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Preface 

A key issue in the design of control systems has long been the robustness 
of the resulting closed-loop system. This has become even more critical as 
control systems are used in high consequence applications in which certain 
process variations or failures could result in unacceptable losses. Appropri- 
a.tely, the focus on this issue has driven the design of many robust nonlinear 
control techniques that compensate for system uncertainties. 

At the same time neural networks and fuzzy systems have found their 
wa.y into control applications and in sub-fields of almost every engineering 
discipline. Even though their implementations have been rather ad hoc 
at times, the resulting performance has continued to excite and capture 
the attention of engineers working on today’s “real-world” systems. These 
results have largely been due to the ease of implementation often possible 
when developing control systems that depend upon fuzzy systems or neural 
networks. 

In this book we attempt to merge the benefits from these two approaches 
to control design (traditional robust design and so called “intelligent con- 
trol” approaches). The result is a control methodology that may be verified 
with the mathematical rigor typically found in the nonlinear robust control 
a,rea while possessing the flexibility and ease of implementation tradition- 
ally associated with neural network and fuzzy system approaches. Within 
this book we show how these methodologies may be applied to state feed- 
ba’ck, multi-input multi-output (MIMO) nonlinear systems, output feed- 
ba’ck problems, both continuous and discrete-time aSpplicaNtions, and even 
decentralized control. We attempt to demonstra,te how one would apply 
these techniques to real-world systems through both simulations and ex- 
perimental settings. 

This book has been written at a first-year gradua,te level and assumes 
some fa,miliarity with basic systems concepts such as state variables and 
sta.bility. The book is appropriate for use as a. text book a#nd homework 
problems have been included. 



xvi Preface 

Organization of the Book 

This book has been broken into four main parts. The first part of the book 
is dedicated to background material on the stability of systems, optimiza- 
tion, and properties of fuzzy systems and neural networks. In Chapter 1 
a brief introduction to the control philosophy used throughout the book is 
presented. Chapter 2 provides the necessary mathematical background for 
the book (especially needed to understand the proofs), including stability 
and convergence concepts and methods, and definitions of the notation we 
will use. Chapter 3 provides an introduction to the key concepts from neural 
networks and fuzzy systems that we need. Chapter 4 provides an introduc- 
tion to the basics of optimization theory and the optimization techniques 
that we will use to tune neural networks and fuzzy systems to achieve the 
estimation or control tasks. In Chapter 5 we outline the key properties 
of neural networks and fuzzy systems that we need when they are used as 
approximators for unknown nonlinear functions. 

The second part of the book deals with the state-feedback control prob- 
lem. We start by looking at the non-adaptive case in Chapter 6 in which 
an introduction to feedback linearization and backstepping methods are 
presented. It is then shown how both a direct (Chapter 7) and indirect 
(Chapter 8) adaptive approach may be used to improve both system ro- 
bustness and performance. The application of these techniques is further 
explained in Chapter 9, which is dedicated to implementation issues. 

In the third part of the book we look at the output-feedback problem in 
which all the plant state information is not available for use in the design 
of the feedback control signals. In Chapter 10, output-feedback controllers 
are designed for systems using the concept of uniform complete observ- 
ability. In particular, it is shown how the separation principle may be 
used to extend the approaches developed for state-feedback control to the 
output-feedback case. In Chapter 11 the output-feedback methodology is 
developed for adaptive controllers applicable to systems with a great degree 
of uncertainty. These methods are further explained in Chapter 12 where 
output-feedback controllers are designed for a variety of case studies. 

The final part of the book addresses miscellaneous topics such as discrete- 
time control in Chapter 13 and decentralized control in Chapter 14. Finally, 
in Cha,pter 15 the methods studied in this book will be compared to conven- 
tional adaptive control and to other “intelligent” adaptive control methods 
(e.g., methods based on genetic algorithms, expert systems, and planning 
systems). 
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Chapter 1 
Introduction 

1.1 Overview 

The goal of a control system is to enhance automation within a system 
while providing improved performance and robustness. For instance, we 
may develop a cruise control system for an automobile to release drivers 
from the tedious task of speed regulation while they are on long trips. In 
this case, the output of the plant is the sensed vehicle speed, y, and the 
input to the plant is the throttle angle, u, as shown in Figure 1.1. Typically, 
control systems are designed so that the plant output follows some reference 
input (the driver-specified speed in the case of our cruise control example) 
while achieving some level of “disturbance rejection.” For the cruise control 
problem, a disturbance would be a road grade variation or wind. Clearly we 
would want our cruise controller to reduce the effects of such disturbances 
on the quality of the speed regulation that is achieved. 

). Plant 
Y 

u 
Control 4 

Figure 1.1. Closed loop control. 

In the area of “robust control” the focus is on the development of con- 
trollers that can maintain good performance even if we only have a poor 
model of the plant or if there are some plant parameter variations. In the 
area, of adaptive control, to reduce the effects of plant parameter variations, 
robustness is achieved by adjusting (i.e., a,dapting) the controller on-line. 
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2 Introduction 

For instance, an adaptive controller for the cruise control problem would 
seek to achieve good speed tracking performance even if we do not have a 
good model of the vehicle and engine dynamics, or if the vehicle dynamics 
change over time (e.g., via a weight change that results from the addition of 
cargo, or due to engine degradation over time). At the same time it would 
try to achieve good disturbance rejection. Clearly, the performance of a 
good cruise controller should not degrade significantly as your automobile 
ages or if there are reasonable changes in the load the vehicle is carrying. 

We will use adaptive mechanisms within the control laws when certain 
parameters within the plant dynamics are unknown. An adaptive controller 
will thus be used to improve the closed-loop system robustness while meet- 
ing a. set of performance objectives. If the plant uncertainty cannot be 
expressed in terms of unknown parameters, one may be able to reformu- 
late the problem by expressing the uncertainty in terms of a8 fuzzy system, 
neural network, or some other parameterized nonlinearity. The uncertainty 
then becomes recast in terms of a new set of unknown parameters that may 
be adjusted using adaptive techniques. 

1.2 Stability and Robustness 

Often, when given the challenge of designing a control system for a par- 
ticular application, one is provided a model of the plant that contains the 
dominant dynamic characteristics. The engineer responsible for the design 
of a control system may then proceed to formulate a control algorithm as- 
suming that when the model is controlled to within specifications, then the 
true plant will also be controlled within specifications. This approach has 
been successfully applied to numerous systems. More often, however, the 
controller may need to be adjusted slightly when moving from the design 
model to the actual implementation due to a mismatch between the model 
and true system. There are also cases when a control system performs 
well for a. particular operating region, but when tested outside that region, 
performance degrades to unacceptable levels. 

Y 
b, Plant+ A . 

. 

u 
. Control -4 

\ 

Figure 1.2. Robust control of a# plant with unmodeled dynamics. 



Sec. 1.2 Stability and Robustness 3 

These issues, among others, are addressed by robust control design. 
When developing a robust control design, the focus is often on maintaining 
stability even in the presense of unmodeled dynamics or external distur- 
bances applied to the plant. Figure 1.2 shows the situation in which the 
controller must be designed to operate given any possible plant variation A. 
Unmodeled dynamics are typically associated with every control problem 
in which a controller is designed based upon a model. This may be due to 
any one of a number of reasons: 

l It may be the case that only a nominal set of parameters are available 
for the control design. If a controller is to be incorporated into a mass- 
produced product, for example, it may not be practical to measure 
the exact parameter values for each plant so that a controller can be 
customized to each particular system. 

l It may not be cost effective to produce a model that exactly (or even 
closely) represents the plant’s dynamics. It may be possible to spend 
fewer resources on a robust control design using an incomplete model 
than developing a high fidelity model so that traditional non-robust 
techniques may be used. 

Hence, the approach in robust control is to accept a priori that there will 
be model uncertainty, and try to cope with it. 

The issue of robustness has been studied extensively in the control lit- 
era:ture. When working with linear systems, one may define phase a#nd gain 
margins which quantify the range of uncertainty a closed-loop system may 
withstand before becoming unstable. In the world of nonlinear control de- 
sign, we often investigate the stability of a closed-loop system by studying 
the behavior of a Lyapunov function candidate. The Lyapunov function 
candidate is a mathematical function designed to provide a simplified mea- 
sure of the control objectives allowing complex nonlinear systems to be 
analyzed using a scalar differential equation. When a controller is designed 
t,hat drives the Lyapunov function to zero, the control objectives are met. If 
some system uncertainty tends to drive the Lyapunov candidate away from 
zero, we will often simply add an additional stabilizing term to the control 
algorithm that dominates the effect of the uncertainty, thereby making the 
closed-loop system more robust. 

We will find that by adding a static term in the control law that simply 
dominates the plant uncertainty, it is often easy to simply stabilize an 
uncertain plant, however, driving the system error to zero may be difficult 
if not impossible. Consider the case when the plant is defined by 

iT=Bx+u, (1 1) . 

where x E R is the plant state that we wish to drive to the point x = 1, 
u E R is the plant input, and 8 is an unknown constant. Since 8 is unknown, 



one may not define a static controller that causes 12; = 1 to be a stable 
equilibrium point. In order for 61; = 1 to be a stable equilibrium point, it 
is necessary that ? = 0 when x = 1, so U(X) = -0 when z = 1. Since 6’ is 
unknown, however, we may not define such a controller. 

In this case, the best that a static nonlinear controller may do is to keep 
x bounded in some region around z = 1. If dynamics are included in the 
nonlinear controller, then it turns out that one may define a control system 
that does drive x -+ 1 even if B is unknown. In this book we will use the 
approach of adaptive control to help us define such a nonlinear dynamic 
controller that will stabilize a certain class of nonlinear uncertain systems. 

1.3 Adaptive Control: Techniques and Properties 

An a,daptive controller can be designed so that it estimates some uncertainty 
within the system, then automatically designs a controller for the estimated 
plant uncertainty. In this way the control system uses information gathered 
on-line to reduce the model uncertainty, that is, to figure out exactly what 
the plant is at the current time so that good control can be achieved. 
Considering the system defined by (l.l), an adaptive controller may be 
defined so that an estimate of 0 is generated, which we will denote 6. If 
0 were known, then including a term -8x in the control law would cancel 
the effects of the uncertainty. If 8 + 6 over time, then including the term 
-6~ in the control law would also cancel the effects of the uncertainty over 
time. This approach is referred to as indirect adaptive control. 

1.3.1 Indirect Adaptive Control Schemes 

An indirect approach to adaptive control is made up of an approximator 
(often referred to as an “identifier” in the adaptive control literature) that 
is used to estimate unknown plant parameters and a “certainty equiva- 
lence” control scheme in which the plant controller is defined (“designed”) 
aassuming that the parameter estimates a’re their true values. The indirect 
a’daptive approach is shown in Figure 1.3. Here the adjustable approximator 
is used to model some component of the system. Since the approximation 
is used in the control law, it is possible to determine if we have a good 
estima,te of the plant dynamics. If the approximation is good (i.e., we know 
how t)he plant should behave), then it is easy to meet our control objec- 
tives. If, on the other hand, the plant output moves in the wrong direction, 
then we ma,y assume that our estimate is incorrect and should be adjusted 
a,ccordingly. 

As a1n example of an indirect adaptive controller, consider the cruise 
control problem where we have an approximator that is used to estimate 
the vehicle mass and aerodynamic drag. Assume that the vehicle dynamics 
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Figure 1.3. Indirect adaptive control. 

may be approximated by 

mk = -px” + u, (1 a> . 

where m is the vehicle mass, p is the coefficient of aerodynamic drag, x is 
the vehicle velocity, and u is the plant input. Assume that an approximator 
has been defined so that estimates of the mass and drag are found such that 
& --+ m and b -+ p. Then the control law 

u = 62” + r?w(t) 

may be used so that 2 = v(t) when ti = m and b = p. Here v(t) may 
be considered a new control input that is defined to drive x to any desired 
value. 

Latter in this book, we will learn how to define an approximator for 
ti and fi in the above example that allows us to drive x to some desired 
velocity. We will also find that the indirect approach remains stable when 
k(O) # m and b(O) # p though the initial parameter values may affect the 
transient performance of the closed-loop system. 

1.3.2 Direct Adaptive Control Schemes 

Yet another approach to adaptive control is shown in Figure 1.4. Here 
the adjustable approximator acts as a controller. The adaptation mecha- 
nism is then designed to adjust the approximator causing it to match some 
unknown nonlinear controller that will stabilize the plant and make the 
closed-loop system achieve its performance objectives. 

Note tha*t we call this scheme “direct” since there is a direct adjustment 
of the parameters of the controller without identifying a model of the plant. 



6 introduction 

1’ 
), Plant f . 

Figure 1.4. Direct adaptive control. 

Direct adaptive control, while a somewhat less popular approach (at least in 
the neural/fuzzy adaptive control literature), will be considered each time 
we consider an indirect scheme in this book. Part of the reason we give 
a relatively equal treatment to direct adaptive schemes is that in several 
implementations we have found them to work more effectively than their 
indirect adaptive counterparts. 

1.4 The Role of Neural Networks and Fuzzy Systems 

In this section we outline how neural networks and fuzzy systems can be 
used as the “approximator” in the adaptive schemes outlined in the previous 
section. Then we discuss the advantages of using neural networks or fuzzy 
systems as approximators in adaptive systems. 

1.4.1 Approximator Structures and Properties 

Neural networks are parameterized nonlinear functions. Their parameters 
are, for instance, the weights and biases of the network. Adjustment of 
these parameters results in different shaped nonlinearities. Typically, the 
adjustment of the neural network parameters is achieved by a gradient 
descent approach on an error function that measures the difference between 
the output of the neural network and the output of the actual system 
(function). That is, we try to adjust the neural network to serve as an 
approximator for an unknown function that we only know by how it specifies 
output values for the given input va,lues (i.e., the training data). Or, viewed 
a’nother way, we seek to adjust the neural network so that it serves as an 
“interpolator” for the input-output da#ta so that if it is presented with input 
data, it will produce an output that is close to the actual output that the 
function (system) would create. 

Due to the wide range of roles tha’t the neural network c&n play in 
a’daptive schemes we will simply call them “approximators,” and below 
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we will focus on their properties and advantages. It is important to note, 
however, that neural networks are not unique in their ability to serve as 
approximators. There are conventional approximator structures such as 
polynomials. Moreover, there is the possibility of using a fuzzy system as 
a#n approximator structure as we discuss next. 

Historically, fuzzy controllers have stirred a great deal of excitement in 
some circles since they allow for the simple inclusion of heuristic knowl- 
edge about how to control a plant rather than requiring exact mathemat- 
ical models. This can sometimes lead to good controller designs in a very 
short period of time. In situations where heuristics do not provide enough 
information to specify all the parameters of the fuzzy controller a priori, re- 
searchers have introduced adaptive schemes that use data gathered during 
the on-line operation of the controller, and special adaptation heuristics, to 
automatically learn these parameters. 

Hence, fuzzy systems have served not only their originally intended 
function of providing an approach to nonadaptive control, but also in adap- 
tive controllers where, for example, the membership functions are adjusted. 
Fuzzy systems are indeed simply nonlinear functions that are parameter- 
ized by, for example, membership function parameters. In fact, in some 
situations they are mathematically identical to a certain class of radial ba- 
sis function neural networks. It is then not surprising that we can use fuzzy 
systems as approximators in the same way that we can use neural networks. 
It is possible, however, that the fuzzy system can offer an additional ad- 
vantage in that it may be easier to incorporate heuristic knowledge about 
how the input-output map for which you are gathering data from should be 
shaped. In some situations this can lead to better convergence properties 
(simply because it may be easier to initialize the shape of the nonlinearity 
implemented by the approximator). 

In this book we will provide some insights into how to pick an approx- 
imator (e.g., based on physical considerations); however, the question of 
which approximator is best to use is still an open research issue. In our 
discussions on approximator properties, when we refer to an “approximator 
structure,” we mean the nonlinear function that is tuned by the parameters 
of the approximator. The %ize” of the approximator is some measure of 
the complexity of the mapping it implements (e.g., for a neural network it 
might be the total number of parameters used to adjust the network). An- 
other feature that we will use to distinguish among different approximators 
is whether they are “linear in their parameters.” For instance, when only 
certain parameters in a neural network are adjusted, these may be ones that 
enter in a linear fashion. Clearly, linear in the parameter approximators 
are a, special case of nonlinear in the parameter approximators and hence 
they can be more limited in what functions that they can approximate. 

We will study approximators (neural or fuzzy) that satisfy the “univer- 
sal approximation property.” If an approximator possesses the universal 
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approximation property, then it can approximate any continuous function 
on a closed and bounded domain with as much accuracy as desired (how- 
ever, most often 7 to get an arbitrarily accurate approximation you have to 
be willing to increase the size the the approximator structure arbitrarily). 
It t urns out that some approximator structures provi de much more efficient 
parameterized nonlinearities in the sense that to get definite improvement 
in approximation accuracy they only have to grow in size in a, linear fashion. 
Other approximator struct ures may have to grow exponentially to achieve 
small increases in approximation accuracy. However, it is important to 
note that the inclusion of physical domain knowledge may help us to avoid 
prohibitive increases in the size of the approximator. 

The “approximation error” is some suitably defined measure (e.g., the 
maximum distance between the two functions over their domains) of the 
error between the function you are trying to approximate (e.g., the plant) 
and the function implemented by the approximator. The “ideal approxi- 
mation error” (also known as the “representation error”) is 
error that would result from the best choice of the approxi 

the minimum 
.mator param- 

eters (i.e., the “ideal parameters”). For a class of neural networks it can 
be shown that the ideal approximation error has definite decreases with 
an increase in the size of the approximator (i.e., it decreases at a certain 
rate with a linear increase in 
this case you must adjust the 

the size of the neural 
parameter ‘s that enter 

network); however, in 
in a nonlinear fashion 

and there are no general guarantees for current algorithms that you will 
find the ideal parameters. Linear in the parameter approximators provide 
no such guarantees of reduction of the ideal approximation error; however, 
when one incorporates physi 
cations shows that increases 

cal 
in 

domain knowledge, experience with appli- 
approximator accuracy can often be found 

with reasonable increases in the size of the approximator. 

‘1.4.2 Benefits for Use in Adaptive Systems 

First, for comparison purposes it is useful to point out that we can broadly 
think of many conventional adaptive estimation and control approaches 
for linear systems as techniques that use linear approximation structures 
for systems with known model order (of course, this is for the state feed- 
back case and ignores the results for plants where the order is not assumed 
known). Most often, in these cases, the problems are set up so that the 
linear approximator (e.g., a linear model with tunable parameters) can 
perfectly represent the underlying unknown function that it is trying to 
approximate (e.g., the plant model). However, it may take a certain “per- 
sistency of excitation” to achieve perfect approximation and conditions for 
this were derived for adaptive estimation and control. 

Regardless, thinking along these lines, linear robust adaptive control 
studies how to tune linear a!pproximators when it is not possible to per- 
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fectly approximate the unknown function with a linear map. In this sense, 
it becomes clear why there is such a strong reliance of the methods of on-line 
approximation based control via neural or fuzzy systems on conventional ro- 
bust control of linear systems. While the universal approximation property 
guarantees that our approximators can represent the unknown function, for 
practical reasons we have to limit their size so a finite approximation error 
arises and must be dealt with; on-line approximation approaches deal with 
it in similar (or the same) ways to how it is dealt with in linear robust 
control. 

Now, while there is a strong connection to the conventional robust adap- 
tive control approaches, the on-line approximation based approach allows 
you to go further since it does not restrict the unknown function to be 
linear. In this way, it provides a logical extension to create nonlinear ro- 
bust control schemes where there is no need to assume that the plant is a 
linear parameterization of known nonlinear functions (as in the early work 
on a,daptive feedback linearization [192] and the more recently developed 
systematic approach of adaptive backstepping [115]). 

It is interesting to note, however, that while there are strong connec- 
tions to conventional adaptive schemes, there is an additional interesting 
characteristic of the resulting adaptive systems in that if designed prop- 
erly they can implement something that is more similar to the way we 
think of “learning” than conventional adaptive schemes. Some on-line ap- 
proximation based schemes (particularly some that are implemented with 
approximators that have basis functions with “local support” like radial ba- 
sis function neural networks and fuzzy systems) achieve local adjustments 
to parameters so that only local adjustments to the tuned nonlinearity take 
place. In this case, if designed properly, the controller can be taught one 
operating condition, then learn a different operating condition, and later 
return to the first operating condition with a controller that is already 
properly tuned for that region. Another way to think of this is that since 
we are tuning nonlinear functions that have an ability to be tuned locally 
(something a simple linear map cannot do since if you change a parameter 
it affects the shape of the map over the whole space) they can remember 
past tuning to a certain extent. 

To summarize, in many ways, the advantages of using neural networks or 
fuzzy systems arise as pr-actical rather than theoretical ben&if,s in the sense 
that we could avoid their use all together and simply use some conventional 
a,pproximator structure (e.g., a polynomial approximator structure). The 
practical benefits of neural networks or fuzzy systems are the following: 

l They offer forms of nonlinearities (e.g., the neural network) that are 
universal a8pproximators (hence more broadly applicable to ma’ny ap- 
plications) and that offer reduced ideal approximation error for only 
a linear increase in the number of parameters. 
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l They offer convenient ways to incorporate heuristics on how to ini- 
tialize the nonlinearity (e.g., the fuzzy system). 

In addition, to help demonstrate the practical nature of the approaches we 
introduce in this book, there will be an experimental component where we 
discuss severa’ laboratory implementations of the methods. 

1.5 Summary 

The general control philosophy used within this book may be summarized 
as follows: 

We use concepts and techniques from robust control theory, 

Adaptive approaches are used to compensate for unknown system 
characteristics, and 

When a system uncertainty may be characterized by a function, the 
problem is reformulated in terms of fuzzy systems or neural networks 
to extend the applicability of the adaptive approaches. 

We will use the traditional controller development and analysis approaches 
used in robust, adaptive, and nonlinear control, with the mathematical 
flexibility provided by fuzzy systems and neural networks, to develop a 
powerful approach to solving many of today’s challenging real-world control 
problems. 

Overall, while we understand that many people do not read introduc- 
tions to books, we tried to make this one useful by giving you a broad view 
of the lines of reasoning that we use, and by explaining what benefits the 
methods may provide to you. 
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Chapter 2 

Mathematical Foundations 

2.1 Overview 

Engineers have applied knowledge gained in certain areas of science in order 
to develop control systems. Physics is needed in the development of math- 
ematical models of dynamical systems so that we may analyze and test our 
adaptive controllers. Throughout this book, we will assume that a math- 
ematical model of the system is provided so we will not cover the physics 
required to develop the model. We do, however, require an understanding 
of background material from mathematics, and thus it is the primary focus 
of this chapter. In particular, mathematical foundations are presented in 
this chapter to establish the notation used in this book and to provide the 
reader with the background necessary to construct adaptive systems and 
a,nalyze their resulting dynamical behavior. Here, we overview some ideas 
from vector, matrix, and signal norms and properties; function properties; 
and stability and boundedness analysis. 

The reader who already understands all these topics should quickly skim 
this chapter to get familiar with the notation. For the reader who is un- 
fa,miliar with all or some of these topics, or for those in need of a review 
of these topics, we recommend doing a variety of the examples throughout 
the chapter and some of the homework problems at the end of it. 

2.2 Vectors, Matrices, and Signals: Norms and Properties 

Norms measure the size of elements in a set S. In general, given two 
elements z,y E S, a norm, denoted by 11 . 11 (or 1 . I), is a real valued 
function which must satisfy 

zll = 0 if and only if (iff) z = 0. 

for any a E R, where R is the set of real numbers. 

+ IIY IL 
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The third relationship is called the triangle inequality. If I/n; - y(( = 0 
we say that x and y are the same element in S. 

2.2.1 Vectors 

Given a vector r: E R” (the Euclidean space) with elements defined by 
x= [Xl, * * *, x,lT (where T denotes transpose), its p-norm is defined as 

where p E [l, 00). If a is a scalar, then ]a] denotes the absolute value of a. 
We also define the w-norm as 

I I x,= max {IXil} - (2 2) . 
l<i<n -- 

When we use a vector norm without an explicit subscript, to be concrete 
we adopt the convention in this book that it is the Z-norm (also called the 
Euclidean norm) although in most cases any other pnorm or co-norm would 
also be valid. Notice that the Z-norm may be written in vector notation as 

Example 2.1 Consider the l-norm, and real n-vectors x = [xl, . . . , x,lT, 
and y = [YI,--,Y~]~~ Here, we show that all three properties of 
a, norm hold for the p = 1 case. Notice that since ]n;]r = ]xl] + 
1x21 + *-- + ]xn], clearly ]x]r > 0, and 1x11 = 0 if? x = 0 so that 
the first property of the norm is satisfied. Next, notice that since 
for any two scalars a and b, ]ub] = ]u]]h], we know that ]ux]r = 
~ux~~+~ux~~+~~~+~ux~~ = ~u~(x~~+~uJ~x~~+~~~+~uJ~z,( = lullxl~ and 
the second property of norms is satisfied. For the triangle inequality 
notice that lx + yll = 1x1 + yll + 1x2 + ~21 + ... + ]xn + ynl, and 
since for any two scalars a and b, ]a + h] 5 (a] + lb], we know that 
IXi + Yil 5 IXil + IYil f or each i, 1 5 i 5 rz. Hence, we have Ix + y]i < 
1x11 + Iv11 + 1x21 + IY2I + *-- + lxnl + IYnl = 1x11 + IYll so that the 
triangle inequality holds. For practice, show that all the properties 
of a norm hold for the p = 2 case. n 

We also note that each of the vector norms are similar in that we may 

define constants a, b E R such that u]z& 5 (zJP 5 b]x(, for any p, q E [l, 001. 
For instance, if x E R”, 

and 
I+m L I41 I4&0* 



Sec. 2.2 Vectors, Matrices, and Signals: Norms and Properties 15 

Example 2.2 Let J; = [XI,. . . , x,,]~. To see that ]zloo 5 ]x(r < +J[~ 
note first that 1~1~ 5 ]lc]r since the sum of all the absolute values of 
the elements of z must be larger than the largest element of x since 
this element is contained in the sum. Next, it is easy to see that 
141 5 4&o since if you take the largest element of x;, and sum it up 
n times (equivalent to multiplying by n), this must be larger than the 
sum of the absolute values of the elements of z. For practice, show 

Cauchy’s inequality is given by 

lZTYl 5 14lYl. (2 3) . 

Equa#lity holds in Cauchy’s inequality iff II: = ay for a scalar ar E R. This, 
and other relationships such as the one discussed in the next example will 
be useful in the study of adaptive systems. 

Example 2.3 We may use the definition of vector norms to show that 

+-I2 -&TY 5 -kg + k$ (2 4) . 

for any x, y E R” . First, notice that 

;I FYI 
I I 

2 

X 
2 IYI 

2 
- - +.r’2/++0. 

From this inequality, we rearrange terms to get the desired result. A 

2.2.2 Matrices 

Given a matrix A E RmXn with elements 

(also denoted A = [aJ> and matrix B E Rnxq then the transpose satisfies 

(AB)T . = BTAT P-5) 

Also, if n = m = 4 then a matrix 14 is said to be a symmetric matrix if 
A = ,4T. The trace operator is defined by 

tr[A] = 2 ai,i 
i=l 

a,nd ha’s the property 
tr[AB] = tr[BA]. 

(2.6) 

P-7) 
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Induced Norms 

The induced p-norm is defined as 

II4 14 I A xP p = sup - 
I I 7 

x+0 xP 
(2-8) 

(where ,4 is m x n and x is 12 x 1) which may be expressed as 

II 411 i p = sup lAXI,> 
1x1=1 

P-9) 

where p E [I, 00). The operator sup, called the supremum, gives the least 
upper bound of its argument over its subscript. Some of the more commonly 
used matrix norms are 

772 

IMI 1= max l<j<n >: I4 -- i=l 
(2.10) 

II42 = pLz=i, (2.11) 

and 

llAllm = I=l”-<xm 2 laA (2.12) 
-- j=l 

where X rnax(A) is th e maximum eigenvalue of A (refer to [74]). In this book 
when we use the notation IlAll (i.e., without a subscript) to be concrete 
we will be referring to the case where p = 2, although in most cases any 
p-norm or m-norm will work also. 

Consider m x n matrices A and B. The induced p-norm of a m x n 
ma,trix satisfies the axioms of a norm on RmX”, so the triangle inequality 

II-4 + Bll I IIAII + IPII (2.13) 

holds. In addition, it is useful to note that 

IIAXII L ll4ll4 (2.14) 

and 

IIABII L ll4lll~ll (2.15) 

for ma.trices A and B and vector x. Also, 

max lai,jl 5 ~~4~ < &iGimax J&,jl. 

i,.i i,.i 
(2.16) 
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Example 2.4 Let 

A= ; ; . 1 1 (2.17) 

In this ca,se, llillll = 4, IlAllz = +(I/% + Jz) = 3.26, and /A)lm = 3. 
If J= = [l, 1lT then notice that 4.24 = &% = llAz+ 5 IIAll&& = 
3.26(a) = 4.61. Notice that 

A 

Positive Definite Matrices 

We will use the properties of positive definite matrices throughout the anal- 
ysis in this book. A real symmetric n x rz matrix P is said to be positive 
semidefinite (denoted P 2 0, which is not an element-wise inequality) if 
xTPz 2 0 for all IL: # 0, while it is said to be positive definite (denoted 
P > 0) if zTPz > 0 for all IL: # 0. Given a real symmetric matrix P, then 
P > 0 (P >_ 0) iff all its eigenvalues are positive (nonnegative). This pro- 
vides a convenient way to test for positive definiteness (semidefiniteness). 
Since the determinant of P, det(P) = X1 . . . X,, where the Xi are eigen- 
values, we know that det(P) > 0 if P > 0. As an example, note that if 
D = [dij] is a diagonal matrix (i.e., &j = 0, i # j) with dii > 0 (dii 2 0) 
then D is positive definite (positive semidefinite); hence, the identity matrix 
is a positive definite matrix. 

There are other ways to test if a matrix is positive definite. For instance, 
given a square matrix P E RnXn, a leading principle submatrix is 
defined by 

r Pll --- Pli 1 pi= : I - . (2.18) 

Lp i1 . . . pii 1 

foranyi = l,... , n. If the leading principal submatrices PI, . . . , P, all have 
positive determinants, then P > 0. Next, we outline some useful properties 
of positive definite matrices. 

If P > 0 then the ma,trix inverse satisfies P-l > 0. If P-l exists and 
P > 0 then P > 0. If A and B are n x 72 positive semidefinite (definite) 
ma,trices, then the matrix P = XA + @ is also positive semidefinite (def- 
inite) for all X > 0 and ,Y > 0. If ,4 is an n x n positive semidefinite 
matrix and C is an m x n matrix, then the matrix P = CACT is positive 
semidefinite. If an n x n ma>trix A is positive definite, and an m x n matrix 
C has rank m, then P = CACT is positive definite. An n x n positive 
definite and symmetric matrix P can be written as P = CCT where C is a 
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square invertible matrix. If an n x rz matrix P is positive semidefinite and 
symmetric, and its rank is m, then it can be written as P = CCT, where C 
is an rz x m matrix of full rank. Given P > 0, one can factor P = UTDU 
where D is a diagonal matrix and U is a unitary matrix (if we let U* 
denote the complex conjugate transpose of U, then U is called a unitary 
matrix if U* = U-l). This implies that we may express P = PT/2P1/2 
where p1i2 = D112u . 

We may use positive definite matrices to define the vector norm 

lxlfp, = xTPx, (2.19) 

where P > 0 is a rea(l symmetric positive definite matrix. 

Example 2.5 In this example we show how to use properties of positive 
definite matrices to show that Izilpl is a vector norm. Clearly, IzIlpl 2 
0 and J”llpl = 0 iff x = 0. Also, it is clear that )azl~~l = )u\(zJlpl for 
any a E R so the first two properties of a norm are satisfied. Next, we 
need to show that 1~: + ylip] 5 I+] + Iylipj. The triangle inequality 
may be established by first noting that 

lx + yl[p] = @-Pz + 2xTPy + yTPy(. (2.20) 

Since xTPy = xT PT/2p112y = (P’/‘x)~ (P1/2y), we know that 
lxTPyl < &7F&/pFy so 

(2.21) 

A 

Next, note tha#t if P is n x n and symmetric then for any real n-vector 
x, the Rayleigh-Ritz inequality 

X,i,(P)XTX 5 XTPX 5 X,,,(P)XTX (2.23) 

holds where X min (P) and Amax (P) are the smallest and largest eigenvalues 
of P. Also, if P > 0 then - 

lIPI = knax(P). 

If P > 0, then 
lip-l 112 = l/Xrnin(P), 

and the trace tr[P] is bounded by 

llPll2 L t@] 5 4lPII2- (2.24) 
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22.3 Signals 

Norms may also be defined for a signal z(t) : R+ -+ R” to quantify its 
magnitude. Here R+ = [0, co) is the set of positive real numbers so x(t) is 
simply a vector function whose n elements vary with time. The pnorm for 
a continuous signal is defined as 

II4lp = ( lrn /z(tjjYdt) lip 7 (2.25) 

where p E [I, 00). If x(t) = eet, what is 11x112? If x(t) is a vector quantity, 
then I . I represents the vector 2-norm in R”. Additionally, 

II II xcm = sup Ix(t>l. (2.26) 
teR+ 

The supremum operator gives the least upper bound of its argument, 
and hence suptER+ Ix(t)1 is the least upper bound of the signal over all 
values of time t > 0 (inf denotes infimum and it is the greatest lower 
bound). For example, if x(t) = sin(t), t 2 0, then supi@+ Ix(t)\ = 1 and if 
x(t) = 2 - 2eAt, t 2 0, then suptER+ lx(t)1 = 2. 

The functional space over which the signal norm exists is defined by 

L, = {x(t) E R” : lIzlIp < oo}. (2.27) 

for JJ E [l, 001, that is, C, is the set of all vector functions in R” for which the 
pnorm is well defined (finite). In other words, we say that a signal x E L, 
if lIzlIp exists. We define L, in a similar way. Hence, as an example, 
x(t) = sin(t) E Loo but sin(t) $ &. It is also easy to see that eMt E Lz 
and that et +! L,. If sca,lar functions x(t), y(t) > 0, t > 0, are defined such 
that x(t) 5 y(t), t 2 0, and y(t) E L,, then x(t) E L, for all p E [l, 00). 
As a,n example, since eeZt _ < emt and eet E Lz we immediately know that 
eeZt E La. Also, if x(t) E L1 n L, then x(t) E C, for all p E [l, CG). 

If x(/C) is a sequence, then the signal norm becomes 

IMIP = 2 [zbvl” ( ) 
VP 

7 (2.28) 
k=O 

and we define 
l, = {x(k) E R” : llxilp < CQ} (2.29) 

to be the space of discrete time signals over which the norm exists (Ilxlloo 
a’nd too are defined in an analogous manner). 

The following inequalities for signals will be useful: 

1. Hijlder’s Inequality: If scalar time functions x E L, and y E L, for 

P, 4 E [I, ml and l/u+ l/q = 1, then XY E ll and IlXYlll I Il4lpllYllq~ 

When p = q = 2, this reduces to the Schwartz inequality. 
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2. Minkowski Inequality: If scalar time functions 2, y E & for p E 

[I, oo], then 2 + Y E LP and 112 + YIP L ll4lP + IIYIIP~ 

3. Young’s Inequality: For scalar time functions x(t) E R and y(t) E 
R, it holds that 

1 
2xy < -x2 + Ey2 6 

for any 6 > 0. 

4. Completing the Square: For scalar time functions x(t) E R and 

YW E R7 
-x2 + 2xy = -x2 + 2xy - y2 + y2 5 y”. 

Example 2.6 Given x, y : R+ --+ R”, then if x E C, and y E ,C, for some 
p E [O,CQ), then yTx E -C,. This may be shown as follows: Since 

YE ~cm, there exists some finite c > 0 such that s~p~>~{lyl) 5 c. By - 
definition, 

VP 

Ilv’4lp 5 O” CPI44IPd~ 
> 

< CbllP < cm - (2.30) 

so that yTx E ,Cp. a 

Next, we examine how to quantify the effects of linear systems on the 
sizes of signals. The relationship between input u(t) and output y(t) of a 
linear time-invariant causal system may be expressed as 

Y(t) = cl@ - +(ddT (2.31) 

where g(t) is the impulse response of the system transfer function G(s), 
and s is the complex variable used in the Laplace transform representation 
y(s) = G(s)u(s). W e may define the following system norms 

IIGII 
1 Oc) 

2= - 
d ./ 27T -rn 

IW4 I2 dw 

a,nd 

and we note that 

IIGIL = sup IW4l 
W 

2.32) 

2.33) 

IIY II 2 = IIwdl4l2 

IIY Iloo = IIG1l2114l2 

IIY IIP 5 IlVlll IMIP 

(2.34) 

(2.35) 

(2.36) 

and IIY II00 = lldl1ll4lco~ F or example, if G(s) = l/(s + 1) then llGllco = 1; 
if the input to G(s) is u(t) = eVt what is Ilyll2? 
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2.3 Functions: Continuity and Convergence 

In t]his section we overview some properties of functions and summarize 
some useful convergence results. 

2.3.1 Continuity and Differentiation 

We begin with basic definitions of continuity. 

Definition 2.1: A function j : D -+ R” is continuous at a point 
x: E D C R” if for each 6 > 0, there exists a S(C, 2) such that for all y E D 
sa.t isfying 1 r: - yI < S(C,Z), then If(x) - j(y)1 < E. A function j : D --+ R” 
is continuous on D if it is continuous at every point in D. 

As an example, the function j(rc> = sin(z) is continuous. However, the 
function defined by j(z) = 1, z 2 0, j(z) = 0, z < 0, is not continuous. 
This is the unit step function that has a discontinuity at it: = 0. It is not 
continuous since if we pick II: = 0 and 6 = i, then there does not exist a 
S > 0 such that for all y E D = R satisfying lyl < S(C,Z), If(z) - j(y)1 = 

IO - f(Y)1 < 6. In particular, such a 6 does not exist since for y > 0, 

f(Y) = 1. 

Definition 2.2: A function j : D -+ R” is uniformly continuous on 
D C R” if for each 6 > 0, there exists a 6(c) (depending only on C) such 
that for all s,y E D satisfying 1~ - yI < S(C), then I j(z) - j(y)1 < C. 

The difference between uniform continuity and continuity is the lack 
of dependence of S on z in uniform continuity. As an example, note that 
the function j(z) = l/x is continuous over the open interval (0, co), but 
it is not uniformly continuous within that interval. What happens if we 
consider the interval [Q, co) instead, where ~1 is a small, positive number? 
A scalar function j with j, f E ,C, is uniformly continuous on [0, 00). The 
unit step function discussed above is not uniformly continuous. 

Definition 2.3: A function j : [O,oo) + R is piecewise continuous on 
[O,CQ) if j is continuous on any finite interval [a, b] C [O, 00) except at a 
finite number of points on each of these intervals. 

Note that the unit step function and a finite frequency square wave are 
bot’h piecewise continuous. 

Definition 2.4: A function j : D + R” is said to be Lipschitz con- 

tinuous (or simply Lipschitz) if there exists a constant L > 0 (which is 
sometimes called the Lipschitz constant) such tha)t I j(x) - j(y)/ 5 L[x - yJ 
for all x, y E D where D c R”. 

Intuitively, Lipschitz continuous functions have a finite slope at, all 
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points on their domain. Clearly, the unit step function is not Lipschitz 
continuous but a sine wa,ve is. Note that if f : D -+ R is a Lipschitz func- 
tion, then f is uniformly continuous. To see this, note that if f is Lipschitz 
with constant L, then given any 6 > 0, we may choose 6 = c/L. If II;, y E D 
such that Ix: - y[ < S, then If(x) - f(y)1 < L (t) = E, and therefore f is 
uniformly continuous on D. As practice, show that if f(z) = eeZx, f is 
Lipschitz continuous. What is the Lipschitz constant in this case? 

If f : D + R has a derivative at x, then f is continuous at x. However, 
continuity of a point does not ensure that the derivative exists at that point. 
A function f : R” --+ R” is continuously differentiable if the first partial 
derivakives of the components of f(x) with respect to the components of x 
are continuous functions of x. 

The Jacobian matrix of f : Rn -+ R” is defined as 

If f(x) = [xf + x:,2x; + 3x;lT, find 2. For a scalar function f (x, y) that 
depends on x ani y, the gradient with respect to x is defined as 

&f(x,y)= g = g,-g )..., g . [I 1 n 1 (2.38) 

If f is only a function of x we will often use the notation V f  (x). AS an 
example, let x = [xl, xzlT and f(x) = XT + x$. We have Of(x) = [221,2x2] 
which is a row vector. 

Next, to specify the mean value theorem we define a line segment be- 
tween points a, b E D = R” as 

L(a,b) = {x E D : x = ya + (1 - $b for some y E [0, l] j , (2.39) 

where D C R” is a convex set (D is convex set if for every x, y E D, 

and every scalar a E [0, I], we have ax + (1 - a) y  E 0). The mean value 
theorem says that if a function f  : R” -+ R” is differentiable a#t each point 
x E D where D 5 R”, and x, y E D such that the line segment L(x, y) E D, 
then there exists some x E L(x, y) such that 

f(Y) - f(x) = yi (Y -x>- 
x=2 

(2.40) 

This ma,y be rearranged so that 

af (x) f(Y) -f(x) - - 
dX x=2 Y -x - 
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Figure 2.1. The mean value theorem. 

From this form, we see that there exists some x such that the slope af /ax is 
equal to the mean slope between the points x and y as shown in Figure 2.1. 

This completes the ideas we need from continuity and differentiability. 
Next, we discuss some basic ideas about convergence. 

2.3.2 Convergence 

A function f(t) that is bounded from below and is nonincreasing has a 
limit as t -+ 00; but it may not be the case that f(t) E L, (e.g., consider 

f(t) = l/t). If, in addition, f(0) is finite, then f(t) < f(O), t > 0, and 
f (t> E k for example, consider f(t) = e? Knowing that limttoo f(t) = 
0 does not imply that f(t) h as a limit as t --+ 00. Also, if limttoo f(t) = c 

for some c E R this does not imply that f(t) --+ 0 as t -+ 00. These last two 
statements are included to make sure that when you analyze convergence 
you do not over-generalize some conclusions and conclude that there is 
convergence when there may not be. 

Barbalat’s lemma may be used to show that signals converge to zero. 
Barbalat’s lemma says that if x(t) is a uniformly continuous signal and 

li~t+cm sof ( )d .X 7 7 exists and is finite, then x(t) -+ 0 as t -+ co. As an 

example, if x(t) = eMt then limttoo sof e-VT exists and is finite (simple 
integration shows this) so that x(t) -+ 0 as t + 00. On the other hand if 
x(t) = cos(t) then limt+oo Ji cos 7 7 ( )d d oes not exist so we cannot conclude 
that x(t) -+ 0 as t -+ 00. 

From Barbalat’s lemma we also know that if f, f E C,, and f E L, for 
some p E [0, co), then 1 f @)I -+ 0 as t + 00. Another way to say this is that 
if a signal is uniformly continuous and an LP signal, then it converges to 
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zero. Also, if f E ,!&, and f E -Cz, then If(t)\ --+ 0 as t -+ 00. Notice that 
in this case if you are willing to use the 2-norm you do not need to assume 
that f E ,&. Barbalat’s lemma for a discrete-time sequence is simplified 
since if f E eP for some p E [O, w), then (f(lc)l ---+ 0 as /C + 00. 

Example 2.7 Suppose that for the scalar ordinary differential equation 

55 = f(x) 

with f Lipschitz continuous in x (so we know that it possesses a unique 
solution x(t, x0) for a given initial condition x(0) = x0) you are given 
a function V : R + R with V(x) = ax2 2 0 and i/(x) = -bx2 5 0 
for some a, b > 0. Since V(x) is bounded from below (V(x) > 0) 
and is nonincreasing, it has a limit, so V E ,C,. From this, andthe 
definition of V(x) we see that x E t,, and thus v E ,C,. Then, 
since f is Lipschitz continuous, j: E ,C,. Notice that 

J- Q(xh xow = V(x(t, x0)) - V(x(0, x0)). (2.41) 
0 

Hence, we know that 

s t W(t, x0)) = V(X(OJo)) + 1;‘(5(~ xo))dr 

- - v(x(0, x0)) - i’ bx2(T)dT. (2.42) 
0 

Since Ji v(x(r, xo))dT < ,6 for some finite ,8 > 0 and any t, then 
x E & and from Barbalat’s lemma we obtain that limt+, x(t) = 0. 

n 

2.4 Characterizations of Stability and Boundedness 

Suppose that a nonautonomous (time-varying) dynamical system may be 
expressed as 

2 = f(~,x>, (2.43) 

where x E Rn is an n dimensional vector and f : RS x D + R” with D = R” 
or D = Bh for some h > 0, where 

Bh = {x E Rn : 1x1 < h} 

is a ball centered at the origin with a radius of h. If D = R” then we say 
that the dynamics of the system are defined globally, whereas if D = Bh 
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they are only defined locally. We will not consider systems whose dynamics 
are defined over disjoint subspaces of R”. It is assumed that f(t, z) is 
piecewise continuous in t and Lipschitz in x; for existence and uniqueness 
of state solutions. As an example, the linear system 

k(t) = Ax(t) 

fits the form of (2.43) with D = R”. 
Assume that for every 11;o the initial value problem 

i(t) = f (t, x(t)), x(to> = x0 (2.44) 

possesses a unique solution x(t,to, x0). We call x(t, to, x0) a solution to 
(2.43) if 

1. x(to,to, x0) = x0 

2. y$x(t,to,xo) = f(t,x(t,to,xo)) - 
You should think of x(t, to, x0) as a trajectory that is indexed by to and x0. 
Different to and x0 in general result in different solutions x(-t, to, x0) of the 
ordinary differential equation (2.43). Hence, the ordinary differential equa- 
tion can be thought of as a generator of system trajectories. The theory 
that we develop in this section actually applies to any set of trajectories 
(under mild assumptions), not just the ones generated by the ordinary dif- 
ferential equation (2.43). As an example of the generality of the approach, 
in Chapter 13 we will explain how with only slight modifications the theory 
applies to a wide class of nonlinear discrete time systems. 

A point x, E R” is called an equilibrium point of (2.43) if f(t,xe) = 0 
for all t 2 0. An equilibrium point x, is an isolated equilibrium point if 
there exists an p > 0 such that the ball around x,, 

Bp(x,) = {x E R” : 1x - x,( < p}, (2.45) 

contains no other equilibrium points besides x,. 

Example 2.8 Consider the system defined by 

il = 21x2 

i3 = -22 
(2.46) 

For this system, x = [xl, x21T = 0 is not an isolated equilibrium, point 
since x2 = 0 and xi = a for any a E R is also an equilibrium point. 

n 

As is standard we will assume (unless otherwise stated) that the equi- 
librium of interest is an isolated equilibrium located at the origin of R” 
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for t 2 0. Studying the equilibrium of the origin results in no loss of gen- 
era,lity since if Q # 0 is an equilibrium of (2.43) for t > to and we let 
ii?(t) = x(t) - 2, and 7 = t + to, then 2 = 0 is an equilibrium of the trans- 
formed system k(~) = f(t + to,?@ + to) + ICY). An example of how to 
translate an equilibrium in this manner is given in Example 2.10. 

2.4.1 Stability Definitions 

Stability is a property of systems that we often witness around us. For 
example, it can refer to the ability of an airplane or ship to maintain its 
planned flight trajectory or course after displacement by wind or waves. In 
ma’thematical studies of stability we begin with a model of the dynamics of 
the system (e.g., airplane or ship) and investigate if the system possesses 
a stability property. Of course, with this approach we can only ensure 
that the model possesses (or does not possess) a stability property. In a 
sense, the conclusions we reach about stability will only be valid about the 
actual physical system to the extent that the model we use to represent the 
physical system is valid (i.e., accurate). 

While we have a general intuitive notion of how a stable system behaves, 
next we will show a wide range of precise (and standard) mathematical 
characterizations of stability and boundedness. 

Definition 2.5: The equilibrium II;, = 0 of (2.43) is said to be stable 
(in the sense of Lyapunov) if for every 6 > 0 and any to 1 0 there exists a 
S(C, to) > 0 such that IX@, to, zo)l < 6 for all t 2 to whenever 1x01 < S(E, to) 
and z(t,to, SO) E B&K,) for some h > 0. 

That is, the equilibrium is stable if when the system (2.43) starts close 
to Xe, then it will stay close to it. Note that stability is a property of 
an equilibrium, not a system. Often, however, we will refer to a system 
as being stable if all its equilibrium points a)re stable. Also, notice that 
according to this definition, stability in the sense of Lyapunov is a “local 
property.” It is a local property since if xe is stable for some small h, then 
x(t,t~,x~) E B&x,), for some h’ > h. 

Next, notice that the definition of stability is for a single equilibrium 
xe E R but actually such an equilibrium is a trajectory of points that satisfy 
the differential equation in (2.43). That is, the equilibrium is a solution to 
the differential equa’tion, x(t, to, x,> = xe for t > 0. We call any set such 
that when the initial condition of (2.43) starts in the set and stays in the set 
for all t >_ 0, an invariant set. As an example, if x, = 0 is an equilibrium, 
then the set containing only the point xe is an invariant set, for (2.43) 
(of course, in general, an invariant set may have many more points in it). 
With only slight modifications, all the stability definitions in this section, 
and analysis approaches in the next section, are easy to extend to be valid 
for invariant sets rather than just equilibria. 
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Definition 2.6: An equilibrium that is not stable is called unstable. 

IIence, if an equilibrium is unstable, there does not exist an h > 0 
such that it is stable. Clearly, a single system can contain both stable and 
unstable equilibria. 

Example 2.9 As an example, suppose that 

L-i(t) = c&x(t), 

where a > 0 is a fixed constant. In this case, ze = 0 is an isolated 
equilibrium. Using ideas from calculus, the solution to the ordinary 
differential equation is easy to find as 

X(t, X0) = xgeat. 

We use x(t, x0) to denote a solution that does not depend on to. 
Notice that for every 6 > 0 you can pick, there exists no S > 0 such 
that (x(t,xo)l < E, since no matter which 6 you pick if lxol < S, the 
solutions x(t, SO) -+ 00 as t --+ 00 so long as x0 # 0. Because of this 
we conclude that x, = 0 is an unstable equilibrium point. A 

Generally, we try to design adaptive systems in this book so that they 
do not exhibit instabilities. In fact, we often seek to construct adaptive 
systems that possess even “stronger” stability properties such as the ones 
we provide next. 

Definition 2.7: If in Definition 2.5, 6 is independent of to, that is, if 
S = 6(c), then the equilibrium xe is said to be uniformly stable. 

If in (2.43) f d oes not depend on time (i.e., f(x)), then xe being stable 
is equivalent to it being uniformly stable. Of course, uniform stability is 
a’lso a local property. Next, we introduce a very commonly used form of 
stability. 

Definition 2.8: The equilibrium x, = 0 of (2.43) is said to be asymp- 
totically stable if it is stable and for every to 2 0 there exists I > 0 
such that 

lim (z(t,to,xo)l = 0 
t+m 

whenever 1x01 < ~$0). 

That is, it is asymptotically stable if when it starts close to the equi- 
librium it will converge to it. Asymptotic stability is also a local property. 
It is a “stronger” sta.bility property since it requires that the solutions to 
the ordinary differential equation converge to zero in addition to what is 
required for stability in the sense of Lyapunov. See Figure 2.2. 
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Definition 2.9: The equilibrium 2, = 0 of (2.43) is said to be uniformly 

asymptotically stable if it is uniformly stable and for every 6 > 0 and 
and to 2 0, there exist a 60 > 0 independent of to and 6, and a$ T(F) > 0 
independent of t 0, such that Jn;(t,to, zo) - zel <_ E for all t 2 to + T(c) 
whenever (~0 - IC,( < S(E). 

i \ 
I I * 
I I 
\ I 
\ I 
\ / 
\ 

\ /' 

Figure 2.2. Stable and asymptotically stable equilibrium points. 

Again, if in (2.43) f does not depend on time (i.e., f(z)), then ze being 
asymptotically stable is equivalent to it being uniformly asymptotically 
stable. Of course, uniform asymptotic stability is also a local property. 

Example 2.10 Consider 

L?(t) = -c&(x(t) - b), (2.47) 

where a, b > 0. Notice that x, = b is an isolated equilibrium. We 
study stability of the origin so we must translate the equilibrium to the 
origin. To translate the equilibrium to the origin we let z(t) = x(t) -b 
for t > 0 and notice that - 

5(t) = i(t) = -a@(t) + b - b) = -a??(t) = f(t, z(t)) (2.48) 

a,nd 2, = 0 is an equilibrium of this new system. The solution to this 
differential equation is 

ii(t,xo) = 20eAat (2.49) 

for t > 0. Notice that I?(& x0)1 -+ 0 as t -+ 00 for all ~0 E R” 
so that Zx;, = 0 of (2.48) is asymptotically stable. What conclusions 
can be drawn about the equilibrium xe = b of (2.47)? It holds the 
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same sta,bility properties, since translation of the equilibrium does 
not change its stability properties. To explicitly see this, note that 
the solution to (2.47) is 

x(t,xo) = (20 - b)e-“” + b 

for t 2 0. Notice that tt;(t, ~0) --+ b as t -+ 00 for all x0 E R. If x0 < b 
then x(t, x0) increases monotonically to b while if x0 > b, then ~(t, so) 
decreases monotonically to b. We see that the equilibrium X~ = b is 
an asymptotically stable equilibrium point as we expect. A 

Definition 2.10: The set Xd c R” of all x0 E R” such that ICC@, to, x0) 1 -+ 
0 as t --+ 00 is called the domain of attraction of the equilibrium x, = 0 
of (2.43). 

Sometimes, if such an Xd c R” is known for a system, then it is said 
to possess a “regional” stability property to contrast with the local cases 
just discussed (and exponential stability below), or the global one to be 
discussed next. 

Definition 2.11: The equilibrium 2, = 0 is said to be asymptotically 
stable in the large if & = Rn. 

That is, an equilibrium is asymptotically stable in the large if no matter 
where the system starts, its state converges to the equilibrium asymptoti- 
cally. Notice that this is a global property as opposed to the earlier stability 
definitions that characterized local properties. This means that for asymp- 
totic stability in the large, the local property of asymptotic stability holds 
for Bh(xe) with h = 00 (i.e., on the whole state space). As an example, no- 
tice that the equilibrium xe = b in Example 2.10 has a domain of attraction 
Xd = R so in this ca#se x, is asymptotically stable in the large. 

Definition 2.12: The equilibrium x, = 0 is said to be exponentially 

stable if there exists an a > 0 and for every 6 > 0 there exists a S(E) > 0 
such that 

lx@, to, x0)1 5 feC’Y(t-to), (2.50) 

whenever Izol < 6( ) E a’nd t >_ to > 0. The constant Q is sometimes called - 
the rate of convergence. 

Exponential stability is sometimes said to be a “stronger” form of sta- 
bility since in its presence we know tha’t system trajectories decrease ex- 
ponentially to zero. It is a local property, but we next define its globa. 
version. 

Definition 2.13: The equilibrium point X, = 0 is exponentially stable 
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in the large if there exists Q > 0 and for any p > 0 there exists C(P) > 0 
such that 

Ix@, to, x0) 1 5 Q3)e-“(t-to) ) (2.51) 

whenever 1x0 1 < ,0 and t > to > 0. 

As an example, consider the equilibrium xe = b of Example 2.10. In 
this case we had translated the equilibrium and found that the solution for 
the translated system was given in (2.49). Notice that we can pick to = 0, 
CY = a, and C(P) = p and we see that Z, = 0 is exponentially stable in 
the large so that xe = b is also exponentially stable in the large. It is, in 
fact, the case that every linear time invariant system that is asymptotically 
stable is also exponentially stable in the large (and vice versa). 

2.4.2 Boundedness Definitions 

Next, we introduce some standard definitions of boundedness. Notice that 
each of these is a global property of a system in the sense that they apply 
to trajectories (solutions) of the system that can be defined over all of the 
state space. 

Definition 2.14: A solution z(t, to, ~0) is bounded if there exists a 
p > 0, that may depend on each solution, such that 

I~k~o,~o>l < P (2.52) 

for all t > to > 0. A system is said to possess Lagrange stability if for 
each to > 0 and x0 E R”, the solution z(t, to, x0) is bounded. 

Notice that if an equilibrium is asymptotically stable in the large or 
exponentially stable in the large then the system for which the equilibrium 
is defined is also Lagrange stable (but not necessarily vice versa). Also, if 
an equilibrium is stable, it does not imply that the system for which the 
equilibrium is defined is Lagrange stable (notice you must be careful in 
saying whether a system or an equilibrium is stable) since there may be a 
way to pick x0 such that it is near an unstable equilibrium and z(t, to, x0) ---+ 
ooast-+oo. 

As an example, consider the system in (2.47) that has a solution 

x(t, ~0) = (x0 - b)eeat + b. 

We see that since b is finite, the maximum value z(t, x0) achieves is at t = 0 
or t + 00. Hence, we can pick 

,O = max{xo, b} 
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as a bound on each trajectory that is dependent on the trajectory since it 
depends on the initial condition. Hence, the system has bounded solutions 
and possesses Lagrange stability. 

Definition 2.15: The solutions x(t, to, x0) are uniformly bounded if 
for any CY > 0 a’nd to 2 0, there exists a ,0(a) > 0 (independent of to) such 
that if 1x01 < CF, then lz(t, to,zo)l < ,6(a) for all t >_ to 2 0. 

This is yet another type of boundedness property. If the solutions are 
uniformly bounded then they are bounded and the system is Lagrange 
sta.ble; however, the fact that a system is Lagra.nge stable does not mean it 
is uniformly stable (why?). 

As an example, consider the system in (2.47). Notice that if we pick 

P = max{a, b) 

then Iz(t,xo))) < P(G) if Ixol < Q so that the solutions to the system in 
(2.47) are uniformly bounded. 

Definition 2.16: The solutions x(t, to, so) are said to be uniformly 
ultimately bounded if there exists some B > 0, and if corresponding to 
any a > 0 and to > 0 there exists a T(a) > 0 (independent of to) such that 
In;ol < a implies that ]z(t,to,zo)l < B for all t 2 to + T(a). 

Hence, a system is said to be uniformly ultimately bounded if eventually 
all trajectories end up in a B-neighborhood of the origin. As an example, 
suppose that the solutions to some ordinary differential equation are 

X(t, x0) = xOeeat + 0.1 cos(t). 

In this case, we can choose B = 0.11 and we know that since the xoeAat 
term will eventually die out, there will exist a T(a) (which is generally larger 
for smaller a) no matter how big x0 is (1x0 I < a) such that Ix@, x0)/ < B 
for t > T(a). 

2.5 Lyapunov’s Direct Method 

A. M. Lyapunov invented two methods to analyze stability. In his first 
method (called the indirect method) he showed that if you linearize a sys- 
tem about an equilibrium point, certain conclusions about local stability 
properties can be made (e.g., if the eigenvalues of the linearized system are 
in the left half plane then the equilibrium is stable but if one is in the right 
half pla,ne it is unstable). 

In his second method (called the direct method) the stability results for 
an equilibrium x, = 0 of (2.43) depend on the existence of an appropriate 
“Lyapunov function” V : D -+ R where D = R” for global results (e.g., 
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asymptotic stability in the large) and D = Bh for some h > 0, for local 
results (e.g., stability in the sense of Lyapunov or asymptotic stability). 
If V is continuously differentia’ble with respect to its arguments then the 
derivative of V with respect to t along the solutions of (2.43) is 

. 
w I/ 

dV av 7x - 
(2.43) - dt - + &(t,x). 

Using the subscript on p is sometimes cumbersome so we will at times 
omit it with the understanding that the derivative of V is taken along the 
solutions of the differential equation that we are studying. As an example, 
suppose that in Equation (2.43) f does not depend on t, and let V(x) = 
xTPx where x E R” and P = PT. Then, 

P(x) = Ef(t > ,x = kTPx + xTPi. 

Now, notice that iTPx is a scalar and the transpose of a scalar is the same 
as the scalar so V(x) = 2xTPj:. 

While at times it can be difficult to construct an appropriate Lya- 
punov function, which limits the applicability of the method somewhat, 
the method does allow us to avoid finding the explicit solution to the non- 
linear differential equation in Equation (2.43) (which, for some nonlinear 
ordinary differential equations, can be very difficult or impossible). Notice, 
for example, that in all the examples we presented in the last section to 
illustrate the various stability and boundedness properties, we explicitly 
solved a (simple) differential equation, and then showed that the system 
possessed the stability property via mathematical analysis of the solution 
trajectories. Using Lyapunov’s direct method, we can make conclusions 
about possibly infinite sets of solutions to a differential equation (indexed, 
e.g., by the intial condition) without explicitly finding the solutions. For 
very complex nonlinear systems this can offer a significant advantage when 
investigating its qualitative properties. 

25.1 Preliminaries: Function Properties 

Before we introduce Lyapunov’s direct method we need the following defi- 
nitions: 

Definition 2.17: A function y : D -+ R is said to be monotone 
increasing on D C R if for every x,y E D with x 5 y, then y(x) 5 y(y). 
If for every x,y E 5 with x < y, r(x) < y(y), then y is said to be strictly 
increasing. 

As an example, if y(x) = ax + b where a, b > 0, then y is strictly 
increasing for all x E D = R. If, however, y(x) = ax2 + b where a, b > 0 
then it is not strictly increasing on all of D = R. 
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Definition 2.18: A continuous function y : D -+ RS is said to belong 
to class K (denoted by y E K) if it is strictly increasing on D = [0, r) 
for some r E R (or on D = [0, 00))) and y(O) = 0. A continuous function 
y : RS -+ R+ is said to belong to class K, if y E K with y defined on 
D = [O,oo) and y(z) + 00 as z --+ oo. 

As an example, the function y(z) = ux2 where a > 0, is strictly increas- 
ing on [O,oo), y E K, and y E K,. 

Definition 2.19: A continuous function ,0 : D x RS + R’ is said to 
belong to class-KC if ,@, s) E K for each fixed s and P(T, s) is decreasing 
with respect to s for each fixed r with ,B(T, s) ---+ 0 as s -+ 00. 

Definition 2.20: A continuous function V&x) : R+ x Bh + R (T/(&x) : 
R+ x R” -+ R) is said to be positive definite if V(t, 0) = 0 for t > 0 and 
there exists a function y E K defined on [0, JL) such that V(t, x) _> r(lxl) 
for all t 2 0 and x E Bh for some h > 0 (z E R”). V(t, x) is said to be 
negative definite if -V(t, x) is positive definite. A continuous function 
V&x) : R+ x Bh -+ R (V(t,x) : R+ x R” --+ R) is said to be positive 

semidefinite if V(t, 0) = 0 for t 2 0 and V(t,x) 2 0 for all t 2 0 and 
x E Bh for some h > 0 (x E R”). For negative semidefinite replace 
“V(t, =~t) 2 0” with “V(t, x) 5 0” in the definition of positive semidefinite. 

As an example, let V(x) = px” where x E R and p E R are scalars with 
p > 0. Notice that V(0) = 0, and y(x) = ax’, 0 < ~1: < p, has y E K and 
V(x) 2 $1~1) so that V(x) is positive definite. 

Sometimes it is convenient to use the fact that a continuous function 
w(x) : Bh -+ R is positive (negative) definite if and only if w (0) = 0 and 
w(x) > 0 (w(x) < 0) f or all x E Bh - (0). Of course, a continuous function 
w(x) : R” --+ R is positive (negative) definite if and only if w (0) = 0 and 
w(x) > 0 (w(x) < 0) f or all x E R” - (0). Also, a continuous function 
V(t, x) : R+ x Bh -+ R is positive (negative) definite if and only if there 
exists a positive (negative) definite function w(x) defined on Bh such that 
V(t, 0) = 0 for all t 2 0 and V(t,x) 2 w(x) for all x E Bh and t 2 0. 
Similarly, if we replace “Bh” by R”. 

Definition 2.21: A continuous function V(t, x) : R+ x Bh --+ R (V(t) x) : 
R+ x R” -+ R) is said to be decrescent if there exists a function y E K 
defined on [0, r) for some r > 0 (defined on [0, co)) such that V(t, x) 5 r(lxI) 
for all t > 0 and x E Bh for some h > 0 (x E R”). 

Note that a continuous function V(t,x) : R+ x Bh -+ R (V(t,x) : R+ x 
R” --+ R) is decrescent if and only if there exists a positive definite function 
on Bh (on R’“), such that IV(t,x)I 5 w(x) for all x E Bh (x E R”) and 
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t > 0. Also, any time independent function that is positive or negative 
definite is decrescent. 

Definition 2.22: A continuous function V(t, z) : R+ x R’” -+ R is said to 
be radially unbounded if V(t, 0) = 0 for t 2 0 and there exists a function 
y E K, such that V(t,x) 2 r(lzl) for all t 2 0 and II: E R’“. 

Also, note that a continuous function w(z) : R” + R is said to be 
radially unbounded if w(0) = 0, w(x) > 0 for all x E R” - {0}, and 
w(x) --+ 00 as 1x1 + 00. Hence, a continuous function V(t, x) : R+ x R” --+ R 
is said to be radially unbounded if V(t, 0) = 0 for t > 0 and there exists 
a radially unbounded function w(x) such that V(t, x)-z w(x) for all t > 0 
and x E R”. 

Example 2.11 Suppose we define V(x) = xTPx where P = PT and P > 
0 is positive definite. Let yr(y) = Xmin(P)y’ and 72(y) = X,,,(P)y”. 
Notice that V(x) is positive definite, decrescent, and radially un- 
bounded, since yi, yz E K,, and 

rdl4> L xTfb 5 r2(14> (2.53) 

(by the Rayleigh-Ritz inequality in (2.23)). A 

2.5.2 Conditions for Stability 

Let x, = 0 be an isolated equilibrium point of (2.43). Assume that a 
unique solution exists to the differential equation in (2.43) on x E Bh for 
some h > 0 for local results, or on x E R’” for global results. Below, we 
let V : R+ x Bh + R for some h > 0 (for local results) or V : R+ x R” -+ 
R for global results be a continuously differentiable function (i.e., it has 
continuous first order partial derivatives with respect to x and t). 

Lyapunov’s direct method provides for the following ways to test for 
stability. The first two are strictly for local properties while the last two 
ha’ve local and global versions. 

l Stable: If V(t, x) is continuously differentia$ble, positive definite, and 
r)(t, x) 5 0, then x, = 0 is stable. 

l Uniformly stable: If V(t, x) is continuously differentiable, positive 
definite, decrescent, and v(t,z) 5 0, then xe = 0 is uniformly stable. 

l Uniformly asymptotically stable: If V(t, x) is continuously dif- 
ferentia,ble, positive definite, and decrescent, with negative definite 
lii(&x), then xe = 0 is uniformly asymptotically stable (uniformly 
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a#symptotically stable in the large if all these properties hold glob- 
ally). 

Or, said another way for the local case: if there exists a continuously 
differentiable V(t, 2) and yl,yz, y3 E K defined on [0, r) for some 
r > 0, such that 

r1k-4 L VP7 It’) 5 Ydl4) (2.54) 

w, 4 I -Y3(/4) (2.55) 

for all t 2 0 and 12; E Bh for some h > 0, then 2, = 0 is uniformly 
asymptotically stable. 

Similarly, we can state the global case as: if there exists a continu- 
ously differentiable V(t, z) and 71, ~2, y3 E ?C defined on [0, 0~) where 
73 E La and Equations (2.54) and (2.55) hold for all it: E R” and 
t > 0, then 2, = 0 is uniformly asymptotically stable in the large. 

In addition, the LaSalle-Yoshizawa theorem tells us that if there 
exists a, continuously differentiable V(t, 2) and y1,~~ E K, such that 
(2.54) holds for all x E R” and t > 0, and - 

V(t,x) < -W(x) < 0 - - 

for all x E R” and t 2 0, where W is a continuous function (i.e., posi- 
tive semidefinite), then the solutions of (2.43) are uniformly bounded 
and 

lim W(X@)) = 0. 
t-302 

If, in addition, W(X) is positive definite, then 2, = 0 is uniformly 
asymptotically stable in the large. 

l Exponentially stable: If there exists a continuously differentiable 
V(t, Z) and C, ~1, ~2, ~3 > 0 such that 

ClI$ _< V(o) L c2)$ (2.56) 

I;‘(t,x) 5 -c3(xy (2.57) 

for all x E Bh and t 2 0, then xe = 0 is exponentially stable. If there 
exists a continuously differentiable V(t,x) and Equations (2.56) and 
(2.57) hold for some c, cl, ~2, c3 > 0 for all x E R” and t > 0, then - 
x, = 0 is exponentially stable in the large. 

Example 2.12 As an example, consider j: k -x3 which has an equilib- 
rium 2, = 0. Choose V(x) = ix’, y&J = $y”, and 72(y) = y2, so 
that Yl,y’2 E L-3, and (2.54) holds so that V is positive definite, de- 
crescent, and radially unbounded. Notice that p(x) = xi = -x4 5 0 
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so x, = 0 is uniformly stable. However, a’lso note that V(X) < 0 if 
J: # 0 a’nd p(z) = 0 for x: = 0 so that i/(z) is negative definite and 
hence X, = 0 is uniformly asymptotically stable in the large. It is in- 
teresting to note that X, = 0 of X; = --x3 is not exponentially stable. 

A 

Example 2.13 Consider 

LiTI = -X1 - x2 (2.58) 

Liz = Xl - 22 (2.59) 

which has a state x = [xl, xalT and an equilibrium x, = 0. Let 
V(x) = XT + x$, which has V(x) = 0, and is continuously dif- 
ferentiable. If we pick y1 (y) = y2(y) = u2 (which are defined on 
[0, co)), 71, ~2 E K, and both (2.54) and (2.56) hold (in (2.56) pick 
cl = c2 = 1) on all J: E R” so V is positive definite and decrescent. 
Notice that 

v = 221(-x1 - x2) +2x2(21 - x2) (2.60) 
- - -2x: - ax;. (2.61) * 

Choose Y&J) = 2y” so y3 E K, and y3 E K,, and we see that 
P(x) I -Y3@4) f or all x E Rn so that the equilibrium xe = 0 is 
uniformly asymptotically stable in the large and also exponentially 
stable in the large. n 

The last example studies stability of a simple two-dimensional linear 
time-invariant system. There are, in fact, many stability results for the 
general n-dimensional case for linear time invariant systems and some of 
these are outlined in Section 2.7. 

Finally, note that in stability analysis it is sometimes convenient to 
use a, Lyapunov-like function that satisfies all but some properties of 
a8 Lya.punov function, then combine the analysis with other properties of 
the system to conclude convergence of some signals. For instance, later in 
our stability proofs for adaptive systems we will augment our analysis with 
boundedness concepts to prove properties of asymptotic tracking. 

2.5.3 Conditions for Boundedness 

Suppose that there exists a specified function V(t,x) defined on 1x1 > R 
(where R may be large) and t > 0 that is continuously differentiable (i.e., 
it has continuous first order partial derivatives with respect to x and t). 
Assume that unique solutions exist to the underlying differential equation 
over all of R”. 
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l Uniform boundedness: If there exists a continuously differentiable 
V(t, X) and yi, yz E K, such that 

Yl(l4> I w, 4 L Y2((4) (2.62) 

lqt, z) < 0 - (2.63) 

for all 1x1 > R and t > 0 then the solutions to the differential equation 
are uniformly bounded. Notice that this is less restrictive than the 
LaSalle-Yoshizawa theorem for uniform boundedness since we only 
need P(t,z) 5 0 for all 1x1 > R for some R, not on all R”. 

l Uniform ultimate boundedness: If there exists a continuously 
differentiable V(t, z), yi, 72 E K,, and 73 E Ic defined on [O, co) such 
that 

71 (I4 5 w7 4 L y.2(14) ’ (2.64) 

w: 4 i: -Y3([4) (2.65) 

for all 1x1 2 R and t 1 0 then the solutions to the differential equation 
are uniformly ultimately bounded. 

Example 2.14 As an example, consider the system 

LiJ = f(t, 47 (2.66) 

where there are known class K: functions yr, 72 such that 

71 &-A> L w 4 L r2&4> (2.67) 

P < -kg + lk2 - (2.68) 

and kr , k2 > 0. We wish to find some 73 such that p < -y3(111:() 
when 1x1 2 R, proving that the trajectory x(t) is uniformly ultimately 
bounded. 

Choose some E such that 0 < 6 < 1. Then 

v 5 -Ek.rV-(l-t)lCiV+JG2 

< - -dy&l) - (1 - q&V + k-2. (2.69) 

Choosing 73 = &yr(l~I> we see that 

v < -y3(j4) - (1- +Qv + k2. (2.70) 

NOW if 1x1 2 R where 

R=r? ((&J? 
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then (1 - e)klV > (1 - F.)Fc~Y~(B) = k2. Thus 

v L -Y3(14) (2.71) 

for all 1x1 > R so the solutions of (2.66) are uniformly ultimately 
bounded. - A 

Notice that we do not automatically get the explicit value of B in Def- 
inition 2.16; all we know from the theorem is that its value exists. Often, 
however, it is possible from the application at hand to determine the explicit 
va,lue of B. 

The following lemma may be helpful in determining the ultimate bound 
when provided a differential inequality satisfying Equations (2.67) and 
(2.68). 

Lemma 2.1: If  V(t, x) is positive definite and v  2 -klV + kz where 

kl > 0 and k2 2 0 are bounded constants, then 

for all t. 

Proof: Let q = -klq + k2 and choose r)(O) = V(0) 2 0 so 

Since p < q (V decreases at least as quickly as 7) and V(0) = q(O), we find 

w, x> F 50) f or all t, which completes the proof. 

If p 5 -klV + kz, then Lemma 2.1 may be used to show that as t -+ 00 
we find II/l 5 kz/kl. Moreover, if ri(Ixl) < V(t,x), then 

(2.72) 

2.6 Input-to-State Stability 

In this section we overview a few concepts from the study of input-to-state 
stability. We start with definitions, then provide results that will be useful 
in our laster analysis. 

2.6.1 Input-to-State Stability Definitions 

In the following we will introduce the basic notions of input-to-state sta- 
bility and input-to-state practical stability (also referred to as compact 
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input-to-state stability) which are very useful in the study of the stability 
properties of interconnected systems. Consider the dynamical system 

i = f(w-4, (2.73) 

where x E I?‘“, u E R”“, f is locally Lipschitz in x and U, and u, representing 
the input of the system, is a piece-wise continuous and bounded function 
of t. 

Definition 2.23: System (2.73) is said to be input-to-state stable if, 
for any initial condition x(to) and any bounded input u(t) 
satisfies 

[+)I 5 P(lx(to> I7 t - to> + Y SUP IW 
to<7<t - - 

for all t 2 to, where /3 is class U, and y is class K. 

the solution x(t) 

> 
(2.74) 

When dealing with uncertainties, it is often useful to define a more 
general notion of input-to-state stability. 

Definition 2.24: System (2.73) is said to be input-to-state practically 
stable if, for any initial condition x(to) and any bounded input u(t), the 
solution x(t) satisfies 

1x1 I P(Ix(to>l, t - to) + Y SUP I441 
> + d (2.75) to<r<t 

for all t 2 to, where ,6 is class KC, y is class K, and d is a nonnegative 
constant. 

2.6.2 Conditions for Input-to-State Stability 

The following provides useful characterizations of input-to-state stability 
properties, and a uniform ultimate boundedness property for interconnected 
systems, in terms of Lyapunov functions. 

l Input-to-State Stability: System (2.73) is input-to-state stable if, 
and only if, there exists a continuously differentiable function V such 
that 

Yl (I4 I v(x) L %(1X1) (2.76) 

g&f(w) I -Y3(14), w4 L lo(l4) > 0 7 (2.77) 

where yr , y2 are class K&and 73, V,LJ are class ic. 

l Input-to-State Practical Stability: System (2.73) is input-to- 
state practically stable if, and only if, there exists a continuously 



40 Mathematical Foundations 

differentiable function V and constants c > 0, d > 0 such that - 

where yi ,y~, and $J are class Km. 

l Uniform Ultimate Boundedness: Consider li; = .f(x,y) and ,j = 
g(x, y), where f and g are locally Lipschitz, x E R” and y E R”. If 
there exist continuously differentiable functions V, : R” -+ R and Vg : 
R” + R with rdl4> L T/ j :  L Y&4) and Il/yl(lYI) i vy i: ry2(lYI> 

such that 

V, < 0 when V, > VT - 

v, 5 -%3(lYlL iY I 2 !N4>, 

(2.80) 

(2.81) 

where yzi, 75.2, yyi, yY2 are class-Icoo, yy3 and QJ are class-K, and V, > 
0, then x and y are uniformly ultimately bounded. To see why this is 
the case note the following: From (2.80) we find V, 5 max(V,(O), VT) 
so 

rxl(lxl) 5 max(v, (O), K). 

Thus 1x1 5 d for all t, where d = 7~~ o max(Vz(0), VT). If lyl > q(d), 
then V3 < -yy3(lyl) 5 0. Thus if Vg 2 yy2 0$(d) (which implies Iyl 2 
$(d)), then i’y 5 0 so Vg is bounded. Thus VP 5 max(V(0),~Y20$(d)) 
so 

IY I < r,l’ O ma444 (OL 792 O Tw)) - 

for all t. 

As a simple example for 
dinary differential equation 

where a > 0, so that when u 

input-to-state stability, consider the scalar or- 

li:= -ax + bu, (2.82) 

= 0 the origin is an exponentially stable in the 
large equilibrium. Is this system input-to-sta,te stable? Choose V(x) = ix”, 
yi = 72 = $x2. Note that 

f&74 = 4 -ax + bu) = -ax2 + bxu. (2.83) 

Choose $(lul) = 1~1. N ow we must show that when (xl > $([u() we can 
find an appropriate 73. Note that . 

-ax2 + bxu 5 -ax2 + lbllxllu\ <_ --ax2 + (b(x” = -(a - lbl)x” (2.84) 

so tha’t if 73 = (a - IbJ)x”, and a > lbl, then (2.82) is input-to-state stable. 
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As another simple example, for the interconnected system case, consider 
the two-dimensional ordinary differential equation 

,j I I  -dy + cx, 

where a > 0 and d > 0. We can think of the x-subsystem as generating 
trajectories to input to the y-subsystem. Choose VR: = yzl = yz. = $x2, 

and S;, = yYl = yy2 = $y”. Choose @([x1) = 1x1. Can we find a ygs{(y() 
and I,;? Notice that for any V, 2 0, I& = -ax2 and that when Iyl 2 1x1 

vg = -dy” + cxy 5 -dy” + Ic\ixllyl 5 -dy2 + (~1~” = -(d - IcI)y2. ’ 

Hence, choosing yy3 = (d- IcI)y”, and d > ICI, then 1x1 and IyI are uniformly 
ultimately bounded. Intuitively, we wee that if the x-subsystem generates 
a, bounded input to an input-to-state stable y-subsystem, we find that the 
y-subsystem will generate bounded trajectories. 

2.7 Special Classes of Systems 

Here, we explain how certain analysis and results hold when we restrict our 
attention to autonomous (time-invariant) or linear time-invariant systems. 

2.7.1 Autonomous Systems 

If we assume that in (2.43) f does not depend explicitly on time t, then 

w = f(xW (2.85) 

is the system under consideration and several simplifications are possible; 
in particular, some sufficient conditions for asymptotic stability exist that 
are sometimes easier to satisfy than the previous ones. First, note that for 
(2.85) we only need a Lyapunov function that does not depend on time, 
and since all positive definite functions are automatically decrescent we 
ca’n ignore the need for V(x) to be decrescent in all the stability conditions 
considered. Second, recall that for (2.85) uniform stability is equivalent 
to stability in the sense of Lyapunov and uniform asymptotic stability (in 
the large) is equivalent to asymptotic stability (in the large). Moreover, 
some invariance theorems due to LaSalle hold. Next, we overview a special 
case of his more general invariance theorem that proves to be useful in the 
construction of asymptotically stable adaptive systems. 

We will call a set a C R” invariant with respect to (2.85) if every 
solution x(&x0) of (2.85) with x(0, so) E a has x(&x0) E 0 for all t 2 0. 
Assume that (2.85) possesses unique solutions for all x0 E D c R’” where D 
contains the origin. Suppose that there exists a continuously differentiable, 
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positive definite, and radially unbounded function V(s) : D -+ R+ with 
V(x) < 0 on D. If the origin is the only invariant subset of - 

E = {x E D : V(x) = o} 
with respect to (2.85), then the equilibrium x, = 0 of (2.85) is asymptot- 
ically stable. Also, if in this case, D = R” then the equilibrium x, = 0 of 
(2.85) is asymptotically stable in the large. 

Example 2.15 As an example, consider 

I;;(t) = -sgn(x(t))x” (t) = f(x), (2.86) 

where we define sgn(x) = 1 if x > 0 and sgn(x) = -1 if x < 0. In this 
case, f is Lipschitz continuous so a unique solution exists for each x0. Also, x, = 0 is an isolated equilibrium of (2.86). Choose V(x) = $x2, 
which is positive definite and radially unbounded on D = R. Notice 
that 

V(x) = xi = -sgn(x)x” = -x2(xsgn(x)) = -x21x1 < 0 

for all x E R. Notice, also that 

E = {x E D : V(x) = o} = (0) 
so the origin is the only nonempty subset of E so clearly it can be the 
only invariant subset of E, so x, = 0 is asymptotically stable in the 
large. 

As another approach to study convergence suppose we use Bar- 
balat’s lemma. Notice that since i/(x) 5 0 for all x E R, i/(x) E L, 
for all x E R. Also, since V(x(t,xo)) > 0 (i.e., it is bounded from 
below) and is nonincreasing (I;‘(x) 5 0) % has a limit so T/(x@, x0)) E 
-cm and hence x(t, x0) E ,& for all x0 E R. Also, since the system in 
(2.86) is Lipschitz continuous, x E C,. In general, 

s 
t V(x(~,xo>> = V(x0) + qe, x0)& 

0 

and since V(x(t,xO)) E L,, there exists a ,0 > 0 such that 

./ 

t 
lX(~,XO)13~~ = V(x0) - V(x(t,xo)) < p. 

0 

This implies that x E & so tha.t by Barbalat’s lemma limt+, x(t) = 
0. 
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Yet another approach to stability analysis for this system is to use 
the LaSalle-Yoshizawa theorem and note that W(X) = ~‘1~1 which 
is positive semidefinite so limt+oo W(X(~)) = limt+W x’IzI = 0 and 
this can only happen if x -+ 0. Of course, since W(X) is also positive 
definite we can conclude that X, = 0 is uniformly asymptotically 
stable in the large. In this simple example we obtain the same stability 
result from both parts of the LaSalle-Yoshizawa theorem; in general 
this will not be the case. A 

2.7.2 Linear Time-Invariant Systems 

In the case where (2.85) is a linear system we can obtain additional stability 
results. In particular, consider the linear time invariant ordinary differential 
equation 

i(t) = Ax(t), (2.87) 

where x E R”. The equilibrium x, = 0 being asymptotically stable in the 
la.rge is equivalent to the following three statements: 

1. All eigenvalues of A are in the open left half plane (A is Hurwitz). 

2. The equilibrium x, = 0 is exponentially stable in the large. 

3. For every n x n matrix Q such that Q = QT and Q > 0, the Lya- 
punov matrix equation 

ATP+PA=-Q 

has a unique solution matrix P such that P = PT and P > 0. 

Notice that if we know that x, = 0 of (2.87) is asymptotically stable in 
the large, then we know tha,t if we are given P > 0, there is a unique 
associated Q > 0. We will use this fact later in some stability proofs. 
For illustration of the above ideas consider Example 2.13 and note that 
testing stability of a linear system via simple examination of the eigenvalues 
is particularly attractive as widely available computational tools can be 
employed for finding eigenvalues. 

Special results related to boundedness also hold when it is assumed 
that the system is linear and time-invariant. For instance, consider the 
dynamical system 

i = Ax + bu, (2.88) 

where A is a Hurwitz matrix. Then Ix(t)1 5 $(t, Iu[) for all t, where $J : 
RS x R+ -+ R is bounded for any bounded u and nonincreasing with respect 
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to 1~1 for each fixed t. To see this, note that the solution x(t) of the linear 
differential equation (2.88) is given by the convolution integral 

s t x(t) = e”“x(0) + eA(t-‘)bu(+h-. (2.89) 
0 

Since A is assumed to be Hurwitz, we have that leAkI < cl eFcat for some 
positive scalars cr and cz. By using this inequality in (2.89) we get 

l~o( L c1e -c2t Ix(O) 1 + 1' cle-C2(t--7)lu(7)ld7. 
0 

(2.90) 

By noting that (2.90) is bounded for any bounded 12~1 and nonincreasing 
with respect to lzll we obtain the desired result by setting 

t 
$(t, 1911) = cle-c2t x I (o)i+/ cle -c2+)Iu(T) I&. (2.91) 

0 

The following example provides a simple method to find values for cl and 
c2 defined above so that IeAt I 5 cl emczt. 

Example 2.16 Consider the system defined by j: = Az where 14 is Hur- 
witz. Given that the solution of this unforced system is z(t) = 
eAtz(0), we want to find constants cl and c2 which satisfy IeAt/ 5 
cl e -Q~. If we let V = xTPx where P is a symmetrix positive den- 
nite matrix, then 

ti = xT(PA + ATP)x. (2.92) 

Now choose P to satisfy the Lyapunov matrix equation PA + AT P = 
-I so that 

p x -xTx < - 
V 

- k-nax(p> - 
(2.93) 

Here we have used the Rayleigh-Ritz inequality (2.23). Solving the 
above differential inequality, we find 

V 5 V(O)e-“lt, (2.94) 

where kr = l/X,,,(P). Since 

I I x2< 1 V(O) -kit 
-~vsX,inoe ’ (2.95) 

we may let cl = JxT(0)Px(O)/Xmin(P) and ~2 = 1/(2&&P))- n 
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2.8 Summary 

Within this chapter we have presented various mathematical tools that 
have been found to be useful in the construction of adaptive systems. In 
paxticular, we have covered the following topics: 

0 Vectors, vector norms, and their properties. 

0 Matrices, induced norms, and their properties 

0 Positive definite matrices and their properties. 

0 Signals, signal norms, and their properties. 

0 Continuity, differentiability, Barbalat’s lemma and other convergence 
properties. 

0 Stability definitions: stable in the sense of Lyapunov, uniformly sta- 
ble, asymptotically stable (in the large), exponentially stable (in the 
large). 

0 Boundedness definitions: Lagrange stability, uniform boundedness, 
uniform ultimate boundedness. 

0 Lyapunov’s direct method for stability and boundedness analysis (in- 
cluding results for all the stability and boundedness definitions). 

0 The LaSalle-Yoshizawa theorem and a special case of LaSalle’s invari- 
ance theorem. 

0 Input-to-state stability definitions and analysis. 

This provides a list of the main topics covered in this chapter. You should 
make sure that you understand all these topics before proceeding to any 
later chapter (unless perhaps you are not at all concerned about proving 
stability of the various adaptive schemes). 

2.9 Exercises and Design Problems 

Exercise 2.1 (Norms, Norm Properties) Prove that if z E R’“, IS&, 
is a norm. Prove that Iz& 5 1~12 < J$z&. 

Exercise 2.2 (Positive Definite Matrices) If 

P= 
10 1 [ 1 1 20 ’ 
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is P > O? What is /PIIz? What is IlT’llz? If 

P= 
10 6 

[ I 6 20 ’ 

then what range of values can c take on and still ensure that P > O? 

Exercise 2.3 (Norm Properties) Fill in the details of the proof of 
Example 2.5 by showing that (2.21) holds. 

Exercise 2.4 (Signal Norms) Prove that e-5t E c2, cos(t) 4 L2, 
2 - 2eMt E L,, uk E & (for 0 5 a < I), and eeZt E S,(O). 

Exercise 2.5 (Signals, Systems, Norms) Let 

G(s) = -& 

be a system with an input u(t) = eeat. Suppose that the output of 
the system is y(t). What is llGllm and Ilyll2? 

Exercise 2.6 (Continuity) Prove that 

f(t) = 2 - evt 

is uniformly continuous on D = R+. Prove that 

f(t) =e 
-2t 

is Lipschitz continuous on D = R +. What is the value of the Lipschitz 
constant in this case? 

Exercise 2.7 (Convergence, Barbalat’s Lemma) Suppose in Ex- 
ample 2.7 that f(z) = -2z 3. Show x(t) -+ 0 as t -+ 00. 

Exercise 2.8 (Stability, Asymptotic Stability) Suppose you are 
given the scalar differential equation 

II:= -ax - bx”, 

where a, b > 0. Find an equilibrium point. Is it isolated? Is the equi- 
librium uniformly stable? If so, prove it. Is the equilibrium uniformly 
asymptotically stable in the large? If so, prove it. 

Exercise 2.9 (Exponential Stability) Suppose you are given the 
scalar differential equation 

i= -a (b + emt) x, 

where a, b > 0. Find an equilibrium point. Is it isolated? Is the 
equilibrium exponentially stable in the large? If so, prove it. 
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Exercise 2.10 (Lyapunov Stability) Study the trajectory of V = 
xf + x2 + sg to prove that the system 

$1 = -21 +x2 
lix;z = -2x2 + x3 

L-i3 = -x3 - x; 
is exponentially stable. 

Exercise 2.11 (Instability) Study the trajectory of V = ~‘1) + x$ to 
prove that the system 

il = Xl +x2 

., = -x1 + 2x2 

is unstable. 

Exercise 2.12 (Another Class of Signal Norms) Another useful 
metric to quantify the size of a signal may be defined by using 

We say that a signal x(t) is small in the root mean squared sense if 
x E S,(c) for some finite c > 0. We say a function x(t) is small on 
average if x E & (c). As an example, consider the signal defined by 
x(t) = e-2t + 0.1 sin@). This signal is not in L1, but x E &(O.l). 
Also, S,(a) c S,(b) f or - any a, b E R such that 0 < a 5 b, and if 
x E Lp then x E S, (0). As an example, eet E L,, so eMt E S,(O). 
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31 . 

Neural Networks and 
Fuzzy Systems 

Overview 

Few technologies have been used for such a vast variety of applications as 
neural networks and fuzzy systems. They have been found to be truely in- 
terdisciplinary tools appearing in the fields of economics, business, science, 
psychology, biology, and engineering to name a few. 

Based upon the structure of a biological nervous system, artificial neu- 
ral networks use a number of interconnected simple processing elements 
(“neurons”) to accomplish complicated classification and function approx- 
imation tasks. The ability to adjust the network parameters (weights and 
biases) makes it possible to “learn” information about a process from data, 
whether it is describing stock trends or the relation between an actuator 
input and some sensor data. Neural networks typically have the desirable 
feature that little knowledge about a process is required to sucessfully apply 
a network to the problem at hand (although if some domain-specific knowl- 
edge is known then it can be beneficial to use it). In other words, they are 
typically regarded as a “black box” technique. This approach often leads to 
engineering solutions in a relatively short amount of time since expensive 
system models required by many conventional approaches are not needed. 
Of course, however, sufficient data is typically needed for effective solutions. 

Fuzzy systems are intended to model higher level cognitive functions 
in a human. They are normally broken into (1) a rule-base that holds a 
human’s knowledge about a specific application domain, (2) an inference 
mechanism that specifies how to reason over the rule-base, (3) fuzzification 
which transforms incoming information into a form that can be used by 
the fuzzy system, and (4) defuzzification which puts the conclusions from 
the inference mechanism into an appropriate form for the application at 
hand. Often, fuzzy systems are constructed to model how a human per- 
forms a task. They are either constructed manually (i.e., using heuristic 
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domain-specific knowledge in a manner similar to how an expert system is 
constructed) or in a similar manner to how a neural network is constructed 
via training with data. While in the pa’& fuzzy systems were exclusively 
constructed with heuristic approaches we take the view here that they are 
simply an alternative approximator structure with tunable parameters (e.g., 
input and output membership function parameters) and hence they can be 
viewed as a “black box approach” in the sa’me way as neural networks can. 
Fuzzy systems do, however, sometimes offer the additional beneficial fea- 
ture of a way to incorporate heuristic information; you simply specify some 
rules via heuristics and tune the others using data (or even fine tune the 
ones specified heuristically via the da’ta). In other words, it is sometimes 
ea’sier to specify a good initial guess for the fuzzy system. 

In this chapter we define some basic fuzzy systems and neural networks, 
in fact, ones that are most commonly used in practice. We do not spend 
time discussing the heuristic construction of fuzzy systems since this is 
treated in detail elsewhere. In the next chapter we will provide a variety 
of optimization methods that may be used to help specify the parameters 
used to define neural networks and fuzzy systems. 

3.2 Neural Networks 

The brain is made up of a huge number of different types of neurons in- 
terconnected through a complex network. A typical neuron is composed of 
an input region, which contains numerous small branches called dendrites. 
The neuron body contains the nucleus and other cell components, while the 
axon is used to transmit impulses to other cells (see Figure 3.1). 

When an impulse is received at the voltage-sensitive dendrite, the cell 
membrane becomes depolarized. If this potential reaches the cell threshold 
potential, via pulses received at possibly many dendrites, an action poten- 
tial which lasts only a millisecond or two is triggered and an impulse is sent 
out to other neurons via the axon. The magnitude of the impulse which is 
sent is not dependent upon the magnitude of the voltage potential which 
triggered the action. 

In our model of an artificial neuron, as is typical, we will preserve the 
underlying structure, but will make convenient simplifications in the actual 
functional description of its action. We will, for example, typically assume 
that the magnitude of the output is dependent upon the magnitude of the 
inputs. Also, we will not assume the inputs and outputs are impulses. 
Instead, a smoothly varying input will cause a smoothly varying output. 

The brain consists of a network of various neurons through which im- 
pulses are transmitted, from the ‘axon of one neuron to the dendrites of 
another. The impulses may be fed back to previous cells within the net- 
work. Artificial neural networks in which information may be fed back to 
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dendrites 

Figure 3.1. Simple representation of a neuron. 

previous neurons are called recurrent neural networks, whereas networks 
in which information is allowed to proceed in a single direction are called 
feedforward neural networks. Examples of recurrent and feedforward neu- 
ral networks are shown in Figure 3.2 where each circle represents a neuron, 
and the lines represent the transmission of signals along axons. To simplify 
analysis, we will focus on the use of feedforward neural networks for the 
estimation and control schemes in the chapters to follow. 

0 = neuron 

t 
= axon 

Figure 3.2. Examples of recurent and feedforward neural networks. 

The input vector to the neuron is x = [zr , . . . , z,]~, where zi, 1 5 i < 72, 
is the ith ’ input to the neuron. Though in a biological system zi represents a 
voltage caused by an electrochemical reaction, in this artificial framework, 
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21 may be a variable representing, for example, the value for a temperature 
or pressure sensor. 

Figure 3.3. Schematic of a neuron and artificial mathematical represen- 
tation. 

Figure 3.3 shows a biological neuron along with our mathematical rep- 
resenta’tion. We will consider two distinct mathematical operations within 
our model. First, the neuron inputs will undergo an input mapping in 
which each of the dentrite inputs is combined. After the input mapping, 
the signal is passed through an activation function to produce the output. 

3.2.1 Neuron Input Mappings 

The neuron input mapping takes a8 vector of inputs, II: E R”, and transforms 
these into a8 scalar, denoted by s. The input mapping is dependent upon a 
vector of weights w = [WI, . . . , wnIT, which are selected according to some 
past knowledge and may be allowed to change over time based upon new 
neural stimuli. Using both the weights and inputs, a mapping is performed 
to yua.ntify the relation between w and x. This relationship, for example, 
may describe the “colinearity” of w and x (discussed below). We will denote 
the input mapping by 

s=wax. 

A number of input mappings have been used in the neural network lit- 
erature, the most popular being the inner product and Euclidean input 
mappings. Another useful but not as widely used input mapping is the 
weighted average. 
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Inner Product: The inner product input mapping (also commonly refered 
to as the dot product), ma,y be considered to be a measure of the similarity 
between the orientation of the vectors w and x, defined by 

s=w@x=wTx. (3 1) . 

This may also be expressed as s = lw 11 1 x cos 8 where 8 is the angle between 
w and x. Thus, if w and x are orthogonal, then s(x) = 0. Similarily, the 
inner product increases as x and w become colinear (the angle 6 decreases 
and at 6 = 0, x and w are colinear). 

We will find that for each of the techniques in this book, it is required 
that we know how a change in the weights will affect the output of the 
neural network. To determine this, the gradient of each neuron output with 
respect to the weights will be calculated. For the standard inner product 
input mapping, we find that 

6% T  
-=x. 
8W 

(3.2) 

Notice that the gradient for the inner product input mapping with respect 
to the weights is simply the value of the inputs themselves. 

Weighted Average: An input mapping that is closely related to the inner 
product is the weighted average defined by 

WTX s=w@x= 
c ;=I Xj (3.3) 

Geomet,rically speaking, the weighted average again determines to what 
degree the two vectors are colinear. To ensure that the input mapping is 
well defined for all x (even x = 0), we may choose to rewrite (3.3) as 

(3.4) 

where y > 0. For this weighted average, the partial derivative of the neuron 
ouptut with respect to the weights is expressed as 

(3 5) . 

This is again similar to the inner product, with the addition of the normal- 
izing term in the denominator. 

Euclidean: The Euclidean input mapping is defined by 

s = w ox = Iw - xl = JT. (w - x) (w (3.6) 
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This mapping will result in s 2 0 since it is the Euclidean norm of the 
vector w - x (recall that norms are non-negative). The Euclidean input 
mapping has the following gradient with respect to the weights: 

dS x-w 
--- - 
dW Iw - XI - 

(3.7) 

Euclidean norm ii 

Figure 3.4. Graphical representation of the inner product and Euclidean 
input mappings. 

A geometrical intrepretation for the inner product and Euclidean input 
mappings is shown in Figure 3.4. Notice that as w and x become orthogonal, 
the inner product vanishes while the Euclidean norm increases. 

Adding a Bias Term: Along with the input vector 2, an artificial neu- 
ron is often also provided a constant bias as an input so that now II;’ = 
[1,x1, - *. A] T with x E R”? We have chosen the bias to be 1 since the 
input weight associated with the bias may be chosen to arbitrarily scale 
this value. That is, the weight vector is now changed to 

w = [wo, Wl, - - - 7 %I 
T  

with wg corresponding to the bias input. The same neuron input mappings 
afs described above apply to the case where a bias term is used. 

3.2.2 Neuron Activation Functions 

According to Figure 3.3, a.fter the input mapping, the neuron produces an 
output using an activation function. This activation function transforms 
the value produced by the input mapping to a value which is suitable for 
another neuron, or possibly a value which may be understood by an external 
system (e.g., as an input to an actuator). 

Definition 3.1: A function Q : R -+ R which maps an input mapping to 
R is said to be an activation function if it is piecewise continuous. 
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Definition 3.2: A function $ : R + R is said to be a squashing func- 
tion if it is an activation function, limstoo $(x) = 1, and lim,+Wa $(x) = 
0. 

Activation functions for artificial neurons may be either bounded or 
unbounded. A bounded activation function is one for which I$(s)l 5 k, 
where Ic E R is a finite constant, and thus it has the property that even if 
s --+ 00, one is still ensured that g(s) E L,. For an unbounded activation 
function, on the other hand, Y/J(S) E L, does not hold for all s. 

Definition 3.3: A function $J : D -+ R is said to be unipolar on D 
if ii,(x) 2 0 for all x E D (positive unipolar) or if $(x) _< 0 (negative 
unipolar) for all x E D. 

With $J() continuously differentiable, the change in the neuron output 
with respect to the neuron weights may be obtained from the chain rule as 

(3 8) . 

This formula will become useful when determining how to adjust the neuron 
weights so that the output of the squashing function changes in some desired 
ma’nner. A few of the more commonly used activation functions will now 
be defined. 

Threshold: The threshold function (or Heavyside function) is one of the 
original activation functions studied by McCulloch and Pitts. It is defined 
bY 

1 s>o 
0 otherwise. (3 9) . 

Since $(s) is not continuous for the threshold function, d$/ds is not well 
defined for all s E R. Though we will not use the threshold activation 
function in our adaptive schemes (because its derivative is not well defined), 
it will prove valuable in the function approximation proofs in Chapter 5. 

Linear: The simplest of the activation functions is a linear mapping from 
input to output defined by 

tic > s =s. (3.10) 

This is a monotonic, unbounded activation function. The gradient of the 
linear activation function is simply w = 1. We will see that linear 
activa8tion functions are often used to generate the outputs of multi-layered 
neural networks. 

Saturated Linear: A variant of the linear activation function is the satu- 
rated linear activation function, defined as 

$+) = saw, (3.11) 



where 

i 

1 ifx> 1, 
sat(x) = x if -l<x<l, . 

- 1 otherwise.- 
(3.12) 

This is a monotonic bounded activation function. Since the saturated lin- 
ear function is not continuously differentiable (why?), often a continuously 
differentiable approximation is used instead. One such example is the hy- 
perbolic tangent. 

Hyperbolic Tangent: The hyperbolic tangent activation function is de- 

(3.13) 

This is a monotonic, bipolar activation function whose derivative is 

aq!(s>/as = 1 - $2(s>. 

Sigmoid: A frequently used monotonic, unipolar squashing function is the 
sigmoid. In general a sigmoid is any such “s-shaped” function, and is often 
specified as 

+( > 
1 

s = 
I+ exp(-2s) ’ 

(3.14) 

The gradient of this function is 

a$!+>/as = 2$+)(1 - $+I)- 

Note that the gradient is defined in terms of q(e) itself. 

Radial Basis: One of the most popular non-monotonic activation func- 
tions is the radial basis function, commonly defined by 

$(s) = exp(-s2/y2), (3.15) 

where y E R. Neural networks composed entirely of radial basis functions 
have been used in a number of applications owing to their mathematical 
properties. Their function approximation properties will be discussed in 
Chapter 5. 

Others: There are numerous other activation functions which may be 
used. They tend to be limited only by one’s imagination and practical 
implementations. Even though we can define and use rather sophisticated 
activation functions, the ones presented above tend to be sufficient. We 
will discuss this point in more detail in Chapter 5 during a discussion on 
universal approximation capabilities of neural networks. To give you an 
idea of other possibilities for activation functions consider 

dJ( > 
S 

s =I- 

1 + I4 
(3.16) 
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01 

Q( > 
Sn 

s =l+,s,nSRn 
n----l 

( > 6 (3.17) 

where n > 1. Additional activation functions will be considered in the 
homework exercises. 

Example 3.1 Consider a neuron defined by g(s) = tanh(s), with an 
inner product input mapping and with 2 = [l, 21T. What set of 
weights, w = [wr, wslT, will cause $(s) = O? This is equivalent to 
finding w1 and wz such that s = wr + 2~2 = 0. Any point along 
the line w1 = -2~2 will satisfy this. Notice that with two adjustable 
weights, an infinite number of choices for wr and w2 exist which cause 
T)(s) = 0. A 

3.2.3 The Mulitlayer Perceptron 

The most common neural network found in applications today is the feed- 
forward multilayer perceptron (MLP), also known simply as the mul- 
tilayer feedforward neural network. It is a collection of artificial neurons 
in which the output of one neuron is passed to the input of another. The 
neurons (or nodes) are typically arranged in collections called layers, such 
that the output of all the nodes in a given layer are passed to the inputs of 
the nodes in the next layer. 

An input layer is the input vector x, while the output layer is the con- 
nection between the neural network and the rest of the world. A hidden 
layer is a collection of nodes which lie between the input and output layers 
as shown in Figure 3.5. Without a hidden layer, the MLP reduces to a 
collection of n neurons operating in parallel. 

)Il 
/ \ output layer 

1,’ 
b 2, 

,,’ I “\ / 
/ 

‘1 
/ , / x . . . 

, ‘j 
~ ,/;,:I .’ ’ .. 

-,s -; 
hidden layer 

/,/ \ ‘< . . ,;-. \ A’ /’ _- /// 
-,-’ ,, , : 

/‘\ ’ _ A’ _ 
,_-. ‘.. 

,, _. I -; /’ 
),‘- -...+, 

\ 
/../’ _ ,‘._ ‘.. \ 

‘,, \(, / 1: \- +4’ j . . . input layer 
/ \ , \ / \. 1 

x1 x2 x3 
X 

n 

Figure 3.5. Schematic of a mulitlayer perceptron. 
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In a fully connected MLP, each neuron output is fed to each neuron input 
within the next 1a)yer. If we let 6 be a vector of all the adjustable parameters 
in the network (weights and biases, and sometimes the parameters of the 
activation functions), then we denote the input-ouptut mapping of the MLP 
by F(x,O). To better understand the functional form of this mapping, 
consider the following example: 

Example 3.2 Consider the MLP with one hidden layer consisting of 
nodes with activation functions defined by &(s) for the j’” hidden 
node and a single output node defined using a linear activation func- 
tion. The input-output mapping for this MLP is defined by 

where 0 = [d,q,. . . ,cq, bl,. . . ,b4, w11,. . . ,wnglT is a vector of ad- 
justable parameters. Notice that each bj and d are biases which were 
included with each node. There are q neurons in the hidden layer, n 
inputs, and one output in this neural network. A 

Within a multilayer perceptron, if there are many layers and many nodes 
in each layer, there will be a large number of adjustable parameters (e.g., 
weights and biases). MLP’s with several hundred or thousands of adjustable 
weights are common in complex real-world applications. 

3.2.4 Radial Basis Neural Network 

A radial basis neural network (RBNN) is typically comprised of a layer 
of radial basis activation functions with an associated Euclidean input map- 
ping (but there are many ways to define this class of neural networks). The 
output is then ta)ken as a linear activation function with an inner product 
or weighted average input mapping. A RBNN with two inputs and 4 nodes 
is shown in Figure 3.6. 

The input-output relationship in a RBNN with x = [xl,. . . , x,lT as an 
input is given by 

(3.19) 

where 8 = [wr , . . . ,w.,]~ when an inner product mapping is used within 
the output node. Typically, the values of the vectors ci, i = 1, . . . , m and 
the scalar y are held fixed, while the values of 6 are adjusted so that the 
mapping produced by the RBNN matches some desired mapping. Because 
the adjustable weights appear linearly, we may express (3.19) as 

Y-(x, 0) = eTc(x>, (3.20) 
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Figure 3.6. Radial basis neural network with 4 nodes. 

where [i = exp(-Ix - ci]“/y”). Wh en a weighted average mapping is used 
in the output node, the RBNN becomes 

qx,e> = c z1 Wi exp(-12 - Ci[2/y2) 

CL1 w(-Ix - Ci12/Y2) ’ 
(3.21) 

*which may again be expressed as .?(x, 0) = OTC(x), now with t3 = [WI,. . . , w,lT 
and 

< 
exp(-12 - c$/y”) i= 

c zl exp(-lx - Ci12/y2)’ 
(3.22) 

The Gaussian form of the activation functions lets one view the RBNN 
as a weighted avera,ge when using (3.21), where the value of wi is weighted 
heavier when x is close to ci. Thus the input space is broken into overlap- 
ping regions with centers corresponding to the ci’s as shown in Figure 3.6. 

3.2.5 Tapped Delay Neural Network 

If past input values are also processed by a neural network we obtain what 
is often referred to as a, tapped delay neural network. An example 
using a. single input and associated delayed values is shown in Figure 3.7 
(here l/z denotes a delay of T). 

Here, u is the input and we can, for instance, let x = [z@), . . . , ~(lc--n)]~ 
so that the output of the neural network is y = Y-(x, 0) (0 is a vector holding 
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Figure 3.7. Tapped delay neural network. 

the parameters of the neural network). In estimation and control applica- 
tions it is common to let the input to the neural network be a sequence of 
past inputs and outputs of the process. 

3.3 Fuzzy Systems 

Traditionally, fuzzy systems have been constructed in a heuristic fashion 
using application-specific knowledge. For instance, when a fuzzy system 
is used as a controller for an automobile we capture the heuristic ideas a 
human has about how to do speed regulation and load these into “rules” 
that we store in a “rule-base” in the “fuzzy controller.” One rule might be 
“if the current speed is 50 miles per hour and the desired speed is 55 miles 
per hour then press down on the accelerator a bit more.” Other rules may 
incorporate information about the rate at which the speed is approaching, 
or departing from, the desired speed. The fuzzy controller uses fuzzy sets 
and fuzzy logic to implement a set of rules about how to control the vehicle 
speed. During operation, it determines which control rules apply to the 
current situation, and applies these in an analogous way to how a human 
would if he or she were physically controlling the system. In this way, it is 
said that the fuzzy controller emulates the human cognitive decision-making 
process (or, in other words, it conducts “inference”). 

A fuzzy system is shown in Figure 3.8. Here, we show the rule-base that 
holds the set of rules about, for example, how to control a process. Also, 
we see explicit inclusion of the “inference mechanism” which is the part 
of the fuzzy system that decides which rules should be used, and applies 
them. Not shown here, but discussed below, are the processes that trans- 
form information into a, form that can be used by the inference mechanism 
(“fuzzification”) and transform the actions of the inference mechanism into 
a’ form that can be used in practical applications (“defuzzification”). 
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Figure 3.8. An n-input, m-output fuzzy system. 

3.3.1 Rule-Base and Fuzzification 

A multiple-input single-output (MISO) fuzzy system is a nonlinear mapping 
from an input vector z = [q, ~2,. . . , z,]~ E R” to an output y E R. To 
define a MIMO fuzzy system with m outputs simply define m MIS0 fuzzy 
systems. The fuzzy system is characterized by a set of p If - Then rules, 
stored in a8 rule-base, expressed as 

RI : If (?I is FF’ and . - . and 2n is F:) Then (Q is Gul) 

. . 

R, : If (ICI is Plkp and . . s and 2:, is Fk) Then (y is Gap). 

Here, Fbn is the uth linguistic value associated with the linguistic variable Zb 
that describes input Q,. Similarly, Gd is the a th linguistic value associated 
with the linguistic variable jj that describes the output y. Linguistic vari- 
ables are simply word descriptions of, for exa.mple, numeric variables (e.g., 
“speed” might be the linguistic variable for the velocity of the vehicle that 
we denote with v(t>). Linguistic variables change over time and hence take 
on specific linguistic values (typically adjectives). For instance, “speed” is 
“small” or “speed” is “large.” The “linguistic rules” listed above are those 
gathered from a human expert. 

Example 3.3 As an example of a set of linguistic rules, for a cruise con- 
trol example suppose that p = 3, n = 1, and ~1 is the error be- 
tween the desired speed q&t) and the actual (sensed) speed w(t) (i.e., 
x1 (t) = vd(t) - v(t)). In this case, a word description of the fuzzy 
controller input variable xi(t) could be “speed-error” so that the lin- 
guistic variable is 51 =“speed-error.” Suppose that there are three 
linguistic values for the speed-error linguistic variable and that these 
are “positive,” “zero,” and “negative.” Suppose that the output of 
the fuzzy controller is the change in throttle angle that we denote as 
y(t) and use a linguistic variable g = “change-in-throttle.” Suppose it 
ha*s linguistic variables “increase,” (‘stay-the-same,” and “decrease.” 
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The three rules, in the rule-base, of the form listed above would be 

RI : If  (?I is Ffl) Then ($j is G’l) 
RZ : If (2, is lt;F2) Then (:L/ is Ga2) 
R3 : If (21 is Pf3) Then (5 is GQ) 

or, more specifically, 

RI : 
Ra : 
R3 : 

If (51 is “positive”) Then (9 is “increase”) 
If (21 is “negative”) Then ($ is “decrease”) 
If (21 is “zero”) Then (G is “stay-the-same”). 

Rule RI says that if the vehicle is traveling at a speed less than the 
desired speed, then increase the amount of throttle (i.e., make g(t) 
positive). Rule Ra says that if the vehicle is traveling at a speed 
greater than the desired speed, then decrease the amount of throttle 

( i.e., make y (t> negative). Rule R3 says that if the actual speed is 
close to the desired speed then do not move the throttle angle (i.e., 
let y(t) = 0). A 

To apply the knowledge represented in the linguistic rules we further 
quantify the meaning of the rules using fuzzy sets and fuzzy logic. In 
particular, using fuzzy set theory, the rule-base is expressed as a set of 
fuzzy implications 

RI : If (@ and - - - and F:) Then Gal 
. . . . 

R, : If (F$’ and - - - and Fk) Then G”p, 

where Ft and Ga are fuzzy sets defined by 

Fb(2 = {(%cLF+b)) : Xb E R) (3.23) 
Ga = {b#Ga(d) : Y E R} - (3.24) 

The membership functions, PF,“, ~.&cL E [O, I] describe how sure one is of 
a8 particulalr linguistic statement. For example, ,QF,” quantifies how well 
the linguistic variable Ir;b, that represents xb, is described by the linguistic 
value Pt. There are many ways to define membership functions [170]. For 
instance, Ta,bles 3.1 specifies triangular membership functions with center 
c a,nd width w, and it specifies Gaussian membership functions with center 
c a’nd width 0. It is good practice to sketch these six functions, labeling all 
aspects of the plots. 

Example 3.4 Continuing with the above cruise control example we could 
quantify the meaning of each of the rule premises and consequents 
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Left 1, / --\ ifx<c 
u-p) = 

f 1 
1 

- 
I 

\ 

Centers /Q(x) = 

Right PR(4 = 

otherwise 
ifx<c - 
otherwise 
ifx<c - 
otherwise 

Triangular 

II Gaussian 
1 ifx<c 

Left PL(4 = 
- 

Centers 

Right 
otherwise 

Table 3.1. Some standard membership functions. 

with membership functions and hence, fuzzy sets. For instance, the 
following triangular membership functions could be used to describe 
the “speed-error” linguistic values: 

1. “positive”: pR with c = 5 and w = IO. 

2. “negative” : pL with c = -5 and w = 10. 

3. ‘Lzero” : p with c = 0 and w = 5. 

For practice, plot all three of these membership functions on the same 
axis vs. x1. Also, define reasonable membership functions to represent 
the three linguistic values for the change-in-throttle output. 

Note that the choice of what membership functions to use is made us- 
ing insights from the problem at hand and normally not via a specific 
systematic procedure; however, some membership functions (e.g., tri- 
angular ones) result in computationally simpler algorithms and this 
may be one factor that enters into deciding which function to use. A 

This completes the description of the rule-base. Fuzzification is simply 
the process of obtaining values for the inputs xi and computing p(xi) for 
each of the input membership functions p. 
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3.3.2 Inference and Defuzzification 

The premise fuzzy set, which we denote as, 

(it is a “fuzzy Grtesian product”), of each rule has a membership function 

lLE;kz x...xF,‘,” (4 th a is obtained using the t-norm [170] t 

which may be defined by the min-operator (i.e., A defined as minimum) 

(3.25) 

or product-operator (i.e., A defined as a standard mathematical product) 

(3.26) 

among others. The t-norm simply quantifies the conjunction in the premise 
of each rule (it is a basic operation in fuzzy logic). 

Two approaches to quantify fuzzy implications for the ith rule are 

(3.27) 

You use one approach or the other depending on how you want to quantify 
the fuzzy implication. For a given x, the membership functions (fuzzy 
sets) on the left-hand sides of these two equations represent the conclusions 
rea,ched by the inference mechanism. We will call these “implied fuzzy 
sets.” 

Next], we introduce the process of defuzzification that converts the im- 
plied fuzzy sets into actual numbers that are then the outputs of the system. 
Basically, in general, more than one rule will apply at each time instant and 
hence there will be more than one conclusion (i.e., more than one implied 
fuzzy set with a membership function that is not zero everywhere) reached 
by the inference mechanism at each time instant (i.e., the conclusions gen- 
eraSted by the inference mechanism are a set of implied fuzzy sets, where 
for the ifh rule the membership function of the implied fuzzy set is given 
bY I-1 k Fl z x...xF$+G”i (z, y) with x specified). Defuzzification combines the 
conclusions from all the rules and provides a single number that represents 
the conclusions. 
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Using “center-average defuzzification,” the output of the fuzzy system, 
y = .?(x), may be expressed as 

(3.29) 

where each ci is the point at which ,&a; (y) reaches its maximum (if PGa; (y) 
is symmetric about the point it reaches its maximum, which is the typical 
case). 

For “center-of-gravity defuzzification,” another option for combining the 
conclusions reached by the inference mechanism, the output of the fuzzy 
system is 

where here Ci is the center of area of p@; (y) for the ith rule. Again, 
typically PGa; (y) is chosen to be symmetrical about its maximum so that 
ci is the center of pea; (y). It is assumed that the fuzzy system is defined 
so that for all x E R”, we have pFkl x . . . xFli (x) > 0 for at least one rule i7 

so that (3.29) and (3.30) are well defined. n 
This completes the definition of a fuzzy system; equations (3.29) and 

(3.30) provide mathematical charaterizations of all the operations of a fuzzy 
controller (when we simulate a fuzzy system it is equations of this type that 
we code). 

Because it will be important later, we note that a change in the out- 
put of the fuzzy system with respect to the change in ci is given by C = 

K - - - 7 5 IT = 8F(x)/~Q where 8 = [cl,. . . , cplT. For fuzzy systems de- 
fined usiig center-average defuzzification, 

and for fuzzy systems using center-of-gravity defuzzification, 

(3.31) 

(3.32) 

so that F(x) = OTC7 where 5 = [(II.. . , CplT. When we want to empha- 
size the dependence of the fuzzy system on its parameters we will use the 
notation y = .?(x, 6). 
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Example 3.5 Consider defining a( fuzzy control system for the system 
defined by 

?n, = u, (3.33) 

where m is the mass of an object, II: is the position, and u is the input 
force. If we would like to position the mass at II; = r and both the 
signals II: and i are available for use in a control law, then one might 
consider using a simple PD-type control system. That is, we might 
define u = k,e + k& where e = r - x and 6 = -j: with k,, lid > 0. 

This type of control law has been used in numerous applications due to 
its simplicity. It also makes intuitive sense in terms of how it works. 
For example, if we have a large negative error and the derivative 
indicates that it is becoming more negative, then a large negative 
force should be applied. On the other hand, if both the error and 
derivative are near zero, then a small force (if any) should be applied. 
Using this logic, we may create a small rule base to control the mass 
as follows: 

1. If “e is Negative” and I‘& is Negative” then “u is Negative”, or 

2. If “e is Zero” and % is Negative” then “u is Negative”, or 

3. If “e is Posotive” and “& is Negative” then “u is Zero”, or 

4. If “e is Negative” and “6 is Positive” then “u is Zero”, or 

5. If “e is Zero” and ‘% is Positive” then “u is Positive” , or 

6. If “e is Positive” and % is Positive” then “u is Positive”. 

Consider using triangular membership functions for the inputs and 
outputs as shown at the top of Figure 3.9. Here, the input e takes 
on a relatively large negative value and e is a1 small positive value 
as denoted by the vertical da,shed lines. Each rule is then shown in 
terms of the associated input and output membership functions. To 
determine the degree of membership of the output of each rule, the 
minimum value of the input membership functions is used. 

After the output membership function value for each rule is deter- 
mined, the contribution from each rule is combined to form the out- 
put of the fuzzy system. This is shown in the lower right-hand side 
of Figure 3.9. If, for example, center of gravity is used in the defuzzi- 
fication, we notice that the output of the fuzzy system would be a 
small negative number (why?). A 
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Rule 3 1 fi x0.4 A0 

Figure 3.9. Defining the output of the fuzzy system in Example 3.5. 

3.3.3 Takagi-Sugeno Fuzzy Systems 

A Takagi-Sugeno fuzzy system uses rules of the form: 

RI : If (21 is &‘:I and - - - and 2, is p$ ) Then cl = gl(z) 

R, : If (51 is p:’ and - - + and Z:, is &Y) Then cp = g&r). 

Here, the premises are exactly the same as for the standard fuzzy systems 
defined above. The consequents, however, are not fuzzy sets; they are 
functions. In particular, 

cq = .gqb> 

is the consequence of the qth rule and the function gq : !P --+ 8. 
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To compute the output of the Takagi-Sugeno fuzzy system with center- 
average defuzzification we write 

c P 
i=l CiPi 

y = c’l’=, pi ’ 
(3.34) 

where pi := ~F~~...~F,(x~, . . . , x,) is the value that) the membership func- 
tion (defined via (3.25) or (3.26)) for the antecedent of the ith rule takes 
on at x: = [xl,. . . , x,lT (notice that th’ f 1s uzzy system can be viewed as an 
interpola(tor between the p output functions). It is a,ssumed that the fuzzy 
system is defined so that for all z E !R”, we have CyZ1 pi # 0. 

Sometimes we will let the output consequences for each rule be a linear 
combination of a set of Lipschitz continuous functions, rk(x) E 8, k = 
1,2,. . . ) m-1,sothat 

Ci = gi(X) := ~i,O+ai,lYl(X)+es -+ai,m-2Ym-2(X)+ai,m-1Ym--1(X) (3.35) 

i = l,... , p. In the special case where m - 1 = n and yi (x) = xi for all 
i, the functions on the right-hand side of this equation are linear (actually, 
affine) and we have the traditional definition of the Takagi-Sugeno system. 

Next, define 

and 

(3.36) 

(3.37) 

L e’ P,O s;,~ -- : 8,,,,-1 1 

The consequence vector associated with the fuzzy rules is now given by 
c = eTz, so that the output of the fuzzy system may now be expressed as 

y = zToc = F-(x$), (3.38) 

where CT = [PI,. -. 7 PPl / Lz:zx, I-Lil- N o t ice that this definition has 8 as a 
matrix; next we show how to parameterize the fuzzy system so that 8 is a 
vector. 

Notice that if m - 1 = n we can let 

and 

s = [Cl, * * ~,C,,?il(~~~l,~~~,n(~~~p,...:~~(~)Cl,...,~~~(~)CplT 
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so that 
y = ey, 

which is a parameterization similar to all the others that we have specified 
for the neural networks and fuzzy systems (and hence gradients can be 
found in a similar way). 

Finally, we would like to note that while standard fuzzy systems have 
tra,ditionally been defined in a heuristic fashion using insights gathered from 
the system to determine the rules, the Takagi-Sugeno fuzzy system hats often 
been specified with both heuristic methods and data (heuristic ideas can be 
used to come up with the premise membership functions, and then data can 
be used to train the consequent terms, especially if the consequent functions 
are linear or affine). Of course, there is no reason that data and training 
algorithms (e.g., gradient and least squares) cannot be used to train all the 
parameters in a fuzzy system, in a similar manner to how parameters are 
trained in a neural network. This is the main topic of the next chapter. 

3.4 Summary 

Upon completion of this chapter, the reader should have an understanding 
of 

0 

0 

0 

0 

0 

l 

T 

Neurons, including weights, input mappings, and activation functions. 

Feedforward neural networks, including nodes and layers. 

Radial basis neural networks. 

How to calculate the neural network and fuzzy system gradients with 
respect to the adjustable parameters. 

Standard fuzzy systems. 

Takagi-Sugeno fuzzy systems. 

rn summary, this chapter introduces the two main approximator struc- 
tures t,hat we use for the adaptive schemes presented later in this book. 

3.5 Exercises and Design Problems 

Exercise 3.1 (Mathematical Representations of Neural Networks 

and Fuzzy Systems) 

(a) Write out the full mathematical equations for a multilayer per- 
ceptron with two hidden layers. Be sure to utilize distinct no- 
tation for the weights, biases, and activation functions for each 
layer. 



70 Neural Networks and Fuzzy Systems 

(b) Write out the full mathematical equations for a fuzzy system 
that uses Gaussian input membership functions, triangular out- 
put membership functions, product to represent the premise and 
implication, and center-average defuzzification. 

Exercise 3.2 (Neural Network Implementation) Use your favorite 
computer la.nguage (C, MATLAB, etc.) to implement the MLP and 
ra$dial basis neural networks. Allow enough flexibility so that the size 
of the neural networks may easily be changed an so that the weights 
and biases may be adjusted by another function. 

Exercise 3.3 (Fuzzy System Implementation) Use your favorite 
computer la.nguage to implement a fuzzy system. Allow enough flex- 
ibility in your implementation so that it is possible to change the 
number of rules and the type of membership functions used. Also 
a,llow for the possibility that the parameters used to define the mem- 
bership functions may be modified by another function. 

Exercise 3.4 (An MLP Update Law) Consider the MLP whose out- 
put is given by .F(x, 6), where Q is a vector of weights and biases. 
Assume that for a given J; we want to find some 8 such that y = r 
where r is the desired constant neural network output. If e = y - r is 
the neural network output error and V = e2 is a Lyapunov candidate, 
then describe the stability of e = 0 when we define 

dF T 
e=-T z e, [ 1 

where y > 0. What the the implications if we define the neural 
network such that I&F/aQI > 0 for all J: (rather than lEKF/%( > 0). - 

Exercise 3.5 (Fuzzy Cruise Control) Consider the cruise control 
problem where the vehicle speed is governed by 

mti = -Au” + u, (3.39) 

where m = 1200kg is the mass of the vehicle, A = 0.4Nm2/s2 is the 
aerodynamic drag, v is the vehicle speed in m/s, and u is the input 
force. If v is measurable and r is the desired vehicle speed, then define 
a, rule base which could be used to regulate the vehicle speed so that 
v = r. Simulate the closed-loop system. Try to adjust the output 
membership functions to improve the system performce. 

Exercise 3.6 (Fuzzy Control for an Inverted Pendulum) Consider 
the simple problem of balancing an inverted pendulum on a cart. Let 
y denote the angle that the pendulum makes with the vertical (in 
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radians), I be the half-pendulum length (in meters), and u be the 
force input that moves the cart (in Newtons). Use r to denote the 
desired angular position of the pendulum. The goal is to balance the 
pendulum in the upright position (i.e., T = 0) when it initially starts 
with some nonzero angle off the vertical (i.e., y # 0). One model for 
the inverted pendulum shown is given by 

ij = 
9.8 sin(y) + cos(y) [ -“-0.‘;5i2 sin(Ii’] 

0.5 [$ - 5 cos2(y)] 
(3.40) 

: Ix -lOOil+ 1oou. 

The first-order filter on u to produce ti represents an actuator. In your 
simulations let the initial condition be y(0) = 0.1 radians, g(O) = 0, 
and y(O) = 0. 

(a) Develop a fuzzy controller with e = r-y and e as inputs, the min- 
imum operator to represent both the “and” in the premise and 
the implication, and COG defuzzification. Simulate the closed- 
loop system and plot the output y and input u to demonstrate 
that your fuzzy controller can balance the pendulum. 

(b) Repeat (a) for the case where you use product to represent the 
premise and implication and center-average defuzzification. 



Chapter 4 

Optimization for Training 
Approximators 

4.1 Overview 

As humans, we are intuitively familiar with the process of optimization 
because of our constant exposure to it. For instance, in business investments 
we seek to maximize our profits; in recreational games we seek to maximize 
our own score or minimize that of our opponent. It is not surprising that 
optimizaStion plays a key role in engineering and many other fields. In circuit 
design we may want to maximize power transfer, in motor design we may 
want to design for the highest possible torque delivery for a given amount of 
current, or in communication system design we may want to minimize the 
probability of error in signal transmission. Indeed, in the design of control 
systems we have the field of “optimal control,” where one objective might 
be to minimize tracking error and control effort (energy) while stabilizing 
a system. 

Here, as in many adaptive control methods, the adaptive schemes are de- 
signed to search for a parameter set which minimizes a cost function, while 
maintaining, or seeking to achieve, certain closed-loop properties (e.g., sta- 
bility) of the adaptive system. For insta#nce, we may seek to adjust the 
parameters of a neural network or fuzzy system (which we treat as “ap- 
proximators”) so that the neural network or fuzzy system approximator 
nonlinearity matches that of the pla#nt, and then this synthesized nonlin- 
earity is used to specify a controller that reduces the tracking error. Opti- 
mizaStion then forms a fundamental foundation on which all the approaches 
rest. It is for this reason that we provide an introduction to optimization 
here. The reader who is already familiar with optimization methods can 
skip (or skim) this chapter and go to the next one. 

73 

Stable Adaptive Control and Estimation for Nonlinear Systems:
Neural and Fuzzy Approximator Techniques.

Jeffrey T. Spooner, Manfredi Maggiore, Raúl Ordóñez, Kevin M. Passino
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4.2 Problem Formulation 

Consider the minimization of the cost function J(B) > 0 where 0 E S C RP - 
is a vector of p adjustable parameters. In other words, we wish to find some 
0* E S such that 

8” = argminJ(B). 
@ES (4.1) 

This type of optimization problem is referred to as “constrained optimiza- 
tion” since we require that 8 E S. When S = R”, the minimization problem 
becomes “unconstrainted.” 

If we wish to find a parameter set 8 that shapes a function F(x, 0) (that 
represents a neural network or fuzzy system with tunable parameters 0) so 
that ?@,8) and f(z) match at II: = 2, then one might try to minimize the 
cost function 

J(B) = If(z) - qqe>l” (4.2) 

by adjusting 8. If we wish to cause .7=&O) to match f(x) on the region 
J: E S,, then minimization of 

J(B) = sup If(x) - F-(x$))” 
XES, 

(4.3) 

would be one possible cost function to consider. Minimizing the difference 
between a known parameterized function (an “approximator”) F(x, 6) and 
another function f(x) which is in general only partially known is referred 
to as “function approximation.” This special optimization problem will be 
of particular interest to us throughout the study of adaptive systems using 
fuzzy systems and neural networks. 

Practically speaking, however, in our adaptive estimation and control 
problems we are either only given a finite amount of information in the form 
of input-output pairs about the unknown function f(z) or we are given such 
input-output pairs one at a time in a sequence. Suppose that there are n 
input va,riables so x = [xi,. . . , x,lT E R’“. Suppose we present the function 
f(z) with a variety of input data (specific values of the variable x) and 
collect the outputs of the function. Let the ith input vector of data be 
denoted by 

i T  x2 = [Xi) . - . ) XJ , 

where x2 E 5’Z and denote the output of the function by 

yi = f(xi). 

Furthermore, let the “training data set” be denoted by 

G={(xi,yi):i=l,2 ,..., M}. 
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Given this, a pra.ctical cost function to minimize is given by 

(4 4) . 

We will study several ways to minimize this cost function, keeping in mind 
t)ha#t we would like to be minimizing a function like the one given in (4.3) 
art the same time (i.e., even though we can only minimize (4.4) we want 
to obtain accurate function approximation over a whole continuous range 
of variables x E S,). Clearly, if G does not contain a sufficient number of 
samples within S,, it will not be possible to do a good job at lowering the 
va#lue of (4.3). For instance, you often need some type of “coverage” of the 
input space SX by the xi data (e.g., uniform on a grid with a small distance 
between the points). The problem is, however, that in practice you often 
do not have a choice of how to distribute the data over S,; often you are 
forced to use a given G directly as it is given to you (and you cannot change 
it to improve approximation accuracy). We see that due to issues with how 
G is constructed, the problem of function approximation, specifically the 
minimization of the magnitude of the “approximation error” 

e(z) = f (2) - WG e> 

is indeed a difficult problem. 
What do function approximation and optimza,tion have to do with adap- 

tive control? As a simple example, suppose we wish to drive the output of 
the system defined by 

Li = f(x) +u (4 5) . 

to zero, where f(x) is a smooth but unknown function, x is the scalar 
system output, and u is the input. Consider the function F(x, 8*), which 
approximates the unknown function f(x), where 0* is a vector of ideal 
pa,ra,meters for the cost function (4.3). Then the controller defined by 

U= -3y~,e*) - kx, (4 6) . 

where Ic > 0 would drive 1x1 -+ 0 assuming that IF(x, 0*) - f (x)1 = 0. This 
happens beca’use the closed-loop dynamics become i = -Icx which is an 
exponentially stable system. 

In general, it will be our task to find 0 = 8* so that the approximator 
.qs,e) = .qx,e*) E f cx). N o t ice that even in this simple problem, some 
key issues with trying to find 8 = 0* are present when the cost function 
(4.4) is used in place of (4.3). For instance, to generate the training data 
set G we need to assume that we know (can measure) x. However, even 
though we know U, we do not necessarily know f(x) unless we can also 
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assume that we know li: (which can be difficult to measure due to noise). If 
we do know L? then we can let 

f( 1 x =25-u. 

Even though under these assumptions we can gather data pairs (x’, f  (xi)) 
to form G for training the approximator, we cannot in general pick the xi 
unless we can repeatedly initialize the differential equation in (4.5) with 
every possible xi E S,. Since in many practical situations there is only one 
initia,l condition (or a finite number of them) that we can pick, the only 
data we can gather are constrained by the solution of (4.5). This presents 
us with the following problem: How can we pick the u(t) so that the data 
we cancollect to put in G will ensure good function approximation? Note 
that the “controllability” of the uncertain nonlinear system in (4.5) will 
impact our ability to “steer” the state to regions in 2& where we need 
to improve a,pproximation accuracy. Also, the connection between G and 
approximation accuracy depends critically on what optimization algorithm 
is used to construct 8, as well as on the approximator’s structural potential 
to match the unknown function f(x). 

We see that even for our simple scalar problem, a guarantee of ap- 
proximation accuracy is difficult to provide. Often, the central focus is on 
showing that even if perfect approximation is not achieved, we still get a 
stable closed-loop system. In fact, for our example even if F(x, 0) does 
not exactly match f(x), the resulting closed loop system dynamics are sta- 
ble and converge to a ball around zero assuming that an 6’ can be found 
such that If(x) - F(x, O)l < D f - or all x, where D > 0 (see Homework 
problem (4.7)). 

The main focus of this chapter is to provide optimization algorithms for 
constructing 0 so that .F(x, 0) approximates f(z). As the above example 
illustrates, the end approximation accuracy will not be paramount. We 
simply need to show that if we use the optimization methods shown in this 
chapter to adjust the approximator, then the resulting closed-loop system 
will be stable. The size of the approxima,tor error, however, will typically 
a,ffect the performance of the closed-loop system. 

4.3 Linear Least Squares 

We will first concentrate on solving the least squares problem for the ca,se 
where 

J(B) = FWi jf(Xi)-3(Xi,8)/2) P-7) 

i=l 
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where wi > 0 are some scalars, f(x) is an unknown function, and .F(x, 0) 
is an approximator defined by 

F(x,e) = $9 P-8) 

so that 8 appears linearly (i.e., a “linear in the parameters” approximator 
which we will sometimes call a linear approximator). In this chapter, we 
will use the short hand CT = 6F/%? We will later study techniques which 
consider some F(x, 0) such that B does not necessarily appear linearly in the 
output of the approximator. Next, we will introduce batch and recursive 
least squares methods to find 8 = 0* which minimizes the cost function 
(4.7) for input-output data in G assuming the approximator has the form 
of (4.8). 

4.3.1 Batch Least Squares 

We will introduce the batch least squares method to train linear approx- 
imators by first discussing the solution of the linear system identification 
problem. Let f denote the physical system that we wish to identify. The 
training set G is defined by the experimental input-output data that is 
generated from this system. In linear system identification, we can use a 
model 

9 P 

y(k) = ~‘,iy(~ - i) + xebiu(Jc - i), 
i=l i=O 

where u(k) and y(k) are the system input and output at time k. This form 
of a system model is often referred to as an ARMA (AutoRegressive Moving 
Average) model. In this case the approximator y(k) = .F(x,Q) is defined 
with 

We have n = q+p+ 1 so that c(k) and 8 are n x 1 vectors, and often <(rC) is 
called the “regression vector.” System identification amounts to adjusting 
0 so that (4.7) is minimized. Often, for system identification we choose 
ci = c(i), yi = y(i), and let G = {(ci, y’) : i = 1,2,, . . , M}. 

In the batch least squares method we define 

Y = [ y1,y2,..*,yyT 
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to be an M x I vector of output data where the yi, i = 1,2, . . . , M come 
from G (i.e., y’ such that (ci, y”) E G). We let 

- 1 T  K > 
21 

cc > 

be an M x n matrix that consists of the Ci data vectors stacked into a 
matrix (i.e., the Ci such that (Ci, yi) E G). Let 

ci = yi - ((y(j 

be the error in approximating the data pair (ci, y”) E G using 8. Define 

E= [2,c2,...,P]T 

so that 
E = Y - W. 

Now choose 
1 

J(c)) = ZETE 

to be a measure of how good the approximation is for all tlhe data, for a 
given 8, which is (4.7) with wi = 1 for i = 1,. . . M. We want to pick 6’ to 
minimize J(O). Notice that J(6) is convex in 0 so that a local minimum is 
a global minimum in this case. 

Using basic ideas from calculus, if we take the partial derivative of J 
with respect to 8 and set it equal to zero, we get an equation for the best 
estimate (in the least squares sense) of the unknown 8. Another approach 
to deriving this result is to notice that 

Then, we “complete the square” by assuming that aT@ is invertible and 
letting 

2J = YTY - YTfW - BTaTY + OTtDTW 

+ YT@(iPTS)-l@TY - YTq@T@)-l@TY 

(where we are simply adding and subtracting the same terms at the end of 
the equation). Hence, 

2J = YT(I - qfDTq-l@T)Y 

+ (0 - (aTq-l@TY)T@TQ,(e - (@T@)-‘a5TY). 
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Since the first term in this equation is independent of 0, we cannot reduce 
J via this term, so it can be ignored. Thus, to get the smallest value of J, 
we choose 6 so that the second term is equal to zero since its contribution 
is a non-negative value. We will let 0” denote the value of 8 that achieves 
the minimization of J, a,nd we notice that 

8’ = (@Tq-laTY, (4-g) 

since the smallest we can make the last term in the above equation is zero. 
This is the equation for batch least squares that shows we can directly 
compute the least squares estimate 8* from the “batch” of data that is 
loa’ded into + and Y. If we pick the inputs to the system so that it is 
“sufficiently excited” [135], then we will be guaranteed that ipT@ is in- 
vertible (rank(@) = n); furthermore, if the data come from a linear plant 
with known CJ and p, then for sufficiently large M we will achieve perfect 
estimation of the plant parameters. 

In “weighted” batch least squares we use 

J(e) = ~E~WE, (4.10) 

where, for example, W is an M x M diagonal matrix with its diagonal 
elements wi > 0 for i = 12,. . . , M. These wi can be used to weight 
the importance of certain elements of G more than others. For example, 
we may choose to have it put less emphasis on older data by choosing 
w1 < w2 < - -- < we when x2 is collected after x1, x3 is collected after x2, 
and so on. The resulting parameter estimates can be shown to be given by 

8” = (fPTwq-‘@TwY. (4.11) 

To show this, simply use (4.10) and proceed with the derivation in the same 
manner as above. 

Example 4.1 As a very simple example of how batch least squares can 
be used, suppose that we would like to identify the coefficients for the 
system 

!I@) = QaY(~ - 1) + f&J@), (4.12) 

where [(lc) = [g(k - l), z@)]‘. Suppose that the data that we would 
like to fit the system to is given by 

G={([ :I+([ :]+([ $4))) 
so that M = 3. We will use (4.9) to compute the parameters for the 
solution that best fits the data (in the sense that it will minimize the 
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sum of the squared distances between the identified system and the 
data). To do this we let 

and 

i 

2 
Y= 3 

4 

Hence, 

1 - 
1 
1 

I . 
6 
3 1)-l [ :“I = [ : ] ’ 

and the system 

best fits the data in the least squares sense. The same general ap- 
proach works for larger data sets. A 

4.3.2 Recursive Least Squares 

While the batch least squares approach has proven to be very successful 
for a variety of applications, the fa#ct that by its very nature it is a “batch” 
method (i.e., all the data are gathered, then processing is done) may present 
computation al problems. For small M we could clearly repeat the batch 
calculation for increasingly more data as they are gathered, but as M be- 
comes larger the computations become prohibitive due to the fact that the 
dimensions of @ and Y depend on n/r. Next, we derive a recursive version 
of the batch least squares method that will allow us to update our estimate 
of 8* each time we get a new data pair, without using all the old data in 
the computation and without having to compute the inverse of iPT4e. 

Since we will be successively increasing the size of G, and since we will 
assume that we increase the size by one each time step, we let a time index 
i? = M and i be such that 0 < i < Jc. Let the 72 x n matrix - - 

P(k) = pTq)-’ = &y,, 

( ) 

-1 

(4.13) 
i=l 

and let 6(lc - 1) denote the least squares estimate based on k - 1 data pairs 
(P(k) is called the “covariance matrix”). Assume that QiT+ is nonsingular 
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for all k. We have P-r (k) = aT@ = X:=1 Ci(<i)T so we can pull the last 
term from the summation to get 

k-l 

P-l(k) = E Ci(Ci)l + [“(C”)’ 

i=l 

a,nd hence 
P-‘(k) = P-l@ - 1) + C”(ck)T. (4.14) 

Now, using (4.9) we have 

Hence, 
k-l 

6(k - 1) = P(k - 1) x ciyi 
i=l 

so that 
k-l 

P-l@ - 1)0(/k - 1) = xciyi. 
i=l 

Now, replacing P-l@ - 1) in this equation with the result in (4.14), we get 

k-l 

(P-l(k) - [k([k)T)e(k - 1) = >: ciyi. 
i=l 

Using the result from (4.15), this gives us 

6(k) = P(k)(P-‘(k) - <k(<“)T)e(k - 1) + P(k)C”y” 

= B(k - 1) - P(k)~“(~“)Te(k - 1) + P(k)C”y” 

= 8(k - 1) + P(k)S”(yk - (Ck)Te(k - 1)). (4.16) 

This provides a method to compute an estimate of the parameters 6(k) at 
ea#ch time step k from the past estimate e(k - 1) and the latest data pair 
that we received, (Ck, yk). Notice that (yk - ([‘“)‘O(k - 1)) is the error in 
predicting yk using H(k - 1). 

To update 8 in (4.16) we need P(k), so we could use 

P-‘(k) = P-l@ - 1) + C”(<k)T. (4.17) 
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But then we will have to compute an inverse of a matrix at each time 
step (i.e., each time we get another input output data pair). Clearly, this 
computation is not desirable for real-time implementation, so we would like 
to avoid it. To do so we will use the following matrix inversion lemma: 

Lemma 4.1: If 8 E R”‘“, B E Rnxm,C E R”‘“, then 

(A + BCD)-1 = A-l - A-lB(C-l + DA-lB)-lDA-l (4.18) 

provided A, C, and (C-’ + DA-IB) are nonsingular square matrices. 

We will use the matrix inversion lemma to remove the need to compute 
the inverse of P-r(k) that comes from (4.17) so that it can be used in (4.16) 
to update 8. Notice that 

P(k) = ((aT(k)@(k)>-’ 
= (fbT(k - 1)9(k - 1) + [“(C”)T)-l 

= (P-l@ - 1) + [Q”)T)-l 

and that if we use the matrix inversion lemma with A = P-l(k-l), B = <“, 
C = I, and D = (Ck)T, we get 

P(k) = P(k-l)-P(k-l)~“(I+(~“)TP(lc-l)~~)-l(~”)TP(k--l), (4.19) 

which, together with 

e(k) = e(k - 1) + ~(k)c~(~” - (ckjTe(k - 1)) (4.20) 

(which was derived in (4.16)), is called the “recursive least squares (RLS) 
a,lgorithm.” Basically, the matrix inversion lemma turns a matrix inversion 
into the inversion of a scalar (i.e., the term (I + (C’)TP(k - l)c”)-r is a 
scalar). 

We need to initialize the RLS algorithm (i.e., choose B(0) and P(0)). 
One approach to do this is to use 8(O) = 0 and P(0) = PO where PO = 01 
for some large a > 0. This is the choice that is often used in practice. 
Other times, you may pick P(0) = PO but choose 8(O) to be the best guess 
of the true parameters. 

There is a “weighted recursive least squares” (WRLS) algorithm also. 
Suppose that the parameters of the physical system 8 vary slowly. In this 
case it may be advantageous to choose 

J(B, k) = ; 2 xx--i(yi - (cijTej2, 
i=l 

where 0 < ,A 5 1 is called a “forgetting factor” since it gives the more recent 
data, higher weight in the optimization. Using a similar approach to the 
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above, you can show that the equations for WRLS are given by 

P(k) = ; (I - P(k - l)<“(XI + (<k)TP(k - l)~“)-‘(~k)T) P(k - 1) 

w = Q(k - 1) + P(k)C”(y” - ((k)Te(k - I)), (4.21) 

where when X = 1 we get standard RLS. 
It is important to point out that for the RLS (weighted or regular) 

we must have a “sufficiently rich input signal” u(k) to ensure that the 
algorithm works properly. Sufficient richness in a signal simply ensures 
that the input will excite the system enough so that the input-output data 
that is loaded in the sequence of regression vectors will give us enough 
information to determine the parameters of the system. Specifically, recall 
that for the above derivation we had to assume that (PT@ is nonsingular 
for all k. The question is what happens if this term becomes singular. For 
instance, suppose that C” = 0, Ic 2 0 (which is certainly not a sufficiently 
rich signal) and notice that in this case (4.21) becomes 

P(k) = iP(k - 1) 

t?(k) = tY(k - 1). 

(4.22) 

If we had chosen Q(0) = 0 and P(0) = al for some large a > 0 (much 
bigger than one) then 0(k) = 0 for all k >_ 0 and as k --+ 00 the diagonal 
elements of P(k) all approach infinity. 

Example 4.2 Consider the discrete-time system defined by 

y(k) = ay(k - 1) + b(Q(lc - I), (4.23) 

where a = 0.9 and b(lc) = 1 + 0.2sin(O.O2~lc). Since b(k) is a time- 
va,rying coefficient, the recursive least squares routine with a for- 
getting factor may be used to estimate a and b(lc) using C(lc) = 
[y(k - l),u(k - l)lT. As th e value of X is decreased, the RLS routine 
will tend to “forget” older input-output samples more quickly. 

Figure 4.1 shows the true value of b(k) along with RLS estimates when 
X = 0.2,0.8,0.99 where the input is defined by u(k) = 0.5 sin(O.2xlc) + 
cos(O.l7&). As X -+ 1, the RLS with forgetting factor converges to 
the batch least squares routine, where a constant which minimizes the 
sum of the squared errors is estimated for b(k). Even though using 
X = 0.2 in this case caused the RLS estimate to accurately track the 
true value of b(lc), using small values for X will tend to make errors in 
the parameter estimates more sensitive to noise in the measurements 
of yi and [i. a 
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1.3 

sample k 

Figure 4.1. Recursive least squares estimate of b(k) using various forget- 
ting factors. 

4.4 Nonlinear Least Squares 

While in the la,st section we studied the use of linear in the parameter 
aF approximators F(x, 19) = m6 to minimize (4.7), here we will also seek to 

minimize (4.7) (with the wi = l), but we will consider the adjustment of 
8 for the general nonlinear in the parameter problem for .?(x, O), for the 
remainder of this chapter. First, we explain how to use gradient methods 
to adjust 0 for only a single training data pair. Next, we generalize the 
development to the case of multiple (and sequential) training data, and 
the discrete time case (throughout we will discuss the important issue of 
convergence). We discuss the constrained optimization problem and close 
the chapter with a brief treatment of line search and high order techniques 
for function approximation. This last section will be particularly useful to 
those who are only concerned with the off-line training of approximators 
(e.g., for estimators), and in cases when you want to perform off-line tuning 
of a’n approximator before adjusting it on-line. 



Sec. 4.4 Nonlinear Least Squares 85 

4.4.1 Gradient Optimization: Single Training Data Pair 

Consider the situation in which it is desired to cause an approximator 
F&O) to match the function f(z) at only a single point x1 where y1 = 
f (ccl). Given an input x1 one would like to adjust 0 so that the difference 
between the desired output and approximator output 

e Y1 = - 3(x1,0) 

is reduced, where y may be either vector or scalar valued. In terms of an 
optimization problem, we want to minimize the cost function 

J(0) = ieTe. 

Taking infinitesimal steps along the negative gradient of J(0) with re- 
spect to 0 will ensure that J(0) is nonincreasing. That is, choose 

(4.24) 

where 7 > 0 is a constant and if 0 = [&, . . . , OplT, then 

To see that J is nonincreasing when 0 is adjusted according to (4.24), notice 
that 

dJ(e@>> 
dt = 

cg~zEQ4 = -rl pJi2 (4.25) . 

so J is nonincreasing. 
Using the definition for J(0) we get 

or 
0 e = -2e(y1 - W,WT(Y1 -3(&O>), 

so that 

& -ggylTy~ - 23(~',O)~y' + 3(~~,0)~3(x~,O)). 

Now, taking the partial derivative, we get 

e = -?j - 
( 

83(x1, o)T do y1 + a3(;;O)T3(xl,0) 

> 

d3(x1,z) 
T  

=r) ax (Y l - 3(&O)), 
z=Q 
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so 

6 = q[(xl, 8)e, (4.26) 

where q > 0, and 

(4.27) 

is the gradient of F with respect to 8. Since the parameters are updated 
along the gradient, this is often referred to as a “gradient update law.” We 
will find that each of the update laws presented later in the development 
of adaptive controllers will use information about the gradient. The above 
results are summarized in the following theorem, the proof of which is 
obvious since J is nonincreasing: 

Theorem 4.1: Given the approxinlutor .F(x’, 8> such that S(x’, 8) in 
(4.27) is well defined with adaptation law (4.26) will ensure that e E ,C,. 

Example 4.3 Consider learning the input-output relationship of a func- 
tion evaluated at y1 = f(z’), with an approximator (neural network) 
defined by 

?(x’, 8) = ~1 + tanh(azz?), 

where 8 = [al, asIT. 

Choosing V = e2 and 7 > 0 we find 

v = -27ccT<c (4.28) 

when using the update law (4.26). From the above definition of the 
approximator, we know that if 8 = (~1, a21T, then 

6 = 1 

<2 = 
d tanh(s) Xl 

as ’ 

where s = Q~X? Since cT[ = 1 + (-xl)’ > 1, we find - 

(4.29) 

so that e = 0 is an exponentia.lly stable equilibrium point. This shows 
tha#t the gradient law will update the parameter vector 8 so that the 
approximator will exactly match the function at x1. n 
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4.4.2 Gradient Optimization: Multiple Training Data Pairs 

So far we have seen how to adjust the weights of a nonlinear approximator 
when a single data pair (x1 , yr) is to be matched. Now consider the problem 
when M input-output pairs, or patterns, (xi, y”) where y” = f(zi) are to 
be matched for i = 1,. . . , M. In this case, we let 

ei = yi - .F(xQ), 

and let the cost function be 

J(0) = geiTei. 
j=l 

(4.30) 

Using an approach similar to the single input-output pair case, you can 
show that the gradient update law is defined by 

(4.31) 

where 
dF(XZ) 2) 

T  

5 
i- - 

dz 
(4.32) 

2=6J 

This update law will adjust the approximator parameters such that J(0) 
does not increase over time, as stated in the following theorem: 

Theorem 4.2: Given the approximator .F(x, 8) such that each ci in 
(4.32) is well defined with adaptation law (4.31) will ensure that ei E L, 
for i = 1,. . . , M. 

Proof: Let V = J(8). Taking the time derivative yields 

M 

p = - 
2c 

eiTCiTd, 

j=l 

i 

M 

2x 

‘T .T  - - - ea (” 

j=l 

Choosing 
M 

13 = 7j x ciei, 

j=l 

(4.33) 

1 4. (4.34) 

(4.35) 

will ensure that v 5 0 so that V is a positive nonincreasing variable which 
implies that the output error for each data pair is bounded for all time. n 
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The update la,w defined by (4.31) is a continuous version of the batch 
“backpropagation algorithm” which is common in the neural network liter- 
ature. Once each ci is computed, it is rather easy to apply. To see how to 
calculate each [i consider the following example: 

Example 4.4 Consider the approximator (multilayer perceptron) defined 
bY 

(4.36) 

where 8 = [d, cl,. . . , cq, bl, . . . , b,, ~~1,. . . , wpqIT. The gradients are 
defined as follows: 

wx, e> dcj = *j ($wijxi+bj) 
=(x7 e> 33(x, e> asj 

dbj = 8Sj dbj 

-(x, 0) 83(x,8) dsj 

C3Wij = 8Sj 8Wij’ 

where sj = Cf=, wijxi + bj. Since a3(~, O)/asj = cjG’Qj(Sj) jasj, we 
find 

n 

The cost function for multiple data pairs in (4.30) is typically more 
useful in off-line training than the one for a single data pair since it may 
be used to cause an approximator 3(x,8) to approximate the continuous 
function f(x) over x E D c Rn. In other words, it may be possible to 
choose some 8 such that 

SUP If(x) - 3(x,@>l < ET 
XED 

(4.37) 

where c > 0 is some small constant. It is our hope that if we choose the 
set {xi,. . . ,x”} with xi E D such that the xi’s are uniformly distributed 
throughout D, and we choose the approximation structure properly, then 
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Global 

Figure 4.2. Local and global minima in an error surface. 

finding some 6’ such that IJi -+ 0 will imply that If(x) - ~=(xJ?)I --+ 0 on 
D provided that M is large enough. 

Notice that the theorems for the update laws only guarantee that the 
magnitude of the error will not increase; they do not ensure that leil --+ 0 
for i = 1,2,. . . , M. The update laws are gradient-based algorithms which 
modify 8 in the direction which decreases J(6). Depending upon the ap- 
proximator structure, situations may exist such that both local and global 
minima exist as shown in Figure 4.2. A global minimum is the set of ap- 
proximator parameters such that 

O* = argmin J(8). 
BES 

(4.38) 

Tha#t is, 8* is the set of approximator parameters which minimizes J(0) over 
all S. A loca,l minimum is found when an arbitrarily small change in 8 # 6* 
in any direction will not decrease J. Since aJ/% = 0 at a local minimum, 
6 = 0 so that the approximator parameters stop adjusting. Clearly, we 
would like to find a global minimum: but for multiple data pairs this may 
be difficult. 

Example 4.5 In this example, we will use (4.35) to update the parame- 
ters of an approximator (which may be considered to be either a radial 
basis function neural network or a type of fuzzy system) defined by 

(4.39) 

where p = 20, 0 = 0.5, and the centers ci are evenly distributed in 
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[0,27r]. Notice that F(x, 6) = OT<(x), where 

cc 1 
e-((“-“i)/“)2 

jx = 
c fL1 e-((“-“4/“)2 * 

A total of n/r = 50 data points were randomly chosen in [0,2x] for 
training purposes and are shown in Figure 4.3 as o’s along with each 

cc > ix- 

0.7 - 

0.6- ~ICDQD OocoO ocoDoo 0 aD ocuD030 OCKDCD 

01 

0 
0 1 2 3 4 5 6 

X 

Figure 4.3. The basis functions C$ are weighted Gaussian functions with 
p = 20. Each “0” represents an xi, where M = 50. 

Using f(x) = sin(x), the approximator parameter vector 8 was up- 
dated according to (4.35) for lsec with r) = 10 and Q(0) = 0. Fig- 
ure 4.4 shows the value of sin(x) with a solid line and F(x, 6) with a 
dashed line. If now f(x) = cos’(x), it is possible to once again update 
6’ so that 7=(x, 6) a#pproximates cos”(x) as shown in Figure 4.5. 

Notice that in each case, F(x, 0) does not approximate the given 

.f( > 2 near x = 277 as well as is does in other regions. Referring back 
to Figure 4.3, we notice that there are relatively few data points 
near x = 27~ This lack of information causes a degradation in the 
approximation. If there had been no xi in the region [?r, 271-1, then 
we could not expect the approximator to represent f(x) over that 
entire region. Thus this approach to function approximation not only 
requires tha’t a stable update law be defined for 8, but one must also 
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Figure 4.4. The solid line is sin(z), while the dashed line is its approxi- 
mation. 

0 1 2 3 4 5 6 

X 

Figure 4.5. The solid line is cos’(s), while the dashed line is i ts approxi- 
mation. 

provide sufficient information before a function may be accurately 
approximated over all regions. As we will find later, another factor 
which influences how well an approximator is able to match a function 
f(z) is the shape and number of ci (we will in particular be interested 
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in the case where each & is defined using a neural network or fuzzy 
system). This issue will be a#ddressed with more detail in Chapter 5. 

n 

Here, we saw that a single approximator structure may be used to de- 
scribe multiple functions simply by changing the value of the parameter 
vector 8. We will use this idea in the adaptive control of systems where the 
dynamics are not necessarily known. If li: = f(x) + U, where f(z) is an un- 
known function, then it may be possible to represent f(z) by .F(x, Q*) where 
O* is chosen so that f(x) = F(x, 6*). Letting u = -.F(x, 6*) - Icx will cause 
x = 0 to be an exponentially stable equilibrium point. Since appropriately 
choosing 8* will allow .F(x, S*) to approximate an entire class of functions 
(a,s shown in the previous example), the controller u = --.7=(x, 0*) - /?x may 
be used to control an entire class of systems provided that 8* is appropri- 
a#tely chosen for each f(x). 

4.4.3 Discrete Time Gradient Updates 

Next, we consider transforming the continuous gradient descent algorithms 
into their discrete counterparts. If the input-output pairs (xi, y”), i = 
1 > * * - 7 M, for which yi = f(xi) are to be learned, then we may either 
adjust the approximator parameters on a single pair (x’, yi) at a time (series 
updating) or based upon the entire collection of data pairs (batch updating). 

Series updating is accomplished by selecting a pair (xi, yi), where i E 

-cl , M j is a random integer chosen at each iteration, and then using 
Euler’s first order approximation of (4.26) so that the parameter update is 
defined by 

qrc + 1) = B(lc) + &iT(+?(k), (4.40) 

where Ic is the iteration step, e(k) = y” - .F(xi,O@)), and 

T 

c” P4 
dF(xi, x) - - 

a,2 
. 

2=0(k) 

We have absorbed the length of the sampling interval into the adaptation 
gain q. Since a random presentation of the data pairs is used, the value of 
0 tends towards a value with minimizes c,“=,(e’>” on average. A second 
approach is to use a discretized version of (4.31) so that all the data pairs 
a,re considered at once. An Euler approximation gives the update law 

e(k + 1) = O(k) + q 2 <i(lc)ei(k), 
i=l 

(4.41) 

where 7 > 0. This is often referred to as a gradient update law or batch 
back propagation in the neural network community. 
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In the derivation of the continuous gradient-based update laws, the 
learning rate, 7, was allowed to be any positive number. Using a discrete 
update law, however, if v is made to be too la.rge, then the parameter error 
may converge slowly, oscillate about a fixed value, or diverge, all of which 
one would like to avoid when updating parameters. The following example 
shows that if 7 > 0 is chosen too large, then the discrete gradient-based 
algorithms may no longer provide appropriate values for 6. 

Example 4.6 Consider the case where the desired approximator output 
is y = .F(x, 6*) where 0* is a set of ideal parameters which cause 
the output of the approximator to be y1 whenever the input x1 is 
presented (considering the case where only a single data pair is to be 
learned). The output error is 

e(k) = y1 - F-(x1, B(k)) (4.42) 

= qx’,s*> - F(x’,O(k)), (4.43) 

where e(rC) is the current estimate of 8”. Defining the parameter error 
as B(k) = B(k) - e*, a linear representation may be expressed as 

e(k) = -cT8(k) + S(x’, 0, P). (4.44) 

Here I&(x’,@$*)l 5 L@“(, with L > 0 a finite constant, is the error in 
representing e(k) by a linear expression (more details on the deriva- 
tion of 6 will be provided in Chapter 5). Here we will assume that 
we initialize 8 such that Ifi( is small and thus 16(x1, 0, @*)I z 0. To 
show that the learning rate, 7, needs to be limited for the discrete 
case, consider the parameter error metric V(k) = fiT(k)8(k) (if 8 --+ 0, 
then e(k) -+ 0). 

The change in V(k) d uring an update of the weights is 

V(k + 1) - V(k) = eT(k + l)@k + 1) - 8(k)T6(k). 

Substituting in the update law (4.49, 

V(k + I) - V(k) = 2q@(k)@)e(k) + $eT(k)CT(k)C(k)e(k), 

where we have used O(k + 1) = t?(k + 1). Since 6 FZ 0, we ha’ve 

V(k + 1) - V(k) ==: -wT(k> [aI- vST(k>C(k>] e(k)* (4.45) 

ThusifO< X min(21-q[T(k)C(k)) for all k, then V(k+ 1) -V(k) 5 0. 
As q becomes large, however, the boundedness of the approximator 
output error is no longer guaranteed (that is, the algorithm can be- 
come unstable because it will not be the case that 0 < X,i,(21 - 

rlsT(k)s(w so that V(k) increases with k). A 
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This example shows that one must be careful not to ask for too large of 
an adaptation rate when dealing with discrete updates. We will see later 
that this is also true for discrete-time adaptive control systems. 

4.4.4 Constrained Optimization 

So far, we have not placed any restrictions upon the possible values of 0*. 
In some situations, however, we may have a priori knowledge about the 
fea,sible values for 6*. In this case, a constrained optimzation approach 
may be taken as we discuss next. 

Figure 4.6. Constrained optimization using a projection algorithm. 

If it is known that the ideal parameters 0* belong to a convex set C, then 
it is possible to modify the above adaptation routines to ensure that they 
remain within C. We will, in particular, consider the use of a “projection 
algorithm.” Figure 4.6 shows how the projection algorithm works. If the 
parameters are within C, then the trajectory defined by 4 is not changed. 
If 8 reaches the boundary of C (denoted by B), however, then b must be 
modified such that 8 will not leave C and in particular so that it stays on 
B until it moves toward the interior of C. 

If we are using, for exa.mple, an update law defined by 4 = qv(t) where 
7 > 0, then this may be redefined to incorporate the projection as 

fj= Pr(qe) if 8 E B and uTb~ > 0 

rlv otherwise, 
(4.46) 

where Pr(x) is the projection of x onto the the hyperplane tangent to B at 8 
and bl is the unit vector perpendicular to the hyperplane pointing outward 
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at 8. In this way, only the component of the update which does not move 6 
outside of C is used in the update. If a cost function (or Lyapunov function 
in the study of adaptive systems) defined by V = eTe is used in the stability 
analysis of the update algorithm with fi = 6 - 6*, then the stability results 
are unaffected by the projection. This is because if we modify 4 so that 8 
does not move outside C, then 10 - 6*1 is smaller because of the projection 
since 6* E C. 

When V = 81TP8 where P > 0, the projection algorithm must be 
changed slightly to ensure that V decreases at least as fast as the case 
when no projection is used. First we let 

so that V = sTPl PITH. Using the change of coordinates # = PIT& notice 
that V = gT8. A standard projection algorithm may now be used for 8 by 
also transforming C to @ and B to B. Since the transformation # = PIT8 is 
linear, @ will still be convex. 

Example 4.7 Suppose that we wish to design a projection algorithm for 
the case where 8 E C, with 

c = (0 = [O,,. . .BplT E RP : bi 5 ai < ci,for i = 1,. . . ,p> , (4.47) 

so that each element of 0 is confined to an interval. To do this, as we 
update the Oi, if bi 5 et 5 ci then you use the update generated by 
the gradient method. However, if the update law tells you that the 
parameter & should go outside the interval, then you place its value 
on the interval edge. Moreover, if the value of 0i lies on either edge of 
the interval and the update law says the next value of the parameter 
should be in the interval then the update law is allowed to place it 
there. Clearly such a projection law works for both continuous and 
discrete time gradient update laws and it is very easy to implement 
in code. A 

4.4.5 Line Search and the Conjugate Gradient Method 

Control algorithms that use an approximator with parameters that are 
modified in real time are referred to as adaptive or on-line approximation 
techniques. The adaptive estimation and control methods presented later 
in this book use the least squares and gradient methods presented earlier 
in this chapter, and these will be shown to provide stable operation for 
on-line estimation and control methods. In this section, we will depart 
from the main focus of the book to focus on off-line training (optimization) 
techniques. These methods ca(n be useful for constructing (nonadaptive) 



96 Optimization 

estimators, and for a priori training of approximators that will later be 
used in an on-line fashion (e.g., in indirect adaptive control). For the off- 
line training of the approxima#tor .?(x, 0) to match some unknown nonlinear 
function f(z) we will not be concerned here with how F(x, 0) will cause 
some system dynamics to behave; here we are only concerned with adjusting 
6 to make F(z,0) match f(x) as closely as possible. 

For example, the Levenberg-Marquardt and Conjugate Gradient opti- 
mization methods are popular approaches for neural network and fuzzy 
system training. Here, we will discuss a line search method and the Con- 
jugate Gradient method. 

Line Search 

When the optimization problem is reduced to a single dimension, a number 
of techniques may be used to efficiently find a minimum along the search 
dimension. Ea,ch of these typically requires that a minimum be bracketed 
such that given points a < b < c, we have J(b) < J(a) and J(b) < J(c) 
so that one or more minimum exists between a and c. Once the minimum 
has been bracketed, a routine such as the golden section search, which is 
outlined below, may be used to iteratively find its location: 

1. Choose values a < b < c such that J(b) < J(a) and J(b) < J(c). Let 
R = 0.38197 (the “golden ratio”). 

2. If Ic - b( > lb - al, then let tr = b and t2 = b + R(c - b), otherwise let 
’ tr = b - R(b - a) and t2 = b. 

3. If J(t2) < J(ti), then let a = t 1, tl = t2, and t2 = t2 + R(c - tz), 
otherwise c = t2, t2 = tl, and tl = tl - R(tl - a). 

4. If Ic - UI > tol, go to step 3. 

5. If J(tl) < J(t2), then return tl, otherwise return t2. 

There exists a number of other line minimization routines such as Brent’s 
algorithm, which ma.y provide improved convergence. See [181] for further 
discussion. 

Example 4.8 Consider the minimization of the function 

y = (x - 1)” + 1, (4.48) 

which is minimized with x = 1. The golden section search may be 
used in the minization given some initial bra,cketing values a, b, and 
c. Choosing a = 0, b = 0.1, and c = 10, the golden section search 
is able to minimize (4.48). Figure 4.7 shows the progression of the 
bracketing values a, t 1, t2, and c. Notice that the algorithm converges 
tox=1. A 
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Figure 4.7. Bracketing in the golden section search. 

The Conjugate Gradient Method 

Consider the general minimization of 

J = &eqTej. 
j=l 

If ej = (yj) - F(&8), then 

If B(lc) is a guess of 6* (the value which minimizes J), then let 

(4.49) 

(4.50) 

(4.51) 

be the “search direction.” Since d(k) is along the negative gradient, J will 
decrease as we move along B(lc) + qd(k) where q > 0 is the search length 
with B(k) and c!(k) held constant. In fact, J will continue to decrease until 
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the gradient in the search direction becomes zero (the minimum occurs 
when the gradient goes to zero). That is, until 

(4.52) 

Once the minimum along d is found, the procedure is repeated with B(lc + 
1) = e(k) + 7$(k) until J converges to some desired value or no longer 
decreases. This is called the method of “steepest descent.” 

Figure 4.8. Staircase updating of the steepest descent optimization rou- 
tine. 

If a new d(k) is chosen in the negative gradient direction, we see that 
each search direction is orthogonal to the previous direction since the change 
in the gradient along the previous direction was exactly zero when we 
stopped the line search. The weights are thus modified in a staircase fash- 
ion toward a minimum of J as shown in Figure 4.8. If J(B) consists of long 
narrow va.lleys, then the steepest descent algorithm causes the minimiza- 
tion to proceed by taking a number of steps, often repeating directions as 
we move toward a minimum. Rather than taking orthogonal steps each 
time, which are not independent of one another, it is desirable to move in 
new directions which do not redo the minimization which has already been 
completed. This concept is known as moving in “conjugate directions.” 

To see how this is accomplished, consider the Taylor expansion of our 
cost function J(6) given by 

1 
J(o) = J(@o) + (0 - &I)~< + $6 - 60)THo(8 - 0,) + h.o.t., (4.53) 

where [ = ~J/%JQ,Q, and Ho = Hlo=o, with H = [hij] and hij = 
d” Jld0idOj is the “Hessian matrix.” If J(B) is quadratic, then it has 
a global minimum at dJ/i381~,~* = 0. Ignoring the higher order terms 
(“h.o.t.“) in (4.53), note that 

13JT 
- =<+Ho(B-Oo). 
d8 

(4.54) 
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At the minimum we have 5 + L&-, (0* - 6,) = 0, or solving we find 

0” = 80 - H,-lC . (4.55) 

Since J(0) is not an exact quadratic function in general, we must iterate to 
find 0*. Setting 80 equal to the current parameter set, an iterative form is 
found to be 

Q(k + 1) = B(lc) - H(k)-lC(k), (4.56) 

where 

w4 
f?J 

= ae 6--8(k) - , 
(4.57) 

H(k) = His-6(k) - - (4.58) 

In general, it is very time consuming to calculate H and thus it is 
not typically used in practice, but this does help explain the method of 
conjugate gradients. Consider how the gradient changes as we move along 
some direction, say SB, 

S $ = H&W). 
( > 

If we have just moved in the direction d and now want to move in the 
direction u, we desire that the direction be “conjugate” so that 

If all the search directions for a set of vectors are conjugate, then it is said 
to be a conjugate set. The conjugate gradient method finds successively 
conjugate search directions without needing to calculate the Hessian. In 
particular, the Fletcher-Reeves-Polak-Ribiere conjugate gradient method is 
given as follows: 

1. 

2. 

3. 

4. 

5. 

Calculate [(lc). Set the search direction equal to d(k) = -c(k). 

Find B(j? + 1) which minimizes J(6) along d(k) (this is achieved via 
line minimization). 

Calculate [(lc + 1) . 

If 18(k: + 1) - 6(k$l < to1 then return B(lc + 1) . 

Set d(k + 1) = -C(k + 1) + qd(k), where 



100 Optimization 

6. Set IC = AJ + 1 and goto 2. 

Though a number of alternative optimization methods exists, the above 
algorithm is suggested for general purpose off-line learning of the approxi- 
mator parameters when the gradients exist. 

Example 4.9 Here, we will apply the method of conjugate gradients to 
find a parameter set to minimize the cost function (4.49). Consider 
learning the function 

(4.59) 

using the approximator (a radial basis function neural network) 

(4.60) 
i=l 

where ai are adjustable parameters and ci and cr are assumed to be 
fixed in this example. Here, M = 100 data points were taken from 
a normal distribution about II; = 0. The Gaussian centers ci were 
picked to be evenly spaced between -2 and 2, while 0(O) = 0. 

-2 -1 5 -1 -0.5 0 05 1 15 2 

X 

Figure 4.9. The output of the approximator (-) and training points (o’s). 
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Figure 4.10. Value of the cost function during learning when using the 
conjugate gradient approach (-) and gradient descent (- -). 

The golden section search algorithm was used for the line minimiza- 
tion in the conjugate gradient routine. Figure 4.9 shows the (xi, y”) 
data pairs used for training along with .?(x, 6) after the conjugate 
gradient trajning. In Figure 4.10 we notice that the conjugate gradi- 
ent algorithm is able to reduce the cost function much more quickly 
than the gradient routine defined by (4.41) with 7 = 0.01. n 

4.5 Summary 

Upon completion of this chapter, the reader should have an understanding 
of 

l Linear least squares techniques (batch and recursive). 

l Nonlinear least squares techniques (gradient methods, discrete time 
and constra,ined cases). 

l Line search and the conjugate gradient method. 
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4.6 Exercises and Design Problems 

The tools provided in this chapter will prove useful when defining the pa- 
rameters of a fuzzy system or neural network so that some function is 
approximated. When this approximated function represents some nonlin- 
earity describing the dynamics of a# system we wish to control, it may be 
possible to incorporate the fuzzy system or neural network in the control 
law to improve closed-loop performance. 

It was also shown that it may be possible to use the same approximator 
structure to represent multiple functions by simply changing the value of 
some parameters (see Example 4.5). This is an important property of fuzzy 
systems and neural networks. In general, we will find that fuzzy systems 
and neural networks are able to approximate any continuous function if 
enough adjustable parameters are included in their definition. This will be 
the focus of the next chapter. 

Exercise 4.1 (Batch and Recursive Least Squares Derivation) In 
this problem you will derive several of the least squares methods that 
were developed in this chapter. First, using basic ideas from calculus, 
take the partial of J in (4.7) with respect to 8 and set it equal to zero. 
From this derive an equation for how to pick 8*. Compare it to (4.9). 
(Hint: If m and b are two n x 1 vectors and 0 is an n x n symmetric 
ma#trix (i.e., 0 = OT), then &hTm = b, &mTb = b, and &mTOm = 
20m.) Repeat for the weighted batch least squares approach. Finally, 
derive (4.21) for the weighted recursive least squares approach. 

Exercise 4.2 (Batch Least Squares) Suppose that for Example 4.1 
we use the three training data pairs in the training data set G, but 
add one more. In particular, add the pair 

([ ‘;“]:2.2) 
to G (to get M = 4). Find O* using the (nonweighted) batch least 
squares approach. Plot on a three-dimensional plot (with the z axis 
as y(k), and the other two axes ~(lc - 1) and u(k)) the training data’ 
for Example 4.1 (the three points) and the resulting least squares fit 
(it is a plane). Repeat this for the case considered above where we 
add one data. point. Plot the new plane a#nd data points on the same 
plot and compare. Does the change in slope of the plane from the 
M = 3 to M = 4 case make sense? In what sense? 

Exercise 4.3 (Recursive Least Squares) Suppose that for Exam- 
ple 4.2 we use b(k) = 1 + 0.2 sin(O.O17&) (i.e., we halve the frequencv 
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of the time-varying parameter). Repeat the example, and in particu- 
lar focus on finding the highest value for X that will cause the estimate 
to achieve as good of tracking of b(k) as in Example 4.2 (i.e., as good 
as the case for X = 0.2). Compare the va$lue you find to the one found 
in the example. Is it bigger or sma’ller? Why? 

Exercise 4.4 (Flat Gradients in Neural Networks) Show that if all 
the weights of a feedforward neural network are initialized to zeros, 
then [ = 0. This is undesirable since if < is used within a parameter 
update routine, then the weights will never change. This is why neural 
network weights are typically initialized to small random values. 

Exercise 4.5 (Gradient Tuning of Neural Networks) 

(a) Repeat Example 4.5, but for the case where f(s) = sin2(x), and 
where you use a multilayer perceptron with a single hidden layer 
as the approximator. Tune the gradient algorithm as necessary 
to get good approximation. Provide a plot of the function f(x) 
and the approximator on the same graph to compare the esti- 
mation accuracy. 

(b) Repeat (a) b u use a radial basis function neural network. t 

Exercise 4.6 (Gradient Training of Fuzzy Systems) 

(a) Consider a single-input, single-output (standard) fuzzy system 
with a total of 20 triangular input and output membership func- 
tions. If the rule-base is defined such that input membership 
function i is associated with the ith output membership func- 
tion, then a total of 20 rules are formed. Assume the input 
membership functions are held constant while the centers of the 
output membership functions are allowed to vary. Use the gra- 
dient descent routine to minimize the error between the output 
of the fuzzy system and the function y = sin(z) over x E [-7-r, 7r) 
using a total of 50 random test points selected from [-?r, ~1. 

(b) Repeat (a) b u use a Takagi-Sugeno fuzzy system with output t 
functions that are affine. 

Exercise 4.7 (Controller Design) Consider the system defined by 

II; = f(x) + WJ. (4.61) 

If an approximation to f(x) exists such that sup 1 f(x) - F(x, O>l < W - 
exists, then show that using the controller u = -kx - .7=(x,8) will 
ensure that 

vv 
lim 1x1 < -. 

t--SC0 Ihi 
(4.62) 
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Hint: Use the Lyapunov candidate V = x2 to show that T;’ 5 -kV + 
Iv2 pi. 

Exercise 4.8 (Line Search) Use the golden section search to find an 
x that minimizes the following functions: 

0 f(x) = x2 + II: + 1 

0 f(s) = (x2 + 0.1) exp(-x2) . 

Plot each f( ) x an d comment on the ability of the golden section search 
to find a global minimum. 

Exercise 4.9 (Conjugate Gradient Optimization) Use the conju- 
gate gradient routine to adjust the weights of a MLP so that it rea- 
sonably matches the following functions over x E [-K, ~1: 

0 f(x) = sin(x) 

. f  (2) = cos(x) 

0 f(x) = 1 + sin2(x) . 

Try the above for various numbers of nodes in the network. 



Chapter 5 
Function Approximation 

5.1 Overview 

The use of function approximation actually has a long history in control 
systems. For instance, we use function approximation ideas in the develop- 
ment of models for control design and analysis, and conventional adaptive 
control generally involves the on-line tuning of linear functions (linear ap- 
proximators) to match unknown linear functions (e.g., tuning a linear model 
to match a linear plant with constant but unknown parameters) as we dis- 
cussed in Chapter 1. The adaptive routines we will study in this book may 
be described as on-line function approximation techniques where we adjust 
approximators to match unknown nonlinearities (e.g., plant nonlinearities). 

In Chapter 4, we discussed the tuning of several candidate approximator 
structures, and especially focused on neural networks and fuzzy systems. 
In this chapter, we will show that fuzzy systems or neural networks with 
a given structure possess the ability to approximate large classes of func- 
tions simply by changing their parameters; hence, they can represent, for 
example, a large class of plant nonlinearities. This is importa(nt since it 
provides a theoretical foundation on which the la,ter techniques are built. 
For instance, it will guarantee that a certain (“ideal”) level of approxima- 
tion accuracy is possible, and whether or not our optimization algorithms 
succeed in achieving it, this is what the stability and performance of our 
adaptive systems typically depends on. It is for this reason that neural 
network or fuzzy system approximators are preferred over linear approxi- 
mators (like those studied in adaptive control for linear systems). Linear 
a.pproximator structures cannot represent as wide of a class of functions, 
and for many nonlinear functions the parameters of a neural network or 
fuzzy system may be adjusted to get a lower approximation error than if 
a linear approximator were used. The theory in the later cha.pters will al- 
low us to translate this improved potential for approximation accuracy into 
improved performance guarantees for control systems. 

105 

Stable Adaptive Control and Estimation for Nonlinear Systems:
Neural and Fuzzy Approximator Techniques.

Jeffrey T. Spooner, Manfredi Maggiore, Raúl Ordóñez, Kevin M. Passino
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5.2 Function Approximation 

In the material to follow, we will denote an approximator by .7+), showing 
an obvious connection to the notation used in the two previous chapters. 
When a particular parameterization of the approximator is of importance, 
we may write the approximator as .T(x, Q where 6 E RP is a vector of 
parameters which are used in the definition of the approximator mapping. 
Suppose that W c R* denotes the set of all values that the parameters 
of an a)pproximator may ta(ke on (e.g., we may restrict the size of certain 
parameters due to implementation constraints). Let 

G = {.F(x,B) : 8 E QP,p 2 o} 

be the “class” of functions of the form .?(x, 8), 0 c CP’, for any p 2 0. 
For example, G may be the set of all fuzzy systems with Gaussian input 
membership functions and center-average defuzzification (no matter how 
many rules and membership functions this fuzzy system uses). In this 
case, note that p generally increases as we add more rules or membership 
functions to the fuzzy system, as p describes the number of adjustable 
parameters of the fuzzy system (similar comments hold for neural networks, 
with weights and biases as parameters). In this case, when we say “functions 
of class G” we are not saying how large p is. 

Uniform approximation is defined as follows: 

Definition 5.1: A function f : D -+ R may be uniformly approxi- 
mated on D c R” by functions of class G if for each c > 0, there exists 
some .T’ E G such that supXED IT(x) - f(x)1 < 6. 

It is important to highlight a few issues. First, in this definition the 
choice of an appropriate F(x) can depend on e; hence, if you pick some 
E > 0, certain T(x) E G may result in supXED 17(x)--f(x)1 < E, while others 
may not. Second, when we say T(x) E G in the above definition we are not 
specifying the value of p 2 0, that is the number of parameters defining 
T(x) needed to achieve a particular 6 > 0 level of accuracy in function 
approximation, Generally, however, we need larger and larger values of p 
(i.e., more parameters) to ensure that we get smaller and smaller values of 
E (however, for some classes of functions f, it may be that we can bound 

PI- 
Next, a universal approximator is defined as follows: 

Definition 5.2: A mathematical structure defining a class of functions 
5’1 is said to be a universal approximator for functions of class & if each 
f E Gz may be uniformly approximated by Gi. 

We may, for example, say that “radial basis neural networks are a uni- 
versal approximator for continuous functions” (which will be proven later 
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in this chapter). Stating the class of functions for which a structure is a 
universal approximator helps qualify the statement. It may be the case 
that a particula’r neural network or fuzzy system structure is a universal 
approximator for continuous functions, for instance, and at the same time 
that structure may not able to uniformly approximate discontinuous func- 
tions. Thus we must be careful when making statements such as “neural 
networks (fuzzy systems) are universal approximators,” since each type of 
neural network is a universal approximator for only a class of functions G, 
where G is unique to the type of neural network or fuzzy system under 
investigation. 

Additionally, when one chooses an implementation strategy for a fuzzy 
system or neural network, certain desirable approximation properties may 
no longer hold. Let & be the class of all radial basis neural networks. 
Within this class is, for example, the class of radial basis networks with 100 
or fewer nodes GL) c &. Just because continuous functions may be uni- 
formly approximated by & does not necessarily imply that they may also 
be uniformly approximated by &. Strictly speaking, a universal approxi- 
mator is rarely (if ever) implemented for a meaningful class of functions. As 
we will see, to uniformly approximate the class of continuous functions with 
an arbitrary degree of accuracy, an infinitely large fuzzy system or neural 
network may be necessary. Fortunately, the adaptive techniques presented 
later will not require the ability to approximate a function with arbitrary 
accuracy; rather we will require that a function may be approximated over 
a bounded subspace with some finite error. 

In the remainder of this section we will introduce certain classes of 
functions that can serve as uniform or universal approximators for other 
classes of functions. It should be kept in mind that the proofs to follow 
will establish conditions so that, given an approximator with a stificiestt 
number of tuned parameters, the approximator will match some function 
f(z) with arbitrary accuracy. The proofs, however, do not place bounds 
on the minimum number of adjustable parameters required. This issue is 
discussed later. 

5.2.1 Step Approximation 

Our first approximation theorem will use a step function to uniformly ap- 
proximate a continuous function in one dimension. A step function may be 
defined as follows: 

Definition 5.3: The function F(x) : D -+ R for D c R is said to be a 
step function if it takes on only a finite number of distinct values, with 
each value assigned over one or more disjoint intervals. The parameters 
describing a step function characterize the values the step function takes 
and the intervals over which these values hold. Let (.J, denote the class of 
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all step functions. 

Notice that we require distinct values when defining the step function. If 
all the values were the same, then a “step” would not occur. The following 
example helps clarify this definition: 

Example 5.1 Consider the step function defined by 

1.5 -l<X<l 

f( ) 
-1 l<x<2 . 

x = 

1 

4 2<xT6 ’ 
3 6<x<8 

A plot of this step function is shown in Figure 5.1. 

(5 1) . 

e 0 

Figure 5.1. Plot of the step function defined by (5.1). 

Let &(n, D) be the set of all scalar-valued continuous functions defined 
on a bounded subset D c R”. The first of our uniform approximation 
theorems is given as follows: 

Theorem 5.1: Step functions defining the class G, are universal ap- 
proximators for f E &b (1, D), D = [a, b]. 

Proof: Since f  is continuous on D and D is a compact set, f  is uniformly 
continuous on D (the ‘?.rniform continuity theorem” [14] may be used to 
show that f  is uniformly continuous since D is a closed, bounded interval), 
so for any given E. > 0 there exists some b(c) > 0 such that if 2, y E D and 
Ix - y( < 6(c), then If(x) - f(y)] < 6. Divide the interval D = [a, b] into m 
nonintersecting intervals of equal length h = (b - a)/m, with the intervals 
defined by 

II = [a, a + hl 
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Figure 5.2. Approximating a continuous function with a step function- 

I2 = (a + h,a + 2h] 

II, = (a + (k - l)h,a + kh] 

. . (5 2) . 
Im = (b - h, b]. 

Choose m sufficiently large such that h < 6(e) for the given E, so that the 
magnitude of the difference between any two values of f in Ik is less than 
6. Define the step function as F(X) = f(a + (k - 1)h) on 2 E &. Since the 
value of the step function on an interval is simply the value of f at the left 
end point of the interval, we find If(z) - F(X)/ < E. 

In the above proof notice that the continuity of f and the restriction 
that D = [a, b] for some a, b E R play key roles in the ability of .F to be a 
universal approximator. These restrictions ensure that for a given E there 
will exist some f E G, that will result in an c-accurate approximation. 
Notice that for smaller values of E > 0, for functions f that have higher 
slopes and that are defined on larger intervals (i.e., with larger lb - al) we 
will generally need a larger value of m and hence more parameters in the 
step function to achieve c-accuracy in function approximation. 

Next, note that while we restrict f to be a scalar function defined on 
[a, b] it should be clear that the above result will generalize to the class 
of all functions f E &b(n, D) for any n, where D c R” such that D is 
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a8 compact set (i.e., it is closed and bounded). Of course, in this case we 
would have to use appropriately defined multidimensional step functions as 
the approximator structure. 

We may now use the above result to prove that a class of neural net- 
works a’re universal approximators for continuous functions. Recall that 
the threshold function, which is used to define “McCulloch-Pitt9 nodes, is 
defined by 

H(x) = 
C 

0 xc0 
1 XT0 - (5 3) . 

Using the McCulloch-Pitts nodes, we may establish the following: 

Theorem 5.2: Two layer neural networks with threshold-based hid- 
den nodes and a linear output node are universal approximators for f E 
Gcb(W), IJ = [a, q. 

Proof: Assume we use the proof of Theorem 5.1 to define the &, k = 
1,2;... , m for a given E > 0. If r-n intervals were required in the proof of 
Theorem 5.1, then define the McCulloch-Pitts neural network by 

F-(x, @) = cl + 2 ciH(x - si), (5.4) 
ix2 

where 6’ = [cl,. . . , cm, ~2,. . . , s,lT which is clearly a function of class G,. 
Notice that ci is a bias term in the neural network. Here, we will explain 
how to pick the parameter vector 8 to achieve a specified 6 > 0 accuracy 
in function approximation. First, define each SK as the left endpoint of the 
interval Ik in Theorem 5.1. That is, sk = a+ (k- l)h, where h = (b-a)/m. 
From the definition of the Heavyside function, for 0 < S < h - 

.F(sl, + 6,6) = ~1 + 2 CiH(Sk + S - Si) 
i=2 

k 

- - Cl + 
x 

Ci- (5.5) 

i=2 

From the proof of Theorem 5.1, we desire F(sk + 6,0) = f  (sk) so we 

- f(Q) 
f  (4 

. . 

fh-rL-1) 

_ f(sm) _ 

(5.6) 

to solve for each ci. Notice that the summation of (5.5) is accomplished 
through the matrix multiplication on the left-hand side of (5.6). Since the 
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matrix on the left hand side of (5.6) is lower triangular, it is invertible so 
there is a unique solution for each ci. 

This shows that there exists a class of neural networks which are uni- 
versal approximators. We will later want to be able to take the gradient 
of the neura,l network with respect to the adjusta.ble parameters to define 
parameter update laws. Since McCulloch-Pitts activa.tion functions are 
discontinuous, the gradient is not well defined. Fortunately, nodes with 
arbitrary “sigmoid functions” may also be used to crea’te neural networks 
which are universal approximators as described in the following theorem. 

Theorem 5.3: Two layer neural networks with hidden nodes defined 
by a sigmoid function $I : R + [0, l] and a linear output node are universal 
approximators for f  E & (1, D), D = [a, b]. 

Proof: To complete this proof, we will first show that the sigmoid 
function $J : R -+ [0, l] may uniformly approximate the Heavyside function 
on R - (0). By the definition of a sigmoid function, for each S’ > 0, we 
have limn+oo +(a#) = 1 and lim,,, +(-a&‘) = 0. This ensures that for 
any x f 0 and 6 > 0 there exists some a > 0 such that IN(x) - $(ax)I < 6 
and ]H(-x) - $J( -ax)1 < E. These two inequalities thus ensure that for 
any E > 0 there exists some a > 0 such that (H(x) - $(ax)I < E where 
x E R - (0). This is shown graphically in Figure 5.3. 

Define the neural network by 

.qx, e) = cl + 2 Ci$(a(X - &)), 
ix2 

(5.7) 

where ci a#nd 8i are as defined in Theorem 5.2 for step functions. Then 

[f(x) - +qx,e)l = f(x) - Cl - 2 CidJ(a(X - ei)) 
ix2 

nz 

< f( > 2 - - ~1 - >: ciH(x - Hi) 
i=2 

i=2 

- Bi)) - H (x - Oi)] . 

From Theorem 5.2, for any E > 0, we may choose m such that 

If(x) - m,e)t F 43 + 2 Ci [$(4x - ei)) - H(x - ei)3 . 
i=2 

(5.8) 

That is, we define sufficiently many step functions so that the magnitude of 
the difference between f(x) and the collection of step functions defined by 
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Figure 5.3. Approximating a Heavyside function with a sigmoid function. 
Notice that as the axis is scaled, the sigmoid function looks more like a 
Heavyside function which is shown by the dashed line. 

(5.4) is no greater than c/3. Notice that this also requires that lckl 5 c/3 
for Ic > 1 since the step function is held constant on the interval between 
steps and the magnitude of change in (5.4) is lckl when moving from Ik to 
&+I. Assume that x E i’l; so that 

Ci [y’)(a(X - oi)) - H(X - @i)] 

i=2,i#k 

+ Ickl ili,(a(X - ok)) - H(x - @k)( - 

Each I?k describes the magnitude of the step required when moving from the 
&-r to Ik intervals, thus Ickl < c/3. Choose a > 0 such that 1 - $(ah) < 
I/@ - 2) and $(-ah) < l/(i-- 2). Thus 

If(x) - .qx$>l i 43 + 2 ci [$(a(~ - 6,)) - H(x - Oi)] + c/3 
i=Z,i#k 

< c/3+ 2 ;----& - + 43 = 6, 
i=2,i#k 
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which completes the proof. 

5.2.2 Piecewise Linear Approximation 

Another intuitive approach to approximate functions is the use of piecewise 
linear functions. 

Definition 5.4: The function f : D -+ R for D C R is said to be - 
piecewise linear on D if D may be broken into a finite number of non- 
intersecting intervals, denoted 11,. . . Im, such that f is linear on each Ik, 
k= I,...,m. 

Figure 5.4. Approximating a continuous function with a piecewise linear 
function. 

Theorem 5.4: A continuous function f  : D --+ R may be uniformly 
approximated on D = [a, b] by a piecewise linear function .F : D -+ R. 

Proof: Since f  is uniformly continuous on D, for any given 6 > 0 
there exists some 6(e) > 0 such that if x,y E D and Ix - yI < 6(c), then 
If(x) - f(y)1 < e. A s was done for the step approximation proof, divide 
the interval D = [a, b] into m nonintersecting intervals of equal length 
h = (b - a>/m, with the intervals defined in (5.2). 

Choose m sufficiently large such that h < @El) for E’ = c/2, so that 
the difference between any two values of f in I,, is less than 42. Define 
the piecewise linear function .F such that it takes on the value of f  at 



the interval endpoints (see Figure 5.4). If sk is the value of F at the left 
endpoint of I k, then F(x) = sk + xk(x) on Ik where Q(X) is a ramp with 
,q = 0 at the left endpoint of Ik. By the definition of m, we know that 

Izdx>l < d2 on 1k since xk ramps to the difference betv 
left endpoint values of f in Ik. Thus 

Zen the right and 

In the proof of Theorem 5.4, we actually showed that a continuous 
function may be uniformly approximated by a continuous piecewise linear 
function. Since the set of continuous piecewise linear functions is a subset 
of the set of all piecewise linear functions, Theorem 5.4 holds. This fact, 
however, leads us to the following important theorem. 

Theorem 5.5: Fuzzy systems with triangular input membership func- 
tions and center average defuzxification are universal approximators for 
f  E &(l,D) with D = [a, b]. 

Proof: By construction, it is possible to show that any given continuous 
piecewise linear function may be described exactly by a fuzzy system with 
triangular input membership functions and center average defuzzification 
on an interval D = [a, b]. To show this, consider the example in Figure 5.5 
where g(x) is a given piecewise linea,r function which is to be represented 
by a fuzzy system. The fuzzy system may be expressed as 

c 1”1 G/&(X> 
~(x’e) = C~=, pi ’ (5 9) . 

where 6 is a vector of parameters that include the ci (output membership 
function centers) and parameters of the input membership functions. Let 
It? = (a/g ai] and &+I = (D;, ak:] for Ic = 1,2,. . . , m be defined so that g(x) 
is a line in any Ik. For I% # 1 and /C # m choose ,LLI, (x) to be a triangular 
membership function such that p&J = ,~k(@k) = 0 and &$) = 1. 
See Figure 5.5. For k = 1 choose ,~i (x) = 1 for z 5 al and let I_L~ (x) , 
a, < x < a;, be aa line from the pair (ai, 1) to (OF, 0) and I_L~ (x) = 0 
for x > 0;. For k = m, construct ,x~ in a similar manner but so that it 
saturates at unity on the right rather than the left. For i = 1 let cr = g(al) 
and for i = m let cm = g&J. For i # 1 and i # m let ci = g(az) and 
we lea,ve it to the reader to show that in this case that .?$c, 8) = g(x) for 
x E D: To do this simply show that the fuzzy system exactly implements 
the lines on the intervals defined by g. 
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Figure 5.5. Approximating a continuous piecewise linear function with a 
fuzzy system on an interval. 

Since continuous piecewise linear functions (which are universal approx- 
imators for continuous functions f : D -+ R) may be exactly represented by 
fuzzy systems with center aaverage defuzzification, we establish the result. 

n 

5.2.3 Stone-Weierstrass Approximation 

In this section we introduce the Weierstrass theorem, Stone-Weierstrass 
theorem, and ideas on how to use them in the study of approximator struc- 
tures. The methods of this section provide very general and useful ways 
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to determine if approximators are universal approximators for the class of 
functions that are continuous and defined on a compact set. 

To begin, we need to define some approximator structures that are based 
on polynomials. 

Definition 5.5: The function g : D + R for D C R is said to be a 
polynomial function if it is in the class of functions defined by 

c&f = 
i 

g(x) = f$xi : a(), . . . ,n,ER,P>O - 
i=o I 

Let x= [x~,x~,...,z,] T be the input. Similarly, define Grnpf to be the 
class of multivariable polynominal functions, g : D + R, D c R” , where 

Theorem 5.6: (Weierstrass) Polynomials are universal approximators 

for f E &b(n$), D C R”. 

We will wait to prove this result until we have the tools provided below. 
What the Weierstrass theorem tells us is that there exists a polynomial 
which may approximate a continuous function over an interval with ar- 
bitrary accuracy. Readers familiar with Taylor series expansion may not 
be too surprised with this result . A Taylor series expansion, however, is 
performed about a point rather than across an interval whose size is only 
confined to an interval of the real numbers. 

Theorem 5.7: (Stone- Weierstrass) A continuous function f : D -+ R 
may be uniformly approximated on D C R” by functions of class G if 

(1) The constant function g(x> = 1,x E D belongs to G, 

(2) If  91, g2 belong to G, then agl + bg2 belongs to g for all a, b E R, 

(3) If  g1 ,g2 belong to G, then glg2 belongs to G, and 

(4) If  x1 # 22 are two distinct points in D, then there exists a function 
in g E G such that g(.xl) # g(xz). 

The proof of the Stone-Weierstrass theorem is beyond the scope of this 
book, but the interested reader is encouraged to see [14] for more details. 
We may, however, use the results of the Stone-Weierstrass theorem to prove 
the Weierstrass approximation theorem. The following example shows how 
to do this for the n = 1 case (the case for general n is similar): 
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Example 5.2 Here, we will prove the Weierstrass approximation theorem 
using the Stone-Weierstrass approximation theorem. To do so, we 
must show that items (l)-(4) hold for the class of polynomial functions 
G Pf- 

Using the definition of polynomial functions with uo = 1 and ak = 0 
for k # 0, (1) is established. If gi = CyZo a& and 92 = xy=, &xi, 
then 

agl + bgz = g(aai + b@i)xi- 
i=O 

Since agi + bgz is a polynomial function, (2) is established. Notice 
that we may choose gi and 92 to both be defined with n+l coefficients 
without loss of generality since it is possible to set coefficients to zero 
such that the proper polynomial order is obtained (e.g., if gi = 1+2x 
and92 = x+x2, then may let gr = a0 + Q~X + CY~X~ and 92 = 
,& + ,81x + ,&x2 where a2 = PO = 0). 

Similarly, multiplying two polynomial functions results in another 
polynomial function, establishing (3). If we let g(x) = x, which is a 
member of polynomial functions, then g(xi) # g(x2) for all x1 # x2, 
establishing (4). A 

Directly applying the Stone-Weierstrass approximation theorem, we ob- 
tain the following result: 

Theorem 5.8: Fuzzy systems with Gaussian membership functions 
and COG defuzxification are universal approximators for f  E &&, D) 
with D & R”. 

Proof: The proof is left as an exercise but all that you need to do is show 
that items (l)-(4) of the Stone-Weierstrass theorem hold and you do this 
by working directly with the mathematical definition of the fuzzy system. 

This implies that if a sufficient number of rules are defined within the 
fuzzy system, then it is possible to choose the parameters of the fuzzy 
system such that the mapping produced will approximate a continuous 
function with arbitrary accuracy. 

To show that multi-input neural networks are universal approxima’tors, 
we first prove the following: 

Theorem 5.9: The function that is used to define the class 

m  

G,,, = g(x) = x ai cos(b’x + pi) : ai, ci E R, bi E R” (5.10) 
i=l 

is a universal approximator for f  E &&, D) for D c R”. 
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Proof: Part (1) follows by letting ai = 1 and ci, b; = 0. Part (2) 
follows from the form of g(z) . We may show Part (3) using the following 
trigonometric identity 

cos(a) cos(b) = ; [cos(a + b) + cos(a - b)] . (5.11) 

Part (4) may be shown using a proof by contradiction argument. n 

Using the above result, it is now possible to show the following: 

Theorem 5.10: Two layer neural networks with hidden nodes each 
defined by a sigmoid function, and a linear output node, are universal ap- 
proximators for f  E G&n, D) for D c R”. 

Proof: By Theorem 5.9, given some c > 0, there exists a function 

?n 

g(x) = >: ai cos(b’x + Ci), 

i=l 

such that If(x) - g(x)1 < c/2. Define zi = bTx + ci and Ii = {zi E R : - 
xi = b’x + ci, x E D}. Since bx is linear in x, we know that I,; is an 
interval on the real line if D is a compact region. Since h&q) = ai cos(zJ 
is continuous on Ii, we find each hi(zi) may be continuously approximated 
by a two layer neural network as defined in Theorem 5.3, such that 

hi(xi) - di,l - 2 &,j@(ai,j(xi - Si,j>> L &- 
j=2 

(5.~2) 

Thus 

If(x) - w?~)1 5 If@=> - 9(x)1 + 19(x> - m3)I 

< - c/2 + 19(x> - qx,q- 

But we also know that 

19(x> - w5~>l < - Y(x> - fJ di,l + 5 di,j$(aj(G - @i,j)) 

i=l j=2 

Im f Pl 

15.13) 

hz(zi) - &,l - C di,j$(ai,j (zi - Qi,j)) 
j=2 

nz 

< k. - E 
i=l 

Thus If (4 - F(x7 0) I 5 C, which completes the proof. n 
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Thus the proof of the single-input case proof based upon step functions 
is now extended to the general multi-input case. In the derivation, a very 
large number of adjustable parameters were defined. It should be noted, 
however, tha#t the proof provided existence of a sufficiently large neural 
network to uniformly approximate a nonlinear function. In practice, much 
smaller neural networks may typically be used to sufficiently approximate 
a# given nonlinear function for a specific application. Some of these issues 
will be addressed in more detail in the remainder of this chapter. 

5.3 Bounds on Approximator Size 

So fas, we ha’ve shown that a number of approximation schemes may be 
used to uniformly approximate functions. After choosing an approach to 
approximate a function, however, one must determine how large an approx- 
imator must be to achieve a particular level of approximation accuracy. If 
a neural network is going to be used, then we must determine how many 
layers and nodes are required. Or, if we use a fuzzy system, how many 
rules and membership functions do we need? The bounds presented in 
this section deal with linear in the parameter approximators. We will later 
see that less conservative results may be possible if more general nonlinear 
parameterization is used. 

53.1 Step Approximation 

An upper bound on the required size of the approximators based upon step 
functions will now be investigated. 

Theorem 5.11: A step function F defined with m > v  intervals - 
may approximate a continuously differentiable function f  : D -+ R with an 
error bounded by If(x) - F(x, e>l 5 6, where ]df /dxl < L on D = [a, b]. - 

Proof: Assume that x E 1k with Ik = (c, d], so that F(x) = f(c) by 
the definition of the step function approximator of Theorem 5.1. Since 
)df/dxl < L, we find If(d) - f (c)l < hL, where h = (b - a)/m. We thus 
require that c 2 hL, which is satisfied when m 2 (b - a)L/e. n 

This theorem may now be directly applied to single input neural net- 
works with sigmoid functions. Following the steps of Theorem 5.3, we find 
tha,t m > 3(b - a)L/e sigmoid functions would be required to approximate 
a, continuously differentiable function with an error of If(x) - .F(x, @)I < C. 
This shows why you generally need more nodes in a neural networkto 
achieve a higher a8pproximation accuracy over a larger domain [a, b]. 

Also L increases with the spatial frequency of f(x). To see this, consider 
the case where f(x) = sin(wx), where w > 0 is the spatial frequency of 
f(x). Since d f /ax = w cos(wx), we may choose L = w. Thus the number 
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of adjustable parameters required to approximate a function with a given 
level of accuracy increases with the spatial frequency of the function to be 
approximated. 

Similar derivations could be made for the n-dimension approximation 
where the approximator F(X) is to be defined over x;i E [a,, bi] for i = 
1 * - 7 YL In this case, one could define an n-dimensional grid on which 
the approximator is defined. If ]]3f/dz]] < L for all ~i E [ai, bi], where 

aflax E Rnxn and L E R, one may require that the ith dimension have 
m, > (h-&p 

2-- t intervals. This will require a total of 

n 

III 
(b - ai)L 2 L n n - - - 

6 0 6 
n(h - ai> 

i=l i=l 
(5.14) 

grid points in the approximation. Thus the number of points increases 
exponentially with the dimension of the system. This explosion in the 
number of grid points is often referred to as the curse of dimensionality. 

5.3.2 Piecewise Linear Approximation 

Figure 5.6. Bound for piecewise linear approximation. 

A similar a,rgument for the required number of grid points in a piecewise 
linear approximation may be made as follows: 

Theorem 5.12: A piecewise continuous function F with m 2 w 

intervals may approximate a continuously differentiabbe function f  : D -+ 
R with an error bounded by 1 f(x) - .F(x, e>l < E, where (df /dx( 5 L on 
D = [a, b]. 

Proof: Assume that x E I,+ with Ik = (c, d] some interval as we define 
in the proof of Theorem 5.5. Define the fuzzy system as in Theorem 5.5 so 



Sec. 5.3 Bounds on Approximator Size 121 

that Y(c) = j(c) and Y(d) = j(d). Since Idj/dxl <_ L, we have 

f(c) - (x - + I f(x) 5 f(c) + (x - CP (5.15) 

and 

f (4 - Cd - XP 5 f (4 I f (4 + Cd - XP (5.16) 

for x f Ik. These inequalities are shown in Figure 5.6. The point x = X~ is 
a’t the intersection of ga(x) = j(c) - ( x - c)L and gb(x) = j(d) - (d - x)L 
and the maximum inaccuracy is given by 

4 = maxxElk @in -fwd - Yak4 wd - $I&))) * (5.17) 

From the definition of ga and gb we have 

2x4 = j(c) - f(d) + (c + d)L (5.18) 

so 4 = F(xq) - If (c> - (xq - c) L]. Or after some manipulation (letting 
hd=$), 

f-AL 
q=-5-- 

(f(c) - f kw 
2hL ’ 

(5.19) 

The worst case is when j(c) = f(d), so q 5 $$. We wish for q 5 E, which 

is satisfied when m > @$$. n - 

This shows why you may want many rules in the rule-base of a fuzzy 
system to achieve higher accuracy in approximation. We have seen that it 
is possible to determine an upper bound on the required size of a neural 
network or fuzzy system so that given some Lipschitz function f : D --+ R 
and 6 > 0, it is possible to find a fuzzy system or neural network such that 
Ifb> - ~wu < - c on D. Since we have only required that a Lipschitz 
constant be known for f, the results tend to be ra,ther conservative. If, 
for exa.mple, we find that a fuzzy system with 100 rules is sufficient to 
approximate f on D with a-n error no greater than c by the above theorems, 
that does not necessarily exclude the possibility that there exists a fuzzy 
system with only 50 rules which will also approximate f with error 6. 

Though the above theorems (both the step approximation and piecewise 
linear approximation) deal with nonlinear functions, the parameterization 
may be viewed as linear. This is because for a specified grid spacing (based 
on the size of L), the output of the approximator is assumed to be linear 
with respect to the value at the grid points. It should be noted that it 
has been found that nonlinear parameterizations are often more effective 
a’pproximators since fewer adjustable parameters may be required for the 
same level of approximation. This will be discussed in more detail later in 
this chapter. 
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5.4 Ideal Parameter Set and Representation Error 

We have seen that by making a fuzzy system or neural network large 
enough, it is possible to approximate a function f : D --+ R arbitrarily 
well on D. In practice, however, we are typically limited to using approxi- 
mators of only moderate size due to computer hardware limitations. 

If an approximator .F : D x lrtJ’ --+ R with inputs x E D and adjustable 
pa.rameters 8 E W’ is to approximate a continuous function f : D -+ R, 
then there exists an ideal parameter set defined by 

8% = sup 1 f(x) - F(x, 8)) 
xED 

(5.20) 

(we assume that the operator “arg” simply picks one of the 8* E W). Thus 
6* is the parameter set which causes F(x, 0*) to best approximate f(x) on 
D in the sense measured by 1 . I. Any .F(x, 8*) where 6* E 8” is called an 
ideal representation for f(x). We have defined 6* as the parameter set 
which causes a fuzzy system or neural network with a given structure to 
best represent a continuous function on D. In general 8” may contain more 
than a single element, so that given some 0; E 0*, there may exist another 
0; E 0* with 6; # 0;. This may be seen by the following example. 

Example 5.3 Consider the neural network defined by 

F(x,O) = tanh(wix) + tanh(wzx) (5.21) 

with x, wl, w2 E R and 0 = [wi, ~21~. If given some f(x) we find 
0 = 6; = [w;, wgT minimizes If (2) - .F(x,@)l on D, then 0; is an 
ideal parameter set. Notice that 

tanh(wTx) + tanh(w5x) = tanh(wGx) + tanh(wTx). (5.22) 

If w; # w;, then if we let 0; = [wa, wTIT such that 0: # Oz, we find 
that 0.; is also in the ideal parameter set. A 

Definition 5.6: The approximator F : D x W -+ R for f : D -+ R has 
an ideal representation error w(x) = f(x) - .F(x, 6*) on D given some 
8* E P with 8* defined by (5.20). 

It is important to keep in mind that the ideal representation error for an 
approximator is defined using some 8* in the ideal parameter set. If we have 
some parameter vector O(t) which is a time-varying estimate of 6*, then the 
ideal representation error for .F(x$(t)) is still defined by If(x) - .F(x,Q*)l. 
That is, the ideal representation error is defined in terms of how well an 
aSpproximator .F(x, O(t)) with a given structure may represent some f(x) 
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when B(t) = P, rather than how well it is approximating f(x) at some 
time t with an arbitrary B(t). Additionally, the ideal representation error 
is dependent upon which t9* is chosen, even though its bound on D is 
independent of this choice. 

There will be times when we know that D is a closed and bounded 
(compact) set, but we may or may not know an explicit bound on it. In 
this ca#se we know that there exists some W > 0 such that w(x) 5 W for 
all x E D. We will often use W in this book and will call it the bound on 
the approximation error. Notice that by using the results of the previous 
sections, if f is continuous and ‘defined on a compact set we can always 
find an approximator structure that allows us to choose W very small; 
however, reducing W will in general require that we increase the size of the 
approximator . 

5.5 Linear and Nonlinear Approximator Structures 

In this section we explain how approximators can either be linear or nonlin- 
ear in their parameters, discuss properties of both linear and nonlinear in 
the parameter approximators, then show how to use linearization to begin 
with a nonlinear in the parameter approximator and obtain a linear in the 
parameter approximator. 

5.5.1 Linear and Nonlinear Parameterizations 

Most classes of neural networks and fuzzy systems can be linearly pa- 
rameterized, at least in terms of some of their parameters (e.g., many 
fuzzy systems are linear in their output membership function centers). 
In this case we may write .F(x,e> = OTC(x), so that c(x) is not a func- 
tion of 8 and the parameters 8 enter linearly. Note also that in this case 
a-(x, e>po = C(x)T. 

When the parameters in the vector 8 in F(x, 0) include, for example, 
parameters of the activation functions of a, multi-layer neural network, or 
input membership function parameters of a fuzzy system, then .F(x, 0) is 
a nonlinear function of the parameters 19, so that aF(x, 8)/&Y = [(x, O)T. 
The following examples demonstrate how to specify [(x, 6) when the set of 
adjustable parameters does not appear linearly. 

Example 5.4 Consider the simple feedforward neural network defined as 

F(x$) = wg + wr tanh(wzx), 

where x E R and 6 = [WO, wi, ~21~. Then 
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If you pick 8 = [wo, wilT, then the neural network is linear in the 
parameters, for this definition of parameters. n 

Example 5.5 Suppose that for a fuzzy system we only use input mem- 
bership functions of the “center” Gaussian form shown in Table 3.1. 
For the ith rule, suppose that the input membership function is 

exp (-i (9)‘) 

for the jth input universe of discourse. Here, for i = 1,2,. . . , R and 
j = 1,2,. . . , n, cj (0;) is the center (spread) of the input membership 
function on the jth universe of discourse for the ith rule. Let bi, 
i = 1,2,. . . , R, denote the center of the output membership function 
for the ith rule, use center-average defuzzification, and product to 
represent the conjunctions in the premise. Then, 

F-(x$) = (5.23) 

is an explicit representation of the fuzzy system. Notice that if we fix 
the parameters of the input membership functions and choose 

8= [bl,b2,...,~RlT, 

then the fuzzy system is linear in its parameters. If, on the other 
hand, we choose 

then the fuzzy system F(x, 0) is nonlinear in its parameters. In this 
case we can compute [(x, 8) as we did in the above example using 
simple rules from calculus. n 

5.5.2 Capabilities of Linear vs. Nonlinear Approximators 

Recall that W is the bound on the representation error of the unknown 
function f(x) with the approximator .7-(x, 0). For a given approximator 
structure F(x, 0) all we know is that the bound on the approximation error 
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I/V > 0 exists; however, we may not know how small it is. The universal 
approximation property simply says that we may increase the size of the 
approximator structure and properly define the parameters of the approx- 
ima(tor t)o a,chieve any desired accuracy (i.e., to make W as small as we 
want); it does not say how big the approximator must be, or if you fix the 
structure F(x, 0) how small VV is. 

Do we wa#nt to use linear or nonlinear in the parameter a.pproximators? 
Barron’s work in approximation theory [13] gives us some clues as to how 
to answer this question: 

l He shows that for a nonlinear in the parameter approximator (like a 
single layer nonlinear network with sigmoids for the activation func- 
tions), for a certain wide class of functions (with certain smoothness 
properties) that we would like to approximate, if we tune the param- 
eters of the approximator properly (including the ones that enter in 
a nonlinear fashion), then the integral squared error over the approx- 
imation domain is less than 

c 
N’ 

where N is the number of nodes (squashing functions). The value of 
C depends on the size of the domain over which the approximation 
takes place (it increases for larger domains), and how oscillatory the 
function is that we are trying to approximate (with more oscillations 
C increases). For certain general classes of functions, C can increase 
exponentially as the dimension n increases, but for a fixed n, and 
a fixed domain size, Barron’s results show that by adding more sig- 
moidal functions, if we tune the parameters properly, we will get a 
definite decrease in the approximation error (and with only a linear 
increase in approximator size, that is, a linear increase in the number 
of parameters). Certain types of approximators with translates of 
Gaussian functions also hold this property [61]. 

l For linear in the parameter approximators, for the same type of func- 
tions to be approximated as in the nonlinear case discussed a,bove, 
Barron shows that there is no way to tune the parameters that en- 
ter linearly (given a fixed number of “basis functions”) so that the 
aSpproxima,tion error is better than 

Here, CL has similar dependencies as C had for the nonlinear in 
the parameter case. Note, however that there is a dependence on 
the dimension n in the bound, so that for high-dimensional function 
approximation, a nonlinear in the parameter approximator may better 
avoid the curse of dimensionality. Also, one should be careful with 
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the choice of the nonlinear part of the network, in order not to add 
more approximator structure while not gaining any more ability to 
reduce the approximation error. 

To summarize, it may be desirable to use approximators that are nonlin- 
ear in their parameters, since a nonlinear in the parameters approximator 
can be simpler than a linear in the parameters one (in terms of the size 
of its structure a#nd hence number of parameters) yet achieve the same ap- 
proximation accuracy (i.e., the same liv above). Since good design of the 
approximator structure is important to reduce VV we would like to be able 
to tune nonlinear in the parameter approximators; this is the main subject 
we discuss below. 

The general problem is that, on the one hand, we know how to tune 
linear in the parameter approximators, but in certain cases they may not be 
able to reduce the approximation error sufficiently; on the other hand, we do 
not know too much about how to effectively tune nonlinear in the parameter 
approximators, but we know that if we can tune them properly we may be 
able to reduce the approximation error more than what a linear in the 
parameter approximator with the same complexity could. We emphasize, 
however, that finding the best approximator structure is a difficult and as 
yet unsolved problem. Determination of the best nonlinear in the parameter 
structure or advantages and disadvantages of nonlinear versus linear in the . 
parameter approximator structures is a current research topic. 

. 5.5.3 Linearizing an Approximator 

The last section showed that it may be desira,ble to use approximators 
that are nonlinear in their parameters, since a nonlinear in the parameters 
approximator can be simpler than a linear in the parameters one (in terms 
of the size of its structure and hence number of parameters) yet achieve 
the same approximation accuracy (i.e., the same VV above). In this section, 
we show how to linearize a nonlinear in the parameter approximator, which 
will la’ter enable us to tune its parameters when used in adaptive controllers. 

Consider the class of approximators which are Lipschitz continuous in 
the adjustable pa,ra#meters (which may enter in a linear or nonlinear fash- 
ion), and are such that the parameters 6 E a, where 0 is a convex set. 
Define, for a given 6” E 0, 

E(x, 0) = F-(x, 0’) - F-(x, O), 

where 8 E 0, as the difference between the ideal representation of f(x) a#nd 
its current representation. Here, we say that F(x, S*) is an ideal represen- 
tation of f(z) if 

P = argrr& sup IF(x,@) - f(X)1 7 
[ XED 1 (5.25) 
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where we assume D is a compact set. Thus, we may write 

where w(z) is the representation error, and from the universal approxima- 
tion property we know that W(X) 5 VV for some W > 0. That is, for a given 
approximation structure our representation error T/I/ is finite but generally 
unknown. However, as discussed above, simply by properly increasing the 
size of the approximator structure we can reduce W to be arbitrarily small 
so that if we pick any W > 0 a priori there exists an approximator struc- 
ture that can achieve that representation accuracy. Also, note that D is a 
compact set. Normally, to reduce W by choosing the approximator struc- 
ture we have to make sure that the structure’s parameters result in good 
“coverage” of D so that appropriate parameters 8 in F(x, 0) can be tuned 
to reduce the representation error over the entire set D. Next, we will study 
some properties of our Lipschitz continuous approximators that will later 
allow us to tune parameters when dealing with adaptive systems. 

Using the mean value theorem one obtains 

where the parameter error is 8 = 8 - 0*, and z is some point on the line 
segment z E r/(e,e*) (i.e., x = 8* + ci(e - e*) for some a E [O,l]). Note 
that IX - 8) < 181 for any x E @9,0*). Since E(x, 9*) = 0, we have - 

where 6(x,8,0*) = [v - w 6. Using Cauchy’s inequality, 1 
~E(x,x) BE(x,e) - 

ICGV*>l 5 dz -  ae 181. 

(5.26) 

(5.27) 

If dE(x, z)/& is Lipschitz continuous on x E L(S, H*), then since IZ - 01 5 
101, we have 

dE(x, x> dE(x, t9) - 
ax < WI, de - 

(5.28) 

where L is a Lipschitz constant (which we can determine since it is in terms 
of the known a,pproximator structure). Thus 

I% 6 e*>l L NV, 
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so if we are able to find a way to adjust 8 so that we reduce lfil’, then 0 
will tend toward B* so that F(z, 8) will tend toward .F(x,e*). 

It is interesting to note that since E(s, 0) is continuously differentiable, 
a. first order Taylor expansion 

E(x,0 - 6) = 

where o( @I) is a function of 8 

is possible and hence 

JWA - “Egp e, s + o(liq) 
such that 

(5.29) 

(5.30) 

Rearranging (5.29) and simplifying, we get 

(5.31) 

where S(x, 0,0*) = -o(@I). H ence, 6(x, S,e*) is the contribution from 
higher order terms in a Taylor series expansion, and from the use of the 
mean value theorem, comparing (5.26) and (5.31), we see that all the higher 
order terms are bounded by @I”. 

Using (5.26)) and the fact that f(x) = .F(x$*) + w(x) we will later 
express f(x) - F(x,8) as 

f (z> - G, 0) = .qx,e*) + w(a> - qx,6) (5.32) 
- - -GTc(2, 8) + qx, 8, e*) + w(~), (5.33) 

where ((x,0) = (~F(x, 0) Jae)T. Letting w = W(X) + 6(~,8,8*), we find 

f (4 - -qx, e> = -GT[(x, e> + G(x). (5.34) 

If 141’ is bounded, then there exists some T;t’ 2 0 such that G(x) 5 w 
for all x E D. Hence, at times we will be concerned with showing that 
181 is bounded. Notice that schemes which are nonlinear in the parameters 
introduce the 6(x, 8,0*) term which, in general, increases the representation 
error. In some instances, however, using the nonlinear in the parameter 
schemes may allow for smaller representation errors with fewer adjustable 
parameters than the linear in the parameter schemes, thus justifying their 
use in some applications. 

5.6 Discussion: Choosing the Best Approximator 

As we have seen, there are several methods to uniformly approximate con- 
tinuous functions. Along with fuzzy systems and neural networks, there ex- 



Sec. 5.6 Discussion: Choosing the Best Approximator 129 

ists a number of other techniques such as polynomials, splines, and trigono- 
metric series, to name a few. Before making a decision on which technique 
to use, it is important to consider the following issues: 

l Ease of implementation: Depending on the application and on the 
particular function to be approximated, certain approximation tech- 
niques ma#y be easier to implement than others, and yet perform ad- 
equately. For example, if we happen to know that the function is an 
nth order polynomial, then a simple polynomial approximator may 
be preferable to a more general fuzzy system or neural network. 

l Choice of structure and number of adjustable parameters: The more 
knowledge we have about the function to be approximated, the better 
are the chances to make a good choice for the approximator structure. 
For instance, when using Takagi-Sugeno fuzzy systems, the right- 
hand side (non)linear functions may be chosen to match known parts 
of the unknown function. The choice of the number of adjustable 
parameters is also very application dependent, but one has to be 
careful not to overparameterize (think of the problem of interpolating 
between a sample of points with a polynomial; if the order of the 
polynomial is increased too much, the approximator will match the 
samples well, but it may significantly deviate from the real function 
between samples). Note also that, as a rule of thumb, one may expect 
a nonlinear in the parameters approximator to require less parameters 
than a linear in the parameters one for the same accuracy, with the 
disadvantage that the nonlinear in the parameters approximator may 
be more difficult to tune effectively. 

l Realize that you may need to try several structures: In general, you 
may want to try several approximator structures to see what the 
trade-off is between performance and approximator complexity. In 
particular, it may be wise to consider the physics of the problem and 
perhaps some plots of the data to try to determine the type of nonlin- 
earities that are present. Then, try to pick the approximator structure 
so that it contains nonlinearities similar to those seen (e.g., if it seems 
like the mapping has two linear regions, with a nonlinear transition 
between them, you may want to try a Takagi-Sugeno fuzzy system 
with two rules, one for each linear region). Next, you should try a 
simple approximator structure to see how it works. Then, you should 
increase its complexity (e.g., size 21) until you get the performance you 
want. Realize, however, that with your implementation constraints, 
and choice of structure, you may not be able to achieve the perfor- 
mance you need so you may need to invest in more computational 
power, and switch to a different structure. 
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5.7 Summary 

In this chapter we have studied approximation properties of conventional, 
neural, and fuzzy system approximator structures. In particular, we have 
covered the following topics: 

l Uniform and universal approximation neural networks and fuzzy sys- 
tems. 

l Bounds on approximation error. 

l Linear and nonlinear in the parameter approximation structures. 

This chapter is used in the remaining chapters in several ways. First, the 
theory is used at several points in the proofs. Second, it provides insights 
into choices of approximator structures for practical applications. 

A few trends to keep in mind when trying to approximate a nonlinearity 
with a fuzzy system or neural network are as follows: 

l As the spatial frequency of the nonlinearity increases, more parame- 
ters should be included in the fuzzy system or neural network. 

l As the dimension of the approximator increases, the number of re- 
quired adjustable parameters will increase. 

l As the desired fidelity of the approximation improves, the number of 
required adjustable parameters will increase. 

l As the size of the region over which the approximation is to hold 
increases, more parameters should be included in the fuzzy system or 
neural network. 

We have also seen that linear in the parameter approximators may require 
more adjustable parameters than their nonlinear counterparts. 

5.8 Exercises and Design Problems 

Exercise 5.1 (Uniform Approximation) Show that the class of func- 
tions 

Gl = {g(x) = asin’ + bsin(z) cos(z) + cco?(x) : a, b, c E R) 

may be uniformly approximated by 

G2 = {g(x) = psin(2x) + gcos(2x) + r : p, q, r E R) (5.35) 

on x E R. 
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Exercise 5.2 (Radial Basis Function Neural Networks) Let 

G rbnn = g(x) = 2 ai exp (-yi IX - ci\s> (5.36) 
i=l 

be the class of radial basis neural network functions with ai, yi E R 
and ci E Rn for i = l,..., n. Use the Stone-Weierstrass theorem to 
show that Grbnn is a universal approximator for f E &b (rl, D). 

Exercise 5.3 (Fuzzy Systems) Let 

c P 

Gfs = Y(X) = 
i 

i=l aiexp -yi IX - Ci12 
( ) (5.37) 

c 
P i=l exp -yi Iz - ci12 ( ) i 

be the class of fuzzy systems defined with Gaussian input membership 
functions where ai, yi E R and ci E R” for i = 1, . . . , rz. Use the Stone- 
Weierstrass theorem to show that Gf, is a universal approximator for 
f E $&&A, D) (proving Theorem 5.5). 

Exercise 5.4 (Approximator Size) Use Theorem 5.12 to find a suffi- 
cient number of intervals to approximate 

0 f(x) = 1 + X2 

0 f(x) = sin2(2) + 2c0s2(42) 

l f(x) = 2 sin(lO/z) 

using a piecewise linear approximation over x E [- 1, I]. 

Exercise 5.5 (Taylor Expansion) The Taylor expansion of the con- 
tinuous function f : R -+ R about II: = 0 is given by 

f (4 (0) f(x) = f(0) + $0)x + ;$(o)x2 + * *- = x -y-xi. (5.38) I 
i=O ’ 

Given some small 6, c > 0, how many terms of the Taylor expansion 
are needed so that 

(5.39) 

where D = {x E R : 1x1 < S}. - 
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Chapter 6 
Control of Nonlinear 

Systems 

6.1 Overview 

The purpose of this chapter is to summarize a collection of standard control 
design techniques for certain classes of nonlinear systems. Later we will use 
these control techniques to develop adaptive control approaches that are 
suitable for use when there is additional uncertainty in the plant dynamics. 
Since the linear concept of phase does not carry over to the nonlinear world, 
we will not consider many of the traditional control design techniques such 
as using Bode and Nyquist plots. Instead, we will use Lyapunov-based 
design techniques where a controller is chosen to help decrease a measure 
of the system error. 

Let 

i = fcm 
Y = h(x,u) (6.1) 

define the dynamics of a system with state x E R”, input u E R”, and 
output y E R ‘7 Given a control law u = ~(t, x), it is assumed tha’t f (t, x) is 
locally Lipschitz in x and piece-wise continuous in t so that given the initial 
state x(O), there exists a unique trajectory satisfying (6.1). Throughout this 
book we will use the notation u = V(X) to define a control law where z(t> 
is a vector of appropriate signals for the particular application. The vector 
x may contain, for example, reference signals, states, dynamic signals, or 
combinations of any of these. We will only consider controllers where the 
components of x are measurable signals. The purpose of the controller is 
typically to force y -+ r(t) where r E RP is a reference signal. When r is 
time-varying, defining a control law u = Y(Z) to force y --+ r(t) is called the 
tracking problem. If T is a constant, the problem is commonly referred to 
as set-point regulation. 

To help develop general control techniques, we will study certain canon- 
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ica,l forms of the system dynamics. If the original system is defined by 

then a difleomorphism may be used to create the state representation z = 
T(c). Here T is a diffeomorphism (a diffeomorphism is a continuously 
differentiable mapping with a continuously differentiable inverse) which is 
used to form the new system representation 

J; = g&f&d = f(X,U) 
Y = h&t+) = h(v), 

(6.3) 

where f(x,u) and h(x, u) may take on a special form when dealing with 
canonical representations. Thus in the stability analysis throughout the 
remainder of this book, we will typically consider the x, rather than the 
[ representation. It is important to keep in mind that the change of co- 
ordinates only changes the representation of the dynamics and not the 
input-to-output characteristics of the system. 

When deriving a control law, we will first define an error system, e = 
x(t, x) with e E Rq, which provides a quantitative (usually instantaneous) 
measure of the closed-loop system performance. The system dynamics are 
then used with the definition of the error system to define the error dy- 
namics, ~2 = @,x,u). A Lyapunov candidate, V(e) with V : Rq -+ R, is 
then used to provide a scalar measurement of the error system in a similar 
fashion that a cost function is used in traditional optimization. The pur- 
pose of the controller is then to reduce V along the solutions of the error 
dynamics. 

The initial control design techniques presented here will assume that the 
plant dynamics are known for all x E R”. Once we understand some of the 
basic tools of nonlinear control design for ideal systems, we will study the 
control of systems which posses certain types of uncertainty. In particular, 
it will be shown how nonlinear damping and dynamic normalization may 
be used to stabilize possibly unbounded system uncertainties. 

The control design techniques will assume that any uncertainty in the 
plant model may be bounded by known functions (with possible multi- 
plicative uncertainty). If in reality the models and/or bounds are only 
valid when x E S,, where Sx is a compact set, then there may be cases 
when the stability analysis is invalid. This is often seen when a controller is 
designed based on the linearization of a nonlinear plant. If the state travels 
too far awa’y from the nominal operating point (i.e., the point about which 
the linearization was performed), it is possible for the plant nonlinearities 
to drive the system unstable. In this chapter, we will derive bounds on the 
state trajectory using the properties of the Lyapunov function to ensure 
that x never leaves the space over which the plant dynamics are under- 
stood. Since we will place bounds on x, additional properties of the plant 
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dynamics, such as Lipschitz continuity, only need to hold on S,. Through- 
out the remainder of this book, we will use the notation S, to represent 
the space over which the signal y E R” may travel. 

6.2 The Error System and Lyapunov Candidate 

Before we present any control techniques, the concepts of an error system 
and Lyapunov candidate must be understood. We will see that the choice of 
the error system and Lyapunov candidate will actually be used in the defi- 
nition of the controller much in the same way a cost function will influence 
the form of an optimization routine. 

6.2.1 Error Systems 

For any control system there is a collection of signals that one wants to 
ensure is bounded or possibly converge to a desired value. The size of the 
mismatch between the current signal values and the space of desired values 
is meassured by an error variable e E R q. The definition of the system error 
is typically driven by both the desired system performance specification 
and the structure of the system dynamics. Consider the system dynamics 

j: = f(x,u) (6-4) 

with output y = h(x), where x, u E R are scalar signals. If one wants to 
drive y --+ r(t), where r is a reference signal, then choosing the error system 
e = x(t, x) = y - r(t) would provide a measure of the closed-loop tracking 
performance, typically referred to as the tracking error. 

In the more general case when x E R”, u E R”, and y E RP, choosing e = 
y-~(t) may not provide a satisfactory measure of the tracking performance, 
in that the trajectory e(t) may not provide sufficient information about the 
internal dynamics of the closed-loop system. 

Example 6.1 Consider the following simple linear system 

(6 5) . 

with y = xi, and assume we want y to follow the reference trajectory 
r.(t) = sin t. The choice of error system 

e = X(t, 2) = y - T(t) = x1 - sint 

yields 
f+ --Xl +u - cost. (6 6) . 
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The error dynamics are easily stabilized by setting u = cost + sin t so 
that 

Ij, = -e (6 7) . 

and e(t) decreases to zero exponentially fast. However, this choice 
of u yields an unstable closed-loop system because the x2-dynamics 
become 

22 =a2+cost+sint, ( 6.8) 

which defines a linear unstable system with a nonzero input. Here 
the problem is generated by the wrong choice of the error system. A 
better choice is given by 

e = x(t,x) = 
[ ::2:]) 

yielding the error dynamics 

el = -x1 - cos t + u 
62 = 22 - u + sint. 

The choice u = sin t + cost - er + e2 yields 

& = -2el + e2 
e2 = -e17 

(6 9) . 

(6.10) 

which defines an asymptotically stable linear system with eigenvalues 
at - 1. The stability of the new error dynamics also implies that the 
system states x1 (t) and x2(t) are bounded functions of time since 
xi (t) = er (t) + sin t and x2(t) = es(t) + cost. n 

From the example above, it should be clear that the choice of the error 
system is crucial to the solution of the tracking problem and that the error 
system should possess two basic features 

1. e = 0 should imply y(t) = r(t) or y(t) -+ T(t) . 

2. The boundedness of the error system trajectory e(t) should imply the 
boundedness of the system state x(t). 

These two requirements are summarized in the following assumption. 

Assumption 6.1: Assume the error system e = x(t, x) is such that 
e = 0 implies y(t) --+ r(t) and that the function x satisfies 1x1 2 $&, let) for 
all t, where $J~ : RS x R+ --+ R is bounded for any bounded e. Additionally, 
& (t, s) is nondecreasing with respect to s E R+ for each fixed t. 

If Assumption 6.1 is satisfied, then boundedness of the error system will 
imply boundedness of the state trajectories of (6.3). In addition, if there 
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exists some signal r)(t) >_ (el for all t, then 1x1 5 +-&, q) since $J&, 7) is 
nondecreasing with respect to 77 E R? Because of Assumption 6.1, we will 
require not only that the error system provides a measure of the closed-loop 
system performance, but also that it places bounds on the system states. 

Given a general dynamical system (6.1)) an error system satisfying As- 
sumption 6.1 can be found by defining the stable inverse of the system. 

Definition 6.1: Given a bounded reference trajectory r(t), a pair of func- 
tions (2C (t) , c’ (t)) is said to a stable inverse of (6.4) if, for all t > 0, xr(t) - 
and cr (t) are bounded, xr (t) is differentiable and 

if(t) = f (xr,cr) 
r(t) = h(xr(t)). (6.11) 

Once a stable inverse has been found, the error system can be chosen as 

e = x@, x> = x - x’(t). (6.12) 

It is easy to see that this error system satisfies the two requirements in 
Assumption 6.1: 

l When e(t) = 0, we have x(t) = x'(t) and thus y(t) = r(t). 

l If e(t) is bounded for all t 2 0 then x(t) = e(t) + xr (t) is also bounded 
because xr(t) is bounded. In particular, 1x1 < lel+ Ix’(t)) = $+,#, lel) 
for all t, where clearly $J is nondecreasing with respect to its second 
argument, for each fixed t. 

Example 6.2 We now return to Example 6.1 and find the stable inverse 
of the plant for the reference trajectory r(t) = sin t. To this end, 
according to Definition 6.1, we seek to find two bounded functions of 
time xr (t) and cr (t) sa,tisfying 

2’1 = -XT1 + cr 
jy-2 zz xr2 - cr (6.13) 

sint = XT1 (t). 

In this case the stable inverse is easily found to be (xr (t) , c’ (t)) = 
([sin t, cos tlT, sin t + cost). Return now to the second error system 
defined in Example 6.1 and note that x(t, x) is precisely defined as 

e = x(t,x) = x - x’(t). 

n 
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Notice that the error system (6.12) has dimension n. Sometimes one 
ma,y be a%ble to find lower dimensiona, error systems satisfying Assump- 
tion 6.1. Once an error system has been chosen, the system dynamics 
ma,y be used to calculate the error dynamics. Given the system dynamics 
governed by 

Lit = f(x) + Yw-4 (6.14) 

the error dynamics become 

6 1 ax ax * 
dt+a22 

(6.15) 

= Q@: x> + P(x>u, (6.16) 

where 
PC > 2x x =&gx. ( > 

We will refer to (6.15) as the error dynamics. Since the plant dynamics 
were affine in the input, the error dynamics defined by (6.16) are also affine 
in the input. We will later use the error dynamics (6.16) in the development 
of adaptive controllers. 

6.2.2 Lyapunov Candidates 

One could directly study the trajectory of the error dynamics (6.15) under 
feedback control, u = Y(Z), to analyze the closed-loop system performance. 
Since the error dynamics are nonlinear in general, however, closed-form 
solutions exist only for a limited number of simple systems. To greatly 
simplify the analysis, a scalar Lyapunov candidate V : Rq + R is used. 
The Lyapunov candidate, V(e), for the error system, e = x(&x), is chosen 
to be positive definite with V(e) = 0 if and only if e = 0. Thus if a controller 
may be defined such that V is decreasing along the solutions of (6.15), then 
the “energy” associated with the error system must be decreasing. If in 
addition it can be shown that V -+ 0, then e --+ 0. 

A common choice for a Lyapunov candidate is to use 

V = e’Pe, (6.17) 

where P E Rqxq is positive definite. Assume that some control law u = V(Z) 
is chosen so that p < --iFi V + ka where ki > 0 and k2 > 0 are bounded 
constants. According-to Lemma 2.1, we find 

- 

Then using the Rayleigh-Ritz inequality defined in (2.23), we obtain 

I I e2 
V 

5x,i,o 

k2 
’ klXmin(P) ’ 

V(O) k2 
Xrnirl- klXrnin(P) 

e-W . (6.18) 
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Thus we see that studying the trajectory of V directly places bounds on lel. 
Using this concept, we will define controllers so that for a given positive 
definite V(e) we achieve v 5 -kr V + k;! (or a similar relationship) implying 
boundedness of V to ensure lel is bounded. Assumption 6.1 will then be 
used to find bounds for 1x1. 

6.3 Canonical System Representations 

To develop general procedures for control design, we will consider special 
canonical representations of the plant dynamics for the design model. If the 
dynamics are not originally in a canonical form, we will use the diffeomor- 
phism x = T(t) to obtain a canonica,l representation. Once the dynamics 
have been placed in a canonical form, we will find that an appropriate error 
system and Lyapunov candidate may be generated. 

We will find that the design of a controller for a nonlinear system will 
generally use the following steps: 

1. Place the system dynamics into some canonical representation. 

2. Choose an error system satisfying Assumption 6.1 and Lyapuonv can- 
didate. 

3. Find a control law u = V(Z) such that V 5 -k$ + kz, where ki > 0 
and k2 > 0. - 

As we will see, placing the system dynamics into a canonical form often 
allows for an easy choice of an error system and Lyapunov candidate for 
which an appropriate control law may be defined. We will find that the 
particular choice of the error system, and thus the Lyapunov candidate, 
will generally influence the specification of the control law used to force 
v < -klV + /?z. Since the goal of the control law is to specify the way in 
which the Lyapunov function decreases, this approach to control is referred 
to as Lyapunov-based design. 

6.3.1 State-Feedback Linearizabfe Systems 

A system is said to be state-feedback linearizable if there exists a diffeo- 
morphism x = T(t), with T(0) = 0, such that 

li: = Ax + B (f(x) + g(x)u) , (6.19) 

where x E R”, u E R”, and (A, B) form a controllable pair. The functions 
f : R” -+ R” and g : Rn --+ RmX’” are assumed to be Lipschitz and g(x) 
is invertible. For the state feedback problem all the states are measurable, 
and thus we may say the plant output is y = x. We will now see how 
to choose an error system, Lyapunov candidate, and controller for systems 
sa#tisfying (6.19) for both the set-point regulat,ion and tracking problems. 
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The Set-Point Regulation Problem 

Consider the state regulation problem for a system defined by (6.19) where 
we wish to drive 2 -+ r where r E R” is the desired state vector. The 
regulation problem naturally suggests the error system 

e=x-r, (6.20) 

which is a measure of the difference between the current and desired state 
values. This way if e + 0, the control objectives have been met. As long 
as (r[ is bounded, Assumption 6.1 is met since 1x1 < let + 1~1. Since T is a 
constant value, the error dynamics become 

6 = Ax + W(x) + Y(X)4 
= Ae + B(f(x) + g(x)u) + Ar (6.21) 

according to (6.19). We will now consider the Lyapunov candidate V = 
eTPe, where P is a symmetric positive definite matrix, to help establish 
stability of the closed-loop system. 

Consider the control law u = V(Z) (with x z x) defined by 

44 = 9-w C-f (4 + Ke) 7 (6.22) 

where the feedback gain matrix K is chosen such that Al, = A + BK is 
Hurwitz. With this choice of Y(Z) we see that the plant nonlinearities are 
cancelled so i: = Ake + Ar. If 6 = 0 when e = 0 (it is an equilibrium 
point) we will require that Ar = 0. Thus r = 0 is always a valid set-point. 
Depending upon the structure of A, however, other choices may be available 
(this will be demonstrated shortly in Example 6.3). 

The rate of change of the Lyapunov candidate now becomes 

P = eT(PAk + AlP)e = -eTQe, 

where PAk + ALP = -Q is a Lyapunov ma.trix equation with Q positive 
definite. 

It is now possible to find explicit bounds on lel . By using the Rayleigh- 
Ritz inequality defined in (2.23) we find 

Using Lemma 2.1 it is then 

I I e 

< - &in (62) T/’ - x - max (P> 

possible to show that 

(6.23) 
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where c = X rnin(&>/Xmax(P)- 

The above shows that if the functions f(z) and g(x) a)re known, then 
it is possible to design a controller which ensures an exponentially stable 
closed-loop system. We also saw that the error dynamics may be expressed 
in the form (6.16) with ~11 = Ae + Bf(s) and ,0 = Bg(lc). We will continue 
to see this form for the error dynamics throughout the remainder of this 
chapter. In fact, we will later take advantage of this form when designing 
a)da.ptive controllers. 

Example 6.3 Here we will design a satellite orbit control algorithm which 
is used to ensure that the proper satellite altitude and orbital rate are 
maintained. The sa#tellite is assumed to have mass m and potential 
energy Ic, /T. The satellite dynamics may be expressed as 

i = v 
Ic, v = z&J2-- 

mz2 
+z 

; = 2vw --+2L2 
z mx’ 

where r and v represent the radial position and velocity, respectively, 
while w is the angular velocity of the satellite [149]. Assume we wish 
to define a controller so that x -+ xd and w + wd where xd and wd 
are constants. 

The first step in developing a controller for this problem using the 
above feedback linearization approach is to place the system dynamics 
into the form (6.19). Letting x = [z,v,w]~ we find 

J: = Ax + B (f (2) + g(x)u) , (6.24) 

with 

and 

f 

A= 

r 47 
x) = zw2 2vrLz2 

i 

-- 1 s(x) = -- z [S A]* 
The error signal then becomes e = x -T, where r = [i&j, 0, i,)dlT. Since 
4r = 0, we may choose the control law defined by (6.22). All that 
is left to do is choose some K such that Ak = A + BK is Hurwitz. 
Choosing 

-;: -yr -“x , 
w 1 
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we find 
0 

Ah = -X; -2X, 0 , 

[ 

0 1 

0 0 -A, 1 
which is Hurwitz for any A,, A, > 0. The values of A, and A, ma,y 
be used to set the eigenvalues of the radial and angular channels, 
respectively. a 

The Tracking Problem 

For the tracking problem, we will define a diffeomorphism 5 = T(c) so t,hat 

k = A,x + bc (f(x) +9(x)4 7 (6.25) 

where (A,, b,) fits a controllable canonical form and y = x. To simplify the 
analysis for the tracking problem, we will assume single-input single-output 
systems. For single-input systems, we have 

and b, = [0, . . . ,O, 1 I T, so (6.25) is equivalent to 

. . . (6.26) 
L-in-1 = 2, 

. 
Xn = f(x) + dx)u- 

We will now define conditions which may be used to help define a diffeo- 
morphism, x = T(e), so that we may place a system into the form defined 
by (6.25). First assume that the system dynamics are affine in the control 
so that < = fE([) + g,&)u. Since x = T(t) we find 

li: = dT 
x (f&9 + SE04 (6.27) 

= i2,x + bc(f (4 + g(+)- (6.28) 

Using the definitions for A, and b, for a single-input system, 

dT 
xfc = JWK) + kf w>> (6.29) 

(6.30) 



Sec. 6.3 Canonical System Representations 145 

when u = 0, where T(t) = [5!‘i(J), . . . ,T,([)lT. Ma.tching the remaining 
terms we obtain 

dT 
FpE = beg(x) (6.31) 

0 
. 

- . - 

: - j 

0 - 
(6.32) 

9v-w 

If we find some diffeomorphism x = T(c) which satisfies 

aT; aEgc=O fori=l,...,n-1 

%SF#O 
7 (6.33) 

f3T. where Tit_1 = e fEfor1:=l,...,n--1,then 

f 
m - - 
-q-f< 

(6.34) 

and 
cl 

9= wgE. (6.35) 

The following example demonstrates how a diffeomorphism may be defined 
so that (6.33) is satisfied. 

Example 6.4 Consider the system defined by 

(1 = g + (2 

so that 

We will want to choose T(t) = [T&$T&-)] 

0 [ 1 1 * 

T such that 

with Tz = F ft. Since 

(6.36) 
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we choose ?Yi to be independent of &. Thus 

(6.37) 

The choice Tl ((1) = [ 1 satisfies (6.33) since then Tz(t) = [,” + (2 and 

Thus the diffeomorphism 

.x: = T(E) = [ 1 <2: t 
1 2 

transforms the system into 

Since 

(=7-‘(x) = x2yxf 7 [ 1 
we find Ir: = A, + b,(f (2) + g(x)t& where 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

f(x) = 2x122 + x1(52 - x:)7 

and 
g(x) = 1. 

A 

The reader interested in proving the existence of a diffeomorphism which 
places the state x = T(t) into the form (6.19) is urged to see the work in 

P@l- 
We will now study some examples in which control laws are defined for 

systems satisfying (6.25). We will see that different choices for the error 
system and Lyapunov candidate may produce rather different control laws. 
The first approach will use an error system similar to that used in the state 
regulation problem, while the second approach will define the error system 
ba’sed on a stable manifold. 

Example 6.5 In this example we will design a controller for (6.25) such 
that x1 + I. Since x i+i is the derivate of x;i, we will define the 
error system 

r 
7: 

e=x- 

I I 

. . (6.42) . 

+--1) 
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If [T’ 7’, * . * ) 7+-r) T 
1 I 

< ?, then 1x1 5 lel + F so Assumption 6.1 is 

satisfied. The error dynamics may now be expressed as 

e = i--f 

= Ace + b, (-T’“’ + f(x) + g(x)u) , (6.43) 

where we have used the structure of A, and b,. 

Now consider the Lyapunov candidate V = eTPe, where P is a posi- 
tive definite symmetric matrix to be chosen shortly. We now choose 
the control law u = V(X) as 

v= 
+) - f(x) - kTe 

iI(x) 
? (6.44) 

where 

(6.45) 

is Hurwitz with k = [kr , . . . , &] T. With this control law, e = Ake so 

v = eT(PAk + AlP)e. (6.46) 

Choosing P to satisfy the Lyapunov matrix equation PAk + ALP = 
-Q, where Q p t is osi ive definite, one obtains 

V = -eTQe, 

so that the closed-loop system is stable. A 

As an alternative to the “traditional” approach (shown above) to the 
tracking problem for state-feedback linearizable systems, one may define the 
error system using a stable manifold as shown in the following example: 

Example 6.6 Here we will consider the tracking problem for the single- 
input state feedback linearizable system (6.25) where we wish to drive 
x + r(t). The error system may be defined using a sta’ble manifold 
so that e = x(t,x) where 

x(t, x) = k1 (x1 - r) + - - - + k,el (x,,-~ - r(-) + x, - r-), (6.47) 

and 

I 

-k,- 1 
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is Hurwitz (we also say that the polynomial sn-’ + k’n-l~n-2 +. . .+kr 
is Hurwitz). For now we will simply assume that this error system 
satisfies Assumption 6.1 and continue the control design so that e --+ 
0. We will then show that defining the error system using a stable 
manifold does indeed satisfy Assumption 6.1. 

Taking the derivative of e we find 

& = kl(X2 - f) + . ’ ’ + kn-l(2.n - Ten--l)) - rcn) + f(x) + g(x)u 

so e = a@, x) + ,8(x), with 

a(t,x) = -r (“) + kl(X2 - +) + . . ’ + kn-l(Z, - rcnM1’) + f(X), 

and p(x) = g(x). N ow consider the Lyapunov candidate V = fe2 so 
that 

ii = e (a@, 2) + /3(x)74) - (6.48) 

Using the control law u = V(Z) with 

Y(Z) = 
-a(t,x) - tse 

PC > 
7 

2 
(6.49) 

and K > 0 we find v = -Ke2 = -2df so e = 0 is an exponentially 
stable equilibrium point (the trajectory converges to the manifold 
&(t) = {x E R” : x(&x) = O}). 

We will now show that bounding lel implies that 1x1 is bounded. It is 
rea*sonable that bounding lel should bound the plant states since 

(Y-4(4 = 
1 

sn--l + I?,-lP-2 + * - * + kl e(4T 

with the denominator poles in the left half plane. To show that As- 
sumption 6.1 is satisfied when using the error system defined by (6.47), 
first let 

21 - r 
. 

P= 

[ I 

. 7 . 
Xn-1 - T (n-2) 

so b = Lp + be, where b = [O,. . . ,O, l]’ E R”? Since L is Hurwitz, 
we may use (2.91) and conclude that p(t) 5 p!+&, lel), where 

I oi+s 
t 

$J p = cle-c2t e c1e -c2(t--7) le(7>ldq (6.50) 
0 

and cr, c2 are chosen to satisfy leLtl 5 ci emcat (one may use the 
results of Example 2.16 to calculate values for cr and ~2). Using the 
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definition of the error system, we find 

where < = e - kl (x1 - r) - . . . - kn-l(xn-l - T(~-‘)) SO 

Thus we can set 

$b(t,e) = (I+ lk~l +-- + Ian-oJut, I4 + lel + f, 

which satisfies Assumption 6.1. n 

From the previous example, we see that when a stable manifold is used 
to define an error system, it may not be possible to define a static bounding 
relationship between the error system and system states. This occurs since 
it is possible for e = 0 as the state trajectory slides along the surface S, 
even though y # r(t) due to the system initial conditions. Notice that e E R 
in the above example, while e E R” in Example 6.5. Either choice forms a 
valid error system for the tracking problem. 

It should also be noted that the controllers defined by (6.44) and (6.49) 
in the previous examples are identical, up to the choice of the gains on 
the various error terms. This is because the feedback terms are linear in 
both cases, and thus each approach simply suggests different coefficients be 
used. We will later see that it may be possible to add nonlinear feedback 
terms based on the definition of the error system and Lyapunov candidate 
to improve closed-loop robustness. In these cases the resulting control law 
may not be as similar. 

6.32 Input-Output Feedback Linearizable Systems 

Consider the system 

I = f&9 + g&bJ (6.51) 

Y = w7 

where < E RnSd with d 2 0. The system is said to have strong relative 
degree 12 if 

L,, h(c) = L,,Lf, h(J) = . . . = L,,LTe-2h(c) = 0 

and L,,Lf( *-‘h(c) is bounded away from zero. Here L,, h is the Lie derivative 

defined as L,, h z $gt and L& h = L,, (L,, h) . Consider the change of 
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coordinates [qTxTIT = T(c) with q E Rd and II; E Rn. We will consider the 
choice of the diffeomorphism T = [Tl, . . . , T,+dIT such that T(0) = 0 aad 

for i = l,...,d and 

Td+l = h(J) 

Td+2 = Lf, f-40 

T n+d = LT<-‘h(J). 

With this change of coordinates, the system dynamics become 

(j = *(q, 4 
551 = x2 

. 

. 

in-1 = 2, 

X9-t = fkl74 + 9(44+ 

(6.52) 

with the output y = xi which is said to be in input-output feedback lin- 
earizable form. Notice that f (q, x) = Lye h(J) and g(q, x) = L,, LTcwlh([), 

where < = Tel[qT,x T T ] . If d = 0, then the system is said to be simulta- 
neously state-feedback linearizable and input-output linearizable (which is 
in the form (6.25)). It is assumed that both the q and x state vectors are 
measurable and that the functions 4, f, and g are Lipschitz. The dynamics 
of 4 = @(CL 0) are referred to as zero dynamics of the system. The next 
example provides a motivation for this definition. 

Example 6.7 Consider the case where the states q, x define a linear sys- 
tem with transfer function from plant input-to-output given by 

P(s) = k 
sd + b&l.sd-l + . . . + by 

Sn+d + Un+d-lSn+d-l + . . . + ao. 

Then a minimal realization may be defined with 

(6.53) 

A=[ u;Q ..- :n+dall B=[ _j? (6.54) 
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and C = [bo,-..,bd-r,l,O ,... 01. 

Since y = ~1, we see that 

Xl = c< = b&l + . . . + bd-&d + cd+1 

. (6.55) 

Xn = CAnwl( = bO(n + - - - + bd-lcn+d-l + C$n+d. 

We are now free to define the remaining d states so that [& xTIT = 
T[ where T E R(n+d) ’ @+‘) is invertible. Here T is the transformation 
matrix from the < to x, q states. We thus choose 

Ql = 6 

qd = cd 

so that T is a lower triangular matrix (and thus has full rank). It is 
easy to show that T is lower triangular since 

Notice that 

41 = q2 

. 

. 

(id = qd+l = [d+l = xl - bO<l - -. . - bd-&cl, 

where we have used the definition of xi in (6.55). Thus 

(6.56) 

We see that with 4 = A4q + B,x (where A, and B, are defined by 
(6.57)) th e ei g envalues of A, are equivalent to the zeros of P(s). It 
is for this reason that 4 = +(q, 0) are often referred to as the zero 
dynamics of the system. n 
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From (6.57) we see that even if a controller is defined so that the x 
states are bounded, we still have q --+ oo if 4 = A4q is not a stable system. 
Because of this, it will be necessary to require additional conditions upon 
the dynamics governing the q states to ensure stability. In particular we 
will assume the q-subsystem, with x as an input, is input-to-state stable, 
so that there exists some positive definite V4 such that 

(6.58) 

(6.59) 

where ~~1 and yQ2 are cla’ss Ic,, and yq3, $ are class--K. When x = 0 
the input-to-state stability assumption (6.59) becomes & 5 -y&yl), for 
all g, thus implying global asymptotic stability of the origin of the zero 
dynamics 4 = 4(q, 0), which are then said to be minimum phase. With these 
assumptions, it is possible to design a controller by ignoring the trajectory 
of the zero dynamics using the procedure for state-feedback linearizable 
systems. The following theorem guarantees that if a controller is designed 
to stabilize the x dynamics, then the q dynamics are also stable if they 
satisfy (6.58)-(6.59). 

Theorem 6.1: Let e = x(t,x) be an error system satisfying As- 
sumption 6.1. Assume there exists a controller u = Y(Z) and Lyapunov 

function V(e) such that re(lel) < V(e) with ye class-Koo and v  < 0 along 
the trajectories of (6.52) h w en ? 2 VT assuming v  is well definid for all 

4 E R”, x E R” and t E RS. If the q-subsystem, with x as an input, is 

input-to-state stable, that is, there exists some positive definite Vn such that 

(6.58)-(6.59) hold, then the controller u = Y(Z) ensures that x and q are 
uniformly bounded. 

Theorem 6.1 may be proven by first showing that the error system 
is stable (independent of q), and then showing that the q dynamics are 
therefore bounded. Notice that the above theorem only ensures uniform 
boundedness of the trajectories. The properties of the e states may be 
used to prove stronger stability results. If for example, we are ensured that 
v 5 -kV, then e = 0 is an exponentially stable equilibrium point (though 
lql may still only be bounded). The following example demonstrates how a 
controller may be defined for a system with nonlinear zero dynamics using 
feedback linearization. 

Example 6.8 A nonlinear system is defined by 

41 = 1 - q1 - q; + q1xT (6.60) 

kl = qf+u, (6.61) 

with y = xl. If we wish to drive x1 -+ 0, then consider the error 
system e = x1 and the Lyapunov candidate V = $e2. Using the 
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concepts of state-feedback linearization, we choose u = V(Z) with 

u(q,x) = -qf - Ke (6.62) 

so that p = -Ke2 (here, x = [xi, qllT). If it can be shown that q1 
is bounded so that v is well defined, then e = 0 is an exponentially 
stable equilibrium point. 

From Theorem 6.1 we now simply need to show that the q dynamics 
satisfy (6.58)-(6.59). Let Vq = iqf which satisfies (6.58) with ~~1 = 
yq2 = qt/2. Then 

T/b = 41 (1 - 41 - q1” + q1xf) (6.63) 

< - -4; + 1411 - 4: + q;lxl12. (6.64) 

Since -2x2 rt 2x9 < -x2 + y2, 
-q;2 + qflxl I2 5 ~$74. Thus 

we find -qf + 1411 5 -4; /2 + l/2 and 

Ti4 I 
1 1x1 I4 -$+-+- 

4 ’ 
(6.65) 

so T/b 5 -V4 +$(x) where q(x) = (2 +x$)/4. Using Theorem 6.1, we 
are ensured that q1 is uniformly bounded so e = 0 is an exponentially 
stable equilibrium point. A 

The systems considered thus far are in a form so that the plant non- 
linearities may be easily cancelled by the input. That is, we are able to 
use feedback to force the closed-loop system to act as a linear system with 
arbitrary eigenvalues using traditional pole placement techniques. We will 
now consider a special class of feedback linearizable systems in which, to 
guarantee global stability, it is not necessary to cancel the plant nonlin- 
ea’rities and assign the closed-loop poles using the input. The particular 
structure of the system is exploited to achieve robustness in the presence 
of uncertainties, as we will see in what follows. 

6.3.3 Strict-Feedback Systems 

A single-input system is said to be in pure-feedback form if there exists a 
diffeomorphism, x = T(c), which renders the system dynamics as 

kl = fl (Xl > 22) 

. . . (6.66) 

&-1 = fn-l(X) 
. 

2, = fn(X7 U>, 
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where each fi is Lipschitz. Since C& only depends upon the signal vector 
[Xl 7 - * * ? xi+11 T for i = l,..., n - 1, this system has a triangular structure. 
A special class of pure-feedback systems, called strict-feedback systems, is 
found when each successive state and control input is affine so that 

21 = h(a) + gl(=cl>Q 

. . . (6.67) 

&l = fn-l(~1,...,~~-l)+gn--l(~l,.--,~n-l)~n 
. 

Xn = fnCx> + iln(x)U7 

where each gi is bounded away from zero. Before defining a controller suit- 
amble for (6.67), we will first present the concept of integrator backstepping 
summarized in the following theorem: 

Theorem 6.2: (Integrator Backstepping) Let e = x(&x) be an 
error system satisfying Assumption 6.1 with error dynamics 

e = a(t,x) + P(x)u, (6.68) 

whereu E R. Letu= u(z) be a continuously differentiable globally stabi- 
lizing controller such that the radially unbounded Lyapunov function V(e) 
satisfies 

V<-klV+k2 - 

along the solutions of (6.68) when u = v(z), where kl, k2 are positive 
costants. Then there exists a stabilizing controller v  = u,(x, q) for the 
composite system 

& z 
4f, 4 + P(x)q 

lj = 21, 

where q E R and v  is a new input. 

Proof: We will introduce a new error term e, = q - U(Z) and Lyapunov 
candidate 

VC(e,) = V(e) + iei. (6.69) 

for the composite system with e, = [eT, e,lT. Taking the derivative, we 
find 

I& = gi(u(t7 4 + Pca4 - v(z) + Y(Z))) + e&j - ti). (6.70) 

Since q = e, + u, we find 

i/, < -klV + k2 + 
dV 
,eP(z)e, + e&c - q, (6.71) 
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where u = v&,q). Choosing 

dV kl 
v, = ti - -P(x) - -eq 

ae 2 
(6.72) 

results in 

+v, + k2. (6.73) 

This ensures that Vc is bounded so the new error system e, is also bounded. 
n 

In the derivation of the proof of Theorem 6.2 we found a sta.bilizing 
controller satisfying the theorem. It should be emphasized, however, that 
(6.72) is just one of many controllers which satisfy Theorem 6.2. In the 
following example, we will now use the techniques presented in the proof 
of Theorem 6.2 to create an error system and stabilizing controller for the 
system defined by (6.67). 

Example 6.9 Consider the strict-feedback system defined by (6.67). We 
will see that a procedure may be used to construct an appropriate 
error system and stabilizing controller using the techniques employed 
to prove Theorem 6.2. 

zl subsystem To create a stabilizing controller, we will begin by 
considering the subsystem defined by 

il = f&h) + g1(x1)v, (6.74) 

where v is a virtual input. If we wish to force xi to track the reference 
signal r(t), then we will define the first component of the error system 
as er = xi - T. Using (6.74) we find the error dynamics to be 

61 = -7' + fl (Xl) + g1 (11;1)v. 

A Lyapunov ca.ndidate for the subsystem may then be defined as 
r/l = $ez so that the feedback linearizing control law 

V = Yl(X1) = 
7: - f&cl) - fw 

91 (Xl ) 

ensures Vl = -me: = --thcV~. Here xi = [xi, r, +I’. Notice that 
e1 = --el when v = Z&Q). 

x2 subsystem We will now use the procedure used to prove The- 
orem 6.2 to design a controller for the new subsystem 

kl = fl (Xl) + 91 (x1)x2 

iz = v, 
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where ‘u is a new virtual input. Now consider the new error variable 
e2 = 2~2 - v&r). Using the definition of the 22 subsystem, the error 
dynamics for er become -7: + kr = fr + g&2 - vr + ~1). The overall 
error dynamics are therefore 

GE 

[ 

--Ke1 + g1e2 

I u-iq - 
(6.75) 

A new Lyapunov candidate is now defined as V2 = VI + ie$ so 

T/i = el [&I] + e2 [t$] 
- - -KeT + elgle2 + e2 [v - I&]. (6.76) 

Therefore, we let v = ~&23) with 23 = [XI, 25, r, +, FIT and 

(6.77) 

so that v2 = -K(eT + ez) = -2d4. 

When the subsystem is defined by 

j:l = flbh) +g1(z1)z2 

252 = L&l 7 22) + 91 (Xl) II;2)u, 

the controller ~2 = (-f2 +&)/g2 ensures that $5 = -2tcV2. 

X~ system This procedure may be repeated until a controller for 
the system (6.67) is designed. Let ei = xi - Yi-r(zi-r), where 

- fi + i/i-l - ei-lgi-1 - tO3i 
v, = 

Si 

for i = l,... , n - 1. With this definition, the error dynamics for the 
system become 

! 

-ml + gle2 0 * &= I[ 1 + : u. (6.78) 
gn-2en-2 - Ken--l + gn-len 0 

-6-b-1 + f&) Sn Cx> 

Notice that the error dynamics again fit the form e = a(t, x) + ,B(x)u. 
Defining the controller 

u = u(z) = 
-fn(X> + fin-1 -en--l&~--l - Ken 

Sn Cx> 

(6.79) 

renders I& = -2KVn SO e = 0 is an exponentially stable equilibrium 
point. n 
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The above example showed that the error system can be driven to zero. 
We have not shown, however, that bounding ]e] will place bounds on 1x1 
as required by Assumption 6.1. The following lemma is often helpful in 
proving the existence of bounds on [s]. 

Lemma 6.1: If f : R” --+ R is locally Lipschitx with constant L when 
x E D, then there exists some smooth class-K function y  and d E R such 
that If(x)! 5 d + r(lxl) when x E D. 

Proof: Since If(x)1 - If(O)1 5 If(x) - f(O)1 for all x, we find If(x)! - 

If( I Ll I7 h x w ere L is a Lipschitz constant. Since 2xy 5 x2 + y2 we find 
If(x)l--If(O)1 5 lx12/2+L2/2. Lettingd = ]f(0)J+L2/2andy([x]) = lx]“/2 
proves the lemma. 

The following example shows how Lemma 6.1 may be used with other 
error systems defined using integrator backstepping. 

Example 6.10 Consider the error system defined by 

el = XI 

e2 = 22 +92@2) 

. (6.80) 

en = Xn + gn(X), 

where ??i = [xl,. . . xilT and each gi(%i-1) is locally Lipschitz. Since 
1x1 1 = ler I, there exists some ~?r and class-K function yr such that 
1x11 I h+yl(lell). A ssume that there exists ki-r and yi-1 such that 
Ix~-11 5 ki-r + yi-r(]~i-r() where Ei = [er,. . . ,eilT. Then since gi is 
Lipschitz, there exist some constant di and class-/C function $i such 
that 

IXil I [%I + Igi( 

i lei 1 + di + $i (Izi-1 I) 

5 leil + 4 + $i(k-1 + ~i--l(l~--11)) = ci(Ei) 

when x E S,. Since [i is Lipschitz, we find there exist some constant 
Ici and class-K function yi such that ]xi I 5 ki + ri( ]Ei 1) for all i = 
1 1 - - - 7 rz by recursion. Also 

(6.81) 
i=l i=l 

Since 77, is Lipschitz, there exists some constant k, and class-K func- 
tion yk such that 1x1 5 k, + TX(]e]) when x E &. Assumption 6.1 
thus holds for this choice of error system. n 
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Steps similar to the ones in the previous example may be taken to 
include the reference trajectory. The example demonstrates that bounding 
the error does naturally bound the state when an error system is developed 
using the integrator backstepping approach. To find more explicit bounds 
on the state, one must consider the particular form of the error system. 
Bounds for each of the states may then be achieved by first considering 
the bound on ~1. Once the bound on xi has been found, bounds may be 
established for x2, and so on. 

A multi-input strict-feedback system may be expressed as 

h,l = fi,l(~l,l) + gl,l(~l:l)Xl,a 

j:l,ql--1 = f l,q1--1 G,qrl ( > + Yl,q~-l(~l:q1--1)Xl,ql 

il,q1 = flm (4 + 2 &ql c-Q% 

i=l 

(6.82) 
. 

xm,l = fm,l Czm,l > + $lm,l (gm,l )Xm,2 

. 

xm,qm-l = f m,q,--1 xm,qm- (- 1) + Qm,q, -1 C3rn,qm -l)Xm,q, 

. 
xm,qm = f m,h Cx> + 2 d&q, (X>Ui 

i=l 

with u = [ui, . . . , UmIT E R”. It is assumed that 

G(x) = 

is nonsingular for all x E R” with n = ci qi the number of states in the 
system. A controller may be designed for (6.82) such that xi,+ --+ r&) 
using integrator backstepping starting with each xi,i for i = 1,. . . , m. Let 
ei,j = xi,j - Vi,j-i for i = l,..., m andj = l,..., qi with 

Yi,j = 

-fi,j + tii,j-1 -  ei,j-1 - Kei,j 
.  

Si,j 

m Qi 2 
If ’ = Ci=l Cj=l ei,j7 then 

p = 1 m 

ii c[ 
9i,qi-lei,q;-lei,q, 

i=l 

(6.83) 
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Qi -1 1 
+ ei,q; (-i/i,qi-l + fi,qi + [9i,q; (2>~ * . - 7 grq; Cx)] u, - x nef,j . 

j=l 
J 

Letting u = Y(Z) with 

-fLql + h,ql-i - el,,,-1 - Kel,ql 
u(z) = G-‘(x) . 

I 

(6.84) 
- 

f nvh + fi772,q,---1 - em,q,4 - Ke,,qm 

renders v = -2r;V, so e = 0 is an exponentially stable equilibrium point. 
So far each control design technique has assumed that the equations 

used to define the system dynamics are known. The remainder of this 
chapter will be devoted to techniques which may be used to enhance the 
closed-loop system robustness to allow the control of systems which possess 
various degrees of uncertainty. 

6.4 Coping with Uncertainties: Nonlinear Damping 

As shown in the previous section, it is possible to define meaningful error 
systems for each of the canonical representations so that the error dynamics 
become 

e = a(t, x) + P(x)u, (6.85) 

and a stabilizing controller u = Y(Z) exists. If the control law u = Y(Z) is 
defined such that v < -41 V + Jc2, for a positive definite Lyapunov function, 
V(e), then it is possible to include an additional stabilizing component to 
increase the robustness of the closed-loop system to compensate for addi- 
tional uncertainty. Consider the control law u = V(Z) + V&Z). Then 

v = g [c&x) + P(x) (u + Ud>l* 

Since V 5 -klV + Ic2 when u = u, we find 

Thus as long as z& E R” is chosen so that 

W 
-k++‘d < 0, 
de 

(6.86) 

the value of V decreases more quickly. This type of control action is often 
referred to as nonlinear damping due to its ability to “remove energy” from 
the error system. 
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6.4.1 Bounded Uncertainties 

The choice of vd is often governed by the form of possible destabilizing 
uncertainties in the system and the desired type of control action (e.g., do 
we require a smooth control law?). Consider designing a controller for a 
multi-input system with error dynamics 

6 = a(t, 2) + P(x)(u + A@, x)), (6.87) 

where IA@, x)1 < p represents some bounded uncertainty with p > 0 a 
known constant. 

If u = v + i$j where v is a control law defined for the case with a E 0, 
then the derivative of the Lyapunov candidate becomes 

Recall that here we are assuming that there exists some Lyapunov function 
V and control law u = V(Z) such that v 2 -IqV + k2 when A E 0. Let 

P = ($$%,)T. Consider the nonlinear damping term vd = -psgn(p) 
where y = sgn(x) is defined element-wise with 

1 
1 Xi>0 yi = -1 Xi<0 * 

With this definition for the nonlinear damping term, we find 

T;/ 5 -hV + k2 - pe I/q + $(xpqt,x) 
i=l 

< - +v + k2. (6.90) 

The addition of the nonlinear damping term &j preserves the stability 
properties of the closed-loop system. Since v,-j is discontinuous, however, 
one may no longer be guaranteed existence and uniqueness of solutions. 
This issue ha,s been addressed in a number of papers, largely in the variable 
structure control literature [204, 227-j. To avoid the discontinuity issues, it 
is possible to choose the “smoothed” version of the nonlinear damping term 

($$-m)’ 
vd = -pl$jp(x)l +c’ 

where c > 0 is a small constant. Using (6.91), we find 

(6.91) 
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Since iA@, x)1 < p for all t, notice that - 

I~PWI Ti -c -k,V+k,+cp a$? - 
(T&w( + c 

< - +v + k2 + cp. (6.92) 

When V > (k, + cp)/kl, we find i/ < 0, thus V is bounded. Making c 
small helps reduce the size of the space to which V will converge. On the 
other hand, reducing c will increase the feedback gain when F/?(x) is near 
zero, possibly resulting in “chattering” when implemented in, for instance, 
a discrete-time system. 

6.4.2 Unbounded Uncertainties 

So far we have designed nonlinear damping terms for the case when the 
uncertainty may be overbounded by a constant. Now consider the multi- 
input system 

e = c&x) + P(x)(u + A(t,x)), (6.93) 

where IA@, x) 1 5 p+(x) with p an unknown constant and ?I) : RP -+ R is 
a known nonnegative function. It is assumed that q!~ is bounded for any 
bounded x E R”. In this case we may let u = v + vd to find 

v  < -kg + k2 + 
dV 

- z,+$b’d + n@~ 2>>, (6.94) 

where A may grow without bound if x --+ 00. Now consider the stabilizing 
feedback term - 

ud = -r) (6.95) 

with q > 0. The time derivative of the Lyapunov candidate becomes 

ii -c -kg + IiT2 - 7j - 2l)%(z) + g/(x)A. (6.96) 

Since l&x)1 2 p$~(x>~ we find 

T” < -kJ + k2 - - (6.97) 

Using -xTx If 2xTy < ~J~?J, notice - 

l.<-klV+k2+$ - (6.98) 

If V > (k2 + $) /kl, then v < 0. This guarantees that V is bounded and 

the closed-loop system is stable. 
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6.4.3 What if the Matching Condition Is Not Satisfied? 

Up to this point, we ha#ve presented a number of techniques which ensure 
that if an uncertainty appears at the same location as the control input, 
then it is possible to define a stabilizing controller using nonlinear damping. 
Through the use of backstepping, it is also possible to stabilize systems even 
if such “matching conditions” are not satisfied. This is demonstrated in the 
following example: 

Example 6.11 Consider the system defined by 

il = 22 + n(t,xl) 

i-2 = 2.4, 

where &xl) 5 pli/(xl) with p an unknown bounded constant and 
$ is a known smooth nonnegative function. Assume that we want to 
drive x1 --+ r(t), so define the first component of the error system as 
el = x1 - r(t). If the xl subsystem were defined by 

21 = qt,x> + v, 

where v is a virtual input, then we could use nonlinear damping to 
stabilize the system. In particular, we may choose the Lyapunov 
candidate VI = $eT for the xl subsystem and the control law v = 
vi (~1) with 

zq(x1) =+- Kel - 77ti2(x1 >el 

so that 

VI = el [-nel - qq2el + A(t,x)] (6.99) 

< P2 
- -r;ef + -. 

4rl 
(6.100) 

Using the backstepping method of Theorem 6.2, we now choose the 
second component of the error system as e2 = 22 - ~1 and a new 
Lyapunov candidate V = VI + $e$. Taking the derivative we find 

Q = el[+ + A(t, 2) + (x2 - v1 + vl)] + e2[u - till 

< P” 
- -nef + - 

4r7 
+ ele2 + e2[u - z&]. (6.101) 

If i/i = % + $(x2 +Lqt,x1)) were known, then one could directly 
define the control law 

au1 
Iv = dt + 8x1 *(x2 + &,x1)) - el - ~e2, 
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which stabilizes the system. Since A is unknown, we will instead use 
a control law which only cancels the known components of i/i. In 
particular choose u = v(x~) with 

au1 au1 
y(z2) = - + -x2 - el - m32 - w(z2)e2, 

at ax1 
(6.102) 

where W(Q) > 0 is an additional nonlinear damping term to be de- 
fined next. 

Notice that with our choice for the control we obtain 

P" 
V < -Kef - Kei + - + e2 - 

47 [ 
-w(z2)e2 

h 
- g-&n(t,2,) 7 

I 

( 
2 

so choosing w = q 2 we obtain 

v<-r?dJ+$. - (6.103) 

This ensures that e is uniformly ultimately bounded. A 

6.5 Coping with Partial Information: Dynamic Normalization 

So far we have developed controllers for plants where all the states are 
assumed to be measurable. Here we will study a special cla(ss of systems 
where some of the states are not measurable, but where a dynamic nor- 
malizing signal may be created to compensate for their effects. Output 
feedback techniques will be presented later in the book in which provide an 
alternative solution. 

Consider the system defined by 

where q E Rd, x E R” and u E R”. The uncertainty A E Rm is assumed to 
satisfy 

In(t, QT 41 L P+‘(lqL 4 (6.104) 

with p E R an unknown consta,nt and $J : R+ x R” + R+ a known non- 
negative function which is nondecreasing with respect to 141. If q were 
measurable, then it would be possible to use nonlinear damping to stabilize 
the x dynamics. Here, we will consider the case where q is not assumed to 
be measurable. To stabilize the system, we will use the properties of the q 
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dyna#mics to define a dynamic signal which may be used to dominate the 
effects of q. 

If the subsystem 4 = $(q, II;), with x as an input, is input-to-state prac- 
tically stable, then, there exists some positive definite &(q) such that 

where c > 0, d 2 0, and yqi, ~~2, y are class-K,. Using (6.106) it is possible 
to define a scalar dominating signal 

q = --CT) + y(lxl) + d (6.107) 

such that 7 2 Vs assuming that q(O) 2 &(O). 
Assume that the error system e = x(t, z) has dynamics described by 

e = a(t, 2) + P(x) (A(& q, 2) + u) - (6.108) 

It is then possible to use concepts from nonlinear damping and the dynamic 
normalizing signal q(t) to define a stable controller assuming there is a 
known control law v a controller which stabilizes the error dynamics when 
AGO . 

Theorem 6.3: Let e = x(t, x) be an error system satisfying Assump- 
tion 6.1 with dynamics described by (6.108). Let u = u(x~) be a stabilizing 
controller with a radially unbounded Lyapunov function V(e) such that 

v< -i&v+lQ - (6.109) 

along the solutions of (6.108) h w en A E 0. If  A@, q,x) satisfies (6.104) 
and the q-subsystem is input-to-state practically stable, then there exists 
a stabilizing controller u = u,(z) with x = [z~,~]~ where v  (defined by 
(6.107)) is a dynamic dominating signal. 

Proof: Letting Y&Z) = v + Y$, the derivative of V becomes 

Ti 5 +I/ + k2 + z,‘?(x) (a@, 4,x) + vd) - (6.110) 

From (6.105) we see that lql < r,l’(&) 5 r,l’(r& If - 

vd = -7 
with y > 0, we obtain 

(6.111) 

P -c -k$+k2+ 
av 

- ,eP(x)vd + P gi3(x) $6’,l’($,~) (6.112) 
I I 

(6.113) 
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which is independent of q. Thus (6.105)-(6.106) together with (6.113), 
imply that e and q are uniformly ultimately bounded. I 

6.6 Using Approximators in Controllers 

So far we have not incorporated a fuzzy system or neural network into the 
design of the control law. Rather we have only considered more classical 
approaches to the controller design. When incorpora,ting approximators, 
one often needs to consider 

1. The approximator error, and 

2. The space over which the approximation is valid. 

As we will see, the nonlinear damping technique is usually capable of com- 
pensating for approximation errors. Thus far, however, we have not had 
to consider cases where the error (or possibly the plant state) must remain 
within some predefined space for all t. We will find tha’t by proper choice 
of the system initial conditions and controller parameters we are able to 
confine the state trajectory so that the inputs to an approximator remain 
within some valid subspace. 

6.6.1 Using Known Approximations of System Dynamics 

Often the plant dynamics are approximated using experimental data or first 
principles. If f ( ) x is a function used to define some component of the system 
dynamics, then assume that F-(x,8) is an approximation of f(x) available 
a priori for control design. The parameter vector 6 E RP is chosen such that 
the approximation error w(x) = F(x, 6) -f(x) is bounded with lw(x)l 2 M/ 
for all x E R”. If such an approximation is made, it is possible to design 
a controller assuming that .?(x, 6) = f(x), and then include a nonlinear 
damping term to compensate for the effects of the approximation error as 
shown in the next example. Later, we will relax the global boundedness of 
the approximation error by only requiring it to be bounded on a suitable 
compact set. 

Example 6.12 Consider the single-input feedback linearizable system 

. . 

. (6.114) 

Lit,-1 = 2, 

Xn = f(x) + u, 

where y = xi is the output which we wish to drive to y + r(t). 
Assume that the function f(x) is not known, but an approximation 
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of f(z) was obtained using experimental data. We will also a’ssume 
that the approximator .F(x, 0) is defined such tha,t the approximation 
error w(x) = F(x$) - f ( ) * b x 1s ounded by Iw(x)I 5 W for all x. 

To define a controller using the static approximator, F(x, 6), we will 
first define an error system using a stable manifold. Let e = x(t, x), 
where 

x(&x) = kl(xl -r) +- -+/kn-l(x,-l -dn-“))+xn -dn-‘) (6.115) 

and 

is chosen to be Hurwitz. The error dynamics then become 

i! = kl(X2 - q + - - - + kn-l(X, - T+-q + f(x) - T(.Iz) + u. 

We will now consider the Lyapunov candidate V = ie” so that 

V - - 
dV 

ae ( h(x2 - +... + Ll(Xrl - ,WJ) + .f( > X - y(n) +u . 1 
Assume for a moment that f(x) is known. Then it is easy to define 
the control control law u = Ye with 

uf(Z) = 44x2 - ?) - - * * - k&l (xn - 7+--l)) 

-f(x) + dn) - Kg 

so that p = -2tcV and e = 0 is an exponentially stable equilibrium 
point. 

Since f(x) is not known, we will instead consider the control law 
u= u(z) = UJT - r$& where 

u&z) = 41(x2 - f) - - - - - l&1(2, - d-l)) 

- .7--(x,6) + dn) - Kg, 

so that the functional form of VF is based on uf. The nonlinear 
damping term -r&$ = -r)e is added to compensate for the mismatch 
between f(x) and .F(x,@). 

When V(Z) is used as the control law, we find 

- - -2kV + e (UJI - uf - qe) . (6.116) 
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Since lug - ~fl = IF - fl = lw(lc;>[ 2 VV we obtain 

V 5 -2d - qe” + Wle[ 

W” 
< -2&V + -. - 

47 
(6.117) 

Thus V and e are bounded. Since v < 0 when V > g, we find V 

a’symptotically converges to the positively invariant set V 5 g. By 
making K and/or q large, we see that the invariant set may be made 
arbitrarily small. A 

In the previous example, we found that V converges to g. Recall 
that W describes the approximator error. Thus a better approximation 
will cause W to be smaller so that the ultimate bound will decrease. 

6.6.2 When the Approximator Is Only Valid on a Region 

Up to this point, we have assumed that the dynamics of the plant model 
are valid for all J: E R”. We will now use the properties of the Lyapunov 
function to find bounds on the trajectory of II: when the closed-loop system 
is stable. One may need to complete such an analysis if 

1. An approximator is used that is only valid on a subspace, or 

2. The system signals must remain within critical limits for performance 
or safety reasons. 

If a control law may be defined such that II; E Sz for all t, then it is not 
required that the plant model be accurate outside Sz. This is particularly 
important when an approximator is used in the design of a controller since 
in general, an approximator is only valid on some region. To place bounds 
on lel and thus on [zl we will study the properties of the Lyapunov function. 

Consider for a moment the case where one wishes to design a controller 
for the scalar system 

k = f(x) + 24, (6.118) 

where f(z) is some nonlinearity which may be approximated by .?(z, 0) 
when x E S,. Here x is a vector of measurable signals, 8 is a vector of 
approximator parameters (such as weights in a neural network), and S, is 
the space over which the approximator is defined to reasonably represent 
f(z). We will assume that if it is possible to confine e E B, where B, is 
the ball defined by B, = {e E Rq : lel < T>, then 2 E S,. The goal of the 
control system will be to at least ensure that e E B,, where B, C B,. For 
the system defined by (6.118) one may then choose the control law u = Y, 
where 

v = .F(z$) - Ke, 
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and the error is defined by e = z so e -+ 0 implies x: --+ 0. 
To use an approximator which is only valid on x E Sz, one must first 

determine some B, so that e E B, implies x E S,. If S, is based on the 
range over which e may travel (i.e., the approximator has e and an input), 
then it is usually easy to find some B, such that e E B, implies x E S, 
as long as S, contains the origin. If S, specifies the range over which the 
state x may travel (i.e., the approximator has x as an input), then one may 
use Assumption 6.1 to determine the range over which e may travel and 
still ensure that the state is confined such that x E Sz. These cases will 
be further investigated in the examples throughout the remainder of this 
book. 

The following theorem may be used to place bounds on lel using the 
properties of the Lyapunov function. 

Theorem 6.4: Let V : Rq --+ R be a continuously differentiable func- 
tion such that 

rdlel) 5 V(e) L rz(HL (6.119) 

where y1 and y2 are class-&. Assume that for a given error system, a 
control law u = u(z) is defined such that V 5 0 along the solutions of 

il(t, x,u) when le[ >_ b where b 2 0. Then 

I4 5 rll O 72 (max(l48l 4) (6.120) 

for all t > 0. - 

Proof: From (6.119) we find 

< 0. - (6.121) 

If V(0) < yz(b), then 0 < V < 72(b) f or all t since V is positive definite 
and caniot grow larger than yz(b) according to (6.121). If V(0) > y2(b), 
then V 5 0 until V 2 yz(b), thus 0 5 V 5 max(V(O)&b)) for all t. From 
(6.119) we know that 

m4l4O)L w 7 

so lel < 7;’ 0 y2 (max(Ie(O)I, b)) for all t. - 

In the above proof, we find that e E B, for all t where 

n 

& = {e E Rq : lel 5 7;’ 0 72 (max(Ie(O)I, b))} (6.122) 

is the ball conta,ining the error trajectory. Unlike an ultimate bound, B, 
also includes the effects of system initial conditions. Using Assumption 6.1 
it is then possible to then place bounds on 1x1. Bounds on the reference 
signal are typically known a! priori. It may therefore be possible to find the 
range of all the input signals used to define x for the control law u = v(z). 
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Since e never lea$ves the ball B, it is not required that T/ < 0 when - 
e E R4 - B,. In other words, we do not care that the Lyapunov function 
does not necessarily decrease outside the space through which the error 
trajectory is able to travel. This is summarized in the following corollary. 

Corollary 6.1: Let V : Rq -+ R be a continuously diflerentiable 
function such that 

Yl Uel> L V(e) 5 Y2(HL (6.123) 

where y1 and y2 are class-K,. Assume that for a given error system, a 
control law u = v(z) is defined such that v  < 0 when e E B, - Bb, where 
B, is defined by (6.122) and Bb = {e E Rg : ki -C bj with b > 0. Then - - 

I4 5 rl’ O yz (max(le(O)l7 b)) (6.124) 

for all t > 0. - 

We will use this corollary to show that state trajectories are bounded 
when using approximators to cancel system nonlinearities even though the 
approximator may not be capable of representing the nonlinearities for all 
x E R”. As long as an approximation is valid when e E B, the stability 
results hold. 

A controller which uses an approximator defined only on a region will 
typically be created using the following steps: 

1. Place the system dynamics into some canonical representation. 

2. Choose an error system satisfying Assumption 6.1 and Lyapunov can- 
didate. 

3. Choose a control law u = v(z,~(,z)) using an approximator, .?+), 
such that T;’ < -kr V + k2, when x E Sz with ki > 0 and k2 > 0. For 
now ignore the case when x $ S,. 

- 

4. Given the approximator, determine some B, such that e E B, implies 
that z E S,. 

5. Choose the parameters of the control law such that e E B, where 
Be G BP 

Thus developing a control law which incorporates an approximator is very 
similar to the case where an approximation holds globally. In the case where 
the approximator is only accurate over a region, we must further ensure that 
the control parameters are properly chosen. In particular, we will require 
that e E B, which will then ensure that the inputs to the approximator 
remain in an appropriate region. The following example helps demonstrate 
this approach. 
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Example 6.13 Here we will again consider the feedback linearizable sys- 
tem in Example 6.12 where it is desired that ~1 --+ r. This time, 
however, it is assumed that Iw(z>l 5 IV only when 1~1 5 d where 
d > 0 is a known constant. Given that the controller must ensure 
llcl 5 d, we will now find restrictions on Ix(O)I, r, and the controller 
parameters. 

In Example 6.12 we used V = $e2, so ri(lel) < V(e) < rz(lel), where 
yi = ~2 = $e2. Additionally, with control u = Y(Z) defined by 

we found v < --Ke2 + s. - Thus if7 < 0 if lel > b where b = 

dm. Using C ore 11 ary 6.1, we find e E B, for all t where 

B, = {e E R : lel 5 max(le(O)l, b)} . 

We must now place restriction on the system initial conditions and 
controller parameters to ensure that e E B, implies that 1x1 5 d. By 
the definition of the error system, we find 

Izl 5 (1 + lkll + * - - + lk,-, 

where 

t 
cle -cz(t 

I>ti, + I4 + c 

(6.125) 

and cl, c2 are chosen so that leLt I 5 ~le-“~~. Thus ci and c2 are 
defined by the choice of the error system. Assuming that cr and c2 
are fixed, we will find requirements on the controller gains K and 7. 

For simplicity, we will assume that r(O) is chosen such that e(0) = 0. 
Then 

s 

t 
@l.L L 

Clb cle-C2(t-r)bd~ < -, - 
0 c2 

so that 

cl(l+l~lJ+...+1~,-11) 
. 

c2 
(6.126) 

But we require that 1x1 < d for the approximation to hold. We must 
therefore choose the controller parameters used to define b such that 

( I+ cdl + IW + *** + IL11) b < d _ r 
c2 > 

- 
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That is, 

(6.127) 

Since b = dm, choosing 

(6.128) 

will guarantee that 1x1 5 d so that the closed-loop system is indeed 
stable. A 

Since we may ensure that 11: E S, for all t, the assumption that J: = 
T(c) is a global diffeomorphism may be relaxed. However, unlike the local 
and global case, there is no constructive procedure available for finding a 
transformation T defined on a compact set. In fact, existence conditions 
for such a transformation are not known either. 

6.7 Summary 

In this chapter, we studied how to define controllers for a variety of dif- 
ferent systems. In general, it was shown that a stabilizing controller may 
be defined for systems in state-feedback, input-output feedback, and strict- 
feedback canonical forms. The controller was constructed by first defining 
an error system and Lyapunov candidate. The control law was then con- 
structed to ensure that the Lyapunov candidate decreases over time. 

When uncertainty is included in the system dynamics, one may add 
nonlinear damping terms to help increase the rate at which the Lyapunov 
function decays. The nonlinear damping term is defined in such a way 
that the beneficial effect of the nonlinear damping term will dominate the 
desta,bilizing effect of the uncertainty (at least as the error grows large). 
With a proper choice of the control law, we found that we could always 
force 

along the solution of the error dynamics, where kr > 0 and k2 > 0. We - 
will la.ter use this fact in the design of the adaptive control laws in which 
additional system uncertainty may be present. 

We also found that when approximators defined on a, region are used 
in the definition of the plant dynamics or a control law, one must pay spe- 
cial attention to the specification of both the intial conditions and control 
parameters. This way it is possible to guarantee that the inputs to the ap- 
proximator remain within the region for which an accurate approximation 
is achieved. 
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6.8 Exercises and Design Problems 

Exercise 6.1 (Domain of Attraction) Consider the nonlinear system 

li: = x3 + u. 

Since II; = 0 is an equilibrium point of the system with u = 0, the 
linearized approximation is given by Ic = u. Based on this consider 
the control law u = --II: and prove that z = 0 is a stable equilibrium 
point. Find the domain of attraction for the nonlinear representation 
of the plant. 

Exercise 6.2 (Backstepping) Design a control law for the system 
(6.67) using the integrator backstepping approach so that 

v 5 -f(xdV, (6.129) 

where f (xl) is any smooth positive function. 

Exercise 6.3 (Lyapunov Matrix Equation) Given the Lyapunov 
matrix equation ATP + PA = -Q with Q > 0 and A Hurwitz, the 
quantity 

QI = Amin 
x max w 

(6.130) 

may be used to describe the rate of decay of the system error (see 
(6.23)). Show that (6.130) is maximized when Q is chosen as Q = I. 

Exercise 6.4 (Sontag’s Universal Formula) Given the error dynam- 
ics 

e = c&x) + /?(x)u 

and positive definite radially unbounded function V(e), show that the 
continuous control law u = V, where 

$++ JGw’+(WEa,‘)’ 
EP( g$) t 

if gp z o 
(6.131) 

otherwise 

globally asmyptotically stabilizes the origin e = 0. 

Exercise 6.5 (Input Uncertainty) Consider the error dynamics de- 
fined by 

e = a(t, x) + p(x)[a(t, x) + rr(t, x)u], (6.132) 

where both additive n and multiplicative II uncertainty is present. 
Assume that n < p+(x) where p > 0 is a bounded unknown constant - 
and Q(x) is a known non-negative function. Also assume that 0 < 
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~1 < II@, x) 5 ~2 for all t and IX;. Assume that there exists some - 
control la)w u = Y(Z) and Lyapunov function such that p < -kJ+k, 
forsomekr >OandkZ>Owhen~~OandII~l. Definea - 
stabilizing controller such that @ 5 -ksV + k4 for some ks > 0 and 
k4 2 0. Hint: Add V(X) - V(X) to the additive uncertainty. 

Exercise 6.6 (Input Gain Dynamics) Assume that there exists a 
stabilizing controller Y&Z) and Lyapunov function V, associated with 
the error dynamics 

0 
. 

I+ a(t,x) + : u 

II 

0 
1 

such that Vs 5 -k1 V’ + k2 when u = v,. Use the Lyapunov candidate 

s v, 1 
v,= - 

PW 

to show that Y&) also stabilizes the error system 

0 e = a(t,x) + : :.I u, 
0 PWJ 

where ,f3(Vs) > 0. 

Exercise 6.7 (Dead Zones) Define a nonlinear damping term similar 
to (6.91) using the continuous dead zone y = D,(x/c) where E > 0 
and 

ifx>l 
if jxr< 1 . (6.133) 

-1 ifx<-1 - 

Exercise 6.8 (Bounds in Triangular Lyapunov Systems) Show 
that if 

Ti, < -k&,+k2 - 

for some positive definite functions V& Vy (with r(lxl) 5 VJ and 
non-negative function @ : R+ -+ RS, then 



174 Control of Nonlinear Systems 

and 

&4(t) L k %+ (v~(o)-~)c-“3”, 

where 3Gd = $0 7-l 0 max(V(O), k&r) . 

Exercise 6.9 (Dynamic Normalization) Consider the system defined 
bY 

where IAl 2 1~1”l~rl” and the Q dynamics satisfy (6.105)-(6.106). Use 
the ba,ckstepping method to define a controller such that the ultimate 
bound on the error er = ~1 - r(t) may be made arbitrarily small. 

Exercise 6.10 (Adding an Integrator) Consider the system defined 

bY 
551 = Lqx,) + u, 

where a(z) is an uncertainty. Define controllers such that z --+ r(t) 
when 

. n(x) =c+x2 

0 A(x) = csin(s) cos(z) 

. n(x) = l+cxcos(x) , 

where c > 0 is an unknown constant. Now define controllers for the 
system 

k() = Xl 
21 = fqx1) + u, 

where we wish to drive x0 --+ s r(t) (i.e., we still drive x1 + r(t)). 
Compare x1 -r(t) for the above two cases when r(t) is a square wave, 
sinusoid, and when r(t) is a ramp. 

Exercise 6.11 (Point Mass) Consider the point mass whose dynamics 
are described by 

rnii = f(x) + u, 

where x is the position, m is the mass, and u is a force input. Here 
f(x) is a position dependent uncertainty. Assume that f(x) may be 
approximated by F( X, 0) on x E D, where 0 is a set of appropriate 
para’meters. Define a control law such that the error el = x - T is 
driven toward zero. Then consider the cases where 
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0 f(x) = sin(X) 

0 f(x) =x+x3. 

For each f(z) define a fuzzy system that approximates it and plot the 
response of the closed-loop system. 

Exercise 6.12 (Ball and Beam) Consider the ball and beam system 
defined by 

i = u 

lj = -g sin 0 + xw2 

s = w 

ij = - 
2mxvw mgx cos 0 

J+mx2 - J+mx2 
+ u, 

where x is the ball position relative to the center of the beam, v is 
the ball velocity, 8 is the angular position of the beam, and w is the 
beam’s angular rate. Show that [x - r, v, 8, w] = 0 is an equlibrium 
point and linearize the system about this point. Use pole placement 
to design a stable linear control system. 

Exercise 6.13 (M-Link Robot) Consider the dynamics of an m-link 
robot defined by 

W4)4 + C(47 Q) = UT 

where q E R” is a vector of generalized coordinates describing the 
position of the robot linkages. The generalized mass matrix M is 
invertible, and C(q, Q) accounts for centrifugal, Coriolis, and gravita- 
tional forces. Define a controller u = ~(t, q, 4) such that q -+ r(t). 

Exercise 6.14 (Inverted Pendulum) The dynamics of an inverted 
pendulum are given by 

(M + m)lc + ml cos 06 - ml sin 04” = u1 

ml cos&i + ml”8 - mgl sin8 = 322, 

where x is the cart position and 6 is the angle of the pendu lum (with 
0 = 0 when the pendulum is perfectly inverted). The parameters of 
the system are defined as M is the mass of the cart, m is the point 
mass attached to the end of the pendulum, 1 is the length of the 
pendulum, and g is the constant of gravitational acceleration. Define 
a control law for ur and u2 that ensure that x --+ X~ and 6 -+ 0 
assuming that the states are measurable. 
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Exercise 6.15 (Speed Control) Consider the longitudinal dynamics 
of a vehicle define by 

1 A,$ 
ti = -(F,,-Fb)-- 

m m 

F,, 
Fb 

- - -7,F,, + u,, 
- - -7bFb + ub, 

where u is the vehicle speed, F, is the force applied by the motor and 
F, is the force applied by the brakes. Here m is the vehicle mass, A, 
is the coefficient of aerodynamic drag, rm is the motor time constant, 
and 73 is the brake time constant. Design a controller such that the 
error er = v - v, with v, > 0 is minimized when the inputs urn and 
?& are confined to be positive values. Try to design the controller so 
that both the brake and motor are not actuated at the same time. 

Exercise 6.16 (Induction Motor) Consider the model of an induc- 
tion motor [I491 given by 

nPM ij = - W 
TL 

JL 
sib - @bin) - - 

J 
. 

G 
f&- R, 

a = -- d-J L, a- 
n,wv’,b + CMia 

‘+b = 

where w is the rotor angular rate and $12, $$ are the rotor fluxes. Here 
M is the mutual inductance, J is the inertia, np is the number of pole 
pairs, L, is the rotor inductance, and R, is the rotor resistance. A 
controller is to be designed for the inputs ia and ib so that w = w, 
and $2 + $$, = $+ given the load torque TL. 

Exercise 6.17 (Telescope Pointing) A model of the drive system on 
a telescope is given by 

Jti = T 

TT = -T+u, 

where 8 is the angular position of the telescope, and T is the drive 
torque applied to the telescope base. Here J is the moment of inertia, 
and 7 is the motor time constant. If it is only known that the moment 
of inertia satisfies 0 < J1 < J 5 Jz, then use the backstepping 
technique to find a stabilizing control law assuming that the other 
variables are measurable. 
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Exercise 6.18 (Magnetic Levitation) Consider the magnetically lev- 
itated system defined by 

li: = v  

rnv = 
ku 

-‘+ (G - X)2 ’ 

where x is the position, and v is the velocity. Here g is the gravita- 
tional acceleration, k is the electromagnet constant, m is the mass, 
and G is the nominal gap. Define a control law u = Y such that 
it --+ 0. Find the initial conditions that ensure it remains away from 
the singularity at x = G. 

Exercise 6.19 (Field-Controlled DC Motor) The model for a field 
controlled DC motor [202] is given by 

L,, = -R,i, - c&w + va 

Lfkf = -Rfif + vf 

Jcj = -Bw + cZifin, 

where i, is armature current, if is the field current, and w is the 
angular rate. Here L, and R, are the armature circuit inductance 
and resistance, respectively, and Lf and Rf are the associated field 
circuit inductance and resistance. J is the moment of inertia, B is the 
back EMF constant, and cl, ~2, are motor constants. Assume that va 
is held constant, and design a controller for vf such that w ---+ r(t). 

Exercise 6.20 (Flexible Joints) The dynamics for a single-link ma- 
nipulator with flexible joints [212] is described by 

1% + MgLsinql + k(ql - q2) = 0 

JQZ-k(qrq2) = u, 

where ql and q2 are angular positions. The parameters for the system 
are described by I and J are moments of inertia, M is the mass, L 
is the distance, and u is the torque input. Define a stable feedback 
controller such that q1 -+ r(t) . 

Exercise 6.21 (Antenna Pointing) Consider the dynamics for the 
antenna pointing system 

Jd+Bb=A+u, 

where t9 is the antenna angular position, J is the moment of inertia, 
B is the coefficient for viscous friction, and LI is an uncertainty. Use 
nonlinear damping to help design a control law u = ~(t, z) such that 
0 tracks r(t) when it is known that 
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where kr, k2 are unknown constants. 

Exercise 6.22 (Simplified Nonlinear Ball and Beam) To simplify 
the design of a controller for the ball and beam experiment described 
in Exercise 6.12 when nonlinearities are considered, we will study the 
control of 

i = v 
i, XI xA(t) - 90 
e = w  

;I = u, 

where it is assumed that IAl 5 0”, and 0 > 0 is some known constant. 
Use the backstepping approach to design a Lyapunov function, V, and 
controller, u = V, such that p < -kr V + IQ, where kl , /~a > 0 may be - 
set by the design of the controller. 



Chapter 7 
Direct Adaptive Control 

7.1 Overview 

In Chapter 6 we found that it is possible to define static (non-adaptive) 
stabilizing controllers, u = V,(X) with u E R”, for a wide variety of nonlin- 
eas plants. In addition to being able to define control laws for systems in 
input-output feedback linearizable and strict-feedback forms, it was shown 
how nonlinear damping and dynamic normalization may be used to com- 
pensate for system uncertainty. In this and subsequent chapters we will h 
consider using the dynamic (adaptive) controller u = Y, (z, 6) where now 
e(t) is allowed to vary with time. 

In general, we will consider two different approaches to developing the 
a,daptive control law. The first is a direct adaptive approach in which a set 
of parameters in the control law is directly modified to form a stable closed- 
loop system. In an indirect approach, components of a stabilizing control 
la,w are first, estimated, and then combined to form the overall control law. 
For example, if for a given scalar error system 6 = a(s) + p(z)u one is able 
to ada,ptively approximate a(z) and ,L?(x) with ,T, and .?& respectively, 
then the adaptive control law V, = (---Lie - ?J/Fo might be suggested 
as a possible stabilizing controller assuming F, z Q and .Q z ,LL Design 
tools for the indirect approach will be studied in greater detail in the next 
cha.pter . 

As for the case of static controller development, it is useful to study the 
trajectory of an error system, e = x(&z), which quantifies the controller 
performance. We will be particularly interested in the tracking problem 
where we wish to drive y -+ r(t) and the set-point regulation problem 
where y -+ r with r a constant. Recall that according to Assumption 6.1, 
the error system is also chosen such that if lel is bounded, then it is possible 
to place bounds on 1x1. In particular, we will require that x : R+ x RT2 -+ Rq 
is defined such that 1x1 5 $L&, lel) f or all t where q2 (t, s) is nondecreasing 
with respect to s E R+ for each fixed t. 

Throughout this chapter we will assume the dynamics for the error 
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system are defined by e = c&s) + p( ) x U, so that the error dynamics are 
a,ffine in the input. As seen in the last chapter, it is possible to define 
meaningful error systems for a wide class of nonlinear control problems 
such that this holds. Recall that the time dependence in c~(t,rc) results 
indirectly from the time varying reference signal r(t). In fact, for the set- 
point regulation problem (where T is a constant), we have 6 = a(s) +Q$u 
when the plant is autonomous. 

The direct adaptive control approach studied here will first assume that 
there exists some possibly unknown static controller u = Y,(Z) which pro- 
vides desirable closed-loop performance. Since the static control law V&Z) 
is a function of known variables, it is possible to approximate Y,(Z) with 
.F, (2, 0) over x E S, . The value of 0 E RP is chosen such that the ideal 
approximation error is bounded by IFI/ - ~1 2 IV whenever x E S, with 
liv 2 0 assuming the form of F, is appropriately chosen._ When designing 
a direct adaptive controller, we may choose u = F, (x, e), where 6 is an 
estimate of 8. It will then be shown how to choose update laws for e(t) 
which result in a stable closed-loop system. 

7.2 Lyapunov Analysis and Adjustable Approximators 

In this chapter we will investigate the use of an adjustable approximator 
as a controller. That is, we will let u = -T&Z, 8) where 8 E RP is a set of 
adjustable parameters. If there exists some 0 such that .&(z, 0) is able to 
approximate the static stabilizing control law u = Y&X) with some degree 
of accuracy when x E SZ, then we would expect that one could directly 
use an approximator as the controller. In this chapter we will consider the 
ca(se where some 8 is not necessarily known. Instead, we will use an update 
routine for 4 so that the controller u = F(z, s> produces a stable closed-loop 
system. 

If f(x) is a function to be approximated by an adjustable universal ap- 
proximator F(z, 6), then there exists some parameter vector 0 such that 
if(~) - .F(z$)~ < IV for all x E SZ. - When .F(z, 8) is a universal approx- 
imator such as a neural network or fuzzy system, then IV may be made 
arbitrarily small by choosing sufficiently many adjustable parameters in 
the a,pproximator. Since the approximation error is only guaranteed to be 
valid when x E SZ, we will need to ensure that at no time will the trajectory 
of x leave S,. If x were to leave S,, then the inequality If@) - .F(z, 0)l 5 I/v 
ma.y no longer hold. 

Placing bounds on the input to the approximator is an important dif- 
ference from traditional adaptive control. The benefit of ensuring that 
x E S, for all t goes beyond being able to use universal approximators in 
the control law. It also allows, for example, the use of traditional adaptive 
feedba#ck linearization when the model of the plant dynamics is only valid 
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over a region. If, for example, the dynamics were obtained from experimen- 
ta,l data, one often only obtains plant characteristics for nominal operating 
conditions. Traditional control techniques, however, often assume that the 
approximation holds for all J: possibly resulting in an unstable closed-loop 
system. In high-consequence systems, this may be very dangerous since the 
instability may not be apparent unless the closed-loop system is pushed to 
its limits. If the system subsequently becomes unstable at these extreme 
opera,ting conditions (such as at high velocity in a vehicle), the consequence 
of the instability may be catastrophic. The following example demonstrates 
how ignoring the range over which the validity of an approximation holds 
may lead to control design with hidden instabilities. 

Example 7.1 Consider the scalar plant defined by 

IE: II f(x) +u 
- - 6X2 + 8x + u, (7 1) . 

where 8, e E R are unknown constants and e > 0 is assumed to be 
small (notice that f(x) = 6x2 + 0x). Assume that we wish to define a 
controller which will force x -+ 0 even when 6 is unknown. If we wish 
to drive x + 0, then define the error system e = x and Lyapunov 
candidate V = le2 s 2 - The error dynamics become 

e = 6X2 + ox + u, 

so 
Ps = e (cx2 + Bx + u) . V-2) 

Let w(x) = f(x) - 6x d fi e ne the error in representing f(x) by 8x. 
When x E [-l,l] we find ]w(x)] < 6. Thus 0x may be considered a 
good approximation of f(x) since: is assumed to be small. The time 
derivative of the Lyapunov function may now be expressed as 

Vs = e (w(x) + 6x + u) , V-3) 

with w(x) a bounded uncertainty when x E [-1, 11. 

If 6 is known, then the static control law u = vS(x, 6) with 

v,(x,e) = --/se - esgn(e) - 132, (7 4) . 

and K > 0 renders 

v, = -tse2 + w(x)e - clel (7 5) . 

< - -2KV, (7 6) . 

as long as x E [-l,l]. This ensures that x ---+ 0 if x(0) E [-1, I] and 
x(t) E [-1, 11, t > 0. 
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But B is not known, so we will consider the use of an adaptive con- 
troller. Using the form of the static feedback controller, an adaptive 
controller is defined by u = .F(x, 8) with 

F(x,B) = --e - esgn(e) - &, V-7) 
h 

where 8 is an adaptive estimate of 0. A new Lyapunov candidate is I A 
now chosen to be V = Vs + $‘-le’, where 8 = 8 - 8 is the parameter 
estimate error and I’ > 0. The time derivative of the Lyapunov 
candidate becomes 

T;i _ 8v.s .+r-l& - 
ae e 

- - e (W(X) + ex + F(x,@) + P&j 

- - e 
( 
--e + w(x) - esgn(e) - 8x 

> 
+ I+&!% (7 8) . 

If x E [-I, 11, then ]w] < E, so we find 

. 
v c -2d4 - d9x + r-W - (7 9) . 

Choosing 6 = I?xe, we obtain r/ 5 -2~3,. 

We might then be tempted to use the LaSalle-Yoshizawa theorem to 
conclude that x --+ 0 if x(0) E [--I, l] as was the case for the static 
feedback controller. Unfortunately, it is not possible to conclude that 
x -+ 0 even if x(0) E i-1, 11. It is possible for V to decrease while x 
is increasing due to the parameter error term in the definition of the 
Lyapunov candidate (that is, the e2 term may increase and s2 may 
decrease such that the sum defined by V is decreasing). If x leaves the 
set [- 1, 11, then V may also start to increase since the approximation 
]w] 5 6 is no longer valid, which may indicate that the closed-loop 
system is no longer stable. Figure 7.1 shows the trajectory of x(t) for 
various values of 8(O) when 0 = 1 and E = 0.01. When 8(O) E (0, -2}, 
the trajectory remains stable, however, when 8(O) E (-4, -6) the 
closed-loop system becomes unstable. Thus the initial conditions of 
the parameter estimates may influence the stability of an adaptive 
system when using approximations which only hold over a compact 
set, such as is often the case when using system models obtained from 
experimental data. A 

The above example demonstrates the need to ensure that x remains in 
a. region in which a good approximation may be obtained. We will need 
to show that for a given controller and set of initial conditions, that the 
state trajectory is bounded such that x E Sz for all t where Sz represents 
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Figure 7.1. State trajectory when 8(O) = 0 (-), e(O) = -2 (. . a), 8(O) = -4 

( -. -), and 8(O) = -6 (- -). 

the region over which a good approximation is achievable. In the case 
of adaptive control, we will only be concerned with the region where an 
approximation is “achievable.” We use the word achievable since there 
may be no guarantee that given a current set of approximator parameters, 
a good approximation takes place. However, we will require that some ideal 
parameter set does exist even if we never use it. This point will become 
more apparent later when looking at the stability analysis of the direct 
adaptive controller. 

To help guarantee that the state trajectories do not leave the region 
z E S, over which a reasonable approximation may be established, we will 
use the following theorem. 

Theorem 7.1: Let V : Rq x RP -+ R be a continuously differentiable 
function such that 

(7.10) 

where YeI, ~~2, ygl, ~6~ are class-Kc0 . Assume that for a given error system, 

a control law u = u is defined such that both lel > b, implies v  5 0 and 
141 2 be implies V 5 0. Then e E Be for all t with 

Be = {e E RP : lel 5 r,l’ (max(V(O),V~))} , (7.11) 

where V, = Ye2 (be) + Ye2 (be). 
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Proof: If V > VT, then either let > b, or 161 > b,- (or both). Thus V > VT 

implies V 5 0. If V (0) 2 I/, , then 0 5 V(t) 5 V, for all t since V is positive 
definite and cannot grow larger than VT (an invariant set). If V(0) > VT, 
then V < 0 until V < V& thus 0 < V(t> < max(V(O)&.) for all t. From - - - - 
(7.10) we know that 

so lel < Y,rr (max(V(O), VT)) for all t. n 

The above theorem will be used to study the range over which e (and 
2) may travel when an adaptive controller is used. From Assumption 6.1, 
we know that 1x1 5 $&, lel) where $Z is nondecreasing with respect to lel. 
Thus x E B, where 

(7.12) 

for all t. Since e E B, for all t, the above theorem may trivially be modified 
as follows: 

Corollary 7.1: Let V : Rq x R” + R be a continuously diflerentiable 
junction such that 

Yei (kl) + YeI (IQ I V(e, 6 I m(lel) + y&l@, (7.13) 

where yeI, ~~2, ysl, yea are class-&, . Assume that for a given error system, 

a control law u = Y is defined such that both e E B, - Bb implies v  < 0 and 
161 _> bo implies v  < 0, where Bb = (e E Rq : lel < b,) and B, is defined by 
(7.11). Then e E B, for all t. 

- 

We will find that Corollary 7.1 is useful in the study of adaptive systems 
using approximators that are defined only over a region. Since we require 
that V < 0 for lel > b, only when e E B,, the closed-loop system does not 
necessarily need to be stable for e @ B,. This will then place bounds on 
the range of the approximator input variables used in the control law u = 
.?( Z, 8). If a fuzzy system, for example, is used in an adaptive controller, 
it may not be necessary for the input membership functions to cover all 
possible control inputs. Instead, the fuzzy system only needs to be defined 
such that e E B, implies all the inputs to the fuzzy system remain in valid 
region. 

7.3 The Adaptive Controller 

The goal of the adaptive controller is to provide stable control of systems 
with significant uncertainty. As seen in the previous chapter, control laws 
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ma,y be defined for many uncertain nonlinear systems using techniques such 
as nonlinear damping and dynamic normalization. Intuitively, these tech- 
niques tend to increase robustness of the closed-loop system by including 
high gain terms which dominate the effects of the uncertainty. High feed- 
back gamin is often undesirable in implementation since it may lead to actua- 
tor saturation or may possibly excite other unmodeled dynamics which may 
lea(d to instability. Additionally we are often not guaranteed that e -+ 0 
when the nonlinear damping technique is used (especially when the feed- 
back gain is reduced). These are just a few of the reasons that an adaptive 
control approach may be used in place of a static control law, even with 
the added complexity associated with the adaptive control laws. 

In addition to these performance issues, an adaptive control approach 
ma&y allow the designer to develop a controller which is “more robust” than 
its static equiva#lent. We will see how to use universal approximators, for 
example, so that systems with wide classes of uncertainties may be con- 
trolled even if the exact functional form of the uncertainty is unknown. It 
may also be possible for the adaptive controller to compensate for system 
faults in which the plant dynamics change due to some component failure 
or degradation. 

For a given control problem, the designer must define an error system 
e = x(t, z) which quantifies the closed-loop system performance and at the 
same time may be used to place bounds on the system states as required 
by Assumption 6.1. We will additionally assume that the error dynamics 
are affine in the control input so that 

e = a(t,x) + P(x)u, (7.14) 

where e E Rq and u E Rm. Note that as explained in the previous chapter 
this includes several classes of nonlinear systems. The remainder of this 

section will be devoted to defining update laws 8 = 4(-t, x,8> so that the 
control law u = F(z, B(t)) g uarantees that the closed-loop system is stable. 
Specifically, we will try to define an adaptive controller so that e -+ 0 for 
(7.14) and x and 4 remain bounded. 

7.3.1 a-modification 

Our goal here is to design an update law which modifies the adjustable 
parameter vector 8 E R* so that the controller u = F(z, 8) provides closed- 
loop stability. To ensure that it is possible to define an update law resulting 
in a8 stable adaptive controller, we will require that a static stabilizing con- 
troller exists. In particular, we will require the following assumption: 

Assumption 7.1: There exists an error system e = x(t, x) satisfying 
Assumption 6.1 and static control law u = Y&Z) with z measurable, such 
that for a given radially unbounded, decrescent Lyapunov function Vs(t, e), 
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we find ii;- 5 -ICI Vs + kz along the solutions of (7.14) when u = V, (z). 

In addition, we must know how each input affects the states of a plant 
relative to the other inputs. In particular, we will make the following as- 
sumption: 

Assumption 7.2: Given the error dynamics (7.14), assume that 
w h ere c > 0 is a possibly unknown scalar constant and 

This requires that we know the functional form of ,8(x), though we do 
not necessarily need to know the overall gain. Thus the scalar c allows a 
degree of freedom in terms of knowledge about the system dynamics. The 
following example shows how this degree of freedom may be used when 
controlling poorly understood systems. 

Example 7.2 As shown in the previous chapter, there are a number of 
control problems with error dynamics defined by (7.14) where ,8 = 

10 - - 7 0, TIT with r > 0 a possibly unknown constant. In this case, 
wemay let c = I/X Since ,8 = [0, . . . ,O, llT is known, Assumption 7.2 
is satisfied even when the magnitude of the input gain is not known. 

A 

Here, we will consider using the a-modified update defined by 

B = -r 
K 

31; - -&3(x) aqd> 
de > 

T + ~ (j _ g) ( )I 7 (7.15) 

where I’ E Rpxp is a positive definite, symmetric matrix used to set the 
rate of adaptation and 0 > 0 is a term used to increase the robustness of 
the closed-loop system. Here we are using the notation 

(7.16) 

The vector 0’ E RP may be used to include a best guess of some 8 E RP, 
where 8 is an ideal parameter vector defined in Theorem 7.2. 

Theorem 7.2: Let Assumption 7.1 and Assumption 7.2 hold with 
yeI (lel) < Vs (e) < Te2( le[), where ye1 and ~~2 are class-K,. I f  for a given 

linear in the parameter approximator .F(z$) there exists some 8 such that 

I~(~,~) - v,(z) 1 < W for all x E Sz, where e E B, implies x E S, , and 

(7.17) 
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with rl > 0, then the parameter update law (7.15) with adaptive controller 

u = .F[z,@ guarantee that the solutions of (7.1.4) are bounded given B, G 
B,, where B, is defined by (7.25). 

Proof: Consider the Lyapunov candidate 

1 v, = cv, + 28Tr-‘B, (7.18) 

where T’ is positive definite and symmetric, and c > 0 such that ,8(x) = 
c&$. Taking the derivative we find 

ri, = c [ 2 + g (a@, x) + /?(,,,z.@)] + 8Tr-1ti. 

Also 

F(z, 6) = F(z, 4) - F-(2,8) + F(z,S) 

- - F(4) -7&e> + u&z) - rj 
( > 

Eifl T+ w, (7.19) 

where w = .F(z,O) - V, with IwI 5 W for all z E S,. 
Using (7.19) we find 

where we have used the assumption that i/, 5 --ICI VS + kz when u = V,(X). 

Since F(z,B) - .F(z,e> = ae @& for a linearly parameterized approximator . . 
and 6) = 8, we find 

whenever x E S,. Using the inequality -xTx 3~ 2xTy 5 yTy we find 

Also since -2xTx zt 2xTy 5 -xTx + yTy we obtain 

(7.21) 

p - e”j2 . 2 (7.22) 
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Using (7.21) and (7.22), we find 

. J/$72 -2 
PI I/‘, < -ck#, + Ck2 + - - CT----- + 0 

(8 - f9OI” 
- 

4rl 2 2 * 

Since Yel(lel) 2 T/,(e), we are assured that 

ri, < -CklYel (lel) - q  + d, 

(7.23) 

(7.24) 

whered=&+~+~~. If lel > be or 181 > be where be = Te<’ * ( > 

and&= y,thenp<O. J 
Using Corollary 7.1, with yea = Xmax(I?)le”12 and the bounds on V, 

given in the statement of the theorem, we see that e E Be with 

Be = {e E Rq : 14 5 r,l’ (max(V&O),Ti,)/c)} , (7.25) 

where 

K = CYeZ(be) + 

X,,,(r-‘pi 

2 

dkn.x(r-l) - - CYe2 O reyl 
0 - 

By properly choosing the values of kl, CT, and I? it is possible to make 
Vr arbitrarily small. Thus if the initial conditions may be chosen such that 
V, (0) is sufficiently small, it is then possible to ensure Be 5 B,. 

The above theorem shows that if there exists a nonadaptive (static) sta- 
bilizing controller, V, (x>, then there also exists an adaptive stabilizing con- 
troller as long as there exists some B such that the approximator .F(,z, 0) rea- 
sonably a.pproximates Y&Z). Thus the existence of a stable direct adaptive 
controller reduces to proving the existence of a stabilizing static controller 
(which was the topic of the previous cha’pter) and a suitable approximator 
structure. 

The direct adaptive controller is typically defined using the following 
steps: 

1. Place the plant in a canonical representation so that an error system 
may be defined. 

2. Define an error system and Lya’punov candidate V, for the static 
problem. 

3. Define a static control law u = V, which ensures that pS 5 -41 V, + Icz 
(that is, satisfy Assumption 7.1). 
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4. Choose an approximator T(z,8) such that there exists some 0 guar- 
anteeing IF(z,~) - z,+&)J < VV f or all x E S,, where V, is defined by 
(7.17). Estimate upper bounds for liv and 16 - 8’1 where 8’ may be 
viewed as a “best guess” of 8. 

5. Find some B, such that e E B, implies x E &. 

6. Choose the initial conditions, control parameters, and update law 
parameters such that B, c B, with B, defined by (7.25). 

It should be emphasized that the static control law V, does not need to be 
implementable. It may be defined, for example, using unknown parameters, 
unknown functions, or other uncertainties as long as an approximator may 
be defined such that IF(z,Q) - va(x)I 5 VV where u, is given by (7.17). 

The approach to the analysis of the direct adaptive controller using an 
approximator is somewhat different from traditional stability analysis. In 
traditional stability analysis, one typically either defines a controller which 
ensures that i/ 5 -W(x) with W > 0, or tries to find some V for a specific _ 
controller so that v < -W(x). Here we simply require that there exists a 
controller such that v’ < -W for a known V and that there exists some 6 - 
such that an approximator F(z, 6) is able to match the controller with some 
accuracy. We do not require that either the stabilizing controller u,(x) or 
ideal parameter vector 0 be known (though there are some initialization re- 
quirements for the approximator parameters since B, and thus the domain 
of the approximator is dependent upon 8”(O)). 

In the above theorem, the term w = F(z,~) - V,(X) is often referred 
to as the ideal representation error since it is the difference between the 
approximator with ideal parameter vector 9 and the true function it is rep- 
resenting. If there exists some 8 such that IwI = 0 for all z E S, (e.g., if 
you know the structure of the nonlinearity and only have parametric uncer- 
tainty such as is typically the case in adaptive control for linear systems), 
then it is possible to set q = 0 in the above theorem. The stability analysis 

ma.y then be carried out as before, but with W = 0 so d = ckz + ov 
in the definition of V,. 

Theorem 7.2 only tells us that the solutions will remain bounded such 
that the approximator is well behaved. Using the results of the above proof 
it is possible to place more explicit bounds upon the RMS tracking error. 
In particular, notice that from (7.24) we find 

(7.26) 

Rearranging terms and integrating, we see that 

s t Ye1 (lel>dT < -/yg++ (7.27) 
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Since I/‘, is bounded we find that 

1 t 
lim - 

t+m t i 
redlel>~7- 5 -$. 

1 

If, for example, we choose rel(s) = is’, then 

1 
lim - 

s 

“I 
t--+cc t +el”d~ L $7 

so the RMS error is bounded by 

(7.28) 

(7.29) 

From (7.29) we see that to improve the RMS error, one must either decrease 
cl, or increase kl. The value of d may be decreased by decreasing IQ, W, 
or aI0 - 0OI. Often the choice of which parameters to adjust is dictated by 
the control problem. 

Since Ti, < 0 when lel > b, or 181 > be, we are ensured that V, will 
decrease to V 2 VT where V, = YeI +rg-Jbe) with ygZ = &&‘-1)1812. 
Thus lel will decrease such that lel 5 y,‘(l$). Again since the control and 
update law parameters may be chosen such that b, and b, may be made 
arbitrarily small, the ultimate bound on le( may be made arbitrarily small. 

We will now see how to apply the direct adaptive controller using the 
o-modification to adjust its parameters. We will start by studying the 
problem in which the approximator used to define the adaptive controller 
does not have limits on its inputs. Thus B, = R4 since the approximator 
input x may take on any value. We will then study a different problem in 
which a fuzzy system is used with a finite domain associated with its input 
membership functions. 

Example 7.3 Assume that the system dynamics for a particular plant 
may be transformed into 

h = n,(x) + x2 
322 = A,(39 +u, 

where x1, 22 are measurable, and A,, A2 are defined by 

Al = p1 

A2 = 
[ Xl x2 

11 

P2 P3 Xl I[ 1 P3 P4 x2 

(7.30) 

with p; unknown for i = 1, . . . ,4. Suppose that we wish to define a 
direct adaptive controller that drives x1 --+ T(t), where r(t) and its 
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first two derivatives are measurable. To do this, we must define an 
error system defined by measurable signals and Lyapunov candidate 
for which there exists a static control law that stabilizes the system. 

Using the backstepping procedure, we start by considering the control 
of the system 

$1 = A,(x) +v, (7.31) 

where v is a virtual input. Define the first error variable as er = .q -r. 
If VI = ie:, then the controller v = ~1 (zr ) with 

(7.32) 

will ensure that VI 5 -2d& so that the er dynamics are stabilized. 
As long as r is finite, then the q trajectory will also remain bounded. 
A second error variable might then be defined using ~1, such as ez = 
x:2 - iq. But nr is unknown and thus vr may not be formed. 

Ignoring & for now, consider the error e2 = 22 + 31cer/2 - + (which is 
measurable and thus may be used in the control law) and Lyapunov 
candidate V, = $ef + $ez. Since 

(5 = Al-F+e2 

62 = 
3K 3n 

-~+~2+-j-(Al+e2--5-el)+~, 

the derivative of the Lyapunov candidate becomes 

vs = elk1 + e& (7.33) 

( 3K - - el & + e2 - -p 
> 

( 3K 
+ e2 4+n2+-5-(&+e2-nel)+v . 

> 

Notice that p = [0, llT in (7.14). 

Now consider the control law u = Y&Z) with 

v, = F(t) - el 
3K 

- A2 - ,(a, + e2 - Eel) - tce2. (7.34) 

Since -x2/2 + xy 2 ~‘12, we find 

(7.35) 
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Here x = [Y, elf ez, ~1, II;~ IT. Notice that V, may not be implemented 
since it is defined using L& and & which are unknown. The di- 
rect adaptive controller, however, may be implemented since Assump- 
tion 7.1 simply requires the existence of a stabilizing control law. 

Notice that the controller may now be expressed as 

K 
5 

= ri-‘- (1 - n”)er - zKe2 + i3T X4 

I i 

21x2 1 
(7.36) 

2; 

where 

9= 

-P1 

-92 
-2P3 - 

-94 I 

1.2 - 

08- 

06- 

04- 

02- 

0 05 1 15 2 25 3 3.5 4 

(7.37) 

Figure 7.2. Closed-loop performance when x (-) is commanded to track 
a reference r (- -) defined by a square wave. 

To use the direct adaptive controller, we must define a linear in the 
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parameter approximator. Let 

(7.38) 

Notice that this choice of the approximator is based on the form of 
the stabilizing controller defined by (7.36). Since u&) = T(z, 8) for 
all x, it was not necessary to include a term to a$ccount for the non- 
linear damping term 7 (?&?(x)) T in (7.17). Using a-modification, 
the update la#w becomes 

K 
e = -r 5: 

(I I 
21x2 

e2 +d , 

i 
(7.39) 

xz 

where I’ is positive definite and symmetric, and CT > 0. Notice we 
have chosen Ho = 0 in (7.15). 
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Figure 7.3. Improving the transient performance of the closed-loop system 
by increasing K (-) and r (- . -). 

Assume that pr = 1, p2 = -1, p3 = 2, and p4 = 1. Let IS = 10, r) = 1, 
I’ = 101 (where I is the identity matrix), and CT = 0.1. Figure 7.2 
shows the trajectory of the closed-loop system when r(t) is a square 
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wave. Notice that there is a bit of steady-state error and ringing. The 
stea’dy-state error may be improved by increasing K, while the ringing 
may be reduced by increasing the rate of adaptation. Figure 7.3 shows 
the case where K = 50 and I’ = 501. n 

In the previous example, we designed the approximator based on knowl- 
edge of the form of the underlying nonlinearity. Based on this form, it led 
to a choice for the approximator structure. This approach to developing an 
approximator may be referred to as a “physically motivated” approach. As 
an alternative approach, we will also use universal approximators in which 
the approximator structure is chosen so that it may be applicable to a wider 
class of underlying nonlinearities. The physically motivated approach often 
falls under the classification of “nonlinear adaptive control,” while the use 
of universal approximators (such as fuzzy systems or neural networks) in 
the design of an adaptive controller may be referred to as adaptive fuzzy 
control, neural control, intelligent control, among others. In this book we 
hope to remove some of the distinctions between these different fields since 
the primary difference is the motivation of the choice of the approximator, 
and not necessarily the stability analysis. 

Thus far we have seen how to define an adaptive controller when it is 
possible for the approximator to accurately represent some desired con- 
troller for all z (that is B, E R”). According to Theorem 7.2, we may also 
define stable adaptive controllers when an approximator is used which is 
only well defined on the region x E S, so long as there is some Bar such that 
e E B, implies x E S,. The following example shows how to design a stable 
adaptive controller when using a finite fuzzy system. 

Example 7.4 Consider the velocity control of an automobile whose dy- 
namics are defined by 

mli: = -/lx2 + u, (7.40) 

where p E (0,0.4] is the unknown coefficient of aerodynamic drag, m 
is the known vehicle mass, and x is the vehicle speed. If we wish to 
drive x -+ r(t), then define the error system by 

e=x-r. 

Notice that G = -+ - px”/m + u/m. Using the representation defined 
by (7.14), we find 6 = c&x) + ,&L, where Q = -+ - px”/m and 
p = l/m. 

Consider the Lyapunov candidate V, = ie2 and the sta,tic control law 
u = u,(x), where 

b(4 = m(+ - Ke) + px” (7.41) 
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with K > 0 and z = [T, e, aIT. This choice of the control law renders 
p, = -2t~r/:,, so ki = 2n and J& = 0 in Assumption 7.1. Since p is 
unknown, however, this static controller may not be implemented. 

Because the aerodynamic drag is unknown, we might want to use a 
fuzzy system to approximate a control term which compensates for 
its effects. In particular, consider the controller u = Y(z, B): where 

.F(z,B) = m(7: - hce) - r)e/m + ‘iT1 “;i”;(~) , (7.42) 
2=1 ix 

with q > 0. Each pi is an input membership function for the fuzzy 
system and 

The fuzzy system will be used to cancel the effects of the aerody- 
namic drag, while the term qe/m has been included to account for 
the additional nonlinear damping term in (7.17). Assume that the 
fuzzy system is defined using p = 10 triangular input membership 
functions as shown in Figure 7.4 so that speeds up to 40m/s will be 
considered. Since m (and thus ,0) is known, we may choose the update 
law according to 

(7.43) 

where we have used CWJae = e and p = p in (7.15). 

Before choosing the controller parameters, we will estimate a bound 
on W (the magnitude of the representation error). An estimate of 
W will be needed since it will influence our choices of the controller 
parameters to ensure that B, C B, (where B, will also be defined 
shortly). When the parameters of the fuzzy system are fixed, it simply 
behaves as a linear interpolator. Notice that when x is at one of 
the input membership function centers, the degree of membership 
is zero for the other input membership functions. Considering the 
aerodynamic drag term we choose 0i = ,c& where ci is the center 
for the ith membership function so that the approximation will be 
perfect at the membership function centers. 

Define the representation error w = Y, - .?(z, 0), where Y, = V, - 
ve/m. Notice that 
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x (mkec) 

Figure 7.4. Input membership functions for the fuzzy system. 

When p = 0.4, we find ]w] < 2 as shown in Figure 7.5 for our choice 
of 8. Note that the peaks in Figure 7.5 show the error in the in- 
terpolation. Clearly, if we used more approximator structure (e.g., 
more input membership functions), then generally we can reduce the 
amount of approximation error. As p decreases, the bound on ]w] 
also decreases, so ]w] < 2 for all possible p when z E [0,40]. When 
p = 0.4, we also find that (01 = 978.4, so 101 5 980 for any p E (0,0.4]. 

We now need to find some B, such that e E B, implies that it: E [0,40]. 
If the desired velocity is defined to be in the range r E [1.7,40 - 1.71, 
then ]e] < 1.7 implies that II: E [0,40]. We now need to choose the 
controllerparameters such that e E B, with B, C_ B, where B, = 
{e E R : lel < 1.7). 

From Theorem 7.2, we may choose c = 1 (where c is defined in As- 
sumption 7.2) so that 

B, = e E R : lel < J - 2max(KdO), K)} 7 (7.44) 

where Va(0) = Vs(0) + $8’(O)I’-‘e(O) and 

v, =d G+ 
1 

1 Xmax(J3 
CT I. 
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Figure 7.5. The difference between the fuzzy system with ideal parameters 
and the true aerodynamic drag when p = 0.4. 

From the proof of Theorem 7.2 one finds 

d= 

4 a9802 
< o+-+- 
- 477 2’ 

Choosing 7 = 10 and 0 = 2ew7, we find d 5 0.196. 

(7.45) 

We will assume that the reference is chosen such that r(O) = X(O). If 
b(O) = 0, then Vj(O) = @TI’-18. We must now choose r and K such 
that J:!max(V,(O), VT)&< 1.7. This is accomplished with K = l/10 
and 

r=[ 2-y ? 2e;e6 1. 

since I’, < 1.4 and V(0) = $BTI'-18 < 0.2. - - 
The performance of the adaptive controller using a fuzzy system is 
shown in Figure 7.6. When I’ = 0 (adaptation turned off), there is 
more steady-state error. n 

In the previous example, we were able to find a bound on the representa- 
tion error w. In many real applications, however, it may not be possible to 
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Figure 7.6. Transient performance for the direct adaptive fuzzy controller 
(-) when tracking r(t) (- -). Compare to the case when I’ = 0 (- . -). 

find IV, possibly because the plant dynamics are too poorly understood. In 
these cases, we must use knowledge about the approximator and the func- 
tion it is to represent to determine a bound lull < IV using rules of thumb. 
From Chapter 5, for example, we know that as the spatial frequency of 
the function we wish to approximate increases, w will, in general, increase. 
Fortunately, the controller iteself does not directly use IV, rather we need 
knowledge of I&’ to place bounds on B,. If a conservative value for IV is 
chosen, then we will obtain a conservative estimate of B,. 

7.3.2 e-modification 

In the previous section we saw that the a-modification defined by 

B = -r 
K 

w9 - +?(s) ~F(~,@ 
a0 1 

T + ~ 6 _ @() ( )I 7 
is able to adjust the parameters of the direct adaptive controller so that 

the closed-loop system is stable. The term CT 8 - B” 
( > 

in the a-modification 

is used to improve the robustness of the adaptive controller since it keeps 
the parameter estimate, 8, from growing without bound when uncertainty 

exists in the system. Unfortunately, when Is&)1 becomes small, 6 is 
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dominated by the 0 8 - 0’ 
( > 

term. This causes 4 to be driven toward 6’. 

If 0’ is not a good approximation of the ideal parameter vector 8, then lel 
may start to increase. 

To overcome this problem with the a-modification, it is possible to mod- 
ify the update law so tha#t 

B = -r ays - +3(x) aF(Z,B) T 
de 

(7.46) 

where I? is a symmetric positive definite matrix, 8’ is a best guess of 8, and 
r(e) > 0 is a new robust term. A common choice for the e-modification is 
to use 

E = aleI, (7.47) 

with 0 > 0. Notice that with this choice, when lel is small, then the 
contribution from the robust term is reduced.’ The e-modification does 
require a slightly different set of assumptions from the a-modification. In 
particular, we will require the following: 

Assumption 7.3: There exists an error system e = x(t, x) satisfying 
Assumption 6.1 and static control law u = V,(X) with z measurable. There 
exists some known Vi satisfying ksle12 5 V&, e) 5 k4(e12 and (%p(x) 1 2 
k51el such that 1/, 5 +V, + kzlel along the solutions of (7.14) when 
u = u,(x). 

With Assumption 7.3 the following theorem holds when using the C- 
modification. 

Theorem 7.3: Assume Assumption 7.2 and Assumption 7.3 hold. 
If  for a given linear in the parameter approximator .F(z,@ there exists 
some 0 such that I.F(z, 0) - vs(z)I 5 W for all x E S, where e E B, 
implies that x E S,, then the parameter update law (7.46) with adaptive 

controller u = .F(z,8) guarantee that the solutions of (7.~4) are bounded 
given B, C B, with B, defined by (7.50). 

Proof: Define the representation error as w = .?@, 0) - u,. Following 
the steps up to (7.20) in the proof of Theorem 7.2, we find 

T/‘, 5 -ck& + ck2lel + 
av. - 
-g?(x) (F(z,b) - F-(2,6) + w) + BTr-lk, 

where we have used Assumption 7.3. Since F(z, 8) - F(z$) = g8 for a 
linearly parameterized approximator, we find 

i/, 5 -cklVs + (ck2 + kfjW)(e( + zp(x)s8 + BTr-LB 

- - -ck1V, + (ck.2 + k,W)l 1 e - aleleT (S - e”) , 
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where we have used the definition of the update law (7.46) and the assump- 
tion that lull 5 W when x E S,. 

Using -2zTn: If 23~~~ < --zTlc + Y~ZJ we find that 

-eT e-0” =-sT(H+&p)<-T+ 2 ) ( ) 
pl” IS - PI” 

- 
so 

Tli, 5 -cIQT/‘, + (ck2 + k5W)le( + T (-IQ” + IQ - 0’1”) - (7.48) 

Since -Vs < -kgIei2 - we may combine terms to obtain 

(7.49) 

It is now possible to define some b,, b, > 0 such that I& < 0 when le[ 2 b, 
or 181 2 be. In particular, let 

b, = 
2(ck2 + k5W) + ap - 6Ol” 

2Ckl kz 

b, = 
\i 

2(ck2 + k5W) 
0 

+ p - e”i2. 

We will now use Corollary 7.1 to complete the proof. Letting 

K = ck& + 
X,,,,,(r-l)b; 

2 ’ 

we find that e E B, for all t with 

B, = (7.50) 

Since the controller parameters may be chosen to make b, and b, arbitrarily 
small, it is always possible to ensure that B, 2 B, by proper choice of the 
initial conditions. n 

The above theorem places explicit bounds on the trajectory of e. As for 
the a-modification, however, we will also want to know how the controller 
parameters aaffect the closed-loop system performance. Let d = ck2 + JGg W + 
aI6 - 0012/2. Starting from (7.49) we find 

i/, 5 -cklkglel” + dlel 

< - 
ckl ks lel” d” 

- 2 + 2cklk3 ’ 
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7.4 Inherent Robustness 

Rearranging terms and integrating as done for the a-modification, the RMS 
error is bounded by 

(7.51) 

Notice that the RMS error for the e-modification is adjusted similarly to 
the case for the a-modification and may be made arbitrarily small. For 
example, increasing Ici improves the Ri’vIS error in both cases. 

We have shown that a direct adaptive controller may be defined to stabi- 
lize a wide class of nonlinear systems. In this section we will study the 
robustness of the resulting closed-loop system. 

7.4.1 Gain Margins 

Since c may be any positive constant in Assumption 7.2, the direct adap- 
tive controller has infinite gain margin. That is, it is insensitive to an 
overall static feedback gain variation. This in itself may be considered an 
improvement over static feedback linearization as shown by the following 
example. 

Example 7.5 Given the system 

lit = x2 + u, (7.52) 

it is possible to use feedback linearization to define a controller which 
drives e = x to zero. The controller u = Y(X) designed by feedback 
linearization becomes 

Y(X) = -x2 - kce, 

where a Lyapunov function for the nominal system was chosen as 
V = $e2. If the system is truly defined by 

i = x2 + Tu, (7.53) 

where x > 0, then 
v=-Kx2+(1-n)x3. (7.54) 

If 7r < 1 and x > ~/(l - ..rr) , then Gr > 0 for all t and x -+ co. If 
OTT > 1, and x < -b/P - a th en x + -co. Thus it is possible for a 
controller designed by feedback linearization to have no gain margin 
since it is now possible to find x(0) such that x + 00 for any x # 1. 

a 
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7.4.2 Disturbance Rejection 

Using a universal approximator as the controller provides enough flexibility 
to create a closed-loop system which is robust with respect to certain classes 
of unmodeled unbounded disturbances. This means that if we designed the 
controller for a8 system without disturbances, then that controller is robust 
with respect to disturbances without modification as long as the approx- 
ima,tor is capable of also modeling a robust nonadaptive controller. Thus 
the direct adaptive controller using a universal approximator is inherently 
robust with respect to disturbances. 

Consider the error dynamics defined by 

e = a(t, 2) + p(x)(&, x> + u>, (7.55) 

where A(t, a) is a possibly unbounded disturbance. Assume that there 
exists some positive definite scalar function $(x) such that In(t, x)1 5 p@(x) 
with p > 0. If p is bounded and g(x) > 0 is well defined for all x, then it 
is possible to use nonlinear damping to define a static stabilizing controller 
assuming that there exists a stabilizing controller for the case when n E 0. 

Theorem 7.4: Let Assumption 7.1 and Assumption 7.2 hold with 

ye1 (lel) 5 V,(e) < rez( lel) where ye1 and ~~2 are class-Koo~ If for a given 

linear in the parimeter approximator F(z,@ there exists some 0 such that 

I%do - q&z)l 5 VV for all x E S,, where e E B, implies z E S,, and 

(7.56) 

with 7, VA > 0, then the parameter update law (7.15) with adaptive con- 

troller u = .F(z,8) guarantee that the solutions of (7.55) are bounded given 
B, C B, where B, is defined by (7.25). - 

Proof: The proof follows that for Theorem 7.2. When n # 0, we find 
e E B, where 

B, = {e E Rq : lel 5 r,l’ (max(V(o>, VT)/c)} (7.57) 

with 

V, = CYe2 * r,l’ 

and d = ckz + z + & + o!!z$. 

With an extremely flexible approximator (one that is able to represent 
a large number of stabilizing controllers), it is possible to obtain a “very 
robust” closed-loop system using a direct adaptive controller. If a uni- 
versal approximator such as a fuzzy system or neural network is used to 
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75 . 

define F(,z, 8): then the same controller and update law may be used to 
compensate for wide classes of disturbances. Assume that there exists pa- 
ratmeter vectors 81 and 02 such that /-?YJ, 01) - Y,I < W when A E & 
and I;F(z$~) - v,[ 5 I/V when n E &. It is then-possible to use the 
same controller to compensate for either disturbance without modifying 
the control structure or update routine assuming the controller parameters 
are properly chosen to handle either case. 

Assume that for a given disturbance n&II;> there exists some 19 that 
includes a nonlinear damping term to help compensate for the disturbance. 
Since nonlinear damping helps stabilize the closed-loop system, the same 
ideal parameter vector 8 may be used to analyze a system in which n = 0. 
Thus a single ideal parameter vector 0 may be used for multiple systems. 
Similarly, it is possible to use multiple values for 6 to prove stability for a, 
given plant. For example, some 01 may be chosen for a nominal system. 
Since adding a nonlinear damping term will not destabilize the system, it is 
then possible to choose 62 which includes nonlinear damping. Since there 
may be multiple stabilizing 0 for a particular system, we will not be inter- h A 
ested in determining if t9 -+ 8. In fact, if we did somehow force 6 to some 
6, then we may actually decrease the direct adaptive controller’s ability 
to compensate for wide classes of disturbances and system uncertainties. 
Because of this, we will not be concerned with issues of persistency of exci- 
tation (which has been an important topic in traditional adaptive control 
techniques to guarantee proper parameter estimation) in our treatment of 
adaptive control. 

Improving Performance 

We have seen that using a flexible approximator to define the direct adaptive 
controller allows wide classes of systems to be stabilized even in the presence 
of possibly unbounded disturbances. In this section, we will see how the 
performance of the direct adaptive controller may be improved. 

It was shown that bounds on the RMS value of e may be obtained when 
using either the a-modification or the c-modification. It was shown, for 
example, the RMS error obtained when using the a-modification may be 
bounded by 

where d = ckz + g+,!L!$. Thus increasing q or ki may improve 
the RMS error. In addition to properly setting the controller parameters, 
there are additional ideas which may be used to improve closed-loop system 
performance. These will be studied next. 
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7.5.1 Proper Initialization 

Notice that for both the a-modification and the e-modification, the error is 
bounded by 

where V f 2 0 and ~~1 < I/,(-t, e) with ~~1 a class-K function. Thus the 
bound on 1e1 is dependent upon Va(0). Recall that V, = cV. + $eTyd 
and Vs < Tea(lel). Th us d ecreasing le(O)i will also tend to decrease &(O). 
For the tracking problem, it is possible to define a new reference trajectory 
which will ensure that V,(O) = 0 as shown in the next example. 

Example 7.6 Consider the system defined by 

21 = f1(x1) +x2 

i2 = fi(x) +u, 

where we wish to drive x1 -+ r. Here we will not concern ourselves 
with finding a stabilizing controller since the point of the example is 
simply to show how to help improve the initial conditions. Consider 
the error system defined by 

el = Xl - r 

e2 = x2 - + + kxl + f&-h)- 

If r(t) is defined by some external reference generator, then it may 
not be the case that e(0) = 0. 

To help reduce le(O)l, we will now consider the error system defined 

bY 

el = Xl - Ql 

e2 = ~~-q2+~el+fl(xl)~ 

where 

41 = q2 

42 = -k2(q2 - +> - h(q1 - T),  (7.59) 

with s2 + k2s + Icr a Hurwitz polynomial. Thus q1 is simply a filtered 
version of T. Now we may choose ql(0) = xi (0) and q2(0) = x2(0) + 
fi(xi(0)). This will ensure that le(O)l = 0 for our new error system. 

A 
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7.5.2 Redefining the Approximator 

In the previous chapter we saw that it is possible to make control laws 
“more robust” with respect to system uncertainty via nonlinear damping. 
Unfortunately this ma,y lead to terms in the feedback algorithm that may 
be characterized by high gain and/or high spatial frequency which are of- 
ten difficult to model accurately by fuzzy systems or neural networks with 
a, reasonable number of adjustable parameters. If one increases the num- 
ber of a’djustable parameters to obtain a better representation of the ideal 
controller nonlinearities, then the initialization of the approximator be- 
comes more restrictive since 1!?‘(O)I’-i8(0) increases with p where 6’ E RP. 
Since the bound lel 5 r,l’ (max(V,(O),V~)/c) is dependent upon @(O)( and 
10 - 6’1, using a large number of adjustable parameters may increase the 
bound on e. 

Rather than using a universal approximator to represent all the terms of 
an ideal control law, we may consider splitting the control law into separate 
parts. It is then possible to explicitly define strong nonlinearities in a static 
term within the control law and simply let the adjustable portion of the 
approximator match easily approximated terms. This is demonstrated in 
the following example. 

Example 7.7 Assume that for a given system we wish the direct adaptive 
controller to match 

avs- T 
va=Vs-? -,D 7 ( > ae 

(7.60) 

where 

If va(Z) is a8 smooth function, then we could define a multi-input 
fuzzy system to directly represent va. If $J” (x) is a function with high 
spatial frequency, however, it may be difficult for a fuzzy system to 
approximate va with a small number of rules. 

If f(x) is a smooth function which may be approximated relatively 
easily by a fuzzy system, then it may be advantageous to use the 
fuzzy system to only model f(x). Consider the approximator 

T  

- -T&G e), (7.61) 

where .F,, is a fuzzy system used to approximate the term f(x). The 
representation error defined in Theorem 7.2 then becomes 

W = F(X,e) - V,(Z) 

- - --q&7 e> + f(x), 
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where 6 is some ideal parameter vector. Since the nonlinear damping 
terms are no longer represented by the fuzzy system, it is possible that 
the bound on the representation error w will decrease (it is easier for 
the fuzzy system to represent f(z) ra,ther than f(z) plus some other 
high-frequency terms). n 

As seen in this section, the closed-loop system performance when us- 
ing a, direct adaptive controller may be improved by properly selecting the 
controller parameters, good initialization, and by choosing an approxima- 
tor which suits the particular control application. In addition to these 
techniques, there may be other ways to improve the performance of the 
controller. If, for example, steady-stat,e error is an important factor, then 
it is possible to include the integral error term J”(x - r)dr when trying to 
drive 12: --+ r. 

7.6 Extension to Nonlinear Parameterization 

The theorems presented thus far show that stable update laws may be 
defined for approximators that are linearly parameterized. In this section, 
we will see how the ana’lysis may be extended to the case of nonlinear 
parameterization. 

The most straight forward approach is to transform the problem into a 
linear in the parameter form through algebraic manipulation. This typically 
results in an overparameterization of the problem as shown in the following 
exmaple. 

Example 7.8 Consider the approximator defined by 

.qx, 6) = (x + q”, 
where 8 E R. Multiplying terms we find 

F(x$) =x2+20x+02. 

It is now possible to define a8 new parameter vector 8 = [28, O”] so 
that 

w5 49 = x2 + B,x + 02. (7.62) 

Thus by increasing the number of unknown parameters, it is possible 
to define an approximator that is linear in the new parameter set. A 

In the case where the transformation to a linear representation is not 
practical, we must directly consider the effects of the nonlinear parameter- 
ization. Recall from Chapter 5 that when using an approximator with a 
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nonlinear parameterization, we have 

where ISI 5 Ll6l” when x E SZ with L > 0 a, Lipschitz constant. In some 
- cases, it may be known that ISI is small when the approximator inputs are 

bounded with x E S,. If we have ISI 5 I&, when x E S,, then it is possible 
to use the a-modification and E-modification presented before where the 
bound on the representation error, VV, is simply replaced with W + Wa. 

Often, however, it is not possible to place explicit bounds on 6. In this 
case, we must include an additional stabilizing term to compensate for the 
effects of the nonlinear parameterization. If the a-modification is to be 
used with the direct adaptive controller defined using a nonlinearly param- 
eterized approximator, then we must ensure that there exists some 8 that 
allows for the definition of a controller which is robust enough to compen- 
sate for the approximator nonlinearities. The following is an extension of 
Theorem 7.2 to the nonlinear parameterization case: 

Theorem 7.5: Let Assumption 7.1 and Assumption 7.2 hold with 

Tel (let) 5 V,(e) <_ Ye2((e() where Tel and Tea are class-&. If  for a 
given possibly nonlinear approximator .F(z, 8) there exists some 8 such that 

IF(z, 0) - y, (z)l 5 W for all x E S,, where e E B, implies that z E S,, and 

with q, qd > 0, then the parameter update law (7.15) with adaptive controller 

u = .F(z,Q guarantee that the solutions of (7.1-Q are bounded given Be C 
B, with Be defined by (7.68). 

Proof: Following the steps in Theorem 7.2 up to (7.19) we find 

v, < -cl‘Qvs + ck2 + BTI+i - (7.65) 

avs - T 

+ ,pP(x) 

where w = F(z, 6) - v,. Notice that 

F(z,B) - F-(2,6) = gg + 6, (7.66) 

where ISI < LIB + 8’ - Q”12 5 2,@ - Q”(” + 2,510 - B”12. The last inequality 
was found-using Ix + y12 5 IZ + yl” + IX - ~1” = 214” + 21~1”. 
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Notice that 

and 

Using these inequalities, we find 

va < -&I/, + ck2 + 
(w + 2qe - e”12)’ + g _ 

- 
4r7 Vd 

when x E S,. Since -2sT(8 - O”) < -@I2 + 10 - O”12, tl - 
Lyapunov candidate is 

aeT 

ie derivative of the 

(7.67) 

where 

d = ck2 + 
(w + 2Lle - eO12)’ 

47 
+ 

g + ale - eOl2 

Tld 2 - 

Following the reset of the steps in the proof of Theorem 7.2, we obtain 

Be = {e E Rq : 14 L 7;’ (max(V(0),Vr)/~)} , (7.68) 

where 

dX,,,,(F-l) 
CT * 

Since we may choose ki , k2, q, qd, 0, and I?, we may make Be arbitrarily 
small so it is always possible to choose B, c B,. B 

Even though the bounds when using a nonlinear parameterization are 
more strongly influenced by the magnitude of 10 - 8’1, the reduction in the 
required number of adjustable parameters may provide a greater advan- 
tage. Even though the Lipschitz constant, L, is not explicitly used in the 
definition of the control law, an upper bound on L is required to ensure 
that Be C B,. 

7.7 Summary 

In this chapter we learned how to define stable direct adaptive controllers 
for a variety of nonlinear plants. It was shown that if a static stabiliz- 
ing controller exists, then it may be possible to define a static adaptive 



Sec. 7.7 Summary 209 

controller using either the a-modification or e-modification to update the 
controller’s adjustable parameters. The direct adaptive controller is defined 
by the following steps: 

1. Place the system in a canonical representation so that an error system 
may be defined. 

2. Define an error system and Lyapunov candidate Vs for the static 
problem. 

3. Define a static control law u = V, that ensures that r;l, 5 -/qV, + k2 
for the a-modification approach, or ‘i, < --A& + /ale/ when using - 
the e-modification. 

4. Choose an approximator F(z, 8) such that there exists some 8 where 

I~(~,~~ - u,(z)l 5 IV for all x f  S, where u, is defined by (7.17) 
for the cr-modification and V, = u, for the e-modification. Estimate 
upper bounds for IV and 16’ - 8’1 where 8’ may be viewed as a “best 
guess” of 8. 

5. Find some B, such that e E B, implies x E Sz. 

6. Choose the initial conditions, control parameters, and update law 
parameters such that B, C B, with B, the bound on the size of the - 
error trajectory. 

As long as one choose the initial conditions, controller parameters, and up- 
date law such that B, C B,, then the error trajectory will remain bounded, 
which implies that the states will also be bounded. It was a.dditionally 
shown that by proper choice of the control parameters, it is possible to 
guarantee that the errors will converge to an arbitrarily small value (unlike 
B,, this value is independent of the initial conditions). 

It was then shown that the direct adaptive controller is robust with 
respect to static gain uncertainty and to various additive system uncertain- 
ties. Also, by choosing a fuzzy system or neural network in the definition 
of the control law that is able to represent wide classes of functions, the 
resulting closed-loop system is made robust with respect to wide classes 
of additive uncertainty. This is a great advantage when implementing a 
control law for a system in which the exact functional form of all possible 
uncertainties is unknown. 

When a nonlinear approximator is used in the definition of the control 
law, we also found that the direct adaptive controller may still be used 
so long as an additional nonlinear damping term is added to ensure that 
the aNpproximator nonlinearity does not destabilize the closed-loop system. 
Since nonlinear in the parameter approximators may represent a wider class 
of functions than a linear in the parameter approximator with the same 
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number of adjustable parameters, this extension may prove beneficial in 
some a,pplications. 

7.8 Exercises and Design Problems 

Exercise 7.1 (Time-Varying Input Gain) Consider the error system 
dynamics 

0 

&= a(t,x) + : 

i.j 

u, 
0 

(7.69) 

P(t) 

where z = 1x1,. . . , x,,-r] T. The gain is bounded such that 0 < /?r 5 
,0(t) < /32 a’nd it is known that 101 5 B. Use the Lyapunov candidate 

to define a stable adaptive controller, where Vs is a Lyapunov function 
for the static control law u = v,. 

Exercise 7.2 @Modification Revisited I) Other values may be 
picked for E(e) in the e-modification. Show that the update law (7.46) 
using 

aleI 
E(e) = lel + 7 

(7.70) 

with q > 0 results in a stable closed-loop system. Notice that this 
modification is similar to the a-modification when [e] is large. 

Exercise 7.3 (e-Modification Revisited II) Show that the update 
law (7.46) using 

(7.71) 

where CT, 77 > 0 and 

i 

1 ifz>l 
D,(x) = x if ]zj-< 1 

-1 ifz<-1 - 

results in a stable closed-loop system. 

Exercise 7.4 (Control of a Linear System) Consider the single- 
input plant defined by 

21 = x2 

k2 = klxl + k2x2 + u, 
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where kr , i& are unknown constants and we wish to drive y = xr + r 
with r a constant. Consider the error system defined by e = [xr - 
r, x21T so tha,t the error dynamics become 

fil = e2 

e2 = /klXl + k2x2 + u. 

Develop a direct adaptive controller using the a-modification and 
show the closed-loop system response for various values of I?r and 
k2. 

Exercise 7.5 (Time-Varying Disturbance) Consider the plant de- 
fined by 

k;; px sin(wt + $) + U, (7.72) 

where p, 4 E R are unknown, but w > 0 is known. Show that (7.72) 
may be transformed into 

x = 0rx sin(wt) + 6.425 cos(wt) + u 

using trigonometric identities. Define a direct adaptive controller to 
drive x -+ 0. 

Exercise 7.6 (Point 
a,re described by 

where k, b and m 

Mass) Consider the point mass whose dynamics 

rn% = -4x - bi + u, (7.73) 

are unknown constants. Define a direct adaptive 
controller that drives x -+ r(t). 

Exercise 7.7 (Sliding-Mode Controller) Consider the system 

ii, = x2 

552 = 01x; + A(t) + &?A, 

where 01, & a,re unknown constants and IA(t)1 <_ p, with p > 0 a 
known constant. Design a direct adaptive controller based on a stable 
manifold to drive x -+ r(t). 

Exercise 7.8 (Backstepping) Consider the system 

kl = 01 sin(xr) + x2 

lt& = 022; + &u, 

where 8r,&, 0s are unknown constants. Design a direct adaptive con- 
troller ba,sed on the backstepping method to drive x -+ r(t). 
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Exercise 7.9 (Adaptive Fuzzy Control) Consider the system 

i = f(x) + u, 

where f(x) is to be approximated by the adjustable fuzzy system 
-Tfs (x, 6) on x E [-1, l]. Design a direct a’daptive controller so that 
x --+ r(t) when f(x) may be defined by any of the following functions: 

. f(x) = I 
0 f(x) =x+x2 

0 f(x) = sin(x) . 

Exercise 7.10 (Adaptive Neural Control) Repeat Example 7.9 us- 
ing a multilayer perceptron. 

Exercise 7.11 (Surge Tank I) A model for a surge tank is given by 

A( = -q/G + u, (7.74) 

where x is the liquid level, and u is the input flow (assume it can be 
both positive and negative). Here A(x) is the cross-sectional area of 
the tank, g = 9.81m/s”, and c is the unknown cross-sectional area 
of the output pipe. Design a direct adaptive controller given that 
A(x) = ax2, where a > 0 is an unknown constant. 

Exercise 7.12 (Surge Tank II) Consider the surge tank described in 
Exercise 7.11. Show that the controller u = u, with 

(7.75) 

where IG > 0 stabilizes the system such that I& 5 -2td5 when V, = 
$e” with e = x - r(t). Show how the direct adaptive controller 

Y, = q/i&i + [T - ~(5 - r(t))] .F(x, 6) - rje (7.76) 

may be used to stabilize the system. 

Exercise 7.13 (Three-Phase Motor) The dynamics for a permanent 
magnet 3-phase motor are described by 

4 = w 

J; = -Bw + K sin(N + K sin(N(B + 2~/3))ib 

+ Ksin(N(0 - 2~r/3))i, - TL 

Li, = -Ri. + v, 

Lib = -Rib + vb 

L& = -Ri, + v,, 
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where 19 is the shaft angle, w is the shaft angular rate, and i,, ib, i, 
are the currents for the three phases. Also J is the moment of inertia, 
B is the coefficient of viscous friction, K is the motor constant, N is 
an integer specifying the number of poles, L is the inductance, and 
R is the resistance per phase. Design a direct adaptive controller for 
va, vb, vu, so that 8 tracks a reference r(t) when the load torque TI, is 
an unknown constant. Repeat the design when TL (0) is a function of 
the angular position. What conditions on TL(~) are needed in your 
design? Hint: sin”(Nx)+sin”(N(x+2~/3))+sin”(N(x-2r/3)) = 1.5. 

Exercise 7.14 (Motor Fault) Repeat Exercise 7.13 when one looses 
the ability to develop torque with phase c so that only phases a and 
b may be used in the control of the motor. 

Exercise 7.15 (Electromagnet Control) A model of a magnetically 
actuated point mass is defined by 

mii = f(x) + (Gk121)2 - (Gyzl)2, - (7.77) 

where x is the position of the mass. The system is actuated by two 
electromagnets with current inputs ~1 and ~2. Here G > 0 is the size 
of the nominal gap between the point mass and an electromagnet (i.e., 
when x = 0), and k1, k2 are electromagnet constants. The actuator ~1 
is designed to move the point mass along the +x direction, while 242 
moves the mass along the -x direction. Define a static controller for 
the case when f(x) is known. Then define a direct adaptive controller 
for the case when f(x) is approximated by .F(x, 6). 



Chapter 8 

Indirect Adaptive Control 

8.1 Overview 

In the previous chapter we explained_how to develop stable direct adap- 
tive controllers of the form u = .F(z, O), where .F is an approximator and 
8 E RP is a vector of adjustable parameters. The approximator may be 
defined using knowledge of the system dynamics or using a generic univer- 
sal approximator. We found that as long as there exists a parameter set 
for the approximator such that an appropriate static stabilizing controller 
may be represented, then the parameters of the approximator may be ad- 
justed on-line to achieve stability using either the a-modification or the 
e-modification. 

In this chapter we will explain how to design indirect adaptive con- 
trollers. Unlike the direct adaptive control approach, we will design an 
indirect adaptive controller by first identifying individual types of uncer- 
tainty within the system. A separate adaptive approximator will then be 
used to compensate for each of the uncertainties. The indirect adaptive 
control law is then formed by combining the results of each of the approx- 
imations. 

We will begin our treatment of indirect adaptive control by studying the 
control of systems which contain uncertainties that are in the span of the 
input. In this situation, the uncertainties are said to satisfy matching con- 
ditions. Both additive and multiplicative uncertainties will be considered 
so that the error dynamics become 

6 = a(t,x) + p(x) (A(t,2$ + rqz)u) , VW 

where n(t, z) E R* is a vector of possibly time-varying additive uncer- 
tainties, and II E RmXm is a nonsingular matrix of static (time-invariant) 
multiplicative uncertainties. It will be assumed that the error system is 
defined to satisfy Assumption 6.1 so that boundedness of e implies bound- 
edness of 2. Assuming that a controller may be defined for the case when 
A = 0 and II = I, an indirect adaptive scheme will be developed for the 
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case when n # 0 and II # I are unknown. 
We will later study the case where the disturbances do not necessar- 

ily sa#tisfy matching conditions. A simple example of a system in which 
uncerta’inties do not satisfy matching conditions may be defined as 

Here LL. is a,n uncertainty that is not in the span of the input. We will later 
study how to design indirect adaptive controllers for strict-feedback sys- 
tems that contain possibly time-varying uncertainties which do not satisfy 
mast thing conditions. 

The purpose of this chapter is not to provide explicit control algorithms 
suitable for each control application. Rather, it is our intent to provide a 
set of tools that may be used to design stable controllers for a wide class of 
nonlinear systems. After reading this chapter, you should be able to design 
indirect adaptive controllers that are able to compensate for a variety of 
static and time-varying uncertainties. 

8.2 Uncertainties Satisfying Matching Conditions 

In this section we will study the adaptive stabilization of uncertain systems 
in which the uncertainties satisfy a matching condition. For each uncer- 
ta,inty, we will use a separate approximator. Thus unlike the direct adaptive 
controller which uses a single (possibly large) adjustable approximator, the 
indirect adaptive controller may use many smaller approximators to com- 
pensate for system uncertainties. 

8.2.1 Static Uncertainties 

Consider the error dynamics 

e = c&r) + P(x) [Q(x) + JJ(+J] ) (8.2) 

where n(z) is an additive uncertainty and II(z) is a non-singular multi- 
plicative uncertainty (notice that both uncertainties are time-invariant). 
The uncertainties satisfy matching conditions since they are in the span of 
the input u. If u = Y&, z) is a stabilizing controller for the nominal system 
(A G 0 and II s 1) and the functions n(z) and II(z) are known, then the 
control la,w defined by 

u = n-‘(IC) (-Q(lC) + U&Z)) (8 3) . 

would be a stabilizing controller for (8.2) since it cancels the effects of Q 
and II to render the error dynamics 6 = ar + /?u,, which is a stable system by 
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the definition of Y,. If ---A is approximated by Fn (x, 8) and It by .Fn (z, @, 
then the control law u = u&z,@ may be used with 

(8 4) . 

Here the parameter vector 6 is allowed to vary over time. Also, we have h 
used .F(z, 0) rather than F(x, 6) since z may only contain a few components 
of x. Alternatively, x may contain additional signals that are functions of 
x. Thus we use x as the input to the approximators to help stress that the 
approximator’s inputs may not necessarily be identical to 17;. The suggested 
control law V, (z, 4) was developed indirectly by first approximating the 
uncertainties (notice the similarity between (8.3) and (8.4)). Assuming 
that the approximations are accurate, the controller was developed in an 
attempt to cancel the effects of the uncertainty so that the performance of 
the nominally designed closed-loop system is preserved. This is typically 
referred to as a certainty equivalence approach. 

We have included the nonlinear damping term 77 (%p) T to increase 
closed-loop system robustness. The nonlinear damping term is defined using 
the definition of the error system and Lyapunov candidate which must 
satisfy the following assumption: 

Assumption 8.1: There exists an error system e = x(t, x) satisfying 
Assumption 6.1 and known static control law u = v&) with x measurable, 
such that for a given radially unbounded, decrescent Lyapunov function 
V&t, e), we find ii, 5 --kJ,+k2 along the solutions of (8.2) when u = Y&), 
n E 0, and II z I. 

Since the approximator Fn is a matrix, the Jacobian with respect to 
its adjustable parameters may not be defined using the familiar notation. 
Notice, however, for a linearly parameterized approximator 

i 

i&q . . . 6-q 
ae ae 

EI(~,~)~, = 
. . . . 1 1 Ya 
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Thus letting 

where AF E R”l”p, we find .F~(x, B)Ya = AF(z)@ and F~(z,~)v, = 

A&. 
The update law for the indirect controller (8.4) is defined by 

B: = -r 
ar//, 

K ( 
dFA T 

&3(x) - - A.+) 
a8 >> 

+ a(6 - 0”) ) 1 (8 6) . 
where r is a positive definite symmetric matrix, g > 0, and 8’ are design 
parameters. This choice for the update law will become apparent in the 
proof of the following theorem: 

Theorem 8.1: Let Assumption 8.1 hold with YeI (lel) 5 V.(e) < - 
Tez( lel) where yeI and 7~ are class-&. If for given linear in the pa- 

rameter approximators F&z, 8) and .7+&z, 8> there exists some 0 such that 
l&(z, 0) + a(x)\ < WA and I&(z$) - IX(x)1 = 0 for all z E Sz where 
e E B, implies x E S,, then the parameter update law (8.6) with adap- 
tive controller (8.4) guarantee that the solutions of (8.2) are bounded given 
B, C B, with B, defined by (8.14). 

Proof: Consider the Lyapunov candidate 

which has the derivative 

ii, = z + $J$ [a(t,X) + /3(X) (A(X) + JI(X)Ua)] + BTIT1;j. (8.8) 

Since Y, = .Ffi’(-TA - q (%p(x))’ + z&,x)), notice that the term in the 
above equation 

Using the definition of 8, we find that the third term in this equation is 

d&(x, 8) - - - 
do 

@+wA, (8 9) . 
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where WA = .& (z, 0) + n is a representation error with /WA 1 5 WA for all 
x E Sz, and the fourth term is 

(F&8) - II) v, = (hI(4 - h(z,e) + FlJ(z,B) - II) v, 

= A#?. (8.10) 

Using (8.9), (8.10), and Assumption 8.1, we find 

v, < - -k,Vs + k,, + BTI4 (8.11) 

T + a&(&b) - 
88 

e+WA-AFi . 1 
Using the definition of the update law 

Since < -ls(2 + 10 - 8012, we obtain 

W2 
I& < -kyy,l(lel) + k2 + a + f (--IQ2 + IS - Ho/‘) . - 

4r7 

Letd=k2+%+-. Then 

(8.13) 

SO it is possible to pick some b, and be such that va 5 0 when lel 2 b, or 
161 2 b,. In particular, choose 

Using Corollary 7.1, we see that e E B,, where 

with 

B, = {e E RQ : I4 5 -Ye-i1 bax(l/,(o>:K)>} ) (8.14) 

Since it is possible to pick k1, k2, q, 0, and I’, we ma,y make V, arbitrarily 
small. Thus with a proper choice of the initial conditions, we may always 
pick B, C B,. 
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The assumption that L/,(X, 8) is well defined for all t is required since it 
is possible that 4 be defined such that F&z, 8> is singular. To prevent this, 
it may be possible to use a projection algorithm which ensures that 6 is 
restricted to a region such that .7+~ never becomes singular. The choice of 
the approximator structure will determine how the projection algorithm is 
defined. If, for example, fuzzy systems with adjustable output membership 
function centers are used for a single-input system, then the projection 
algorithm just needs to ensure that each membership function center is 
larger than some c > 0. 

When using Theorem 8.1 to define an indirect adaptive controller, one 
typically does the following: 

1. Place the plant in a canonical representation so that an error system 
may be defined. 

2. Define an error system and Lyapunov candidate Vs for the static 
problem. 

3. Define a static control law u = V, which ensures that vs < -IclV, + Ica - 
when A = 0 and II = I. 

4. Choose approximators Fn(z, 8) and &(X, 8) such that there exists 
some 8 where I.&$&@ + A(X)I < WA and I.&(z$) - n(x)1 = 0 for - 
all x E S,. Estimate upper bounds for I/t’n and 10 - 0’1 where 8’ may 
be viewed as a “best guess” of 0. 

5. Find some B, such that e f B, implies x E S, . 

6. Choose the initial conditions, control parameters, and update law 
parameters such that B, C B, with B, defined by (8.14). - 

Notice that the design of the indirect adaptive controller is very similar 
to the design of a direct adaptive controller. Unlike the direct adaptive 
controller, the design of the indirect adaptive controller does require that 
some stabilizing control law u, be known for the case when A = 0 and n = 
I. The approximators and update law are then used only to complement the 
nominal control law by accounting for the additional system uncertainty. 

So far we have assumed tha’t I?Q&z,~L) - II = 0. In some cases, 
this may be a very restrictive assumption since rarely can a fuzzy system 
or neural network perfectly represent a given function. It should be noted, 
however, that it is possible to consider the modified control law V, = u, +vrn 
with 

r/n avs 
urn = -- - ( > 

T 

7r0 de 
B(C) 2 n 7 (8.15) 
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where r/n > 0 and 7~0 < Amin( The above modification is then able to 
dominate an uncertainty of the form W,Y, # 0 that arrises when 

(3&s) - II) u, = (3&, 4) - 3n(~, 0) + 3r&, 0) - II) VU 

= A3(@ + wnv,, 

where We = 3&z,t?) - II when x E Sz. 
Theorem 8.1 only guarantees boundedness of the error trajectory. It is 

possible to find an ultimate bound for the error since 

with k,, = min kr, Xmax+j . Then 
( > 

i/, 5 -k&i + d, (8.17) 

where d = k2 + %+7 
+4?“)2 so that V, (t) 2 L, A- + (1’,(O) - $-) eAk+ m 

Since YeI (If+ I VU@), we conclude that lel converges to 

De = { I4 : I4 L 7,’ (&)} - (8.18) 

Since it is possible to make d/k, arbitrarily small, the ultimate bound 
may be made arbitrarily small. Notice that this bound is independent of 
the initial conditions. 

We can also find bounds on the RMS error. Using (8.13) notice that 

V, L -h~el(lel) + d. (8.19) 

Rearranging terms and integrating, we see that 

s t Ye1 (lelw- < -/‘(-$+;)dT. 

Since Va is bounded, we find 

1 t 
lim - 
t--boo t s 

%l(le()d~ 5 p. 
1 

Assume that Tel(s) = is”. Then 

(8.20) 

(8.21) 

1 
lim - 

.I 

Q 
t-+ca t +12d~ i $ 
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so the RMS error is bounded by 

(8.22) 

which is again independent of the system initial conditions and may be 
made arbitrarily small. 

Example 8.1 In this example we will use the indirect adaptive approach 
to design a spacecraft attitude control system. The dynamics of the 
spacecraft are given by 

. 
4 = w,: + (w,sin++wZcos$)tanQ 

e = w,cos&--w,sin$ 

ti - wy sin C$ + w, cos 4 - 
cos 9 

0 wz -wY 

0 I[ 
WX -w, 0 w, J wy + wy -wx WZ 1 

where 4 is roll, 0 is pitch, and $J is yaw in radians. 
known inertia matrix defined by 

nx+ux 
[ 1 n,+u, ) AZ + uz 
Here, J is the 

while ux, uY, and uZ are the torques applied by the jet nozzle ac- 
tuators. The signals A,, Ay, and A, represent disturbance torques 
a.pplied to the spacecraft possibly resulting from a nozzle failure. The 
goal here is to define an adaptive controller which will force 4 --+ ~4, 
0 -+ Q, and $ -+ T+. 

We will start by defining the error system. In particular, we will let 

ql = 4-q 
e2,l = B-r0 

e3,l = G-r+ 
(8.23) 

Using the backstepping approach, we will ideally define a controller 
such that ei,i = - Kei,i for i = 1,2,3 (or &,J + Kei,i -+ 0). Therefore 
define ei,2 = &J + Kei,i, so that 

e1,2 = W, + (wy sin 4 + w, cos 4) tan e - +$ + Ker,i 

e2,2 = WY cos $ - w, sin 4 - +Q + Ke2,i 

e3,2 = 
w,sin$+w,cos$ 

cos e 
- ++ + Ke3,l. 
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Notice that with this definition, we find &I = --Kei,l + ei,2 for i = 
1,2,3. Also 

(wyc4 - W~SQ) tan&j + wy~~.?~zc”~ - F4 + F&J 

(wysqj + w&j) (b - Q + n&l w&y---W.&f) - O+ Wysc$+Wzcq!l - 
Ce2 

see - ?q + K&q 
1 s$tan@ c+tan8 cj, . -% 

59 
Ce Ii. 1 wY 7 (8.24) 

w.z 

where we have used the notation c+ = COSC$ and s4 = sin 4. Using 
the definition for the angular rates, we obtain 

where we have grouped the additive terms in a/&!, q5,0, Y/J, w,, wy, wz). 
Ignoring the uncertainties A,, ny, A,, it is possible to define the con- 
trol law 

(provided that co # 0) so that ii,2 = -ei,l - Kei,2. This control law 
guarantees that vS = -2d’,, where V, = $ ~~=, ez,l + 3 czzl e:,,. 
Thus 

e = [el,l,e2,1,e3,1,e1,2,e2,2,e3,2]T = 0 

is exponentia.lly stable, and Assumption 8.1 is satisfied with k1 = 2~ 
and !Q = 0. 

We will now define an indirect adaptive controller which uses radial 
basis neural networks to compensate for the uncertainties. Assume 
tha’t it is known that one particular (unknown) failure mode causes a 
torque of 

4004 
L&=10+---- 

1 + 24 
(8.25) 

to be applied about the z-axis. To compensate for this type of failure, 
we will use a normalized radial-basis neural network defined by 
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Figure 8.1. Basis functions used to define the neural network in Exam- 
ple 8.1. 

where 

PLi 
= e-(2$i)2 

. 

Each ci is used to define the center of the neural network basis func- 
tion, while 0 is chosen to describe the “width” of the basis function. 
Here we choose to use p = 8 basis functions that are evenly distributed 
between [-2.5,2.5] as shown in Figure 8.1. 

To apply the indirect adaptive control approach, we must make sure 
that the error trajectory is confined to I?, where B, & B, with e E 
B, implies x E S,. To do this, one must estimate bounds for the 
representation error, W, and error in knowledge of the uncertainty, 
16’ - 0’1. Using a least squares approach, it is possible to find a 6 
such that the representation error, w = & - .?-A, is bounded by 
WA = 8.48 and 101 = 460.4. Since we do not know what type of 
uncertainty will be applied to the spacecraft (here (8.25) is only one 
such possible disturbance), we will conservatively choose bw = 10” 
and bo = 500” to be the parameters used in the design of the control 
law with IV; 5 br/~’ and 161” 5 be. Thus we will design the controller 
for disturbances which are characterized by I/tia < 10 and 101 5 500. 

Assume that we wish to keep the spacecraft attitude fixed even in the 
presence of a fault so that r# = rg = r+ = 0. We may now define 
B, such that e E B, implies x E St. Since the input to the neural 
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t 

Figure 8.2. Attitude angles 4 (-), 6 (. . ), and v+!IJ (- -) using the indirect 
adaptive controller (shown in degrees). 

network is given by x = 4, we must place bounds on lel to ensure that 
6 E [-2.5,2.5] (i.e., S, = [-2.5,2.5]). S ince er,z = &r,r + Ker,r and 
el,l = 4, we find 

. 
141 L le1,2l + ~lqll L (1 + +I. 

Thus e E B, with B., = {e E R6 : lel 5 2.5/(1 + K)} implies that 
141 5 2.5 so x E S,. 

We are now ready to choose the remaining controller parameters to 
ensure that B, C B,. From (8.14) (with yeI = 7ea = $lel’) we know 
that 

lel < J2 m=(K(O), VT): - (8.26) 

where 
Inax(W 

I 
7 

0 
(8.27) 

and 
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Figure 8.3. Spacecraft rates 6 (-), 4 (. . ), and 4 (- -) using the indirect 
adaptive controller (shown in deg/sec). 

where we have chosen Ho = 0 making no assumption about the form 
of the uncertainty. Choosing K = 2, we obtain kl = 4. This also 
fixes the size of B, to be B, = {e E R” : Iel 5 0.8334). To ensure 
that the kr term does not dominate the calculation of VT, we choose 
Xmax(J?) = a/4 so that VT = d/2 ( we will further choose I’ = 41/a 
to be a diagonal matrix). Choosing v = 2bw > 2W2 and 0 = 1/(4b~), 
we find d < l/8 + l/8 = l/4 so that VT 5 118. - 

The bound on e (8.26) is also dependent upon V, (0) = VS (0) + 

;e’(O)r-‘s(O). A ssuming that 8(O) = 0 and V, (0) = 0 (no significant 
pointing errors prior to the fault), we obtain 

1 
< -bsX,,,(r-l) = 0.03125. 
- 2 

(8.28) 

Thus the error is bounded by lel 5 J2max(0.03125,1/8) = l/2. 
Thus B, c B, since B, = {e E R6 : lel < l/2}. 

The spacecraft angles and rates are shown in Figures 8.2 and 8.3, 
respectively. This example demonstrates the conservativeness some- 
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times obtained when designing adaptive controllers. Notice that using 
(8.26) we were able to predict that Jet 5 l/2 so that 161 < (1 +E)leJ 5 
1.5rud/sec (86deglsec). In Figure 8.3, we see that 141 never becomes 
larger than 0.5deg/sec so that our bound is rather conservative. We 
will find that it is often possible to reduce, e.g., the rate of adaptation 
I’ and still maintain stable feedback since the stability analysis only 
provides sufficient and not necessary conditions on stability. 

2 I I 
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: -~*-'-k '\ 
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Nr 
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-1.5 - 

-2' I I I I I I 
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Figure 8.4. Attitude angles 4 (-), 0 (. - ), and $ (- -) using static feedback 
(shown in degrees). 

To see the effects of the adaptive portion of the controller, another 
simulation was run where I” = 0 so that the adaptation is turned 
off. In this case, the controller is no longer able to maintain a proper 
hea.ding as shown in Figure 8.4. n 

82.2 Dynamic Uncertainties 

In the previous section we used a feedback linearization approach to define 
the control law via certainty equivalence and studied the resulting stability. 

. In this section, we will see that systems with additional classes of uncertain- 
ties may be stabilized using the same adaptive controller presented in the 
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previous section if we do not restrict our analysis to that based on feedback 
linearization. 

Consider the error dynamics 

e = a@, x) + /?(t, x) [Lqt, 2) + II(x)u] ) (8.29) 

where a(t, s) is now allowed to be a time-varying uncertainty. Since n(t, Z) 
is now dependent upon time which is an unbounded signal, it is not possible 
to define an approximator F(tt, x, 8) that may be used to simply cancel 
the effects of n as done in the last section. This is because we cannot find 
some B, so that e E B, implies x E S, with S, bounded since t --+ 00. 
Instead, we will attempt to approximate a function, v&r, c>, which is able 
to compensate for its effects. The signal 5 will be defined based upon the 
choice of the error system and Lyapunov candidate. When A is a dynamic 
uncertainty, we will require the following: 

Assumption 8.2: There exists some v&r, c) such that 

for all [ E R”, where c > 0. 

The term 5 will be chosen according to our choice of the Lyapunov can- 
didate as will be shown shortly. Assumption 8.2 ensures us that there exists 
a controller which is able to compensate for the uncertainty A. The follow- 
ing examples show how certain classes of uncertainties may be handled. 

Example 8.2 Assume lA(t, x)1 5 &J(X) where $J is a known non-negative 
function. Let VA = --K$J~[, with K > 0. Then we find 

cT[a+vA] 
- - CT [A - d2C] 
< p” 
- 4K’ 

(8.30) 

which satisfies Assumption 8.2 with c = p”l(4~). Here we have used 
the inequality -xTx & 2xTg 5 ~~9. a 

Example 8.3 Assume IA(t,x)I 5 py(Jql)$(x), where y is class-K: and 
$J is non-negative. Assume that r) is a dynamic normalizing signal 
defined such that 7 > 141 for all t. If we let - 

VA = -Ky2(q)$2<, (8.31) 

then CT [a + VA] 5 I”/. a 
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We will once again study the behavior of the closed-loop system when 
using the control la,w (8.4) and update law (8.6). 

Theorem 8.2: Let Assumption 8.1 and Assumption 8.2 hold with 

Ye1 (lef) I K(e) < Tez( let), where Tel and ye2 are class-K& and - 

If for given linear in the parameter approximators F&e) and F&T& 
there exists some 0 such that 

and IFn(z,O) - II(x)I = 0 f or all x E S, where e E B, implies x E S,, then 
the parameter update law (8.6) with adaptive controller (8.4) guarantee that 
the solutions of (8.2) are bounded given Be & B, with B, defined by (8.35). 

Proof: Notice that 

FA(&@+ n = (FA(&@- FA(.z$)) +(FA(X,@)- VA)+ (VA +A) 
,. 

aFA(Z,@ - - - 
89 

6+wA +@A +A>, (8.32) 

where WA = &(z, 0) - VA with lwA 1 5 WA for all z E Sz. Following the 
steps up to (8.11) in the proof of Theorem 8.1, we find 

i;, < - -kg,, + k2 + sr-lBi 
T + a.&(&@ - 

do ~+wA+vA+LL-A~~? . 1 
Using the definition of the update law and Assumption 8.2 

< -(61” + 10 - 6’f2, we obtain 

C < -klyel (lel) + b + 2 + ; (-IQ2 + 10 - oO/‘) . 

NowletcE=k2+!‘$+c+%$= Then 

(8.34) 
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so it is possible to pick some b, and be such that Ti, 5 0 when lel 2 b, or 
161 _> b,. In pa.rticular, choose 

Using Corollary 7.1, we see that e E B, with 

Be = {e E Rq : Iel 5 reJ1 (max(V,(O), VT))}, (8.35) 

where 

(8.36) 

By proper choice of the controller parameters and initial conditions, it is 
possible to choose B, such that B, C B,. - 

By not restricting our analysis to that based on feedback linearization, 
the indirect controller is not only able to cancel static uncertainties, but 
is also a’ble to compensate for classes of dynamic uncertainties. Notice 
that when A(X) is not time-varying, it is possible to let VA = ---A(X) in 
Assumption 8.2 to recover the results of Theorem 8.1. 

Notice that the controller form and update law used to stablize the static 
and dynamic uncertainties are equivalent. Thus if an indirect adaptive 
controller is designed for a static uncertainty, it is also robust with respect 
to classes of dynamic uncertainties without modification as long as the 
approximator is also able to represent an appropriate stabilization term for 
the dynamic uncertainty. 

This approach is also appealing since there are many choices for VA 
which may be used to dominate the effects of the dynamic uncertainty. Con- 
sider, for example, the case where the additive uncertainty may be bounded 
bY w,4 5 P/44- H ere it may be possible to dominate the uncertainty 
by a fuzzy system -T&Z, 0) where t9 is chosen such that F&Z, 0) 2 Q’(Z). 
Then we may let 

which sa’tisfies Assumption 8.2. If the adjustable approximator is then 
chosen as 

h 

FA(d,e> = -~-q&7 B)c, (8.37) 

then the representation error w = &&,8) - z&$ may be set to zero so 
WA = 0. Thus when an approximator is used to represent a dominating 
term for stabiliza.tion, it is typically possible to choose some 6 such that the 
representation error becomes zero. On the other hand, the parameter c in 
Assumption 8.2 is typically nonzero which increases the size of B, (defined 
by (8.35)) in a similar fashion as WA. 

The following example demonstrates how to use the indirect adaptive 
controller to stabilize a system with a dynamic uncertainty. 
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Example 8.4 In this example, we are to design a controller which is able 
to accurately point an antenna driven by a permanent magnet DC 
motor. Here we are primarily interested in overcoming the effects of 
low-velocity friction. Consider the system defined by 

4 = ow 1 - --%sgn(w) 
[ Tf 1 

s = w 
Jti = T, sin(N0 + 4) - q + u, 

(8.38) 

where q is torque caused by friction, 8 is the angular position of the 
antenna, w is the antenna angular velocity, and u is the commanded 
torque. Here friction is based on a dynamic friction model proposed 
by Dahl [35], where 0 is used to describe the “stiffness” of the friction, 
and Tf is the magnitude of the friction torque. The motor cogging 
torque is described as sinusoidally varying with position, where Tc = 
10 is the magnitude of the cogging torque, N = 60 is the number of 
motor pole faces, and 4 is the phase. J = 20 is the antenna moment of 
inertia. We will assume that q is not available for feedback and that J, 
T,, and 4 are unknown. Since sin(s+y) = sin(z) cos(y)+cos(z) sin(y), 
it is possible to express the position and velocity states as 

4 cos(Nxl) - J + ;, 

where x1 = 8 and x2 = W. We will now design a controller so that 
x1 + r(t). 

Define the first error variable as er = xi - T. Ideally, we will be able 
to define the controller so that &r = --ei with K > 0 so that er + 0. 
With this in mind, define the second error signal as e2 = &r + Kei. 
This way if e2 ---+ 0, then 61 -+ --er. Notice tha#t ei = -Kei + e2. 
Also 

e2 = k2-i:+K(e2---fXl) 

- - -v + K(e2 - nel) + A@, X) + Ih, (8.39) 

where il(t, x) is a dynamic uncertainty defined by 

cos(Nxl) - 40 
J ’ 

and II = l/J is a multiplicative uncertainty. The error dynamics may 
thus be expressed as 6 = a(t,x) + P(x)[A + IL] where 

a@, 2) = -Kel + e2 1 -i:+fi(e2 -nel) ’ 
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a’nd ,0 = [O, llT. 

Let t/, = $ef + se:. Then choosing 

renders vs = -2t&‘, when u = v,, n = 0, a,nd II = 1, so that 
Assumption 8.1 is satisfied with kr = 2~ and k2 = 0. 

50 - 

40 - 

30 - 

20 - 

10 - 

q o- 

-10 - 

-20 - 

-30 - 

-40 - 

I I I I I I 

-50 I I I I I I 
-ix3 -0 6 -0 4 -0.2 0 02 04 0.6 

co (radkec) 

Figure 8.5. A phase plane portrait of 4 and w when w is a sinusoidal 
signa.1. 

We will now study the behavior of CJ so that a dominating control 
signal may be formed. Letting V4 = iq” we find 

vq = -g,w, + awq. 

Thus pq < 0 when Iql > Tf, so M = (4 E R : [q) 2 Tf> is an invariant 
set. If lqTtl)[ 5 Tf , then Iq(t)l 5 Tf for all t 1 ti. Letting Tf = 
40, CT = 5000, and w a sinusoidal rate with frequency 0.5Hx, one 
obtains the hysteretic friction response shown in Figure 8.5. Since 
the Dahl friction model is discontinuous, we can not be guaranteed 
that a, unique state trajectory exists. Though a unique solution may 
not be exist, we wee from Figure 8.5 that the friction torque does 
indeed remain bounded such that lqj 5 Tf. 
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We will now consider the ideal stabilizing signal 

VA = 81 sir@%) + 62 cos(Nxl) - 7j+Ff,(Vs, S)[, 

a,nd 

so that 8 = [&,&, 03, gTIT is the composite parameter vector. From 
Theorem 8.2, we select < = $$,B(x). Here F&$,8) is a fuzzy 
system with input V, and 10 fixed output membership functions with 
centers defined by 8. We have shown that Iql _< &J(Z) with p = T, 
and$=l. Let 

and Si = 
T2 
$- for all i. Even though we are defining 8 in terms of the 

physical parameters of the system, 8 is unknown since the physical 
T2 

parameters are not known. Then F&f,, @) = $ so 

< - 

Assumption 8.2 is thus satisfied with c = l/(45+). Here 5 is a dummy 
variable just used to show that Assumption 8.2 is satisfied. Now select 
the adaptive compensator to be 

FA = 81 sin(Nxl) + 62 cos(Nxl) - q+?&(V& i)[. (8.40) 

Since for some 0, \T&z,~) = VA(Z), we find I/r/n = 0. 

We now need to find controller parameters that ensure the input to 
the fuzzy system remains in a valid region. Since V, is the fuzzy 
system input, we must find bounds on the state trajectory which 
ensure that VI, remains in some region. Assume that the fuzzy system 
is defined with the input range [0,7]. We must then select the control 
parameters and initial conditions such that Vs < 10 for all t. We may - 
use V, 5 max(V,(O)&) to do this, where 

d 
l$=lc,+ 

dhnax(~-l) 
u 

is defined by (8.36) in the proof of Theorem 8.2 with d = c + o/e - 
eO12/2. 
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Consider the choice K = 10 and 

1 r=-- 
0 

Then 

0.1 
0.1 

0.1 
100 

1 
v, = d --+lO 5 lid ( > 

. 

100 

since ki = 2~ = 20 and Xmax(I?) = 10~. If we choose q+ = 2, 
then c = l/8. Also choose 80 = [O,O, l/20,0,. . . , OIT so that we are 
assuming J z 20 based on knowledge of the nominal system. Suppose 
it is known that T,/J < 1, J > 10 and Tf/J 2 2. Then we may place 
bounds on 10 - 1901 since 

10 - 001 L 

1 
1 

l/10 
4 
. . . 
4 

+ lO,l = 12.8. (8.41) 

If we choose 0 = l/10000, then d _< l/8 + 12.82/5000 = 0.1332. Thus 

V, 5 lld 5 1.46. 

Also from the proof of Theorem 8.2, we have Va(0) = Vs(0) + (0 - h 
t9()jTI-(, - 6,) assuming that 8(O) = 80. If the contribution from 
Vs(0) may be ignored, then l&(O) = 0.0022. Thus the bound on the 
trajectory of V, (it) will be bounded by V,. 

Since we designed the input to the fuzzy system to cover the range 
[0,7], the input to the fuzzy system always remains in a valid region so 
that we may use the indirect update law. According to Theorem 8.2, 
the update law (8.6) with 

sin(Nzr) 
COS(Akcl) 

0 

j 

AF= 
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may be used. 

To help ensure that & is bounded away from zero, a projection algo- 
rithm may be used. If it is known that J 5 100, then is is possible 
to modify the update routine for 8s as follows: If & 2 l/100, then 

dont modify $3. If & 5 l/100 and $3 < 0, then set 4s = 0. This will 
ensure that 8s >_ l/100 for all t without affecting the results of Theo- 
rem 8.2. This update law does introduce a discontinuity, which may 
raise concerns about the uniqueness and/or existence of a trajectory 
for the closed-loop system. In practice, however, a purely discontinu- 
ous signal is never generated due to finite slew rates of electronics, etc, 
so a unique trajectory will exist. For a more rigorous justification, it 
has been shown in [174] that existence/uniqueness issues associated 
with discontinuous update laws may be treated using the concept of 
a Filippov solution to the differential equation. This approach is also 
commonly used in sliding mode control. 

I I 1 1 I I I I I 

0 1 2 3 4 5 6 7 8 9 10 

Figure 8.6. Antenna angular position 0 (-) and reference signal r (s. -) 
using a. static controller. 

To compare the performance obtained with and without the adaptive 
terms, two simulations were run. Figure 8.6 shows the ability of 
the static control law u = Jv, to track a sinusoidal reference signal. 
When the adaptive controller is used, the closed-loop performance is 
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0 2 3 4 5 
t 

6 7 8 9 10 

Figure 8.7. Tracking of a reference signal when the adaptive portion of 
the controller is turned on. 

improved as shown in Figure 8.7. n 

8.3 Beyond the Matching Condition 

The indirect adaptive controllers presented thus far are suitable for systems 
in which matching conditions are satisfied. Here, via the use of backstep- 
ping, we will see how to provide adaptive compensation for uncertainties 
tha.t do not necessarily satisfy matching conditions. 

8.3.1 A Second-Order System 

Consider the pure-feedback system defined by 

x2 = u, 
(8.42) 

where A is an unknown function with xl and 52 measurable and y = x1 
is the plant output which we wish to drive to r(t). Since we want to drive 
x1 -+ r, we will define the first component of the error system aser = x1 -r. 
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If the plant were simply defined as 

k, = a(y) + v 

with v an input and a known, we could define a stabilizing control law. In 
particular, consider v = 7; - (K + v&i))er - a(y), where K > 0 and vr 2 0 
for all xi E R. If VI = $ef, then 

Vl = el(A+v-+) 
- - -2(K + ~l(Q))vlI (8.43) 

so VI --+ 0. The component vr is a nonlinear damping term included to 
allow for increased closed-loop stability. 

Unfortunately, we do not know a so the above definition for v cannot 
be used. Instead we now consider using the control law 

v(t, x,8) = + - (IS + ul(xl))el + F(y, 8) (8.44) 

for the xi subsystem, where now ?(y, 6) is a linear in the parameter ap- 
proximation of -a. We will assume that there exists some 8 such that the 
representation error w = F( y, 0) + a(x) may be bounded by Iw( y) 1 2 IV 
for all y E S,. Using this definition for v, we find that 

fi = el (a - (K + a(rcl>>el + F(y, 6) - F(y, 0) + F(y, 6)) 

( 
w- - - -(K + +h))ef + el g +4x) 7 

> 

where 0 = 8 - 8 is the parameter error. 
Ideally, we will be able to define an 

V&Z, 6) that will force x2 -+ v so that x1 
the error system for (8.42) as 

el = 21 

e-2 = x2 

indirect adaptive control law u = 
-+ r. With this in mind, we define 

-r 

- v. 

After some manipulation it is possible to show that the error dynamics are 
defined by 

i31 = -(K + h(xl))el + 
d&F-- +?+w+e, 

au au e2 = --- dt G(a+x2)- $i+u 

when F is linear with respect to the adjustable parameters. Here dv/dt 
is used to account for terms defined explicitly in t. From (8.44) we define 
au/at = i-‘. 
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We will now consider the Lyapunov candidate 

1 1 -T V = zeTe + -$Y r-‘& 

where I’ is a symmetric positive definite matrix. Taking the derivative c 
V, we find 

,f 

Ti = e1 
( -(K+1/1(Q))el+ 

d.F- 
ze+w+e2 

1 

(8.45 

( 
av dv 

-- - + e2 at y&- (A + x2) - $” + u) + fiTI 
1 

Consider the indirect adaptive control law u = V&Z, 8) defined by 

dv dv 
ya = dt + 8x1 (-F(y, 6) + x2) + $b - el - (K + v2)e2, (8.46) 

where 172 > 0 is another nonlinear damping term that will be defined shortly. 
With this-control law, we find 

-Kle12 + lel IW - vl lel I2 + 
&I 

V < I I -e2 W - v2 [e212 - 
ax1 

+ ( el - dV 
-e2 
8x1 > 

+ BTr- 4. 

Notice tha#t choosing the nonlinear damping terms as vr = 7 and ~2 = 

q & with q > 0 renders (after completing the square twice with terms 
I I 

2-5 in the above equation) 

To cancel the term containing 6, we now consider the update law 

6=-l.[(el-&e2) (iiF~‘b))T+o(~-uo)], (8.48) 

where 0 > 0 is added to improve closed-loop system robustness. Using this 
update law, we find 

w” 

< -#?I” + 10 - 8012, we find - 

(8.49) 

(8.50) 
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so we may define b, and t36 such that p 5 0 when lel > b, or 181 > b,. This 
ensures that the closed-loop system is stable assuming that the controller 
parameters are chosen such that y never leaves S, where the representation 
error is guaranteed to be bounded. 

As seen here, the steps required to develop an indirect adaptive con- 
troller for a simple second-order system in which an uncertainty does not 
satisfy matching conditions are much more involved than the case where 
matching conditions are satisfied. We will now extend the above results to 
a more general class of n th -order nonlinea#r systems which contain uncer- 
tainties that do not satisfy matching conditions. 

8.3.2 Strict-Feedback Systems with Static Uncertainties 

The adaptive backstepping procedure may be applied to the single-input 
strict-feedback system defined by 

21 = .fl(Q> + 91(4 [n,(Y) + h(Y)Z2] 
. 
. 

(8.51) 
&l-l = fn-1(%x-l> + &L-l (%l> [&L-l (y) + &z-l (y>Gz] 

Xn = fnCx> + ShCx> [a,(Y) + lL(Y)u] 7 

where y = x1 is the output. The notation & is defined as pi = [XI, . . . , zJT. 
For the above system, each fi and gi are known, while ai and Iii represent 
system uncertainties. It is assumed that the product giIIi is bounded away 
from zero. 

To simplify the analysis to follow, we will consider the case where 
Hi(y) = 1 for i = 1,. . . ,n. Here we will be interested in the tracking 
problem where x1 + r(t). Using the backstepping methodology, we define 
the error system as 

ei = Xi - Vi-1 (t, c-1) @ (8.52) 

for i = l,..., n with vo = r(t). Here 6 will be a vector of adjustable 
approximator parameters to be defined shortly. Notice that er = x1 - r is 
independent of 6. We will then define 

dVi-1 
Sivi = mrcii - (Ki + z( 2)) IV’ 2. ei - $,li-IQ-1 - fi + CJiFi(lJ,b) 

i-1 au,-1 
+x d fj 

j=l [ ( x&I 
+ 9&j+1 - .&(Y, 8)]) + g+)rq 

for i = l,..., n (where for convenience we let go = eo = 0). The functions 
vi will be used to improve the closed-loop system robustness, while each ri 
will be used to help place the error dynamics into a special form. Notice 
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that the time dependence in the definition of vi@, %a) comes about indirectly 
from the time dependence in the definition of the reference signal, r(t). The 
control is then chosen as 

u = vn. (8.53) 

Here each .Fi (y, 8) is used to approximate --Ai (y) for i = 1, . . . , n. It is 
a’ssumed that there exists some ideal parameter set 8 E RP such that the 
representation error 

wi = &(y, 8) + Ai (8.54) 

is bounded by Iwi 1 5 WI for i = 1, . . . ,n when y E S,. The size of S, will 
once again be dependent upon the controller parameters as will be defined 
shortly. For convenience, we will omit various arguments of the functions 
when we do not need to emphasize the dependence. 

Notice that 

Thus 

kl = fl +gl[& +m] -+ 

= fi+gl[Al+e:!+vl]-i- 

= +I +4)el +gle2+gl (Al + 3r,@)) + 71. (8.55) 

The derivative of the error terms e2, . . . , e, may be calculated in a similar 
fashion. Notice that 

& = fi + gi[Ai + xi+11 - Vi-1 

- - fi + gi[Ai + ei+l + vi] - Vi-l. (8.56) 

Since 

. 
Vi = x 

i dvi #+I) 

j=o 
&m 

we ma’y use the approach 
definition of vi to obtain 

i aVi 

+E 
j=l 

dzj (fj + $I,& + q+1)) + $y, 

for ei above. Thus it is possible to use the 

/ h \ 
ei = -(Ki + vi)ei - gi-lei-1 + giei+l + gi (,ai + Fi(@),) 

- Aj + Fj(e> +Ti, 
)I 

(8.57) 

for i = 2,. . . ,n - 1, and 

. 
en = -(Kn + +&$)en - Sn-l&-l + Sn (An +Fn(H)) 

- (8.58) 
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Using the definition of the representation error, (8.54), we find 

ii = -(/Q + vi)ei - gi-IQ-1 + giei+l + gi (Wi + Fi(S) - Fi(B,) 

- 
~~-~ 88 

2-1 [e$bj (Wj +Fj@)- Fjp3))] +7-i. (8.59) 
j=l j 

Using linear in the parameter approximators, (8.59) becomes 

. ei = -(Ki + V;)e; - gi-IQ-1 + giei+l + gi 

where 6 = 6 - 8 is the parameter error. 
Let 

dVi-1 
Xi,j = --gj. 

8Xj 

Then define 

dFi 

i-l 

Qi = 
a-Tj 

gix + C G,j s 

j=l 

i-l 

hi = giwi + x &,jWj, 

j=l 

and 
Di=-- 

as - 

It is now possible to group terms so that 

where 

-4, = 

DI 

[ 1 
. 

I$-/- : 6-k 
. 

DTl 

-K1 - Vl 91 0 . . . 0 
. 

-91 -K2 - l4 92 . 
0 -32 -K3 - v3 

. 

0 . . . -,9n-1 Sn-1 - -Kn vn 

(8.60) 

(8.61) 

(8.62) 

(8.63) 

(8.64) 

. (8.65) 
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For now, consider the error system defined by 

(8.66) 

so that we are ignoring the contribution from each Di, and pi in (8.64). 
Define a. Lyapunov candidate as 

(8.67) 

where I’ is a. positive definite diagonal matrix. Now consider the parameter 
update law defined by 

(8.68) 

V 

\i=l / 

where 0 > 0 and 6’ is a best guess of 8. The derivative of the Lyapuno 
candidate now becomes 

n n 

(8.69) 
i=l i=l 

Since -2fiT(e - So) 5 ---@I2 + 10 - 19’1” we find 

n n 

v < ->:(Q + ui)ef + x hiei - ild12 + i lo- e”12. - 
i=l i=l 

(8.70) 

The nonlinear damping terms may then be defined to account for the 
hi terms in (8.70). Let 

whereqi>Ofor2’=l,...,n. Noticethat 

when y E S,. Using this inequality, 

(8.71) 

V < - 2 Kief * -j& WJ-” - 
i=l 

- fl”l” + f (6, - e012 + c 
i=l ( ) 4% 
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so tha.t there exists b, and b, such that iel > b, and 101 > be imply that 
- v < 0. This th en ensures that lel and @I are bounded with a proper choice 

of controller parameters and initial conditions so that y E Sg for all t. 
But (8.66) is not the true error system. We will see, however, it is 

now possible to choose the functions 7i to maintain stability. Using the 
definition of the proposed update law (8.68), notice that 

- - 

where 
&J&l 

miJj = - a8 

-rqj. 

Substituting this into (8.64) we obtain 

Dl 
. 

-1 

r be, , 

d, 

( > 

O 

[I I- 
. . . 0 

Ql 

A,e+ ! g+ 
m2,1 --- m2,n 

& = . . . . . 
Qn 

mn,l * *. mn,n 

(8.72) 

e 

We are now ready to define each ~-i(t, %i, 8). Notice that ri is not depen- 
dent upon zi+i,. . . J,. Consider the case were e = f + Ge. If V = ieTe, 
then 

p = eTf + ieT (G + GT) e. 

If G is skew-symmetric so that G + GT = 0, then the effects of Ge may be 
ignored in the stability analysis. Therefore we will define each pi to cancel 
the effects of the terms not included in (8.66). That is, we will choose q 
to cancel the effects of the D@ - 0”) terms of the update law and also the 
rni,j terms. Notice that 

0 0 . . . 0 
. 

1712,l m2,2 *. : 
. . . . * 0 

mn,l mn,2 - - - mn,n 
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-0 . . . 
0 0 

- 0 m2,3 0 
* . 

. 
0 rn~,~ . . . mn--l,n 

0- 

. . . 

0 

is a skew-symmetric matrix defined by 

0 0 0 
0 0 m2,3 

0 -m2,3 0 

. . * 

G= (8.73) . . 1: : . . 
0 -m2,,n * * . -mn---l,n 

Dl 

. 

in 

Letting 

0 0 . . . 

I 
I?(8 - e” > 

m2,1 m2,2 .-- 

. . . . 

7 = - e+a 

4 mn,l mn,2 mss mn,n 

-0 
0 

- 0 

. 

0 

0- 

. . . e 

0 

(8.74) 

m2,n mn--l,n 

we obtain the desired result 

41 hl 

6=&e+ : 6-k : [I il + Ge. . 

4n h, 

(8.75) 

Notice that ea,ch pi is defined in terms of mk,l with k _< i and I 5 i so that 
it is not dependent upon zi+l, . . . , x,. The following theorem summarizes 
the resulting closed-loop behavior: 

Theorem 8.3: Assume for given linear in the parameter approxima- 
tors Fi(y, 4) there exists some 6’ such that J.Fi(y, 0) + Ai 5 VVi for all 

y E S, where e E B, implies y E SY. Then the parameter update law (8.68) 
with adaptive controller (8.53) guarantee that the solutions of (8.51) are 

bounded given B, C B, with B, defined by (8.78). 
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Proof: Defining the Lyapunov candidate as 

where E = min Q and 

If (el 2 b, or (81 2 be where 

(8.76) 

(8.77) 

then V < 0. 
Corollary 7.1 may now be used to establish that e E 23, for all t with 

B, = 
C 

e E RP : lel 5 J 2 ~m4wo>, w} 7 (8.78) 

where Vj- = $bz + 
x max(r-l)b; . By proper choice of the controller parameters 

and initial conditions, ft is always possible to make B, arbitrarily small (so 
that B, & BT). 

As with the other adaptive techniques presented thus far, it is necessary 
that there exists some 6 such that the representation errors are bounded for 
all y E SY. When designing an adaptive controller for a strict-feedback sys- 
tem, one typically knows the desired range over which the state variables 
are allowed to vary. Using this knowledge, an appropriate approximator 
structure may be defined so that it is able to compensa,te for system uncer- 
tainties when properly tuned. The remaining controller parameters (such 
as the rate of adaptation) are then chosen so that we are ensured that the 
state trajectories will remain bounded in such a manner that the inputs to 
the approximator(s) will remain in a va#lid input space. 

Here we considered uncertainties which are only dependent upon the 
output y. This was done since given some bound on eTe it is possible to 
place a bound on Iyl given r is also bounded. Thus we can place restrictions 
on the maximum allowable error to ensure that y E S,. Since e2, . . . , e, 
are dependent upon 8, it is not as easy to place bounds on ~2, . . . , x, given 
bounds on lel. 

In Theorem 8.3 we showed that it is possible to guarantee that the 
closed-loop system is stable when using the adaptive controller with strict 
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feedback systems. It was not shown, however, what one may expect for an 
ultimate bound on the output error, er = y - T. Since 

(8.79) 

1 
< - -4/c, 21e12 - x 

( > 
max;rel) (~Pr-9) + d (8.80) 

we find 
$Y-kV+d, - 

where k = min(4E,cl/X,,, (I?). Thus an ultimate bound on er = y - r 
is given by J2dllc since ef 5 2V and V converges to a ball of radius d/k. 
Since k may be made arbitrarily large by proper choice of K, cr and I?, it 
is possible to make the ultimate bound arbitrarily small. Though this is 
an appealing result, one must keep in mind that it is not possible to make 
the feedback gains arbitrarily large in practice due to unmodeled quantities 
such as structural dynamics and time delays. 

The following example demonstrates how to use the above technique to 
control a simple strict-feedback system fitting the form defined by (8.51). 

Example 8.5 Consider the strict-feedback system defined by 

(8.81) 

where Qr(xr) z 0x: when Ixrl 5 10. Here it will be assumed that 
0 = 2 is an unknown constant and that IL& (xl) - SxTi 5 0.1 when 
1x11 < 10. If Fr(xr,B) = ---0x: is used to approximately cancel the 
uncertainty A 1, then IV. = 0.1. We will be interested in designing 
an adaptive controller such that x1 -+ 0. Based on this objective, the 
first error state is defined by er = x1. 

Defining the second error state According to (8.52), the second 
error state is defined as e2 = 22 - vr, where 

(8.82) 

a,nd K > 0. Using (8.61) for zr,j, (8.71) for ~1, (8.62) for 41, (8.63) for 
D1, and (8.72) for mr,j we find 

a,1 = a,2 = 0 

ml,1 = ml,2 = 0, 
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where q > 0 is a design variable. Using the above definitions, we use 
(8.74) to obtain 71 = ~DiI’(e - 0”) = 0. Thus vi = -(K + q)ei + 

qx17 6). 

Defining the control input With u = v2 we now obta,in 

u = --(IS + v2)e2 - el - 
( 
K + q + 28x1 ) (x2 - qx,.e,) +7-2. (8.83) 

Using the definitions above, 

x2,1 = -(fc+q) -2H^zl 

x2,2 = 0 

v2 = rl(l + 4,l) 

q2 ’ = -Z2,1X:: 

2 D2 = xl 

m2,l = x:rq1 

m2,2 = qq2 

so that 72 = - (mz,lel + m2,2e2)+aDJ 6 - 8’ . We are now ready 
( ) 

to define the update and control parameters. 

Choosing the controller parameters According to (8.68): the pa- 
rameter update law is defined by 

8 = -r (qm + q2e2 + 0 (8.84) 

where I?, 0 > 0 and t9O is our best guess of the value of 0. 

We will now use (8.78) to place bounds on the tracking error. If we 
choose 8’ = 0 0 - 

- 
0.01, and v = 1, then we may use (8.77) to find 

d = 0.0225 ( since VVi = 0.1 and 8 = 2). Since we want let 5 10 (so 
tha,t lei 1 < lo), we should ensure that VT 5 lo”/2 according to (8.78). 
This is accomplished choosing I? = 2 and K = 1 so that V,- = 1.13. 

The performance of the resulting adaptive controller is shown by the 
solid line in Figure 8.8. As a comparison to the case where no adap- 
ta.tion is used, consider the controller defined by 

u = -(IF, + v2)e2 - el - (K + 59x27 (8.85) 

which is similar to (8.83) with the terms related to the adaptive 
approximation removed. The resulting closed-loop performance is 
shown by the dotted line in Figure 8.8. As seen in the figure, when 
the nonlinear uncertainty is not compensated the system is unstable. 

n 
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Figure 8.8. The plant output when using the adaptive controller (-), and 
when adaptation is turned off (. . s). 

Even for the simple example above, we see that defining the control law 
for a system which does not satisfy matching conditions may become rather 
involved. 

8.3.3 Strict-Feedback Systems with Dynamic 
Uncertainties 

We will now consider the control of strict-feedback systems with possibly 
time-varying uncertainties. In particular, we will consider the system de- 
fined by 

kl = f&h) +s&>[~&y) + 223 

. 

Cl-1 i frz-1(%-l) +gn-l(zn-l>[a,-,(t,y)+x,] 

(8.86) 

x7, = f&> + &L(x) [&&,Y) + 4 7 

where y = x1 is the output. For the above system, each fi and gi are 
known, while each L& is a dynamic uncertainty. Again it is assumed that 
each gi is bounded away from zero. 

Notice that each & may be a time-varying uncertainty. We will there- 
fore make the following assumption: 
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Assumption 8.3: There exists some ua, (1~, () such that 

CT [ai(tY Y) + VA; (YT 01 F ‘i 

for each i = I,. . . , m and all < E R”“, where ci > 0. 

Notice that this is similar to the requirement, made for uncertainties 
which do satisfy matching conditions. As in the case where matching condi- 
tions were satisfied, we will approximate the compensating terms VA; for i = 
1 - - 7 n. The representation error will be defined as wi = F&J, [, 0) - VA; 
f& some ideal 8. It is additionally assumed that there exists some ideal 
parameter set 0 E RP such that IFi(y, 5, 0) - uni 1 5 Wi for all C E R” 

and y E S,. The definition of [ will be based upon our choice of the error 
system as will be demonstrated shortly. 

To develop a controller for (8.86) based on the backstepping method we 
define el = ~1 - r and 

ei = Xi - Vi-1 (t7 gi-1) 7 (8.87) 

where 

givi 
- - %Tci) - (Ki + Ui(%i))ei - gi-lei-1 - fi &G-l) 

+ giFi(Y, Qieit 6) + ri(Ti) 

i-1 &Ii-1 
+>: -g- 

[ ( 
fj+Sj[xj+1 - 

j=l 3 

(8.88) 

Fj (97 xi,jei7 e,l) + 
&J&l ----&) 

&(j-1) 1 
for i = 2 7 - - - 7 n, and we define 

dVi-1 
Z‘i,j = --gj. 

aXj 

The control is then chosen as 

u = vn (8.89) 

as in the case with static uncertainties. 
The error derivatives may be expressed as 

& x -(kiTi + Ui)Ci - &--l&-l + giei+i + gi(ai + Fi(Y7 Sliei,B)) 

- + Tip (8.90) 

for i =2,... , n - 1. Adding and subtracting VA; we obtain 

& Ix -(Ki + Ui)e; - gi-lei-1 + giei+l - 96 
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+ gi(Ai + Fi(y, giei, 8) + VA; (zi, giei) - VA; (zi, 9iei)) + ri 
i-l 

+ x [“i,j (a, + Fj(Y, &,jei, 4) + vA,i (zj 7 Zi,jei) - VA3 (gj 7 &,j%))] . 

j=l 

Letting 

i-l 

4i = 9i 
dFi(Y, Siei, 8) 

ad 
+ x xi,j 

aFj(Y, G,jei, 4) 
gj (8.91) 

j=l 

i-l 

hi = giwi + >: zi,jwj 
j=l 

i-l 

b; = 9i(ni +vA,) + xZi,j(aj + L’Aj)> 

j=l 

(8.92) 

(8.93) 

and 
Di = dvi-1 

ae ’ 
(8.94) 

we may group terms and express the error system as 

e = A,e - 

where A, is defined by (8.65). 
Using the same parameter update law used with the static uncertainty 

case 

we once again find 

\i=l > 
, (8.96) 

0 
m2,n 

mn,n 

e (8.97) 

where mi,j is defined in (8.72)) I’ is diagonal with positive elements, 0 > 0 
and 0’ is a best guess of 8. 

Rather than forming a skew-symmetric matrix as before, here will use 
the properties of a diagonally dominant system to overcome the effects 
of Me in (8.97) with M = [mi,j] defined element-wise. It is possible to 
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show that given A, K E RnX n, then xT(A + K)z 2 0 holds for all IL: with 
K =diag(kr,...,k,) if 

ki > n (1 + n; i + . . . + u; i) > 

defined along the columns of A, or 

ki 2 n (1 + a& + . . . + uf,,,) 

defined along the rows of A with A = [ui,j] (this result is proved in Theo- 
rem 14.1). 

Now choose 

7-=-Ke+a 

where 

K = diag 

(8.98) 

n (1 + rn?,l) 
n ( 1 + (m2,1 + m1,2)2 + m&2 > 

n ( 1 + Cm,,1 + ml,n)2 + (&2,2 + ?72qn)2 +. . - + m2,,n 
> 

We will now show that the above choice for K allows one to dominate the 
terms in M. 

Define the Lyapunov candidate as 

V= 
1 1 
--eTe + $T13, 

where r is a positive definite diagonal n 
update law and r, we find 

(8.99) 

.atrix. Using the definition of the 

1 
v=2eT[M+MT-2K]e- 

i=l i=l 

Notice that M + MT = Mr + A&, where 

ml,1 m2,1 + m1,2 - - ’ mn,l +ml,n 

0 *-. *-. 
. 

Ml = . 

* . . . mn,n-1 + mn--l,n 

0 . . . 0 mn,n 
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is upper triangular and 

M2 = 

I 
ml,1 0 . . . 0 

. 
77323 + ml,2 

. . 
. 

. . . . . . . 

mn,l + n1,r-h * * * mn,n-I + mn-l,n .I 

0 
mn,n 

is lower triangular. Also notice that 

eT[M+MT-22K]e = eT[M~+A&--2K]e 

- e’[Ml -K]e+eT[M2-K]eLO - 

since K is diagonally dominating. Thus 

Q L - k(G + ui)ef + fJhi + bi)ei - dYT(6 - 6’). 
i=l i=l 

(8.100) 

Since -2eT(# - 6’) < --+?I2 + 10 - 0’l” we find 

v < -fJKi + Ui)ef + g(hi + bi)ei - $Gi2 + f le - O”/” . - 
i=l i=l 

Using Assumption 8.3 we find each 

i-l 

biei = 9i(ai + vAi)ei + >: zi jei(aj 7 + UA.) 3 
j=l 

i-l 

j=l 

so 

V < - fJ~i + yi>e” + 2 hiei - fi@i” + % (6’ - O”12 + 2 ecj. (8.101) - 
i=l i=l i=l j=l 

The nonlinear damping terms may then be defined to account for the 
hi terms in (8.101). Let 

whereqi>Ofori=l,...,n,sothat 



Sec. 8.3 Beyond the Matching Condition 253 

where 

(8.103) 

so that there exists b, and be such that let 2 b, and jfi( > 68 imply that 
T/i 5 0. It is now possible to state the following theorem: 

Theorem 8.4: Let Assumption 8.3 hold, and assume that for given 
linear in the parameter approximators Fi(y, 8) there exists some 8 such that 
lFi(y,O) + Ai 5 Wi for all y E S,, where e E B, implies y E S,. Then 
the parameter update law (8.96) with adaptive controller (8.89) guarantee 
that the solutions of (8.86) are bounded given B, C B, with B, defined by 
(8.104). 

The proof of Theorem 8.4 follows the one for Theorem 8.3. Following 
these steps, it is possible to show that if one ignores the effect of y leaving 
the space S,, then e E B, for all t with 

B, = e E I?’ : lel < Jz ( - (8.104) 

where T/;. = ibz + 
x max(r-l)b; 

2 - By properly choosing B, C B, so that 
y E S,, then one may conclude that the closed-loop system is stable. As is 
the case with static uncertainties, one may further show that 

Tj<-kV+d, - 

where k = min(2E,a/X,,,(I?)), k = min pi, and d is defined by (8.103). 
Since leil < 2V, the ultimate bound on ei is given by &@. 

When king the above procedure to define compensating approximators, 
it is suggested that each approximator take the form 

where F& is a dominating term to be approximated. If Ini[ 5 pi$i, then 
we may define 6 such that .&; (y, 6) > @z(y). This way - 

S Lai + Fi(Y757e)] L Pil$i(Y)Cl - %Gf(Y)<2 
2 

< pi 
- 4T)i ’ 

(8.106) 

which satisfies Assumption 8.3. Also .&; is not dependent upon C, which 
makes it easier to ensure that the inputs to &j; remain in a valid input 
space. 



254 Indirect Adaptive Control 

8.4 Summary 

In this chapter, we learned how to develop indirect adaptive controllers 
to compensate for various system uncertainties. It was shown that it is 
possible to define adjustable approximators which are able to compensate 
for either static or dynamics uncertainties. In general the indirect adaptive 
controller for the case where matching conditions are satisfied is defined as 
follows: 

1. Place the plant in a canonical representation so that an error system 
ma#y be defined. 

2. Define an error system and Lyapunov candidate V, for the static 
problem. 

3. Define a static control law u = V, which ensures that ri, < ---ki V, + k2 - 
when A = 0 and II = I. 

4. Choose approximators &-&, 8) and &(z, 19) such that there exists 
some 8 where I.&+,@) -t- &)( < WA and I&-&Y,~) - II(z)1 = 0 for - 
all x E S,. Estimate upper bounds for I’I& and )@ - 0’1 where 8’ may 
be viewed as a “best guess” of 8. 

5. Find some B, such that e E B, implies x E S,. 

6. Choose the initial conditions, control parameters, and update law 
parameters such that B, C B, with B, defined as the ball to which e 
is confined ignoring the effects of the case when x leaves S,. 

Using an adaptive backstepping methodology, it was shown how to de- 
sign indirect adaptive controllers for systems in which uncertainties do not 
satisfy mat thing conditions. 

8.5 Exercises and Design Problems 

Exercise 8.1 (Imperfect Approximation) Prove that the assump- 
tion that l&&r, 6)--II(z)) = 0 in Theorems 8.1 and 8.2 can be relaxed 
if a lower bound ~0 5 Ami, is known, and the control vr = Y, + u, 
is used, with 

Exercise 8.2 (Controller-Identifier Separation) Consider the error 
dynamics 6 = a@,~;) + p(x) [A(x) + u], where A(x) may be approx- 
imated by the known linear in the parameter approximator F(x, e>. 
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Assume that there exists some 8 such that I.?@$) + &$I 5 VV for 
all IZ: E R” and a) control law u, (t, z) such that the Lyapunov function 
V, (e) satisfies vS 5 -4~ Vs + k2 when u = u, and n = 0. 

Now assume that a. parameter update routine 
. 
s = qb(t,x,~) 

has been defined such that 4 E &,. Use the Lyapunov function 
V, = V, and nonlinear damping to define a control law u = vn (t, x, 6) 
such that the closed-loop system is stable. Find the ultimate bound 
on lel. 

Exercise 8.3 @Modification) Modify Theorem 8.1 and the associ- 
ated assumptions to allow the case where an e-modification is used in 
the update law. 

Exercise 8.4 (Strict-Feedback Extension I) Modify the controller 
associated with Theorem 8.3 to cover the case when ITi # 1 is un- 
known. 

Exercise 8.5 (Strict-Feedback Extension I) Develop an indirect 
adaptive controller for the system 

Cii = A(Xi) + Xi+1 

Xn = A(Xj,) + UT 

where n(xi) is an uncertainty that may be approximated by the linear 
in the parameter approximator F(xi, 6) such that IF(xi, 6) + Al 5 JW 
for all xi in B, where B, = {xi E R : lxi 1 2 T>- 

Exercise 8.6 (Control of a Double Integrator) Consider the system 
defined by 

rcl = x-2 
522 = LA(x) + u, 

(8.107) 

where the output y = xl is to be regulated to the value ~0. Assuming 
that A G 0, define a static stabilizing controller using the following 
approaches : 

1. A stable manifold defined by e = 22 + 1~x1 with a Lyapunov 
candidate I/:, = $e2. 
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2. An error system defined by e = x and Lyapunov candidate Vs = 
eTPe with P a symmetric positive definite matrix. 

3. Backstepping with el = xi and e2 = 22 + Kei and Lyapunov 
candidate V = ief + $ei. 

For each of these approaches, define an indirect adaptive controller 
to compensate for the uncertainty n[x). 

Exercise 8.7 (Stepper Motor) The model of a two-phase permanent- 
magnet stepper motor [119] is given by 

4 = w 

Jti = -K,i, sin(NB) + K&ib cos(Ne) - Bw - TL 
Li, = -Ri, + Kbwsin(Ne) + vu, 

(8.108) 

Lib = ---Rib - KbwCOS(Ne) + vb, 

where 8 is the angular position, w is the angular rate, and i,, ib are 
the currents for phase A and B. Here J is the moment of inertia, 
Km is the motor torque constant, N is the number of teeth on the 
rotor, B is the viscous friction coefficient, L is the inductance, R is the 
resistance, Kb is the back EMF constant, and TL is the load torque. 
Define an indirect adaptive controller for the voltages v, and ‘ub such 
that 8 -+ r(t) when J, K,, B, R, L, and TL are unknown. 

Exercise 8.8 (Fuzzy Control of a Surge Tank) Consider the surge 
tank defind in Exercise 7.11. Design an indirect adaptive controller 
using a fuzzy system with adjustable output membership centers to 
approximate the cross-sectional area when A(x) is defined as 

. A(x) = 1 + 1x1 

. A(x) = 2 + (x - 1)(x + 1) 

so that x --+ r, where r > 0 is a constant. Is it possible to develop an 
indirect adaptive controller that is stable for both cases? 

Exercise 8.9 (Neural Control of a Surge Tank) Repeat Exercise 8.8 
using a radial-basis neural network. 



Chapter 9 
Implementations and 
Comparative Studies 

9.1 Overview 

In Chapters 6, 7 and 8 we discussed certain important classes of continu- 
ous time nonlinear systems, and presented general methods based on state 
feedback for control of such systems, including in particular direct and in- 
direct adaptive control methods. Here, we will illustrate these adaptive 
approaches by applying them to the problem of controlling a rotational in- 
verted pendulum apparatus. Moreover, we will compare the performance 
of these methods with that of “conventional” adaptive control techniques. 

The direct and indirect adaptive control approaches of Chapters 7 and 
8 are general enough that they can be applied to a wide class of nonlinear 
systems. The main requirement is that a Lyapunov function that implies 
closed-loop stability be known, from which the analysis can be carried out. 
On the other hand, for the purposes of this application chapter we do 
not require such generality: As will be shown, the inverted pendulum fits 
a particular class of systems, that of input-output feedback linearizable 
plants, and this knowledge may be used to more fully exploit the power of 
the adaptive techniques presented earlier. 

We will start by showing how the stability results of Chapters 7 and 8 
can be strengthened by restricting the class of systems under consideration 
and assuming the systems to have a particular structure (i.e., an input- 
output state feedback linearizable structure). Then we will give a detailed 
explanation about how the modified techniques can be implemented, paying 
special attention to details which may help the control designer to avoid 
common problems and construct effective adaptive designs. 
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9.2 Control of Input-Output Feedback Linearizable Systems 

We will begin our presentation of the implementation issues associated with 
the direct and indirect adaptive controllers by first giving some additional 
background material related to input-output feedback linearizable systems. 
In particular, we will see that input-output feedback linearizable systems 
have a special form that allows stronger stability results to be obtained 
than seen in the previous chapters since we can ensure asymptotic stability 
of the error dynamics rather than just ultimate boundedness. 

9.2.1 Direct Adaptive Control 

Recall from Chapter 6 the class of input-output feedback linearizable sys- 
t ems 

where 5 E Rn’d with d 2 0. By virtue of the change of coordinates 

[!I T,xT]T = T(e), this system may be transformed into 

Xn = f(44 +9kLz)u P-2) 

and y = x1. This system has strong relative degree 72, which may also be 
determined by differentiating the output y until the input u appears for the 
first time and it is multiplied by a function g(q, 12;) which does not vanish for 
any q E Rd, x E R”. In this way, we may write the input-output behavior 
of (9.1) as 

Yen) = f(q, x> + s(Q, xh* (9 3) . 

We will require the function g to become neither arbitrarily small nor arbi- 
trarily large, that is, 0 < go 5 g(q,x) 5 g1 < oo for some known go and g1 
within a, compact set. Moreover, we will assume the existence and knowl- 
edge of some piecewise continuous and bounded function g&, x) such that 
kk,x)( 5 gd(q, > ‘th x wl in a compact set. As in the previous chapters, we 
will use function approximators in the adaptive controllers. This means 
that somehow the state must be confined to a compact set, which in turn 
implies that boundedness of 141 is automatically satisfied within this com- 
pact set as long as all functions in the system are piecewise continuous and 
bounded for bounded arguments. 
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We also assume the zero dynamics of the system, Q = $(u, O), to be 
input-to-state stable with II: as the input. We will see that the pendulum 
does not satisfy this condition; however, it will be possible to stabilize the 
entire state of this system by properly choosing the adaptive controller. We 
are interested in having system (9.1) track a reference trajectory r(t). We 
will operate under the assumption that r and its derivatives up to the nth 
one are bounded and can be measured. 

Now we define an error system for tracking using a stable manifold 
e = x(&x) where 

X(6 x> = h(7’ - 21) + - - - + k,-1 (r(n-2) - X,-l) + (?+-1) - xn) (9.4) 

It wa)s shown in Example 6.6 that if L(s) = snel + kn-#-2 + . . . + kzs + kl 
has its roots in the open left half plane (it is Hurwitz), then the error 
system using the stable manifold (9.4) satisfies Assumption 6.1. Now, let 
x(t, x) = kl(f - 22) + . . . + kn-l(r(“-l) - xn), and note that 

6 1 x - f (4,x> - S(% x)‘L1+ rCn) 
= Q(t, 4, x> + PkLX)U~ (9 5) . 

where a(t,q, x) = x - f (4,x) + dn) and ,8(4,x) = -g(q,x). When no 
dynamic uncertainty exists, we may consider the radially unbounded Lya- 
punov candidate V, = $e2 (assuming g(q, x) > 0; when g is negative the 
Lyapunov candidate must be modified accordingly), so that 

vs = i(o + pu) - &e2. 9 (9 6) . 

We will study the following static control law that contains a feedback 
linearizing term and a stabilizing term, 

1 

u = usc4 = P’ 
-- - cle) + $ Ielsgn(e), 

0 
(9 7) . 

where z = [q’, xT,T, . . . , T(“)]~ and cr > 0. 
Note that we are using a discontinuous term that includes a sgn(e) 

function in our control law. Such a discontinuous term may potentially 
create problems of existence and uniqueness of solutions of (9.5), which 
is the reason why the sgn function is usually replaced by a continuous 
approximation (see Exercise 9.1). In practice, however, the discontinuous 
term has distinct advantages, such as robustness in the presence of noise 
and unmodeled dynamics. At the same time, it may also reduce the life of 
the a.ctuators due to chattering, so the control designer must evaluate the 
possible benefits of a discontinuous controller versus its disadvantages. In 
our pendulum application we chose to use the discontinuous term because 
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we were interested in very precise tracking and robustness, both of which 
the discontinuous term provides. 

With the static law (9.7) we obtain 

r/, = -se2 - Le2 
9 29” 

- $rlplsgn(e) 
0 

< Cl2 * Id gd 
- --e + -le12 - -+"I2 

9 &I2 2% 

< Q 2 -- e - 
9 

so that e = 0 is a stable equilibrium point. Given that we are restricting the 
class of systems studied in Chapter 7, we are slightly modifying the overall 
approach in the stability proof while maintaining the fundamental concepts 
of the direct adaptive control methodology. For this reason, instead of the 
control law in Theorem 7.2, consider 

where W will be defined shortly. Since the term i (--Q - cr e) is actually un- 
known due to uncertainty or poor plant knowledge, this part of V, will need 
to be approximated, and the direct adaptive control law u = u, becomes 

Y, = F-(2, S) = $+ ($el+W) “IP(4, (9.10) 

where we assume the existence of some 8 so that the mismatch w = F(z, 6)- 
V, is of known, finite size, that is, IwI 5 W for all x E S,, where e E B, 
implies z E S,. Using (9.10) in (9.5) we obtain 

e = a+P [gii, (+-$e[ + W) sgn(e) +.?+Q) -.?+,8)] 

= asp 
[ 
d.7---- 
m@ + us + Wsgn(e) + w 1 

- - -cle+l? ( $lelsgn(e) + Wsgn(e) + g&j + w) 
0 

(9.11) 

with 6( = 6 - 0. Now, define the Lyapunov candidate 

KL l -T = v, + 5e r-9, (9.12) 

where I? is positive definite and symmetric. Then, computing the derivative 
we obtain 

i;, 5 -S-e2 a?-- 

9 
- -$9e + BTlY18:. (9.13) 
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Consider the adaptation law 

which results in 
‘i, < -Se” < -Se”. - 

9 - 91 

(9.14) 

(9.15) 

By applying Barbalat’s Lemma one can show asymptotic stability of the 
error, so that limttoo e = 0. This implies that the tracking objective is sat- 
isfied. Note, however, that the result we obtain here is unlike Theorem 7.2, 
where application of Corollary 7.1 yields explicit bounds on e which can 
in turn be used to ensure x E S,. In this case, we have chosen not to use 
the g-modification in the adaptation law (9.14) and resort to Barbalat’s 
Lemma instead. A high gain bounding control term may be used to impose 
explicit bounds on e to keep it within some B, that implies x E S,. The 
use of such a bounding term will be illustrated in the inverted pendulum 
application. 

9.2.2 Indirect Adaptive Control 

We again consider the class of input-output feedback linearizable systems 
(9.1) and the error dynamics (9.5). Notice that when the functions f and 
g are unknown, (9.5) is a special case of the dynamic uncertainty error 
dynamics (8.29). In particular, letting Q = aA + ok and p = /?n + ,& we 
may rewrite (9.5) as 

where ak and ,& represent any known part of the plant dynamics, and cX& 
Pn are uncertainties. Whereas the error system (8.29) is set in terms of 
multiplicative uncertainties, here we concentrate on additive uncertainties. 
Both cases can be made equivalent by using the appropriate functional 
substitutions. If no knowledge is available to the designer about the plant 
dynamics, al, and ,& may be set to zero. The only constraints we impose 
on the known functions is that they be piecewise continuous and bounded 
for bounded arguments, and, as before, that -g(q, x) = ,&(q, x) + ,&(q, x) 
be bounded awa.y from zero. 

We start by assuming no uncertainty, though. In this case, let the vector 
of inputs z be defined as before and consider the feedback linearizing control 
law 

1 

u = v&z) = -$--a - cle) (9.17) 

and the Lyapunov candidate 

l 2 Vs=ie. (9.18) 
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For the indirect adaptive case, the only assumption we make on the plant 
(other than input-to-state stability of the zero dynamics) is that g(q, Z) > - 
go > 0 (or bounded by a negative constant in the corresponding negative 
case). Then, 

V, = e(a + @u) = -cle”. (9.19) 

As in the direct adaptive case, we are applying the ideas put forth in 
Cha.pter 8 to a more particular class of systems. Thus, by slightly modifying 
the analysis in Theorem 8.2 we will obta)in stronger stability results, albeit 
restricted to the class of input-output feedback linearizable systems. Since 
many systems of practical interest belong to this class, the loss of generality 
is acceptable. 

When dynamic uncertainty is taken into account we use function ap- 
proximators such as fuzzy systems or neural networks to represent the un- 
known parts of Q! and p (specific examples will be given in Section 9.7). 
Letting w, = &&,e) - a and wp = Fp(x, 8) - ,B be the mismatch be- 
tween approximators and unknown functions, consider the control law 

u=u,= jqf---#-K&J9 - cle) + -f_,, + W&hI)sgn(e), (9.20) 
P 6 90 

where Y, is redefined to include -T&Z, 4) and F&Z, 8) instead of QI and 

/I?, and there exists some 8 (whose estimate 8 we will update) such that 
Iwa 1 < W, and Iwp I < Wp for z E S,. The nonlinear damping term 
in (8.4) has been replaced by a discontinuous term. The same potential 
problems and advantages of using such a term outlined in Section 9.2.1 
apply here. 

We now study the Lyapunov candidate 

1 va = v- + 28Tr-1H, 

where 8 = 6 - 0. Notice that 

(9.21) 

a+@, = a+ $--$-K&J9 - w> + %+L + W&+I)sgn(e) 
P x, 90 

+ cle + .F&, B) - cle - F&z, 8) 

- cle+ P,,, + Wd~sl>sgn(e> 

- - -w - (K&j) - a) - (F&z,~) - p)~, 

+ P,WQ + W&4I)sgn(e). (9.22) 
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Then, 

Finally, with the adaptation law 

(9.24) 

we obtain 

(9.25) 

Similar to the direct adaptive controller of Section 9.2.1, asymptotic conver- 
gence of e to zero can be shown using Barbalat’s Lemma, with the provision 
that a bounding term be used to guarantee e E B,, which implies x E S,. 

9.3 The Rotational Inverted Pendulum 

We now turn our attention to the application of the direct and indirect 
a.daptive techniques. We chose a rotational inverted pendulum as a plat- 
form to illustrate the methods. The rotational inverted pendulum is an 
unstable and under-actuated system (i.e., it has fewer inputs than degrees 
of freedom). It presents considerable control design challenges and is there- 
fore appropriate for testing the performance of different control techniques. 
Moreover, this experiment allows us to highlight some of the main points 
and pitfalls involved in the design of adaptive controllers. The experi- 
mental setup used in this book was developed in [240, 2491, where a non- 
linear mathematical model of the system was obtained via physics and 
system identification techniques, and four different control methods were 
applied: proportional-derivative control, linear quadratic regulation, direct 
fuzzy control, and auto-tuned fuzzy control. 

The hardware setup of the system is shown in Figure 9.1. It consists 
of three principal parts: the pendulum itself (controlled object), interface 
circuits, and the controller, implemented by means of a C program in a 

digital computer. The controller can actuate the pendulum by means of a 
DC motor. The motor has an optical encoder on its base that allows the 
measurement of its angle (with respect to the starting position), which we 
will refer to as 00. The shaft of the motor has a fixed arm attached to it 

at a right angle. The pendulum can rotate freely about the arm, and its 
angle, 61, is also measured with an optical encoder’. Measurement of 61 is 
performed with respect to the pendulum’s stable equilibrium point, where 
it is assumed to have a value of 7r radians. The system was built in such a 

way that the base of the pendulum is not allowed to turn more than 3~10 

‘Recall that we use t9 to denote the vector of adjustable parameters, which should 
not be confused with the pendulum angles 00 and 01. 
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radians from the starting position, in order to protect the wires from being 
ripped off. The input voltage to the DC motor amplifier is constrained to 
a range of &5 Volts. 

CONTROLLER : INTERFACES 
I CONTROLLED OBJECT 

cxea ay zoo0 P c 

- lnrel 80486DX @ 50 MHz 

-4MBRAM 

- 128 KB cache memory 

- 200 MB hard disk 

- Botkmd C ver. 3 0 

Malh~h \er. 3 SK 

_ MetraBylr’s PCF-20 

Lah Tender Board 
I 

Signal Conditioning : 
Circuit -----,----: 

I 

2 - ____. 
AM 9513 3 : -_ __: 
Connters 4 *  

,.- 
5:F . . I 

DAS-20 Board 

Figure 9.1. Hardware setup of the inverted pendulum system (taken from 

WI > . 

The rotational pendulum system presents two somewhat separate prob- 
lems: first, a controller needs to be designed that is able to balance the 
pendulum. Second, an adequate algorithm has to be used to swing up the 
pendulum so that when it reaches an upright position (i.e., where 81 it: 0) 
its angular velocity (&) is close to zero. This facilitates the job of the 
controller which “catches” the pendulum and tries to balance it. In this 
work we will not be concerned with swing-up details, and will concentrate 
only on the balancing control of the pendulum. The so called “simple en- 
ergy pumping” swing-up algorithm developed in [249] will be used without 
changes in all the experiments and simulations, only with minor tunings 
depending on the nature of the test. This algorithm is just a proportional 
controller which takes as input the error between a maximum swing angle 
(a tuning parameter) and the base angle 60. 

In implementation, a sampling time of 0.01 seconds was used. All the 
simulation and experimental plots include the swing-up phase, and show 
the first 6 seconds only, since this time was considered enough to show the 
representative aspects of the results. 

9.4 Modeling and Simulation 

The rotational inverted pendulum can be represented with a four-state non- 
linear model. The states are 00, &, 01 and &. Of them, only 80 and 61 
are directly available for measurement; the other two states have to be es- 
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timated. To do this we use a first-order backward difference approximation 
of the deriva#tive. This estimation method turns out to be reliable and ac- 
curate enough. Thus, for the rest of the chapter, it will be assumed that 
all states are directly available for the controllers without need of further 
estimation. 

With the techniques in Chapter 10 it will be possible to remove the 
need to measure all the states by using state observers. The simple approx- 
imation to the derivatives of 190 and 81 used here performs, essentially, the 
same function as a state observer, but without any theoretical performance 
guarantee. Thus, the use of such simple approximators is motivated here 
by experience and good performance observed in practice. 

The differential equations that describe the dynamics of the pendulum 
system (note that t9r = 0 is the unstable equilibrium point) are given by 

. . 
e. = -apbo + Kpu (9.26) 
. . 
el = Cl * ~ldl -Jls, + - 

K1 -a 

JI 
sin& + -eo, 

JI 
(9.27) 

where ml = 8.6184 x 10m2 Kg is the mass of the pendulum, I1 = 0.113m is 
the distance from the center of mass of the pendulum, g = 9.81 F is the 
acceleration due to gravity, J1 = 1.301 x 10e3 N-m-s2 is the inertia of the 
pendulum, Cr = 2.979 x 10m3 w is the frictional constant between the 
pendulum and the rotating base, K1 = H.9 x low3 is a proportionality 
constant, and u is the control input (voltage applied to the motor). The 
numerical values of the constants were determined experimentally in [249]. 

A linear model of the DC motor is given by 

(9.28) 

with ap = 33.04 and Kp = 74.89. Note that the sign of K1 depends on 
whether the pendulum is in the inverted or the non-inverted position, that 
is, for 5 < & < 9 we have K1 = 1.9 x 10B3, and Kl = -1.9 x 10M3 
otherwise. When simulating the system, a conditional sta,tement is used to 
determine the sign of K1 according to the relation above. 

Let t1 = eo, t2 = 40, (3 = el and & = 4,. Then a state variable 
representation of the plant is given by: 

54 = a2S2 + a3 SW3 + a4t4 + b2u, (9.29) 

where al = -ap, a2 = KI ap mlgll 
--> a3 = J1 

Cl 

Jl , a4 = -x, br = Kp, and 
I52 = 9. Since we are only interested in balancing the pendulum, we 
take the output of the system as y = J3. 
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For simuMion of the system, a fourth-order Runge-Kutta numerical 
method was used in all cases, with an integration step size of 0.001 sec- 
onds. The controllers are assumed to operate in continuous time; therefore, 
the sampling time of the controller was set equal to the integration step 
size. Also, the initial conditions were kept identical in all simulations: 
m) = 0 rad, e,(O) = 0 *, (s(O) = r rad, and &(O) = 0 y. Under 
these conditions, the pendulum is in the downward position. When the 
simulations start, the pendulum is first swung up with the same swing-up 
algorithm used for implementation, and then “caught” by the balancing 
controller currently being tested,’ in order to resemble experimental condi- 
tions as accurately as possible. The balancing controller begins to act when 
I& 1 5 0.3 rud; at th e same time, the swing-up controller is shut down. 

The heuristic “energy pumping” swing-up scheme seeks to “pump” en- 
ergy from the base of the system to the pendulum in such a way that the 
magnitude of each swing increases until the pendulum reaches its inverted 
position. The first design parameter in this algorithm is M, which deter- 
mines the maximum amplitude of each swing, in radians. For this study, 
M was varied between 1.1 and 1.4 radians, depending on whether a dis- 
turbance was applied to the pendulum or not (we encourage the reader to 
experiment with different values of M in simulation to see how it affects 
the swing-up algorithm). A small M is preferable to a large one, because it 
is more likely that the pendulum reaches its inverted position with almost 
zero velocity if M is small. The second parameter involved is a gain, k,,, 
which for all cases will be fixed at 0.75. Then, taking uszL, as the swing-up 
control input, the algorithm works as follows: 

If 8() - 7r < 0 
then QOref = -M 
else &jref = M 

esuT = eoref - 00 

~S7.L~ = bll%v 7 

where the subscript SW is used to denote “swing up.” 

9.5 Two Non-Adaptive Controllers 

In this section two non-adaptive controllers for the inverted pendulum will 
be introduced a.nd these will serve as a base-line for comparison to the 
results to follow. We will start with a linear quadratic regulator, which 
provided the best experimental results for nominal conditions. Second, a 
feedba,ck linearizing control law will be used; as shown later, there is no 
guarantee of boundedness using this technique, and the results obtained 
here corroborate this theoretical prediction. 
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9.5.1 Linear Quadratic Regulator 

To design a linea#r quadratic regulator (LQR) for the pendulum we lin- 
earize the system model by using the approximation sin [s c Js, which is 
valid for small angles, in (9.29). The resulting system can be shown to be 
controllable; t,hus, an LQR can be constructed. For the design, the greatest 
penalty was assigned to the error in states (3 and J4, since the primary 
objective of the controller is to balance the pendulum. The state-feedback 
gain obtained was tested experimentally, and after some fine tuning, the 
gain vector used was: 

K = [-0.7,1, lo.8,0.7]T, (9.30) 

where the state error e = r - [ (T = 0 is a reference state trajectory) is 
used, and I = [rl, 62, (3, &IT- 

Simulation results using the LQR 
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Figure 9.2. LQR simulation. 

As shown in Figures 9.2 and 9.3, the LQR performs very well in both 
simulation and implementation; it successfully balances the pendulum and 
drives all the system states to zero. The control input ideally goes to zero 
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Ioratory results using the LQR. 
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Figure 9.3. L&R implementation. 

when equilibrium is reached (Figure 9.2), although in practice it does not 
(Figure 9.3) since the unmodeled aspects of the system (e.g., sensor noise, 
sampling time, nonlinear characteristics, etc.) prevent the controller from 
behaving perfectly. 

9.5.2 Feedback Linearizing Controller 

We find that the inverted pendulum has a strong relative degree n = 2 
because, after differentiating the output twice, we obtain 

5 = a2[2 + a3 sin& + a&d + b2u. (9.31) 

We can define a feedback linearizing control law as 

(9.32) 

where f&) = a2c2 + a3 sin (3 + a4c4 > S<(l) = b2, and v is a signal that we 
will define later. Since the plant has a strong relative degree, it is possible 
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to find a, mapping, T, such that T(e) is a diffeomorphism that transforms 
the system to the form (9.2). Then, [qT,xTIT = T(t) is a new, linear state 
variable representation of the system if we use the control law (9.32). Such 
a maPPing W) can be found to be 

Xl = T&) = I3 

x2 = T4(5) = <4. (9.33) 

Given this new set of states, the output of the plant is given by g = ~1, 
and e = x2. 

If we restrict the output y to be identically zero for all time, and given 
that the origin is an (unstable) equilibrium point of the undriven system, 
then the zero-dynamics of the pendulum are given by 

41 = q2 

ci2 = (ul - %$-)q2. (9.34) 

In order for the system to be minimum-phase, its zero-dynamics have to 
be input-to-state stable, i.e. ai - y < 0 for this choice of T(t). How- 
ever, a simple computation shows that this is not the case; indeed, the 
zero-dynamics of the pendulum are unstable, because ai - e = 0. This 
causes two states of the system (& and (2, since & and (4 are bounded 
when the output is bounded because we assume the state t to be uniformly 
continuous) to be potentially unbounded under feedback linearization. As 
will be seen later, this prediction is corroborated both in simulation and 
experimentation. 

The instability of the zero-dynamics implies that, although the control 
la,w (9.32) will yield a stable input-output behavior under the right choice 
of V, if the initial conditions of the system are distinct from zero, then a 
subset of the states will be unbounded; in particular, by solving (9.34) for 
nonzero initial conditions, we find that the state 51 (which represents the 
base angle 00 of the rotational pendulum) will be given by &(t) = et in 
steady-state, where t represents time, and c is an integration constant. 

It is worth noting that the unboundedness of [i can be tolerated in this 
experiment, since all it means is that the pendulum base keeps rotating, 
while the pendulum is being balanced. Of course, in practice a limit is 
imposed on the rate and amount of this rotation to protect the machinery, 
but in principle the instability of the zero-dynamics can effectively be dealt 
with. 

In order to simulate and implement the feedback linearizing controller, 
it is necessary to specify the signal Y. Let r(t) be a pre-specified reference 
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tra#jectory (set equal to zero for all cases in this work), at least twice dif- 
ferentia#ble, and take e, = ~1 - r (following the notation of [192]). Then v 
may be defined as 

u = f - 2& - 8eo, (9.35) 

which, together with (9.32), yields a stable closed-loop system in the input- 
output sense with poles at s = -1 & 2.65j. This choice of the closed-loop 
poles was made because of practical considerations: experience with feed- 
back linearization on the pendulum experiment indicates that attempting 
to bring the output error to zero too fast can sometimes result in failure or 
a degraded performance; therefore, these somewhat slow poles were chosen. 

Simulation results using Feedback Linearization 
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Figure 9.4. Linearization simulation. 

Figure 9.4 shows that the simulation results are as expected: the pendu- 
lum is balanced, and the base keeps rotating at an almost constant velocity. 
Note that this controller settles the control input at a nonzero value, which 
in turn introduces energy into the system, and causes its base to rotate; 
this is easily explained by the theoretical analysis of the zero-dynamics. A 
comparison with the experimental results in Figure 9.5 shows significant 
similarities: after the swing-up phase, the states [r and &, as well as the 
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Laboratory results using feedback linearization. Laboratory results using feedback linearization. 
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Figure 9.5. Feedback linearization implementation. 

control input, behave as in the simulation. Observe that in simulation the 
feedback linearizing controller reaches a peak value of -6V to balance the 
pendulum; although in implementation the control input is limited to rt5V 
as explained above, no such bound was used for simulation, since it was 
desired to preserve ideal circumstances regarding control action. 

9.6 Adaptive Feedback Linearization 

Both the feedback linearizing controller and the LQR, as well as almost 
any other non-adaptive technique used on the pendulum fail (or in the case 
of non-a#daptive fuzzy control have degraded performance [249]) when the 
nominal system (i.e., the pendulum without any mass changes, or added 
disturbances) is altered in an unknown manner. It is in such a situation 
that a.daptive control plays a central role, since it is, at least in principle, 
able to deal with significant plant changes. In this investigation, two types 
of plant alterations were used: 
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l A container half filled with metal bolts fixed at the tip of the pendu- 
lum, and 

l A container half filled with water fixed at the tip of the pendulum. 

The added weight (not accounted for in the design of the controllers) not 
only shifts the pendulum’s center of mass away from the pivot point (which 
in turn decreases the natural frequency of the pendulum) and makes the 
effects of friction less dominant, but also introduces random disturbances, 
which vary in nature with the bolts and the water. In the case of the 
water container, a “sloshing liquid” effect is created, which strongly affects 
the dynamics of the system. As will be seen from the results below, the 
bolts have a different type of effect that is caused by their “rattling” during 
balancing. 

We note that the adaptive controllers in this section and the remainder 
of this chapter are based on the assumption that the plant is minimum- 
phase. Since this assumption does not hold for the pendulum, some conse- 
quences of the techniques are no longer guaranteed; specifically, it is not to 
be expected that the state <r and possibly the control input are bounded. 
In particular, the behavior of [r will depend on the initial conditions of 
the system. However, the study of the adaptive techniques on such a sys- 
tem is of theoretical and practical relevance, because, in the first place, it 
provides a good example of practical results very well predicted by theo- 
retical analysis of nonlinear systems. Secondly, it can give insight into how 
to overcome the limitations of the adaptive controllers inherited by their 
underlying assumptions. As will be shown, it is indeed possible to obtain 
not only stability and boundedness, but also good robustness to unmodeled 
plant changes. 

The adaptive fuzzy techniques we illustrate here are based on feedback 
linearization; therefore, adaptive feedback linearization (AFL) seemed the 
most natural choice for reference and comparison to conventional adaptive 
control. For the design of this controller the technique described in [192, 
1911 was used as we discuss next. 

We first rewrite the system equation as a linear combination of known, 
fixed nonlinear functions 

where 

fK> 
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(9.36) 
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g(r) = ei2)* 

w9 = J3- 

0 
0 
0 
1 1 

(9.37) 

(9.38) 

(9.39) 

We shall estimate f(e) and g(r) by searching for the optimum vectors 
0(l)* = [@* , . . . , Oil)*]T and 0(2)* = [e$“)* ,6;“‘*]. We use t)(r) (t> and 
B(“)(t) to denote the estimates of the optimum parameter vectors at time 
t. Then, the adaptive control law is given by 

1 
uaf = (LgLfh)e [-(Lph)e + u] 9 (9.40) 

where (Lfh), stands for the estimated Lie derivative of h with respect to f, 
and the variable [ has been dropped for convenience. To allow for tracking, 
we take 

Y = i- + a2(+, - 24 + a,(r - 21). (9.41) 

A simple computation gives 

Ff”h)e = @‘) (t)@) (t)52 + 8i’) (t)@)(t) sin <s + e$l) (t)@ (t)c4 

(L,Lf hJe = eil) (t)e$2) (q. (9.42) 

Following [192], define 8 E R3” as a vector containing all the combina- 

tions e:‘)(t), B!“)(t), @)(t)ei”(t) and 0~1)(t)si2)(t). For adaptation, define 
an error signal of the form ei = -,&& - Pieot with e, = T - 21, where the 
transfer function 

P2s + ii& 
s2+a2s+a1 

(9.43) 

is strictly positive real. Then, the adaptation law, given by a normalized 
gradient approach, is, 

(j= _ elw 
l+wTw’ 

(9.44) 

where w is the regressor vector obtained by computing the output error 
equation i;, + Q& + Qrreo = 0 (see [191]). 

In order to start the search for the optimum vectors 0(r)* and 0c2)* at 
the best known point in the search space, their estimates B(r)(t) and Bc2)(t) 
were initialized using the parameters obtained from the system model, 

e(l)(o) = [i ,%,a2,a3,a4jT ec2) (0) = [bl , b21T. (9.45) 
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For simulation and implementation, the following set of parameters was 
used: ~1 = 8, a2 = 2, & = 0.08, and ,& = 0.1. In this way, the same 
equation for v is used as for the non-adaptive feedback linearizing controller 
(see equation (9.35)). Th e values for .gt and p2 were determined via manual 
tuning; after several simulation and experimentation trials, they were the 
choices that, as far as we could determine, made the controller work at its 
best and still maintain the strictly positive real condition. 

Figure 9.6 has characteristics similar to those of the non-adaptive feed- 
back linearization in Figure 9.4, although the required control input stays 
within implementation bounds. For the nominal plant, the controller ex- 
hibits a very good behavior, as seen in Figure 9.7: the pendulum is perfectly 
balanced, and the control input settles at a value close to zero, so that the 
base rotates slowly. In Figure 9.8 we observe that the controller manages 
to balance the pendulum with bolts, but only for a short time; the base 
is turning rapidly, and at about the fifth second the control input reaches 
the its limit of 5V. The controller had the greatest problems with water, 
and was not able to maintain equilibrium, as seen in Figure 9.9. In the 
next section we will show how the adaptive fuzzy control techniques can 
significantly outperform this conventional adaptive controller. 

9.7 Indirect Adaptive Fuzzy Control 

Here, an indirect adaptive fuzzy controller (IAFC) will be developed for 
the inverted pendulum; two possible configurations will be presented and 
experimentally tested. First, a controller that does not make explicit use of 
any plant dynamics knowledge will be used. Second, it will be illustrated 
how to incorporate the knowledge of the model (9.29) in the design. It will 
be shown experimentally that such an enhanced controller has, in the case 
of the pendulum, a noticeable advantage over the previous techniques and 
provides an increased robustness in the presence the induced disturbances. 

9.7.1 Design Without Use of Plant Dynamics Knowledge 

As previously shown, the pendulum model has a relative degree of two. 
Substituting the numerical values of the parameters, we obtain from (9.31) 

fc (0 = 48.252152 + 73.4085 sin& - 2.2898& (9.46) 

9&> = - 109.3705. (9.47) 

In these equations we use “approximately equal” signs because the numer- 
ical parameters of the equations are not expected to represent the pendu- 
lum’s input-output dynamics exactly; rather, the right-hand side of (9.46) 
and (9.47) are simply our best known approximations to ft (<) and gr (e), 
respectively. Note that s = T-l (q, x), which can be easily computed, and 
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Simulation results using AFL 
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Figure 9.6. AFL simulation. 

f (414 = f&wq, 4). M oreover, g<(c) = g(q,x) = g < 0, so there exists 
a go < 0 (take, for instance, go = -100, which gives us a safe margin of 
error) such that g < go for all t 2 0; thus, g is bounded away from zero, 

Recalling that e, = r - xi, consider the stable manifold x( t, x) = 
kieO + 6, and the error system e = x(t, x) (shown before to satisfy As- 
sumption 6.1). Then, letting X(-&x) = ki&, 

6 = x + y - f (474 - Y(Q? x>u 

= 46 4, x> + a(% x>u (9.48) 

with a(t,q,x) = x + Y - f (9,x) and p(q,x) = -g(q,x) = 42. Since 
the reference we are attempting to track is r(t) = 0 for all t, the problem 
reduces to one of regulation to the origin, and & = a(q, x) + ,O(q, x)u with 
cy(q,x) = x - f (4, z) and X(X) = -klxl. 

It is possible to represent (9.46) and (9.47) using a special form of 
Takagi-Sugeno fuzzy systems. To briefly present the notation, take a fuzzy 
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Laboratory results using adaptive feedback linearization: no weight. 
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Figure 9.7. Experimental results of AFL with nominal plant. 

system denoted by F&r). Then, 

(9.49) 

Here, singleton fuzzification of the input x = [zr , - . . , x,]~ is assumed; the 
fuzzy system has p rules, and pi is the value of the membership function for 
the antecedent of the ith rule given the input <. It is assumed that the fuzzy 
system is constructed in such a way that cy’i pi # 0 for all [ E Rn. The 
parameter ci is the consequent of the ith rule, which in this work will be 
taken as a1 linear combination of Lipschitz continuous functions d&J E R, 

k=l,...,m-1,sothat 

(9.50) 
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57 Laboratory results using adaptive feedback linearization: metal bolts. 
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Figure 9.8. Experimental results of AFL with disturbance: metal bolts. 

Define d = [Ldl(t),-- ,dm-l(c$)]T c R”, CT = e, and 
z i 

[ 

@l,O * - * ep,o 

e= : -.. !  

1 

. 

&,,_l - - - &m-l 

(9.51) 

Then, the nonlinear equation that describes the fuzzy system can be written 
as - 

.Tf&) = d’ ec (9.52) 

and G m = dCT. Even though so far the approximaStors have been set 
up using a parameter vector, the notation also allows for our a parameter 
ma.trix as in our case here. 

Given this notation, we can write 

(9.53) 

(9.54) 
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2? Laboratory results using adaptive feedback linearization: sloshing water. 

z I I I I I 
5 6- 

g4- 
al 
=2- 
s 

0; 
is , I I I I I 
20 1 2 3 4 5 6 

z 
Time (seconds) 

2 
I I I 7 

ZJ 
;0- I I I 
s O 1 2 3 4 5 6 
a Time (seconds) 

I 

I  I  

4 5 6 
Time (seconds) 

Figure 9.9. Experimental results of AFL with disturbance: sloshing water. 

where we have partitioned 8 in & and 60 for convenience, and we let x = 
[qT,zT]. Moreover, let w, = ?Jz,~) - a and wp = .Q(z,B) - ,0, and we 
assume the existence of some 6,, 60 such that IwJ 5 W, and wp 5 VVo 
whenever x E S, for some known I/r/‘, > 0 and Wo > 0. The set S, will 
be defined below with the aid of a bounding control term. Since 0, and 
6p are unknown, we use 6, and 80, which will be modified on line with an 
a.daptation law. 

In simulation we took Wa = 0.5 and Wp = 1.1, since the representa- 
tion mismatches were expected to be small. In the laboratory, however, it 
was necessary to increase these bounds to W, = 5 and Wo = 8, because 
apparently the complexities of the real plant were more difficult to repre- 
sent than the model. Note that these values were chosen as the result of 
a3 tuning process, where rough, intuitive estimates of the values were used 
to start with and then tuned in order to improve the performance of the 
controller. The functional effect of increasing the error bounds W, and Wp 
is to increase the magnitude of the discontinuous term. 

Based upon the general form of the system model, (9.29), we take the 
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following set of equations for both Y-, (z, 6) and ,Tp (x, 0) (also used for the 
direct adaptive fuzzy controller in the next section): 

dT = [l,c5,~2,Sin~37~41 

- - [I q 
bl 

7 1 - z1,q2 + 7~2,sin21,3~2]- 
2 

(9.55) 

Since the original states c are readily available, we will generally use these, 
instead of [qT , ~~1, keeping in mind that the transformation [qT, xT] = T(c) 
makes both choices equivalent. 

The fuzzy systems use five rules each, of the form 

Ifyis&Thenci = fi(d), i = 1,. . . ,5 (9.56) 

where each fi (d) is, respectively, a row of the matrices dT& and d$, and 
we initialize the system with 

0 0 0 0 0 b2 b2 b2 b:! b2 - 
0 0 0 0 0 0 0 0 0 0 

J,(O) = a2 a2 a2 a2 a2 7 8/y(O) = 00000. 
a3 a3 a3 a3 a3 0 0 0 0 0 

a4 a4 a4 a4 a4 Lo 0 0 0 0 

(657) 
Note that this fuzzy system design is over-specified, mainly in the case of 
F&C, r$, because, from the system model, this function is not expected to 
depend on the state. However, this choice was made to allow for a greater 
adaptation flexibility. The initialization (9.57) gives the system the best 
known sta(rting point in the search space. The input fuzzy sets Fi are as 
described in Figure 9.10. 

-1 -0.5 0 0.5 1 

Figure 9.10. Input membership functions. 

We may now define the indirect adaptive control law from (9.20) as 

u = u, = u, + ‘(M;a + W&()sgn(e) + vbi, 
90 

(9.58) 

where Y, = $-y-a - tie). We let cl = 1 and ki = 8 (with these choices, 

the poles of the error transfer function are at s = -1 and s = -9, which 
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produce a small error settling time). The term vbi is a bounding control 
term (see Exercise 9.2). To define it, we first need to determine bounding 
functions fE(t) > I&(c)1 and g<(J) > lg&)I whenever lel 2 Me. Based 
on the numerical values of (9.46) and (9.47), the bounding functions were 
empirically determined to be 

f (59 ti = 70&i? + 75J3 + lo<4 (9.59) 

9c (0 = 140. (9.60) 

Then, let z& = 0 whenever lel 5 A&, and otherwise 

Ybj = 

(9.61) 
where v,i = &-(WO +V&&I)sgn(e). The parameter Me defines a bounded, 
closed subset of the error state space, within which the error is guaranteed 
to stay. Since we are dealing with a regulation problem, by definition of the 
error system boundedness of e implies boundedness of the state < and of 
x, which is therefore confined to a compact set Sz whose size is a function 
of A&. For simulation, we took A& = 0.4; again, a larger margin had to 
be used in implementation, and the smallest acceptable value was n/r, = 3. 
Note that although it is possible in principle to take an arbitrarily small 
M,, in practice it is often the case that the bounding control acts “too 
much” with a small A& and the unavoidable limits in the control input 
signal cause the system to become unstable. Thus, the values shown here 
were first tuned, and were chosen because they gave us the best overall 
results. 

To define the adaptation equations, let 15 be a* 5 x 5 identity matrix, 
and let I’ = 0.05 15 for simulation, and II? = 0.115 for implementation, and 
take 

(9.62) 

Note that these adaptation equations are equivalent to (9.24). A projection 
algorithm is used to ensure that 8, and 80 remain within reasonable limits; h 
specifically, it is sufficient to ensure that .Q(z, 0,) is bounded away from 
zero, and that its value is such that the assumption g(q, z) < go holds. 

Note that the indirect adaptive control adaptation algorithm outlined 
in Section 9.2.2 guarantees that the parameter error matrices 8, = 8, - 6, 
and 8,~ = 80 - 00 will at least stay bounded. Note also that the equa- 
tions (9.46) and (9.47) are themselves only approximations, based on our 
best knowledge of the plant. Thus, it is possible that the approximators 
used do not represent f and g accurately, in spite of which closed-loop 
sta.bility is achieved. 
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One of the assumptions in Section 9.2.2 is not satisfied, namely, that the 
zero-dynamics of the plant be input-to-state stable; thus, as happened with 
the adaptive and non-adaptive feedback linearizing controllers, bounded- 
ness of the state t 1, and possibly of the control input, are not expected. 
However, in principle, the controller should be able to achieve output reg- 
ulation (i.e., keep the pendulum balanced),. 

Simulation results using IAFC: no known alpha and beta. 
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Figure 9.11. No plant dynamics knowledge used: IAFC simulation. 

We see in Figure 9.11 that this is, indeed, the case. The pendulum 
is successfully balanced, and the settling time of the controller is smaller 
tha,n in the case of any of the previous controllers, since here the output 
error’s closed-loop poles are set at s = -1 and s = -9; the reason why 
these poles were not used for the (adaptive and non-adaptive) feedback 
linearizing controllers is that with these choices the performance of both 
a,lgorithms degraded in simulation and experimentation, in terms of error 
convergence and robustness. 

For implementation, we see in Figure 9.12 that the pendulum is bal- 
anced, using the nominal plant, although the output error is not exactly 
zero. When the bolts disturbance is used (Figure 9.13), the controller has 
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trouble, similar to AFL (see Figure 9.13), because the control input reaches 
its lower limit of -5V. We see in Figure 9.14 that, with sloshing water, the 
controller performs better, although it is apparent that the control input 
limit is about to be reached. Thus, the performance of this IAFC design is 
roughly similar to that of adaptive feedback linearization. 

Aions, no weight. z Indirect adaptive fuzzy control laboratory results: no known func 
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Figure 9.12. No plant dynamics knowledge used: Experimental results of 
IAFC with nominal plant. 

9.7.2 Incorporation of Plant Dynamics Knowledge 

In order to improve the robustness characteristics of the IAFC, we will 
now take a slightly different design approach, and will make explicit use of 
the knowledge we have of the plant, that is., the nonlinear model (9.29). 
By comparing the simulation and experimental results so far, we see that, 
although very useful for theoretical analysis and design, the model is nev- 
ertheless a, relatively poor approximation of the rotational inverted pendu- 
lum. In spite of this fact, it can effectively be incorporated into the indirect 
adaptive scheme, and thus provide it with an improved disturbance rejec- 
tion ability. 
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-z- Indirect adaptive fuzzy control laboratory results: no known functions, metal bolts. 
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Figure 9.13. No plant dynamics knowledge used: Experimental results of 
IAFC with disturbance: metal bolts. 

Consider the input-output equation (9.31), which we now rewrite as 

ti = %2 = (fk@) + J(q,z>> + ($lk@) + 9(47 x>>u. (9.63) 

We are now assuming that the pendulum input-output equation can be 
represented by some known, non-zero, fixed functions fit(t) and gk (t), and 
unknown functions J(g, x) and Q(q, x), which are to be identified on-line by 
the IAFC adaptation mechanism. That is, f = fk: + f” and g = gk: + g, and 
we assume gk(q, x) + ij(q, x) 5 go < 0. Since the model (9.29) represents 
all our knowledge about the pendulum, we use it to specify the known 
functions as 

f (t> k = a&t + a3 sin&j i- a& 

gk = ba. 
(9.64) 

The functions fk and gk are computable, since we can measure the entire 
state of the plant. We will use these functions to rewrite the error system 
(9.48), where we let a(t, q, z) = (%I&, 4,s) + ak(t> and P(q,x) = /%I(% x> + 
/?k (t), and we choose a!k = fk and ,& = gk (strictly speaking, ak and ,& 
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Indirect adaptive fuzzy control laboratory results: no known functions, sloshing water. 
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Figure 9.14. No plant dynamics knowledge used: Experimental results of 
IAFC with disturbance: sloshing water. 

are not explicitly functions of time, but of the plant states; however, we use 
this notation for simplicity). 

The unknown functions f(q,~) and &LC) can be represented using 
fuzzy systems as in equations (9.53), where we use the same vector of 
functions (9.55). If we know nothing about J(q,z) and a(~, z), a possible 
way to initialize their fuzzy system approximation is by letting 6,(O) = 0 
and 00(O) = 0. In this manner, the adaptation mechanism will attempt 
to identify the plant by introducing variations to the functions defined in 
(9.64). Notice the fundamental difference that this design has with respect 
to the previous one: above, the input-output dynamics of the system were 
represented entirely by f(q,s) and g(&, which were estimated by the 
adaptation mechanism. Here, we let the IAFC estimate perturbations off 

J+ (t) and gk (t) (recall that fk (t) and gk (t) contain all our knowledge about 
the plant). As we will see, the characteristics of the adaptive process change 
based upon how we define and initialize the system. 

The approximation bounds W. and Wo need not be reset with this 
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configuration, beca,use the representation errors wa! and wp using (9.64) 
are expected to be of the same order of magnitude as in the previous case, 
and possibly less or at most equal; therefore, they are taken as defined 
before, with their respective values for simulation and implementation. 

Following a similar rea#soning, the bounding functions &(I) and &(<) 
are expected to be less than or equal in magnitude to (9.59) and (9.60), 
respectively; thus, although they could be redefined and made smaller, it 
is certainly still valid that the required conditions fE (0 2 If< T( 0) 1 and 

i%(t) L lnYr)>l are satisfied using (9.59) and (9.60). 
To incorporate the plant knowledge into the design we use the same 

control law (9.20), but now 

The discontinuous and bounding control terms are taken without change, 
as well as the adaptation law (9.62). 

Observation of the simulation results in Figure 9.15 using this modi- 
fied IAFC shows little difference with Figure 9.11; apparently, the basic 
characteristics of the controller remain the same, that is, the state <r is 
still unbounded, and the pendulum is balanced with a very similar control 
input. Implementation of the controller on the nominal plant, as seen in 
Figure 9.16 shows a slightly faster error convergence to zero. The most 
notable differences arise when the plant is disturbed; in Figure 9.17 we see 
that the controller is able to handle the bolts disturbance effectively, and 
without saturation of the control input. The same good behavior is ob- 
served in Figure 9.18, where the plant is under the effects of sloshing water 
dynamics; initially, the pendulum is not perfectly balanced, but eventually 
the error converges to zero. 

9.8 Direct Adaptive Fuzzy Control 

Now we turn our attention to direct adaptive fuzzy control (DAFC) for 
the inverted pendulum. Using IAFC, a controller is constructed that seeks 
to identify the plant dynamics and use its best estimate to produce an 
approximation to a feedback linearizing law. Here, the approach is to search 
for an unknown control law that provides (at least) asymptotically stable 
tracking and is able to compensate for disturbances and maintain stability. 
As was the case with IAFC, the DAFC methodology allows the designer 
to use previous knowledge or experience with the plant in various ways. 
Here we will illustrate two representative possibilities, and will study how 
the results change depending on how the design is chosen; in fact, it will 
be seen that it is possible to obtain significantly different control results, 
depending on the approach taken. 
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Simulation results using IAFC: using known alpha and beta. 
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Figure 9.15. Plant dynamics knowledge used: IAFC simulation. 

In IAFC, it was possible to use a known part of the plant dynamics, 
represented by ok and ,Ok, in the control design. We saw that for the pen- 
dulum application it was beneficial to include the known dynamics, because 
it increased the robustness of the design. DAFC provides the designer with 
a’ method to incorporate a best guess of what the controller should be (be- 
low we will call this the “known controller”, denoted by vk). The algorithm 
then adaptively tunes a fuzzy controller to compensate for inaccuracies in 
our choice of this known controller. 

9.8.1 Using Feedback Linearization as a Known Controller 

As described in Section 9.2.1, DAFC is a somewhat more restrictive tech- 
nique than its indirect counterpart, since in addition to the assumption 
that the plant is minimum-phase, it is assumed that g(g, z) is bounded by 
two finite constants, go and gi. For the pendulum this assumption holds, 
since -co < gr 5 g(g,z) 5 go < 0, where for instance we take, as before, 
go = -100 and gr = -140. The last plant assumption needed is that, for 
some g&, Z) > 0, lg(g, ~$1 < g&, z). Since g is expected to be a constant, 
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F 
Indirect adaptive fuzzy control laboratory results: known functions, no weight. 
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Figure 9.16. Plant dynamics knowledge used: experimental results of 
IAFC with nominal plant. 

we can safely set g&, z) = 0, and the assumption holds. 
Note that the control equations derived in Section 9.2.1 are based on the 

premise that g(q,x) is positive. However, the negative case can be easily 
a,ccommodated by making appropriate changes. Specifically, the adaptation 
differential equation and the discontinuous term will have, each, a small but 
crucial sign change. 

Recall from Section 9.2.1 the static control law (9.7). The feedback lin- 
earizing portion of (9.7) cannot be implemented due to uncertainty; how- 
ever, in some cases a designer may know some controller uk with good 
closed-loop performance that may be derived from experience or from a 
successful design model. Then it may be desirable to include such a known 
term in the adaptive scheme. Then, instead of (9.10) we will select the 
direct adaptive control law 

u = F(z,d) = d,T&, + vk - wSgIl(e) + V(,d (9.65) 

with &, E R5 is as defined for the IAFC with the fuzzy sets of Figure 9.10. 
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Indirect adaptive fuzzv control laboratory results: known functions, metal bolts. 
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Figure 9.17. Plant dynamics knowledge used: experimental results of 
IAFC with disturbance: metal bolts. 

Notice the sign change of the discrete term, which is due to the fact that 
g is negative for the pendulum, and recall that gd = 0. In this section we 
will use Yk, and we will set it to zero in the next. 

Letting w = .?(x$) - Y, (with Y, redefined as u, = Y, - Wsgn(e) and 
the discontinuous term in Y, also has negative sign), we assume some 0 ex- 
ists such that )wI 5 W for x E S, . The compact set S, will be determined 
by the bounding control term z&. In practice, it is often hard to have a 
concrete idea about the magnitude of VV because the relation between V, 
and its fuzzy representation might be difficult to characterize; however, it 
is much easier to begin with a rough, intuitive idea about this bound, and 
then iterate the design process and adjust it, until the performance of the 
controller indicates that one is close to the right value. For simulation, 
we found that W = 0.01 gave us good results, and in the laboratory we 
increased it to W = 0.1. These bounds are both relatively small, which 
indicates that the fuzzy system we used, although a simple one, could rep- 
resent the unknown controller V, with sufficient accuracy. 
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55- 55- Indirect adaptive fuzzy control laboratory results: known functions, sloshing water. Indirect adaptive fuzzy control laboratory results: known functions, sloshing water. 
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Figure 9.18. Plant dynamics knowledge used: experimental results of 
IAFC with disturbance: sloshing water. 

The matrix 8 f Rsx5 is adaptively updated on-line, and the function 
vector d, is taken as defined in (9.55). The fuzzy system again uses only 
five rules, as given by (9.56), and now each fi(c) is a row of the matrix dL6. 
In order to approximate a feedback linearizing controller we will define VI, 
as in (9.32), and we will take v as in (9.35). Further, following the same 
line of reasoning as in Section 9.7.2, we initialize the fuzzy system with 
b(O) = 0. 

The bounding control term &d (see Exercise 9.2) needs the assumption 
that f< (0 is bounded, with If&$)1 5 f<(r). We ta’ke &(E) as defined 
in (9.59); then, if e > A&, 

vbd (9.66) 

and z&j = 0 otherwise. As in the IAFC case, A& defines a ball to which e 
converges and within which it stays afterwards - an invariant set. 

For simulation, we used A& = 0.6, and increased it to Me = 2.5 in 
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implementation. Please refer to the discussion on IAFC for an explanation 
on how we determined these values. 

The last part of the DAFC mechanism is the adaptation law, which 
is chosen in such a way that the output error converges asymptotically to 
zero, a#nd the parameter error remains at least bounded. To account for 
the negative sign of g, instead of (9.14) we use 

4 = -rd&e. (9.67) 

For simulation, we used I? = 0.915, and in experimentation we decreased 
the gain slightly to I’ = 0.515. With these choices the algorithm was able 
to adapt fast enough to perform well and compensate for disturbances, but 
without inducing oscillations typical of a too high adaptation rate. 

Figure 9.19 shows the simulation results with this controller. It has 
a behavior typical of feedback linearizing controllers on this plant: the 
control input settles and oscillates around a non-zero value, thus keeping 
the pendulum base rotating. Observe in Figure 9.20 the performance of 
the DAFC design on the nominal plant: the error is effectively decreased to 
zero, and the behavior of the base is similar to the previous cases. Again, 
the advantages given by the adaptive capability of this algorithm appear 
most distinctively in the presence of strong disturbances: the controller is 
quite successful with both the metal bolts (Figure 9.21) and the sloshing 
water (Figure 9.22). The pendulum is kept balanced, and the control input 
remains within small bounds around zero. Thus, this design proved to be 
robust and reliable, although it still has the weakness that all the other 
controllers presented in this work until now share: it is not able to deal 
with the instability condition of the system’s zero-dynamics. Therefore, as 
a last and, in our opinion, best adaptive fuzzy control design example, we 
will now describe a DAFC that can not only compensate for the induced 
disturbances (and, in fact, it does it with greater ease than all the previous 
controllers), but is also able to keep state boundedness, even though the 
theoretical analysis of Section 9.2.1 does not predict it (recall that such 
analysis does not preclude it). 

9.8.2 Using the LQR to Obtain Boundedness 

Although the theoretical analysis in Section 9.2.1 uses the assumption that 
the unknown control law V, which the DAFC tries to identify contains a 
feedback linearizing la,w, it was found experimentally that this does not need 
to be the case. If the right known controller is used, and/or the adaptation 
mechanism is initialized appropriately, then the adaptation algorithm will 
converge to a controller that might behave in a very different manner, 
because this mechanism seems to try to find a (local) optimum controller 
closest to its starting point in the search space, and this optimum does not 
necessarily have to be a feedback linearizing controller. 



Sec. 9.8 Direct Adaptive Fuzzy Control 291 

Simulation results using DAFC: using feedback tin. as known controller. 
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Figure 9.19. DAFC using feedback linearizing uk: DAFC simulation. 

This finding is of special importance when the control design task in- 
volves dealing with a non-minimum phase plant like the pendulum, for 
which feedback linearization based adaptive techniques have the limitation 
of being unable to maintain complete state boundedness. As stated before, 
the unboundedness of the state & is admissible for the pendulum, but it 
might not be for other systems. 

Consider, for instance, that a non-adaptive controller is available that 
can control the non-minimum phase plant with state boundedness. Then, it 
is possible that the desirable boundedness characteristics of this controller 
can be incorporated into the DAFC design, and enhanced by the robustness 
that the adaptive method provides. This is precisely the point of view taken 
in Chapter 7, where we assume the existence of a Lyapunov function and a 
corresponding controller that is able to guarantee stability. This analysis is 
independent of the plant’s dynamic structure (e.g., whether it is feedback 
linearizable non-minimum phase), and rather relies on the existence of a 
stabilizing controller. Clearly, this stabilizing controller will need to take 
the plant’s characteristics into account, but if it is conceived appropriately, 
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Laboratory results using OAFC: using FL as known control, no weight 
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Figure 9.20. DAFC using feedback linearizing uk: experimental results 
of DAFC with nominal plant. 

it may be able to get around problems such as the unstable zero dynamics. 
Although the stability analysis is less general, we will attempt to apply the 
concepts in Chapter 7 to design a better controller. 

For our present study, a most natural and intuitive choice for this pur- 
pose is the LQR. This controller implements a linear function of the plant 
states, and is able to drive the state error to zero for the nominal plant while 
maintaining state boundedness. Observe in Figures 9.2 and 9.3 that all the 
plant states are indeed kept bounded. The LQR was shown to have very 
good performance using the nominal, undisturbed system. Nevertheless, it 
fails immediately when significant disturbances are introduced. 

A DAFC will be designed based on the LQR, so that its good behavior 
in terms of state boundedness can be kept, and its weakness regarding 
pla’nt disturbances eliminated. Two different, and functionally equivalent 
ways were found to accomplish this. The first makes use of the term vk, 
as illustrated above. The second uses an appropriate initialization of the 
matrix 6. Since the use of vk has already been shown, only the second 
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Laboratory results using DAFC: using FL as known control, metal bolts 
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Figure 9.21. DAFC using feedback linearizing u,+: experimental results 
of DAFC with disturbance: metal bolts. 

a*pproach will be described here. 
Take, again, the adaptive control law (9.65), now with a smaller gain I’ = 

0.0051~ (i.e., we slow adaptation down) for simulation and implementation 
purposes. This adaptation gain was chosen via tuning of the controller. We 
found that higher gains tended to produce a more oscillatory behavior. 

The fundamental difference between this and the previous design lies 
in the unknown stabilizing control that we aim to identify. Before, the 
a,daptive search was configured in such a way that the mechanism converged 
to a feedback linearizing law; now, we want it to identify a control input that 
behaves basically like an LQR, that is, we want to implement a design that 
behaves like an adaptive LQR. To do this, we start the adaptation algorithm 
at aI point in the search space in the proximity of the LQR controller. That 
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Laboratory results using DAFC: using FL as known control, sloshing water 
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Figure 9.22. DAFC using feedback linearizing uk: experimental results 
of DAFC with disturbance: sloshing water. 

is, we will use it to initialize the parameter matrix 8 as 

0 0 0 0 0 
0.7 0.7 0.7 0.7 0.7 

8(O) = 1 1 1 1 1 . 
10.8 10.8 10.8 10.8 10.8 
0.7 0.7 0.7 0.7 0.7 

(9.68) 

Notice that the sign of the gains has been reversed, since in this case we do 
not use the state error r - <, but rather the vector (9.55). It is worth men- 
tioning that an alternate, similar way of implementing this design consists 
of using the control term vk = KT[ (i.e., we set L+ equal to the LQR state 
feedback law) and letting 8(O) = 0. 

The design is now complete, and the results obtained corroborate our 
expectations about it. We see in Figure 9.23 the behavior of the controller 
in simulation. Observe that it closely resembles the performance of the 
LQR in Figure 9.2, both in terms of the states and the control input it 
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produces. 
Figure 9.24 shows the experimental results of the modified DAFC on 

the nominal plant. The pendulum is balanced with a control input that 
a,pproaches zero on average (which means that the state (1 is not going 
to grow without bound), and the performance is similar to that of the 
LQR in Figure 9.3, although the output error is not exactly zero. The 
most interesting results are found in Figure 9.25 and Figure 9.26. We 
note that using both the metal bolts and the sloshing water disturbances 
the controller is able to maintain convergence, and in addition it has a 
behavior much like that of an LQR re-tuned for the disturbed system: 
the pendulum base does not keep rotating, but lightly oscillates around a 
constant position, and the pendulum is balanced with a control input that 
has an average value close to zero. We observe in both cases, and most 
distinctly in the case of the water, how the controller adapts to the system 
with ra(ndom disturbances; the control input oscillations are relatively large 
at first, and after a couple of seconds decrease in amplitude, as the DAFC 
approximates the ideal controller more and more. At the same time, the 
error converges to zero, and the base movement decreases. 

Simulation results using DAFC: using LQR for initialization. 
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Figure 9.23. DAFC initialized as LQR: DAFC simulation. 
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Laboratory results using DAFC: using LQR for initialization, no weight 

2 
l- I I I I I 

20 
75 
iii --l- 

% 2 -2 - 
I 1 I I I 

0 1 2 3 4 5 6 
Time (seconds) 

I 
1 

I I I I 
2 3 4 5 6 

Time (seconds) 

5 
PO _- 

-z 
E 0 -2 I I I I I 
o 0 1 2 3 4 5 6 

Time (seconds) 

Figure 9.24. DAFC initialized as LQR: experimental results of DAFC 
with nominal plant. 

9.8.3 Other Approaches 

We tried several more DAFC configurations, which gave us more insight 
into the technique and showed it to be very flexible and reliable. Here 
we summarize three of these alternative approaches and the results we 
obta,ined. All these tests were done only in simulation; since the results in 
this chapter show a good match between simulation and implementation, we 
are confident that the following designs would also have similar simulation 
and experimental performance. 

First, to test the ability of the algorithm to adapt and maintain stability, 
we started the controller without providing it with any information at all 
a,bout the system, that is, we let vk = 0 and 6(O) = 0. The performance of 
this controller eventually resembled that of the first design in this section 
(see Figure 9.19), where we tried to approach a feedback linearizing law: 
stability was attained with unboundedness of the state cr. However, the 
control input it required was outside the implementation bounds. 

Second we tested a destabilixing known controller z.& For the inverted 
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Laboratory results using DAFC: using LQR for initialization, metal bolts 
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Figure 9.25. DAFC initialized as LQR: experimental results of DAFC 
with disturbance: metal bolts. 

pendulum, the simplest controller that makes the system unstable is a 
nonzero constant input; hence we set vk = c, with c a constant (which we 
kept within 1.t5V to be consistent with implementation constraints), and 
let 8(O) = 0. Then, as predicted by the theoretical analysis, the controller 
was able to compensate for the destabilizing vk and kept input-output sta- 
bility, again with (1 unbounded, although the control input it required was 
beyond implementation bounds. 

The third design attempted to find the simplest way to attain state 
boundedness. Partial state feedback seemed at first to be a possible so- 
lution. We let uk = k&i + /GZ[~, with ki and k2 positive constants, and 
e(O) = 0. This controller was able to drive the output error to zero and 
to keep the states bounded, but only when the initial conditions were such 
that the pendulum was close to its unstable equilibrium. In our experi- 
ments the only way to obtain reliable and consistent results that can also 
be implemented is to use complete state feedback that resembles the LQR. 

As mentioned before, four control methods have been previously used 
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Laboratory results using DAFC: using LQR for initialization, sloshing water 
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Figure 9.26. DAFC initialized as LQR: experimental results of DAFC 
with disturbance: sloshing water. 

on the inverted pendulum in [240, 2491. Of them, only direct fuzzy con- 
trol and the so-called “auto tuned fuzzy control” were able to control the 
system in the presence of the induced random disturbances (this is not 
surprising, since they are both nonlinear controllers, and therefore have an 
advantage in this case over linear methods). However, the performance of 
the fuzzy controller was severely degraded, and thus the auto-tuned method 
was the one that best compensated for disturbances. The auto-tuned fuzzy 
control method in [240, 2491 dynamically expands or shrinks the universes 
of discourse for the inputs (it uses the four states) of a direct fuzzy con- 
troller, by tuning the input gains at every fixed time interval (50 samples), 
based on the magnitude of the error. The DAFC shown in this section 
performs in a similar way to the auto-tuned controller, although the DAFC 
is actually able to balance the pendulum with somewhat less base and 
pendulum oscillations, and tends to use a control input of a lesser magni- 
tude. The first DAFC design a,nd the modified IAFC do almost equally 
well, and somewhat better than the auto-tuned and the DAFC based on 
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LQR; these controllers are able to balance the pendulum with surprising 
ease (the control input they use has fewer high-frequency oscillations, and 
wit>h a smaller magnitude), but present the disadvantage of keeping the 
base rotating. The conventional adaptive technique described here, adap- 
tive feedback linearization, also has this disadvantage; it proved to have an 
acceptable performance on the nominal system, but was unsuccessful when 
the plant presented disturbances. 

9.9 Summary 

In this chapter, we studied various approaches to the implementation of 
both the direct and indirect adaptive controllers. Although all the experi- 
ments were performed using fuzzy systems for ease of comparison, similar 
results may be obtained using neural networks. 

In general it was found that the results obtained in implementation cor- 
responded very well with those obtained using simulation. In implemen- 
tation, however, we typically had to allow for more conservative bounds 
in the controller design to achieve the desired performance. This may be 
attributed to the additional uncertainty associated with our experimen- 
tal setup. For example, implementation had delays associated with the 
sampled-data nature of the computer system in which the controller was 
implemented, and also had unmodeled dynamics such as friction and struc- 
tural dynamics. The issue of delay associated with a computer-based imple- 
mentation will be addressed in more detail in Chapter 13. In general, if one 
plans to use the continuous-time approaches discussed thus far, then the 
sampling rate should be chosen to be at least twice as high as the highest 
frequency used in the model of the system and a factor of 10 greater than 
the desired closed-loop system bandwidth. This will help ensure a valid 
continuous-time model (though not necessarily guarantee stability). When 
the sampling rate may not be set high enough, then directly working in the 
discrete-time framework is appropriate. 

We also found that there are a number of ways to design either a direct 
or indirect adaptive controller for the same system. In general it is typi- 
cally advantageous to use as much knowledge about the plant as possible 
to design the control algorithm. If, for example, the nonlinearities of a 
system are known except for a single term, it is often better to design the 
static portion of the controller to compensate for the known nonlinearities, 
and just use the adaptive portion of the controller to compensate for the 
unknown term. This way the adaptive controller will have an easier time 
trying to approximate the uncertainties of the system. On the other hand, 
designing the adaptive portion to account for more uncertainty may often 
result in a more robust closed-loop system. 
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9.10 Exercises and Design Problems 

Exercise 9.1 (Continuous Approximation to the Sign Function) 
Re-derive the stability proof of the direct and indirect adaptive con- 
trollers, but replace the sgn function with a continuous approxima- 
tion. Some possibilities include the saturation function (sat(y) = 
sgn(y) if ]y] 2 1 and sat(y) = y if -1 < y < 1) and the hyperbolic tan- 
gent function. Show that, when appropriately defined, such approxi- 
mations yield convergence of the error system to an e-neighborhood 
of the origin, whose size can be modified by the choice of a design 
constant. 

Exercise 9.2 (Bounding Control) Derive the bounding control terms 
vbi and ~bd used for the indirect and direct adaptive methods, re- 
spectively. Consider, for the indirect case, the Lyapunov candidate 
I& = $e2, and V(& = $e” for the direct case. Show that for both 
cases the bounding terms make e 5 M, into an invariant set to which 
the error converges exponentially fast. 

Exercise 9.3 (Choosing an Approach) Consider the system described 

by 
Ir:= -412 + k2z2 + sin(z + /qj) + u, 

where each ki is unknown and we wish to drive the error e = x - r 
to zero if possible with r a constant. Discuss the advantages and 
disadvantages of each of the following approaches to developing an 
appropriate controller: 

1. Use the nonlinear damping terms 

ud = -13 (1 + x2 + x4) e 

in the controller design with the Lyapunov candidate V = ie2. 

Thus in this case we are just dominating the uncertainty using 
a sta’tic controller. 

2. Use the relationship 

sin(x + k3) = cos(k3) sin(x) + sin&s) cos(x) 

to develop an approximator with unknown parameters 

6 = [kr$2,cos(~s),sin(k~)]’ 

that may be used with the adaptive control approaches. 

3. Use a fuzzy system or neural network in an adaptive controller 
to a,pproximate -krx + kzx” + sin(x + /&) directly. 
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Exercise 9.4 (High Gain Systems) Discuss and show with a simu- 
lation why controllers using high feedback gain may cause a problem 
when the following occur: 

l There are unmodeled delays associated with a controller. 

l The sensors are noisy. 

l There are unmodeled dynamics. 

In light of these issues, discuss why an adaptive controller may be 
more robust or achieve better performance than a controller designed 
using nonlinear damping. 

Exercise 9.5 (Indirect Adaptive Control for the Pendulum) De- 
sign and implement the indirect adaptive control method discussed 
in this chapter in simulation (using MATLAB or a custom-written 
computer progra,m) for the inverted pendulum. 

1. Implement the method without use of any available knowledge 
on the plant dynamics in the design. 

2. Use the known functions (9.64) in your design. Investigate if 
the design remains viable in the presence of noise in the plant 
dynamics or at the actuator. 

3. Is it possible to design the indirect adaptive controller in such a 
manner that it does not act like a feedback linearizing controller? 

4. Discuss possible shortcomings and advantages of the indirect 
adaptive methodology. When would such an approach be most 
beneficial? When could one prefer to use a direct adaptive ap- 
proach instead? 

Exercise 9.6 (Direct Adaptive Control for the Pendulum) De- 
sign and implement the direct adaptive control method discussed in 
this chapter in simulation (using MATLAB or a custom-written com- 
puter program) for the inverted pendulum. 

1. Implement the method without use of any previous design knowl- 
edge, and use a fuzzy system or a neural network to approximate 
the unknown controller. 

2. Re-design an LQR controller for the pendulum, and use it as 
your known controller. Can you improve on the results in this 
chapter? 

3. Are there other suitable approaches to designing a fixed con- 
troller for your design ? Is there a clear advantage in using such 
a previously available design in a direct adaptive controller? 
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Exercise 9.7 (Adaptive Control of a Ball and Beam System [163]) 
Consider the ball and beam system in Figure 9.27. The ball is allowed 
to roll (without sliding) along the beam, and its position relative to 
the left edge of the beam is denoted as T .  The beam tilts about its 
center point, thus causing the ball to roll from one position to an- 
other. The control problem consists in designing a controller that 
tilts the beam in such a way that the ball is brought from its initial 
position to another desired position. The beam is driven by a DC 
motor whose shaft is attached to the center of the beam. 
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Figure 9.27. Ball and beam system. 

Consider Figure 9.28 for a block-diagram description of the system. 
Let i, be the input armature current to the motor, 8 the angle of 
the beam and r the position of the ball on the beam. A simple 
Proportional-Integral-Derivative (PID) controller is used to drive the 
motor and to position the beam at any desired angle. This controller 
takes as an input the error 0, between an angle reference 0, and 
the beam angle 8. The signal 0, is produced by the ball position 
controller (which seeks to achieve our primary objective). By means 
of appropriate tuning of the PID controller it is possible to achieve 
very good angle tracking, and since the inner loop has much faster 
dynamics than the outer loop, it can be considered virtually invisible 
to the ball position controller. 

Let x1 = 8 and u = i,. Then, a linear state-space model of the 
motor is given by: ?i = x2,&1 = x3 + blu, k3 = alx2 + a2x3 + 
bzu, where al = -87885.84, u2 = -1416.4, br = 280.12, and b2 = 
- 18577.14. If we now let x4 = r we can obtain two more equations 
which represent the ball and beam dynamics when the beam angle 
is taken as the input, using Newton’s second law. Here we are using 
the approximation sin xi F=: xr (valid because the beam angle varies 
within a small range around zero), in order to have the input enter 
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I 
I I 

Figure 9.28. Motor-ball-beam control scheme. 0, is the angle reference 
input, 0, is the angle error, and 8 is the beam angle. 

linearly. A reasonably good model of the ball and beam system which 
has well-defined relative degree is given by 

LiT4 = x5 

25 = a3x1 + a4 tar?(lOOx~)(e -1O422 
5 - I>, (9.69) 

where as = -514.96 and a4 = 9.84, and the system output is y = x4. 
The numerical values take into account the acceleration due to gravity 
and the friction constant between the ball and the beam. The function 
tan-l (100x5) (e-1o422 5 - 1) is an approximation to the acceleration due 
to friction that the ball experiences on the beam. 

1. Design the inner-loop PID controller for the motor, keeping in 
mind that it must have small settling time and little overshoot. 

2. Design a direct adaptive controller for the ball-and-beam sys- 
tem. Can you improve its performance by including some fixed 
controller as your “known controller” term? 

3. Simulate your design and discuss your results. In particular, 
compare the performance of your adaptive design with that of 
your fixed controller alone. Does the adaptive element provide 
any improvement? 

4. Perform an indirect adaptive design for this system. Do you 
need to consider the motor subsystem in your design? 
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Chapter IO 
Output-Feedback Control 

10.1 Overview 

In Chapter 6 we introduced non-adaptive control design tools for certain 
classes of nonlinear systems. All of them were based on the assumption that 
the state of the plant is available for feedback. The scope of this chapter 
is to remove this restriction by dealing with the case when the state of 
the system is not available for feedback but, rather, only the output can 
be measured. We will, in other words, introduce a set of techniques to 
perform output-feedback control. Recall, from Chapter 6, the structure of 
the system dynamics 

k = f (XT 4 
Y = h(x) 

(10.1) 

with state x E R”, input u E R”“, and output y E RP. As in Chapter 6, we 
will assume that f is piecewise continuous in t and locally Lipschitz in x to 
ensure that there exists a unique solution to (10.1) defined on a compact 
time interval [0, tl], for some tl > 0. 

Throughout this chapter we will try to find controllers that drive the 
state trajectories x(t) to the origin x = 0 by only using the information 
provided by y (this is referred to as the output feedback stabilization prob- 
lem). Additionally, we will investigate the problem of finding a control law 
forcing y --+ r(t), where r(t) is a reference signal, by using only y (this is 
referred to as an output-feedback tracking problem). In both cases, the 
controllers we will find, rather than being static with u = ~(t, y), will be 
dynamic 

. 

XC = f&c: Y, 4 
U = h&c, YL 

(10.2) 

with a state x, and sufficiently smooth functions fc and h,. Note that, 
when solving a stabilization problem, the dependence of (10.2) on r will be 
dropped. 

When seeking an output-feedback tracking controller, in analogy to 
what we have done in Chapter 6 we will define an error system e = x(t, x) 
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with e E R’“, which provides a measure of the closed-loop system tracking 
performance a,nd, subsequently, we will study the stability of the error dy- 
na’mics, e = cr(t, Z, ZL). Here, however, we will relax the assumption made in 
previous chapters that the function x measuring the tracking performance 
is analytica,lly known, and will introduce tools to estimate this function 
on-line. On the other hand, when solving a stabilization problem, we will 
not need to define an error system (we will directly work with the plant 
dyna,mics (lo-l)), a’nd hence there will be no need to estimate the function 

X* 
We will first describe a technique to solve the stabilization and tracking 

problems for a particular class of nonlinear systems (namely, systems in 
output-feedback form). Following that, we will use the notion of uniform 
complete observability (UCO) to find output-feedback controllers for more 
general classes of nonlinear systems. Specifically, in the spirit of a separa- 
tion principle, given any state-feedback controller (e.g., designed using the 
tools described in Chapter 6), we will estimate the state of the plant by 
mea,ns of a nonlinear observer. The state estimate will then be employed 
to recover the performance of the state-feedback controller. The theory 
will be initially developed for the output-feedback stabilization of SISO 
systems and will be successively extended to the robust output-feedback 
stabilization of MIMO systems. After that, we will introduce the concept 
of practical internal modeZ to derive a solution of the tracking problem with 
the on-line estimation of the function x(&s). 

10.2 Partial Information Framework 

Recall from Section 6.2 that, given a smooth reference signal r(t) , a suffi- 
cient condition for the existence of an error system e = x(t, X) that satisfies 
Assumption 6.1 is the existence of two sufficiently smooth and bounded 
functions 2’ (t) and c’(t) satisfying 

*r - x - f (XT, c’) 

r = h(xT, c’). 
(10.3) 

Once the functions x’(t) and cr (t) have been calculated, the error system is 
simply given by e = x(t, x) = x - xr (t). The pair (x’(t), cr (t)) is referred to 
as the stable inverse of the plant. For particular classes of nonlinear systems, 
such as input-output feedback linearizable systems with full relative degree 
or strict-feedback systems, the solution of (10.3) is rather straightforward 
(see Chapter 6) and amounts to knowing n - 1 derivatives of the reference 
signal r(t). For more general classes of systems, however, the solution of 
(10.3) may be difficult to calculate. 
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Example 10.1 Consider the second-order system 

LiTl = x2 + u 

i2 = -x1 + kx; 

Y = Xl, 

and suppose that, given the reference signal r(t) = exp{-@cost)“}, 
we want to find an error system satisfying Assumption 6.1. In order 
to do that, we seek to find two functions x’(t) and cT (t) satisfying 

iT1 = XT2 + CT 

iT2 = -xT1 + kxT; 

exp(-(tcosQ2) = x’r. 

Assume, for now, that k = 0 and note that x’r(t) = exp{-(tco~t)~], 
c’(t) = -2t ( cos2 t + tsintcost) exp{-(tcost)2} - xT2(t), and S& = 
- exp{ - (t cos t>2}. In this case, the function xT2 is given by the 
integral 

.i 

t 
xT2(t) = - exp{ -(t cos t)“}dt , 

--00 
which is well defined for all t E R but cannot be calculated explicitly. 
One could resort to a numerical off-line approximation of the inte- 
gral above and achieve approximate tracking with arbitrary accuracy. 
Note, however, that the controller so obtained would yield tracking 
of the reference signal r(t) = exp{ -(t cost)” > but could not be em- 
ployed to make the system follow different reference inputs. A more 
practical solution of the problem would be to estimate the function 
xr 2 (t) on-line. 

Now set k = 1 and consider the problem of tracking the reference 
signal r(t) = sin2 t - cos t. This time we have that xTr (t) = sin2 t - 
cost, c’(t) = sin t + 2sin t cos t - xr2(t), and x5(t) is a bounded 
solution (if it exists), of the differential equation 

Lb’2 = x Ti + cost - sin” t. (10.4) 

Note that (10.4) is an unstable nonlinear system with a bounded 
time-varying input cost - sin” t. Hence, unless an appropriate initial 
condition x’z(O) that guarantees that x’s(t) exists and is bounded 
for a.11 t > 0 is found, one cannot numerically calculate the solution 
to (10.4). Given a genera1 nonlinear system, such a “stable solution” 
may not exist and may be difficult to calculate. In this case, the 
choice of initial condition x5(0) = 0 yields a “stable solution” to 
(10.4) given by xr2(t) = sin t, yielding c’(t) = 2sin t cos t. For all 
other choices of x’z(O), the solution to (10.4) grows unbounded in 
finite time. n 
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Throughout Chapters 6, 7, and 8 we assumed the tracking performance 
measure e = x(t, s) to be available for feedback. The previous example 
illustrates that this assumption may be, in practice, too restrictive. In this 
pa,rt of the book we will develop control design tools in a partial informa- 
tion framework, that is, a framework where the state x of the plant and 
the tracking performance measure e = x(t, 2) are not directly available for 
feedback. Within a partial information framework one seeks to design a 
controller achieving tracking of bounded reference signals using exclusively 
the information provided by the output of the system and the reference 
signals (and not their time derivatives). In contrast to that, a full infor- 
mation framework is one where the state of the system and the tracking 
performance measure e = x(t, z) are directly available for feedback. The 
previous part of this book was devoted to studying robust adaptive con- 
trol design tools in a full information framework. Here we will establish the 
foundations for developing similar tools in a partial information framework. 
The control design problem becomes more involved but the techniques in- 
troduced here have greater practical relevance. 

We will start, in the next section, by solving the output-feedback sta- 
bilization and tracking problems for the special class of systems in output- 
feedback form. In this instance, given the strong assumption we will make 
on the structure of the plant, we will be able to derive a systematic pro- 
cedure to define an appropriate error system e = x(t, z). Furthermore, we 
will rely on the knowledge of the time derivatives of the reference signals 
to have e directly available for feedback, and thus the approach will not 
entirely follow a partial information philosophy. In later sections we will 
depart from this idea and follow a more general approach. 

10.3 Output-Feedback Systems 

A single-input single-output system is said to be in output-feedback form 
if its dynamics can be written as 

Li, = x2 + Lb(Y) 
& zz x3 + 92(Y) 

C-1 = xr + %-l(Y) 
‘T 

X = Xr+l + Sr(Y) + 4n~(Y)U (10.5) 

. 
Xn-1 = xn +gn-~(y)+d~~(y)~ 

. 
Xn = h(Y) + dOo(Y)u 

Y  = Xl, 
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where ea#ch gi and a(y) are locally Lipschitz functions, gi(O) = 0, a(y) # 0 
for all y E R, and r = ~2 - m is the relative degree of the system. The 
scalars di, i = 1, . . . m are assumed to be such that the polynomial p(s) = 
dnJ’“+... + dls + do is Hurwitz. Notice that the system nonlinearities are 
only allowed to depend on the output y and that the zero dynamics of the 
system are linear and exponentially stable (this comes from the fact that 
p(s) is Hurwitz). 

Defining 

A = 

0 
. 
: I 

I 

, d= 

0 . . . 0 
9(Y) = 

(10.5) can be rewritten in vector form as 

Ir: = Az + g(y) + da(y)u 
y = cx, 

91 (Y> 

: I 

7 CT . 

Sri(Y) 

- - 

(10.6) 

(10.7) 

where (/J C) are an observable pair. Assume that the reference signal 
and its first r time derivatives are bounded for all t > 0 and available for 
feedback, and note that the special form (10.7) lends itself easily to the 
design of an estimator for the state x (also referred to as an observer) using 
Y 

it = Ai + g(y) + da(y)u + L(y - jj) 
jj = CL?. 

(10.8) 

By letting It: = x - 2 and subtracting (10.8) from (10.7) we get the error 
dynamics 

i = (A - LC)& (10.9) 

which are exponentially stable provided the vector L is chosen so that the 
matrix (A-LC) is Hurwitz (this can be always achieved because (A, C) is an 
observable pair). Let P be the positive definite solution to the Lyapunov 
equation P(A - LC) + (A - LC)TP = -I. Next, it is fairly easy to 
design controllers solving the stabilization and the tracking problems by 
using the tools introduced in Chapter 6. In particular, by treating the 
estimation error 2(t) as an exponentially decaying disturbance, one can 
employ nonlinear damping and backstepping to solve the tracking problem 
using the feedback given by y and the observer states 2. 

Example 10.2 Consider system (10.5) in output-feedback form. We will 
see that backstepping and nonlinear damping can be employed to 
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solve the tracking problem. The stabilization problem is solved by 
setting r(t) = T(t) = . . .7+)(t) = 0. 

51 subsystem In analogy to the procedure outlined in Chapter 6, 
we start by considering the subsystem defined by 

$1 =x2+g1(y)=&+y1(y)+~2 (10.10) 

and letting 22 be the virtual input v, so that 

iT1 =v+g1(y)+11;2. (10.11) 

Note that we choose the virtual input to be 22 because the variable 
22 is not measurable, hence (10.11) contains a term 22 which will be 
treated as a disturbance to reject. Let the first component of the error 
system be ei (t) = y - T. Using (10.11) we find the error dynamics to 
be 

61 = v + 91(y) + ii2 - 7”. (10.12) 

Choose a Lyapunov function candidate for this subsystem as VI = 
$ef + zx ’ -T Pi!?. Its deriva tive along the trajectories of (10.12) is 

where the inequality comes from the fact that some of the negative 
definite terms have been dropped. Choose v = Y&) = -91 (y) + 
f - Kel - clel, where xr = [y, r, +I’ is a vector containing measurable 
va(riables. This yields 

Using Young’s inequality we have that ei5& < ciep + &E& so that 

from which we get asymptotic stability of ei = 0. 

~2 subsystem Now consider the new subsystem 

$1 = 22 + g1(y) + 552 . 
22 = 23 + Sa(Y) + L2(Y - 21) 

= v + 92(Y) + L2(Y - G), 

(10.13) 
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where ‘u = 2s is the new virtual control input. The second component 
of the error system is e2 = 22 - I. The time derivative of e = 
[el, e21T is now given by 

ill = i2 - +l) + f?(Zl) +91(y) + 22 - f 
- - -tcel - clel + e2 + 52 

62 = v+ga(y) +L2(y - w-$+ d du1 29 + $2 + g1(y)] 
(10.14) 

au1 - au1 ** 
-ar’-a7;‘. 

A new Lyapunov function candidate is now defined as 

1 1 
V2 = Vl + 2”; + --ZTPiE. 

C2 

Its time derivative along the trajectories of (10.14) is bounded by 

i/2 < -tkf - c&f + ele2 + elZ2 + e2 {v + g2(y) + L2(y - 21) 
- c$ [& + 552 + 91(y)] - %+ - $F} - (& + &) (2: + 5;). 

Let 

ah ( > 
2 

v = Ye = -tce2 - c2 -a~ e2 - el - g2(y) - L2(Y - 21) 

+a 
au1 * du1 -- 

.$ [22 + .91(Y)] + .xT + FT’ 

where 22 = [y, ?I, 22, r, i.lT is a vector formed by measurable variables. 
Next, 

By applying Young’s inequality to the sign-indefinite terms we have 

eliit < clef + - 

2 
2 1 -2 

e2 + --x2, 
4C2 

and thus v2 5 -K(ef + ez) - s ($ + A) (2; + 25). The procedure at 

the next step will be repeated by considering the 2s subsystem and 
setting es = 23 - u2 (~2). The associated error dynamics become 

e1 = -keel - clel + e2 + i& 

e2 = 23 - u2(z2) + uz(z2) + 92(y) + L2(Y - G> 

- G$$ [li.2 + 52 + 91(y)] .$$+I: - $$+ (10.15) 
.-% z 

- - --Ke2 - el + e3 - c2 84 (Xl > 

( > 

au1 (a > - 

--3r e2 - --3Tx2- 
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xi subsystem (1 5 i < T) Repeating the procedure above i - I 
times, one gets the zi subsystem 

il = 22 +g1(y) +22 

. (10.16) 
h 

Xi ’ ?i+l + Yi(Y) = u + gi(Y), 

where u = 2i+r is the new virtual control input. As we did before, we 
define ei+r = 2i+r - vi(xi). After noticing that ei = ii - ~i-r(~i-r), 
where vi-1 is the virtual control found at the last step and xi-1 = 
[y,~l;...,~i-l,r,...,r WT is a vector 
ables, we calculate the error dynamics 

e1 = -Kel - clel + e2 + 22 

formed by measurable vari- 

ei = dui-1 v+9i(Yb-v~[ 22 + 22 + g1(y)] - x;,; * [lij+1 

+ gj(y) + Lj(Y - iii)] - cf;‘, Sr(j+l) 
3 

(10.17) 
The choice of the Lyapunov function candidate Vi = Vi-1 + -$tTPZ 
and of the virtual control 

dv&1 ( > 
2 

V = Ui(Zi) = -tGei - ei-1 - Ci - 
dY 

ei - Li(Y - 21) - Si(Y) 

i-1 dull 
+ % [22 + 91(Y)] + x F& [2j+1 + Sj(Y) + Lj(Y - WI 

j=l 

‘--l dUi-1 ’ + >: Ta+l), 
j=o ar 

(10.18) 

Ke,2 + &LET5 1 . Note that the virtual control 1 
has arguments zi = [y, 21,. . . ,&,r,. . ., di)lT. At the next step we 
let ei+l = ki+r - vi(zi) and obtain the error dynamics 

61 = --Kel - clel + e2 + 22 

ei 
dUi-1 

( > 
2 

- -tWi - Q-1 + eifl - Ci 
dUi-1 - - 

7 ei - dyx2- 

(10.19) 

zv subsystem The procedure can be iterated until step r, where 
a controller for system (10.5) is found to be 

1 
U = d,ao [ ur - gr+l 

- r(‘) 
I 
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yielding the error dynamics 

. 
ei = --AXi - ei-1 + ei+l - Ci 

alli-1 

( ) 

2 
dUi_1 - 

x- 
ei - 73‘7x2. (10.20) 

ur 1 (” -) 
2 

e, = ---&X3, - e,-l - CT 
au,-1 - 

--v 
e, - -57x2. 

At step r, the Lyapunov function candidate becomes 

1 ’ 1 1 
1+ ;gTPi: = x 2”; + ---ZTP$ 

j=l cj 

and its time derivative is negative definite 

I:$ < - f: 
[ 

3 
kce; + -ZT5 

4cj 
, 

j=l 1 
thus implying that er, . . . , e, and 2 are bounded and tend to zero 
asymptotically (and thus the tracking error tends to zero). The 
boundedness of ei, . . . , e, and % implies the boundedness of the states 
Xl,--, x, and estimates 21 7 . . . , &. Using the fact that the zero dy- 
namics are globally exponentially stable one can easily show that 
G-+1,-, x, are bounded as well. 

A 

The above example demonstrates how one may use the backstepping 
procedure to develop output-feedback controllers for systems when the sys- 
tem dynamics are known. The next example demonstrates how one may 
simila’rly design an observer when there is uncertainty in the system 

Example 10.3 Consider the system defined by 

il = x2 + s(Y) 

x2 = u 
(10.21) 

with output y = xl. In this example, we will assume that g(y) may 
be approximated by the fuzzy system or neural network .F(y, 0) over 
all y E R. We will also assume that 8 is a known vector of parameters 
such that lg(y) - F(y,O)) < 1/1/ f or all y E R, and that we want to 
develop an observer to create an estimate of x2. 
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Consider the observer 

2 XI 442 + F(yTe) [ 1 IL + L(y - ij) 

c = C?, (10.22) 

,4= ; ; 
[ I 

C=[l 01. 

Notice that the dynamics of this observer are based upon the system 
dynamics with the feedback term, L(y - $), included to stabilize the 
error dynamics. Define the error in the state estimate as Ir: = 2 - 5! 
and choose L so that P(A - LC) + (A - LC)TP = -2I, where P is 
a positive definite symmetric matrix. 

Now define the positive definite function V. = 5TP5. The derivative 
of this decays according to 

9-F v. = -2ZT5+2ZTP o [ 1 . (10.23) 

Since lg - .Fl < VV, we may use +I2 + 2(Z(IPIW < W”IPI” to show - 
that 

v* < - -gT17: + W”lPJ” 

< - KJ 
- x max 

(p) +W2JP12 (10.24) 

so that V, and 5 are UUB. The size of the ultimate bound may be 
made arbitrarily small by making IPI small which will in turn set the 
observer gain via L. n 

As seen from the previous examples, it is possible to design observers 
and output-feedback controllers for systems in output-feedback form using 
the backstepping approa(ch. Very often, however, the system nonlinearities 
are not simply functions of the plant output. In these cases, it is desirable 
to use other approaches to design output-feedback controllers. In this book 
we will show how to use the separation principle to design output-feedback 
controllers for systems when the plant dynamics are known. We will then 
extend these results to cases when there is uncertainty in the system dy- 
namics so that approximations of the plant dynamics (possibly due to using 
a. fuzzy system or neural network) may be used. 
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10.4 Separation Principle for Stabilization 

Return to the general problem of stabilizing the origin II: = 0 of the nonlinear 
system 

i = f(x,u) 
Y = h(x, u> 

(10.25) 

by means of a dynamic output-feedback controller 

. 
XC = f&c, Y, r> 
u = h&c, Y>- 

(10.26) 

Assume for now that m = p = 1, i.e., the plant is single-input single-output 
(later we will consider the general multi-input multi-output case). Through- 
out this section we will develop a methodology to solve this problem by 
assigning a particular structure to the dynamics of the controller. Specif- 
ically, assume there exists a smooth state-feedback controller u = G(x) 
which stabilizes the origin of (10.25), i.e, such that the origin of 

i = f(x,ii(x)) 
Y = h(x, 4 

(10.27) 

is asymptotically stable (or globally asymptotically stable). Then, we will 
try to find a controller which estimates the state x on-line and employs this 
estimate to recover the performance of the state-feedback controller G(x). 
This approach, which is based on the so-called separation principle, has 
the advantage of decoupling the state-feedback control design, for which 
well-established tools like the ones introduced in Chapter 6 exist, from the 
state estimation problem, thus making the overall output-feedback control 
design easier. Before going into the details of this approach, we need to 
introduce a definition of observability for nonlinear systems which will be 
useful to develop a general class of nonlinear observers to estimate x(t). 

10.4.1 Observability and Nonlinear Observers 

Consider the following mapping 

n 
Ye = 

. 

- 1 

= 7-L 

y(A 
( 

x,u,. . . ,u(nu-l) 62 
> 



318 Output-Feedback Control 

where 

cpl(x,u u(l)) = d’“f(x u) + %Jl) 1 dx ’ 6U 

c&(x u u(1),uq = $(x,u) + d’L1u 
dial (1) + dw ,(2) - ? 7 

3zP 

(10.29) 

Cpn-1 ( X,U,. . - 7U @u-l,> = Ff(x,u) + ng TU -2 &%z-2 (j+1) . 
j=o 

R is thus the mapping relating the first n - 1 derivatives of the output y 
to the state of the system and a number n, of control input derivatives 
(note that n u <_ n). When 3c does not depend on u we will set n, = 
0. Now assume that (10.25) is uniformly completely observable (UCO), 
i.e., the mapping X is invertible with respect to x and its inverse x = 
u-yye,u,ti,. . . ,u@uV1)) is smooth (in other words, 31. is assumed to be a 
diffeomorphism), for all x E R”, [u, ti, . . . , VA@U-~)] E Rnu . Later on, we will 
relax this assumption by not requiring it to hold globally on R” x Rnu. 

Example 10.4 In the particular case when (10.25) is a linear system 

j:=Ax+Bu, 
(10.30) 

y=Cx+Du 

3-1(x, u, . . . ,u(“-‘1) is given by 

Du 
v  

CBu + DU 

. 
. 

In this case, 31 is invertible with respect to x if and only if the n x rz 
constant matrix 3-11 is invertible. This corresponds to the well-known 
observability condition for linear time invariant SISO systems. A 

Definition 10.1: The system 

5% = f(2,u,y) 
(10.32) 

ij = jl(Z,u) 
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is an observer for (10.25) if the following two conditions are satisfied 

(9 fw) = x(0) implies that x(t) = x(t) for all t 1 0. 

(ii) x(t) -+ x(t) as t + 00 whenever x(0) and x(0) belong to some suitable 
subset of R”. 

Thus, in our definition, an observer is a dynamical system which estimates 
the state of the plant by only using the information given by the control 
input u and the system output y. 

Next, we will illustrate how to design observers for the general class of 
systems in (10.25). From the observability assumption we have that 

x = P(ye,u,. . . ,u(n”-l)) , (10.33) 

(where 7-L-r denotes the smooth inverse of 7-L) and thus, if the first n, - 
1 derivatives of u were known, one could estimate x by estimating the 
first first n - 1 derivatives of y (vector ye) and inverting the mapping 31. 
However, in practice the derivatives of u are not available and the inverse 
of 3-1 may be difficult (if not impossible) to calculate analytically. 

Example 10.5 The following nonlinear system 

i2 = (1 + xl) exp(xT) + u - 1 (10.34) 

y = x2 

is uniformly completely observable since 7-L is given by 

ye =?-t(x,u)= Y = [ 1 [ x2 
Y (1 + xl> exp(xT) + u - 1 I ’ 

(10.35) 

which is invertible for all x and u. To see this, observe that from the 
first equation we get 22 = y, and the second equation is invertible 
with respect to x1 because the function (1 + xr) exp(xf) is strictly 
increasing. However, one cannot analyticaZZy find the inverse 7-1-r 
other than by numerical approximation. n 

To remove the first of the two obstructions above (the fact that the 
derivatives of u are not available for feedback), we add n, integrators at 
the input side of the system (see Figure lO.l), 

i = f (5, Sl), $1 = s2, . . . ) in, = v (10.36) 
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and, using integrator backstepping (see Theorem 6.2), we employ G(X) 
to design a stabilizing controller V(Z, si, . . . , sn,) for the augmented sys- 
tem (10.36). In what follows, to simplify our notation we will let s = 
[s1 7 . . - 7 Snl, ] T and II;, = [zT, sTIT so that (10.36) can be rewritten as 

5, = f&h, 4 
(10.37) 

Y = bL(Gz,s1), 

where .fa(xn+) = [f(x,~i)~,s2,. . . ,ulT and h,(x,,sr) = h(x,u). The 
subscript a is used to denote the fact that (10.37) is an augmented system. 
Now note that, by definition, u = sr, ti = ~2,. . . , u@~-‘) = So,, , and thus 
we ca,n rewrite (10.33) as 

x = 7-P(ye, s). (10.38) 

Since the state of the chain of integrators is part of the controller, s is now 
available for feedback and can be employed to estimate x. 

-.-.?+ Chain of integrators ” + Plant Y 

Figure 10.1. Adding integrators at the input side of the system. 

In order to avoid the calculation of 3-1-l (the second obstruction men- 
tioned earlier), rather than estimating the derivatives of y (vector ye> and 
calculating x from (10.38), we will estimate x directly by means of the 
following nonlinear observer 

a?-@, s) --l 
i = f(k, Sl) + 7 i 1 fF-% [y(t) - iwl (10.39) 

ij(t) = h(2). 

whereE=diag[q,$ ,..., q?],v is a design parameter such that 0 < q 5 1, 
and L = [Ii, 12, . . . , &IT is such that sn + I#-’ + . . . + I, is a Hurwitz 
polynomia81. i,From the fact that the plant is uniformly completely observ- 
a’ble and, hence, that ?-Z is a diffeomorphism, we have that its Jacobian 
with respect to x, dX(x, s)/a x, is nonsingular for all x and s, and thus its 
inverse in (10.39) is well-defined. Notice that, while calculating the inverse 
of the mapping 3-1 may be a difficult or impossible task, the calculation of 

dU the inverse of the state-dependent matrix E is straightforward. 
In order to study the stability properties of the observer we have just 

introduced, we need to assume that x,(t), the state of the augmented sys- 
tem (10.37), is bounded for all t 2 0. Specifically, we will assume that there 
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exists a compact set CI such that za (t) E s2 for all t > 0. The controller 
we will define in the next section will then guarantee that these conditions 
are automatically satisfied. We want to show that the observer estimation 
error dynamics Ir: (t) = z - 2 are asymptotically sta,ble. To this end, consider 
the filtered transformation 

ye = U(x, s) = U(xa) = T (10.40) 

which by assumption is invertible with smooth inverse x = X-l (ye, s), and 
express system (10.25) in new coordinates. By definition, the extended 
output is ye = [y, $, . . . , y@-r)lT and with pn-1 defined in (10.29), I 

y(4 = %pf (u-y&?, s), s) + nF -l gl p-YYe,S),S) ai+1 

k=l 1 e (P(ye,s)i*)] v nu 
22 4Ye, 4 + P(Ye 7 s>v- 

Hence, in the new coordinates (10.25) becomes 

?_je = AYe + B Ca(Ye7 S) + @(Ye, S)V] , 

where 

(10.41) 

(10.42) 

Next, transform the observer (10.39) to new coordinates fie = ?Y(k, s) = 
[ce, 7 Ge2,. . . ) Gen]’ where $jel = $, SO that 

ie, = 
-1 

dh 
rlL [Y - h(C a)] + -il 

as1 

h dh 8-i --’ -- = Ye2 + a2 ag [ 1 E-‘L [y - h(it, sl)]. (10.43) 
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Similarly, for i = 2, . . . ,n - 1 

By definition, 

h 

Ye;+1 =(p@,sl,...,si+l) = qf (g, sl) + 

Hence, we conclude that 

h h + api- au ---l Ye; = Yei+ - - [ 1 a* 22 PL (Y - h@, Sl)), (10.44) 

for i = 2,... ,TI - 1. Finally, 

ie, 
dpn-1 d7-i -l 

=~(!?e~~)+P(ile,S)~+ 7 z 1 1 E-‘L [y - h(2, sl)]. (10.45) 

By using (10.43), (10.44), and (10.45) we can write, in compact form, 

k, = Ace + B[a(fje, S) + P($e, S)V] + [““I [g]i”L,y - h(it,sl>, z 

= Ace + B[a($e, S) + P(Ce, S)U] + EwlL [Ye1 - fell- (10.46) 

Define the observer error in the new coordinates, ?je = ce - ye. Let C E Rn 
be defined as C = [l, . . . , 0], then the observer error dynamics are given by 

. 
Ge = (A - &-l L C)7i/;. + B [cY($,~, s> + P(!?e 7 s>w - a(y, 7 s> - @(Ye 7 S)?J] - 

(10.47) 
Now notice that the pair (C, A) is observable and hence one can choose L 
such that the eigenvalues of A - LC ha(ve negative real parts or, in other 
words, the roots of the polynomial sn + I#+’ + . . . + I, have negative real 
parts. Defining the coordinate transformation 

fi = &lye, &' L? diag 1 7 

in the new domain the observer error equation becomes 

i = ‘(A - LC)fi + B [a(jje, s) + p(ge, s)v - a(ye, s) - p(ye, s)v] y 
r) 

(10.49) 
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where, by our choice of .L, A - LC is Hurwitz. Note that the form of A was 
used to go from (10.47) to (10.49). Let P be the solution to the Lyapunov 
equation 

P(A - LC) + (A - LC)TP = -I (10.50) 

and consider the Lyapunov function candidate V,(Y) = VT PV. Calculate 
the time derivative of V, along the V trajectories 

r;i, = JTv - + 2FTPB [a(&, s) + P@e, s>v - Q(Ye, s) - P(Ye, s)v] - (10.51) 
rl 

Assume that [!S?(0)T,s(O)T]T E 0 (i.e., the estimate of xa is initialized in 
the same compact set) and define the compa#ct set 

By definition, Ic, contains the initial condition & (0). Assume now that 
the following time signal is bounded as follows 

la(Ce(t>,S(t>) + P(Ce(t), s(t))“(t) -Q:(Ye(t), S(t)) 

-P(YeCt), s(t))v(t)l 5 k*lt!3e(t)l, 

(10.52) 
for some 7 > 0, for all t > 0, and for all Ge(O) E ‘H(n), ye(t) E X(0). 
This condition requires that the function a(ce, s) + p($e, s)v - a(Ye, s) - 
@(ye, s)v satisfies a Lipschitz-type inequality at any time instant with a fixed 
Lipschitz constant Ic*. Notice that the boundedness of the control input v(t) 
and the smoothness of the functions cr and ,0 are, in general, not sufficient to 
fulfill requirement (10.52) since, while xn(t), and hence ye(t) = %(x,(t)), 
is assumed to be bounded for all t 2 0, nothing can be said about the 
behavior of jje(t) (this point is made clearer in the proof to follow). If a! 
and p are globally Lipschitz functions and v(t) is a bounded function of 
time, then requirement (10.52) is a,utomatically satisfied. We will see in 
the following that, without requiring Q and ,0 to be globally Lipschitz or 
any other additional assumption, (10.52) is always fulfilled by applying to 
the observer a suitable dynamic projection onto a fixed compact set or, in 
some cases, by using a saturation. By virtue of (10.52), if @e(O) E ‘H(0) 
and ye(t) E ‘H(2), th ere exists a fixed scalar k* > 0, independent of q, such 
that the bracketed term in (10.51) can be bounded as follows 

b@e 7 4 + P@e, s>v - Q(Ye7 s> - P(Ye, s)v] L k*lCe - Ye17 (10.53) 

and thus the time derivative of V, can be bounded as follows 

~o<2T I I 
r) 

+ 2k*IPJ(y”,Ilvl < -Ivi” - rl + 2k*IPl(fil’, (10.54) 
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where we have used the fact that II&/ 5 lzl(. 
As we mentioned earlier, the smoothness of cy. and ,0 and the bounded- 

ness of u(t) for all t > 0 are not sufficient to guarantee that a bound of the 
type (10.53) hold for the bracketed term in (10.51). This is seen by noticing 
that the level sets of the Lyapunov function V,, expressed in < coordinates, 

A, = {[ E R” 1 V&$) < c}, - 

are parameterized by r) and become larger as 7 is decreased. Thus, letting 
c range over A,, a straightforward application of Lipschitz inequality would 
result in a bound like (10.53) where k*, rather than being constant, is a 
function of v. Defining q = min{l/(2)Plk*), l}, we conclude that, for all 
17 < q, the ?/le trajectories starting in Ic, will converge asymptotically to 
the origin. 

We have thus proved that, provided the state 2, of the augmented sys- 
tem (10.37) is contained in some compact set K? and (10.52) is satisfied, 
one can choose a sufficiently small value of q in the observer (10.39) guar- 
anteeing that Ye (t) = & (t) - ye (t) -+ 0 as t + 00. Recalling that X 
is a diffeomorphism, we conclude that 5(t) -+ z(t). Finally notice that 
2(t) = x(t) is the unique solution of (10.39) when g(O) = z(O). Hence, 
(10.39) is an observer for (10.25) in the sense of Definition 10.1. 

Besides proving that the estimation error vanishes asymptotically, we 
are also interested in assessing how fast does it vanish. Specifically, given 
any positive scalars E and T, we now show that one can pick q guaranteeing 
tha,t 2 - J; < t: for all t > T, and thus the convergence of the observer can 
be made arbitrarily fast. To this end, note that 

bnin(~‘P&‘) 2 hnin(&‘)2X,in(P) = Xmin(P), 

since X min(C’) = 1. Next, 

h-flax(~‘p~‘) < &lax - (~‘)“brlax(P) = l/(772(n-1))bnax(p), 

since X max (r’) = l/q W1). Therefore, 

&n.(P)lyq2 5 vo = feT&‘PE’&, 5 
1 

pXmax(P)l!L12- ,12(n-l) 
(10.55) 

Define c so that Iy”el 5 c implies that I iis- X( 5 6 (the smoothness of 
3-1-l guarantees that z is well defined). By inequality (10.55) we have 

that V. < C”X,in(P) ’ rm pl’ res that JY,l 5 C, and Vo(0) g V,@(O)) 5 

WI 2’n-1~)Xmax(P)l~~(0)12. Moreover, from (10.54) 

ii,(t) i - (; -2,Plk*) ICI2 5 -xma;cp) (; -2lPp*) V,(t). 
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Therefore, by Lemma 2.1, V0 (t) satisfies the following inequality 

(10.56) I;;(t) 5 VO(0)exp - 
{ &i(P) (: - 2lPlE’) t} 

1 
< - -x,mdp)I~eeov exP qw-4 { 

- A,,,,t(p) (f - 2lw*) t} 7 

which, for sufficiently small 7, can be written as 

Vo(t) < G exp -St , al,az > 0. - 
rl 1 > 17 

,4n upper estimate of the time T such that 12 - ZI 5 E for all t 2 T, is 
calculated as follows : 

al 
2n exP 
117 

<~~X~i~(P)forallt>T=%og - 
a2 

Noticing that since T --+ 0 as 7 --+ 0, we conclude that T can be made 
arbitrarily small by choosing a sufficiently small q*. The results above are 
summarized in the following theorem. 

Theorem 10.1: Assume that the plant (10.25) is uniformly com- 
pletely observable, the state xa of the augmented system (10.37) belongs to 
a compact invariant set 0, and that the Lipschitz-type condition (10.52) is 
satisfied. Choose L such that the roots of the polynomial P+l#- +. . .+l, 
have negative real part. 

Under these conditions, using observer (lO.39), for all [x(0)T, s(O)~]~ E 
0 the following two properties hold 

(i) There exists 7, 0 < rj < 1, such that for all 7 E (0, ?j), x -+ x as 
t--+-+00. 

(ii) For each positive T, E, there exists q*, 0 < q* < 1, such that for all 
‘I E (O,q*], 12 - xl 5 6 Vt 2 T. 

10.4.2 Peaking Phenomenon 

Using inequality (10.56)) we can calculate an upper bound for the estima- 
tion error in ye (t)-coordinates 

(10.57) 
Notice that the magnitude of the upper bound above during the initial tran- 
sient (around t = 0) grows larger as r) is made smaller. Thus, while decreas- 
ing 7 has the beneficial effect of improving the rate of convergence of the 
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observer, it may also yield an undesirable peak in the observer estimation 
error. When employing the state estimate 2 in place of x (i.e., w = @(Z, s)) 
to stabilize the augmented system (10.37), the peak in the observer es- 
timation error may destroy the stability properties of the state-feedback 
controller, no matter how fast the rate of convergence of the observer is 
ma,de. This effect, known as the peaking phenomenon, is essentially due 
to the fact that the peak of the observer estimation error during transient 
may generate a# large control action which may drive the closed-loop system 
trajectories to inst,ability. This is seen in the next example. 

Example 10.6 Consider the second-order system 

551 = x2 

.‘c2 = 2; + exp(-xz)u 
y  = Xl, 

(10.58) 

for which a globally stabilizing controller is easily found to be 

u = - exp(xi) (xz + xl + 22) . (10.59) 

In this case the mapping ?t is simply given by 

3-1(x, s) = [Xl, x21T, 

which is a diffeomorphism on R2 thus showing that the system is 
uniformly completely observable. Furthermore, n, = 0 (i.e., X does 
not depend on s), and thus we do not need to add integrators at 
the input side of the system. Noting that a’?i/S = I, the observer 
equation (10.39) takes the form 

4 
& = it2 + l/ (y - i1) (10.60) 

12 i2 = 2; + exp(-S$)u + -$Y - %r)- (10.61) 

Following Theorem 10.1, we choose Zr = 22 = 1 and we pick q suf- 
ficiently small. In practice, a convenient way to choose 77 is to run 
a, few simulations and decrease its value until a satisfactory rate of 
convergence for the observer is found. Figure 10.2 shows the state 
trajectories xi(t> and x2(t) and the observer estimates ?r (t), 22(t) 
when the state-feedback control law (10.59) is employed. The result 
confirms the theoretical predictions of Theorem 10.1: the observer 
estimation error vanishes and its rate of convergence is improved by 
decreasing the value of 7. However, when comparing the performance 
of the observer when q = 0.1 and 7 = 0.01, the undesirable peaking 
phenomenon appears to be evident; as in the latter case S!(t) exhibits 
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I  t  I  I  I  I  I  I  I  t  

0 01 0.2 03 0.4 0.5 06 0.7 0.6 0.9 1 

0 0.1 02 03 0.4 05 0.6 0.7 0.6 0.9 1 

Figure 10.2. Peaking phenomenon in the observer estimate. 

a significantly higher peak. Next, the destabilizing effect of the peak- 
ing phenomenon is illustrated by the phase plot in Figure 10.3, where 
the state-feedback controller (10.59) is replaced by 

u = exp(& (2; + 21 + 22) . 

Now the presence of the peak in the observer estimates yields a large 
control input generating a deviation in the closed-loop system trajec- 
tories which becomes larger as q is decreased. When r) = 0.004 the 
closed-loop system is unstable. n 

10.4.3 Dynamic Projection of the Observer Estimate 

The separation principle for linear time-invariant systems states that one 
can find an output-feedback controller by first independently designing a 
state-feedba,ck controller and an observer, and then replacing x by 2 in the 
controller. Unfortunately, as seen in Example 10.6, such an interconnection 
does not guarantee closed-loop stability in the nonlinear setting. Specifi- 
cally, we have seen that the main obstruction to achieving a separation 
principle is the presence of the peaking phenomenon in the observer. One 
way to eliminate the destabilizing effect of the peak in the observer is to 
project the observer states onto a suitable compact set so that the resulting 
output-feedback controller is globally bounded, with a bound independent 
of 77 (hence, the peaking phenomenon is eliminated). If this compact set is 
chosen to be larger than the set containing the state trajectories, then one 
can recover the stability properties of the state-feedback controller and thus 
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-20 ' 0 1 I  I  I  I  
-10 -8 -6 -4 -2 0 2 

X1 

Figure 10.3. The peaking of the observer destabilizes the closed-loop 
system. 

achieve a, separation principle for nonlinear systems (this statement will be 
proved in the next section). Next, we introduce the dynamic projection 
and analyze its main properties. 

Let F : Rn+% + R”-bb be the mapping defined by 

(10.62) 

and notice that F is a diffeomorphism on Rn+nu (this is due to the fact that 
its inverse is given by x, = [‘7-L-l (y)T, sTIT, which is smooth). Similarly, 
let 3 = F(!&) = [$,T,s]~, where gn = [ZT,slT. Next, let C be a set in y 
coordinates and denote by N(y) the normal vector to the boundary of C 
at Y. In practice, the set C can always be expressed by an inequality 

c = {Y I g(Y) I 0>7 

where g is a smooth function. The boundary of C is then the set 

x ={YIg(Y>=O) 

and the norma) vector N(Y) is then calculated as 

T 

N(y) = ?d$!i , 

with the convention that N calculated at any point of the boundary dC 
points outside of C . Let NYe (ye, s) and N, ( ye, s) denote the ye and s 
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components of N, that is, 

a9(Ye 7 S> T 

dYe 
d9(Ye,S) T ’ 

8s I 

Assumption 10.1: Assume that C has the following properties 

(i) C has a smooth boundary. 

(ii) Each slice C ’ of C obtained by holding s constant at 3, i.e., 

is convex, for all 3 E Rnu . 

(iii) The vector Nye (ye7 s) does not vanish anywhere on dC . 

(iv) Us C ’ is a compact set. 

Consider the following dynamic projection applied to the observer dynam- 
ics: 

otherwise 
(10.63) 

where r = (SY’)-‘(SP)-‘, S = ST denotes the matrix square root of P 
(defined in (10.50)), 8C d enotes the boundary of C , and 

The following lemma shows that (10.63) guarantees boundedness and pre- 
serves convergence for i. 

Lemma 10.1: Let C a set in y  coordinates satisfying Assumption 10.1. 
The observer (10.39) with dynamic projection (10.63) has the following 

properties 

(i) Boundedness: if gp(0) E W’(C), then iP(t) E Y-f-‘(C) for all t. 

If, in addition, xa(t) E n for all t 2 0, where 0 is a compact set, then the 
following holds 
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(ii) Preservation of original convergence characteristics: properties (i) 
and (ii) established by Theorem 10.1 remain valid for iip. 

(iii) Requirement (10.52) is guaranteed to hold provided s~p,>~ v(t> is boun- - 
ded. 

Proof: In order to prove part (i) we need another coordinate transfor- A 
mation, [ = SE/ye, (similarly, let [ = SE’ij,, < = SE’&). Define the linear 
map C; = diag [S&l, InU xrzU ] and consider the set C’, image of C under the 

map G, i.e., C’ 2 {[cT,sTIT E R’n+n2f IG-‘[CTtsTIT E C} (C’ is convex 
beca#use of the linearity of G). Let N{(<, s), Ni(& s) be the 5 and s com- 
ponents of the normal vector to the boundary of C’. In order to prove 
part (i) of the Lemma, it is sufficient to show that the dynamic projection 
(10.63) renders the set C ’ positively invariant which in turn guarantees that 
2 = 7f-1 (&, s) is contained in the compact set ‘72-l (C ). In & coordinates 
we have that 

^P 
Ye =dt d {?-@‘,s)} = [$p+ $1 

&-I? 
N,eN;$e -I- NpeAi,TS 

NL r&e (10.64) 
- - 

if NY.(3)T& + N&)TS 2 0 and 3 E aC 

otherwise. 

In order to relate N$, s), NL(&s) to Ny,(&,s), N:,([,s), recall that 
that dC = {[yT,sTIT Ig(ye,s) = 01 and Nj&, 4 = (ML, s>/%L>T, 
N&L, s) = (&I&, s>/wT. 

TheboundaryofC’istheset X’ = {[CT,sTIT E Rn+nu ]g((SQ-15,s) = 
0) and 

n;;ti, s> = (SE’>-‘(a&j,, s)/&?,)~ = (S&‘)-’ NY, (i&, s), 

The expression of the projection (10.63) in [ coordinates is found by using 
the definition of I’ and noting that 

S&‘& - (SE’)-l 
lvye N,a$ + NTS 

> 
NA r4ke 

if Ny6 & + NTS 2 0 and 3 E dC 

SE’& otherwise 
(10.65) 
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and then substituting N; = (S&l)-’ Nge, Ni = Ns, and k, = (SE’)-‘t, to 
find that 

NtTN’ c c 

:, 
if Nl’C + Ni’S 2 0 

and [iT,sT]’ E dC’ (10.66) 

otherwise . 

Next, we show that the domain C’ is positively invariant for (10.66). In 
order to do that, consider the continuously differentia#ble function 

v& = ;b2 ((SE’)-lC,s) 

and calculate its time derivative along the trajectory of (10.66) when lp E 
dC I, 

T/‘c, = b ((sE’)-‘(p, s) [N;(cp, s)~C^~+ N;(lp, s)‘j] 

= b ((St-‘)-l(p, s) NITt - 
NtTN; N;‘i + NiTj) 

NtTN’ 
+ NITS 

c < 1 L J 
= 0. 

(10.67) 
Since J&I = 0 on the boundary of C’ the solutions [tPT(QT, sT(t))lT of 
(10.66) can not cross X’ and hence C’ is positively invariant. This in turn 
implies that [G,“‘(t), sT(t)lT cannot cross dC and, thus, iY(t) E W1(C ) 
for all t . 

The proof of part (ii) is based on the knowledge of a Lyapunov function 
for the observer in V coordinates (see (10.48)). Notice that c = SV, and 
vo = VTPti = (CTS)(SV) = i’y. w e want to show that, in < coordinates, 

p0 < 0 and tp 
v,p = pp. 

= S’E$~ implies that pop 5 I&, where cp = tp - C, and 

Recall that, by assumption, za (t) E F-l (C ) for all t > 0 or, equivalently, 
[Ye(t)T,s(t)TIT E c or, what is the same, [<(QT, s(t)‘]’ E C’ for all t > 0. 
From (10.66), when [t’, sTIT is in the interior of C ‘, or [tT, sTIT is on the 

boundary of C’ and N;‘[ + NiTS < 0 (i.e., the update is pointed to the 
interior of C ‘), we have that V, = Vop. Let us consider all the remaining 
cases and, since lp = t and ip = < (the projection is dynamic, it only 

operates on t), we have 

vop = 2cp(;Lp = 21Ttp = 2tT [; - ( - p((, ;, s, g)iv;(t, s)] , (10.68) 
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where 

is nonnegative since, by assumption, NIT{ + NiTj. 2 0. Thus, 

VP - i/, - 2pgTN;. 0 - (10.69) 

Using the fact that [CT, sTIT E C ’ and that [t’, sTIT lies on the boundary 
of C I) we have that the vector [[ - 5, OTIT points outside of C ’ which, by the 
convexity of C ‘, implies that <‘N[ + OTNL = C’N; > 0, thus concluding 
the proof of part (ii). 

Next, to prove part (iii), we want to show that if x, E 0 for all 
t > 0, then inequality (10.52) holds for all t > 0, with &(t) replaced 
by $‘, provided that v(t> is uniformly bounded. We start by noting that 
Ye 0) = Nx(% s(t)> is contained in the compact set 3-1(a) for all t > 0 
a’nd s(t) is contained in the compact set W = {s E Rnu 1 x&) E St> for 
all t 2 0. Furthermore, using part (i) of this lemma and property (iv) in 
Assumption 10.1 we have that 

[51 nfT,~T]T E C = (U,,, s C’) x W, for all t 2 0, 

where C is a compact set. Now, part (iii) is proved by noticing that in- 
equality (10.52) follows directly from the facts above, the boundedness of 
v(t>, and the local Lipschitz continuity of a and p. 

Putting the results of Theorem 10.1 and Lemma 10.1 together, we have 
that if the xc, trajectories of the system are contained in some fixed compact 
set Q for all time and the plant is UCO, then the observer (10.39) together 
with the dynamic projection (10.63) provide an asymptotically convergent 
and arbitrarily fast estimate of the state x, without any additional assump- 
tion. Note that there is no restriction on the size of the compact set St. 

In the particular case when the plant (10.25) has the form 

. 
xi = Xi+1 7 i=l,...,n-1 

Xn = f (x7 4 (10.70) 

y = Xl 

and hence the observability mapping X is the identity, i.e., ye = X(x) = x, 
the observer (10.39) is simply given by 

pi = 
li 

Zi+l+Y(ZJ-?1), i=l,...,n-1 
77% 

. h 
xn = f  (i&u) + c”cy - 21). 

rln 

(10.71) 
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Observer (10.71) is commonly referred to as a high-gain observer. For the 
pa(rticular class of systems (10.70), in order to satisfy requirement (10.52) 
and elimina,te the destabilizing effects of the peaking phenomenon, one can 
remove the dynamic projection (10.63) by saturating 2 in (10.71) over the 
satme compact set 3-l(C ) 

;& = 4 
&i-l + --;(Y - C), 

rl” 
i=l,...,n-1 

b-L 5, = f(%u) + ,(Y -C), 

where 

(10.72) 

with 

2’ = V sat(V -%), 

sat{*} = [sat(&), . . . , sat(&)] T ,  Sat(?i) = 

V = diag[Vl,...&], Vi = SUP ixi)7 
zEX-‘(C) 

1 if ?i > 1 
A 

xi if I&J 5 1 
-1 if&<-l 

and using 2’ in place of II: in the stabilizing control law. 

10.4.4 Output-Feedback Stabilizing Controller 

Recall that for the augmented system 
. 
2, = f&u,v) 

(10.74) 
Y = h&a,s1), 

10.73) 

where x, = [xT, sTIT, we may design a controller a(~~) which makes the 
origin 2, = 0 asymptotically stable with some domain of attraction D. 
Clearly, when the controller ti(xJ globally asymptotically stabilizes the 
origin x, = 0, we will have D = Rn+nu. Using the converse Lyapunov t,he- 
orem found in 11211, we know that there exists a continuously differentiable 
function I/’ defined on D satisfying, for all 2, E D, 

al(lx~l> L v(xu> L w(ln:.l) (10.75) 

x, ~aDmaI) = 00 (10.76) 

dV 

h 
fdxnAxu)) 5 -Q3(IG4, (10.77) 

where ai, i = 1,2,3 are class K functions, and a2> stands for the boundary 
of the set D. Given any positive scalar c, define the corresponding level set 
of v as 

0, 2 {xu E Rn- 1 V(xa) 5 c}. 
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Clearly, 0, C D for all c > 0 and, from (10.76), 0, becomes arbitrarily 
close to D a’s c --+ 00. In what follows, we will introduce an output-feedback 
controller of the form (10.26) yielding the following two properties: 

1. The origin of the closed-loop system is asymptotically stable. 

2. The set which estimates the domain of attraction using the output 
feedback controller is contained in D, and it can be made arbitrar- 
ily close to it by appropriately choosing a design parameter in the 
contlroller. 

Consider now two arbitrary positive scalars cl and ~2, where cl < cz, and 
the associated compact sets f2,, and fi,,. Note that, from the properties of 
the Lyapunov function V(x,), 0,, c Q,, c D. Recall that & = [?‘: sTIT, 
define X: = [5pT,sT]T, and consider the output-feedback controller 

6 = iqi$), (10.78) 

where gp is the state of the observer (10.39) with the dynamic projection 
(10.63) operating on the set C which we choose so that it satisfies Assump- 
tion 10.1 and 

Notice that, due to the projection, the controller (10.78) does not exhibit 
peaking. When the plant takes the form (10.70), then saturation can be 
used in place of the projection and gp in (10.78) can be replaced by Y, 

defined in (10.73). The following theorem states that the output-feedback 
controller (10.78) guarantees asymptotic stability of the origin x:, = 0 with 
domain of attraction containing the set n,, . 

Theorem 10.2: Consider the closed-loop system formed by a plant 
augmented by a chain of n, integrators (10.7&), the observer (10.39), and 
the controller (10.78). Then, for any pair of scalars cl and c2 such that 0 < 
Cl < c2, there exists a scalar v*, 0 < q* < 1, such that, for all q E (0, ~“1, 
the set Cl,, is contained in the region of attraction of the origin x, = 0. 

This theorem states that any compact set K!,, contained in D can be 
ma,de a# domain of attraction for the origin x:, = 0 of the augmented plant 
provided q~ is chosen sufficiently small. From the property that a,, ap- 
proa.ches D as cl -+ 00, we deduce that the proposed output-feedback con- 
troller recovers the domain of attraction achieved with the original state- 
feedback controller. In particular, when the state-feedback controller glob- 
ally asymptotically stabilizes the origin x, = 0 (i.e., D = Rn-tnu), the out- 
put feedback controller stabilizes the origin semiglobally or, in other words, 
the domain of attraction of the origin with the output-feedback controller 
is any compact set in Rn+nu. 

We next proceed to proving the theorem. To this end, we divide the 
proof in three parts. 
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1. (Lemma 10.2). Invariance of a,, and ultimate boundedness: Using 
the arbitrarily fast rate of convergence of the observer (see part (ii) in 
Theorem 10.1) we show that any trajectory originating in 0,, cannot 
exit the set 0,, and converges in finite time to an arbitrarily small 
neighborhood of the origin. Here, the proof is based on the fact that 
the projection eliminates the peaking phenomenon. 

2. (Lemma 10.3). Asymptotic stability of the origin: By using the expo- 
nential stability of the observer estimate and Lemma 10.2, we prove 
that the origin of the closed-loop system is asymptotically stable. 

3. Closed-loop stability: Finally, by putting together the results obtained 
in Lemmas 10.2 and 10.3, we conclude the closed-loop stability proof. 

Before stating the first lemma, notice that the smoothness of fn and the 
control law V implies that there exists a positive scalar 3/ such that 

for all x,, 2, E Pi (C ) > Sz,, . Furthermore, from the fact that V is 
continuously differentiable we have that there exists a positive scalar A 
such that /W/ax,] 5 A for all xa in a,, . 

Lemma 10.2: Suppose that the initial condition ~~(0) is contained 
in 0,, and consider the set ode, where d, = CY~ 0 c$ (p A 3/ e), and choose 
e > 0 and 1-1 > 1 such that d, < cl. Then, there exists a positive scalar 
n”, 0 < q* 5 1; such that, for all 7 E (0, Q*], the solution of (10.74) remains 
confined in fl,,, the set SZdl c a,, is positively invariant, and is reached in 
finite time. 

Proof: Since V(xa(0)) < - ci < ~2, there exists a time 5?i > 0 such that 
V(xa(t)) 5 ~2, for all t E [O,Tl). Choose To such that 0 < To < TI. Then, 
since x&) = [x(t)T, s(t)T]T E a,, c W’(C) for all t E [O,Tl) and, by 
Lemma 10.1, part (i), i?‘(t) E ‘R-l(C) for all t > 0, we conclude that, for - 
all t E [0, TI), 

which, from part (iv) in Assumption 10.1, is a compact set. Thus, from the 
smoothness of V, v(t) is bounded by a constant independent of 7, and hence 
we can apply part (ii) in Theorem 10.1 and parts (ii), (iii) in Lemma 10.1 
and conclude that for any positive c there exists a positive q*, 0 < ‘I* 5 1 

such that, for all 7 < v*, J2P] g J?P - x] < Q’t E [To,Tl). Hence, for all 
t E [To,T& we have that V(xa(t)) < c2 aid liE(t)I < e. In order for part 
(ii) in Theorem 10.1 to hold for all t 2 To, xa must-belong to 0,. for all 
t 2 0. So far we can only guarantee that xa E a,, for all t E [0, Tl) and 
hence the result of Theorem 10.1 applies in this time interval, only. Next, 
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we will show that !I’1 = 00, i.e., fl,, is a positively invariant set, so that the 
result of Theorem 10.1 will be guaranteed to hold for all t > 0. 

Consider the Lyapunov function ca’ndidate V(x,) defined in (10.75)- 
(10.77). Taking its derivative with respect to time and using (10.79) we 
get 

v = Efa(x a$) 
dV 

a 
= ~f&aJg + 

a 
g [fa(GL,q - fa~~n,a 

a 

< -a3(IxaI> + ; - 
I I 

IfL( Xa,~(~~>) - fa(ztz7v(za>)l 
a 

5 -Q3(fXal) + AyJZpl 

F -QI3((Xa() + AYe 

< -a3 0 cq’(V) + A;);e - 

for a’11 t E [To, Y’r). When V > d, we have that 

hence V decays linearly, which in turn implies that xa (t) E !-I,, for all t 2 0 
(i.e., Tl = oo), and 0, is reached in finite time. 

The use of the dynamic projection plays a crucial role in the proof of Lemma 
10.2. As q is made smaller, the observer peak may grow larger, thus gener- 
ating a large control input, which in turn might drive the system states xa 
outside of n,, in shorter time. The projection eliminates the peaking and 
makes sure that the exit time Tl is independent of E, since the maximum 
size of the G will not depend on 6, thus allowing us to choose 6 independently 
of TI. 

Lemma 10.2 proves that all the trajectories starting in S&, will remain 
confined within St,, and converge to an arbitrarily small neighborhood of 
the origin in finite time. Now, in order to complete the stability analysis, it 
remains to show that the origin of the output-feedback closed-loop system 
is asymptotically stable, so that if 0 d, is small enough all the closed-loop 
system trajectories converge to it. 

Lemma 10.3: There exists a positive scalar C* such that for all E E 
(0, E*] all the trajectories starting inside the compact set 

a, g ([Z,T,gpTIT IV(xa) < d, and lS?I < E) - - 

converge asymptotically to the origin xa = O,?Y~ = 0. 

Proof: Recall that Zp = ‘I-f-‘($,s) - ‘J-i-‘(ye,s). From the uniform 
complete observability of the plant we have that the mapping X-r is locally 
Lipschitz. Hence, there exists a neighborhood NGe such that (Z’I 5 l]?jf - 

yeI, for all 9: - ye E Nj,, and for some positive constant 1, which, by 
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(10.57), implies that the origin of the %P system is exponentially stable. By 
the converse Lyapunov theorem we conclude that there exists a Lyapunov 
function Vi@?) and positive constants ~1, ~2, ~3 such that 

Define the positive scalar C* such,that IYJ 5 C* implies Qg - ye E IVGe (the 
existence of E* is a direct consequence of the fact that ‘J-f is locally Lipschitz). 
Next, define the following composite Lyapunov function candidate 

then, 

Vc 5 -a3(lx.l) + @lzPI - 
x 

2473F) 
c315p12 

< -~3(lXal) - - ($-A+:spi<O, 

where we have used the fact that [x,‘, ZPTIT E A, implies that x, E 0,, 

(provided c is small enough), and hence dV 
I I 
dz, 2 A. Since V, is nega- 

tive definite, all the [x,‘, gPTIT trajectories starting in A, will converge 
asymptotically to the origin. 

We are now ready to prove Theorem 10.2. 
Proof of Theorem 10.2: By Lemma 10.3, there exists C* > 0 such that, 

for all 6 E (0, E*], A, is a region of attraction for the origin. Use Lemma 
10.2 and the fact that ~~(0) E Q,, to find v*, 0 < ‘I* < 1, so that for all 
77 E (0, v*] the state trajectories enter A, in finite time. This concludes the 
proof of the theorem. n 

10.5 Extension to MIMO Systems 

If the input u of the plant has dimension m and the output y has dimension 
p, with m and p integers greater than one, the output-feedback controller 
introduced in the previous section remains essentially unchanged. The only 
difference is introduced in the definition of the observability mapping X 
a,nd the related observability assumption. Specifically, when u E Rm and 
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y E RP, we define the mapping 

Ye ’ 
y!c,lj 

. 

. 

. 

YP 
. 

(6 -1) 
- YP 

- - 
b-1 

P2 (  

x u 

7 ? * - - 7 &2-'1) 

fi 3-1 (x, s) , (10.81) 

h, (x7 4 

k,-1 
‘PP ( 

(k -1) x/u,. . . $4 p > 

where s 
n 

n r 
= ~u~,...,u~~~-~),...,u,,...,u~~-~']~ E Rnu, ‘j& ki = n, 

nu = n1 + . . . + nnz, 0 5 ni 2 max{ki, . . . , kp}, (when R does not depend 
on ui then we set ni = 0). Similarly to the SISO case, the functions ‘pi are 
defined as follows: 

Yl 
Yl 

w;-1) 
91 

Y2 

kl--1 
‘pl ( x,u,. . . ,u (h -1) 

> 

h2 (X7 u> 

(k+l) 
fork1 ,..., p,j=l,...,ki-1 (10.82) 

cpg(X,U) = hi(X,U), for i = 1,. . . ,p. 

Instead of augmenting the plant with one chain of integrators, we now 
augment it with m such chains 

- Si,j = s~,~+I, j = 1,. . . ,ni - I 
i. a,ni = u;, i = l,...,rll (10.83) 

ui = Si,l- 

In complete analogy to the SISO case, we say that the MIMO system is 
uniformly completely observable if there exists a set of indices { ki, . . . , kp} 
such that the mapping R in (10.81) is a diffeomorphism for all x E Rn and 
s E RtnU). 

The matrix E and the vector L in (10.39) are modified as follows: 

L = block-diag[L’, . . . , LPI, & = block-diag[&, . . . , f,], 

where Li and Ei = diag[q, q2,. . . , qki] have dimension nj x 1 and ki x ki, 
respectively. The assumption that L is Hurwitz in Theorem 10.1 (i.e., the 
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polynomial sn + 11 sn--l + . . . + 1, is Hurwitz) is replaced by the requirement 
tha,t ea(ch Li is Hurwitz. 

The output-feedback controller is now given by 

6 = G($), (10.84) 

where, as before, 2: = [iPT, sTIT and ?P is the state of the observer 
(10.39) with projection (10.63). In the particular case when the observ- 
ability mapping is the identity and the plant takes the form (10.70), the 
projection can be eliminated by employing the observer (10.72) and replac- 
ing !I? by P, as defined in (10.73). 

10.6 How to Avoid Adding Integrators 

Thus far we have seen that, given a state-feedback stabilizing controller 
G(Z), in order to find an output-feedback controller based on a separation 
principle, one has to augment the plant with n, integrators at the input 
side and design a stabilizing controller a(~,) for the augmented system. 
Even though one can always perform this step in a systematic fashion by, 
e.g., employing integrator backstepping, on the other hand the resulting 
control law may become rather complex. This is seen in the next example. 

Example 10.7 Consider the simple system 

21 =22+u 
(10.85) 

k2 = 21x2 - x2. 

Using the Lyapunov function candidate VI = (1/2)x: + (1/2)x& we 

get 

r;; = x1(x2 + u) + x2(2122 - x2). (10.86) 

The controller U(X) = -xl - 22 - xg yields vr = -XT - xg and hence 
globally asymptotically stabilizes the origin of (10.85). Now suppose 
we augment the system with two integrators 

$1 = s1, $2 = 21, u = Sit 

and consider the problem of designing a controller V(X, s) for the aug- 
mented system. Following the recursive procedure outlined in Exam- 
ple 6.9, we start by considering the x subsystem, for which we have 
already designed a virtual control input ~1 (zr ) = U(X), with ~1 = x. 
Then, we consider the subsystem 

321 = x2 + Sl 

22 =x122 -22 (10.87) 
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we define ei = si - ~1 (zi), and we employ the Lyapunov function 
candidate VJ = VI + $ef to stabilize (10.87) 

Choosing V&Q) = tii(zi) - ~1 - ei, where x2 = [x~,s~]~, we get 
v2 =x~--x~-ef. Next, consider the full augmented system, define 
ez = s2 - ~2 (~a), and employ the Lyapunov function candidate Vz = 
VI + VJ + $ei to find the desired stabilizing controller @(x, s) 

li; = -2; - xi - ef + ele2 + e2 (v - ti2 (z2)) . 

Setting v = I+-ei -e2 2 ti(x, s) we obtain ps = -x; - 2; -eT -ez 

and thus the origin x, = [xT, sTIT = 0 of the augmented system is 
globally asymptotically stable. Notice that the control input we have 
just derived employs the time derivative of the function 

4 = til - x1 - el = -sl - 21x2 - 2x; - 2x12; - x2 - Sl + U&l) 

along the trajectories of the augmented system. The reader ma,y easily 
see that such a time derivative contains a large number of nonlinear 
terms. Thus, even though the original controller U(X) is quite simple, 
the stabilizing controller for the augmented system $21) becomes 
rapidly too complex as n, grows large. A 

This simple example shows the undesirable feature of the output feedback 
controller in Theorem 10.2, namely, the exponential explosion, as nU grows, 
of nonlinear terms in the controller. In order to understand how to avoid 
this problem it is useful to recall that the reason for adding a chain of 
integrators at the input side of the plant is to employ the control input 
derivatives ti, . . . , ~(~u-i) in the observer (10.39). Thus, the knowledge of 
the time derivatives of u is really only employed for estimation, rather than 
control. If, instead of augmenting the system with nu integrators (vector 
s), one genera(tes estimates of s to be used in the observer, there will be no 
need to augment the plant and thus no need to redesign a controller. 

Figure 10.4. Cascade estimation scheme. 

The new estimation scheme is illustrated in Figure 10.4, where two 
estima.tors in cascade are employed to calculate 2. The first estimator 
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approximates the derktives of u(t) (vector S), which are then employed 
by the second estimator to approximate Z. Observer (10.39) is modified as 
follows 

ii = f(iyi) + w-‘L (Y - ia 
mt(Li, i) 

- .T(&s)-lKC(u - 6) 1 (10.88) 

ij = h(2, ti) 

.i = AS + (&“)-‘K(u - 6) 
ii = a, 

(10.89) 

where L = block-diag[Ll,. . . , LP], K = block-diag[Kl,. . . , Knz], and Li, Kj 
are Hurwitz vectors of dimension ki x 1 and nj x 1, respectively, for i = 

1 7 * - - > p,j=l,... , m. Analogously, we let 

A = block-diag[A’, . . . , Am] 
B = block-diag[Bl, . . . , Bm] 
C = block-diag[C$ .. . , Cm], 

where Ai, Bi ,and Ci have dimensions ni x ni, ni x 1, and 1 x ni, respectively, 
and 

Ai = 0 . . . 01. (10.90) 

Finally, EX = block-diag[ET,. . . , E,“], where Er = diag[vr, $, . -. , vFi] and 
ql E R, and ES = block-diag[&,S,. . . ,&;I, where &! = diag[r/&, . . . ,$] 

and r)z E R. Let U 5 [z@“, . . . , ugm) T ] , then the vector i can be expressed 
as 

S = As + BU, u = cs. 

The following theorem replaces Theorem 10.1 and proves that the estima- 
tor above estimates x and s to an arbitrary degree of accuracy (but not 
asymptotically). 

Theorem 10.3: Assume that the plant (lU.25) is uniformly completely 
observable, the state x of the plant and the vector s containing the deriva- 
tives of u are confined within a compact set a, i.e., [am, s(t)T]T E Cl, 
and lU(t)l < M, f or all t > 0, with M a positive constant. If there exists a 
compact set@ > 0 such that 

&(t) 2 [?(t)T, i(t)‘]’ E s2’ for all t > 0 (10.91) 
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then the cascade (10.88) and (10.89) guarantee that the estimation error 

converges arbitrarily fast to an arbitrarily small neighborhood of the origin, 
that is, for all 6, T > 0, and all !&JO) E St’ there exist ql, 72, 0 < ~1,772 5 1, 
such that 12 - xl < 6, lg - sI < S, f  

(0,772). - - 

or all t 2 T, whenever ~1 E (O,~),r/2 E 

While, on one hand, the cascade estimator (10.88), (10.89) eliminates 
the complication of adding integrators at the input side of the plant, on the 
other hand it introduces an asymptotic estimation error which can be made 
arbitrarily small but not identically zero. Thus, (10.88), (10.89) is not an 
observer for the plant (10.25) in the sense of Definition 10.1. Condition 
(10.91) plays a role similar to that of (10.52) in Theorem 10.1. In analogy 
to what was done before, we will show that such a condition is always 
guaranteed to hold when a dynamic projection is applied to the observer 
(10.88), (10.89). 

Proof: The proof of this theorem is quite similar to that of Theorem 10.1. 
Define the following coordinate transformations: ge = X(x, s) and & = 
‘J-L@, i), where z = W1(ye, s) and k = ‘S-r (&, s^) are well-defined, unique, 
and smooth by the observability assumption. Next, let 

A, = block-diag[A;, . . . , A;] 
B, = block-diag[B:, . . . , BCp] 

C, = block-diag[Ci, . . . , C,P], 

where AZ, B$ (2’: have the form (10.90)) and have dimension ki x ki, ki x 1, 
and 1 x ki, respectively, then in new coordinates one has 

se = d3-I 
~f(v-4 + 

- - &Ye + Bc [a(, 

where a = [CX~, . . . , aplT, ,0 = [pi,. . . 

g [As + BU] 

Ye,%4 +P(YeAu)l7 

PI T  
P ’ 

(10.92) 

[ 

&+ -1 ki -2 

%(Ye, s) = ,icf(x,u)+ x 

k=O 

gdk+Q 1 x=7-L--(ye,s) 
Pi(Ye, s, U) = [$&q x=31.-1(yers) 

foralli=l,...,p. 
In a similar manner, 

L;je zz 
a-i 
,,f(&c) + %A,'+ [g] [El-l' {(E~)-'Lc,(~, -g 

- $)-'IcC(s - ii)} + g(as)-kqs - s^) 

- - A&e + &a(&, i) + (E">-'Lc,(y, - &). (10.93) 
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for all k. Similarly using (13.72) the ultimate bound on e is found to be 
I 

(13.75) 

With these tools, we are now ready to design an adaptive controller. As for 
the non-adaptive case, the value of k, will be influenced by our choice of P. 
Thus simply choosing Xmin (P) to be some large number will not necessarily 
decrease the ultimate bound since this in turn may decrease kl. For this 
reason, and also because the choice of P does not affect the control law, 
one should not treat the bounds (13.73) and (13.75) as design parameters 
that one can directly manipulate to improve performance. Rather, the 
bound (13.73) is simply an upper bound (although not necessarily a least 
upper bound) that will be useful to determine a. region within which the 
approximator used in the adaptive controller should be defined. 

13.5.2 The Adaptive Controller 

If the uncertainty in (13.66) may be ignored, then a static controller may 
be defined that stabilizes the system using the control techniques presented 
earlier. Based on this, we make the following assumption: 

Assumption 13.2: The error system e = x(k, x) satisfies Assump- 
tion 13.1 and a known Lyapunov function V, = eTPe exists such that 
K(k + d) - Vs(k) < +V,(k) + k - 2 along the solutions of (13.66) when 
u = Y, and n G 0. 

The adaptive control law is now defined by u(k) = u,(k) with 

Ya = v,(k) + F(x(k),B(k)), (13.76) 

where 8 is an estimate of the ideal parameter vector 8. Thus we are using 
certainty equivalence to try to cancel the effects of the uncertainty A. 

We will now pick a variable which may be used to measure the mismatch 
between .F(k, 8) and F(k, 0). Consider the scalar signal 

q(k) = pT(k - d) [e(k) - Q(k - d) - p(k - d)vs(k - d)]. 

Notice that q is measurable since (u and /3 are known. Using the definition 
of the error system 

Also 

A(k) + .F(k,t$ = A(k) + 5 (@k) + 0) 

a&?-- 
= w(k) + $(k), (13.77) 
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where w(k) = n(x(k)) + F(x(k)$) and lwi 5 I/t’ when x E SL:. We thus 
find 

q(k + d) = pTj3w(k) + pTw + /3T/?g& 

Choose some p E R such that 

(13.78) 

P 2 PTPW + PTLJ, (13.79) 

for all k. Since ,5’ and w are assumed to be bounded, some finite p exists. 
A dead-zone nonlinearity will now be used to define 

f?(k) = D,(q(k)TP)T (13.80) 

so that 
a3- 

q(k + d) = 7r(k + d)/3’/%-&, (13.81) 

when x E S,. Similar to the static controller design case, we will find that 
using a dead-zone in the adaptive control law will allow for the design of a 
robust adaptive controller. 

Here we will study the closed-loop system when using the normalized 
gradient update law defined as 

6(k) = &k - d) - 
rlC(k - 4 @k - 4) 

lp(k - d)12 (1 +y l<(k - d&k - d))l’) q(k)’ (13’82) 

where y > 0 and 0 < q < 27 and we have defined 

C(k ) a3(k7 **) ,s = 
&3 

for notational convenience. If the parameter error is defined as e” = 8 - 0, 
then 

g(k) = @k - d) - 
&(k - 4 @ - a 

Ip(k - d)l” (1 + y [[(k - d&k - d))l’) ‘(‘)’ 

The stability results may be summarized as follows: 

Theorem 13.6: Let Assumption 13.2 hold with Vs (e) = eT Pe. As- 

sume that for a given linear in the parameter approximator 3(x,@ there 
exists some 8 such that IA(x) + 3(x, e>l 5 1/1/ for all x E S,. Let b3 > 0 

such that I a3(z7s) ----I 5 b3 for all 2 f S,. 
origin and imrlies x E Sz. 

Assume e E S, contains the 
If the control parameters are chosen such that 

B, C Se with B, defined by (13.94), then the parameter update law (13.82) 
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with adaptive controller (13.76) g uarantee that the solutions of (13.66) are 
UUB with ultimate bound (13.95). 

Proof: We will start by studying the behavior of B(k). Let V6 = 

HT(k)H(k). w e will consider the case where q is within the dead zone 
separa(te from the case where q is outside the dead zone. We may express 
these two sets as 

z(y) = -w : IdW 5 PI) 
z1 = {k : otherwise} . 

That is, Zo are the times that q is within the dead zone, while Zr are 
the times when q is outside the dead zone. First consider the case that 
k + d E 10. Then q(k + d) = 0 so e(k + d) = 6(k). Since the parameter 
error does not change, we have Ve(k + d) - r/e(k) = 0. 

If k + d E Zi (Q is nonzero), then 

2 

V8(k + d) - V,(k) = 8(k) - 
rlC(k,e)Q(k + 4 - 2 

PTP (1 ++(k,b)l’) - “(‘)I 

-2q<T(k,8)8(k)ij(k + d) - - 

PTP (1+7/((k,q2) 

+ PTP (l++kq2) 

Since we are outside the deadzone, 7r(k + d) > 0 so 

2 

Thus 

Q(k+d)-&(k) = & 
[ 

-2 
r1lWl” 

n(k + d) + 1 + rlC(k)12 1 Q”(k + d) 

1 + r’S@)‘2 ’ 

Since 0 < 71 < 1 we find 

VG(k + d) - V8(k) < -?-- 
[ 

f7w I” 1 q”(k + d) 

- (PTPJ2 -2 + 1 + ,ylC(k>I” 1 + rl[(k)l” ’ 

The choice for 7 and y will ensure that 

77lCW I” >2-50. 
2 - 1 + rlS@>l” - Y 

(13.83) 
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Let ks = 2 - 7Jy. Now 

r7k3 
Vf(k + d) - VB(k) < -p 

q”(k + d) 

- (PTW (1 + rW>l”> 

for all Ic E Z,nZ1. This ensures that V@(k) is a monotonically nonincreasing 
positive sequence so that Vg(k) is bounded. 

We will now study the trajectory of e(k) using the positive definite 
function V&) = e’(k)Pe(k). I n order to use Theorem 13.5 we must now 
show given V = Vs + kdV,, we have V(k + d) - V(k) < ---k&(k) + & where - 
&I, lo > 0 and ?& 2 0. 

Notice that the error dynamics may be expressed as 

e(k+d) = a(k, z)+P(z) aFe A(x) + F(x, 8) + v,(k) + -gg 
> 

+Ld(k), (13.84) 

where we have substituted the definition of the control law (13.76) and have 
added and subt,racted F(x, 6). Using (13.84) and (13.52) we obtain 

T/l,(k + d) - V,(k) < (1 + C) [(Y + pus + W]~ P [a + pu, + w] - V,(k) 

+(l+f)jTr3(L\(x)+F(x,B)+~~)1 

for any 6 > 0. Using Assumption 13.2 we are guaranteed that 

I/r,@ + d> - ‘1/,(k) = [a + Pus + ulT P [a + /?us + w] - K(k) 

< - -k&,(k) + k2, (13.85) 

where we ha,ve used the error dynamics (13.66) with n z 0 and u(k) = 
v,(k) . Therefore when x E S, we find 

r/;(k + d) - Vs(k) 5 (1 + e) (-kiV@) + kz) + &(k) (13.86) 

+ (l+f)dT(k)Ps(i;) (W+f$f. 

Now consider the positive definite function V = Vs + k&i where kd > 0. 
Taking the difference 

V(k + d) - V(k) = l/,(k+d)-V#)+k&$(k+d)-Vg(k)) 

5 (l+ c) (-k&(k) + kz) + c&(k) 

+ l+- 
( > 

l Bi(k)PP(k) w + E ( 1%~1~2 

7?k3 3c4 i”(k + d) -- 
(DTP>” (1 + rlwdl”> - 
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Letting k, = k1 + &I - c we find 

V(k + d) - V(k) < $3k4 Q”(k + d) 

- 4&V, + (1 + +z - ~ 
(PTP)” 1 + yl((k)l” P3-87) 

Notice from (13.78) that 

where 

OT(iEQ h = q(k + d) - ,BT/!?w(k) - fu 

= q(k+d)+x(k+d), (13.88) 

x(k + d) = q(k + d) - q(k + d) - pT/3w(k) - pTu. 

Notice that Ill 5 2p when =I: E S, since p was defined such that p 2 
flT,OW + pTw and Iq(k) - g(k)1 5 p by the definition of the dead zone. 
Thus 

+ dk + d) 
PTP 
2P 

+P P T 
(13.89) 

when x E S,. 
Since (1x1 + IpI)’ 5 2x” + 2y2 we find 

(li;+$fi)2 5 (,+&j+ pT/j ) 

Since I$$1 5 bF when x E & we find 

Combining (13.87) and (13.90) we find 

P(k) V(k + d) - V(k) < -&V, + i, - p 
q”(k + d) 

(PTP)” (1 + rlC(k>l”> ’ 
(13.91) 
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where 

p(k) = 77k3k4 - 

and we choose 

Now choosing 

k4 > 
2 (1 + $) .nT(k:)PP(W + yb>) 

- 
77k3 

(13.92) 

ensures that p(k) > 0 so so V(k + d) - V(k) 5 -&V’(k) + &. Since we ad- 
ditionally have Vg(k+d) -1/B(k) < 0, it is now possible to use Theorem 13.5 
to place bounds on e(k). 

Using Theorem 13.5 we may conclude that V,(k) 5 V, for all k where 

& + h&(O) 
k . 

1 > 

Thus e E B, for all k where 

(13.93) 

(13.94) 

If the control parameters are chosen such that B, C S, then the inputs 
to the approximator remain properly bounded. From Theorem 13.5, the 
ultimate bound on V, is &/kr so 

(13.95) 

which completes the proof. 

As with the design of continuous-time adaptive controllers, one may pick 
the space over which a reasonable approximation may be obtained. Based 
on this region, then the controller is designed so that the states never leave 
this region. To design a discrete-time adaptive controller, we typically take 
the following steps: 

1. Place the plant in a canonical representation so that an error system 
may be defined (e.g., as defined by (13.12)). 

2. Define an error system and Lyapunov candidate V’ for the static 
problem. 

3. Define a static control law u = Y, which ensures that Vs(k + d) - 

V&k) < -k&‘,(k) + k - 2 when n = 0 in (13.66). 
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4. Choose an approximator .?(z, 8) such that there exists some 6 where 
I.?@, #) + A(z)1 < T/T/ for all J: E S,. Estimate an upper bound for - 
iv. 

5. Find some B, such that e E B, implies x E S,. 

6. Choose the initial conditions, control parameters, and update law 
parameters such that B, & B, with B, defined by (13.94). 

In the continuous-time case, we could always define gains for the feed- 
back law and update law so that the states remained in B,. For the discrete- 
time case, it may be difficult (or impossible) to find gains which satisfy the 
above requirements for a given sampling period T. By making T smaller, 
the choice of the controller parameters typically becomes less restrictive. 

As with the continuous-time approaches, the above closed-loop system 
using an adaptive controller is stable without persistency of excitation re- 
quirements. Since we are using approximators in the feedback law that 
may contain a large number of adjustable parameters, this is an impor- 
ta’nt feature. Also the ultimate bound is independent of the system initial 
conditions. 

The following example demonstrates how to design a discrete-time ada’p- 
t ive controller: 

Example 13.6 Here we will design a discrete-time controller for the sys- 
tem 

x(k + 1) = x(k) + TA(x) + Tu(k), (13.96) 

where A(x) represents unknown dynamics and T is the sample period. 
Assume that for a particular application we have 

A = cl + cz sin@rTk + @), (13.97) 

when 1x1 5 10. Additionally, T = 0.01 and cl = 10,~ = 0.1, and 
4 = 0.1 are unknown constants. Once 1x1 > 10, the form of the 
uncertainty is no longer valid. For this example it will be desirable 
for the plant output to track r(k) = 1. 

Since the plant dynamics are already in a canonical form, the first 
step in developing the adaptive controller will be to define an error 
system and Lyapunov candidate for the nominal plant using a static 
control law (i.e., when A = 0). We will consider e(k) = x(k) - r(k) 
and Vs(k) = Pe” (k) with P > 0. Notice that this choice of the error 
dynamics fits the form (13.66) with Q: = -r(k + 1) + x(k) and /3 = T. 
We will now study the properties of the closed-loop system with a 
static control law define by u = vs, where 

u, = 
r(k + 1) - x(k) + rce 

T 
(13.98) 
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with 0 < 11~1 < 1. Notice that when n = 0, we find 

Vs(k + 1) - V,(k) = (K’ - l)Pe”(lc) = -k&(k), 

where kr = 1 - I?. Since 1~1 < 1, we find 0 < kr < 1. Thus 
V,(k + 1) - V,(k) < -k&(k) + /Q with k2 = 0. - 

The next step to define the discrete-time adaptive controller is to de- 
fine an appropriate approximator. Due to the form of the uncertainty, 
we will consider the approximator 

F(B) = 8, (13.99) 

so that 

(F(B) + Al = I@ + cl + c2 sir$hTk + 4) I 
= 1~2 sin(25rTk + 4) I L IC2 I 

when 8 = -cl and 1x1 5 10. The bound in the representation error, 
W, may thus be chosen such that VV > 1~21 (an inequality is used 
here since 14 may not be known, but we assume its upper bound 
is known). We also know from the choice of the system error and 
reference trajectory that 1x1 < lel + 1~1. Since r = 1, if lel _< 9, then 
1x1 < 10 so that the plant dynamics and approximator remain valid. 

We are now ready to define the parameters of the control system to 
ensure that /e(k)1 5 9 for all IL Recall that the ultimate bound is 
given by limk+oo /e(k)1 5 b(e), where 

(13.100) 

with 

i, = 2 (l+ $) PT” (W + 2pfT2J2 . 

Here we have used the values k2 = 0 and ,0 = T. Notice that the P 
in & and the denominator of (13.100) will cancel one another so tha,t 
the choice of P has no effect upon the ultimate bound of the error. 
Recall from (13.79) that 

p>T2W+Tw 

represents the total adaptive controller uncertainty when the ideal pa- 
rameters are known (here we have again substituted ,B = T). Since we 
are assuming a true discrete-time system (rather than a sampled-data 
system), we may take w = 0. A plot of b(e) is shown in Figure 13.5 
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Figure 13.5. Plot of the ultimate bound function. 

where we have chosen K = 0.8 and W = 0.2 (i.e., /WI = 2]c~l). The 
minimum value for b(e) is 0.0424 and occurs when E = 0.25. For this 
vahre of E, we also find that &r = 0.2 and & = 0.00036. Even though 
the choice for c is not used in the control law (and thus will not affect 
the true ultimate bound), it will help us determine a bound on the 
error transients when an ada.ptive controller is used, as will be shown 
next. 

Recall that le1 < dm where - 
- 

V, = max V,(O), 
( 

k2 + k45j(O) Ic , 
1 > 

(13.101) 

Here 

k4 = 
2 (1 + f) PT2(1 + yb2) 

rlk;s 
7 

and IQ = 2 - q/r, where y > 0 and 0 < 17 < 27 are the parameters 
used in the update law. Also by the definition of the approximator, 

we find 1 “a$9 1 = 1 so choosing by = T satisfies the requirements 
of Theorem 13.6. Using y = 1 and q = 0.2, we find Jc3 = 1.8 and 
k4 = 0.0056. 
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All tha(t is left to do is to place bounds on the initial conditions so 
that the error is properly bounded. To do this we need to ensure that 
both elements in the right-hand side of (13.101) are defined such that 
le/ < 9. The first term is easily satisfied by requiring that [e(O)/ < 9. 
The-second term requires that 

- 

J 
k.2 + kL@(O) - q2 < g 

klXrnin(P) - ’ 

(13.102) 

or that la(O) - 61 < 53.9, which is acheived with the initial choice of - 
8(O) = 0 since 8 = -10. 
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Figure 13.6. Closed-loop system response when using the adaptive con- 
troller (--), and when the adaptive portion is turned off (- -). 

Figure 13.6 shows the results of the closed-loop system using the 
parameters chosen above and ~(0) = 0 (shown by the solid line). As 
a comparison, the simulation was also run when we set u(k) = v,(k) 
so that only the static control portion was used (effectively removing 
the adaptive control portion). As might be expected, the adaptive 
controller improves the steady state performance. n 
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13.6 Summary 

In this chapter we lea#rned how to design controllers for nonlinear discrete- 
time systems. Since today’s microprocessors are so efficient, the continuous- 
time approaches studied in the previous chapters may be used for most 
real-world applications. There may be cases, however, when the delay as- 
sociated with the sample rate is significant with respect to the desired 
closed-loop system bandwidth. In these cases it may be necessary to de- 
sign the controller using a discrete-time framework. The disadvantage with 
going to a discrete-time framework is that the mathematics may become 
more involved, limiting the number of design techniques available for robust 
controller design. 

13.7 Exercises and Design Problems 

Exercise 13.1 (Discrete-Time Systems, Uniform Boundedness) 
Suppose you are given the scalar difference equation 

x(k + 1) = asgn(z(k))x(k) + b, 

where a$ > 0 and sgn(x(lc)) = 1 if z(k) > 0 and sgn(z(k)) = -1 
if x(k) < 0. Are the solutions to this difference equation uniformly 
bounded? If so, prove it. 

Exercise 13.2 (Sample Rate and Stability) Consider the continuous- 
time system 

x=u 

and control law u = --KX, where K > 0 so that x = 0 is an exponen- 
tially stable equilibrium point. Use Euler’s method to convert this 
to a discrete-time system and determine the range that K may take 
on so that the resulting discrete-time system is stable given a sample 
period T. 

Exercise 13.3 (Prediction) Given the system 

Xl(k + 1) = m(k) 

. 

x,-l(k + 1) = x&) 

x?-L(k + 1) = fd(x(k)) + gd(x(k))+) 

with output y = xi, we find 

Y(k + n> = fd(x@)) + gd(x(~))“-@)- 
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Use this form to show that 

forms a stable predictor so that jj(k + n) --+ y(rF + n) when 1~1 < 1. 

Exercise 13.4 (Output-Feedback Control) Consi,der the system de- 
fined by 

x1(k+ 1) = x&q 

x,-l(k + 1) = x&) 

G-4 + 1) = fdY(W + mMw(~)’ 

where y(k) = x(k). D e fi ne a state estimator and control law so that 
x --+ 0 when only g(k) is measurable. 

Exercise 13.5 (Surge Tank) Use Euler’s method to discretize the surge 
tank whose dynamics are given by 

A( = -cd2gx + u, (13.104) 

given a sample period T. See Example 7.11 for a description of the 
variables. Design a static discrete-time controller so that J: --+ r as- 
suming that the plant dynamics are known. Simulate the performance 
of your controller design 1) using your discretized plant dynamics and 
no intersample error, and 2) using a continuous-time simulation where 
the controller output is only changed at the sample rate. How do the 
two simulations compare as T is increased? 

Exercise 13.6 (Fuzzy Control of a Point Mass) Consider the discrete- 
time model of a point mass 

x(k + 1) = x(k) + TV(~) 
v(k + 1) = v(k) + $(u(k) + a(k)), 

(13.105) 

where x is the position, v is the velocity, u is the force input, and m 
is the mass. Given the sample period T, design a static controller so 
that x -+ 0 when the disturbance force satisfies A = 0. Then design 
a single adaptive controller using a fuzzy system for the cases when 

. 44 = cos(x) 
l A(x) = x + x2 . 

What conditions are needed for stability? 

Exercise 13.7 (Neural Control of a Point Mass) Repeat Exam- 
ple 13.6 using a neural network. 



Chapter 14 
Decentralized Systems 

14.1 Overview 

In this chapter, we will study the control of MIMO systems where con- 
straints are placed on the flow of information. In particular we will consider 
the control of decentralized systems where there are constraints on infor- 
mation exchange between subsystems. Decentralized control systems often 
arise from either the physical inability of subsystem information exchange 
or the lack of computing capabilities required for a single central controller. 
Furthermore, at times it may be more convenient to design a controller in 
a decentralized framework since each subsystem is often much more simple 
than the composite MIMO system. 

Within a decentralized framework, the overall system is broken into N 
subsystems each with its own inputs and outputs. A decentralized control 
law is then defined using local subsystem signals. Thus the ith subsystem 
does not have access to the signals associated with the jth subsystem when 
i # j. Figure 14.1 shows a decentralized system with four subsystems, each 
influenced by interconnections to one or more of the other subsystems. 
Here we use the notation Si to represent the ith subsystem and 1i,j is 

an interconnection which defines how the jth subsystem influences the ith 
subsystem. 

The goal of this chapter will be to familiarize the reader with some of 
the tools used in the design and analysis of decentralized controllers for 

nonlinear systems. There has been a large volume of work dedicated to the 
design of decentralized controllers so it will only be possible to touch on a 
few decentralized techniques. The reader is urged to see the “For Further 
Study” section at the end of this book for references to related decentralized 
approaches. 
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Figure 14.1. A decentralized system. 

14.2 Decentralized Systems 

Consider the MIMO system defined by 

(14.1) , 

with y, u E RN, and t E R”, where it is assumed that n > N. At this point - 
(14.1) is a standard MIMO system and thus control designs presented earlier 
in this book may be applicable. 

We will assume that the decomposition of (14.1) into subsystems is 
achieved by some means. When communication constraints are placed on 
the design of a control system, it may be obvious how to define subsys- 
tems. When a decentralized approach is chosen for computational or other 
design reasons, the specification of a subsystem rna,y often be determined 
due to physical reasons such as when each input has a strong relationship 
to a particular output. This may occur, for example, if two bodies are con- 
nected by a spring. In this case if the spring were removed, the subsystems 
would be independent from one another. The spring acts as an intercon- 
nection between the subsystems. We will assume that the definition of the 
subsystems is obvious from the problem statement. 

Let Ti be a (decentralized) transformation used to define the subsystem 
Si states as xi = Ti ([i) with dynamics defined by 

si: & = fi(Xi) + g(Xi)Ui + ai(t, X) 

Yi = hi(Xi)r 
(14.2) 
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for i = l,... , N, where yi is the output of the ith subsystem and the 
sta,te vector for the composite system is defined by z = [XT,. . . , x&IT. A 
decentralized transformation is one in which pi = Z-&$i) so that only local 
measurements are used in the transformation. 

We will be interested in designing a decentralized controller for systems 
in which the interconnections do not necessarily satisfy matching condi- 
tions, and the strengths of the connections may be bounded by arbitrary 
smooth functions of the subsystem outputs. To simplify the notation, we 
will assume that ni = n for i = 1, . . . , N so that each isolated subsystem 
has 71 states. Consider the subsystem transformed into 

C,l = fi,l @i,l> + xi,2 + A,,1 (t, x) 

Si 1 . 
xi,,-1 = f i,n-1 ( 

(14.3) - 
xi,n- 1 >+ xi,n + ni,n--1 (t, 3;) 

Xi,n = fi,?z(~i,n) + ui + Ai,n(t, X), 

with output yi = xi,1 . Here the notation Zi,j = [xi,1 , . . . , xi,jlT is used. 
Each ni,j represents the interconnection between subsystems. Our goal 
will be to design a controller which forces yi -+ 0 for i = 1, . . . , N when 
the interconnections LLi,j satisfy certain bounding conditions which will 
be defined next. Note here that each ni,j is influenced by subsystems 

5, * - * 7 SN and should not be considered to be associated with the specific 
interconnection 1i,j which defines the influence of Sj upon Si. 

We will assume that the interconnections are defined by 

Ii : 4 = @i(h x) 
ai = Si(t7 4i7 X) 

(14.4) 

with qi E Rmi a,nd ni E Rni. Notice that Ii combines the effects of the 
individual interconnections li,r, . . . , Ii,N. When there are no dynamics as- 
sociated with the interconnection, we let ni = si(t,x). When Ai F 0, we 
say that (14.2) represents the isolated dynamics for the ith subsystem. 

Example 14.1 Assume that we wish to design a control system for a 
fixture used to test the functionality of an integrated circuit (IC) 
before being shipped. The goal of the control system is to accurately 
position a stage (which holds the IC) in two linear degrees of freedom 
and a rotational degree of freedom (often referred to as an X-Y-O 
stage). 

Restoring springs have been included in the system design so that the 
stage returns to some nominal position when power is removed. The 
dynamics of the system are described by 

mlr: = F, - FI (x, 0) 
mij = Fy - F2(Y$) - F3(Y,@) (14.5) 

J# = T + c#~(x,O) + c2F2(y$) + c3F3(y,Q 



where x, y and 6 are the linear and angular stage degrees of freedom, 
m is the stage mass, J is the moment of inertia, F, is the force along 
the x-axis, Fy is the force along the y-axis, and T is the torque applied 
to the stage. The term Fi is the force exerted by the ith spring where 

Fl = kl(x - dl sin(e) - 11) 
F2 = k2(y + d2 sin(e) - Z2) (14.6) 

FZ = ks(y + d3 sin(e) - ZS), 

where ki is the stiffness of the ith 
the ith spring. 

spring, li is the natural length of 
The value dl is the distance from the x-axis to the 

spring attachment point, while d2 and d3 are the distances from the 
y-axis to the attachment points for springs 2 and 3. The value of ci 
defines the moment arm for the ith spring. 

A MIMO control approach may be used to design a control system 
for this example. Assume, however, that we would like to design de- 
centralized controllers where an individual control system is designed 
for each degree of freedom of the stage. That is, the controller for the 
x-axis will not use information about the y or 6 states. Thinking of 
the IC tester as a decentralized system, we may express the dynamics 
as 

where 

z = G/m + &z(x, 6) 
g = Fglm + &(Y7@ (14.7) 
gj = T/J+ &(z,?l,@) 

a:, = -F1 (x7 Q>lm 

a, = -qy,e>/m - wY$>lm (14.8) 
no = d’&O>/J + cz&(~,~)lJ + c3F3(y$)lJ. 

We will find that this form is suitable for various static and adaptive 
decentra(lized control approaches. A 

14.3 Static Controller Design 

In this section, we will learn how to develop a static controller for a decen- 
tralized system. As with the design of centralized controllers, the properties 
of a Lyapunov function will then be used to place bounds on states which 
may be used as inputs to a finite approximator used within the control law. 

14.3.1 Diagonal Dominance 

When designing controllers for decentralized systems, one typically tries to 
find robust controllers when the interconnections are ignored. By making 
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each local controller “very robust ,” the effects of the interconnections are 
dominated by the inherently robust local controllers. A powerful tool often 
used in the design of decentralized controllers is the concept of diagonal 
dominance. The following theorem is one possible application of diagonal 
dominance. 

Theorem 14.1: The inequality xT(G + 0)x 2 0 holds for all x if 
G, D E I?” where G = [gJ and D = diag(dl, . . . , dn) with 

di > n (1 + g;,i + - - - + g:,i) 

defined along the columns of G, or 

defined along the rows of G. 

Proof: Let x = xT(G + 0)x. Notice that 

Since p2 k pq > p”/2 - q”/2 we may let p” = $xf and q = - 
J- 

:9i,jXj to f 

show 

- - (14.10) 

To get x > 0 for all x, we should ensure that each di is chosen such that 

> 

=n$$/ 
3 

for all i. 
Now consider the choice 

di 2 n (1 + gi,r + * * . + 9f,n) * 

Starting from the right hand side of (14.11) we find 

n 9jf,i 
n 2 

n 1, $P)C 
9j,i 

j=l ’ j-1 n (1 + $j”,l + . * * + 9;,n) * - 

(14.11) 

(14.12) 
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Sinceg~,~~1+g,2,,+...+g~,nfor’L=1 ,..., n 

n 9’1. 
n -=<n<di, 

x 
j=l d, - - 

(14.13) 

for each i = l,..., 72 so (14.11) is satisfied. Since x = tT = xT(GT + D)x, 
the same steps may be used to find 

d; 2 r~(l + g& + . . . + g:,,) 

is also sufficient for x 2 0 for all 2, which completes the proof. 

We will use Theorem 14.1 to help determine how to stabilize each sub- 
system so that the effects of the interconnections do not cause closed-loop 
system instabilities. It should be noted that Theorem 14.1 only provides 
sufficient, and not necessary conditions on the choice of the diagonal terms. 
In fact the results of Theorem 14.1 may be rather conservative for certain 
applications. 

14.3.2 State-Feedback Control 

We will begin our investigation into decentralized control design by first 
considering the case where a decentralized controller is to be developed for 
(14.3) with interconnection dynamics governed by 

(14.14) 

with bound 
N 

k.A < P + Ci,j(%i,j) x $i,k(lykl). - (14.15) 
k=l 

Here <i,j : Rj --+ R+ and Qi,k : R --+ R+ are smooth nonnegative functions 
and p E R. It is assumed that the functions &j and ?,!.)i,k are bounded for 
all bounded inputs. Notice that the bound on Qi,j is defined in terms of 
other subsystem outputs due to the $i,k elements. 

We will additionally require that the 1i dynamics are input-to-state 
stable so that there exists some V& (t, qi) such that 

791, (4i) < T/‘s.i (t, qi) 5 yq2. (qi) 
Pqi 2 -Yq3i (Yi) + $9; (X)7 

(14.16) 

where yqli T  yq2; T  and yq3; are class-K,. Thus if we may design a control 
law which forces J: to be bounded, then each qi will also remain bounded. 

The following lemma will be useful in the development of our decentral- 
ized control scheme: 
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Lemma 14.1: Given a nonnegative continuous function y!~ : R -+ 
R’, there exists a nonnegative continuous function q5 : R -+ RS such that 

~(IxI> L l4”~(l~l> + d h w ere n > 0 and d > 0 are finite constants. 

Proof: Choose c > 0 to be a finite constant and d = max,elO,,l $(x). 
It is sufficient that 4 be any nonnegative continuous function such that 

4(I4> L Iwwl4” f or all 1x1 2 6. Some 4 is guaranteed to exist (see 

~,(I4 I d 5 14”~(14> + d 

since IxI”#( Isl) is nonnegative. When 1x1 2 6 we find 

Example 14.2 for one such choice). When 1x1 5 E, we find 

~(IXI) = lxln~ - < lq~(l~l> I d+ IXIV 

since d is positive. Thus $(I+ 5 d + IxI”+( 1x1) for all 2. 

The following example provides one possible choice for $ in Lemma 14.1. 

Example 14.2 Suppose that we are given some $J and that we wish to 
find a 4 such that $(1x1) < lzl”$(lxl) +d as described in Lemma 14.1. 
Choose some E > 0 and 1% d = max,elo,+l q(x). Then 4 = $(1x1)/~” 
satisfies the requirements in the proof of Lemma 14.1 since we find 
$(IxI)/P > $J(~x~)/~x~” when 1x1 > E. Thus 

TN4> $(I4> I M”--- cn +d 

for all x. A 

Using the results of Lemma 14.1 and Example 14.2 we assume that there 
exist known constants di,k and smooth functions @i,k such that 

(14.17) 

for all yk E R. 
In this chapter we will focus on the decentralized output regulation 

problem where it is desired that yi -+ 0 for i = 1,. . . , N with y; = xi,i. 
Now consider the error system 

ei,j = Xi,j - ui,j--1 (zi,j-l), (14.18) 

for i = 1,. . . , N and j = 1,. . . ,n with vi,0 = 0. The term /ui,j will be 
defined shortly. Taking the derivative of the errors, we find 

ei,j = ‘-’ dVi j-1 
fi,j + Xi,j+l + Ai,j - x L L.fi,k + xi&+1 + Ai&] 

k=l 

dx Ic 
i, 
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i,k 

fori=1,2 ,..., Nandj=l,..., n-l. Choosing 

Vi,j = -(Ki + V?:tj(zi,j>>ei,j - ei,j-1 

we find 

ei,j = --(Q + vi,j)ei,j - ei,j-1 + ei,j+l + ni,j - 
‘-’ dVi j-1 n. 

c 
A 2,k 

dXi,k 
(14.20) 

k=l 

for-j = l,..., n - 1 where ei,o = 0 and each vi,j will be chosen to account 
for the interconnections. 

The control law is then defined as 

[fi,k + xi,k+l] (14.21) 

so that 

n-1 dVi n-1 
f?i,n = -(Ki + Vi,n)ei,n - ei,n-1 + ni,n - x eAili,k, (14.22) 

k=l i, 

where Vi,n will again be chosen to account for the system interconnections. 
Let ei = [ei,r , . . . , ei nIT. Then the subsystem error dynamics may be ex- , 
pressed as 

t2i = Aiei + 

where 
-tCi 1 0 . . . 0 

. -1 -Ki 1 . 

’ Ai = 0 -1 -Ki 
. . 
. . . . 1 
0 . . . -1 -Ki 

(14.23) 

(14.24) 

(14.25) 
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The following theorem summarizes the resulting closed-loop stability prop- 
erties of the proposed static controller. 

Theorem 14.2: Given the subsystem (14.3) with interconnections 

bounded by (14.15), the decentralized control law (14.21) with ui,i defined 
by (14.28) will ensure that each ei (and thus each yi) is UUB. 

Proof: Define V& = $ ‘& e$ for each subsystem. Using (14.23) we 
find 

1 

[ 

-&,iei,i + &,I 

r/,, = Zei(AT + Ai)ei + ei 
. 

- 1 

. . (14.26) 

-Vi,nei,n + 6i,n 

Using the interconnection bound (14.15), we find 

so that terms may be rearranged to obtain 

Using (14.17) we are guaranteed that $i,l 5 di,l + 4i,l( lylI>fl. The 
inequality 2xql 5 x2/& + &qF with c > 0 may now be used with 

so that 

(bi,jl L P (l+glC$$$l) + (ii;j +ECi,k 

3 

Let 

(14.27) 

and 
(14.28) 
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where we choose vi > 0. The smooth function qi will be chosen to achieve 
diagonal dominance in the composite system (this will be defined later in 
the proof). Then from (14.26) 

Since -x’ 5 2xs < s2 we may let x2 = rjgz&ef j and s = h to show - 7 , z 

Notice that we combined the qie$ terms in (14.29) to obtain 2qiVsi and 

have used c,“=, -& = 2 in (14.30). 
To choose each qi(yi) we will now consider the composite system. Let 

V, = C,“=, Vs;. Since 1~11 = lel,r 1 and lei,jl 5 dx for all i, j we obtain 

It is now possible to rearrange terms to obtain 

i/, _< -2u;vs + %-2[fi -- ~](D+G) : 

[ 

d- h 

d+- SN 

where E = mini (Ki), q = mini (vi), D = diag(qr , . . . , qN), and 

. . . 

The signal +j,i is available to the ith subsystem since it is defined in terms 

of the output pi. Thus the si nals in the ith 
% 

column of G may be used to 
define the controller for the it subsystem. 
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Using diagonal dominance, we may choose the qi terms so that D + G 
is positive definite. In particular, from Theorem 14.1 we choose 

where CL, 2 1 so that 

Using (14.32) we find Vs is UUB and thus each Iei,jI is UUB. 

Using (14.32) we are ensured that 

(14.31) 

(14.32) 

nN 
h-n PSI I g@’ t--+cc 

where the values of ?j and iF may be set by the designer. Thus the ultimate 
bound may be made arbitrarily small by proper choice of the parameters in 
the control law. Using the properties of diagonal dominance, it is possible 
to ensure that each subsystem has its output driven to an arbitrarily small 
ball using only local states even though its dynamics are influenced by the 
other subsystems. The following example demonstrates how to use the 
above decentralized control design. 

Example 14.3 Consider the system defined by 

b,l = 

x2,1 = 

where it is desired that xi,1 --+ 0 
form &J = Ai,1 + ui, where the 

A 1,l = x+2,1 

x+2,1 + Ul 

x;,121,1 + 7-42, 
(14.33) 

for i = 1,2. Notice that this fits the 
interconnections are defined by 

Also, each interconnection may be bounded as 

Pl,ll 5 P + Cl,l$l:l 

P2,l I I P + <2,17b2,1 

with p = 0. We also have 

Cl:1 = 2: 1 $l,l = 

C2,l = x& 
lX2.1 I (14.34) 

$2,1 = 1x1,1 1 

$1 1 L 42 + $l,Z Jig 

*2’1 5 d2,l + 42,l j/jzJ 

41,l = &y-j 

42,l = &Gi 
(14.35) 

7 

with d1,2 = d2,1 = 0. 
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Figure 14.2. Closed-loop trajectory for ~r,i (-) and x2,1 (. . s). 

The error terms are simply defined by ei,r = 21,~ and ez,r = 22~. 
The controller is now chosen to be 

ui = - (K + 4,l) ei,17 

where according to (14.28) vi,1 = qxi,i + qi. Using (14.27) we choose 
1 

xi,1 = m  5 i,l7 and using (14.31) we choose 

41 = P [2 + C&J] 42 = p [2 + C&l] * 

The state trajectory of the resulting closed-loop system is shown in 
Figure 14.2 when zr,i(O) = 1, ~2,i(O) = -2, and the controller pa- 
rameters are chosen to be K = 1, c = 0.2, E_L = 1, and 7 = 1. A 

14.3.3 Using a Finite Approximator 

The development of the control laws up to this point have not placed any 
bounds upon each yi. If approximators are to be used, for example, to 
represent the bounding interconnection terms @j,i(yi), then we must know 
the space in which each yi may travel. In this section we will use the 
previous results to develop bounds on the subsystem outputs. 
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When analyzing a static decentralized controller, the Lyapunov candi- 
date for the composite system is typically defined by 

K = ~ai& 
i=l 

where Vsi is the Lyapunov candidate for the ith subsystem and each ai > 0 
[in the proof of Theorem 14.2, we let ai = 1). If it is possible to conclude 
that r/lS < -ki V, + kz, then - 

Vs 5 :+ (V,(O)- :)e+‘. 

But a$‘& 5 V,, so 

k2 
Ki<G+ ai-- 

( 

v,(O) k2 e-“‘t 

1 i klai > 

(14.36) 

(14.37) 

for all t. Using (14.37) we see that Vsi < VTi where 

Vri = max (y$-). 

With yz < 2Vs,, we find 

(14.38) 

for i = I,..., N. If the approximations Fj,i(yi,Bj,i) z #j,i(yi) are defined 
on lyil 5 b,, then one may use (14.38) to pick the bounds on the initial 
conditions and controller parameters to ensure that lpi(t)1 5 bi for all t 
when using the decentralized controller. 

14.4 Adaptive Controller Design 

We are now ready to design adaptive decentralized controllers in which 
each subsystem will contain its own parameter estimate and update law. 
We will see that the adaptive controllers may be designed to either account 
for unknown interconnection bounds or unknown subsystem dynamics. 

14.4.1 Unknown Subsystem Dynamics 

We will start our study of decentralized adaptive control by considering the 
subsystem dynamics 

ifi,1 = Xi,2 + ni,l (t, X) 
. 

si : 
. . (14.39) . 

Xi,n-1 = Xi,n + ni,n--l(t, X) 
. 

xi,n = fi(Xi,l) + Ui + ai,n(t, X), 
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with output yi = GCQ. Here we will assume that the interconnections satisfy 
(14.15) and that the function fi is to be approximated. We will assume that 
there exists some linear in the parameter approximator .Fi(yi, 8,) and ideal 
parameter set 8i such that Ifi(z& + &(yi, &)I 5 r/t’,: when (yi( <_ bi. Thus 
-qYi,Qi) x -fi(yi) when Iyil < bi. Th e goal of our control design will be 
to find a stabilizing adaptive c&rtroller which ensures that ]yil 5 bi for all 
t and that IyJ -+ 0. 

The error system is chosen to be 

ei,j = xi,j - Vi,j-1 (?i,j--1)7 (14.40) 

for i = I.,... ,N and j = l,..., n with vi,0 = 0. Taking the derivative of 
the errors, we find 

ei,j = [Xi,k+l + Ai,kl 

(14.41) 

for i = 1,2 ,..., N and j = l,..., n - 1. Choosing 

we find 

. ei,j - - -(Q + Ui,j)Ci,j - ei,j--1 + ei,j+l + ai,j - (14.42) 

forj = l,... , n - 1 where ei,o = 0 and each vi,j will be chosen to account 
for the interconnections. So far the adaptive controller design follows the 
steps as for the static controller case. 

The control law is then defined as 

n--l dVi n-1 
ui = -(~i+ui,n(li,n)+yi)ei-ei-l+~(yi,Bi)+): -p&y [xi,k+l] (14.43) 

k=l i, 

so that 
. 

ei,n = -C&i + ui,n + 3/i)ei,n - ei,n-1 + fi(yi> + F(yi, Ji) (14.44) 
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where pi > 0 will be used to compensate for errors associaNted with the 
adaptive feedback, and ~i,~ will again be chosen to account for the system 
interconnections. The subsystem error dynamics may now be expressed as 

& = Aiei + + b(-Yiei,7a + fi(Yi) + F(Yi, ei)), (14.45) 

where Ai is defined by (14.24), 13 = [0, . . . , 0, llT, and 

j-1 

6i j  > = Ai,j - x 

k=l 

The update 1a.w is finally chosen to be 

dvi j-l n 
~ W 

7 

Si = -l?i ei,n w 

1 ( 

d.Fi T  

) 

+Oi(tii-O~) . 1 

(14.46) 

(14.47) 

The following theorem summarizes the stability of the closed loop system. 

Theorem 14.3: Assume that for a given linear in the parameter 
approximator .Fi (yi, 8J, there exists some & E Rpi such that 

IFi(Yi7@i) + fi(yi)I 5 wi 

for all yi E S,;, where S,; = {yi E R : lyil 5 bi} with bi known. Assume 
that the control parameters are chosen such that BYi G Syi, where BYi is 
defined by (14.54). G’ tven the system dynamics defined by (14.39) with in- 
terconnection bounds satisfying (14.15), the decentralized controller (14.43) 
with update laws (14.47) will ensure that the errors associated with each 
subsystem are UUB. 

Proof: We will begin the proof by following the same steps used in the 
case of the static decentralized controller. Following the steps up to (14.30) 
one may obta,in 

+ G,n 
( 

-;j/iei,n + fi(Yi) + F(Yi 7 8,)) , 

where we have used eTb = ei,n. Define ui,j = qizz,j + qi(yi) with r/i > 0 
while xi,j a,nd qi are defined by (14.27) and (14.31) respectively. Taking the 
derivative of Vs = cz, I& we now find 

i/, < -2EVl + g + 2 ei,, - ( -7iei,n + fi(yi) + J=(yi, Bi)) . (14.49) 
i=l 
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Since 

fi(Yi> + qyi, a,) = fi(Yi) + F(Yi, ei) - F(Yi, Oi.) + F(Yi, 8i) 

= fi(Yi) + F(Yi,ei) + % (Ji - 6”) , 
i 

one finds 
N 

T/, 
nN 

< - -2EK + 477 + >: ei,n (-Tiei,, + fi(Yi) + F(Yi, @i)) 

i=l 

(14.50) 

We will now include the effects of the update law. 
Consider the composite Lyapunov candidate V, = V, + cg, $e”TI’i18i, 

where Si = 8i - 6i is the parameter estimate error for the z -th subsystem 
and T’i > 0. Taking the derivative of Va and substituting the parameter 
update law (14.47), we find 

when lyil 5 bi for i = 1, . . . , N. Since -8T(ei - 69) = -ex’e, - QT(ei _ ,yp), 
we find 

Also -Tie:,, + wiIt:i,n( 5 r/r/‘i2/(4yi) SO that > 

k2 = 477 
nN+~ 

i=l ( 

~+~lei-go/z . 

i > 

(14.53) 

Then V, 5 -k&, + Icz so that Va is bounded by V, 5 max(Va(0),JC&). 
Since yi 5 Jz 5 dm we are guaranteed that yi E Byi where 

B,i = (14.54) 
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Since we may make kJ/q arbitrarily small by proper choice of the controller 
parameters, it is always possible to choose the initial conditions such that 
Yi E ‘?Ji * 

Since V, 5 --Jq T/‘, + k2, the ultimate bound on V, is given by k#q. 
Since k&i may be made arbitrarily small, it is possible to force the ulti- 
mate bound on each yi to also be arbitrarily small since Iyil < dx. - 

14.4.2 Unknown Interconnection Bounds 

In the definition of the static decentralized control law, we assumed that 
the signal 

(14.55) 

is known (that is, each @i,j is known). Recall that the @i,j’s are based on 
the subsystem interconnection. Here we will study the control of (14.3) 
when the functions #i,j are not known. One should keep in mind that the 
[i,j bounding terms defined in (14.15) and the di,k terms in (14.17) are 
also based on the interconnections and will be used in the definition of the 
controller to follow. Thus only part of the interconnection is assumed to 
be unknown. We chose to first study the case where each $i,j is unknown 
for simplicity. 

Define a bounding approximation to qi as 

(14.56) 

h 

where 8 is a vector of adjustable parameters. Assume that there exists 
some 0i E RPi such that 

when yi E Syi . Thus, 4; (yi) 5 Gi (yi, ei) when yi E SY2 . We will later show 
that it is possible to define the adaptive controller parameters such that 
yi E B,i for all t where we can force B,, E s7Ji. 

We will now define the error system for the adaptive problem as 

ei,j = Xi,j - Vi,j--1 (zi,j--17 Bi>, (14.58) 

for i = l,...,n with vi,0 = 0 where now the term vi,j is also dependent 
upon the current parameter estimate 8;. Taking the derivative of the errors, 
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we find 

ei,j = fi.j + Xi,j+l + ni,j - 
j-l dvi j-1 

c * Efi,k + 
avi j-1 (lj 

k=l 
i,k 

G,k+1 + &,k] - +$- 
i 

‘-’ dVi j-1 
= fi,j + %,j+l + Vi,j - x 

k=l 

* [fi,k + Zi,kfl] - yt& 
i, i 

Choosing 

Vi,j = -(k + vi,j(zi,j 7 6i))ei,j - %,j-i - fi,j 

[fi,k + xi,k+l] + Ti,j, 

the error dynamics become 

ei,j = -(Ki + Ui,j)ei,j - ei,j-1 + ei,j+l - 98i + Ti, j  

a 

(14.59) 

(14.60) 

forj = I,..., n - 1 where ei,o = 0 and each vi,j will be chosen to account for 

the interconnections. The terms 7~ (Zi,j, &) will be defined based on the 
update 1a.w as was done when developing the indirect adaptive controller 
for strict feedback systems. 

The control law is now chosen as 

Ui = -(Q + Yi,n(?i,n, ei))ei - G-i - fi,* (14.61) 

so that 

ki,n = -(h + ui,n)ei,n - ei,,-1 - ~ei + ri,n 
a 

+ ni,n - x A 
n-1 dVi n-1 ~. 

dxi,k 
z,k > (14.62) 

k=l 

where Vi,n will again be used to account for the system interconnections. 
Based on the form used in the static control case (defined by (14.28)), we 
will consider the choice 

vi,j = ?lizf,j + Gi(Yi7 e), (14.63) 
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where Xi,j is defined by (14.27). Note that the subsystem dynamics may be 
written as 

-4,lei,l + ~i,l + &,I D. z,l 
t2i = Aiei + . 

. 
-ui,nei,n + Ti,n + si,n II I 

+ ; e,, (14.64) 

D, a,n 

where Ai is defined by (14.24), DQ = - y, and L 
j-l 

bi,j = ni j > - C 
k=l 

dVi j-l A, A 

aXi,k 
2,k - 

Define Vsl = 5 CT=, eS,j. The update law for the ith subsystem is now 
chosen to be 

-Oi(8i-%P) , 1 (14.65) 

where I’i E Rpxp is positive definite and symmetric and oi > 0. We will 
now choose Ti,j SO that 

where Mi is a, skew-symmetric matrix (i.e., A&T + n/r, 
Notice that using the update law (14.65) with 

ei,l 
1 

Vs, = y [ ei,l - * * ei,n ] ! 

ei,n 

we find 

where 

=o 

J 

(14.66) 

I) . 
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Notice that mi,j,r; is defined using xi,r,, . . , XQ where I = max(j, k). Thus * 
Ti,j ma#y only be defined using the terms mi,j,k with Ic 5 j and 8i. Choosing 

%l - - - 

- 

L 

0 0 . . . 0 

. 

m2,l m2,2 --- : _ 
ei,n + oi . . . . 0 

m,,,l %h,2 - - - mn,n 

0 . . . 01 
0 0 

0 m2,3 0 
- . . ei,n 

. . . . . . 

0 m2,n . . . mn-l,n 0 J 

l?i(Si - 6:) 

(14.67) 

ensures (14.66) holds with A& a skew-symmetric matrix. Notice that the 
first term in the right-hand side of (14.67) is used to cancel as many mi,j,k 

terms as possible. The last term in the right-hand side of (14.67) is then 
used to ensure that A& is skew-symmetric. The error dynamics for the ith 
subsystem may now be expressed as 

ii = (Ai + Mi)ei + I- (14.68) 

We are now ready to state the closed-loop properties obtained when using 
the proposed decentralized adaptive controller. 

Theorem 14.4: Assume that for a given linear in the parameter 
approximator 3-i (yi 7 Bi), there exists some Bi E I?*’ such that 

Fi(Yi,ei) _> ~ s4,icrvil) 
j=l 

for all yi E SYi where each +j,i defines the bounds on the interconnec- 
tions and S,; contains a ball centered at the origin. Assume that the con- 
trol parameters are chosen such that B,; C Sgi where B,, is defined by 
(14.54). Given the system dynamics defined by (14.3) with interconnection 
bounds satisfying (l-4.15), the decentralized controller (14.61) with update 
laws (14.65) IE wi ensure that the errors associated with each subsystem are 
UUB. 

Proof: Define Vi = V& + $eTI’L’Ji for each subsystem with V,; = 
1 n 
2 c e? . j=l 2,3 and #i = bi - 8i. Then following the steps in the proof of 
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Theorem 14.2, we find 

n 

we find 

i; < - -2/$iT/r,; + 2 (-Q,Zf,jef,j + IZi,jllei,j I) + QrL1ei (14.70) 
j=l 

+k 

(  

-Gi(yi, Bi)efj -  , sgief j + lei,jlg &~ZJ~I~f,r . 

j=l dei ) I=1 > 

Using the inequality -x2 k2xy 5 y2 and combining terms, we find 

i/i < -2KiV~i + -FL - - 
47i 

2Qi(Yi, Oi)T/lsi + 2 lei,j I g &lYl l4fj14.71) 
j=l l=l 

Using the definition of the update law (14.65), the Lyapunov candidate 
decreases according to 

- Fpi12 + 7 pi - @I2 (14.72) 

where we ha,ve used -2Q(ei - 0:) 2 -IOil” + IOi - @12. 
We will now consider the composite Lyapunov candidate V = CL, Vi 

a,nd also define Vs = Cz, Ifsi. Since Lyle = lel,r 1 and lei,jl 2 Jx for all 
%, j we obtain 
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It is now possible to rearrange terms to obtain 

(14.73) 

where E = mini(G), fj = mini(Q), D = diag(&(yl,81), . . . &(y~,eN)), 
and 

(14.74) 

Since 

fji(Yi,e) 2 j-&N I+ [ g (g ~~,AIYil~)] 7 (14.75) 

we may use Theorem 14.1 to show that 

Ti = TIN 
-2EVs + - 

4’1 
+ 2 (-$lGi~2 + $ie - epj2) 

i=l 

Choose 

and 

so that v < -k$ + k2. 

With this form, we find V < Vr for all t with - 

k2 
V, =max V(0),G . 

( > 

Since Vsi < VT for i = l,... 
for all t where 

,N, and Iyi(” = lei,ll” 5 2Vsi we find yi E B,, 

B,, = (14.76) 
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By properly choosing the control parameters and initial conditions, one 
can make BYi arbitrarily sma,ll. In particular, we may make kz arbitrarily 
small by picking q large and each cri small. Additionally, kr made be made 
large by picking in, large and X,,,(l?,r) small. The effects of the parameter 
estimate initial conditions may be made small by choosing X,,,,(I’,‘) small 
since 

Thus it is always possible to make B,, & S,; since Sg; contains a ball 
centered at the origin. In addition, since limt,, V = /~z/lcr we find the 
ultimate bound on each output to be 

2ka 
lim IYil I -&-. t+co J- 

(14.77) 

In the proof of Theorem 14.4, we could have defined 19i as any value 
which causes D + G in (14.73) to be positive definite. The value defined by 
(14.55) is just one such choice. 

Ideally the adaptive controller is able to compensate for all the uncer- 
ta’inty associated with the interconnections. This way if the interconnection 
bounds are approximated on-line, it may be possible to add additional sub- 
systems without redesigning the individual controllers. The approximator 
just adjusts itself so that the additional subsystems are accounted for. 

14.5 Summary 

In this chapter we learned how to use the concept of diagonal dominance 
to develop both static and adaptive decentralized controllers. It was shown 
that if one ensures that each subsystem is designed to be sufficiently stable 
using only local signals, then the composite system is stable. The static 
controller was designed using knowledge of the form of the interconnection 
between each of the other subsystems. 

It was shown that it is possible to design adaptive controllers in which 
an approximator is adjusted on-line to compensate for uncertainties in the 
isolated subsystem dyna,mics. It was also shown that it may be possible to 
adaptively compensate for interconnection uncertainties. This is particu- 
larly appealing since the designer requires less knowledge of the interaction 
between subsystems, which is often the reason for considering a decentral- 
ized fra)mework. 
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14.6 Exercises and Design Problems 

Exercise 14.1 (Diagonal Dominance) Consider the matrices 

where a E R and d > 0. Find the minimum value for d as a function - 
of a such that A + D is positive definite. Compare this result to the 
values obtained using Theorem 14.1. 

Exercise 14.2 (Scalar Decentralized Stability) Consider the scalar 
subsystem 

s, : LiTi = c,“=, mi,jXj 7 

for i = l,... , N. Given the composite system Lyapunov candidate 
V = CL, dixf with d, > 0, show that xi = 0 is an exponentially 
stable equilibrium point if there exists some D = diag(dr, . . . , do) 
such that DM + MTD < 0 and &! = [mi,j]- 

Exercise 14.3 (M-Matrix) Consider the case where a local controller 
ui = vi(xi) is defined for the ith subsystem 

Si: iTi = fi(Xi> + $l(Xi)Ui + &(t, Xi) 

such that given positive definite functions Vi(xi), we find 

2 (fi(Xi) + Y(Xi>Ui> I -~i$~(Xi) 

I I 
j$f! 5 Pi$i(Xi)7 1 

(14.78) 

where the functions ?i,i are positive definite and continuous. Use the 
composite Lyapunov function V = CL, diVi with di > 0 to show that 
if there exists some D = diag(dr , . . . , dN) such that DS + STD > 0, 
where 

Si,j = 
CQ, - piTji,i i = j 
-Pi%, j i#j 

then the composite system is asymptotically stable if the interconnec- 
tions may be bounded by 

Inil L 2 77i,j$j 

j=l 

for some qi,j 2 0 [log]. The matrix S is often referred to as a 
Minkowski matrix or M-matrix. 
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Exercise 14.4 (Decentralized Control Design) Assume that the 
interconnections of a decentralized system satisfy 

k=l 

where p 2 0 and each $i,k is nonnegative. Design a decentralized 
controller that takes advantage of this simplifica.tion over (14.15). 

Exercise 14.5 (Connected Pendulums) Consider the system defined 
by two pendulums connected by a spring. The dynamics for this 
system are given by 

s-2 : e2 = w2 
J21j2 = q@l - 02) + 742, 

where 8i and wi are the position and angular velocity for the ith 
pendulum, respectively. Here Ic is an interconnection constant based 
on the spring stiffness and lever arm associated with the connection 
point. Define decentralized controllers for each torque input ui so 
that t& -+ 0 for i = 1,2. 

Exercise 14.6 (Decentralized Fuzzy/Neural Control) Consider 
ith the subsystem defined by 

(14.79) 

for i = l,... , N. Design an adaptive fuzzy or neural controller when 
N = 3 and 

l Ai = Xi,2Xi+l,l 

l Qi = Xi+l,l Sin(Xi-1 1) > 

l Ai=Xf+ll, 
7 

where the subsystem subscripts are taken modulo-N so that xN+i,J = 
x1,1. Is it possible to define one adaptive decentralized controller that 
is able to work for each of the interconnections? 

Exercise 14.7 (Angular Velocity Control) The angular velocity dy- 
namics for a spacecraft may be described by 

WX 

J Gy = i-1 [ . 
wz 

---$ 1, -$]J[i;]+[ $1, (14.80) 
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where J is a diagonal inertial matrix with positive elements. Use 
a decentralized control approach to design controllers u,: = Y, (ws), 
uy = uy(wy), uz = v,(w,) so that wZ -+ 52, and wy, w, -+ 0. 

Exercise 14.8 (Stage Control) Develop a decentralized controller for 
the 3-axis stage of Example 14.1 so that ~,y$ -+ 0. 



Chapter 15 

Perspectives on Intelligent 
Adaptive Systems 

15.1 Overview 

Adaptive fuzzy and neural systems do not exist as an isolated topic devoid 
of relationships to other fields. It is important to understand how they 
relate to other fields in order to strengthen your understanding of them, 
and to see how general the ideas on adaptation are. 

We have emphasized that the methods of this book have their founda- 
tions in conventional adaptive control and that there are many relationships 
to techniques, ideas, and methodologies there. Adaptive fuzzy and neural 
systems are also an “intelligent control” technique, and hence there are 
certain relationships between them and other intelligent control methods. 
In this chapter we will provide a brief overview of some of the basic re- 
lationships between adaptive fuzzy and neural control systems and other 
control methods. This will give the reader who has a good understanding 
of a)daptive fuzzy and neural control systems a glimpse of related topics in 
other areas. Moreover, it will give the reader who has a good understand- 
ing of other areas of control a better understanding with wha(t the field of 
adaptive fuzzy and neural control systems is concerned. 

We begin the chapter by providing a conventional control engineering 
perspective on adaptive fuzzy and neural control systems. Following this, 
we briefly discuss “foraging strategies” for adaptive control, genetic adap- 
tive control strategies and some relationships to adaptive fuzzy and neural 
control systems. Next, we explain how expert systems can be used as 
controllers, and particularly how they can be used to supervise adaptive 
controllers. Then we briefly discuss adaptive planning systems. Finally, 
we provide an overview of the general area of (hierarchical) intelligent and 
autonomous control where we briefly explain the possible roles of adaptive 
fuzzy and neural systems in such general controllers. 

The rea,der interested only in adaptive fuzzy and neural control systems 
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can certainly ignore this chapter; we do not, however, advise this as the 
relationships to other fields often suggest ideas on how to expand the basic 
methods and may provide key ideas on how to solve a control problem for 
a particular application. 

15.2 Relations to Conventional Adaptive Control 

There are intimate relationships between conventional adaptive systems 
and adaptive fuzzy a’nd neural control systems. For instance, the type 
of ma,thematics used here is what is typically required as background for 
conventional adaptive control. The approaches borrow their basic struc- 
tures (e.g., direct, indirect) from conventional approaches and in fact the 
proofs extend those from conventional adaptive control. Often the control 
problems that we study may be redefined so that appropriate conventional 
approaches may be used. Though the adaptive routines are the same and 
the stability proof follows with some extensions from conventional adaptive 
control, we do not place the same restrictions upon the plant dynamics so 
the methods also have some key differences. 

The basic differences between conventional adaptive control and adap- 
tive fuzzy and neural control systems stem from the use of the tuning of 
general nonlinear structures (i.e., the fuzzy or neural systems) to match 
some unknown nonlinearity (even if only the parameters that enter linearly 
are tuned). Compared with conventional a’daptive control of linear systems 
with unknown constant coefficients, here our concern is with tuning func- 
tions to match unknown functions, rather than parameter tuning to find 
unknown parameters. Of course we parameterize our nonlinearities and 
hence tune functions via the tuning of parameters. Really, in the linear 
case, we simply assume that the unknown function is linear and we use a 
linear approximator structure and tune it; in this sense conventional adap- 
tive control of linear systems is a special case of adaptive fuzzy and neural 
control systems. 

Conventional adaptive approaches also often assume that the unknown 
portion of the system dynamics are in the form of unknown coefficients 
which multiply known functions, such as the system defined by Ir: = ax2 + 
u, where a is an unknown constant. If the system were defined by j: = 
sin(az)z+u with a unknown, however, most of the conventional approaches 
would not be applicable. 

As we pointed out, conventional approximation structures such as poly- 
nominals can be used, as well as fuzzy or neural structures. However, the 
perspective of on-line function approximation grew out of the neural and 
fuzzy research communities and the fuzzy and neural structures are easy to 
use, and enjoy good approximation properties, so they are often employed. 
Moreover, it is sometimes found that the fuzzy system is easy to initialize 



Sec. 15.3 Genetic Adaptive Systems 501 

with heuristic knowledge that can shape the nonlinearity so that it is closer 
to its optimal shape. Regardless, there is no reason that all the approaches 
in this book cannot work for conventional approximation structures and 
it is for this reason that we can take the view that the approaches used 
in this book are all quite conventional! Indeed, adaptive fuzzy and neural 
control systems can be considered to be an application of “on-line function 
approximation” strategies to control as we have emphasized throughout 
this book. 

To summarize, for adaptation, the approaches in this book use optimiza- 
tion methods (e.g., gradient or least squares) to reduce an error between two 
variables (e.g., estimation or tracking error) by adjusting a fuzzy or neural 
system to match an unknown nonlinear function (e.g., the input-output 
ma,pping of a physical system, or an ideal stabilizing control function). In- 
tuitively, stability is ensured by adjusting the parameters in the fuzzy or 
neural systems in a direction within the parameter space in an attempt to 
reduce the approximation error. As the approximation error improves, the 
errors within the adaptive systems tend to also improve by the way we de- 
fined the adaptive systems. The ability of the approaches to handle general 
classes of systems arises from the generality of the nonlinear approximator 
structures that fuzzy or neural systems and others offer. 

Broadly speaking, the general objective of the approaches is to achieve 
robust adaptive control for more general classes of nonlinear systems, an 
objective that is not unlike that of conventional adaptive control. Next, we 
discuss several other “intelligent” adaptive control approaches, ones that 
are not nearly as mature (mathematically speaking, and in some cases 
for actual implementations), as the methods discussed in this book. You 
could then view the outline below as providing a research agenda in the 
sense that adaptive control methods are outlined that have seen little if 
any mathematical analysis (e.g., stability analysis). 

15.3 Genetic Adaptive Systems 

A genetic algorithm (GA) uses the principles of evolution, natural selec- 
tion, and genetics from natural biological systems in a computer algorithm 
to simulate evolution. Essentially, the genetic algorithm is an optimization 
technique that performs a parallel, stochastic, but directed search to evolve 
the most fit population. In particular, it provides a. stochastic optimization 
method where if it “gets stuck” at a local optimum, it tries to simulta- 
neously find other parts of the search space and “jump out” of the local 
optimum to a global one. 

Traditionally, genetic algorithms have been used for off-line design, 
search, and optimization. There are ways, however, to evolve controllers 
or estimators (fuzzy, neural or conventional) while the system is operat- 
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ing, rather than in off-line design. Consider, for instance, a “genetic model 
reference adaptive controller” (GMRAC). For the GMRAC there is a ge- 
netic algorithm that maintains a population of strings, each of which is a 
descriptor (or chromosome) that represents a. candidate controller. This 
genetic algorithm uses a process model (e.g., a linear model of the process) 
and data from the process to evaluate the fitness of each controller in the 
population. It does this evaluation at each time step by simulating future 
plant outputs (using the process model) with each candidate controller and 
forming a fitness function based on the error between the predicted output 
for each controller and that of the reference model (which characterizes the 
desired performance). Using this fitness evaluation, the genetic algorithm 
propagates controllers into the next generation via the standard genetic 
operators (e.g., selection, cross-over, and mutation). The controller that is 
the most fit one in the population at each time step is used to control the 
system. This allows the GMRAC to automatically evolve a controller from 
generation to generation (i.e., from one time step to the next, but of course 
multiple generations could occur between time steps) and hence to tune a 
controller in response to changes in the process, or due to user change of 
the specifications in the reference model. Overall, the GMRAC provides 
unique features where alternative controllers can be quickly applied to the 
problem if they appear useful (e.g., the process (re)enters a new operating 
condition). 

It is also possible to use the genetic algorithm in on-line tuning of esti- 
mators. The closest analogy to such an approach is the use of the gradient 
method for on-line estimator tuning as we have done at several places in 
this book. Basically, all you need to do is to solve the optimization problem 
via the genetic algorithm rather than the gradient method. The challenge, 
is, however, to formulate the problem so that the GA can be used for the 
optimization. For the GA you have to be able to evaluate a finite number 
of solutions and rank them. It is easy to do this in identification since you 
can simply run N identifier models with the parameters of the identifier 
model loaded into a chromosome in the GA (then use a certainty equiva- 
lence approach to controller construction where the estimated parameters 
at time k are taken to be the ones that best estimate the current system 
output). For the direct adaptive strategies you have to take an approach 
like we do for the GMRAC (which is a direct adaptive strategy). A general 
genetic adaptive strategy is shown in Figure 15.1. There, we have a ge- 
netic adaptive estimator that identifies the plant model that is used in the 
GMRAC to evaluate the fitness of candidate controllers in its population 
(some may recognize this as a type of stochastic adaptive model predictive 
control strategy). 

Although is not too difficult to construct genetic adaptive systems, and 
in some applications they seem to work quite well, proving that they pos- 
sess stability properties may be quite challenging, if not impossible. The 
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Figure 15.1. General genetic adaptive control. 

challenge arises due to plant nonlinearities, stochastic influences that could 
exist in the nonlinear plant, and the nonlinea#r stochastic nature of the 
controller. 

Finally, note that conventional nongradient optimization methods (e.g., 
pattern search, direct search, and some stochastic approximation methods) 
and optimization methods that model how animals forage for food can also 
be used in a similar manner to genetic algorithms for adaptive control. 

15.4 Expert Control for Adaptive Systems 

Initially, for the sake of our discussion, we will simply view the expert 
system that is used here as a controller for a dynamic system, in the same 
way that we can view a fuzzy system as a controller for a system without 
adaptation. Suppose that the expert system serving as a feedback controller 
has a reference input r and feedback variable y. It uses the information in 
its knowledge-base and its inference mechanism to decide what command 
input u to generate for the plant. Conceptually, then, we see that the expert 
controller is closely related to the direct (nonadaptive) fuzzy controller. 
There are, however, several differences. First, the knowledge-base in the 
expert controller could be a rule-base but is not necessarily so. It could be 
developed using other knowledge-representation structures, such as frames, 
semantic nets, causal diagrams, and so on. Second, the inference mechanism 
in the expert controller is more general than that of the fuzzy controller. 
It can use more sophisticated matching strategies to determine which rules 
should be a,llowed to fire. It can use more elaborate inference strategies. 
For instance, some expert systems use “refraction,” where if a rule has fired 
recently it may not be allowed back into the “conflict set” (i.e., the set of 
rules that are allowed to fire) or it may use Yecency,” where rules that were 
fired most recently are given priority in being fired again, among various 
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other priority schemes. 
Up till now we have only discussed the direct (nonadaptive) expert con- 

troller. It may be possible to develop adaptation (learning) strategies for 
expert systems in an analogous manner to how we have in this book for 
fuzzy systems. Moreover, it is also possible to use an expert system in a “su- 
pervisory” role for conventional controllers or for the supervision of fuzzy 
or neural, estimators or controllers. This is shown in Figure 15.2. Such 
high-level adaptive controller tuning can be useful for practical implemen- 
tations of adaptive control systems. For instance, an expert controller may 
be useful for supervision of the adaptation mechanism (e.g., slowing the 
adaptation when it appears that the system may go unstable, or speeding 
up adaptation when the responses are sluggish). Alternatively, the expert 
controller may perform on-line tuning of a reference model that the adaptive 
controller is trying to get the closed-loop system to behave like; then, the 
overall system will be “performance adaptive” (i.e., it will try to adapt to 
improve performance when possible and reduce performance requirements 
when they are not possible to achieve). 

Expert controller 

Conventional or intelligent adaptive controller 

Figure 15.2. Expert system for supervising an adaptive controller. 

15.5 Planning Systems for Adaptive Control 

Artificially intelligent planning systems (computer programs that emulate 
the way experts plan) have been used in path planning and to make high- 
level decisions about control tasks for robots. A generic planning system 
ca’n be configured in the architecture of a standard control system with 
the word “planner” replacing the word “controller” and “problem domain” 
replacing “plant .” Here, the “problem domain” is the environment that the 
planner operates in. There are measured outputs ?.& at step k (variables of 
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the problem domain that can be sensed in real time), control actions ok (the 
ways in which we can affect the problem domain), disturbances dk: (which 
represent random events that can affect the problem domain and hence 
the measured variable yk), and goals gk (what we would like to achieve in 
the problem domain, analogous to reference inputs). There are closed-loop 
specifications that quantify performance and stability requirements. 

It is the task of the planner to monitor the measured outputs and goals 
so tha,t it may generate control actions that will counteract the effects of 
the disturbances and result in the goals and the closed-loop specifications 
being achieved. To do this, the planner performs “plan generation,” where 
it projects into the future (usually a finite number of steps, and often using 
a model of the problem domain) and tries to determine a set of candidate 
plans. Next, this set of plans is pruned to one plan that is the best one 
to apply at the current time (e.g., one plan is selected that minimizes con- 
sumption of resources). The plan is then executed, and during execution 
the performance resulting from the plan is monitored and evaluated. Often, 
due to disturbances, plans will fail, and hence the planner must generate a 
new set of candidate plans, select one, then execute that one (or “tweak” 
the existing plan). Some planning systems use “situation assessment” to try 
to estimate the state of the problem domain (this can be useful in execution 
monitoring and plan generation). 

Advanced planning systems such as the one shown in Figure 15.3 per- 
form “world modeling,” where a model of the problem domain is developed 
in an on-line fashion (similar to on-line system identification, but here it 
could be for an automata model), and “planner design” that uses informa- 
tion from the world modeler to tune the planner (so that it makes the right 
plans for the current problem domain). Clearly, there is a close connec- 
tion in this strategy to conventional indirect adaptive control schemes and 
a*daptive model predictive control. 

Planner 
designer World 

modelle r 

Planner 

Plan selection 

Plan generation 

Execution monitoring 

’ 

Figure 15.3. Adaptive planning system. 
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VVhile it is not difficult to conceptualize how to construct an adaptive 
planning strategy, it can be very difficult to analyze the stability and per- 
formance properties of practical adaptive planning systems as there is often 
a need for the use of models that contain automata-like characteristics, and 
standard ordinary differential equations. Such general “hybrid” models, 
plus the need to consider the effects of disturbances on the planning strate- 
gies and nonlinear optimization in plan construction, generally make the 
analysis of stability, robustness, and performance properties very difficult. 

15.6 Intelligent and Autonomous Control 

Highly autonomous systemsi have the capability to independently perform 
complex tasks with a high degree of success (e.g. human beings and animals 
are highly autonomous systems). It seems unlikely that any system can be 
considered to be highly autonomous without an ability to learn about its 
environment (i.e., be self-adapting) and improve its performance based on 
what it has learned. Hence, concepts of learning and adaptation, topics 
central to the focus of this book, are essential for autonomous systems. 

It is possible to construct what some would call “artificial” (as con- 
trasted with biological) autonomous systems where we seek to automate 
functions not normally performed on machines. In fact, consumer and gov- 
ernmental demands for such systems are common today. For instance, in 
the emerging area of intelligent vehicle and highway systems (IVHS), engi- 
neers are designing vehicles and highways that can fully automate vehicle 
route selection, collision avoidance, steering, braking, and throttle control 
to reduce congestion and improve safety. In avionic systems, a “pilot’s as- 
sociate” computer program has been designed to emulate the functions of 
mission and tactical planning that in the past may have been performed 
by the copilot. In manufacturing systems, efficiency optimization and flow 
control are being automated, and robots are routinely replacing humans in 
performing relatively complex tasks. Moreover, there are significant efforts 
underwa’y to implement autonomous land vehicles and autonomous under- 
water vehicles which, for example, operate in a hazardous environment. 

From a. broad historical perspective, each of these applications began 
at a low level of automation, and through the years each has evolved into 
a more autonomous system. For example, today’s automotive cruise con- 
trollers are the ancestors of the controllers that achieve coordinated control 
of steering, bra.king, and speed for autonomous automobile driving or col- 
lision avoidance. The terrain following, terrain avoidance control systems 
for low-altitude flight are ancestors of an artificial pilot’s associate that can 

’ Autonomou s systems to be discussed in this subsection are not to be confused with 
nonlinear ordinary differential equations I;(t) = f(t, 2) that do not have a dependence 
on time so that f(t,z) = f(z). 
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integrate mission and tactical planning activities. The general trend has 
been for engineers to incrementally “add more intelligence” in response to 
consumer, industrial, and government demands and thereby create systems 
with increased levels of autonomy. 

In this process of enhancing autonomy by adding intelligence, engineers 
often study how humans solve problems, then try to directly automate 
their knowledge and techniques to achieve high levels of automation. Other 
times, engineers study how intelligent biological systems perform complex 
tasks (e.g., neural networks), then seek to automate “nature’s approach” in 
a computer algorithm or circuit implementation to solve a practical tech- 
nological problem. Such approaches, where we seek to emulate the func- 
tionality of an intelligent biological system to solve a technological problem 
(sometimes called “biomimicry” or “bio-inspiration”), can be collectively 
named “intelligent systems and control techniques.” It is by using such 
techniques that some engineers are trying to create highly autonomous sys- 
tems such as those listed above. 

It is important to note that the fuzzy and neural systems used in this 
book are only poor approximations of their biological counterparts. The 
(nonadaptive) fuzzy system only crudely models deduction as it occurs in 
humans and the adaptive fuzzy controller only crudely models the human 
induction process. Moreover, the neural network models that we use are 
only crude representations of their biological counterparts. Hence, from 
a broad perspective, the approaches in this book, while termed “intelli- 
gent ,” are only beginning to exploit the mechanisms of intelligence that 
have evolved in biological systems. Control theory and technology are, 
however, themselves evolutionary and as the complexity of the models and 
methods increase, it is hoped that we will be able to achieve higher and 
higher levels of autonomy. 

How does a truly autonomous controller operate? Figure 15.4 shows a 
functional architecture for an intelligent autonomous controller with an in- 
terface to the process involving sensing (e.g., via conventional sensing tech- 
nology, vision, touch, smell, etc.), actuation (e.g., via hydraulics, robotics, 
motors, etc.), and an interface to humans (e.g., a driver, pilot, crew, etc.) 
and other systems. 

The “execution level” has low-level numeric signal processing and con- 
trol algorithms (e.g., PID, optimal, adaptive, or intelligent control; pa- 
rameter estimators, failure detection and identification (FDI) algorithms). 
The “coordination level” provides for tuning, scheduling, supervision, and 
redesign of the execution-level algorithms, crisis management, planning 
and learning capabilities for the coordination of execution-level tasks, and 
higher-level symbolic decision making for FDI and control algorithm man- 
agement. The “management level” provides for the supervision of lower- 
level functions and for managing the interface to the human(s) and other 
systems. In particular, the management level will interact with the users 
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Figure 15.4. Intelligent autonomous controller. 

in generating goals for the controller and in assessing the capabilities of the 
system. The management level also monitors performance of the lower-level 
systems, plans activities at the highest level (and in cooperation with hu- 
mans), and performs high-level learning about the user and the lower-level 
algorithms. 

Adaptive intelligent systems (e.g., fuzzy, neural, genetic, expert, and 
planning) can be employed as appropriate in the implementation of various 
functions at the three levels of the intelligent autonomous controller. For 
example, adaptive fuzzy or neural control may be used at the execution level 
for adaptation, genetic algorithms may be used in the coordination level to 
pick an optimal coordination strategy, and adaptive planning systems may 
be used at the management level for sequencing operations. Hierarchical 
controllers composed of a hybrid mix of intelligent and conventional systems 
are commonly used in the intelligent control of complex dynamic systems. 
This is because to achieve high levels of autonomy, we often need high levels 
of intelligence, which calls for incorpora’ting a diversity of decision-making 
approa,ches for complex dynamic learning and reasoning. 

In summary, we see that there can be many roles for the intelligent 
adaptive estimation and control systems in the larger context of intelligent 
autonomous control for complex systems. It is a challenging problem to 
develop general design and analysis strategies for complex hierarchical in- 
telligent autonomous control systems as the underlying dynamics are often 
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“hybrid” in the sense that they involve dynamics that can be represented 
by a8 combination of automata and ordinary differential equations (e.g., we 
may use automata to represent the problem domain for a planner, but the 
planner may supervise an adaptive controller for a plant that is most con- 
veniently represented by ordinary differential equations). Hence, while it 
is relatively easy to construct a hierarchical interconnection of intelligent 
adaptive estimation and control strategies, it is a challenge to prove that 
the overall hierarchical adaptive system achieves some type of stable robust 
operation, or achieves a certain performance level. 

15.7 Summary 

Within this chapter we have presented a brief introduction of the role of 
fuzzy systems and neural networks in the area of intelligent adaptive sys- 
tems. In particular, we have overviewed the relationships between adaptive 
fuzzy and neural systems and the following topics: 

l Conventional adaptive control. 

l Genetic adaptive control. 

l Expert control for adaptive controller supervision. 

l Adaptive planning systems. 

l Intelligent autonomous controllers. 

This chapter is meant to expose you in other related topics so we encourage 
you to study the next section and pursue some of the relationships that we 
have highlighted. 



For Further Study 

The material presented here is intended to help the reader gain a better 
understanding of the origins of many of the concepts used throughout this 
book. A number of references to related material are also provided to help 
expand the applicability of the concepts developed in the previous chapters. 

Stability Analysis: Chapter 2 

The stability proofs in this book have largely been developed using princi- 
ples of Lyapunov stability. A nice introduction to differential equations and 
stability may be found in [70, 154, 1531, while the use of Lyapunov analysis 
for both continuous and discrete-time systems is presented in [97]. Other 
references on stability theory include [68, 111, 1661. Good references for 
nonlinear control, which cover many of the mathematical topics presented 
in Chapter 2, include [108, 230, 2051. Other books that provide similar 
background material are books on conventional adaptive control [79, 1911. 

In this book we have typically assumed that the system J: = f(t,~:+) 
and controller u(t, X) are defined such that f is piecewise continuous in 
t a,nd Lipschitz continuous in 2. When controllers are defined using the 
principles of variable structure control (227, 2041 (sliding mode control) or 
projection, one often finds that the resulting f is discontinuous in 17;. Since 
the traditional existence and uniqueness conditions do not hold under this 
case, one may use the approaches in [51, 123, 174, 1991. 

The concept of input-to-state stability was introduced by Sontag [207]. 
For more details on properties of input-to-state stability, see e.g., [210, 2111. 
Extensions to input-to-state practical stability may be found in [92] and 
integral input-to-state stability may be found in [5, 2091. Other stability 
analysis techniques appropriate for nonlinear systems include the use of 
small gain theorems [93, 91, 2221, passivity [20, 1641, and the describing 
function method [ 1081. 

Throughout this book we have discussed stability in terms of a Lya- 
punov function associated with a closed-loop system. Another way to view 
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stabilization is via, a1 control Lyapunov function. Given the error system 

e = a(t, x) + P(x)u, ( 1) . 

a control Lyapunov function is a smooth positive definite radially un- 
bounded function I/I(e) such that 

( 2) . 

Just as a Lyapunov function implies stability for a system with the control 
defined, a control Lyapunov function implies stabilizability of a system with 
an undefined input. See [114, 1151 for more details. 

Neural Networks and Fuzzy Systems: Chapters 3-5 

There are many good books on neural networks. The reader may want 
to consider [67, 721. Using a gradient descent approach to minimize a 
cost function based on the difference between the true and desired neural 
network output, the backpropagation technique was developed [186]. With 
this tool, researchers showed that neural networks are able to approximate 
a large variety of nonlinear functions. This later led to the work [17, 33, 57, 
75, 1261 in which it was shown that neural networks are indeed universal 
approximators. Various properties of approximators are studied in [13, 59, 
61, 1711. In [208] it is shown that for certain control problems it may be 
better to use a two layer neural network rather than a single layer. Early 
applications of neural networks for use in control and identification was 
studied in [160]. This led to a large volume of applications and theory 
related to the use of neural networks in feedback systems 16, 31, 49, 156, 
1941. 

L. Zadeh [250, 2511 introduced the field of fuzzy sets and logic, while 
E. Mamdani [145, 1441 suggested that fuzzy systems be used in feedback 
controllers. The universal approximation property for fuzzy systems is 
discussed in [24, 231, 233, 2351. For more details on fuzzy logic see, for 
instance, [llO], and for a general treatment of how to use fuzzy logic in 
engineering see [184]. For more details on fuzzy systems and control see 
[170, 42, 213, 233, 2351. 

An introduction to the topical area of approximation is given in [201, 
951, where the authors also cover wavelets, and other approximators and 
properties in some detail. The idea of linearizing a nonlinear approximator 
was studied in [29] in their stability proofs. For more details on linear least 
squares methods, especially for system identification, see [135]. For a more 
detailed treatment of optimization theory see the introductory book [137]. 
For a more advanced treatment, see [16, 1811. 
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There are also a number of journals dedicated to neural networks and 
fuzzy systems. See, for example, IEEE Transactions on Neural Networks, 
IEEE Transactions on Fuzzy Systems, Neural Networks, IEEE Transac- 
tions on Systems, Man, and Cybernetics, and Fuzzy Sets and Systems. 
Along with these publications are conferences such as the IEEE Interna- 
tional Symposium on Intelligent Control. 

State Feedback Control: Chapters 6-8 

There are a number of good references for general nonlinear control design 
including [81, 108, 128, 2051. For more details on feedback linearization and 
diffeomorphisms, see [Sl, 149, 2361. A discussion of pole placement may be 
found in most basic control texts dealing with state-space techniques in- 
cluding [27, 541. Robust stability has been addressed in the literature using 
a number of techniques including nonlinear damping [96] and sliding mode 
control [40, 204, 2271. For a more detailed discussion of robust stability, see 
the work [114, 1331. Also see [92, 791 for a discussion of dynamic normal- 
ization. 

Integrator backstepping was introduced as a control design tool in [104, 
1871. Robust extensions to integrator backstepping were developed in [148, 
203, 1821 for systems with uncertainties, while extensions to systems with 
unmodeled dynamics were given in [118, 1791. The backstepping approach 
is covered in detail in [115]. 

The concepts of zero dynamics and static state feedback of single-input 
single-output (SISO) nonlinear systems can be readily generalized to mul- 
tivariable nonlinear systems, but in general two cases arise, static and dy- 
namic state feedback. The reader may consult [191, 193, 811 for a review 
of this material. 

For a given controller structure, there may be a number of different 
choices available for the controller parameters that results in a stable closed- 
loop system. To help choose a particular controller, one may define a cost 
function for the closed-loop system that is to be minimized. This is the 
objective of optimal control [19, 1091. For example, a linear quadratic 
regulator (LQR) is defined as the controller u = KZ (where K is to be 
chosen) that minimizes a cost function defined to keep the states and/or 
control input small [128]. Kalman has shown that one of the features of an 
optimal design is that the closed-loop system is inherently robust. Optimal 
design techniques do not readily carry over to the nonlinear world, but there 
has been progress in the development of inverse optimal control techniques 
for nonlinear systems that result in a robust closed-loop system [195]. 

There are a number of good references that deal with direct and indirect 
adaptive control of linear systems. See, for example, [II, 63, 128, 159, 1911. 
The field of adaptive control of nonlinear systems has continued to see a 
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great deal of research [50, 103, 100, 116, 161, 162, 177, 2201. The work 
in [115, 1491 discusses a number of approaches to the adaptive control 
of nonlinea,r systems, while in [219] the authors consider the case where 
the system contains actuator and sensor nonlinearities. The reader in- 
terested in more discussion on robust adaptive control is urged to see 
[79, 92, 90, 172, 175, 2211. F or a discussion on adaptive control with non- 
linear parameterizations, see the work [18, 1361. 

The papers [160, 173, 1891 started an important branch within the field 
of nonlinear adaptive control, that of nonlinear neural and fuzzy adaptive 
control. The papers [30, 45, 47, 48, 130, 134, 160, 172, 173, 176, 185, 188, 
189, 242, 247, 2441 make use of neural networks as approximators of nonlin- 
ear functions, whereas [26, 76, 124, 217, 232, 2341 use fuzzy systems for the 
same purpose and [160, 1851 use dynamical neural networks. An interesting 
study on issues related to the use of local (finite support) approximators 
in adaptive control can be found in [46]. The neural and fuzzy approaches 
are most of the time equivalent, differing between each other only by the 
structure of the approximator chosen. 

Among those works in which tunable parameterized functions are used, 
a major difference can be devised in the choice of the parameterization: 
linear in [26, 22, 47, 48, 45, 76, 172, 173, 189, 188, 217, 233, 2481 and 
non-linear in [30, 134, 130, 129, 160, 176, 242, 2441. Most of the papers 
deal with indirect adaptive control, trying first to identify the dynamics 
of the systems and eventually generating a control input according to the 
certainty equivalence principle (with some modification to add robustness 
to the control law), whereas very few authors face the direct approach. 
Finally, the most frequent classes of systems considered in these papers are 
the SISO affine ones, that is, systems of the type Ir: = f(z) + g(1r;)u with 
u E R. 

The reader interested in using neural networks and/or fuzzy systems in 
identification may wish to read [95, 122, 127, 160, 173, 188, 190, 201, 2181. 
Other properties of parameter identification are given in [131, 2541. 

Output Feedback Control: Chapters 10 and 11 

The class of output-feedback systems considered in this book (see (10.5)) 
was introduced by Marino and Tomei in [146]. The control design presented 
here, which essentially relies on the backstepping methodology, goes along 
the line of the solution presented in the book [115]. Additional details on 
the stabilization of output-feedback systems can be found in the book [149]. 

The general output feedback stabilization problem considered in Chap- 
ter 10 and specifically the development of a separation principle for non- 
linear systems has been the object of intense research since the beginning 
of the nineties. The work by Esfandiari and Khalil, in [44], was the first 
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to highlight the potentially destabilizing effect of high-gain observers em- 
ployed in closed-loop (i.e., the peaking phenomenon), which we have seen 
to be one of the two major obstacles to the achievement of a separation 
principle, and to suggest the employment of control input saturation as 
a cure to the peaking phenomenon. Even though the applicability of the 
results obtained in that paper was limited to minimum phase input-output 
feedback linearizable systems, and the region of attraction of the closed- 
loop system employing the output feedback controller could not be made 
arbitrarily large, the ideas contained in the paper had a major influence in 
all the literature that followed. 

The second obstacle to the development of a separation principle, namely 
the fact that the observability mapping of the plant depends in general on 
the control input and its time derivatives, i.e., ye = X(X, U, . . . , z@~-~)), 
and hence in order to estimate the state of the system one needs to know 
nu - 1 time derivatives of the control input, was removed by Tornambe 
in [225]. The main idea contained in [225] is t,hat of employing a chain of 
integrators at the input side of the plant and use the state feedback con- 
troller for the original system to design a state feedback controller for the 
augmented system (the plant plus a chain of integrators). This key idea 
removes the obstacle mentioned above since the time derivatives of the con- 
trol input are now simply given by the states of the integrators and hence 
the state of the system can be estimated by inverting the mapping 3c and 
using a high-gain observer to estimate the vector ge containing the output 
and its n - 1 time derivatives. This also allows for the removal of the min- 
imum phase assumption required in [44] but the stability results obtained 
in this paper are only local since control input saturation is not employed 
and hence the peaking phenomenon affects the systems states. The funda- 
mental work of Tee1 and Praly in [223] merged the ideas of Tornambe and 
those of Esfandiari and Khalil in [44] to prove that a generic nonlinear SISO 
system which is globally stabilizable and uniformly completely observable 
is semiglobally stabilizable by output feedback, thus developing a separa- 
tion principle for a rather general class of nonlinear systems. The main 
ingredients of the controller developed in [223] are the chain of integrators 
at the input side of the system and saturation. The practical limitation 
of these results (as well as all the results cited above) is the need to know 
the explicit inverse of the observability mapping 7f to reconstruct the state 
of the plant. See also the work by Atassi and Khalil in [12] for further 
extensions and a more general separation principle. 

The separation principle proved in Theorem 10.2 is taken from [143] and 
contains similarities to the results cited above (e.g., a chain of integrators 
is added at the input side of the system) with two important differences. 
First, the standard high-gain observer employed to estimate the output 
derivatives is replaced by the nonlinear observer (10.39) with the dynamic 
projection (10.63). Second, saturation is not needed since the dynamic pro- 
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jection (10.63) I’ e zminates the peaking phenomenon in the observer states. 
As we have seen in Chapter 10, this approach has the practical advantage of 
avoiding the need to calculate the explicit inverse of the observability map- 
ping 7-L Furthermore, an advantage of using dynamic projection to confine 
t,he observer states to within a prespecified compact set is that the assump- 
tion that the plant be uniformly completely observable can be considerably 
relaxed, see [143] for the details and Chapter 12 for an example. 

The idea of using two cascaded observers to estimate the state of the 
plant without adding integrators is taken from 11403 and is inspired by the 
work by Tornambe in [224], where the author employs a parallel connection 
of two high-gain observers to estimate the output and input derivatives, re- 
spectively. The estimates obtained from the observers are then employed to 
caSlculate an estimate of the state of the plant by inverting the observability 
mapping 7-L The observer employed in this paper, (lo.%), (10.89) is differ- 
ent from that found in [224] and has once again the advantage of directly 
estimating the state of the plant, avoiding the inversion of the mapping 
‘7-L Tornambe did not investigate the employment of his estimation scheme 
in closed-loop and hence the result in Theorem 10.3 is new to the output 
feedback literature. 

Tracking is one of the important problems in control theory and re- 
searchers are still working at developing a general theory in the nonlinear 
setting using only output feedback (in a partial information setting). For 
output-feedback systems, its global solution is well-known (see [149, 1151) 
while, for nonminimum-phase systems, achieving asymptotic tracking is 
considered to be a, challenging problem even when the state of the plant 
is known. When the plant is slightly nonminimum-phase, it may be ap- 
proximated by a minimum-phase system, and a tracking controller for the 
approximated model may be employed to achieve s small tracking error 
(see [71]). A no th er way to achieve approximate tracking entails finding an 
output function with respect to which the system is minimum-phase, and 
modifying the original reference to create an appropriate desired trajectory 
for the new output (see the works in [64] and [15] among others). A more 
general way to address tracking problems is to use differential flatness, in- 
troduced by Fliess et al. in [52], which is related to the concept of dynamic 
feedback linearization (see [25]). It is well-known (e.g., [52], [150], [229]) 
that for differentially flat systems the state feedback tracking problem can 
be easily solved since the state and the control input are completely char- 
acterized by the output and a finite number of its derivatives. Hence, given 
a. reference trajectory, one can uniquely determine the corresponding state 
and control trajectories reproducing the desired output, and use this in- 
formation to solve the tracking problem. A second major approach (which 
has some relationship to differential flatness) to solving tracking problems 
was introduced in [41] by Devasia et al., and involves calculating a stable 
inverse of the plant (see Chapter 6). If the plant is differentially flat, a 
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stable inverse must exist. In general, the stable inverse can be found as the 
solution of a(n integral equation which can be approximated iteratively by 
means of a Picard-like iteration. The stable inverse so obtained is employed 
as a feedforward term in a regulation scheme and, being in general non- 
causal, it may require pre-actuation. The other major approach to solving 
tracking problems is the theory of output regulation (also referred to as the 
servomecha.nism theory, see [37]), originally introduced by Davison, Francis, 
and Wonham in [37, 531 for linear systems, and extended to nonlinear sys- 
tems by Isidori and Byrnes in [80]. The output regulation problem entails 
finding a dynamic controller that makes the output track a reference trajec- 
tory a,nd reject a time-varying disturbance, both of which are generated by 
a neutrally stable exosystem. In order to do that one seeks the solution of 
a set of nonlinear partial differential equations referred to as the regulator 
equations which, as shown in [77], is identical to the solution of the integral 
equa,tion in the stable inversion approach. In the nonlinear full information 
setting one implements a control law which depends on the state of the 
exosystem (see [Sl]) while, in the error feedback setting (analogous to what 
we defined to be the partial information setting in Chapter 10) one does not 
need the state of the exosystem, but rather needs to find a suitable internal 
model which is employed to asymptotically generate the tracking control 
action. The solution to the error feedback output regulation problem for 
general classes of nonlinear systems is presently an open research topic. 

The methodology to solve the tracking problem introduced in Chap- 
ter 10 can be found in [141] and has some similarities to both the stable 
inversion approach of Devasia et al. and output regulation theory. The 
results presented in this book rely on the existence of a practical internal 
model (see Definition 10.2). It can be shown that a practical internal model 
always exists when the plant is differentially flat and the flat output is mea- 
surable. Analogously, it can be shown that the methodology presented in 
this book can be employed in the output regulation framework, see [142] 
and [141] and for the details. 

For systems in adaptive tracking form (11.1) (originally defined by 
Marino and Tomei) the reader may refer to [147, 103, 115, 1171 for global 
stabilization results and to [180] for some generalizations. The adaptive 
controllers for systems in adaptive tracking form presented in this book 
follows [103]. For more general nonlinear systems with constant unknown 
parameters, Khalil in [107] d eveloped adaptive output feedback controllers 
based on a separation principle, see also [3]. The class of systems consid- 
ered in [107, 31 is similar to that considered in Example 11 .I and the tools 
developed in Section 11.3.2 can be employed to develop stable adaptive 
controllers for such systems. 
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Discrete-Time Control: Chapter 13 

In [157] the authors introduce the notion of zero dynamics and minimum 
phase for discrete-time systems. There has been research on the stabi- 
lization of nonlinear discrete-time systems using state feedback control 
[106, 23, 211, adaptive output feedback control (for certain classes of sys- 
tems) [206, 2451, and the MIMO case has been studied for a Hammerstein 
model in [252]. The work in [120] focuses on stability analysis of a feed- 
back linearizing controller for a class of nonlinear discrete-time systems that 
have constraints on the inputs. Development of controllers for discrete-time 
nonlinear systems with certain types of input and output nonlinearities is 
studied in [219]. The work in [132] focuses on E&-control of discrete-time 
nonlinear systems; in particular, the problem of disturbance attenuation is 
studied under different a.ssumptions about the type of feedback information 
that is used. 

The book [63] is a good starting point for results concerning adaptive 
control of discrete-time systems that are linear in a set of unknown param- 
eters. A scheme was presented in [lOl, 1021 for the adaptive control of the 
nonlinear system y(!~ + 1) = a*[(~@)) + z@), where a* is an unknown con- 
stant and 5 is a nonlinear function which is not necessarily sector bounded; 
stability results are established that are not dependent upon parameter ini- 
tialization. The work in [255] focuses on the development of stable adaptive 
controllers for discrete-time strict-feedback nonlinear systems. Here, a very 
different approach is taken from the work in this book since rather than a 
traditional on-line estimation and control approach, the authors separate 
the problem into a nonlinearity basis identification phase and look-ahead 
control phase. They obtain global stability and tracking results. In [139] 
the authors provide necessary and sufficient conditions for the equivalence 
between a general class of discrete-time systems and discrete-time systems 
in strict feedback form. They use a backstepping algorithm and obtain sta- 
bility results. In [241] the authors show that it may not always be possible 
to use adaptive feedback to stabilize a discrete-time system. 

Within [28], an indirect adaptive control routine is presented using a 
class of neural networks. Stability is established assuming that if the neu- 
ral networks are properly adjusted, they are able to perfectly model the 
plant. These ideal modeling requirements are relaxed within [29], while 
ensuring tracking to an c-neighborhood of zero. Stability for these routines 
is established assuming that the initial estimates of the nonlinear system 
are chosen to be sufficiently accurate, and that f(z(lc), u(k)) vanishes at 
the origin. In [83] the authors consider a discrete-time MIMO nonsquare 
feedback linearizable system without zero dynamics, but with a bounded 
state disturbance. They perform indirect adaptive control using linear in 
the parameter neural networks, and on-line tuning without the need of 
initialization conditions, and obtain uniform ultimate boundedness of the 
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tracking error. In [84] similar results to [83] are obtained under the same 
assumptions, but using multilayered neural networks (a nonlinear in the 
parameter tunable function), by showing passivity of the neural network. 
Within [172], a stable neural network control methodology is presented 
for continuous-time strict feedback systems using the backstepping method 
[103]. See [I, 129, 85, 82, 86, 941 f or other fuzzy/neural approaches. 

Decentralized Control: Chapter 14 

Decentralized control has long been used in the control of power systems 
and spacecraft since the problem may often be viewed as a number of 
interconnected systems. See 11551 for general stability theory related to 
decentralized systems. An early form of diagonal dominance led to the 
concept of an M-matrix [78, 108, 2431. 

Model reference adaptive control (MRAC) based designs for decentral- 
ized systems have been studied in [73, 78, 58, 36, 2381 for the continuous- 
time case and in [183, 1651 for the discrete-time case. These approaches, 
however, are limited to decentralized systems with linear subsystems and 
possibly nonlinear interconnections. Decentralized adaptive controllers for 
robotic manipulators were presented in [56, 32, 1961, while a scheme for 
nonlinear subsystems with a special class of interconnections was presented 
in [198]. 

Integrator backstepping is used in [237] to help relax relative degree re- 
quirements on the subsystems. Polynomial bounded interconnections were 
developed in [200], while general nonlinear interconnections were studied 
in [69]. The matching conditions were relaxed in [87, 881 when the inter- 
connections could be bounded by polynomials. [65, 891 relax both match- 
ing conditions and polynomial bounding of the interconnections. These 
results consider subsystems that are linear in a set of unknown param- 
eters, or consider the uncertainties to be contained within the dynamics 
describing the subsystem interconnections which are bounded. Decentral- 
ized techniques using neural networks and fuzzy systems were developed 
in [34, 105, 214, 246, 2531 that allowed for more general classes of isolated 
subsystem dynamics. 

In this book we have allowed interconnections bounded by functions 
that are not necessarily polynomials and have relaxed the matching con- 
dition requirement. In the adaptive case, it was shown that it is possible 
to adaptively approximate the bounds on the interconnections (not just 
polynomial coefficients). The approach considered in this book, however, 
does assume that the interconnections are bounded by functions defined in 
terms of the subsystem outputs and not necessarily the full states. 
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Applications: Chapters 9 and 12 

Good books on dynamics of mechanical systems include [60, 98, 1971. The 
reader interested in the control of specific types of applications may wish 
to read [9, 2121 for robotic systems; [99, 1511 for aerospace applications; 
[112, 125, 2021 for electric machines; and [4, 35, 38, 43, 551 for systems 
with friction. Other books that contain a number of traditional control 
problems (such as the inverted pendulum) include [108, 128, 149, 2051. 
Within this text, the satellite dynamics of Example 6.3 may be found in 
[149], the ball and beam dynamics of Exercise 6.12 in [195], the M-link robot 
of Exercise 6.13 and robot with a flexible joint of Exercise 6.20 in [212], 
the inverted pendulum of Exercise 6.14 in [108, 1491, a modified version 
of the magnetic levitation example of Chapter 12 in [108], and the surge 
tank of Exersise 7.11 in [169]. The electric machine models throughout 
this text may be found in the following: the field-controlled DC motor of 
Exercise 6.19 in [202], stepping motor of Exercise 8.7 in [119], 

For recent implementations of various control techniques, one may wish 
to look through IEEE Transactions on Control Systems Technology and 
IEEE Control Systems Magazine. 

Perspectives on Intelligent Adaptive Systems: Chapter 15 

For more details on genetic algorithms, see the books [62, 1521 or article 
[215]. The use of genetic algorithms in (indirect) adaptive control was first 
studied in [113]. The genetic model reference adaptive controller (a direct 
a#da,ptive scheme) was first introduced in [178]. For more details on (di- 
rect) expert control, see [168], or [138] f or a control-engineering analysis of 
the feedback loop that is inherent in the expert system inference process. 
The idea of using expert systems to supervise adaptive control systems was 
first introduced in [lo] and is also investigated in [8]. The section on plan- 
ning systems is based on [167]. For an artificial intelligence perspective on 
planning systems, that attempts to relate planning ideas to control theory, 
see [39]. For a general introduction to intelligent control, see the books 
[8, 226, 66, 228, 2391 or articles [7, 2, 2161. 
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