontology changes, the author considers also Modify operations in
addition to Delete and Add operations. Further, the taxonomy contains Set
and Unset operations for properties (e.g., to set transitivity). The author
introduces an extensive terminology of change operations along two
dimensions: atomic versus composite and simple versus rich. Atomic opera-
tions are operations that cannot be subdivided into smaller operations,
whereas composite operations provide a mechanism for grouping opera-
tions that constitute a logical entity. Simple changes can be detected by
analyzing the structure of the ontology only, whereas rich changes
incorporate information about the implication of the operation on the
logical model of the ontology, for their identification one thus needs to
query the logical theory of the ontology. The author also proposes a
method for finding complex ontology changes. It is based on a set of rules
and heuristics to generate a complex change from a set of basic changes.
Both Stojanovic (2004) and Klein (2004) present an ‘ontology for ontology
changes’ for their respective ontology language and identified change
operations.

Another form of change representation for OWL is defined by Haase
and Stojanovic (2005), who follow an ontology model influenced by
Description Logics, which treats an ontology as a knowledge base
consisting of a set of axioms. Accordingly, they allow the atomic change
operations of adding and removing axioms. Obviously, representing
changes at the level of axioms is very fine grained. However, based on
this minimal set of atomic change operations, it is possible to define more
complex, higher-level descriptions of ontology changes. Composite
ontology change operations can be expressed as a sequence of atomic
ontology change operations. The semantics of the sequence is the chain-
ing of the corresponding functions.

Models for change representations for other ontology languages exist,
too: a formal method for tracking changes in the RDF repository is
proposed in Ognyanov and Kiryakov (2002). The RDF statements are
pieces of knowledge they operate on. The authors argue that during
ontology evolution, the RDF statements can be only deleted or added,

56 ONTOLOGY EVOLUTION

but not changed. Higher levels of abstraction of ontology changes such as
composite and complex ontology changes are not considered at all in that
approach.

4.2.3. Semantics of Change

The ontology change operations need to be managed such that the
ontology remains consistent throughout. The consistency of an ontology
is defined in terms of consistency conditions, or invariants that must be
satisfied by the ontology. The meaning of consistency depends heavily
on the underlying ontology model. It can for example be defined using a
set of constraints or it can be given a model-theoretic definition. In the
following we provide an overview of various notions of consistency and
approaches for the realization of the changes.

Consistency: Stojanovic (2004) defines consistency as: ‘An ontology is
defined to be consistent with respect to its model if and only if it
preserves the constraints defined for the underlying ontology model.

For example, in the KAON ontology model, the consistency of ontol-
ogies is defined using a set of constraints, called invariants. These
invariants state for example that the concept hierarchy has to be a
directed acyclic graph.

In Haase and Stojanovic (2005), the authors describe the semantics of
change for the consistent evolution of OWL ontologies, considering the
structural, logical, and user-defined consistency conditions:

o Structural Consistency ensures that the ontology obeys the constraints
of the ontology language with respect to how the constructs of the
ontology language are used.

o Logical Consistency regards the formal semantics of the ontology:
viewing the ontology as a logical theory, an ontology as logically
consistent if it is satisfiable, meaning that it does not contain contra-
dicting information.

o User-defined Consistency: Finally, there may be definitions of consis-
tency that are not captured by the underlying ontology language itself,
but rather given by some application or usage context. The conditions
are explicitly defined by the user and they must be met in order for the
ontology to be considered consistent.

Stojanovic (2004) describes and compares two approaches to verify
ontology consistency:

1. a posteriori verification, where first the changes are executed, and then
the updated ontology is checked to determine whether it satisfies the
consistency constraints.

2. a priori verification, which defines a respective set of preconditions for
each change. It must be proven that, for each change, the consistency

ONTOLOGY EVOLUTION: STATE-OF-THE-ART 57

will be maintained if (1) an ontology is consistent prior to an update
and (2) the preconditions are satisfied.

Realization: Stojanovic et al. (2002, 2003a) describe two approaches for
the realization of the semantics of change, a procedural and a declarative
one, respectively. In both these approaches, the KAON ontology model is
assumed. The two approaches were adopted from the database commu-
nity and followed to ensure ontological consistency (Franconi et al., 2000):

1. Procedural approach: this approach is based on the constraints, which
define the consistency of a schema, and definite rules, which must be
followed to maintain constraints satisfied after each change.

2. Declarative approach: this approach is based on the sound and complete
set of axioms (provided with an inference mechanism) that formalises
the dynamics of the evolution.

In Stojanovic et al. (2003a) (declarative approach), the authors present
an approach to model ontology evolution as reconfiguration-design
problem solving. The problem is reduced to a graph search where the
nodes are evolving ontologies and the edges represent the changes that
transform the source node into the target node. The search is guided by
the constraints provided partially by the user and partially by a set of
rules defining ontology consistency. In this way they allow a user to
specify an arbitrary request declaratively and ensure its resolution.

In Stojanovic et al. (2002) (procedural approach), the authors focus on
providing the user with capabilities to control and customize the realiza-
tion of the semantics of change. They introduce the concept of an
evolution strategy encapsulating policy for evolution with respect to
the user’s requirements. To resolve a change, the evolution process needs
to determine answers at many resolution points—branch points during
change resolution were taking a different path will produce different
results. Each possible answer at each resolution point is an elementary
evolution strategy. A common policy consisting of a set of elementary
evolution strategies—each giving an answer for one resolution point—is
an evolution strateqy and is used to customize the ontology evolution
process. Thus, an evolution strategy unambiguously defines the way
elementary changes will be resolved. Typically a particular evolution
strategy is chosen by the user at the start of the ontology evolution
process.

A similar approach is followed by Haase and Stojanovic (2005) for the
consistent evolution of OWL ontologies: here resolution strategies map
each consistency condition to a resolution function, which returns for a
given ontology and an ontology change operation an additional change
operation. Further it is required that for all possible ontologies and for all
possible change operations, the assigned resolution function generates
changes, which—applied to the ontology—result in an ontology that
satisfies the consistency condition.

58 ONTOLOGY EVOLUTION

The semantics of OWL ontologies is defined via a model theory,
which explicates the relationship between the language syntax and
the model of a domain: an interpretation satisfies an ontology, if it
satisfies each axiom in the ontology. Axioms thus result in semantic
conditions on the interpretations. Consequently, contradictory axioms
will allow no possible interpretations. Please note that because of
the monotonicity of the logic, an ontology can only become inconsis-
tent by adding axioms: if a set of axioms is satisfiable, it will still be
satisfiable when any axiom is deleted. Therefore, the consistency only
needs to be checked for ontology change operations that add axioms to
the ontology.

The goal of the resolution function is to determine a set of axioms to be
removed, in order to obtain a logically consistent ontology with ‘minimal
impact’ on the existing ontology. Obviously, the definition of minimal
impact may depend on the particular user requirements. A very simple
definition could be that the number of axioms to be removed should be
minimized. More advanced definitions could include a notion of con-
fidence or relevance of the axioms. Based on this notion of ‘minimal
impact” we can define an algorithm that generates a minimal number of
changes that result in a maximally consistent subontology, that is a sub-
ontology to which no axiom from the original ontology can be added
without losing consistency.

In many cases it will not be feasible to resolve logical inconsistencies
in a fully automated manner. In this case, an alternative approach
for resolving inconsistencies allows the interaction of the user to
determine which changes should be generated. Unlike the first appro-
ach, this approach tries to localize the inconsistencies by determin-
ing a minimal inconsistent subontology, which intuitively is a minimal
set of contradicting axioms. Once we have localized this minimal set,
we present it to the user. Typically, this set is considerably smaller
than the entire ontology, so that it will be easier for the user to
decide how to resolve the inconsistency. Algorithms to find maximally
consistent and minimally inconsistent subontologies based on the
notion of a selection function are described in Haase and Stojanovic
(2005).

Finally, it should be noted that there exist other approaches to deal
with inconsistencies, for example, Haase et al. (2005) compare consistent
evolution of OWL ontologies with other approaches in a framework for
dealing with inconsistencies in changing ontologies.

4.2.4. Change Propagation

Ontologies often reuse and extend other ontologies. Therefore, an onto-
logy update might potentially corrupt ontologies depending (through
inclusion, mapping integration, etc.) on the modified ontology and

ONTOLOGY EVOLUTION: STATE-OF-THE-ART 59

consequently, all the artefacts based on these ontologies. The task of the
change propagation phase of the ontology evolution process is to ensure
consistency of dependent artefacts after an ontology update has been
performed. These artefacts may include dependent ontologies, instances,
as well as application programs using the ontology.

Maedche et al. (2003) present an approach for evolution in the
context of dependent and distributed ontologies. The authors define
the notion of Dependent Ontology Consistency: a dependent ontology is
consistent if the ontology itself and all its included ontologies, observed
alone and independently of the ontologies in which they are reused, are
single ontology consistent. Push-based and Pull-based approaches for the
synchronization of dependent ontologies are compared. The authors
follow a push-based approach for dependent ontologies on one node
(nondistributed) and present an algorithm for dependent ontology
evolution.

Further, for the case of multiple ontologies distributed over multiple
nodes, Maedche et al. (2003) define Replication Ontology Consistency
[an ontology is replication consistent if it is equivalent to its original
and all its included ontologies (directly and indirectly) are replication
consistent]. For the synchronization between originals and replicas, they
follow a pull-based approach.

4.2.5. Change Implementation

The role of the change implementation phase of the ontology evolution
process is (i) to inform an ontology engineer about all consequences of a
change request, (ii) to apply all the (required and derived) changes, and
(iii) to keep track of performed changes.

Change Notification: In order to avoid performing undesired changes, a
list of all implications for the ontology and dependent artefacts should be
generated and presented to the ontology engineer, who should then be
able to accept or abort these changes.

Change Application: The application of a change should have transac-
tional properties, that is (A) Atomicity, (C) Consistency, (I) Isolation, and
(D) Durability. The approach of Stojanovic (2004) realizes this require-
ment by the strict separation between the request specification and the
change implementation. This allows the set of change operations to be
easily treated as one atomic transaction, since all the changes are applied
at once.

Change Logging: There are various ways to keep track of the performed
changes. Stojanovic (2004) proposes an evolution log based on an evolution
ontology for the KAON ontology model. The evolution ontology covers
the various types of changes, dependencies between changes (causal
dependencies as well as ordering), as well as the decision-making
process.

60 ONTOLOGY EVOLUTION

4.2.6. Change Validation

There are numerous circumstances where it can be desirable to reverse
the effects of the ontology evolution, as for example in the following cases:

e The ontology engineer may fail to understand the actual effect of the
change and approve a change which should not be performed.

e It may be desired to change the ontology for experimental purposes.

e When working on an ontology collaboratively, different ontology
engineers may have different ideas about how the ontology should
be changed.

It is the task of the change validation phase to recover from these
situations. Change validation enables justification of performed changes
or undoing them at user’s request. Consequently, the usability of the
ontology evolution system is increased.

4.3. LOGICAL ARCHITECTURE

In this section, we present a logical architecture tailored to support the
evolution of ontologies in a digital library or other electronic information
repositories. Figure 4.2 illustrates the connections between the compo-
nents of the overall architecture.

Knowledge s
Worker

Knowledge Portal

Recommendations
for Ontology Changes
|w)

o
o
c
3
[0}

2
w
Q0
w
©

insert ﬂ
delete

Usage-driven Data-driven
Change Change
Discovery Discovery

Evolution Management Infrastructure

Figure 4.2 Logical architecture.

LOGICAL ARCHITECTURE 61

In this architecture, a knowledge worker interacts with a knowledge
portal to access the content of the digital library, which comprises several
document databases, organized using ontologies. The interaction is
recorded in a usage log. This usage information and the information
about changes in the document base are exploited to recommend
changes to the ontologies, thus closing the loop with the knowledge
worker.

Knowledge Worker: The knowledge worker primarily consumes knowl-
edge from the digital library. He uses the digital library to fulfill a
particular information need. However, a knowledge worker may also
contribute to the digital library, either by contributing content or by
organizing the existing content, providing metadata, etc. In particular, a
knowledge worker can take the role of an ontology engineer.

Knowledge Portal: The knowledge worker interacts with the knowledge
portal as the user interface. It allows the user to search the library’s
contents, and it presents the contents in an organized way. The knowl-
edge portal may also provide the knowledge worker with information in
a proactive manner, for example by notification, etc.

Document Base: The document base comprises a corpus of documents.
In the context of the digital library, these documents are typically text
documents, but may also include multimedia content such as audio,
video, and images. While we treat the document as one logical unit, it
may actually consist of a number of distributed sources. The content of
the document base typically is not static, but changes over time: new
documents come in, but also documents may be removed from the
document base.

Ontologies: Ontologies are the basis for rich, semantic descriptions
of the content in the digital library. Here, we can identify two main
modules of the ontology: the application ontology describes different
generic aspects of bibliographic metadata (such as author, creation
data) and are valid across various bibliographic sources. Domain ontolo-
gies describe aspects that are specific to particular domains and are
used as a conceptual backbone for structuring the domain information.
Such a domain ontology typically comprises conceptual relations, such
as a topic hierarchy, but also richer taxonomic and nontaxonomic
relations.

While the application ontology can be assumed to be fairly static, the
domain ontologies must be continuously adapted to the changing needs.
The ontologies are used for various purposes: first of all, the documents
in the document base are annotated and classified according to the
ontology. This ontological metadata can then be exploited for advan-
ced knowledge access, including navigation, browsing, and semantic
searches. Finally, the ontology can be used for the visualization of
results, for example for displaying the relationships between information
objects.

Usage Log: The interaction of the knowledge worker with the know-
ledge portal is recorded in a usage log. Of particular interest is how

62 ONTOLOGY EVOLUTION

the ontology has been used in the interaction, that is which elements
have been queried, which paths have been navigated, etc. By tracking the
users’ interactions with the application in a log file, it is possible to collect
useful information that can be used to assess the main interests of
the users. In this way, we are able to obtain implicit feedback and to
extract ontology change requirements to improve the interaction with the
application.

Evolution Management: The process of ontology evolution is sup-
ported by the evolution management infrastructure. The first important
aspect is the discovery of changes. While in some cases changes to the
ontology may be requested explicitly, the actual challenge is to obtain
and to examine the nonexplicit but available knowledge about the needs
of the end-users. This can be done by analyzing various data sources
related to the content that is described using the ontology. It can also be
done by analyzing the end-user’s behavior which leads to information
about her likes, dislikes, preferences or the way she behaves. Based on
the analysis of this information, suggested ontology changes can be made
to the knowledge worker. This results in an ontology better suited to
the needs of end-users. In the following sections, we will discuss the
possibility of continuous ontology improvement by semi-automatic dis-
covery of such changes, that is data-driven and usage-driven ontology
evolution.

4.4. DATA-DRIVEN ONTOLOGY CHANGES

Since many real-world data sets tend to be highly dynamic, ontology
management systems have to deal with potential inconsistencies bet-
ween the knowledge modeled by ontologies and the knowledge given by
the underlying data. Data-driven change discovery targets this problem
by providing methods for automatic or semi-automatic adaptation of
ontologies according to modifications being applied to the underlying
data set.

Suppose, for example, a user wants to find information about the SEKT
project. When searching for SEKT (as a search string) with a typical
search engine he will probably find a lot of pages, mostly about sparkling
wine (since this is the most common meaning of the word SEKT in
German), which are not relevant with respect to his actual information
need. Given a more sophisticated semantically enhanced search engine
he would have several ways of specifying the semantics of what he wants
to find:

o Ontology-based searching: The user selects the concept Project from a
domain ontology which might have been manually constructed or
(semi-)automatically learned from the document base. Then he
searches for SEKT as an instance of that concept. The search engine

DATA-DRIVEN ONTOLOGY CHANGES 63

examines the ontological metadata which has previously been added
to the content of each document in order to find those documents
which are most likely to be relevant to his query.

o Topic hierarchy/browsing: Suppose a hierarchy of topics, one of which is
The SEKT project, is used to classify a corpus of documents. The
classification of the documents could, for example, have been done
automatically based on ontological knowledge extracted from the
documents. The user can choose the topic in which he is interested,
in this case The SEKT Project, from the topic hierarchy.

o Contextualized search: The user simply searches for SEKT and the
system concludes from his semantic user profile and his current
working context that he is looking for information about a certain
(research) project.

Of course, having found some relevant documents the user’s information
need is not yet satisfied completely, but the number of documents he has
to read to find the relevant information about the SEKT project has
decreased significantly. Nevertheless, depending on his query and the
size of the document base some hundreds of documents might be left.
Ontology learning algorithms can be used to provide the user with an
aggregated view of the knowledge contained in these documents, show-
ing the user the concepts, instances and relations which were extracted
from the text. For this purpose a number of tools such as Text20Onto
(Cimiano and Vélker, 2005) are available which apply natural language
processing as well as machine learning techniques in order to build
ontologies in an automatic or semi-automatic fashion. Consider the
following example:

PROTON is a flexible, lightweight upper level ontology that is easy to adopt
and extend for the purposes of the tools and applications developed within [the]
SEKT project (SEKT Deliverable D1.8.1).

From the text fragment cited above you can conclude that SEKT is an
instance of the concept project. It also tells you that PROTON is an
instance of upper-level ontology, which in turn is a special kind of ontology.
But such an ontology cannot only be used for browsing. It might also
serve as a basis for document classification, metadata generation, ontol-
ogy-based searching, and the construction of a semantic user profile. All
of these applications require a tight relationship between the ontology
and the underlying data, that is the ontology must explicitly represent
the knowledge which is more or less implicitly given by the document
base. Therefore changes to the data should be immediately reflected by
the ontology.

Suppose now that the document base is extended, for example by
focussed crawling, the inclusion of knowledge stored on the user’s
desktop or Peer-to-Peer techniques. In this case all ontologies which
are affected by these changes have to be adapted in order to reflect
the knowledge gained through the additional information available.

64 ONTOLOGY EVOLUTION

Moreover, the ontological metadata associated with each document has
to be updated. Otherwise searching and browsing the document base
might lead to incomplete or even incorrect results.

Imagine, for example, that the following text fragments are added to a
document base consisting of the document cited in the previous example
plus a few other documents, which are not about the SEKT project.

Collaboration within SEKT will be enhanced through a programme of
joint activities with other integrated projects in the semantically enabled
knowledge systems strategic objective (- --) (SEKT Contract Documentation)
EU-IST Integrated Project (IP) IST-2003-506826 SEKT (SEKT Deliverable
D4.2.1).

From these two text fragments ontology learning algorithms can
extract a previously unknown concept integrated project which is a
subclass of project and which has the same meaning as IP in this domain.
Furthermore, SEKT will be reclassified as an instance of the concept
integrated project.

If the user had searched for SEKT as an instance of IP before the above-
mentioned changes to the document base had been made, there would
have been no results. Without the information given by the two newly
added documents the system either does not know the concept IP or it
assumes it to be equivalent to internet protocol since the term IP is most
often used in this sense.

But how can we make sure that all ontologies, as well as dependent
annotations and metadata, stay always up-to-date with the document
base? One possibility would be a complete re-engineering of the ontology
each time the document base changes. But of course, building an
ontology for a huge amount of data is a difficult and time-consuming
task even if it is supported by tools for automatic or semi-automatic
ontology extraction. A much more efficient way would be to adapt the
ontology according to the changes, that is to identify for each change all
concepts, instances, and relations in the ontology which are affected by
this change, and to modify the ontology accordingly.

Therefore, data-driven change discovery aims at providing methods
for automatic or semi-automatic adaptation of an ontology, as the under-
lying data changes.

4.4.1. Incremental Ontology Learning

Independently from a particular use case scenario, the following general
prerequisites must be fulfilled by any application, designed to support
data-driven change discovery. The most important requirement is, of
course the need to keep track of all changes to the data. Each change
must be represented in a way which allows it to be associated with
various kinds of information, such as its type, the source it has been
created from and its target object (e.g., a text document). In order to make

DATA-DRIVEN ONTOLOGY CHANGES 65

the whole system as transparent as possible not only changes to the data
set, but also changes to the ontology should be logged. Moreover, if
ontological changes are caused by changes to the underlying data, then
the ontological changes should be associated with information about the
corresponding changes to the data.

Optionally, in order to take different user preferences into account,
various change strategies could be defined. This allows the specification of
the extent to which changes to the data should change the ontology. For
example, a user might want the ontology to be updated in case of newly
added or modified data, but, on the other hand, he might want the
ontology to remain unchanged if some part of the data set is deleted.

In addition to the above-mentioned requirements, different kinds of
knowledge have to be generated or represented within a change dis-
covery system:

1. Generic knowledge about relationships between data and ontology
is required, since in case of newly added or modified data,
additional knowledge has to be extracted and represented by the
ontology. For example, generic knowledge may include heuristics of
how to identify concepts and their taxonomic relationships in the
data.

2. Concrete knowledge about relationships between the data and ontol-
ogy concepts, instances and relations is needed because deleting or
modifying information in the data set might have an impact on
existing elements in the ontology. This impact has to be determined
by the application to generate appropriate ontology changes. The
actual references to ontology elements in the data are an example
for concrete knowledge.

It is quite obvious that automatic or semi-automatic data-driven
change discovery requires a formal, explicit representation of both
kinds of knowledge. Since this representation is usually unavailable in
case of a manually built ontology, we can conclude that an implementa-
tion of data-driven change discovery methods should be embedded in
the context of an ontology extraction system. Such systems usually
represent general knowledge about the relationship between an ontology
and the underlying data set by means of ontology learning algorithms.
Consequently, the concrete knowledge to be stored by an ontology
extraction system depends on the way these algorithms are implemen-
ted. A concept extraction algorithm, for example, might need to store the
text references and term frequencies associated with each concept,
whereas a pattern-based concept classification algorithm might have to
remember the occurrences of all hyponymy patterns matched in the text.
Whereas existing tools such as TextToOnto (Méddche and Volz, 2001)
mostly neglect this kind of concrete knowledge and therefore do
not provide any support for data-driven change discovery, the next

66 ONTOLOGY EVOLUTION

generation of ontology extraction systems, including for example
Text20nto (Cimiano and Vélker, 2005), will explicitly target the problem
of incremental ontology learning.

4.5. USAGE-DRIVEN ONTOLOGY CHANGES

In this section, we will describe how information on the usage of
ontologies can be analyzed to recommend changes to the ontology. The
usage analysis that leads to the recommendation of changes is a very
complex activity. First, it is difficult to find meaningful usage patterns.
For example, is it useful for an application to discover that many more
users are interested in the topic industrial project than in the topic research?
Second, when a meaningful usage pattern is found, the open issue is how
to translate it into a change that leads to the improvement of an
application. For example, how to interpret the information that a lot of
users are interested in industrial research project and basic research project,
but none of them are interested in the third type of project—applied
research project.

Since in an ontology-based application, the ontology serves as a
conceptual model of the domain, the interpretation of these usage
patterns on the level of the ontology alleviates the process of discover-
ing useful changes in the application. The first pattern mentioned above
can be treated as useless for discovering changes if there is no relation
between the concepts industrial project and research in the underlying
ontology. Moreover, the structure of the ontology can be used as the
background knowledge for generating useful changes. For example, in
the case that industrial project, basic research project, and applied research
project are three sub-concepts of the concept project in the
domain ontology, in order to tailor the concepts to the users’ needs,
the second pattern mentioned could lead to either deleting the “‘unused’
concept applied research project or its merging with one of the two
other concepts (i.e., industrial research or basic research). Such
an interpretation requires the familiarity with the ontology model
definition, the ontology itself, as well as experience in modifying
ontologies. Moreover, the increasing complexity of ontologies demands
a correspondingly larger human effort for its management. It is
clear that manual effort can be time consuming and error prone.
Finally, this process requires highly skilled personnel, which makes it
costly.

The focal point of the approach is the continual adaptation of the
ontology to the users’ needs. As illustrated above, by analyzing the usage
data with respect to the ontology, more meaningful changes can be
discovered. Moreover, since the content and layout (structure) of an
ontology-based application are based on the underlying ontology, by
changing the ontology according to the users’ needs, the application itself
is tailored to these needs.

USAGE-DRIVEN ONTOLOGY CHANGES 67

4.5.1. Usage-driven Hierarchy Pruning

Our goal is to help an ontology engineer in the continual improvement of
the ontology. This support can be split into two phases:

1. To help the ontology engineer find the changes that should be
performed; and
2. To help her in performing such changes.

The first phase is focused on discovering some anomalies in the
ontology design, the repair of which improves the usability of the
ontology. It results in a set of ontology changes. One important problem
we face in developing an ontology is the creation of a hierarchy of
concepts, since a hierarchy, depending on the users’ needs, can be defined
from various points of view and on different levels of granularity. More-
over, the users’ needs can change over time, and the hierarchy should
reflect such a migration. The usage of the hierarchy is the best way to
estimate how a hierarchy corresponds to the needs of the users. Consider
the example shown in Figure 4.3 (taken from Stojanovic et al., 2003a):

Let us assume that in the initial hierarchy (developed by using one of
the above-mentioned approaches), the concept X has ten sub-concepts
(c1, c2, ---, c10), that is an ontology engineer has found that these ten
concepts correspond to the users’ needs in the best way. However, the
usage of this hierarchy in a longer period of time showed that about 95 %
of the users are interested in just three sub-concepts of these ten. This
means that 95 % of the users, as they browse the hierarchy, find 70 % of
the sub-concepts irrelevant. Consequently, these 95% of users invest
more time in performing a task than needed, since irrelevant information
receives their attention. Moreover, there are more chances to make an
accidental error (e.g., an accidental click on the wrong link), since the
probability of selecting irrelevant information is bigger.

frequency
b

)

=
o

D@ EDE(EDCDEBED

40% 32% 23%

o
A IR
LIS s

concept

cl c2 ¢c3 c4 c5 c6 c7 c8 c9 cl10

Expansion @ Reduction

a) 5/»

d)

Figure 4.3 An example of the nonuniformity in the usage of concepfs.

68 ONTOLOGY EVOLUTION

In order to make this hierarchy more suitable to users’ needs, two ways
of ‘restructuring’ the initial hierarchy would be useful:

1. Expansion: to move all seven ‘irrelevant’ subconcepts down in the
hierarchy by grouping them under a new sub-concept g (see
Figure 4.3(c)).

2. Reduction: to remove all seven ‘irrelevant’ concepts, while redistribut-
ing their instances into the remaining sub-concepts or the parent
concept (see Figure 4.3(d)).

Through the expansion, the needs of the 5 % of the users are preserved
by the newly introduced concept and the remaining 95 % of the users
benefit from the more compact structure. By the reduction, the new
structure corresponds completely to the needs of 95% of the users.
Moreover, the usability of the ontology has increased, since the instances
which were hidden in the ‘irrelevant’ sub-concepts are now visible for
the additional 95 % of the users. Consequently, these users might find
them useful, although in the initial classification they are a priori
considered as irrelevant (i.e., these instances were not considered at
all). Note that the Pareto diagram shown in Figure 4.3(b) enables the
automatic discovery of the minimal subset of the sub-concepts, which
covers the needs of most of the users. For a formalization of this
discovery process, including an evaluation study, we refer the interested
reader to Stojanovic et al. (2003b).

The problem of post-pruning a hierarchy in order to increase its
usability is explored in research related to modeling the user interface.
Previous work (Botafogo et al., 1992) showed the importance of a
balanced hierarchy for the efficient search through hierarchies of
menus. Indeed, even though the generally accepted guidelines for the
menu design favor breadth over depth (Kiger, 1984), the problem with
the breadth hierarchy in large-scale systems is that the number of items
at each level may be overwhelming. Hence, a depth hierarchy that limits
the number of items at each level may be more effective. This is the so-
called breadth/depth trade-off.

Moreover, organizing unstructured business data in useful hierarchies
has recently received more attention in the industry. Although there are
methods for automatic hierarchy generation, a resultant hierarchy has to
be manually pruned, in order to ensure its usability. The main criterion is
the coherence of the hierarchy, which ensures that the hierarchy is closely
tailored to the needs of the intended user.

4.6. CONCLUSION

To be effective, ontologies need to change as rapidly as the parts of the
world they describe. To make this a low effort for human users of

REFERENCES 69

systems such as digital libraries, automated support for management of
ontology changes is crucial.

In this chapter, we have presented the state-of-the-art in ontology
evolution, considering each of the individual phases of the evolution
process. Furthermore, we have described how changes to the underlying
data and changes to usage patterns can be used to evolve an ontology. In
these ways we can reduce the burden of manual ontology engineering.

REFERENCES

Botafogo RA, Rivlin E, Shneiderman B. 1992. Structural analysis of hypertexts:
identifying hierarchies and useful metrics. ACM Transactions on Information
System 10(2):142-180.

Cimiano P, Volker J. 2005. Text20nto—A framework for ontology learning and
data-driven change discovery. In Proceedings of the 10th International Conference
on Applications of Natural Language to Information Systems (NLDB 2005), Vol. 3513
of LNCS. Springer.

Davies], Studer R, Sure Y, Warren P. 2005. Next Generation Knowledge
Management. BT Technology Journal, 23(3):175-190.

Ehrig M, Haase P, Hefke M, Stojanovic N. 2005. Similarity for ontologies — a
comprehensive framework. In Proceedings of the 13th European Conference on
Information Systems (ECIS2005).

Franconi E, Grandi F, Mandreoli F. 2000. A semantic approach for schema
evolution and versioning in object-oriented databases. In Proceedings of the
First International Conference on Computational Logic, Springer, pp 1048-1062.

Haase P, Hotho A, Schmidt-Thieme L, Sure Y. 2005a. Collaborative and usage-
driven evolution of personal ontologies. Proceedings of the Second European
Semantic Web Conference (ESWC 2005), Vol. 3532 of LNCS, Springer, pp 486—499.

Haase P, van Harmelen F, Huang Z, Stuckenschmidt H, Sure Y. 2005b. A
framework for handling inconsistency in changing ontologies. In Proceedings
of the Fourth International Semantic Web Conference (ISWC2005), Vol. 3729 of
LNCS, Springer, pp 353-367.

Haase P, Stojanovic L. 2005. Consistent Evolution of OWL Ontologies. In
Proceedings of the Second European Semantic Web Conference, Heraklion, Greece,
2005, Vol. 3532 of LNCS, Springer, pp 182-197.

Kiger JI. 1984. The depth/breadth trade-off in the design of menu-driven user
interfaces. International Journal of Man-Machine Studies Vol. 20(2):201-213.

Klein M. 2004. Change Management for Distributed Ontologies, PhD thesis, Vrije
Universiteit Amsterdam.

Klein M, Noy N. 2003. A Component-Based Framework for Ontology Evolution.
In Proceedings of the IJCAI ‘03 Workshop on Ontologies and Distributed Systems.
Maedche A, Motik B, Stojanovic L. 2003. Managing multiple and distributed

Ontologies in the Semantic Web. VLDB Journal 12(4):286-300.

Maidche A, Volz R. 2001. The ontology extraction and maintenance framework
text-to-onto. Proceedings of the ICDM’01 Workshop on Integrating Data Mining and
Knowledge Management.

Ognyanov D, Kiryakov A. 2002. Tracking changes in RDF(S) repositories.
Proceedings of the 13th International Conference on Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web (EKAW 2002), Vol. 2473
of LNCS/LNAI, Springer, pp 373-378.

70 ONTOLOGY EVOLUTION

Pons A, Keller R. 1997. Schema evolution in object databases by catalogs.
Proceedings of the International Database Engineering and Applications Symposium
(IDEAS'97), pp 368-376.

Staab S, Studer R (Eds). 2004. Handbook on Ontologies. Springer: Heidelberg.

Stojanovic L. 2004. Methods and Tools for Ontology Evolution. PhD thesis,
University of Karlsruhe.

Stojanovic L, Mddche A, Motik B, Stojanovic N. 2002. User-driven ontology
evolution management. In Proceedings of the European Conference of Knowledge
Engineering and Management (EKAW 2002), Vol. 2473 of LNCS/LNAI, Springer.

Stojanovic L, Maedche A, Stojanovic N, Studer R. 2003a. Ontology evolution as
reconfiguration-design problem solving. In Proceedings of KCAP 2003, ACM,
pp 162-171.

Stojanovic L, Stojanovic N, Gonzalez], Studer R. 2003b. OntoManager—A System
for the usage-based Ontology Management. In Proceedings of the CoopIS/DOA/
ODBASE 2003 Conference, Vol. 2888 of LNCS, Springer, pp 858-875.

Sure Y, Erdmann M, Angele], Staab S, Studer R, Wenke D. 2002a. OntoEdit:
Collaborative ontology Engineering for the Semantic Web. In Proceedings of the
First International Semantic Web Conference 2002 (ISWC 2002), Vol. 2342 of LNCS,
Springer, pp 221-235.

Sure Y, Staab S, Studer R. 2002b. Methodology for development and employment
of ontology based knowledge management applications. SIGMOD Record,
31(4):18-23.

Sure Y, Studer R. 2005. Semantic web technologies for digital libraries. Library
Management 26(4/5):190-195.

Tempich C, Pinto HS, Sure Y, Staab S. 2005. An Argumentation Ontology for
DIstributed, Loosely-controlled and evolvInG Engineering processes of oNTol-
ogies (DILIGENT). In Proceedings of the Second European Semantic Web Conference
(ESWC 2005), Vol. 3532 of LNCS, Springer, pp 241-256.

S

Reasoning With Inconsistent
Ontologies: Framework,
Prototype, and Experiment*

Zhisheng Huang, Frank van Harmelen and Annette ten Teije

Classical logical inference engines assume the consistency of the ontol-
ogies they reason with. Conclusions drawn from an inconsistent
ontology by classical inference may be completely meaningless. An
inconsistency reasoner is one which is able to return meaningful answers
to queries, given an inconsistent ontology. In this chapter, we propose
a general framework for reasoning with inconsistent ontologies. We
present the formal definitions of soundness, meaningfulness, local com-
pleteness, and maximality of an inconsistency reasoner. We propose and
investigate a pre-processing algorithm, discuss the strategies of incon-
sistency reasoning based on pre-defined selection functions dealing with
concept relevance. We have implemented a system called PION (Proces-
sing Inconsistent ONtologies) for reasoning with inconsistent ontologies.
We discuss how the syntactic relevance can be used for PION. In this
chapter, we also report the preliminary experiments with PION.

5.1. INTRODUCTION

The Semantic Web is characterized by scalability, distribution, and joint
author-ship. All these characteristics may introduce inconsistencies.

“This chapter is an extended and revised version of the paper ‘Reasoning with Inconsistent
Ontologies” appeared in the Proceedings of the 19th Joint Conference on Artificial Intelli-
gence (IJCAT'05), 2005, pp 454-459.

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

72 REASONING WITH INCONSISTENT ONTOLOGIES

Limiting the language expressivity with respect to negation (such as RDF
and RDF Schema, which do not include negation) can avoid inconsis-
tencies to a certain extent. However, the expressivity of these languages
is too limited for many applications. In particular, OWL is already
capable of expressing inconsistencies (McGuinness and van Harmelen,
2004).

There are two main ways to deal with inconsistency. One is to
diagnose and repair it when we encounter inconsistencies. Schlobach
and Cornet (2003) propose a nonstandard reasoning service for debug-
ging inconsistent terminologies. This is a possible approach, if we are
dealing with one ontology and we would like to improve this ontology.
Another approach is to simply live with the inconsistency and to apply a
nonstandard reasoning method to obtain meaningful answers. In this
chapter, we will focus on the latter, which is more suitable for the setting
in the web area. For example, in a typical Semantic Web setting, one
would be importing ontologies from other sources, making it impossible
to repair them. Also the scale of the combined ontologies may be too
large to make repair effective.

Logical entailment is the inference relation that specifies which con-
sequences can be drawn from a logical theory. A logical theory is
inconsistent if it contains a contradiction: for some specific statement
A, both A and its negation not A are consequences of the theory. As is
well known, the classical entailment in logics is explosive: any formula is a
logical consequence of a contradiction. Therefore, conclusions drawn
from an inconsistent knowledge base by classical inference may be
completely meaningless. In this chapter, we propose a general frame-
work for reasoning with inconsistent ontologies. We investigate how a
reasoner with inconsistent ontologies can be developed for the Semantic
Web. The general task of a reasoner with inconsistent ontologies is: given
an inconsistent ontology, the reasoner should return meaningful answers
to queries. In Section 5.4, we will provide a formal definition about
meaningfulness.

This chapter is organized as follows: Section 5.2 discusses exist-
ing general approaches to reasoning with inconsistency. Section 5.3
overviews inconsistency in the Semantic Web by examining seve-
ral typical examples and scenarios. Section 5.4 proposes a general
framework of reasoning with inconsistent ontologies. A crucial
element of this framework is so-called selection functions. Section 5.5
examines selection functions which are based on concept relevance.
Section 5.6 presents the strategies and algorithms for processing
inconsistent ontologies. Section 5.7 investigates how a selection
function can be developed by a syntactic relevance relation. Section
5.8 describes a prototype of PION and report the experiments
with PION. Section 5.9 discusses further work and concludes the
chapter.

BRIEF SURVEY OF APPROACHES TO REASONING WITH INCONSISTENCY 73

5.2. BRIEF SURVEY OF APPROACHES TO REASONING
WITH INCONSISTENCY

5.2.1. Paraconsistent Logics

Reasoning with inconsistency is a well-known topic in logics and AL
Many approaches have been proposed to deal with inconsistency
(Benferhat and Garcia, 2002; Beziau, 2000; Lang and Marquis, 2001).
The development of paraconsistent logics was initiated to challenge the
‘explosive’ problem of the standard logics. Paraconsistent logics (Beziau,
2000) allow theories that are inconsistent but nontrivial. There are many
different paraconsistent logics, each of which weaken traditional logic in
a different way. Nonadjunctive systems block the general inferencea, b |=a
A b, so that in particular the combination of 2 and — no longer entails a A
—a. Relevace logics aim to block the explosive inference a A —a = b by
requiring that the premises of an entailment must somehow be ‘relevant’
to the conclusion. In the propositional calculus, this involves requiring
that premises and conclusion share atomic sentences, which is not the
case in the latter formula.

Many relevant logics are multi-valued logics. They are defined on a
semantics which allows both a proposition and its negation to hold for an
interpretation. Levesque’s (1989) limited inference allows the interpreta-
tion of a language in which a truth assignment may map both a
proposition [and its negation —/ to true. Extending the idea of Levesque’s
limited inference, Schaerf and Cadoli (1995) propose S-3-entailment and
S-1-entailment for approximate reasoning with tractable results. The
main idea of Schaerf and Cadoli’s approach is to introduce a subset S
of the language, which can be used as a parameter in their framework
and allows their reasoning procedure to focus on a part of the theory
while the remaining part is ignored. However, how to construct and
extend this subset S in specific scenario’s is still an open question (the
problem of finding a general optimal strategy for S is known to be
intractable).

Based on Schaerf and Cadoli’s S-3-entailment, Marquis and Porquet
(2003) present a framework for reasoning with inconsistency by introdu-
cing a family of resource-bounded paraconsistent inference relations. In
Marquis and Porquet’s approach, consistency is restored by removing
variables from the approximation set S instead of removing some explicit
beliefs from the belief base, like the standard approaches do in belief
revision. Their framework enables some forms of graded paraconsis-
tency by explicit handling of preferences over the approximation set S.
Marquis and Porquet (2003) propose several policies, for example, the
linear order policy and the lexicographic policy, for the preference
handling in paraconsistent reasoning.

74 REASONING WITH INCONSISTENT ONTOLOGIES

5.2.2. Ontology Diagnosis

As mentioned in the introduction, an alternative approach to deal with
inconsistencies is to repair them before reasoning, instead of reasoning in
the presence of the inconsistencies. A long standing tradition in Artificial
Intelligence is that of belief revision, which we will discuss below. A
more recent branch of work is explicitly tailored to diagnosis and repair
of ontologies in particular. The first in this line was done by Schlobach
and Cornet (2003), who aimed at identifying a minimal subset of
Description Logic axioms that is responsible for an inconsistency (.e.,
such a minimal subset is inconsistent, but removal of any single axiom
from the set makes the inconsistency go away). In later works by
Friedrich and Shchekotykhin (2005) and Schlobach (2005b), this approach
has been extended to deal with richer Description Logics, and has been
rephrased in terms of Reiter’s (1987) general theory of model-based
diagnosis.

5.2.3. Belief Revision

Belief revision is the process of changing beliefs to take into account a
new piece of information.

What makes belief revision nontrivial is that several different ways for
performing this operation may be possible. For example, if the current
knowledge includes the three facts a, b, and a A b — ¢, the introduction of
the new information —c can be done preserving consistency only by
removing at least one of the three facts. In this case, there are at least
three different ways for performing revision. In general, there may be
several different ways for changing knowledge.

The main assumption of belief revision is that of minimal change: the
knowledge before and after the change should be as similar as possible.
The AGM postulates (Alchourron et al., 1985)" are properties that an
operator that performs revision should satisfy in order for being con-
sidered rational. Revision operators that satisfy the AGM postulates are
computationally highly intractable. In an attempt to avoid this, Chopra
et al. (2000) incorporate the local change of belief revision and relevance
sensitivity by means of Schaerf and Cadoli’s approximate reasoning
method, and show how relevance can be introduced for approximate
reasoning in belief revision. Incidently, recent work by Flouris et al.
(2005) has shown that the AGM theory in its original form is not
applicable to restricted logics such as the Description Logics that underly
OWL, and that it is not trivial to find alternative formulations of the
AGM postulates that would work for OWL.

INamed after the names of their proponents, Alchourron, Gardenfors, and Makinson.

BRIEF SURVEY OF CAUSES FOR INCONSISTENCY IN THE SEMANTIC WEB 75

5.2.4. Synthesis

Various approaches discussed above (Marquies’ paraconsistent logic and
Chopra’s local belief revision) depending on syntactic selection proce-
dures for extending the approximation set. Our approach borrows some
ideas from Schaerf and Cadoli’s approximation approach, Marquis and
Porquet’s paraconsistent reasoning approach, and Chopra, Parikh, and
Wassermann’s relevance approach. However, our main idea is relatively
simple: given a selection function, which can be defined on the syntactic
or semantic relevance, like those have been used in computational
linguistics, we select some consistent subtheory from an inconsistent
ontology. Then we apply standard reasoning on the selected subtheory to
find meaningful answers. If a satisfying answer cannot be found, the
relevance degree of the selection function is made less restrictive (see
later sections for precise definitions of these notions) thereby extending
the consistent subtheory for further reasoning.

5.3. BRIEF SURVEY OF CAUSES FOR INCONSISTENCY IN THE
SEMANTIC WEB

In the Semantic Web, inconsistencies may easily occur, sometimes even
in small ontologies. Here are several scenarios which may cause incon-
sistencies:

5.3.1. Inconsistency by Mis-representation of Default

When a knowledge engineer specifies an ontology statement, she/he has
to check carefully that the new statement is consistent, not only with
respect to existing statements, but also with respect to statements that
may be added in the future, which of course may not always be known at
that moment. This makes it very difficult to maintain consistency in
ontology specifications. Just consider a situation in which a knowledge
engineer wants to create an ontology about animals:*

Bird C Animal (Birds are animals),
Bird C Fly (Birds are flying animals).

Although the knowledge engineer may realize that ‘birds can fly’ is
not generally valid, he still wants to add it if he does not find any
counterexample in the current knowledge base because flying is one of

Since we are dealing with (simple) ontological examples, we will adopt the notation from
Description Logic, underlying the OWL language.

76 REASONING WITH INCONSISTENT ONTOLOGIES

the main features of birds. An ontology about birds without talking about
flying is not satisfactory.

Later on, one may want to extend the ontology with the following
statements:

Eagle C Bird (Eagles are birds),
Penguin T Bird (Penguins are birds),
Penguin C —Fly (Penguins are not flying animals).

The concept Penguin in that ontology of birds is already unsatisfiable
because it implies penguins can both fly and not fly. This would lead to
an inconsistent ontology when there exists an instance of the concept
Penguin. One may remove the axiom ‘birds can fly’ from the existing
ontology to restore consistency. However, this approach is not reliable
because of the following reasons: (a) it is hard to check that the removal
would not cause any significant information loss in the current ontology,
(b) one may not have the authority to remove statements which have
been created in the current knowledge base, (c) it may be difficult to
know which part of the existing ontology can be removed if the knowl-
edge base is very large. One would not blame the knowledge engineer for
the creation of the axiom ‘birds are flying animals’ at the beginning
without considering future extensions because it is hard for the knowl-
edge engineer to do so.

One may argue that the current ontology languages and their coun-
terparts in the Semantic Web cannot be used to handle this kind of
problems because it requires nonmonotonic reasoning. The statement
Birds can fly has to be specified as a default. The ontology language
OWL cannot deal with defaults. We have to wait for an extension of
OWL to accommodate nonmonotonic logic. It is painful that we cannot
talk about birds (that can fly) and penguins (that cannot fly) in the same
ontology specification. An alternative approach is to divide the incon-
sistent ontology specification into multiple ontologies or modular
ontologies to maintain their local consistency, like one that states
‘birds can fly,” but does not talk about penguins, and another one that
specifies penguins, but never mentions that ‘birds can fly.” However,
the problem for this approach is still the same as other ones. Again, an
ontology about birds that cannot talk about both ‘birds can fly’ and
penguins is not satisfactory.

Another typical example is the MadCows ontolog® in which MadCow
is specified as a Cow which eats brains of sheep, whereas a Cow is
considered as a vegetarian by default as follows:

Cow T Vegetarian (Cows are vegetarians),
MadCow C Cow (MadCows are cows),

*http:/ /www.daml.org/ontologies /399

BRIEF SURVEY OF CAUSES FOR INCONSISTENCY IN THE SEMANTIC WEB 77

MadCow T 3Eat.(Brain 1 3Partof. Sheep) ~ (MadCows eat brains of
sheep, parts of animals).

Sheep T Animals (Sheep are animals),
Vegetarians T VEat.(mAnimal U —
(JPartof. Animal)) Vegetarians never eat

animals or parts of animals).

In order to make the MadCow Ontology consistent, we have to remove
at least one of the statements above from the ontology. Namely, either we
would not claim that ‘Cows are vegetarian,” or claims that ‘"MadCows are
cow,’ or claims that ‘Sheep are animals,” or claims that ‘Vegetarians never
eat animals or parts of animals.” It is quite difficult to decide which
statement should be removed, for all are important for a sufficient
specification of a MadCow Ontology. We expect a reasoner with incon-
sistent ontologies can do better work to avoid reparing this ontology.

5.3.2. Inconsistency Caused by Polysemy

Polysemy refers to the concept of words with multiple meanings. One
should have a clear understanding of all the concepts when an ontology
is formally specified. Here is an example of an inconsistent ontology
which is caused by polysemy:

MarriedWoman T Woman (A married woman
is a woman),

Married Woman © —Divorcee (A married woman is not a
divorcee),

Divorcee T HadHusband M —~HasHusband (A divorcee had a husband
and has no husband),

HasHusband T Married Woman (HasHusband means married),

HadHusband T MarriedWoman (HadHusband means married).

In the ontology specification above, the concepts ‘Divorcee’ is unsa-
tisfiable because of the misuse of the word ‘MarriedWoman.” Therefore,
one has to carefully check if there is some misunderstanding with respect
to concepts that have been used in the ontology, which may become
rather difficult when an ontology is large.

5.3.3. Inconsistency through Migration from Another
Formalism

When an ontology specification is migrated from other data sources,
inconsistencies may occur. As it has been found by Schlobach and

78 REASONING WITH INCONSISTENT ONTOLOGIES

Cornet (2003), the high number of unsatisfiable concepts in the Descrip-
tion Logic terminology for DICE is due to the fact that it has been
created by migration from a frame-based terminological system.* In
order to make the semantics as explicit as possible, a very restrictive
translation has been chosen to highlight as many ambiguities as
possible. Schlobach and Cornet (2003) show the following inconsistent
ontology specification:

Brain T CentralNervousSystem (A brain is a central nervous
system),
Brain T BodyPart (A brain is a body part),

CentralNervousSystem T NervousSystem (A central nervous system is a
nervous system),

BodyPart T — NervousSystem (A body part is not a nervous
system).

This ontology is inconsistent because a Brain is both a BodyPart and a
CentralNervousSystem, and therefore also a NervousSystem, but this is
inconsist with the axiom that BodyPart and NervousSystem are disjoint.

5.3.4. Inconsistency Caused by Multiple Sources

When a large ontology specification is generated from multiple sources,
in paricular when these sources are created by several authors, incon-
sistencies easily occur.

Hameed et al. (2003) propose approaches of ontology reconciliation,
and discuss how consistency should be maintained and how inconsis-
tency may be created from multiple sources. According to Hameed et al.
(2003), there are three possibilities for ontology reconciliation: merging,
aligning, or integrating. No matter whether a new ontology is generated
by merging or integrating multiple sources, in both cases general
consistency objectives are rather difficult to achieve. Note that the
above-mentioned categories (mis-representation of defaults, polysemy,
migration, multiple sources) do not exclude each other. When we
examine an inconsistent ontology which is generated from multiple
sources, we may find that it contains several cases of polysemy, or
some other inconsistency. The list above is also not exhaustive. There
are many other cases that may cause the inconsistency, like inconsistency
caused by ambiguities, inconsistency caused by lacking global checking,
etc. We do not discuss a complete list in this chapter, but we have just
aimed to show the urgency of the problem of reasoning with inconsistent
ontologies.

“DICE stands for ‘Diagnoses for Intensive Care Evaluation.

REASONING WITH INCONSISTENT ONTOLOGIES 79

5.4. REASONING WITH INCONSISTENT ONTOLOGIES

In this section, we present our framework for reasoning with inconsistent
ontologies. First we will introduce some definitions and terminology for
inconsistency reasoners, for instance what do we mean with a ‘mean-
ingful” answers to a query. We continue with identifying when to use the
reasoner for inconsistent ontologies.

5.4.1. Inconsistency Detection

We do not restrict ontology specifications to a particular language
(although OWL and its underlying description logic are the languages
we have in mind). In general, an ontology language can be considered to
be a set of formulas that is generated by a set of syntactic rules. Thus, we
can consider an ontology specification as a formula set. We use a
nonclassical entailment for inconsistency reasoning. In the following,
we use | to denote the classical entailment, and use k to denote some
nonstandard inference relation, which may be parameterized to remove
ambiguities.

With classical reasoning, a query ¢ given an ontology ¥ can be
expressed as an evaluation of the consequence relation ¥ = ¢. There
are only two answers to that query: either ‘yes’ (£ |= ¢), or 'no’ (X|=/= ¢).
A ’yes’ answer means that ¢ is a logical consequence of ¥. A ‘no” answer,
however, means that ¢ cannot be deduced from ¥ because we usually do
not adopt the closed world assumption when using an ontology. Hence,
a nmo’ answer does not imply that the negation of ¢ holds given an
ontology X. For reasoning with inconsistent ontologies, it is more suitable
to use Belnap’s (1977) four-valued logic to distinguish the following four
epistemic states of the answers:

Definition 1.

(a) Over-determined: ¥ k= ¢ and 3 & —¢.
(b) Accepted: ¥ ke ¢ and X & .

() Rejected: ¥ = ¢ and ¥ R .

(d) Undetermined: ¥ ¢ ¢ and ¥} —¢p.

To make sure reasoning is reliable when it is unclear if an ontology is
consistent or not, we can use the decision tree that is depicted in Figure 5.1.
For a query ¢ we test both the consequences ¥ |= ¢ and 3 = —¢ using
classical reasoning. In case different answers are obtained, that is both
‘yes” and ‘no,” the ontology ¥ must be consistent and the answer to £ = ¢
can be returned. In case of two answers that are the same the ontology is
either incomplete, that is when both answers are ‘no,” or the ontology is
inconsistent, that is when both answers are ‘yes.” When the ontology

80 REASONING WITH INCONSISTENT ONTOLOGIES

S E ¢?

Yes No
ZE¢

Yes No Yes No
Tkoo Gra0 0

Inconsistent ontology:
Inconsistency reasoner
processing

Incomplete ontology:
Ontology extension
processing

Accepted: Rejected:
Sk Tk

Figure 5.1 Decision tree for obtaining reliable reasoning with an incon-
sistent ontology.

turns out to be incomplete, either an ‘undetermined’ answer can be
returned or additional information I can be gathered to answer the query
Y U I = ¢, but this falls outside the scope of the chapter. When the
ontology turns out to be inconsistent some inconsistency reasoner can
be called upon to answer the query ¥ K ¢.

5.4.2. Formal Definitions

For an inconsistency reasoner it is expected that it is able to return
meaningful answers to queries, given an inconsistent ontology. In the
case of a consistent ontology ¥, classical reasoning is sound, that is a
formula ¢ deduced from 3 holds in every model of 3. This definition is
not preferable for an inconsistent ontology ¥ as every formula follows
from it using classical entailment. However, often only a small part of
has been incorrectly constructed or modeled, while the remainder of ¥ is
correct. Therefore, we propose the following definition of soundness.
Definition 2 (Soundness). An inconsistency reasoner = is sound if the
formulas that follow from an inconsistent theory ¥ follow from a consistent
subtheory of ¥ using classical reasoning, namely, the following condition holds:

Shd= @YD), Land ¥ E o).

In other words, the k= consequences must be justifiable on the basis of a
consistent subset of the theory. Note however, that in the previous
definition the implication should #of hold in the opposite direction. If
the implication would also hold in the opposite direction it would lead to

REASONING WITH INCONSISTENT ONTOLOGIES 81

an inconsistency reasoner, which returns inconsistent answers. For
example if {g, —a} C X, then the inconsistency reasoner would return
that both 4 and —a hold given 3, which is something we would like to
prevent. Hence, the inconsistency reasoner should not return answers
that follow from any consistent subset of ¥, but from specifically chosen
subsets of X. In other words, the selection of specific subsets on which
will be based is an integral part of the definition of an inconsistency
reasoner, and will be discussed in more detail in the next section.

Definition 3 (Meaningfulness). An answer given by an inconsistency
reasoner is meaningful iff it is consistent and sound. Namely, it requires not
only the soundness condition, but also the following condition:

Sko=3E 0.

An inconsistency reasoner is said to be meaningful iff all of the answers are
meaningful.

Because of inconsistencies, classical completeness is impossible. We
suggest the notion of local completeness:

Definition 4 (Local Completeness). An inconsistency reasoner is locally
complete with respect to a consistent subtheory ¥’ iff for any formula ¢, the
following condition holds:

Y E¢=Tke.

Since the condition can be represented as:

Z%’¢$Zl%¢/

local completeness can be considered as a complement to the soundness
property.

An answer to a query ¢ on X is said to be locally complete with respect
to a consistent set ¥ iff the following condition holds:

Y= TR

Definition 5 (Maximality). An inconsistency reasoner is maximally sound
iff for any theory X there is a maximal consistent subtheory ¥’ such that the
classical consequence set of ¥’ is the same as the consequence set of the
inconsistency reasoner on the full ¥:

AT CEE = LAWY D ATCOE" E DAYE = ¢ < 3 R).

In other words, the inconsistency reasoner computes precisely the
classical consequences of a maximal consistent subtheory.

We use the same condition to define the maximality for an answer, like
we do for local completeness.

82 REASONING WITH INCONSISTENT ONTOLOGIES

Definition 6 (Local Soundness). An answer to a query ¥ k= ¢ is said to be
locally sound with respect to a consistent set X' C %, iff the following condition
holds:

Sh¢=Y k4

Namely, for any positive answer, it should be implied by the given
consistent subtheory ¥’ under the standard entailment.
Proposition 1.

(@) Local Soundness implies Soundness and Meaningfulness.
(b) Maximality implies Local Completeness.

Given a query, there might exist more than one maximal consistent
subset and more than one locally complete consistent subset. Such
different maximally consistent subsets may give different k conse-
quences for a given query ¢. Therefore, arbitrary (maximal) consistent
subsets may not be very useful for the evaluation of a query by some
inconsistency reasoner. the consistent subsets should be chosen on
structural or semantic grounds indicating the relevance of the chosen
subset with respect to some query.

5.5. SELECTION FUNCTIONS

An inconsistency reasoner uses a selection function to determine which
consistent subsets of an inconsistent ontology should be considered in its
reasoning process. The general framework is independent of the parti-
cular choice of selection function. The selection function can either be
based on a syntactic approach, like Chopra et al. (2000) syntactic
relevance, or based on semantic relevance like for example in computa-
tional linguistics as in Wordnet (Budanitsky and Hirst, 2001).

Given an ontology (i.e., a formula set) ¥ and a query ¢, a selection
function s is one which returns a subset of X at the step k > 0. Let L be the
ontology language, which is denoted as a formula set. We have the
general definition about selection functions as follows:

Definition 7 (Selection Functions). A selection function s is a mapping

s:P(L) x L x N — P(L) such that s(3, ¢, k) C X.

In this chapter we will consider only monotonic selection functions.

Definition 8. A selection function s is called monotonic if the subsets it
selects monotonically increase or decrease, that is, s(¥, ¢, k) Cs(X, ¢, k+ 1), or
vice versa.

For monotonically increasing selection functions, the initial set is either
an empty set, that is, s(X, ¢, 0) = 0, or a fixed set £y when the locality is
required. For monotonically decreasing selection functions, usually the
initial set s(3, ¢, 0) = X. The decreasing selection functions will reduce

STRATEGIES FOR SELECTION FUNCTIONS 83

some formulas from the inconsistent set step by step until they find a
maximally consistent set.

Monotonically increasing selection functions have the advantage that
they do not have to return all subsets for consideration at the same time.
If a query ¥ Rk ¢ can be answered after considering some consistent
subset of the ontology ¥ for some value of k, then other subsets (for
higher values of k) do not have to be considered any more because they
will not change the answer of the inconsistency reasoner.

5.6. STRATEGIES FOR SELECTION FUNCTIONS

A reasoner that uses a monotonically increasing/decreasing selection
function will be called a reasoner that uses a linear extension strategy and a
linear reduction strategy, respectively.

A linear extension strategy is carried out as shown in Figur 5.2. Given a
query X R ¢, to the initial consistent subset >’ is set. Then the selection
function is called to return a consistent subset X”, which Extends Y/, that
is, ¥'C X" C X for the linear extension strategy. If the selection function

Tko?
k=1
> = 8(Z, ¢, 0)
27 =8, ¢, k)
No
4(¥” consistentand ¥ 5 X’)
Yes
Yes . No
X E o
Yes . No
Undertermined))) , e
answer: Accepted: joected. X=X ||
Sy k¢ k-9 ki=k+1

Figure 5.2 Linear extension strategy.

84 REASONING WITH INCONSISTENT ONTOLOGIES

cannot find a consistent superset of X', the reasoner returns the answer
‘undetermined’ (i.e., unknown) to the query. If the set X" exists, a
classical reasoner is used to check if ¥ | ¢ holds. If the answer is
‘yes,’ the reasoner returns the ‘accepted’ answer X g ¢. If the answer is
‘no,’ the reasoner further checks the negation of the query X" |= —¢. If the
answer is ‘yes,’ the reasoner returns the ‘rejected’ answer ¥ k —¢,
otherwise the current result is undetermined (Definition 1), and the
whole process is repeated by calling the selection function for the next
consistent subset of 3 which extends X”.

It is clear that the linear extension strategy may result in too many
‘undetermined’ answers to queries when the selection function picks the
wrong sequence of monotonically increasing subsets. it would therefore
be useful to measure the succesfulness of (linear) extension strategies.
Notice that this depends on the choice of the monotonic selection
function.

In general, one should use an extension strategy that is not over-
determined and not undetermined. For the linear extension strategy, we
can prove that the following properties hold:

Proposition 2 (Linear Extension). An inconsistency reasoner using a linear
extension strateqy satisfies the following properties:

(a) never over-determined,
(b) may be undetermined,
(c) always sound,

(d) always meaningful,

(e) always locally complete,
(f) may not be maximal,
(g) always locally sound.

Therefore, a reasoner using a linear extension strategy is useful to
create meaningful and sound answers to queries. It is always locally
sound and locally complete with respect to a consistent set X, if the
selection function always starts with the consistent set X (i.e., s(¥, ¢, 0) =
Y0). Unfortunately it may not be maximal.

We call this strategy a linear one because the selection function only
follows one possible “extension chain’ for creating consistent subsets. The
advantages of the linear strategy is that the reasoner can always focus on
the current working set ¥’. The reasoner does not need to keep track of
the extension chain. The disadvantage of the linear strategy is that it may
lead to an inconsistency reasoner that is undetermined. There exists other
strategies which can improve the linear extension approach, for example,
by backtracking and heuristics evaluation. We are going to discuss a
backtracking strategy in Section 5.7. The second reason why we call the
strategy linear is that the computational complexity of the strategy is
linear with respect to the complexity of the ontology reasoning (Huang
et al., 2005).

SYNTACTIC RELEVANCE-BASED SELECTION FUNCTIONS 85

5.7 SYNTACTIC RELEVANCE-BASED SELECTION
FUNCTIONS

As we have pointed out in Section 5.4, the definition of the selection
function should be independent of the general procedure of the incon-
sistency processing (i.e., strategy). Further research will focus on a formal
development of selection functions. However, we would like to point out
that there exist several alternatives which can be used for an inconsis-
tency reasoner.

Chopra et al. (2000) propose syntactic relevance to measure the
relationship between two formulas in belief sets, so that the relevance
can be used to guide the belief revision based on Schaerf and Cadoli’s
method of approximate reasoning. We will exploit their relevance
measure as selection function and illustrate them on two examples.

Definition 9 (Direct Relevance and k-Relevance (Chopra et al. 2000)).
Given a formula set ¥, two atoms p, q are directly relevant, denoted by R(p, q, ¥)
if there is a formula o. € X such that p, q appear in o. A pair of atoms p and q are
k-relevant with respect to ¥ if there exist p;,p,,-- -, pk € L such that:

e p, p1 are directly relevant;
® pj, pin1 are directly relevant, i =1,---, k — 1;
o i, q are directly relevant.

The notions of relevance are based on propositional logics. However,
ontology languages are usually written in some subset of first order logic.
It would not be too difficult to extend the ideas of relevance to those first-
order logic-based languages by considering an atomic formula in first-
order logic as a primitive proposition in propositional logic.

Given a formula ¢, we use I(¢p), C(¢), R(¢p) to denote the sets of
individual names, concept names, and relation names that appear in
the formula ¢, respectively.

Definition 10 (Direct Relevance). Two formula ¢ and Wy are directly
relevant if there is a common name which appears both in formula ¢ and
formula v, that is I(¢) N I() # DV C (¢p) N C(Y) # D V R(p) N RWY) # .

Definition 11 (Direct Relevance to a Set). A formula ¢ is relevant to a set
of formula ¥ if there exists a formula \y € ¥ such that ¢ and are directly
relevant.

We can similarly specialize the notion of k-relevance.

Definition 12 (k-Relevance). Two formulas ¢, ¢’ are k-relevant with
respect to a formula set X if there exist formulas Vo, - -y € ¥ such that ¢
and o, Yo and \q, ---, and Yk and ¢’ are directly relevant.

Definition 13 (k-Relevance to a set). A formula ¢ is k-relevant to a formula
set ¥ if there exists formula \y € ¥ such that ¢ and y are k-relevant with respect
to X.

In inconsistency reasoning we can use syntactic relevance to define a
selection function s to extend the query ‘X k ¢?” as follows: We start with

86 REASONING WITH INCONSISTENT ONTOLOGIES

the query formula ¢ as a starting point for the selection based on
syntactic relevance. Namely, we define:

s(X, ¢,0)=0.

Then the selection function selects the formulas i € ¥ which are directly
relevant to ¢ as a working set (i.e., k=1) to see whether or not they are
sufficient to give an answer to the query. Namely, we define:

s(X, ¢, D={y € £ | ¢ and y are directly relevant}.

If the reasoning process can obtain an answer to the query, it stops.
otherwise the selection function increases the relevance degree by 1,
thereby adding more formulas that are relevant to the current working
set. Namely, we have:

s(3, ¢, k)={y € £ | ¢ is directly relevant to s(X, ¢, k — 1)},

for k > 1. This leads to a ‘fan out’ behavior of the selection function: the
first selection is the set of all formulae that are directly relevant to the
query; then all formulae are selected that are directly relevant to that set,
etc. This intuition is formalized in the following:

Proposition 3. The syntactic relevance-based selection function s is mono-
tonically increasing.

Proposition 4. If k > 1, then

s(Z, ¢, k) ={¢|d is (k-1)-relevant to ¥}

The syntactic relevance-based selection functions defined above usually
grows up to an inconsistent set rapidly. That may lead to too many
undetermined answers. In order to improve it, we require that the
selection function returns a consistent subset X" at the step k when s(%,
¢, k) is inconsistent such that s(, ¢, k — 1) C X" C s(%, ¢, k). It is actually
a kind of backtracking strategy which is used to reduce the number of
undetermined answers to improve the linear extension strategy. We call
the procedure an over-determined processing (ODP) of the selection
function. Note that the over-determined processing does not need to
exhaust the powerset of the set s(¥, ¢, k) — s(¥X, ¢, k — 1) because of the
fact that if a consistent set S cannot prove or disprove a query, then nor
can any subset of S. Therefore, one approach of ODP is to return just a
maximally consistent subset. Let n be |X| and k be n — |S|, that is the
cardinality difference between the ontology > and its maximal consistent
subset S (note that k is usually very small), and let C be the complexity of
the consistency checking. The complexity of the over-determined proces-
sing is polynomial to the complexity of the consistency checking (Huang
et al., 2005).

PROTOTYPE OF PION 87

Note that ODP introduces a degree of non-determinism: selecting
different maximal consistent subsets of s(X, ¢, k) may yield different
answers to the query ¥ g ¢. The simplest example of this is X = {¢,).

5.8. PROTOTYPE OF PION

5.8.1. Implementation

We are implementing the prototype of PION by using SWI-Prolog.”
PION implements an inconsistency reasoner based on a linear extension
strategy and the syntactic relevance-based selection function as discussed
in Sections 5.6 and 5.7. PION is powered by XDIG, an extended DIG
Description Logic interface for Prolog (Huang and Visser, 2004). PION
supports the TELL requests in DIG data format and in OWL, and the
ASK requests in DIG data format. A prototype of PION is available for
download at the website: http://wasp.cs.vu.nl/sekt/pion.

The architecture of a PION is designed as an extension of the XDIG
framework, and is shown in Figure 5.3. A PION consists of the following
components:

e DIG Server: The standard XDIG server acts as PION’s XDIG server,
which deals with requests from other ontology applications. It not only
supports standard DIG requests, like ‘tell’ and ‘ask,” but also provides
additional reasoning facilities, like the identification of the reasoner or
change of the selected selection functions.

e Main Control Component: The main control component performs the
main processing, like query analysis, query pre-processing, and the
extension strategy, by calling the selection function and interacting
with the ontology repositories.

L 4
Application/ .| PION DIG | External
GUI | Server Client [, Reasoner |

{ !
Main Control Component

JENN N —

Emaetd
Ontology | Selec_ﬁon
Repository J Functions

Figure 5.3 Architecture of PION.

Shttp:/ /www.swi-prolog.org

88 REASONING WITH INCONSISTENT ONTOLOGIES

o Selection Functions: The selection function component is an enhanced
component to XDIG, it defines the selection functions that may be used
in the reasoning process.

e DIG Client: PION’s DIG client is the standard DIG client, which calls
external description Logic reasoners that support the DIG interface to
obtain the standard Description Logic reasoning capabilities.

e Ontology Repositories: The ontology repositories are used to store
ontology statements, provided by external ontology applications.

The current version of the PION implements a reasoner based on a linear
extension strategy and a k-relevance selection function as discussed in
Sections 5.2 and 5.5. A screenshot of the PION testbed, is shown in Figure
54.

5.8.2. Experiments and Evaluation

We have tested the prototype of PION by applying it on several example
ontologies. These example ontologies are the bird example, the brain
example, the Married-Woman example, and the MadCow Ontology,
which are discussed in Section 5.3. We compare PION’s answers with
their intuitive answers which is supposed by a human to see to what
extend PION can provide intended answers.

For a query, there might exist the following difference between an
answer by PION and its intuitive answer.

o Intended Answer: PION’s answer is the same as the intuitive answer.

o Counter-Intuitive Answer: PION’s answer is opposite to the intuitive
answer. Namely, the intuitive answer is ‘accepted” whereas PION’s
answer is ‘rejected,” or vice versa.

o Cautious Answer: The intuitive answer is ‘accepted” or ‘rejected,” but
PION’s answer is ‘undetermined.’

o Reckless Answer: PION’s answer is ‘accepted” or ‘rejected” whereas the
intuitive answer is ‘undetermined.” We call it a reckless answer
because under this situation PION returns just one of the possible
answers without seeking other possibly opposite answers, which may
lead to “‘undetermined.’

For each concept C in those ontologies, we create an instance ‘the_C’ on
them. We make both a positive instance query and a negative instance
query of the instance ‘the_C’ for some concepts D in the ontologies, like a
query is ‘the_C a D?" PION test results are shown in Figure 5.5. Of the
four test examples, PION can return at least 85.7 % intended answers. Of
the 396 queries, PION returns 24 cautious answers or reckless answers,
and 2 counter-intuitive answers. However, we would like to point out
that the high rate of the intended answers includes many “‘undetermined”
answers. One interesting (and we believe realistic) property of the Mad

'PoqiseL NOId ¥°G @Inbiy

I S0P 30] b G

TUOISISA Y prOIAMOp WEd nok ‘randwod mok uo Fojold-IM S PAEISU 134 10T 248 nok JT (23]
10 b p'C oTIaA)EG[oI TS 9 Jo L10j3amp Aneiqr sty o T Aesqnep sdeyoed Bojorg oy duup
poddng aseprayy T HIQ Soforg NP jo wonrLIsu] o

Bumeono] o op wea no § Fummuns ane (3sySny 3o p] /] UeIsIaA) 320wy
J3uoseal T O [PWLs 3 pUR Jaalas FOT S T 2ms 3ew 1599 KO < Sumres asojeg

NOId MmomIA|E NOId UAA
_p BIUBAS| 8 JTRIUAS T_e.-. nmyg prafag

[=] [SpaTq SI¢ SuTnbuUsd] PITH <= UINDUSA m udisuapg maun _.._Bﬁ_u.ﬂ..v. 1afag
(sparq a1 sa7bey) patqg <= arbes
(STwarTus

- | BUTATE ®1% spatg) AT <= paz

= (ETwaTUe 33v SpPatg) TN <w PITQ]
“ ajduexg pug —&nﬁshH Jiagag

<IDUNACUT /> </ AT JuudWOU WOIWI>

</uPB3IT =Y TERPTATPUTS

<uATF PR3J,=PT SJUEISUT>

<IOURISUT /> < /AT Ty =Y WO

2/ 390, =300 TENPTATPUT:

<LATE A3193873,=PT IDUNISUT>

Z0/E00Z/B1p/qn - o usu gaa-TR/ / : 439y, =U0T 1820 TERIYIE : TEX
HRIUBIEUT-SUIYISTHE /T002,/530° ca nan/ /1 daay,=TEX I SuTEX
WwBURT /BT /B30 33 TR/ /0N, =SUTER SXYEe

< 41-65S88-081.=PUTPOIUI (' Tu=UOTEIIA THXL>

M....!...Eﬂ.uan::. Sdssucoieps

</uhTFumoumeu 3dasu00FSP>

</uTRUTUS, =20eu 3d32U02TIP>

< /uP3Td,waueu 3daoucozIp>

< /g4 Teara
20/£002/BYp /AN - 06 - usa- gan-Tp/ / : 13, =U0T IVI0TEUSYIE : TEX
L BIUBASUT-BUSYISTUY /TO0Z /B30 cA AR/ /1 d13N,=TSK I SUTHH

ubuey /Brp /B30 3y TR/ /1433y, =CUTEX STTI3>
<{uT=6588-051.,=DUTPOIUR 0" T,wUOTEIRA THIXS >

(asoyea0f uo) paqisa], NOI 1€ IMAS JIAX A

90 REASONING WITH INCONSISTENT ONTOLOGIES

Example Queries| IA | CA | RA | CIA | IA Rate(%) | ICR Rate(%)
Bird 50 50| O 0 0 100 100
Brain 42 36 | 4 2 0 85.7 100
MarriedWoman 50 48 0 2 0 96 100
MadCow 254 236| 16 | 0 2 92.9 99

IA, intended answers; CA, cautious answers; RA, reckless answers; CIA,
counter-intuitive answers; IA Rate, intended answers (%); ICR rate, IA+CA+RA (%).

Figure 5.5 PION test results.

Cows ontology is that many concepts which are intuitively disjoint (such
as cows and sheep) are not actually declared as being disjoint (keep in
mind that OWL has an open world semantics, and does not make the
unique name assumption). As a result, many queries such as ‘is the_cow
a sheep’ are indeed undetermined on the basis of the ontology, and PION
correctly reports them as undetermined. The average time cost of the
tested queries is about 5 seconds even on a low-end PC (with 550 mHz
CPU, 256 MB memory under Windows 2000).

The counter-intuitive results occur in the MadCows Example. PION
returns the ‘accepted’” answer to the query ‘is the_mad_cow a vege-
tarian?” This counter-intuitive answer results from the weakness of
the syntactic relevance-based selection function because it always pre-
fers a shorter relevance path when a conflict occurs. In the mad cow
example, the path ‘mad cow — cow — vegetarian’ is shorter than the path
‘mad cow —.eat brain — eat bodypart — sheep are animals — eat animal —
NOT vegetarian.” Therefore, the syntactic relevance-based selection
function finds a consistent subtheory by simply ignoring the fact
‘sheep are animals.” The problem results from the unbalanced specifica-
tion between Cow and MadCow, in which Cow is directly specified as a
vegetarian whereas there is no direct statement ‘a MadCow is not a
vegetarian.’

There are several alternative approaches to solve this kind of problems.
One is to introduce the locality requirement. Namely, the selection
function starts with a certain subtheory which must always be selected.
For example, the statement ‘sheep are animals’ can be considered to be a
knowledge statement which cannot be ignored. Another approach is to
add a shortcut path, like the path ‘mad cow — eat animal — NOT
vegetarian’ to achieve the relevance balance between the concepts
‘vegetarian” and NOT vegetarian,” as shown in the second mad cow
example of PION testbed. The latter approach can be achieved auto-
matically by accommodation of the semantic relevance from the user
queries. The hypothesis is that both concepts appear in a query more
frequently, when they are semantically more relevant. Therefore, from a
semantic point of view, we can add a relevance shortcut path between
strongly relevant concepts.

DISCUSSION AND CONCLUSIONS 91

5.8.3. Future Experiments

As noted in many surveys of current Semantic Web work, most Semantic
Web applications to date (including those included in this volume) use
rather lightweight ontologies. These lightweight ontologies are often
expressed in RDF Schema, which means that by definition they will
not contain any inconsistencies. However, closer inspection by Schlobach
(2005a) revealed that such lightweight ontologies contain many implicit
assumptions (such as disjointness of siblings in the class hierarchy) that
have not been modeled explicitly because of the limitations of the
lightweight representation language Schlobach’s (2005a) study reveals
that after making such implicit disjointness assumptions explicit (a
process called semantic clarification), many of the ontologies do reveal
internal inconsistencies. In future experiments, we intend to determine to
which extent it is still possible to locally reason in such semantically
clarified inconsistent ontologies using the heuristics described in this
chapter.

5.9. DISCUSSION AND CONCLUSIONS

In this chapter, we have presented a framework for reasoning with
inconsistent ontologies. We have introduced the formal definitions of
the selection functions, and investigated the strategies of inconsistency
reasoning processing based on a linear extension strategy.

One of the novelties of our approach is that the selection functions
depend on individual queries. Our approach differs from the traditional
one in paraconsistent reasoning, nonmonotonic reasoning, and belief
revision, in which a pre-defined preference ordering for all of the queries
is required. This makes our approach more flexible, and less inefficient to
obtain intended results. The selection functions can be viewed as ones
creating query-specific preference orderings.

We have implemented and presented a prototype of PION. In this
chapter, we have provided the evaluation report of the prototype by
applying it to the several inconsistent ontology examples. The tests show
that our approach can obtain intuitive results in most cases for reasoning
with inconsistent ontologies. Considering the fact that standard reason-
ers always result in either meaningless answers or incoherence errors
for queries on inconsistent ontologies, we can claim that PION can do
much better because it can provide a lot of intuitive, thus meaningful
answers. This is a surprising result given the simplicity of our selection
function.

We are also working on a framework for inconsistent ontology
diagnosis and repair by defining a number of new nonstandard reason-
ing services to explain inconsistencies through pinpointing (Schlobach
and Huang, 2005). An informed bottom-up approach to calculate

92 REASONING WITH INCONSISTENT ONTOLOGIES

minimally inconsistent sets by the support of an external Description
Logic reasoner has been proposed in Schlobach and Huang (2005). That
approach has been prototypically implemented as the DION (Debugger
of Inconsistent Ontologies). DION uses the relevance relation which has
been used in PION as its heuristic information to guide the selecting
procedure for finding minimally inconsistent sets. That justifies to some
extent that the notion of ‘concept relevance’ is useful for inconsistent
ontology processing.

In future work, we are going to test PION with more large-scale
ontology examples. We are also going to investigate different approaches
for selection functions (e.g., semantic-relevance based) and different
extension strategies as alternatives to the linear extension strategy in
combination with different selection functions, and test their perfor-
mance.

ACKNOWLEDGMENT

We are indebted to Peter Haase for so carefully proofreading this
chapter.

REFERENCES

Alchourron C, Gaerdenfors P, Makinson D. 1985. On the logic of theory change:
partial meet contraction and revision functions. The Journal of Symbolic Logic 50:
510-530.

Belnap N. 1977. A useful four-valued logic. In Modern Uses of Multiple-Valued
Logic, Reidel, Dordrecht, pp 8-37.

Benferhat S, Garcia L. 2002. Handling locally stratified inconsistent knowledge
bases, Studio Logica, 77-104.

Beziau J-Y. 2000. What is paraconsistent logic. In Frontiers of Paraconsistent Logic.
Research Studies Press: Baldock, pp 95-111.

Budanitsky A, Hirst G. 2001. Semantic distance in wordnet: An experimental,
application-oriented evaluation of five measures. In Workshop on WordNet
and Other Lexical Resources, Pittsburgh, PA.

Chopra S, Parikh R, Wassermann R. 2000. Approximate belief revision-prelimi-
ninary report. Journal of IGPL.

Flouris G, Plexousakis D. Antoniou G. 2005. On applying the agm theory to dls
and owl. In International Semantic Web Conference, LNCS, Springer verlag.
Friedrich G, Shchekotykhin K. 2005. A general diagnosis method for ontologies. In

International Semantic Web Conference, LNCS, Springer Verlag.

Hameed A, Preece A. Sleeman D. 2003. Ontology reconciliation. In Handbook on
Ontologies in Information Systems. Springer Verlag, pp 231-250.

Huang Z, van Harmelen F, ten Teije A. 2005. Reasoning with inconsistent
ontologies. In Proceedings of the International Joint Conference on Artificial
Intelligence - I[JCAI'05, pp 454-459.

Huang Z, Visser C. 2004. Extended DIG description logic interface support for
PROLOG, Deliverable D3.4.1.2, SEKT.

REFERENCES 93

Lang J, Marquis P. 2001. Removing inconsistencies in assumption-based the-ories
through knowledge-gathering actions. Studio, Logica, 179-214.

Levesque HJ (1989). A Knowledge-level account of abduction. In Proceedings of
IJCAI'89, pp 1061-1067.

Marquis P, Porquet N. 2003. Resource-bounded paraconsistent inference. Annals
of Mathematics and Artificial Intelligence, 349-384.

McGuinness D, van Harmelen F. 2004. Owl web ontology language, Recommen-
dation, W3C. http://www.w3.org/TR/owl-features/.

Reiter R. 1987. A theory of diagnosis from first principles. Artificial Intelligence
Journal 32:57-96.

Schaerf M, Cadoli M. 1995. Tractable reasoning via approximation. Artificial
Intelligence, 249-310.

Schlobach S. 2005a. Debugging and semantic clarification by pinpointing. In
Proceedings of the European Semantic Web Symposium, Vol. 3532 of LNCS,
Springer Verlag, pp 226-240.

Schlobach S. 2005b. Diagnosing terminologies. In Proceedings of the Twentieth
National Conference on Artificial Intelligence, AAAI'05, AAAL pp 670-675.
Schlobach S, Cornet R. 2003. Non-standard reasoning services for the debugging

of description logic terminologies. In Proceedings of IJCAI 2003".

Schlobach S, Huang Z. 2005 Inconsistent ontology diagnosis: Framework and

prototype, Project Report D3.6.1, SEKT.

6

Ontology Mediation, Merging,
and Aligning

Jos de Bruijn, Marc Ehrig, Cristina Feier, Francisco Martin-Recuerda,
Francgois Scharffe and Moritz Weiten

6.1. INTRODUCTION

On the Semantic Web, data is envisioned to be annotated using ontolo-
gies. Ontologies convey background information which enriches the
description of the data and which makes the context of the information
more explicit. Because ontologies are shared specifications, the same
ontologies can be used for the annotation of multiple data sources, not
only Web pages, but also collections of XML documents, relational
databases, etc. The use of such shared terminologies enables a certain
degree of inter-operation between these data sources. This, however, does
not solve the integration problem completely, because it cannot be
expected that all individuals and organizations on the Semantic Web
will ever agree on using one common terminology or ontology (Visser
and Cui, 1998; Uschold, 2000). It can be expected that many different
ontologies will appear and, in order to enable inter-operation, differences
between these ontologies have to be reconciled. The reconciliation of
these differences is called ontology mediation.

Ontology mediation enables reuse of data across applications on the
Semantic Web and, in general, cooperation between different organiza-
tions. In the context of semantic knowledge management, ontology
mediation is especially important to enable sharing of data between
heterogeneous knowledge bases and to allow applications to reuse data

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

96 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

from different knowledge bases. Another important application area for
ontology mediation is Semantic Web Services. In general, it cannot be
assumed that the requester and the provider of a service use the same
terminology in their communication and thus mediation is required
in order to enable communication between heterogeneous business
partners.

We distinguish two principled kinds of ontology mediation: ontology
mapping and ontology merging. With ontology mapping, the correspon-
dences between two ontologies are stored separately from the ontologies
and thus are not part of the ontologies themselves. The correspondences
can be used for, for example, querying heterogeneous knowledge bases
using a common interface or transforming data between different repre-
sentations. The (semi-)automated discovery of such correspondences is
called ontology alignment.

When performing ontology merging, a new ontology is created which is
the union of the source ontologies. The merged ontology captures all the
knowledge from the original ontologies. The challenge in ontology
merging is to ensure that all correspondences and differences between
the ontologies are reflected in the merged ontology.

Summarizing, ontology mapping is mostly concerned with the repre-
sentation of correspondences between ontologies; ontology alignment is
concerned with the discovery of these correspondences; and onfology
merging is concerned with creating the union of ontologies, based on
correspondences between the ontologies. We provide an overview of the
main approaches in ontology merging, ontology mapping, and ontology
alignment in Section 6.2.

After the survey we present a practical approach to ontology media-
tion where we describe a language to specify ontology mappings, an
alignment method for semi-automatically discovering mappings, a gra-
phical tool for browsing and creating mappings in a user friendly way, in
Section 6.3.

We conclude with a summary in Section 6.4.

6.2. APPROACHES IN ONTOLOGY MEDIATION

In this section we give an overview of some of the major approaches in
ontology mediation, particularly focusing on ontology mapping, align-
ment, and merging.

An important issue in these approaches is the location and specifica-
tion of the overlap and the mismatches between concepts, relations, and
instances in different ontologies. In order to achieve a better under-
standing of the mismatches which all these approaches are trying to
overcome, we give an overview of the mismatches which might occur
between different ontologies, based on the work by Klein (2001), in
Section 6.2.1.

APPROACHES IN ONTOLOGY MEDIATION 97

We survey a number of representative approaches for ontology map-
ping, ontology alignment, and ontology merging in Sections 6.2.2, 6.2.3,
and 6.2.4, respectively. For more elaborate and detailed surveys we refer
the reader to References (Kalfoglou and Schorlemmer, 2003; Noy, 2004;
Doan and Halevy, 2005; Shvaiko and Euzenat, 2005).

6.2.1. Ontology Mismatches

The two basic types of ontology mismatches are: (1) Conceptualization
mismatches, which are mismatches of different conceptualizations of the
same domain and (2) Explication mismatches, which are mismatches in the
way a conceptualization is specified.

Conceptualization mismatches fall in two categories. A scope mismatch
occurs when two classes have some overlap in their extensions (the sets
of instances), but the extensions are not exactly the same (e.g., the
concepts Student and TaxPayer). There is a mismatch in the model
coverage and granularity if there is a difference in (a) the part of the domain
that is covered by both ontologies (e.g., the ontologies of university
employees and students) or (b) the level of detail with which the model is
covered (e.g., one ontology might have one concept Person whereas
another ontology distinguishes between YoungPerson, MiddleAged-
Person, and OldPerson).

Explication mismatches fall in three categories. There is (1) a mismatch
in the style of modeling if either (a) the paradigm used to specify a certain
concept (e.g., time) is different (e.g., intervals vs. points in time) or (b) the
way the concept is described differs (e.g., using subclasses vs. attributes to
distinguish groups of instances). There is a (2) terminological mismatch
when two concepts are equivalent, but they are represented using
different names (synonyms) or when the same name is used for different
concepts (homonyms). Finally, an (3) encoding mismatch occurs when
values in different ontologies are encoded in a different way (e.g.,
using kilometers vs. miles for a distance measure).

6.2.2. Ontology Mapping

An ontology mapping is a (declarative) specification of the semantic
overlap between two ontologies; it is the output of the mapping process
(see Figure 6.1). The correspondences between different entities of the
two ontologies are typically expressed using some axioms formulated in
a specific mapping language. The three main phases for any mapping
process are: (1) mapping discovery, (2) mapping representation, and (3)
mapping exploitation/execution. In this section we survey a number
existing approaches for ontology mapping, with a focus on the mapping
representation aspect.

98 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

o D —
o1 ,
input |Mapping creation/| Output [G ™
alignment ‘ﬁ
e D
Mapping rules

Figure 6.1 Ontology mapping.

A common tendency among ontology mapping approaches is the
existence of an ontology of mappings (e.g., MAFRA (Maedche et al.,
2002), RDFT (Omelayenko, 2002)), which constitutes the vocabulary for
the representation of mappings.

MAFRA (MApping FRAmework for distributed ontologies) (Maedche
et al., 2002) supports the interactive, incremental, and dynamic ontology
mapping process, where the final purpose of such a process is to support
instance transformation. It addresses all the phases of the mapping
process: lift & normalization (lifting the content of the ontologies to
RDF-S and normalization of their vocabularies by eliminating syntactical
and lexical differences), similarity (computation of the similarities
between ontology entities as a support for mapping discovery), semantic
bridging (establishing correspondences between similar entities, in the
form of so-called semantic bridges—defining the mapping), execution
(exploiting the bridges/mapping for instance transformation), and post-
processing (revisiting the mapping specification for improvements).

We will focus in the following on the representation of mappings using
semantic bridges in MAFRA. The semantic bridges are captured in the
Semantic Bridging Ontology (SBO). SBO is a taxonomy of generic
bridges; instances of these generic bridges, called concrete bridges, con-
stitute the actual concrete mappings. We give an overview of the
dimensions along which a bridge can be described in MAFRA, followed
by a shallow description of the classes of SBO which allow one to express
such bridges.

A bridge can be described along five dimensions:

1. Entity dimension: pertains to the entities related by a bridge which
may be concepts (modeling classes of objects in the real world),
relations, attributes, or extensional patterns (modeling the content of
instances).

2. Cardinality dimension: pertains to the number of ontology entities at
both sides of the semantic bridge (usually 1:n or m:1; m:n is seldom
required and it can be usually decomposed into m:1:n).

3. Structural dimension: pertains to the way elementary bridges may be
combined into a more complex bridge (relations that may hold between
bridges: specialization, alternatives, composition, abstraction).

4. Transformation dimension: describes how instances are transformed by
means of an associated transformation function.

APPROACHES IN ONTOLOGY MEDIATION 99

5. Constraint dimension: allows one to express conditions upon whose
fulfillment the bridge evaluation depends. The transformation rule
associated with the bridge is not executed unless these conditions hold.

The abstract class SemanticBridge describes a generic bridge, upon
which there are no restrictions regarding the entity types that the bridge
connects or the cardinality. For supporting composition, this class has
defined a relation hasBridge. The class SemanticBridgeAlt sup-
ports the alternative modeling primitive by grouping several mutually
exclusive semantic bridges. The abstract class SemanticBridge is
further specialized in the SBO according to the entity type: Relation-
Bridge, ConceptBridge, and AttributeBridge. Rule is a class for
describing generic rules. Condition and Transformation are its
subclasses which are responsible for describing the condition necessary
for the execution of a bridge and the transformation function of a bridge,
respectively. The Service class maps the bridge parameters with the
transformation procedure arguments to procedures.

RDFT (Omelayenko, 2002) is a mapping meta-ontology for mapping
XML DTDs to/and RDF schemas targeted towards business integration
tasks. The business integration task in this context is seen as a service inte-
gration task, where each enterprise is represented as a Web service
specified in WSDL. A conceptual model of WSDL was developed
based on RDF Schema extended with the temporal ontology PSL. Service
integration is reduced to concept integration; RDFT contains mapping-
specific concepts such as events, messages, vocabularies, and XML-
specific parts of the conceptual model.

The most important class of the meta-ontology is Bridge, which
enables one to specify correspondences between one entity and a set of
entities or vice versa, depending on the type of the bridge: one-to-many or
many-to-one. The relation between the source and target components of a
bridge can be an EquivalentRelation (states the equivalence
between the two components) or a VersionRelation (states that the
target set of elements form a later version of the source set of elements,
assuming identical domains for the two). This is specified via the bridge
property Relation. Bridges can be categorized in:

e RDFBridges, which are bridges between RDF Schema entities. These
can be Class2Class or Property2Property bridges.

e XMLBridges, which are bridges between XML tags of the source/target
DTD and the target/source RDF Schema entities. These can be Tag2-
Class, Tag2Property, Class2Tag, or Property2Tag bridges.

e Event2Event bridges, which are bridges that connect two events
pertaining to different services. They connect instances of the meta-
class mediator:Event.

Collections of bridges which serve a common purpose are grouped in a
map. When defined in such a way, as a set of bridges, mappings are said

100 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

to be declarative, while procedural mappings can be defined by means of
an XPath expression for the transformation of instance data.

C-OWL Another perspective on ontology mapping is given by Context
OWL (C-OWL) (Bouquet et al., 2004), which is a language that extends
the ontology language OWL (Dean and Schreiber, 2004) both syntacti-
cally and semantically in order to allow for the representation of
contextual ontologies. The term contextual ontology refers to the fact that
the contents of the ontology are kept local and they can be mapped with
the contents of other ontologies via explicit mappings (bridge rules) to
allow for a controlled form of global visibility. This is opposed to the
OWL importing mechanism where a set of local models is globalized in a
unique shared model.

Bridge rules allow connecting entities (concepts, roles, or individuals)
from different ontologies that subsume one another, are equivalent, are
disjoint or have some overlap. A C-OWL mapping is a set of bridges
between two ontologies. A set of OWL ontologies together with map-
pings between each of them is called a context space.

The local models semantics defined for C-OWL, as opposed to the
OWL global semantics, considers that each context uses a local set of
models and a local domain of interpretation. Thus, it is possible to have
ontologies with contradicting axioms or unsatisfiable ontologies without
the entire context space being unsatisfiable.

6.2.3. Ontology Alignment

Ontology alignment is the process of discovering similarities between two
source ontologies. The result of a matching operation is a specification of
similarities between two ontologies. Ontology alignment is generally
described as the application of the so-called Match operator (cf. (Rahm
and Bernstein, 2001)). The input of the operator is a number of ontology and
the output is a specification of the correspondences between the ontologies.

There are many different algorithms which implement the match
operator. These algorithms can be generally classified along two dimen-
sions. On the one hand there is the distinction between schema-based
and instance-based matching. A schema-based matcher takes different
aspects of the concepts and relations in the ontologies and uses some
similarity measure to determine correspondence (e.g., (Noy and Musen,
2000b)). An instance-based matcher takes the instances which belong to
the concepts in the different ontologies and compares these to discover
similarity between the concepts (e.g., (Doan et al., 2004)). On the other
hand there is the distinction between element-level and structure-level
matching. An element-level matcher compares properties of the particu-
lar concept or relation, such as the name, and uses these to find
similarities (e.g., (Noy and Musen, 2000b)). A structure-level matcher
compares the structure (e.g., the concept hierarchy) of the ontologies to

APPROACHES IN ONTOLOGY MEDIATION 101

find similarities (e.g., (Noy and Musen, 2000a; Giunchiglia and Shvaiko,
2004)). These matchers can also be combined (e.g., (Ehrig and Staab, 2004;
Giunchiglia et al., 2004)). For example, Anchor-PROMPT (Noy and
Musen, 2000a), a structure-level matcher, takes as input an initial list of
similarities between concepts. The algorithm is then used to find addi-
tional similarities, based on the initial similarities and the structure of the
ontologies. For a more detailed classification of alignment techniques we
refer to Shvaiko and Euzenat (2005). In the following, we give an
overview of those approaches.

Anchor-PROMPT (Noy and Musen, 2000a) is an algorithm which aims
to augment the results of matching methods which only analyze local
context in ontology structures, such as PROMPT (Noy and Musen,
2000b), by finding additional possible points of similarity, based on the
structure of the ontologies. The algorithm takes as input two pairs of
related terms and analyzes the elements which are included in the path
that connects the elements of the same ontology with the elements of the
equivalent path of the other ontology. So, we have two paths (one for
each ontology) and the terms that comprise these paths. The algorithm
then looks for terms along the paths that might be similar to the terms of
the other path, which belongs to the other ontology, assuming that the
elements of those paths are often similar as well. These new potentially
related terms are marked with a similarity score which can be modified
during the evaluation of other paths in which these terms occur. Terms
with high similar scores will be presented to the user to improve the set
of possible suggestions in, for example, a merging process in PROMPT.

GLUE (Doan et al., 2003; 2004) is a system which employs machine-
learning technologies to semi-automatically create mappings between
heterogeneous ontologies based on instance data, where an ontology is
seen as a taxonomy of concepts. GLUE focuses on finding 1-to-1 map-
pings between concepts in taxonomies, although the authors mention
that extending matching to relations and attributes, and involving more
complex mappings (such as 1-to-n and n-to-1 mappings) is the subject of
ongoing research.

The similarity of two concepts A and B in two taxonomies O1 and O2 is
based on the sets of instances that overlap between the two concepts. In
order to determine whether an instance of concept B is also an instance of
concept A, first a classifier is built using the instances of concept A as the
training set. This classifier is now used to classify the instances of concept
B. The classifier then decides for each instance of B, whether it is also an
instance of A or not.

Based on these classifications, four probabilities are computed, namely,
P(A,B), P(A,B), P(A,B), and P(A,B), where, for example, P(A,B) is the
probability that an instance in the domain belongs to A, but not to B.
These four probabilities can now be used to compute the joint probability
distribution for the concepts A and B, which is a user supplied function
with these four probabilities as parameters.

102 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

Semantic Matching (Giunchiglia and Shvaiko, 2004) is an approach to
matching classification hierarchies. The authors implement a Match
operator that takes two graph-like structures (e.g., database schemas or
ontologies) as input and produces a mapping between elements of the
two graphs that semantically correspond to each other.

Giunchiglia and Shvaiko (2004) have argued that almost all earlier
approaches to schema and ontology matching have been syntactic match-
ing approaches, as opposed to semantic matching. In syntactic matching,
the labels and sometimes the syntactical structure of the graph are
matched and typically some similarity coefficient [0,1] is obtained,
which indicates the similarity between the two nodes. Semantic Matching
computes a set-based relation between the nodes, taking into account the
meaning of each node; the semantics of a node is determined by the label
of that node and the semantics of all the nodes which are higher in the
hierarchy. The possible relations returned by the Semantic Matching
algorithm are equality (=), overlap (N), mismatch (L), more general (C), or
more specific (2). The correspondence of the symbols with set theory is not
a coincidence, since each concept in the classification hierarchies repre-
sents a set of documents.

Quick Ontology Mapping (QOM) (Ehrig and Staab, 2004; Ehrig and
Sure, 2004) was designed to provide an efficient matching tool for on-the-
fly creation of mappings between ontologies.

In order to speed up the identification of similarities between two
ontologies, QOM does not compare all entities of the first ontology with
all entities of the second ontology, but uses heuristics (e.g., similar labels)
to lower the number of candidate mappings, that is the number of
mappings to compare. The actual similarity computation is done by
using a wide range of similarity functions, such as string similarity.

Several of such similarity measures are computed, which are all input
to the similarity aggregation function, which combines the individual
similarity measures. QOM applies a so-called sigmoid function, which
emphasizes high individual similarities and de-emphasizes low indivi-
dual similarities. The actual correspondences between the entities in the
ontologies are extracted by applying a threshold to the aggregated
similarity measure. The output of one iteration can be used as part of
the input in a subsequent iteration of QOM in order to refine the result.
After a number of iterations, the actual table of correspondences between
the ontologies is obtained.

6.2.4. Ontology Merging

Ontology merging is the creation of one ontology from two or more source
ontologies. The new ontology will unify and in general replace
the original source ontologies. We distinguish two distinct approaches
in ontology merging. In the first approach the input of the merging

APPROACHES IN ONTOLOGY MEDIATION 103

0O1-02 -
03=01U 02 Bridge ontology
import O1 import 02
o2 01 O1N02 bridge axioms
(@) (b)

Figure 6.2 Output of the merging process. (a) Complete merge and
(b) bridge ontology.

process is a collection of ontologies and the outcome is one new, merged,
ontology which captures the original ontologies (see Figure 6.2(a)). A
prominent example of this approach is PROMPT (Noy and Musen,
2000b), which is an algorithm and a tool for interactively merging
ontologies. In the second approach the original ontologies are not
replaced, but rather a ‘view, called bridge ontology, is created which
imports the original ontologies and specifies the correspondences using
bridge axioms. OntoMerge (Dou et al., 2002) is a prominent example of this
approach. OntoMerge facilitates the creation of a ‘bridge’ ontology which
imports the original ontologies and relates the concepts in these ontol-
ogies using a number of bridge axioms. We describe the PROMPT and
OntoMerge approaches in more detail below.

PROMPT (Noy and Musen, 2000b) is an algorithm and an interactive
tool for the merging two ontologies. The central element of PROMPT is
the algorithm which defines a number of steps for the interactive
merging process:

1. Identify merge candidates based on class-name similarities. The result
is presented to the user as a list of potential merge operations.

2. The user chooses one of the suggested operations from the list or
specifies a merge operation directly.

3. The system performs the requested action and automatically executes
additional changes derived from the action.

4. The system creates a new list of suggested actions for the user based
on the new structure of the ontology, determines conflicts introduced
by the last action, finds possible solutions to these conflicts, and
displays these to the user.

PROMPT identifies a number of ontology merging operations (merge
classes, merge slots, merge bindings between a slot and a class, etc.) and
a number of possible conflicts introduced by the application of these
operations (name conflicts, dangling references, redundancy in the class
hierarchy, and slot-value restrictions that violate class inheritance).

OntoMerge (Dou et al., 2002) is an on-line approach in which source
ontologies are maintained after the merge operation, whereas in

104 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

PROMPT the merged ontology replaces the source ontologies. The out-
put of the merge operation in OntoMerge is not a complete merged
ontology, as in PROMPT, but a bridge ontology which imports the source
ontologies and which has a number of Bridging Axioms (see Figure
6.2(b)), which are translation rules used to connect the overlapping part
of the source ontologies. The two source ontologies, together with the
bridging axioms, are then treated as a single theory by a theorem prover
optimized for three main operations:

1. Dataset translation (cf. instance transformation in de Bruijn and
Polleres (2004)): dataset translation is the problem of translating a
set of data (instances) from one representation to the other.

2. Ontology extension generation: the problem of ontology extension
generation is the problem of generating an extension (instance data)
O2s, given two related ontologies O1 and O2, and an extension Ols of
ontology O1. The example given by the authors is to generate a WSDL
extension based on an OWL-S description of the corresponding Web
Service.

3. Querying different ontologies: query rewriting is a technique for
solving the problem of querying different ontologies, whereas the
authors of Dou et al. (2002) merely stipulate the problem.

6.3. MAPPING AND QUERYING DISPARATE
KNOWLEDGE BASES

In the previous section we have seen an overview of a number of
representative approaches for different aspects of ontology mediation
in the areas of ontology mapping, alignment, and merging. In this section
we focus on an approach for ontology mapping and ontology alignment
to query disparate knowledge bases in a knowledge management sce-
nario. However, the techniques are largely applicable to any ontology
mapping or alignment scenario.

In the area of knowledge management we assume there are two main
tasks to be performed with ontology mappings: (a) transforming data
between different representations, when transferring data from one
knowledge base to another; and (b) querying of several heterogeneous
knowledge bases, which have different ontologies. The ontologies in the
area of knowledge management are large, but lightweight, that is, there is
a concept hierarchy with many concepts, but there are relatively few
relations and axioms in the ontology. From this follows that the map-
pings between the ontologies will be large as well, and they will
generally be lightweight; the mapping will consist mostly of simple
correspondence between concepts. The mappings between ontologies
are not required to be completely accurate, because of the nature of the

MAPPING AND QUERYING DISPARATE 105

application of knowledge management: if a search result is inaccurate it
is simply discarded by the user.

In order to achieve ontology mapping, one needs to specify the
relationship between the ontologies using some language. A natural
candidate to express these relationships would seem to be the ontology
language which is used for the ontologies themselves. We see a number
of disadvantages to this approach:

e Ontology language: there exist several different ontology languages for
different purposes (e.g., RDFS (Brickley and Guha, 2004), OWL (Dean
and Schreiber, 2004), WSML (de Bruijn et al., 2005)), and it is not
immediately clear how to map between ontologies which are specified
using different languages.

o Independence of mapping: using an existing ontology language would
typically require to import one ontology into the other, and specify the
relationships between the concepts and relations in the resulting
ontology; this is actually a form of ontology merging. The general
disadvantage of this approach is that the mapping is tightly coupled
with the ontologies; one can essentially not separate the mapping from
the ontologies.

e Epistemological adequacy: The constructs in an ontology language have
not been defined for the purpose of specifying mappings between
ontologies. For example, in order to specify the correspondence
between two concepts Human and Person in two ontologies, one
could use some equivalence or subclass construct in the ontology
language, even though the intension of the concepts in both ontologies
is different.

In Section 6.3.1 we describe a mapping language which is independent
from the specific ontology language but which can be grounded in an
ontology language for some specific tasks. The mapping language itself is
based on a set of elementary mapping patterns which represent the
elementary kinds of correspondences one can specify between two
ontologies.

As we have seen in Section 6.2.3, there exist many different alignment
algorithms for the discovery of correspondences between ontologies. In
Section 6.3.2 we present an interactive process for ontology alignment
which allows to plug in any existing alignment algorithm. The input of
this process consists of the ontologies which are to be mapped and the
output is an ontology mapping.

Writing mapping statements directly in the mapping language is a
tedious and error-prone process. The mapping tool OntoMap is a
graphical tool for creating ontology mappings. This tool described in
Section 6.3.3 can be used to create a mapping between two ontologies
from scratch or it can be used for the refinement of automatically
discovered mappings.

106 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

6.3.1. Mapping Language

An important requirement for the mapping language which is presented
in this section is the epistemological adequacy of the constructs in the
language. In other words, the constructs in the language should corre-
spond to the actual correspondences one needs to express in a natural way.
More information about the mapping language can be found in Scharffe
and de Bruijn (2005) and on the web site of the mapping language.'

Now, what do we mean with ‘natural way?’ There are different
patterns which one can follow when mapping ontologies. One can map
a concept to a concept, a concept with a particular attribute value to
another concept, a relation to a relation, etc. We have identified a number
of such elementary mapping patterns which we have used as a basis for
the mapping language.

Example. As a simple example of possible mapping which can be
expressed between ontologies, assume we have two ontologies 01 and
02 which both describe humans and their gender. Ontology 01 has a
concept Human with an attribute hasGender; 02 has two concepts
Woman and Man. 01 and 02 use different ways to distinguish the gender
of the human; 01 uses an attribute with two possible values ‘male’” and
‘female,” whereas 02 has two concepts Woman and Man to distinguish
the gender. Notice that these ontologies have a mismatch in the style of
modeling (see Section 6.2.1). If we want to map these ontologies, we need
to create two mapping rules: (1) ‘all humans with the gender “female”
are women’ and (2) ‘all humans with the gender ““male’”” are men.’

The example illustrates one elementary kind of mapping, namely a
mapping between two classes, with a condition on the value of an
attribute. The elementary kinds of mappings can be captured in mapping
patterns. Table 6.1 describes the mapping pattern used in the example.

Table 6.1 Class by attribute mapping pattern.

Name: Class by Attribute Mapping

Problem: The extension of a class in one ontology corresponds to the extension of
a class in another ontology, provided that all individuals in the extension have a
particular attribute value.

Solution:

Solution description: a mapping is established between a class/attribute/attribute
value combination in one ontology and a class in another ontology.

Mapping syntax:

mapping :: = classMapping(direction AB attributeValueCondition(Po))
Example:

classMapping(Human Female attributeValueCondition(hasGender
‘female’))

Thttp:/ /www.omwg.org/TR/d7/d7.2/

MAPPING AND QUERYING DISPARATE 107

The pattern is described in terms of its name, the problem addressed, the
solution of the problem, both in natural-language description and in
terms of the actual mapping language, and an example of the application
of the pattern to ontology mapping, in this case a mapping between the
class Human in ontology 01 and the class Woman in ontology 02, but only
for all humans which have the gender ‘female.’

The language contains basic constructs to express mappings between
the different entities of two ontologies: from classes to classes, attributes
to attributes, instances to instances, but also between any combination of
entities like classes to instances, etc. The example in Table 6.1 illustrates
the basic construct for mapping classes to classes, classMapping.

Mappings can be refined using a number of operators and mapping
conditions. The operators in the language can be used to map between
combinations of entities, such as the intersection or union (conjunction,
disjunction, respectively) of classes or relations. or example, the mapping
between Human and the union of Man and Woman can be expressed in the
following way:

classMapping (Human or (Man Woman))

The example in Table 6.1 illustrates a mapping condition, namely the
attribute value condition. Other mapping conditions include attribute
type and attribute occurrence.

The mapping language itself is not bound to any particular ontology
language. However, there needs to be a way for reasoners to actually use
the mapping language for certain tasks, such as querying disparate
knowledge bases and data transformation. For this, the mapping
language can be grounded in a formal language. There exists, for
example, a grounding of the mapping language to OWL DL and to
WSML-Flight.

In a sense, the grounding of the mapping language to a particular
language transforms the mapping language to a language which is specific
for mapping ontologies in a specific language. All resulting mapping
languages still have the same basic vocabulary for expressing ontology
mappings, but have a different vocabulary for the more expressive
expressions in the language. Unfortunately, it is not always the case that
all constructs in the mapping language can be grounded to the logical
language. For example, WSML-Flight does not allow disjunction or nega-
tion in the target of a mapping rule and OWL DL does not allow mapping
between classes and instances. In order to allow the use of the full
expressive power offered by the formal language to which the mapping
language is grounded, there is an extension mechanism which allows to
insert arbitrary logical expressions inside each mapping rule.

The language presented in this section is suitable for the specification
and exchange of ontology mappings. In the next section we present
a semi-automatic approach to the specification of ontology mappings.

108 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

6.3.2. A (Semi-)Automatic Process for Ontology
Alignment

Creating mappings between ontologies is a tedious process, especially if
the ontologies are very large. We introduce a semi-automatic alignment
process implemented in the Framework for Ontology Alignment and
Mapping (FOAM)-tool,> which relieves the user of some of the burdens
in creating mappings. It subsumes all the alignment approaches we are
aware of (e.g.,, PROMPT (Noy and Musen, 2003), GLUE (Doan et al.,
2003), QOM (Ehrig and Staab 2004; Ehrig and Sure 2004)). The input of
the process consists of two ontologies which are to be aligned; the output
is a set of correspondences between entities in the ontologies. Figure 6.3
illustrates its six main steps.

1. Feature engineering: it selects only parts of an ontology definition in
order to describe a specific entity. For instance, alignment of entities
may be based only on a subset of all RDFS primitives in the ontology.
A feature may be as simple as the label of an entity, or it may include
intentional structural descriptions such as super- or sub-concepts for
concepts (a sports car being a subconcept of car), or domain and range
for relations. Instance features may be instantiated attributes. Further,
we use extensional descriptions. In an example we have fragments of
two different ontologies, one describing the instance Daimler and one
describing Mercedes. Both ol:Daimler and 02:Mercedes have a generic
ontology feature called type. The values of this feature are automobile
and luxury, and automobile, respectively.

2. Selection of next search steps: next, the derivation of ontology alignments
takes place in a search space of candidate pairs. This step may choose
to compute the similarity of a restricted subset of candidate concepts
pairs of the two ontologies and to ignore others. For the running
example we simply select every possible entity pair as an alignment
candidate. In our example this means we will continue the comparison
of ol:Daimler and o02:Mercedes. The QOM approach of Section 6.2.3
carries out a more efficient selection.

Iteration U
2 5
Feature Search Step Similarity S|m|lar|ty Inter-
Engineering Selection Computation Aggregation pretation
T E.

Input E g Output

Figure 6.3 Alignment process.

2http: //www.aifb.uni-karlsruhe.de/WBS/meh/foam

MAPPING AND QUERYING DISPARATE 109

Table 6.2 Feature/similarity assessment.

Comparing No. Feature Qr Similarity Qs
Entities FS1 (label, X7) string similarity (Xi, X»)
Instances FS2 (parent, X;) set equality (X1, X5)

3. Similarity assessment: it determines similarity values of candidate pairs.
We need heuristic ways for comparing objects, that is similarity func-
tions such as on strings, object sets, checks for inclusion, or inequality,
rather than exact logical identity. In our example we use a similarity
function based on the instantiated results, that is we check whether the
two concept sets, parent concepts of ol:Daimler (automobile and
luxury), and parent concepts of o2:Mercedes (only automobile) are
the same. In the given case this is true to a certain degree, effectively
returning a similarity value of 0.5. The corresponding feature/similarity
assessment (FS2) is represented in Table 6.2 together with a second
feature/similarity assessment (FS1) based on the similarity of labels.

4. Similarity aggregation: in general, there may be several similarity values
for a candidate pair of entities from two ontologies, for example one
for the similarity of their labels and one for the similarity of their
relationship to other terms. These different similarity values for one
candidate pair must be aggregated into a single aggregated similarity
value. This may be achieved through a simple averaging step, but also
through complex aggregation functions using weighting schemes. For
example, we only have to result of the parent concept comparison
which leads to: simil(o1l:Daimler,02:Mercedes) = 0.5.

5. Interpretation: it uses the aggregated similarity values to align entities.
Some mechanisms here are, for example to use thresholds for simi-
larity (Noy and Musen, 2003), to perform relaxation labeling (Doan
et al., 2003), or to combine structural and similarity criteria.
simil(ol:Daimler,02:Mercedes) =0.5 > 0.5 leads to align(ol:Daim-
ler) = 02:Mercedes. This step is often also referred to as matcher.
Semi-automatic approaches may present the entities and the align-
ment confidence to the user and let the user decide.

6. Iteration: several algorithms perform an iteration (see also similarity
flooding (Melnik et al., 2002)) over the whole process in order to
bootstrap the amount of structural knowledge. Iteration may stop
when no new alignments are proposed, or if a predefined number of
iterations has been reached. Note that in a subsequent iteration one or
several of steps 1 through 5 may be skipped, because all features
might already be available in the appropriate format or because some
similarity computation might only be required in the first round. We
use the intermediate results of step 5 and feed them again into the
process and stop after a predefined number of iterations.

The output of the alignment process is a mapping between the two
input ontologies. We cannot in general assume that all mappings

110 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

between the ontologies are discovered, especially in the case of more
complex mappings. Therefore, the mapping which is a result of the
alignment procedure can be seen as the input of a manual refinement
process. In the next section we describe a graphical tool which can be
used for manual editing of ontology mappings.

6.3.3. OntoMap: an Ontology Mapping Tool

OntoMap™ (Schnurr and Angele, 2005; see Figure 6.4) is a plugin for the
ontology-management platform OntoStudio™ that supports the creation
and management of ontology mappings. Mappings can be specified
based on graphical representation, using a schema-view of the respective
ontologies. OntoMap encapsulates the formal statements for the declara-
tion of mappings, users only need to understand the semantics of the
graphical representation (e.g., an arrow connecting two concepts). Users
of OntoMap are supported by drag-and-drop functionality and simple
consistency checks on property mappings (automatic suggestion of
necessary class mappings). For concept to concept mappings constraints
can be specified on the available attributes.

OntoMap supports a number of most elementary mapping patterns:
concept to concept mappings, attribute to attribute mappings, relation to
relation mappings, and attribute to concept mappings.

Additionally, OntoMap allows to specify additional conditions on
concept to concept mappings using a form for mapping properties. A
concept ‘lorry’ for example might map onto a concept ‘Car or truck” only
if the weight of the latter exceeds a certain limit (e.g., according to the
legal definition within some countries).

Attribute to concept mappings enable users to specify one or more
‘identifiers’ for instances of a concept—similar to the primary keys in
relational databases. This way the properties of different source concepts
can be ‘unified’ in one target concept, for example in order to join the
information of different database entries within a single instance on the
ontology level. Different source instances having the same ‘identifier
values’ are then joined within a single target instance.

The focus of OntoMap is on the intuitive creation and management
of mappings. If complex mappings are needed, which are not within
the scope of a graphical tool (possibly using complex logical expres-
sions or built-ins), they have to be encoded manually. OntoStudio has
its own grounding of mappings, based on F-Logic rules (Kifer and
Lausen, 1997). In addition to the internal storage format Onto-
Map supports the import and export of mappings in the mapping
language which we described in this section. An extension of OntoMap
based on a library for ontology alignment which was described in
Section 6.3.2 provides the functionality for the semi-automatic creation
of mappings.

SUMMARY 111

- Schema - Gntodtudio aee
fhe Ea

Figure 6.4 Screenshot of OntoStudio® with the OntoMap® plugin.

Some additional features of the OntoStudio environment support
users in typical mediation tasks. Those include the import of schemas
for relational databases (syntactic integration) and the possibility
to create and execute queries instantly. The latter gives users the
possibility to test the consequence of mappings they have created
(or imported).

6.4. SUMMARY

Overlap and mismatches between ontologies are likely to occur when the
vision of a Semantic Web with a multitude of ontologies becomes a
reality.

There exist different approaches to ontology mediation. These
approaches can be broadly categorized as: (a) Omntology Mapping
(Maedche et al., 2002; Scharffe and de Bruijn, 2005), (b) Ontology Align-
ment (Rahm and Bernstein, 2001; Doan et al., 2004; Ehrig and Staab, 2004;
Ehrig and Sure, 2004), and (c) Ontology Merging ((Noy and Musen, 2000b;
Dou et al. 2002)). We have presented a survey of the most prominent
approaches in these areas.

Additionally, we described a practical approach to representing map-
pings using a mapping language, discovering mappings using an align-
ment process which can be used in combination with any ontology

112 ONTOLOGY MEDIATION, MERGING, AND ALIGNING

alignment algorithm, and a graphical tool to edit such ontology map-
pings. These ontology mappings can be used, for example, for transform-
ing data between different representation, as well as querying different
heterogeneous knowledge bases.

Although there is some experience with ontology mediation and most
approaches to ontology mediation, especially in the field of ontology
alignment, have been validated using some small test set of ontologies,
the overall problem which the area of ontology mediation faces is that the
number of ontologies which is available on the Semantic Web is currently
very limited, and it is hard to validate the approaches using real
ontologies.

REFERENCES

Bouquet P, Giunchiglia F, van Harmelen F, Serafini L, Stuckenschmidt H. 2004.
Contextualizing ontologies. Journal of Web Semantics 1(4):325.

Brickley D, Guha RV. 2004. RDF vocabulary description language 1.0: RDF
schema, W3c recommendation 10 February 2004, W3C. URL: http:/
www.w3.org/TR/rdf-schema/

de Bruijn J, Fensel D, Keller U, Kifer M, Lausen H, Krummenacher R, Polleres A,
Predoiu L. 2005. The web service modeling language WSML, W3C member
submission 3 June 2005. URL: http: / www.w3.org/Submission/ WSML/

de Bruijn], Polleres A. 2004. Towards and ontology mapping specification
language for the semantic web, Technical Report DERI-2004-06-30, DERI.
URL: http: / www.deri.at/publications/techpapers/documents/DERI-TR-
2004-06-30.pdf

Dean M, Schreiber G. 2004. OWL web ontology language reference, W3C
recommendation 10 February 2004. URL: http:/www.w3.org/TR/owl-ref/

Doan A, Domingos P, Halevy A. 2003. Learning to match the schemas of data
sources: A multistrategy approach. VLDB Journal 50:279-301.

Doan A, Halevy A. 2005. Semantic integration research in the database commu-
nity: A brief survey, Al Magazine, Special Issue on Semantic Integration.

Doan A, Madhaven], Domingos P, Halevy A. 2004. Ontology matching: A
machine learning approach. Handbook on Ontologies in Information Systems, In
Staab S, Studer R (eds). Springer-Verlag, pp 397-416.

Dou D, McDermott D, Qi P. 2002. Ontology translation by ontology merging and
automated reasoning, In ‘Proceedings EKAW2002 Workshop on Ontologies for
Multi-Agent Systems’, pp 3-18.

Ehrig M, Staab S. 2004. QOM—quick ontology mapping. In Proceedings of the Third
International SemanticWeb Conference (ISWC2004), van Harmelen F, Mcllraith S,
Plexousakis D (eds). LNCS, Springer: Hiroshima, Japan, pp 683-696.

Ehrig M, Sure Y. 2004. Ontology mapping—an integrated approach. In Proceedings
of the First European Semantic Web Symposium, ESWS 2004, Vol. 3053 of Lecture
Notes in Computer Science, Springer-Verlag, Heraklion, Greece, pp 76-91.

Giunchiglia F, Shvaiko P. 2004. Semantic matching. The Knowledge Engineering
Review 18(3):265-280.

Giunchiglia F, Shvaiko P, Yatskevich M. 2004. S-match: An algorithm and an
implementation of semantic matching. In Proceedings of ESWS’04, number 3053
in ‘LNCS’, Springer-Verlag, Heraklion, Greece, pp 61-75.

SUMMARY 113

Kalfoglou Y, Schorlemmer M. 2003. Ontology mapping: The state of the art. The
Knowledge Engineering Review 18(1):1-31.

Kifer M, Lausen G. 1997. F-logic: A higher-order language for reasoning about
objects. SIGMOD Record 18(6):134-146.

Klein M. 2001. Combining and relating ontologies: An analysis of problems and
solutions. In “Workshop on Ontologies and Information Sharing, Gomez-Perez A,
Gruninger M, Stuckenschmidt H, Uschold M (eds). IJCAI'01" Seattle, USA.

Maedche A, Motik B, Silva N, Volz R. 2002. Mafra—a mapping framework for
distributed ontologies. In Proceedings of the 13th European Conference on Knowl-
edge Engineering and Knowledge Management EKAW-2002, Madrid, Spain.

Melnik S, Garcia-Molina H, Rahm E. 2002. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proceedings of the
18th International Conference on Data Engineering (ICDE’02), IEEE Computer
Society, 117 p.

Noy NF. 2004. Semantic integration: A survey of ontology-based approaches.
Sigmod Record, Special Issue on Semantic Integration 33(4):65-70.

Noy NF, Musen MA. 2000a. Anchor-PROMPT: Using non-local context for
semantic matching. In Proceedings of the Workshop on Ontologies and Information
Sharing at the Seventeenth International Joint Conference on Artificial Intelligence
(IJICAI-2001), Seattle, WA, USA.

Noy NF, Musen MA. 2000b. PROMPT: Algorithm and tool for automated
ontology merging and alignment. In ‘Proceedings 17th National Conference On
Artificial Intelligence (AAAI2000)’, Austin, Texas, USA.

Noy NF, Musen MA. 2003. The PROMPT suite: Interactive tools for ontology
merging and mapping. International Journal of Human-Computer Studies 59(6):
983-1024.

Omelayenko B. 2002. RDFT: A mapping meta-ontology for business integration. In
Proceedings of the Workshop on Knowledge Transformation for the Semantic Web
(KTSW 2002) at the 15th European Conference on Artificial Intelligence, Lyon,
France, pp 76-83.

Rahm E, Bernstein PA. 2001. A survey of approaches to automatic schema
matching. VLDB Journal: Very Large Data Bases 10(4):334-350.

Scharffe F, de Bruijn J. 2005. A language to specify mappings between ontologies.
In Proceedings of the Internet Based Systems IEEE Conference (SITIS05), Yandoue,
Cameroon.

Schnurr HP, Angele J. 2005. Do not use this gear with a switching lever!
automotive industry experience with semantic guides. In 4th International
Semantic Web Conference (ISWC2005), pp 1029-1040.

Shvaiko P, Euzenat J. 2005. A survey of schema-based matching approaches.
Journal on Data Semantics 4:146-171.

Uschold M. 2000. Creating, integrating, and maintaining local and global
ontologies. In Proceedings of the First Workshop on Ontology Learning (OL-2000)
in conjunction with the 14th European Conference on Artificial Intelligence (ECAI-
2000), Berlin, Germany.

Visser PRS, Cui Z. 1998. On accepting heterogeneous ontologies in distributed
architectures. In Proceedings of the ECAI98 workshop on applications of ontologies
and problem-solving methods, Brighton, UK.

7

Ontologies for Knowledge
Management

Atanas Kiryakov

7.1. INTRODUCTION

This chapter discusses a number of aspects of the usage of ontologies in
Knowledge Management (KM) context, as well as in some specific
Semantic Web applications. The semantic annotation of unstructured
content, that is linking it to ontologies, is relevant to the subject, but not
addressed in detail here—annotation and its usage for indexing, hyper-
linking, visualization, and navigation is discussed in Chapter 3.

We start with a simple motivating scenario, showing some benefits of
using ontologies in database-like setting. Next, we clarify the meaning
and typical usage of some terms related to ontologies (e.g., taxonomy,
knowledge base, metadata) and discuss different types of ontology:
upper-level versus domain-specific; lightweight versus heavyweight,
and so on.

Two of the possible roles of ontologies are discussed: as a database
schema and as a topic hierarchy. The different requirements and restric-
tions specific to the ontologies used in these roles are commented.

The remainder of the chapter presents the PROTON ontology, as an
example for an ontology designed to support a number of KM and
Semantic Web applications. Some concrete ontology design examples
and recommendations are given in this context.

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

116 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

7.2. ONTOLOGY USAGE SCENARIO

Formal knowledge representation (KR) is about building models' of the
world, of a particular domain or a problem, which allow for automatic
reasoning and interpretation. Such formal models are called ontologies
and can be used to provide formal semantics (i.e., machine-interpretable
meaning) to any sort of information: databases, catalogs, documents, web
pages, etc. The association of information with such formal models
makes the information much amenable to machine processing and
interpretation.

Semantic repositories® allow for storage, querying, and management of
structured data. They can serve as a replacement for database manage-
ment systems (DBMS), offering easier integration of diverse data and
more analytical power. In a nutshell, a semantic repository can dynami-
cally interpret metadata schemata and ontologies, which determine the
structure and the semantics of data and of queries against that data.

Compared to the approach taken in relational DBMSs, this allows for
(i) easier changes to and combinations of data schemata and (ii) auto-
mated interpretation of the data.

As an example, let us imagine a typical database populated with the
information that John is a son of Mary. It will be able to ‘answer’ just a
couple of questions: Which are the son(s) of Mary? and Of whom is John the
son? Given simple family relationships ontology (as the one presented in
Figure 7.1), a semantic repository could handle much bigger set of

[F] protont:hasRelative
['-3—@ protont:hasChild
I:L protonu:hasDaughter
P | protonu:hasson
P

=

EHF] protont:hasParent
I:: protonu:hasFather
E protonu:hasMother
otont:hasSibling
IZE protonu:hasBrother
[P] protonu:hasSister

=HP] p?otont:hasSpouse
P | protonu:hasHusband
P | protonu:haswife

Figure 7.1 Hierarchy of family relations.

=

:

!The typical modeling paradigm is mathematical logic, but there are also other approaches,
rooted in information and library science. KR is a very broad term; here we only refer to
one of its main streams.

ZSemantic repository’ is not a well-established term. See http://www.ontotext.com/
inference/semantic_repository.html for a more elaborate introduction.

TERMINOLOGY 117

questions. It will be able infer the more general fact that John is a child of
Mary and, even more generally, that Mary and John are relatives (which
is true in both directions because hasRelative is defined to be sym-
metric in the ontology). Further, if it is known that Mary is a woman, a
semantic repository will infer that Mary is the mother of John, which is a
more specific inverse relation. Although simple for a human to infer, the
above facts would remain unknown to a typical DBMS and indeed to any
other information system, for which the model of the world is limited to
datastructures of strings and numbers with no automatically interpre-
table semantics.

7.3. TERMINOLOGY

We provide here definitions of terms related to ontologies and their
usage in the KM and Semantic Web context.

Dublin Core Metadata Initiative (DCMI or DC) is an ‘open forum
engaged in the development of interoperable online metadata standards
that support a broad range of purposes and business models,” (DCMI,
2005). DC is used here mostly for the sake of reference to a widely shared
terminology.

Dataset is any set of structured data, as defined in DC, (DCMI, 2003b):
‘A dataset is information encoded in a defined structure (for example,
lists, tables, and databases), intended to be useful for direct machine
processing.’

Ontology is a term having different meaning in the disciplines of
Philosophy and Computer Science (CS). It was originally defined by
philosophers as a discipline concerned with the nature of being and
existence.

In the field of CS (and IT in general) it has become popular as a
paradigm for knowledge representation in Artificial Intelligence (Al), by
providing a methodology for easier development of interoperable and
reusable knowledge bases. The most popular definition, from an Al
perspective, is given in Gruber (1992) as follows: ‘An ontology is an
explicit specification of a conceptualization,” where ‘a conceptualization
is an abstract, simplified view of the world that we wish to represent for
some purpose.” Another widely used extended definition is provided in
Borst (1997): ‘An ontology is a formal, explicit specification of a shared
conceptualization.” An extended discussion on the terminology is pro-
vided in Gruber (1992).

Here we would like to add that ontologies can be considered as
conceptual schemata, intended to represent knowledge in the most
formal and reusable way possible. Formal ontologies are represented
in logical formalisms, such as OWL (Dean et al., 2004), which allow
automatic inferencing over them and over datasets aligned to them. An
important role of ontologies is to serve as schemata or ‘intelligent’ views

118 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

over information resources.” Thus they can be used for indexing, query-
ing, and reference purposes over nonontological datasets and systems,
such as databases, document and catalog management systems. Because
ontological languages have a formal semantics, ontologies allow a wider
interpretation of data, that is inference of facts which are not explicitly
stated. In this way, they can improve the interoperability and the
efficiency of the usage of arbitrary datasets.

Ontologies are typically classified depending on the generality of the
conceptualization behind them, their coverage, and intended purpose:

o Upper-level ontologies represent a general model of the world, suitable
for large variety of tasks, domains, and application areas.

e Domain ontologies represent a conceptualization of a specific domain,
for example road-construction or medicine.

o Application and task ontologies are such suitable for specific ranges of
applications and tasks. An example of such is the PROTON KM
module (see Subsection 7.6.4).

A more extensive overview of the different sorts of ontologies and their
usage can be found in Guarino (1998b), which also provides discussion
on the different ways in which ‘ontology’ is used as a term and its
relation to knowledge bases.

Knowledge Base (KB) is a term with a wide usage and multiple mean-
ings. Here we consider a KB as a dataset with some formal semantics. A
KB, similarly to an ontology, is represented with respect to a knowledge
representation formalism, which allows automatic inference. It could
include multiple axioms, definitions, rules, facts, statements, and any
other primitives. In contrast to ontologies, KBs are not intended to
represent a (shared/consensual) schema, a basic theory, or a conceptua-
lization of a domain. Thus, ontologies are a specific sort of knowledge
base. An ontology can be characterized as comprising a 4-tuple:*

O = (C,R,I,A)

Where C is a set of classes representing concepts we wish to reason about
in the given domain (invoices, payments, products, prices,...); R is a set
of relations holding between those classes (Product hasPrice Price);
is a set of instances, where each instance can be an instance of one or more
classes and can be linked to other instances by relations (productl17
isA Product; product23 hasPrice €170); A is a set of axioms (if a
product has a price greater than €200, shipping is free).

3Comments in the same spirit are provided in Gruber (1992) also. This is also the role of
ontologies in the Semantic Web.

*Note that a more formal and extensive mathematical definition of an ontology is given in
Chapter 2. The characterization offered here is suitable for the purposes of our discussion,
however.

TERMINOLOGY 119

It is widely recommended that knowledge bases, containing concrete
data® are always encoded with respect to ontologies, which encapsulate a
general conceptual model of some domain knowledge, thus allowing
easier sharing and reuse of KBs.

Typically, ontologies designed to serve as schema® for KBs do not
contain instance definitions, but there is no formal restriction in this
direction. Drawing the borderline between the ontology (i.e., the con-
ceptual and consensual part of the knowledge) and the rest of the data,
represented in the same formal language, is not always a trivial task. For
instance, there could be an ontology about tourism, which defines the
classes Location and Hotel, as well as the locatedIn relation
between them and the hotel attribute category. The definitions of the
classes, relations, and attributes should clearly be a part of the ontology.
The information about a particular hotel is probably not a part of the
ontology, as far as it is not a matter of conceptualization and consensus,
but is just a description, crafted for some (potentially specific) purpose.
Then, suppose that there is a definition of New York as an instance of the
class City—it can be argued that it is either a part of the ontology or just
a description of a city. The fact that it is an instance does not necessarily
determine that it is not part of the conceptualization.

Let us assume that a knowledge engineer is guided by the principle ‘no
instances in ontologies.” Even in this case there are many examples when
one and the same concept can be represented as both class and instance, so,
this design principle does not help us always to determine what should be
part of a schema-ontology, and what not. As an example, “'VW Golf (as a
model) can be an instance of “VW Car.” However, it also make sense to de-
fine a specific vehicle (e.g., golf-12643789) of this model as an instance of 'VW
Golf’ (taken as a class). There is no simple way to determine whether VW
Golf’ should be defined as class or instance in this case—such modeling
decisions are to some extent a function of the intended use of the ontology.

7.3.1. Data Qualia

Below we present a few boolean qualia’” of the data relevant to the
ontology representation and data integration problems:®

5Often referred as instance data, instance knowledge, A-Box, etc.

®Notice that the term ontology has become somewhat overloaded and ambiguous in recent
years in the Computer Science community. There are many authors which use ontology as
a place holder for any sort of KB and even any sort of conceptual model, including such
without formal semantic. We find such interpretations ambiguous and confusing and stick
to the ‘classical’ definition here.

’Quale (pl. Qualia), is here used as a primary intrinsic quality, an independent (orthogonal to
others) dimension of classification. According to the Merriam-Webster online dictionary (1) a
property (as redness) considered apart from things having the property, UNIVERSAL; (2) a
property as it is experienced as distinct from any source it might have in a physical object.

8This analysis of the different sorts of data was first published in Kiryakov (2004b).

120 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

o Semantics: whether the semantics (the meaning) of the data is formally
represented, so that a machine can formally interpret it, reason and
derive new data?” This quale is directly relevant to reasoning and
ontology management—reasoning can only be performed on top of
‘semantic” data. Nonsemantic data could be adapted for reasoning by
means of mapping it to an ontology, that is a semantic schema which
defines the meaning of the data externally. There are marginal cases
where the specification of a structure bears elements of semantics, for
example the case of XML schemata. We stay with a relatively narrow
definition of what semantics are and consider semantic data only
when there is some logical theory defining meaning associated with
the representation language used to represent or interpret the data.

e Structure: whether the data is formally structured, so that a machine
can formally interpret and manage its structure? This distinction is
important because the approaches for automated access and manage-
ment (and their typical performance) differ considerably between
structured and unstructured data.

e Schema: here we consider schematic data, which determines the structure
and/or the semantics of other data. Obviously, there are schematic and
nonschematic data. The schema quale is determined by the (intended)
role of the data with respect to other data. This distinction is relevant
within the ontology management context for the following reasons:

e Schemata are important for mediation and evolution because these
determine the consistency and the interpretation of other data. For
instance, a change in an ontology can render a dataset previously
compliant with the old version, incompliant with the new one (or
vice versa).

e In many cases, the problem of data integration can be solved at the
level of schema integration.

7.3.2. Sorts of Data

We introduce a short analysis of the different sorts of data available,
distinguished with respect to the qualia presented in the previous section
(semantics, structure, and schema). The analysis facilitates the further
discussion of different sorts of ontologies and their roles. The analysis
follows (the values for the three qualia are given in brackets, where _stands
for ‘any value’):

e Data, (_,_,). Any sort of data.
— Datasets, (_,structured,). See the definition above, referring to
Dublin Core.

°The newly inferred data are expected to be correct, indisputable from the human
perspective, and a consequence of the explicit data.

TERMINOLOGY 121

e Knowledge Bases, (semantic,structured,). Any sort of a
dataset with a well-defined formal semantics. Those are often
referred to as instance datasets or instance knowledge. See the
definition in the previous subsection.

— Ontologies, (semantic,structured,schema). See the
definition in the previous subsection. Ontologies are used
to prescribe both structure and semantics. For instance, an
ontology can define the valid attributes for a specific class
(like a database schema can do, too) and, in addition, it can
specify the semantics of the attributes.

e Nonsemantic schemata, (nonsemantic,structured,sch-
ema). Such examples are database and XML schemata.

e Databases, (nonsemantic, structured, nonschema). Here
databases are used as a generic term for relational databases,
XML-encoded data, comma-separated files, and any other struc-
tured, nonsemantic data that is not intended to serve as a
schema, but rather to represent or communicate particular
information. Although this is a slightly misleading name, it
reflects the fact that relational databases are the most important
sort of nonsemantic, nonschema data.

e Mixed datasets, (_,structured, schema&non-schema). Many
catalogs and taxonomies can serve as examples. In such datasets
one can often find subsumption chains of the sort Location-City-
New York, with no formal indication that the first two are
classses (schema) and the third is an instnance (nonschema).

— Content, (_non-structured,). Any data without a substantial
machine-understandable structure. Such examples are free-text
documents, pictures, voice or video recordings, etc. In most of
these cases, the non-structured data neither bears machine-inter-
pretable semantics nor plays the role of a formal schema.

Metadata is a term of a wide and often controversial or misleading usage.
From its etymology, metadata is ‘data about data.” Thus, metadata is a
role that certain data could play with respect to other data. Such an
example could be a particular (structurally) formal specification of the
author of a document, provided independently from the content of the
document, say, according to a standard like DC. RDF(S), (Klyne and
2004; Caroll Brickley and Guha, 2000), has been introduced as a simple
KR language that is to be used for the assignment of semantic descrip-
tions to information resources on the web. Therefore an RDF description
of a web page represents metadata. However, an RDF description of a
person, independent from any particular documents (e.g., as a part of an
RDEF(S)-encoded dataset), is not metadata—this is data about a person,
not about other data. In the latter case, RDF(S) is used as a KR language.
Finally, the RDF(S) definition of the class Person, should typically be part

122 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

of an ontology, which can be used to structure datasets and metadata, but
which is again not a piece of metadata itself. A term, which is often used
as a synonym for metadata, is annotation. However, it also has a special
meaning in the natural language processing (NLP) community. Please
refer to Chapter 3 for a discussion on ‘semantic annotation.”

Metadata is another candidate for an information quale (in addition to
the three presented above). However, it is not presented this way because
we regard the term as more representing a role for the data rather than a
quality."”

Semi-structured data is a term used to refer to two different notions.
First, in the KM and NLP communities, semi-structured data are usually
considered documents that contain free-text fragments, structured in
accordance with some schema. Typical sorts of semi-structured docu-
ments are forms and tables, which have some strict structure (fields,
parts, etc.), whilst the content of the specific parts of the document is a
free text. Examples are many administrative, insurance, customs, and
medical forms. The second usage of the term ‘semi-structured’ is rather
different, denoting nonrelational data models (Figure 7.2). The intuition
is that, whilst with databases there is a predefined, strict structure of
specific tables, fields, and views, there are other, ‘semi-structured,’
representations with less strict structuring, which are still not unstruc-
tured.!' A number of, more or less, graph-based data-models, like RDF

A

Structured @ Ontology.

I
I
|
Formal |--=----- Catalogues)~~~
Structur

Web Pages

|
|
|
|
|
|
|
|
|
|
|
|
I
!

Free text
|

None Formal Sharable Form;I
Knowledge

»

Figure 7.2 Structured versus semantic positioning of different sorts of data.

1This is also the case with the Schema quale, but to a smaller degree, in our opinion.
1See Subsection 3.1.2 of Martin-Recuerda et al. (2004) for extended discussion on semi-
structured data and its relation to Object Exchange Model (OEM).

ONTOLOGIES AS RDBMS SCHEMA 123

and the Associative Data Model, described in Williams (2002), match this
understanding of semi-structured data. In both cases, there are two levels
of structuring. At the logical'* level, there is a very simple model, which
can be used as a general carrier or canvas for the representation of the
data. On top of it, there could be a ‘softer’ and much more dynamic
schema, which supports the interpretation of the data stored in the basic
model. If we take the latter meaning of ‘semi-structured,” RDFS and OWL
are semi-structured representations. However, we strongly disagree with
the philosophy behind this usage of semi-structured. Languages and
models like RDF(S) allow dynamic and flexible structuring, which, in our
view, is a higher degree of structuring, instead of a ‘semi’-one. Thus,
further in this chapter, we will only use semi-structured as a term for
(text) documents with partial structure (i.e., the first meaning).

7.4. ONTOLOGIES AS RDBMS SCHEMA

Here we discuss formal ontologies modeled through KR formalisms
based on mathematical logic (ML); there is a note on so-called topic-
ontologies in a subsection below. If we compare ontologies with the
schemata of the relational DBMS, there is no doubt that the former
represent (or allow for representations of) richer models of the world.
There is also no doubt that the interpretation of data with respect to the
fragments of ML which are typically used in KR is computationally much
more expensive as compared to interpretation using a model based on
relational algebra. From this perspective, the usage of the lightest
possible KR approach, that is the least expressive (but still adequate)
logical fragment, is critical for the applicability of ontologies in more of
the contexts in which DBMS are used.

In our view, what is very important for the DBMS paradigm is that it
allows for management of huge amounts of data in a predictable and
verifiable fashion. It is relatively easy to understand a relational database
schema: most computer science (CS) graduates would have a good grasp
of the concepts involved. We can assume that the efforts for under-
standing and management of such a schema grow in an approximately
linear way with its size. Again, someone with a general CS background
can predict, understand, and verify the results of a query, even on top of
datasets with millions or billons of records. This is the level of control
and manageability required for systems managing important data in
enterprises and public service organizations. And this is the requirement
which is not well covered by the heavyweight, fully fledged, logically
expressive knowledge engineering approaches. Even taking a trained
knowledge engineer and a relatively simple logical fragment (e.g, OWL DL),

2With regard to the database terminology.

124 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

it is significantly more complex for the engineer to maintain and manage
the ontology and the data, as the size of the ontology and the scale of the
data increase. We leave the above statements without proof, anticipating
that most of the readers either share our observations and intuition'> or
are prepared to take them on trust.

Ontologies can be informally divided into lightweight and heavyweight
according to the expressivity of the KR language used for their for-
malization and the basic modeling and design principles enforced.
Heavyweight (also sometimes referred to as fully fledged) ontologies
usually provide complete definitions (of classes, properties, etc.), but fail
to match the scalability and manageability requirements for the database-
schema-replacement scenario. Lightweight ontologies are usually less
restrictive. In other words, the conceptualization behind them is a more
general one; the definitions are rather partial; the possible interpretations
are not constrained to the degree possible for heavyweight ontologies.
This limits the ‘predictive’ (or the restrictive) power of lightweight
ontologies. Often upper-level ontologies are lightweight because without
domain constraints it proves hard to craft universal and consensual
complete definitions.

7.5. TOPIC-ONTOLOGIES VERSUS SCHEMA-ONTOLOGIES

There is a wide range of applications for which the classification of
different things (entities, files, web-pages, etc.) with respect to hierarchies
of topics, subjects, categories, or designators has proven to be a good
organizational practice, which allows for efficient management, index-
ing, storage, or retrieval. Probably the most well-known example in this
area are library classification systems. Another is given by taxonomies,
which are widely used in the KM field. Finally, Yahoo and DMoz'* are
popular and very large scale incarnations of this approach in the context
of the World Wide Web. A number of the most popular taxonomies are
listed as encoding schemata in Dublin Core, Section 4 in (DCMI, 2005).

Given that the above-mentioned conceptual hierarchies represent a
form of shared conceptualization, it is not surprising that they are often
considered as ontologies of some kind. It is our view, however, that these
ontologies bear a different sort of semantics. The formal framework,
which allows for efficient interpretation of DB-schema-like ontologies
(such as PROTON, which we discuss in more detail in Section 7.6), is not

BWe are tempted to share a hypothesis regarding the source of the unmanageability of any
reasonably complex logical theory. It is our understanding that Mathematical Logic
provides a rough approximation for the process of human thinking, but one which
renders it hard to follow. Relational algebra is also a rough approximation, but it seems
simple enough to be understood by a trained person.

http:/ /www.yahoo.com and http://www.dmoz.org, respectively.

TOPIC-ONTOLOGIES VERSUS SCHEMA-ONTOLOGIES 125

that suitable and compatible with the semantics of topic hierarchies. For
the sake of clarity, we introduce the terms ‘schema-ontology” and ‘topic-
ontology.’

To provide a better understanding of the distinctions between topic-
and schema-ontologies, we will briefly sketch the formal modeling of the
semantics of the latter. Schema-ontologies are typically formalized with
respect to so-called extensional semantics, which in its simplest form
allows for a two-layered set-theoretic model of the meaning of the
schema elements. It can be briefly characterized as follows:

e The set of classes and relations on one hand is disjoint from the set of
individuals (or instances), on the other. These two sets form the vocabu-
laries, respectively, of the TBox and the ABox in description logics.

e The semantics of classes are defined through the sets of their instances.
Namely, the interpretation of a class is the set of its instances. The sub-
class operation in this case is modeled as set inclusion (as in classical
algebraic set theory).

e Relations are defined through the sets of ordered n-tuples (the
sequences of parameters or arguments) for which they hold. Sub-
relations are again defined through sub-sets. In the case of RDF/OWL
properties, which are binary relations, their semantics are defined as
sets of ordered pairs of subjects and objects.

e This model can easily be extended to provide a mathematical ground-
ing for various logical and KR operators and primitives, such as
cardinality constraints.

e Everything which cannot be modeled through set inclusion, member-
ship, or cardinality within this model is indistinguishable or ‘invisible’
for this sort of semantics—it is not part of the way in which the
symbols are interpreted.

The computational efficiency of languages with extensional semantics (in
terms of induction and deduction algorithms) is well understood. Typi-
cal and interesting examples are the family of description logics, and in
particular OWL DL and the other OWL species where the trade-off
between expressivity and computational tractability have been well
explored.”

The semantics of topics have a different nature. Topics can hardly be
modeled with set-theoretic operations—their semantics have more in
common with so-called intensional semantics. In essence, the distinction
is that the semantics are not determined by the set of instances
(the extension), but rather by the definition itself and more precisely
the information content of the definition. Intensional semantics are in a
sense closer to the associative thinking of the human being than ML (in
its simple incarnations). The criteria for whether a topic is a sub-topic of

15http:/ /www.w3.org/TR/owl-guide/

126 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

another topic do not have much to do with the sets of instances of the
respective class (if topics are modelled as classes). To some extent this is
because the notion of ‘being an instance’ is hard to define in this context.

Even disregarding the hypothesis for the different nature of the
semantics of the topic- and schema-ontologies, we suggest that these
should be kept detached. The hierarchy of classes of the latter should not
be mixed up with topic hierarchies because this can easily generate
paradoxes and inconsistent ontologies. Imagine, for example, a schema-
ontology, where we have definitions for Africa and AfricanLion'®—
it is likely that Africa will be an instance of the Continent class
and AfricanLion will be a sub-class of Lion. Imagine also a book
classification—in this context AfricanLionSubject can be subsumed
by AfricaSubject (i.e., books about AfricanLions are also about
Africa). If we had tried to ‘reuse’ for classification purposes the defini-
tions of Africa and AfricanLion from the schema-ontology, this
would require that we define AfricanLion as a sub-class of Africa.
The problems are obvious: Africa is not a class, and there is no easy
way to redefine it so that the schema-ontology extensional sub-classing
coincides with the relation required in the topic hierarchy. This example
was proposed by the authors, to Natasha Noy for the sake of support of
Approach 3 within the ontology modeling study published in Noy
(2004). One can find there some further analysis on the computational
complexity implications of different approaches to the modeling of topic
hierarchies.

7.6. PROTON ONTOLOGY

The PROTON (PROTo ONtology) ontology has been developed in the
SEKT project as a lightweight upper-level ontology, serving as the
modeling basis for a number of tasks in different domains. To mention
just a few applications: PROTON is meant to serve as a seed for ontology
generation (new ontologies constructed by extending PROTON); it is
further used for automatic entity recognition and more generally Infor-
mation Extraction (IE) from text, for the sake of semantic annotation
(metadata generation).

7.6.1. Design Rationales

PROTON is designed as a lightweight upper-level ontology for usage in
Knowledge Management and Semantic Web applications. The above
mission statement has two important implications:

®The example would perhaps have been more intuitive if we had use AfricanTribes instead
of AfricanLion, but we prefer to use the same classes and topics as the example given in
Noy (2004).

PROTON ONTOLOGY 127

e PROTON is relatively unrestrictive (see the comments on lightweight
ontologies above).

e PROTON is naive in some aspects, for instance regarding the
conceptualization of space and time. This is partly because proper
models for these aspects would require usage of logical apparatus
which is beyond the limits acceptable for many of the tasks to
which we wish to apply PROTON (e.g., queries and management
of huge datasets/knowledge bases); and partly because it is
very hard to craft strict and precise conceptualizations for these
concepts which are adequate for a wide range of domains and
applications.

Having accepted the above drawbacks, we add two additional require-
ments to PROTON; namely, to allow for (i) low cost of adoption and
maintenance and (ii) scalable reasoning. The goal is to make feasible the
usage of ontologies and the related reasoning infrastructure (with all
their attendant advantages discussed above) as a replacement for the use
of DBMSs.

Being lightweight, PROTON matches the intuition behind the argu-
ments coming from the Information Science community, (Sparck Jones,
2004; Shirky, 2005), that the Semantic Web is more likely to yield
solutions to real world information management problems if it is based
on partial and relatively simple models of the world, used for semantic

tagging.

7.6.2. Basic Structure

The PROTON ontology contains about 300 classes and 100 properties,
providing coverage of the general concepts necessary for a wide range of
tasks, including semantic annotation, indexing, and retrieval. The design
principles can be summarized as follows (i) domain-independence; (ii)
lightweight logical definitions; (iii) alignment with popular metadata
standards; (iv) good coverage of named entity types and concrete
domains (i.e., modeling of concepts such as people, organizations,
locations, numbers, dates, addresses, etc.). The ontology is encoded in
a fragment of OWL Lite and split into four modules: System, Top, Upper,
and Knowledge Management (KM). A snapshot of the PROTON class
hierarchy is given in Figure 7.3, showing the Top and the Upper
modules.

PROTON is presented in greater detail in Terziev et al. (2004). The
development of the ontology continues under a collaborative ‘commu-
nity process’ organized in accordance with the DILIGENT methodology,
which is described in Chapter 9. In the following subsections, we provide
an overview of its core module, its structure and some parts and design
patterns more relevant to KM applications.

128 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

@ protons:Entity
F}—@ protont:Abstract
#{(C) protonu:BusinessAbstraction
(C) protont:ContactInformation
(C) protont:GeneralTerm
(©) protont:Language
A-{C) protonu:NaturalPhenomenan
E-{C) protont:Number
(C) protonu:SocialAbstraction
#1-(C) protonu: Temporalabstraction
protont: Topic
[protont:Happening
#-{(C) protont:Event
(C) protont:Situation
E-{C) protont: TimeInterval
) protont:Obiect
G protonu:Account
=-C) protont:Agent
) protont:Group
B-() protont:Organization
G protont:Person
-{C) protonu:Brand
@ prokonu:Currency
#-(C) protont:Location
(C) protonu:PieceOFart
#1-(C) protont:Product
(©) protont:Service
= @ protont: Statement
E-(C) protont:InformationResource
(C) protonu:DataSchema
G protonu:Dataset
(#-(C) protont:Document
(C) protonu:Legislation
(C) protonu:Patent
(C) protonu:ResourceCollection
—{(C) protonu:Offer
L_{C) protonu:Order
E}@ pratonu:Vehicle

Figure 7.3 A view of the top part of the PROTON class hierarchy.

7.6.3. Scope, Coverage, Compliance

The extent of specialization of the ontology is partly determined on the
basis of case studies within the scope of the SEKT project'” and on a
survey of the entity types in a corpus of general news (including political,

http:/ / www.sekt-project.com/

PROTON ONTOLOGY 129

sports, and financial ones). The distribution of the most commonly used
entity types varies greatly across domains. Still, as reported in Maynard
et al. (2003), there are several general entity types that appear in the large
majority of corpora (text collections) — Person, Location, Organi-
zation, Money (Amount), Date, etc. The proper representation and
positioning of those basic types was one of the objectives in the design of
PROTON and this was accomplished, for the most part, at the level of
PROTON Top module layer.

The rationale behind PROTON is to provide a minimal, but never-
theless sufficient ontology, suitable for semantic annotation, as well as a
conceptual basis for more general KM applications. Its predecessor—
KIMO—was designed from scratch for use in the KIM system (http://
www.ontotext.com/kim/), which is described in Chapters 3 and X; a
number of upper-level resources inspired its creation and development:
OpenCyc (http://www.opencyc.org), Wordnet (http://www.cogsci.
princeton.edu/~wn/), DOLCE (http://www.loa-cnr.it/ DOLCE.html),
EuroWordnet Top (Peters, 1998), and others.

One of the objectives in the development of PROTON has been to make
it compliant with Dublin Core, the ACE annotation types,'® and the ADL
Feature Type Thesaurus.' This means that although these are not
directly imported (for consistency reasons), a formal mapping of the
appropriate classes and primitives is straightforward, on the basis of (i)
compliant design and (ii) formal notes in the PROTON glosses, which
indicate the appropriate mappings. For instance, in PROTON, a
hasContributor property is defined, with a domain Information-
Resource and a range Agent, as an equivalent of the dc:contribu-
tor element in Dublin Core. The development philosophy of PROTON
is to make it compliant, in the future, with other popular standards and
ontologies, such as FOAF.*

®The Automatic Content Extraction (ACE) is one of the most influential Information
Extraction programs, see http://www.itl.nist.gov/iad/894.01/tests/ace/. A set of entity
types is defined within ‘“The ACE 2003 Evaluation Plan’ (ftp://jaguar.ncsl.nist.gov/ace/
doc/ace_evalplan-2003.v1.pdf). These are: Person, Organization, GPE (a Geo-Political
Entity), Location, Facility.

Alexandria Digital Library (ADL) is a project at the University of California, Santa
Barbara, http://www.alexandria.ucsb.edu/. The Feature Type Thesaurus (FTT) can be
found at. http://www.alexandria.ucsb.edu/ gazetteer / FeatureTypes/ver070302 /
index.htm. The Location branch of PROTON contains about 80 classes aligned with
the FTT, which in its turn is aligned with the geographic feature designators of the GNS
database of National Imagery and Mapping Agency of United States, (NIMA) at http://
earth-info.nga.mil/gns/html/. More details on the alignment are provided in Manov et al.
(2003).

The Friend of a Friend (FOAF) project is about creating a Web of machine-readable
homepages describing people, the links between them and the things they create and
do. See http:/ /www .foaf-project.org/

130 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

7.6.4. The Architecture of Proton

PROTON is organized in three levels, including four modules. In
Figure 7.4, the levels are layered from left to right. The System ontology
module occupies the first, basic layer; then the Top, and Upper, and KM
ontology modules are provided on top of it to form the diacritical
modular architecture of PROTON.

The System module is an application ontology, which defines several
notions and concepts of a technical nature that are substantial for the
operation of any ontology-based software, such as semantic annotation
and knowledge access tools. It includes the class protons:Entity—
the top (‘master’) class for any sort of real-world objects and things,
which could be of interest in some areas of discourse. In the system
ontology it is defined that entities (i.e., the instances of protons:
Entity) could have multiple names (instances of protons:Alias),
that information about them could be extracted from particular
protons:EntitySource-s, etc.

System Module: Top Module: Upper Module:
Abstract
Entity HEpemE About 250 classes
, ContactInformation
EntitySource and 50 properties,
. Document
LexicalResource Event extending the
Alias GeneralTerm Top module
systemPrimitive Group
transitiveOver Happening
InformationResource
JobPosition
Language
Location
Knowledge
Number
. Management
Object
. . Module:
Organization
Person User
Product Profile
Role WeightedTerm
Service Mention
Situation
T —_, (about 10 classes,
Topic Extending the
TimeInterval System and Top)

Figure 7.4 PROTON (PROTo ONtology) modules.

PROTON ONTOLOGY 131

The Top ontology module starts with some basic philosophically
reasoned distinctions between entity types, such as Object—existing
entities, such as agents, locations, vehicles; Happening—events and
situations; Abstract—abstractions that are neither objects nor happen-
ings. The design at the highest level of the Top module follows the
stratification principles of DOLCE, through the establishment of the
PROTON trichotomy of Objects (dolce:Endurant), Happenings (dol-
ce:Perdurant), and Abstracts (dolce:Abstract). The same stratifi-
cation is also defined in Peters (1998). According to many experts in
upper-level ontology construction (Guarino, 1998a; Peters, 1998), an
important ontology design principle is that the extensions of these
three branches should be disjoint, that is no individual should be an
instance of more than one of these three top classes. One of the reasons
for the introduction of this guiding principle is to avoid the ‘overloading’
of the subsumption (sub-class-of, is-a) relation.

These three classes are further specialized by about 20 general classes.
These include Agent, Person, Organization, Location, Event,
InformationResource, besides abstract notions, such as Number,
TimeInterval, Topic (see the subsection below), and GeneralTerm.
The featured entity types have their characteristic attributes and relations
defined for them (e.g., subRegionOf property for Location-s,
hasPosition for Person-s; locatedIn for Organization-s,
hasMember for Group-s, etc.).

PROTON extends into its third layer, where two independent onto-
logies, which define much more specific classes, can be used: the
PROTON Upper module and the PROTON KM module. Examples
from the Upper module are: Mountain, as a specific type of Location;
ResourceCollection as a sub-class of InformationResource.
Having this ontology as a basis, one could easily add domain-specific
extensions.

7.6.5. Topics in Proton

Based on the arguments, provided in the section on Topic-ontologies
above, the following principles were adopted in the PROTON imple-
mentation:

e The class hierarchy of the schema ontology should not be mixed with
topic hierarchies. One additional argument for this is that the latter can
be expected to be specific for the different domains and applications. A
further technical argument is that representing topics as instances of
the Topic class avoids the computational intractability inherent in
allowing classes as property values.

e We should avoid extensive modeling of semantics of topics using
extensional semantics, as discussed earlier.

132 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

The Topic class (within the PROTON Top module) is meant to serve
as a bridge between topic- and schema-ontologies. The specific topics
should be defined as instances of the Topic class (or of a sub-class of it).
The topic hierarchy is built using the subTopic property as a specia-
lized subsumption relation between the topics. The latter is defined to be
transitive but, importantly, it is not related to the rdfs:subClassOf
meta-property. Typically, the instances of Topic are used as values of
the hasSubject property (equivalent to dc:subject) of the Infor-
mationResource class.

Topic is any sort of a topic or a theme, explicitly defined for
classification purposes. While any other class or entity could play the
role of a topic in principle, the instances of class Topic are the only
concepts in PROTON which are defined to serve as topics.”' The Topic
class is the natural top-class for linkage of logically informal taxonomies.

PROTON does not provide any Topic sub-classes as part of its Upper
module layer. However, Topic is in certain relations with some of the
classes in the KM module: Profile is related to Topic through property
isInterestedIn; Topic is relater to WeightedTerm through prop-
erty hasWeightedTerm.

An example for modeling of topics is given in Figure 7.5. Suppose one
needs to encode that a particular document is about Jazz, using the

InformationResource

subClassOf

subClassOf

YahooCategory

Global
Economy

subTopicOf

Business &
Economy

subTopicOf

hasSubject

Figure 7.5 Topic modeling example: classifying a document by
YahooCategory.

*'For instance, the PROTON class PublicCompany can be intuitively used as a topic (e.g.,
‘documents about public companies’). PROTON suggests that this class should not be
used as topic; instead, PublicComapaniesTopic should be defined as an instance of the
Topic Class. It is often useful to link intuitively related concepts (as the two ones about
public companies in the preceding example)—there is currently no support for such
linking in PROTON. Such can however be added through an OWL annotation property
named, for instance, hasRelatedTopic. Annotation properties are the only safe way of
introducing properties relating classes and instances without escalating the complexity of
the ontology to OWL Full.

PROTON ONTOLOGY 133

Yahoo!"™ category hierarchy. Jazz, Genre, and Music are all instances of
YahooCategory, which is a sub-class of Topic.

7.6.6. PROTON Knowledge Management Module

The KM module is in a sense an application-specific extension of
PROTON, which introduces some definitions necessary for KM applica-
tions. The KM module is dependent on the System and Top modules. A
snapshot from the KM module is given in Figure 7.6.

The remainder of this section describes the most important classes in
the KM module.

7.6.6.1. Information Space

‘Information spaces’” denote collections of themed information resources
(e.g., documents, maps, etc.). For example, the information space
‘e-commerce’ contains collections of documents relating to activities
and entities concerning electronic commerce. The InformationSpace
class is a specialization of Agent, and can be described as denoting a set
of User’s personalized set of information ‘items’ in a specific milieu (e.g.,
a digital library or an online shopping portal). Each Information-
Space is linked to an InformationSpaceProfile by means of the
property hasISprofile, thus effectively modeling an Information-
Space as a set of Topics (see later discussion on profiling).

BC) protont:Agent
protonkm: InformationSpace
protonkm: SoftwareAgent
protonkm:User
—© protons:Entity
protont:GeneralTerm
E-]—@ protont:InformationResource
protonkm:Profile
':% protonkm: InformationSpaceProfile
protonkm:UserProfile
E—]—@ protons:LexicalResource
protonkm:Mention
t% protonkm:WeightedTerm
—@ protonk:Location
E-j—© protont:Product
L(©) protonkm:Device
—@ protont:Role
—© protont: Topic

Figure 7.6 PROTON knowledge management module classes and
properties.

protonkm: hasCapabilities
protonkm:hasDevice
protonkm:hasEndOffset
protonkm:hasISProfile
protonkm:hasLocation
protonkm: hasRole
protonkm:hasStartOffset
protonkm:hasString
protonkm:hasTerm
protonkm:hasUserProfile
protorkm:hasWeight
protonkm:hasWeightedTerm
protonkm:isCurrentlyInterestedIn
protonkm:isInterestedIn
protonkm:occursin
protonkm:refersinstance

MM RanNssn]

134 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

7.6.6.2. Software Agent

SoftwareAgent is a specialization of Agent and denotes an artificial
agent, which operates in a software environment. No proprietary proper-
ties are associated to this class.

7.6.6.3. User

The concept of a user is central for knowledge management, since a key
aim is to represent a user’s interests and context so that personalized,
timely, relevant knowledge is provided. User is a specialization of
Agent and designates a human user, who plays a Role with respect
to some system. Every User has a UserProfile (related via the property
hasUserProfile) and this is how the relation between a User and the
Role he/she plays is realized. Each User can have several UserPro-
file-s, depending on his/her location, device, etc. This means that the
hasUserProfile relation is a one-to-many relation.

7.6.6.4. Profile

Every User has a profile, and every InformationSpace has a profile
associated with it. The class Profile is a subclass of InformationRe-
source. It has two specializations: InformationSpaceProfile and
UserProfile. Profiles can be linked to instances of Topic through the
isInterestedIn property.

7.6.6.5. User Profile
The properties of a UserProfile are defined as follows:

e hasDevice—relates UserProfile with the Device class, represent-
ing the current device to which the user has access.

e hasLocation—relates UserProfile with the Location class,
representing the current location of the user.

e hasRole—a user may have one or more roles which they switch
between, so this relation links the UserProfile with a Role.

7.6.6.6. Mention

Mention is a specialization of LexicalResource (from the System
module). Its main purpose is to model annotations (roughly speaking,
identification of text strings in documents—e.g., ‘London’—with
instances or classes in the ontology—e.g, a specific instance of class
City. Within the SEKT portfolio, for example, there is software to
create annotations from a Document or an InformationResource.
In this context, a Mention represents the mention of an Entity or a

CONCLUSION 135

class in an InformationResource. The proprietary properties of
Mention are:

e hasStartOffset—start offset in the content of the information
resource;

e hasEndOffset—end offset in the content of the information
resource;

e hasString—the string of the annotation, if such;

e occursIn—relates Mention with InformationResource;

e refersInstance—relates Mention with Entity.

7.6.6.7. Weighted Term

WeightedTerm is a sub-class of LexicalResource. It is closely con-
nected to Topic—each Topic instance may have several Weight-
edTerm-s assigned to it via the hasWeightedTerm property. The
hasWeightedTerm relation is a one-to-many relation, that is each
WeightedTerm instance is associated with at most one Topic instance.
A GeneralTerm can be related to multiple Topic-s and vice versa.
Formally, WeightedTerm is related to GeneralTerm through property
hasTerm. Weighted term is de facto an auxiliary class, through which a
ternary predicate, the ‘weighted’ relation between a term and a topic can
be modeled. Property hasWeight provides a relation between Weight-
edTerm and a real number that expresses the ‘weight’ of the term.

7.6.6.8. Device

The Device class is a specialization of Product (from the Top module).
A User can use one or more Device-s for his/her activities regarding
information resource search, management, usage, etc. This relation can
be realized via the property hasDevice (proprietary to the UserPro-
file class), which relates the user profile of the user with the device(s)
this user works with. Another property of Device is the hasCapabil-
ities relation, which is designed to provide a relation between Device
and a new ‘Capability’ class. Chapter 8 describes the use of the CC/PP
device profiling ontology (linked to PROTON) to represent and reason
about device properties in order to deliver information in a form suitable
for a given device.

7.7. CONCLUSION

This chapter has presented an account of the use of ontologies in the KM
context: what are the benefits; what sorts of data can be distinguished
from the semantic and structural points of view and what is the relation

136 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

between ontologies and data; what types of ontologies can be distin-
guished and for which task is each type appropriate. To provide a
possible design for a basic ontology for KM and Semantic Web applica-
tions, we presented the PROTON ontology; it has proven to serve well as
a database-schema replacement as well as a framework for semantic
annotation; see (Kiryakov et al., 2005). The usability of the ontology in
KM applications is currently being tested in the various tools and case
studies of the SEKT project, as discussed in Chapters 11 and 12. PROTON
is being further developed under a community process organized in
accordance with the DILIGENT methodology, described in Chapter 9.

REFERENCES

Beckett D. 2004. RDF/XML Syntax Specification (Revised). http://www.w3.org/
TR /2004 /REC-rdf-syntax-grammar-20040210/

Borst P, Akkermans H, Top J. 1997. Engineering ontologies. International Journal of
Human-Computer Studies 46:365-406.

Brickley D, Guha RV (eds). 2000. Resource Description Framework (RDF) Schemas,
W3C http://www.w3.org/TR/2000/CR-rdf-schema-20000327 /

Chinchor N, Robinson P. 1998. MUC-7 Named Entity Task Definition (version 3.5).
In Proceeding of the MUC-7.

Davies J, Boncheva K, Manov D. 2004. D5.0.1 Ontology Engineering in SEKT
(internal project report).

DCMI Usage Board. 2003b. DCMI Type Vocabulary. http://dublincore.org/docu-
ments/2003/11/19/dcmi-type-vocabulary/

DCMI Usage Board. 2005. DCMI Metadata Terms. http://dublincore.org/docu-
ments/2005/06/13/dcmi-terms/

Dean M, Schreiber G (eds), Bechhofer S, van Harmelen F, Hendler J, Horrocks 1,
McGuinness DL, Patel-Schneider PF, Stein LA. 2004. OWL Web Ontology
Language Reference. W3C Recommendation February 10, 2004. http://www.
w3.org/TR/owl-ref/

Fowler M. 2003. UML Distilled: A Brief Guide to the Standard Object Modeling
Language (3rd ed.). Addison-Wesley.

Genesereth MR, Fikes R (eds). 1998. Knowledge Interchange Format draft proposed
American National Standard (dpANS). NCITS.T2/98-004. http://logic.stanfor-
d.edu/kif/

Gruber TR. 1992. A translation approach to portable ontologies. Knowledge Acquisi-
tion 5(2):199-220, 1993. http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-
71.html

Gruber TR. 1993. Toward principles for the design of ontologies used for knowledge
sharing. In Guarino N, Poli R (eds). International Workshop on Formal Ontology,
Padova, Italy, 1993. http://ksl-web.stanford.edu/KSL_Abstracts/KSL-93-
04.html

Guarino N. 1998a. Some Ontological Principles for Designing Upper Level Lexical
Resources. In Rubio A, Gallardo N, Castro R, Tejada A (eds), Proceedings of First
International Conference on Language Resources and Evaluation. ELRA—European
Language Resources Association, Granada, Spain, May 28-30, 1998, pp 527-534.

Guarino N, 1998b. Formal Ontology in Information Systems. In Guarino N (ed.),
Formal Ontology in Information Systems. Proceedings of FOIS'98, Trento, Italy,
June 6-8, 1998. IOS Press: Amsterdam, pp 3-15.

REFERENCES 137

Guarino N, Giaretta P. 1995. Ontologies and knowledge bases: Towards a terminological
clarification. In Towards Very Large Knowledge Bases: Knowledge Building and
Knowledge Sharing, Mars N (ed). IOS Press: Amsterdam. pp 25-32.

Mahesh K, Nirenburg S, Cowie J, Farwell D. An Assessment of Cyc for Natural
Language Processing. MCCS Report, New Mexico State University, 1996.

Manov D, Kiryakov A, Popov B, Bontcheva K, Maynard D, Cunningham H. 2003.
Experiments with geographic knowledge for information extraction. NAACL-HLT
2003, Canada. Workshop on the Analysis of Geographic References, May 31
2003, Edmonton, Alberta.

Martin-Recuerda F, Harth A, Decker S, Zhdanova A, Ding Y, Stollberg M 2004.
Deliverable D2.1 ‘Report on requirements analysis and state-of-the-art’” within WP2
‘Ontology Management’ of the DIP project. https://bscw.dip.deri.ie/bscw/
bscw.cgi/0/3012

Maynard D, Tablan V, Bontcheva K, Cunningham H, Wilks Y. 2003. Multi-Source
Entity recognition—An Information Extraction System for Diverse Text Types.
Technical report CS-02-03, University of Sheffield, Department of CS, 2003.
http:/ /gate.ac.uk/gate/doc/papers.html

Meyer-Fujara], Heller B, Schlegelmilch S, Wachsmuth 1. 1994. Knowledge-level
modularization of a complex knowledge base. In KI-94: Advances in Artificial
Intelligence Nebel B, Dreschler-Fischer L (eds). Springer: Berlin. pp 214-225.

Kiryakov A, Popov B, Ognyanov D, Manov D, Kirilov A, Goranov M. 2004a.
Semantic Annotation, Indexing, and Retrieval. To appear in Elsevier’s Journal of
Web Semantics, Vol. 1, ISWC2003 special issue (2), 2004. http:/ /www.webse-
manticsjournal.org/

Kiryakov A, Ognyanov D, Kirov V. 2004b. D2.2: An Ontology Representation and
Data Integration (ORDI) Framework. DIP project deliverable. http://dip.seman-
ticweb.org

Kiryakov A, Ognyanov D, Manov D. 2005. OWLIM—A Pragmatic Semantic
Repository for OWL. In Proceeding of International Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS 2005), WISE 2005, 20 November, New York
City, USA.

Klyne G, Carroll JJ. 2004. Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C recommendation 10 February, 2004. http://www.w3.
org/TR/rdf-concepts/

Laboratory of Applied Ontologies, Institute of Cognitive Science and Technology,
Italian National Research Council. DOLCE: A Descriptive Ontology for Linguistic
and Cognitive Engineering. http://www.loa-cnr.it/ DOLCE.html

Noy N 2004 Representing Classes As Property Values on the Semantic Web. W3C
Working Draft 21 July 2004. http:/ /www.w3.org/TR /2004 /WD-swbp-classes-
as-values-20040721/

Peters W (ed.). 1998. The EuroWordNet Base Concepts and Top Ontology. Version 2,
Final. January 22, 1998. http://www.illc.uva.nl/EuroWordNet/corebcs/
topont.html

Pinto S, Staab S, Tempich C. 2004. DILIGENT: Towards a fine-grained methodology for
Distributed Loosely-controlled and evolvInG Engineering of oNTologies. In Proceed-
ings of ECAI-2004, Valencia, August 2004.

Shirky C. 2005. Ontology is Ouverrated: Categories, Links, and Tags. Clay Shirky’s
Writings About the Internet. Economics & Culture, Media & Community.
http:/ /www.shirky.com/writings/ontology_overrated.html

Spark Jones K. 2004. What's new about the Semantic Web? Some questions. SIGIR
Forum December 2004, Volume 38 Number 2. http://www.sigir.org/forum/
2004D-TOC.html

138 ONTOLOGIES FOR KNOWLEDGE MANAGEMENT

Terziev I, Kiryakov A, Manov D. 2004. D 1.8.1. Base upper-level ontology (BULO)
Guidance, report EU-IST Integrated Project (IP) IST-2003-506826 SEKT), 2004.
http:/ /proton.semanticweb.org/D1_8_1.pdf

Williams S. 2002. The Associative Model of Data. Second Edition, Lazy Software, Ltd.
ISBN: 1-903453-01-1. http:/ /www.lazysoft.com

8

Semantic Information Access

Kalina Bontcheva, John Davies, Alistair Duke, Tim Glover, Nick Kings
and lan Thurlow

8.1. INTRODUCTION

Previous chapters have described the core technologies which underpin
the Semantic Web. This chapter describes how these semantic web
technologies can provide an improved user experience, through
enhanced tools for accessing knowledge. The domain model implicit
in an ontology can be used as a unifying structure to give information
about a common representation and semantics. Once this unifying
structure for heterogeneous information sources exists, it can be
exploited to improve the performance of knowledge access tools. In
this chapter, we look at the application of such technology to three
aspects of knowledge access: semantic search and browse tools; the
generation of information expressed in natural language from formal
(ontological) knowledge bases (natural language generation); and the
intelligent delivery of information to multiple end-user information
appliances (device independence). Finally, we describe SEKTAgent, a
knowledge management tool which illustrates the use of all three of
these technologies.

8.2. KNOWLEDGE ACCESS AND THE SEMANTIC WEB

We begin this section by discussing the shortcomings of current search
technology, before looking at how semantic web technology can offer the
user a better search experience, and describing a number of systems

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

140 SEMANTIC INFORMATION ACCESS

which have been developed to search semantically annotated informa-
tion resources.

8.2.1. Limitations of Current Search Technology

8.2.1.1. Query Construction

In general, when specifying a search, users enter a small number of
terms in the query. Yet the query describes the information need, and is
commonly based on the words that people expect to occur in the types
of document they seek. This gives rise to a fundamental problem, in
that not all documents will use the same words to refer to the same
concept. Therefore, not all the documents that discuss the concept will
be retrieved by a simple keyword-based search. Furthermore, query
terms may of course have multiple meanings (query term polysemy). As
conventional search engines cannot interpret the sense of the user’s
search, the ambiguity of the query leads to the retrieval of irrelevant
information.

Although the problems of query ambiguity can be overcome to some
degree, for example by careful choice of additional query terms, there is
evidence to suggest that many people may not be prepared to do this. For
example, an analysis of the transaction logs of the Excite WWW search
engine (Jansen ef al., 2000) showed that web search engine queries contain
on average 2.2 terms. Comparable user behaviour can also be observed on
corporate Intranets. An analysis of the queries submitted to BT’s Intranet
search engine over a 4-month period between January 2004 and May 2004
showed that 99 % of the submitted queries only contained a single phrase
and that, on average, each phrase contained 1.82 keywords.

8.2.1.2. Lack of Semantics

Converse to the problem of polysemy, is the fact that conventional
search engines that match query terms against a keyword-based index
will fail to match relevant information when the keywords used in the
query are different from those used in the index, despite having the
same meaning (index term synonymy). Although this problem can be
overcome to some extent through thesaurus-based expansion of the
query, the resultant increased level of document recall may result in
the search engine returning too many results for the user to be able to
process realistically.

In addition to an inability to handle synonymy and polysemy, con-
ventional search engines are unaware of any other semantic links
between concepts. Consider, for example, the following query:

‘telecom company’ Europe ‘John Smith” director

KNOWLEDGE ACCESS AND THE SEMANTIC WEB 141

The user might require, for example, documents concerning a telecom
company in Europe, a person called John Smith, and a board appoint-
ment. Note, however, that a document containing the following sentence
would not be returned using conventional search techniques:

‘At its meeting on the 10th of May, the board of London-based O2 appointed
John Smith as CTO’

In order to be able to return this document, the search engine would
need to be aware of the following semantic relations:

‘O2 is a mobile operator, which is a kind of telecom company;
London is located in the UK, which is a part of Europe;
A CTO is a kind of director.”

8.2.1.3. Lack of Context

Many search engines fail to take into consideration aspects of the user’s
context to help disambiguate their queries. User context would include
information such as a person’s role, department, experience, interests,
project work etc. A simple search on BT’s Intranet demonstrates this. A
person working in a particular BT line of business searching for informa-
tion on their corporate clothing entitlement is presented with numerous
irrelevant results if they simply enter the query ‘corporate clothing’.
More relevant results are only returned should the user modify their
query to include further search terms to indicate the part of the business
in which they work. As discussed above, users are in general unwilling
to do this.

8.2.1.4. Presentation of Results

The results returned from a conventional search engine are usually
presented to the user as a simple ranked list. The sheer number of results
returned from a basic keyword search means that results navigation can
be difficult and time consuming. Generally, the user has to make a
decision on whether to view the target page based upon information
contained in a brief result fragment. A survey of user behaviour on BT’s
intranet suggests that most users will not view beyond the 10th resultin a
list of retrieved documents. Only 17 % of searches resulted in a user
viewing more than the first page of results.!

'Out of a total of 143726 queries submitted to the search engine, there were 251192
occasions where a user clicked to view more than the first page of results. Ten results per
page are returned by default.

142 SEMANTIC INFORMATION ACCESS

8.2.1.5. Managing Heterogeneity

Corporate search engines are required to index a wide range of subject
material from a diverse and distributed collection of information sources,
including web sites, content management systems, document manage-
ment systems, databases and perhaps certain relevant areas of the
external web. This represents a challenge not only in simple terms of
connectivity to multiple information resources, but also in providing a
coherent view of diverse sources and types of information.

8.2.2. Role of Semantic Technology

Semantic technology has the potential to offer solutions to many of the
limitations described above, by providing enhanced knowledge access
based on the exploitation of machine-processable metadata. Central to
the vision of the Semantic Web are ontologies. These facilitate knowledge
sharing and reuse between agents, be they human or artificial. They offer
this capability by providing a consensual and formal conceptualisation of
a given domain. Information can then be annotated with respect to an
ontology. This leads to distributed, heterogeneous information sources
being unified through a machine-processable common domain model
(ontology). Ontologies are populated with semantic metadata as dis-
cussed in more detail in Chapter 3. The PROTON ontology itself is
introduced and discussed in Chapter 7.

Search engines based on conventional information retrieval techniques
alone tend to offer high recall but lower precision. The user is faced with
too many results and many results that are irrelevant due to a failure to
handle polysemy and synonymy, still less any richer semantic relations.

As we will exemplify later in this chapter, the use of ontologies and
associated metadata can allow the user to more precisely express their
queries thus avoiding the problems identified above. Users can choose
ontological concepts to define their query or select from a set of returned
concepts following a search in order to refine their query. They can
specify queries over the metadata and indeed combine these with full
text queries if desired.

Furthermore, the use of semantic web technology offers the
prospect of a more fundamental change to knowledge access. Current
technology supports a process wherein the user attempts to frame an
information need by specifying a query in the form of either a set of
keywords or a piece of natural language text. Having submitted a
query, the user is then presented with a ranked list of documents of
relevance to the query. However, this is only a partial response to the
user’s actual requirement which is for information rather than lists of
documents.

It is suggested here, therefore, that the future of search engines lies in
supporting more of the information management process, as opposed to

KNOWLEDGE ACCESS AND THE SEMANTIC WEB 143

seeking incremental and modest improvements to relevance ranking of
documents. In this approach, software supports more of the process of
analysing relevant documents rather than merely listing them and
leaving the rest of the information analysis task to the user. Corporate
knowledge workers need information defined by its meaning, not by text
strings (‘bags of words’). They also need information relevant to their
interests and to their current context. They need to find not just docu-
ments, but sections and information entities within documents and even
digests of information created from multiple documents. As described
below, the exploitation of metadata and ontological information can offer
this information-centric approach, as opposed to the prevailing docu-
ment-centric technology.

8.2.3. Searching XML

The eXtensible Mark-up Language (XML), a specification for machine-
readable documents, is one of the first steps towards a Semantic Web.
XML is a meta-language, as such, it provides a mechanism for represent-
ing other languages in a standardised way. XML mark-up describes (and
prescribes) a document’s data layout and structure as a tree of nested
tags. XML-based search engines exploit this mark-up, enabling searches
for documents where keywords and phrases appear within the elements
of an XML document, for example search for the phrase ‘Semantic Web’
within all (title) elements of a set of XML documents.

In an early implementation of XML-aware search, QuizXML (Davies,
2000) compiles a list of the ’‘tags’ that annotate and subdivide the
documents within which document terms are found. QuizXML then
creates a finer-grained index than traditional search engines: its index
maps keywords to both the documents and the XML tags within which
those keywords are found. QuizXML allows users to explore interac-
tively the list of tags in which a given query occurs, and select a
particular tag in order to refine the search results to only those docu-
ments where the search query occurs in a part of an XML document
marked up by the selected tag.

In a more sophisticated approach, described in Cohen et al. (2003), the
XSearch semantic search engine has been designed to return semanti-
cally-related document fragments in response to a user’s query (in
preference to returning a reference to the complete document). This is
particularly useful in cases where a large document contains information
in addition to that which matches the query, but which is not necessarily
related to the query. XSearch provides a simple query interface that does
not require a detailed knowledge of the structure of the XML documents
being sought. The XSearch query syntax enables the user to specify how
query terms must be related to the XML tags (but does not enforce this—
indeed, a query containing only keywords may be entered).

144 SEMANTIC INFORMATION ACCESS

XSearch incorporates techniques for determining which elements of an
XML document are semantically related. An answer to an XSearch query
typically contains multiple document fragments which are so related.
Results ranking takes into account both keyword relevance and the
degree of semantic relationship. Experiments reported in (Cohen et al.,
2003) indicate that XSearch is efficient and scalable.

In related work, the XRANK XML search engine (Guo et al., 2003) also
returns document fragments in response to queries. In XRANK, each
query term is matched against both document content and document
mark-up (XML tags). It ranks the elements of an XML document using an
extension of the Google PageRank algorithm (Brin and Page, 1998),
which (in part) uses the hyperlinks on a webpage to assess its relevance
and importance. The ranking algorithm in XRANK is analogous but is
performed at the level of the hyperlink structure of the document
elements rather than at the level of the XML document as a whole. It
then ranks the answers to a query by taking into account both the
ranking for the elements and keyword proximity. Proximity in this
context is not simply determined by position in the document but also
by position in the XML tree structure (roughly speaking, measured by
the distance to the lowest common ancestor in the tree).

Cohen et al. (2002) and Florescu et al. (2000) describe other examples of
support for keyword querying over XML content.

Although XML promotes greater interoperability between applications
that conform to a pre-defined data standard, the use and semantics of
each XML tag are not defined. For example, the semantics implicit in the
embedding of one tag within another are hidden. Interpretation of XML
tags relies on the implicit knowledge that is hardcoded into the applica-
tion programs that access the XML encoded information (or indeed by
the person being presented with the search results from an XML enabled
search engine).

8.2.4. Searching RDF

The resource description framework (RDF; W3C, 2004) is a W3C stan-
dard for data interchange. RDF builds on XML to provide a mechanism
for describing data about resources on the web (e.g. documents) in terms
of named properties and values. RDF provides a model that enables
information about any resource to be encoded in a formal, machine-
processable format. RDF data is serialisable in XML. An RDF description
of a resource consists of a set of RDF statements (triples). Each statement
has a uniform structure consisting of three parts: an object (a resource),
an attribute (a property) and a value (another resource or plain text), for
example a Web page (the resource) was ‘created by’ (the attribute) ‘John
Smith’ (a value). RDF for example enables information to be expressed in
a formal way that software agents can read, process and act upon. RDF

KNOWLEDGE ACCESS AND THE SEMANTIC WEB 145

Schema (RDFS) extends RDF by providing a mechanism that enables
RDF documents to convey intended meaning. It provides the semantic
information required by an application to correctly interpret the RDF
statements. RDFS defines an ontological vocabulary in the form of
classes, class properties and relationships, for example descriptive
terms such as book, author, title, hasName etc. RDF and RDFS (often
denoted together as RDF(S)), when combined, provide the syntactic
model and semantic structure for defining machine-processable ontolo-
gies. Thus, the use of RDF(S) to annotate content goes beyond what is
possible in XML in a number of ways:

e RDEK(S) is descriptive not prescriptive—XML dictates the format of
individual documents; whereas RDF(S) allows the description of any
content and the RDF(S) annotations need not be embedded within the
content itself.

e More than one RDF(S) ontology can be used to describe the same
content for different purposes if required.

e RDF(S) has a well-defined semantics regarding, for example the
subclass relation.

e RDEF(S) allows the definition of a set of relations between resources as
described above.

The QuizRDF search engine (Davies et al., 2003) combines free-text search
with a capability to exploit RDF annotation querying. QuizRDF combines
search and browsing capabilities into a single tool and allows RDF
annotations to be exploited (searched over) where they exist, but will
still function as a conventional search engine in the absence of those
annotations.

The user enters a query into QuizRDF as they would in a conventional
search engine. A list of documents is returned, ranked according to the
resource’s relevance to the user’s query using a traditional vector space
approach (Salton et al., 1997). The QuizRDF data model assumes each
annotated document is linked to one or more subjects via an ‘isAbout’
property.” The subjects of the documents returned in response to a query
are ascertained and displayed along with the traditional ranked list.

By selecting one of the displayed subjects (ontological classes), the user
can filter the retrieval list to include only those resources (documents)
that are instances of the selected class. QuizRDF also displays the
properties and classes related to the selected class. Each class displayed
has an associated hyperlink that allows the user to browse the RDFS
ontology: clicking on the class name refreshes the display to show that
class properties and related classes® and again filters the results list to

This corresponds closely to the PROTON hasSubject property described in Chapter 7.
%A related class in this context is a class which is the domain or range of a property of the
original class.

146 SEMANTIC INFORMATION ACCESS

show only URIs of the related class. Where properties have literal types
(e.g., string) as their range, QuizRDF enables users to query against these
properties. So for example the class Painting has a property hasTechni-
que with range of type ‘string’. If a set of documents has been returned of
class Painting, a user could enter ‘oil on canvas’ as a value for this
property and the document list would be filtered to show only those
documents which have the value ‘oil on canvas’ for this property.

Thus QuizRDF has two retrieval channels: a keyword query against
the text and a much more focussed query against specific RDF properties,
as well as supporting ontology browsing. Searching the full-text of the
documents ensures the desired high recall in the initial stages of the
information-seeking process. In the later stages of the search, more
emphasis can be put on searching the RDF annotations (property values)
to improve the precision of the search.

Experiments with QuizRDF on an RDF-annotated web site showed
improvements in performance as compared to a conventional keyword-
based search facility (Iosif et al., 2003).

8.2.5. Exploiting Domain-specific Knowledge

As discussed above, conventional search engines have no model of how
the concepts denoted by query terms may be linked semantically. When
searching for a paper published by a particular author, for example it
may be helpful to retrieve additional information that relates to that
author, such as other publications, curriculum vitae, contact details etc. A
number of search engines are now emerging that use techniques to apply
ontology-based domain-specific knowledge to the indexing, similarity
evaluation, results augmentation and query enrichment processes.

Rocha et al. (2004) describe a search architecture that applies a
combination of spread activation and conventional information retrieval
to a domain-specific semantic model in order to find concepts relevant to
a keyword-based query. The essence of spread activation, as applied in
conventional textual searching, is that a document may be returned by a
query, even if it contains none of the query keywords. This happens if the
document is linked to by many other documents which do contain the
keywords. The inference is that such a document will very likely be
relevant to the query, despite not possessing the keywords.

In the case described here, the user expresses his query as a set of
keywords. This query is forwarded to a conventional search engine
which assigns a score to each document in its index in the usual way.

In addition to a conventional index, the system contains a domain-
specific knowledge base. This knowledge base consists of a model of the
domain, with instance nodes pointing to web resources, each node
having additional data in the form of linked properties as specified in
the domain model (ontology). Weightings that express the strength of

KNOWLEDGE ACCESS AND THE SEMANTIC WEB 147

each instance relation in the ontology are then derived. A number of
different approaches to this derivation are taken and the authors state
that it is not possible to find a weight derivation formula which is
optimal for all application areas. Thus the resulting network has, for
each relationship, a semantic label and an associated numerical weight.
The intuition behind this approach is that better search results can be
obtained by exploiting not only the relationships within the ontology, but
also the strength of those relationships.

Searching proceeds in two phases: as mentioned, a traditional
approach is first used to derive a set of documents from a keyword-
based query. As discussed, these documents are associated with
instances in the ontology and are linked via weighted relations to other
nodes. This set of nodes is supplied as an initial set to the spread
activation algorithm, using the numeric ranking from the traditional
retrieval algorithm as the initial activation value for each node. The set of
nodes obtained at the end of the propagation are then presented as the
search results. Two case studies are reported, showing that in these cases
the combination of the traditional and spread activation techniques
performs better than either on its own.

Gubha et al. (2003) describe a Semantic Web-based search engine (ABS—
activity-based search) that aims to augment traditional search results
when seeking information in relation to people, places, events, news
items etc. The semantic search application, which runs as a client of the
TAP infrastructure (Guha and McCool, 2003), sends a user-supplied
query to a conventional search engine. Results returned from the con-
ventional search engine are augmented with relevant information aggre-
gated from distributed data sources that form a knowledge base (the
information is extracted from relevant content on targeted web sites and
stored as machine-readable RDF annotations). The information contained
in the knowledge base is independent of and additional to the results
returned from the conventional search engine. A search for a musician’s
name, for example would augment the list of matching results from the
conventional search engine with information such as current tour dates,
discography, biography etc. Figure 8.1 shows a typical search result from
ABS.

Of course, the uptake of the Semantic Web (and semantic Intranet) will
depend upon the availability of ontologies and metadata associated with
Web (Intranet) content. Currently, this metadata is not available in
abundance. The manual acquisition of large amounts of metadata is
generally considered to be impractical. It is therefore necessary to acquire
or generate the metadata, either automatically or at least semi-automa-
tically.

In a further development on the idea of exploiting an ontological
knowledge base to enhance search, the knowledge and information
management (KIM) infrastructure (Popov et al., 2003) aims to provide
automated methods for semantic annotation as discussed in Chapter 3.

148 SEMANTIC INFORMATION ACCESS

T Google Search: yo-yo ma - Microsolt Internet Explorer i =101 x|

|| Be [yew Faworbes ook teb =
*...with Ma, the cello found its ... |
wetw. sonyelassical com/artiste/ma/bio himl - 21k - Cached - Similar pages Concent tickets from TicketMaster

! 1
On 81202 st Sestie, WA

Sony Classical Atist Ye-Yo Ma

Yo-Yo Ma’s web sde. has moved to hitp.iAwww. yo-yoma com/
Wait a moment to be transfered .

On SAOL ot Sestle, WA

On 81402 st Sestle, Wh

www sonyclassical comfan 1= 2k - Cached - Similar pages §iB Boad Project WS Yo Yo MaCelly
| More results from www sonyclassical com | On S/1502 at Sestile, WA
Hypercelio / Yo-Yo Ma mmmns.ur.. A

Hypercello / Yo-Yo Ma. ...
MPEG) on the Hypercello
oA

Access more information and two short movies (Quicktime and
oject. Access nformation on Yo-Yo Ma. ... [Al Walmart com

brainop. media mit. edw/ArchiveHypennstrument s/hypercelio himi - 3k - Cached - Similar
Rages Simely Bareqys 313859
Simply Barequs 1L 13 68
Yo.-Yo Ma il 2l
- Mpse From Walmad com
Yo-Yo Ma is ... perdormers are "goofing of”. Bobby McFemn
with Yo-Yo Ma. Back to Bridges Main Page.
wtw woi comi~deroest/yoyoma him - 4k - Cached - Similar pages a':!f?':""cm“ﬂ e
hudis The icabaca 359 99
Encyclopedia com - Results for Ma, Yo-Yo Mats COMow Fogtures

« Listing from Electric Library, @ pay serice. CELLIST YO YO MA REHEARSES AT THE
HAl GRAND THEATRE | Reuters News Pictures Senice CHINA PHOTO, 03-05- Featured eBay Auctions
2001 ... Yo-Ye Ma Bach Calle Suites 2 Con
waw, encyclopedia com wmi - 25k - Cached - Similar pages 1 bids, $18.50, ands Feb03 1040
’) =

S bids, 91400, ends Feb03 003D

Jamiclesnew

Yo-Yo Ma | Bulifrog Films

- A senies of 6 programs Yo-Yo Ma Inspired By Bach Yo-Yo Ma collaborates with artists |1 bids, $5.50, ends Fab01 2058

from different media to create new works inspired by Bach's cello sutes ... X e
. 19k - i- Similas © bids. $5.00, ands Fes-00 07 22

wew bullfrogfilms. comfcatalog/yoyo himi

1 bids, $5.00, ends Feb03 1927

Biography - Yo-Yo Ma i
@) vere [[inkernat 7

Figure 8.1 Semantic search with TAP.

The KIM architecture also facilitates the indexing and retrieval of docu-
ments with respect to particular named entities such as people, compa-
nies, organisations and locations. Formal background knowledge (held in
the KIM ontological knowledgebase) can be linked to the entities identi-
fied in Web documents as described in Chapter 3. The knowledge base
can host two types of entity knowledge: pre-populated descriptions and
knowledge acquired from trusted sources, and automatically extracted
descriptions derived through knowledge discovery and acquisition
methods such as data mining. The KIM platform enables the ontology
to be extended and knowledge base to be populated to meet the domain-
specific needs of a semantic annotation application.

The semantic annotation process in KIM assigns to the named entities
in the text links to semantic descriptions of those entities in the ontolo-
gical knowledgebase. The semantic descriptions provide both class and
instance information about the entities referred to in the documents. KIM
analyses the text, recognises references to named entities and matches the
reference with a known entity from the knowledgebase (i.e. an ontolo-
gical instance). The reference in the document is annotated with the URI
of the entity. In Chapter 3, Figure 3.2 shows the way in which a segment
of text concerning a Bulgarian company might be associated with a
number of entities in the ontological knowledge base.

KNOWLEDGE ACCESS AND THE SEMANTIC WEB 149

2 KIM WEB Ul - Microsoft Internet Explorer
Ele Edt Vew Fgeortes Jocs Hep
;«;jressl_a_] g ffontotest. sirma. bg KIH ! -0)

OIM Predefined Entity Patterns 2

= Chocse Predefined Entty Pattern

Person hasPostion Postion withnOrganzation Organization | W
« APattern about

Search for:

Entites

™

Figure 8.2 Semantic querying in KIM.

The semantic annotations can then be used for indexing and retrieval,
categorisation, visualisation and smooth traversal between unstructured
text and available relevant knowledge. The application of entity corefer-
ence resolution means that the system would regard the strings ‘Tony
Blair’ ‘Mr Blair” ‘the Prime Minister’ as referring to the same entity in the
ontological knowledge base. Semantic querying is supported against the
repository of semantically annotated documents. This would allow for
example a query to be formulated that targets all documents that refer to
Persons that hold a specified Position within an Organisation. Figure 8.2
shows a KIM ontological query concerning a person whose name begins
with ‘J’, and who is a spokesman for IBM. Note that the user interface
shown is for a specific query type (regarding people with specific
positions in named organisations). A more general interface is also
available, allowing the specification of queries about any type of entity,
relations between such entities and required attribute values (e.g. ‘find all
documents referring to a Person that hasPosition “CEO” within a
Company, locatedIn a Country with name “UK’”). To answer the
query, KIM applies the semantic restrictions over the entities in the
knowledge base. The resulting set of entities is matched against the
semantic index and the referring documents are retrieved with relevance
ranking according to these named entities.

Figure 8.3 Shows that four such ontological entities have been found in
the documents indexed.

It is then possible to browse a list of documents containing the
specified entities and KIM renders the documents, with entities from
the query highlighted (in this example IBM and the identified spokes-
person).

150 SEMANTIC INFORMATION ACCESS

2} KM WEB Ul - Microsoft Internet Explorer

Fle Edt Mew Fgwontes Iock Heb i
ddress |] vt test.sirma,bg MO, _ tiso v Bl
+ Q1M Entity Query Result i
| 5o ¥ Persen Yiype [1r]| Fostion' | Tyse" | 1] Orgamiration] Tupe | 7]
B e B X winsky Persor spokesman Praten B Company +
| e - = s -
B = B = i
g © = .
B o 1-4 0 0 -
. Avality Options.
[(Refrequery | [(newquery | [(EdtQuery |
. Hnts:
EE, of class Agent. Then the enfites n the tabie could be of
[sesame | oresent

Figure 8.3 Semantic query results.

It should be noted that the work surveyed here is not claimed to be
comprehensive, but indicative of the research being carried out in a large
number of groups worldwide.

In other work, Berstein et al. (2005) describe a controlled language
approach whereby a subset of English is entered by the user as a query
and is then mapped into a semantic query via a discourse representation
structure. Vallet et al. (2005) propose an ontology-based information
retrieval model using a semantic indexing scheme based on annotation
weighting techniques.

8.2.6. Searching for Semantic Web Resources

We have seen in the earlier sections a variety of approaches for searching
semantically annotated information resources. The Swoogle search
engine (Ding et al., 2004) is tackling a related but different problem: it
is primarily concerned with finding ontologies and related instance data.

Finding ontologies is seen as important to avoid the creation of new
ontologies where serviceable ones already exist. It is hoped that this
approach will lead to the emergence of widely-used canonical ontologies.
Swoogle supports querying for ontologies containing specified terms.
This can be refined to find ontologies where such terms occur as classes
or properties, or to find ontologies that are in some sense about the
specified term (as determined by Swoogle’s ontology retrieval engine).
The ontologies thus found are ranked according to Swoogle’s Ontolo-
gyRank algorithm which attempts to measure the degree to which a
given ontology is used.

KNOWLEDGE ACCESS AND THE SEMANTIC WEB 151

In order to offer such search facilities, Swoogle builds an index of
semantic web documents (defined as web-accessible documents written
in a semantic web language). A specialised crawler has been built using a
range of heuristics to identify and index semantic web documents.

The creators of Swoogle are building an ontology dictionary based on
the ontologies discovered by Swoogle.

8.2.7. Semantic Browsing

Web browsing complements searching as an important aspect of infor-
mation-seeking behaviour. Browsing can be enhanced by the exploitation
of semantic annotations and below we describe three systems which offer
a semantic approach to information browsing.

Magpie (Domingue et al., 2004) is an internet browser plug-in which
assists users in the analysis of web pages. Magpie adds an ontology-
based semantic layer onto web pages on-the-fly as they are browsed. The
system automatically highlights key items of interest, and for each
highlighted term it provides a set of ‘services’ (e.g. contact details,
current projects, related people) when you right click on the item. This
relies, of course, on the availability of a domain ontology appropriate to
the page being browsed.

CS AKTiveSpace (Glaser et al., 2004) is a semantic web application
which provides a way to browse information about the UK Computer
Science Research domain, by exploiting information from a variety of
sources including funding agencies and individual researchers. The
application exploits a wide range of semantically heterogeneous and
distributed content. AKTiveSpace retrieves information related to almost
two thousand active Computer Science researchers and over 24 000
research projects, with information being contained within 1000 pub-
lished papers, located in different university web sites. This content is
gathered on a continuous basis using a variety of methods including
harvesting publicly available data from institutional web sites, bulk
translation from existing databases, as well as other data sources. The
content is mediated through an ontology and stored as RDF triples; the
indexed information comprises around 10 million RDF triples in total.

CS AKTive Space supports the exploration of patterns and implica-
tions inherent in the content using a variety of visualisations and multi-
dimensional representations to give unified access to information gath-
ered from a range of heterogeneous sources.

Quan and Karger (2004) describe Haystack, a browser for semantic
web information. The system aggregates and visualises RDF metadata
from multiple arbitrary locations. In this respect, it differs from the two
semantic browsing systems described above which are focussed on using
metadata annotations to enhance the browsing and display of the data
itself.

152 SEMANTIC INFORMATION ACCESS

Presentations styles in Haystack are themselves described in RDF and
can be issued by the content server or by context-specific applications
which may wish to present the information in a specific way appropriate
to the application at hand. Data from multiple sites and particular
presentation styles can be combined by Haystack on the client-side to
form customised access to information from multiple sources. The authors
demonstrate a Haystack application in the domain of bioinformatics.

In other work (Karger et al., 2003), it is reported that Haystack also
incorporates the ability to generate RDF data using a set of metadata
extractors from a variety of other formats, including documents in
various formats, email, Bibtex files, LDAP data, RSS feeds, instant
messages and so on. In this way, Haystack has been used to produce a
unified Personal Information Manager. The goal is to eliminate the
partitioning which has resulted from having information scattered
between e-mail client(s), filesystem, calendar, address book(s), the Web
and other custom repositories.

8.3. NATURAL LANGUAGE GENERATION FROM
ONTOLOGIES

Natural Language Generation (NLG) takes structured data in a knowl-
edge base as input and produces natural language text, tailored to the
pre-sentational context and the target reader (Reiter and Dale, 2000).
NLG techniques use and build models of the context, and the user and
use them to select appropriate presentation strategies, for example to
deliver short summaries to the user's WAP phone or a longer multi-
modal text to the user’s desktop PC.

In the context of the semantic web and knowledge management, NLG
is required to provide automated documentation of ontologies and
knowledge bases. Unlike human-written texts, an automatic approach
will constantly keep the text up-to-date which is vitally important in the
semantic web context where knowledge is dynamic and is updated
frequently. The NLG approach also allows generation in multiple lan-
guages without the need for human or automatic translation (see
(Aguado et al., 1998)).

Generation of natural language text from ontologies is an important
problem. Firstly, because textual documentation is more readable than
the corresponding formal notations and thus helps users who are not
knowledge engineers to understand and use ontologies. Secondly, a
number of applications have now started using ontologies for knowledge
representation, but this formal knowledge needs to be expressed in
natural language in order to produce reports, letters etc. In other
words, NLG can be used to present structured information in a user-
friendly way.

NATURAL LANGUAGE GENERATION FROM ONTOLOGIES 153

There are several advantages to using NLG rather than using fixed
templates where the query results are filled in:

e NLG can use different sentence structures depending on the number
of query results, for example conjunction versus itemised list.

e Depending on the user’s profile of their interests, NLG can include
different types of information—affiliations, email addresses, publica-
tion lists, indications on collaborations (derived from project informa-
tion).

o Given the variety of information which can be included and how it can
be presented, and depending on its type and amount, writing tem-
plates may not be feasible because of the number of combinations to be
covered. This variation in presentational formats comes from the fact
that each user of the system has a profile comprising user supplied (or
system derived) personal information (name, contact details, experi-
ence, projects worked on), plus information derived semi-automati-
cally from the user’s interaction with other applications. Therefore,
there will be a need to tailor the generated presentations according to
user’s profile.

8.3.1. Generation from Taxonomies

PEBA is an intelligent online encyclopaedia which generates descriptions
and comparisons of animals (Dale et al., 1998). In order to determine the
structure of the generated texts, the system uses text patterns which are
appropriate for the fairly invariant structure of the animal descriptions.
PEBA has a taxonomic knowledge base which is directly reflected in the
generated hypertext because it includes links to the super- and sub-
concepts (see example below). Based on the discourse history, that is
what was seen already, the system modifies the page opening to take this
into account. For example, if the user has followed a link to marsupial
from a node about the kangaroo, then the new text will be adapted to be
more coherent in the context of the previous page:

‘Apart from the Kangaroo, the class of Marsupials also contains the following
subtypes...” (Dale et al., 1998)

The main focus in PEBA is on the generation of comparisons which
improve the user’s understanding of the domain by comparing the
currently explained animal to animals already familiar to the user
(from common knowledge or previous interaction).

The system also does a limited amount of tailoring of the comparisons,
based on a set of hard-coded user models derived from stereotypes, for
example novice or expert. These stereotypes are used for variations in
language and content. For example, when choosing a target for a

154 SEMANTIC INFORMATION ACCESS

comparison, the system might pick cats for novice users, as they are
commonly known animals.

8.3.2. Generation of Interactive Information Sheets

Buchanan et al. (1995) developed a language generator for producing
concept definitions in natural language from the Loom knowledge
representation language.* Similar to the ONTOGENERATION project
(see below) this approach separates the domain model from the linguistic
information. The system is oriented towards providing patients with
interactive information sheets about illnesses (migraine in this case),
which are tailored on the basis of the patient’s history (symptoms, drugs
etc). Further information can be obtained by clicking on mouse-sensitive
parts of the text.

8.3.3. Ontology Verbalisers

Wilcock (2003) has developed general purpose ontology verbalisers for
RDF and DAML + OIL (Wilcock et al., 2003) and OWL. These are
template based and use a pipeline of XSLT transformations in order to
produce text. The text structure follows closely the ontology constructs,
for example ‘This is a description of John Smith identified by http://
...His given name is John...” (Wilcock, 2003).

Text is produced by performing sentence aggregation to connect
sentences with the same subject. Referring expressions like ‘his’ are
used instead of repeating the person’s name. The approach is a form of
shallow generation, which is based on domain- and task-specific modules.

The language descriptions generated are probably more suitable for
ontology developers, because they follow very closely the structures of
the formal representation language, that is RDF or OWL.

The advantages of Wilcock’s approach is that it is fully automatic and
does not require a lexicon. In contrast, other approaches discussed here
require more manual input (lexicons and domain schemas), but on the
other hand they generate more fluent reports, oriented towards end
users, not ontology builders.

8.3.4. Ontogeneration

The ONTOGENERATION project (Aguado et al., 1998) explored the use
of a linguistically oriented ontology (the Generalised Upper Model

4http: //www.isi.edu/isd/LOOM/

NATURAL LANGUAGE GENERATION FROM ONTOLOGIES 1565

(GUM) (Bateman et al., 1995)) as an abstraction between language
generators and their domain knowledge base (chemistry in this case).
The GUM is a linguistic ontology with hundreds of concepts and
relations, for example part-whole, spatio-temporal, cause-effect. The
types of text that were generated are: concept definitions, classifications,
examples and comparisons of chemical elements.

However, the size and complexity of GUM make customisation more
difficult for nonexperts. On the other hand, the benefit from using GUM
is that it encodes all linguistically-motivated structures away from the
domain ontology and can act as a mapping structure in multi-lingual
generation systems. In general, there is a trade-off between the number of
linguistic constructs in the ontology and portability across domains and
applications.

8.3.5. Ontosum and Miakt Summary Generators

Summary generation in ONTOSUM starts off by being given a set of RDF
triples, for example derived from OWL statements. Since there is some
repetition, these triples are first pre-processed to remove duplicates. In
addition to triples that have the same property and arguments, the
system also removes those triples with equivalent semantics to an
already verbalised triple, expressed through an inverse property. The
information about inverse properties is provided by the ontology (if
supported by the representation formalism). An example summary is
shown later in this chapter (Figure 8.6) where the use of ONTOSUM in a
semantic search agent is described.

The lexicalisations of concepts and properties in the ontology can be
specified by the ontology engineer, be taken to be the same as concept
and property names themselves, or added manually as part of the
customisation process. For instance, the AKT ontology” provides label
statements for some of its concepts and instances, which are found and
imported in the lexicon automatically. ONTOSUM is parameterised at
run time by specifying which properties are to be used for building the
lexicon.

A similar approach was first implemented in a domain- and ontology-
specific way in the MIAKT system (Bontcheva et al., 2004). In ONTOSUM
it is extended towards portability and personalisation, that is lowering
the cost of porting the generator from one ontology to another and
generating summaries of a given length and format, dependent on the
user target device.

Similar to the PEBA system, summary structuring is done using
discourseftext schemas (Reiter and Dale, 2000), which are script-like

Shttp:/ /www.aktors.org/ontology /

156 SEMANTIC INFORMATION ACCESS

structures which represent discourse patterns. They can be applied
recursively to generate coherent multi-sentential text. In more concrete
terms, when given a set of statements about a given concept or instance,
discourse schemas are used to impose an order on them, such that the
resulting summary is coherent. For the purposes of our system, a
coherent summary is a summary where similar statements are grouped
together.

The schemas are independent of the concrete domain and rely only on
a core set of four basic properties—active-action, passive-
action, attribute, and part-whole. When a new ontology is
connected to ONTOSUM, properties can be defined as a sub-property
of one of these four generic ones and then ONTOSUM will be able to
verbalise them without any modifications to the discourse schemas.
However, if more specialised treatment of some properties is required,
it is possible to enhance the schema library with new patterns, that apply
only to a specific property.

Next ONTOSUM performs semantic aggregation, that is it joins RDF
statements with the same property name and domain as one conceptual
graph. Without this aggregation step, there will be three separate
sentences instead of one bullet list (see Figure 8.5), resulting in a less
coherent text.

Finally, ONTOSUM verbalises the statements using the HYLITE + sur-
surface realiser, which determines the grammatical structure of the
generated sentences. The output is a textual summary. Further details
can be found in Bontcheva (2005).

An innovative aspect of ONTOSUM, in comparison to previous
NLG systems for the Semantic Web, is that it implements tailoring
and personalisation based on information from the user’s device
profile. Most specifically, methods were developed for generating
summaries within a given length restriction (e.g., 160 characters for
mobile phones) and in different formats — HTML for browsers and
plain texts for emails and mobile phones (Bontcheva, 2005). The
following section discusses a complementary approach to device
independent knowledge access and future work will focus on combin-
ing the two.

Another novel feature of ONTOSUM is its use of ontology mapping
rules, as described in Chapter 6 to enable users to run the system on new
ontologies, without any customisation efforts.

8.4. DEVICE INDEPENDENCE: INFORMATION ANYWHERE

Knowledge workers are increasingly working both in multiple locations
and while on the move using an ever wider variety of terminal devices.
They need information delivered in a format appropriate to the device at
hand.

DEVICE INDEPENDENCE: INFORMATION ANYWHERE 157

The aim of device independence is to allow authors to produce content
that can be viewed effectively, using a wide range of devices. Differences
in device properties such as screen size, input capabilities, processing
capacity, software functionality, presentation language and network
protocols make it challenging to produce a single resource that can be
presented effectively to the user on any device.

In this section, we review the key issues in device independence and
then discuss the range of device independence architectures and
technologies, which have been developed to address these. We
finish with a description of our own DIWAF device independence
framework.

8.4.1. Issues in Device Independence

The generation of content, and its subsequent delivery and presentation
to a user is an involved process, and the problem of device independence
can be viewed in a number of dimensions.

8.4.1.1. Separation of Concerns

Historically, the generation of the content of a document and the
generation of its representation would have been handled as entirely
separate functions. Authors would deliver a manuscript to a publisher,
who would typeset the manuscript for publication. The skill of the
typesetter was to make the underlying structure of the text clear to
readers by consistent use of fonts, spacing and margins.

With the widespread availability of computers and word processors,
authors often became responsible for both content and presentation.
This blurring creates problems in device independent content delivery
where content needs to be adapted to the device at hand, whereas
much content produced today has formatting information embedded
within it.

8.4.1.2. Location of Content Adaptation

Because of the client/server nature of web applications there are at least
three distinct places where the adaptation of content to the device can
occur:

Client Side Adaptation: all computer applications that display information
to the user must have a screen driver that takes some internal represen-
tation of the data and transforms it into an image on the screen. In this
sense, the client software is ultimately responsible for the presentation to
the user. In an ideal world, providers would agree on a common data
representation language for all devices, delegating responsibility for its

158 SEMANTIC INFORMATION ACCESS

representation to the client device. However, there are several mark-up
languages in common use, each with a number of versions and varia-
tions, as well as a number of client side scripting languages. Thus the
goal of producing a single universal representation language has proved
elusive.

Server Side Adaptation: whilst the client is ultimately responsible for the
presentation of data to the user, the display is driven by the data received
from the server. In principle, if the server can identify the capabilities of
the device being used, different representations of the content can be
sent, according to the requirements of the client.

Because of the plethora of different data representations and device

capabilities this approach has received much attention. A common
approach is to define a data representation specifically designed to
support device independence. These representations typically encourage
a highly structured approach to content, achieve separation of content
from style and layout, allow selection of alternative content and define an
abstract representation of user interactions. In principle, these represen-
tations could be rendered directly on the client, but a pragmatic approach
is to use this abstract representation to generate different presentations
on the server.
Network Transformation: one of the reasons for the development of
alternative data representations is the different network constraints
placed upon mobile and fixed end-user devices. Thus a third possibility
for content adaptation is to introduce an intermediate processing step
between the server and client, within the network itself. For example, the
widely used WAP protocol relies on a WAP gateway to transform bulky
textual representations into compact binary representations of data.
Another frequent application is to transform high-resolution colour
images into low-resolution black and white.

8.4.1.3. Delivery Context

So far the discussion has focussed on the problems associated with using
different hardware and software to generate an effective display of a
single resource. However, this can be seen as part of a wider attempt to
make web applications context aware.

Accessibility has been a concern to the W3C for a number of years,
and in many ways the issues involved in achieving accessibility are
parallel to the aims of achieving device independence. It may be, for
example, that a user has a preference for using voice rather than a
keyboard and from the point of view of the software, it is irrelevant
whether this is because the device is limited, or because the user finds
it easier to talk than type, or whether the user happens to need their
hands for something else (e.g., to drive). To a large extent, any
solutions developed for device independence will increase accessibility
and vice versa.

DEVICE INDEPENDENCE: INFORMATION ANYWHERE 159

Location is another important facet of context: a user looking for the
nearest hotel will want to receive a different response depending on their
current position.

User Profiles aim to enable a user to express and represent pre-
ferences about the way they wish to receive content—for example
as text only, or in large font, or as voice XML. The Composite
Capability /Preference Profile (CC/PP) standard (discussed in the
next subsection) has been designed explicitly to take user preferences
into consideration.

8.4.1.4. Device Identification

If device independence is achieved by client side interpretation of a
universal mark-up language, then identification of device capabilities can
be built into the browser. However, if the server transformation model is
taken, then there arises the problem of identifying the target device from
the HTTP request.

Two approaches to this problem have emerged as common solutions.
The current W3C recommendation is to use CC/PP (Klyne, 2004), a
generalisation of the UAProf standard developed by the Wireless Appli-
cation Protocol Forum (now part of the Open Mobile Alliance) (WAPF,
1999). In this standard, devices are described as a collection of compo-
nents, each with a number of attributes. The idea is that manufacturers
will provide profiles of their devices, which will be held in a central
device repository. The device will identify itself using HTTP Header
extensions, enabling the server to load its profile. One of the strengths of
this approach is that users (or devices, or network elements) are able to
specify to the default device data held centrally on a request-by-request
basis. Another attraction of the specification is that it is written in
RDF (MacBride, 2004), which makes it easy to assimilate into a
larger ontology, for example including user profiles. The standard also
includes a protocol, designed to access the profiles over low bandwidth
networks.

An alternative approach is the Wireless Universal Resource File
(WURFL) (Passani, 2005). This is a single XML document, maintained
by the user community and freely available, containing a description of
every device known to the WURFL community (currently around 5000
devices). The aim is to provide an accurate and up to date characterisa-
tion of wireless devices. It was developed to overcome the difficulty
that manufacturers do not always supply accurate CC/PP descriptions
of their devices. Devices are identified using the standard user-agent
string sent with the request. The strength of this approach is that
devices are arranged in an inheritance hierarchy, which means that
sensible defaults can be inferred even if only the general class of device
is known. CC/PP and WURFL are described in more detail later in this
section.

160 SEMANTIC INFORMATION ACCESS

8.4.2. Device Independence Architectures and
Technologies

The rapid advance of mobile communications has spurred numerous
initiatives to bridge the gap between existing fixed PC technologies and
the requirements of mobile devices. In particular, the World Wide Web
Consortium (W3C) has a number of active working groups, including the
Device Independence Working Group, which has produced a range of
material on this issue.® In this section, we give an overview of some of the
more prominent device independence technologies.

8.4.2.1. XFORMS

XForms (Raman, 2003) is an XML standard for describing web-based
forms, intended to overcome some of the limitations of HTML. Its key
feature is the separation of traditional forms into three parts—the data
model, data instances and presentation. This allows a more natural
expression of data flow and validation, and avoids many of the problems
associated with the use of client side scripting languages. Another
advantage is strong integration with other XML technologies such as
the use of XPath to link documents.

XFORMS is not intended as a complete solution for device indepen-
dence, and it does not address issues such as device recognition and
content selection. However, its separation of the abstract data model
from presentation addresses many of the issues in the area of user
interaction, and the XFORMS specification is likely to have an impact
on future developments.

8.4.2.2. CSS3 and Media Queries

Cascading Style Sheets is a technology which allows the separation of
content from format. One of the most significant benefits of this approach
is that it allows the ‘look and feel” of an entire web site to be specified in a
single document. CSS version 2 also provided a crude means of selecting
content and style based on the target device using a ‘media’ tag.

CSS3 greatly extends this capability by integrating CC/PP technology
into the style sheets, via Media Queries (Lie, 2002), allowing the user to
write Boolean expressions which can be used to select different styles
depending on attributes of the current device. In particular, content can
be omitted altogether if required. Unfortunately, media queries do not
yet enjoy consistent browser support.

6h’ctp://www.w3.org/2001 /di/

DEVICE INDEPENDENCE: INFORMATION ANYWHERE 161

8.4.2.3. XHTML-Mobile Profile

This is a client side approach to device independence. Its aim is to
define a version of HTML which is suitable for both mobile and fixed
devices. Issues to do with device capability identification and content
transformation are bypassed, since the presentation is controlled by the
browser on the client device. The XHTML mobile profile specification
(WAPF, 2001) draws on the experience of WML and the compact
HTML (cHTML) promoted by I-mode in Japan, and increasingly
penetrating into Europe.

8.4.2.4. SMIL

The Synchronised Multi-media Integration Language (SMIL) (Butterman
et al., 2004) is another mark-up language for describing content. This time
the focus is on multimedia, and in particular on animation, but the SMIL
specification is very ambitious, and includes sophisticated models for
describing layout and content selection. SMIL is perhaps currently the
most complete specification language for server-side transformation.
However, there does not yet seem to have been significant take up in
the device independence arena.

8.4.2.5. COCOON/DELI

Section 8.4.1.4 discussed the CC/PP protocol, which is the current W3C
recommendation for device characterisation. A Java API has been devel-
oped for this protocol as an open source project by SUN, building on
work done at HP under the name DELI (Jacobs and Jaj, 2005). This
provides a simple programming interface to CC/PP which allows
developers to access the capabilities of the current device. This has
been integrated into COCOON,” a framework for building web resources
using XML as the content source, and using XSLT to transform this into
suitable content based on the current device.

A disadvantage of this approach is the effort required to write suitable
XSLT style sheets.

8.4.2.6. WURFL/WALL

The Wireless Universal Resource File has been briefly described in
Section 8.4.1.4. One of the most useful features of the WURFL is its
hierarchical structure; devices placed at lower nodes in the tree inherit
the properties of their ancestors. This gives the WURFL a certain degree

“http:/ /cocoon.apache.org/

162 SEMANTIC INFORMATION ACCESS

of robustness against additions. Even if a device cannot be located in the
file, default values can be assumed from its ‘family’, inferred from its
manufacturer and series number.

The WURFL claims to have greater take up than the CC/PP standard,
and its reliability, accuracy and robustness are attractive features. How-
ever, it has certain disadvantages. In particular, it does not provide any
information about the network, the software or user preferences. An
ideal solution would be recast the WURFL in RDF so that it could be
integrated with CC/PP. However, RDF does not support inheritance, the
WURFL'’s key advantage.

In order to make the WURFL accessible to developers, OpenWave have
developed APIs in Java and PHP that provide a simple programming
interface. They have also developed a set of java tag libraries, for use in
conjunction with Java Server Pages (JSP), known as WALL.> WALL
appears to be the closest approach yet to the ideal of device independence.
Using WALL it is possible to write a single source, in a reasonably
intuitive language, which will result in appropriate content being deliv-
ered to the target device without any further software development.

8.4.3. DIWAF

The SEKT Device Independence Web Application Framework is a server
side application which provides a framework for presenting structured
data to the user (Glover and Davies, 2005). The framework does not use a
mark-up language to annotate the data. Instead, it makes use of tem-
plates, which are ‘filled” with data rather like a mail merge in a word
processor. These templates allow the selection, repetition and rearrange-
ment of data, interspersed with static text. The framework can select
different templates according to the target device, which present the
same data in different ways.

The approach is some ways analogous to XSLT. Data is held internally
structured according to some logical business model. This data can be
selected and transformed into a suitable presentation model by the
framework. However, there are some significant advantages of this
approach over XSLT. First the data source does not have to be an XML
document, but may be a database or structured text file. Second the
templates themselves do not have to be XML documents. This means that
they can be designed using appropriate tools—for example HTML
documents can be written using an HTML editor. Finally, the templates
are purely declarative and contain no programming constructs. This
means that no special technical knowledge is required to produce them.

8http: // developer.openwave.com

DEVICE INDEPENDENCE: INFORMATION ANYWHERE 163

Very often effective presentations can be produced directly from the
logical data model. However, sometimes the requirements go beyond the
capabilities of declarative templates. For example it may be necessary to
perform calculations or text processing. For this reason, the framework
has a three tier, Model-View-Control architecture. The first layer is the
logical data model. The second layer contains the business logic which
performs any necessary processing. The third and final layer is the
presentation layer where the data is transformed into a suitable format
for presentation on the target device. This architecture addresses the
separation of concerns issue discussed in Section 8.4.1.1.

In the current implementation of the DIWAF, device identification uses
the RDF-based CC/PP (an open standard from W3C), with an open
source Java implementation. In this framework, device profile informa-
tion is made available to Java servlets as a collection of attributes, such as
screen size, browser name etc. These attributes can be used to inform the
subsequent selection and adaptation of content, by combining them in
Boolean expressions. Figure 8.4 shows exactly the same content (located

q SEXT Book Catalogue - Microsolt Intemmet Explorer provided by BT Configuration D N ._..Iﬂlﬁ[
| Fle Ed vew Favoites Toos Hep |
| Address [@] b nfo.tt.co.u t/servietCatalogue] P || bk - =+ - 2

I

SEKT Book Catalogue

o] e [awhor [price |

_D_osuiptlon

P Uncle s an elephant. He is immensly rnch, and lives in a castle
1 |Uncle CleansUp |, .o £12.99 | called Homeward. He like to dress in a purple dressing gown
and rides on a traction engine, which he prefers to a car.

When Harry Potter wakes up on his 11th birthday, he has no

2 |Harry Potter ;':wl-n £10.99 |idea that he is about to enroll in Hogwarts school for wizards
owang and find himself battlig the evil Voldemort
The Lion , the cs Fle Edt Go View Bookmarks Help

3 | witch and the Ladlis ;

Wardrobe L] e ¢ (] 2] & 2 a é

.- L Back Foryed Siop Refresh Home Seach Bookmaks | Pr
4 |The Dark is s Addvess [hag:/ info bl co.uk 8080/ KimS erviel/senviel/Catalogue | ="

Rising Cooper

Item 1

S | The Mum Minder |J wilson | Title Lncle Cleans Up
Author J P Martin

Price 1299
Previoys
Harry Potter and ;
5 4 JK Mext
6 | the Chamber of Rowlin L
Secrets e
Ready [Cords: 20 [Tmer: -
L= cousins on the the Narnian ship, the Dawn Treader. Now he
74 || Tha:Siiver: Chair Lewis k.99 retumns to namia with his school friend to rescue the Prince
from the curse of the Silver Chair
Georgina is not at all pleased to have her cousins stay with
Five on Kirrin Enid 99 her for the summer holidays in Comwall. But she soon finds
Island Blyton o she enjoys their company, and even agrees to share her own :I

Figure 8.4 Repurposing content for different devices in DIWAF.

164 SEMANTIC INFORMATION ACCESS

at the same URL) rendered via DIWAF on a standard web browser and
on a WAP browser emulator.

We have used this framework to support delivery of knowledge to
users on a variety of devices in the SEKTAgent system, as discussed later
in this chapter. Further details of this approach are available in Glover
and Davies (2005).

8.5. SEKTAGENT

We have seen in Section 8.2 how some semantic search tools use an
ontological knowledge base to enhance their search capability. We dis-
cussed in Sections 8.3 and 8.4 the use of natural language generation to
describe ontological knowledge in a more natural format and the delivery
of knowledge to the user in a format appropriate to the terminal device to
which they currently have access. In this section, we describe a semantic
search agent, SEKTAgent, which brings together the exploitation of an
ontological knowledge base, natural language generation and device
independence to proactively deliver relevant information to its users.

Search agents can reduce the overhead of completing a manual search
for information. The best known commercial search agent is perhaps
‘Google Alerts’, based on syntactic queries of the Google index.

Using an API provided by the KIM system (see Section 8.2.5 above),
SEKTAgent allows users to associate with each agent a semantic query
based upon the PROTON ontology (see Chapter 7). Some examples of
agent queries that could be made would be for documents mentioning;:

e A named person holding a particular position, within a certain
organisation.

e A named organisation located at a particular location.

e A particular person and a named location.

e A named company, active in a particular industry sector.

This mode of searching for types of entity can be complemented with a
full text search, allowing the user to specify terms which should occur in
the text of the retrieved documents.

In addition to the use of subsumption reasoning provided by KIM, it is
also planned that SEKTAgent will incorporate the use of explicitly
defined domain-specific rules. The SEKT search tool uses KAON2’ as
its reasoning engine. KAON2 is an infrastructure for managing OWL-DL
ontologies. It provides an API for the programmatic management of
OWL-DL and an inference engine for answering conjunctive queries
expressed using SPARQL'® syntax.

9http: / /kaon2.semanticweb.org/
Ohttp:/ /www.w3.org/TR/rdf-sparql-query/

SEKTAGENT 165

KAON?2 allows new knowledge to be inferred from existing, explicit
knowledge with the application of rules over the ontology. Consider a
semantic query to determine who has collaborated with a particular
author on a certain topic. This query could be answered through the
existence of a rule of the form:

If (?personX isAuthorOf ?document) & (?personY isAuthorOf
?document) -> (?personX collaboratesWith ?personY) &
(?personY collaboratesWith ?personX)

This rule states that if two people are authors of the same document
then they are collaborators. When a query involving the collaborateswith
predicate is submitted to KAON2, the above rule is enforced and the
resulting inferred knowledge returned as part of the query.

Figure 8.5 illustrates the results page for an agent which is searching
for a person named ‘Ben Verwaayen’ within the organisation ‘BT’
SEKTAgent is automatically run offline’’ at a periodicity specified by
the user (daily, weekly etc.). When new results (i.e. ones not previously

EThgont resi “MicrosatIntroal Cxplrer provided by BT (buld6OA] Loe
Fle Edt Vew Favortes Took Hebp "

D © WG Pows rremn G @ 3-5 #- LUK B i |

| ;ek

SEKTagent - Query Results

L\-\’f

Sandra, your guery Ban, locking for Ben Venwaayen in BT {a Person in an Organizabion) has found the following documents:

Shawing results 1-5 out of 15

(Display |5 results per page, | Change |y

([Frewous] [ve]

Rosults:

el
Openreach Launch

Figure 8.5 SEKTagent results page.

"Offline in this context means automatically without any user interaction.

166 SEMANTIC INFORMATION ACCESS

Microsoft Corporation is a Public Company located in United States and
Worldwide. Designs, develops, manufactures, licenses, sells and supports a wide
range of software products. Its webpage is www.microsoft.com. It is traded on
NASDAQ with the index MSFT. Key people include:

e Bill Gates—Chairman, Founder
e Steve Balmer— CEO
e John Conners— Chief Finanacial Officer

Last year its revenues were $36.8bn and its net income was $8.2bn.

Figure 8.6 ONTOSUM generated description.

presented by the agent to the given user) satisfying this query are found,
the user is sent a message which includes a link to an agent results page.
For each result found, the title of the page and a short summary of the
content relevant to the query are displayed. The summary highlights the
occurrences of the named entities that satisfy the query. Other recognised
named entities are also highlighted and the class to which each entity
belongs is shown by a colour coding scheme. Following the summary,
entities which occur frequently in the result documents are also shown.
These are other entities that although not matching the query are related
to it — in this case other people and organisations. The user is able to
place his mouse over any of the named entities to display further
information about the entity from the knowledge base, generated using
the ONTOSUM NLG system described in Section 8.3. For example,
mousing over ‘Microsoft’ in the list of entities in the results page
shown in Figure 8.5 would result in the summary shown in Figure 8.6
being generated by ONTOSUM.

Results from the SEKTAgent can be made available via multiple
devices using the DIWAF framework described in Section 8.4. Currently,
templates are available to deliver SEKTAgent information to users via a
WAP-enabled mobile device, and via a standard web browser.

As we have seen, the SEKTAgent combines semantic searching, natural
language generation and device independence to proactively deliver rele-
vant information to users independent of the device to which they may
have access at any given time. Further work will allow access to information
over a wider range of devices and will test the use of SEKTAgent in real
user scenarios, such as that described in Chapter 11 of this volume.

8.6. CONCLUDING REMARKS

The current means of knowledge access for most users today is the
traditional search engine, whether searching the public Web or the
corporate intranet. In this chapter, we began by identifying and discuss-

REFERENCES 167

ing some shortcomings with current search engine technology. We then
described how the use of semantic web technology can address some of
these issues. We surveyed research in three areas of knowledge access:
the use of ontologies and associated metadata to enhance searching and
browsing; the generation of natural language text from such formal
structures to complement and enhance semantic search; and the delivery
of knowledge to users independent of the device to which they have
access. Finally, we described SEKTAgent, a research prototype bringing
together these three technologies into a semantic search agent. SEKTA-
gent provides an early glimpse of the kind of semantic knowledge access
tools which will become increasingly commonplace as deployment of
semantic web technology gathers pace.

REFERENCES

Aguado G, Baiién A, Bateman JA, Bernardos S, Fernandez M, Gémez-Pérez A,
Nieto E, Olalla A, Plaza R, Sanchez A. 1998. ONTOGENERATION: Reusing
domain and linguistic ontologies for Spanish text generation. Workshop on Applica-
tions of Ontologies and Problem Solving Methods, ECAI'98.

Bateman JA, Magnini B, Fabris G. 1995. The Generalized Upper Model Knowledge
Base: Organization and Use. Towards Very Large Knowledge Bases, pp 60-72.

Bernstein A, Kaufmann E, Goehring A, Kiefer C. 2005. Querying Ontologies: A
Controlled English Interface for End-users. In Proceedings 4th International Semantic
Web Conference, ISWC2005, Galway, Ireland, November 2005, Springer-
Verlag.

Bontchegva K, Wilks Y. 2004. Automatic Report Generation from Ontologies: The
MIAKT approach. Ninth International Conference on Applications of Natural
Language to Information Systems (NLDB2004).

Brin S, Page L. 1998. The anatomy of a large-scale hypertextual web search engine. In
proceedings of the 7th International World Wide Web Conference, Brisbane, Australia,
pp 107-117.

de Bruijn J, Martin-Recuerda F, Manov D, Ehrig M. 2004. State-of-the-art survey on
Ontology Merging and Aligning v1. Technical report, SEKT project deliverable
4.2.1. http:/ /sw.deri.org/jos/sekt-d4.2.1-mediation-survey-final.pdf.

Buchanan BG, Moore JD, Forsythe DE, Cerenini G, Ohlsson S, Banks G. 1995. An
intelligent interactive system for delivering individualized information to patients.
Artificial Intelligence in Medicine 7:117-154.

Butterman D, Rutledge L. 2004. SMIL 2.0: Interactive Multimedia for Web and Mobile
devices. Springer-Verlag Berlin and Heidelberg GmbH & Co. K.

Cohen S, Kanza Y, Kogan Y, Nutt W, Sagiv Y, Serebrenik A. 2002. EquiX: A search
and query language for XML. Journal of the American Society for Information
Science and Technology, 53(6):454-466.

Cohen S, Mamou], Kanza Y, Sagiv S. 2003. XSEarch: A Semantic Search Engine for
XML. In proceedings of the 29th VLDB Conference, Berlin, Germany.

Dale R, Oberlander J, Milosavljevic M, Knott A. 1998. Integrating natural language
generation and hypertext to produce dynamic documents. Interacting with
Computers 11:109-135.

Davies J. 2000. QuizXML: An XML search engine, Informer, Vol 10, Winter 2000,
ISSN 0950-4974, http:/ /irsg.bcs.org/informer/Winter_00.pdf.

168 SEMANTIC INFORMATION ACCESS

Davies], Bussler C, Fensel D, Studer R (eds). 2004. The Semantic Web: Research and
Applications. In Proceedings of ESWS 2004, LNCS 3053, Springer-Verlag, Berlin.

Davies], Fensel D, van Harmelen F. 2003. Towards the Semantic Web. Wiley; UK.

Davies], Weeks R, Krohn U, QuizRDF: Search technology for the semantic web, in
(Davies et al., 2003).

Ding L, Finin T, Joshi A, Pan R, Cost RS, Peng Y, Reddivari P, Doshi V, Sachs J.
2004. Swoogle: A Search and Metadata Engine for the Semantic Web, Conference on
Information and Knowledge Management CIKM04, Washington DC, USA,
November 2004.

Domingue J, Dzbor M, Motta E. 2004. Collaborative Semantic Web Browsing with
Magpie in (Davies et al., 2004).

Fensel D, Studer R (eds): 2004. In Proceedings of ESWC 2004, LNCS 3053, Springer-
Verlag, pp 388-401.

Florescu D, Kossmann D, Manolescu I. 2000. Integrating keyword search into XML
query processing. The International Journal of Computer and Telecommunications
Networking 33(1):119-135.

Glaser H, Alani H, Carr L, Chapman S, Ciravegna F, Dingli A, Gibbins N, Harris S,
Schraefel MC, Shadbolt N. CS AKTiveSpace: Building a Semantic Web Application
in (Davies et al., 2004).

Glover T, Davies J. 2005. Integrating device independence and user profiles on the
web. BT Technology Journal 23(3):JXX.

Grcar M, Mladeni¢ D, Grobelnik M. 2005. User profiling for interest-focused browsing
history, SIKDD 2005, http://kt.ijs.si/dunja/sikdd2005/, Slovenia, October 2005.

Guha R, McCool R. 2003. Tap: A semantic web platform. Computer Networks
42:557-577.

Guha R, McCool R, Miller E. 2003. Semantic Search. WWW2003, 20-24 May,
Budapest, Hungary.

Guo L, Shao F, Botev C, Shanmugasundaram J. 2003. XRANK: Ranked Search over
XML Documents. SIGMOD 2003, June 9-12, San Diego, CA.

Hoh S, Gilles S, Gardner MR., 2003. Device personalisation—Where content meets
device. BT Technology Journal 21(1):JXX.

Huynh D, Karger D, Quan D. 2002. Haystack: A Platform for Creating, Organizing
and Visualizing Information Using RDF. In proceedings of the WWW2002 Interna-
tional Workshop on the Semantic Web, Hawaii, 7 May 2002.

losif V, Mika P, Larsson R, and Akkermans H. 2003. Field Experimenting with
Semantic Web Tools in a Virtual Organisation in Davies (2003).

Jacobs N, Jaj J. 2005. CC/PP Processing. Java Community Process JSR-000188,
http: //jcp.org/about]ava/communityprocess/final /jsr188 /index.html, accessed
21/11/2005.

Jansen B]J, Spink A, Saracevic T. 2000. Real life, real users, and real needs: A study
and analysis of user queries on the web. Information Processing and Management
36(2):207-227.

Klyne G et al. (editors). 2004. CC/PP Structure and Vocabularies. W3C Recommen-
dation 15 Jan 2004. http:/ /www.w3.org/TR/

Li J, Pease A, Barbee C, Experimenting with ASCS Semantic Search, http://
reliant.teknowledge.com/DAML/DAML.ps. Accessed on 9 November
2005.

Lie HW. et al. 2002. Media Queries. W3C Candidate Recommendation 2002,
available at http://www.w3.org/TR/2002/CR-css3-mediaqueries-20020708/ .

MacBride B. (Series Editor). 2004. Resource Description Framework (RDF) Syntax
Specification. W3C Recommendation (available at www.w3.org/TR/rdf-syntax-
grammar/).

REFERENCES 169

Passani L, Trasatti A. 2005. The Wireless Universal Resource File. Web Resource
http://wurfl.sourceforge.net, accessed 21/11/2005.

Popov B, Kiryakov A, Kirilov A, Manov D, Ognyanoff D, Goranov M. 2003. KIM—
Semantic Annotation Platform in 2nd International Semantic Web Conference
(ISWC2003), 20-23 October 2003, Florida, USA. LNAI Vol. 2870, Springer-
Verlag Berlin Heidelberg pp 834-849.

Quan D, Karger DR. 2004. How to Make a Semantic Web Browser. The Thirteenth
International World Wide Web Conference, New York City, 17-22 May IW3C2,
ACM Press.

Raman TV. 2003. XForms: XML Powered Web Forms. Addison Wesley: XX.

Reiter E, Dale R. 2000. Building Natural Language Generation Systems. Cambridge
University Press, Cambridge.

Resource Description Framework (RDF): Concepts and Abstract Syntax, W3C Recom-
mendation 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-con-
cepts-20040210

Rocha C, Schwabe D, de Aragao MP. 2004. A hybrid approach for searching in the
semantic web. WWW 2004, 17-22 May, New York, USA.

Salton G, Wong A, Yang CS. A Vector Space Model for Automatic Indexing, in
[Sparck-Jones and Willett, 1997]

Sparck-Jones, K, Willett P. 1997. Readings in Information Retrieval, Morgan-Kauf-
man: California, USA.

Spink A, Jansen BJ, Wolfram D, Saracevic T. 2002. From E-Sex to E-Commerce:
Web Search Changes. Computer XX: 107-109.

Vallet D, Fernandez M, Castells P. 2005. An Ontology-based Information Retrieval
Model. In Proceedings 2nd European Semantic Web Conference, ESWC2005,
Heraklion, Crete, May/June 2005, Springer-Verlag, Berlin.

WAPF (Wireless Application Protocol Forum). 1999. User Agent Profile Specifica-
tion. http://www.openmobilealliance.org

WAPF (Wireless Application Protocol Forum). 2001. XHTML Mobile Profile.
http: // www.openmobilealliance.org

Wilcock G. 2003. Talking OWLs: Towards an Ontology Verbalizer. Human Language
Technology for the Semantic Web and Web Services, ISWC’03, Sanibel Island,
Florida, pp 109-112.

Wilcock G, Jokinen K. 2003. Generating Responses and Explanations from RDF/XML
and DAML + OIL. Knowledge and Reasoning in Practical Dialogue Systems,
IJCAI-2003 Acapulco, pp 58-63.

9

Ontology Engineering
Methodologies

York Sure, Christoph Tempich and Denny Vrandecic

9.1. INTRODUCTION

The two main drivers of practical knowledge management are technol-
ogy and people, as pointed out earlier by Davenport (1996). Traditional
IT-supported knowledge management applications are built around
some kind of corporate or organizational memory (Abecker et al.,
1998). Organizational memories integrate informal, semi-formal, and
formal knowledge in order to facilitate its access, sharing, and reuse by
members of the organization(s) for solving their individual or collective
tasks (Dieng et al., 1999), for example as part of business processes (Staab
and Schnurr, 2002).

The knowledge structures underlying such knowledge management
systems constitute a kind of ontology (Staab and Studer, 2004) that may
be built according to established methodologies (Fernandez-Lopez ef al.,
1999; Sure, 2003). These methodologies have a centralized approach
towards engineering knowledge structures requiring knowledge engineers,
domain experts, and others to perform various tasks such as a requirement
analysis and interviews. While the user group of such an ontology may be
huge, the development itself is performed by a—comparatively—small
group of domain experts who provide the model for the knowledge, and
ontology engineers who structure and formalize it.

Decentralized knowledge management systems are becoming increas-
ingly important. The evolving Semantic Web (Berners-Lee et al., 2001)

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

172 ONTOLOGY ENGINEERING METHODOLOGIES

will foster the development of numerous use cases for this new para-
digm. Therefore, methodologies based on traditional, centralized knowl-
edge management systems are no longer feasible. There are some
technical solutions toward Peer-to-Peer knowledge management systems
(e.g., Bonifacio et al., 2003; Ehrig et al., 2003). Still, the traditional
methodologies for creating and maintaining knowledge structures
appear to be unusable in distributed and decentralized settings, and so
the systems that depend on them will fail to cope with the dynamic
requirements of big or open user groups.

The chapter is structured as follows. First, we define methodology and
ontology engineering methodology in Section 9.2. Then we provide a survey
of existing ontology engineering methodologies in Section 9.3. Since we
believe that the engineering of ontologies in practical settings requires
tool support to cope with the various complex tasks we also include a
survey of corresponding ontology engineering tools in this section. The
survey ends with an enumeration of open research issues. We partly
address these research issues with the new DILIGENT (Distributed,
Loosely controlled, and evolvlnG Engineering of oNTologies) methodology
which is introduced in Section 9.4. Before concluding we present some
first lessons learned from applying DILIGENT in a number of case
studies.

9.2. THE METHODOLOGY FOCUS

It has been a widespread conviction in knowledge engineering that
methodologies for building knowledge-based systems help knowledge
engineering projects to successfully reach their goals in time (cf. Schrei-
ber et al., 1999 for one of the most widely deployed methodologies). With
the arrival of ontologies in knowledge-based systems the same kind of
methodological achievement for structuring the ontology-engineering
process has been pursued by approaches like the ones presented in the
next section.

In this section, we will look at the general criteria for and specific
properties of methodologies for the ontology life cycle. We will first
apply a definition of methodology to our field of interest, and then point
out to the conclusions drawn from this definition.

9.2.1. Definition of Methodology for Ontologies

The IEEE defines a methodology as ‘a comprehensive, integrated series
of techniques or methods creating a general systems theory of how a
class of thought-intensive work ought be performed’ (IEEE, 1990). A
methodology should define an ‘objective (ideally quantified) set of

THE METHODOLOGY FOCUS 173

criteria for determining whether the results of the procedure are of
acceptable quality.”"

By contrast, a method is a ‘orderly process or procedure used in the
engineering of a product or performing a service’ (IEEE, 1990). A
technique is ‘a technical and managerial procedure used to achieve a
given objective’ (IEEE, 1990).

A process is a ‘function that must be performed in the software life
cycle. A process is composed of activities’ (IEEE, 1996). An activity is ‘a
constituent task of a process” (IEEE, 1996). A task ‘is a well defined work
assignment for one or more project members. Related tasks are usually
grouped to form activities’ (IEEE, 1996).

9.2.2. Methodology

An ontology engineering methodology needs to consider the following
three types of activities:

¢ Ontology management activities.
¢ Ontology development activities.
¢ Ontology support activities.

9.2.2.1. Ontology Management Activities

Procedures for ontology management activities must include definitions
for the scheduling of the ontology engineering task. Further it is neces-
sary to define control mechanism and quality assurance steps.

9.2.2.2. Ontology Development Activities

When developing the ontology it is important that procedures are
defined for environment and feasibility studies. After the decision to
build an ontology the ontology engineer needs procedures to specify,
conceptualize, formalize, and implement the ontology. Finally, the users
and engineers need guidance for the maintenance, population, use, and
evolution of the ontology.

9.2.2.3. Ontology Support Activities

To aid the development of an ontology, a number of important sup-
porting activities should be undertaken. These include knowledge
acquisition, evaluation, integration, merging and alignment, and con-
figuration management. These activities are performed in all steps of
the development and management process. Knowledge acquisition
can happen in a centralized as well as a decentralized way. Ontology

! http: // computing-dictionary.thefreedictionary.com/Methodology

174 ONTOLOGY ENGINEERING METHODOLOGIES

learning is a way to support the manual knowledge acquisition with
machine learning techniques.

9.2.3. Documentation

It is important to document the results after each activity. In a later stage
of the development process this helps to trace why certain modeling
decisions have been undertaken. The documentation of the results can be
facilitated with appropriate tool support. Depending on the methodology
the documentation level can be quite different. One methodology might
require documenting only the results of the ontology engineering process
while others give the decision process itself quite some importance.

9.2.4. Evaluation

In the ontology engineering setting, evaluation measures should provide
means to measure the quality of the created ontology. This is particular
difficult for ontologies, since modeling decisions are in most cases
subjective. A general survey of evaluation measures for ontologies can
be found in Gomez-Perez (2004). Additionally we want to refer to the
evaluation measures which can be derived from statistical data (Tempich
and Volz, 2003) and measures which are derived from philosophical

principles. One of the existing approaches for ontology evaluation is
OntoClean (Guarino and Welty, 2002).

9.3. PAST AND CURRENT RESEARCH

In the following we summarize the distinctive features of the available
ontology engineering methodologies and give quick pointers to existing
tool support specifically targeted to the methodologies. Next, we briefly
introduce the most prominent existing tools.

9.3.1. Methodologies

An extensive state-of-the-art overview of methodologies for onto-
logy engineering can be found in Gomez-Perez et al. (2003). More
recently Cristani and Cuel (2005) proposed a framework to compare
ontology engineering methodologies and evaluated the established
ones accordingly. In the OntoWeb? project, the members gathered guide-
lines and best practices for industry (Leger et al., 2002a, b) with a focus on

2gee http: // www.ontoweb.org/

PAST AND CURRENT RESEARCH 175

applications for E-Commerce, Information Retrieval, Portals and Web
Communities. A very practical oriented description to start building
ontologies can be found in Noy and McGuinness (2001).

In our context, the following approaches are especially noteworthy.
Where it is adequate we give pointers to tools mentioned in the next
section, whenever tool support is available for a methodology.

CommonKADS (Schreiber et al., 1999) is not per se a methodology for
ontology development. It covers aspects from corporate knowledge
management, through knowledge analysis and engineering, to the
design and implementation of knowledge-intensive information systems.
CommonKADS has a focus on the initial phases for developing knowl-
edge management applications. CommonKADS is therefore used in the
OTK methodology for the early feasibility stage. For example, a number
of worksheets can be used to guide a way through the process of finding
potential users and scenarios for successful implementation of knowl-
edge management. CommonKADS is supported by PC PACK, a knowl-
edge elicitation tool set, that provides support for the use of elicitation
techniques such as interviewing, that is it supports the collaboration of
knowledge engineers and domain experts.

DOGMA (Jarrar and Meersman, 2002; Spyns et al., 2002) is a database-
inspired approach and relies on the explicit decomposition of ontological
resources into ontology bases in the form of simple binary facts called
lexons and into so-called ontological commitments in the form of
description rules and constraints. The modeling approach is implemen-
ted in the DOGMA Server and accompanying tools such as the DOGMA
Modeler tool set.

The Enterprise Ontology (Uschod and King, 1995; Uschold et al., 1998)
proposed three main steps to engineer ontologies: (i) to identify the
purpose, (ii) to capture the concepts and relationships between these
concepts, and the terms used to refer to these concepts and relationships,
and (iii) to codify the ontology. In fact, the principles behind this
methodology influenced much work in the ontology community. Explicit
tool support is given by the Ontolingua Server, but actually these
principles heavily influenced the design of most of today’s more
advanced ontology editors.

The KACTUS (Bernaras et al., 1996) approach requires an existing
knowledge base for the ontology development. The ontology is build
based on the existing knowledge model, applying a bottom-up strategy.
There is no specific tool support for this methodology.

METHONTOLOGY (Fernandez-Lopez et al., 1999) is a methodology for
building ontologies either from scratch, reusing other ontologies as they
are, or by a process of re-engineering them. The framework enables the
construction of ontologies at the ‘knowledge level,” that is the conceptual
level, as opposed to the implementation level. The framework consists of:
identification of the ontology development process containing the main
activities (evaluation, configuration, management, conceptualization,

176 ONTOLOGY ENGINEERING METHODOLOGIES

integration implementation, etc.); a lifecycle based on evolving proto-
types; and the methodology itself, which specifies the steps to be taken to
perform each activity, the techniques used, the products to be output and
how they are to be evaluated. METHONTOLOGY is partially supported
by WebODE (Arpirez et al., 2001).

SENSUS (Swartout et al., 1997) is a top-down and middle-out approach
for deriving domain specific ontologies from huge ontologies. The
methodology is very specialized and does not cover the engineering of
ontologies as such.

TOVE (Uschold and Grueninger, 1996) proposes a formalized method
for building ontologies based on competency questions. The approach of
using competency questions, which describe the questions that an
ontology should be able to answer, has been proven to be very helpful
in practical scenarios especially when dealing with domain experts with
little knowledge in modeling.

HOLSAPPLE (Holsapple and Joshi, 2002) proposes a methodology for
collaborative ontology engineering. The aim of their work is to support
the creation of a static ontology. A knowledge engineer defines an initial
ontology which is extended and changed based on the feedback from a
panel of domain experts. The feedback is collected with a questionnaire.
The knowledge engineer examines the questionnaires, incorporates the
new requirements and a new questionnaire is send around, until all
participants agree with the outcome.

HCONE (Kotis and Vouros, 2003; Kotis et al., 2004) is a recent approach
to ontology development. HCONE stands for Human Centered ONto-
logy Environment. It supports the development of ontologies in a
decentralized fashion. Three different spaces are introduced in which
ontologies can be stored. The first one is the Personal Space. In this space
users can create and merge ontologies, control ontology versions, map
terms and word senses to concepts, and consult the top level ontology.
The evolving personal ontologies can be shared in the Shared Space. The
shared space can be accessed by all participants. In the shared space
users can discuss ontological decision. After a discussion and agreement
the ontology is moved to the Agreed space.

The OTK Methodology (Sure, 2003) was developed in the EU project On-
To-Knowledge. The OTK Methodology divides the ontology engineering
task into five main steps. Each step has numerous sub-steps, requires a
main decision to be taken at the end and results in a special outcome. The
steps are ‘Feasibility Study,” ‘Kickoff, ‘Refinement,” ‘Evaluation,” and
‘Application and Evolution.” Within the steps there are sub-steps for
example ‘Refinement’ has sub-steps which include ‘Refine semi-formal
ontology description,’ ‘Formalize into target ontology,’ and ‘Create
prototype.” Documents resulting from each phase, for example for the
‘Kickoff’ phase an ‘Ontology Requirements Specification Document
(ORSD)’" and the ‘Semi-formal ontology description’ are created. The
documents are the basis for the major decisions that have to be taken at

PAST AND CURRENT RESEARCH 177

the end to proceed to the next phase, for example whether in the ‘Kickoff’
phase one has captured sufficient requirements. The major outcomes
typically serve as support for the decisions to be taken. The phases
‘Refinement—Evaluation—Application—Evolution’ typically need to be
performed in iterative cycles. One might notice that the development of
such an application is also driven by other processes, for example
software engineering and human issues. All steps of the methodology
are supported by plugins available for the tool OntoEdit (Sure et al., 2002,
2003). In a nutshell, the OTK Methodology completely describes all steps
which are necessary to build an ontology for a centralized system.

UPON, the Unified Process for ONtology building, has been proposed
in Nicola et al. (2005). Although the methodology has not been well tested
in projects yet, and tool support is still in its infancy, it is conceptually
well founded. It is based on the Unified Software Development Process
and supported by UML (Unified Modeling Language). UPON defines a
series of work flows which are cyclically performed in different phases.
The work flows are: (1) requirements identification, for example by
writing a story board and using competency questions, (2) analysis,
which includes the identification of existing resources and the modeling
of the application scenario, (3) design and conceptualization, (4) imple-
mentation, and (5) test in which the coverage of the application domain
should be guaranteed and the competency questions are evaluated. The
work flows are followed in the four phases: (1) inception, (2) elaboration,
(3) construction, and (4) transition defined in the methodology. These
phases are performed in a cyclic manner. After each cycle an applicable
ontology is produced.

For the sake of completeness and without a detailed description we
here reference some other proposals for structured ontology engineering.
Among them are Pinto and Martings (2001), advocating an approach of
ontology building by reuse. One of their major findings was that current
methodologies offer only limited support for axiom building although it
is a part of ontology engineering which takes a lot of time. In Gangemi
et al. (1998), the authors outline the ONIONS approach. ONIONS
(ONtologic Integration Of Naive Sources) creates a common framework
to generalize and integrate the definitions that are used to organize a set
of terminological sources. In other words, it allows the coherent devel-
opment of a terminological domain ontology (a terminological ontology
is usually defined as the explicit conceptualization of a vocabulary) for
each source, which can be then compared with the others and mapped to
an integrated ontology library.

9.3.2. Ontology Engineering Tools

An early overview of tools that support ontology engineering can be
found in Duineveld et al. (2000). Joint efforts of members of the thematic

178 ONTOLOGY ENGINEERING METHODOLOGIES

network OntoWeb have also provided an extensive state-of-the-art over-
view on ontology related tools, including Ontology Engineering Envir-
onments (OEE) (Gomez-Perez et al., 2002). An evaluation of ontology
engineering environments has been performed as part of the EON 2002
workshop (Sure and Angele, 2002). In our context, the following tools are
especially noteworthy.

KAON Olmodeller (Bozsak et al., 2002; Motik et al., 2002) belongs to the
KAON tool suite. The system is designed to be highly scalable and relies
on an advanced conceptual modeling approach that balances some
typical trade-offs to enable a more easy integration into an existing
enterprise information infrastructure. Recently the OWL-DL and SWRL
(Semantic Web Rule Language’) reasoning engine KAON2* has been
added to the KAON landscape of tools. The extension of the KAON tool
suit is part of the SEKT project.

Protégé (Noy et al., 2000) is a well-established ontology editor with a
large user community. It was the first editor with an extensible plug-in
structure and it relies on the frame paradigm for modeling. Numerous
plug-ins from external developers exist. It also supports current stan-
dards like RDF(S) and OWL. Recently support for axioms was added
through the PAL tab’ (Protege axiom language, cf. Hou et al., 2002).

WebODE (Arpirez et al., 2001) is an ‘ontology engineering workbench’
that provides various services for ontology engineering. It is accompa-
nied by a sophisticated methodology of ontology engineering, viz.
METHONTOLOGY. WebODE is purely web-based and is built on top
of an application server. For inferencing services it relies on Prolog. It
provides basic translators to current standards such as RDF(S) and OWL.

OntoEdit (Sure et al., 2002, 2003) supports explicitly the OTK Metho-
dology. The open plug-in framework enables the integration of a number
of extensions to the basic ontology management services OntoEdit
provides. In particular OntoEdit offers advanced support for collabora-
tion and integration of the inferencing capabilities. A reimplementation
of OntoEdit based on the Eclipse’ framework has recently been made
available under the new name OntoStudio.

9.3.3. Discussion and Open Issues

We have surveyed a number of ontology engineering methodologies and
their main strengths. We conclude that none of the existing methodolo-
gies cover all aspects of ontology engineering and that there still exist
many open issues. Most of the methodologies address the engineering of

*http: //www.w3.0org/Submission/SWRL/
4 http://kaon2.semanticweb.org/
5 http: //www.eclipse.org/

PAST AND CURRENT RESEARCH 179

a single ontology for a particular application and do not support
maintenance activities after the first release. The methodologies proposed
more recently do treat the evolution of the ontology seriously. However,
while early phases of the development process are well understood and
detailed activity descriptions exists (e.g.,, how to create competency
questions), more fine-grained guidelines for later stages in the process
are still missing. For example, methodological support for the creation
and evolution of complex logical axioms is still an open issue. The
number of best practices describing concrete development efforts is
still very small. With this approach the quality of the development and
maintenance effort depends mainly on the capabilities of the actors
involved. In particular for multisite development efforts no clear guide-
lines exist as here multiple views should be considered. Multiple views
on the same domain can lead to different conceptualizations, making
agreement on a shared one therefore particularly difficult.

Another important aspect of ontology building, namely the construc-
tion of ontologies with the help of automated methods is not directly
supported by any of the existing methodologies. Although the quality of
ontology learning methods with regards to the usability of results has
increased tremendously in the past years, the selection of appropriate
input information or the integration of the produced ontologies with
manual ones is still not well understood.

The number of existing methodologies covering different aspects of the
ontology building process, suggest taking a ‘method engineering’
approach as has happened in software engineering. Instead of construct-
ing new methodologies for different application scenarios, the metho-
dology itself could include a step in which the engineers pick from a list
of available methods, for example for requirements analysis, the ones
suitable for a particular task and build up their own process model.
Template process models covering standard requirements could be
available.

Furthermore current methodologies are not integrated in a broader
process model covering human, technological, and process aspects of
knowledge management. These aspects are important to deploy knowl-
edge management in a holistic manner. In this context the costs incurred
by the ontology building effort become an issue. Estimating these costs is
still vague businesses.

To summarize, the following issues are still open:

Ontology maintenance support.

Distributed ontology engineering.

Fine-grained guidelines for all phases.

Representation of multiple views.

Agreement support under conflicting interests.

Best practices.

Ontology engineering with the help of automated methods.

NSO LN =

180 ONTOLOGY ENGINEERING METHODOLOGIES

8. Process definition by single process step combination.
9. Integration into business process model.
10. Cost estimation and pricing.

This chapter has been able to survey only a few of the ontology
engineering tools. Since the introduction of the plug-in concept to
OEEs, the number of features available for the more established tools
has increased tremendously and for many tasks one can find a tool
supporting it. However, integration with different process models is still
lacking. Some tools offer support for a specific process model, but none
can be customized to provide guidance through an arbitrary process. As
there are many tools offering different functionalities the slightly differ-
ent implementations for the standardized representation languages
hinders inter-operability. Besides these more procedurally oriented
requirements, the technical solutions to support, for example versioning,
ontology learning or distributed engineering of ontologies, are also in
need of improvement.

9.4. DILIGENT METHODOLOGY

As a summary of the previous section we have identified a number of
open research issues for ontology engineering. We will now present the
current status of a new ontology engineering methodology. Due to space
restrictions, we cannot introduce the complete methodology, but only
the general process model. We then focus on a distinctive aspect of the
process model in order to exemplify the level of detail of the metho-
dology.

9.4.1. Process

The DILIGENT process model was conceived for knowledge sharing
scenarios, which are dynamic and require the process model to cope with
frequently changing user needs.®

The users: In DILIGENT there are several experts, with different and
complementary skills, involved in collaboratively building the same
ontology (see open issue 2). In the context of the Semantic Web and
other noncentralized environments they may even belong to competing
organizations and be geographically dispersed. Typically the domain
experts involved in building the ontology are also its users. However,
most ontology users will typically not build or modify the ontology. The

®In fact, we conjecture that the majority of knowledge sharing cases falls into this category.
In particular in the Semantic Web context, we find these requirements.

DILIGENT METHODOLOGY 181

0,
©0_ \db"
. %/ . 06
B fmre gk
Ontology ~ User 1

User ;
Domain Ontology % / Control Board

Expert Engineer

\ Editors
. M
Ontology
Knowledge Usern
Engineer

Figure 9.1 Roles and functions in distributed ontology engineering.

community of users is much larger than the community of active
ontology builders.

Birds-eye view: An initial ontology is built by a small group. This
ontology is made available and users are free to use and modify it locally
for their own purposes. There is a central board that maintains and
assures the quality of the shared core ontology. This central board is also
responsible for updating the core ontology (see open issue 1). However,
updates are mostly based on changes reoccurring at and requests by
locally working users. Therefore, the board only loosely controls the
process. Due to the changes introduced by the users over time that entail
the changes introduced by the board, the ontology evolves.

Let us now survey the DILIGENT process at a finer level of granular-
ity. DILIGENT comprises five main steps: (1) build, (2) local adaptation,
(3) analysis, (4) revision, (5) local update (see Figure 9.1).

Build: The process starts by having domain experts, users, knowledge
engineers, and ontology engineers build an initial ontology. In contrast to
existing ontology engineering methodologies (cf. Section 9.3.1), we do not
require completeness of the initial shared ontology with respect to the
domain. The team involved in building the initial ontology should be
relatively small, in order to easily find a small and consensual first
version of the shared ontology.

Local adaptation: Once the core ontology is available, users work with it
and, in particular, adapt it locally to their own needs. Typically, they will
have their own business requirements and correspondingly change and
adapt their local copy of the shared ontology (Noy and Klein, 2003;
Stojanovic et al., 2002). In their local environment, they are free to change
the shared ontology. However, they are not allowed to directly change
the shared ontology. The control board collects change requests to the
shared ontology and logs local adaptations (either continuously or at
control points).

182 ONTOLOGY ENGINEERING METHODOLOGIES

Analysis: The board analyses the local ontologies and the requests for
changes and tries to identify similarities in users’ ontologies. We expect
tools that allow an efficient analysis of the change requests. Since not all
of the changes introduced or requested by the users will be introduced to
the shared core ontology,” a crucial activity of the board is deciding
which changes are going to be introduced in the next version of the
shared ontology. The input from users provides the necessary arguments
to underline change requests. A balanced decision that takes into account
the different needs of the users and meets their evolving requirements®
has to be found. Moreover, this decision must follow good knowledge
representation practices.

Revise: The board should regularly revise the shared ontology, so that
local ontologies do not diverge too far from the shared ontology. The goal
of the revision is to realign the ontology with the obvious user needs and
thus gaining higher acceptance, ‘sharedness’ and less local differences.
Therefore, the board should have a well balanced and representative
participation of the different kinds of participants involved in the
process: knowledge engineers, domain experts, ontology engineers and
users. In this case, users are involved in ontology development, at least
through their requests and reoccurring improvements and by evaluating
it, mostly from an usability point of view (understanding, actual advan-
tage of use). Domain experts are responsible for evaluating it from a
domain point of view (‘does it represent the domain’ or ‘does it contain
factual errors?’). Knowledge engineers in the board are responsible for
evaluating the ontology, mostly from a domain and technical point of
view (efficiency, standards conformance, logical properties like satisfia-
bility). Ontology engineers too take responsibility for the technical
evaluation, including analyzing and balancing arguments. Another pos-
sible task for the controlling board, although not always a requirement, is
to assure some compatibility with previous versions. Revision can be
regarded as a kind of ontology development guided by a carefully
balanced subset of evolving user-driven requirements. Ontology engi-
neers are responsible for updating the ontology, based on the decisions of
the board. Revision of the shared ontology entails its evolution.

Local update: Once a new version of the shared ontology is released,
users can update their own local ontologies to better use the knowledge
represented in the new version. Even if the differences are small, users
may rather reuse the new terms instead of using their previously locally
defined terms that correspond to the new terms represented in the new
version.

7 The idea in this kind of development is not to merge all user ontologies.
8This is actually one of the trends in modern software engineering methodologies (see
Rational Unified Process).

DILIGENT METHODOLOGY 183

9.4.2. Argumentation Support

The process introduced in the previous sections requires the interaction
of all participants at different stages in order to repeatedly build a
consensual shared ontology. The different participants in the process
exchange arguments to convey their opinions and eventually agree on a
new version of the shared ontology. In order to increase acceptance, we
want to provide easily accessible rationales for the decisions of the board
and create a sense of community in building and evolving the ontology.
The exchange of arguments should be embedded into a general argu-
mentation framework, which offers conflict resolution strategies, ensures
an efficient argumentation process and defines relevant roles (see open
issue 5).

We formulated the hypothesis that such an argumentation framework
can facilitate the ontology engineering and evolution process and offer a
more fine-grained guidance to achieve agreement (see open issue 3). We
studied the arguments and practices used in the evolution of the
taxonomy of living beings which seem to point in the same direction.
In order to substantiate this notion, we pursued an experiment in a
Computer Science Department.

We performed the experiment in two steps: in the first, participants
were not constrained in any way; in the second, participants were asked
to use the argumentation framework, that is they followed stricter rules
to conduct their discussions. The task in both sessions was to build an
ontology, which represents the knowledge available in the research
group, could be used for internal knowledge management, and made
the research area comprehensible for outsiders. Both experiments lasted
for 1% hours. Concepts were only added after argumentation and some
consensus was achieved.

The participants met in a virtual chat room. A moderator was respon-
sible to remind people to stay on the subject and to include the modeling
decisions into the formal ontology which was visualized on a web page.
For this experiment very few procedural and methodological restrictions
were a priori imposed. Participants agreed only on a few concepts, while
the discussion was very chaotic and hard to follow, but gave us a good
idea for how to improve the setting.

By analyzing the discussion, we identified out of the 30 different
argument types proposed by the Rhetorical Structure Theory (Mann
and Thompson, 1987), RST, those which had the most impact on the
creation of the ontology: elaboration, evaluation/justification, examples,
counter examples, alternatives.

With respect to the experimental setup we identified the following
problems:

e participants started too many discussion threads and lost the
overview,

184 ONTOLOGY ENGINEERING METHODOLOGIES

e the discussion proceeded too fast, hence not everybody could follow
the argumentation,

e it was difficult for the moderator to intervene, and

e there was no explicit possibility to vote or make decisions.

Even in this setting—where participants shared a very similar back-
ground knowledge—the creation of a shared conceptualization without
any guidance was almost impossible, or at least very time consuming. We
concluded that a more controlled approach is needed with respect to the
process and moderation.

In the second experiment participants were asked to extend the
ontology built in the first round. In this phase the formalism to represent
the ontology was fixed. The most general concepts were also initially
proposed, to avoid philosophical discussions. For the second round only
the arguments elaboration, examples, counter examples, alternatives,
evaluation/justification were allowed.

The participants in the second experiment joined two virtual chat
rooms. One was used for providing topics for discussion, hand raising,
and voting. The other one served to exchange arguments. When the
participants—the same as in the first experiment—wanted to discuss a
certain topic, for example the introduction of a new concept, they had to
introduce it in the first chat room. The topics to discuss were published
on a web site, and were processed sequentially. Each topic could then be
justified with the allowed arguments. Participants could provide argu-
ments only after hand raising and waiting for their turn. The participants
decided autonomously when a topic had been sufficiently discussed,
called for a vote and thus decided how to model a certain aspect of the
domain. The evolving ontology was again published on a web site. The
moderator had the same tasks as in the first experiment, but was stricter
in interpreting the rules. Whenever needed, the moderator called for an
example of an argument to enforce the participants to express their
wishes clearly.

As expected the discussion was more focused, due to the stricter
procedural rules. Agreement was reached more quickly and a much
wider consensus was reached. With the stack of topics which were to be
discussed (not all due to time constraints), the focus of the group was
kept.

The restricted set of arguments is easy to classify and thus the
ontology engineer was able to build the ontology in a straightforward
way. It is possible to explain to new attendees why a certain concept
was introduced and modeled in such a way, by simply pointing to
the archived focused discussion. It is even possible to state the argu-
mentation line used to justify it. The participants truly shared the
conceptualization and did understand it. In particular, in conflict
situations, when opinions diverged, the restriction of arguments was

FIRST LESSONS LEARNED 185

helpful. In this way participants could either prove their view, or were
convinced.

More details on the argumentation model of DILIGENT can be found
in Tempich et al. (2005).

9.5. FIRST LESSONS LEARNED

The analysis of the arguments and process driving the evolution of the
taxonomy of living beings showed a high resemblance to the 5-step
DILIGENT process and its accompanying argumentation framework. In
two case studies, the argumentation framework and the process model of
DILIGENT have been tested.

A case study in the tourism domain helped us to generally better
comprehend the use of ontologies in a distributed environment. All users
viewed the ontology mainly as a classification hierarchy for their docu-
ments. The ontology helped them share their own local view on docu-
ments with other users. Thus finding documents became easier.

Currently, we doubt that our manual approach for analyzing
local structures will scale to cases with many more users. Therefore,
we look to tools to recognize similarities in user behavior. Further-
more, the local update will be a problem when changes happen
more often. Last, but not least, we have so far only addressed the
ontology creation task itself—we have not yet measured explicitly
if users get better and faster responses with the help of DILIGENT-
engineered ontologies. All this remains work to be done in the
future.

Despite the technical challenges, the users provided very positive
feedback when asked, pointing to the integration into their daily work-
flow through the use of a tool built by us and embedded in their work
environment, which could easily be used.

Our experiment in a computer science department has given strong
indication—though not yet full-fledged evidence—that a restriction of
possible arguments can enhance the ontology engineering effort in a
distributed environment. The restricted set of arguments will allow for
reasoning over the debates, and maximizes the efficiency of the debate by
providing only those kinds of arguments which proved to be the
strongest in the debate. In addition, the second experiment underlines
the fact that appropriate social management procedures and tool support
help to reach consensus in a smoother way.

The process could certainly be enhanced with better tool support.
Besides the argumentation stack, a stack for householding possible
alternatives would be helpful. Arguments, in particular elaboration,
evaluation and justification, and alternatives, were discussed heavily.
However, the lack of appropriate evaluation measures made it difficult,

186 ONTOLOGY ENGINEERING METHODOLOGIES

at some times, for the contradicting opinions to achieve an agreement.
In that case, the argumentation should be focused on the evaluation
criteria.

9.6. CONCLUSION AND NEXT STEPS

In the last couple of years, we have witnessed a change of focus
in the area of ontologies and ontology-based information systems:
while the application of ontologies was restricted for a long time
to academia projects, in the last 10 years ontologies have become
increasingly relevant for commercial applications as well. A first
prerequisite for the successful introduction of ontologies in the
latter setting is the availability of proved and tested Ontology Engineer-
ing methodologies, which break down the complexity of typical
engineering processes and offer guidelines to monitor them. Although
existing methodologies have already proven to fulfill these require-
ments for a number of application scenarios, open issues remain to
be researched in order for the methodologies to be applicable more
widely.

With the DILIGENT methodology, we tackle some of these open issues
and propose a methodology which allows continuous improvement of
the underlying ontology in decentralized settings. Moreover we offer
more fine-grained support to enhance the agreement process with an
argumentation framework. However, the methodology is still under
development and will be further developed to cover more aspects of
the ontology engineering process. For example, the integration of ontol-
ogy learning methods to automate the ontology building process (see
open issue 7) is already covered in general by DILIGENT. However, due
to the quality of the results of current ontology learning methods, this
initial proposal is not sufficient and a more fine-grained process model is
under development. A more fine-grained support for the evaluation
of ontologies is being integrated into the methodology. Criteria to
identify proper ontology evaluation schemes and tools for a more
automatic appliance of such evaluation techniques are being developed
within the DILIGENT methodology. These take into account the whole
range of evaluation methods from philosophical notions (Volker et al.,
2005) to logical satisfiability (Gomez-Perez et al., 2003).

We are currently integrating the process model into a knowledge
management business process (see open issue 9). Regarding the
estimation of costs incurred by the ontology building process
(see open issue 10) a parametric cost estimation model is under
development, which will be applied for our methodology. In the
course of several projects in which our methodology is being applied,
we will capture experiences and describe best practices (see open
issue 6).

REFERENCES 187

REFERENCES

Abecker A, Bernardi A, Hinkelmann K, Kuehn O, Sintek M. 1998. Toward a
technology for organizational memories. IEEE Intelligent Systems 13(3):40—48.
Arpirez JC, Corcho O, Fernandez-Lopez M, Gomez-Perez A. 2001. WebODE: A
scalable workbench for ontological engineering. In Proceedings of the First
International Conference on Knowledge Capture (K-CAP) October 21-23, 2001,

Victoria, B.C., Canada.

Bernaras A, Laresgoiti I, Corera J. 1996. Building and reusing ontologies for
electrical network applications. In Proceedings of the European Conference on
Artificial Intelligence (ECAI'96).

Berners-Lee T, Hendler J, Lassila O. 2001. The semantic web. Scientific American,
2001(5). available at http: //www.sciam.com/2001/0501issue/0501berners-lee.
html.

Bonifacio M, et al. 2003. Peer-mediated distributed knowldege management. In
van Elst L, Dignum V, Abecker A, (eds), Proceedings of the AAAI Spring
Symposium **Agent-Mediated Knowledge Management (AMKM-2003)", Lecture
Notes in Artificial Intelligence (LNAI) 2926, Berlin: Springer.

Bozsak E, Ehrig M, Handschuh S, Hotho A, Maedche A, Motik B, Oberle D,
Schmitz C, Staab S, Stojanovic L, Stojanovic N, Studer R, Stumme G, Sure Y,
Tane J, Volz R, Zacharias V. 2002. KAON—Towards a large scale
semantic web. In Bauknecht K, Tjoa AM, Quirchmayr G (eds), Proceedings
of the Third International Conference on E-Commerce and Web Technologies
(EC-Web 2002), Vol. 2455 of LNCS, Aix-en-Provence, France: Springer,
pp 304-313.

Cristani M, Cuel R. 2005. A survey on ontology creation methodologies. Inter-
national Journal on Semantic Web and Information System 1(2):49-69.

Davenport TH. 1996. Some principles of knowledge management. Technical
report, Graduate School of Business, University of Texas at Austin, Strategy and
Business.

Davies J, Fensel D, van Harmelen F (eds). 2002. On-To-Knowledge: Semantic Web
enabled Knowledge Management. John Wiley and Sons, Ltd.

Dieng R, Corby O, Giboin A, Ribiere M. 1999. Methods and tools for corporate
knowledge management. International Journal of Human-Computer Studies
51(3):567-598.

Duineveld AJ, Stoter R, Weiden MR, Kenepa B, Benjamins VR. 2000. Wondertools?
A comparative study of ontological engineering tools. International Journal of
Human-Computer Studies 6(52):1111-1133.

Ehrig M, Haase P, van Harmelen F, Siebes R, Staab S, Stuckenschmidt H, Studer R,
Tempich C. 2003. The SWAP data and metadata model for semantics-based
peer-to-peer systems. In Proceedings of MATES-2003. First German Conference on
Multiagent Technologies, LNAI, Erfurt, Germany: Springer.

Fernandez-Lopez M, Gomez-Perez A, Sierra JP, Sierra AP. 1999. Building a
chemical ontology using Methontology and the Ontology Design Environment.
Intelligent Systems 14(1).

Gangemi A, Pisanelli D, Steve G. 1998. Ontology integration: Experiences with
medical terminologies. In Formal Ontology in Information Systems, Guarino N
(ed.). IOS Press: Amsterdam. pp 163-178.

Gomez-Perez A. 1996. A framework to verify knowledge sharing technology.
Expert Systems with Application 11(4):519-529.

188 ONTOLOGY ENGINEERING METHODOLOGIES

Gomez-Perez A. 2004. Ontology evaluation. In Handbook on Ontologies, Volume 10
of International Handbooks on Information Systems, chapter 13. Staab S, Studer R
(eds). Springer: pp 251-274.

Gomez-Perez A, Angele], Fernandez-Lopez M, Christophides V, Stutt A, Sure Y,
et al. (2002). A survey on ontology tools. OntoWeb deliverable 1.3, Universidad
Politecnia de Madrid.

Gomez-Perez A, Fernandez-Lopez M, Corcho O. 2003. Ontological Engineering.
Advanced Information and Knowlege Processing. Springer.

Guarino N, Welty C. 2002. Evaluating ontological decisions with OntoClean.
Communications of the ACM 45(2):61-65.

Holsapple CW, Joshi KD. 2002. A collaborative approach to ontology design.
Communications of the ACM 45(2):42—47.

Hou CJ, Noy NF, Musen M. 2002. A Template-based Approach Toward Acquisition of
Logical Sentences. In Musen et al., 2002, pp 77-89.

IEEE. 1990. IEEE standard glossary of software engineering terminology. IEEE
Standard 610.12-1990, ISBN 1-55937-067-X.

IEEE. 1996. IEEE guide for developing of system requirements specifications. IEEE
Standard 1233-1996.

Jarrar M, Meersman R. 2002. Formal ontology engineering in the DOGMA
approach. In Meersmann et al., 2002), pp 1238-1254.

Kotis K, Vouros G. 2003. Human centered ontology management with HCONE. In
ODS’03: Proceedings of the IJCAI-03 Workshop on Ontologies and Distributed
Systems, volume 71. CEUR-WS.org.

Kotis K, Vouros GA, Alonso JP. 2004. HCOME: Tool-supported methodology for
collaboratively devising living ontologies. In SWDB’04: Second International
Workshop on Semantic Web and Databases 29-30 August 2004 Co-located with VLDB.
Springer-Verlag.

Kunz W, Rittel HW]. 1970. Issues as elements of information systems. Working
Paper 131, Institute of Urban and Regional Development, University of
California, Berkeley, California.

Leger A, Akkermans H, Brown M, Bouladoux J-M, Dieng R, Ding Y, Gomez-Perez A,
Handschuh S, Hegarty A, Persidis A, Studer R, Sure Y, Tamma V, Trousse B.
2002a. Successful scenarios for ontology-based applications. OntoWeb deliver-
able 2.1, France Telecom R&D.

Leger A, Bouillon Y, Bryan M, Dieng R, Ding Y, Fernandez-Lopez M,
Gomez-Perez A, Ecoublet P, Persidis A, Sure Y. 2002b. Best practices and
guidelines. OntoWeb deliverable 2.2, France Telecom R&D.

Mann WC, Thompson SA. 1987. Rhetorical structure theory: A theory of text
organization. In The Structure of Discourse, Polanyi L (ed.). Ablex Publishing
Corporation: Norwood, NJ.

Motik B, Maedche A, Volz R. 2002. A conceptual modeling approach for
semantics—driven enterprise applications. In Meersman R, Tari Z, et al. (eds).
2002. Proceedings of the Confederated International Conferences: On the Move to
Meaningful Internet Systems (CooplS, DOA, and ODBASE 2002), Vol. 2519 of
Lecture Notes in Computer Science (LNCS), University of California, Irvine, USA.
Springer, pp 1082-1099.

Musen M, Neumann B, Studer R (eds). 2002. Intelligent Information Processing.
Kluwer Academic Publishers: Boston, Dordrecht, London.

Nicola AD, Navigli R, Missikoff M. 2005. Building an eProcurement ontology with
UPON methodology. In Proceedings of 15th e-Challenges Conference, Ljubljana,
Slovenia.

REFERENCES 189

Noy N, Fergerson R, Musen M. 2000. The knowledge model of Protege-2000:
Combining interoperability and flexibility. Vol. 1937 of Lecture Notes in Artificial
Intelligence (LNAI), Juan-les-Pins, France. Springer, pp 17-32.

Noy N, Klein M. 2003. Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems.

Noy, N McGuinness D L. 2001. Ontology development 101: A guide to creating
your first ontology. Technical Report KSL-01-05 and SMI-2001-0880, Stanford
Knowledge Systems Laboratory and Stanford Medical Informatics.

Pinto HS, Martins]. 2001. A methodology for ontology integration. In Proceedings
of the First International Confrence on Knowledge Capture (K-CAP2001), New York.
ACM Press, pp 131-138.

Schreiber G, Akkermans H, Anjewierden A, de Hoog R, Shadbolt N, van de Velde
W, Wielinga B. 1999. Knowledge Engineering and Management—The Common-
KADS Methodology. The MIT Press: Cambridge, Massachusetts; London,
England.

Spyns P, Meersman R, Jarrar M. 2002. Data modelling versus ontology engineer-
ing. SIGMOD Record—Web Edition, 31(4). Special Section on Semantic Web and
Data Management, Meersman R, Sheth A (eds). Available at http: //www.acm.
org/sigmod/record/.

Staab S, Schnurr H-P. 2002. Knowledge and business processes: Approaching an
integration. In Management and Organizational Memories, Dieng-Kuntz R, Matta N
(eds). Knowledge Kluwer Academic Publishers: Boston, Dordrecht, London. pp
75-88.

Staab S, Studer R (eds). 2004. Handbook on Ontologies in Information Systems.
International Handbooks on Information Systems. Springer.

Stojanovic L, Maedche A, Motik B, Stojanovic N. 2002. User-driven ontology
evolution management. In Proceedings of the 13th European Conference on Knowl-
edge Engineering and Knowledge Management EKAW, Madrid, Spain.

Sure Y. 2003. Methodology, Tools and Case Studies for Ontology based Knowledge
Management. PhD thesis, University of Karlsruhe.

Sure Y, Angele] (eds). 2002. Proceedings of the First International Workshop on
Evaluation of Ontology based Tools (EON 2002), Vol. 62 of CEUR Workshop
Proceedings, Siguenza, Spain. CEUR-WS Publication, available at http:/
CEUR-WS.org/Vol-62/.

Sure Y, Angele], Staab S. 2003. OntoEdit: Multifaceted inferencing for ontology
engineering. Journal on Data Semantics, LNCS(2800):128-152.

Sure Y, Erdmann M, Angele], Staab S, Studer R, Wenke D. 2002. OntoEdit:
Collaborative ontology development for the semantic web. In Horrocks I,
Hendler JA (eds). Proceedings of the First International Semantic Web Conference:
The Semantic Web (ISWC 2002), volume 2342 of Lecture Notes in Computer Science
(LNCS), pp 221-235. Sardinia, Italy. Springer.

Swartout B, Ramesh P, Knight K, Russ T. 1997. Toward distributed use of
largescale ontologies. In Symposium on Ontological Engineering of AAAI, Stanford,
CA.

Tempich C, Pinto HS, Sure Y, Staab S. 2005. An argumentation ontology for
distributed, loosely-controlled and evolving engineering processes of onto-
logies (DILIGENT). In Bussler C, Davies], Fensel D, Studer R (eds). Second
European Semantic Web Conference, ESWC 2005, LNCS, Heraklion, Crete, Greece.
Springer.

Tempich C, Volz R. 2003. Towards a benchmark for semantic web reasoners—
ananalysis of the DAML ontology library. In Sure YM (ed.). Evaluation of

190 ONTOLOGY ENGINEERING METHODOLOGIES

Ontology-based Tools (EON2003) at Second International Semantic Web Conference
(ISWC 2003).

Uschold M, Grueninger M. 1996. Ontologies: principles, methods and applica-
tions. Knowledge Sharing and Review 11(2).

Uschold M, King M. 1995. Towards a methodology for building ontologies. In
Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction with
IJCAI-95, Montreal, Canada.

Uschold M, King M, Moralee S, Zorgios Y. 1998. The enterprise ontology.
Knowledge Engineering Review 13(1):31-89.

Volker J, Vrandecic D, Sure Y. 2005. Automatic evaluation of ontologies (AEON).
In Proceedings of the Fourth International Semantic Web Conference (ISWC’'05),

Galway, Ireland.

10

Semantic Web Services -
Approaches and Perspectives

Dumitru Roman, Jos de Bruijn, Adrian Mocan, loan Toma,
Holger Lausen, Jacek Kopecky, Christoph Bussler, Dieter Fensel,
John Domingue, Stefania Galizia and Liliana Cabral

10.1. SEMANTIC WEB SERVICES - A SHORT OVERVIEW

Web services (Alonso et al., 2001) — pieces of functionalities which are
accessible over the Web — have added a new level of functionality to the
current Web by taking a first step towards seamless integration of
distributed software components using Web standards. Nevertheless,
current Web service technologies around SOAP (XML Protocol Working
Group, 2003), WSDL (WSDL, 2005), and UDDI (UDDI, 2004) operate at a
syntactic level and, therefore, although they support interoperability (i.e.,
interoperability between the many diverse application development
platforms that exist today) through common standards, they still require
human interaction to a large extent: the human programmer has to
manually search for appropriate Web services in order to combine
them in a useful manner, which limits scalability and greatly curtails
the added economic value of envisioned with the advent of Web services
(Fensel and Bussler, 2002). For automation of tasks, such as Web service
discovery, composition and execution, semantic description of Web
services is required (Mcllraith et al., 2001).

Recent research aimed at making Web content more machine proces-
sable, usually subsumed under the common term Semantic Web (Berners-Lee
et al., 2001) are gaining momentum also, in particular, in the context of Web
services usage. Here, semantic markup shall be exploited to automate the

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

192 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

tasks of Web service discovery, composition, and invocation, thus enabling
seamless interoperation between them while keeping human intervention to
a minimum. The description of Web services in a machine-understandable
fashion is expected to have a great impact in areas of e-Commerce and
Enterprise Application Integration, as it is expected to enable dynamic and
scalable cooperation between different systems and organizations: Web
services provided by cooperating businesses or applications can be auto-
matically located based on another business or application needs, they can
be composed to achieve more complex, added-value functionalities, and
cooperating businesses or applications can interoperate without prior agree-
ments custom codes. Therefore, much more flexible and cost-effective
integration can be achieved.

In order to provide the basis for Semantic Web Services, a fully fledged
framework needs to be provided: starting with a conceptual model,
continuing with a formal language to provides formal syntax and seman-
tics (based on different logics in order to provide different levels of logical
expressiveness) for the conceptual model, and ending with an execution
environment, that glue all the components that use the language for
performing various tasks that would eventually enable automation of
service. In this context, this chapter gives an overview of existing
approaches to Semantic Web Services and highlights their features as far
as such a fully fledged framework for SWS is concerned. We start by
introducing, in Section 10.2, the most important European initiative in the
area of SWS — the WSMO approach to SWS. In Section 10.3, we provide an
overview of OWL-S —an OWL-based Web service ontology, and in Section
10.4 the SWSF - a language and an ontology for describing services.
Furthermore, we look also at other approaches — IRS III (in Section 10.5)
and WSDL-S (in Section 10.6) — that although do not aim at providing a
fully fledged framework for SWS, tackle some relevant aspects of SWS. In
Section 10.7, we take a closer look at the gap — usually called ‘grounding’ -
between the semantic and the syntactic descriptions of services, and
identify several approaches to deal with the grounding in the context of
SWS. Section 10.8 concludes this chapter and points out perspectives for
future research in the area of Semantic Web Services.

10.2. THE WSMO APPROACH

The WSMO initiative!, part of the SDK Cluster?, is the major initiative in
the area of SWS in Europe and has the aim of standardizing a unifying
framework for SWS which provides support for conceptual modeling
and formally representing services, as well as for automatic execution of
services. In this Section we provide a general overview of the elements

"http://www.wsmo.org
thtp: //www .sdk-cluster.org/

THE WSMO APPROACH 193

5% WSMO —— A Conceptual Model for SWS

7 S
V.
WSML - - - m oo > WSMX EO}E
M
A Formal Language for WSMO An Execution Environment

for WSMO
Figure 10.1 The WSMO approach to SWS.

that are part of the WSMO approach to SWS (see Figure 10.1): the Web
service Modeling Ontology (WSMO) — a conceptual model for Semantic
Web Services (Section 10.2.1), the Web Service Modeling Language
(WSML) - a language which provides a formal syntax and semantics
for WSMO (Section 10.2.2), and the Web Service Modeling Execution
Environment (WSMX) — an execution environment, which is a reference
implementation for WSMO, offering support for interacting with Seman-
tic Web Services (Section 10.2.3).

10.2.1. The Conceptual Model - The Web Services
Modeling Ontology (WSMO)

WSMO (Roman et al., 2005) provides ontological specifications for the
core elements of Semantic Web services. In fact, Semantic Web services
aim at an integrated technology for the next generation of the Web by
combining Semantic Web technologies and Web services, thereby turn-
ing the Internet from a information repository for human consumption
into a world-wide system for distributed Web computing. Therefore,
appropriate frameworks for Semantic Web services need to integrate the
basic Web design principles, those defined for the Semantic Web, as well
as design principles for distributed, service-orientated computing of the
Web. WSMO is, therefore, based on the following design principles:

o Web Compliance: WSMO inherits the concept of Universal Resource
Identifier (URI) for unique identification of resources as the essential
design principle of the Word-Wide Web. Moreover, WSMO adopts the
concept of Namespaces for denoting consistent information spaces,
supports XML and other W3C Web technology recommendations, as
well as the decentralization of resources.

194 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

e Ontology Based: Ontologies are used as the data model throughout
WSMO, meaning that all resource descriptions as well as all data
interchanged during service usage are based on ontologies. Ontologies
are a widely accepted state-of-the-art knowledge representation, and
have thus been identified as the central enabling technology for the
Semantic Web. The extensive usage of ontologies allows semantically
enhanced information processing as well as support for interoper-
ability; WSMO also supports the ontology languages defined for the
Semantic Web.

o Strict Decoupling: Decoupling denotes that WSMO resources are defined
in isolation, meaning that each resource is specified independently
without regard to possible usage or interactions with other resources.
This complies with the open and distributed nature of the Web.

o Centrality of Mediation: As a complementary design principle to strict
decoupling, mediation addresses the handling of heterogeneities that
naturally arise in open environments. Heterogeneity can occur in
terms of data, underlying ontology, protocol, or process. WSMO
recognizes the importance of mediation for the successful deployment
of Web services by making mediation a first class component of the
framework.

o Ontological Role Separation: Users, or more generally clients, exist in
specific contexts which will not be the same as for available Web
services. For example, a user may wish to book a holiday according to
preferences for weather, culture, and childcare, whereas Web services
will typically cover airline travel and hotel availability. The underlying
epistemology of WSMO differentiates between the desires of users or
clients and available services.

e Description versus Implementation: WSMO differentiates between the
descriptions of Semantic Web services elements (description) and
executable technologies (implementation). While the former requires
a concise and sound description framework based on appropriate
formalisms in order to provide a concise for semantic descriptions,
the latter is concerned with the support of existing and emerging
execution technologies for the Semantic Web and Web services.
WSMO aims at providing an appropriate ontological description
model, and to be complaint with existing and emerging technolo-
gies.

o Execution Semantics: In order to verify the WSMO specification,
the formal execution semantics of reference implementations like
WSMX as well as other WSMO-enabled systems provide the technical
realization of WSMO. This principle serves as a mean to precisely
define the functionality and behavior of the systems that are WSMO
compliant.

e Service versus Web service: A Web service is a computational entity
which is able to achieve a user goal by invocation. A service, in
contrast, is the actual value provided by this invocation (Baida, 2005;

THE WSMO APPROACH 195

Preist, 2004)°. WSMO provides means to describe Web services that
provide access (searching, buying, etc.) to services. WSMO is designed
as a means to describe the former and not to replace the functionality
of the latter.

The following briefly outlines the conceptual model of WSMO. The
elements of the WSMO ontology are defined in a meta-meta-model
language based on the Meta Object Facility (MOF) (OMG, 2002). MOF
defines an abstract language and framework for specifying, construct-
ing, and managing technology neutral meta-models. Since WSMO is
meant to be a meta-model for Semantic Web Services, MOF was
identified as the most suitable language/framework for defining the
WSMO elements. In terms of the four MOF layers (meta-meta-model,
meta model, model layer, and information layer), the language defin-
ing WSMO corresponds to the meta-meta-model layer, WSMO itself
constitutes the meta-model layer, the actual ontologies, Web services,
goals, and mediators specifications constitute the model layer, and the
actual data described by the ontologies and exchanged between Web
services constitute the information layer (the information layer in this
context is actually related to the notion of grounding in the context of
SWS, and which will be discussed in Section 10.7). The most frequently
used MOF meta-modeling construct for the definition of WSMO ele-
ments is the Class construct (and implicitly its class-generalization
sub-Class construct), together with its Attributes, the type of the
Attributes, and their multiplicity specifications®.

In order to allow complete item descriptions, every WSMO element is
described by nonfunctional properties. These are based on the Dublin Core
(DC) Metadata Set (Weibel et al., 1998) for generic information item
descriptions, and other service-specific properties related to the quality of
service’.

Ontologies: It provide the formal semantics for the terminology used
within all other WSMO components. Using MOF, we define an ontology
as described in the listing below:

Class ontology
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type ooMediator

®Note that (Preist, 2004) also distinguishes between a computational entity in general and
Web service, where the former does not necessarily have a Web accessible interface.
WSMO does not make this distinction.

“Note that, for readability purposes, we avoid the usage of ‘Attribute’ keyword in the
listings in which we define the WSMO top-level elements; the attributes of a Class (i.e., of a
WSMO element) are defined on separate lines inside each listing.

S5For a detailed description of all the elements defined in WSMO, we refer the reader to
Roman ef al. (2005).

196 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

hasConcept type concept
hasRelation type relation
hasFunction type function
hasInstance type instance
hasAxiom type axiom

A set of non-functional properties are available for characterizing ontol-
ogies; they usually include the DC Metadata elements. Imported ontologies
allow a modular approach for ontology design and can be used as long as
no conflicts need to be resolved between the ontologies. When importing
ontologies in realistic scenarios, some steps for aligning, merging, and
transforming imported ontologies in order to resolve ontology mis-
matches are needed. For this reason ontology mediators are used (OO
Mediators). Concepts constitute the basic elements of the agreed terminol-
ogy for some problem domain. Relations are used in order to model
interdependencies between several concepts (respectively instances of
these concepts); functions are special relations, with a unary range and a
n-ary domain (parameters inherited from relation), where the range
value is functionally dependent on the domain values, and instances
are either defined explicitly or by a link to an instance store, that is, an
external storage of instances and their values.

Web services: WSMO provides service descriptions for describing
services that are requested by service requesters, provided by service
providers, and agreed between service providers and requesters. In
the listing below, the common elements of these descriptions are
presented.

Class webService
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type {ooMediator, wwMediator}
hasCapability type capability multiplicity = single-valued
hasInterface type interface

Within the service class the non-functional properties and imported
ontologies attributes play a role that is similar to that found in the
ontology class with the minor addition of a quality of service nonfunc-
tional property. An extra type of mediator (WW Mediator) is also included,
in order to deal with protocol and process-related mismatches between
Web services.

The final two attributes define the two core WSMO notions for
semantically describing Web services: a capability which is a functional
description of a Web Service, describing constraints on the input and
output of a service through the notions of preconditions, assumptions,
postconditions, and effects; and Web service interfaces which specify how
the service behaves in order to achieve its functionality. A service

THE WSMO APPROACH 197

interface consists of a choreography which describes the interface for the
client-service interaction required for service consumption, and an
orchestration which describes how the functionality of a Web service is
achieved by aggregating other Web services.

Goals: A goal specifies the objectives that a client may have when
consulting a web service, describing aspects related to user desires with
respect to the requested functionality and behavior. Ontologies are used
as the semantically defined terminology for goal specification. Goals
model the user view in the Web Service usage process and therefore are a
separate top level entity in WSMO.

Class goal
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type {ooMediator, ggMediator}
requestsCapability type capability multiplicity = single-valued
requestsInterface type interface

As presented in listing above, the requested capability in the definition of
a goal represents the functionality of the services the user would like to
have, and the requested interface represents the interface of the service the
user would like to have and interact with.

Mediators: The concept of Mediation in WSMO addresses the
handling of heterogeneities occurring between elements that shall
interoperate by resolving mismatches between different used terminol-
ogies (data level), on communicative behavior between services (pro-
tocol level), and on the business process level. A WSMO Mediator
connects the WSMO elements in a loosely-coupled manner, and pro-
vides mediation facilities for resolving mismatches that might arise in
the process of connecting different elements defined by WSMO. The
description elements of a WSMO Mediator are its source and target
elements, and the mediation service for resolving mismatches, as
shown in the listing below.

Class mediator
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
hasSource type {ontology, goal, webService, mediator}
hasTarget type {ontology, goal, webService, mediator}
hasMediationService type {goal, webService, wwMediator}

WSMO defines different types of mediators for connecting the distinct
WSMO elements: OO Mediators connect and mediate heterogeneous
ontologies, GG Mediators connect Goals, WG Mediators link Web services

198 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

to Goals, and WW Mediators connects interoperating Web services resol-
ving mismatches between them.

10.2.2. The Language - The Web Service Modeling
Language (WSML)

The WSML (de Brujin, 2005) is a language for the description of
ontologies, goals, Web services, and mediators based on the conceptual
model of WSMO. WSML provides one coherent framework which brings
together Web technologies with different well-known logical language
paradigms. We take Description Logics (Baader, 2003), Logic Program-
ming (Lloyd, 1987), and F-Logic (Kifer et al. 1995), as starting points for
the development of a number of WSML language variants. WSML can be
seen as a testing ground for the development of formal techniques for
Web Service description. In order to have full freedom in development of
the language, we have chosen to initially develop WSML independently
from existing Semantic Web and Web Service standards®. There are
ongoing efforts to relate WSML to existing standards. With WSML we
take a top-down approach to Semantic Web Service description. So far,
the focus has been on the use of different formalisms for describing static
knowledge (ontologies) related to the Web services. There are ongoing
efforts to investigate the use of formal methods to describe the dynamics
of services.

There currently exists no language for the description of Semantic Web
Services which takes into account all aspects identified by WSMO; a
language is required for the description of WSMO services, in order to
take into account all aspects of Web service modeling identified in
WSMO. Other approaches (e.g., OWL-5 (2004), are based on existing
languages which are constructed for different purposes (e.g., OWL (Dean
and Schreiber, 2004)); it is not clear whether these languages are the
appropriate languages for the description of Semantic Web Services.
WSML takes different formalisms in order to investigate their applic-
ability for the description of Semantic Web Services. Since our goal is to
investigate the applicability of different formalisms to the description of
Semantic Web Services, it would be too restrictive to base our effort on an
existing language recommendation. A major goal in our development of
WSML is to investigate the applicability of different formalisms, most
notably Description Logics and Logic Programming, in the area of Web
services. Furthermore, a future goal of WSML is to investigate the
combination of static and dynamic knowledge of services.

We see three main areas which benefit from the use of formal methods
in service description:

®Note that WSML takes into account the concepts of URI and IRI, and relates to XML and
RDF, but was not developed with these in mind.

THE WSMO APPROACH 199

e Ontology description
e Declarative functional description of Goals and Web services
e Description of dynamics

In its current version WSML defines a syntax and semantics for
ontology description. The formalisms which were mentioned earlier
are used to give a formal meaning to ontology descriptions in WSML.
For the functional description of Goals and Web services, WSML offers a
syntactical framework, with Hoare-style semantics in mind (Hoare,
1969). However, WSML does not formally specify the semantics of the
functional description of services. A possible direction for this semantics
description is the use of Transaction Logic (e.g., like in Kifer et al. (2004)).
The description of the dynamics of Web services (choreography and
orchestration) in the context of WSML is currently under investigation,
but has not (yet) been integrated in WSML.

This section is further structured as follows. We first motivate and
describe the formalisms which form the basis for WSML, as well as the
WSML language variants which are based on these formalisms, after
which we briefly introduce the syntax and semantics of WSML, taking as
example a simplified version of the Amazon Web Service.

10.2.2.1. WSML Language Variants

WSML has language variants which are based on five formalisms related to
First-Order Predicate Logic (FOPL). Description Logics (DL) (Baader, 2003)
is a family of languages which (for the most part) can be seen as subsets of
FOPL. We have chosen to use the DL language SHIQ in WSML because it is
an expressive DL for which efficient sound and complete reasoning algo-
rithms and implementations exist for checking concept satisfiability, sub-
sumption, and other reasoning tasks. Furthermore, there exist application
in Web Service discovery and the language has already been applied to the
Semantic Web in the language OWL (Dean and Schreiber, 2004).

Another formal pillar of WSML is Logic Programming’. Logic Program-
ming has a wide body of research work in the area of query answering, as
well as many efficient implementations. Furthermore, there exist applica-
tions of Logic Programming in the area of Web Service for discovery,
contracting, and other tasks and there is also a broad interest in applying
rule languages to the Web (http://www.ruleml.org/) better cite RIF
working group.

F-Logic (Kifer et al., 1995) is an extension of FOPL with higher-order
style Object Oriented modeling primitives which stays semantically in a
First-Order framework. With F-Logic Programming we mean the Logic
Programming language which is obtained from the Horn subset of F-Logic.

"When talking about Logic Programming we mean purely declarative rules languages,
based on the so-called Horn subset of FOPL, with a model-theoretic semantics based on
Herbrand models.

200 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

First-Order Logic

(With nonmonotonic extentions)
-

-

Description Logics
(suonualxa 21uUojJoUOWUOU UNAA)
21607 JepiO-1sii4

Qo Gore) — - (s — (o)

LOgIC Programmlng
(With nonmonotonic negation)

Figure 10.2. WSML variants.

The WSML syntax inspired by F-Logic arguably makes logical expressions
easier to write since the modeling vocabulary is not restricted to predicates,
as in FOPL, but also includes concepts, instances, attribute typing, and
attribute values. There exist several implementations of F-Logic Program-
ming as well as experiences in case studies, as well as a commercial product
(Ontobroker). F-Logic Programming can be reduced to regular Logic Pro-
gramming, thereby benefiting from the research and experience in the area.

Figure 10.2 depicts the WSML language variants. WSML-Core marks
the intersection of Description Logics and Logic Programming, also
called Description Logic Programs (Grosof et al., 2003). WSML extends
this core language in two directions, namely DLs and F-Logic Program-
ming, which allows the variants to benefit from the established research
and the tools which have been developed in these areas. WSML-DL is
based on the DL SHIQ(D); WSML-Flight is based on the Datalog subset
of F-Logic and WSML-Rule is based on the Horn subset of F-Logic;
WSML-Flight and WSML-Rule both include negation-as-failure. WSML-
Full unifies the Description Logic and Logic Programming paradigms
under a First-Order umbrella with specific extensions to capture the
negation-as-failure of the Logic Programming-based WSML variants.

In WSML we use a subset of F-Logic as a syntactic extension of the variant
based on Logic Programming, namely WSML-Rule. Interoperability
between the variants based on DL and Logic Programming can be achieved
using so-called Description Logic Programs (DLP) (Grosof et al. 2003). DLP
prescribes syntactical restrictions on the ontologies such that they both can
be seen as DL ontologies and Logic Programs (LP). The relationship
between the syntactically equivalent DL ontology and the LP is then
as follows: the DL ontology and the LP are equivalent with respect to

THE WSMO APPROACH 201

entailment of ground atomic formulae. Thus, the extension of WSML-Core
to WSML-Flight is a syntactic extension, but also a semantic restriction,
since WSML-Flight does not define entailment of nonground formulae.

10.2.2.2. WSML Syntax

WSML provides three syntaxes for the description of Semantic Web
Services, based on WSMO. WSML has a surface syntax, as well as XML
and RDF syntaxes for exchange over the Web. WSML can be seen as a
testing ground for using formal methods in the description of Semantic
Web Services.

In the following we will briefly outline the main features of the WSML
surface syntax using an example from the book buying domain. Because
of space limitations, we will not discuss the XML and RDF syntaxes.
The example consists of a small ontologies which describes books, as
well as a small Web Service description which describes the functionality
of adding a book to a shopping cart, given the id of the cart and the
item to be added, which is an actual operation offered by the Amazon
Web Service.

wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
namespace { "http://example.org/amazonOntology#",
dc _"http://purl.org/dc/elements/1.1/"}
ontology "http://example.org/amazonOntology"
concept amazonBook
title ofType string
concept cart
id ofType (1)_string
items ofType amazonBook
webService "http://example.org/amazonService"
importsOntology "http://example.org/amazonOntology"
capability
sharedvariables {?cartId, ?item}
precondition
definedBy
?cartId memberOf string and ?item memberOf amazonBook.
postcondition
definedBy
forall ?cart (?cart[id hasValue ?cartId] memberOf cart implies
?cart[items hasValue ?item]).

The ontology ("amazonOntology’) describes books and shopping carts
at Amazon. The description of the Web Service shows how concepts from
the ontology are used in the Web Service description. The precondition in
the example requires that there is an input of type string (concepts

202 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

preceded with an underscore ’_’ are built-in datatypes, corresponding to
the XML Schema datatypes) and an input of type amazonBook. The
postcondition describes that if there is indeed a cart with the particular
id, the book will be in the cart.

WSML has a so-called ‘conceptual syntax” which reflects the concep-
tual model of WSMO in the modeling of Ontologies, Web services, Goals,
and Mediators; in the example, all statements belong to the conceptual
syntax, except for the logical expressions under the precondition and the
postcondition, respectively. The use of the conceptual syntax of WSML
does not depend on the chosen WSML variant, except for a few restric-
tions on attribute constraints in the conceptual syntax for WSML-Core
and WSML-DL, which are a result of the lack of nonmonotonic negation
in these variants.

Besides the conceptual syntax, WSML has a logical syntax which reflects
the underlying formalism of the particular WSML variant; the logical
expressions under the keyword definedBy in the example are part of the
logical syntax. The syntax is based on FOPL syntax where the logical
connectives are English language words ("Tand,’ “or,” etc.) and with specific
extensions for frame-based modeling inspired by F-Logic (e.g., the key-
word memberOf in the example). Each WSML variant defines restrictions
on the logical syntax. For example, nonmonotonic negation ('naf’) may not
be used in WSML-Core and WSML-DL, and existential quantification
("exists’) may not be used in WSML-Core, WSML-Flight, and WSML-Rule.

The separation between conceptual and logical modeling allows for an
easy adoption by nonexperts, since the conceptual syntax does not require
expert knowledge in logical modeling, whereas complex logical expres-
sions require more familiarity and training with the language. Thus,
WSML allows the modeling of different aspects related to Web services
on a conceptual level, while still offering the full expressive power of the
logic underlying the chosen WSML variant. The conceptual syntax for
ontologies has an equivalent in the logical syntax. This correspondence is
used to define the semantics of the conceptual syntax. The translation
between the conceptual and logical syntax is sketched in Table 10.1; we

Table 10.1 Translating conceptual to logical syntax.

Conceptual Logical
concept A subConcepOf B A subConceptOf B
concept A A[B ofType C]

B ofType (0 1) C ! - ?x memberOf A and

?x[B hasValue ?y, BhasValue ?z] and ?y !=?z

concept A B ofType C A[B ofType C].
relation A/n subRelationOf B A(x 1,..., xn) implies B(x 1,..., x n)
instance A memberOf B A memberOf B.

C hasvalue D A[C hasValue D].

THE WSMO APPROACH 203

refer the reader to de Brujin (2005) for a complete translation of all
the constructs of the conceptual syntax to the constructs of the logical
syntax.

10.2.2.3. WSML Semantics

The semantics of WSML ontologies is defined through a mapping
between the logical syntax and the formalism which underlies the
variant. WSML-Core and WSML-DL logical expressions are mapped to
FOPL. The restrictions on the WSML syntax for these variants ensures
that the expressions stay inside the expressiveness of the SHIQ descrip-
tion logic. The semantics of WSML-Flight and WSML-Rule is defined
through a mapping to F-Logic Programming (Kifer ef al., 1995, Appendix
A). Space limitations prevent us from given the complete semantics of
WGSML. Instead, we give a rough sketch of the WSML semantics and refer
the interested reader to de Brujin (2005).

In order to facilitate the mapping between the WSML variant and the
underlying logic, the WSML ontology is first transformed to a set of
normalized logical expressions, according to Table 10.1. Then, this
normalized set of logical expressions is mapped to the logic using the
mapping function n. Finally, satisfiability and entailment are defined
w.r.t. this transformed WSML ontology.

The semantics of WSML is defined through a mapping to a well-
known formalism rather than giving a direct semantics, in order to
facilitate understanding of the language and so that complexity results
follow immediately from the definitions and the known literature. In
order to give an idea of the semantics, we show the example ontology
amazonBooks transformed to F-Logic Programming;:

—xly=>z]Awly - v Anotv:z
amazon Book|title == string]

cartlid == string]

— x : cart A notx[id — y]

—x:cart Ax[id — y| Axlid — z) Ny # z
cart[items = amazon Book]

Note that in the example, a rule without a head is an integrity constraint.
A model of the rule base violates an integrity constraint if the body of the
constraint is true in the model. We call a transformed WSML-Flight
ontology O satisfiable iff. the transformed rule base n(O) (without the
constraints) has a perfect model Mo (Kifer et al., 1995, Appendix A) and
this model does not violate any of the integrity constraints. Furthermore,
a satisfiable WSML-Flight ontology O entails a ground formula F iff. n(F)
is true in Mop.

204 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

10.2.3. The Execution Environment - The Web
Service Modeling Execution Environment
(WSMX)

Web Service Execution Environment (WSMX) is an execution
environment which enables discovery, selection, mediation, and invo-
cation of Semantic Web Services (Cimpian et al., 2005). WSMX is
based on the conceptual model provided by WSMO, being at the
same time a reference implementation of it. It is the scope of WSMX
to provide a testbed for WSMO and to prove its viability as a mean to
achieve dynamic interaperatability of Semantic Web Services. In
this section we briefly present the WSMX functionality (in Section
10.2.3.1) and its external behavior (in Section 10.2.3.2), followed by a
short overview of the WSMX architecture (in Sections 10.2.3.2 and
10.2.3.3).

10.2.3.1. WSMX Functionality

WSMX functionality can be split in two main parts: first is the function-
ality that should be part of any environment for Semantic Web Services
and second, the additional functionality coming from the enterprise
system features of the framework. In the first case, the overall WSMX
functionality can be seen as an aggregation of the components’ function-
alities, which are part of the WSMX architecture. In the second case
WSMX offers features such as a plug-in mechanism that allows the
integration of various distributed components, an internal workflow
engine capable of executing formal descriptions of the components
behavior or a resource manager that enables the persistency of all
WSMO and nonWSMO data produced during run time.

The main components that have been already designed and imple-
mented in WSMX, as described in (Cimpian ef al. 2005) are the Core
Component, Resource Manager, Discovery, Selection, Data and Process
Mediator, Communication Manager, Choreography Engine, Web Service
Modeling Toolkit, and the Reasoner.

The Core Component is the central component of the system connecting
all the other components and managing the business logic of the system.

The Resource Manager manages the set of repositories responsible for
the persistency of all the WSMO and non-WSMO related data flowing
through the system. It is offering an uniform and in the same time the
only (in the framework) point of access to potentially heterogeneous
implementation of such repositories.

The Discovery component has the role of locating the services that fulfill
a specific user request. This task is based on the WSMO conceptual
framework for discovery (Keller et al., 2004) which envision three main

THE WSMO APPROACH 205

steps in this process: Goal Discovery, Web Service Discovery, and Service
Discovery. The WSMX Service Discovery currently covers only the
matching of a user’s goal against different service descriptions based
on syntactical consideration.

In case that more than one suitable service are found WSMX offers
support for choosing only one of them; this operation is performed by the
Selection component by applying different techniques ranging from
simple ‘always the first’ to multi-criteria selection of variants (e.g., Web
services nonfunctional properties as reliability, security, etc.) and inter-
actions with the requester.

Two types of mediators are provided by WSMX to resolve the hetero-
geneity problems on data and process level. The Data mediation is based
on paradigms of ontologies, ontologies mappings, and alignment with
direct application on instance transformation. The Process mediation offers
functionality for runtime analysis of two given patterns (i.e., WSMO
choreographies) and compensates the possible mismatches that may
appear.

The Communication Manager through its two subcomponents, the
Receiver and the Invoker, enables the communication between the
requester and the provider of the services. The invocation of services is
based on the underlying communication protocol used by the service
provider, and it is the responsibility of an adapter framework to imple-
ment the interactions that require different communication protocols
than SOAP.

The Choreography engine provides means to store and retrieve choreo-
graphy interface definitions, initiates the communication between the
requester and the provider in direct correlation with the results returned
by the Process Mediator, and keeps track of the communication state on
both the provider and the requester sides. In addition it provides
grounding information to the communication manager to enable any
ordinary Web Service invocation.

Even if the Reasoner is not part of the WSMX development effort, a
WSML compliant reasoner is required by various components as Data
Mediator, Process Mediator, and Discovery.

The Web Services Modeling Toolkit (WSMT) is a collection of tools for
Semantic Web services developed for the Eclipse framework. An initial
set of tools exist including the WSMO Visualizer for viewing and editing
WSML documents using directed graphs, a WSMX Management tool for
managing and monitoring the WSMX environment, and a WSMX Data
Mediation tool for creating mappings between WSMO ontologies.

10.2.3.2. WSMX External Behavior

WSMX external behavior is described in terms of the so-called entry
points which represent standard interfaces that enable communication
with external entities. There are four mandatory entry points that have to

206 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

be available in each working instance of the system. Each of these entry
points triggers a particular execution semantic®, which on its turn selects
the set of components to be used for that particular scenario. More details
about WSMX Execution Semantics can be found in (Zaremba and Oren,
2005). As described in (Zaremba et al., 2005) the four possible execution
semantics are:

o One-way Goal Execution: This entry point allows the realization of a
goal without any back and forth interactions. In this simplistic scenario
the requester has to provide a formal description of its goal in WSML,
and the data required for the invocation and the system will select and
execute the service on behalf of the requester. The requester might
receive a final confirmation, but this step is optional.

e Web Service Discovery: A more complex (and realistic) scenario is to
consult WSMX about the set of Web services that satisfy a given goal.
This entry point implies a synchronous call — the requester provides a
goal and WSMX returns a set of matching Web services.

e Send Message: After the decision on which service to use was already
made, a conversation involving back and forth messages between the
requester and WSMX has to start. The input parameter is a WSML
message that contains a set of ontology instances and references to the
Web service to be invoked and to the targeted Choreography (f it is
available).

e Store Entity in the Registry: This entry point provides an interface for
storing the WSMO-related entities described in WSML in the reposi-
tory.

All the incoming and outgoing messages are represented in WSML
and consist of either fragments of WSMO ontologies or WSMO entities
(Web services, goals, mediators, or ontologies). That is, only WSML is
used as WSMX internal data representation and all the necessary
adaptations are handled by an adapter framework.

10.2.3.3. WSMX Architecture

To summarize, WSMX architecture (Zaremba et al., 2005) consists of a set
of loosely coupled components. Having various decoupled components
part of a software system is one of the fundamental principles of a
Service Oriented Architecture (SOA). Self-contained components with
well-defined functionalities can be easily plugged-in and plugged-out at
any time, allowing them to use each others functionalities. Even if WSMX
provides a default implementation for all the components in the archi-
tecture, following these principles allows a third-party component

8By execution semantics (or operational semantics) we understand here the formal defini-
tion of the operational behavior of the system. It has the role of describing in a formal and
unambiguous language how the system behaves.

THE OWL-S APPROACH 207

offering the same functionality (or an enhanced functionality) to be easily
plugged-in.

WSMX architecture (see Figure 10.3) provides descriptions of
the external interfaces and behaviors for all the components and for
the system as a whole. By this, the system’s overall functionality is
separated from the implementation of particular components. It is worth
noting that WSMX accepts as inputs only WSML messages and returns
the results as WSML messages as well. In the case of requesters unable to
process WSML the Adapter Framework can be used to transform from/
to an arbitrary representation format to/from WSML. For more
details about the WSMX infomodel, the reader can check the WSMX
code base at Sourceforge’. In the future, WSMX intends to support
dynamic execution semantics, which means that it will become possible
to dynamically load during runtime the intended behavior of the
system.

10.3. THE OWL-S APPROACH

OWL-S (2004), part of the DAML program'®, is an OWL-based Web
Service Ontology; it aims at providing building blocks for encoding rich
semantic service descriptions, in a way that builds naturally upon OWL.
Very often is referred to the OWL-S ontology as a language for describing
services, thus reflecting the fact that it provides a vocabulary that can be
used together with the other aspects of the OWL to create service
descriptions.

The OWL-S ontology mainly consists of three interrelated sub-ontol-
ogies, known as the profile, process model, and grounding. The profile is used
to express ‘what a service does,” for purposes of advertising, constructing
service requests, and matchmaking; the process model describes ‘how it
works,” to enable invocation, enactment, composition, monitoring, and
recovery; and the grounding maps the constructs of the process model
onto detailed specifications of message formats, protocols, and so forth
(normally expressed in WSDL).

All these sub-ontologies are linked to the top-level concept Service,
which serves as an organizational point of reference for declaring Web
Services; whenever a service is declared, an instance of the Service
concept is created. As shown in Figure 10.4 below, the properties presents,
describedBy, and supports are properties of Service.

The classes ServiceProfile (which identifies the profile sub-ontology),
ServiceModel (which identifies the process model sub-ontology), and
ServiceGrounding (which identifies the grounding sub-ontology) are the
respective ranges of those properties. Each instance of Service will present

9http: / /sourceforge.net/ projects/wsmx/
%http:/ /www.daml.org/

"2INJOBYYDID XINSM €701 @1nbiy

siojelpay salbojou0 s|eon SO0IAIBS GO
[[J93euR A 921n0SRY XIS J [
— —— — S——
ERIREIN |
uduodurod uoneIpd uonevIpd
_ v uonIBPS A13A09SI(q WEIPIN HEIPIN
MIN $$3301g vleq
ERLIRENNIY| deIul ERIJREIN | ERIIREIN | ERLIRESI |
Aydead RETS doBeUEy
AJndag uone.NsSAYIIQ ydeagoaaoy) d)
ERLIRENNIY| ERTIREIN | ERIIREIN | ERLIRENNIY| deyu]
- dedS JuIAY 7P 310D XTASAA

ddepalu] XINSM

S-INX AHvl
Jayjouy

S-TNX

uozewy

ZOSM] yoN sou |

SIoMduIel |

JouIduU

THE OWL-S APPROACH 209

ServiceGrounding }
\ ServiceModel)

Figure 10.4 Top level elements of OWL-S (OWL-S, 2004).

a ServiceProfile description, be describedBy a ServiceModel description,
and support a ServiceGrounding description.

In the rest of this section we take a closer look at the elements that
are part of the OWL-S Service Profile ontology (in Section 10.3.1), and of
the OWL-S Service Model ontology (in Section 10.3.2); we do not
discuss the OWL-S Grounding ontology in this section as we provide
a wider overview of the general problem of SWS Grounding in
Section 10.7.

10.3.1. OWL-S Service Profiles

In OWL-S, the Service Profile provides means to describe the services
offered by the providers, and the services needed by the requesters. No
representation of services is imposed by the Service Profile, but rather,
using the OWL sub-classing it is possible to create specialized represen-
tations of services that can be used as service profiles. However, for
pragmatic reasons, OWL-S provides one possible representation through
the class Profile. A service, defined through the OWL-S Profile, is
modeled as a function of three basic types of information:

e The Organization that Provides the Service: The contact information that
refers to the entity that provides the service (e.g., contact information
may refer to the maintenance operator that is responsible for running
the service, or to a customer representative that may provide addi-
tional information about the service, etc.).

o The Function the Service Computes: The transformation produced by the
service. The functional description includes the inputs required by
the service and the outputs generated; the preconditions required by
the service and the expected effects that result from the execution of the
service.

210 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

o A Host of Features that Specify Characteristics of the Service: The descrip-
tions of these features include the category of a given service (e.g., the
category of the service within the UNSPSC classification system),
quality rating of the service (e.g., some services may be very good,
reliable, and quick to respond; others may be unreliable, sluggish, or
even malevolent), and an unbounded list of service parameters that
can contain any type of information (the OWL-S Profile provides a
mechanism for representing such parameters).

The most essential type of information presented in the profile, that
will play a key role during the discovery of the service, is the specifica-
tion of what functionality the service provides. The OWL-S Profile
emphasizes two aspects of the functionality of the service:

e The Information Transformation: Represented by inputs and outputs of
the service, and

e The State Change produced by the Execution of the Service: Repre-
sented by the preconditions and effects of the service.

No schema to describe inputs/outputs/preconditions/effects (IOPE)
instances is provided by the OWL-S Profile. However, such a schema
exists in the Process ontology. It is expected that the IOPE’s published by
the Profile are a subset of those published by the Process, thus it is
expected that the Process part of a description will create all the IOPE
instances and the Profile instance can simply point to these instances. The
properties of the Profile class that the OWL-S Profile ontology defines for
pointing to IOPE’s are summarized as follows:

e hasParameter: Ranges over a Parameter instance of the Process
ontology; it’s role is solely making domain knowledge explicit.

e hasInput: Ranges over instances of Inputs as defined in the Process
ontology.

e hasOutput: Ranges over instances of type Output, as defined in the
Process ontology.

o hasPrecondition: Specifies one of the preconditions of the service and
ranges over a Precondition instance defined according to the schema
in the Process ontology.

e hasResult: Specifies one of the results of the service, as defined by the
Result class in the Process ontology; it specifies under what conditions
the outputs are generated. This parameter also specifies what domain
changes are produced during the execution of the service.

10.3.2. OWL-S Service Models

As the OWL-S Profile describes only the overall function the service
provides, a detailed perspective on how to interact with the service is
needed. This interaction can be viewed as a process, and OWL-S defines

THE OWL-S APPROACH 211

the ServiceModel subclass in order to provide means to define processes.
The view that OWL-S takes on processes is that a process is not necessary
a program to be executed, but rather a specification of the ways a client
may interact with a service. A process can generate and return some new
information based on information it is given and the world state.
Information production is described by the inputs and outputs of the
process. A process can as well produce a change in the world. This
transition is described by the preconditions and effects of the process.

Informally, any process can have any number of inputs, representing
the information that is, under some conditions, required for starting the
process. Processes can have any number of outputs, the information that
the process provides to the requester. Inputs and outputs are represented
as sub-classes of a general class called Parameter; (every parameter has a
type, specified using a URI). There can be any number of preconditions,
which must all hold in order for a process to be successfully started. A
process can have any number of effects. Outputs and effects can depend
on conditions that hold true of the world state at the time the process is
performed. Preconditions and effects are represented as logical formulas.
OWL-S treats such expressions as literals, either string literals or XML
literals. The latter case is used for languages whose standard encoding is
in XML, such as SWRL (Horrocks et al., 2003) or RDF (Klyne and Carroll,
2004). The former case is for other languages such as KIF (KIF 1998) and
PDDL (PDDL, 1998). Processes are connected to their IOPEs using the
following properties:

hasParticipant which ranges over the Participant class.
hasInput which ranges over the Input class.

hasOutput which ranges over the Output class.
hasLocal which ranges over the Local class.
hasPrecondition which ranges over the Condition class.
hasResult which ranges over the Result class.

A process involves at least two parties. One is the client, from whose
point of view the process is described, and another is the service that the
client deals with. Both the client and the service are referred to as
participants; they are directly linked to a process using the hasParticipant
property. Inputs and outputs specify the data transformation produced
by the process; they are directly linked to a process using the haslnput
and hasOutput properties. Inputs specify the information that the process
requires for its execution. Inputs may come directly from the client or
may come from previous steps of the same process. Outputs specify the
information that the process generated after its execution. The presence
of a precondition for a process means that the process cannot be
performed successfully unless the precondition is true; preconditions
are directly linked to a process using the hasPrecondition property. The
execution of a process may result in changes of the state of the world

212 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

(effects), and the generation of information by the service (referred to as
outputs). Such coupled outputs and effects are not directly linked to a
process, but through the term result (i.e., through the hasResult property).

Although the above properties are common to all processes defined in
OWL-S, there can be three types of processes:

o Atomic Processes: Description of services that expects one (possibly
complex) message and returns one (possibly complex) message in
response.

e Composite Processes: Processes that maintain some state; each message
the client sends advances it through the process.

o Simple Processes: processes used as elements of abstraction, that is, a
simple process may be used either to provide a view of (a specialized
way of using) some atomic process, or a simplified representation of
some composite process (for purposes of planning and reasoning).

Atomic processes are similar to the actions a service can perform by
engaging it in a single-step interaction; composite processes correspond
to actions that require multi-step interactions, and simple processes
provide an abstraction mechanism to enable multiple views of the
same process. Atomic processes are directly invocable and do not consist
of any sub-processes; their execution is a single-step execution (as far as
the service requester is concerned), that is they take an input message, do
something, and then return their output message. On the other side,
composite processes are decomposable into other (atomic, simple, or
composite) processes; their decomposition can be specified by using
control constructs. The control constructs supported in OWL-S can be
summarized as follows:

o Sequence: A set of processes to be executed sequentially.

e Split: A set of processes to be executed concurrently; it completes as
soon as all of its component processes have been scheduled for
execution.

e Split + Join: Consists of concurrent execution of a bunch of processes
with synchronization; it completes when all of its processes have
completed.

o Choice: Calls for the execution of a single control construct from a given
set of control constructs; any of the given control constructs may be
chosen for execution.

o Any-Order: Allows the process components to be executed in some
unspecified order but not concurrently.

o If-Then-Else: A control construct that has properties if-Condition, then,
and else holding different aspects of the If-Then-Else; its intended
meaning is as ‘Test If-condition; if True do Then, if False do Else’

e lIterate: A control construct that executes several times a process; this
construct makes no assumption about how many iterations are made
or when to initiate, terminate, or resume.

THE SWSF APPROACH 213

o Repeat-While and Repeat-Until: Both of these iterate until a condition
becomes false or true.

A description of a composite process shall not be interpreted as the
behavior a service will do, but rather the behavior, or better the set of
behaviors the client is allowed to perform by exchanging messages with
the service. Furthermore, if the composite process has an overall effect,
then the client must perform the entire process in order to achieve that
effect.

10.4. THE SWSF APPROACH

Semantic Web Services Framework (SWSF) (SWSF, 2005) is one of the
newest approaches for Semantic Web Services, being pro1posed and
promoted by Semantic Web Services Language Committee'’. (SWSLC)
of the Semantic Web Services Initiative'* (SWSI). It is based on two major
components: an ontology and the corresponding conceptual model by
which Web services can be described, called Semantic Web Services
Ontology (SWSO) and a language used to specify formal characterisations
of Web services concepts and descriptions called Semantic Web Services
Language (SWSL). This section provides a general overview of the two
core components of SWSF approach for SWS namely: SWSO — Semantic
Web Service Ontology (Section 10.4.1) and SWSL - Semantic Web Service
Language (Section 10.4.2).

10.4.1. The Semantic Web Services Ontology (SWSO)

SWSO presents a conceptual model for semantically describing Web
services and an axiomatization, formal characterization of this model
given in one of the two variants of SWSL: SWSL-FOL based on First-
Order Logic or SWSL-Rules based on Logic programming. The resulting
ontologies are called: FLOWS - First-Order Logic Ontology for Web
Services, which relies on First-Order Logic semantics, and ROWS -
Rule Ontology for Web Services, which relies on Logic Programming
semantics. Since both representations shared the same conceptual model
we will focus our overview on FLOWS, the derivation of ROWS from
FLOWS being straightforward.

The development of FLOWS ontology was influenced by the OWL-S
ontology and the lessons learned from developing this ontology. Another
fundamental aspect in the development of FLOWS is the provision of a

llhttp: //www.daml.org/services/swsl/
12http: //www.swsi.org/

214 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

rich behavioral process model based on Process Specification Language
(PSL) (Gruninger, 2003). FLOWS can be seen as an extension/refinement
of OWL-S ontology with a special focus on providing interoperability or
semantics to existing standards in Web services area (e.g., BPEL, WSDL,
etc.) Although there are many similarities between FLOWS and OWL-S
ontologies, one important difference is the expressiveness of the under-
ling language. FLOWS is based on First-Order logic, which means it has
a richer, more expressive, support than OWL-S which is based on OWL-
DL.

Being based on First-Order Logic, FLOWS makes use of logic pre-
dicates and terms to model the state of the world. Features from situation
calculus, like the use of fluents, predicates, and terms which vary over time,
were introduced to model the change of the world. Invariant predicates
and terms are called in relations in SWSO.

The FLOWS ontology consists of three major components: Service
Descriptors, Process Model, and Grounding. The Service Descriptors are
used to provide basic descriptive information about the service. The
Process Model is used to describe how the service works. The Grounding is
used to link the semantic, abstract descriptions of the service provided in
SWSO to detailed specifications of messages, protocols, and so forth used
by Web services.

In the rest of this section we take a closer look at the elements that are
part of the FLOWS Service Descriptors (in Section 10.4.1.1), and of the
FLOWS Process Model (in Section 10.4.1.2); we do not discuss the
FLOWS Grounding in this section as we provide a wider overview of
the general problem of SWS Grounding in Section 10.7.

10.4.1.1. Service Descriptors

Service Descriptors are the components of FLOWS ontology which
provide basic information about a service. By basic information is
meant nonfunctional meta-information and/or provenance information.
These kinds of descriptions are often used to support the automation of
service related tasks like service discovery. They include information like
name, textual description, version, etc, which are properties inherited
from the OWL-S Profile. A Service Descriptor may include the following
individual properties: (1) Service Name — this property refers to the name
of the service and may be used as a unique identifier; (2) Service Author —
this property refers to the authors of the service which can be people or
organizations; (3) Service Contact Information — this property contains a
pointer for the agents or people requiring more information about the
service; (4) Service Contributor — this property refers to the entity respon-
sible for updating the service description; (5) Service Description — this
property contains the textual description of the service; (6) Service URL —
this property contains the URL associated with the service; (7) Service
Identifier — this property contains an unambiguous reference to the

THE SWSF APPROACH 215

service; (8) Service Version — this property contains an identifier to the
specific version of the service; (9) Service Release Date — this property
contains the release date of the service; (10) Service Language — this
property specifies the language of the service; (11) Service Trust — this
property described the trustworthiness of the service; (12) Service Subject
— this property refers to the topic of the service; (13) Service Reliability —
this property contains and entity used to indicate the dependencies of the
service; (14) Service Cost — this property contains the cost of invocation for
the service.

10.4.1.2. Process Model

The Process Model is that part of FLOWS ontology which offers the
needed constructs to describe the behavior of the service. The Process
Model extends towards the Web services requirements the generic
ontology for processes provided by PSL approach, by adding two
fundamental elements: (1) the structured notion of atomic process as
found in OWL-S and (2) the infrastructure for specifying various forms of
data flow. The core part of the PSL extended by FLOWS is called PSL
Outer Core and the resulting FLOWS sub-ontology is called FLOWS-
Core. The overall extensions to PSL implemented in FLOWS are pre-
sented in Figure 10.5.

Based on these extensions FLOWS Process Model ontology can be
regarded as a combination of six ontology modules namely:

e FLOWS-Core: Introduces the basic notions of activities as activities
composed of atomic activities.

e Control Constraints: Axiomatize the basic constructs common to work-
flow-style process models.

Exceptions
Control Ordering Occurrence State
constructs constraints constraints constraints

FLOWS Core

PSL Outer Core

Figure 10.5 FLOWS extensions based on PSL.

216 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

o Ordering Constraints: Support the specification of activities defined by
sequencing properties of atomic processes.

o Occurrence Constraints: Support the specification of nondeterministic
activities within services.

o State Constraints: Support the specification of activities which are
triggered by states that satisfies a given condition.

o Exception Constraints: Provides support for modeling exceptions.

As part of the FLOWS-Core some basic terms are defined:

e Service: A service is defined as an object which has associated a set of
service descriptors and an activity that specifies the process model of
the service, activities called service activities.

e Atomic Process: An atomic process is a PSL activity, that is, in general
a sub-activity of the activity associated with the service. Associated
with each atomic process are (multiple) input, output, precondition,
and effects. The inputs and the outputs are the inputs and outputs
of the program which realizes the atomic process. The preconditions
are conditions that must be true in the word for the atomic process
to be executed. Finally, effects are the side effects of the execution of
the atomic process. All these are expressed as First-Order logic
formulae.

e Message: A message is an object in FLOWS-Core ontology which has
associated a message type and a payload (body).

o Channel: A message is an object in FLOWS-Core ontology which
holds messages that have been sent and may or may not have
received.

10.4.2. The Semantic Web Services Language (SWSL)

SWSL is a language for describing, in a formal way, Web services
concepts and descriptions of individual services. SWSL comes in two
variants which are based on two well-known formalisms: First-Order
Logic and Logic Programming. The two sub-languages are SWSL-FOL
and SWSL-Rules. The design of both languages was driven by
compliance with Web principles, like usage of URIs, integration with
XML built-in types and XML-compatible namespaces, and import
mechanisms. Both languages are layered languages where every layer
includes a number of new concepts that enhance the modeling power
of the language.

SWSL-Rules is a logic programming language which includes
features from Courteous logic programs (Grosof, 1999), HilLog
(Chen and Kifer, 1993) and F-Logic (Kifer et al., 1995), and can be

THE SWSF APPROACH 217

Courteous
Nonmon LT
NAF
Reification
HilLog
Equallity
MonLT
Frames
Horn

Figure 10.6 The layered structure of swsl-rules (SWSF, 2005).

seen as both specification and implementation language. SWSL-Rules
language provides support for service-related tasks like discovery,
contacting, policy specification, and so on. It is a layered-based
languages as shown in Figure 10.6.

The core of the SWSL-Rules language is represented by pure Horn
sub-set of SWSL-Rules. This subset is extended by adding different
features like (1) disjunction in the body and conjunction and implication
in the head - this extension is called monotonic Loyd-Topor (Mon LT)
(Lloyd, 1987), (2) negation in the rule body interpreted as nation as
failure — this extension is called NAF. Furthermore, the Mon LT can be
extended by adding quantifiers and implication in the rule body result-
ing in what is called nonmonotonic Loyd-Topor (Nonmon LT) extension.
Other envisioned extensions are towards: (1) Courteous rules (Courteous)
whit two new features: restricted classical negation and prioritized rules,
(2) HiLog — enables meta-programming, (3) Frames — add object oriented
features like frame syntax, types, and inheritance, (4) Reification — allows
rules to be referred and grouped. Finally, Equality can be possible
extension as well.

SWSL-FOL is a First-Order logic which includes features from HiLog
and F-Logic. It has as well a layered structure which is depicted in
Figure 10.7

Some of the extensions provided for SWSL-Rules apply for SWSL-
FOL as well. The only restriction is that the initial languages should
have monotonic semantics. The resulting extensions depicted in Figure
10.7 are SWSL-FOL + Equality, SWSL-FOL + HiLog, and SWSL-FOL +
Frame.

218 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

SWSL-FOL+HiLog

SWSL-FOL+Frames

/

SWSL-FOL+Equality

Equ

Frames

Horn

Figure 10.7 The layers of SWSL-FOL and their relationship to SWSL-Rules
(SWSF, 2005).

10.5. THE IRS-1ll APPROACH

IRS-IIT"* (Domingue et al., 2004) is a framework and implemented plat-
form which acts as a broker mediating between the goals of a user or
client, and available deployed Web services. The IRS uses WSMO as its
basic ontology and follows the WSMO design principles. Below we out-
line additional principles which have influenced the IRS (Section 10.5.1).
We then give an overview of the IRS-III architecture (in Section 10.5.2)
and present the IRS extensions to WSMO (in Section 10.5.3). In the rest of
the section we will use the terms ‘IRS” and ‘IRS-III" interchangeably.

10.5.1. Principles Underlying IRS-III

IRS-III is based on the following design principles:

e Supporting Capability Based Invocation: IRS-III enables clients
(human users or application programs) to invoke a Web service simply
by specifying a concrete desired capability. The IRS acts as a broker
finding, composing, and invoking appropriate Web services in order
to fulfill the request.

e Ease of Use: IRS interfaces were designed so that much of the
complexity surrounding the creation of SWS-based applications are
hidden. For example, the IRS-III browser hides some of the complexity

Bhttp:/ /kmi.open.ac.uk/projects/irs/

THE IRS-II APPROACH 219

of underling ontology by bundling up related class definitions into a
single tabbed dialog window.

e One Click Publishing: A corollary of the above-design principle. There
are many users who have an existing system which they would like to
be made available but have no knowledge of the tools and processes
involved in turning a stand alone program into a Web service. There-
fore, IRS was created so that it supported ‘one click’ publishing of
stand alone code written a standard programming language (cur-
rently, we support Java and Lisp) and of applications available
through a standard Web browser.

e Agnostic to Service Implementation Platform: This principle is in part
a consequent of the one click publishing principle. Within the
design of the IRS there is no strong assumptions about the underlying
service implementation platform. However, it is accepted the current
dominance of the Web services stack of standards and consequently
program components which are published through the IRS also
appear as standard Web services with a SOAP-based end point.

e Connected to the External Environment: When manipulating Web
services, whether manually or automatically, one needs to be able to
reason about their status. Often this information needs to be computed
on-the-fly in a fashion which integrates the results smoothly with the
internal reasoning. To support this we allow functions and relations to
be defined which make extra-logical calls to external systems — for
example, invoking a Web service. Although, this design principle has a
negative effect on ability to make statements about the formal correct-
ness of resulting semantic descriptions, it is necessary because our
domain of discourse includes the status of Web services. For example,
a user may request to exchange currencies using ‘today’s best rate.” If
our representation environment allows us to encode a current-rate
relation which makes an external call to an appropriate Web service
or Website then this will not only make life easier for the SWS developer,
but also make the resulting descriptions more readable.

e Open: The aim is to make IRS-III as open as possible. The IRS-III clients
are based on Java APIs which are publicly accessible. More signifi-
cantly, components of the IRS-III server are Semantic Web services
represented within the IRS-III framework. This feature allows users to
replace the main parts of the IRS broker with their own Web services
to suit their own particular needs.

o Inspectibility: In many parts of the life cycle of any software system, it is
important that the developers are able to understand the design and
behavior of the software being constructed. This is also true for SWS
applications. This principle is concerned with making the semantic
descriptions accessible in a human readable form. The descriptions
could be within a plain text editor or within a purpose built browsing
or editing environment. The key is that the content and form are easily
understandable by SWS application builders.

220 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

10.5.2. The IRS-IIl Architecture

In addition to fulfilling the design principles listed above — especially,
supporting capability-based invocation — the IRS-III architecture has been
created to link ontology-based descriptions with the components which
support SWS activities.

The IRS-III architecture is composed by the main following compo-
nents: the IRS-III Server, the IRS-III Publisher, and the IRS-III
Client, which communicate through a SOAP-based protocol, as shown
in Figure 10.8".

At the heart of the server is the WSMO library where the WSMO
definitions are stored using our representation language OCML (Motta,
1998). The library is structured into knowledge models for WSMO goals,
Web services, and mediators. The structure of each knowledge model is
similar but typically the applications consist of mediator models import-
ing from relevant goal and Web service models. Following our design
principle of inspectibility all information relevant to a Web service is
stored explicitly within the library.

Within WSMO a Web service is associated with an interface which
contains an orchestration and choreography. Orchestration specifies the
control and dataflow of a Web service which invokes other Web services

Web Service
‘____4:' Lisp Code

\ J] Publishing Platforms E—.. Java Code
WSML a 1 T Web Application
Documents

——‘ . v S\\ SOAP

| —
Publishing
Clients

As-m Server

LispWeb Server T

Invocation
Client l OWL(-S)

Figure 10.8. The IRS-llIl server architecture.

“The IRS-IIl browser/editor and publishing platforms are currently available at
http:/ /kmi.open.ac.uk/projects/irs/

THE IRS-II APPROACH 221

(a composite Web service). Choreography specifies how to communicate
with a Web service. The choreography component communicates with an
invocation module able to generate the required messages in SOAP
format.

A mediation handler provides functionality to interpret WSMO med-
iator descriptions including running data mediation rules, invoking
mediation services, and connecting multiple mediators together. Follow-
ing from the openness principle above orchestration, choreography, and
mediation components are themselves Semantic Web services. At the
lowest level the IRS-III Server uses an HTTP server written in lisp (Riva
and Ramoni, 1996), which has been extended with a SOAP (XML
Protocol Working Group, 2003) handler.

Publishing with IRS-III entails associating a specific web service with a
WSMO web service description. When a Web service is published in IRS-
III all of the information necessary to call the service, the host, port, and
path are stored within the choreography associated with the Web service.
Additionally, updates are made to the appropriate publishing platform.
The IRS contains publishing platforms to support the publishing of
standalone Java and Lisp code, and of Web services. Web applications
accessible as HTTP GET requests are handled internally by the IRS-III
server.

IRS was designed for ease of use, in fact a key feature of IRS-III is that
Web service invocation is capability driven. The IRS-III Client supports
this by providing a goal-centric invocation mechanism. An IRS user
simply asks for a goal to be solved and the IRS broker locates an
appropriate Web service semantic description and then invokes the
underlying deployed Web service.

10.5.3. Extension to WSMO

The IRS-III ontology is currently based on the WSMO conceptual model
with a number differences mainly derived from the fact that in IRS-III the
aim is to support capability driven Web service invocation. To achieve
these goals, Web services are required to have input and output roles. In
addition to the semantic type the soap binding for input and output roles
is also stored. Consequently, a goal in IRS-III has the following extra slots
has-input-role, has-output-role, has-input-role-soap-binding, and has-output-
role-soap-binding.

Goals are linked to Web services via mediators. More specifically, the
WG Mediators found in the used-mediator slot of a Web service’s
capability. If a mediator associated with a capability has a goal as a
source, then the associated Web service is considered to be linked to the
goal.

Web services which are linked to goals ‘inherit’ the goal’s input
and output roles. This means that input role definitions within a Web

222 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

service are used to either add extra input roles or to change an input role
type.

YI\)Nhen a goal is invoked the IRS broker creates a set of possible
contender Web services using the WG Mediators. A specific web service
is then selected using an applicability function within the assumption
slot of the Web service’s associated capability. As mentioned earlier the
WG Mediators are used to transform between the goal and Web service
input and output types during invocation.

In WSMO the mediation service slot of a mediator may point to a goal
that declaratively describes the mapping. Goals in a mediation service
context play a slightly different role in IRS-III. Rather than describing a
mapping goals are considered to have associated Web services and are
therefore simply invoked.

IRS clients are assumed to be able to formulate their request as a goal
instance. This means that it is only required choreographies between
the IRS and the deployed Web services. In IRS-III choreography
execution thus occurs from a client perspective (Domingue et al.,
2005), that is to say, to carry out a Web service invocation, the IRS
executes a web service client choreography which sends the appropriate
messages to the deployed Web service. In contrast, currently, WSMO
choreography describes all of the possible interactions that a Web
service can have.

10.6. THE WSDL-S APPROACH

WSDL-S (Akkiraju et al., 2005) proposes a mechanism to augment
the Web service functional descriptions, as represented by WSDL
(WSDL, 2005), with semantics. This work is a refinement of an initial
proposal developed by the Meteor-S group, at the LSDIS Lab'”, Athens,
Georgia.

In this section we briefly present the principles WSDL-S is based on (in
Section 10.6.1), and we shortly describe the extensibility elements used
and the annotations that can be created (in Section 10.6.2).

10.6.1. Aims and Principles

Starting from the assumption that a semantic model of the Web service
already exists, WSDL-S describes a mechanism to link this semantic
model with the syntactical functional description captured by WSDL.
Using the extensibility elements of WSDL, a set of annotations can be
created to semantically describe the inputs, outputs, and the operation of

15Gee http://1sdis.cs.uga.edu/.

THE WSDL-S APPROACH 223

WSDL Domain Model

Types .

ComplexType
Element1 /
Annotaton™™—————_____|

Element2 7
Annotation~—__|
\‘

Interface

Operation /
Precondition P
Annotation —|

Effect
Annotation——]

Figure 10.9 Associating semantics to WSDL elements (Akkiraju et al.,
2005).

a Web service. By this the semantic model is kept outside WSDL, making
the approach agnostic to any ontology representation language (see
Figure 10.9).

The advantage of such an approach is that it is an incremental
approach, building on top of an already existing standard and taking
advantage the already existing expertise and tool support. In addition,
the user can develop in WSDL in a compatible manner both the semantic
and operational level aspects of Web services.

WSDL-S work is guided by a set of principles, the most important of
them being listed below:

e Build on Existing Web Services’ standards: Standards represent a key
point in creating integration solutions and as a consequence, WSDL-5
promotes an upwardly compatible mechanism for adding semantics to
Web services.

o Annotations Should be Agnostic to the Semantics Representation Language:
Different Web service providers could use different ways of
representing the semantic descriptions of their services and further-
more, the same Web service provider can choose more than one
representation form in order to enable its discovery by multiple
engines. Consequently, WSDL-S does not prescribe what semantic
representation language should be used and allows the association of
multiple annotations written in different semantic representation
languages.

o Support Annotation of XML Schema Data Type: As XML Schema is an
important data definition format and it is desirable to reuse the
existing interfaces described in XML, WSDL-S supports the annota-
tion of XML Schemas. These annotations are used for adding

224 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

semantics to the inputs and outputs of the annotated Web service. In
addition, an important aspect to be considered is the creation of
mappings between the XML Schema complex types and the corre-
sponding ontological concepts. As WSDL-S does not prescribe an
ontology language, the mapping techniques would be directly depen-
dent of the semantic representation language chosen.

In the next subsection we present in more details the extensibility
elements of WSDL and how they can be used in annotating the inputs,
outputs, and operations of Web services.

10.6.2. Semantic Annotations

WSDL-S proposes five extensibility elements to be used in annotating the
inputs, outputs, and operations of Web services:

e modelReference: Extension element that denotes a one-to-one map-
ping between schema elements and concepts from the ontology;

e schemaMapping: Extension attribute that can be added to XSD
elements or complex types to associate them with an ontology (used
for one-to-many and many-to-one mappings);

e precondition: Extension element (child of the operation element) used
to point to a combination of complex expressions and conditions in the
ontology, that have to hold before the execution of the Web service’s
operation;

o effects: Similar with preconditions, with the difference that the con-
ditions in the ontology have to hold after the execution of the Web
service’s operation.

e category: Extension attribute of the interface element that points to
categorization information that can be used for example when publish-
ing the Web service.

Each of these elements can be used to create annotations; in the rest of
this section we briefly describe each type of annotations, pointing to the
extensibility elements used.

10.6.2.1. Annotating the Input and Output Elements

If the input or the output is a simple type it can be annotated using the
extensibility of the XML Schema element: the modelReference attribute is
used to associate annotations to the element.

If the input or the output is a complex type two strategies can be
adopted: bottom level annotation and top level annotation. In bottom
level annotation all the leaf elements can be annotated with concepts
from the ontology. The modelReference attribute is used here in a
similar manner as above. While this method is simple, it makes

THE WSDL-S APPROACH 225

the assumption that there is one-to-one correspondence between the
elements from the XML Schema and the concepts from the ontology.
In the case of one-to-many or many-to-one correspondences top level
annotation method has to be used. Although it is a more complex method,
its advantage is that it allows for complex mappings to be specified
between the XML element and the domain ontology. The semantic of the
elements in the complex type is captured by using the schemmaMapping
attribute.

10.6.2.2. Annotating the Operation Elements

The operations of a Web service can be annotated with preconditions,
which represent a set of assertions that must hold before the execution
of that operation. The precondition extension element is defined as
follows:

e /precondition: Denote the precondition for the parent operation;

e /precondition/@name: Uniquely identifies the precondition among the
other preconditions defined in the WSML document;

e /precondition/@modelReference: Points to that parts of the semantic
model that describes the precondition of this operation;

e /precondition/@expression: Contains the precondition associated to
the parent operation. Its format directly depends on the semantic
representation language used. The two ways of specifying the pre-
condition assertions, /precondition/@expression, and /precondition/
@modelReference are mutually exclusive.

For each operation there is only one precondition allowed. This
restriction is adopted as an attempt to keep the specification simple. If
one needs more than one precondition, the solution is to define in the
domain ontology the complex expressions and conditions and to point to
them using the modelReference attribute.

The effects define the result of invoking a particular operation. The effect
element is defined in a similar manner as the precondition (see above),
and it is allowed to have one or more effects associated with one
operation.

10.6.2.3. Service Categorization

Adding categorization information to the Web service can be helpful in
the discovery process. That is, by categorizing the published Web
services can narrow the range of the candidate Web services.
Multiple category elements can be used to state that a Web service
falls in multiple categories as one category elements specifies one
categorization.

226 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

10.7. SEMANTIC WEB SERVICES GROUNDING: THE LINK
BETWEEN THE SWS AND EXISTING WEB SERVICES
STANDARDS

As we have pointed in the previous sections, the ultimate aim of SWS —
automatic execution of tasks like discovery, negotiation, composition,
invocation of services — requires semantic description of various aspects
of Web services. For example, the process of Web service discovery can
be automated if we have a machine-processable description of what the
user wants (a user goal) and what the available services can do (service
capabilities). We call this kind of information semantic description of Web
services.

However, currently deployed Web services are generally described
only on the level of syntax, specifying the structure of the messages that a
service can accept or produce. In particular, Web Service Description
Language (WSDL, 2005) describes a Web service interface as a set of
operations where an operation is only a sequence of messages whose
contents are constrained with XML Schema (2004). We call this the
syntactic description of Web services.

Certain tasks require that semantic processors have access to the
information in the syntactic descriptions, for example to invoke a
discovered service, the client processor needs to know how to serialize
the request message. Linking between the semantic and the syntactic
description levels is commonly called grounding. In order for SWS
to be widely adopted, they must provide mechanisms that build on
top of existing, widely adopted technologies. In this Section we look
at such mechanisms and discuss the general issues of Semantic
Web Service grounding (in Section 10.7.1); we also identify two major
types of grounding, so in Section 10.7.2 we talk about data grounding and
in Section 10.7.3 we talk about grounding behavior descriptions.

10.7.1. General Grounding Uses and Issues

As we have shown in the previous sections, most of the existing
approaches to Semantic Web Services describe services in terms of
their functional and behavioral properties, using logics-based (ontologi-
cal) formalism. First, to enable Web service discovery and composition,
SWS frameworks need to describe what Web services do, that is, service
capabilities. Second, to make it possible for clients to determine how to
communicate with discovered services, the interfaces of the services need
to be described. The description of a service interface must be sufficient
for a client to know how to communicate successfully with the Web
service; in particular a service interface must describe the messages and

SEMANTIC WEB SERVICES GROUNDING 227

the networking details. For interoperability with existing Web services
and infrastructures, interface description is based on WSDL. The glue
between the semantic interface description and WSDL is called ground-
ing. WSDL models a service interface as a set of operations representing
message exchanges. Message contents are specified abstractly as XML
Schema element declarations, and then WSDL provides so-called binding
information with the specific serialization and networking details neces-
sary for the messages to be transmitted between the client and the
service.

On the data level, Semantic Web Service frameworks model Web
services as entities that exchange semantic (ontological) data. The
grounding must provide means to represent that semantic data as
XML messages to be sent over the network (according to serialization
details from the WSDL binding), and it must also specify how received
XML messages are interpreted as semantic data. We investigate this
aspect of grounding below in Section 10.7.2.

A Web service interface in WSDL contains a number of operations.
Within an operation, message ordering is prescribed by the message
exchange pattern followed by the operation. WSDL does not specify
any ordering or dependencies between operations, so to automate
Web service invocation, a Semantic Web Service interface must
tell the client what particular operations it can invoke at a specific
point in the interaction. We call this the choreography model, and very
different choreography models are used by the known SWS frame-
works. However, since they all ground to WSDL, the grounding
must tie the choreography model with WSDL’s simple model of
separate operations. This aspect of grounding is further detailed in
Section 10.7.3.

We now know what kind of information must be specified in ground-
ing, and we have to choose where to place that information, assuming
that the semantic description is in a document separate from the WSDL.
There are three options for placing grounding information:

e putting grounding in the semantic description,
e embedding grounding within WSDL,
e externalizing grounding in a third document.

Putting grounding within the semantic description format makes it
straightforward to access the grounding information from the semantic
data, which follows the chronological order of SWS framework tasks —
discovery only uses the semantic data, and then invoking the discovered
service needs grounding. For example, this approach is currently taken
by both WSMO and OWL-S.

On the other hand, putting grounding information directly in WSDL
documents (option 2) can enable discovering semantic descriptions in
WSDL repositories, for example, in UDDI (UDDI, 2004). This approach is

228 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

taken by WSDL-S (Akkiraju et al., 2005), a specification of a set of WSDL
hooks that can be used with any SWS modeling framework. WSDL-S
itself is not, however, a full SWS framework. An externalized grounding
(outside both WSDL and the semantic descriptions) does not provide
either side (semantic or syntactic) with easy access to the grounding
information, but it may introduce even more flexibility for reuse.

However, externalized grounding is not supported by any current
specifications. We must note that the options listed above are not
exclusive, so grounding information can be put redundantly both in
the semantic description document and in the WSDL, for example, so
that it is available from both sides. This could be done, for example, by
using the native grounding mechanism in WSMO to point to WSDL and
at the same time annotating the WSDL with WSDL-S elements pointing
back to WSMO.

10.7.2. Data Grounding

Web services generally communicate with their clients using XML
messages described with XML Schema. On the semantic level, however,
Web service inputs and outputs are described using ontologies. A
semantic client then needs grounding information that describes how
the semantic data should be written in an XML form that can be sent to
the service, and how XML data coming back from the service can be
interpreted semantically by the client. In other words, the outgoing data
must be transformed from an ontological form to XML and, conversely,
the incoming data must be transformed from XML to an ontological
form.

Since the semantics of XML data is only implicit, at best described in
plain text in the specification of an XML language, a human designer
may be required to specify these data transformations so that they can be
executed when a semantic client needs to communicate with a syntactic
Web service.

In Figure 10.10 we propose a way of distinguishing between data
grounding approaches. The figure shows a fragment of the ontology of
the semantic description of an example Web service in the upper right
corner and the XML data described in WSDL in the lower left corner. The
three different paths between the XML data quadrant and the semantic
quadrant present different options where the transformations can be
implemented: on the XML level, on the semantic level, and a direct
option spanning the two levels (Note that we use WSMO terms in the
figure but it applies equally to OWL ontologies).

First, since Semantic Web ontologies can be serialized in XML, an XSLT
(XSLT, 1999) (or similar) transformation can be created between the XML
data and the XML serialization of the ontological data. This approach is
very simple and it uses proven existing technologies, but it has a notable

SEMANTIC WEB SERVICES GROUNDING 229

Pseudo—ontology from schema SWS ontology

instance #_1 memberOf Person
name hasValue #_2

instance #_1 memberOf Person
firstName hasValue "John"

instance #_2 memberOf Name ontology lastiName hasValue "Doe"
first hasValue "John" mapping
last hasValue "Doe" langhage
H \ga‘%?’
2
TR %\ ’;7 S
automatic lifting ?éxi\, P (de)serialization
J I R + = I
o L i
i
<person> i <wsml>
<name> XSLT <instance>

<first>John</first> -
<last>Doec</last>
</name>

....... . <memberOf=Person
</memberOf>

1

)

\

\

1

' ...
)

! </instances>
|

|

|

1

|

|

WSDL XML data WSML/XML representation

Figure 10.10 Data grounding approaches.

disadvantage: an XML representation of ontological data (like RDF/XML
or WSML/XML) is often an unpredictable mixture of hierarchy and
interlinking, as ontological data is not structured according to XML
conventions (we say ontological data is not native XML data), so creating
robust XSLT transformations for both directions may be a considerable
task when working with complex data structures. With simple data,
however, this problem is negligible, and since XSLT processors are
readily available and many XML-savvy engineers have some XSLT
experience, this approach is an ideal initial candidate for data grounding.
In case the XML serialization of the ontological data is also suitable for
the WSDL of a particular Web service, the transformation can be avoided.
This approach does not require any human designer to create grounding
transformations, which may be a significant saving of effort. On the other
hand, XML serializations of ontological data are not native XML data, so
they may be hard to comprehend or hard to process by XML tools, and
services that use this grounding approach may not integrate well with
nonSemantic Web services.

Second, an ad hoc ontology can be generated from the XML Schema
present in the WSDL, with automatic lifting/ lowering between the XML
data and their equivalent in the ad hoc ontology. Then a transformation
using an ontology mapping language can be designed to get to the target
ontology. In case the semantic description designer finds this generated
ontology suitable for describing this particular Web service, this ground-
ing can be fully automatic. On the other hand, if the generated ad hoc
ontology is not sufficient or suitable, grounding involves an additional

230 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

transformation between instances of the ad hoc ontology and instances of
the target ontology used by the service description. This transformation
can be implemented using ontology mediation approaches. Similarly to
the XSLT approach, the ad hoc ontology approach has the benefit of
reusing existing transformation technologies (ontology mediation in this
case), and it also has the disadvantage that the generated ad hoc ontology
is not a native ontology (it is structured as a restrictive schema for data
validation, as opposed to a descriptive ontology for knowledge repre-
sentation), and this ontology can lack or even misrepresent semantics
that are only implied in the XML. This can complicate the task of
mediating between the ad hoc ontology and the target ontology describ-
ing the service in a similar way as the nonnative XML data can
complicate the XSLT transformation.

Finally, a direct approach for mapping between XML data and the
target semantic data can be envisioned. Although we are not aware of
any work in this direction in either of the SWS frameworks, we envision a
third option that transforms between the XML data and the ontological
data directly, using a specific transformation language. While a new
transformation language would have to be devised for this approach, it
could be optimized for the common transformation patterns between
native ontological data and native XML, and so the manually created
mappings could be simpler to understand, create, and manage, than in
the previous approaches. Therefore, this approach should be considered
if the disadvantages of the others prove substantial.

10.7.3. Behavioural Grounding

For the purpose of our discussion on the behavioral grounding, we
define a choreography model of a Semantic Web Service framework as such
part of the semantic description, that allows the client semantic processor
to know what messages it can send or receive at any specific point during
the interaction with a service. Choreography descriptions have other uses
as well, for example, detecting potential deadlocks, but these uses are out
of scope of this discussion.

Because Semantic Web Services reuse WSDL, their choreography
models must be tied to its simple model of separate operations, each
one representing a limited message exchange. The ordering of messages
within any single operation is defined by the operation’s message
exchange pattern, so the choreography model must specify in what
sequence the operations can be invoked.

Choreography can be described explicitly, using some language that
directly specifies the allowed order of operations. Conversely, choreo-
graphy can also be described implicitly (or indirectly), by specifying the
conditions under which operations can be invoked, and the effects of
such invocations, and sometimes also the inputs and outputs, which are

SEMANTIC WEB SERVICES GROUNDING 231

conditions on the data that comes in and out of the service. Inputs,
outputs, preconditions, and effects are together commonly known as
IOPEs. For example, OWL-S and WSDL-S both allow IOPEs to be
specified on the level of WSDL operations. WSMO specifies the condi-
tions and effects using abstract state machines.

In the case of implicit choreography, IOPEs are usually specified on the
level of WSDL operations. With this information, known Al planning
techniques (Nau et al., 2004) can be used to find a suitable ordering of the
operations, based on the initial conditions and the end goal. In other
words, the semantic client processor gets the description of IOPEs for all
the available operations and then it plans the actual sequence it will use.
The main benefit of the implicit choreography approach is its significant
flexibility and dynamism, as different operation sequences can be dyna-
mically chosen depending on the goal of a particular client, and the
sequence can even be replanned in the middle of a run if some conditions
unexpectedly change. However, planning algorithms usually have high
computational complexity and require substantial resources, especially if
there is a large number of available operations. In situations where the
cost of Al planning is a problem, explicit choreographies can be pre-
computed (or designed) for the supported goals, and these choreogra-
phies can then be described explicitly.

On the other side, an explicit choreography description specifies, using
some kind of process modeling language, the sequences of operations
that are allowed on a particular Web service. The client processor must
be able to discover the choreography description and then it simply
follows what is prescribed. For example, OWL-S can describe choreo-
graphies explicitly with so-called composite processes, that is, composi-
tions of atomic processes. The composition ontology is based on various
works in workflow and process modeling, and it contains constructs for
describing the well-known composition patterns like sequence, condi-
tional execution, and iteration. A client processor following an OWL-S
composite process will simply execute the composition constructs, and
grounding information will only be needed on the level of atomic
processes. No other grounding information is necessary. Alternatively
to a SWS-specific composition language, a Web service choreography can
be described with industrial languages (i.e., languages developed by the
companies heavily involved in Web services standardization) like WSCI
(WSCI, 2002) /WS-CDL (WS-CDL, 2004). In this case it would be the goal
of grounding simply to point from a Semantic Web Service description to
the appropriate choreography document in WS-CDL or any other
suitable language. WSMO does not currently support any explicit
choreography description, but we expect that if the need arises, an
industrial choreography language can easily be adopted, as the ground-
ing requirement of this approach is minimal — the pointer to a WS-CDL
document, for example, can be implemented as a nonfunctional property
of a service description in WSMO.

232 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

10.8. CONCLUSIONS AND OUTLOOK

Semantic Web Services constitute one of the most promising research
directions to improve the integration of applications within and across
enterprise boundaries. In this context, we provided in this chapter an
overview of the most important approaches to SWS and pointed out the
main concepts that they define. Although a detailed comparison of all the
approaches is out of scope of this chapter, we argue that, in order for
SWS to succeed, a fully fledged framework needs to be provided: starting
with a conceptual model, continuing with a formal language to provides
formal syntax and semantics (based on different logics in order to
provide different levels of logical expressiveness) for the conceptual
model, and ending with an execution environment that glue all the
components that use the language for performing various tasks that
would eventually enable automation of service.

Amongst the presented approaches, only the WSMO Approach
tackles, in a unifying manner, all the aspects of such a framework, and
potentially provides the conceptual basis and the technical means to
realize Semantic Web Services: it defines a conceptual model (WSMO) for
defining the basic concepts of Semantic Web Services, a formal language
(WSML) which provides a formal syntax and semantics for WSMO by
offering different variants based on different logics in order to provide
different levels of logical expressiveness (thus allowing different trade
offs between expressivity and computability), and an execution environ-
ment (WSMX) which provides a reference implementation for WSMO
and interoperation of Semantic Web Services.

The OWL-S Approach is based on OWL; OWL was not developed with
the design rationale in mind to define the semantics of processes that
require rich definitions of their functionality, thus inherently limiting the
expressivity of OWL-S. WSMO/WSML tries to overcome this limitation
by providing different layers of expressivity, thus allowing rich defini-
tions of Web services. Moreover, OWL-S inherits some of the drawbacks
of OWL (de Brujin, 2005a): lack of proper layering between RDFS and the
less expressive species of OWL, and the lack of proper layering between
OWL DL and OWL Lite on the one side and OWL Full on the other.
OWL-S provides the choice between several other languages, for exam-
ple, SWRL, KIF, etc. By leaving the choice of the language to be used to
the user, OWL-S contributes to the interoperability problem rather than
solving it. In OWL-S, the interaction between the inputs and outputs,
which have been specified as OWL classes and the logical expressions in
the respective languages, is not clear. OWL-S does not make any explicit
distinction between Web service communication and cooperation.
WSMO makes this distinctions in terms of Web service choreography
and orchestration, thus apply the principle of separation of
concerns between communication and cooperation, and making the
conceptual modeling more clear. OWL-S does not explicitly consider

CONCLUSIONS AND OUTLOOK 233

the heterogeneity problem in the language itself, treating it as an
architectural issue, that is, mediators are not an element of the ontology
but repart of the underlying Web service infrastructure. WSML provides
an integrated language framework for the description of both the
ontologies and the services. Furthermore, the logical language used for
the specification of Web Service preconditions and postconditions is an
integral part of the language, thus the overall web service description
and the logical expressions which specify the pre- and postconditions are
connected for free.

The SWSF Approach can be seen as an attempt to extend on the work
of OWL-S, to incorporate a variety of capabilities not within the OWL-S
goals. A difference between FLOWS — the ontology part of SWSF and
OWL-S is the expressive power of the underlying language. FLOWS is
based On first-Order logic, which means that it can express considerably
more than can be expressed using, for example, OWL-DL.

The use of First-Order logic enables a more refined approach than
possible in OWL-S to representing different forms of data flow that can
arise in Web services. Another difference is that FLOWS tries to explicitly
model more aspects of Web services than OWL-S; this includes the fact
that FLOWS can readily model process models using a variety of
different paradigms and data flow between services, which is achieved
either through message passing or access to shared fluents. Although the
SWSF Approach seems to tackle both conceptual modeling, as well as
language issues, it is very unclear how all the paradigms part of this
approach work together. Moreover, the purpose of FLOWS was to
develop of First-Order logic ontology for Web services, and not a Web
language, for example, FLOWS does not even use URIs to specify their
concepts.

Amongst all the approaches presented in this chapter, only the IRS-III
Approach is integrated with the WSMO Approach in the sense that
IRS-IIT uses WSMO as its underlying epistemological framework.
Within IRS-IIT the stress is on creating a capability-based broker (facil-
itating the invocation of Web services through WSMO goals), ease-of-
publication being able to turn standalone code into a SWS through a
single simple dialog, and tightly coupling the semantic descriptions
with deployed Web services (e.g., semantic concepts and relations can
be implemented as Web services). Ongoing work continues to align the
two approaches.

The WSDL-S Approach follows a much more technology-centerd
approach, not providing a conceptual model for the description of Web
services and their related aspects, but rather being a bottom up approach
(annotating existing standards with metadata) than a top down, com-
plete, solution to the integration problem. WSDL-S can actually be used
to represent a grounding mechanism for WSMO. Being ontology lan-
guage agnostic, WSDL-S allows Web service providers to directly anno-
tate their services using WSML. That is, modelReference attributes can

234 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

point to concepts from WSML ontologies and the expressions in pre-
condition or effects can be directly described in WSML.

Finally, we highlighted the importance and described possible
approaches to grounding in the context of Semantic Web Services, as a
key enabler for the adoption of SWS technologies to a wide audience.

With the W3C'® submissions of WSMO (http://www.w3.org/Submis-
sion/WSMO), OWL-S (http://www.w3.org/Submission/OWL-S), and
SWSEF (http://www.w3.org/Submission/SWSEF), it is expected that all
these approaches to converge in the future in the form of a W3C activity
in the area of Web services, in order to provide a standardized frame-
work for Semantic Web Services.

REFERENCES

AKkkiraju R, Farrell J, Miller J, Nagarajan M, Schmidt M, Sheth A, Verma, K.
2005.Web Service Semantics - WSDL-S. Technical note, April 2005. Available at
http://1sdis.cs.uga.edu/library /download / WSDL-S-V1.html.

Alonso G, Casati F, Kuno H, Machiraju V. 2004. Web Services: Concepts, Architecture
and Applications. Springer-Verlag.

Arkin A, Askary S, Fordin S, Jekeli W, Kawaguchi K, Orchard D, Pogliani S, Riemer
K, Struble S, Takacsi-Nagy P, Trickovic I, Zimek S. 2002. Web Services Choreo-
graphy Interface 1.0, June 2002. Available at http://www.w3.org/ TR/wsci/.

Baida Z, Gordijn J, Omelayenko B, Akkermans H. 2005. A shared service
terminology for online service provisioning. In ICEC '04: Proceedings of the
6™ international conference on Electronic commerce.

Berners-Lee T, Hendler J, Lassila O. 2001. The semantic web. Scientific American
284(5):34-43.

Chen W, Kifer M, Warren DS. 2003. HiLog: A foundation for higher-order Logic
Programming. Journal of Logic Programming 15:3, 187-230.

Cimpian E, Moran M, Oren E, Vitvar T, Zaremba M. 2005. Overview and Scope of
WSMX. Technical report, WSMX Working Draft, http://www.wsmo.org/TR/
d13/d13.0/v0.2/, February 2005.

de Bruijn J, editor. 2005. The Web Service Modeling Language WSML. WSMO
Deliverable D16, WSMO Final Draft v0.2, 2005, http://www.wsmo.org/TR/
d16/d16.1/v0.2/.

de Bruijn J, Polleres A, Lara R, Fensel D. 2005a Owl DL vs. OWL FLight:
Conceptual modeling and reasoning for the semantic web. In Proceedings of
the 14th International World Wide Web Conference.

Dean M, Schreiber G, editors. 2004. OWL Web Ontology Language Reference.
W3C Recommendation 10 February 2004.

Domingue J, Cabral L, Hakimpour F, Sell D, Motta E. 2004. Irs-iii: A platform and
infrastructure for creating WSMO-based semantic web services. In Proceedings of
the Workshop on WSMO Implementations (WIW 2004), Frankfurt, Germany,
September 2004. CEUR.

Domingue], Galizia S, Cabral L. 2005. Choreography in IRS-III- Coping with
Heterogeneous Interaction Patterns in Web Services. In Proceedings of 4th
International Semantic Web Conference (ISWC 2005), 6-10 November, Galway,
Ireland.

16 http://www.w3.org/

REFERENCES 235

Fensel D, Bussler C. 2002. The Web Service Modeling Framework WSMF.
Electronic Commerce Research and Applications 1(2): XX.

Grosof BN. July 1999. A Courteous Compiler From Generalized Courteous Logic
Programs To Ordinary Logic Programs. IBM Report included as part of doc-
umentation in the IBM CommonRules 1.0 software toolkit and documentation,
released on http://alphaworks.ibm.com. Also available at: http://ebusiness.
mit.edu/bgrosof /#gclp-rr-99k.

Grosof BN, Horrocks I, Volz R, Decker S. 2003. Description logic programs:
Combining logic programs with description logic. In Proceedings of
International Conference on the World Wide Web (WWW-2003), Budapest, Hun-
gary.

Gruninger M. 2003. A guide to the ontology of the process specification language.
In Handbook on Ontologies in Information Systems, Studer R, Staab S (eds).
Springer-Verlag.

Hakimpour F, Domingue J, Motta E, Cabral L, Lei Y. 2004. Integration of OWL-S
into IRS-IIL. In Proceedings of the first AKT Workshop on Semantic Web Services.

Hoare CAR. 1969. An axiomatic basis for computer programming. Communications
of the ACM 12(10):576-580.

Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M. 2003. Swrl: A
semantic web rule language combining owl and ruleml. Available at http://
www.daml.org/2003/11/swrl/.

Keller U, Lara R, Polleres A, editors. 2004. WSMO Web Service Discovery. WSMO
Deliverable D5.1, WSMO Working Draft, latest version available at http://
www.wsmo.org/2004/d5/d5.1/.

Knowledge Interchange Format (KIF). 1998. Draft proposed American National
Standard (dpans). Technical Report 2/98-004, ANS. Also at http://logic.stan-
ford.edu/kif/dpans.html.

Kifer M, Lara R, Polleres A, Zhao C, Keller U, Lausen H, Fensel D. 2004. A logical
framework for web service discovery. In ISWC 2004 Workshop on Semantic
Web Services: Preparing to Meet the World of Business Applications,
Hiroshima, Japan, November 2004.

Kifer M, Lausen G, Wu J. 1995. Logical foundations of object-oriented and frame-
based languages. JACM 42(4):741-843.

Klyne G, Carroll J]J. 2004. Resource description framework (rdf): Concepts and
abstract syntax. W3C Recommendation. Available at http:/ /www.w3.org/TR/
2004 /REC-rdf-concepts-20040210.

Lloyd JW. 1987. Foundations of Logic Programming (second, extended edition).
Springer series in symbolic computation. Springer-Verlag: New York.

Mcllraith S, Son TC, Zeng H. 2001. Semantic Web Services. In IEEE Intelligent
Systems. Special Issue on the Semantic Web 16(2):46-53.

Motta E. 1998. An Overview of the OCML Modelling Language. In proceedings
of the 8th Workshop on Knowledge Engineering Methods and Languages (KEML
'98).

Nau D, Ghallab M, Traverso P. 2004. Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA.

The OWL Services Coalition. OWL-S 1.1. 2004. Available from http://www.daml.
org/services/owl-s/1.1/, November 2004.

Object Management Group Inc. (OMG). 2002. Meta object facility (MOF) speci-
fication v1.4.

PDDL-The Planning Domain Definition Language V. 2. 1998. Technical Report,
report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision
and Control.

236 SEMANTIC WEB SERVICES - APPROACHES AND PERSPECTIVES

Preist C. 2004. A conceptual architecture for semantic web services. In 3rd
International Semantic Web Conference (ISWC2004). Springer Verlag: XX,
November 2004.

Riva A, Ramoni M. 1996. LispWeb: A Specialised HTTP Server for Distributed Al
Applications. Computer Networks and ISDN Systems 28: 7-11, 953-961.

Roman D, Lausen H, Keller U, editors. 2005. Web Service Modeling Ontology
(WSMO). WSMO Working Draft D2v1.2, April 2005. Available from http://
www.wsmo.org/TR/d2/v1.2/.

Semantic Web Services Framework. SWSF Version 1.0. 2005. Available from
http://www.daml.org/services/swsf/1.0/.

UDDI Version 3.0.2. 2004. OASIS Standard, October 2004. Available at http://
Wwww.oasis-pen.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-
20041019.htm.

Weibel S, Kunze], Lagoze C, Wolf M. 1998. Dublin core metadata for resource
discovery. RFC 2413, IETF, September 1998.

Web Services Choreography Description Language (WS-CDL) Version 1.0. 2004.
Working Draft, W3C, December 2004. Available at http://www.w3.org/TR/
2004 /WD-ws-cdl-10-20041217 /.

Web Services Description Language (WSDL) Version 2.0. 2005. Last Call Working
Draft, W3C WS Description Working Group, August 2005. Available at http://
www.w3.org/TR/2005/WD-wsdl20-20050803.

XML Protocol Working Group. 2003. Soap version 1.2. Technical report, June 2003.
W3C Recommendation. Available from http://www.w3.org/TR/2003/REC-
soap12-part0-20030624 /

XML Schema Part 1. 2004. Structures Recommendation, W3C, October 2004.
Available at http://www.w3.org/TR/xmlschema-1/.

XSL Transformations. 1999. Recommendation, W3C, November 1999. Available at
http://www.w3.org/TR/xslt.

Zaremba M, Oren E. 2005. WSMX Execution Semantics. Technical report, WSMX
Working Draft, http://www.wsmo.org/TR/d13/d13.2/v0.2/, April 2005.

Zaremba M, Moran M, Haselwanter T. 2005. WSMX Architecture. Technical
report, WSMX Working Draft, http://www.wsmo.org/TR/d13/d13.4/v0.2/,
April 2005.

11

Applying Semantic Technology
to a Digital Library

Paul Warren, lan Thurlow and David Alsmeyer

11.1. INTRODUCTION

The extensive deployment of digital libraries over the last two decades is
hardly surprising. They offer remote access to articles, journals and
books with many users able to access the same document at the same
time. Through the use of search engines, they make it possible to locate
specific information more rapidly than ever is possible in physical
libraries. Scholars, and others, are able to access rare and precious
documents with no danger of damage. However, challenges remain if
the full benefits are to be realised. Interoperability between different
libraries, or even between different collections in the same library, is a
problem. At the semantic level, different schemas are used by different
library databases. Search and retrieval needs to be made easier, in part by
offering each user a unified view of the naming of digital objects across
libraries. User interfaces need to be improved, in particular to face the
challenge of large information collections. This chapter describes the
state-of-the art in digital library research, and in particular the applica-
tion of semantic technology to confront the challenges posed.
Subsequent sections go into more detail, but it is clear that the
challenges described above align closely with the goals of semantic
knowledge technology. The ontology mediation techniques described
in Chapter 6 are specifically motivated by the challenge of interoper-
ability between heterogeneous data sets, and of providing a common

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

238 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

view to those data sets. As discussed in Chapter 8, semantic information
access offers improved ways to search for and browse information and,
through an understanding of the relationship between documents, to
improve the user interface. Semantic access to information depends in
turn on the supporting technologies described in the preceding chapters;
while the creation and maintenance of ontologies in digital libraries
create problems of ontology management which require new insights
into ontology engineering.

The discussion is illustrated with a particular case study in which
semantic knowledge technology is being introduced into the BT digital
library. This provides an opportunity not just to trial the feasibility of the
technology, but also to gauge the users’ reactions and better understand
their requirements. Finally, it should be remembered that digital libraries
are themselves a particular form of content management application.
Much of what is being learned here is relevant in the wider context of
intelligent content management. To underline this point, the chapter
concludes by looking beyond the current concept of the digital library to
how semantic technology will change the way in which information is
published, thereby changing the whole concept of a library.

11.2. DIGITAL LIBRARIES: THE STATE-OF-THE-ART

11.2.1. Working Libraries

Many working digital libraries are academic and make information
freely available. Some examples are given in the section below describing
digital library research. Others are commercial, such as the ACM digital
library (http://portal.acm.org/dl.cfm), which contains material from
ACM journals, newsletters and conference proceedings. Others, such as
BT’s digital library which we describe below, are for use within parti-
cular organisations. Another category of digital library exists for the
explicit purpose of making material freely available. A well-known
example of this is Project Gutenberg (http://www.gutenberg.net)
which, at the time of writing in autumn 2005, has around 16 000 ‘eBooks’
and claims to be the oldest producer of free e-books on the Internet.

Similarly, the Open Library web site (http://www.openlibrary.org/
toc.html) has been created by the Internet Archive, in partnerships with
organisations such as Yahoo and HP, to ‘demonstrate how books can be
represented on-line’ and ‘create free web access to important book
collections from around the world’.

A great deal of digital library software is freely available. One of
the best known projects is the Greenstone digital library (http://www.
greenstone.org). Available in a wide range of languages, Greenstone is
supported by UNESCO and, amongst other applications, is used to
disseminate practical information in the developing world. Another

DIGITAL LIBRARIES: THE STATE-OF-THE-ART 239

example is OpenDLib (http://opendlib.iei.pi.cnr.it), which has been
designed to support a distributed digital library, with services anywhere
on the Internet.

A recent development from Google sees the world of the public
domain search engine encroaching that of the digital library. Google
Scholar (http://scholar.google.com/) provides access to ‘peer-reviewed
papers, theses, books, abstracts and other scholarly literature’. It uses the
same technology as Google uses to access the public Web and applies this
to on-line libraries. This includes using Google’s ranking technology to
order search results by relevance. In a similar initiative, Yahoo is working
with publishers to provide access to digital libraries.

11.2.2. Challenges

Libraries, museums and archives face huge challenges in the way
that they acquire, preserve and offer access to their collections in the
digital age. Although having similar objectives, the different types
of institution tend to use different technologies and working meth-
ods. With more and more digital born documents, new issues are
raised in terms of cataloguing, search and preservation. As the
different types of institution move closer together, they are seeking
common frameworks for managing digital collections and content
across the cultural sector.

For users, the value of libraries, museums and archives lies not
only in their own resources but as gateways to huge distributed
collections in other cultural institutions. This, too, poses major
challenges in terms of content management: namely how to provide
the user with seamless, high value, interactive services based on
these distributed resources. DigiCULT

The DigiCULT" quote above identifies a central challenge facing digital
libraries; that of combining heterogeneity of sources with efficient
cataloguing and searching, and with an appearance of seamlessness to
the user. The technologies discussed in this book provide a response to
this challenge. Through the creation of ontologies and the creation of
associated semantic metadata to describe documents, technology can
partially automate the process of cataloguing information. Through the
use of those ontologies and metadata, our technology will offer an
improved search and browse experience. At the same time, work in

]DigiCULT (http:/ /www.cordis.lu/ist/digicult) is a European Commission activity on
Digital Heritage and Cultural Content. It contains within it DELOS and BRICKS, two
projects mentioned later in this chapter.

240 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

the areas of ontology merging and mapping offers the prospect of
seamless access to distributed information.

As long ago as 1995 a workshop held under the auspices of the U.S.
Government’s Information Infrastructure Technology and Applications
Working Group identified five key research areas for digital libraries
(Lynch and Garcia-Molina, 1995):

1. Interoperability: At one level this is about the interoperability of soft-
ware and systems. At a deeper level, however, it is about semantic
interoperability through the mapping of ontologies. Indeed ‘deep
semantic interoperability” has been identified as the ‘Grand Challenge
of Digital Libraries” (Chen 1999).

2. Description of objects and repositories: This is the need to establish
common schema to enable distributed search and retrieval from
disparate sources. Effectively, how can we create an ontology for
searching and browsing into which we can map individual library
ontologies? Going further, how can we enable individual users to
search and browse within the context of their own personal ontologies?

3. The collection and management of nontextual information: This includes
issues relating to the management, collection and presentation of
digital content across multiple generations of hardware and software
technologies. Moreover, libraries are now much more than collections
of words, but are increasingly rich in audiovisual material, and this
raises new research challenges.

4. User interfaces: We need better ways to navigate large information
collections. One approach is through the use of visualisation techni-
ques. The use of ontologies not only helps navigation but also
provides a basis for information display.

5. Economic, Social and Legal Issues: These include digital rights manage-
ment and ‘the social context of digital documents’.

Semantic technology makes significant contributions to (1), (2) and (4).
Although this book is chiefly concerned with textual material, ontologies
can be used to describe the nontextual information referred to in (3).
Semantic technology also impacts (5), for example through enhancing
knowledge sharing in social groups.

The need for interoperability across heterogeneous data sources is
repeated by many authors. A more recent U.S. workshop on research
directions in digital libraries identified a number of basic themes for
long-term research (NSF, 2003), of which one is interoperability, which it
describes as ‘the grail of digital libraries research since the early 1990s’. A
number of the other themes reiterate the need to overcome heterogeneity.

The NSF workshop also identified ‘question answering’ as a grand
challenge for research, stressing the need to match concepts not just
search terms. The use of semantic technology to do just that in a legal
application is discussed in Chapter 12 of this book.

DIGITAL LIBRARIES: THE STATE-OF-THE-ART 241

11.2.3. The Research Environment

As implied by Lynch and Garcia-Molina (1995), the topic of digital
libraries has attracted significant research activity since the 1990s. Some
of this work has been with very specific goals. For example, the
Alexandria Digital Earth Project (http://www.alexandria.ucsb.edu/),
at the University of California, is concerned with geospatial data, whilst
other 3projec:ts have investigated areas such as medical information,”
music® and mathematics.*

In the US, an example of the more generic research activities is the
Perseus Digital Library project (http://www.perseus.tufts.edu/) at Tufts
University. The aim here is ‘to bring a wide range of source materials to
as large an audience as possible’. The intention is to strengthen the
quality of research in the humanities by giving more people access to
source material. At the same time, there is a commitment to ‘connect
more people through the connection of ideas’.

Within Europe, at the beginning of the current decade, the European
5th Framework Programme played a major role in digital library
research. One of the 5th Framework Programme projects gave rise to
the Renardus service (http://www.renardus.org/) which ‘provides inte-
grated search and browse access to records from individual participating
subject gateway services’. The subject gateways use subject experts to
select quality resources. This overcomes the variability of quality in Web
material, although it is admitted that it ‘encounters problems with the
ever increasing number of resources available on the Internet’. Renardus
also enables searching across several gateways simultaneously, based on
searching the metadata, not the actual resources.

Another 5th Framework project, Sculpteur’ (http://www.sculpteur-
web.org), used semantic technology for multimedia information manage-
ment. The target domain is that of museums. An ontology, with
associated tools, has been created to describe the objects, whilst a web
crawler searches the Web for missing information.

Currently, the 6th Framework Programme is sponsoring significant
research in the area of digital libraries. Two major activities initiated at
the outset of the Programme are DELOS (http://www.delos.info/) and
BRICKS (http://www.brickscommunity.org/). The goal of DELOS is to
develop ‘the next generation of digital library technologies’. DELOS has
seven ‘clusters’, of which ‘Knowledge Extraction and Semantic Inter-
operability’ is one. A key motivation of the cluster is the need for
semantic interoperability between the many existing vocabularies within

2PERSIVAL (http:/ / persival.cs.columbia.edu/) at Columbia University.

SVARIATIONS (http:/ /www.dlib.indiana.edu/variations/) at Indiana University.

“EULER (http:/ /www.emis.de/projects/EULER/) developed by the Euler consortium as
part of the European Community’s IST programme.

Semantic and content-based muitimedia exploitation for European benefit.

242 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

the digital library arena. Other clusters of relevance here are ‘Information
Access and Personalization” and ‘User interface and visualization’. The
former is investigating techniques for customising information to suit the
characteristics and preferences of users. One goal of the latter is to ‘build
a theoretical framework from which user interface designers/developers
can design digital library user interfaces’. Both are areas where semantic
technology has a role to play.

The aim of BRICKS is to ‘design and develop an open, user and
service-oriented infrastructure to share knowledge and resources in the
Culture Heritage Domain’ (Meghini and Rissi, 2005). A decentralised
peer-to-peer architecture is used to provide access between member
institutions of a BRICKS installation. The BRICKS view is that ‘semantic
interoperability should be considered as an incremental process, starting
from ‘local agreements” (Nucci, 2004).

Closely related to digital library initiatives are those in the area of
eScience, which are aimed at sharing knowledge and permitting colla-
boration. Another European 6th Framework project, DILIGENT (http://
diligentproject.org/) is aimed at creating Virtual Dynamic Digital
Libraries for virtual eScience communities, using Grid technology. Both
BRICKS and DILIGENT have, as goals, interoperability between institu-
tions.

11.3. A CASE STUDY: THE BT DIGITAL LIBRARY

The goal of our digital library case study in SEKT is to investigate how
the semantic technologies being developed can enhance the functionality
of the digital library. We have seen already that a number of the key
challenges facing digital libraries relate to issues of semantics and
semantic interoperability. We explain in Subsection 11.3.2 below how
semantic technology, and in particular the semantic knowledge access
tools described in Chapter 8, are being used to enhance our digital
library. Before that, Subsection 11.3.1 briefly describes the BT digital
library before the incorporation of semantic technology.

11.3.1. The Starting Point

In developing its digital library case study, SEKT did not start from
scratch but from BT’s existing digital library. BT began building its
digital library in 1994 and over the past decade has developed an online
system that offers its users personalisation,® linking to full text from
abstracts, annotation tools, alerts for new content and the foundations of

°A personal home page, as discussed shortly.

A CASE STUDY: THE BT DIGITAL LIBRARY 243

profiling. A key driver in developing the digital library has been the
desire to provide a single interface to the whole collection, drawing
together content from a wide variety of publishers.

The BT digital library allows its users to search the library’s contents.
In addition, they can browse through ‘information spaces’ that have been
created on subjects known to be of interest to people in the company or
through the contents of journals in the library. Information Spaces bring
together content from the library’s databases and details of new books.
They are defined by a specific query, that is the documents within the
information space are those which would be found by the query. People
can ‘join’ an information space to be alerted to new articles on the subject
and can create their own private information spaces for subjects of
particular interest to them. Figure 11.1 shows the introductory page to
one particular information space. For more information about the use of
information spaces in the BT digital library, see Alsmeyer and Owston
(1998).

Users can also be alerted when new issues of particular journals are
received in the library. Information space membership and journal
preferences are used to provide a personalised view of the digital library
homepage, as can be seen in Figure 11.2.

The library contains abstracts of all relevant technical papers and
the full text of more than a third of all the relevant engineering

BT BT Library
Powsred by BT Exsct
All Areas 1 ([search the hibrary |
Library Links . "
Mo._,m?r Semantic Web Information Space
Acronyms "
BT Patents Information Spaces bring together all the content in the Library on key topics. (f you are not David
Journal List Alsmeyer, slan-off here)
Online Books Business and management articles Technical articles
Good Websites
, The S tic Web and healthcare ¢ 5.4 Meaninglul UDDI Web senvices description -
What's New new challenge and opportunity on the horizon? - There is a lack of meaningful description of Web
Building semantic tools The "Semantic Web" can be thoughtof an servicas in UDDI, however, it Is necessary for ...
into the BT Library. Find extension of the present web, as an additional ..,
out more A domain specific ontology driven to semantic
ATl PROFILE - IAN PEARSON: What tomarrow brings document modelling - To support the realisation of
New Books - Ten years ago, when the word “internet” had semantic Web - as well as digital library, the
& barely enlered people’s vocabulary, lan Pearson semantic information
was
mprovin lomatic 1abelling through RDF
| l}“l HEING Practical RDF - The book Practical RDF, by management - Building a shared and widely
Shelley Powers, is reviewed. accessible repository. In order for scientists and
end users o ..
EH,“EE (Updated 21-Jun-2004) view more
SRR § A (Updated 15-Jun-2004) view more
— New books from Amazon]
What's being read
2 Information Sharing on the Semantic Web
Outsourcing for Radical Advanced Information Processing S], Heiner MetaNel - 8 metadata term thesaurus 1o enable
Change: A Bold Approach| sy ekenschmidt, Vrije Universiteit Amsterdam ntic | rabili n
to Enterprise Frank van Harmelen June, 2004 £32.20 domaingMetadaia interoperability s a
Transformation - Buy this tfor access o
from Amazon The Semantic Web Research an lication within nelworken
Prorm‘-mngs of the First Europien Semantic Web
HELP! Symposium (Lecture Notes in Compuler Science Inlelligent information agen| with oniology on the
lick for help, or ring or e- 5, John Davies, Dieter Fensel, Christoph Bussler, sémantic ¥ & paper introduces the new
mail the conlacts atthe Rudi Studer April, 2004 £48.00 lechnology of the semantic Web that can facilitate

Figure 11.1 A digital library information space.

244 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

BT@ | BTLibrary

Powsred by BT Exact

| | Al Areas +) ['search the library |

Library Links

About Us

The BT Library holds millions of aricles in thousands of magazines on management and technical
subjects. Here are the topics you've told us you're interested in and the journals you want 1o be alarted
to. (i you are nol David Alsmeyer, sign off here)

My Spaces My Journals

Flranﬂlng {21 Jun) Brandweek

6 elligence (21 Jun) vd5nZ3 Jun 7. 2004 (20 Jun)
:VTua‘.S Ne“; . Conient Management (21 Jun) EL&!L%.IB” L 22 A
uilding semantic tools " How 7 ¥26011 Nov 2003 (f]
o I:hegBT Library. Find %\Eﬁ: il Harvard Business Re wepf]
out more TGN, wB2n6 Jun 2004 (12 Jun)
Intzllectual Propary (21 Jun) InfoWorl
New Books Knowledge Management (21 Jun) énf\ ;| 10 7, 2004 (20 Jun)
Customer Loyalty and Retention (21 Jun) Joumnal of Intellectual Capital
Personalisation (21 Jun) v5n1 2004 (12 Jun)
Semantic Web (21 Jun) Management Today
Usability (21 Jun) May 2004 (12 Jun)
Online
See Ihe Library's most popular spaces orthe full y28n1 Jan/Feb 2004 (12 Jun)
list of spaces if you want to add additional Iopics 19 5ipan Management Review
your profile ¥45n3 Spring 2004 (11 May)
Silicon and the Stata: My Reading See the Librarys most used journals or the full list
Eﬁgqnlg?::?iggpgiy RiCana follows the leads - DiCana Inc. calls itself 3:}?;2&213;:” WEN0 S addiRoal jourag 1
1his from Amazon a marke‘ Iea:ler in a

Figure 11.2 A personalised view of the library homepage.

literature—five million articles from over 12 000 publications, including
journals, conference proceedings and IEEE Standards. This is provided in
the form of two databases, Inspec (http://www.iee.org/Publish/
INSPEC/) and ABI/INFORM from ProQuest (http://www.proquest.-
com/). To be precise, these two databases contain abstracts, each of
around 200 words. In some cases the full texts of the articles are available
either from the database supplier or from the publisher and the digital
library provides links to these.

The library uses software developed by BT’s Next Generation Web
Research to power its searching and browsing.”

11.3.2. Enhancing the Library with Semantic Technology

We look now at ways in which semantic technology is being used to
enhance the digital library.

11.3.2.1. Richer Metadata

Both the ABI/INFORM and Inspec abstracts are provided with a
significant quantity of metadata, including subject headings from a

"This software is now available from Corpora software, http://www.corporasoftware.com.

A CASE STUDY: THE BT DIGITAL LIBRARY 245

controlled vocabulary, classification codes, publication types etc. The
subject headings are taken from hierarchical listings of preferred terms
that describe the topics covered by the database. The Inspec thesaurus,
for example, contains 9000 preferred terms. As might be expected given
Inspec’s focus on physics, electronics and computing, the Inspec the-
saurus provides a rich set of terms covering these areas and a much
higher level of description of more general topics. ABI/INFORM covers
the whole breadth of business and management issues and has a
vocabulary of about 8000 preferred terms. The schemas used by ABI/
INFORM and Inspec will provide the basis for the initial set of topics to
be used to categorise documents semantically, see the discussion of topic
hierarchies in Chapter 7. However, these schemas are similar but
different and will need to be merged. Moreover, we believe that these
schemas will not be adequate to generate a sufficiently fine-grained set of
topics. We are taking the set of topics generated from the database
schemas and refining this set with ontology learning software developed
in SEKT. In addition we will incorporate data already marked up with
the RSS standard used for news syndication.

The end result will be a topic hierarchy, that is some topics will be
defined as sub-topics of other topics. Thus ‘knowledge management’
might be a sub-topic of ‘information management’, and at the same time
have ‘communities of interest” as its own sub-topic.

It is hoped to add documents from other sources, for example the Web,
which do not come with predefined metadata. In this case the associated
topics need to be inferred automatically from the text. Addition of
material to the library might be prompted by a user finding a page of
interest on the intranet or Internet, and wanting to share this with
colleagues. We call this ‘jotting’. Alternatively, SEKT has developed a
focussed crawling facility which, given a seed page, can search the
Internet for related pages. Again, these additional pages need to be
categorised against the library topics.

11.3.2.2. Enhanced User-Profiling

Information searching, information sharing and the use of information
alerts can all be made more precise when we have a profile of the user’s
interests. Of course, the user himself can create such a profile, using the
topic hierarchy. This is similar to the approach taken by Google’s
personalised web search (http://labs.google.com/personalized). How-
ever, this is an overhead from which we wish to relieve the user, at least
partially. SEKT is therefore using an automatic user-profiling technique
based on analysis of the abstracts downloaded by the user. A typical user
may use the Web and intranet at least as much as he uses the digital
library. Therefore, to establish his profile, we are taking into account
information accessed from the Web and intranet.

246 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

11.3.2.3. Unlocking the Documents

Search technology frequently operates at the level of whole documents. A
search for a reference to a person will identify documents referring to
that individual, but say nothing about where those references occurred in
the documents. SEKT intends to unlock the documents by annotating
fragments within them, to give a much richer search experience.

As described elsewhere in this book, SEKT will identify ‘named entities’
in documents. These are entities within a document which can be identi-
fied as significant by information extraction techniques. At the simplest
level they may be proper nouns, for example names of people or places,
which can be identified in English by the use of capital letters. This
approach can extend to less tangible entities, for example pieces of
legislation. These named entities can then be included as instances in a
knowledge base. Typically, within the knowledge base, we distinguish
between such learned instances and instances which are ‘trusted’, that is
input into the knowledge base by a domain expert, or acquired from a
reliable data source. In the case of learned instances there is the possibility
of error. In the case of trusted instances we assume errors will not occur. A
specific example of an error would be to associate the text strings ‘George
Bush’ and ‘George W Bush’ with the same instance in the knowledge base,
when the former refers to the famous father and the latter to the famous
son. Entities can be identified in the document by a hyperlink, enabling the
user to view information about the entity, drawn from the knowledge base.
For more detail on this approach, see Kiryakov et al. (2004).

11.3.2.4. Enhanced Searching and Browsing

As discussed in detail in Chapter 8, the availability of semantically
annotated information resources offers the opportunity to provide
more sophisticated search capabilities. Nonetheless, there will always
be a need to undertake textual searches, in the traditional way. Indeed,
there is a school of thought which says that most users will want to begin
any search with a simple text string. At a subsequent stage they will wish
to disambiguate between various occurrences of different information
entities identified by the same text string.

A typical example might be a company name where that name is used
by a variety of entities besides companies or even by several different
companies. In the first case the user disambiguates by specifying that he
is interested in entities of class ‘company’. In the second case he goes
further and specifies some characteristic of the company, for example the
sector in which it operates. In this case the search is employing the
activelnSector relationship used to describe companies in our knowledge
base. This disambiguation will be achieved through a drop-down menu
or menus to provide additional information about the entity sought, for
example the class to which it belongs. The design of the user interface is

A CASE STUDY: THE BT DIGITAL LIBRARY 247

critical and usability trials will help us understand how people best inter-
act with such semantically enabled knowledge management systems.

The user can also use the topic hierarchy to find relevant documents,
moving up or down the hierarchy to expand or refine the search. For
example, if a search on a particular topic gives no useful hits, the user can
look for a supertopic of the original topic. Conversely, if too many hits
occur, the user can look for sub-topics. Besides searching and browsing
by topic, the user can browse the library using other characteristics of a
document, for example by requesting other documents by the same
author.

Whatever form of search the user employs, the results presented will
be able to take account of the user’s profile. For example, the search
string ‘visual impairment” will produce quite different results for a user
with an interest in human resources than for a user interested in medical
technology. The user profile will contain a component representing the
longer-term user interests and also a component derived from current
activities, for example the documents read during the current session.
For example, a search for the word ‘jaguar’ might normally return
information about the South American cat, if the user’s profile indicates
an interest in natural history. If our user, on the basis of recently viewed
documents and web pages, appears on this occasion to be interested in
cars, then ‘jaguar’ could be interpreted differently. On a subsequent day,
the system would revert to its original interpretation, for this particular
user. There may be times when this facility hampers the user, and he or
she must be free to switch off both the long-term and the short-term
aspects of the profile.

One interesting research area is the exploitation of the linkages
between people to influence search results. Assume that two users, A
and B have very similar profiles. User A starts a search with a particular
text string and after some efforts, including using the ontology to achieve
disambiguation, terminates the search with a particular document or set
of documents. Then if user B subsequently searches with the same text
string, the system could reasonably assume that the documents terminat-
ing A’s search should be among the most relevant to B.

11.3.2.5. Displaying Results

We are experimenting with improved ways of displaying results to users,
based on an analysis of the semantics.

One approach is to cluster the results according to the principal
themes. A search for ‘George Bush’ might cluster documents according
to whether they relate to the father or the son. One might go further and
categorise documents according to some aspect of George Bush, for
example foreign policy, domestic policy etc.

An analysis of semantics can also be used to better précis documents.
In the limit, instead of a list of documents one could present the user

248 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

with simply the required information, drawn from all the relevant
documents.

Experimentation is necessary to understand what the user wants.
Underlying whatever techniques are used must be the insight of Herbert
Simon, re-quoted in (NSF, 2003): ‘information ... consumes the attention
of its recipients. Hence a wealth of information creates a poverty of
attention, and a need to allocate that attention efficiently among the
overabundance of information sources that might consume it". Our first
priority is always to ensure that the right information is presented to the
user. The next priority must be to ensure that it is done in a way which
minimises the consumption of that user’s attention.

11.3.2.6. Connecting Ideas, Connecting People

In an earlier section, we noted that the Perseus Digital Library project
had a commitment to ‘connect more people through the connection of
ideas’. This statement embodies the idea that a digital library should be a
community of people as well as a collection of documents. By under-
standing usage patterns at the semantic level, semantic technology can
identify experts as well as communities of interest. In the former case
these experts will hopefully be available to give advice, although
possibly through the intermediary of the digital library to provide
them with anonymity. In the latter case, we hope to help create commu-
nities of mutually supportive users with common interests.

11.4. THE USERS’ VIEW

The development of any system should be guided by a comprehensive
view of what users actually want from that system. At the same time,
asking users about their requirements is notoriously difficult. When the
proposed system includes radically new functionality with which the
user is not familiar, users may expect too much from the technology.
Frequently, however, they expect too little and ask for more of the same,
but simply faster and cheaper. Even when the potential of a new
technology is described, there is a difference between imagining the
possibilities and actually using the resultant system. Hence any system
design using previously untried technology must take into account what
users say they want, but at the same time not let user feedback close off
any avenues which use the technology in radically new ways.

Within the digital library case study in the SEKT project a number of
methods were employed to obtain a comprehensive view of what users
want from digital libraries, so that these requirements could be inter-
preted in terms of the capabilities of semantic technology.

Initially a questionnaire and focus group were used to gauge user
requirements. Much that was learned was very generic and did not relate

THE USERS" VIEW 249

particularly to the capabilities of semantic technology. However, we did
learn that our users wanted improved ways of searching, including the
ability to search on attributes of a document; and that they wanted
searches to take into account their profile of interests.

The next stage was a questionnaire which asked specific questions
about search functionality. Just under 90 people responded to this
questionnaire. The responses revealed considerable enthusiasm for a
facility which summarised a set of results. A search function which took
into account personal preferences was also popular, as was attribute-
based search. Also well up the list of requirements was the ability, if a
particular article was not available in the digital library, to search it out
on the Web.

Amongst the other popular features were:

e A search function which suggests candidate topic areas in which to
search.

e The ability to enter natural language queries.

e The highlighting of named entities, for example people and compa-
nies, and access to further information about those entities.

Less popular was an application to perform regular searches motivated
by personal information, for example held in the user’s calendar. The
majority of people ranked this ‘useful’, but only a very small number
ranked it ‘very useful’, suggesting that enthusiasm for such proactive
systems is lukewarm.

Our final technique for understanding users’ requirements was that of
user preference analysis. The essence of this is to investigate the trade-off,
from the user’s perspective, between various proposed enhancements.
One comparison was between precision and recall. Semantic technology
can in principle improve both. Precision is enhanced by the ability to
specify the nature of the entity being sought, for example that the string
‘BT” corresponds to a company in the telecommunications sector. Recall
is enhanced by the ability to understand that different text strings
represent the same entity, for example the ‘George Bush’, ‘George W
Bush’ and ‘The President” all describe the same person. Nevertheless,
there is some trade-off between the two capabilities. Systems which are
too keen to identify equivalences, in the interests of recall, may do so at
the risk of creating false equivalences and damaging precision. A sample
of users was asked to rate their preference between these two capabil-
ities. When the results were analysed, there appeared to be two clusters
of users: one with a clear preference for precision and another where the
users gave equal weight to precision and recall.

These studies should only be taken as a guide. When users are
confronted with real systems they are likely to react differently than
when confronted with questionnaires and in focus groups. However,
they offer a starting point for understanding users, to be taken into

250 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

account when faced with trade-offs in designing systems, and to be
further tested by users reaction to real semantic digital library systems.

11.5. IMPLEMENTING SEMANTIC TECHNOLOGY
IN A DIGITAL LIBRARY

11.5.1. Ontology Engineering

A well-designed ontology is essential for a successful semantic applica-
tion. Within SEKT we are adopting a layered approach. In the lower
layers we have a general ontology, which we call Proton (PROTo
Ontology, http://proton.semanticweb.org). The classes in this ontology
are a mixture of very general, for example Person, Role, Topic, Time-
Interval and classes which are more specific to the world of business, for
example Company, PublicCompany, MediaCompany. See Chapter 7 for
more detail.

Above this we have the PROTON Knowledge Management ontology,
which contains classes relating to knowledge management. Examples are
UserProfile and Device.

Finally, each of our three case studies has its own domain-specific
ontology. In the case of the digital library, this will contain classes
relating to the specifics of the library, for example to the particular
information sources available.

A strength of an approach based on the use of an ontology language
such as OWL, is the ability to accommodate distributed ontology creation
activities, for example through defining equivalences. Nonetheless,
where possible the creation of duplicate ontological classes should be
avoided and where appropriate we make use of existing well-established
ontologies, for example Dublin Core®

Mention has been made of the use of a topic hierarchy. Within
PROTON there is a class, “Topic’. Each individual topic is an instance
of this class. However, frequently a topic will be a sub-topic of another
topic, for example in the sense that a document ‘about’ the former should
also be regarded as being about the latter. Since topics are instances, not
classes, we cannot use the inbuilt subclass property, but must define a
new property subTopic. Such a relationship must be defined to be
transitive, in the sense that if A is a sub-topic of B and B is a sub-topic
of C, then A is also a sub-topic of C.

This approach, based on defining topics as instances and using a
subTopic property rather than defining topics as classes and using the
sub-class relation, is chosen to avoid problems in computational tract-
ability. In particular, this enables us to stay within OWL DL. It follows

Shttp:/ /dublincore.org/

IMPLEMENTING SEMANTIC TECHNOLOGY IN A DIGITAL LIBRARY 251

approach 3 in Noy (2005). Again, for a more detailed discussion, see
Chapter 7.

11.5.2. BT Digital Library End-user Applications

The following end user applications are available:

(i) a semantic search and browse application,
(ii) a knowledge sharing application,
(iii) a personal search agent,
(iv) semantically enabled information spaces.

All applications were built upon the core technologies of ontology
creation; named entity identification and annotation; ontology mainte-
nance and ontology mediation.

The semantic search and browse application combines free-text search
with a capability to query over the ontology and knowledgebase as
described in more detail in Chapter 8. The search and browse applica-
tion augments the more traditional practice of presenting the results of a
query as a ranked list of documents with an approach where knowledge
contained within documents is presented in a more meaningful way to
the user. Named entities, for example company names, are identified
and relevant supplementary information is presented to the user. In
addition, user-specific, interest-based profiles are constructed in accor-
dance with a user’s interaction with the digital library and other WWW
and intranet information sources, giving an element of context to the
user’s search.

The semantic knowledge sharing application enables users to annotate
digital library documents, WWW or Intranet pages with topics selected
(semi-automatically) from the digital library topic ontology, to share that
information with colleagues, and to recall annotated pages at a later date
more easily. Our user can also add a comment, for subsequent viewing
by his colleagues. The essence of our approach is that sharing is not
achieved by pushing information to colleagues, for example via email.
Instead, web-pages marked by a user as being of particular interest or
value, are presented prominently when they occur amongst the search
results of that user’s colleague, or when he or she comes across them in
browsing. The incentive to share arises from the fact that the sharing
mechanism is exactly that of bookmarking, that is in bookmarking the
page for himself, the user is sharing it with colleagues.

The personalised semantic search agent collects relevant content from
the digital library and WWW on behalf of a user, and gives improved
relevance and timeliness of the delivery of information. Named entities
within the search agent’s results are highlighted. The approach builds on
that of KIM, see Chapter 7.

252 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

In the original digital library, information spaces were defined by a
search, and this remains the case in the semantically enhanced library.
The difference is that the defining search may now be semantic instead of
textual, or even a combination of semantic and textual.

11.5.3. The BT Digital Library Architecture

The BT digital library is based on a 5-layer architecture comprising the
persistence layer, the semantic layer, the integration layer, the applica-
tion layer and the presentation layer. Access to the applications is
provided by a BT digital library semantic portal. The majority of users
access the BT digital library applications from a desktop or laptop PC.
Some mobile users require access to business critical information, for
example relevant breaking news updates, from handheld or PDA
devices. The user interfaces to the applications are presented according
to the capabilities of the device being used and any preferences set by the
user. Note that this architecture, which is illustrated in Figure 11.3,
provides the user functionality at ‘run-time’. A separate set of functions
are used at ‘ontology engineering time’, for example for creating and
editing ontologies and for creating mappings between ontologies.

Presentation layer
1 Device independent presentation l 1 User interfaces
Application layer
[Alerting |
N Profile Ontology
Knowledge Information Search Search & ;
N construction and management
sharing spaces agent browse management tools
Integration layer
SEKT integration platform (SIP)
Semantic layer
Named entity Semantic Inference Ontology Author Ontology
extraction annotation engine mediation identification maintenance
Profile Language BT digital library Ontology
construction generation ontology (Proton) % construction
Persistence layer
8 Database
Database creation Focused Classifi
and population crawler assiiier
Internal information sources External information sources

Figure 11.3 The BT digital library run-time architecture.

IMPLEMENTING SEMANTIC TECHNOLOGY IN A DIGITAL LIBRARY 253

11.5.3.1. The Persistence Layer

The persistence layer comprises the internal sources of information, for
example the subscribed ABI and Inspec databases, and external sources
of information, for example RSS items. The SEKT components that draw
together relevant content for the digital library, for example the focused
crawler and the components that populate the database and build
profiles from an analysis of the log files are incorporated into the
persistence layer. The Inspec and ABI records, RSS items, and the text
extracted from web pages and RSS items are stored together with their
associated metadata in the database. A classifier classifies the web pages
and RSS items against topics in the BT digital library ontology.

11.5.3.2. The Semantic Layer

The semantic layer is concerned with the creation, enhancement, main-
tenance, and querying of ontological information that is linked to the
data stored in the persistence layer.

Metadata associated with Inspec, ABI and RSS items is transformed
into BT digital library ontology-specific metadata. Where possible the
original data is enhanced with metadata that is created from or identified
within the data itself, for example named entities such as the name of a
company can detected in the abstract of a ABI record.

The BT digital library ontology is based on the PROTON general
ontology, as already described. This defines the top-level generic con-
cepts required for semantic annotation, indexing and retrieval, e.g.
concepts such as author and document. This base ontology is extended
with some additional classes and properties that are required to
facilitate the SEKT-specific and case study-specific applications and
functions.

User interest profiles, which are also stored in the ontology, are
constructed from an analysis of user interaction with the BT digital
library (from the digital library Web server log files) and from the content
of the Web pages that a user accesses. Software within the user’'s Web
browser analyses documents accessed (for example, treating them as
‘bags of words’) and creates a vector representing the user’s interests.
These vectors are mapped to the most relevant topics in the BT digital
library ontology. In turn, the topics are then added to the user’s profile
under the control of the user.

The ontology store includes not just the PROTON ontology but also a
set of rules to be run when a query is executed. These rules can be used
to enable sophisticated query facilities, and also to enable a mapping
between the ontologies.

Components in the semantic layer augment the ABI, Inspec and Web
data with supplementary metadata. The named entity identification and
annotation components identify named entities such as people’s names,

254 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

place names, and company names within the library content, and
provide the semantic annotations which can be queried by the semantic
query component.

The ontology construction components create the fine-grained sub-
topic structure within a set of documents (textual items) classified by an
information space. The ontology construction components also enable
new information to be classified against topics in the BT digital library
ontology.

Instance disambiguation components identify potential ambiguities in
the instance data, for example the author identification component
identifies equivalent author names within the BT digital library ontology
and disambiguates where authors share a common name and initials.
This in turn enables further metadata to be generated that links instances
concerned with a particular author.

The natural language generation component enables natural language
statements to be built from the information held in the ontology. Such
statements are used to enhance the way in which information is pre-
sented to users. For example information about people, companies,
related topics and relevant information spaces is presented to the user
in preference to listing a set of search results. Additionally, natural
language generation can be used to generate descriptions of topics and
information spaces.

The components that are required to populate, annotate, store, index
and manage the BT digital library ontology and enable the ontology to
evolve over time are provided in the semantic layer. The process of
adapting the ontology is supported by components that discover changes
in the underlying data and that can adapt the ontology incrementally in
accordance with those changes. End user interaction with the digital
library is also analysed to enable changes to be made to the ontology that
would best suit the needs of end users.

The ontology mediation component unifies any underlying ontologies
that are used in the BT digital library, for example ontology-mapping rules
enable equivalent classes in different underlying ontologies to be mapped
to each other, thereby facilitating querying across equivalent classes.

11.5.3.3 The Integration Layer

The integration layer provides the infrastructure that enables the
applications to be built from SEKT components (in the semantic layer).
The integration functions are provided by SEKT Integration Platform
(SIP). The SIP infrastructure also enables semantic layer components to
be integrated, for example the integration of data mining components
with GATE.”

*http:/ /gate.ac.uk/

FUTURE DIRECTIONS 255

11.5.3.4. The Applications Layer

The BT digital library applications utilise the components of the semantic
layer. In general, applications such as the search and browse, and, search
agent applications, query the data held in the BT digital library ontology
through the inference engine via the SIP. The architecture also allows for
applications to interface directly to semantic layer components where
necessary. The alerting component, which is common to all applications
that push information to users, enables information alerts to be delivered
at a time and in a format that is suitable to the user. A profile construction
component, which is integrated with a web browser, enables profiles of
users’ interests to be constructed.

11.5.3.5. The Presentation Layer

Client devices interact with the presentation layer of the architecture. A
device independent presentation component presents the user interface
for each end-user application according to the capabilities of the device
being used and to the preferences set by the user.

11.5.4. Deployment View of the BT DIGITAL LIBRARY

The BT digital library architecture has been implemented on two Sun
Microsystems servers. All components in the semantic, application and
presentation layers have been deployed on a Sun Blade 1500 server
running SunOS 5.9. The back end databases for Inspec and ABI/
INFORM are provided on the existing BT digital library Sun Fire V240
server, running SunOS 5.8.

11.6. FUTURE DIRECTIONS

Today digital libraries are walled gardens; stocked with knowledge of
known provenance and hence in which a degree of trust is possible;
relatively well catalogued and provided with metadata; and for which a
charge exists for entry. Outside these walls lies the Web with a vast
quantity of information; some of it immensely valuable but much of
dubious provenance and validity; with limited or no cataloguing and
limited metadata; but free for all.

The history of information and communication technologies is one of
disappearing barriers. Witness the attempt to create walled gardens by
companies such as AOL in the previous decade. Digital libraries will not
escape this trend.

The future Semantic Web will include a wide variety of heterogeneous
resources. de Roure et al. (2005) describe a Semantic Grid which

256 APPLYING SEMANTIC TECHNOLOGY TO A DIGITAL LIBRARY

effectively subsumes the Semantic Web and includes resources ranging
from powerful computational resources to sensor networks. Amongst
these will be the components of a digital library. Yet the digital library as
an identifiable entity may have ceased to exist. Instead the user of the
Web will see a network of resources, of varying provenance, trustworthi-
ness and cost. Much will be free, but where payment is justifiable, then it
will be required. The walled garden will have ceased to exist, but instead
individual items within the whole landscape will have controlled access.

The resources themselves will vary enormously. Not just text and
multimedia in the conventional sense, but software and data objects of all
sorts. The last of these will include the results of scientific experiments,
so that researchers will not just read their colleagues research results
on-line, but also have access to the raw data and be able to repeat the
analyses. They will have access to some data even as it is being created,
for example sensor data.

All this data will be linked. A paper on the Web will link to its
references. The paper will also be linked to the data used to generate the
published results. Data in a databank will link to the papers which have
made use of it.

There will be an enormous richness of metadata. For example, we are
used today to seeing the finished product of an intellectual process; for
example the scientific paper which creates new ground-breaking insight.
How much could we learn from understanding the process which
created it; for example the reasons why a particular approach is used,
and why so many others are rejected. All this information can be
captured as the intellectual process itself is taking place, and treated as
metadata.

The suggestion has even been made that the paper, as a linear
narrative, may lose its monopoly as a medium of communication, at
least in the scientific world (de Waard, A 2005). Perhaps to be comple-
mented by ‘sets of triples, or at least annotated hypertext’. More
prosaically one could imagine authors plagiarising their own, or even
others work, by hyperlinking sections from previous work into new
work, for example to provide a background to the new work.

To exploit its full benefits, new technology demands new ways of
working. The introduction of information technology should always be
accompanied by a redesign of business processes. One author has
forcibly made the point that digital libraries must support new ways of
intellectual work (Soergel, 2002). So our technology must be seamlessly
integrated into the systems which support a user’s work; and we must
seek to go beyond the limitations of our paper-based metaphors and
truly exploit the power of the technology.

To achieve all this, significant research is still needed. Just as in other
chapters’ authors have stressed the need for more research into the core
semantic technologies, so here we stress the need for more research into
exploiting those technologies to create the digital libraries of the future.

REFERENCES 257

Encompassed within this research will be work to understand how the
new ways of organising knowledge enable and demand new ways of
performing knowledge work; so that the new technology can radically
enhance our intellectual activity.

REFERENCES

Alsmeyer D, Owston F. 1998. Collaboration in Information Space. Proceedings of
Online Information 98, Learned Information Europe, Ltd, pp 31-37.

Chen H. 1999. Semantic Research for Digital Libraries, D-Lib Magazine, Vol. 5,
No. 10, October 1999. http:/ /www.dlib.org/dlib/october99/chen/10chen.html

de Roure D, et al. 2005. The Semantic Grid: Past, Present and Future. Proceedings
of the IEEE 93(3), pp 669-681.

de Waard A. 2005. Science Publishing and the Semantic Web. In Industry Forum:
Business Applications of Semantic Web Challenge Research, at 2nd European
Semantic Web Conference 2005.

Kiryakov A, Popov B, Terziev I, Manov D, Ognyanoff. 2004. Semantic annotation,
indexing, and retrieval. Journal of Web Semantics 2:49-79.

Lynch C, Garcia-Molina H. 1995. Interoperability, Scaling and the Digital Libraries
Research Agenda. A report on the May 18-19th 1995 IITA digital libraries
workshop. http://dbpubs.stanford.edu:8091/diglib/pub/reports/iita-dlw/main.
html

Meghini C, Risse T. 2005. BRICKS: A Digital Library Management System for
Cultural Heritage. In ERCIM News, No. 61, April 2005, http://www.ercim.
org/publication/Ercim_News/enw61/meghini.html

Noy N. 2005. Representing Classes as Property Values on the Semantic Web, W3C
Working Group Note 5th April 2005, http://www.w3.org/TR/2005/NOTE-
swbp-classes-as-values-20050405/

NSF. 2003. Knowledge Lost in Information, Report of the NSF Workshop on
Research Directions in Digital Libraries, June 15-17, 2003. http:/ /www.sis.pitt.
edu/~dlwkshop/report.pdf

Nucci F. 2004. BRICKS Ontology Approach ‘Emergent Semantics’, http://www.
w3c.it/events/minerva20040706/nucci-en.pdf

Soergel D. 2002. A Framework for Digital Library Research. in D-Lib Magazine,
December 2002, Vol. 8, No. 12, http://www.dlib.org/dlib/december02/soer-
gel/12soergel.html

12

Semantic Web: A Legal Case
Study

Pompeu Casanovas, Naria Casellas, Joan-Josep Vallbé,
Marta Poblet, V. Richard Benjamins, Mercedes Bldzquez,
Rall Pefia and JesUs Contreras

12.1. INTRODUCTION

Socio-legal studies have used the notion of ‘legal culture’ in many senses
since Friedman initially coined the term as ‘the network of values and
attitudes related to law’ (Friedman, 1969) and further distinguished
between the ‘external legal culture’—the culture of the general popula-
tion—and the ‘internal culture’—‘the legal culture of those members of
society who perform specialized legal tasks” (Friedman, 1975).

Notwithstanding the valuable contribution of the concept to the
analysis of legal systems, criticisms were made because of its lack of
measurability. In this regard, Blankenburg proposed to split the concept
into various levels and variables of analysis, namely: (i) the ideas and
expectations of justice; (ii) the doctrine of major families of legal systems;
(iii) legal training, legal professions, courts, and their procedures; (iv) the
way legal institutions actually work, and (v) the degree of trust of people
in them (Blankenburg, 1999).

However, we have argued elsewhere that the problem of linking this
general institutional framework of legal behavior with the more concrete
procedures of thinking, deciding, and ruling still remains unsolved
(Casanovas, 1999). The work described here is an attempt to identify,
organize, model, and use the practical knowledge produced by judges in
judicial settings. We will refer to ‘judicial culture’ or, more specifically, to

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

260 SEMANTIC WEB: A LEGAL CASE STUDY

‘judicial knowledge’ to describe the whole range of cognitive skills and
technical resources displayed by judges in judicial units to think, decide,
and judge.

This chapter describes the different steps taken in the legal case study
towards the design and development of the Iuriservice system. Iuriser-
vice is a web-based application that retrieves answers to questions raised
by incoming judges in the Spanish judicial domain. Iuriservice provides
these newly recruited judges with access to frequently asked questions
(FAQ) through a natural language interface. The judge describes the
problem at hand and the application responds with a list of relevant
question-answer pairs that offer solutions to the problem faced by the
judge altogether with a list of relevant judgments. This application can
also be used as a traditional FAQ system, by selecting the appropriate
question from a list. In this way, Iuriservice aims at organizing, model-
ing, and making judicial knowledge usable to any incoming judge.

12.2. PROFILE OF THE USERS

Identifying the problems that newly recruited judges face in daily
work and modeling judicial knowledge are basic purposes of the legal
case study. To fulfill those objectives, extended fieldwork was perfor-
med from March to September 2004." The research targeted the judges
of the 52nd class of the Judicial School, who filled vacancies in
first instance courts scattered throughout Spain (14 of 17 Autonomous
Communities were visited). This group of judges took office by early
2002, so that they had already spent 2 years in office. Consequently,
the 52nd class fulfilled our two basic ethnographic requirements: they
were newly recruited judges who, at the same time, had spent time
enough in office so as to provide researchers with a number of questions
regarding daily problems, on-duty periods, and legal procedures at
large.

Iiterviews with newly recruited judges contain a number of variables
relevant to describe the organizational context of users (i.e., work
conditions, organization of judicial units, professional contacts, etc.).
The fieldwork also aimed at obtaining an accurate profile of judges as

IThe UAB Observatory of Judicial Culture (OJC) had already conducted a national survey
on newly recruited judges in 2002 (Ayuso et al., 2003). The survey consisted of in depth
interviews to 130 incoming judges. Interviews were conducted by their own peers, still at
the Judicial School, as part of their training. Judges were taught how to perform the
interviews so that they could also obtain information about what they could expect to
encounter in their future workplaces. To compare results, 141 senior magistrates were also
interviewed.

PROFILE OF THE USERS 261

41,18

Very high High Medium Low Very low No answer
given

Figure 12.1 Perception of judges of work pressure (2004).

potential users of Iuriservice. Results therefore concentrate on both
sociological variables and IT skills (use of Internet, use of hardware
and software applications, use of legal databases, etc.).

As regards organizational contexts of users, results show that most
newly-recruited judges work under time pressure. Almost 95 % of judges
interviewed declared to bring work home in the evening and 87 % added
that they worked over the weekends as well. On average, judges work 24
extra hours per week and 63 % of them consider that work pressure is
‘high’ or ‘very high’ (see Figure 12.1)

With respect to IT skills, although judges typically argue in interviews
that they have no time no navigate through the Internet, results indicate
the growing use of the Internet among them (only 19 % of them declare
not using it). The page of the Official Bulletin of the State is the most
accessed site (45 % of cases), followed by legal information sites in
general (20 %).

To the question of ‘which would you like to find if judges were given
a web service system’ the majority of them proposed a site where
doubts regarding professional cases could be shared and discussed
(see Figure 12.2).

Nevertheless, results also reveal that, despite growing use of the
Internet, users of the system will be judges who have medium or
low technological abilities, not fully acquainted to new technologies.
At the same time, they are willing to accept them, provided they
facilitate decision-making and management of daily caseload. The
main conclusion relevant to the design of Iuriservice, therefore, is that
the web-based platform should be easy to learn and user-friendly for
judges.

262 SEMANTIC WEB: A LEGAL CASE STUDY

40%

35,29%

35%

30% A

25% 1

20%

15% A

10% A

5%

0% -

Practical
probs
Judgments
Doctrine
None
Corporate
info
Judges'
forum
Database
Legislation
Forms

Figure 12.2 Preferences of judges regarding potential web services (2004).

12.3. ONTOLOGIES FOR LEGAL KNOWLEDGE

Legal ontologies are different from other domain ontologies in two ways.
On the one hand, although legal statutes, legal judgments, or jurispru-
dence are written both in natural and technical language, all the common
sense notions and connections among them, which people use in their
everyday life, are embodied in the legal domain.

On the other hand, the strategy of ontology building must take into
account the particular model of law that has been chosen. This occurs in a
middle-out level that it is possible to skip in other ontologies based in a
more contextual or physical environment.

Therefore, the modeling process in the legal field usually requires an
intermediate level in which several concepts are implicitly or explicitly
related to a set of decisions about the nature of law, the kind of language
used to represent legal knowledge, and the specific legal structure
covered by the ontology. There is an interpretative level that is com-
monly linked to general theories of law. This intermediate level is a well-
known layer between the upper top and the domain-specific ontologies,
especially in ‘practical ontologies.’”> We may also implicitly find this
distinction between an ontology layer and an application layer in

%An interpretation is the mapping (semantics) from one application instance (conceptual
schema) syntactically described in some language into the ontology base, which is assumed
to contain conceptualizations of all relevant elementary facts [- - -]. The interpretation layer
constitutes an intermediate level of abstraction through which ontology-based applications
map their syntactical specification into an implementation of ontology ‘’semantics” (Jarrar
and Meersman, 2001).

ONTOLOGIES FOR LEGAL KNOWLEDGE 263

cognitive modeling, in which categories, concepts and instances are
distinguished.® But the most striking feature of the legal ontologies
constructed so far is that the intermediate layer is explicitly occupied
by a kind of high conceptual constructs provided by general theories of
law instead of empirical or cognitive findings.

12.3.1. Legal Ontologies: State of the Art

At present, many legal ontologies have been built. One current way of
describing the actual state of the art is to identify the main current legal
ontologies (Visser and Bench-Capon, 1998; Gangemi and Breuker, 2002;
Rodrigo et al., 2004; Casanovas et al., 2005b):

e LLD [Language for Legal Discourse: (McCarty, 1989)], based on atomic
formula, rules, and modalities;

e NOR [Norma: (Stamper, 1996)] based on agents behavioral invariants
and realizations;

e LFU [Functional Ontology for Law: (Valente, 1995)] based on norma-
tive knowledge, world knowledge, responsibility knowledge, reactive
knowledge, and creative knowledge;

e FBO [Frame-Based Ontology of Law, (van Kralingen, 1995; Visser
1995)], based on norms, acts, and descriptions of concepts;

e LRI-Core Legal Ontology (Breuker et al., 2002), based on objects,
processes, physical entities, mental entities, agents, and communica-
tive acts;

o IKF-IF-LEX Ontology for Norm Comparison (Gangemi et al., 2001),
based on agents, institutive norms, instrumental provisions, regulative
norms, open-textured legal notion, and norm dynamics.

At the moment, at least thirteen different legal ontologies have been
identified (see Figure 12.3 below), corresponding to 10 years of research.
A. Valente (2005) has recently provided the following account of their
stage of development, adding to the classical ones recent work made
by Mommers, Lame, Leary, Vanderberghe, Zeleznikow, Saias, and
Quaresma Ha, etc.*

The legal ontologies described above have been built up with several
purposes: information retrieval, statute retrieval, normative linking,

3‘Cognitive informatics is the study of the cognitive structure, behavior, and interactions of
both natural and artificial computational systems, and emphasizes both perceptual and
information processing aspects of cognition [- - -]. Constructing the mental model of human
expertise within the context of a particular problem-solving task is referred to as cognitive
or conceptual modeling [---]. An ontology can also be regarded as a description of the
most useful, or at least most well trodden organization of knowledge in a given domain’
(Chan, 2003: 269-270).

*At present, there are even more ontological attempts with respect to particualr domains of
law, for example intellectual property rights (Gil et al., 2005).

264 SEMANTIC WEB: A LEGAL CASE STUDY
Ontology or Project Application Type Role Character
McCarty’s Language | General language for Knowledge Understand a domain General
of Legal Discourse expressing legal representation, highly
knowledge structured
Valente & Breuker’s [General architecture Knowledge base in Understand a domain, General
Functional Ontology | for legal problem Ontolingua, highly reasoning and problem
of Law solving structured solving
Van Kralingen & General language for | Knowledge Understand a domain General
Visser’s Frame expressing legal representation,
Ontology knowledge, legal KBSs [moderately structured
(also as a knowledge
base in Ontolingua)
Mommer’s General language for | Knowledge base in Understand a domain General
Knowledge-based expressing legal English very highly
Model of Law knowledge structured
Breuker & Hoekstra’s | Support knowledge Knowledge base in Understand a domain General
LRI-Core Ontology acquisition for legal DAML+OIL/RDF
domain ontologies using Protege
(converted in OWL)
Benjamins, Casanovas | Intelligent FAQ system | Knowledge base in Semantic indexing and Domain
et al.’s ontologies of | (information retrieval) | Protégé, moderately search
professional legal for judges structured
knowledge (OPJK)
Lame’s ontologies of | Legal information NLP oriented (lexical), | Semantic indexing and Domain
French Codes retrieval knowledge base, search
lexical, lightly
structured
Leary, Vanderverghe | Ontology for Knowledge base Semantic indexing and Domain
& Zeleznikow’s representing financial | (schema) in UML, search
Financial Fraud fraud cases lightly structured
Ontology
Gangemi, Sagri & Extension to the legal | Lexical Knowledge Organize and structure General
Tiscornia’s domain of WordNet base in DOLCE information
JurWordNet (DAML), lightly
structured
Asaro et al.’s Italian Schema for Knowledge base Organize and structure Domain
Crime Ontology representing crimes in | (schema) in UML, information
Italian law lightly structured
Boer, Hoekstra & Legal advice system Knowledge base in Reasoning and problem Domain
Winkel’s CLIME for maritime law Protégé and RDF, solving
Ontology moderately structured
Lehman, Breuker & Representation of Knowledge base Understand a domain Domain
Browver’s Legal causality in the legal lightly structured
Causation Ontology domain
Delgado et al’s Integrating XML Knowledge base: first | Interoperability Domain
IPROnto (Intellectual | DTDs and Schemas version in DAMLAOIL | between Digital Rights
Property Rights that define Rights (2001), current version | Management (DRM)
Ontology) Expression Languages | OWL (2003) systems
and Rights Data
Dictionaries

Figure 12.3 A. Valente (2005: 72) (updated and reproduced with
permission).

knowledge management, or legal reasoning. Although the legal domain
remains very sensitive to the features of particular statutes and regula-
tions, some of the Legal-Core Ontologies (LCO) are intended to share a
common kernel of legal notions. LCO remain in the domain of a general
knowledge shared by legal theorists, national, or international jurists and
comparative lawyers.

ONTOLOGIES FOR LEGAL KNOWLEDGE 265

However, our data indicate that there is a kind of specific legal
knowledge, which belongs properly to the legal and judicial culture,
and that is not being captured by the current LCO.

12.3.2. Ontologies of Professional Knowledge: OPJK

Professional knowledge is a specific type of knowledge related to
particular tasks, symbolisms, and activities possessed by professionals
which enable them to perform their work with quality (Eraut, 1992).
Professional knowledge, then, includes propositional knowledge (know-
ing that), procedural knowledge (knowing how), personal knowledge
(intuitive, pre-propositional), and principles related to morals or deon-
tological codes.

Judges, prosecutors, and other court staff share only a portion of the
legal knowledge (mostly, the legal language and the general knowledge
of statutes and previous judgments). But there is another part of this legal
knowledge, the knowledge related to personal behavior, practical rules,
corporate beliefs, effect reckoning, and perspective on similar cases, that
remains implicit and tacit within the relation among judges, prosecutors,
attorneys, and lawyers.

Consider the following problem, extracted from different kinds
of transcriptions of the research protocols, contained in Figure 12.4
below:

Technically speaking, these problems are not complex. However, they
are difficult to solve. The judges” original question cannot be answered
by simply pointing out a particular statute or legal doctrine. This is not
only an issue of normative information retrieval. What is at stake here is
a different kind of legal knowledge, a professional legal knowledge
(PLK) (Benjamins et al., 2004). What judges really seek are some clues,

“I have the following problem, let us see if you come up with something: one woman|
files a suit (she went to hospital to get care for the bruises) but then she forgives her
husband, tells us that they both were drunk that night but are very happy (to show us
how happy they are she even insists on remaining in the room while he gives a
statement). She keeps saying no way, she is not going to denounce her husband, and she
has forgiven him.

Since it’s a public offence I go ahead and then the prosecutor [fiscala [fem.]] gets angry
with me because she appoints him to court [/o persona] and wants me to appoint her
wife to instruct her on her rights [instruirle de sus derechos).

The issue has no objective criminal entity [entidad penal objetiva]; to criminalize those
little things seems to me really nonsense, it may even be worse regardless of the
prosecutor moving forward.” [May 2004, personal communication]

Figure 12.4 Literal transcription of a practical procedural problem on
gender violence. Pompeu Casanovas. (personal e-mail communication,
May 2004, reproduced with the permission of the sender.)

266 SEMANTIC WEB: A LEGAL CASE STUDY

some hints or well-grounded practical guidelines that refer to the
problem they have before them when they put the question or start
the query.

In this regard, the design of legal ontologies requires not only to
represent the legal, normative language of written documents (decisions,
judgments, rulings, partitions...), but also the professional knowledge
sorted out from the daily practice at courts.

From this point of view, professional knowledge of a legal topic (such
as e.g., gender violence) involves a particular knowledge of: (i) statutes,
codes, and legal rules; (ii) professional training; (iii) legal procedures;
(iv) public policies; (v) everyday routinely cases; (vi) practical situations;
(vii) people’s most common reactions to previous decisions on similar
subjects.

This Professional Legal Knowledge (PLK) is: (i) shared among mem-
bers of a professional group (e.g., judges, attorneys, prosecutors. ..); (ii)
learned and conveyed formally or most often informally in specific
settings (e.g., the Judicial School, professional associations—the Bar,
the Judiciary, etc.); (iii) expressible through a mixture of natural and
technical language (legalese, legal slang); (iv) nonequally distributed
among the professional group; (v) nonhomogeneous (elaborated on
individual bases); (vi) universally comprehensible by the members of
the profession (there is a sort of implicit identification principle).

Professional knowledge is then a context-sensitive knowledge,
anchored in courses of action or practical ways of behaving. In this
sense, it implies: (i) the ability to discriminate among related but
different situations; (ii) the practical attitude or disposition to rule,
judge, or make a decision; (iii) the ability to relate new and past
experiences of cases; (iv) the ability to share and discuss these experi-
ences with the peer group.

12.3.2.1. Ontologies of Professional Legal Knowledge

In order to build Ontologies of Professional Legal Knowledge (OPLK) we
believe that we have to take into account the kind of situated knowledge
that judges put into practice when they store, retrieve, and use PLK to
make their most common decisions.’

On the one hand, for all practical purposes there is no such thing as
absolute meaning: everything must ultimately be the result of agree-
ments among human agents such as designers, domain experts, and

"We use ‘situated knowledge’ in a similar way in which Clancey et al. (1998: 836)
and Menzies and Clancey (1998: 767-768) talk about ‘situated cognition:” the concrete
use of knowledge which is partially shared and unequally distributed through a certain
‘community of practice’ which is able to use and reuse this same knowledge while
transforming it. Other related concepts close to ‘situated knowledge’ are the ideas of
‘situated communities,’ ‘situated meaning,’ ‘organizational memory,’ and ‘corporate
ontologies.’

ONTOLOGIES FOR LEGAL KNOWLEDGE 267

users (Jarrar and Meersman, 2001: 3). On the other hand, in ontology
knowledge modeling a concept is neither a class nor a set: the concepts
which represent the term’s meaning are structured into binary trees
based on couples of opposite differences (Roche, 2000: 188).

Ontologies of PLK model the situated knowledge of professionals at
work. In our particular case we have before us a particular subset of PLK
belonging specifically to the judicial field. Therefore, we will use the term
Ontology of Professional Judicial Knowledge (OPJK) to describe our con-
ceptual specifications of the knowledge contained in our empirical data.

12.3.2.2. Ontology of Professional Judicial Knowledge (OPJK)

The OPJK is learnt from of the competency questions posed by the
judges during their interviews. Modeling this professional judicial
knowledge required the description of this knowledge, as it was per-
ceived by the judge.

The OPJK has, currently, 700 terms, mostly relations and instances as a
result of a choice to minimize the concepts at the class level when
possible. Some top classes of the domain ontology identified are: Califi-
cacionJurdica [LegalTypel, Jurisdiccion [Jurisdiction], Sancion [Sanction],
Acto [Act], (which includes as subclasses ActoJurdico (LegalAct), Fase
[Phase], and Proceso [Process]). These latter classes contain those taxo-
nomies and relations related to the different types of judicial procedures
(both, criminal and civil, or private) and the different stages that these
procedures may have (period of proof, conclusions, appeal, etc.). The
introduction of the concept Rol [Role] allowed for the specification of
different situations where the same agent could play different parts. In
the case of OPJK, the class Rol contains the concepts and instances of
procedural roles [RolProcesal] that an agent might play during a given
judicial procedure.

Some of the properties/attributes of concepts and relations between
concepts are, for example, that Agente has_role, is_involved_in_facts, that
ActoProcesal has_document, that FaseProcesal begins_with, ends_with,
is_followed_by, that Procesofudicial has_phase, and that RolProcesal
is_played_by (Figure 12.5).

12.3.3. Benefits of Semantic Technology and
Methodology

12.3.3.1. Ontology Learning

The TermExtraction feature of TextToOnto® provided, together with
another textual statistics programe (Alceste),” a good basis for

6http: / /kaon.semanticweb.org/
http:/ /www.image.cict.fr/index_alceste.htm

268

SEMANTIC WEB: A LEGAL CASE STUDY

For Project: @ opjk

Class Hierarchy

I INSTANCE BROWSER :

For Class: @ Orden

AV % e X~

nombre

THING |~| | # orden de alejamierto
S :SYSTEM-CLASS # orden de detencidn
v Enticlac # orden de embargo
»> Abstraccion # orden de extradicion
v Objeto & orden de prateccion
> Agente & orden europea de detencion
¥ @ Exposicién
v Documerto
P Contrato (13)
¥ @ Documento_Procesal (19)
D Comunicacion (4)
D Diligencia (7
¥ Orden
Recurso (10)
@ Resolucién_Judicial (1
0 Efecto_mercartil (5
® Informe (2)
D Legislacion (7

Hecho (2
Localizacion (5

i

|-

Prueba

[T»]

1]

| |
| Ei

Figure 12.5 Screenshot of OPJK classes and instances.

regarding some terms as significant and their conclusions have proved
to be really useful to both feed and control the modeling process
(Figure 12.6).

However, linguistic constraints due to the use of the Spanish language
within the legal case study, added difficulty to the use of this technology.
One of the main problems encountered during the utilization of Text-
ToOnto referred to the process of word reduction (i.e., just before the
process of concept identification). It uses stemming techniques instead of
lemmatization for word reduction, which has proved to be less useful in
achieving good results for certain languages.®

Stemming works by transforming a word into its stem usually by
cutting-off the word suffix. If a stemming process is applied to languages

8 This problem has been widely explained—and a solution proposed—in (Vallbé et al., 2005)
and (Vallbé & Marti, 2005).

ONTOLOGIES FOR LEGAL KNOWLEDGE 269

detencion

determinar | @I

declaracién

instruccion
resolucién

supuesto

|

(! e
ol 9 4

= kaon:Root L— |
sl
o A0

demanda

ejecucion |

policia
testigo

Figure 12.6 Screenshot of the term extraction performed with TextToOnto
and visualized with KAON.

such as Spanish, Catalan, or Slovenian, with rich inflection (which can
have 60 forms for a verb not counting composed forms) a lot of
information keeps hidden and the reduction process based on stemming
often produces results that are not refined enough. Moreover, stemming
may put multiple forms behind the same stem. Furthermore, in some
cases stemming gives different stems when there should be the same
stem. This problem has been partially solved by recourse to an open
source Spanish lemmatizer,” which enables applying a lemmatization
process to the corpus before being processed by the tool.

Thus, the main method used in building the ontology focused on the
discussion within the UAB legal experts team over the terms that appear
on the competency questions. This method had several phases. First, it

*http:/ /garraf.epsevg.upc.es/freeling/

270 SEMANTIC WEB: A LEGAL CASE STUDY

basically consisted in selecting all the nouns (usually concepts) and
adjectives (usually properties) contained in the competency questions.

Once the terms had been identified, the team discussed the need to
represent them within the ontology and their organization within taxo-
nomies. The relevant relations between those terms were also identified
(mainly is_a and instance_of). Accordingly, we followed the middle-out
strategy (Gomez-Pérez et al., 2002). With this strategy, the core of basic
terms are identified first and then they are specified and generalized if
necessary. '’

However, difficulties in reaching consensual decisions and the lack of
traceable lines of argumentation for both the decisions agreed within the
expert’s team and the modeling refinement agreed between legal experts
and ontology engineers was slowing down the construction of the
ontology. For that reason, the introduction of DILIGENT, described in
Chapter 9 above, offered a reliable basis for a controlled discussion of the
arguments for and against a modeling decision.

12.3.3.2 Construction Methodology

The introduction of DILIGENT not only proved the need to rely on
guidelines for the decision-making process within the ontology design,
but also facilitated communication between legal experts and ontology
engineers in a geographically distributed environment.

The use of DILIGENT sped up the modeling process, as decisions
were more easily reached and more concepts were agreed upon.
However, the lack of appropriate evaluation measures made it difficult,
at times, for the contradicting opinions to achieve an agreement.
Although the argumentation stack was captured and tagged after the
discussion in order to trace the arguments, an accessible web-based
interface was offered in order to track the discussion. A standard wiki
was used to support discussion. The ontology discussion wiki made all

19As an example, and in relation to the competency questions analyzed above, modelers
considered that the concepts auto [interlocutory decision], recurso [appeall, demanda
[private/civil lawsuit], and querella [public/criminal lawsuit] needed to be represented
in the ontology. Moreover, a concept documento [document] had to be created as all terms:
auto, recurso, demanda, and querella describe documents. The result was the construction of
a more general concept from those specific terms found in the competency questions.
However, the team also agreed that demanda, auto, recurso, and querells were not only
instances of documento, but also constituted a specific class of documents used only within
the judicial process. For that reason, documento_processal[procedural document] had to be
created as a subconcept of documento. At the same time, there are different types of
appeals and court orders stated in the questions that have to be considered instances of
recurso and auto. In this case, the terms where specified, not generalized. This is a clear
example of the use of the middle-out strategy in the legal case study ontology.
Furthermore, some other relations (different from is_a and instance of) were also
identified: someone creates those documents (juez, denunciante, persona), thus document
has_author.

ONTOLOGIES FOR LEGAL KNOWLEDGE 271

decisions transparent, traceable, and available to all members of the
team, especially those joining the team at a later stage.

However, the tool did not provide several features such as: visualiza-
tion of the graphical representation of the ontology being built or a
system of e-mail notifications when arguments had been added. To solve
the requirement of graphical visualization, the ontology modeling team
extended the wiki with screenshots from the relevant parts of the
ontology build with the KAON OI-Modeler."" Later, we considered the
addition of a referee (or that one of the members of the team played
the role of referee) in order to further speed up the discussions and to
keep them on track, as discussions often tend to lose focus.

DILIGENT as a methodology facilitated decision-making among the
terms and relations that could be included in the ontology.

12.3.3.3 Ontology Integration

Finally, this ontology was integrated into PROTON (ProtoOntology).'*
PROTON is a domain independent ontology and, first, OPJK modelers
thought that integration might require some rearrangements, but it was
essential for the OPJK to model judicial knowledge as perceived by
judges and that point of view has to be maintained when possible.

Finally, OPJK has recently been integrated into the System and
Top modules of PROTON (Casellas et al., 2005) and, as top layers
represent usually the best level to establish alignment to other onto-
logies, the classes contained in the Top Module (Abstract, Happening,
and Object) were straightforwardly incorporated, together with most
of their subclasses, although Abstract needed the introduction of a
specific subclass AbstracionLegal [LegalAbstraction] for organizational
purposes.

Also most of the relations/properties existing between the Top Module
classes were inherited. The domain independence of PROTON facilitated
the integration of OPJK.

The first part of the integration process consisted mainly in general-
izing OPJK concepts taking into account the System and Top modules
of PROTON, incorporating the meta-level primitives contained in the
System module (i.e., Entity) as the application ontology.

Regarding relations, the specificity of the legal (professional) domain
requires specific relations between concepts (normally domain-related
concepts as well). However, most existing relations between the Top
module classes taken from PROTON have been inherited and incorpo-
rated. It has not been necessary for the usage of the Iuriservice prototype

11http: / /kaon.semanticweb.org/
?http:/ /proton.semanticweb.org /

272 SEMANTIC WEB: A LEGAL CASE STUDY

to inherit all PROTON relations, although most of the relations contained
in PROTON had already been identified as relations between OPJK
concepts.

The following relations—not a comprehensive list—have been inherited
from the existing relations in within the Top module concepts: Entity
hasLocation, Happening has endTime and startTime, Agent is involvedIn
(Happening), Group hasMember, an Organization has parent / childOrganization
of (Organization) and is establishedln, and, finally, Statement is statedBy
(Agent), validFrom, and validUntil.

12.4. ARCHITECTURE

12.4.1. luriservice Prototype

In this section, we briefly explain the functionalities of the system,
provide a high-level overview of the architecture, and provide some
initial analysis of the results.

12.4.1.1. Main Functionalities

The system can be best understood as an extended FAQ platform that
allows users—judges in our case—to pose a query in natural language,
and the systems returns the known questions that best match the user’s
question. The extension concerns what we call ‘answer explanation:’
given a particular question-answer pair retrieved from the FAQ reposi-
tory, users can request supporting documentation for the answer,
including judgments and statutes. The key differential aspect of the
system is its knowledge about the legal domain. Rather than matching,
based on keywords, our system uses ontologies to both retrieve the most
similar question and to link to supporting documentation. Figure 12.7
illustrates those two modes; on the left side we see the FAQ part, while
on the right hand side the answer explanation functionality is illu-
strated. As can be seen, the ‘answer explanation’ part can also be used as
a semantic meta-search engine over distributed legal sources.

12.4.1.2. Architecture

In this section, we will provide an overview of the architectures of the
two parts of the system.

e FAQ System: Several search and score algorithms have been designed
based on Natural Language Processing and on Ontology Concepts

ARCHITECTURE

273

Natu ral <":.

Language

/\-\

Semantic
Matching

FAQ System

g% il ':;’br\:\::erﬂ

Ontology
Alignment

iy

ﬂ Ontology Learing II
& feeding

@0 ntology Merging)

Answer Explanation

Figure 12.7 High-level architecture of luriservice system. A FAQ system is
combined with an answer explanation system that provides explanations
for the answers provided by the FAQ part.

Matching (Zhu et al., 2002). Algorithms have been organized around
an architecture based on an adaptive multistage search chain, which
is based on a variation of the ‘chain of responsibility’ pattern. In
particular it is based on a factory pattern that produces, on demand, a
suitable search engine. This engine uses some search stage engine
plug-ins and adapters to leverage on the main technologies used like
NLP processing adapters, Ontology API and algorithms adapters.
Each stage behaves independently from previous stages. The stage
starts with a FAQ subset as an entry, the goal being to reduce this
subset with the constraint that the searched FAQ belongs to it. We
have considered a three-stage search process, linking one outcome
with the next entry, like a chain of responsibility. The first stage
determines the domain of the question such as gender violence,
criminal law, etc. The second step uses keyword-based techniques to
filter out FAQs that are dealing with other domains than that of the
question. In the last stage the semantic distance is determined between
the user question and the remaining FAQs. Since this is computation-
ally an expensive process, it will be performed with those stored FAQs
whose likelihood of appropriateness is above a certain threshold.
Figure 12.8 illustrates this architecture. See (Casanovas et al., 2005a)
for details.

274 SEMANTIC WEB: A LEGAL CASE STUDY

Figure 12.8 Architecture of luriservice 'FAQ’ subsystem.

The main technologies used in this architecture are:

Natural Language Processing: NLP is used at several search stages
to get additional comprehension from the user’s question. A morpho-
logical and syntactical analysis of the user’s question is performed. The
relevant words and grammatical patterns drawn from the question are
used by other components in further stages.

Thesaurus Processing: It is used to match words based on synon-
ymous relationships. The system attempts at both exact and synonym
matching.

Ontology Processing: The system uses several legal domain ontologies
to obtain understanding of the user’s question. The system tries to find
a match between fragments of the user’s question and paths in the
ontology. To do so, it builds a graph path that is compared to each of
the stored FAQ graph paths. We calculate the ‘semantic distance’
between a new user query and the stored questions. Figure 12.9
illustrates the process of how two ontology fragments are matched
to each other.

Cache Proxy: The system produces intermediate results of repetitive
calculations that can be saved to avoid the repetition of computations.
Many of these calculations can also be recovered from a repository like
a RDBMS and saved on cached memory.

Answer Explanation System: In the Answer Explanation part of the
system, the user can ask for supporting documents for any answer the
system offers. In this stage the semantic search engine navigates the
case law databases and offers references to relevant documents. This
functionality allows the judge to learn from the cases that have
originated the answer or precedent. This functionality can also be

ARCHITECTURE 275

User Question: FAQ Question:

Ontology

a
denounce one
nf her man

Grammatical
Pattern:

%
/4

Figure 12.9 Onfology graph matfching. Fragments of ontologies are
matched onto each other considering semantic distances between con-
cepfts.

used directly, as a meta-search engine working upon different case law
databases, without the need to ask previously a concrete question.
Automatic document processing and understanding based on ontol-
ogy mapping and alignment technology facilitates the introduction of
case law databases into the system repository. In this way, each format
representing legal cases is translated into a common schema and
processed to establish links to stored FAQ answers. Apart from a
standard text interface, we are currently studying intuitive ways to
visualize the results. Figure 12.10 shows the Use Case for this sub-
system, including a meta-search engine that accesses the case law
databases and extracts the relevant information and/or documents,
and constructs the explanation. The explanation consists of a set of
automatically inserted hyperlinks into the question-answer pairs that
point to relevant documents from the case law databases. Databases
contain the cases produced by Spanish courts at different levels.
(Figure 12.10).

In order to connect the two kinds of knowledge contained in the
judicial experience (FAQ system) and the past judicial decisions
(Answer Explanation), and to detect the useful cases to justify the
answers in the FAQ repository, the concepts in the two main onto-
logies have to be aligned. Therefore, if a user selects a justification, the
system will check the OPJK concepts appearing in the answer, will
transform them into the corresponding set of case law ontological
concepts, and eventually retrieve the appropriate cases containing
those concepts.

276 SEMANTIC WEB: A LEGAL CASE STUDY

Case Retrieval
Meta-Search
Explanation

—_—— Construction
b Explanation
Final User Visualization

Figure 12.10 Use case for the ‘Answer Explanation® subsystem.

Answer
Explantion

12.4.1.2. Initial Results

At the current stage of the project, we have implemented the FAQ
subsystem that uses the notion of semantic distance to calculate the
similarity between user questions and stored FAQs (question-answer
pairs). For this subsystem, we have performed some tests to measure
the effectiveness of the retrieval process. The goal of the measurement
has been to verify whether retrieval, based on semantic distance
technology obtains better results than keyword-based retrieval. To
focus the benchmark on the contribution of the ‘semantic’ part rather
than comparing the results to simple keyword-based approaches, we
have compared it to an enhanced keyword approach by including a
morphological analysis and synonyms. We performed two types of tests
using a corpus of 62 FAQs related to the legal area of Gender Violence,
whose OPJK ontology contains 82 classes, 118 attributes, and 484
instances.

Same Meaning Test: The first test we performed concerns the retrieval
of questions whose intended meaning is similar to that of the user
question but different terms are used. The test is a success if the expected
user result is the first in the list retrieved by the system. An example of
such test is:

User Question: I have ordered an injunction of protection in favor of a
woman, and after some days she comes back asking me to cancel or
withdraw it. What should I do? Should I withdraw it?

Target FAQ: A woman has come this morning asking for an injunction of
protection. We have been busy on this subject for all the day. I have just
ordered it, and at this precise moment I am notifying the injunction of
protection and she already says that she wants to remove the denounce
and that she does not want the injunction. What do I have to do?

In this case, the User Question and the Target FAQ meet the same
semantics.

ARCHITECTURE 277

Table 12.1 Summarizes the executed tests.

Enhanced keywords Enhanced keywords and
semantic distance
Same meaning 35 tests 35 tests
Different meaning 35 tests 35 tests

Different Meaning Test: In this test, we pose a question to the system,
knowing that there is a stored question, whose ‘keyword characteristics’
are similar to the user question, but whose intended semantics are
different. The test is a success if the target question is not in the list of
retrieved questions. An example is:

User Question: Should I order an injunction of protection if a man and a
woman live together but the man gets usually very angry and he is also
seeing another woman?

Target FAQ: There is a couple and an injunction of protection against
the husband, but the police knows that they are living together and they
told me that. Any time she gets angry with him or they have some
trouble she uses the injunction, the police detains him and I have to
organize a hearing--- just to find them together again next morning.
What can I do? Can I modify or cancel the injunction?

In this case, the User Question and the Target FAQ have different
semantics, and the Target FAQ should not be among the retrieved ones.

We defined 35 test cases for the ‘same meaning’ type and 35 for the
‘different meaning’ type. As explained, these tests have been executed by
(i) a search engine based on enhanced keyword technology, and (ii) a
search engine that additionally takes into account the semantic distance.
Table 12.1 summarizes the executed tests.

The results of the tests are summarized in Table 12.2. The table
summarizes the percentages of success and failure for the two types of
retrieval (keyword vs. semantics) and the two types of tests (‘same
meaning’ vs. ‘different meaning’). We can see that the semantic distance

Table 12.2 Summary of test results. Considering the semantic distance
improves results in both cases.

Enhanced keywords Enhanced keywords
and semantic distance

Same meaning Success 28 57 % 4571 %
Failure 71 43 % 54 29 %
Different meaning Success 17 14 % 40 %

Failure 82 86 % 60 %

278 SEMANTIC WEB: A LEGAL CASE STUDY

technology gives better results: the number of successes increases while
the number of failures decreases.

12.5 CONCLUSIONS

Iuriservice is a prototype of an iFAQ that is being implemented into the
judicial Spanish system. A mixed team of Magistrates and researchers
have been conducting usability tests and will perform the user validation
plan at the Spanish Judicial School with final users in the next future
(Bosser, 2005). In this sense, social knowledge and technological knowl-
edge cooperate through the ontological engineering process. An Ontol-
ogy of Professional Judicial Knowledge (OPJK) and a methodology with
a middle-out strategy are being developed. SEKT technologies have been
integrated at different stages.

Semantic Web has proved to be very useful in improving the knowl-
edge management skills of the recently appointed judges. Iuriservice is
designed not only to be accurate and technologically advanced, but also
to fulfil the specific requirements of professional judges:

e It is designed to be efficient, extensible, customizable, and scalable.

e It makes use of incremental search as a process of narrowing the
solicited FAQ set.

o It uses a variety of pluggable searching algorithms.

e It is designed to be accurate and technological advanced by using NLP
and ontological techniques.

REFERENCES

Ayuso M et al. 2003. ‘Jueces jovenes en Espafia, 2002. Analisis estadistico de las
encuestas a los jueces en su primer destino (Promociones 48/49 y 50)." Internal
Report for the General Council of the Judiciary, within the framework of the
Project ‘Observatory of Judicial Culture’, SEC-2001-2581-C02-01/02.

Benjamins VR, Casanovas P, Breuker], Gangemi A. 2005. ‘Law and the Semantic
Web, an Introduction. In Law and the Semantic Web, Benjamins ef al. (ed).
Springer Verlag: London, Berlin.

Benjamins VR, Contreras J, Blazquez M, Rodrigo L, Casanovas P, Poblet M. 2004.
‘The SEKT Legal use case components: Ontology and architecture’. In: Legal
Knowledge and Information Systems. JURIX 2004: The Seventeenth Annual
Conference, Gordon T F. IOS Press: Amsterdam, pp 69-77.

Blankenburg E. 1999. Legal culture on every conceptual level. In: Globalization and
Legal Cultures. Feest J. (ed.). IISL Ofati, pp 11-19.

Bosser 2005. Die Analyse der Bediirfnisse und Préaferenzen von professionellen
Nutzern von Information. 47th meeting of the section Anthropotechnologie of
the DGLR - Deutsche Gesellschaft fiir Luft- und Raumfahrt.

Breuker], Elhag A, Petkov E, Winkels R. 2002. Ontologies for Legal Information
Serving and Knowledge Management. Legal Knowledge and Information

REFERENCES 279

Systems. Jurix 2002: The Fifteenth Annual Conference. Amsterdam, IOS Press,
pp 73-82.

Breuker], Winkels R. 2003. Use and reuse of legal ontologies in knowledge
engineering and information management, ICAIL03 ICAIL 2003 Workshop on
Legal Ontologies and Web Based Legal Information Management, Edinburgh, http://
Iri.jur.uva.nl/~winkels/legontICAIL2003.html

Casanovas P. 1999. Pragmatics and Legal Culture. ICPS Working Paper n. 159.
Barcelona: Institut de Ciencies Politiques i Socials. http://www.diba.es/icps/
working papers/docs/wp_i_159.pdf

Casanovas P, Gorrofiogoitia J, Contreras J, Blazquez M, Casellas N, Vallbé J],
Poblet M, Ramos F, Benjamins VR. 2005a. SEKT Legal Use Case Components:
Ontology and Architectural Design. In Proceedings of ICAIL 05. ACM, Bologna,
2005, pp 188-194.

Casanovas P, Poblet M, Casellas N, Contreras J, Benjamins VR, Blazquez M. 2005b.
Supporting newly-appointed judges: A legal knowledge management case
study. Journal of Knowledge Management 9(5):7-27.

Casellas N, Blazquez M, Kiryakov A, Casanovas P, Poblet M, Benjamins R. 2005.
OPJK into PROTON: Legal Domain Ontology Integration into an Upper-level
Ontology. In: OTM Workshops 2005, LNCS 3762, Springer-Verlag: Berlin,
Heidelberg, Meersman R. et al., (eds). pp 846-855.

Chan CW. 2003. Cognitive modeling and representation of knowledge in
ontological engineering. Brain and Mind 4:269-282.

Clancey W], Sachs P, Sierhus M, Hoof RV. 1998. Brahms: Simulating practice for
work systems design. International Journal of Human-Computer Studies 49: 831-865.

Eraut M. 1992. Developing the knowledge base: A process perspective on
professional education. In: Learning to Effect, Barnett R. ed. Open University
Press: Buckingham, pp 98-18.

Friedman LM. 1969. Legal culture and social development. Law and Society Review
4:29-44.

Friedman LM. 1975. The Legal System: A Social Science Perspective. Russell Sage
Foundation:

Gangemi A, Breuker]. 2002. Harmonising Legal Ontologies. Ontoweb. IST Project
2000-29243. http:/ /ontoweb.aifb.uni-karlsruhe.de/About/Deliverables.

Gangemi A, Pisanelli DM, Steve G. 2001. A formal Ontology Framework to
represent Norm Dynamics. In Proceedings of the Second International Workshop on
Legal Ontologies, Amsterdam.

Gangemi A, Sagri M, Tiscornia D. 2003. Metadata for Content Description in Legal
Information, in ICAIL 2003 Workshop on Legal Ontologies & Web based
legal information management, June 2003, Edinburgh, Scotland, UK. http://
www.lri.jur.uva.nl/~winkels/LegOnt2003/Gangemi.pdf.

Gil R, Greia R, Delgado J. 2005. An interoperable framework for Intellectual Property
Rights using web ontologies. In: LOAIT-Legal Ontologies and Artificial Intelligence
Techniques, Lehmann, J Biasiotti, MA Francesconi, E Sagri MT (eds) Nijmegen:
Wolf legal publishers, pp 135-148.

Gomez-Pérez A, Corcho O, Fernandez-Lépez, M. 2002. Ontological Engineering:
With Examples from the Areas of Knowledge Management, E-Commerce and Semantic
Web (Advanced Information and Knowledge Processing). Springer-Verlag: London.

Jarrar M, Meersman R. 2001. Practical Ontologies and their Interpretations in
Applications—the DOGMA experiment. http.//www.starlab.vwb.ac.be/pub-
lications/STAR-2001-04.pdf.

Kralingen van RW. 1995. Frame-based Conceptual Models of Statute Law, Computer/
Law Series, No. 16. Kluwer Law International. The Hague, The Netherlands.

280 SEMANTIC WEB: A LEGAL CASE STUDY

McCarty LT. 1989. A language for legal discourse, I. Basic features. In Proceedings
of the Second International Conference on Artificial Intelligence and Law, Vancouver,
Canada, pp 180-189.

Menzies T, Clancey W]J. 1998. Editorial: the challenge of situated cognition for
symbolic knowledge-based systems. International Journal of Human-Computer
Studies 49:767-769.

Roche C. 2000. Corporate ontologies and concurrent engineering. Journal of
Material Processing Technology 107:187-193.

Rodrigo L, Blazquez M, Casanovas P, Poblet M. 2004. D10.1.1. Before Analysis.
Case Study—Intelligent Integrated Decision Support for Legal Professionals.
State of the art. SEKT. EU Project IST-2003-506826.

Stamper RK. 1996. Signs, Information, Norms and Systems. In: Signs of Work,
Holmgvist, B Andersen P (eds). De Gruyter: Berlin.

Valente A. 1995. A Modeling Approach to Legal Knowledge Engineering. 10S Press:
Amsterdam, Tokyo.

Valente A. 2005. Types and roles of legal ontologies. In Law and the Semantic Web.
Legal Ontologies, Methodologies, Legal Information Retreval, and Applications,
Benjamins VR et al. (eds). LNAI 3369, Springer: Berlin, pp 65-76.

Valente A, Breuker J, Brouwer B. 1999. Legal modeling and automated reasoning
with ON-LINE. International Journal of Human-Computer Studies 51:1079-1125.

Vallbé J-J, Morti MA, Fortuna B, Jakulin A, Mladenic D, Casanovas P. 2005.
Stemming and lemmatisation Improving knowledge management through
language processing techniques. In: The Regulation of Electronic Social Systems.
Law and the Semantic Web, Casanovas P, Bourcier D, Noriega P, Caceres E,
Galindo F (eds). In Proceedings of the B4-Workshop on Artificial Intelligence and Law.
IVR’ 05-Granada, 25th-27th May. Web location. http.//www.lefis.org. XXII
World Conference of Philosophy of Law and Social Philosophy. Instituto de
Investigaciones Juridicas, UNAM México [in press].

Visser PRS. 1995. Knowledge Specification for Multiple Legal Tasks; A Case Study of the
Interaction Problem in the Legal Domain, Computer / Law Series, No. 17, Kluwer
Law International: The Hague, The Netherlands.

Visser PRS, Bench Capon, TJM. 1998. A comparaison of four ontologies for the
design of legal knowledge systems. Artificial Intelligence and Law 6:27-57.

Zhu H. et al. 2002. An Approach for semantic search by matching RDF graphs. In
Special Track on Semantic Web at the 15th International Flairs Conference (AAAI),
May 2002, Florida, USA. http://www.dit.hemut.edu.vn/~tru/SPECIAL-STU-
DIES/rdf-semantic-matching.pdf

13

A Semantic Service-Oriented
Architecture for the
Telecommunications Industry

Alistair Duke and Marc Richardson

13.1. INTRODUCTION

Today’s telecommunication industry is increasingly competitive with
many new entrants to the market and a challenging regulatory environ-
ment. Along with the ongoing recovery from the technology boom-and-
bust, these factors add up to a tough business environment. Price erosion
means that operators (and, in particular, the large incumbents) have
realised that they must radically transform the way they do business in
order to reduce costs and remain competitive. At the same time, a
number of new opportunities and threats are emerging including broad-
band, WiFi, fixed-mobile convergence, aggressive new market entrants
and the blurring of the boundary between IT and traditional telecom-
munications. Companies are seeking to grow new business, while
defending traditional core revenues.

Thus the industry is seeking urgently to reduce IT costs. A Forrester
survey (Koetzle, 2001) found that average spending on integration by the
top 3500 global companies was $6.3 million and 31% was spent on
integrating with external trading partners. There is a focus on faster
time to market via more flexible business processes. Furthermore, there is
a need to reconfigure system components quickly and efficiently in order
to satisfy regulatory requirements for interoperation and to provide fully
integrated support systems for increasingly sophisticated services.

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

282 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

On the other hand, customers are demanding integrated services, tai-
lored to their specific needs. The market is becoming increasingly
federated due both to regulatory pressures and to companies’ attempts
to catch market opportunities with tailored, bundled services. In this
market, the number of business to business (B2B) relationships between
telecommunications companies and specialist content and service provi-
ders has dramatically increased.

All these factors have led many telecommunications companies to
radically rethink the way they operate. They have realised that the new
environment requires tighter yet more flexible management of processes
and the eradication of bureaucracy and duplication of effort and systems.
This transformation can be achieved with the adoption of a Service
Orientated Architecture (SOA).

The creation of Next Generation Networks (NGN) are being built in
BTs 21CN programme will create a single core network capable of
carrying many types of network product (e.g., PSTN, Broadband). As
well as cost savings, the aim of this network is to be dynamic and flexible
in the way it is managed, allowing services to be provisioned much more
quickly and easily than before. An important requirement is to have an
Operational Support System (OSS) structure that allows this flexibility.
Building the OSS based on SOAs will be key to this. The next section,
Section 13.2, describes the philosophy behind an SOA. Section 13.3 then
explains how Semantic Web Services, described in Chapter 10, can be
used to implement an SOA. After that, Section 13.4 describes the role of
semantic mediation. Sections 13.5 and 13.6 describe in turn, the use of
ontologies in telecommunications standards and the application to a
particular case study in the telecommunications industry.

13.2. INTRODUCTION TO SERVICE-ORIENTED
ARCHITECTURES

A system based on a Service Orientated Architecture (SOA) is one in
which resources are made available to other participants in the network
as independent services that are accessed in a standardised way. This
provides for more flexible loose coupling of resources than in traditional
system architectures (Loosely Coupled, 2005). It permits a move away
from point to point integration which is costly and inflexible if carried
out on a large scale.

Using an SOA, applications are built around services. A service
is an implementation of a well-defined business function, which
allows such services to be used by clients in different applications or
business processes. Increasingly, organisations are adopting an SOA as a
means to enable interoperability and encourage reuse, thereby reducing
cost.

INTRODUCTION TO SERVICE-ORIENTED ARCHITECTURES 283

Registry
Contract i
Find Register
Bind & Invoke
Consumer | - Provider

Figure 13.1 The SOA find-bind-execute model.

Services are software components with a well-defined interface that is
implementation-independent. A key aspect of an SOA is the separation
of the service interface from its implementation (Mahmoud, 2005). The
benefits from adopting an SOA approach include:

e Services are self-contained.

e Services are loosely coupled.

e Services can be dynamically discovered.

e Composite services can be built from aggregates of other services.
SOA uses the find-bind-execute model as shown in Figure 13.1. Service
providers first register their service in a registry. This registry is then
used by consumers to find services that match certain criteria. If the
registry has such a service, it provides the consumer with a contract and
information on accessing the service.

The greater agility afforded by an SOA will also allow organisations to
respond to the needs of the market more quickly and in ways that are
more attractive to the customer. The SOA is particularly applicable to the
Telecommunications market where customer and operational support
costs are high and customer satisfaction is a key differentiator.

However, there is evidence to suggest that companies with complex
internal organisations and supply chains will find that large scale SOAs
are not achievable without semantic descriptions of service components
that can aid service discovery and integration. For example, Brodie
(2003), Chief Scientist at Verizon Communications stated that:

‘There is a growing consensus that Web Services alone will not be
sufficient to develop valuable and sophisticated Web processes due the
degree of heterogeneity, autonomy, and distribution of the Web. Before
the huge promise of Web Services become industry strength, a lot of
work is needed, and semantics holds a key’.

284 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

It is apparent that Web Services alone are not enough to implement an
SOA and enable the advantages that this architecture can bring (such as
dynamic discovery and execution of services). Using Semantic Web
Services allows the creation of machine readable descriptions of the
service capability and interface, allowing the dynamic discovery and
execution of services.

13.3. A SEMANTIC SERVICE-ORIENTATED ARCHITECTURE

This section will explain the benefits of semantically described web
services in the context of an SOA. In order to do this, the limitations of
current web services are first considered.

Web Services are generally described using XML-based standards
namely WSDL (which allows one to describe a Web Service in terms of
what it does and what its inputs and outputs are), UDDI (which is a
centralised registry allowing one to discover Web Services) and SOAP
(which is a protocol allowing one to execute services). In addition to
these low-level standards, work is in progress to create standards that
allow services to be combined into a workflow, for example WS-BPEL
(Web Services — Business Process Execution Language) (IBM, 2005) and
also to define permissible message exchange patterns and contents, for
example ebXML (Eisenberg, 2001). However, none of these standards
provide a means to describe a Web Service in terms of explicit semantics.
For a given service you might want to describe:

What kind of service it is;

What inputs it requires;

What outputs it provides;

What needs to be true for the service to execute (pre-conditions);
What becomes true once the service has executed (post-conditions);
What effect the service has on the state of the world (and/or the data it
consumes and provides).

The first of these requirements is partly addressed by UDDI in that
a category and human readable description can be assigned to a
web service in a registry to aid discovery. This provides only limited
support for automated discovery since a computer will not understand’
the description or what the category means. The second and third of these
requirements are partly addressed by WSDL in that XML tags can be
attributed to inputs and outputs. A computer can easily match these but

IStrictly, the computer never actually understands even when semantics are provided. It is
merely provided with the means to relate a piece of information to a machine readable
ontology which in turn allows it to determine relationships with other pieces of information
and given these perform reasoning to deduce new information. Thus the provision of
semantic descriptions makes data much more amenable to machine processing.

A SEMANTIC SERVICE-ORIENTATED ARCHITECTURE 285

again has no notion of their meaning or relationship to other pieces of
data. Fundamentally, most of the hard work is left to the human user who
must interpret the descriptions provided to the best of his or her abilities.

Services can be described semantically by relating them to ontologies.
Ontologies provide a shared view of a domain that can be interpreted by
machines. Thus ontologies can describe kinds of services, the data they
consume and provide, the processes that services are part of and, equally
importantly, the relationships between all of the above.

The explicit relationship between services and ontologies is the key
element for Semantic Web Services. It is envisaged that this will enable:

o Improved service discovery: Semantic Web search technology allows users
to search on ontological concepts rather than by keywords. A simple
keyword search only finds where a particular term occurs, and does not
give details about its context or relationship to other information.
Ontological searches utilise the structured way that information is
modelled to allow more powerful searches, such as the ability to
query attributes or relationships between concepts. This will allow
users (and indeed computers) to find the most appropriate services
more quickly or narrow down their search via more expressive queries
if required.

o Re-use of service interfaces in different products/settings: Services that are
described semantically can more easily be discovered, understood and
applied thus reducing the need to create new services that serve the
same purpose. This could also be used in a strategy to reduce
complexity, that is remove services/interfaces that exactly repeat the
function of other services but are described slightly differently.

o Simpler change management: Changes to models and services are
inevitable over time. The key thing is to reduce the knock-on effect
of change or at least manage it. A semantic approach will significantly
reduce the overhead and simplify the process. For example, when a
proposed change is made to a data element, those services or interfaces
that employ that data in some way can be dynamically discovered and
appropriate action could be taken, for example to contact the owner of
the service with details of the proposed change.

o A browseable, searchable knowledge base for developers (and others): In
tandem with the example given above for simpler change manage-
ment, semantically described services and ontologies enable a knowl-
edge base to be constructed. This allows developers and solution
providers to perform queries relating to the data and processes they
are concerned with, for example to determine the origin or destination
of a piece of data.

o Semi-automatic service composition: Given a high level goal which we
wish a service or set of services to achieve, expressed in terms of an
ontology, it is possible to carry out decomposition into component
parts and then match these components with appropriate services. The

286 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

level of automation possible is a matter for ongoing research. Initial
practical results are likely to provide users with a set of candidate
services that might satisfy their needs. They are then left to decide
between these services and oversee the composition required in order
to satisfy the goal.

o Mediation between the data and process requirements of component services:
Often there is need for two or more services to interact even
though their communication requirements are semantically the same
but syntactically different (they may require different message
exchange patterns or different data formats). In this case it should be
possible to automatically construct a translation between message data
elements that allows the services to communicate. This is an example
of a process known as mediation, which is discussed in more detail in
the next section. It relies upon the mappings of messages and data
elements to an ontology allowing semantic equivalence to be inferred.

o Enterprise Information Integration: As the name suggests, the Semantic
Web builds upon existing Web technology. This can afford universal
(or at least enterprise-wide) access to semantic descriptions of services
(or information). One advantage is the ability to construct complex
queries which can be executed over a variety of heterogeneous
systems. For example, suppose there is a requirement to determine
the number of customers within a particular postcode who spend
more than £100 per quarter. If that information is held within one
database and the person asking has access to it and knows how to
query it then an answer could readily be obtained. Of course the
situation is more complex if multiple databases hold the answer and
access and a query interface have to be determined. The humans
involved have some work to do in locating the data and processing it
in the required way. A semantic approach, however, allows a single
query to be made via a unifying ontology.

13.4. SEMANTIC MEDIATION

The role of mediation in supporting an SOA has already been noted.
Mediation is generally achieved through the use of mediators, that is
components which enable heterogeneous systems to interact. In a prac-
tical sense, mediators have generally been realised as pieces of program
code that perform point-to-point, low-level translations. Although such
mediators satisfy the short-term goal in that they allow two systems to
talk to each other, they suffer from maintainability and scalability
problems. In general, it is not likely to be feasible to automate their
application in a dynamic environment because of their close coupling
with the implementation.

Semantic Mediation enables a more dynamic approach through the use
of ontologies, which provide consensual and formal conceptualisation of

STANDARDS AND ONTOLOGIES IN TELECOMMUNICATIONS 287

a given domain. ‘Mediators can be used to convert from a source
implementation interface to that of a target implementation. Modelling
the processes and data in the source and target interfaces using ontolo-
gies, enables the definition of relationships between semantically equiva-
lent concepts. The mediator can use these relationships to dynamically
map between the source and target’.

Mediation can be classified as acting on both data and process. The
following two sections describe this in more detail.

13.4.1. Data Mediation

Data mediation is required when the semantic content of a piece of data
or message provided by one system and required by another is the same,
but their syntactic representations are different. This may be due to
differing naming or formatting conventions employed by the partner
systems. In order to overcome these mismatches, a mapping tool can be
applied at design time. These can be used to map source elements to
target elements, often on a one-to-one basis. Where more complex
mappings are required such as many-to-one mappings or mappings
that are dependent upon content, a rule language may be necessary to
describe them. Once a data mediator has been developed its functionality
should be described (e.g. the source and target that it mediates between)
so that interested parties (be they humans or computers) can inspect it
and use if necessary.

13.4.2. Process Mediation

Process mediation is required when the semantic content of a process is
shared by two parties but the messages or message exchange patterns of
the parties required to achieve that process differ. The process mediator
must ensure that the message exchange required by each party is
adhered to. As a result the mediator may need to, for example, create
new messages that appear to come from the source party and send these
to the target. The content of such created messages would have been
obtained from the source by the mediator either by explicitly asking for it
or by retaining it until required by the target.

13.5. STANDARDS AND ONTOLOGIES IN
TELECOMMUNICATIONS

The Telecommunications Industry is seeking ways to encourage inter-
operability among the many systems required to run and manage a

288 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

telecommunications network. One such approach is the New Generation
Operations Systems and Software (NGOSS) initiative from the TeleMan-
agement Forum (TeleManagement Forum, 2005a). NGOSS is an inte-
grated framework of industry agreed specifications and guidelines which
include a shared information and data model for systems analysis and
design, and a process framework for business process analysis. NGOSS is
intended to allow easier integration of the Operational Support Systems
(OSS) software used to provision, bill and manage network-based
products and services.

Part of the work of NGOSS is to produce standards for Next
Generation Networks (NGNs). Currently telecommunications compa-
nies have many different networks for different services (e.g.
PSTN, Leased Line) that require managing and maintaining individu-
ally. This requires hundreds or even thousands of different bespoke
system for each network to enable billing, maintenance, trouble
reporting etc. Telco’s are moving towards a consolidated IP-based core
to their networks, where many network services can be provided over
one core network. This should lead to substantial cost savings
and greatly improve flexibility and efficiency in providing network
services.

NGOSS has identified that the use of SOA will be important in
managing the NGNs as the benefits offered by SOAs fit well into the
dynamic and highly flexible architecture that NGNs offer. The critical
features of an SOA are captured in the NGOSS principles:

o Shared Information Data Model: NGOSS components implement and use
a defined part of the Shared Information/Data Model (SID) (Teleman-
agement Forum, 2005b).

o Common Communications Vehicle: Reliable distributed communications
infrastructure, for example software bus integrating NGOSS compo-
nents and workflow.

o External Process Control: Separation of End-to-End Business Process
Workflow from NGOSS Component functionality.

e Business Aware NGOSS Components: Component services/functionality
are defined by NGOSS Contracts.

The work of the TeleManagement Forum in developing a framework for
Next Generation OSS can be seen as ontology building in that NGOSS
provides a level of shared understanding for a particular domain of
interest. NGOSS (TeleManagement Forum, 2005a) is available as a toolkit
of industry-agreed specifications and guidelines that cover key business
and technical areas including Business Process Automation and Systems
Analysis and Design. The former is delivered in the enhanced Telecom
Operations Map (€TOM™) (TeleManagement Forum, 2005¢c) and the
latter is delivered in the SID. The eTOM provides a framework that
allows processes to be assigned to it. It describes all the enterprise

STANDARDS AND ONTOLOGIES IN TELECOMMUNICATIONS 289

processes required by a service provider. The SID provides a common
vocabulary allowing these processes to communicate. It identifies the
entities involved in OSS and the relationships between them. The SID can
therefore be used to identify and describe the data that is consumed and
produced by the processes.

13.5.1. eTOM

The eTOM can be regarded as a Business Process Framework, since its
aim is to categorise the business activities embodied in process elements
so that these elements can then be combined in many different ways, to
implement end-to-end business processes (e.g., billing) which deliver
value for the customer and the service provider.

The eTOM can be decomposed to lower level process categories, for
example ‘Customer Relationship Management’ is decomposed into a
number of categories, one of which is ‘Problem Handling’. This is then
decomposed further into categories such as “Track and Manage Problem’.
It is to these lower level categories that business specific processes can be
mapped. eTOM uses hierarchical decomposition to structure the busi-
ness processes. Process elements are formalised by means of a name, a
description, inputs/outputs and a set of known process linkages (i.e.,
links to other relevant categories).

The eTOM supports two different perspectives on the grouping of the
detailed process elements:

e Horizontal process groupings, in which process elements describe
functionality that spans horizontally across an enterprise’s internal
organisations (e.g., market, product, customer and service manage-
ment etc.).

e Vertical process groupings, in which process elements are grouped
within End-To-End processes (e.g., fulfilment, assurance etc.) accom-
plished by the Service Provider enterprise.

The eTOM Business Process Framework is defined as generically as
possible, so that it is independent of organization, technology and
service.

13.5.2. SID

The SID is much more complex than the eTOM in both its aims and form.
It provides a data model for a number of domains described by a
collection of concepts known as Aggregate Business Entities. These use
the eTOM as a focus to determine the appropriate information to be
modelled. The SID models entities and the relationships between them.
For example a ‘customer’ is defined as a subclass of ‘role’. It contains

290 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

attributes such as ‘id” and ‘name’. It is linked to other entities such as
‘CustomerAccount’ with an association ‘customerPossesses’.

13.5.3. Adding Semantics

Although the TMF NGOSS is one of the more prominent initiatives in
standardising data and process models for telecommunications, there are
also other attempts from different groups in the industry such as ITU-T
(2005), 3GPP (2005) and IPNM (2005). It is Important for NGN to be
based on standardised data models but it is unlikely that one particular
model will be mature enough to implement in the next 2-3 years (the
timeframe for deploying the first generation of NGN).

Ontologies provide a solution due their flexibility in modelling and the
ability to easily mediate between ontologies representing different data
models. This allows a single conceptual view over several data models.
In the classical approach, data models represented in a format such as
XML would not easily allow mappings to be defined between them, or
allow remodelling and adjustment as the standards develop over time.

For the first step in adding semantics to the NGOSS it was decided to
concentrate only on the SID and eTOM as these most closely fit the
requirements for building a Semantic SOA prototype based around
common OSS assurance tasks. Given that ontologies are a conceptualisa-
tion of a domain and the Web Services Modelling Ontology (WSMO,
2005) is a specific form of ontology intended to represent services, their
capabilities and data requirements; it is natural to represent the SID and
€TOM in WSMO as domain ontologies for data and process. Ontologies
are the key element of WSMO since the other three elements (Web
Services, goals and mediators) all refer to them. Representing SID and
eTOM ontologically will enable service components in the SOA to be
described as Web Services using WSMO, with descriptions that refer to
the domain ontologies. Similarly WSMO goals for web service discovery
can be expressed in the same terms. Mediators will make use of the
domain ontologies to, for example, enable mappings between the differ-
ent message formats of two communicating services. The use of WSMO
in this context creates an explicit link between a capability described in a
model and the actual service component that will provide it. Subsection
13.6.3.1 gives more information on how the SID and eTOM were used as
domain ontologies in the case study prototype.

13.6. CASE STUDY

Although the first application of SOAs has generally been within the
boundaries of companies, the benefits equally apply where it is required
to integrate the services of customers, suppliers, partners etc. The longer-

CASE STUDY 291

term vision is that Web Services will compete and collaborate over the
Internet and that businesses will trade with partners and with consumers
based upon highly dynamic commercial arrangements (Muschamp,
2004). Prior to this vision being realised, SOAs can already be used
where trading partner agreements already exist and this is the focus of
our case study.

Traditionally, vertically integrated telecommunications companies
such as BT have provided end-to-end services to customers using their
own retail operations and their own hardware. Over recent years, these
companies have worked hard to improve customer service and reduce
costs through greater process efficiency and effectiveness. These efforts
have been enhanced with the introduction of integrated Operational
Support Systems (OSS). These can provide customers with end-to-end
visibility of service delivery and assurance. The challenge in the new
environment is to maintain these levels of efficiency and customer
service even though the service is being delivered by multiple parties
and organisations who inevitably have their own systems that cannot be
directly integrated with those of others (Evans, 2002). BT Wholesale’s
B2B Gateway is provided to Service Providers® to allow them to integrate
their OSS with those of BT. Without such a system the service provider
would either need to manually coordinate with BT via a BT contact
centre or operate a system separate to its own OSS that communicated
with BT’s—thus requiring information to be entered twice.

The B2B Gateway exposes an interface which is a combination of
transport technologies such as SOAP, security protocols such as SSL, and
messaging middleware such as ebXML, and linked to the behaviour of
back-end systems. Messages formats are expressed using XML Schema
(XSD) (The World Wide Web Consortium, 2000) which has the advantage
of availability of tools and the increased possibility of integrating with
newer transport standards such as Web Services.

Currently the process involved in granting access for a new service
provider on the Gateway is lengthy and complex. It commences with a
communication phase where partners assess their technical suitability,
receive documentation and consider the level of fit with their existing
OSS. A development phase follows, during which support is provided by
BT. During the testing phase, the partner is given access to a test
environment provided by BT where they can test the validity of their
messages and their transport and security mechanisms. Firewalls,
proxies etc. must be configured by both parties to ensure that commu-
nication can occur. Once the testing phase is complete and documented
the partner can move to a pilot phase where terms must first be agreed
regarding volumes, frequency and support arrangements before access is

%A service provider in this context is the organisation which has the relationship with the
end customer.

292 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

given to the live system. Transactions are monitored during the pilot
phase to ensure validity.

The Gateway currently exposes a number of interfaces concerned with
service fulfilment and assurance. These are generally concerned with
regulated services such as broadband access. The interfaces allow Service
Providers to order and cease broadband lines on behalf of their custo-
mers, manage faults (i.e. raise faults, request, confirm and cancel repair
appointments and receive fault status notifications) and carry out diag-
nostics (i.e., request tests and handle the response to these).

The process can take several months from start to finish. Any approach
that can reduce development time, improve the quality of development
through enhanced understanding, and as a result avoid significant
problems during the testing and pilot phases will naturally save BT
and its partners significant time and money. The remainder of this
section will examine how, by using Semantic Web Services, these goals
can be achieved for one particular function, that of Broadband Diagnos-
tics.

13.6.1. Broadband Diagnostics

As part of its OSS process, a Service Provider may wish to raise a test on
the BT network. This is typically due to a problem that has been reported
by one of its customers. The Service Provider’s OSS should collect the
necessary information from the customer and, assuming that the pro-
blem cannot be resolved internally, issue a request via the B2B Gateway.

Interactions are implemented through the exchange of business docu-
ments, sent as messages. These interactions are known as transactions.
The Gateway currently uses ebXML Business Process Specification
Schema (ebXML, 2003) to model the sequencing of these transactions
in a collaboration. The Broadband Diagnostics interface has only two
transactions. These are ‘RequestTest’ and ‘NotifyOfTestCompleted’.
‘RequestTest’ is a ‘RequestResponse’ transaction which means that a
response to the test request is expected. This response indicates whether
the test has been accepted or rejected. It may be rejected if, for example,
the Service Provider is requesting a test on a circuit which it does not
own. The ‘NotifyOfTestCompleted’ is a ‘Notification” transaction. This is
a single message that is sent following the completion of an accepted test
describing the results of the test.

13.6.2. The B2B Gateway Architecture

The B2B Gateway, in common with most B2B interfaces has three
separate elements. The two internal systems of the respective organisa-
tions that need to communicate and the interface that they will use to do

CASE STUDY 293

PR —_ e ————— ———— -~

Service Provider 4 BT Wholesale N

~

i \ / N
! SP 0SS ' i BTW OSS i
1 e — 1 , 1
H CRM System ' ! Test System i
1 1 1
1 1 : 1
: i | S OS§\| E
1 1
! SP OS ! ! Call :
to | Cal ! ebXML] : ebXML] '
1
| : 1 | B2B Gateway i
! Q . =: _> I
< 1 1
: D 1 \ | Test Interface 1
\ h . /
N L \\ ’//

Q Adapter
0SS Message
Call

0SS

System

CRM

Figure 13.2 B2B gateway architecture.

this. This usually involves both systems translating their internal appli-
cation view of data and process into the interface view of the problem.
Depending upon who produces the interface definition, the amount of
translation involved can be either very small or almost impossible to
achieve without development effort.

The Gateway architecture can be represented as shown in Figure 13.2.
The Service Provider’s OSS is able to generate a call to request a test. In
order to pass this on to the B2B Gateway, it must first be adapted to
enable it to be understood. The adaptation process has two key elements.
First, the test call must be represented as a business message that will
be understood by the gateway as valid, given the current state of the
transaction. That is, it must be represented as a TestRequest message
which is the initial interaction of the ‘RequestTest’ transaction. Second,
the business message must be wrapped within the protocol envelope,
that is ebXML messaging. A message received by the B2B Gateway must
also be adapted before it can be processed by the BT Wholesale OSS. This
adaptation is effectively the reverse of the previous one.

Generating the adapter between OSS calls and valid B2B Gateway
messages is one of the key challenges of the integration process. The Web
Services Modelling Ontology aims to significantly simplify this integra-
tion process. The next section describes a prototype using WSMO to

294 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

model the broadband interface, allowing ontological representations of
the data being exchanged to enable semantic mediation.

13.6.3. Semantic B2B Integration Prototype

This section describes the prototype system—The B2B Integration Plat-
form—developed to allow mediation to occur between the
Service Provider trading partner and the B2B Gateway. The prototype
is based upon the execution environment of the Web Services
Modelling Ontology—WSMX (WSMX, 2005). The components of this
architecture include Process Mediation (the task of resolving hetero-
geneity problems in communicating processes) and Choreography (the
task of semantically describing the expected message-exchange pat-
terns), which is required by process mediation. Adaptor components
have been added to allow low level messages to be represented in
WSML (Web Services Modelling Language), the language associated
with WSMO and which can be interpreted by WSMX. In this specific use
case, multiple Service Providers are interfacing with one Wholesale
Provider (BT).

13.6.3.1. Design-Time

The prototype relies upon a number of design-time activities that must be
carried out in order for mediation to occur at run-time. From BT’s point
of view, the key design-time task is to represent its interfaces semanti-
cally. This includes adapting the message descriptions to the language of
the platform—WSML. It is envisaged that a library of adaptors will exist
to convert to and from popular messaging formats such as ebXML, UBL
[Oasis] etc. No intelligence is required in this adaptation step and the
result is an ad hoc messaging ontology that models the elements of the
messages in WSML. Following the adaptation, the elements can then be
referenced against a domain ontology, in this case using the industry
standard specification Shared Information/Data Model of the TeleMan-
agement Forum (TeleManagement Forum, 2005¢c). These references pro-
vide context to the data and allow their semantic meaning to be inferred.
For example the SID defines two concepts Party and PartyRole. The
concept Party is used to explicitly define an organisation or individual
and PartyRole allows an organisation/individual to take on a parti-
cular role during a business transaction. On the B2B Gateway these
concepts fit nicely, as there are a number of organisations that use the
Gateway (such as BT and other third party providers) and take on
different roles depending on the operation being undertaken. If a third
party provider wishes to carry out a testRequest operation, then the
Concept Party is used to describe their organisation, and PartyRole is
used to define their role in this transaction as ‘Conductor’. Similarly BTs

CASE STUDY 295

[\ [BT
WSMX L Wholesale
Adapter

\y B2B G/W

WSML ebXML Messages
Messages conforming to BT
conforming to XSD & BPSS

Ad hoc WSML

I

Figure 13.3 BT design-time tasks.

partyRole in this operation is ‘Perfomer” as they are performing the
actual test.

The final design-time task for BT is to semantically describe the
message-exchange pattern that it expects. As explained previously, this
is known as choreography. The choreography relates the semantic content
of the messages to a semantic description of the process. This can be used
by a process mediator to reason about how to mediate to a target
choreography. The design-time tasks for BT are illustrated in Figure 13.3.

From the perspective of the Trading Partner, the design-time activities
include applying an appropriate adaptor to their message descriptions,
defining its own semantic choreography description and defining a data
mediator between its data representation and that of BTs. This final step
is perhaps the most important and labour intensive. However the open
architecture should allow discovery and reuse of mediators if they
already exist. The end result of this mediation step is that the ad hoc
messaging ontology of the Trading Partner is mapped to the domain
ontology enabling semantic equivalence. A data mediator is produced
that is stored and applied at run-time. The mediator acts as a declarative
transform that can be dynamically discovered and applied in other
(perhaps closely related) scenarios. As such, it should be stored in such
a way that other parties can later discover it.

The choreography of the Trading Partner can be compared with the
choreography of BT by the Process Mediation system which can reason
whether it is possible to mediate and if so, automatically generate a
process mediator. This reasoning step can be carried out at design-time if
the two parties are known at this stage (as is the case here) or at run-time
if one of the parties discovers the other in a dynamic run-time scenario as
described in Section 13.1. This latter case is only feasible if data mediation

296 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

' BT — Side

WSML Messages | already exists

This should conforming to Ad

Domain

|
already existt No¢ WSML ontology wsmo | | Ontology
Mediators |
N 3
Trading Ao WSMX o Message WSMX essage
Partner ()‘ (r Qe Data L2y
oss |« Adapter jei— % Mediation [|\
L GUI

XML Messages
conforming to
Trading Partner
XSD

Process
Mediation

Figure 13.4 Trading partner design-time tasks.

has already occurred or a suitable data mediator can be discovered
(Figure 13.4).

13.6.3.2. Run-Time

The sequence of events at runtime are:

1.

2.

The trading partner OSS generates a message in its native format, for
example XML and forwards this to the Integration Platform.

The Integration Platform applies the appropriate adaptor to convert
the message to WSML.

. A description of the appropriate target interface is retrieved from the

data store of the platform. This can either be predetermined at design-
time or discovered at run-time in a more flexible scenario.

. The choreography engine identifies suitable process and data media-

tors for the message exchange.

. If it is appropriate to send an outgoing message to the target system at

this stage, the choreography engine applies the data mediator to
generate a message that the target will understand.

. The outgoing message is adapted to the native format of the target

interface. In this case, the target interface is that of the B2B Platform,
which is ebXML.

. The outgoing message is forwarded to the intended destination.

Of this sequence, steps 2—6 are platform-dependent in that they are

carried out by the WSMX architecture. However, it is worth pointing out

CASE STUDY 297

that the key benefit is obtained by the explicit relation that is made
between the low-level messages and the domain ontology. Any platform
able to interpret this relationship would be able to apply mediation,
thereby transforming the data and process to that required by the target.

13.6.4. Prototype Implementation

The prototype has been implemented using WSMX components to form
the B2B Integration platform. Web-based GUISs, backed by appropriate
Web Services, simulate the OSS of the ISP and BT Wholesale. The web
services observe the behaviour of the working systems in that actual
message formats and exchange patterns have been utilised. The follow-
ing describes the RequestTest process that has been implemented for the
Assurance Integration scenario. A screenshot from a trading partner GUI
is shown in Figure 13.5.

Test Request d ‘-’Ar"‘
Trading Partner JSP

Homs Start Demo Abaut cantact

Test Request subimission

To submit & fisw

reguest form beloy

Requast Intormation

Reaguest 1D EI-IB?TZ St wsng the
Date oo e sifralils
B G- 1-00 YROZE5AS0 Send Reguest £d
invocatan 1D Al WENMX {21
e [Flease Select... =1 Accept Request
Exacuta Tast 1
Send Result i

Supplier Information

Eikr - Completed Test
Suppier ID |..I-ﬂ£ closad Quary
Sugplier agency 10 ISME}

Requester ldentificetion .
s acsive
zampany IC C1esT + finished

Shatus Indicabon

« failad
Coenpany Agency D [CA4672 - l:;ﬂ
1 e |

Figure 13.5 Screenshot from prototype Ul.

298 A SEMANTIC SERVICE-ORIENTED ARCHITECTURE

1. A customer informs his ISP of an error occurring in one of his products
through a form on the ISP’s web site. The error is passed to the ISP’s
trouble ticketing system.

2. The ticketing system raises the problem with an operator who uses the
GUI of the OSS (as shown in Figure 13.5) to request that a test should
be carried out on the customer’s line. The OSS system produces a
message in a specific XML format (including the data payload,
describing the error and the customer’s product).

3. The message is sent to the B2B Integration Platform which carries out
the steps described in Subsection 16.3.6.2 resulting in a test request
being forward to BT.

4. BT’s OSS receives the message and handles it appropriately, updating
its GUI with details and status of the test.

5. Upon completion of the test, the status is updated and an appropriate
message is returned to the B2B Integration Platform which again
carries out the steps described in Subsection 16.3.6.2. This results in
a test request response being sent to the ISP which then updates its
GUI allowing the operator to see the result and act on it.

13.7. CONCLUSION

The prototype described is a first step in demonstrating how the goals of
an SOA can be assisted with the use Semantic Web technologies.

The main aim of SOAs is to encourage the reuse of available
services and allow the flexibility to quickly build complete systems
dynamically from the available resources. This has been partially
demonstrated in the prototype by showing how ontologies and Seman-
tic Web Services can provide a dynamic and flexible way of integrating
services.

Looking ahead, many more players within the industry are expected to
expose their interfaces for integration. These will include service, whole-
sale and content providers. In this scenario, dynamic integration tech-
nologies such as WSMO have real value since the economies of scale are
greater. The initial effort required in creating ontologies, describing
interfaces semantically and relating the two together is much less than
the total integration effort. It is also likely that certain ontologies will
flourish while others will not, resulting in de facto standard ways of
describing things. Mediation will be important both to map low level
messages and data to the ontologies; and also because new services will
emerge requiring integration between the services (and ontologies) of
players in previously unimagined fields.

A further aim is to show how semantic descriptions can enable services
to be dynamically discovered, composed and executed at runtime. This
will be demonstrated in a second prototype.

REFERENCES 299

REFERENCES

3GPP. 2005. The 3rd Generation Partnership Project [Online]. Available on the web at:
http:/ /www.3gpp.org/

Brodie M. 2003. The Long and Winding Road To Industrial Strength Semantic Web
Services [Online]. Keynote Talk. ISWC 2003. Available on the web at: http://
iswc2003. semanticweb.org/brodie.pdf

ebXML. 2003. The Definition of Business Processes (2003) [Online]. Available on the
web at: http://www.ebxml.eu.org/process.htm

Eisenberg B, Nickull D. 2001. ebXML Technical Architecture Specification v1.04
[Online]. Available on the web at: http://www.ebxml.org/specs/ebTA.pdf

Evans D, Milham D, O’Sullivan E, Roberts M. 2002. Electronic gateways—forging
the links in communications services value chains. The Journal of The Commu-
nications Network. 1(1).

IBM. 2005. Business Process Execution Language for Web Services version 1.1 [Online].
Available on the web at: http://www-106.ibm.com/developerworks /webser-
vices/library /ws-bpel/

IPNM. 2005. The IP Network Management project (2005) [Online]. Available on the
web at: http: //www.tmforum.org/browse.asp?catlD=2013

ITU. 2005. Telecommunication Standardization Sector [Online]. Available on the web
at: http: //www.itw.int/ITU-T/

Koetzle L, Rutstein C, Liddell H, Buss C. 2001. Reducing Integration’s Cost. Forrester
Research, Inc.

Loosely Coupled Website. 2005. Glossary Definition of SOA. [Online]. Available on
the web at: http://looselycoupled.com/glossary/SOA

Mahmoud Q. 2005. Service-Oriented Architecture (SOA) and Web Services: The Road to
Enterprise Application Integration (EAI) [Online]. Available on the web at: http://
java.sun.com/developer/technical Articles/WebServices/soa/

Muschamp P. 2004. An introduction to Web Services. BT Technology Journal 22.

Oasis. OASIS Universal Business Language (UBL) [Online]. Available on the web at:
http: //www.oasis-open.org/committees/tc home.php?wg_abbrev=ubl

TeleManagement Forum. 2005a. NGOSS Owverview Document [Online]. Available
on the web at: http://www.tmforum.org/

TeleManagement Forum. 2005b. Shared Information/Data Model (SID) [Online].
Available on the web at: http: //www.tmforum.org/

TeleManagement Forum. 2005c. Enhanced Telecom Operations Map (eTOM) data
sheet [Online]. Available on the web at: http://www.tmforum.org/

The World Wide Web Consortium. 2000. XML Schema [Online]. Available on the
web at: http: //www.w3.org/XML/Schema

WSMO. 2005. Web Service Modeling Ontology (2005) [Online]. Available on the
web at: http://www.wsmo.org/TR/d2/v1.2/

WSMX. 2005. Web Service Modelling eXecution environment (2005) [Online]. Avail-
able on the web http://www.wsmx.org

14

Conclusion and Outlook

John Davies, Rudi Studer, Paul Warren

The chapters of this book provide a comprehensive overview of the
current state of the art of ontology-based methods, tools, and applica-
tions. They clearly indicate that the progress made in developing
Semantic Web methods have resulted in technologies that are applicable
in real-world scenarios and provide obvious added value to the end
users when compared to traditional solutions.

However, when investigated in some technical detail, one can easily see
that the development of semantic applications is largely based on a single
or very few related ontologies which are used in a ‘one-size-fits-all’
approach. Aspects of contexts (such as, e.g., user preferences) that require
the use of related yet partially inconsistent ontologies, aspects of net-
worked ontologies dynamically adapting to their changing environment
or to the evolving user needs, or aspects of tailoring the human-ontology
interaction to specific tasks and users’ profiles have not yet been addressed
satisfactorily. Furthermore, the semantic handling of resources is more or
less constrained to textual resources and, thus, the semantic analysis of
multimedia resources is still a challenging issue. These issues are closely
related to the fast growing demand of knowledge workers for better
management of their personal information on their respective desktops.

Below, we address these open issues in more detail.

14.1. MANAGEMENT OF NETWORKED ONTOLOGIES

Next generation semantic applications will be characterized by a large
number of networked ontologies, some of them constantly evolving,

Semantic Web Technologies: Trends and Research in Ontology-based Systems
John Davies, Rudi Studer, Paul Warren © 2006 John Wiley & Sons, Ltd

302 CONCLUSION AND OUTLOOK

most of them being locally, but not globally, consistent. In such scenarios
it is more or less infeasible to adopt current ontology management
models, where the expectation is to have a single, globally consistent
ontology which serves the application needs of developers and possibly
integrates a number of pre-existing ontologies.

What is needed is a clear analysis of the complex relationships between
ontologies in such networks, resulting in a formal model of networked
ontologies that supports their evolution and provides the basis for
guaranteeing their (partial) consistency in case one of the networked
ontologies is changing. Open issues that are involved are among others:

e Notion of consistency: The notion of consistency which is appropriate
in this network of ontologies in order to meet the requirements of
future real-life applications needs to be analyzed.

o Evolution of ontologies and metadata: One has to investigate which
kind of methods are suitable for supporting the evolution of these
networked ontologies. Here, one has to analyze the impact of centra-
lized versus decentralized control mechanisms, especially when scal-
ability has to be taken into account. Furthermore, one has to coordinate
the evolution of networked ontologies with the evolution of the related
metadata. Since networked ontologies will result in collections of
metadata that are distributed as well, the synchronization of evolution
processes in these distributed environments requires the development
of new methods that are able to cope with these distribution aspects.

e Reasoning: A basic open issue is the development of reasoning
mechanisms in the presence of (partial) inconsistencies between
these networked ontologies. Whereas first solutions have been devel-
oped that provide basic functionalities, the main challenge is still how
to come up with methods and tools that scale up to handle a large
number of networked ontologies and related metadata.

Developing methods and tools that are able to meet these challenges is an
essential requirement to devise an ontology and metadata infrastructure
that is powerful enough to support the realization of applications that are
characterized by an open, decentralized, and ever changing environment.

14.2. ENGINEERING OF NETWORKED ONTOLOGIES

In recent years several methodologies have been developed to engineer
ontologies in a systematic and application driven way. However, when
considering the needs of ontology engineers and ontology users various
aspects of ontology engineering still need significant improvement:

e Semi-automatic methods: The effort needed for engineering ontologies
is up to now a major obstacle to developing ontology-based applica-
tions in commercial settings. Therefore, the tight coupling of manual
methods with automatic methods is needed. Especially, the integration

CONTEXTUALIZING ONTOLOGIES 303

of methods from the area of information extraction on the one hand
and from the area of machine learning on the other hand still needs
improvement. Here, a deeper understanding of the interplay of these
methods with the semantic structures as provided by ontologies is
needed. In essence, such an understanding would provide guidelines
for a more fine-grained guidance on how to use these automatic
methods depending, for example, on the nature of resources available
or the usage behaviour of the application users.

e Design patterns: Analogous to the development of design patterns in
software engineering, the engineering of ontologies has to be
improved by the development of pattern libraries that provide ontol-
ogy engineers with well engineered and application proven ontology
patterns that might be used as building blocks. Whereas initial
proposals for such patterns exist, a more systematic evaluation of
ontology structures and engineering experiences is required to come up
with a well-defined library that meets the needs of the ontology builders.

e Design rationales and provenance: With respect to maintaining and
reusing ontologies, methodologies have to provide a more compre-
hensive notion of design rationales and provenance. When thinking of
networked scenarios where ontologies are reused in settings that had
not been envisioned by the initial ontology developers, providing such
kinds of metainformation about the respective ontology is a must.
Here, there is a tight dependency with regard to the above-mentioned
use of automatic methods, since, for example, provenance information
has to be provided along with the generated ontology and metadata
elements.

e Economic aspects: In commercial settings, one needs well-grounded
estimations for the effort one has to invest for building up the
required ontologies in order to be able to analyse and justify that
investment. Up to now, only very preliminary methods exist to cope
with these economic aspects, typically constrained to centralized
scenarios. Since good estimations depend on many parameters that
have to be set for a concrete application scenario, improvement in
this area also heavily depends on collecting experience in real-life
projects, comparable to the experience that is the basis for these kind
of estimations in the software engineering area.

Thus, although the engineering of ontologies is a research area already
receiving considerable attention, there still exist a significant amount of
open issues that have to be solved for really meeting the needs of
developers of ontology-based applications.

14.3. CONTEXTUALIZING ONTOLOGIES

Since ontologies encode a view of a given domain that is common to a set
of individuals or groups in certain settings for specific purposes, the

304 CONCLUSION AND OUTLOOK

mechanisms to tailor ontologies to the need of a particular user in his
working context are required. The efficient dealing with a user’s context
posts several research challenges:

e Formal representation of context: Context representation formalisms
for ontologies should be compliant with most of the current
approaches of contextual modeling from more traditional logical
formalisms to modern probabilistic representations. Such formalisms
should also support descriptions of temporal contexts in order to deal
with context evolution.

o Context reasoning: Reasoning processes can be used to, among other
things, infer the same conclusions from different ontologies using
different contexts, to draw different conclusions from the same ontol-
ogies using different contexts, or to adapt an ontology with regard to a
context and to deal with such a modified ontology. Practical reasoning
with contexts should encompass methods for reasoning with logical
representations (such as description logic) on one side and probabil-
istic representations (such as Bayesian networks) on the other side of
the spectrum. Special attention should be given to the scalability of the
approaches.

o Context mapping: Interoperability between different contexts in which
an ontology is used can be achieved by the specification of mappings
that formalize the relationships between contexts. The formal specifi-
cation of such context mappings might support the automatic analysis
of these context dependencies, like, for example, consistency. Using
terminological correlations, term coreferences, and other linguistic and
data analysis methods it might be possible to at least partially auto-
mate the creation of mappings between contexts, thus decreasing the
required human involvement in the creation and use of contextualized
ontologies.

A promising application area of contextual information is user profiling
and personalization. Furthermore, with the use of mobile devices and
current research on ubiquitous computing, the topic of context aware-
ness is a major issue for future IT applications. Intelligent solutions are
needed to exploit context information, for example, to cope with the
fuzziness of context information and rapidly changing environments
and unsteady information sources. Advanced methodologies for
assigning a context to a situation have to be developed, which pave
the way to introduce ontology-based mechanisms into context-aware
applications.

14.4. CROSS MEDIA RESOURCES

More and more application scenarios depend on the integration of
information from various kinds of resources that come in different

CROSS MEDIA RESOURCES 305

formats and are characterized by different formalization levels. In a lot
of large companies, for example, in the engineering domain, informa-
tion can be typically found in text documents, e-mails, graphical
engineering documents, images, videos, sensor data, and so on, that
is, information is stored in so-called cross-media resources. Taking this
situation into account, the next generation of semantic applications
have to address various challenges in order to come up with appro-
priate solutions:

e Ontology learning and metadata generation: Methods for the gen-
eration of metadata as well as the learning of ontologies have until
now been focused on the analysis of text documents, information
extraction from text being the area of concern. However, since these
other kinds of resources are increasingly prevalent, methods, and
tools are urgently needed for the (semi-)automatic generation of
metadata or the learning of ontologies from these nontextual
resources. In some situations, a proper integration of semantics
extracted from nontextual resources (especially images) with the
semantics learned from the text which accompanies them is very
promising.

e Information integration: When combining information from different
sources, aspects of provenance play a crucial role, since the quality and
reliability of the sources may vary to a large extent. Typically, some
information might be vague or uncertain, or only be valid in some
periods of time. As a consequence, one has to develop methods that
can deal with these different kinds of information that provide
heuristics to combine information in these settings and are able to
reason in these heterogeneous settings. In essence, methods from
nonstandard logics, Bayesian networks and the like have to be
combined with the more standard approaches that have been devel-
oped in recent years, like, for example, OWL.

e Advanced ontology mapping: Today’s ontology languages do not
include any provision for representing and reasoning with uncertain
information. However, typical future application scenarios will lead to
ontologies that are composed of concepts that are to some extent valid
in a domain, relationships that hold to some degree of certainty, and
rules that apply only in some cases. That is, we have to deal with
ontologies that go beyond the area of standard logics. As such,
approaches for ontology alignment or merging have to be extended
to cover these challenges.

Whereas individual (non)logical approaches exist to address these
aspects, one lacks a coherent framework to handle these challenges in
an integrated way. How to provide methods that still scale up or how to
design the interaction with the users in such complex scenarios, is still an
open research issue.

306 CONCLUSION AND OUTLOOK

14.5. SOCIAL SEMANTIC DESKTOP

In a complex and interconnected world, individuals face an ever-increas-
ing information flood. They have a strong need for support in automatic
structuring of their personal information space and maintaining fruitful
communication and exchange in social networks within and across
organizational boundaries. The realization of such a Social Semantic
Desktop poses several challenges:

e Personal perspective of knowledge: Since more and more individual
knowledge work is reflected in the information objects and file
structures within the personal desktop, new techniques and methods
are required to extract, structure, and manage such knowledge. In
particular, the support to annotate and link arbitrary information on
the local desktop, across different media types, file formats, and
applications is needed as well as means for the quick, easy, and
unintrusive articulation of human thoughts. The next step is to
integrate content creation and processing with the users’ way of
structuring and performing their work.

e Knowledge work perspective: Knowledge work is typically task
oriented. Therefore, dynamic task modeling is needed to provide the
basis for context-sensitive annotation, storage, retrieval, proactive
delivery, and sharing of information objects. Process-embedded
usage of the support tools, taking into account personal experiences,
will result in a comprehensive and goal-oriented information support
for the individual knowledge worker.

e Social perspective: Individual knowledge work in practice never
stands alone, but is integrated into communication, collaboration,
and exchange between individuals connected via social networks.
Keeping in mind privacy and access rights, each personal desktop
can be considered as a peer in a comprehensive peer-to-peer network
which facilitates distributed search and storage. More powerful meth-
ods and tools which transform a set of hitherto unrelated personal
work spaces into an effective environment for collaborative knowledge
creation and exchange across boundaries are needed. Furthermore,
they will offer the user the means to link and exploit other people’s
knowledge, to comment and annotate other people’s articulations and
collaborate on shared knowledge bases.

The social semantic desktop realizes the vision of the so-called high
performance workspace that will empower a knowledge worker in
critical decision-making processes. However, meeting specific needs of
knowledge workers in a particular context in order to attract their
attention (so-called attention management) is a new, very challenging
issue.

APPLICATIONS 307

14.6. APPLICATIONS

Ontologies are a very promising technology for a variety of application
areas, as discussed in numerous cases studies in the chapters of this
book. Some are still to come: intelligent environments (contextually-
appropriate personalised information spaces), personal knowledge net-
working (see the discussion on the Social Semantic Desktop above), and
business performance management (i.e., near-real-time semantic infor-
mation integration of critical business performance indicators to improve
the effectiveness of business operations and to enable business innova-
tions), to name but a few.

Moreover, in a light-weight form, ontologies are already used for
structuring data in some popular web applications (e.g., flickr) or even
in an industrial environment (e.g., in the form of corporate taxonomies).
There are two main challenges for the wide industrial uptake of heavy-
weight ontologies: (i) their formal nature that could decrease the readi-
ness for a large-scale industrial adoption, and (ii) the lack of practical
evidence (e.g., large-scale success stories) that clearly show the added
value of applying semantic technologies. However, by having first
commercial products on the market, for example, for knowledge man-
agement or information integration, there is now a promising opportu-
nity to come up with more well analyzed application scenarios that show
how ontology-based applications provide a real return of investment.

Looking beyond applications in knowledge and information manage-
ment, work on standards for Semantic Web Services has already begun at
the W3C. Semantic Web Services (SWS) aim to use semantic descriptions
of services to enable automatic discovery, composition, invocation, and
monitoring of web services and have the potential to impact significantly
on IT integration costs and on the speed and flexibility with which
systems can be (re)configured to meet changing requirements. SWS are
discussed in detail in Chapters 10 and 13 of this volume. Beyond this,
semantic technology will be applied to the Grid and in the area of
pervasive computing. In the Grid context, the vision is that information,
computing resources, and services are described semantically using
languages such as RDF and OWL. Analogously to Semantic Web
Services, this makes it easier for resources to be discovered and joined
up automatically, which helps bring resources together to create the
infrastructure to support virtual organizations. Pervasive computing
envisions a world in which computational devices are ubiquitous in
the environment and are always connected to the network. In the
pervasive computing vision, computers and other network devices will
seamlessly integrate into the life of users, providing them with services
and information in an ‘always on,” context sensitive fashion. Semantic
technology can make a significant contribution by supporting scalable
interoperability and context reasoning in such systems.

308 CONCLUSION AND OUTLOOK

Finally, new types of application scenarios that exploit the sharing of
information and on-the-fly cooperation between applications, require
new trust and incentive models. These are key issues for both public
and private sector organizations and must supplement the advancement
of other semantic technologies in order to realize the full potential of the
Semantic Web.

Index

alignment 6, 96,97, 100, 101, 104, 105,
108-113, 127, 173, 205, 271, 275, 305

annotation 29, 30, 3543, 48, 51, 95,
115, 122, 126, 127, 129, 130, 135-137,
145, 147, 148, 150, 169, 223-225, 242,
251, 253, 254, 257, 306

application scenario 23, 177, 179, 186,
303-305, 307, 308

artificial intelligence 22, 25, 26, 71, 74,
92,93,113,117,137,167,187, 189, 280

browsing 6, 20, 23, 33, 41, 45, 51, 53,
61, 63, 64, 96, 145, 146, 151, 167, 168,
219, 240, 244, 246, 247, 251

business process 171, 180, 186, 189, 197,
256, 281, 282, 284, 288, 289, 292, 299

case law databases 274, 275

case study 238, 242, 248, 253, 259, 260,
268, 279, 280, 282, 290, 291

change discovery 52-54, 62, 64, 65, 69

choreography 197, 199, 204-206, 220-
222,227, 230-232, 234, 236, 294-296

classification hierarchy 185

clustering 13-15, 19, 23, 25-27

competency question 176, 177, 179,
267, 269, 270

conceptualization 22, 97, 117-119,
124, 127,177, 184

context 3,9, 10, 14, 23, 24, 30, 41, 42,
51, 52, 56, 59, 61, 63, 65, 95, 99-101,
113, 115, 117, 120, 124, 126, 134, 135,
141, 143, 144, 152, 153, 158, 159, 175,
178-180, 191, 192, 195, 199, 222, 232,
234, 238, 240, 251, 260, 266, 284, 285,
290, 294, 304, 306, 307

core ontology 6, 181, 182, 216

cosine similarity 15

databases 7, 10, 14, 36, 61, 69, 70, 95,
110, 111, 117, 118, 121, 122, 142, 151,
188, 237, 243, 244, 253, 255, 261, 274,
275, 286

description logic 4, 55,74,75,78,79,87,
88, 92, 93, 125, 198-200, 203, 235, 304

design pattern 127, 303

device independence 139, 156-162,
164, 166, 168

DILIGENT 11, 52,70, 127, 136, 137, 172,
180, 181, 185, 186, 189, 242, 270, 271

domain ontology 61, 62, 66, 151, 155,
225, 267, 271, 279, 294, 295, 297

e-commerce 6,133,169, 175, 187, 192,
279

engineering methodology 11, 173, 180

entailment 72, 73, 79, 80, 82, 201, 203

evaluation measure 174, 185, 270

Semantic Web Technologies: Trends and Research in Ontology-based Systems

John Davies, Rudi Studer, Paul Warren

© 2006 John Wiley & Sons, Ltd

310

INDEX

evolution 5, 6,29,30,51-60, 62,69, 70,
120, 173, 176, 177, 179, 182, 183, 185,
189, 302, 304

evolution process
183, 302

evolution strategy 57

52, 53, 57, 59, 69,

feature 4,17,26, 34,108,109, 129, 156,
160, 219, 221, 263, 267

F-Logic 110, 113, 198-200, 202, 203,
216, 217

grounding 19, 26, 107, 110, 125, 192,
195, 205, 207, 209, 214, 226-231, 233,
234

human language technology 29, 30,
48, 169

information extraction 5, 29-31, 34,
36, 42, 46, 126, 137, 246, 303, 305
information management 2, 8, 42,
127, 142, 147, 241, 245, 279, 307
information retrieval 13, 14, 31, 51,
142, 146, 150, 169, 175, 263, 265
information space 133, 134, 193, 243,
251, 252, 254, 257, 306, 307
information system 8, 9, 25, 26, 69, 92,
112, 117, 136, 167, 175, 186-189, 235,
278, 279
informationspace 133, 134, 193, 243,
251, 252, 254, 257, 306, 307
interoperability 3, 6, 7, 118, 144, 189,
191, 194, 200, 214, 227, 232, 237,
240-242, 257, 282, 287, 304, 307

KAON 53-57,59, 178, 187, 269, 271

KAON2 164, 165, 178

keyword search 141, 168, 285

KIM 42-45, 129, 147-149, 164, 169,
251

knowledge acquisition 8, 45, 173, 174

knowledge base 38,42, 55,72,75,76,92,
95, 96, 104, 107, 112, 115, 117-119, 121,
127, 137, 139, 146-149, 152, 153, 155,
164, 166, 167, 175, 246, 279, 285, 306

knowledge discovery 2, 5, 9-14,
17-20, 22, 24-26, 148

knowledge engineer 54, 69, 70, 75, 76,
112, 113, 119, 123, 152, 171, 172, 175,
176, 181, 182, 189, 190, 235, 280

knowledge engineering 69, 70, 112,
113, 123, 172, 189, 190, 235, 280

knowledge management 1, 6, 8, 10,
11, 13, 25, 26, 42, 69, 70, 95, 104, 105,
113, 115, 126, 133, 134, 139, 152, 168,
171, 172, 175, 179, 183, 186, 187, 189,
245, 247, 250, 264, 278-280, 307

knowledge management system 171,
172, 247

knowledge portal 61

knowledge sharing 27, 136, 137, 142,
180, 187, 190, 240, 251

knowledge technology 45, 237, 238

knowledge worker 1, 8, 51, 61, 62,
143, 156, 301, 306

language generation 6, 30, 139, 152,
164, 166, 167, 169, 254

legal ontologies 262, 263, 266, 279, 280

logic 2,4, 5,13, 58, 69, 73-76, 78, 79,
85, 87, 88, 92, 93, 110, 113, 123, 136,
163, 198-200, 202-204, 213, 214, 216,
217, 233-235, 304

logic programming 13, 198-200, 203,
213, 216, 234, 235

mapping 6, 23, 26, 29, 58, 82, 96-100,
102, 104-113, 120, 129, 155, 156, 203,
222,224,229, 230, 240, 253, 275, 287,
304, 305

mapping language 97, 105-107, 110,
111, 229

mapping pattern 105, 106, 110

mediation 30, 95, 96, 104, 111, 112,
120, 167, 194, 197, 204, 205, 221, 222,
230, 237, 251, 282, 286, 287, 294, 295,
297, 298

mediator 99, 196, 197, 204, 205, 220—
222,287, 295, 296

metadata 2, 3, 5, 30, 35-37, 39, 40, 42,
43, 51, 53, 61, 63, 64, 115-117, 121,
122, 126, 127, 136, 142, 143, 147, 151,
152, 167, 168, 187, 195, 196, 233, 236,
239, 241, 244, 245, 253-256, 279, 302,
303, 305

INDEX

311

metadata generation 35, 63, 305

methodology 6, 10-12, 22, 24, 27, 52,
70, 117, 127, 136, 137, 172-180, 186,
188-190, 267, 270, 271, 278

methontology 175, 176, 178, 187

modelling 4, 7, 29, 189, 235, 287, 293,
294, 299

natural language processing 2, 26, 63,
122, 137, 272, 274

ontology 2, 4-19, 22-27, 30, 31, 3648,
51-72, 74-80, 82-88, 90-93, 95-108,
110-113, 115-122, 124-131, 134-139,
142, 145-148, 150, 151, 154-156, 159,
164, 165, 167, 169, 171-190, 192-197,
199-201, 203, 206, 207, 209, 210,
213-216, 218-221, 223-225, 228-231,
233-235, 237, 238, 240, 241, 245, 247,
250-254, 257, 262, 263, 267, 269-276,
278, 279, 285, 286, 288, 290, 293-295,
297, 301-305, 307

ontology alignment 6, 96, 97, 100, 104,
105, 108, 110, 112, 305

ontology building 25, 177, 179, 186,
262, 288

ontology changes 52-56, 62, 65-67, 69

ontology construction 5, 9-14, 18, 19,
22-24, 131, 254

ontology editor 39, 175, 178

ontology engineer 5, 11, 52-54, 59-61,
67,69,70,136, 155, 171-174, 176-186,
188, 189, 238, 250, 252, 270, 302, 303

ontology engineering 5, 11, 54, 69, 70,
136, 171-174, 176181, 183, 185, 186,
188, 189, 238, 250, 252, 302

ontology evolution 51-55, 57, 59, 60,
62, 69, 70, 189

ontology language 4, 55, 56, 76, 79,
82, 85, 93, 100, 105, 107, 112, 136, 194,
224,233, 234, 250, 305

ontology learning 10, 12-15, 17-19,
22-27, 54, 63-66, 69, 113, 179, 180,
186, 245, 267, 305

ontology mapping 38, 96-98, 100, 104,
105, 107, 110-113, 156, 229, 275, 305

ontology mediation 95, 96, 104, 111,
112, 230, 237, 251

ontology merging 6, 96, 97, 102, 103,
105, 111-113, 167, 240

OntoMap 105, 110, 111

OntoStudio 110, 111, 178

OTK methodology 175-178

OWL 4, 46, 47, 55-58, 69, 72, 74-76,
79, 87,90, 92, 93, 100, 104, 105, 107,
112, 117, 123, 125, 127, 136, 137, 154,
155, 164, 178, 192, 198, 199, 207, 209-
215, 227, 228, 231-235, 250, 305, 307

OWL DL 4, 107, 123, 125, 164, 178,
232, 233, 250

OWL full 4, 132, 232

OWL lite 4, 127, 232

OWL-S 104, 192, 198, 207, 209-215,
227, 231-235

process mediator 204, 205, 287, 295

process model 179, 180, 185, 186, 207,
214-216, 231, 233, 290

professional legal knowledge 265, 266

PROTON 6, 63, 115, 118, 124, 126~
133, 135, 136, 138, 142, 164, 250, 253,
271, 272, 279

RDF 4, 14, 38, 46, 55, 69, 72, 91, 98, 99,
112, 121-123, 125, 136, 137, 144-147,
151, 152, 154156, 159, 162, 163,

168, 169, 178, 201, 211, 229, 235, 280,
307

RDF schema see RDFS

RDFS 105, 108, 123, 132, 145, 232

reasoning 4,5, 36,42, 71-76, 78-80, 82,
84-86, 88, 91-93, 112, 113, 116, 120,
127, 164, 169, 178, 185, 199, 212, 219,
234, 264, 280, 295, 302, 304, 305, 307

recall 35, 140, 142, 146, 249, 251

resource description framework see
RDF

reuse 2, 6,58, 95, 119, 177, 182, 223,
228, 230, 279, 282, 295

rule 37,40, 99, 107, 165, 178, 200, 202,
203, 213, 217, 235, 266, 287

search engine 13, 19, 31, 62, 140-147,
150, 166, 167, 237, 239, 272-275, 277

semantic annotation 29, 30, 35, 36,
3943, 51, 115, 122, 126, 127, 129, 130,

312

INDEX

136, 137, 147-149, 151, 169, 224, 253,
254, 257

semantic web 1, 2,4-9, 11, 21, 26, 29—
31, 35, 37-39, 48, 69-72, 75, 76, 91-93,
95,96, 111-113, 115, 117, 126, 127,
136, 137, 139, 142, 143, 147, 150-152,
156, 167-169, 171, 178, 180, 187-195,
198, 199, 201, 204, 205, 210, 213, 216,
219, 221, 226-232, 234-236, 255-257,
259, 278-280, 282, 284-286, 292, 298,
299, 301, 307, 308

semantic web service 6,7, 30,96, 191-
195, 198, 201, 204, 205, 210, 213, 216,
219, 221, 226, 227, 229-232, 234-236,
282, 284, 285, 292, 298, 299, 307

semantic web services 6, 7, 30, 96,
191-195, 198, 201, 204, 205, 210, 213,
216, 219, 221, 226, 229, 230, 232, 234—
236, 282, 284, 285, 292, 298, 299, 307

semantics 3, 35, 42, 53, 55-58, 62, 73,
78, 90, 100, 102, 110, 112, 113, 116~
118, 120, 121, 124-126, 131, 137, 139,
140, 144, 145, 155, 187-189, 192-195,
199, 202, 203, 206, 207, 213, 214, 217,
222-224, 228, 230, 232, 234, 236, 242,
247,257, 276, 277, 283, 284, 290, 305

service discovery 6,191,192, 199, 205,
206, 214, 226, 235, 283, 285, 290

similarity measure 14, 100, 102

SOA 2,4,7,206, 282-284, 286, 288, 290,
298, 299

social semantic desktop 306, 307

Swoogle 150, 151, 168

SWSL 213, 216-218

tag 143, 144, 160, 162

taxonomy 17,55, 98, 101, 115, 183, 185

text document 13, 14, 16, 17, 20, 23,
25,52, 61, 64, 121, 305

text mining 10, 14, 27

Text20nto 54, 63, 66, 69

TextToOnto 65, 267-269

topic 14-17, 19, 22, 25, 26, 51, 61, 63,
66,73, 115, 123, 125, 126, 131-135,
165, 184, 215, 241, 245, 247, 249-251,
254, 266, 304

topic hierarchy 51, 61, 63, 115, 126,
132, 245, 247, 250

topic ontology 14, 17, 25, 26, 251

URL 112, 164, 214

URI 38, 148, 211

usage pattern 13, 52, 53, 66, 69, 248
user behaviour 140, 141

user profile 51, 63, 135, 159, 168, 247

visualization 14, 19, 20, 23-26, 61,
115, 242, 271

W3C 2, 4,093,112, 136, 137, 144,
158-161, 163, 168, 169, 193, 234-236,
257, 307

W3C recommendation 112, 137, 159,
161, 168, 169, 234-236

web service 2-4,6, 7,30, 96,99, 104,
112, 169, 191-199, 201, 202, 204-207,
210, 213-216, 218-236, 261, 262,
282-285, 290-294, 297-299, 307

web service invocation 205, 221, 222,
227

web services 2-4, 6,7, 30, 96, 169,
191-199, 201, 202, 204-207, 210,
213-216, 218-236, 262, 282-285,
290-294, 297-299, 307

World Wide Web Consortium see
W3C 1, 2,30, 124, 160, 193, 291

WSDL 99, 104, 191, 192, 207, 214,
222-224, 226-231, 233, 234, 236, 284

WSDL-S 192, 222-224, 228, 231, 233,
234

WSML 105, 107, 112, 193, 198-203,
205-207, 225, 229, 232-234, 294, 296

WSMO 7, 192-198, 201, 202, 204-206,
218, 220-222, 227, 228, 231-236, 290,
293, 294, 298

WSMX 193, 194, 204-207, 232, 234,
236, 294, 296, 297, 299

XML 4, 23, 38, 95, 99, 120, 121, 136,
143-145, 159-162, 167-169, 193, 201,
202, 211, 216, 223-230, 236, 284, 290,
291, 296, 298, 299

XML schema 120, 121, 202, 223-229,
236, 291, 299

XSLT 154, 161, 162, 228-230,

236

