WWILEY . David Wood

Principles of Successful
artphone Development Projects

.
. | S "
T E——

Symbian
for Software Leaders

symbian

Symbian for Software
Leaders

Principles of Successful Smartphone
Development Projects

David Wood

Reviewed by
Richard Harrison

Head of Symbian Press
Phil Northam

Managing editor
Freddie Gjertsen

John Wiley & Sons, Ltd

Symbian for Software Leaders

TITLES PUBLISHED BY SYMBIAN PRESS

Q Wireless Java for Symbian Devices
Jonathan Allin
0471 486841 512pp 2001 Paperback

O Symbian OS Communications Programming
Michael] Jipping

0470 844302 418pp 2002 Paperback

QO Programming for the Series 60 Platform and Symbian OS
Digia

0470 849487 550pp 2002 Paperback

a Symbian OS C++ for Mobile Phones, Volume 1
Richard Harrison
0470 856114 826pp 2003 Paperback

Q Programming Java 2 Micro Edition on Symbian OS
Martin de Jode
0470 092238 498pp 2004 Paperback

Q Symbian OS C++ for Mobile Phones, Volume 2
Richard Harrison
0470 871083 448pp 2004 Paperback

a Symbian OS Explained
Jo Stichbury
0470 021306 448pp 2004 Paperback

O Programming PC Connectivity Applications for Symbian OS
lan McDowall
0470 090537 480pp 2004 Paperback

0 Rapid Mobile Enterprise Development for Symbian OS
Ewan Spence
0470 014857 324pp 2005 Paperback

Symbian for Software
Leaders

Principles of Successful Smartphone
Development Projects

David Wood

Reviewed by
Richard Harrison

Head of Symbian Press
Phil Northam

Managing editor
Freddie Gjertsen

John Wiley & Sons, Ltd

Copyright © 2005 John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court
Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the
Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium,
Southern Gate, Chichester, West Sussex PO19 85Q, England, or emailed to permreq@wiley.co.uk,
or faxed to (444) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product
or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Wood, David, 1959—-

Symbian for software leaders : principles of successful Smartphone
development projects/ David Wood ; Head of Symbian Press, Phil Northam ; Managing Editor,
Freddie Gjertsen.

.cm.

Includes bibliographical references and index.
ISBN-13: 978-0-470-01683-1 (cloth : alk. paper)
ISBN-10: 0-470-01683-3 (cloth : alk. paper)
1. Operating systems (Computers) 2. Cellular telephone systems — Computer
programs. I. Northam, Phil. Il. Gjertsen, Freddie, III. Title.

QA76.76.063W658 2005

005.4'3 — dc22

2005012177

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-01683-1
ISBN-10 0-470-01683-3

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by T) International, Padstow, Cornwall

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

http://www.wiley.com

To software leaders in the smartphone revolution

— the creators of outstanding products which will
yield high value to hundreds of millions of
mobile users

Contents

Introduction: projects, projects, projects

Part 1 Symbian in context

1 At the heart of the smartphone revolution
1.1 The phenomenon of smartphones

Taking advantage of the smartphone opportunity

The role of the smartphone operating system

Regarding APIs and operating systems

Why Symbian OS?

Aside: from organizers to smartphones

Coming to terms with Symbian OS

S
No s Wwiv

2 The big picture of a Symbian OS project
2.1 High-level components of a smartphone
2.2 Providers of integrated solutions
2.3 The commercial model of a smartphone project
2.4 Some conclusions from the smartphone commercial
model
2.5 Typical smartphone project timescales
2.6 Warning regarding timescales
2.7 Factors influencing project timescales
2.8 The big picture: beyond timescales

3 Involving ISVs
3.1 ISV smartphone opportunity and risk
3.2 Beyond technical skill-sets
3.3 Different routes to market
3.4 Symbian endorsements

w

[(-IANNG, ¥) |

11
13
16
17

19
19
20
21

26
27
29
30
31

33
33
35
36
38

viii CONTENTS

3.5 Companion Technology Program
3.6 Symbian Signed

4 Twenty reasons why smartphones will win
4.1 Two kinds of battle
4.2 Multitasking
4.3 Messaging and entertainment
4.4 Mobile knowledge access
4.5 Organizers and finance
4.6 Pocket consolidators
4.7 Social tools
4.8 Personal development
4.9 Phones win
4.10 Openness wins

Part 2 Thriving on scale

5 Managlng large projects
Smartphone projects vs. feature phone projects
5.2 Three approaches to large projects
5.3 How large projects differ from small projects
5.4 Project groupware
5.5 Confidentiality issues
5.6 Five central project documents
5.7 Auditing document readership
5.8 Processes and agility: education vs. processes
5.9 Problems when groupware is short-cut
5.10 Symbian’s use of groupware

6 Managing defects
6.1 Introduction to smartphone defect management
6.2 Living with defects
6.3 Aside: an embarrassing moment with defects
6.4 Defect priorities
6.5 The process of verifying a defect fix
6.6 Advanced defect investigation
6.7 Defect status values
6.8 Defect database requirements
6.9 The role of the project leader in managing defects

7 Managing configurations
7.1 Introduction to configuration management
7.2 Aside: learning about configuration management

40
42

45
45
46
47
49
50
51
52
53
54
55

57

61
61
62
63
64
65
66
66
67
69
69

73
73
75
76
78
79
80
82
83
83

85
85
86

7.3
7.4
7.5
7.6
7.7

CONTENTS

Consequences of weak configuration management
Basic principles of configuration management
Codeline strategy — single projects

Codeline strategy — multiple projects

Beyond codeline strategy

8 Managing integration

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Integration vs. creation

Mainlines and development codelines
Iterative development

Gate-keeping and integration tests
Dealing with build or test failures

The weekly integration cycle
Integration discipline

9 Managing interfaces

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Knowing when components belong together
Limits of rebuilding source code

Forms of compatibility

The compeatibility virtuous cycle

System compatibility board

Responsibilities with regard to compatibility
Interface access and interface status
Versioning

Future-proofing interfaces

10 Managing testing

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Beyond complete testing
Testing in context
Functional tests

Basic Acceptance Tests
Specialist tests

Friendly User Tests
Mandatory tests
Automated tests

11 Managing tools

11.1
11.2
11.3
11.4
11.5
11.6
11.7

The need for a tools champion
Debuggers

Emulators

Profilers and loggers

Static code analysis

Build system

Distribution system

88
89
90
93
95

97
97
98

100
102
103
104
105

107
107
108
110
111
112
113
114
116
117

119
119
120
121
123
123
125
128
128

131
131
132
135
136
137
139
141

X CONTENTS

11.8 Miscellaneous tools 142
11.9 Dangers with tools 143
12 Managing plans and change 145
12.1 Beyond complete planning 145
12.2 Causes of change 147
12.3 Handling change requests 148
12.4 Variable task estimates 151
12.5 Practical example of agile scheduling 154
12.6 Accepting slack 154
12.7 Aggressive vs. defensive scheduling 156
12.8 Authentic vs. inauthentic scheduling 158
12.9 Beyond meeting customer requests 159
13 Managing uncertainty 161
13.1 The 80-20 rule for planning 161
13.2 ldentifying the project planning hot list 162
13.3 lterating the project plan 163
13.4 Developing features outside the agreed core 165
13.5 The 80-20 rule for task estimation 167
13.6 Typical project trouble spots 168
13.7 Pros and cons of milestone reviews 169
13.8 Dealing with milestone delays 171
13.9 Cut features not corners 172
14 Simplifying smartphone projects 175
14.1 Beyond difficulty 175
14.2 Reuse rather than reinvent 176
14.3 The benefits of frequent releases 177
14.4 Symbian’s adoption of the frequent
release model 179
14.5 Use of reference designs 181
14.6 Silver bullets vs. disruption 182
Part 3 Symbian’s design philosophy 185
15 Design goals for Symbian OS 187
15.1 The birth of EPOC32 187
15.2 Defining the EPOC RISC architecture 188
15.3 Software goals from 1995 189
15.4 Separating the engine 192

15.5 Nine passions 193

CONTENTS xi

16 Designing for efficiency 197
16.1 The original electronic organizers 197
16.2 Limits of Moore’s Law thinking 198
16.3 Causes of code bloat 200
16.4 Designing algorithms 202
16.5 Understanding the compiler 204
16.6 Adopting OO 205
16.7 Selecting C++ 207
16.8 Text descriptors 209

17 Designing for robustness 213
17.1 Alloc heaven 213
17.2 Expecting the unexpected 215
17.3 The perils of multitasking 216
17.4 Exception handling 217
17.5 Common mistakes in destructors 219
17.6 Seeking out failure cases 220
17.7 Attitudes towards defects 220
17.8 Protecting the smartphone vital assets 222

18 Designing for usability 225
18.1 “The operation was a success,

but the patient died” 225
18.2 Enchantment 226
18.3 Designing the user interface 227
18.4 Multimedia performance 229
18.5 Understanding the real competition 229
18.6 Customer orientation for developers 230
18.7 Designing panics 231

19 Designing for longevity 233
19.1 Preparing for variants 233
19.2 Be ready to fail fast 234
19.3 Prepare your own SDK 235
19.4 The value of codevelopment 236
19.5 Basic principles for reusable solutions 237
19.6 The value of architecture 238
19.7 The value of ignorance 239

20 Designing for smartphones 241
20.1 The licensing question 241
20.2 Focus on strategy 242

20.3 Smartphone heritage 244

xii CONTENTS

20.4 Active objects

20.5 Power management

20.6 Beware stray signals

20.7 Final comments on asynchronous events

Part 4 Human aspects of smartphone
projects

21 The essential role of the project manager
21.1 Focus
21.2 Project manager vs. technical lead vs. product
manager
21.3 Project review meetings
21.4 Commercial negotiations with third parties
21.5 Project manager authority

22 The essential role of the support network
22.1 Pros and cons of support consultants
22.2 Cultivating connections
22.3 Building a team out of nothing
22.4 Helping consultants to be effective

23 The essential role of renewal
23.1 The role of the post partum
23.2 Line management skills
23.3 Circulation of team members
23.4 Principles of collaboration
23.5 The increasing importance of software
23.6 A guide for software leaders
23.7 Symbian OS renewal

Appendix 1 Annotated glossary of abbreviations
Appendix 2 Selected bibliography
Appendix 3 Acknowledgments

Index

246
247
248
249

251

253
253

254
255
257
258

261
261
263
264
265

267
267
268
269
270
272
273
274

277
285
289
291

Introduction: projects,
projects, projects

| dedicate this book to everyone interested in the exhilarating task
of creating smartphone products using Symbian OS. That task is
exhilarating because it is, at times, both truly hard and truly rewarding.
My goal with this book is to make the task less hard, and even
more rewarding.

My target audience comprises project managers, product man-
agers, development managers, design authorities, system architects,
quality managers, software engineers, technical consultants, and
industry analysts — everyone involved in creating smartphone prod-
ucts (whether these products are complete smartphones or appli-
cations or services designed to be used in close conjunction with
smartphones). The book should be particularly valuable to the people
who assemble and run an overall development team, as well as to
their advisors, and the people who aspire to this level of responsibility.

In the chapters ahead, | condense key practical learnings from my
own helter-skelter experience of breakthrough product development
and market development at Symbian and Psion (the original parent of
Symbian). For the best part of two decades, | have lived through one
demanding ““urgent and important” project after another, assisting
the creation of numerous connected mobile devices — laptop orga-
nizers, handheld PDAs, and (over the last nine years) more than one
hundred different mobile phones. The experience has been fraught
with challenges, but rich in lessons learned.

| had the good fortune to be recruited into the software develop-
ment team at Psion in early 1988. Since then, | have been successively
immersed in virtually every department in Psion and Symbian:

Q In the early 1990s, | managed teams that created highly successful
software for SIBO, the 16-bit predecessor of Symbian OS (see the
glossary in the appendix for help with acronyms)

Q | went on to lead the build and integration team for version 1
of Symbian OS (then known as ““EPOC32”), and created the

2 INTRODUCTION: PROJECTS, PROJECTS, PROJECTS

architectural framework for its Ul and applications. Many of the
source code files for Symbian OS still contain references to me
as their originator — identified either as “’DavidW’’ or “DWW" or
sometimes “‘dw2”’

As a founder director of the Psion Software division in 1996, | took
part in numerous sales and strategic review meetings leading in
turn to the formation of Symbian in July 1998, when | was one
of the founding team of four EVPs (along with Stephen Randall,
Bill Batchelor, and Juha Christensen) reporting to Colly Myers,
Symbian’s first CEO

From 1998 to 2002 | headed Symbian’s Technical Consulting
department, building and directing teams that worked with Sym-
bian’s customers to create the world’s first smartphones

During 2002 and 2003 | held the position of EVP of Part-
nering, supervising the rapid growth of Symbian’s partnering
programs, working with companies throughout the emerging Sym-
bian ecosystem to help them lay strong foundations for technical
and commercial success

Since 2004 | have been Symbian’s EVP of Research, responsible for
a series of collaborative cross-functional research projects, focused
on improving the competitiveness and value of Symbian’s overall
offering. This position gives me the chance to indulge my passion
for education and knowledge sharing — including taking the time
to write this book.

The book covers material that is one or more levels up from the purely
technical. I avoid discussing specific APIs (Application Programming
Interfaces: the programming methods of the C++ classes that make
up Symbian OS), since there are already many fine books covering
that level (see www.symbian.com/books). Instead, | cover the general
principles governing:

00 0oDO

The use of these APIs

The design of these APIs, and the philosophy behind them

The way to organize teams to make best use of these APIs

The methods that are most likely to deliver commercial success
when using Symbian OS

The wider significance of Symbian OS skills and expertise in the
evolving mobile marketplace.

Symbian OS is designed for phones — actually for a new kind of

phone, called a smartphone. The story of Symbian OS starts with the
story of smartphones.

Symbian in context

[N Sy Ry S R R [y) O00DO00D0O0 =

000000 w

At the heart of the smartphone revolution

The phenomenon of smartphones

Taking advantage of the smartphone opportunity
The role of the smartphone operating system
Regarding APIs and operating systems

Why Symbian OS?

Aside: from organizers to smartphones

Coming to terms with Symbian OS

The big picture of a Symbian OS project

High-level components of a smartphone

Providers of integrated solutions

The commercial model of a smartphone project

Some conclusions from the smartphone commercial model
Typical smartphone project timescales

Warning regarding timescales

Factors influencing project timescales

The big picture: beyond timescales

Involving ISVs

ISV smartphone opportunity and risk
Beyond technical skill-sets

Different routes to market

Symbian endorsements

Companion Technology Program
Symbian Signed

Part 1 (continued)

4
m}
w}
m}
w}
m}
w}
m}
m}
m}
m}

Twenty reasons why smartphones will win
Two kinds of battle
Multitasking

Messaging and entertainment
Mobile knowledge access
Organizers and finance
Pocket consolidators

Social tools

Personal development
Phones win

Openness wins

1

At the heart of the
smartphone revolution

1.1 The phenomenon of smartphones

Mobile phones are phenomenal. Today, one quarter of the earth’s
population owns a mobile phone. But only a few years ago, mobile
phones were the stuff of science fiction. As such, mobile phones are
arguably the most successful item of consumer electronics in history.

Mobile phones owe their phenomenal success to the fact that they
satisfy some deep-seated human needs:

Q First, they provide extra means for people to communicate — to
explain, to speculate, to chat, to inform, to plan, to replan, to
inquire, to instruct, to entreat, to woo, and to give thanks. We
humans have a great deal to communicate; the amount of money
we collectively spend on mobile phones shows that we are heartily
grateful to them for increasing our communications power

O Second, mobile phones boost their owner’s sense of safety. Their
owners strongly appreciate that, in times of major or minor emer-
gency, they can connect to people and services that are important
to them

O And third, mobile phones have become veritable objects of fashion,
which their owners can show off, complete with their customizable
covers, chart-topping ringtones, wacky homespun messages, and
personalized image backgrounds. We all like to be unique; our
phones increasingly help us to stand out from the crowd.

Each new generation of mobile phone meets the above needs in ever
richer ways, for example adding text messaging to complement voice
calls (or predictive text input to ease the creation of text messages),
or new kinds of audio and graphics. At the same time, each new

6 AT THE HEART OF THE SMARTPHONE REVOLUTION

generation improves the portability, robustness, reliability, and basic
usability of the phone. Batteries last longer, the phones themselves
are lighter and smaller, the voice of the remote caller sounds clearer
and louder, and the phone is increasingly resilient against misuse. In
short, mobile phones are becoming better and better.

But the best is yet to come. Our current favorite mobile phones,
valuable though they are, are dumb and impotent when compared to
the new types of phone that will become increasingly commonplace
over the remainder of this decade.

These new phones provide much greater levels of intelligence to
their users. This intelligence resides partly in the phones themselves
and partly in the ever-smarter networks into which they connect.
This intelligence is a potent combination of hardware and soft-
ware —a compelling mix of data and algorithms. In recognition of
this increased intelligence, these phones are collectively described as
“smartphones’’.

Smartphones are phones — great phones — but they are also much
more than phones. Smartphones are rich mobile personal gateways
into the digital universe —a universe that keeps on expanding and
growing in importance. It is a universe that combines content, com-
merce, computing, and community. It is the home of google.com,
ebay.com, amazon.com, yahoo.com, bbcnews.com, slashdot.com,
aol.com, msn.com, espn.com, expedia.com, multimap.com, play-
boy.com, pokerroom.com, everquest.com, friendsreunited.com, last-
minute.com, and much, much more. You can access this universe
through a mobile web-browser — as provided on smartphones — but
you can also access it through dedicated smartphone interfaces that
make the experience more intuitive, more engaging, and more valu-
able. And just as the digital universe is steering the evolution of
smartphones, the increasing prevalence of smartphones will steer the
next phase of the evolution of the digital universe.

Smartphones occupy the tumultuous intersection space where four
powerful contemporary trends collide.

Q The first trend is that software is becoming ubiquitous. Inanimate
objects all around us are becoming smarter and smarter. High-
powered software, once found only in stationary computers, now
flourishes inside all manner of mobile devices

O Second, levels of communication keep on rising. More and more
types of message are being sent between more and more peo-
ple — and between more and more devices. Mobile smart devices
are constantly joining dynamic networks that potentially make
their users into even smarter individuals

TAKING ADVANTAGE OF THE SMARTPHONE OPPORTUNITY 7

Q Third, users are increasingly demanding an external simplicity in
the devices and tools they use (even though these devices abound
with inner complexity). Users have lost the patience to bother
with tedious operating manuals. Users want power, but they want
it easy

0 And fourth, users are demanding additional abilities to customize,
personalize, and adapt the devices and the tools that they use.
They want to be creators and innovators, not just consumers.
They want their devices to be unique and distinctive. This brings
programmability to the fore. It's where software becomes really
soft. It's where smartphones become really personal.

Because smartphones accompany their users almost everywhere they
go, they are the natural repository to adopt and then augment func-
tionality which previously required numerous different pocket-sized
devices. Wallets, tickets, keys, maps, cameras, PDAs, dictionaries,
phrase books, entertainment centers, and business communicators
are all in the process of being superseded by smartphones with con-
verged functionality. These ““always on” devices become ever more
central to the way users interact with the world. The consequences
will be phenomenal.

1.2 Taking advantage of the smartphone opportunity

It's no surprise that the commercial market for smartphones has
grown by at least 100% in each of the last three years. There are good
reasons why this growth should continue throughout at least the next
three years — reasons grounded in technological progress, networking
dynamics, and market evolution:

O Moore’s Law means that, for the same cost, more and more
powerful hardware can be supplied; tomorrow’s smartphones will
have as much computing power as yesterday’s PCs

0 New generations of phone networks (3G, 3.5G, 4G, and so on)
will allow the speedy transmission of ever larger amounts of data,
both satisfying and whetting still more user demand

Q More powerful devices and more powerful networks jointly enable
the provision of attractive add-on services, created by third parties,
which in turn increase the market pull for devices capable of
supporting such services

8 AT THE HEART OF THE SMARTPHONE REVOLUTION

O The cumulative operation of software means that new services
and applications can piggy-back on the functionality and power of
previous services and applications, with striking, innovative results

O Many of these services are community-oriented: the more people
who take part in these services, the more valuable these services
become (this is sometimes called Metcalfe’s Law)

O As people discover the benefits of mobile online gaming, mobile
commerce, and so on, they will spread this message by word-
of-mouth, so that the communities of smartphone users swell
in size

O Phone network operators have a strong interest in ensuring that
phone users are attracted to make regular use of services that
involve greater amount of data transfer (and which therefore attract
higher fees).

In short, smartphones are at the heart of a powerful virtuous cycle
(see Figure 1.1). Improved phones, enhanced networks, novel appli-
cations and services, increasingly savvy users — all these factors drive
yet more progress elsewhere in the cycle. Applications and services
which prove their value as add-ons for one generation of smartphones
become bundled into the next generation — much the same as hap-
pened for PCs in the 1980s and 1990s (except that the market for
mobile phones is an order of magnitude larger than that for PCs). The
cycle is so vigorous that we can call it a revolution: the smartphone
revolution.

Standard open mobile OS
Rich component technologies
(hardware & software) Handset

manufacturers
Consumers & J
entejii,si/ A
= Large volumes of
Mobile services, advanced open
content & apps: Symb.an programmable
boost revenues mobile phones
(both data & voice)
Networks
Developers Enhanced 2.5G and 3G
a/,/ networks: S
~ - packets, high bandwidth,

good roaming, low latency

Figure 1.1 The smartphone market virtuous cycle

THE ROLE OF THE SMARTPHONE OPERATING SYSTEM 9

No wonder, therefore, that there is such a strong interest in the
question of how best to add new functionality and new services into
these awesomely powerful devices.

This is a question with a lot riding on the answer. It is the
central question that | address in this book. The answer will allow
companies and individuals to take full advantage of the smartphone
opportunity.

The answer has two parts:

O The first part of the answer is Symbian OS — the de facto standard
operating system for the emerging generation of advanced mobile
phones

O The second part of the answer is the set of skills and expertise
necessary to successfully complete projects using Symbian OS.

1.3 The role of the smartphone operating system

The single most important factor to appreciate, when contemplating
the ongoing growth of smartphone opportunities, is the role of Sym-
bian OS. Although invisible to the majority of end-users, Symbian
OS is the internal plumbing that enables the fruitful collaboration of
countless smartphone technologies. Its combination of efficiency and
sophistication make it both future-proof and highly fit-for-purpose. At
the time of writing, there are already more than 32 million phones in
the world that run Symbian OS. By the time you read this, the number
will be significantly higher.

It often comes as a surprise to people that operating systems are
important in mobile phones. Most consumers have bought mobile
phones without giving a moment’s thought to what (if any) oper-
ating system might be included in the phone. However, like any
device with a significant quantity of software, mobile phones do have
operating systems.

Briefly, on a smartphone, the operating system has to fulfill the
following requirements:

O To make it easy for the applications on the smartphone to
take advantage of the power of the phone hardware and the
phone network

O To avoid different applications clashing with one another -
preventing, for example, two applications from drawing to the
same part of the screen at the same time, or storing data to the

10 AT THE HEART OF THE SMARTPHONE REVOLUTION

same part of memory storage, or interfering with each other’s
network communications.

Without an operating system, all the different applications would
have to delve into the lower levels of the phone hardware and
phone network, and would need a huge amount of knowledge of
these elements. They would also need to know about all the other
applications, in order to coexist peacefully with them.

The greater the number of applications on a phone, the greater
is the need for a sophisticated operating system. This is especially
important when you consider that any given smartphone will in
general contain applications from a number of different sources:

Applications provided by the supplier of the operating system
Applications provided by the phone manufacturer

Applications provided by the network operator

For phones used in a business setting, applications provided by the
corporate IT department

Applications sourced from third parties by the phone manufacturer,
the network operator, and the corporate IT department

0 Applications downloaded by end-users, or purchased in retail
outlets.

O00oOo

O

The numerous different authors of these different applications gener-
ally have little interest to delve individually into the lower levels of
phone hardware and phone networks. On the contrary, these authors
are keenly interested to have their applications running on numer-
ous different phones and different networks (so they don’t want to
become specialists for just one phone). It is much more productive
for these authors to be able to write to the application programming
interfaces (APIs) provided by an operating system, confident in the
knowledge that the same APIs will work on a wide range of different
phones and networks — even though these phones and networks vary
among themselves in many ways. It is the role of the operating system
to deal internally with the variations between the different phones
and networks.

| spoke earlier of the powerful virtuous cycle involving smart-
phones. However, this virtuous cycle depends on the APIs being
common between many different phones. Without this commonality,
it takes everyone much more effort to develop applications: the mar-
ketplace is too fragmented. With this commonality, applications that
are originally developed for phones by manufacturer A can be used,
as well, on phones by manufacturers B to Z, frequently without any
changes being required.

REGARDING APIs AND OPERATING SYSTEMS 11

1.4 Regarding APIs and operating systems

Strictly speaking, the arguments I've just outlined do not (yet) demon-
strate the need for a single preeminent smartphone operating system.
To be accurate, the conclusion of these arguments is that there need
to be lots of common APIs for use by writers of smartphone applica-
tions. In principle, this need could be met by the existence of multiple
layers of APIs, with the operating system itself being of little interest to
the application writers. Examples are Java APIs, BREW APlIs (popular
on phones with Qualcomm chipsets), graphics APIs such as OpenGL,
and Internet standard APIs such as TCP/IP.

In this way of thinking, the actual operating system has less
importance: some smartphones will use one operating system, others
a second, yet others a third, and so on. The names of the operating
systems will be no more likely to enter the public consciousness than
the names of the diverse operating systems which have been used to
create non-smart mobile phones.

There is some merit in this way of thinking. The sets of APIs
mentioned — along with many others — do have a vital role to play.
They make it easier for developers to write certain types of application
(and certain parts of other types of application). However, these API
sets, by themselves, are not sufficient to enable the full flowering of
smartphones. More is needed — namely a programmable operating
system that underlies and embeds these API sets. As I'll explain in a
moment, there are three main reasons for this: performance, scale,
and openness.

To make this easier to discuss, here are two definitions:

O Phones are “‘natively programmable’ if application writers can
access (relatively easily) the same set of APIs as are used by the
operating system itself

Q In contrast, phones are “'restrictedly programmable’” if application
writers are in practice restricted to higher levels of standard APIs
(such as those mentioned earlier).

These definitions are fuzzy (... relatively easily” and *’.. . in practice
restricted’”) since an application writer can, with sufficient effort, find
out how to program at the native level of virtually any phone. To that
extent, all mobile phones are natively programmable. However, the
key question is the degree of effort required, and whether that effort
can be reapplied with profit on lots of different phones. If the effort
required to access the native APIs is broadly the same as to access the
functionality at higher levels of the phone (graphics, Ul, TCP/IP, etc.),
and if the same APIs exist on a wide number of different phones, then

12 AT THE HEART OF THE SMARTPHONE REVOLUTION

(by my definition) the phone is natively programmable. In contrast,
phones whose main APIs are Java APIs or BREW APIs are restrictedly
programmable.

Here are the principal benefits of native programmability versus
restricted programmability:

Q Performance: native programming delivers greater speed and
power, since it bypasses the need for conversion layers or
intermediate virtual machines over lower level software. For
many types of software, restricted programmability gives sufficient
speed. However, in many other types, the additional speed of
native programming is required. Suppliers of virtual machines
unsurprisingly point out the increases in performance available
from their virtual machines, from one version to the next. Indeed,
these improvements are real. However, at the same time, the
amount of data needing manipulation also increases, owing
to screens having higher resolution, wireless networks having
higher throughput, and users becoming accustomed to storing and
accessing more data on their phones, etc. The result is that, for
the foreseeable future, there will remain plenty of examples where
owners of restrictedly programmable phones will find some of the
apps on these phones to be annoyingly sluggish in performance

O Scale: a native APl set contains many more functions than
restricted ones. So long as an application is simple and well-
defined, a restricted API set is often sufficient to implement it.
However, competitive pressures (from the market, from enterprises,
and from end-users) keep identifying new requirements for
applications to meet. For example, there is often competitive
pressure for add-on applications to behave in certain aspects
“the same way as built-in apps”. It is much easier to add in
the new functionality when programming at the native level.
Otherwise, the developer has to wait until the intermediate APIs
have been extended

Q Openness: this is an important expansion of the previous point.
The best new applications frequently combine together, in unfore-
seen ways, functionality from two or more different components
of functionality in the phone. Or, they may provide new domain
expertise, for a subject matter previously not expected to feature
on a smartphone, and combine this with aspects of the core func-
tionality of the smartphone. This requires programming at several
different levels at the same time. This is where an open, unified set
of APIs has great advantage.

WHY SYMBIAN OS? 13

1.5 Why Symbian OS?

To recap: because the number and scope of applications on smart-
phones is substantially increasing, there is great benefit in there being
a set of natively programmable APls, common across a wide range
of phones, for the authors of these applications to use. For optimal
results, these APIs should dovetail smoothly into the lower levels
of the operating system, providing applications with power, wide
capability, and a strong measure of being future-proof.

That's the case for there being an operating system used across
many different smartphones. Now it’s time to state the case for this
operating system being Symbian OS —as opposed to some of the
other operating systems that have from time to time been proposed
for this same role.

The simplest argument refers to the size of the installed market.
Worldwide, there are around five to ten times as many phones running
Symbian OS as running any competing open operating system. Each
of the top six phone manufacturers (as measured by volume sales)
have launched Symbian OS phones, or are in the process of doing
so: Nokia, Motorola, Samsung, Siemens, LG, Sony Ericsson. Other
phone manufacturers who have successfully launched Symbian OS
phones include Fujitsu, Panasonic, Mitsubishi, Sendo, and BenQ.
Sales volume is the biggest driver of platform confidence: the value
network (“ecosystem”’) naturally invests in volume platforms (refer to
Figure 1.2). Volume drives value, and in turn, value drives volume.
The platform with the largest sales experiences a “tipping point” and
comes to strongly lead the whole market.

So, in very practical terms, Symbian is at the heart of the smart-
phone revolution.

It is important to understand the factors responsible for Sym-
bian attaining this leading position. These factors apply long-term,

<< D

Platform Value S
Volurﬁé sales

Operating system Complementors

N

Figure 1.2 The Symbian OS open virtuous cycle

14 AT THE HEART OF THE SMARTPHONE REVOLUTION

and mean that Symbian’s leadership position has every chance of
continuing throughout the foreseeable future:

QO Symbian was created by the phone industry, for the sake of the
phone industry

Q The roots of Symbian OS are in connected handheld devices (Psion
organizers). Symbian OS was forged in an environment where the
following principles had the highest priority: data integrity, high
software performance on hardware with limited power, efficient
usage of memory, long battery life, the robustness of the overall
software system even in the face of potential errors in individ-
ual applications, the preparedness of applications for new event
sources (such as communications input), and user enchantment
(enchanting the user was always much more important than tech-
nology for technology’s sake). These principles were far more than
mere words; | remember countless unscripted discussions over cof-
fee or at the water cooler where engineers agonized (out of their
own volition) over how best to follow these principles through
actual software development

O Symbian avoids dictating the user interface or basic phone design
to customers. Symbian’s customers can create products that are
very far from being clones of each other. However, the resulting
differentiation of products is achieved without fragmenting the
underlying software system. Profound attention to architectural
principles has resulted in a platform that supports the holy grail of
“differentiation without fragmentation”’

O As far as it is ever possible to trust other companies within the
phone industry, Symbian is trusted by its customers. It is clear to
our customers and partners that Symbian plays at only one point of
the value chain: Symbian has no aspirations to make money from
server-side technology, from tools, from add-on applications, from
PC applications, etc. Symbian’s revenue is dominated by income
from licensing; Symbian’s focus is entirely on the operating system.
Our customers have no fear that we will start to encroach on their
part of the value chain

O Another important mark of the trust between Symbian and the
companies within the Symbian ecosystem is the very significant
extent of sharing of source code that takes place. This accelerates
the understanding, debugging, and optimization of software com-
ponents, and makes it easier for partners and customers to create
variant innovative solutions

WHY SYMBIAN OS? 15

O Because of this formidable degree of trust, Symbian’s customers feel
comfortable to share with Symbian their own sober assessments
of the evolution of the phone industry, together with their own
planned product roadmap, and the technology requirements of
forthcoming products. In this way, Symbian has in effect by far
the largest product management group in the industry, working
on its behalf. This mega-grouping provides extraordinarily useful
guidance on how to evolve Symbian OS, which in turn further
benefits our customers and the whole smartphone industry

O Symbian’s learnings from customers go beyond the formal learn-
ing from official roadmap reviews and the like. They involve
numerous nuggets of practical insight gained in the heat of actual
project engagement. In each phone implementation project, there
are aspects of the development that are awkward or particularly
demanding. By reflecting on these issues, Symbian has constantly
evolved Symbian OS, with each new version incorporating lit-
erally hundreds of major and minor improvements arising from
previous projects. Step by step, year by year, Symbian has built
up a tremendous body of knowledge embodying unprecedented
intellectual capital and collective experience of smartphones

Q As a result of the foregoing, Symbian OS has become much more
than simply ““an operating system”. It contains around 10 mil-
lion lines of source code, and delivers an astonishing variety of
telephony middleware — software that provides rich APIs enabling
add-on applications and services. Perhaps this is the biggest single
difference between Symbian OS and competing candidate smart-
phone operating systems: the depth of the functionality provided
(over and above the core operating system), that meets the needs
of present and future smartphone applications

O Symbian has been focused since even before its inception on
the subject area of smartphones. Unlike other companies, there
is no distraction from semi-related areas, such as PC software,
standalone PDAs, other embedded software, and so on. Symbian
has always been able to deploy the “A team’”” on the key smart-
phone issues, rather than a B team or C team. Smartphones are
significantly different from all these other kinds of product, and
deserve the highest quality of attention. That's what Symbian has
been able to supply, consistently, for nearly a decade. No other
company in our space comes close to this level of dedication

Q Other companies may seek to catch up with Symbian OS, but
Symbian OS itself continues to leap forward with giant strides. At
the last count, Symbian has just over 1000 in-house personnel,

16 AT THE HEART OF THE SMARTPHONE REVOLUTION

all focused on improving Symbian’s product offering. So far, more
than one quarter of a billion UK pounds has been invested in the
development of Symbian OS. The result shows!

1.6 Aside: from organizers to smartphones

Before there were smartphones, there were smart organizers. During
the 1980s, Britain’s Psion was the world-leader in the creation of
handheld electronic organizers. Due to wide press coverage in the
UK, | was well aware of the Organiser Il even before | started work
at Psion in June 1988. | confess that, initially, I was not keen on the
product concept. Somehow | had picked up the idea that electronic
organizers were for “'yuppies’” (the pejorative name given at the time
to young, upwardly-mobile professionals) — a set of people who (in
contrast to the ““hippies” of a previous generation) were said to be
thrusting and self-interested. | did not care to become a yuppie.

But since | had taken a job at Psion, | thought | should find out more
about their product, and I started keying my address book into a brand
new Organiser Il. It did not take me long to realize the considerable
benefits of the electronic organizer over the paper-and-pencil version
that | had previously used:

O The paper-and-pencil version was full of messy crossings-out and
duplicate entries

Q The electronic version could be searched, instantly, in numerous
ways — just type “‘Plumber’”” even if you forgot the actual name of
the plumber, or “Restaurant’’ to find all restaurants listed.

Although the Organiser Il had a swathe of other applications available,
it was the contacts application that made the really big impact on me.
(Later, | also came to rely heavily on the alarms app.)

A few weeks later, one of my colleagues pointed out that | ought
to backup my organizer. He pointed out that it was much easier
to backup an electronic organizer than to laboriously photocopy
every page of a paper-and-pencil address list. That made sense to
me. Apparently electronic backup would require a ““comms lead”, to
connect the organizer to a desktop PC.

Alas, although my first experience with an organizer was good,
my first experience with comms was bad. After a bit of squirreling
around, I found a comms lead and plugged the organizer into a PC. A
few moments later, everything froze. The organizer would no longer
respond to keypresses.

COMING TO TERMS WITH SYMBIAN OS 17

Another colleague, noticing my predicament, stopped by my desk
and helped me out by resetting the organizer. After it restarted, there
was no data to be seen on it. ““l hope you had a backup of that”” was
the advice | received. Whoops.

So I learned three lessons:

Q Backup is important!
0 Comms is hard!

O Take care over configuration management: you need to know what
versions of hardware/software you're using (apparently the comms
lead I had picked up was known in the department to be defective,
but it was still kept around for testing purposes).

Anyway, | typed in my data again. Seventeen years later, | still carry
some of the descendants of that data with me, everywhere | go. |
know which entries are seventeen years old because these are the
ones typed with all letters in upper case. | only learnt to switch
data entry into lower case when | upgraded my Organiser Il from a
two-line version to a four-line version in the following year.

Even before the Organiser Il there had been an Organiser |, with just
a one-line display. Amazingly, lots of applications were written even
for these restricted screen sizes, including a spreadsheet application.

The evolution of organizer screen size (one line, two lines, four
lines, and then a full graphics display) mirrored the subsequent
evolution of mobile phone screen size. The two device families
had lots of other things in common: small batteries, deliberately
under-powered hardware, highly demanding users (hence the support
for add-on applications), always-on fast start-up, hard requirements
of connectivity, and especially tough requirements on mobile data
integrity. The rare skill-set acquired by Psion along the way was
one of the key reasons that made Psion’s next generation software
uniquely suited to be the core of Symbian OS - at the heart of the
smartphone revolution.

1.7 Coming to terms with Symbian OS

Symbian OS provides the framework to develop advanced new
mobile phone solutions, and has the potential to dramatically accel-
erate the development of advanced mobile phone projects. However,
this acceleration only takes place if the leaders of these projects first
take the time to deeply appreciate how best to use Symbian OS.

18 AT THE HEART OF THE SMARTPHONE REVOLUTION

It is crucial to realize that Symbian OS requires special skill and
experience to use well.

There is no escaping the reality that the world of the new mobile
phones is tremendously complex. The goal of Symbian OS is to tame
the complexity and hide it from users, but that doesn’t make the
complexity go away (in fact, it actually makes the development task
even harder). For companies that wish to develop new mobile phone
solutions, a solid knowledge of the technicalities of Symbian OS is an
excellent starting point, but it's by no means sufficient. Sadly, without
the right overall set of skills and understanding, even great endeavors
with Symbian OS can lead nowhere.

This book covers the missing set of skills and understanding. It
is based on my experience with literally hundreds of Symbian OS
development projects and hundreds of partner companies within
the smartphone space. Some of these projects have been shining
successes, whereas others have, frankly, fared poorly. Over that time,
I have more clearly identified the issues that are key to determining
whether a development project with Symbian OS will be successful
or unsuccessful. The book you now hold in your hand highlights and
explains these key issues.

As it happens, the most significant of these issues is the caliber of
the people who are leading the software development process. It's
not a matter of the quantity of the resources or the size of the team; it's
a matter of the quality of the team leaders. Accordingly, | especially
dedicate this book to all software leaders. It is my earnest desire that
these leaders can take good advantage of the advice in the following
pages, in order to create truly outstanding products which yield high
value both to their companies and (in time) to hundreds of millions
of mobile smartphone users.

2

The big picture of a
Symbian OS project

2.1 High-level components of a smartphone

A product based on Symbian OS typically includes, and interfaces
with, numerous software and hardware components. This is true
whether the product is:

O An entire smartphone

O Designed to be used in conjunction with existing smartphones, as
an “‘add-on”’

0 Designed to be incorporated in forthcoming new smartphones, as
a “build-in".

In all three cases, it is important to understand the relationships
between the high-level components that make up a smartphone.
From the point of view of a Symbian OS project, these components
include the following:

Q The silicon chips on the phone — including the ““application pro-
cessor” (AP) and the “‘baseband processor’” (BP); note that these
are sometimes combined into a single chip

O A wireless signaling stack, running on the baseband processor,
which talks to the wireless network and implements the GSM
and/or CDMA protocols

Q Symbian OS itself, running on the application processor

0 Communications between the two main chips (often known as
“ISC”” — “Inter Systems Communications’’)

Q Graphics, audio, and other multimedia components (often includ-
ing many software plug-ins to implement specific items of multi-
media functionality)

20 THE BIG PICTURE OF A SYMBIAN OS PROJECT

Q Other aspects of the hardware design of the phone — including
keypad, antenna, battery, etc.

Q The Ul system — such as UIQ), Series 60 from Nokia, or the FOMA
Ul used by NTT DoCoMo phones

Q Third-party applications

O Third-party software that enables extra applications.

Upwards of a dozen companies can be involved as suppliers of the
above components. From this fact, two important principles follow:

0 One of the fundamental tasks in a smartphone project is that of
integration — making sure that the individual components work
well together

O Another fundamental task in a smartphone project is manage-
ment of relations with suppliers. This covers both technical and
commercial aspects of the relationships.

Conversely, here are two of the principal mistakes that leaders of
Symbian OS projects can make:

Q Putting too much focus on innovation (writing new software)
whilst neglecting to apply the effort required to ensure that the
new software and all the old software work together harmoniously

Q Putting too much effort into managing the internal team, with-
out also attending to managing external suppliers — neglecting
to finalize important contractual details, which end up delaying
the project.

2.2 Providers of integrated solutions

A major service that can be provided by a small number of third
parties is that of providing an “integrated solution”” for a smartphone
project. In this idea, the provider of the integrated solution takes
care of the majority of work of integration and supplier management,
leaving it to the original project team to concentrate more on the
provision of innovation and style.

See www.symbian.com/partners for a list of companies that can
act as integrated solutions providers.

Some providers of integrated solutions base their solutions on
“smartphone reference designs”. These designs allow companies

THE COMMERCIAL MODEL OF A SMARTPHONE PROJECT 21

with limited prior experience with Symbian OS to bring smartphones
to the market quickly. See Chapter 14 for more details.

Deciding whether to contract an integrated solution provider (and
if so, which one) is one of the key choices that the smartphone project
leader needs to make. A good integrated solution provider can make
a great difference to the effectiveness of project delivery. Here are
some points to keep in mind:

Q In view of the complexity of the overall technology, it is hard to
find a single company that can provide expertise in all aspects of
smartphone project delivery

0 Some companies may be experts in some choices of silicon, but
not in others; likewise they may be experts in some Ul systems, but
not in others; likewise for their degree of knowledge of different
major versions of Symbian OS. So check them out carefully, before
signing contracts

O Any company that is interested in carrying out a series of different
Symbian OS smartphone projects may prefer (over time) to grow
Symbian OS expertise in-house, rather than becoming dependent
on an external company; this argues for a partnership model
of working with an integrated solutions provider, rather than a
dependency model

Q It is important to achieve a good cultural fit between any selected
integration solution provider and the main project team

Q In general, you get what you pay for: if you skimp on the costs
of the integrated solutions provider, by selecting one with lower
charge rates, you are likely to get poorer quality.

2.3 The commercial model of a smartphone project

Smartphone projects vary greatly, on account of their scope and
ambition. For example, a project that incrementally extends an exist-
ing, successful smartphone product requires many fewer resources
than a project to create a smartphone product platform from scratch.

Here are some illustrative figures describing a reasonably major
innovative smartphone development project.

At peak times during development, there may be up to 120
full-time equivalent (FTE) people working on the project (including
employees, contractors, and consultants). If the project goes well, the

22 THE BIG PICTURE OF A SYMBIAN OS PROJECT

[Project completes on time (9 months)|

100 -

80 1

12 months maintenance

60 1

40 1

20 A

1 3 5 7 9 11 13 15 17 19 21

Figure 2.1 Resourcing profile I (percentage of peak)

main development phase might last nine months, with a resourcing
profile as in Figure 2.1.

So, in this profile, there are 120 FTEs assigned to the project in
month 7 (that is, 100%), but only 48 FTEs in month 1 (that is, 40%).

Figure 2.1 also shows the continuing assignment of people to the
project throughout the twelve months after the product reaches the
market. These resources are needed for support and maintenance
purposes (defect triage and fixing, mid-life silent updates, and so on).

If the project goes less well, the development phase might be
considerably extended (see Figure 2.2). In this case, the development
takes an additional five months (all clocked at 100% of peak effort).
The maintenance period is shorter —only seven months instead of
twelve —since (other things being equal) the sales window for the

| [Project delayed by 5 months|

100 ¢

80 1

60 1

40 1

20 1

3 15 17 19 21

Figure 2.2 Resourcing profile Il (percentage of peak)

THE COMMERCIAL MODEL OF A SMARTPHONE PROJECT 23

product will be shorter, as the product has missed its intended
market slot.

Let's assume that the average fully-loaded cost of one FTE is
$150,000. This results in the following range of development costs
(including also the maintenance period):

Number of months delay Total development
(from intended schedule) cost (USD)

0 12,825,000

1 14,250,000

2 15,675,000

3 17,025,000

4 18,375,000

5 19,725,000

So, the development cost ranges from around 12 to 20 million US
dollars.

Next, let’s consider the income expected to be realized from this
project. Suppose that the resulting smartphone can sell 500,000 units,
providing it hits its intended market window. (As with the estimate
of development effort, the estimate of sales units will vary very
considerably, depending on numerous factors. Here, I'm assuming a
modest middle-of-the-road outcome.)

Typically, sales ramp up over the initial sales period, as production
takes some time to reach full speed. Then sales drop off, as the
product loses its novelty factor, and on account of competition from
newer products. Figure 2.3 illustrates such a unit sales profile.

|I Project reaches market on time |

i 2 383 4 5 6 7 8 9 10 11 12

Figure 2.3 Sales profile I (thousands of units monthly)

24 THE BIG PICTURE OF A SYMBIAN OS PROJECT

In case the product launch is delayed, assume that the sales in a
month are the maximum of:

Q The figure above — which represents the ““market threshold” for
the product at any time

Q The time-delayed version of the above figure — representing the
time taken to ramp up production.

So, for example, if the product is five months late in reaching the
market, the unit sales would be as in Figure 2.4. (There are only
seven months of sales in this case, instead of the twelve months if the
product reaches the market on schedule.)

The final factor to model is the income to the phone manufacturer
for each unit sold. This will also vary over time, with higher prices
being possible at the beginning of the sales period. Let’s assume that
the possible sales price (in USD) varies throughout the sales period
as in Figure 2.5. (This is the fee paid by the network operator to
the phone manufacturer. In general it differs from the price charged
by the retailer to the end-user, on account of subsidies, which the
network operator expects to recover through call charges over the
contract period.)

If each phone unit costs $150 to manufacture, this translates into
a profit per unit of $150 for a phone sold in the first three months,
a profit of $135 in month 4, and so on, down to a profit of zero
in month 13 (matching the fact that sales stop at this time). If the
phone is late to reach the market, the profit per unit drops off

| [Project delayed by 5 months |
50 1
40 = =
30 1 - I
20 1 —1 1
10 1 — i I
1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.4 Sales profile Il (thousands of units monthly)

THE COMMERCIAL MODEL OF A SMARTPHONE PROJECT 25

300 -

250 1]

200 1(]

150 1]

100 1]

50 1|

1 2 3 4 5 6 7 8

"9 10 11 12 13

Figure 2.5 Possible selling price, month by month (USD)

accordingly. (This assumes that, on average, other market conditions
remain the same.)
Putting everything together yields the following:

Months Development Number of Earnings Overall

delay cost units sold from sales profit
0 12,825,000 500,000 52,697,368 39,872,368
1 14,250,000 434,211 42,828,947 28,578,947
2 15,675,000 368,421 33,355,263 17,680,263
3 17,025,000 309,211 25,460,526 8,435,526
4 18,375,000 250,000 18,453,947 78,947
5 19,725,000 197,368 12,927,632 —6,797,368

Note the following:

O The column “earnings from sales” gives the income from sales of
smartphones, less their manufacturing cost

O This model neglects additional costs such as advertising

O The model averages out the effects of seasonal variation and special
promotional activities (for example, lowering price to stimulate

sales)

Q The model assumes a fixed manufacturing cost throughout, ignor-
ing the opportunity to secure better component pricing as vol-
umes increase.

26 THE BIG PICTURE OF A SYMBIAN OS PROJECT

2.4 Some conclusions from the smartphone
commercial model

Despite its limitations and simplifications, the above model allows
significant conclusions to be drawn:

O A project that over-runs its intended schedule by five months or
more may fail to realize any profit. On the other hand, a project
that keeps to its intended schedule can make a very handsome
return on its investment

O The benefits of maintaining the project schedule more than out-
weigh, financially, the incremental costs of some extra personnel
(such as consultants, managers, and technical specialists) who can
help keep the project running on track.

The following points also need to be stressed:

Q There is great merit in pursuing an evolutionary model of product
development: start by creating an initial product and then keep
on refreshing it. Introducing new features and capabilities will
prolong sales, for modest additional expenditure, and maintain a
high selling price

O New product variants to consider include: geographical variants,
variants for specific network operators, variants with different
styling, and variants for different market segments. In all cases, the
idea is to boost sales and maintain high selling prices, without
requiring a full (expensive) development cycle

O The customizability and platform nature of Symbian OS makes it
particularly suited to the creation of variants: phone manufacturers
can select numerous add-on products from the huge variety of
third-party suppliers within the Symbian ecosystem

O Symbian OS itself follows an incremental development model,
with the regular release of new versions that contain important
additional features and capabilities. Provided that phone man-
ufacturers conduct suitable advance planning, they are able to
switch over their own development programs mid-stream to take
advantage of the new releases, with minimal disruption

Q The above model assumes that the end product reaches the
quality level required by the marketplace (in terms of lack of

TYPICAL SMARTPHONE PROJECT TIMESCALES 27

defects); however, if the development process ends up cut-
ting lots of corners, quality is likely to suffer, with deleterious
impact on profits and brand reputation (in turn damaging future
sales).

| return to these points at various stages in the chapters ahead.

2.5 Typical smartphone project timescales

Just as the commercial models vary extensively between different
smartphone projects, so also do the timescales required for these
projects. However, once again, it is useful to consider the potential
timescale for a modest middle-of-the-road smartphone implementa-
tion project.

As above, if all goes well with the project, the development could
be completed within nine months.

This is made up of five months of main development, to the ““code
complete” point when all features are coded, followed by four months
of productization (verification that the product is ready to reach the
market — and fixing problems noticed during the verification).

As shown in Figure 2.6, other important activities proceed in
parallel throughout the nine months of development.

Stand-alone apps First Firstdata Code P Phone
running on target HW phone call context complete Productisation shipments start

Nz

Customisation of Ul and apps
Develop & integrate new apps
Full integration of software suite

Symbian OS polrii'n Software Field tests & IOP tests

base porting 9 integration / Software Certification & type approval
to target to GSM integration Operator approvals
hardware stack/ to GPRS stack

Communications, multimedia & security
plug-ins implementation

Performance tuning
functional testing
optimisation and stabilisation

Smooth processing of new releases/builds Smooth processing
from Symbian and other suppliers of software patches
1 2 8 4 5 6 7 8 9

Figure 2.6 Graphical representation of nine-month project

28 THE BIG PICTURE OF A SYMBIAN OS PROJECT

In more detail, the porting phase (lasting five months) breaks down
as follows:

O The project should allow six weeks for the base-port of Symbian
OS onto the target hardware. This assumes that a port of Symbian
OS onto electronically similar hardware already exists (otherwise
this part of the project will take much longer). These six weeks
will involve the tuning of device drivers for specific peripherals,
as well as the stabilization of the hardware itself (which typically
goes through several iterations at this phase of the project)

O The end outcome of this first phase of the project is Symbian
OS running with what is known as the “TechView” test user
interface. TechView is supplied by Symbian for test and porting
purposes. The next phase of the project involves porting an actual
commercial Ul onto the hardware. Another six weeks should be
set aside for this purpose

Q In parallel with the Ul port, the integration of Symbian OS with the
telephony stack (GSM or CDMA, etc.) should be taking place. This
can take around two and a half months. During this period, the
first voice phone calls can be made using the hardware (around
two and a half months into the project)

Q Also in parallel with the Ul port, but starting up to six weeks
later, the integration of Symbian OS with the data aspects of the
telephony stack will occur. This phase lasts around two months in
total. During this phase, the first data context will be established,
and applications such as web-browsing and multimedia messaging
(MMS) will start working properly

Q Throughout all this period, plug-ins specific to the product archi-
tecture will be developed. These include ISC plug-ins for commu-
nications between the two main chips (the AP and the BP — see
the glossary for a reminder of the meanings of these terms, and
others), and numerous plug-ins to the multimedia and security
subsystems.

The above steps all refer to porting existing working software onto
new hardware. In parallel with all of this, the project will in general
be sourcing and/or developing new applications, and customizing
existing applications and the Ul, as software-derived unique selling
points (USPs) of the phone.

The final four months of the project are known as “productiza-
tion” — a set of steps to ensure that the device is a saleable product:

WARNING REGARDING TIMESCALES 29

O User tests, involving as many people as possible who are repre-
sentative of typical users

O Formal field tests, involving the verification department of the
company

O Specialized tests, such as inter-operability tests (IOT), stress tests,
and tests of binary compatibility (BC)

0 Formal certification of individual components, such as Java and
Bluetooth, using industry-defined procedures and tests

Q Formal Type Approvals (as mandated by, for example, the GSM
authorities)

O Tests and acceptance by the operators who will support this phone

Q lterations to the product, arising from items found in the above
tests.

Of course, quality is not just something that is injected during this
final, productization phase of the project. The quality as verified
during this phase reflects the quality of work input throughout the
earlier phases. It is for this reason that the following activities take
place throughout the duration of the project:

a Functional testing
Q Performance tuning
O Optimization and stabilization.

Finally, throughout the project timescale, resources need to be set
aside to process incoming new versions (and, later in the project,
incoming new patches) of software from suppliers, such as Symbian.

2.6 Warning regarding timescales

| have written the above section with some trepidation. | am well
aware, from my experience, that many phone manufacturers (and
related companies) hold as a mark of pride a belief that they can
always aggressively optimize and improve on “‘standard project
timescales”. Because | have written that a typical project could
be completed within nine months, there will be many people who:

O Take this nine-month figure as a “‘worst case outcome’’
O Plan on completing a project in a significantly shorter duration.

So let me state again: there are very many factors that can cause
projects to last longer than this nine-month duration. Recall that in
the discussion of the commercial model of smartphone projects, |

30 THE BIG PICTURE OF A SYMBIAN OS PROJECT

considered projects that over-ran by between one and five months;
| did not consider any projects that completed earlier than this
schedule. That was deliberate.

2.7 Factors influencing project timescales

Paradoxically, one of the main factors that can cause smartphone
projects to over-run their schedules is over-optimism from the project
team. This over-optimism causes the team to cut corners. As in the
old saying, “‘more haste, but less speed”’, work that is done hurriedly
the first time usually takes a lot longer to fix afterwards.

Another old saying (from the poet Alexander Pope) is, “A little
learning is a dangerous thing”’. | mention this because another factor
that can cause smartphone projects to over-run their schedules is
incomplete knowledge by the project team leaders. Personally, | am
a great fan of optimism. Optimism fuels growth and accomplishment.
Give me optimism any day, over pessimism. However, when dealing
with a product as complex as a smartphone, it’s critical to couple
optimism with a committed willingness to deeply understand the
product domain, including the risks involved.

Having stated these important provisos, | now list some measures
that can help a project to keep to its target timescales. (Note: these are
not measures which can reduce timescales, but are measures which
can prevent timescales from becoming longer.)

0 Keep the product feature-set to an agreed minimum — leave fancier
things to follow-on projects

O Make sure that all software changes are reviewed by experienced
personnel

O Make sure that difficult processes are supervised by experienced
personnel

0 Take advantage of technology already developed and hardened by
previous projects (this is the principle, “‘reuse not reinvent”’); these
previous projects can include reference designs

O Take full advantage of the rich experience of personnel in the
supplier and partner companies

Q Provide an optimal working environment for the whole team

Q Avoid being over-thrifty on costs for consultancy, training, and
tools

THE BIG PICTURE: BEYOND TIMESCALES 31

0 Keep the project under the direct control of a highly focused senior
management review team.

Symbian OS phone implementation projects can be expected to take
longer than nine months if:

O A new Ul system is being developed (or there are significant
enhancements to an existing Ul system)

Q The project is the test bed (also known as “lead product”) for
some novel Symbian OS features — with considerable interaction
between Symbian and the project

Q The hardware is particularly novel and ambitious

O The launch of the phone is being aligned with forthcoming new
features of wireless networks

O Unproven state-of-the-art third-party technology is being intro-
duced

O The project team is comparatively inexperienced with Symbian OS.

On the other hand, projects can reasonably be expected to take
less than nine months when they start with an existing phone
model, and apply a small number of controlled changes to it. These
projects — which are often called “copy projects”” — can involve:

O Adding extra applications or an additional peripheral

O Modifying the industrial design

0 Upgrading the color density of the screen

O Modifying the Ul and application styling — for example for operator
customization.

2.8 The big picture: beyond timescales

I've spent some time highlighting factors that influence smartphone
project timescales. These are weighty factors, and I return to many of
them in the pages ahead, explaining them in more detail. Software
leaders need to give them very serious thought.

However, it would be wrong to focus solely on reducing project
timescale. Project timescale is only one of a matrix of factors influ-
encing the success of a project. The other key factors include:

O Overall costs and resourcing levels: of course, other things being
equal, it would be better to complete a project using an average

32 THE BIG PICTURE OF A SYMBIAN OS PROJECT

of 80 FTEs, than to complete it over the same time period using an
average of 100 FTEs

Q Feature set: software leaders need to carefully consider the risk
that a product reaches the market at the intended time, but lacks
sufficient features or differentiation to interest a large enough pool
of customers. Alternatively, the product may appeal initially to a
small group of enthusiasts, but lack sufficient longevity to appeal
to a larger set of customers

Q Quality: another risk to consider is that of the product being found
to be unreliable or unusable in various ways: the required features
may be present, but they fail to work sufficiently well (for example,
being too slow or error-prone)

Q Schedule risk: this is the risk that a project fails to meet its agreed
schedule, and ends up missing its market window (note that this
factor is independent of the question of the expected project length;
you can, to an extent, decide the degree of risk in the schedule
separately from the length of the target schedule)

Q Platform capability: a company may successfully bring the first
smartphone product to market, but then fail to follow it up suffi-
ciently quickly with subsequent products. In this case, early market
leadership will cede to other companies who have a better capac-
ity for repeat delivery. Software leaders need to plan, not just
on bringing one smartphone product to market, but on acquiring
the capability to bring a series of products to market, based (to
maximize the return on their investment) on a common platform.

To an extent, these factors compete with each other. For example,
project leaders can decide to cut resourcing levels, but in that case,
conventional wisdom says that at least one of the other factors
will suffer.

However, it is my contention that project teams that take full
advantage of Symbian OS can win on all these dimensions at the
same time. The correct application of the key skills reduces project
timescale, resourcing levels, and schedule risk, whilst simultaneously
boosting features, quality, and platform capability. The core principle
is: Ensure that the project team deeply understands what they should
be doing.

By following this principle, the project team avoids creating
“‘waste” — poor quality software —and avoids losing precious time
and effort.

To discover how this works for Symbian OS smartphone projects,
please continue reading.

3

Involving ISVs

3.1 ISV smartphone opportunity and risk

The success of the overall smartphone revolution depends upon the
success of at least a small number of ISVs (Independent Software
Vendors): people who work outside of the phone manufacturers,
and who develop innovative new applications and services that
significantly enhance the appeal of smartphones.

Many companies see this opportunity. There is no question of
the potential for companies to achieve striking commercial success
in this sector. Users who already spend anything between 30 and
100 USD on their phone bills each month can, in principle, be
persuaded to spend anything between another 1 and 20 USD on
additional services. Let’s start by considering the pessimistic case
of an additional spend, on average, of 2 USD per month, for 100
million smartphone users. Let’s say that the ISVs manage to hold
onto 20% of this (with the remainder being shared among network
operators, publishers, retailers, and so on). That means 480 million
USD reaching ISVs each year. Finally, let's imagine that the most
successful of the ISV companies can each expect one-tenth of this (in
other words, that there are around ten similarly successful companies).
That makes for annual revenues for the company of 48 million USD.

For an entrepreneurial company, that’s just the start. Standard
business development theory teaches companies to focus on their
potentially biggest customers. 5% of customers can provide well over
50% of the revenues. Keen smartphone users who enjoy the entry-
level service of an ISV application can be persuaded to upgrade to a
series of more expensive versions.

Here’s another way to think about it. Before long, the number of
smartphones in the world will be approaching the number of PCs
there were in the world a few years ago. Users will spend a lot
of time with their smartphone (as their preferred mobile gateway
into the digital universe). The amount of money that users spent on

34 INVOLVING ISVs

applications for PCs in the past therefore serves as a first-order rough
estimate for the amount of money that users will spend on applications
on smartphones in the future. As smartphones become an ever more
important part of corporate information and control systems, and ever
more central to personal entertainment and infotainment systems,
the flow of revenues to successful ISVs can be expected to drive a
considerable number of stellar success stories.

However, as well as the potential upside, there’s plenty of potential
downside. That's always the case with marketplaces that emerge
around new technologies. For each company that is very successful
in such a marketplace, there are scores that fail:

Q It's easy to predict the future in general terms, but it's very hard to
predict when various aspects of the future will take place

Q It's easy to invest too early — acquiring expensive capability ahead
of the marketplace reaching a critical mass of volume sales

Q It's also easy to invest too late — “missing the bus’” (when it
eventually does arrive)

Q It's hard to predict the specific applications that will create the
greatest customer interest — apps that are similar to those that were
important on PCs (say), or apps that are quite different

O After everything else is said, there is a considerable degree of luck
that determines which companies are in the right place with the
right customer and the right idea at the right time.

Of course, | can’t offer any guarantees in this book. | can’t say,
follow such-and-such steps, and you will develop applications which
end-users buy in tens of millions. But | can offer general advice that
will increase the probability that:

O You are able to act quickly and effectively, when a great smart-
phone product opportunity does come your way

Q You will avoid many of the common (and not-so-common) mis-
takes already made by your predecessors as ISVs

Q If, despite your best efforts, your company fails, you will personally
be well-positioned to join another new company in the smartphone
ecosystem, where you can continue applying your well-honed
smartphone project skills.

Most of the time in this book, | address as my primary audience the
leaders of teams who actually create smartphones. But most of my

BEYOND TECHNICAL SKILL-SETS 35

advice is also relevant to ISVs. Many of the same issues arise, whether
your product is designed to run on a smartphone, or whether it is an
entire smartphone:

O Issues of coping with scale and complexity (covered in Part II)

Q Issues of understanding the underlying Symbian smartphone design
philosophy — how to ride with the flow, instead of against it (cov-
ered in Part IlI)

Q The people skills needed to survive smartphone projects and,
indeed, to thrive on them (see Part IV).

What's more, the greater your understanding (as an ISV) of the
pressures faced by the teams that create smartphones, the greater
is your chance of modifying your work practices to help alleviate
these pressures. Your own product deliveries will become part of the
solution, rather than part of the problem.

3.2 Beyond technical skill-sets

One of the commonest mistakes made by smartphone ISVs is to
focus on technical skill-sets to the detriment of the wider skills of
commerce, marketing, management, and leadership. Smartphones
are hugely complex, technically, so it's no surprise that technical
skills are in high demand. But that’s no reason to neglect the other
skill-sets.

Sadly, I have often seen fine ISV products pushed aside in the hectic
period of rush leading up to a smartphone release. These are products
which were fully intended to be included in the actual smartphone,
as part of a bundle of built-in software. They are ISV products that
seemed to perform well in their own test environments. But the overall
smartphone project leaders found reason to remove them from the
smartphone spec at the eleventh hour (see later chapters in this book
for more details):

Q There were problems in integration

Q There were problems in performance

Q There were problems with debugging, stability, and optimization

O The application turned out to be inconsistent or ill-fitted with the
other built-in software

a Or, there were unresolved contractual problems.

36 INVOLVING ISVs

When it comes to the crunch of the eleventh hour of a major
project — the period just before the product is shipped to the mar-
ket — project leaders often manifest a single-minded focus on “‘ship at
all costs”’. Anything that gets in the way of this objective is removed.
If one of the built-in applications is posing integration problems, the
simplest route may be to remove that application altogether. And that
is often what happens.

If you are lucky, such an event may just be a temporary setback
for you as an ISV. The smartphone project leader may follow up
the initial launch with an upgrade release in a few months time,
this time including your application. However, | have sometimes
seen the phenomenon of ““once bitten, twice shy”’. The smartphone
project leader sometimes develops a bias against any application that
risked the initial launch, and this bias can prevent your application
being included in an update release. Sometimes, indeed, a competitor
application is able to win the business at this stage, as a late entrant,
taking advantage of the furrow that you were able to plough. So a
first stumble could be fatal. To lessen the chance of this happening, |
recommend that you work hard on:

O Relationship management, so that your relation with your cus-
tomer (the company creating the smartphone) can survive tempo-
rary storms

a Contractual issues, so that your customer is able to understand
your contractual terms easily, and so that you can have a signed
contract well before any crunch time approaches

O Making it easy for your customer to integrate your product
O Mature defect analysis and defect fixing processes

Q Supporting fast customization of your product in line with the
design choices of your customer

O Understanding the difficulties and challenges faced by your cus-
tomer

O Being aware of the multiple routes to market that are available
for your product, rather than being locked into just one possible
delivery channel.

3.3 Different routes to market

A smartphone ISV can bring an application to the market in any of
the following ways:

DIFFERENT ROUTES TO MARKET 37

As discussed in the previous section, the application can be built
into a smartphone produced by a phone manufacturer

The application can be built into special variants of a smartphone,
as commissioned by network operators; in these cases, we can
consider the network operator to be the customer

The application can be installed into a range of smartphones being
used inside a business, for corporate purposes; in these cases, the
customer is the corporate IT department (or perhaps, the team
leader inside a vanguard unit of the company)

The application can be distributed at point-of-sale outlets for
mobile phones, such as Radio Shack, Circuit City, or Carphone
Warehouse (known in mainland Europe as ““The Phone House”);
in some cases, the application can be included as part of a
special sales bundle along with a smartphone; in other cases, the
application can be available for purchase as standalone

The application can be downloaded from Internet sales websites,
such as Handango.com, MyPhoneGames.co.uk, Symbos.com, and
Symbiangear.com; in some cases, the application downloads onto
a PC, and is then installed onto the smartphone by local connec-
tivity (USB cable, Bluetooth, etc.); in other cases, the application
downloads OTA (over the air) directly onto the phone

As a variant of the previous case, the application can be down-
loaded OTA from portals maintained by network operators.

In addition to the initial purchase of the application, the ISV needs
to plan ahead for maintenance and upgrades — ways for end-users to
receive additional value through later releases. This includes:

a
a
a
a
a
a

Defect fixes

New levels for games

Additional audio and graphics “‘skins”’

Additional backup and storage facilities

Extra functionality

Migration onto a new smartphone (including data migration).

The upgrades may reach the end-user through a different channel
from the initial purchase. For example, a standard version of the
application may be built into a smartphone, with the option for the
end-user to purchase OTA an upgrade to a premium version.

So there are multiple possible customers. Some ISVs find this

prospect rather daunting, and prefer to take advantage of an interme-
diary company known as a “publisher”. In such cases, the publisher

38 INVOLVING ISVs

handles the distribution of the application to the marketplace, leav-
ing the original ISV to concentrate on developing the application
itself. Some publishers offer extra services to ISVs (in return, perhaps,
for a greater share of the revenues), including quality assurance
(QA), certification, and localization into different language ver-
sions. For a good starting point to find suitable publishers, see
www.symbian.com/partners.

3.4 Symbian endorsements

Whichever route(s) to market are chosen, the prospects for the appli-
cation will generally be improved if the application (and/or the ISV)
can display one of a range of endorsements from Symbian. Distri-
bution channels regard these various endorsements as indications
of likely quality and reliability. In a fast-moving marketplace, with
many hundreds of potential ISV partners, distributors value assistance
in knowing:

O Which solutions are believed (by Symbian) ready for speedy inte-
gration into smartphones

Q Which solutions are, instead, closer to the “‘bleeding edge’’ (hence
with a higher risk factor).

It's important to be clear about what the different endorsement levels
mean (and what they don’t mean).

Membership in one of Symbian’s partnering programs (such as
Affiliate Partner and Platinum Partner) does not necessarily imply
that a company has a product that is both ready to ship and easy to
integrate onto any given smartphone. Instead, it means that Symbian
sees the company as:

Q Having a potentially strong idea for a compelling product or service
within the smartphone ecosystem

O Having a certain degree of financial backing and stability (so they
are unlikely to disappear overnight)

O Being sufficiently trustworthy (stable and mature) that they can
be invited to attend confidential meetings with Symbian, phone
manufacturers, and other partners, where restricted information
about future plans is discussed.

Another level of relationship, that is appropriate for some partners,
is when the partner acquires a ““Developer Kit License” (DKL) from
Symbian. This entitles the company to receive more source code,

SYMBIAN ENDORSEMENTS 39

and to access more APls, than in the standard public Symbian Devel-
oper Kits (SDKs). At the same time, the company opens a specialist
technical support contract with expert engineers in Symbian. (Don’t
be misled by the naming here: the ““Developer Kit”’, almost always
shortened to ““DevKit”, is a different product than an SDK; DevKits
are restricted to companies with a DKL from Symbian, whereas SDKs
are publicly available.) However, by itself, a DKL does not imply
that a company has product that is ready to integrate into any given
smartphone.

If a smartphone creation team is looking for evidence that a plat-
inum partner company in the device creation space has a product
ready to deploy, what the team should look at is the latest version of
the Symbian Partner Solution Directory (PSD). This is a confidential
directory that is published on a regular basis from Symbian to smart-
phone manufacturers. At the last count, there were over 360 products
and services listed in the PSD, split into the following areas:

Segment Partners Entries
Browsing 10 17
Connectivity 27 42
Enterprise 43 58
Games services 1 5
Location-based services 3 3
Multimedia & graphics 47 100
Professional services 15 30
Security 15 25
Semiconductor 11 24
Telephony 5 11
Tools 17 31
Ul framework 14 20

Entries on this list are restricted to platinum partners. The information
in the directory listings is written by platinum partners, and is subject
to review and regular audit by Symbian personnel. Any company
that is found to be making exaggerated claims in an entry in the PSD
has their entries barred in subsequent editions (thankfully, it has not
been necessary to exercise this sanction so far). Each entry contains a
general description of the product or service, and indicates:

Q The versions of Symbian OS which are supported by the technology
O The Ul systems with which the technology integrates

O A website address for further information

QO An email contact address for follow-up contacts.

40 INVOLVING ISVs

Certain sectors of platinum partner have specialist endorsement pro-
grams of their own:

Q See www.symbian.com/partners/part-train.html for a list of autho-
rized Symbian Training Partners — companies that have access to
Symbian OS training materials originally authored within Sym-
bian’s internal Technical Training team

Q See www.symbian.com/partners/scc.html for a list of authorized
Symbian Competence Centers — companies with a proven substan-
tial history of assisting smartphone manufacturers with Symbian
OS integration.

There are two other Symbian endorsement programs of particular
interest to I1SVs: Symbian Signed and the Symbian Companion Tech-
nology Program (CTP). These are discussed in the remaining sections
of this chapter.

3.5 Companion Technology Program

As its name implies, Symbian’s CTP is a program for technologies
that are ““‘companion” to the components in Symbian OS. It is suited
to what is sometimes called ““middleware’”” — enabling technology at
(for example) the comms, networking, graphics acceleration, security,
database, or storage levels.

These technologies are liable to integration delays when smart-
phones are built, on account of close two-way links between these
technologies and the lower-level Symbian OS APIs (sometimes called
SPIs and HAIs — standing for Service Provider Interfaces and Hard-
ware Adaptation Interfaces). Here’s a problem that Symbian observed
on several occasions around 2001-2002:

0 A middleware provider develops a solution on an existing release
of Symbian OS (for example, v6.1)

O Symbian develops and releases a new version of the operating
system (for example, v7.0)

Q The middleware provider convinces a phone manufacturer to use
their solution for a forthcoming smartphone project, based on the
later release of Symbian OS

Q In the course of the smartphone project, it becomes clear that
some of the relevant SPIs and HAIs have changed between the two
releases — sometimes in explicit ways, but often in subtle ways

COMPANION TECHNOLOGY PROGRAM 41

Q As a result, the middleware solution displays many problems on
the new smartphone

Q The smartphone project team bears the brunt of the pain in
debugging the resultant problems.

No one comes out of this well. For this reason, Symbian took the
decision to put greater priority on supporting this kind of partner.
The CTP was one of the outcomes. The idea is to make it easier for
suppliers of companion technology to verify (ahead of deliveries to
smartphone project teams) that their technology is integration-ready
(“pre-integrated”’) with the relevant new version of Symbian OS. This
involves a closer degree of inter-working between Symbian and the
partner company (one reason for the name ““companion”’):

Q The partner receives early releases of DevKits for forthcoming new
versions of Symbian OS

Q The partner discusses with experts within Symbian about suitable
validation software to ensure that the companion middleware
works well in the context of the new system software

Q The result is an extended test framework, providing (as far as
possible) a good representation of the environment on forthcoming
new smartphones

0 Once the test framework is agreed, the partner needs to demon-
strate that their software does indeed pass the tests.

It sometimes takes several loops round the process before the software
passes. But it’s better for all concerned that this testing and refinement
takes place away from the (often rather turbulent) context of an actual
smartphone development project. When the companion technology
is in due course introduced to smartphone projects, it has already
been through most of the “‘birth-pangs”’ associated with a major new
version, and can slot into place with much less turmoil.

There is another aspect in which companion technology middle-
ware merits the name ‘““companion”. This refers to the distribution
mechanism for these technologies (once validated). Phone manufac-
turer licensees of Symbian OS receive, in parallel with each release
of Symbian OS itself, packages of matching companion technol-
ogy. Depending on the wishes of the partner involved, this package
can contain:

Q The entirety of their software

Q A demo of their software, with information on how to obtain the
remainder

Q Or, just some information about the technology.

42 INVOLVING ISVs

In all cases, ownership of companion technology remains entirely
with the partner who creates it (subject to Symbian’s standard rules
about ownership of any products derived from Symbian OS). When
a phone manufacturer wishes to incorporate that technology in their
product, they negotiate a commercial agreement directly with the
partner. See www.symbian.com/partners/CTP.html for more details.

3.6 Symbian Signed

Symbian Signed has a different status from the endorsement programs
covered so far in this chapter:

O The other programs are restricted to official partners of Symbian
(such as platinum partners or affiliate partners), whereas Symbian
Signed is open to all ISVs

O The other programs are mainly targeted to lower levels of software,
whereas Symbian Signed is directly suited to applications and
services which end-users purchase.

Symbian Signed has wide industry backing from smartphone manu-
facturers, network operators, and application retailers and publishers.
The program has six main elements:

Q A tamperproof mechanism for end-users of applications to be
confident about the origin of these applications; for example, if a
Symbian Signed application says it is written by MobiMate, the
user is assured that it has not, instead, been written by someone
else (presumably with malicious intent)

O A defined set of tests which applications need to pass, before
they can be granted Symbian Signed accreditation; these tests
cover general smartphone usage, and ensure that the application
adds to the value of the phone (instead of interfering with the
phone’s operation)

O A cost-effective mechanism for ISVs to prepare for tests and then
submit them; this involves a range of third-party test houses

Q A set of security measures on smartphones, to prevent non-signed
applications from being installed, except with the express knowl-
edge and approval of the end-user

Q The Symbian Signed applications catalog, which publicizes appli-
cations that have met the Symbian Signed test criteria; this catalog

SYMBIAN SIGNED 43

is available upon request to major distributors of Symbian appli-
cations, such as smartphone manufacturers, network operators,
publishers, and aggregators

O A recognizable logo ““For Symbian OS” which can be used in
marketing for the application.

) symbaaolg

Here’s an analogy. Symbian Signed is like the official annual road-
worthiness test that all motor vehicles over a certain age need to pass.
This test does not prescribe fashion aspects such as the color of the
seat fabric or the precise shape of the car headlights; it does not focus
on style; instead it looks at matters of core operation, such as whether
the brakes work, and whether the lights function. Similarly, Symbian
Signed imposes no criteria for taste, artistry, grammar, or similar, but
checks that the essential functionality of the phone is unimpaired. For
example, tests ensure that:

O The application pauses cleanly when there is an incoming phone
call

Q The application in no way interferes with the user’s ability to make
phone calls, or access any of the other functionality of the phone

Q The user is aware of any actions of the application that generate
billing events

O The application supports Uninstall, and the phone is left in a good
state after the application has been uninstalled

Q The application avoids running at an overly-high priority (poten-
tially starving other software on the phone of processing time)

O The application shuts down in response to exit messages from the
task list on the phone

O The application copes well with low-memory conditions and other
failure states.

See www.symbiansigned.com for more information.

The “For Symbian OS” logo of the Symbian Signed program is
increasingly being recognized as the mark of a quality add-on appli-
cation. | strongly encourage all authors of Symbian OS applications
to learn about this program, and to follow its advice on best practice.
In this way, the industry and end-users alike can grow in confidence

44 INVOLVING ISVs

that smartphones will be the source of increasing value, rather than
(say) a source of increasing confusion and frustration. As more and
more companies follow the set of best practices recommended to
ISVs, the attractiveness of smartphones will grow and grow. This is
the subject of the next chapter.

4

Twenty reasons why
smartphones will win

4.1 Two kinds of battle

Press and analysts sometimes write about a battle between vendors of
smartphone operating systems — a supposed titanic struggle between
Symbian and several other reasonably well-known software compa-
nies. This makes for dramatic reading. You've almost certainly seen
articles on that theme. However, these articles generally overlook an
even greater drama — a battle with much greater significance than that
between the smartphone operating systems. This is the battle between
two categories of phones — between smartphones and feature phones.
It's a battle that involves decisions made by hundreds of millions of
end-users: will they choose to purchase and use a smartphone, or will
they choose to stick with a feature phone? The net outcome of all these
decisions determines whether the smartphone market grows over the
next few years to hundreds of millions of phones sold annually, or
whether it remains an order of magnitude smaller. It’s of little interest
to me that Symbian’s share in the smartphone market is far ahead of
any competitor in this space, if the space itself remains small.

Feature phones are one level of sophistication down from smart-
phones. Feature phones have, well, lots of features, but the primary
functionality set of a feature phone is fixed in advance — which is
why feature phones are sometimes also called ““closed phones”. In
contrast, for any given smartphone, the functionality is much more
open-ended — which is why smartphones are sometimes also called
““open phones”’.

Smartness in phones isn’t just about supporting lots of features
(more features than a feature phone). It's about the capacity for new
features to be added quickly, taking advantage of the ideas of a huge
ecosystem of inventors, innovators, and entrepreneurs. Compare the
difference between someone who has done a lot of rote-learning, and

46 TWENTY REASONS WHY SMARTPHONES WILL WIN

someone who has the capacity to understand the principles behind
the facts learned and who can generate new items of knowledge
worth learning in their own right. Only the second person can really
be called ““smart”.

Similarly, smartness in phones isn’t just about there being lots of
latent intelligence (hardware and software) in the phone. It's about
the ability for that intelligence to be programmed and directed. This
requires greater sophistication in the phone — an operating system
with an extensive set of APIs, and with support for new applications
to coexist with the built-in set. This sophistication has a cost. Is it
worth it?

In this chapter, | offer 20 representative reasons why smartphones
are displacing feature phones. These reasons are “‘user scenarios”,
with the following characteristics:

O They don’t focus on technology — they focus on user benefits

Q They appeal to a much wider group than just ““technology geeks’”’
or “early adopters”

O They don't talk in generalities — they talk about specifics

O They don't talk about some indeterminate time in the future — they
talk about things that can either be done already, or which can
reasonably be expected in real phones within a couple of years at
the most

Q They each have the potential to make many people think — ““wow,
I"d really like to have a phone like that!”’

Of course, the list of winning scenarios is by no means exhaustive.
But it's enough to establish the flavor. If you conceive of other
winning scenarios, you have the chance to implement them quickly,
converting your concept into a successful product. After all, that's
what open phones are all about!

4.2 Multitasking

Scenario 1 is note-taking, data look-up, and messaging while in the
middle of a phone call. The technical term for this is ““multitask-
ing”, which sounds highly theoretical, but we should appreciate the
tangible benefits of this to end-users. While using their phones for
their primary purpose — making a phone call — users appreciate being
able to access other elements of functionality of the device at the
same time:

MESSAGING AND ENTERTAINMENT 47

O Looking up a phone number, address, or agenda entry

0 Making a note of a new phone number, address, or agenda entry

0 Sending a text message to a third party (for example, to answer a
question that arises during the main conversation)

O Looking up information on a website

Q Perhaps even playing a game (for when the phone call has become
boring).

Multitasking requires a sophisticated operating system, and a sophis-
ticated application framework. The phone needs to be able to do
several things at once, without pausing or interrupting any of these
tasks. This is what you find in smartphones. With a smartphone, users
have the extra benefit that all new applications which they buy (for
example, a navigation application) automatically also observe the
principles of multitasking. So you can consult the navigation system
at the same time as you are conducting a phone call.

Multitasking also enables live interaction between applications.
For example, an application could prompt users to send messages
to friends on their birthdays and suggest suitable gifts, based on
information stored on the phone. Or, when you receive a phone
call, voice analysis software could display a guess as to the name
of the caller (in cases when the incoming phone number has not
been recognized), and another application could remind you of the
promises you made to that person in previous conversations.

4.3 Messaging and entertainment

The next two scenarios are in the area of additional forms of mes-
saging. Scenario 2 is animated graphics messaging, and Scenario 3 is
mobile access to Instant Messaging:

Q Users (especially young users and the young-at-heart) enjoy send-
ing each other joke messages. If the message has a cartoon
attached, so much the better. Increasingly, these cartoons can
be animated and incorporate Al (artificial intelligence). Tools such
as Macromedia Flash allow end-users to play back cartoons with
movement, signs of emotion, action, sounds, and so on. Other
enhancements include ““buttons” or “‘hotspots’” with a picture
message, for additional enjoyment (or even to convey information!)

O Instant Messaging is a kind of rival to SMS (or arguably a comple-
mentor to SMS). Very many people log in to at least one Instant
Messaging service every time they use a PC, and they chat with
their ““buddies’” at the same time as they are getting on with other

48 TWENTY REASONS WHY SMARTPHONES WILL WIN

work on the PC. (Popular Instant Messaging services include AOL
ICQ, Yahoo!, and MSN.) Instant Messaging has proved invaluable
in corporate settings, as well as for connecting users to their friends
and family. Support for mobile Instant Messaging on smartphones
allows the user to continue to plug into the world of his/her buddies
while away from their desktop PC.

Mobile Instant Messaging is an example of how smartphones allow
users to continue to access their digital universe while away from
their desktop. Scenario 4 involves the same principle. It's mobile
access to multiplayer online games:

O Many popular PC games involve individual PCs logging onto
a shared online world, where avatars representing the players
interact (racing, hunting, killing, bombing, trading, searching for
buried treasure, etc.). Some of these online worlds persist for weeks
or even months at a time

O Mobile access to these games means that, when away from
their desktop PC, someone can continue to participate in the
game — albeit (usually) with a diminished user experience. Even
though the experience is diminished, many people prefer to
continue playing —it’s like the fact that SMS has a poorer user
experience than PC-based email, but that doesn’t stop people
using it.

Scenario 5 is the usage of a smartphone as an intelligent radio-cum-
MP3 player. The OTA capabilities of a smartphone mean that users
can retrieve and listen to specific music tracks whenever the idea
occurs to them. The intelligence of a smart radio built into a smart-
phone means that it can learn user preferences, and can automatically
jump between channels (in the same way that car radios sometimes
automatically jump to channels with traffic information). The intel-
ligence of the device also allows users to modify the music they
hear (adding bass, changing the lyrics, skipping sections, repeating
sections, etc.).

This scenario feeds back into messaging: users can mix new
music of their own invention (modifications of existing tracks), and
then send it to their friends. This is another example of how the
richness of smartphones builds on top of itself: new applications
swiftly take advantage of services provided by existing applica-
tions, in ways that can’t happen anything like as quickly in feature
phones.

MOBILE KNOWLEDGE ACCESS 49

4.4 Mobile knowledge access

Scenario 6 is when end-users can use their smartphones to look up
all sorts of information. It's no surprise that many people have the
home pages of their PC browsers set to Google. Google is a great
starting place from which to find information of any kind.

Mobile versions of this are increasingly popular. Refinements to
the Ul will make it easier for people to find the information they
are looking for — any information they are looking for. The kinds of
questions asked to the AQA service, provided by IssueBits, gives some
idea as to what mobile users want to know. With the larger screen
display area of smartphones (compared to the information that can
be put into a single SMS answer, as used by AQA) and rich Uls, there
are great opportunities for meaningful knowledge transfer. Mobile
users will have the accumulated knowledge of human society at their
fingertips, wherever they go.

Scenario 7 is a specific example of mobile knowledge access:
a mobile language translator. Smartphones with this service can
take advantage of huge server-side databases and processing power.
Translation modes include:

Q The user types in some text

O The user takes a picture of some text (for example, on a street sign,
or on a menu); this is particularly useful when the text is written in
an unfamiliar alphabet

Q The user holds the phone to someone, who speaks into it.

E-books (“’electronic books”) are another important special case of
““mobile knowledge access””, and comprise Scenario 8. People have
spoken in the past about how electronic books will start to take
over from physical books. This has been a long time coming, but
the market is slowing expanding for E-books on PDAs. Better screen
technology means that people are now more prepared to spend a
longer time reading from their phones.

One advantage of having an E-book service built into a smartphone
is that new books can be easily downloaded OTA — perhaps chapter
by chapter on demand. Other advantages include ease of searching,
bookmarks, cross-referencing, and simply the fact that users can
access many more books via their smartphone than they could ever
hope to pack into their holiday luggage. (So it's much easier to change
your mind about what book to read next.)

50 TWENTY REASONS WHY SMARTPHONES WILL WIN

Yet more possibilities arise when you replace books, in the above
scenario, with videos, or combine videos and books. . .

4.5 Organizers and finance

Scenario 9 is usage of a smartphone as a personal organizer. Wherever
| go in the world, people remark on the good use that | am able to
make of my Psion Series 5mx (a PDA with a superb keyboard
attached). ““Where can you buy a device like that?”’ they often ask
(especially in the USA and in Japan/Korea). The case for a good
personal organizer remains.

Most phones today contain very rudimentary personal organiz-
ers — lists of contacts, simple access to agenda entries, and basic
note-taking capabilities. Once people realize that the smartphone
their friend has bought (and which they are thinking of buying
for themselves too) also contains very useful (and easy-to-learn) PDA
functionality, it will increase the attractiveness of these phones in their
eyes. Mobile users will become better organized, better informed, and
more effective. In short, mobile users will be smarter.

Scenario 10 is actually around 20 scenarios in one: usage of a
smartphone as a corporate information organizer. Once smartphones
are recognized as providing easy access to corporate information that
helps users to carry out their work functions, they will increase in
attractiveness — perhaps even to the point of addiction (as in the RIM
BlackBerry ‘“Crack-berry”).

The most important information, for most workers, is their cor-
porate email. After this comes the corporate scheduler, corporate
databases including customer information, stock information, sales
catalogs, process information, etc. All this can be accessed on smart-
phones, without the need for additional portable devices. More and
more people will leave their laptops behind, with their smartphones
becoming their primary mobile work device.

Scenario 11 is the usage of smartphones to trade stocks and shares,
any time, any place. Personal investors often like to be able to take
prompt action on hearing breaking news. Smartphone applications
include the following features:

O Real-time quotes from markets worldwide
O News feeds from third-party content providers
Q Alerts triggering the application on market events.

End-users can then use the application to buy or sell stock immedi-
ately.

POCKET CONSOLIDATORS 51

4.6 Pocket consolidators

It has been said that, if you want to know the future of mobile
phones, you should look at the contents of your pocket. Over time,
more and more of the items we carry with us will be subsumed into
just one — the phone. Thus phones are already subsuming people’s
watches, calculators, address books, diaries, cameras, mobile games
terminals, and phrase books.

Scenario 12 is the usage of smartphones as tickets and vouchers.
Smartphones can incorporate an electronic train ticket —a bit like
the Oyster system used on the London Underground. That’s one less
thing for people to need to remember to carry around with them.

Another kind of ““ticket’” that can be conveniently stored inside a
phone is a ““discount voucher”. These are already in significant use in
Japan. Emails to phones contain vouchers allowing a discount when
purchasing concert tickets, items of (youth) clothing, etc. Rather than
needing to print out the voucher, or writing down the number of a
discount code, the user takes the phone to the point-of-sale, and the
voucher is read electronically.

Scenario 13 is the usage of smartphones as electronic wallets.
Smartphones are on the point of taking over some of the functionality
of credit cards. Again, it will allow people to carry fewer items
with them. This will enable a phenomenon called “mCommerce”,
meaning ‘““Mobile Commerce”’. Arguably “mCommerce’” will be even
bigger than ““eCommerce’”’ (electronic commerce, using PCs) since:

Q People carry their mobile phones with them everywhere — whereas
their desktop computers stay at desks

0 Mobile payments rely on features that all mobile phones include (a
processor, a screen, input mechanisms, wireless communications
capabilities, and on-board software), with the result that mobile
payment can be enabled in an invisible (non-obtrusive) way.

Scenario 14 is the usage of smartphones as keys and security badges.
Hardware embedded into mobile phones can be programmed to emit
suitable signals, to allow the degree of access appropriate to each
end-user. Again, that's one less thing that people need to remember
to carry around with them. It also enables some dramatic new usage
models for keys and security badges.

I've called this section “pocket consolidators”, but that’s not quite
adequate to describe what’s happening. Because the functionality of
different items is present in a single device that users always carry
with them you can consider new user scenarios, involving cross-
links between these different items of functionality. So it's not just

52 TWENTY REASONS WHY SMARTPHONES WILL WIN

consolidation of different pocket items; it's synergy between them,
when the whole exceeds the sum of the parts. Think again about two
examples from earlier:

O The synergy between music downloading, using the Ul of the
device to mix new tracks, and then using the messaging capabilities
of the device to instantly send the result to a friend

O The synergy between using the camera to take a picture of a notice
written in a foreign language, and then using the on-board intelli-
gence and network connectivity to learn what that notice means.

These two examples are the tip of a huge set of creative possibilities.
By my count, a smartphone consolidates at least 30 conventional
items. In mathematical terms, there are over 4000 ways of picking
three items from 30, to try to combine them in an innovative way. Even
if only 1% of these combinations turn out to provide applications with
consistent appeal to end-users, that still means there are around 40
new killer apps waiting to be discovered on forthcoming smartphones.
I wish you happy hunting!

4.7 Social tools

Scenario 15 is the usage of smartphones as electronic photo albums.
Advances in screen technology mean that photos can be displayed
in stunning quality on mobile phones. An application that is of great
interest to many users is the ability to access their entire photograph
album while mobile. No longer do people have to dig out physical
photo albums from physical storage space; they are now able to look at
pictures of their nearest and dearest (and anyone and anything else) at
any time of their choosing. The intelligence on a smartphone supports
convenient searching and sorting. In time, people will increasingly
also be able to access libraries of their personal videos.

Scenario 16 is the involvement of smartphones in mobile blogging.
Blogging is the name given to the creation of on-line diaries — collect-
ions of thoughts on various topics, available for the world at large
to read on the web. Mobile blogging tools allow people to make
notes to themselves at any time on their smartphones, along with
pictures and video, etc. These notes can be automatically backed up
onto a network for them to read again at any convenient time (e.g.
from a PC) and then selectively publish. In a way, mobile blogging
subsumes the functionality for which some people previously used a
paper-and-pencil journal. Blogging is part of the movement by which

PERSONAL DEVELOPMENT 53

more and more people are becoming creators and publishers rather
than just consumers.

Continuing the social theme, Scenario 17 is the usage of smart-
phones to help people find dates (meaning in this case, human
personal companions, rather than slots in a diary). People have made
lots of jokes about the capabilities of mobile phones (equipped with
Bluetooth) to allow users to define their own ‘“‘personal profiles’”
and then leave it to wireless networks to identify suitable personal
matches at venues such as night clubs and bars. It looks as though
early implementations haven’t always been successful, but it can
only be a matter of time, as there is (apparently) great demand for
such services.

This takes us to Scenario 18 — the involvement of smartphones in
so-called ““adult entertainment”’. Historically, many new categories
of device were driven forwards by the availability of new channels
for sex-related purposes: cameras, video players, web-cams, PCs
for home use, etc. It is the same for smartphones. The powerful
graphics screens on new mobile phones, coupled with their ““invisible
portability”’, their built-in camera, their rich Uls, and their ““always
connected”” status, means that there is (presumably) great opportunity
for innovative applications in this category.

To illustrate this general point, here’s an incident from the devel-
opment of the software system for the Psion Series 3a. One demo
application that gave this device a great boost of interest, even before
it was launched, was a certain ““Dancer.OPO" that caused sharp
intakes of breath when first viewed (even though the lady dancer in
question was animated in only four shades of gray). Two young Psion
software engineers seemed to spend an inordinately long time in
skunkworks activity to optimize the performance of parts of the OPL
run-time (and underlying graphics sub-system) to ensure a good effect
here. This effort to optimize the software system, however motivated,
helped to benefit OPL for all kinds of other purposes.

4.8 Personal development

Scenario 19 is the usage of smartphones to boost personal health.
Health overtook sex some time ago as the topic most searched for on
the PC Internet. There is great potential for smartphones to provide
applications that help to monitor users” health. This can involve local
wireless communication from simple monitors, e.g. heart monitors.
Applications can also prompt users to carry out simple medical tests
at fixed times, and then store the result. In case of any abnormal trend
of results, the phone can sound an alarm or notify the appropriate

54 TWENTY REASONS WHY SMARTPHONES WILL WIN

emergency services. Related usage involves mobile access to personal
health records.

Finally, Scenario 20 is the usage of smartphones as a kind of
personal coach. The old mainframe program “‘Eliza’” was surprisingly
effective in providing users with a sense of therapy. It contained a fairly
simple Al that carried on an apparently intelligent conversation with
the user. “'Tell me how you've been. . .2”, “Why do you say that. . .?",
etc. The abundant computing power on smartphones — backed up (if
needed) by huge data resources stored on the network — means that
phones can play a much larger role as a “’personal coach”. Users can
type in some of their personal frustrations and issues to the phone,
and get helpful advice in return. Looking further forwards in time,
smartphones might give their users feedback on how they conducted
an interview or handled themselves in an argument.

4.9 Phones win

Some of the user scenarios above don’t, on the face of things, have
much to do with phones. They could also be achieved (in part) using
different kinds of portable electronic devices. However, Symbian’s
strong bet is that ““the phone wins”, and becomes the preferred
portable computing device for the vast majority of users. These users
won't think of their phone as a computer, but they’ll use it to carry
out many computer-like functions, and they won’t need also to carry
other mobile electronic devices.

The reason ‘“‘the phone wins” is that the phone is the most
compelling use case of all —allowing basic mobile communication
with other users. Given that (nearly) everyone will be carrying a
mobile phone with them, increasingly nearly everywhere they go, it’s
inevitable that these other functions will be absorbed into the phone.

Symbian’s bet, further, is that the phone will remain the dominant
function. In the eyes of most users, the device won’t end up “‘half
computer and half phone”, but will be a phone that happens to
support some extra features that are really useful. The name for the
category, after all, isn’t ““computer-phone’” (or “’converged device”
or whatever), but “smartphone”.

Incidentally, I don’t claim that the 20 scenarios listed above are
anything like “the best 20 scenarios”’. No doubt others can think
of better examples — perhaps involving the likes of location-based
services, maps and navigation, presence (where the network knows
which of your contacts are available to receive voice calls), voice
over IP, or text-to-speech. But in either set of scenarios, it's clear that

OPENNESS WINS 55

there is a wide range of compelling use-cases, which can drive the
displacement of feature phones by smartphones.

4.10 Openness wins

While describing the user scenarios, I've tried not to talk much
about the underlying technologies. However, behind each of the user
scenarios lurks a huge amount of technology, including:

Q Security (so that users will trust their phones with personal data,
including credit card details)

Multimedia

Digital Rights Management

Bluetooth — for “/Personal Area Networking'’
Internet protocols

High-bandwidth data communications

Tools and developer services

A Ul that's simultaneously rich but straightforward
Telephony itself

Data storage and data synchronization.

Ry oy Wy

New scenarios will require yet more technology. Feature phones are
comfortable with a certain degree of technology, but their architecture
dates back to a time when the technology needs of phones were very
much less than what we now contemplate. As a result, feature phones
are much more cumbersome to change. The in-house programming
systems at the core of feature phones have come a long way from their
original design inceptions, but will not be able to keep on coping
with the oncoming rush of new functionality and technology.

Here's a recent real-life example (but I have to disguise the names,
for confidentiality reasons):

0 Phone manufacturer X announced that they were bringing a new
Symbian OS smartphone to the market

O Phone manufacturer X showed this phone to major network oper-
ator Y

0 Network operator Y liked what they saw. ..

O But asked manufacturer X to add a set of suggested apps, in order
to achieve differentiation

O Seven applications were selected from those already written for
Symbian OS for other phones

O The applications were added into the phone in just nine days — fully
tested.

56 TWENTY REASONS WHY SMARTPHONES WILL WIN

That's why | say, “Feature phones are dying”. There is no rich
collection of add-on applications available for new feature phones,
since these phones are only restrictedly programmable. So there’s
limited customization capabilities for operators, and limited value for
end-users. As time passes, the disparity between the value of feature
phones and the value of smartphones will grow and grow.

Thriving on scale

OO0 O0D0D0DO0O0D0 O«

O 00000000 o

OO0 00N

Managing large projects

Smartphone projects vs. feature phone projects
Three approaches to large projects

How large projects differ from small projects
Project groupware

Confidentiality issues

Five central project documents

Auditing document readership

Processes and agility: education vs. processes
Problems when groupware is short-cut
Symbian’s use of groupware

Managing defects

Introduction to smartphone defect management
Living with defects

Aside: an embarrassing moment with defects
Defect priorities

The process of verifying a defect fix

Advanced defect investigation

Defect status values

Defect database requirements

The role of the project leader in managing defects

Managing configurations

Introduction to configuration management

Aside: learning about configuration management
Consequences of weak configuration management
Basic principles of configuration management

Part 2 (continued)

]

0O

000D 0D0ODD e

Iy [y Ry [y V]

—y
=]

000 OOo

Codeline strategy — single projects
Codeline strategy — multiple projects
Beyond codeline strategy

Managing integration

Integration vs. creation

Mainlines and development codelines
Iterative development

Gate-keeping and integration tests
Dealing with build or test failures

The weekly integration cycle
Integration discipline

Managing interfaces

Knowing when components belong together
Limits of rebuilding source code

Forms of compatibility

The compatibility virtuous cycle

System compatibility board

Responsibilities with regard to compatibility
Interface access and interface status
Versioning

Future-proofing interfaces

Managing testing
Beyond complete testing
Testing in context
Functional tests

Basic Acceptance Tests

Part 2 (continued)

a
a
a
a

Specialist tests
Friendly User Tests
Mandatory tests
Automated tests

Managing tools

The need for a tools champion
Debuggers

Emulators

Profilers and loggers

Static code analysis

Build system

Distribution system
Miscellaneous tools

Dangers with tools

OO0 000000 =

Managing plans and change

Beyond complete planning

Causes of change

Handling change requests

Variable task estimates

Practical example of agile scheduling
Accepting slack

Aggressive vs. defensive scheduling
Authentic vs. inauthentic scheduling
Beyond meeting customer requests

Ry iy B

-
w

Managing uncertainty
The 80-20 rule for planning

O

Part 2 (continued)

a
a
a
a
a
a
a
a

-—
=

000 0O0dRD

Identifying the project planning hot list
Iterating the project plan

Developing features outside the agreed core
The 80-20 rule for task estimation

Typical project trouble spots

Pros and cons of milestone reviews

Dealing with milestone delays

Cut features not corners

Simplifying smartphone projects

Beyond difficulty

Reuse rather than reinvent

The benéefits of frequent releases

Symbian’s adoption of the frequent release model
Use of reference designs

Silver bullets vs. disruption

5

Managing large projects

5.1 Smartphone projects vs. feature phone projects

Symbian OS smartphone projects have the potential to be large — very
large. A smartphone ROM contains upwards of 24MB of software,
compiled from around 10 million lines of source code. Numerous
third parties can be involved, with a combined team size of more
than 100 software engineers. That's a great deal for the project leader
to handle.

It's particularly a great deal when you compare it to the
kinds of project that teams in phone manufacturers frequently
conduct — projects to create feature phones (phones that are one
level of sophistication down from smartphones). Feature phones
are complex in their own way, but their complexity is an order
of magnitude smaller than for smartphones. They have significantly
less software — perhaps a quarter of the ROM size, and less than a
tenth the number of lines of source code. Equally noteworthy, teams
in phone manufacturers tend to have extensive prior experience in
creating feature phones. Feature phones are demanding to create, but
the phone manufacturer is used to these particular demands, and has
accumulated special methods, over many years, to handle them.

In contrast, smartphones introduce disruptive aspects that under-
mine this prior knowledge base:

O The existence of open APIs, which are published in SDKs for third
parties to access (and which the third parties rely on being present),
causes complications

O The operating system is supplied by a third party, outside the
direct control of the project team; likewise for many of the other
components in the ROM

0O Whereas the functionality of a feature phone is small enough that
a single person can reasonably hope to understand all of it, the

62 MANAGING LARGE PROJECTS

functionality of a smartphone is so extensive and open-ended that
there is probably no person on the team who understands all of it

Whereas the software architecture of a feature phone is small
enough that a single software engineer can, with time, reasonably
hope to understand all of it, the software architecture of a smart-
phone is so extensive and open-ended that there is probably no
person on the team who understands all of it

Whereas the phone manufacturer is deeply familiar with the oper-
ating systems used in feature phones, “‘warts and all’’ (that is, being
well aware of their defects and shortcomings) and has developed
practical workarounds over many years to these problems, Sym-
bian OS comes with a huge new set of risks and issues, which
remain largely unknown and unfathomed by the new project team.

5.2 Three approaches to large projects

Faced with the challenge of a project that is larger than any previously
undertaken, a project team can adopt one of three approaches:

a

Denial: imagine that basically the same approach as before will
be sufficient (except that the team will be expected to work harder
than ever)

Qualitative change: recognize that the extent of the changes in
project scope requires new working methods — the quantitative
change in size needs to be answered by a qualitative change
in approach

Reduction: find ways to change the large project back into a
series of smaller projects, for which the previous working methods
remain well suited.

Denial is the least helpful approach of the three. Project teams can
become stuck in denial because:

a

They fail to appreciate the full extent of the differences in a
smartphone project

They are insufficiently aware of the new kinds of methods that can
be applied

They are aware of possible new methods, but they fear that these
methods will be too heavyweight or bureaucratic, and will stifle
the agility and speed of the project team.

HOW LARGE PROJECTS DIFFER FROM SMALL PROJECTS 63

It is my goal in this book to lead smartphone project teams out of
denial — so that they can embrace a successful combination of the
other two approaches.

5.3 How large projects differ from small projects

The key difference between large and small projects is that there
needs to be more rigor and formality in the processes adopted in
large projects. It is no longer possible to rely entirely upon informal
processes. That's because there are many more people involved, and
therefore very many more relationships involved. (If there are n people
working on a project, the number of relationships is n(n— 1).)

In large projects, project knowledge cannot be allowed just to
remain in the heads of individuals. It needs to be captured into a
format that is more permanent and more visible. Likewise, project
skills cannot be allowed just to remain in the heads of individuals.
They need to be documented, so that other team members are
able to step in to replace the original personnel, yet still follow the
same processes.

Areas where formal processes are required include:

Project communications — email and beyond
Defect management

Source code management

Integration management (including gate-keeping)
Interface management

Testing

Tools

Change requests

Planning.

ooocoo0oooo

| cover the first of these topics in the remainder of this chapter; the
others each have their own chapters.

Some readers may say that what's written in these chapters is
simply good software engineering common sense. | don’t deny that
these principles are quite widely known within the industry. Sadly, it’s
also my experience that, at the same time, these principles are widely
unknown. But in any case it's not just a question of knowing the
principles; it's a matter of applying them, speedily and effectively, in
the heat of a complex project, when many other questions and issues
are jostling for attention. At such times, there’s a strong temptation to
regress to simpler (less effective) practices.

64 MANAGING LARGE PROJECTS

The best defense against regression, in the midst of project turmoil,
is to have deep internal commitment to sound software manage-
ment processes. This commitment can be strengthened by regular
review of these processes, so that they become second nature. It's
especially helpful to review each process in the specific light of
smartphone project issues and hotspots. You'll see that the special
features of Symbian OS inject a distinctive flavor into the overall
process melting pot.

5.4 Project groupware

In small project teams, everyone is familiar with what everyone else
is doing. Informal discussions between team members are sufficient
to keep people informed. Team meetings occur when needed, often
without much advance warning (since it is easy to gather everyone
together), often without a formal agenda, and often with no permanent
record of what was covered. In small projects, there is little need for
formal agendas or meeting minutes.

In small project teams, email is another essential communica-
tion mechanism, which exists alongside the set of face-to-face (F2F)
discussions. Email creates a more permanent record of discussions,
allowing reference back, after the event, to decisions and reasons.
This introduces some support for archiving, searching, and sorting.
Email also goes some way to reduce the effect of “Chinese whispers”,
whereby instructions become distorted through frequent retelling.

But for larger projects, more is needed. F2F and email are no longer
sufficient. The project needs some kind of database system which is
the repository for project communications. This is commonly called
the “‘groupware” of the project. The project groupware consists of
knowledgebases, online discussion forums, and so forth.

Groupware is a structured dynamic body of data that allows a
group of people to collaborate in an effective way over extended time
duration. Groupware permits:

O Easy access to the information by newcomers to the team (in a way
that is difficult to achieve using email alone)

O Easy tracking, by management, of issues that have been raised (for
example, technical questions awaiting answer)

Q Easy reference, by all members of the team, to official documents
and decisions.

Without groupware, it is easy for issues to become lost in sprawling
email threads that lack clear owners. With groupware, there is greater
visibility and shared understanding of project issues.

CONFIDENTIALITY ISSUES 65

The mere existence of a formal database for project communication
will not stop the flow of email within the project team (and nor should
it). Email remains a highly useful communications method. However,
all project members need to be ready to copy sanitized portions of
email threads into the formal database, whenever they judge that
an email exchange has interest to a wider group of people. In such
cases, the alternative to copying the email thread into the project
groupware is to extend the CC list of the email discussion. However,
it seems to me that the CC list is never quite large enough — there
are potentially lots more people who have a genuine stake in the
discussion (and who might be able to supply the best answer). That's
why the groupware storage mechanism is better.

Provided team members observe the discipline of moving impor-
tant discussions out of email into groupware, it will often become
apparent that certain questions keep recurring. (Sometimes, indeed,
the same person will raise the same question several times, to different
people, until an answer is given that satisfies the questioner.) When
groupware is used, the questions can quickly be answered, by refer-
ence to previous times the questions were raised. But if the discussion
sticks to email, there is a big risk of duplicated and suboptimal effort.

5.5 Confidentiality issues

In my view, it is better to err on the side of sharing too much
information than sharing too little. If team members are able to
read the explanations for various decisions, as well as other relevant
background information, it will in general help them to carry out their
jobs more intelligently.

But certain kinds of information may need to be stored in the
groupware in a way that limits access to a smaller group of people.
Examples include information about project finances, or about the
performance of suppliers or partners. Therefore, you may decide
to restrict access to some information stored within the group-
ware. During the project setup phase, project leaders should check
that the groupware system they adopt is capable of different levels
of access.

However, if you do write documents that speak about partner
companies behind their backs, you’d better be double-sure that none
of these remarks finds its way into the hands of these companies!
Otherwise, the relationship may suffer irreparable damage. One
useful safeguard here is to encrypt documents containing particularly
sensitive information, using the encryption keys of only a small
number of people.

66 MANAGING LARGE PROJECTS

5.6 Five central project documents

Here are five types of document that should be available in the project
groupware:

0 Documents detailing ““who does what”, so that it is easy for team
members (including people in partner companies) to know who
to contact about specific matters. Everyone’s email address should
be included, together, ideally, with a map of who sits where. The
documents should also contain photographs of the team personnel,
thereby forming an “illustrated organization chart”, allowing team
members to match the names and faces of their colleagues

Q The project “release notes”’, which describe the changes between
the different internal baseline versions of project software (for
example, stating which defects have been fixed, and which ver-
sions of external software have been included)

O The latest “integration schedule”, which gives the expected
timetable for forthcoming new internal versions of the project
software, along with the anticipated contents of these versions
(evidently, the integration schedule gives the predicted contents
for future release notes)

O The latest “risk list” for the project, where the project manager
lists the most significant hurdles facing the project, along with the
measures being taken to ward off these risks

O The latest “focus list” for the project, where the project man-
ager states the matters requiring the highest level of attention
in the project at the present time, thereby establishing priorities.
(Sometimes this document is called the “issue list"’.)

These documents all need to be kept up to date on a regular basis.
This may be viewed as a tedious chore, but for larger projects, the
effort will be well repaid, through better dissemination of key project
data. The project leaders will also find that the discipline to create and
maintain these documents forces them to review different aspects of
the overall progress of the project. They are likely to have important
“ahal” realizations whilst working on these documents.

5.7 Auditing document readership

From time to time, project leaders should conduct an informal audit
of who is reading the documents being produced. The purpose of

PROCESSES AND AGILITY: EDUCATION VS. PROCESSES 67

this audit is to identify whether any documents have become mainly
“write-only”’, in the sense that people write them but no-one reads
them (or the readership is smaller than expected). If any such docu-
ments are discovered, the project leaders need to determine whether:

0 The existence of these documents needs to be better publicized

O The content of the documents needs to be changed (to better meet
the needs of the expected readership)

O The documents should be reduced in size, or eliminated altogether.

There is little point in putting in the effort to create documents that
hardly anyone reads. However, the documents that | have specifically
mentioned (organization chart, release notes, integration schedule,
risk list, and focus list) are documents that | strongly believe are well
worth both writing and reading. If the readership is poor in these
cases, it is time to check whether the documents are being sufficiently
well written:

Q Are the documents repetitive? If so, they should be streamlined

Q Are the documents over-wordy? If so, consider adding diagrams,
charts, and tables

O Are the documents clear? If not, encourage the writers to put
themselves more often into the shoes of their intended audi-
ence. Customer-focus is as important in writing documents as in
writing software.

5.8 Processes and agility: education vs. processes

Please do not conclude that, because I talk a lot about the importance
of processes in large projects, | am in favor of heavyweight processes.
That would be a wrong conclusion. | am in favor of formal processes,
but not heavyweight ones that consume large amounts of time. What
I do favor, is the importance of project teams taking real care over the
way that their work is carried out. In view of the multiple connections
between all the different pieces of software in a smartphone project,
software development on the project cannot be allowed to be entirely
spontaneous. It needs to be carefully thought through in advance,
and carefully reviewed afterwards. Furthermore, individuals on the
project team cannot be allowed to take all their own decisions in
isolation from one another; their actions need constant coordination
with other team members.

68 MANAGING LARGE PROJECTS

These goals (that work is carried out with real care, that individual
pieces of software development need to be planned and reviewed, and
that there needs to be constant coordination of individual outputs) are
entirely consistent with lightweight processes. There is no necessity
for any one process to take a long time to carry out.

Instead of heavyweight processes, | champion heavyweight edu-
cation, with the education covering the ““why’” as well as the ““what”’.
That is, all team members should understand:

Q The reasons why it is important to review work carefully

O The reasons why certain review methods are believed to be the
most effective ones

Q The kinds of things that can go wrong when shortcuts are taken.

Instead of lots of time being consumed by people filling in lots of
paperwork, the majority of time should be spent on the following
activities:

O Planning and design

a Actual execution (“the real work’”)

Q Peer review

Q Discussion of lessons learned (““education”’).

Companies that impose heavyweight processes often do so out of a
lack of trust and respect for their team members. In such companies,
there is a strong belief that team members are likely to make mistakes,
so processes are used as correctives. This kind of pessimistic belief
system is unlikely to lead team members into high performance (and
as such, it tends to become a self-fulfilling prophecy). Furthermore,
heavyweight processes prevent a team from responding in an agile
manner to change requests. In contrast, an education system that is
oriented to spreading an understanding of underlying principles is
likely to result in much better accomplishment.

So, team members should all be made aware of practical examples
of problems arising in smartphone projects when insufficient care
is taken on some aspects of the development work. Provided these
examples are well understood, team members will appreciate, by
themselves, the reasons why various kinds of spontaneous software
development cannot be accepted as part of a large smartphone
project. There will be no need for managers to spend a lot of
time carefully double-checking the work of their team members.
Team members will, autonomously, coordinate their work, and attain
higher quality levels.

SYMBIAN’S USE OF GROUPWARE 69

5.9 Problems when groupware is short-cut

Here are some examples of what goes wrong in large smartphone
projects if shortcuts are taken with the project groupware:

Q In the absence of a useful illustrated organization chart, team
members often fail to realize who they should be talking to about
various project issues. They may not know the right email addresses
to use. And they may not recognize other team members, when
passing each other in corridors, and thereby lose the chance for
important impromptu F2F discussions

Q In the absence of accurate release notes, team members won'’t
realize that various defects have already been fixed (or are known
to still be unfixed) in the latest internal software version. They also
won’t know how important it is for them to be using or testing a
particular new software version

Q In the absence of a useful integration schedule, team members
will miss the opportunity to submit their changes in time for
particular integration steps to take place, and will fail to realize
what submissions are expected at which times in the days and
weeks ahead

O In the absence of a carefully thought through risk list, nasty risks
will creep up unnoticed on a project and may overwhelm it

0 In the absence of a carefully thought through focus list, team
members will devote too much of their time to issues of lesser
overall importance to the project

O If the groupware as a whole is substandard, new team members
will spend an excessive amount of time working out what they are
meant to be doing on the project, and managers will fail to realize
that various important issues lack clear owners.

In short, lack of time spent to create and maintain project groupware
results in much greater overall loss of time as a result of poorly
informed and poorly coordinated team members.

5.10 Symbian’s use of groupware

The software team in Psion adopted Lotus Notes in late 1994. Since
that time, many hundreds of customized Notes databases have been
designed. Many have subsequently withered and expired, but some
have flourished, and are still going strong, ten years later:

70 MANAGING LARGE PROJECTS

O The oldest posting in our in-house ‘’Programming’ database is
one | made on 19th March 1995 (on the subject of the Rational
Rose design tool). The ““About’” screen for this database reads
as follows: This database is for general discussion on program-
ming — discussion potentially of interest to all software developers,
regardless of their current project. This database is available to
all Symbian personnel. Non-Symbian personnel have no access.
You can use this database for passing on programming tips and
hints, and for asking if anyone knows a way to do such and such
a thing. You can argue about “in-house programming style” in
here too. (For example, “In my previous job we did things in a
far better way than the way Symbian forces me to use now.”) In
due course, ideas raised in this database may become adopted as
official company policy, for one or more projects, and will transfer
into other databases (e.g. the Symbian Standards database)

O The oldest posting in our in-house “EPOC Software Design”
database is one (coincidentally also made by myself) dated 3rd
January 1995, on the subject of the design of FORM32 — the
formatting and layout software component of Symbian OS.

Among many other purposes, we have also used Notes databases for
defect tracking, for change control systems, for FAQs, for company-
wide news, for storing standards, for release notes, for integration
schedules, for booking training courses, for tracking meetings and
actions, for organizing social events, and for our corporate directory.
Customer-facing project teams typically also have databases dedi-
cated to the workflow arising from these projects. Despite this heavy
use (or perhaps in part because of this heavy use), Notes has had
plenty of critics inside Symbian. In retrospect, it’s clear that:

O We often under-invested in the design of specific databases, relying
too quickly on simple modifications of general purpose databases
instead of spending more time upfront customizing a database to
our particular needs. The moral here is that it's easy to neglect
investment in tools, but the team pays the price for this many
times over

O In some cases, it really is better to adopt a different tool, tailor-
made to its intended purpose. For example, for defect tracking we
switched away from Notes during 2002, and adopted TeamTrack
for this specific purpose. Also, we nowadays also have extensive
extranets and intranets (including a TWiki), where teams publish
and review information

SYMBIAN’S USE OF GROUPWARE 71

O Regardless of the tools used, people need to invest the time,
on a regular basis, on “librarian” activities, including data
reclassification, archiving, and creating new top-level guides to
the groupware.

For confidential data exchange with partners and customers, we
specify the use of PGP encryption for sensitive material (in cases
where there is no dedicated secure connection). PGP is a hassle to
learn and a moderate inconvenience to use, but once people have
come through the initial learning curve, it becomes virtually second
nature. Symbian’s insistence on treating our partners’ confidential
information with great care is another reason why our partners are
able to trust us to such a high extent.

6

Managing defects

6.1 Introduction to smartphone defect management

One of the really central items of smartphone project groupware is
the defects database — the database of all known or suspected defects
in the product. At all stages of the project, team leaders should be
spending a substantial amount of their time monitoring and reviewing
the material in the defects database. By doing this, they can accelerate
the following:

O Identifying and eliminating the most serious defects in the product

O Evaluating the quality level in the product

O Evaluating the quality of work from different teams in the project

O Determining when the product is likely to be ready for release to
the market.

Optimal defect management consists of the following subprocesses:

O

The initial raising of “/incident reports”’

Analysis of these incident reports —to determine if there is an
actual product defect

Prioritization of product defects

Evaluation of candidate fixes

Testing of candidate fixes

Overall review.

O

[y Wy Wy

The defects database is formed from a large number of “‘incident
reports”, which are raised by testers and other team members. (In a
healthy project, testing is carried out by a much wider set of people
than just the designated full-time testers.) Incidents are raised when

74 MANAGING DEFECTS

someone notices behavior in the product that they consider to be
questionable or wrong. An incident report should include:

O A clear statement of the actual behavior observed, as well as what
the expected behavior was

Q A description of the hardware and software test environment
(such as the hardware and software version numbers) including, if
relevant, the telephony network in use, and the type of SIM used

O A description of the steps to take to produce the problematic
behavior.

Once an incident report has been created, other team members can
add extra information, which appears in the database as ‘“responses’’
to the report.

It needs to be clear to all team members that not every incident
report contains a defect. Just because an incident report has been
raised does not mean that the software has a defect that needs to
be fixed. Instead, on many occasions, the correct response to an
incident report is ““not a defect”. For example, the team member
who raised the incident may have misunderstood an aspect of the
intended functionality of the product. Hopefully, once the intended
functionality is explained, the originator of the incident report will
be happy to close the incident (meaning that it does not need any
further attention). In case the originator is still dissatisfied (thinking,
for example, that the intended functionality has a bad UI), this fact
should be noted, with the incident marked for the attention of product
management:

O Members of the product management team should be regularly
involved in reviewing specification-related issues arising from the
defects database

O These matters should not be left solely in the hands of software
engineers to resolve. The opinion of software engineers on these
matters is valuable, but is insufficient to determine the decision. It
is a different skill-set that is needed to arbitrate between competing
conceptions of how end-users should experience the product

Q Inturn, this requires software engineers to recognize the limitations
of their own expertise, and to know when to ask for help from
other areas of the team.

Something else that needs to be clear to all team members is that,
even once it has been agreed that an incident report identifies a

LIVING WITH DEFECTS 75

defect, this does not mean that there is approval for this defect
to be fixed. There are many potential drawbacks to every fix that
is made:

O The code changes that fix a defect may have side-effects which are
worse than the original defect

O For example, other parts of the software may be relying (inten-
tionally or unintentionally) on the current notionally defective
behavior; fixing this defect may therefore break another part of the
software, sometimes with very significant consequences

Q Even if there are no bad side-effects, it will still take time to apply
the fix, and then to test that there are no bad side-effects; all this
consumes time, and risks delaying the product launch

Q Finally, even the best software engineers have limited energy, and
need to focus on the truly critical defects.

For all these reasons, engineers need to discuss with their team leaders
whether to try to fix particular defects. It may be better to live with a
defect, rather than to fix it:

0 On some occasions, the decision may be to defer the defect fix
until a later date, after the next public release of the product.
For example, there may be more time to fix the defect (and to
check the fix) in between the initial public release and a follow-up
maintenance release

0 On other occasions, the decision may simply be ‘‘not going to
fix”’, where there is no intention of revisiting the defect in the
foreseeable future.

6.2 Living with defects

Many people are perturbed by the concept of releasing a product that
is known to contain defects. There are three aspects to this:

O Some team members may believe that it is an intolerable indication
of poor software that defects remain in the product. Out of a sense
of pride, they want to fix all defects that are reported

0 Other team members take the practical point of view that any
defect is going to annoy at least some users, resulting in lost
revenue, and damage to the good brand name of the company

76 MANAGING DEFECTS

O Yet other team members come from a background of shipping
simpler phones (such as feature phones) for which the QA (Quality
Assurance) team insist as a matter of process that all defects found
during the QA period need to be fixed before the product is
approved for release. They argue that, since smartphones are said
to be improvements on feature phones, they should have even
fewer defects than feature phones.

However, the reality is that, unless software leaders take a broad-
minded approach to defects, the smartphone will never be ready to
come to market. There will always be aspects of the software that
cause difficulties or problems to some users. That's because of the
vast open-ended nature of the software in smartphones. Typically
a smartphone ROM has around four times as much software as
a feature phone. Taking into account the numerous interactions
between different aspects of the software, a smartphone can easily
have at least ten times as many plausible ““use cases’ as a feature
phone. So, other things being equal, it's not surprising that testers
will eventually find many more defects in a smartphone than in a
feature phone. That's no cause for panic. It's something to keep in
perspective.

The decision on whether a product is ready to ship needs to
take into account, not just the number of defects contained (that is,
items which will cause problems to users), but also the number of
positive use cases supported (that is, items that deliver value to users).
Delaying the release of a product, because it still contains some
defects, means that there is also a delay in users receiving all the
value available in the positive use cases supported by the product.
It's a tough decision.

6.3 Aside: an embarrassing moment with defects

The first million-selling product that | helped to build was the Psion
Series 3a handheld computer. This was designed as a distinct evolu-
tionary step-up from its predecessor, the original Series 3 (often called
the ““Series 3 classic’” in retrospect). The screen size on the Series 3a
was double that on the Series 3: 480320 pixels instead of 240x 160.
One reason for the success of the 3a was the clear focus, in the
project, on just a small number of specification improvements over
the 3. The original specification document listed nearly one hundred
potential significant upgrades. But the project team wisely chose to
focus on just a few points:

Q The larger screen (and the shades of gray that it supported)

ASIDE: AN EMBARRASSING MOMENT WITH DEFECTS 77

Q Support for print preview (to show off the extra graphics power of
the device)

O A complete rewrite of the agenda application (sometimes also
called ““Calendar”” or “’Diary”’).

All other applications were restricted to minor upgrades, so that the
lion’s share of the team’s creative effort could be applied to implement
an agenda application that (in contrast to its Series 3 predecessor)
would persuade users to abandon paper-and-pencil agendas for good.
We had around seven people working more-or-less flat out on this
application — an unprecedented number for Psion at that time.

At last the day came (several weeks late, as it happened) to ship
the software to Japan, where it would be flashed into large numbers
of chips ready to assemble into production Series 3a devices. It was
ROM version 3.20. No sooner was it sent than panic set into the
development team. Two of us had independently noticed a new
defect in the agenda application. If a user set an alarm on a repeating
entry, and then adjusted the time of this entry, in some circumstances
the alarm would fail to ring. We reasoned that this was a really bad
defect — after all, two of us had independently found it.

The engineer who had written the engine for the application — the
part dealing with all data manipulation algorithms, including calcu-
lating alarm times — studied his code, and came up with a fix. We
were hesitant, since it was complex code. So we performed a mass
code review: lots of the best brains in the team talked through the
details of the fix. After 24 hours, we decided the fix was good. So we
recalled 3.20, and released 3.21 in its place. To our relief, no chips
were lost in the process: the flashing had not yet started.

Following standard practice, we upgraded the prototype devices
of everyone in the development team, to run 3.21. As we waited for
the chips to return, we kept using our devices — continuing (in the
jargon of the team) to ““eat our own dog food”. Strangely, there were
a few new puzzling problems with alarms on entries. Actually, it soon
became clear these problems were a lot worse than the problem that
had just been fixed. As we diagnosed these new problems, a sinking
feeling grew. Despite our intense care (but probably because of the
intense pressure) we had failed to fully consider all the routes through
the agenda engine code; the change made for 3.21 was actually a
regression on previous behavior.

Once again, we made a phone call to Japan. This time, we were
too late to prevent some tens of thousands of wasted chips. We put the
agenda engine code back to its previous state, and decided that was
good enough! (Because of some other minor changes, the shipping

78 MANAGING DEFECTS

version number was incremented to 3.22.) We decided to live with
one defect, in order not to hold up production any longer.

We were expecting to hear more news about this particular defect
from the Psion technical support teams, but the call never came.
This defect never featured on the list of defects reported by end-
users. In retrospect, we had been misled by the fact that two of
us had independently found this defect during the final test phase:
this distorted our priority call. We eventually produced a proper fix
several months later, but the press had already declared the Series 3a
agenda application a stunning success.

Of course, the decision on whether a product is ready to ship
needs to consider, not just the number of remaining defects, but also
the severity of the remaining defects. This takes us to the topic of
assigning defect priorities.

6.4 Defect priorities

Discussions of whether to try to fix particular defects are informed
by the priorities assigned to the incident report. | recommend the
following five-fold priority classification:

Q Immediate patch required — meaning that the defect is holding up
other important aspects of product development. For example, a
defect may be such that it prevents whole other areas of function-
ality from being tested

a Showstopper (sometimes instead called “critical”’, or abbreviated
as “’SS”") — meaning that the product cannot launch until this defect
is fixed. The defect is judged likely to result in a significant number
of product returns (with dissatisfied users returning their phones to
the shop for a refund) and/or adverse publicity

Q High - meaning that the defect is probably a showstopper, but
further investigation is needed. If it turns out to be too hard to fix
the defect, it may be acceptable to launch the product with a small
number of high priority defects still present

Q Medium - this should be the default priority status for new incident
reports. It essentially means that further investigation is required
as to whether or not the defect needs to be fixed. If the fix is
straightforward, it should probably go ahead (depending on other
priorities), but otherwise it is up to a judgment call from the team
leaders involved

O Low - meaning that there is probably no need to fix this defect,
unless it is particularly simple to do so. An important reason for

THE PROCESS OF VERIFYING A DEFECT FIX 79

recording a low priority defect is to allow other people to carry
out further investigation, in case it turns out that the same defect
will have more serious consequences in other settings. Low and
medium priority defects are also good material to review when
determining the spec of future products.

Note that “’showstopper”” defects are not the most urgent to fix!

It takes a special kind of skill to know which kinds of defects are
likely to cause real problems in the marketplace — a skill borne out of
considerable experience. Software leaders need to nurture that skill
in their team members, wherever they find it.

Some team members may want to assign virtually every defect
to ““high” priority (or higher). However, they need to beware the
effects of ““priority inflation”. If too many defects are assigned to high
priorities, it lessens the impact. This kind of abdication of proper
prioritization means that resources are allocated on a suboptimal
basis. In such cases, defects which are genuinely more serious may
end up being overlooked.

6.5 The process of verifying a defect fix

Once a candidate fix has been found for a defect, there needs to be
a further decision as to whether to actually apply that candidate fix
into the product. This again involves peer review. There must be no
presumption that all candidate fixes are automatically applied. Items
to review, before approving the fix, are whether the candidate fix has
the intended result, whether any side-effects can be noticed, whether
the new source code meets generally agreed criteria, and whether an
alternative fix might be preferable.

It is worth looking in more detail at the process of verifying that a
fix has been successful:

O Before starting work on a fix, the engineer should check that it
is possible to reproduce the defect. There is no point in taking
the time and effort to make changes to some software, showing
afterwards that the defect does not occur, if the defect could not
be reproduced in the first place

O Learning how to reproduce the defect will often throw up additional
useful information. This may involve further discussion with the
originator of the defect

Q So, ideally, the engineer reaches a situation where it is known that,
in a particular context, a specified list of user operations reliably
results in an agreed undesirable outcome

80 MANAGING DEFECTS

0 Once the fix has been developed and applied, this same context
and list of user operations should be repeated, several times over,
without the undesirable outcome being observed. If so, then it can
be agreed that the fix is successful

O The context and list of user operations should be documented, and
added to the overall set of ““test lore”” for the project. This is a set
of test cases that should be revisited on occasion, to check that the
fix remains effective in later releases of the software

Q Itisimportantto ask the originator of the incident report to confirm,
in due course (that means, once software containing the fix has
been released), that they no longer see examples of the problem
they originally reported. Sometimes a developer believes that a fix
has been successful, whereas it only covers a small part of the
problem as experienced by the original tester.

Even when a fix seems not to have worked, this does not mean the
fix was wrong. Sometimes, there are layers of defects, all impacting
phone behavior in some area. Fixing the first defect then causes focus
to fall on the second defect in that area. Sometimes the second defect
is much harder than the first. This is another reason why it is important
to prioritize defects. Attention needs to be given, first, to the most
urgent defects — not the defects which happen to be most interesting
to the developer in question. It can end up taking a lot longer than
expected to fix any given defect.

6.6 Advanced defect investigation

Unfortunately, some defects are hard to reproduce. Testers notice
that, from time to time, something bad happens on the phone (for
example, an application terminates without warning, or the whole
phone becomes unresponsive) without being able to say what series of
actions precipitates the defect. These defects form a category of ““hard
to reproduce”. They pose special difficulties to smartphone projects.

Special skills need to be brought to bear to handle such defects.
Different software engineers possess these skills in different measures.
People who are particularly skilled at dealing with “’hard to repro-
duce’”” defects should be highly valued by project leaders, even if they
are only average in other aspects of software engineering. Here are
the skills in question:

O The ability to notice unexpected correlations (therefore, great
observation skills)

ADVANCED DEFECT INVESTIGATION 81

O The ability to try lots of different approaches, in attempts to make
the defect reproducible

O The ability to scan other incident reports in the database, to
highlight possible connections with the defect under investigation.
(This is one reason to encourage team members to record low
priority defects into the defects database, even when these defects
don’t, by themselves, require a fix. The information recorded in
a low priority incident report may turn out to provide a defect
investigator with the key intellectual breakthrough needed to solve
a different defect.)

Investigation of ““hard to reproduce” defects can go a lot faster
if the investigators have a good overall understanding of the sys-
tem software. More knowledge of the system makes it more likely
that you know what's worth observing. Experience on previous
smartphone projects helps a lot here. Skilled defect investigators
will be able to call upon lots of memories of roughly similar
defects from prior projects. This is a reason to ensure that a smart-
phone project team contains at least a sprinkling of Symbian OS
veterans.

Investigation of “‘hard to reproduce” defects can also go faster
if internal logging information can be collected from the software.
In this way, internal diagnostics can be added to the externally
visible information. This is an important example of how good tools
make a big difference to the effectiveness of smartphone project
teams.

Another big problem with ““hard to reproduce” defects is that it
is hard to tell whether they have been fixed. It is common to hear
people say something like *“... we haven’t seen this defect for some
time, and we suspect that it may have been fixed by the same fix as
was introduced for defect N” (quoting the unique identifier for the
second defect). What's needed in such cases is:

O A wide variety of willing testers, who employ different approaches
in their use of the smartphone

O A system for communicating to these testers a list of possible
defects to try to notice: the “critical test areas’ at any given time
in the project.

There is an argument for the whole team (from top to bottom) setting
aside an hour, every week or so, to try to reproduce the most critical
“’hard to reproduce” defects.

82 MANAGING DEFECTS

6.7 Defect status values

Let’s recap on some of the different status values that can be assigned
to an incident report:

Q “Awaiting investigation” —the default status of new incident
reports

Q “Under investigation”” — someone has taken ownership of the inci-
dent and has started to analyze it

Q “Not a defect” —the product is actually working as designed,
despite what the tester may have thought when raising the incident

Q “Duplicate” - the incident covers the same defect as another
incident report. In that case, a link needs to be provided to the
other report

Q “Deferred” — the defect will not be fixed ahead of the next public
release of the software, but should be reinvestigated at some
later occasion

Q “Not going to fix”’ - it is acknowledged that a defect exists, but
there is no plan to fix it in the foreseeable future

Q “Hard to reproduce” — further investigation is needed of the poten-
tial circumstances when the defect occurs

Q “Fix being evaluated” — a candidate fix has been prepared, and
the team is reviewing whether it should be accepted

Q “Awaiting verification” — a candidate fix has been applied, and
the team is waiting for the next internal release of the overall
software system, to verify that the fix works in the context of the
whole product

Q “Fix verified” — the fix has been verified as correct.

The set of defect status values is orthogonal to the set of defect priority
values.

The status values divide into two types: ““open” and “closed”.
Incidents are “closed” if they have been assigned as ‘‘not a defect”,
“duplicate”, ““deferred”’, “'not going to fix"’, or “fix verified”. Oth-
erwise, the incident is “‘open”. The whole purpose of the defects
management system is to move defects into one of the closed states
in a way that is controlled, thoughtful, yet systematic. Any defect
that spends a long time in one of the open states deserves manage-
ment attention.

THE ROLE OF THE PROJECT LEADER IN MANAGING DEFECTS 83

6.8 Defect database requirements

Here are some specific requirements on the way the defects database
works:

0 The database should be easily searchable, so that people who are
investigating a possible defect can quickly notice other incident
reports that may be relevant to this defect

O The database needs to be able to cope with up to tens of thousands
of incident reports, and potentially with more than one hundred
users accessing it simultaneously, without it becoming slow or
unresponsive. Databases that work well on small projects may fail
to scale to the greater demands of larger projects

O The database should avoid generating floods of automated emails.
Automated email notifications and reminders may seem like a
good idea in the context of small projects, but for larger projects,
the result is that email inboxes quickly saturate with automated
messages. Instead, team members need to acquire the discipline to
search the database on a regular basis for matters relevant to them.
In turn, this requires that it is clear (for example, by using ““unread
marks’’) where there have been recent additions to discussions on
particular defects

O The database should support the on-demand generation of a
variety of statistics and reports, for example by outputting summary
information into an editable spreadsheet.

It is a good idea to publicize the key trends with the defect statistics,
for example by printing out graphs and sticking them up on walls in
team areas. However, be sure that people understand the contents of
the graphs. All metrics are potentially dangerous, and defects metrics
are no exception.

6.9 The role of the project leader in
managing defects

By way of a summary, here is the responsibility of the project leader
(or an assigned deputy) in managing defects:

O Teach team members the best practices of creating and handling
incident reports

84 MANAGING DEFECTS

Actively review and adjust defect priorities. Prevent defect priority
inflation. Establish objective criteria for the higher defect priorities

Q Prevent ““defect ping-pong”’ between different teams

Q Ensure that relevant experts from different teams work together
well, to investigate defects which span more than one sub-team;
this includes product management representatives when needed

Assign suitably skilled people as defect investigators and coordi-
nators, and be sure that they are given sufficient support

Notice, from the defect statistics, when particular teams are running
into difficulty (for example, with slow defect turnaround times),
and take steps to deal with these difficulties

By ensuring that sufficient attention is given to areas needing focus,
drive down the number of open major defects.

7/

Managing configurations

7.1 Introduction to configuration management

Configuration management (commonly abbreviated to “CM") is a
discipline that allows software teams to keep track of multiple changes
in the software being developed. CM becomes particularly important
when several different people work on the same source code.
(Sometimes the term ““SCM”” is used instead — standing for Software
Configuration Management.)
A configuration is a consistent set of files comprising:

Source code

Header files

Static libraries (for example, *.LIB files)

Dynamic libraries (for example, *.DLL files)

Other run-time files (such as a complete test environment)

Tools (batch files, compilers, etc.) required to build the software in
this configuration

Q Documentation associated with this software.

[y Wy Wy iy

During a smartphone project, many of the above files will change,
many times over. The goal of CM is to make it easy to:

O Identify a consistent set of changes. For example, a certain change
made in a header file probably requires corresponding changes
made in several of the other files in a configuration

Q Identify the meaning of a set of changes, for example being able
to tell which changes are associated with a particular defect fix

O Merge the outcomes of two or more sets of changes in source
code — made by different team members, and/or by suppliers
or partners

Q Selectively decide whether to accept a set of changes

86 MANAGING CONFIGURATIONS

O If need be, reverse out a specific set of changes, whilst preserving
other changes made at about the same time.

My core advice to smartphone project leaders, about CM, is the
following:

Q Invest in an industry-standard CM tool, for storage of source code

O Take the time to train all members of the team in your chosen CM
tool

Q Embrace the full possibilities of CM. Adopt the philosophy of CM,
rather than just making occasional pragmatic usage of CM

O Place source code changes into configuration management often

O Place source code changes into configuration management sepa-
rately (rather than as monolithic updates)

O Review all differences regularly —to guard against unintended
changes

0 Devise and execute a codeline strategy to complement your con-
figuration management strategy

O Appreciate how configuration management and codeline manage-
ment fit into various higher-level processes (discussed at the end
of this chapter).

Note: despite its name, a CM tool does not store complete software
configurations. It stores source code, along with information about
that source code. It also provides the means for distributing versions
of source code among the development team. However, you need
separate tools to handle the storage and efficient distribution of
the other files in a software configuration. Symbian uses a tool
called “CBR” (Component Based Releases Tool) for this purpose. See
Chapter 11 for more details.

7.2 Aside: learning about configuration management

When the software team at Psion started work in the late 1980s on
EPOCT6 (the 16-bit precursor of Symbian OS), there were only four
layers in the software stack:

O The lowest level was the operating system itself, along with a PLIB
access library (the “/P”” in PLIB stood for “/Psion”’)

ASIDE: LEARNING ABOUT CONFIGURATION MANAGEMENT 87

Q On top of this came WSRV, the Window Server library that
implemented low-level graphics (all our libraries were restricted
to four-letter names, as a side-effect of a naming convention that
layered over MS-DOS 8.3 filenames)

0 Next came WIMP, our toolbox of widgets to implement a GUI:
bordered windows, clickable icons, pull-down menus, and active
mouse pointers

Q Finally came the applications —such as the contacts database,
a diary, a spreadsheet, and (the team where | worked) a word
processor. (This over-simplifies things a bit: the applications were
in turn split religiously into “engine’” and ““Ul"" parts, with the
engine parts having no dependency on WSRV or WIMP. But let’s
leave that to one side for the moment.)

In retrospect, the way that new internal releases worked through this
system was comical. (However, 15 years later, | confess that | still
occasionally suffer déja vu while studying practices on some novice
smartphone projects.) New releases of PLIB were placed onto a
floppy disk. The Window Server team added a matching new version
of WSRV, and passed the disk on to the WIMP team. In turn, the
WIMP team added their matching new version, and the disk started
passing around the various apps teams. Because the floppy disk got
lost several times, we resorted to tying a string to the floppy disk
cover, so we could notice more easily where the disk had become
held up.

Once, shortly after I installed a new set of libraries from the string
floppy disk, the Word app | was writing failed to start up properly.
After some investigation, | called over the gurus from the WSRV
team. An hour or so later, the conclusion was that there was a bug
in the copy of the WSRV libraries on my PC. | was given a patch,
and development proceeded. A few days later, the disk came round
again. This time, after the installation, the Word app failed again, but
in a different way. Again, the WSRV gurus eventually tracked down
the problem. Unfortunately, it was the same underlying problem as
before: the WSRV library | had taken from the string floppy disk was
different from the one the WSRV team had put onto it. It turned out
that the hand-crafted batch file used by the WIMP team to copy the
latest WIMP libraries onto the string floppy disk had the unintentional
side-effect of also copying on an old version of the WSRV library,
from an unused directory on the main PC in the WIMP team. In other
words, it was not a software defect per se, but rather a process defect.

This was far from being an isolated incident. By the time we
realized how much debugging and development time was being

88 MANAGING CONFIGURATIONS

wasted by this kind of process defect, we collectively decided to
learn about formal configuration management. We knew we needed
something that was more reliable than hand-crafted batch files. After
studying some of the options available from commercial suppliers,
we adopted PVCS, which served us well for many years. Later (1999),
for various reasons, we switched to Perforce.

7.3 Consequences of weak configuration
management

The main consequences of a smartphone project making only weak
use of CM (or, worse, not having any formal CM system) are as follows:

Q Source code changes get lost. People investigating defects find
that they have already fixed these defects, but the code changes to
implement the fixes have somehow been discarded or over-written
by subsequent changes in the software

O Team members cannot confidently reproduce a specified configu-
ration. This means that defects being analyzed or debugged on one
PC cannot reliably also be analyzed or debugged on other PCs.
It also means that there can be little confidence that the results
of testing carried out on one PC are applicable to the software
configuration on another PC. In short, people cannot be sure if
defects have actually been fixed

O Too much time needs to be spent on manual code manipulation,
instead of benefiting from the automation and power of a modern
CM system

O The team becomes unnecessarily fearful of changes. A good CM
system allows changes from diverse sources to be evaluated and
merged (or de-merged) in a straightforward fashion

O Because it is time-consuming to properly reverse out a set of
changes, candidate defect fixes (as discussed in the previous
chapter) tend to remain in the main code system, even when
a more prudent outcome would be to cancel a proposed fix.
Instead of returning to a known original state of the code, the team
applies one candidate fix on top of the remnants of another. It is
no wonder that the code can quickly become messy.

The larger the scale of the overall project, the more damage is caused
by the above problems — hence the greater the need to adopt a good
CM system.

BASIC PRINCIPLES OF CONFIGURATION MANAGEMENT 89

7.4 Basic principles of configuration management

At any moment in a smartphone project, each of many software
components will be in a state of flux, with one or more of the
following taking place:

O New features are being added

O Defects are being fixed

a Performance is being optimized

O Design is being refactored

O Other experimental changes are being made.

In the midst of a large project, it is very unlikely that you can take
the latest versions of all the components, and expect them to work
together well. Instead, the development of individual components
typically runs on in advance of the latest working overall configura-
tion of the software system. For this reason, version labels need to be
defined, on a regular basis, as progress markers for each component.
An overall configuration of the smartphone software system is com-
posed of a list of defined versions of each of the components. A key
task of the project leaders, therefore, is to ensure that:

0 Each component applies version labels to their files at suitable
times

O Overall system configurations are correctly defined in terms of sets
of version numbers of components

Q Team members can reliably and efficiently collect, onto their PCs,
all the files making up an overall configuration.

The source files are stored in a central CM database, sometimes
called a “repository’” or a “depot”. In general, the CM database
contains multiple different versions of these files. It is usual to access
this database through a client—server interface. Given that several
hundred PCs running CM client software may be accessing this
database simultaneously, reading and writing different versions of
files, the CM tool needs to be high quality. A poor choice of CM
tool will lead to engineers being tempted to side-step the CM system,
losing many of the benefits that CM should bring.
Basic features of a CM system include:

O Easy display of the source-code differences between any two ver-
sions of software. Among other things, this helps to highlight any
unintentional changes — for example, experimental changes that

90 MANAGING CONFIGURATIONS

were incompletely undone, through the developer being inter-
rupted part-way through, and then forgetting the train of thought

O Easy display of who has been editing a file, along with the changes
they have made. (Historically, development teams used in-source
comments to track this kind of thing. But such comments are
notoriously unreliable, and also obscure the main logic of the
source code. A CM tool calculates this kind of information auto-
matically, and stores it as “‘meta-information”” accompanying the
source code)

O Easy branching of a set of files to start a new chain of development.
The previous branch still exists, and can continue to be modified.
The new branch can also be modified independently. The CM
tool should then make it easy for selective changes made in either
branch to be applied into the other one (this process is known as
“branch integration”’). A good CM tool speeds things up further,
making it easy for people working on one branch to review and
selectively apply just those changes made in another branch since
a previous branch integration point occurred

O Easy source code conflict resolution, for when two or more people
have been working on the same set of files at the same time; ideally,
the CM tool will show graphically all the different sets of changes,
and guide the engineer through the set of choices available.

Many of the features of the CM tool become more powerful once
the project team moves over to a working model of submitting
their changes into the CM system on a frequent basis. For example,
each individual defect fix should be submitted separately into the
CM system. The alternative is to wait longer between submissions,
resulting in a monolithic change. The problem with a model of
monolithic changes is that the CM system loses information about
which parts of the change can be acted on individually. In turn,
this makes it harder to automate actions on the individual smaller
changes — where these smaller changes could be selectively undone,
merged, or integrated to a different branch.

7.5 Codeline strategy — single projects

Choosing a CM tool is an important step, but it's only the start.
Project leaders also need to decide on a codeline strategy. A codeline
is a body of code together with a set of policies and processes
governing how that code changes. In a project to create a smartphone

CODELINE STRATEGY - SINGLE PROJECTS 91

there will usually be at least four primary codelines within the local
CM database:

Q One for Symbian OS

0 One for the Ul system (such as Series 60 or UIQ)

0 One for the base port that is provided by the silicon supplier of the
application processor

Q One for the smartphone itself — known as the ““mainline”’.

Here, the first three codelines are ““import”” codelines, holding source
code from suppliers. The only changes occurring in these codelines
are when the suppliers release new code.

To be clear, the same Symbian OS files will end up in two different
codelines: the Symbian OS supplier codeline, and the smartphone
mainline codeline. Likewise, the files provided by the other suppliers
will also end up in two codelines. The reason for making two copies
of the files is to be able to take advantage of the power of the CM
tool. This works as follows:

O At the beginning of the project, a specific version of Symbian OS
will be used as the starting point for a supplier codeline

O A copy of this code should also be included in the smartphone
codeline

0 Development takes place, during which time some of the project
members may alter some of the Symbian OS files (in ways permitted
by Symbian’s standard licensing contract). These changes are
placed into the smartphone codeline. Files in the import codeline
are not touched

Q After some time, a new release of Symbian OS will become
available (new releases of Symbian OS are generally made once
every two weeks). This new release cannot simply be copied into
the smartphone codeline, since that would overwrite the changes
made locally. Instead, it is placed into the import codeline

Q The CM tool is then used to perform an integration of the two
branches, with the result being placed into the smartphone code-
line. During this process, the integration team can easily review the
different sets of changes, and (in most cases) it is straightforward to
decide how to proceed (see Figure 7.1).

This process continues round many more loops. Each time round the
loop, the benefit of using the separate import codeline and the CM
tool becomes stronger. Trying to do the same code merge manually
becomes harder and harder.

92 MANAGING CONFIGURATIONS

Supplier Supplier Supplier
delivery delivery delivery
A N\

Import codeline 1

|

l Catch-up Catch-up Catch-up
A
| > Smartphone codeline
4
Catch-up Catch-up
> Import codeline 2

1 Supplier 1 Supplier

delivery delivery

Figure 7.1 Import codelines

The basic rule for creating an import codeline is: create such
a codeline if there is any prospect of the project team making
independent changes to the supplier’s code. If independent changes
occur in supplier code outside of the CM system, there is a significant
risk of these changes becoming lost.

In addition to the above codelines, a project will typically have a
number of ““development codelines” (sometimes called ‘“team code-
lines”’). These are owned by sub-teams within the project, such as
multimedia, telephony, Ul, and applications. As their name implies,
development codelines are where the majority of actual develop-
ment takes place. Code is published on a regular basis from the
development codeline into the overall smartphone codeline.

That is not all. In many cases, individuals on a team will also
have their own personal codelines, which they use for experimental
development purposes. Once the experiment has been concluded, the
resulting changes (if any) can be published from personal codelines
to the local development codeline (see Figure 7.2).

> Smartphone mainline

l Branch lCatch-up I Publish

Figure 7.2 Team and personal codelines

Team codeline

Publish

Personal codeline

CODELINE STRATEGY — MULTIPLE PROJECTS 93

7.6 Codeline strategy — multiple projects

To maximize its return on investment in developing smartphone
technologies, a company needs to create, not just one product,
but rather a whole series of products, including variant products,
maintenance upgrades, and distinct new models in the same product
family. Each new product reuses a great deal of the software from its
predecessors. This introduces an extra twist of complexity into the
codeline picture.

From this point of view, the ‘“smartphone codeline” would
arguably be better termed the “’platform codeline”, since it serves the
needs of a platform of products rather than a single, specific, product.

The overall team then needs, from time to time, to create new
codelines from the platform codeline. These are sometimes known as
“release codelines”, since they are the vehicles for the actual release
of products. There will be one release codeline for each significantly
different product created from the shared underlying software system.
(Another common name for a release codeline is a ‘‘steady-state
codeline”, since the amount of change in such a codeline is expected
to be reduced.) The release codelines evolve towards a reasonably
fixed product specification, whereas the platform codeline continues
to evolve to meet later product requirements.

For example, imagine that a company starts by producing product
A, but it is also planning to release product B six months later,
with significant additional features. In view of the long time period
involved in development, the development of code for B will start
before product A is released. To complicate things further, it is likely
that, shortly after the initial release of A, one or more maintenance
releases (A2, A3, say) will be needed, to fix defects reported by the
first tranche of users. The code for A2 will be based very heavily on
thatin A, and will have very few (if any) of the changes that are in the
process of being developed for B.

In codeline terms, one way this could be implemented is as follows:

Q There is a project codeline entirely dedicated to the creation of
product A

O When the time comes to start developing product B, a new codeline
is formed for that product, branching from the first

O On a regular basis thereafter, catch-up integrations take place, in
which code changes from the A codeline are integrated into the
B codeline

a After A is released, its codeline continues to exist, and is used for
A2, then A3, etc.

94 MANAGING CONFIGURATIONS

However, a better approach is as follows:

Q The first codeline is initially dedicated to the creation of product A

0 When the time of the release of product A grows close, a release
branch is created, from the initial branch, and the development of
product A then takes place in the release branch, followed in due
course by the development of maintenance release A2

Q The main codeline is used from this time on for the larger devel-
opment changes needed to create product B

Q As in the previous model, catch-up integrations take place on a
regular basis

Q In due course, a release branch is created for B as well, with
ongoing platform development targeted at yet further products
continuing in the main codeline.

In principle, there is little to differentiate these two approaches. How-
ever, some detailed aspects of the way the CM tool works may impose
a preference. For complex sets of projects, the second approach has
the advantage that the status (and hence the policy) of a codeline
remains the same throughout its lifetime: it is either a ““main’’ codeline
(where significant development takes place) or a “’release’” codeline
(with a greater degree of stability, and hence, tighter change control).
This is the approach | recommend.

Finally, consider the case when a company is developing two
products in parallel, sharing a lot of the same code. For example,
one product may be a smartphone for the enterprise market, and the
other might be targeted more at consumers. Or one might be 2.5G
whilst the other is 3G. In such a case, the software that is shared
between the two projects should be placed into a common codeline.
Then individual branches are formed, to cater for the needs of the
individual products.

Evidently, in general there can be more than one possible approach
to codelines. The key point, however, is that project leaders need to
devote time to planning their use of codelines, and then publishing
the agreed policy (this usually involves a series of codeline diagrams),
so that everyone in the project has a shared understanding of the
decisions. You'll probably find that different parts of your overall
organization have conflicting desires as regards codeline policies.
Consider appointing an overall ““CM authority”” in your organization,
to identify and handle these conflicting desires.

BEYOND CODELINE STRATEGY 95

7.7 Beyond codeline strategy

The management of complex changing software configurations
involves five levels of process:

0 Adoption and use of a CM tool for storing and distributing source
code

Adoption and use of a codeline strategy

Adoption and use of an integration management strategy
Adoption and use of an interface management strategy

Adoption and use of a component distribution strategy, for incre-
mentally distributing binaries throughout an extended team.

000D

The CM tool and the codeline strategy provide the basis for coping
with complex changing systems. They make it possible to review
and track individual changes in the midst of much larger system
changes. For example, if someone decides to copy a fix from one
product development to another, the CM tool will make it clear what
parts of which files need to change (and can automate the required
changes). However, an integration management strategy is required
to coordinate the timing and approval of individual changes ranging
across wide areas of software. This is the subject of the following
chapter. Following on from that, | will look at a special subdiscipline
of integration management known as interface management: the more
precise study of changes which involve interfaces between different
areas of software.

8

Managing integration

8.1 Integration vs. creation

Here is one model for developing software. According to this model,
the most difficult part of the overall task is creating new software.
That is where the best developers should be assigned. Less competent
developers can be assigned to less critical tasks, such as build,
integration, and test.

I mention this model in order to say that it is completely inappro-
priate for most smartphone development projects. If followed, it will
result in project failure. Some pieces of software that are individually
enchanting may be created in the process, but these pieces will not
reach the market.

Instead, it is a cardinal principle of successful smartphone devel-
opment that you assign some of the most experienced and skilled
engineers to the tasks of build, integration, and test. These tasks cannot
be thought of as somehow secondary, deserving only the /B team”.
You must think of these tasks as having primary importance, deserving
staffing from the ““A team”’.

Many developers prefer doing ‘“green field’”” development of brand
new pieces of software, to working with existing software that has
been developed by other people. This is a natural psychological
tendency. However, project leaders need to fight this tendency. The
vast bulk of software used by any given smartphone project has
already been written, by people in other teams or in other companies.
You cannot seriously contemplate rewriting anything more than a
small fraction of this software. Do not underestimate the extent of the
effort that has already been expended. Instead, you need to take the
time to figure out how to interface with this existing software, in order
to take advantage of its power. In other words, you have to invest lots
of energy in integration, rather than in creation.

98 MANAGING INTEGRATION

The greater the amount of software in the product, the larger is the
requirement for key people who understand and safeguard the entire
system. The integration team are the people who perform this role.

Note also that “integration” is not the same as “‘build”’. Build
is concerned with getting the software to compile and link. But just
because something compiles, it doesn’t mean that it works. Integration
is concerned with getting things to work.

8.2 Mainlines and development codelines
Recall the basic principles of mainlines and development codelines:

O Development codelines are created from time to time from the
project mainline, for use by groups of developers

0 Code produced in a development codeline needs to find its way
back into the mainline in due course, if it is to reach the mar-
ket; products are released from the project mainline, not from
development branches

O Once the development in a development codeline is stable, and
once suitable tests have taken place (as discussed later in this
chapter), the outcome is published back to the project mainline

Q At this time, the development mainline is closed down, and a
new one is created, seeded from the latest mainline, and the
cycle continues.

Note in particular:

O Atany given time, there are multiple different development code-
lines in existence, being used by different teams

Q The mainline serves the needs of the whole project, not just the
needs of individual teams.

The mainline is owned by the integration team. In a healthy project,
the integration team are receiving submissions from development
teams almost every day of the week (depending on the scale of the
project). This means that the mainline goes through a great deal of
flux, as the various submissions are reviewed, optimized, and (in some
cases) rejected. However, on a regular basis, the mainline needs to
reach a state of suitable quality to be adopted by the rest of the team.
These points are known as “’baseline” releases. In other words, the
mainline periodically issues baseline releases, with steadily increasing
quality level.

MAINLINES AND DEVELOPMENT CODELINES 99

The reason for teams to have their own development codelines is
to provide them with a stable environment while they are making
their own changes. It is too disruptive to keep on having to adjust,
day-by-day, to every change made in the mainline. However, it is an
important rule that development codelines should, as far as possible,
adopt the changes made in every baseline release of the mainline.
This prevents the development codelines from drifting too far away
from the contents of the mainline — something that would complicate
the subsequent integration back into the mainline. Therefore, through-
out the lifetime of any development codeline, catch-up integrations
should be occurring on a regular basis, to propagate the changes from
the latest project baseline into the development codelines.

In most cases, development branches should perform a catch-
up with each baseline release, whenever it becomes available (see
Figure 8.1). On occasion, if a development branch is in a great state
of flux, the catch-up with a baseline can be temporarily delayed.
However, the longer this delay, the harder the eventual integration
becomes.

There is an underlying “‘integration contract”” here: development
teams can commit to regularly updating to the latest baselines pro-
vided the integration team in turn commits to ensuring:

O That baselines don’t regress in quality
O That interface changes in baselines (as discussed in the next
chapter) are carefully communicated in advance.

The final stage of this underlying contract is that the quality of the
baselines in turn depends upon the quality of the submissions made
by the development teams into the mainline.

New versions of generic incoming += Baseline, snapshot of the
components, such as Ul or mainline at known quality,
Symbian OS, to be merged in distributed to all parties as

basis for further work

Mainline
code branch

\r \: 1 '[Development branch A

(takes in each baseline)

Development branch B
(takes in each baseline)

Submissions to mainline made at beginning of each baseline stabilization period

Figure 8.1 The mainline/baseline concept

100 MANAGING INTEGRATION

When the conditions of this underlying contract are fulfilled, there
is a powerful build rhythm in the project: good quality baselines
make it easier for the development teams to produce good quality
submissions, which in turn make it easier for the integration team to
produce the next good quality baselines.

8.3 lIterative development

Integration proceeds as a series of iterations, with each iteration
resulting in a baseline release.
It is important for project leaders to plan:

O The overall sequence of baselines: what changes are expected to
be made in each baseline
O The process that applies in between any two baseline releases.

The first part covers the macro-evolution of the project, and is
commonly called the ““integration schedule”. The second part covers
the micro-steps that need to be taken, day-by-day (and even hour-by-
hour) in order to keep to the overall integration schedule.

In both cases, it is important for the project team not to attempt
too much at any one step. In both cases, the work should be spread
throughout the available time.

To be successful in their roles, the integration team need to
withstand some powerful pressures. These pressures are to try to do
more, in a short time, than is practical. Naturally, project stakeholders
want as much functionality to be present in the product, as early as
possible. At any time, this leads to pressure for a great number of
changes to be accepted into the next baseline. However, the more
changes that are submitted, the greater the likelihood of the integration
failing. Each individual change, whilst internally consistent in its own
right, has the potential of an adverse side-reaction with another
change made elsewhere in the system.

It's my experience that smartphone projects that fail often attempt
too much in a given iteration. They want to move fast — that’s under-
standable — and they end up taking too large a risk. As a result,
the baseline regresses: some features improve, but others turn out
worse than previously. The whole project then stalls. To prevent this
from happening:

O The integration team need to have strong authority — fully backed
by the leaders of the entire project (and by their senior manage-
ment)

ITERATIVE DEVELOPMENT 101

Q If the integration team believes that certain submissions are too
risky, at a given time, these submissions need to be rejected,
even if the submissions receive powerful backing from project
stakeholders.

Once the build rhythm of a project breaks, it can be hard to restart
it. Development teams resist adopting the latest baseline, since it
introduces new problems. That means the eventual integration of
their code into the mainline at a later date becomes harder to carry
out. That, in turn, delays the release of the next baseline, or (even
worse) causes corners to be cut in releasing the next baseline. Either
way, the next baseline turns out to be as unpopular as the previous
one (refer to Figure 8.2). So once the build rhythm breaks, it needs to
be fixed as soon as possible, to prevent the usual virtuous cycle of
quality improvement becoming a vicious cycle of quality degradation.

To maintain a healthy build rhythm, the following principles should
be followed:

O Integrate little and often (which is similar to the general software
maxim, ““iterate little and often’’)

O Publish the integration schedule in advance, and ensure that
development teams follow it

0 Define and follow effective “‘gate-keeping”” principles, to prevent
bad changes from being accepted into the mainline

0 Define and follow effective “/integration test’”” processes, as a further
check of the goodness of a baseline, before it is released

O Ensure that the integration team has sufficient technical skills
to quickly investigate and resolve problems that arise during
submissions

Quality

A

%> = Baseline

Quality

Month to recover Month to recover Week or 2-week to recover

Figure 8.2 Frequent integrations keep quality higher

102 MANAGING INTEGRATION

O Empower the integration team to have the absolute authority to
reject submissions, regardless of the degree of influence possessed
by the sponsors of these submissions

Q If development teams persistently make bad submissions, deal with
this failure at a management level.

8.4 Gate-keeping and integration tests

Before the integration team accepts a development team submission
into the mainline, they need to check for evidence that:

O The change has been authorized and approved by the relevant
team leader

Q The change has been code-reviewed by a peer engineer: all code
and changes should be peer-reviewed by at least one person other
than the author

O The submission has been tested against the latest baseline release
(not just against a special set-up on some developer’s PC)

O Consideration has been given to dependencies (that is, what will
be affected by this change)

0 Consideration has been given to interface breaks (as covered in the
following chapter), and that formal approval has been received for
any changes.

If these conditions are all met, the code can be integrated into the
mainline and included in the next build (which typically happens
every working day). However, this does not yet mean that the code
will be present in the next baseline. That depends on the results of
further tests:

O After each build of the mainline, a so-called set of ‘“smoke
tests” is carried out, covering the very basic functionality of the
phone — does it start, can it make and receive calls and text mes-
sages, can entries be saved into the contacts list, can photographs
be taken, etc. (the name is derived from similar test systems
for electronics systems, in which the tester checks for smoke,
sparks, or other dramatic signs of system failure when power

is applied)

DEALING WITH BUILD OR TEST FAILURES 103

O Towards the end of the integration cycle, a fuller set of tests is
carried out, sometimes called the BAT (“/Basic Acceptance Tests”).

In either case, if tests fail, and investigation highlights problems with
the code submitted by a development team, there is an option for the
integration team to reverse out that set of changes:

Q If the build fails its smoke test, it cannot be released, in any
circumstances

O The BAT score for a baseline must be at least as good (overall)
as the BAT score of the previous baseline: quality must improve
continuously.

There is an argument to perform BAT on every daily build of the
mainline. However, you have to weigh up the costs. Whereas a
smoke test typically lasts about an hour, the BAT can last about half
a day, and involves several people.

8.5 Dealing with build or test failures

To recap: just because a development submission passes the gate-
keeper review, does not mean it will necessarily be included in the
next baseline release. It could still be rejected, through causing build
problems or test failures.

On the other hand, the fact that a submission causes a build
problem or a test failure does not mean that it will necessarily be
rejected. There may still be a chance for it to be fixed in time for the
baseline release. But this requires agility, skill, and flexibility:

Q It requires technical skill on the part of the integration team, to
quickly diagnose the likely area of the problem

Q It requires commitment from the development team personnel,
to drop whatever else they are doing, to attend the needs of
the integration team (at critical stages of the project, this may
require team members to come back into office outside normal
working hours)

O It requires nimble thinking on the part of all concerned.

If all this is done, it can avoid delaying the appearance of the
functionality in question in the next baseline.

104 MANAGING INTEGRATION

However, development teams cannot be allowed to fall into any
kind of habit of making bad submissions. Every time a submission
causes the mainline build to break, or causes a regression in tests, the
following should occur:

Q The development team involved need to appreciate the disruption
caused to the project; they should desire not to repeat this kind
of error

Q The overall team should reflect on whether improved tests or
processes would have detected this problem more quickly; if this
is true, consider making these changes to the system

Q Either way, consider giving wider publicity within the team to what
went wrong, so that everyone can learn from it.

One other thing that is required is the discipline to resist ““quick fixes”
that store up more problems for later. This is a hard judgment call
to make. The potential problem is that a quick fix, introduced under
time pressure to allow a build to pass, will become enshrined in the
software system, and will be difficult to alter later. In such cases, it is
probably better to reject the submission, until such time as a proper
fix can be put in place.

8.6 The weekly integration cycle

Yet another thing that allows the overall team some freedom to
fix problems with submissions is if the development teams submit
sufficiently early during the integration cycle. This brings us to the
topic of the weekly integration cycle.

Depending on project scale, and the maturity of the overall team,
the integration team may release baselines about once a week, or
once every fortnight. In between releases, they are preparing for the
next release. This involves:

O Integrating any releases made by suppliers, for example a new
release of Symbian OS, or a release of the Ul system (these releases
are typically made available about once every fortnight)

Q Selectively reviewing and accepting submissions from develop-
ment teams

QO Running the smoke test, usually once every working day

INTEGRATION DISCIPLINE 105

0 Running the BAT, shortly ahead of the intended release

O Taking the time to address problems noticed.

Clearly, if submissions all happen towards the end of the weekly
integration cycle the effectiveness of the integration team is severely
constrained. They have too much to do at the end of the cycle.

For this reason, software leaders need to encourage teams to spread
their submissions throughout the integration cycle. If teams persist
in making submissions right at the end of the integration cycle, this
should be raised at a management level.

One way to spread out submissions is for each team to make
multiple submissions, throughout the week. This fits with the principle
discussed in the previous chapter, of avoiding making monolithic
changes into the CM tool. It's far better for teams to submit their
changes to the integration team as soon as they are ready, split into
separate submissions for each individual change (for example, one
submission for each independent defect fix).

8.7 Integration discipline

To summarize, integration requires special skills and special disci-
pline:
O To avoid regression of already working functionality

O To cope with new releases of incoming software (particularly when
it has been modified locally)

0 To change working code as little as possible — over-ruling people’s
temptation to tinker

0 To diagnose and solve complex interaction problems

Q To insist on changing the right part of a complex software system,
not (always) the easiest part

O To be able to understand exactly what has changed between two
versions of code

O To insist on strong usage of configuration management

O To ensure that all members of the distributed team are working
on the same software configuration, as available in the latest
baseline release.

Software leaders should cultivate a special attitude towards the base-
line. It must always increase in stability and quality, and never

106 MANAGING INTEGRATION

fall back:

O From as early as possible in the project, the baseline should be at
““always ready to ship” quality, even if functionally incomplete

0 Do not tolerate poor quality software in the baseline to be fixed
later — it’s always harder to fix later

O Don't wait to the end of the project to fix stability or crash
problems — it will be more rushed then, and a more complex
system to debug

O Don’t accept a culture where engineers ignore problems because
they are not “‘theirs’”” — record all defects noticed, and make sure
that all problems are assigned an owner.

In this way, software leaders drive up the quality level of the software,
from baseline to baseline.

9

Managing interfaces

9.1 Knowing when components belong together

A surprising amount of time can be wasted on a smartphone project
on account of different components in the overall software mix
unexpectedly being inconsistent with each other. The art of preventing
these inconsistencies is known as “interface management”. Good
interface management is a core skill of a successful smartphone
development team.

Here’s a typical experience. A product team is testing some func-
tionality, and it doesn’t work. Initial debugging finds no obvious
problems, so more time is required. Eventually (perhaps after several
days), the problem is traced to some far-away piece of code — often a
place outside the direct experience of the project team. The problem
is that far-away piece of code component C is calling far-away piece
of code component D, but D misinterprets the call, with chaotic
results.

For example, component C may think it is calling function 42
in component D, that takes three parameters, but function 42 in
component D actually needs four parameters. So D processes a
function call with a random fourth parameter. Or, component C may
think that the first parameter to the function call has a particular
data field at offset 20 (say) inside itself, but component D thinks that
this data field is at offset 24 inside the parameter. So it accesses the
wrong data. In both examples, C and D are inconsistent. Perhaps C
has been built using version 126 of a shared header file, whereas
D has been built using version 127 of that header file. Whatever,
the interface provided by D has changed, but the version of C
used hasn’t changed to match. There’s been a failure of interface
management.

Other changes in interface are more subtle in meaning (but can
have equally dramatic effects). For example, the parameters to a
function call might stay the same, but the interpretation of possible

108 MANAGING INTERFACES

values of some of the parameters might change. Or there may be a
change in the meaning of one of the possible values returned from
the function. (Sometimes these changes are called semantic breaks in
compatibility, as compared to the earlier cases, which are syntactic
breaks in compatibility.)

As you can imagine, this topic involves lots of technical details,
concerning C++ virtual functions, function signatures, dynamic vs.
static linking, class layout, DLL layout, the use of. DEF files to freeze
interfaces, the mechanics of unfreezing and refreezing, and so on.
But in this book, | want to concentrate, instead, upon the managerial
aspects of changes in interface:

O The importance of educating all team members about interface
management

O The importance of having processes governing changes in interface

Q The importance of clear communications about any changes in
interface

Q The value of acquiring and using tools to help track changes in
interface

Q The importance of planning ahead to try to minimize future inter-
face changes.

9.2 Limits of rebuilding source code

A smartphone product potentially contains (or interfaces with) hun-
dreds of different software components, obtained from numerous
different suppliers. In many cases, these components are supplied
only in binary format, meaning they are ready to include straight-
away into a smartphone product; the alternative to binary format is
source format, which requires to be built (compiled and linked) into
binary format before being placed onto a smartphone.

Because only a portion of the product is available in source code
format, this rules out one idea for avoiding compatibility problems,
which would be to rebuild every component every time a version
of the product is prepared. In fact, there are two more reasons why
“rebuild everything”” is not a viable solution:

Q In some cases, your product has to interface with smartphones
that have already been released into the marketplace; there’s no
question of rebuilding the contents of the ROMs of these phones

LIMITS OF REBUILDING SOURCE CODE 109

before your application runs on them; you have to deal with these
phones as you find them

Q In some cases, old source code will fail to build when compiled
against new header files; this is called a break of SC (““Source Com-
patibility”’) — as opposed to a break in BC (“’Binary Compatibility”’)
when two components are incompatible at the binary level.

Even when source code is available, there is a powerful prag-
matic argument to avoid unnecessary rebuilding of the entire source
tree. This argument is that it takes time — many hours —to rebuild
every component. A developer who is in the midst of an extended
test—debug—fix—compile—test cycle does not want to hold up the
cycle for several hours each time around the loop. The developer
needs to be able to reason as follows: “I've only changed such-and-
such in these modules of code; this doesn't alter any interfaces; so
nothing else needs rebuilding”. (Or occasionally, and more risky,
“I've only altered these interfaces, which are only used by a fixed
number of components, so only the following modules need rebuild-
ing”’.) That reasoning works, so long as the developer has a good
understanding of interfaces.
In practice, it’s vital to interleave partial builds with total builds:

Q A partial build is where developers, to save time, only rebuild the
components that they believe are liable to change
0 Atotal build is where developers rebuild all the software they have.

The outputs of the two types of build should be compared, on a
regular basis. Symbian supplies tools such as “Evalid”’ to assist with
this: Evalid understands the format of Symbian OS binary files, and
knows to disregard changes that are irrelevant from the point of
view of software execution (aspects such as embedded date—time
stamps). Any remaining difference highlighted by the tool is a reason
for developers:

O To identify the interface linkage responsible for these unexpected
differences

O To increase their understanding of interface management as
a whole

Q0 To modify their work practices (for example, changing the way
they carry out partial rebuilds).

110 MANAGING INTERFACES

9.3 Forms of compatibility
I've already mentioned BC and SC:

Q BC, binary compatibility, is where the APIs of two platform versions
are such that executable code built on one version will successfully
run on the other without being rebuilt

a SC, source compatibility, is where the APIs of two platform versions
are such that source code which compiles on one version will
successfully compile on the other without modification.

Note that neither BC nor SC implies the other.
There are many variants and sub-cases. For example, there is
backwards BC and forwards BC:

O Backwards compatibility is when code (for example, an applica-
tion) written against a previous version of the platform works on
current versions of the platform without modification; the plat-
form has maintained backwards compatibility with older APIs as
it evolves

0 Forwards compatibility is when code written against the current
platform works on previous versions of the platform (for example,
on older smartphones) without modification; the relevant APIs in
the older platform have turned out to be forwards compatible with
future changes.

An example of backwards compatibility is when an application built
with the SDK for Symbian OS v6.1 runs fine on smartphones built
with Symbian OS v8.0a. An example of forwards compatibility is
when an application built with the SDK for Symbian OS v8.0a runs
fine on smartphones built with Symbian OS vé.1.

Developers also need to bear in mind the concept of ““data com-
patibility”’, in which the data file formats of two versions are such that
a data file created on one version can be read on the other.

The concept of “bug compatibility’” is particularly interesting.
Some components may be relying (knowingly or unknowingly) on
bugs which exist in a platform (where we use the word “‘bug’’ because
the behavior fails to match the explicit specification). Fixing a bug
in the platform can therefore have the consequence of breaking
functionality in other components.

Here are some other, less obvious, ways in which “improvements”
to the platform can have undesirable side-effects:

THE COMPATIBILITY VIRTUOUS CYCLE 111

Extra functionality can cause increases in the size of a compo-
nent, so that the software no longer fits within its target ROM
size

Extra functionality can put increased demands on memory usage,
so that the software no longer conforms to its target RAM usage

Improved functionality can alter the timing of various operations,
invalidating any hard-wired assumptions in other code about the
length of time required (any such assumptions are, of course, sus-
pect software engineering, but they can be present in commercially
important applications)

Increasing security checks in a function (to guard against invalid
input) can break calling code that expects greater tolerance.

9.4 The compatibility virtuous cycle

In an environment where new releases of smartphone software main-
tain compatibility:

a

]

Q

End-users can purchase add-on applications and services for their
smartphone of choice

Later, they can purchase upgrades to some of these applications,
without losing any data or settings entered onto their smartphone
with the previous versions

Independently, they can upgrade their smartphone (perhaps choos-
ing one from a different manufacturer), and the applications and
services they have bought will still work, transferred onto the
new phone

Later again, they can purchase yet more applications, confident
in the knowledge that they will run on both the new phone and
the old phone (which by this time may be owned by another
family member)

In this way, both applications and smartphones have greater
longevity — and hence greater value (since purchasers don’t need
to worry about having to assemble their portfolio from scratch
again just a short time after making their previous purchase)

Customer satisfaction fuels developer satisfaction, and vice versa.

The same principle applies, in a smaller (though more hectic) way,
during the development lifecycle of a single smartphone prod-
uct. Provided compatibility is maintained, it is easy to accept

112 MANAGING INTERFACES

upgrades to all the different components in the product during the
development phase. Where compatibility applies, it avoids long
build chains, where component C has to be released before com-
ponent D. It allows faster turnaround of bug fixes via patches.
But if a supplier acquires a reputation for bad interface manage-
ment, the project leader will be justified in rejecting functional
upgrades from that supplier. Better in that case (reasons the project
leader) to stick with the old functionality, than to accept new
features which might have the side-effect of destabilizing the over-
all project.

Data compatibility can be another big issue during a project.
If you get this wrong, you could end up wasting a lot of time.
In the integration and productization phase, it's common for old
configuration files or data files to exist on smartphones which are
flashed with new baselines of the software. Do not rely on the
phone storage being clean each time the software is upgraded.
Friendly users like to keep their data. For example, they may
restore their previous files onto a new smartphone setup from an
old backup. It is therefore important that your software is robust
and can run on a “dirty” device. Put some version information
into your data files and configuration files, and change the version
every time the file format changes. Otherwise, you risk encountering
puzzling behavior during testing, occurring on only a small num-
ber of smartphones — namely those that happen to have old data
on them.

9.5 System compatibility board

So far in this chapter, I've been emphasizing the potential drawbacks
to changes in software. But of course, there are many positive aspects
to changes — not least that the later versions can improve their per-
formance, remove defects, and enable functionality being demanded
by end-users. And there can be many positive aspects to interface
changes too:

O A new interface can allow significantly greater efficiency

O A new interface can support greater functionality

O A new interface can remove problems in an old interface (for
example, a security weakness or a maintenance nightmare)

O A new data format can support new kinds of information saved to
file, or faster file searching, etc.

So there can be no cast iron prohibition on interface changes. Instead,
there has to be a process for:

RESPONSIBILITIES WITH REGARD TO COMPATIBILITY 113

O Noticing when interface changes are about to be made (or are
proposed to be made)

0 Deciding whether or not the benefits of these changes outweigh
their drawbacks

Q If it is decided to go ahead with them, making sure that all
stakeholders receive good warning of the changes, as well as good
advice about how to cope with them.

In summary, the two keywords are control and communicate:

O Make sure that interface changes are controlled — only happening
after careful review and decision

O Make sure that any interface changes are clearly communicated to
the people who might otherwise waste a lot of their development
time, as a result of not knowing about these changes.

Any large smartphone project team should consider having something
akin to the “SCB”" (System Compatibility Board) that meets regularly
within Symbian, which formally reviews the “BRs” (Break Requests)
that have been submitted to it. Part of the mission of the SCB is
to ensure that all engineers at Symbian “think about compatibility
issues with every line of code written — just as we think about avoiding
defects with every line of code written”’. The SCB also seeks to suggest
alternative ways in which engineers can meet the requirements for
which they thought they needed to break compatibility. In difficult
cases, the SCB will request that a detailed impact analysis is carried
out, and may also double-check with representatives of customers for
their opinion about the BR.

The SCB at Symbian also keeps statistics of ““unintended breaks’” —
changes in interface that reached customers without advance warn-
ing. Thankfully, these are relatively few these days. However, each
such occurrence is followed by its own investigation, to see what
lessons can be learned.

9.6 Responsibilities with regard to compatibility

You may get the idea that responsibilities with regard to compat-
ibility mainly rest with platform providers (such as Symbian, or a
Ul system provider). Platform providers deliver large numbers of
APIs, and therefore have the greatest responsibility for care regarding
interface breaks.

114 MANAGING INTERFACES

However, other companies also need to exercise care:

O Teams who modify code delivered by platform providers need to
be aware that they might be interfering with the intended flow
of interface management. For example, if you modify component
D to insert some additional debugging code, and then stick with
your own version of D when a new biweekly platform release is
adopted, you may eventually find that component C in the platform
code is incompatible with your version of component D

O Teams who receive biweekly platform releases need to take care to
read the accompanying release notes, paying particular attention
to the section on interface breaks. This information needs to be
spread throughout the team, and to all affected sub-teams

Q Ateam that starts off by developing the software for one smartphone
may evolve into a team that is delivering shared libraries to be
used by several smartphone projects. In other words, they have
become a platform provider in their own right, in which case they
need to elevate their consideration of interface management

O Any team that delivers add-on software (such as an application,
or some enabling middleware) for use on multiple smartphones
needs to pay special attention to the variations in interfaces on
these different phones

Q Any team that delivers add-on software should only use APIs
with “’Published All” access type and ‘/Released” status (see the
following section for more details).

In all cases, a team is advised to carry out regular explicit tests of
binary compatibility. In a project to create an actual smartphone,
this can be done by running a representative suite of third-party
applications (for example, a set of applications that have passed the
Symbian Signed accreditation) on that smartphone, and checking
that they all behave as intended. Failures generally indicate that
the smartphone code has inadvertently broken one or more of the
interfaces used by a third-party application. That then raises the
question of whether the third-party application was entitled to use
that particular interface — which in turn brings us to the topic that not
all interfaces are equal.

9.7 Interface access and interface status
In order to provide greater flexibility and understanding of interface

management, each APl in Symbian OS has both an “interface access
type”” and an “interface status”.

INTERFACE ACCESS AND INTERFACE STATUS 115

The interface access type is one of the following:

Q Published All — means that this is a public interface of Symbian
OS, potentially with many clients

Q Published Partner - this interface is exposed to a smaller set of
partners (involved in smartphone creation), but is not included on
public SDKs as used for the creation of add-on software

Q Published Internal - this interface is only for use by components
within Symbian OS (in fact there are several variants of Internal,
but the differences are not relevant to the present discussion).

The interface status is one of the following:

Q Prototype — the interface is experimental for the time being. It may
be used in development kits and tools, and in prototype phones for
development and evaluation purposes, but not in phones released
to end-users

Q Interim — the interface is not stabilized yet. It will be either Released
or Removed shortly

O Released —the interface has been stabilized and released. It is
available for use in real phones intended for release to end-users,
and in development kits and tools which support such phones

Q Deprecated — the interface is deprecated and is available for back-
ward compatibility reasons only. The interface may be withdrawn
in the future

O Removed - the interface is no longer supported

Q Unspecified - the interface is not to be used.

As you can imagine, problems arise when software uses APIs in
violation of the above rules. So long as third-party applications stick
to the APIs published in SDKs, everything works well. However, when
applications start relying on information not in SDKs (and which is
not intended to be in SDKs), it means that, although these applications
will probably run fine on a small number of phones, they will fail on
others. For example, an application may stop working when a phone
manufacturer makes a silent maintenance release (namely, when the
software moves to a later version, but where no publicity is given to
this occurrence).

Certification programs for add-on applications, such as Symbian
Signed, seek to endorse only those applications which stick to the
rules regarding the APIs they can use. However, API classification is

116 MANAGING INTERFACES

an imperfect science and, from time to time, we find applications that
are unintentionally relying on information that is not meant to be part
of any public SDK. When such cases arise, the governing board for
Symbian Signed takes a pragmatic decision on whether to:

O Retrospectively change the classification of an API

O Request the application to use a different programming method

O Accept the incompatibility, and to store this information about the
applications concerned.

The BC testing for any new smartphone typically highlights a small
number of new cases of complications in the use of APIs by third-party
applications. Clearly, it’s better to discover these complications some
time ahead of the launch of the smartphone, to allow more time to
decide how to respond.

9.8 Versioning

Versioning is an important technique that allows the same piece
of software to work well with more than one interface. As such,
versioning provides the means for software to have greater longevity,
and to run on a wider number of platforms and phones.

The basic idea is to carry out run-time tests on the capabilities
supported by the platform. For example:

O An application can check which type of compression software is
supported in a given communication channel, and dynamically
choose the type to use

Q Software that reads data from a file can check which of several
possible file formats is used in that file; it carries the code to
interpret all different file formats.

Other checks can be carried out at install-time, or at download-time.
For example:

Q The installation procedure can check to see if the ROM contains a
particular DLL. If not, the installation can download this onto the
phone, so that the application can use it

Q The installation procedure can check which Ul system is used
on the phone, and can download the appropriate Ul layer of the
application (such as UIQ or Series 60).

FUTURE-PROOFING INTERFACES 117

The advantage of a check at installation time is that it avoids the need
for the ROM to contain unused code.

All the above tests rely on it being possible to detect the actual
capabilities of the environment. In principle, there should be an
official way to do this. In case there is no official API to report the
required information about capabilities, we end up back in the same
situation we started from: we may be able to use an unofficial method
to determine the capabilities of the environment, but this method is
liable not to work in future settings. So we need to proceed carefully.

One final extension of the concept of versioning is of interest to
providers of add-on software. The idea is that, when a user purchases
an application, they are actually purchasing, not the binary contents
of the application itself, but the right to use the application on a
range of different smartphones, throughout the life of the application.
Provided the user retains some kind of token of proof of purchase,
they should be able to download, onto a different phone, a new
version of the application (that is, with the same functionality, but
suited to work on the new phone). This relies on a mechanism to
disable the use of the application on the original phone (for example,
the application may need to connect OTA to a server every so often).

Various different commercial models are possible, including:

Q Improved support for transferring relevant data and settings from
one phone to the other

O Possible additional charges to allow wider usage (or to support
additional features that have become available since the initial
purchase).

9.9 Future-proofing interfaces

Software leaders should bear in mind the requirement for their soft-
ware to evolve in the future. With the progress of time, their software
will need to provide additional features. This often leads software
architects to want to revise the interfaces of their classes. As we know,
these changes can introduce all sorts of problems. However, with
some careful forethought, the software architecture can accommo-
date certain kinds of expansion with minimal impact on compatibility
(and without the need for clients to make specific checks on versions).
Here is an outline of some of the ideas involved:

O Follow standard principles of data hiding, encapsulation, and
abstraction

118 MANAGING INTERFACES

a Consider placing “spare’” data members and “‘reserved” virtual
functions into class definitions, for future usage

O Follow suitable design patterns with names (given by the OO com-
munity) such as Fagcade, Adaptor, Handle/Body, and Extension.

The owner of an API set can extend that set by adding new functions
at the end of the API set: these will be assigned new ordinal numbers,
that don’t correspond to any existing functions. But if you are not the
owner of an API set, things become trickier. If you want to extend an
API set that is provided by another company, you will store up future
trouble if you add new functions at the end — since the provider of
that API set may do the same thing in a future release (and there
will be a clash in the ordinal numbers assigned to the various new
functions).

In such a case, you should consider instead using a separate
““extension DLL”, where the new APIs are defined, in such a way
that they in turn call through to a modified version of the platform
DLL, using a private mechanism not included in the main (published)
table of functions. If the platform provider subsequently adds new
functions at the end of the original set, you need to reapply your own
additions, and then rebuild both the resulting DLL and your extension
DLL, so that the extension still calls the same functions as before (but
they now have different ordinals). The key point is that the interface
into the extension API remains unchanged, so the resulting system is
compatible both with apps written to your own extensions, and with
apps written to the extensions from the platform provider.

We see here an example of a general principle. With ingenuity,
it is possible for you to make all kinds of modification in code
that is provided by suppliers. However, in all such cases, modifying
the original intent of the code should be a last resort. Instead, |
strongly advise you to discuss your requirements with the owner of
the platform code. Between the two of you, you may well find a better
solution (such as an “extension DLL”). You may also avoid making
the mistake of doing something that is very clever in the short term, but
very constrictive in the medium and long term. Given that Symbian
OS is going to be around for many generations of smartphones, you
definitely want to avoid constrictive choices.

10

Managing testing

10.1 Beyond complete testing

For small enough projects, it’s possible to make do without structured
testing. An informal set of tests is sufficient to provide a good indication
of whether the software meets its intended requirements.

For larger projects, such as feature phones, testing becomes much
more formal. There are a large number of test cases, called “’system
tests’’, covering the full set of functionality of the phone. The phone
can be exhaustively tested for defects. Many companies follow the
rule that a feature phone cannot be released to the market, if even
one of the system tests fails. The feature has to be fixed before the
phone is released.

However, smartphone projects are yet larger again, with an open-
ended functionality set. This means that a new approach to testing
is needed. You can’t adequately test a smartphone by just repeating
the same methods used to test a feature phone. It's another case
when simply “working harder’ is insufficient. Any idea of “‘complete
testing”’ isn’t feasible for a smartphone project:

Q There is an unbounded number of different combinations of appli-
cations that can be running at the same time (including add-on
third-party applications that have not yet been written!)

Q Each different combination of applications, in principle, throws up
new potential interaction issues.

Not only is “‘complete testing’’ infeasible, trying to execute it is an
inefficient (wasteful) policy:

O Many of the potential tests are essentially duplicates of each other

O In many cases, repeating a large batch of tests won’t provide any
additional real information, beyond what can be inferred from just
a small number of these tests.

120 MANAGING TESTING

So what's needed is a testing system that:

O Focuses on the quality of test cases rather than their quantity

0 Combines a pre-configured set of tests with the involvement of
a large set of representative “real users’” (often called “friendly
users’’) who try out whatever comes to their minds

O Keeps reviewing the outcomes of tests, to check which tests are
adding the greatest value

O Keeps evolving the formal set of tests, in the light of experience
and feedback.

What's also needed is a high-caliber software leader who is assigned
overall responsibility for testing.

To be clear, testing should not be conceived as being in any sense
a secondary activity, with lower skills requirements. Any software
leader who is assigned responsibility for testing should regard this
as a great career opportunity, rather than a second-rate assignment.
It's a role that requires deep thoughtfulness, agile execution, and
far-sighted imagination, as well as dogged thoroughness.

10.2 Testing in context

The purpose of testing is to anticipate, as efficiently as possible, the full
range of operations which end-users will carry out on a smartphone
product, and to verify that the outcomes are broadly in line with
reasonable expectations.

Note the following aspects of this definition:

a .. as efficiently as possible” — so that the testing resources are
applied in the most effective way, avoiding unnecessary repetitions

Q “... full range of operations” —there’s no point in exhaustively
showing that the smartphone works well in only a subset of typical
use-cases, when it habitually fails in other common situations

Q “... broadly in line” —it's not practical to ensure that the out-
comes are completely in line with expectations; you have to
make a judgment call on which defects to fix, and which to
live with

Q ... reasonable expectations” —this presupposes the question
of what users are likely to expect; bearing in mind that user

FUNCTIONAL TESTS 121

expectations can change quickly (in light of their own experi-
ence, and in light of market developments and competitive new
products). This is a particularly hard judgment call to make.

So testing is both a science and an art.

It's also something that can be extremely expensive. By some
estimates, around 60% of the cost of developing an advanced smart-
phone product is used up in the effort to test the software in that
product. Testing, therefore, is an activity with huge potential for both
gains and losses:

a Gains, if smarter ways can be found to test the overall system
O Losses, if mistakes in the testing process allow critical defects to
impact product sales.

10.3 Functional tests

The documented set of “‘how the smartphone is expected to behave”’
is a vital piece of groupware for the project. This is commonly
called the “functional test specification” (with the word “‘specifi-
cation” often being shortened to “spec’”): the description of the
functionality that is built into the phone, and the set of test cases
that will demonstrate if the functionality works. It's a sizable doc-
ument, containing the accumulated output of several scores of
person-years of writing effort. It consists of material from multiple
sources:

Q Parts of the test specification come from Symbian — covering the
functionality of Symbian OS (for example, the test specs of the
low-level E32 and F32 components)

O A large part of the test specification comes from the Ul system
provider, and covers the applications that are delivered along with
the Ul system

Q Other third-party applications that are included in the product
should also have their own test specifications, provided by the
third parties

0 New applications developed within the project itself also need
their test specifications

a All of the above is embedded into a wider set of ““test lore’’ (as
described in Chapter 6).

122 MANAGING TESTING

The functional test specifications are full of individual test cases
having the following general format:

Q A test environment — a set of files in various directories, perhaps a
given telephone network

O A set of operations to be taken

O The expected outcome

Q Any special considerations.

Additionally, the functional test specifications should (despite their
name) include what are sometimes known as “‘nonfunctional” spec-
ifications, covering aspects such as performance, responsiveness,
start-up behavior, and memory (ROM and RAM) usage. If you omit to
specify these nonfunctional aspects of your product behavior, don’t
be surprised if the development team delivers a product that fails to
perform as highly as you expect.

The functional test spec is like a contract guiding the work of
the development team. It lets everyone know whether the software
has been developed and integrated as required. Without a good
functional test spec, it’s easy for a development team to overlook key
product requirements. They will say, I didn’t know it was meant to
do that”’, or perhaps, ““we forgot about that particular test case”.

The functional test spec is not a fixed document. Rather, it evolves
as the project proceeds:

Q It changes to reflect decisions taken about the actual functionality
of the product (for example, if the behavior will be different from
in a previous product, for stylistic reasons or otherwise)

O New test cases are added, when they are discovered to be useful,
in the course of development and debugging.

The various components in the smartphone product should have their
full functional tests run at least twice during the development process:

0 Once, after the component has been integrated, and the integration
is viewed as being stable

O Again, about a month before the intended launch date of the
product.

The first test indicates whether the integration has been successful. The
second test indicates whether the subsequent changes in the overall
software and hardware mix have impacted any of the behavior of the
component. In the case of a component that changes a lot, it is worth
running the functional tests again.

SPECIALIST TESTS 123

10.4 Basic Acceptance Tests

The functional test spec describes the full extent of the expected
behavior of the entire smartphone product, but it is far too lengthy to
run through all its tests on a regular basis. For this reason, a successful
smartphone development project team needs to create a much shorter
set of representative tests, called the ‘“Basic Acceptance Tests’’ (BAT).
This set of tests should:

Q Be capable of being run through, by the test team, in about half
a day

O Be suitable to be carried out during each integration cycle (weekly
or biweekly, depending on the project rhythm)

O Provide a good overall coverage of the basic functionality of the
smartphone product.

BAT plays a central role in the integration process. Software leaders
will carefully monitor two statistics, for the BAT results in each
integration cycle:

Q The proportion of the BAT tests that can be run (as opposed to
needing to be skipped, since not enough of the overall integration
has taken place yet)

Q The proportion of the tests that pass (as opposed to giving the
wrong result, or not being able to be run).

As the project proceeds, both statistics should rise steadily, towards
100%. Any deterioration in the results is cause for immediate man-
agement investigation.

The single allowed exception to the law of constantly improving
BAT results is when the contents of the BAT are themselves changed.
Test leaders should, from time to time, alter the contents of the BAT, in
the light of project experience: adding some new tests, retiring others
(as providing little extra value), and modifying yet others. Typically
the BAT results will temporarily become lower as a result of such a
change, as the new tests will generally be more challenging than the
old ones.

10.5 Specialist tests

At regular intervals throughout the project — for example, around
once a month — the test team should put a special effort into stress

124 MANAGING TESTING

testing. Stress tests focus on operations that can throw up issues with
performance and reliability:

O Operations which start and stop a lot of phone calls (including
multi-person conference calls)

Q Operations which use a lot of memory

a Operations in which there are large numbers of contacts, agenda
entries, or other data

0 Operations with a lot of data traffic

O Operations with multiple events happening in parallel

O Operations (interruptions) while the phone is still starting (from
being switched off)

O Operations (interruptions) while other applications are starting

0 Operations while memory cards are being inserted or removed.

Stress tests should be an integral part of the functional test specifica-
tion. However, there is good reason to give them their own focus on
a regular basis:

Q Stress tests can highlight issues that only become apparent as
integration proceeds

O Stress test failures often highlight system architectural problems;
the sooner these are uncovered, the better.

Another set of specialist tests that should also be carried out around
once a month, with its own focus, is compatibility tests of the
smartphone product against existing third-party solutions. A wide
range of popular add-on applications should be tested against the
smartphone product:

0 Do the applications install as expected?

0 Do the applications function as expected?

0 Do the applications coexist as expected with the software suite on
the new smartphone?

0 Do the applications uninstall as expected?

For advice on a suitable set of applications to test, discuss with the
provider of the Ul system framework. Also take a look at the catalog
of ““Symbian Signed”” applications (as described in Chapter 3).

When defects are found with any third-party application, running
on the new smartphone, the smartphone software team needs to reach
a decision:

FRIENDLY USER TESTS 125

Q Is it acceptable for this application to fail? Perhaps the application
is superfluous on this new smartphone, because the smartphone
itself contains the same functionality in a different way

Q Is it desirable to work together with the provider of the third-party
application to seek a new solution or agreed workaround?

Q Is the defect attributable to an unintentional break in binary com-
patibility? See Chapter 9 for more information.

A final set of specialist tests that deserves careful attention is IOT: tests
of the inter-operability of the smartphone product with other devices
that are in circulation:

0 How does the product cope with various Bluetooth headsets and
other peripherals?

0 Can the product exchange data (using Bluetooth, infrared, USB,
and so on) with various common products (PDAs, laptops, and
other phones)?

O Can the product exchange various types of data with these other
products, such as calendar entries, contacts entries, etc.?

10T faces the difficulty (which also applies in the case of compatibility
tests with third-party Symbian OS applications) that standards are
often defined de facto rather than de jure: it's not just a case of
how the other products are supposed to work, it's a case of how
these other products actually work. For example, it's no good telling
an irate user that the reason a particular popular Bluetooth headset
fails to work with your smartphone product is because the headset
deviates from the usual spec. If possible, you have to find out about
this inter-operability problem ahead of your own product reaching
market. To catch this kind of problem, you need to be committed to
open-ended testing.

10.6 Friendly User Tests

“Friendly User Testing” (FUT) is the name of an important method of
open-ended testing that is used by companies that successfully ship
Symbian OS smartphone products.

126 MANAGING TESTING

“Friendly users’” are employees from the companies that are
involved in the development project. These users commit to using the
smartphone in question as their main phone, and providing regular
feedback about it. They are ““friendly”” in the sense that they take the
time to provide constructive feedback.

The advantages of a program of FUT are as follows:

Q Friendly users often find important defects before they are found
by formal verification or system testing programs. This allows these
defects to be analyzed and fixed (or worked around) earlier

O Because of their different ways of using phones, friendly users often
find important defects that formal verification and system testing
completely miss

Q Friendly users highlight usability and performance issues that for-
mal testing programs often miss

O Management can monitor the statistics from friendly user feedback,
and can use this information to help decide when the product is
ready to ship.

Typically there are 50-100 participants in an FUT program. The
participants can usefully include people from Sales, Marketing, Con-
sulting, Operations, Engineering, and senior management.

Friendly users make the following commitment:

O To use these phones as their ““real phones”, in place of any other
phones they own

O To use these phones for social purposes as well as business
ones — in other words, to use them around the clock

O To avoid specific information about these new phones leaking to
the outside world

Q To regularly update the software on the phones to the latest
baseline release

Q To install selected third-party add-on software (if available) to see
how the phone copes

Q To report all defects experienced, in a helpful manner

Q To give general feedback on their perception of the phones -
stability, usability, performance, good and bad features, etc. — and
whether the phone is ready for release to the market.

FRIENDLY USER TESTS 127

Friendly users are asked to fill out a feedback form (for example, a
spreadsheet) on a regular basis — typically once a week. This feedback
form includes open questions as well as tick-boxes.

Friendly users gain the following personal benefits from their
involvement in the program:

Q Early access to the newest phones and technologies

a Opportunity to influence product development

0 Opportunity to help drive up product quality

O Deeper understanding of the product and its capabilities and
potential

0 Experience of being at the leading edge of product development.

An FUT program needs an administrator to make it work. The role of
the FUT administrator is as follows:

O To keep track of the people who are participating in the program

O To keep track of all the phones that are being used in the program,
along with other equipment (flashing stations, power chargers,
memory cards, etc.)

O To assist participants to provide regular feedback (for example, by
emailing them reminders)

O To assist participants to upgrade their phones to the latest releases,
when available

0O To amalgamate the overall feedback statistics and present this in a
suitable summary format

Q0 To notice and draw attention to trends in the feedback results

0 To notice unusual feedback that may have particular importance
(for example, new defects)

O To ensure that all important defects are recorded in the main
defects database for the project

O To suggest areas of functionality that various participants should
spend time testing

O To notice when participants are failing to provide proper feedback,
and (in case of poor participation) to remove them from the
program, giving their phones to someone else instead.

128 MANAGING TESTING

10.7 Mandatory tests

In parallel with all the tests described above, there are some formal
tests that need to be carried out by external bodies, before the phone
(or parts of its software) is allowed to reach the market:

Q Bluetooth qualification —tests using kits available from BQBs
(Bluetooth Qualification Bodies) as authorized by the Bluetooth
SIG (Special Interest Group).

Q FTA-Full Type Approval, a set of tests mandated by the GSM/
CDMA authorities

Q Java TCK - tests using one or more ““Technology Compatibility
Kits” available from the JCP (Java Community Process)

Members of smartphone project teams are often already familiar with
these three processes. My advice for the special context of Symbian
smartphone projects is as follows:

O Because of the large amount of Java and Bluetooth technology that
Symbian OS smartphones generally incorporate, the formal Java
and Bluetooth qualification tests can last several weeks (sometimes
more than a month) — considerably longer than the corresponding
tests for feature phones

O These tests can be accelerated by use of third parties with particular
experience in this area, and by use of specially designed tools

O Adequate time for these tests needs to be set aside in the over-
all project plan, with named individuals having responsibility to
ensure that good progress takes place.

10.8 Automated tests

Software leaders should always be on the lookout for ways to auto-
mate key parts of the test processes for their smartphone products. As
in other areas of software, tools can play a large role here:

O Removal of drudgery of tests that involve human operation
Q Easier recording and reviewing of test results
0 Handling of much larger numbers of test cases.

Also as in other areas of software, it takes time to develop automated
test systems. That’s why it makes sense to take advantage of some

AUTOMATED TESTS 129

of the systems for automated testing that have been developed by
third parties:

a

a
a

O

Tests dedicated to the telephony features of a smartphone

Tests for specific areas of functionality

Tests that automatically compare the display on the screen with a
record of what is expected

Tests that simulate all kinds of different user input

Tests that simulate key features of telephone network performance
Tests that simulate failures (such as shortage of memory, or poor
network connectivity).

See www.symbian.com/partners for some pointers to providers of
such tools.

11

Managing tools

11.1 The need for a tools champion

Every software development project uses tools, ranging from batch
files and Perl scripts, through ad hoc utility applications created in-
house by team members, to commercial offerings purchased from
third parties (including compilers and IDEs). For smaller projects,
teams can get by with an informal approach to tools: tools issues can
be handled in “quiet times” by individual developers. However, for
larger projects, you need to take a more systematic approach to tools.

For smartphone projects, my recommendation is that your team
should have a ““tools champion”” - a dedicated senior engineer whose
full-time job is the following:

O Understand all the software tools used by the project team

O Ensure that team members receive suitable training on how to get
the best out of the tools available

O Understand and prioritize all the potential software tools that could
be used by the project

O Evaluate the tools offerings available from third-party vendors

O Foresee possible problems with tools as the project proceeds, and
plan ahead to forestall these problems

O Ensure that the need for good tools is kept in mind throughout the
project, despite all the other pressures for mind-share

a Consider special subprojects to “productize’ tools that have been
developed internally, making them fit for wider use.

In short, the tools champion ensures that optimal use is made of tools
throughout the project.
Tools often come under stress as a project proceeds:

O Extra code bulk, or heavier use of memory, can stop some tools
from working

132 MANAGING TOOLS

O Some tools can break when there are larger numbers of defect
reports to be analyzed, or larger numbers of source code modules
to be analyzed; these tools are insufficiently scalable

O Some tools can break because of interface changes in the software
components they rely on

0 When more people start using a tool, its intended usage can
no longer be adequately communicated by word-of-mouth; more
formal documentation is required

Q In the increasing helter-skelter of project management activities,
tools can become seen as expendable “nice to have’”” items, rather
than the essential pieces of work equipment that they often are

Q Tools tend to be excluded from the smoke test or BAT; therefore
problems with tools typically take longer to notice. What makes
this worse is that the defects database often has no provision to
report defects about tools — so these problems don’t appear in the
official defect statistics

O Resources are reallocated away from tasks improving tools, onto
other project tasks seen as having a higher priority.

Tools that work well in smaller settings often fail to work well in larger,
more complex settings, such as those pertaining during smartphone
project integration. Different tools can conflict with each other’s
intended usage, sowing confusion, and preventing each other from
working. Another problem is that tools provided by third parties can
have as many integration issues of their own as any other kind of new
software component: they may work well in carefully specified test or
demo environments, but fail to operate in the actual mix of software
forming your smartphone project.

Tools take time to develop, time to deploy, time to learn, time
to productize, and yet more time to maintain. You need to decide
which tools can make the biggest difference between the success and
failure of your project, and how much effort to invest in the above
tasks. Please do not underestimate either the potential benefit from
good tools, or the effort to carry out tools improvements.

In the remainder of this chapter, | review some of the tools that
have particular significance for smartphone projects.

11.2 Debuggers

My own particular background as a software engineer leads me
to nominate the debugger as perhaps the single most important

DEBUGGERS 133

development tool. | spent countless hours, time and again over many
years, using various debuggers to deepen my understanding of how
complex code systems were intended to work, and how they were
actually working. With a good debugger, you can do the following
(among much more):

Q Step through code execution, following program flow into and out
of subroutines

O Put breakpoints on given lines of code, to find out how they are
being reached

0 Look up and down the entire call stack, to understand the execution
context

O Inspect the values of variables, to see how they are changing

O Put breakpoints on elements of data changing, to see how and why
they actually change

0 Change data dynamically, inside the debugger, to simulate hard-
to-reach situations

0 Examine the state of other threads and processes, in addition to the
one currently being executed.

Software engineers should practice using the debugger of their choice
until all the above operations are completely second nature — their
fingers should know all the relevant shortcuts and hot-keys, with-
out any conscious thought being required. This frees the conscious
mind to attend fully to what is actually happening in the software
being debugged.

Skilled use of a debugger can cut straight through what would oth-
erwise take hours or even days of conjecture and analysis — identifying
which lines of software are responsible for some observed problem.
Almost at once, you can notice that (for example) there is a mismatch
between the intended and actual meanings of parameters for a given
function call somewhere in the call stack. Or you may notice a
flawed assumption in the source code — such as that a given pointer
could never be NULL, or that various events will always happen in a
fixed order. With a good debugger, defects can often be diagnosed
within minutes. Without a good debugger, these same defects can
sometimes resist solution for weeks.

However, what makes things complicated is that various prerequi-
sites are necessary before effective debugging can take place:

Q Source code must be available (with some suppliers, this is not
always possible — which is a reason to hesitate before using these
suppliers)

Q It must be possible to reproduce the problem in question

134 MANAGING TOOLS

Q It must be possible to debug the problem in question, without
the act of debugging interfering with the problem to the extent of
preventing it from recurring.

So the design of your product should include aspects of ““designing for
debugging’”’. For example, you may need to include an extra comms
port, for the debugger to use to monitor progress.

Some problems are very hard to reproduce under laboratory test
conditions, and tend to occur only outside of a formal debugging
session. To cope with these problems, you can take advantage of
additional ““crash debugging”” capability in your smartphone (this
requires some kernel-side programming). This is the ability of the
smartphone:

O To enter a special debugging mode when certain critical events
occur (for example, the death of a system thread)

O To enter this mode, as well, when a certain combination of keys
is pressed simultaneously; this is very helpful when a “lock up”
occurs (that is, no system threads have died, but the system has
stopped responding to normal user input — this is often a sign of

thread ““deadlock’)

Q In this mode, to record information about the state of execu-
tion, and to support interrogation via commands piped down a
serial port.

You then need to train your testers to notice when phones enter
into this mode, and to bring these phones to the development team
for further analysis. For example, the system software can put up a
special display on the screen on commencing this crash debugging
mode. For phones that will be in the hands of end-users, you probably
want to change the behavior, so as not to put up any special screen
display; instead, when production phones encounter a system thread
failure, they should record some minimal information internally, and
then quietly reboot. The crash information can be retrieved at a later
date during servicing or diagnostic checks.

Analysis of crash debugger information relies on you having access
to the “symbol’’ files corresponding to the smartphone ROM under
investigation. These files contain the names of all functions in the
ROM, along with their start address in memory. Symbol files are
created as a byproduct of the ROM-build process. Look after them
carefully. You can waste a lot of time if you have the wrong sym-
bol files.

EMULATORS 135

11.3 Emulators

Perhaps the second most important tool, during smartphone devel-
opment, is a PC emulator of your smartphone product. This emulator
should duplicate, as faithfully as possible, as many features as possible
from your product.

Symbian OS is delivered as an emulator, as well as a set of header
files, documentation, tools, and ARM binaries. Sample programs are
delivered with ““make files” that allow the software to be built in
emulator (PC) mode as well as in ARM mode.

The benefits of the emulator include:

Q Your team can develop software, on the emulator, even before the
hardware is available

0 Even when hardware is available, it is often available only in small
quantities to start with —there may not be enough to give one
smartphone to each person in the development team

O Carrying out tests on the emulator removes the delay of copying
new versions of the software into the ROM of the smartphone

Q The PC is, in many ways, an easier debugging environment than
actual smartphone hardware — it avoids the problems of additional
serial comms and remote debugging.

On the other hand, it takes effort to maintain the emulator. When you
add new features into your product, it may take you extra time to add
the corresponding features into the emulator version. For this reason,
smartphone development projects often end up in the situation where
the emulator is poor — because it has not been properly maintained.
Unfortunately, this removes a very useful tool from the hands of your
development team.

Your team also needs to appreciate the limitations of any PC
emulator:

0 Speed of execution is often quite different from real hardware — this
can mislead your team as to the quality of performance of
their software

O Pixel sizes and color shades may differ between the PC and real
hardware — so a view that looks great on a PC may be less striking
on real hardware (and vice versa)

O Aspects of the memory protection, memory alignment constraints,
process isolation, and so on, are often different between the PC

136 MANAGING TOOLS

emulator and real hardware. This means that some software will
cause a fault on real hardware, even though it runs fine on
the emulator

O There may be differences in the lower-level drivers —including
camera, networking, sound, and telephony.

For all these reasons, successful passing of tests on the PC emulator
is no guarantee that the tests will pass on real hardware.

Despite these drawbacks, | recommend that your team members
make thorough use of the emulator, and learn about the many helpful
features it supports:

a Special keypress combinations enable or disable various log-
ging modes

O Other keypresses trigger various checks of graphics, memory usage,
and other resource usage; important internal integrity checks also
take place whenever an application exits

Q An “epoc.ini”’ file allows easy variation of numerous parame-
ters, including amount of free memory, screen size, and types of
peripheral drives emulated.

In summary, if you maintain a PC emulator as your project proceeds,
you'll find that it repays your efforts handsomely.

11.4 Profilers and loggers

The role of a profiling tool is to assist the optimization of performance.
It does this by identifying the parts of code where execution spends
most time. From the output of a profiler, you can see:

a Times where there is no execution at all (the system is waiting for
the next event)

O The threads that are executing, over various periods of time

O The functions that are being executed, over various periods of
time.

Symbian’s preferred profile analyzer (developed in-house) supports
numerous configuration options, and displays results graphically. By
looking at its output you may see that threads are executing in
different proportions of time from what you expected. The output
also highlights the functions that are most in need of optimiza-
tion — the functions which are acting as the bottleneck to overall
system performance.

STATIC CODE ANALYSIS 137

A profiler is a special case of a logger — an onboard tool that records
information for subsequent analysis. Logging can include information
about protocol negotiations, locations where files were found, num-
bers of retries needed, run-time conditions that are unexpected but
not fatal, and all kinds of progress reports.

In its default state, a smartphone has no logging enabled, since
that consumes CPU, disk space (to hold the log output), and program
space (to store the text strings from which the log output is composed).
Several steps are involved in enabling logging:

0 Versions of the software components that contain conditional
logging code need to be used; generally this means using ““debug”
versions of the software instead of “release’ versions

O The conditional logging code needs to be selectively enabled: this
can happen via compile-time flags and/or run-time checks.

For example, many Symbian OS components create log output only
if certain directories, that will receive the log output, already exist on
the smartphone.

Depending on the component, log output is recorded to a file,
and/or emitted down a serial port. (In this latter case, it is often called
“trace”” output rather than log output.)

As | said, logging is something you will want to be selective about.
If you enable all possible kinds of logging, you will be swamped by
the resulting output. What's more, the time taken to generate all this
log information is likely to upset internal timing checks — such as the
so-called ““watchdog timer”, that deliberately crashes a thread if it is
unresponsive for too long a time.

The main role for logging is to generate additional information that
can shed light on why a particular defect is occurring. A common
response you'll see in the defect database to a defect report is a
request for such-and-such logs to be generated and attached. Logging
complements debugging as a way for developers to understand
what’s happening inside the software. In this way, they can quickly
and accurately identify the causes of any problems observed.

11.5 Static code analysis

Something that’s even better than a tool to track down a defect is a
tool that prevents the insertion of the defect in the first place. Tools
that perform static code analysis have a big role to play here. These
tools encapsulate knowledge about potentially dangerous source
code — fragments of source code that should be queried in any code

138 MANAGING TOOLS

review (for example, code with a single equals sign instead of a double
equals sign inside an /1 £’ statement, or code that has a semi-colon at
the end of a line containing an “1£”" statement). The idea of the tool
is to automate the application of this type of knowledge. Rather than
relying on humans to review the code manually to spot this kind of
problem, the tool can perform these checks automatically — allowing
human code reviewers to concentrate on more subtle coding issues.

Software engineers have traditionally used a tool called “lint’”" for
this purpose. Lint has, by itself, no particular knowledge of coding
constructs that are specialized to Symbian OS. Hence the need for
more specialized static code analysis tools.

Examples of potential defects that a Symbian-tailored code analysis
tool can identify include (don’t worry about the technical details):

O Classes that have names starting with “C”” but which fail to derive
from Symbian’s CBase class

O Classes that have names starting with ““T"” or “M”” but which have
destructors

Q Faulty use of the Cleanup classes

O Violation of Symbian’s rules on naming of functions that can
“Leave’’ (functions that should have names ending in /L")

O Places where there are no checks on the return values of functions
which could fail

O Use of constructions known to have more efficient equivalents

O Destructors accessing the contents of pointers without checking
for NULL.

Incidentally, Symbian has long operated a policy of ‘“zero compiler
warnings’’. Compilers emit warnings when they notice potentially
faulty code. Symbian’s internal processes state that when there is a
compiler warning:

Q The developer should rewrite the code (without losing any effi-
ciency or readability) to avoid the warning

a Or, on rare occasions, this particular warning can be temporarily
disabled (by use of #pragma instructions to the compiler).

The reason for not tolerating any compiler warnings is that developers
can easily get into the habit of saying to themselves, ““This module
always has seven compiler warnings”. Then they fail to check the list
of warnings carefully each time, and fail to notice a new warning that
turns out to be important.

Note that static code analysis tools do not remove the need for all
code to be peer reviewed on a regular basis. Peer review continues
to have valuable consequences:

BUILD SYSTEM 139

O It's a good way for both reviewers and developers to learn new
programming methods

Q Reviewers can recommend different APIs that can be called

O Reviewers can ask good questions about design, and about alter-
native solutions, that will cause developers to think through their
solution more carefully

0 Reviewers can find defects that the static code analysis tools miss.

Each time a new defect is found, it's worth asking the question if it
could have been found earlier, or by automated methods. As a result
of these questions, tools and processes will both improve.

11.6 Build system

You may think that there’s nothing much to say about the build
system — the system that transforms source code into binary code that
runs on a smartphone. However, there are quite a few issues that
need care and attention.

First, there are many different build configurations:

O You can build in either ““debug” or “release” mode. A debug
version contains more logging code, and more internal checks
(known as ““asserts’’)

Q You can build either for the PC emulator or for real hardware
(typically, you will want to do both, though not always at the
same time)

Q There are several choices of ARM mode, depending on the precise
ARM instruction set to be used.

Next, you have to consider different language variants (this is a
process known as “/localization”), or other variants (such as variants
for specific network operators). You want to create new variants by
altering as few of your source files as possible, and by rebuilding as
few files as possible. Ideally, you should restrict these changes to files
known as “resource files” that contain language-specific text, along
with data files such as icons, wallpapers, and ringtones.

Finally, you have to consider the all-important trade-off between
speed and safety:

a A full build of all the software in a smartphone can take the best
part of a day

140 MANAGING TOOLS

O However, if you build only a few files, you have the risk of ending
up with an inconsistent set of binaries.

The way to balance the needs of speed and safety is:

O To minimize the number of changes you make to system files (or
to files delivered to you by a supplier), thereby reducing the need
to rebuild them

O To develop your understanding of the dependencies between
different modules

O To seek, most of the time, to rebuild only a small number of files
(based on your understanding of the dependencies): this is called
an “incremental’”’ build

O To check your understanding, by doing a fuller rebuild on a regular
basis, and comparing the results (using the Symbian tool Evalid)
with those from the incremental build.

There is a definite case for investing in a top-of-the-range PC to carry
out the builds. The task of building the software can in fact be split
across several PCs, working together in a so-called “’build farm” (or
““grid”’). In such a case, it turns out to be important to put the files on
a local file server with high-performance access.

Symbian supplies a build system that handles all the above require-
ments. Not surprisingly, it is a fairly complex system. My advice to
you is to take the time to learn how to use this system well.

A critical part of the overall software build system for a smartphone
project is the set of files that configure the ROM. This consists
of text files with the extension .OBY and .IBY. Different software
components (or groups of components) contribute their own IBY files,
which are in turn “included” (hence the ““I”” of “IBY"’) by the overall
OBY file. Between them, these files encapsulate the intelligence of
dependencies between the software components that make up the
ROM — which versions of which components work well together.

This may sound a relatively simple undertaking, but experience
shows that it is quite common for the ROM configuration to become
broken. Unfortunately, once the configuration is broken, it can take
a significant effort to fix it again — especially when new software
components are involved.

The following advice should guard against these problems:

O Treat the ROM configuration as a deliverable in its own right,
which is owned by the integration team, and which is rigorously
maintained for each baseline

DISTRIBUTION SYSTEM 141

Q Ensure that the software system runs on representative phone
hardware as soon as possible, even if there is limited functionality.
Once real hardware is available, avoid the situation where the
software only runs on a PC emulator

O Insist that all engineers test their software on phone hardware,
rather than just on a PC emulator

O Keep the OBY and IBY files sacred; one false move here could
mean that the phone won’t boot — which is not a healthy situation
when the project is under tight schedule pressure!

11.7 Distribution system
The essential factors that complicate the build system are:

O The fact that builds have to take place frequently (in the interest of
good software discipline — see Chapter 8)

O The large amount of software that, potentially, needs rebuilding
each time

O The range of different build configurations that need to be sup-
ported.

The same three factors also complicate the distribution system — the
system whereby the latest baseline software is distributed on a regular
basis among the team members (including to people on different sites
and in different companies):

O Baseline releases need to be distributed throughout the extended
team, either biweekly or weekly, depending on the build rhythm
of the project

Q A complete baseline release consists of several gigabytes of
data — including binaries, libraries, header files, debug information
files, map files, ROM symbol files, tools, and documentation — with
much of this existing in several different build variants.

Just as there are significant gains in efficiency by adopting an incre-
mental build system, there are also significant gains in efficiency from
an incremental distribution system. For this reason, Symbian supplies
tools known as Component Based Release (CBR) tools. These tools
work as follows:

0 The overall software system that needs distribution is split into a
large number of different “‘components”

142 MANAGING TOOLS

O Each component has its own version number
O Data transfer between sites and within sites is minimized, as only
updated components need to be transferred.

As with incremental builds, incremental distribution comes at the cost
of additional complexity (both syntactic complexity and conceptual
complexity): the CBR tools support a range of options, which take
some time to learn. However, once your team fully understands CBR,
it will be easier to ensure that everyone is working with the right
software distribution at all times. In the absence of CBR, what often
happens is that different members of the team avoid the pain of
upgrading the software files on their PCs, and they end up working
with an out-of-date configuration. In that case, code that works on
their PCs will often fail to work when integrated into the mainline.

11.8 Miscellaneous tools

The job of your tools champion is never finished — there are always
new ideas for tools that could increase the productivity and effective-
ness of your team members. Let me briefly mention a miscellaneous
set of additional tools:

Q See Chapter 10 for some ideas on automated test tools

Q Third-party tools can simplify (or even automate) the porting of
Symbian OS applications from one Ul system to another (e.g. from
Series 60 to UIQ)

O As a special case of incremental software distribution, consider
the case of incrementally updating the software in the ROM of
a smartphone. For example, if a developer has made a small
change to one module, and wants to check the effect of that
change, it should not be necessary to flash all of the 30MB+
ROM software afresh. Various tools exist to allow incremental
ROM updates, thereby speeding up the test—debug—modify—test
cycle. These tools generally depend upon the ROM being split into
several different sections. Another option that some smartphones
support is that some files in the ROM can be superseded (during
development phase, if not in release phase) by more recent versions
of these files found on additional disk drives

O One static code analysis tool deserves special mention: Symbian’s
“Code Data Base”” (CDB) tool. This is designed to measure back-
wards compatibility between two releases of Symbian OS software.
[t checks many aspects of the public APIs, such as class layout,

DANGERS WITH TOOLS 143

function ordinals and v-table organization. As such, it can avoid
your team making mistakes with interface management

O The DepModel tool contains models of dependencies between
different classes and components; among the views it supports are
hierarchical views and a dependency graph

0 Modern IDEs typically include sophisticated code browsing and
code navigation features. For example, click on an enum, and the
IDE will show you the value of the enum; click on a class name, and
the IDE will show you where that class is defined, its inheritance
tree, and so on. Add-on tools sometimes improve on the browsing
capabilities of the IDE, thereby speeding up developers and making
them more productive

QO Some companies provide ‘‘simulators’” that combine some of the
best features of PC emulators and ARM hardware: they allow the
execution and monitoring, on a PC, of a system that faithfully simu-
lates the execution of ARM binaries — thereby potentially reducing
the need to build and test PC emulation binaries of the software

Q Inside Symbian, one of the tools that is used most heavily is the
“’x-ref”” source-code cross-reference tool; this provides access to a
database (rebuilt overnight, every night) of all supported versions
of the entire Symbian OS source code, allowing developers to see
exactly where various functions are used.

Interestingly, the x-ref tool was developed (using http://sourceforge.
net/projects/Ixr) as a spare-time skunkworks project, pioneered by
a single individual working in Symbian’s consulting unit. The x-ref
database was maintained on the first Linux servers inside Symbian,
making the project ““unauthorized” in a second way. Subsequently, as
wider numbers of software engineers inside many groups at Symbian
recognized the value of this new tool, it was adopted by the System
Management Group, and the server is nowadays maintained by
Symbian’s IS department. | mention this to underscore the principle
that ideas for good tools often arise at the periphery of an organization,
and that a project team needs to be nimble in order to take best
advantage of all these ideas.

11.9 Dangers with tools

Successful tools can develop their own momentum. A group of
enthusiasts will evangelize their use, and formal processes may dictate
their adoption. Momentum builds a tradition and, before long, people
say, “‘But we always do things like that”’. However, tools are just tools.

144 MANAGING TOOLS

Tools are not the ultimate goal of your software organization. Tools
exist, not as an end in themselves, but to assist the timely delivery of
substantial value to multiple customers. You need to keep monitoring
the way tools are used in your team, watching for warning signs:

Q Perhaps changing project circumstances mean that a tool is no
longer as useful or as critical

Q Perhaps the people supporting a specific tool lose sight of the
overall business purpose of your team, and put inappropriate
amounts of effort into maintaining it and developing it further

Q Perhaps developers start overly relying on the power of a tool,
and stop applying their own critical intelligence to find quicker (or
better) solutions.

For example, sometimes developers will keep pressing ‘‘Step, step,
step”” in a debugger, mindlessly following through program execution,
instead of thinking ahead about the likely outcome. (This is especially
true if developers get too tired.) And | have already mentioned the
potential drawbacks (as well as the benefits) of the PC emulators of
Symbian OS. Over-reliance on a PC emulator can lead to:

O A distorted view of the performance bottlenecks in a software
system

A lack of awareness of specific hardware or telephony problems
A lack of sensitivity to ARM instruction set issues

Limited appreciation of power management questions

Delays in testing on real ARM hardware

Poor familiarity with the debugging tools available on real ARM
hardware.

0000 DO

In summary, tools can have a tremendous impact on the success of
your project. Chosen wisely, used wisely, and reviewed wisely (on
a regular basis), they can provide you with significant competitive
advantage. So assign one of the key managers in your team as your
tools champion — someone who is comfortable with the technical
details of tools, but who keeps in mind the overall goal of your
organization.

12

Managing plans and change

12.1 Beyond complete planning
Here’s one high-level method for software development:

O Agree a high-level plan for the project — this is known as ‘“the
planning phase”

O Agree what features need to be implemented — this is known as
“‘the specification phase”

O Agree the technology to be used to implement these features — this
is ““the design phase”

O Then carry out the implementation — this is known as “the devel-
opment phase”’

O As the implementation proceeds, carry out tests to verify that the
implementation meets the specification — this is known as “the
testing phase’’.

In this methodology, the project starts by creating three inter-related
documents — the project plan, the product spec, and the product
design — and then ensures that the subsequent software development
faithfully executes the intent of the original documents. The role of
the project plan is:

O To identify the overall timetable for the project
0 To allocate resources to specific tasks
Q To establish “milestone’” review points.

So far, so good. Any sizable smartphone project needs a project plan
to guide it to completion. | fully agree with the adage that “if you fail
to plan, you plan to fail”’. Planning is an absolutely essential activity

146 MANAGING PLANS AND CHANGE

in any successful smartphone project. However, here are some much
harder questions:

0 What level of detail should be in the plan?

a How should the plan cope with unexpected developments — such
as new requirements introduced once the project is underway and
other ‘“change requests’’?

One answer to these questions is to say, ““The plan is king”’. According
to this answer,

Q The plan establishes what will be in the product

O The plan establishes how this can be delivered

O The plan represents a clear commitment to the customer (such as
network operators)

0 Customers depend utterly upon the project meeting its commit-
ments: “‘predictable delivery”” is key

O Any change to the plan invalidates the commitments, and opens
the way to chaos

O Replanning is expensive, and consumes valuable resources to little
good purpose

Q Changes should be resisted vigorously.

As I'll explain in this chapter, such a view is a recipe for grief in any
complex smartphone project:

O The project is so complex that it's neither possible nor necessary
to plan it in full detail

a Any would-be complete plan is obsolete even before it’s finished

O Rather than aiming at completeness, the plan needs to concentrate
on the “critical chains”” of development: the plan should identify
these and analyze them carefully, but can leave many other aspects
of the project in a relatively unplanned state

0 Change is an inevitable aspect of a smartphone project

O The plan needs to be able to accommodate change; the watchword
is “design for change”’

O Rather than the plan being king, it is customer satisfaction that
should be king

O The real point of the project is to deliver significant value to the
customer, rather than to fulfill the commitments recorded in the
previous version of the plan

CAUSES OF CHANGE 147

Q It's by no means a disaster if a milestone target is missed (although
any such occurrence is a matter to investigate further)

Q Like other aspects of project groupware, the plan is a living entity,
which evolves and changes as the project proceeds.

12.2 Causes of change

It's worth listing some of the factors that will cause a smartphone
project to deviate from its detailed plan:

O Individual tasks in the plan end up taking longer (or shorter) than
estimated

Q Individuals are unable to work on the project at the required
times, due perhaps to illness, or to task interference from other
responsibilities

0 Defects are found that require a considerable amount of time to
investigate and fix

Q Problems are found with some aspects of the design of the product,
necessitating a change in design

O Customers request new features, citing a change in market condi-
tions, new competitive pressures, or breakthrough new ideas

O Senior executives request new features, citing any of the same
kinds of reason

O It becomes clear that parts of the specification are inconsistent,
unclear, or otherwise in need of clarification — resulting in project
rework

0 Hardware fails to function as expected, and needs a new iteration

Q Suppliers deliver later than planned, or unexpectedly drop some
of the anticipated features

O Senior managers are not available to approve project milestone
transitions at the expected time.

Note that these are fundamental aspects of projects, which are likely
to occur in virtually every smartphone project with significant dura-
tion. They are not ““accidental”” features which a project leader can
realistically “’hope’’ to avoid.

Best practice in project management theory makes the following
recommendations:

Q People should be alerted (reminded) ahead of time, on sev-
eral occasions, of activities scheduled for them —to lessen the

148 MANAGING PLANS AND CHANGE

chance of them unexpectedly not being ready to attend to
project duties

The project manager should check, ahead of time, that people
working on the project fully understand the tasks assigned to them.
This lessens the chance that people carry out their tasks with a
different output from that expected

Although some degree of change is inevitable, there needs to
be a bias against accepting change — everyone should be regularly
reminded of the negative consequences to existing plans if changes
are permitted

Where there are risks to aspects of the project plan, alternative
plans should be investigated and prepared in advance, as possible
measures ready to be adopted

Rather than always working with “’best case’”” estimates, the plan
must include some element of contingency

In addition to contingency (which is allowance for task over-run),
the plan should include some element of reserve —real people
assigned to tasks that are currently unknown

As the project progresses, the plan needs to be updated on a
regular basis

Progress needs to be monitored against pre-agreed review points,
known as “‘milestones”’

Both actual and potential changes to the plan need to be com-
municated to the project stakeholders (including customers and
senior managers), in a way that allows a collaborative review of
options and joint decision-making.

In the remainder of this chapter, and in the one that follows, I'll look
more closely at five crucial aspects:

a
a
a

a
a

How to process change requests in an optimal way

How to allocate both contingency and reserve into the plan

How to strike the right balance between a schedule that is aggres-
sive and one that is defensive

How to define and monitor project milestone review points

How to identify the tasks in the project that deserve the greatest
planning attention.

12.3 Handling change requests

In earlier chapters, I've already highlighted two specific aspects of
change control:

HANDLING CHANGE REQUESTS 149

O See Chapter 6 for the importance of reviewing and controlling
which defect fixes are attempted and/or adopted into the software

O See Chapter 9 for the importance of reviewing and controlling
changes in interfaces in the software —the process for handling
so-called BRs (““Break Requests”’).

In both these cases, the team needs to appreciate the benefits of a
disciplined approach: changes which happen without careful review
can destabilize the project, sometimes with disastrous consequences.
But the discipline incorporates flexibility. Without acceptance of at
least some changes, the software quality will be unacceptably poor.

It's the same with so-called ““Change Requests” (CRs): requests for
modifications to the previously agreed specification set. As for the
previous cases, CRs need a disciplined approach that incorporates
both rigor and flexibility.

Inside Symbian, the following processes govern CRs submitted
against Symbian OS (you should consider how to copy or adapt these
processes for your own smartphone project):

Q There is an online database of all CRs submitted

O CRs need to submitted into this database using a carefully designed
form

0 CRs are reviewed in the first instance by the Technical Authority
(TA) for the relevant part of Symbian OS

Q Other interested parties are able to add online comments to the
CRs; this often includes comments from the Requirements Analyst
(RA) assigned to this part of Symbian OS

O For cases when the requirement is clear-cut and the amount of
work involved is small, TAs can make their own decision about
whether to accept the CR; ideally this decision can take place
within a few working hours of the CR being submitted

Q In larger cases —and also in cases where there is disagreement
with the assessment of the TA —the decision is handled by the
Change Control Board (CCB).

The CCB is a team of around a dozen senior engineers and cus-
tomer project representatives which meets once a week to review
outstanding CRs. It is a challenging task to sit on the CCB:

0 Members of the CCB need to review CRs in advance of meetings

O Between them, they need to have a good understanding of the
entire software system

150 MANAGING PLANS AND CHANGE

O Theysometimes have to weigh up strong conflicting pressures — one
pressure to improve the quality of the software, versus another pres-
sure to avoid delaying the project end-date.

The general process of deciding whether to accept a CR is as follows:

O Evaluate the business case for the change — the extra revenues that
will potentially be realized if the change is made to the product

O Check the requirements analysis: whether the CR presupposes one
particular solution to the real underlying requirement, whereas
the underlying requirement could in fact be satisfied just as well
through an alternative solution that would be easier to implement

O Evaluate the technical difficulty of the change —the effort the
change will require

O Evaluate the risks involved — the possible knock-on effects on other
aspects of the software system

O Evaluate alternative solutions — possible smaller changes, or other
ways to realize the required end-result.

The process often splits into two:

Q Start by deciding whether there is a strong enough business case to
warrant taking the time to carry out a longer investigation (called
an “impact analysis”’) into the technical feasibility of the change

Q If the business case is strong enough, then carry out the impact
analysis, and bring the results back to a later meeting of the CCB.

About 10% of the time, stakeholders end up in serious disagree-
ment with the decision of the CCB. For this reason, there also
exists an “‘escalation change control board”, consisting of yet more
senior engineers and customer project representatives. It’s like a court
of appeal.

Sometimes a debate arises as to whether a submitted CR ought
instead to be regarded as a defect report:

O A defect report is when the software fails to function as specified
O A change request is when the specification itself is found to be at
fault.

There’s room for ambiguity because the specification is often unclear.
One person can argue, for example, that a performance target was
implicit in the specification (in which case it's a defect if the

VARIABLE TASK ESTIMATES 151

performance is actually worse than this), whereas someone else
can say that there’s no defect, because there’s nothing written down
about what performance is acceptable. In such cases, it's important
not to get bogged down in bureaucracy or ideology. The process for
reviewing defect reports should form a continuum with the process
for reviewing CRs.

One of the key tasks of a software leader is to prevent items from
languishing too long as either an unresolved CR or an unresolved
(open) defect report. The software leader also needs to ensure that CRs
and defect reports receive a fair hearing. Don’t be tempted to steam-
roller all of them into a ““rejected”” status too quickly. Individual CRs
and defect reports sometimes indicate fundamental problems with
the product conception or design. You can try to avoid considering
these problems, but that won’t make the problems go away. They can
return with a horrible vengeance later in the project — perhaps when
it's too late to deal with them (in which case, it could be curtains for
the whole project).

In order to be able to approve CRs from time to time, the project
plan needs to incorporate elements of both contingency and reserve.
This brings us on to the fascinating topic of how to allocate contin-
gency and reserve.

12.4 Variable task estimates

A smartphone project plan is made up from a large number of
estimates for how long it will take to complete individual tasks. If
the task involves novel work, or novel circumstances, or a novel
integration environment, you can have a wide range of estimates for
the length of time required.

It's similar to estimating how long you will take to complete an
unfamiliar journey in a busy city with potentially unreliable transport
infrastructure. Let’s say that, if you are lucky, you might complete
the journey in just 20 minutes. Perhaps 30 minutes is the most likely
time duration. But in view of potential traffic hold-ups or train delays,
you could take as long as one hour, or (in case of underground train
derailments) even two hours or longer. So there’s a range of estimates,
with the distribution curve having a long tail on the right-hand side:
there’s a non-negligible probability that the task will take at least
twice as long as the individual most likely outcome. It's often the
same with estimating the length of time for a task within a project
plan (see Figure 12.1).

Now imagine that the company culture puts a strong emphasis on
fulfilling commitments, and never missing deadlines. If developers
are asked to state a length of time in which they have (say) 95%

152 MANAGING PLANS AND CHANGE

90th percentile value may be double the 50th

Probability

10 %ile 50 %ile 90 %ile

Time|

Figure 12.1 Varying estimates of task duration

confidence they will finish the task, they are likely to give an answer
that is at least twice as long as the individual most likely outcome.
They do so because:

a

Customers may make large financial decisions dependent on the
estimate — on the assumption that it will be met

Bonus payments to developers may depend on hitting the target

The developers have to plan on unforeseen task interference (and
other changes)

Any estimate the developers provide may get squashed down by
aggressive senior managers (so they’d better pad their estimate in
advance, making it even longer).

Ironically, even though such estimates are designed to be fulfilled
around 95% of the time, they typically end up being fulfilled only
around 50% of the time. This fact deserves some careful reflection.
Even though the estimates were generous, it seems (at first sight) that
they were not generous enough. In fact, here’s what happens:

a

In fulfillment of ““Parkinson’s Law”’, tasks expand to fill the available
time. Developers can always find ways to improve and optimize
their solutions — adding extra test cases, considering alternative
algorithms and generalizations, and so forth

Because there’s a perception (in at least the beginning of the
time period) of there being ample time, developers often put
off becoming fully involved in their tasks. This is sometimes
called “the student syndrome”, from the observation that most
students do most of the preparation for an exam in the time

VARIABLE TASK ESTIMATES 153

period just before the exam. The time lost in this way can never
be regained

O Because there’s a perception of there being ample time, devel-
opers can become involved in other activities at the same time.
However, these other activities often last longer than intended. So
the developer ends up multitasking between two (or more) activi-
ties. But multitasking involves significant task setup time — time to
become deeply involved in each different task (time to enter ““flow
mode”’ for the task). So yet more time is wasted

Q Critically, even when a task is ready to finish earlier than expected,
the project plan can rarely take advantage of this fact. The people
who were scheduled for the next task probably aren’t ready to start
it earlier than anticipated. So an early finish by one task rarely
translates into an early start by the next task. On the other hand,
a late finish by one task inevitably means a late start for the next
start. This task asymmetry drives the whole schedule later.

In conclusion, in a company whose culture puts a strong emphasis
upon fulfilling commitments and never missing deadlines, the agreed
schedules are built from estimations up to twice as long as the
individually most likely outcome, and even so, they often miss even
these extended deadlines.

Once you see things in this light, the response is straightforward:

0 Ask developers to provide estimates that they are 50% likely
to achieve

0 Build the entire plan around these shorter estimates, but include
contingency at critical sections

O Don’t put contingency time after each separate task; instead,
put it before the end of the project, and also ahead of major
integration steps

O Expect developers to work single-mindedly on individual tasks,
when the time comes, and avoid multitasking among several tasks
(with all the consequent risks of task interference and delays)

Q Ensure that all team members have a flexible approach to when
they are able to start on project tasks; provide them with reg-
ular updates on when they are actually likely to start individ-
ual tasks

0 Don’t penalize project teams just because they miss their estimates
(around 50% of the time); make it clear that this is the expected
outcome, and that the whole project benefits from such an attitude.

154 MANAGING PLANS AND CHANGE

With this kind of culture (often known as an “‘agile culture”) in place,
the overall estimates for the project are shorter, and the projects meet
their estimates more often. Moreover, the culture embraces the notion
of change, allowing the product to more closely satisfy customers’
evolving requirements.

12.5 Practical example of agile scheduling

Here's a simplified example to illustrate the reasoning of the previous
section. Suppose that a project consists of 16 tasks in series:

O Each task is estimated as 50% likely to complete in two weeks
0 And each is 90% likely to complete in three weeks.

A defensive schedule would allow three weeks for each task, resulting
in a total schedule of 48 weeks (16 times three weeks). Given
Parkinson’s Law and the other effects mentioned, the overall project
will tend to last at least 48 weeks.

Agile scheduling instead aggregates all the task variances to the
end of the project. The resulting total contingency is one week times
the square root of 16, namely four weeks. (The square root follows
from some simple mathematical statistics. If you are interested to
delve into this more fully, recall that it is the variances of statistical
distributions that add, rather than their standard deviations. But if
statistics is not your forte, don’t panic. Just notice that individual
deviations in the different task durations are likely to partially cancel
each other out, so the overall deviation is less than the raw sum of the
individual deviations.) So agile scheduling gives a total duration of
16 times two weeks, plus four weeks contingency, namely 36 weeks.

As you can see, in this case agile scheduling trims 25% off the
schedule. That's by no means unusual.

The outcome is encouraging, but it relies on a particular culture to
enable it to happen — with flexible team members and sophisticated
team managers.

12.6 Accepting slack

My fervent advice to software leaders is to ensure that their project
plans contain adequate amounts of slack. The slack meets three
primary purposes:

Q Slack arises when someone is ready to start a task earlier than the
initially expected date; so if task 13 (say) finishes one week ahead
of schedule, task 14 can start one week ahead of schedule

ACCEPTING SLACK 155

0 Slack also arises when contingencies for aggregate tasks over-run
and delays are placed at critical parts of the project plan — ahead
of the final delivery, and ahead of each major integration point

Q Finally, slack arises when a plan specifies that developers need to
be ready to work on additional tasks, which are not known at the
time the plan is created; these tasks will be defined by new CRs
that are accepted by the CCB for the project.

Here’s a simple recipe to calculate the amount of slack required:

O Start with a plan in which all the individual tasks complete in
the amount of time that experienced developers say they have a
50% chance of meeting; put tasks in parallel when possible, and
otherwise in series

O Add on an extra 50% of this total time, for contingency

a Distribute this 50% at selected points throughout the project plan,
as mentioned earlier

Q Ensure that an extra 20% of resources are ready to be allocated,
beyond those in the original plan; these are the reserve resources
to work on additional tasks arising from CRs (note that reserve is
additional to contingency — they are two different concepts)

O Have highly experienced consultants review the plan, looking
specifically for bottlenecks, critical resource chains, and other
areas where extra resources may be needed.

As the project proceeds, the contingency and the reserve will gradu-
ally be released: the outcome becomes clearer to anticipate.

To some managers, the idea of slack is an abomination —an
unacceptable waste of resources. These managers are used to pushing
every member of their team to a perceived maximum performance.
However, that’s a point of view that only makes sense in a localized
way. It's true that, with agile scheduling, individual resources often
end up not being fully utilized working flat out on the project. So,
some resources will use some of their time on activities that, from the
point of view of the project, are far from critical. However, this allows
the project as a whole to complete more quickly, and to deliver
greater value to the customer.

The idea that slack is an abomination only makes sense when you
try to optimize all the subtasks in a project, thinking that optimizing
subtasks inevitably leads to optimizing the overall project. This is a
mistaken viewpoint. What needs to be optimized is the project as

156 MANAGING PLANS AND CHANGE

a whole, not each subtask. Attempts to optimize each subtask are,
rightly, often characterized as ““suboptimal”.

Slack has the important additional bonus that it provides staff with
opportunities for research, training, rest, peer review, process inno-
vation, and product innovation. They can undertake such activities
while waiting to start the next task in the project — while waiting for
the previous task in the project to finish. These activities make the
developers stronger and smarter. It means that the developers are
better prepared for their next development sprint.

12.7 Aggressive vs. defensive scheduling

If you follow my advice from the previous section, you will cal-
culate your project end-date “bottom up”’, that is, by starting with
estimates for the key individual tasks in the project. But of course,
in the real world, project end-dates are often established by a very
different process —a ““top down’ process where a senior manager
declares the target end-date, by reference to market conditions and
competitive pressures.

For example, you may be told in no uncertain terms, ““you abso-
lutely have to ship this product in time for the Christmas market”’. Or
perhaps, “‘you need to have a product good enough to demo at next
year’s 3GSM conference”.

This raises three questions:

O What options are there for truly quick projects (for example,
creating a smartphone in six months or less)?

O What options are there to ensure that the agreed schedule is
maintained — in other words, so that the project can proceed
reliably to the target end-date?

O What is the particular role of aggression in ensuring timely project
delivery — should timescales deliberately be set that are signifi-
cantly quicker than developers estimate as being possible?

| return to the first of these three questions in Chapter 14. As for the
second question, that is (of course) the subject of this entire book. That
leaves the third question —the question of aggressive vs. defensive
scheduling. To what extent should software leaders set project targets
that are more ambitious than those arising from the project team’s
own estimates?

Here are the arguments in favor of aggressive scheduling:

a If people remain within their ““comfort zone” without being
stretched, they will be less effective

AGGRESSIVE VS. DEFENSIVE SCHEDULING 157

Q If there is an aggressive schedule, it causes people to find creative
new solutions, to finish the required tasks more quickly: aggression
leads to ““working smarter”” as well as ““working harder”

Q Attack is the best method of defense!

Q Even if the new schedule can’t actually be fulfilled, and the project
slips a few months, that’s a better outcome than agreeing to the
original schedule, and seeing that slip out a few months too; the
point is that schedule slippage seems to be a fact of life, so it's
better to slip from a short schedule than from a long schedule.

I have a lot of sympathy with these arguments. It is important that
people enter a “flow mode’”” in which they are both highly creative
and highly productive. If the team remains in comfort mode, the
outcome is unlikely to be world class. On the other hand, there are
significant drawbacks to a schedule that is overly aggressive:

O Everyone knows that the schedule is impossible (even if no-one
dares to say so publicly), so the schedule falls into disrepute (people
whisper to each other about “stupid bogus deadlines”’)

O Many creative solutions can emerge only after a process of calm
reflection and review; in other words, you have to slow down in
order to travel fast (another way of saying this is expressed in the
proverb, ““more haste, less speed”’).

Here are some practical real-life examples of cases when an over-
aggressive schedule has led a project into deep problems:

O A project needed a significant number of consultants to travel to
another country, for the final phase of the project. Visas were
needed for these consultants. Because of an overly aggressive
schedule, the consultants traveled to the country too early. Unfortu-
nately, their visas expired before the project was finished, throwing
the project into chaos

O Product management wanted to add feature X into a product. The
timescale for this was estimated as five months. However, senior
management said that the product absolutely had to reach the
market in just three months. So there would be no time to add in
the feature. As it happens, the product never had any real chance
of reaching the market in six months, let alone three months. So
with a realistic schedule, there would have been time to add in
the feature. But the over-aggressive schedule had no time for the
feature, so it was left out. Seven months later, the project was
cancelled, even though it was now ready for release. Reason:

158 MANAGING PLANS AND CHANGE

customers said that the product was unacceptable, on account of
lacking feature X.

Happily, there is a third way, which achieves the targets of aggressive
scheduling whilst avoiding its drawbacks. This third way is the method
of "“agile scheduling”” covered earlier in this chapter. Another way of
describing ““agile scheduling”” is as ““authentic scheduling’.

12.8 Authentic vs. inauthentic scheduling

If the estimates provided by developers are disregarded (or appear
to be disregarded), it leaves the developers feeling disempowered,
lacking motivation. If developers know in advance that their esti-
mates are likely to be squashed by senior management, they are
likely to increase them before submitting them (so that, when they
are squashed, they come back to a figure the developer can support).
This can lead to a very unhealthy “schedule arms race”, with devel-
opers being in a kind of battle with their managers. The outcome is
inauthentic scheduling — the schedule is made up of estimates that
have been heavily altered from those originally submitted. A far better
approach is agile scheduling:

O Estimates given by experienced developers, for being 50% confi-
dent of meeting the date, are used as the basis of the schedule

Q These estimates are not altered by intervening layers of line man-
agers and project managers

0 Developers need to be ready to start work on tasks on a range of
dates (depending on when exactly the previous tasks complete)

0 When developers start work on a task, they are expected to work
flat out on it

O Developers are expected to complete their work to an agreed
quality level, rather than endlessly seeking further improvements

Q There is contingency at the end of the project

O As a software leader, you communicate the full range of possible
dates to interested stakeholders; you have to educate them in turn
as to the benefits of agile scheduling.

| call the outcome ‘“‘authentic scheduling’”” since everyone in the
project team feels responsible to the plan and committed to the plan.
In turn, the plan is recognized as being a hugely important tool, but
not an end in itself. The plan serves the higher goal of delivering
substantial value to customers through the completed product. The

BEYOND MEETING CUSTOMER REQUESTS 159

plan is an essential guide to the expected course of the project, but
it’s fully recognized that it will be subject to change, in numerous
aspects. And when the project deviates from the agreed plan, there’s
no inherent cause for alarm. Instead, it's cause for:

a Simple modifications to the plan

O Clear communication to the project stakeholders about what has

happened

0 Reflection on whether the deviation was within the normal course
of variation, or whether it indicates some specific aspect of
sub-performance (in which case, other corrective action may
be required).

12.9 Beyond meeting customer requests

Earlier, | said it was a mistake to treat the plan as king. Equally,
however, it is a mistake to treat the customer as king. To be clear,
what | said is, “rather than the plan being king, it is customer
satisfaction that should be king”’. You have to give customers what
they actually want, not what they say that they want. What's more,
you have to satisfy the needs of your overall customer set, rather than
just the needs of the most vocal of your customers.

Here are some reasons for not always providing customers with
what they say that they want:

O Sometimes the person from the customer organization that talks
to you may have no authority in that organization to actually
convey product requirements; note in particular that just because
someone is a senior manager does not mean they have the authority
(or expertise) to speak on specific project matters

O Sometimes the customer representative may say something, in only
a tentative way (even though it might not sound tentative); if you
deliver the feature requested, you may later hear that “we didn’t
expect you to actually implement that feature”

0O Sometimes the customer representative may ask for a feature,
that would satisfy an unstated underlying requirement, but in fact
there are other (easier) ways that the underlying requirement could
be satisfied

O Sometimes the customer representative is confused or mistaken
about the importance of a feature in the marketplace

O Sometimes a customer representative may ask for a feature which
large numbers of other customers (including potential customers
as well as actual customers) do not want.

160 MANAGING PLANS AND CHANGE

In summary, you need to target your product at the market, rather
than at an individual customer representative. If you implement every
customer request, your project will suffer far too many changes, and
your product will end up as inconsistent, flawed, and very late to
market. To stop this from happening, you need to ensure that your
team has access to in-house experts from the field known as “‘product
management” — people who have:

Q Their own well-grounded views of the likely pros and cons of
possible product features

O The ability to listen carefully (and with an open mind) to requests
from customers

a Skills in requirements analysis — for example, the ability to distin-
guish the underlying requirements from a proposed solution to
these requirements.

On the other hand, it's very dangerous for any company to think
that it systematically knows more than its customers. Even though
customer requests are far from infallible, they remain the single best
guide to market requirements. The more successful the customer, the
higher the credence you should put on their requests. Bear in mind
that, in a high-caliber customer organization, a great deal of process
will be followed before a formal change request is made to you. The
customer will check beforehand that:

Q The request has a high priority, compared to others they have also
been considering

O The request is founded on an important underlying requirement
(even though the customer may, for confidentiality reasons, avoid
spelling out this underlying requirement).

You may need to invest time with your customers to improve the
quality of the change requests they raise:

Q Give them feedback about issues you notice with the change
requests they give you

Q Act in a way that encourages your customers to share more of
their thinking with you — treating you more like a partner than as a
supplier. Once you understand their underlying thinking, you will
be better placed to decide quickly on the suitability of specific CRs.

In other words, you need to couple excellent product management
skills (mentioned above) with excellent account management skills.
This way, you will gain the greatest benefit from customer requests.

13

Managing uncertainty

13.1 The 80-20 rule for planning

One of the most useful rules in successful projects —as in life gen-
erally — is the 80—20 rule: 80% of the possible value of an activity
can be obtained by careful application of 20% of the possible effort.
Conversely, 80% of the problems can arise from just 20% of the
causes. For example,

Q 20% of customers can account for about 80% of sales revenue

Q 20% of the add-on applications can account for 80% of the sales
of add-on applications

O 20% of the software engineers can cause 80% of the defects

Q 80% of what you achieve in your job can come from 20% of the
time spent

O 80% of the time on a smartphone is spent executing around 20%
of its operating code

O 80% of the heartache in a smartphone project will be caused by
20% of the project tasks.

Of course, the numbers 80 and 20 aren’t exact. In a given field of
enterprise, it might be a 75-30 rule, or a 60-15 rule, or a 95-25
rule, instead of 80—20. But the point is that it's not 50-50. In other
words, not all effort is equal. It's a very ineffective approach to try
to refine and improve all aspects of a project plan at once. Instead,
you have to identify the parts of the project that will have the biggest
impact on the overall schedule. These are the parts that you need to
plan in most detail.

Even before that decision, you have to identify the parts of the new
functionality of the product that are the most important. These are the
features that absolutely must be in the product — the ““mandatory”

162 MANAGING UNCERTAINTY

features — whereas the other features are just “‘highly desirable”
(and/or “nice to have”). So here’s how you start to create your plan:

Q List the product features that you understand to be mandatory

0 Obtain a first set of estimates of the level of effort likely to be
required for each of these features; for each feature, estimate both
the 50% likely duration and the 90% likely duration (meaning the
amounts of time that you are 50% and 90% sure the task will be
finished within)

Q In this process be sure to include, not only the headline new
features — such as new applications and new technologies — but
also productization elements such as integration, optimization,
testing, certification, and operator acceptance. These elements are
just as mandatory as any headline features

Q Construct the first draft of the plan based only on these features,
taking the 50% likely dates. Put as many elements of the plan in
parallel as the anticipated resource availability is likely to allow
(taking into account the skills profile of the people on the team).
Whatever the total amount of time is, add on and distribute another
50% for contingency, as discussed in the previous chapter.

13.2 Identifying the project planning hot list

Now mark the following items as deserving high priority further
attention:

O The 20% of items with the longest individual durations

Q The 20% of items for which the 90% likely duration exceeds
the 50% likely duration by the highest margin (e.g. 3 times or
2.5 times) — these are the items with the greatest risk

QO The 20% of items which have the greatest potential for critical
resource contention — meaning that they require skills to carry
them out which (so far as you are aware) only a few members of
the team possess; these are the items which are most likely to slip
from their schedule because of lack of suitable resources to work
on them

O The 20% of the “highly desirable’” items which senior management
are most likely (in your view) to insist on elevating into the
““mandatory’’ category.

Collectively, this forms your draft “/project planning hot list”.

ITERATING THE PROJECT PLAN 163

Before going further, cross-check your draft hot list against the set
of typical smartphone project trouble spots listed later in this chapter
(or against any evolved version of that list of trouble spots which
your company maintains). If items are missing from your own hot list,
consider adding them in. At this stage, your draft hot list is probably
becoming rather long. So it’s time to prioritize it further. | recommend
that you chop it in half, and set a target to cover each of the items in
the first half of the list in greater detail over the course of one more
week of analysis.

This next round of analysis seeks to obtain, for each item, a greater
understanding of:

0 How likely it is that the item must be included in the product (that
is, whether it is truly mandatory)

The steps involved in implementing this part of the project

The skill sets required for this part of the project

The people likely to be assigned to this task

50% and 90% estimates for the task duration

The risks involved in this part of the project — and how these risks
can be alleviated.

oopooo

13.3 Iterating the project plan

The project plan is dynamic. It keeps changing, in the light of
events, and in the light of the increased understanding you gain from
additional rounds of investigation.

Your project planning hot list is also dynamic. This is the list of
items that urgently need further investigation, to remove uncertainty
about them. Items can leave the hot list because:

Q They have actually been completed

Q The key risks involved have been passed, without things going
wrong

0 Your confidence grows that you have a sufficiently good under-
standing of these items

O You no longer think that these items will take a long time to
complete.

Other items will remain on the hot list, but in a suspended state,
because you don't think you can usefully increase your understanding
of them at this time. You need to wait until further events happen
before you analyze these items further (or you may be waiting for
the arrival on the project of consultants with specific skills who can

164 MANAGING UNCERTAINTY

review the plans for these tasks in more detail). This is a dangerous
situation to be in, but sometimes you can decide to accept it on a
temporary basis. The reason for accepting it is, of course, that you
wish instead to investigate other items at this time.

As items leave the hot list (or are temporarily suspended from it),
you should add in others in their place. These are the items that have
now become the highest priority to investigate further. These may be
items from the previous draft hot list that you didn’t have time, earlier,
to investigate properly. Or they may be items that now satisfy any
of the conditions noted above, regarding length of time, risk factor,
critical resource contention, or likelihood (for new potential tasks) for
insertion into the project.

So both the project plan and the project planning hot list change,
typically on a weekly basis. Each iteration of the project plan gives
rise to a new iteration of the hot list. In turn, the investigation of the
items on the hot list gives rise to an improved project plan (refer to
Figure 13.1).

Yet another activity happens in parallel: you add in more items to
the full plan — items which were not on the original mandatory list,
but which you believe will be included in the actual product. Some
of these items can cause significant alterations to the plan. In such a
case, if you can’t re-jig the plan to avoid this disruption, you need
to check with senior management whether it is permissible to omit
them — leaving them (for example) to be included in a later version of
the product.

Some people are uncomfortable with this kind of iterative planning.
They prefer an approach in which the entire specification of the
product is locked down at an early phase of planning. They seek to
remove all uncertainty before proceeding. They argue that customers
require complete knowledge, early, of what is going to be delivered to

/\/\/

e ——— Evolving project plan

/\/\/\

I P Eoiing product spec

\ / \ / \ Growing commitment
l > to customers

Figure 13.1 Iterating the plan

Evolving
project planning hot list

DEVELOPING FEATURES OUTSIDE THE AGREED CORE 165

them. The argument is that customers cannot make their own plans,
if they are uncertain about what is going to be delivered to them.
For example, if a customer cannot be sure of taking delivery of some
functionality from you, they will have to make alternative plans (such
as implementing that functionality themselves).

In response, | agree that you have to be able to give reliable com-
mitments regarding the mandatory features of the product. However,
not every feature is mandatory. You have to decide what the core
features of your product delivery are. Don’t deceive yourself that
every feature of your product is equally core. Your aim is to give a
clear commitment, early, to deliver these features at an agreed time
and with an agreed quality level. But if you want to be able to give
a clear commitment to delivering a much wider set of features, that
will take you much longer to plan. If you go down this route, dont
be surprised if, by the time you have completed that longer planning
exercise:

0 Passage of time has made the plan irrelevant before it is ready
O Your customer has lost interest, and has made alternative plans
(involving other suppliers).

So you have to live with uncertainty. And the customer has to live
with uncertainty. But as in so many aspects of the relationship with
the customer, for a smartphone project, the keywords are honesty,
openness, communication, and trust:

Q Let your customers know what you are highly confident you can
deliver

O Also let your customers know the features that you are currently
in the process of analyzing further: items that you would like to
deliver, but which you can’t yet guarantee

0 Keep your customers regularly updated.

13.4 Developing features outside the agreed core

| often hear it said that every single item in a smartphone product
specification is mandatory. This means that at least one important
customer has made a very strong request that the item be included
(and your product management personnel have confirmed that they
agree with this customer’s opinion). If that's really true, then you have
no room for maneuver, no discretion, and a near-impossible planning
and execution task ahead of you.

166 MANAGING UNCERTAINTY

However, don’t neglect the dimension of time. Despite what
customers may say, it's usually unnecessary to deliver every feature
at the same time. You should plan to deliver some features in version
1 of your smartphone product, and others at a later time (in version
2, say). For example, you should regard some features as mandatory
for version 2, and as highly desirable for version 1. Start work on
these items as soon as resourcing allows, and monitor the situation
regularly. Defer until later the decision as to which of these features
are actually included in version 1, and which are delayed until version
2. Be ready to switch resources on or off these tasks, but don’t forget
to keep your customers informed about what’s happening.

I call these features ““eventually mandatory”” features. They are
mandatory for eventual delivery, but it is optional whether they are
included in the forthcoming release. In the meantime, you have to
accept a degree of uncertainty about which version of the product
will contain them.

Of course, the situation repeats itself when you start planning
version 2 in greater detail. At that time, you should again designate
some items as eventually mandatory: it is mandatory that they will
be delivered in some release soon, but it is optional whether they are
delivered in version 2 itself.

Here are reasons why a feature may be designated as eventually
mandatory:

a It will take an unknown length of time for various associated tech-
nologies to become prevalent in the marketplace — for example,
new network services, or relevant smartphone peripherals. In other
words, market conditions for this feature may not be ready until a
later date

O Despite your best efforts, it is likely to take too long to complete
the features (and to integrate them fully) in time for the release date
of the next version

0 Despite the express wishes of your customers, you simply have
too many other features already designated as mandatory for the
forthcoming version.

The fact that a feature may be omitted from the forthcoming release
is, however, no reason to automatically delay the start of its imple-
mentation (or the start of its planning):

O Especially if the task will take a long time to complete, you have to
commence its implementation early — such items are called “/long
lead time items’’ (or “front end items’’)

THE 80-20 RULE FOR TASK ESTIMATION 167

Q Especially if the task is conceptually unclear (in terms of require-
ments, design, and/or necessary skill-set to implement it), you have
to commence its planning early.

In this way, your team will need to dedicate some time to items
that are outside the agreed core of the forthcoming product. Doing
this means that the subsequent versions will have a flying start. It
also means that you will from time to time be able to delight your
customers by delivering some functionality ahead of the expected
schedule.

13.5 The 80-20 rule for task estimation

The 80-20 rule applies to the project plan as a whole: each week,
you should update the project planning hot list, and give priority
planning attention just to the items that are on that list.

Importantly, the 80—20 rule also applies to the process of estimating
an individual task. You can get around 80% of the accuracy in an
estimate by skillfully investing just 20% of the time required to get an
estimate that would have near 100% accuracy. In other words, if the
team takes three times as long to carry out an estimate of the work
required, the result will not be three times as accurate; it's likely to
be only around (say) 30% more accurate.

As a software leader, you need to coach your team members to
be able to provide good first-order estimates of task durations quickly
and effectively:

0 They have to let go of any over-engineering or perfectionist attitude
to estimates

Q They have to be confident that they will not be penalized for
occasionally getting estimates significantly wrong —so long as
they have not been negligent, and so long as they are ready to
learn from any mistakes

O They have to give regular updates, as they find more information,
as to their latest expectations on the range of likely durations for
the task.

In order to be able to estimate the length of a task, you need to be
able to see how the task is likely to compare with previous tasks
that have been completed in the past. If the task is totally new, you
can only make a wild guess as to how long it will take. If the task
is totally new to you, you need to ask for advice from people who

168 MANAGING UNCERTAINTY

have done something similar before. This emphasizes how important
itis:

Q Toinvolve in your planning people (such as consultants) who have
worked on similar smartphone projects in the past

0 To seek to retain key individuals from one smartphone project
to the next, in order to keep their knowledge and experience in
the team

0 To seed new teams with people who have worked on previous
smartphone projects.

You may be tempted to compare a task in a smartphone project with
a task from a different kind of project:

O A feature phone project
O A desktop PC project.

That's OK, so long as you have taken to heart the various lessons
in this book. But please don’t underestimate the differences between
smartphones and each of the feature phones and desktop PCs. If
you are at all unsure, be sure to check with experienced advisors or
consultants.

13.6 Typical project trouble spots

One of the first pieces of advice you will receive from any experienced
smartphone developers is a set of typical smartphone project trouble
spots — tasks that can (if mismanaged) end up consuming much more
resource than initially expected. These tasks deserve close attention
from the project management team throughout the project. They
form the core of your project planning hot list. Here are some
important examples:

Q Any use of untried or breakthrough technology in your prod-
uct — any technology said to be on the “’bleeding edge”

O Power management — ensuring that software doesn’t burn CPU
cycles unnecessarily, therefore draining batteries too quickly

O Optimization of system start-up and application start-up

O Optimization of graphics — avoiding visible flicker or slow screen
updates

O High performance data throughput and efficient flow control

PROS AND CONS OF MILESTONE REVIEWS 169

O The development of special fast-booting start-up modes for use
during the manufacturing process (this can include “test modes”
to allow quick verification, during factory assembly, that aspects
of the smartphone hardware are functioning correctly)

0 Management of RAM and ROM - to avoid the software requiring
more expensive hardware

Q Performance of the system under stress

O Scalable use of tools and processes involved in integration, build,
test, distribution, defect management, and configuration manage-
ment

0 Connectivity solutions between the smartphone and desktop PCs

O Putting all necessary legal contracts in place with third-party
suppliers

Q Integration of new software plug-ins for multimedia, security,
telephony, and hardware peripherals

0 Gaining formal certification for specific pieces of software (such as
Java and Bluetooth)

0 Gaining operator approval

O Integration of new third-party applications and services specified
by individual operators.

13.7 Pros and cons of milestone reviews

A sure recipe for smartphone project failure is to allow yourself to
become deceived about the extent of your progress. You need to
be sure about the progress you have made: which tasks have been
finished, and which still need more work.

For example, suppose that your project plan lists 300 tasks (at
a certain level of detail), and has a duration of 40 weeks in total.
Suppose (to simplify the discussion) that the plan states that after four
weeks, 30 of these tasks should be finished. But when the four weeks
have passed, how will you know how many of these tasks have
actually been finished? Someone in your team may tell you that, for
example, 'the configuration management system has been rolled out
to the team”’, so you will be tempted to tick that item as completed.
But it's possible that the configuration management system has only
been rolled out to part of the team, that it’s only a trial version, or that
a part of this system is still missing. In other words, it's possible that
the task is only partially complete.

170 MANAGING UNCERTAINTY

Here’s another example. An item in the project plan may say
““make the first phone call”. But that could mean many different
things. Someone could report that the task is finished, on account
of seeing low-level software call the relevant telephony functions.
But the real intent of that item in the plan could be something more
substantial.

So we can see one way that projects end up running late: manage-
ment is led to believe, in early portions of the project, that progress is
faster than is actually the case. This follows from fuzziness in task def-
initions, and/or fuzziness in task monitoring. Because management
fails to see the true situation in the project, they are unable to take
early corrective action. As the adage states, ““a stitch in time saves
nine”’. Because corrective action does not happen in time, the project
runs into greater difficulties.

It is for this reason that best practice in project management
emphasizes the importance of clear task definition and clear project
milestones. A milestone is an identifiable point of definite progress.
For example, a good milestone definition is when all the following
can happen:

Q One user can pick up the smartphone and use its Ul system to
initiate a voice call to another smartphone

O Another user can use the Ul system on the second smartphone
to answer the call, and then sustain a conversation with the first
smartphone for at least one minute, before terminating the call

0 Both smartphones continue to function after the completion of
the call.

Another example of a good milestone is when 50% of the tests in the
BAT (Basic Acceptance Tests) pass.
In short, the purpose of milestones in smartphone projects is to:

O Define identifiable points of progress, with preset target dates
O Remove uncertainty about the state of the project

a Help spur on development tasks

Q Allow the team to monitor progress, with a view (if necessary)
to making changes to resource allocation or to other aspects of
the plan.

Some milestone reviews can be linked to ““go/no go” decisions for
the next phase of a project; additional resources are allocated to the
project only once a certain milestone is passed. (The word “'tollgate”’

DEALING WITH MILESTONE DELAYS 171

is sometimes used, instead of ““milestone”, for a progress review that
determines whether or not to proceed to the next phase of the project.)

Done well, milestones provide a very useful intermediate level
in between individual tasks and the entire project. If there are 300
tasks in the entire project plan, there might be something like 10
major milestones in the project. You can assess progress against 10
milestones more easily than you can track progress against each of
300 lower-level tasks.

However, milestones can cause problems of their own:

O In case a milestone review is delayed (because it requires senior
managers to meet, and this takes time to organize), there is a risk
of project work being held up in the meantime

Q If important decisions (not to mention possible cash bonus payouts)
are tied to the outcomes of milestone reviews, there is a risk of
distorted thinking; for example, a milestone may be allowed to pass
“with exceptions”’, meaning that some of the required conditions
need to be completed later; in itself, this is OK, but the risk is that
the project stakeholders fail to recognize the full implications of
the exceptions — and become deceived about the true amount of
progress made

O If metrics forming part of a milestone definition are given dis-
proportionate emphasis, so that the project puts great effort into
ensuring that these metrics reach the desired values, there is a risk
of neglecting other tasks that actually should have a higher priority.

Earlier, | spoke about the problems in companies where “‘the plan is
king””. In such companies, milestones are often also given distorted
prominence. Like the plan itself, milestones are only a tool to a
higher purpose, namely the satisfaction of customer requirements.
If you lose sight of this fact, don’t be surprised if you experience
milestone-induced problems.

13.8 Dealing with milestone delays

Suppose that the first milestone in a smartphone development project
is due for completion after four weeks, out of the total project duration
of 40 weeks. Suppose that, in fact, it takes six weeks to complete this
first milestone. Here are three possible reactions that a team can have:

Q They resolve to work especially hard, to make amends for the
two-week delay, so that the project sticks to its original schedule
of 40 weeks

172 MANAGING UNCERTAINTY

O They accept that slippage has occurred, but resolve not to let any
other slippage occur, so that the project is now expected to take
42 weeks in total

Q They note that the project is taking 50% longer than expected, and
therefore now predict that the total duration will be 60 weeks.

Actually, none of these responses, by themselves, is satisfactory. We
need more information:

O Was the delay within the originally estimated contingency for that
task? If so, the delay need not, by itself, lead to a change in the
predicted end-date for the project

0 Was the delay due to one-off factors, or to factors which still
exist (and which are therefore likely to cause further sched-
ule slippages)?

0 How about other project tasks that have been proceeding in
parallel — are they also delayed, or have they been finished in time?

In other words, the progress of the project plan cannot be determined
by the milestones alone (even though the milestones are important).
Smartphone projects are too complex to be reduced to individual
milestone events. It's important to have clear milestone definitions,
but it's even more important to have high caliber individuals con-
tinually monitoring the whole progress of the project. Your project
management team continually refine the project plan, the associated
project planning hot list, and the set of actions that need to be taken
to maximize the likelihood of satisfying customer requirements. This
is a full-time job.

13.9 Cut features not corners

Here’s another big risk with milestone reviews. A team may be told
that a certain milestone needs to be reached by a given date, or else
the project is in jeopardy (senior management might cancel it). This
has the advantage of spurring on additional effort by the team. But it
can cause all kinds of ill-advised shortcuts to be taken, in the rush to
meet the milestone deadline.

For example, a team may feel particular pressure to include one
new feature ahead of the milestone review, or to fix one specific
defect. This may lead them to disregard the architecture or the design
of the product. They may, for example:

CUT FEATURES NOT CORNERS 173

O

Change a source file that is provided by a supplier and intended
never to be changed

Break the encapsulation or modularity of class design

Add extra layers of complexity

Slow down performance elsewhere in the system

End up with a large amount of duplicated code

Utilize an excessive amount of ROM, RAM, or CPU cycles

Break interfaces (and potentially break the build)

Make it harder to maintain the code.

oooopooo

In short, they may store up problems for the future — for development
happening after the milestone. So the milestone review would have
an unintended effect:

O Management perceives that the milestone has been met, since all
the features they’re looking for are in the product by this time

0 So management perceives that the project is on schedule, and
starts to relax

0 However, aspects of the internals of the product are now in a
bad state

O Soin reality, the project is likely to take much longer than expected
in its next phase

O Afterwards, management is extremely surprised at the even-
tual delays.

Sadly, this is a pattern | have seen on too many occasions.

My strong advice is: cut features, not corners. Resist pressures to
short-cut processes. It’s better to deliver 80% of the expected feature
count, at 100% quality, than to deliver 100% of the expected feature
count, at 80% quality. It's much easier to add in new features later,
than to undo faulty software internals.

For this reason, | have never liked the concept of a ‘“release
that's functionally complete”. In this concept, first you write all
the software, and then you remove all the defects. Instead, | rec-
ommend that you address defects as soon as you are aware of
them. Don’t keep on writing new features on top of software which
is known to have defects. You must put the foundations in good
order first.

However, this won’t remove the pressure for you to create special
demo releases from time to time:

Q Perhaps you need to show your product at a trade show, such as
3GSM or CTIA

Q Perhaps you need to demonstrate the features of your product to
potential customers

174 MANAGING UNCERTAINTY

Q Perhaps you need to receive early market feedback on some
intended features or usage patterns.

To address these needs, here’s what you need to do:

O Use prototyping systems to receive feedback on the intended
features or usage patterns

O Use the branching features of your CM (Configuration Manage-
ment) system in order to create a special ““demo branch’” ahead of
a trade show; keep the demo branch separate from the mainline;
use the features of your CM system to selectively propagate code
between the two branches

O Keep a clear distinction between the demo codeline and the true
codeline.

This allows you to have the best of both worlds. You’ll have to work
smarter — and rely on good tools to work hard on your behalf. But
you’ll end up with good features and good quality.

14

Simplifying smartphone
projects

14.1 Beyond difficulty

If you've read carefully through the preceding chapters, you may
have formed the view that it is really difficult to complete a Symbian
OS smartphone project. There’s so much to think about — such a lot
of scope for things to go wrong.

To an extent, | will be satisfied if you reach that conclusion. A very
common reason for smartphone projects to go wrong is if the project
management team is over-confident. You need more than positive
thinking to successfully complete a smartphone development project.
If you think that you can go sailing through this kind of project,
you are unlikely to succeed. You will be tripped up by one or
more of the pitfalls described in the preceding pages. Your skills
in (for example) feature phone software development or desktop
PC software development will fail to transfer into the significantly
different world of smartphone software development. So | want you
to ““look before you leap”.

On the other hand, | don’t want to over-state the difficulty of
running a successful smartphone project. The skills involved are new
(in part), but they are not impossible. In a way, the difficulty in
running a successful smartphone project can be compared to the
difficulty of driving a car in an unfamiliar busy city, or playing golf
in a professional tournament and surviving the cut. In all three cases,
there’s a lot to think about: you need to do many things right, all at
the same time. In all three cases, it will take you a number of years
to become a real expert. But that doesn’t rule out the possibility of
success. It just means that it will take you time.

Another comparison is with learning the technical aspects of
advanced software engineering. To be good at advanced software
engineering, you need to master something like 20 significant

176 SIMPLIFYING SMARTPHONE PROJECTS

individual skills, each of which takes time and considerable practice.
It's the same with becoming good at the management side of leading
a smartphone development project. Again, there is a set of something
like 20 significant individual skills which you need to learn — as cov-
ered in various chapters in this book. That's a lot of different skills, but
you may notice that this book is a lot slimmer than some of the classic
primers on the technical aspects of advanced software engineering.
So take heart.

However, you may still be thinking to yourself, “Isn’t there an
easier way?”’ Is it really necessary to master all the skills listed in
all the chapters of this book, before you can successfully create a
smartphone product? Isn’t there some kind of short-cut to smartphone
project success? And isn’t there a quicker way to finish a smartphone
development project?

In this chapter, | answer these questions, offering some suggestions
for shortcuts to smartphone project success. But I'll say in advance that
you can’t get something from nothing. The suggestions in this chapter
will help you to progress more quickly, but they all depend on work
done by someone else (such as a reference design provider). If you
want to secure yourself a sustainable competitive advantage over the
other people who will also adopt the same shortcuts, you will need
to develop, over time, a broader understanding of the smartphone
development process. Perhaps you won’t need to become world-class
yourself in (to take one example) the skill of interface management,
but you will need to become familiar with the basic concepts of
that skill.

Anyone who offers you a “guaranteed get rich quick” system for
smartphone development projects is doing you a disservice. There
are plenty of tools, tips, and techniques that will speed your progress,
but none of these can guarantee you sustained profits. There’s no
substitute for real knowledge and real experience. Welcome to the
real world. Smartphone projects are hard, but the first step in dealing
with hard projects is to recognize that projects are hard. Then you can
start to deal with the difficulties, instead of seeking to bypass them.

14.2 Reuse rather than reinvent

The most important short-cut to smartphone project success is to
follow the principle, “‘Reuse rather than reinvent”’. Instead of using
lots of your own resources to invent a solution, you should take
advantage of work that someone else has already done. If that
previous work has already been fully integrated, fully optimized, and
fully tested, so much the better.

THE BENEFITS OF FREQUENT RELEASES 177

Any smartphone project typically reuses work from at least four
different providers:

O The smartphone operating system, supplied by Symbian

O A Ul system (together with applications), supplied from an organi-
zation such as Series 60 or UIQ

Q A base port of Symbian OS onto an application processor, supplied
by a semiconductor vendor

O A wireless signaling stack, running on a baseband processor (for
more details, see Chapter 2).

That's a very powerful start. However, you should look to be reusing
a whole lot more than that. The very best kind of reuse, from the
point of view of your company, is when you reuse technology that
your own company has already developed. In particular, the quickest
way for you to complete a smartphone project is if that project is the
second version of a previous project.

So here’s the answer to the question, “What's the quickest way
to create a smartphone product?”” The answer is, ““Don’t start from
scratch”. If you want to bring a smartphone to market in as little
time as four months, your only hope for success is if that product is
a variant or extension of a smartphone you have already brought to
market. A v2 product can reach the market much quicker than a v1
product, provided that you:

O Keep large parts of the project team in place

O Keep most of the design of the product intact

QO Use most of the same suppliers

O Avoid the ““second system effect’” of trying to rewrite everything
completely the second time around.

If you break these rules, you can expect to take a lot longer for
the second project — perhaps even as long as you took for the
first project.

14.3 The benefits of frequent releases

A company that has brought a v1 smartphone product to market
should be well positioned to bring a v2 product to market relatively
quickly —and then a v3, a v4, and so on. This is what | have seen
with the most successful of Symbian’s partners. The first smartphone
project can be rather traumatic, but follow-on projects proceed a lot
more smoothly.

178 SIMPLIFYING SMARTPHONE PROJECTS

This is no accident. It reflects a fundamental principle of complex
software development — the principle of regular iteration, which says
that you should “iterate little and often”. This applies both inside an
individual project, and for a series of projects that collectively build
on each other over time. Inside a project, you should be producing a
baseline release once every one or two weeks, with the quality of that
baseline release steadily increasing (see Chapter 8 for more details).
You should be controlling how much functionality is added in each
integration cycle — otherwise the integration will become too difficult
(with the project becoming delayed). Stepping the discussion up a
level, it's the same for the amount of functionality that you put into
any one product.

Here are two different approaches for bringing a series of smart-
phone products to market:

O Each time, include a huge amount of new functionality in the
product, resulting in a series of relatively major projects

O Each time, include only a modest amount of new functionality in
the product, resulting in a series of relatively minor projects.

The first approach involves a smaller amount of large projects,
whereas the second approach involves a larger amount of small
projects. | strongly recommend the latter of these approaches —
following the principle of “iterate little and often’:

Q For the first project, aim to deliver ““the 20% that provides 80%
of the immediate customer value’’ — or perhaps more realistically,
the 40% (say) that delivers 60% of the value

O Be ruthless about rejecting, from the committed spec of the first
version, functionality that could instead be supplied at a slightly
later date

Q Plan from the start to follow the first version with a series of
later versions

O Maintain a product roadmap - listing the expected future versions,
together with your current best guess on the likely features in
these versions.

The advantages of the frequent release model are as follows:

O Because the projects are shorter, you have less chance of being sur-
prised by market developments ahead of the release of the product

O Because the projects have less new functionality, the integration
task is easier each time. Bear in mind that the effort involved in

SYMBIAN’S ADOPTION OF THE FREQUENT RELEASE MODEL 179

integrating new functionality increases at a rate something like the
square of the number of new items of functionality

O Because products reach the market earlier, you receive all-
important market feedback earlier

O You will reach financial payback earlier, and your development
team will be self-financing earlier

O The discipline of shorter releases means that you are forced to
take tougher decisions, early, about which functionality to exclude
from the scope of the product; this is a healthy discipline

O Because the projects are shorter, there is less danger of spending
a long time in ““analysis paralysis”’ (a series of seemingly endless
research workshops and review taskforces).

14.4 Symbian’s adoption of the frequent
release model

Symbian’s own release model has evolved over the years. For a time,
we were in the situation of taking around a year between releases of
Symbian OS. This had the following drawbacks:

O Because releases were few and far between, customers were
extremely interested in ensuring that functionality of potential
interest to them was included in the specification of the next release

0 Any functionality omitted from one release would have to wait
around one year for inclusion in a subsequent release — this led
customers to campaign hard for extra functionality to be included
in the earlier release

Q The releases ended up with large specifications, and therefore took
a long time to integrate

0 When a release did finally reach customers, the advance of time
often meant that some items delivered were no longer so important
to them; in other words, the releases ended up containing items
of lesser value (along, of course, with huge amounts of material of

high value).

In recognition of these drawbacks, in 2003 -4 we switched to a system
of frequent releases — with new versions of Symbian OS reaching
customers about once every three or four months. The internal
project to improve our release system was code-named ‘“Mercury”’,

180 SIMPLIFYING SMARTPHONE PROJECTS

in recognition of the rapid cycling around the sun made by this
innermost planet. This system of rapid Symbian OS releases required
an improved discipline in product engineering, but the effect has
been well worth it:

O

a

Each individual release has smaller content
Each individual release is a more manageable project

If an item cannot be included in a given release, there is only
around four months to wait for the next release vehicle

In general, items reach customers sooner — there is a shorter time
between customers requesting an item, and that item being deliv-
ered in a release

We receive earlier market feedback about the contents of items
delivered in releases

We receive earlier revenues from the contents of new releases.

As | say, this kind of working requires improved discipline (the benefits
do not come “for free”):

a

Our configuration management system needs to cope with several
releases being developed at the same time

Improved interface management is required, so that customers can
start project work on one release, and then move up smoothly,
midway through the project, to the next version of Symbian OS

We need to identify and start work early on ““long lead time items”’
for future releases

We need to maintain and evolve a product roadmap, covering
around six releases in total (reaching the market over a period of
around two years)

We need to cope with items moving from one release to another
(either moving backwards or moving forwards), depending on
their progress.

In smartphone development projects, you can’t get something from
nothing. With a frequent release model, you get the releases quicker,
but you need greater software development discipline in order to
achieve this.

USE OF REFERENCE DESIGNS 181

14.5 Use of reference designs

If you can’t reuse your own software (from an earlier version), the next
best option is for you to reuse software which is part of an integrated
reference design. This is a particularly good option for companies that
are relatively new to Symbian OS smartphones. A reference design
minimally delivers a working integrated combination of the following:

A version of Symbian OS

A matching version of a Ul system

An application processor and a baseband processor

A wireless stack, running on the baseband processor

A base port of Symbian OS onto the application processor

A communications bridge between Symbian OS and the wireless
stack

Q A rudimentary phone application.

[y Sy oy

The reference design also includes everything else that is needed
for the rudimentary phone application to work — including a phone
application model (sometimes called a “phone engine”), a call log, a
contacts database, and an audio system.

A reference design can be described as “’something like 80% of
the way to a complete phone”. This is a big step up from the usual
starting point, which is a base port of Symbian OS onto the application
processor chip that is intended to be included in the phone. Other
things being equal, it is approximately twice as easy to create a phone
from a reference design, as from a raw base port.

A successful phone reference design removes a great deal of the
risk and uncertainty from the integration of the technology set into
a phone. You can put more of your own efforts into providing extra
innovation and design on top of the reference design, rather than
working at the integration (“plumbing”’) level. On the other hand,
here are some points you need to consider:

O If areference design is available to you, it is probably also available
to your competitors

O Following a release of a new version of Symbian OS (or a new
version of the Ul system), it takes some time for a matching
reference design to become available.

The best situation for you therefore may be to:

0 Develop a close relationship with a supplier of a reference design

182 SIMPLIFYING SMARTPHONE PROJECTS

Q Ensure that your own forward planning, for future products, dove-
tails with the roadmap for future reference designs

O Receive early deliveries of the reference design, whilst it is still in
the process of being integrated.

In this way, you become a so-called ““lead customer” for the reference
design. You have the benefits of early access, but the corresponding
drawbacks of having to work with a system that is still under devel-
opment. You may have the best of both worlds, but you’ll need great
skill to remain in that situation.

14.6 Silver bullets vs. disruption

From time to time, you will hear claims that such-and-such a tool
can significantly reduce your time to market (TTM), or otherwise
dramatically simplify your smartphone development project. As you
saw in Chapter 11, I'm a big fan of tools. There’s no doubt that good
tools can make aspects of your development go much faster.

However, the development of a smartphone product that sells
well in the market almost invariably involves very many different
processes and phases. If one of these goes faster, there’s a risk that
you will relax prematurely, thinking that you've already succeeded,
without realizing that you’ve only improved a small part of the overall
methodology. So take care. You may have found a silver bullet that
simplifies one of the hard tasks in creating a smartphone product. But
that doesn’t mean that all the difficulties yield.

Another dangerous kind of “silver bullet” is the idea that you
can stick with a more familiar operating system, rather than making
the jump into the challenging world of Symbian OS. Interestingly,
you probably can complete an individual project faster, by sticking
with an operating system you already know intimately. But the case
for switching to Symbian OS doesn’t hinge on the pros and cons
of any one phone development project. You need to consider the
effort taken to create a whole series of smartphone products going
forwards. Once you’ve properly climbed the learning curve into the
Symbian OS world, you'll find that you can create whole families of
striking products, with much less effort than before. So the return on
investment becomes higher and higher with each new Symbian OS
project you undertake.

As someone who studied mathematics for four years at university,
| like to compare entering the Symbian OS world with entering
the world of formal algebra. Perhaps you can remember your first
exposure to formal algebra. It might have gone like this. “I'm thinking

SILVER BULLETS VS. DISRUPTION 183

of a number. Now I’'m adding on 3 to that number. The answer is 7.
What was the number I first had in mind?”” You want to shout out the
answer, “It's 4, of course”. But the teacher makes you write down
some equation like x +3 =7, and then go through the rigmarole
of subtracting 3 from each side. The point is that the formalism of
algebra is overkill for such a simple problem, but you need it to solve
harder problems. When you are faced with simultaneous equations
in several unknowns, you can no longer solve the problems by simply
shouting out the answer. You need to follow a more complex process.
Then the rigmarole becomes your ally.

It's the same with Symbian OS. If all you want to create is a modest
increment on your current product, you can probably carry that out
most easily by sticking with your current software system. But if you
want to create whole families of new generations of smartphone
products, you need to switch.

Business analysts talk about ““disruptive technologies’”: technolo-
gies that initially seem to take you backwards, but which have the
capability to deliver much more in the long term than your existing
technologies (see Figure 14.1). Interestingly, if you're looking for sil-
ver bullets, you'll miss the more sustained opportunities that come
from disruptive technologies. Because they can take you backwards
to start with, disruptive technologies are often hard to spot. For the first
few years of Symbian’s existence, Symbian OS was in that situation.
Nowadays, happily, the capabilities of Symbian OS are undeniable,
thanks to the rich variety of stunningly successful products being
brought to the market by pioneering customers and partners. The
position of Symbian OS as a breakthrough disruptive technology
is now clear. But that doesn’t take away the potential pain of the
learning curve.

— Gradual
""" improvement
Disruptive
improvement

T T T T T T T T Tlme

Figure 14.1 Disruptive technologies initially go backwards

184 SIMPLIFYING SMARTPHONE PROJECTS

In the next few chapters, I'll talk more about design and philosophy
than about management and process. I'll share some of the thinking
that guided the formation of Symbian OS. If your teams understand
that thinking, it will help them to ride more quickly along the Symbian
OS learning curve. Instead of fighting parts of the system, you'll be
able to go with the flow. You'll complete successful smartphone
projects more quickly and more reliably.

Symbian’s design philosophy

[W R

o000 o0D0D00 o

00000 D0 DO\

Design goals for Symbian OS

The birth of EPOC32

Defining the EPOC RISC architecture
Software goals from 1995

Separating the engine

Nine passions

Designing for efficiency

The original electronic organizers
Limits of Moore’s Law thinking
Causes of code bloat

Designing algorithms
Understanding the compiler
Adopting OO

Selecting C++

Text descriptors

Designing for robustness

Alloc heaven

Expecting the unexpected

The perils of multitasking

Exception handling

Common mistakes in destructors
Seeking out failure cases

Attitudes towards defects

Protecting the smartphone vital assets

Part 3 (continued)

8
a
a
a
a
a
a
a

—

Designing for usability

“The operation was a success, but the patient died”’
Enchantment

Designing the user interface

Multimedia performance

Understanding the real competition

Customer orientation for developers

Designing panics

-
o

Designing for longevity

Preparing for variants

Be ready to fail fast

Prepare your own SDK

The value of codevelopment

Basic principles for reusable solutions
The value of architecture

The value of ignorance

Ry Iy [y By

20 Designing for smartphones

The licensing question

Focus on strategy

Smartphone heritage

Active objects

Power management

Beware stray signals

Final comments on asynchronous events

| Iy Sy [y Iy

15

Design goals for Symbian
OS

15.1 The birth of EPOC32

The first internal release of E32 took place in the software department
at Psion on 10th December 1994. The release notes for this release
state simply:

Version 0.01.001

(Made by Colly, 10 Dec 1994)
1) First release.

This contained the results of several months of prodigious labor by
Colly Myers (who, three and a half years later, was to become Sym-
bian’s first CEO). E32 is the lowest level of what we now call Symbian
OS, but which was at the time known as EPOC32 (see the annotated
glossary of abbreviations, in the appendix, for some more details).

Although many months of activity had preceded the first release
of E32, it was only a tiny fraction of the work that was to follow.
Driven by the needs of an ever-larger team of software developers
who were creating higher-level software components, new internal
releases of E32 came thick and fast. Version 0.01.002 was released on
13 December, 0.01.003 on 14 December, and so on. There were no
fewer than nine releases before the end of the year. 42 more releases
followed at a somewhat more leisurely pace throughout 1995. 1996
saw another 31 internal releases of E32, and 28 more followed, up
to release 1.01.110 made on 5th June 1997 — the release that was
included in the ROM of the first shipping Psion Series 5 PDA. The
release notes for E32 alone over this period fill nearly 10,000 lines of
text, and credit more than 30 different people with providing code to
E32 at various times.

188 DESIGN GOALS FOR SYMBIAN OS

E32 provides the core elements of the operating system. Mean-
while, on top of E32, a rapidly growing list of components started to
be developed, including (in rough chronological order of their first
appearance):

Q F32, the file server and file systems

O G32 (later split into GDI and BITGDI), containing low-level graph-
ics functionality

a WSERYV, the window server, and FBSERV, a server handling fonts
and bitmaps

a C32, the comms server, and ESOCK, the sockets server

Q HCIL, the first Ul library for EPOC32 (implementing the HCI — the
Human Computer Interface)

O STOR, implementing robust stream storage, and DBMS, with
database management services

Q ETEXT, for manipulating rich editable text, and FORM, for text
layout and formatting

Q EALWL, a server for handling alarms and accessing data about

world cities and countries

BAFL, the so-called Basic Application Framework Library

APPARC, defining application architecture — how the system asso-

ciates data with applications

IRDA, for infrared connectivity, and PLP, for PC connectivity

TCPIP and many other networking libraries

DIAL and ETEL, for access to telephony functionality

Numerous application engines, application views, and application

Uls.

00

O0O0oDO

HCIL later underwent a massive transformation to become EIKON,
the Ul library that shipped on the Psion Series 5 PDA. Along the way,
a small Ul-independent library called CONE was spun out, providing
the so-called “/Control Environment” — the environment supporting
Ul controls.

The Series 5 was publicly launched at One Whitehall Place,
London, on 16th June 1997, and was available for sale in shops a
couple of weeks later. The software had taken nearly three years to
write, funded by revenues from continuing strong sales throughout
this period from Psion PDAs (such as the Series 3c and the Siena)
running SIBO, the 16-bit forerunner of Symbian OS.

15.2 Defining the EPOC RISC architecture

At the start of 1995, my business card announced my job title as
“Software architect”. In addition to being the primary author of first

SOFTWARE GOALS FROM 1995 189

HCIL and then BAFL, CONE, and EIKON, I had the responsibility to
ensure that all the upper levels of EPOC32 software fitted together
optimally. | saw this as having cultural aspects in addition to purely
technological ones. Inspired by a chapter in Bjarne Stroustrup’s ““The
design and evolution of C++", | took the time to write and publish
a document on Psion’s internal ““EPOC Software Design” database,
entitled “Goals for ERA software development”. The database was
just a few days old at the time — this document was only the eighth
document posted to it. (The last time | checked, there were close
to 8000 documents in this database. Even this figure is dwarfed by
the nearly 24,000 articles contained in another long-lived internal
database, “’Programming’’.)

In the next section, | reproduce verbatim the entirety of the text
from the document ““Goals for ERA software development”. The
philosophy expressed in that document has influenced more than 10
years of EPOC32 development, and still makes good sense today.
However, some of the codenames included in the document deserve
some words of explanation:

Q “Protea’” was the codename for the Psion Series 5 PDA

Q ““ERA” stood for EPOC RISC Architecture; this term fell later into
disuse, being replaced first by EPOC32, then by EPOC, and finally
by Symbian OS

Q “‘Eiger” was the codename for the Cirrus Logic CL-PS7111 —the
custom hardware (an ARM core together with peripheral drivers)
used inside Protea. (The lead designer for Eiger was Mark Gretton
of Psion, who went on to be one of the founder directors of
Psion Software.)

15.3 Software goals from 1995

Reproduced verbatim from the EPOC Software Design database:

Document title: ““Goals for ERA software development”.

This document lists, as a kind of “’Credo”, the general goals that
people should keep in mind whilst developing ERA software. These
are over-reaching goals rather than specifics (such as “develop a 3-D
model of windows with shadows”), and concern general programming
practice rather than any details of, eg, C++.

(Document last revised: 27th January 1995)

1. Generality
The ERA software system does not just exist to support what can be
explicitly identified as the requirements of Protea applications. ERA

190 DESIGN GOALS FOR SYMBIAN OS

will support other products, in addition to Protea. In any case, it is
wrong to try just to anticipate the specific requirements of Protea (it is
impossibly difficult to see that far ahead clearly enough). ERA should
provide generally useful services, which Protea (and other products)
may or may not choose to utilize.

2. Modularity

The ERA software system should consist of elements that are coupled
together loosely — not too tightly. Knowledge of the insides of any one
class should not be allowed to be shared too far afield. That would
make later changes too difficult to make safely.

3. Portability

The vast bulk of the ERA system software must be capable of running
on any 32 bit hardware, not just on Eiger. All platform-dependent parts
of ERA must be clearly identified and minimized. This will make ERA
more readily transportable to new platforms.

4. Internationality

Another aspect of portability concerns assumptions about the locale
or language of the end-user. These assumptions must also be clearly
identified and minimized — making it easy to produce eg Japanese or
Arabic versions of ERA.

5. Testability

All elements of ERA must be written so as to be independently testable,
in all aspects. If these elements are thoroughly tested in their own right,
it will greatly add to the reliability and the robustness of the overall
system. Remember the concept of test points when designing modules.
The test suite for a module should be designed at the same time as
the module itself is designed. A module is not finished until its test
code is also finished, and the test code must be maintained as the
module evolves.

6. Clarity of interface

It must be clear exactly what a programmer can legally do with any of
the elements in ERA. The limits of legal input must be sharply defined,
with ERA guaranteeing that, so long as these limits are observed, the
system software will behave properly. (And any input outside these
limits should be immediately rejected.)

7. Simplicity of interface

To prevent the programming interface becoming too large and
unwieldy, it shouldn’t offer programmers too many equivalent ways of
achieving the same end. The interface should be “‘complete” but not
“more than complete”. There’s no need to hand-hold the programmer,
who can be assumed to be already proficient in all aspects of C++.

SOFTWARE GOALS FROM 1995 191

(It’s not part of the purpose of ERA to make it easy for programmers to
learn C++.)

8. Cleanliness of interface

Although the code should make allowance for being tested, specialized
test functions shouldn’t appear in the public interface, not even under
a #ifdef DEBUG flag - this is to prevent the interface becoming
unnecessarily large or over-bearing. (A few standard test macros are
specially defined as exceptions to this rule.)

9. Clarity of documentation

All ERA software intended for use by programmers must be clearly doc-
umented — explaining its scope, purpose, relationship to other modules,
limitations, and any broader considerations. A module is not finished
until its documentation is also finished, and the documentation must
be maintained as the module evolves.

10. Clarity of design

The written documentation for ERA software should be accompanied
by diagrams showing the key inter-relationships and mechanisms of
each element. If these diagrams cannot be produced, it strongly suggests
that the design is poor.

11. Speed

Excess reliance on intensive low-level operations (such as heap alloca-
tion and floating point arithmetic) must be avoided. Any software that
loops repeatedly should be checked to see that the main section of the
loop is as quick as possible.

12. Memory efficiency

Memory should be used sparingly, especially in data structures which
will have multiple instances. Variable data storage mechanisms are
generally preferable to fixed-length storage mechanisms.

13. Codesize

Due thought must always be given to codesize. Avoid coding practices
which will lead to the generation of large amounts of code (even from
small amounts of source code).

14. Performance

Application programmers should never feel the need to write their
own version of ERA system code, just because the performance of the
system code is unacceptably poor, or because the system code entails
too great an overhead.

15. Accuracy

It goes without saying that the software should be bug-free. It is worth
emphasizing in particular that bugs, once found, should be fixed as
soon as possible, rather than being left to later (vhen memory of them
may have faded).

16. Maintainability
The ERA system code should be written in such a way that its own-
ership can easily pass from one programmer to another. Personal

192 DESIGN GOALS FOR SYMBIAN OS

idiosyncrasies of style should be avoided, and transparency of inten-
tion is important. It should be possible to pass ownership of a module to
another programmer with minimum verbal explanation, and it should
not be necessary to say anything that is not in the documentation!
Otherwise, the code will be all the harder to develop and to maintain.

15.4 Separating the engine

Most of the ideas summarized in the 1995 document “Goals for
ERA software development” go back many years earlier. Take the
case of ‘““generality” and ““modularity”’. A far-reaching example of
these principles is the idea of ‘“’separating the engine”. The first
programming task that was assigned to me, on joining the software
development team at Psion in June 1988, was to create the Ul portion
of a word processor application for SIBO. | learned that all the source
files | worked on would go into a ““SLAP” sub-directory of a folder
called “WP" on our VAX VMS minicomputer. “WP"’ stood for Word
Processor, and ““SLAP” was a shortened form of ““SIBO laptop”. |
was working under the guidance of Richard Harrison, whose own
source files were in an “ENG”’ sub-directory of “WP"’. The ““ENG”
sub-directory was to contain the ““engine’’ files of the Word Processor
application.

This principle of separation of engine and Ul is of fundamental
importance in writing complex applications. The engine holds the
parts of application logic that govern tasks such as:

0 Data manipulation
O Searching and sorting
O Data storage and retrieval.

Just as the engine of a car provides the energy that propels it for-
ward, the engine of an application contains its core strength. A
given car engine is compatible with a large range of different dash-
boards — different arrangements of the indicator screens and controls
used by the driver of the car. Likewise, a given application engine is
compatible with a large range of different Uls. While | was working
on files in WP\SLAP, another directory called WP\SHAN existed,
ready to receive source files implementing the Ul of the word pro-
cessor application on an eventual SIBO handheld computer. The
same WP\ENG files would serve the needs of both WP\SLAP and
WP\SHAN. (The MC400 and MC200 laptop computers reached the
market in late 1989. The Series 3 handheld PDA followed in Septem-
ber 1991. Large amounts of engine code were indeed shared between
the word processor applications on these two computers.)

NINE PASSIONS 193

Separating the engine of an application allows reuse of that code
in new contexts. For the 32-bit version of Symbian OS, we took
the principle one stage further, and recommended that complex
applications should be split into at least three components:

O The engine of the application, which had no knowledge of any
graphics or Ul features

0 The views of the application, which contained code for the main
displays of the application data, but had no knowledge of the
specific Ul on the device

Q The Ul for the application.

The operating system files as a whole were also split up in the same
way. Some libraries provided services for application engines; others
provided services for application views, and yet others provided the
Ul on the device. Examples of complex views that were developed
for application reuse included grids (as used in spreadsheets), charts,
clocks, calendars, scrolling list views, snaking list views, hierarchical
list views, and rich text views.

Software developers who wish their software to be quickly portable
between different Symbian OS smartphones should follow this same
principle of separation into components. As much as possible of their
software should be independent of the Ul on any one smartphone.
Done well, around 80% of the software will work on all Symbian
OS phones, without any change. Only around 20% will benefit from
optimizing to the particular Ul family of a smartphone.

15.5 Nine passions

I haven’t counted, but my guess is that my personal electronic archive
of PowerPoint presentations contains at least 20 versions of a talk
variously called ““Symbian fundamentals’” or ““Symbian core”. For
example, | used to give versions of this presentation to new recruits
to Symbian, at the Induction Day sessions held roughly once every
three months. As explained in the opening slide of the presentation:

O The presentation was not about change — things to be done differ-
ently

Q Instead, it was about items that should remain constant — passions
guiding all EPOC development

194 DESIGN GOALS FOR SYMBIAN OS

O | saw these passions as being responsible for the past successes
of the software development team, and as being required for our
future success

Q | used the term “passion” deliberately, to indicate deep-seated
concerns (not just intellectual interest) that motivated great effort.

The presentation evolved over the years, but there were always
nine passions —three groups, each with three passions (refer to
Figure 15.1):

Q Symbian’s most visible passions concern product qualities
O These are sustained by passions concerning processes to follow
Q In turn, these are sustained by passions concerning people.

The remainder of this book is essentially an elaboration of aspects of
these nine passions — bringing these ideas up-to-date in the light of
my subsequent experience, and also identifying new areas of learning
and opportunity. The present group of chapters deal mainly with the
first six passions (regarding product and processes), whereas the final
chapters in the book revisit the people themes.

Passion 1 is for product robustness (reliability): the product should
never let down end-users. No “‘user reset” should be necessary:
individual misbehaving applications should have their effects isolated,
to prevent loss of user data — regardless of any issues with shortage
of memory, low batteries, breaks in communications channels, or
unexpected user input. As a special case, memory should be used very
carefully, avoiding ““memory leaks’” — allowing system processes to
run literally for years between resets. For more details, see Chapter 17.

Product

Robustness Efficiency Usability

Process

Project

Re-use Architecture Management

People

Teamwork Innovation Focus

Figure 15.1 Nine core passions of Symbian development

NINE PASSIONS 195

Passion 2 is for product efficiency (performance): the product
should meet users’ expectations for speed and responsiveness, despite
having hardware with capabilities that are limited in comparison to
desktop PCs. Symbian software developers live and breathe “’lean
and mean”, with a deep understanding of how to get maximum
performance from hardware that has low cost (and hence the potential
for mass-market adoption). For more details, see Chapter 16.

Passion 3 is for product usability. There’s no point in a product
being laden with technology, if real end-users are unable to use it.
This leads to a constant emphasis on ease of use. Bear in mind that
the real competition to the applications on a smartphone comes from
pen, paper, and other low-tech tools — not the set of applications on
some other smartphone (or other mobile computer). Being the best
application of its type on any smartphone isn’t good enough — you
need to be better than low-tech alternatives, and you need to be
satisfying real user needs. Otherwise end-users won’t buy your appli-
cation. So this passion is all about maintaining a strong customer
focus. For more details, see Chapter 18.

Passion 4 is for software reuse. If you put a lot of effort into
solving a problem, look for ways to have that solution reused in other
situations. Take the time to separate the general principles of what you
have done, from the accidental specifics of the actual circumstances.
If you do this right, the same general principles can be applied in
many other circumstances, specialized in new ways. For example,
if you answer someone’s question in an email, consider taking the
extra time to create a FAQ from that interchange, so that others can
benefit from it too. That's helpful for general reuse of ideas, but reuse
of software inside complex systems tends to be much more difficult,
and needs special skills. See Chapter 19 for more details.

Passion 5 is for software architecture. Good architecture is one of
the main prerequisites for being able to reuse complex software, so
that is also covered in Chapter 19. Done well, architecture provides
important high-level simplifications, such as the idea mentioned
earlier of splitting the software of an application into engine, view,
and Ul. Done badly, architecture leads to designs that cripple future
development. Architecture involves drawing diagrams, but the key
skill involves knowing which diagrams to draw.

Passion 6 is for project management. Good project management
is what separates teams in which people merely work hard (even
heroically hard), from teams that have a clear direction and process
to their work. Good project management imposes the right level
of control over systems for managing defects, build systems, testing,
changes, risks, and schedules — all the topics covered in the preceding
group of chapters.

196 DESIGN GOALS FOR SYMBIAN OS

Passion 7 is for teamwork. Software leaders need always to keep in
mind three sets of priorities — the well-being of their project, the well-
being of the individuals in their care, and the well-being of the team.
These priorities have strong long-term links, but sometimes diverge in
the short-term. When a great team spirit prevails, the individuals in the
team become, collectively, more energized and more capable than
they are as individuals. This benefits the project too. Individual differ-
ences and tensions are blended by mutual respect and appreciation.
As I'll review in the final group of chapters in this book, teamwork
has special dimensions in a smartphone development project.

Passion 8 is for innovation — the passion to be a leader, not just
a follower. It’s the passion to anticipate market requirements, and to
work out, ahead of time, how to fulfill them. The root of innovation
is to be proactive, avoiding any ‘“blame culture”. It's also a matter of
being able to apply more time and resources to issues that are truly
important, instead of those that are merely urgent. In turn, this leads
us on to the final passion.

Passion 9 is for focus — deciding what's truly important, and what's
justa “nice to have”. If you don’t focus, you spread yourself too thinly.
Without focus, Symbian would drown in customer requirements.
Collectively, our partners and customers ask us to insert enormous
numbers of new features into forthcoming Symbian OS releases — at a
rate about five times as fast as is possible. We need market wisdom in
order to choose what goes into the operating system, and what should
lie outside it. We have to try to pick the 20% of possible requirements
that will deliver 80% (say) of the possible business benefit.

Focus means ‘“doing less, in order to do more”. Focus is about
choosing between competing customer requirements, but it's more
than that. In Symbian’s history, this also led us to adopt a simple,
focused business model, and a very small number of hardware
platforms (namely, just ARM). And in the most important example of
all, in our history, it led us to focus on the smartphone market to start
with. That's discussed further in Chapter 20.

16

Designing for efficiency

16.1 The original electronic organizers

The first Psion organizer went on sale in 1984. Psion marketed it as
“the world’s first practical pocket computer”. For 1984, it had an
impressive feature list:

0 8KB ““Datapak’ (solid-state disk) for permanent storage of infor-
mation

A flat file ““data’” application for storage of all sorts of information
A powerful calculator

24-hour clock and calendar

A sliding case to protect the keyboard

4KB XIP (execute-in-place) ROM, 2KB RAM as standard

Battery life of six months on a single 9V PP3 battery

0o 000 0 0o

Optional additional program packs and Datapaks. (The optional
program packs included a finance program, whose first version
was written by David Potter, Psion’s chairman.)

This feature list compared favorably with the micro computers of the
time, such as the Commodore VIC 20 or Sinclair Spectrum.

A ROM budget of 4KB and a RAM budget of 2KB concentrate the
mind wonderfully.

Of course, later Psion devices contained more memory. But the
requirement for the software development team to write lean-and-
mean code persisted. All through my time at Psion, limitations of
memory size were regularly in mind.

Psion’s first SIBO (16-bit operating system) computer, the MC400
laptop computer, was intended to have 256KB ROM and 256KB
RAM. It had four slots for solid-state disks for additional programs

198 DESIGNING FOR EFFICIENCY

or storage. In view of the amount of code written, it was eventually
decided to use up one of these slots by shipping an extra 128KB disk
with every computer, containing system software that would not fit in
the ROM. So the ROM budget grew to 384KB. Later SIBO computers
had ROM sizes of 512KB and even 1MB (accommodating large data
sets for a spell-checker). During this period, there were several intense
exercises to shrink the overall codesize:

O Software originally written in the C programming language was
converted into hand-crafted assembler; before this, the entire
development team went on a crash week-long course in Intel
x86 assembler. Module after module was carefully converted,
until the required target size was reached

O At another stage, Charles Davies (then Psion’s Software Director,
and nowadays Symbian’s CTO) implemented a Huffman compres-
sion and decompression algorithm for the resource files containing
language-specific text strings; the ROM ended up carrying a few
hundred extra bytes of code (a highly efficient implementation
of the decompression algorithm) and many thousands of bytes
less data

O Another specialized compression system applied for the database
of information about world cities and countries (a feature of Psion
organizers since very early days); Colly Myers repeatedly optimized
this specific algorithm, allowing more data to be accommodated
in even fewer bytes in the ROM, whilst reducing the bytes of code
used to implement the look-up algorithms.

Psion’s first EPOC (32-bit operating system) computer, the Psion Series
5 PDA, shipped with 6MB of XIP ROM; options for RAM were 4MB
and 8MB. That was another big step up from the memory budget of
SIBO computers. But at the same time, the functionality supported
in EPOC was significantly greater than that in SIBO —so efficiency
considerations remained paramount. These considerations have their
legacy in the fundamental design decisions of Symbian OS.

16.2 Limits of Moore’s Law thinking

There is an argument that software efficiency considerations are an
anachronism. This argument refers to the way in which Moore’s
Law has steadily decreased the cost of computing resources. The
amount of computing power that can be purchased at a given cost
roughly doubles once every 18 months. Extending this law over five

LIMITS OF MOORFE’S LAW THINKING 199

years gives three and a third generations of 18 months, and therefore
an increase in computing power of just over 10 times. Extending
this law over 710 years gives a hundred-fold increase in computing
power — literally two orders of magnitude in a decade. So, for the
same cost to end-users, today’s handheld computers have roughly
one hundred times the ROM and RAM as those from 10 years ago.
In this line of argument, even if it made sense 10 years ago to care
about individual bits and bytes, any such constraints are a complete
irrelevance nowadays.

However, there are many problems with this kind of think-
ing. First, Moore’s Law only holds for certain kinds of computing
resources — resources that involve putting more transistors onto chips.
Other kinds of computing resources improve less rapidly:

0O Bandwidth of data transmission has increased significantly, but
more slowly than the rate of increase of memory

O Latency (intermittent delays) in networked connections remain
problematic, despite increases elsewhere in computing capabilities

O Most important of all, battery power has made only modest
increases over the last two decades.

Second, it’s all too easy for busy software engineers to use up all the
memory benefits from Moore’s Law, without the user experiencing
any net benefits. At the same time as memory size has increased 10-
fold, many applications have expanded in size by similar quantities.
As one wag put it, “Moore gives, but Gates takes away”. Another
common saying in the computer industry is that “/software gets slower
faster than hardware gets faster”.

In concrete terms, this means that for each new product, the same
issues keep recurring:

Q The hardware resources grow, but so do the requirements the
software has to meet

O The software typically grows in size, in order to meet these new
requirements

Q Therefore software developers still have ROM and RAM budgets
that they need to care about

Q In all these products, there are problems with the speed of the
software (for example, how long does the system take to start up,
and how long do applications take to start)

Q In all these products, there are problems with the battery being
used up too quickly.

200 DESIGNING FOR EFFICIENCY

In short, Moore’s Law is not enough. Moore’s Law is an important
part of the reasons why smartphones are becoming increasingly ubig-
uitous — but only part of the reason. If your team neglects efficiency
considerations, you'll find that software bloat will eat up the gains of
Moore’s Law, and more again.

Consider two code constructions, which have the same effect,
except that one occupies 30 bytes of code, whereas the other occupies
10 bytes. If the longer one turns out to look simpler, you may well
be tempted to prefer it (on grounds of it being perhaps easier for
humans to read), saying that surely 20 extra bytes won’t do any harm.
However, in a large ROM, the same choice of construction may be
applied literally hundreds of times, resulting in upwards of a kilobyte
of code being wasted. Again, in the context of a ROM with some
tens of megabytes, you may say that even a kilobyte is nothing. But if
everyone in the team takes that attitude, you’ll suddenly find yourself
exceeding the allocated budget, or frustrating the user on account of
delays in response, and/or running down the batteries too quickly.

On the other hand, the principles of “beware suboptimization”
and “‘accept slack”, that | mentioned in connection with project
planning in Chapter 12, also apply in connection with increased
performance. There’s no point in applying lots of effort to optimize
the performance of one module of the software, in the absence of an
overall understanding of how the performance of that one module fits
into the bigger picture. You have to approach performance both from
top-down and from bottom-up. Starting from bottom-up, you need to
train your team members to systematically choose high-performance
software constructions instead of low-performance ones. Starting from
top-down, you need to decide:

0 How to avoid having lots of code repeated between different
modules

Q Where the various performance bottlenecks are most likely to
occur — and how to address them.

16.3 Causes of code bloat

As just discussed, one of the main causes of code bloat (increased
memory requirements, bulkier codesize, sluggish performance, and
excess drain on batteries) is the general attitude that efficiency no
longer matters, since hardware improvements will take care of things.
This is a carefree attitude (which is another way of saying “’careless”’).
I'll now describe some specific examples of this general attitude.
Suppose a developer wants a particular software effect, for
example, to find the name of the network to which the phone is

CAUSES OF CODE BLOAT 201

connected. A carefree developer may stop as soon as he finds an
API that has the required effect. A good developer will check as to
the side-effects of that API, and keep looking until one with minimal
side-effects has been located. It's possible that the API called by the
carefree developer will do all the following:

O Query the phone network for a whole range of network character-
istics

O Update on-disk storage of the network characteristics

O Update the screen (the parts displaying information about the
network)

O Return the name of the network.

(This is a hypothetical example, but | see the same kind of thing all
too often.)

More generally, a good smartphone developer will seek to under-
stand the APIs being used, whereas a carefree developer will be
content to treat an API as a black box.

Carefree developers often add lines of code to call functions “/just in
case this is needed”. In other words, they’re not sure whether the line
of code is needed, but they want to guard against all possibilities. The
result may be, for example, that the screen gets updated five times
during the course of a single atomic transaction. (Efficient screen
redrawing code may mean that no one notices the repeated updates.
However, the battery will notice it, and the whole operation will take
longer than necessary.) Instead of not being sure, good developers
will dig into things more deeply, and will document what they find.
Then, if need be, they will refactor their code to deal efficiently with
all different possibilities.

Next, suppose that the carefree developer cannot find an API that
meets his precise requirements, but can find some source code that
does something similar. In this case, the carefree developer may
proceed to make a copy of this source code, and then to tweak it so
that it has the desired effect. This is called ““copy-and-tweak’”. The
result is that the overall software ends up having many copies of
almost the same code. Depending on just how lazy the developer is,
he may end up with tens of copies of some sizable pieces of code.
He may be happy, because, after all, the software works — doesn’t it?

There are in fact two problems with having multiple copies of
essentially the same piece of code:

O It causes code bloat
Q It makes the overall software system harder to understand — it
becomes impossible to “‘see the wood for the trees”".

202 DESIGNING FOR EFFICIENCY

So, too much clutter isn’t just bad for the ROM budget, it's also bad
for the comprehensibility of the software. This software often ends up
as out-of-control: a no-go area that’s really tough to maintain.

Here’s yet another problem with code duplication: if it later turns
out to be necessary to apply a bug fix to the original source code, the
chances are that no one will remember to apply the same bug fix to
the one or more copies of the code made by the carefree developer.

Instead of copy-and-tweak, good developers will prefer one of the
following:

a They will put in the effort to refactor all the copies of the software
under their control, to allow the same software (when called with
slightly different parameters) to meet all the different needs; instead
of there being one monolithic function, there will be a series of
smaller functions, each with a clear purpose

O Where the original source code is not under their direct control,
they will discuss matters with the owners of that code

O In some cases, the owners of that code will be able to suggest a
different method for the requirements to be met

Q In other cases, the owners of that code may be prepared to add a
new variant to the existing supported API set (as | discuss below,
this is something that is easier to do when using OO methods).

16.4 Designing algorithms

Another cause of sluggish smartphone product performance is poor
design of critical algorithms.

In principle, the answer in this case is straightforward — apply
the methods and results of computer science. Computer scientists
have been studying algorithms for decades. It is well known that the
most “‘obvious’ algorithms for tasks such as searching and sorting
fare much more poorly, for larger data sets, than more sophisticated
ones. For example, an obvious algorithm might take a length of time
proportional to the square of the amount of data being processed,
whereas a more sophisticated one might take a length of time closer
to direct proportionality to the amount of data.

If you have the wrong algorithm, merely improving the hardware
won’t help you. It will disguise the problem, but the problem will
return once the data size increases. And funnily enough, when the
hardware is more powerful, users tend to store larger amounts of data
on it, so that your algorithms fail again.

DESIGNING ALGORITHMS 203

Throwing extra processing power at a difficult problem is akin to
throwing more money at a badly performing enterprise. In both cases,
what you need to do first is to sort out the internal performance.
So don’t rely on hardware to solve software problems. Instead, fix
the software.

For smartphones, filing system access is an area that can be partic-
ularly problematic. If you are using a relatively new kind of memory
chip in your smartphone, take the time to ensure the soundness of the
fundamental algorithms in the device drivers for these chips. More
generally, check out the data throughput for all peripherals. You
face the risk of one of these peripherals unexpectedly becoming the
choke on higher speeds of network connectivity. Good stress tests (as
mentioned in Chapter 10) will alert you early to problems in these
areas, but you’ll need good computer science to actually solve these
problems.

Ideas that your technical team may want to consider, when improv-
ing algorithms, include the following:

Q Calculate hash values (““digests”) of data sets, and do the first level
of lookup on the hash value, not the data itself

O Make internal copies (“‘caches”) of the results of recent searches,
in case subsequent searches are the same (but be sure to update or
invalidate the caches when the data itself changes)

0 Construct indices of data, as a background activity (but be sure
not to recalculate indices unnecessarily, and be sure that your
algorithms cope well with incomplete indices).

| said that the solution to algorithm problems was “in principle
straightforward”’. The reasons why this solution sometimes fails to be
applied in practice are that:

O Some teams devalue the importance of software algorithms, mis-
takenly thinking that the progress of Moore’s Law makes this
subject an anachronism

0O Some teams are used to developments in computing environ-
ments with more powerful hardware (for example, desktop PCs,
or pocket-sized PCs with expensive hardware) where software
constraints are less in their minds

O Some project managers are unused to software algorithms playing
an important role in their projects.

It takes a particular kind of individual to be skilled in algorithm design;
make sure that you have some individuals in your team with these

204 DESIGNING FOR EFFICIENCY

skills. On the other hand, don’t let these individuals spend their time
optimizing each and every piece of code they notice. Make sure that
they first work out the areas of code that, if optimized, would make
the biggest difference to the overall performance of the system.

16.5 Understanding the compiler

Understanding the compiler is an important special case of the need
to understand software algorithms.

Earlier, | distinguished the attitudes of groups of developers |
labeled as ““carefree’”” and “/good”’. Somewhere in between these cat-
egories comes a group of developers who care a lot about making the
source code clean, neat, and short. But what distinguishes this middle
group from those | call ““good” is the level of their understanding of
the difference between source (plain text) code and object (binary)
code. Smartphones execute object code, not source code. In some
cases, efficient-looking source code actually produces a considerable
amount of unexpected bloat in object code.

Back in the days when software developers at Psion often rewrote
modules from the C programming language into assembler, to reduce
codesize, we developed a keen awareness of the C constructs that the
compiler handled well, compared to those which caused the compiler
to generate larger amounts of machine code. This understanding was
augmented by the amount of time we all spent debugging at the
machine code level, when we manually matched up the machine
code being debugged with the source code it was generated from.

Compilers have improved a lot over the intervening years. But
some cases of compiler-induced code bloat remain. These are not
due to defects in the compiler. Instead, they arise from the fact that
there are things known to the developer, which the compiler does
not know. The main impact of this on present-day Symbian OS is in
the area of exception handling.

The C++ programming language defines a native system of excep-
tion handling, for directly passing control up many levels of the calling
stack in one step, in the event of a lower-level routine encounter-
ing a run-time error (such as lack of disk space, or file in use, or
weak network connection). As explained in Chapter 17, Symbian
fully endorses the idea of exception handling, as a way of:

a Streamlining the logic of error handling inside source code

Q Ensuring that resources which have been partially created, during
the current operation, are properly cleaned up, freeing them for
usage once the error condition no longer occurs.

ADOPTING OO 205

However, native exception handling in C++ requires the compiler
to generate various hidden tables, containing pointers to resources
that may (or may not) require cleaning up, in the event of an
exception occurring. Symbian’s choice was, instead, to disable native
exception handling, and to implement our own exception handling
mechanisms (which were derived from a similar system in the SIBO
software platform). We had two reasons for doing this:

O At the time when Symbian OS was defined, standards for native
exception handling were unclear

O The implementations of native exception handling all introduced
considerable code bloat.

Symbian’s implementation of exception handling requires extra
source code, compared to native exception handling, but compiles
into less object code.

Interestingly, our analysis of code bloat was confirmed in a dra-
matic way in late 2004, when we finally did throw the compiler
switch, to enable native exception handling, as part of the release
of version 9 of Symbian OS. The single act of toggling this compiler
switch resulted in a 10% increase in codesize. In a ROM with more
than 20MB of code (plus considerable amounts of data), this pushed
up the ROM budget by 2MB. Several smartphone development teams
were, unsurprisingly, taken aback by this increase, as it pushed their
projects over the edge of the 32MB boundary.

Another aspect of compiler-generated code bloat is if you let the
compiler automatically generate constructors, copy constructors, and
destructors. Again, this is a case of more object code being generated
than you would imagine, from a brief look at the source code. Finally,
beware of inline functions and template classes. If you’re not careful,
these will end up responsible for much more object code than you
expected. Symbian endorses a pattern of using templates known as
“thin templates”. Make sure that your team understand their pros
and cons.

16.6 Adopting OO

My first encounter with OO (Object Orientation) in software engineer-
ing was a negative one. It seemed to me that OO was unnecessarily
complicated, and would result in less efficient object code.

This was in late 1988, as Huw Barnes and Charles Davies in
the Psion development team started talking about the benefits of
adopting OO methods for the implementation of the Ul layers of

206 DESIGNING FOR EFFICIENCY

the SIBO software platform. The idea was that many parts of the Ul
code would not know exactly what kinds of control widget they were
dealing with (for example, date editor, text editor, list box, or radio
buttons) and would instead invoke functionality in each widget by
means of an indirect function call. So all the control widgets would be
so-called ““subclasses’” (meaning ‘’specializations”, or ““derivations”)
of an archetypal control super-class; the super-class would define
various call-back functions, and the different subclasses would each
provide their own implementations.

Actually, 1 didn’t mind that idea, but | was less keen about
extending this notion more widely throughout the software system:

Q There would be a super-class defining variable arrays (arrays
with indeterminate numbers of elements), along with specific
subclasses for flat-storage variable arrays and segmented-storage
variable arrays

Q There would be a super-class defining active objects (objects
encapsulating event sources), and specific subclasses for each
different kind of active object (such as timer, serial port, and
keyboard)

O Most ambitiously, there would be a kind of ultimate grandfather
super-class, defining the common behavior of all objects in the
software platform, and all objects in the system would be instances
of classes derived from that super-class.

As someone who was focused on “/lean and mean’’, | worried that
any global system of super-classes and subclasses would introduce
undue overhead. Run-time execution would be marginally slower,
and the amount of memory storage allocated to each object would
be marginally higher. Extended over every object in the system, that
seemed a big price to pay. Within Psion at the time, | was not alone
in this view.

However, as we looked further into the matter, we increasingly
saw two very important benefits from adopting an OO approach:

a OO design allows single individuals to understand a larger software
system; the classification system it introduces copes well with rising
domain-matter complexity

O OO design also allows greater elements of code reuse, especially
in the case where two pieces of code have requirements that are
similar (but not identical).

So OO provides a good solution to various problems described earlier
in this chapter:

SELECTING C++ 207

Q It provides an alternative to the dangers of “copy-and-tweak”’

Q It allows significant code reuse across different software compo-
nents; despite the slight increase in codesize “/in the small” (that
is, in a given object), there is a significant decrease in codesize “/in
the large” (that is, across all objects).

As | understood this more fully, I switched from being an OO skeptic
to a kind of OO evangelist. Over time, Psion adopted OO methods
for wider parts of the SIBO software system. And when the 32-bit
Symbian OS was designed, we took things further again: lower-level
components such as the window server, file server, and the kernel
itself used OO methods from day one. We continued to benefit
from code reuse across many applications. | seriously doubt whether,
without OO methods, the first Symbian OS device could have fitted
within its tight 6MB ROM budget. With OO methods, we achieved
a system of applications with great uniformity of style and strikingly
small codesize.

I've taken the time to explain this history, because | know that many
people encountering modern-day Symbian OS have a first reaction
that is similar to my first impression of OO. Many people have the
initial hunch that Symbian OS is over-complicated. Symbian OS has
a huge number of APIs, grouped together into extended programming
frameworks. But when your technical teams study it further, they will
appreciate the rationale for these APIs and extended frameworks.
They will realize that the costs of the local complexity result in an
overall system that is extremely powerful indeed.

16.7 Selecting C++

Deciding to be OO was only one of the high-level design decisions
facing the SIBO team in the late 1980s. We also had to decide which
programming language to adopt. It had to be a language based on C,
since that was what the team knew well (and we knew that it allowed
highly efficient programming). That left three main candidates:

0 Obijective C, developed by Brad Cox

Q C++, developed by Bjarne Stroustrup

Q An in-house system, built on top of C, with its own “‘category
translator’” and preprocessor.

(See the annotated bibliography, in the appendix, for details of books
we read at the time that influenced our decisions.)

Around this time, Bjarne Stroustrup happened to be giving an
informal lecture at one of the colleges in London close to Psion’s

208 DESIGNING FOR EFFICIENCY

development site. Charles Davies (my boss at the time) suggested
I go and listen to him. It was a smallish audience, so | took the
opportunity to ask Bjarne some details about the implementation of
multiple inheritance (something that hadn’t been introduced widely
into C++ by that time). Bjarne picked up an A4 piece of paper and
sketched a diagram for me of the main points in his solution. To my
later regret, | didn’t have the presence of mind to ask Bjarne to sign
the paper; worse, I've misplaced it (though | do recall briefly seeing
it some years later in one of many boxes | have containing paper
archives from that time period).

Despite the sophistication of C++, we decided it would be too
disruptive for us to change the SIBO system mid-project over to C++.
PC compilers for C++ were pretty immature at the time, and the
language itself was evolving quite fast. We also worried that C++ was
such a big language, that it would be difficult for us to know how
best to use it.

Instead, we developed an in-house system that was closer in spirit
to Objective C than to C++. Classes were defined in a so-called
category file, which was processed by a category translator into a
combination of C source code and generated header files. Object
oriented function dispatch was via a new library function, p_send.
Soon there were partners of p_send such as p_supersend and
p_exactsend. The implementation of these functions was in highly
efficient assembler. We occasionally referred to the whole system as
““POOC” (Psion Object-Oriented C), but (unsurprisingly) the name
did not stick.

When the time came to create Symbian OS (known at the time as
EPOC32), our first thought was to continue to use the same system.
We thought this would give us the fastest time-to-market. At one
time, we even toyed with the idea of a monster tool (nicknamed “'the
munger’’) which would ““munge up”’ (mix together) huge amounts of
SIBO 16-bit source code and automatically generate corresponding
32-bit source code for EPOC32. A few months later, we decided that:

Q The munger was technically far too hard a project

O Time-to-market was by no means the only criterion to use, when
initially creating EPOC32; other criteria such as longevity and high
value were also critical

O Revenues from on-going strong sales of Psion’s SIBO PDAs would
sustain a longer development project for EPOC32 than was ini-
tially foreseen.

So at this time, in late 1994, we took the decision to switch over from
POOC to C++. This was motivated by the following reasons:

TEXT DESCRIPTORS 209

a Compiler support for C++ had greatly improved in the preceding
few years

0 We wanted to take advantage of other key features and improve-
ments of C++, beyond its OO features; that is, we wanted to use
C++ ““as a better C”

0 We knew we needed to recruit a larger team of first-class software
engineers; we believed it would be easier to recruit quality people
to work on C++ than on a proprietary system.

However, we remained apprehensive about the sheer size of C++, and
the number of different programming styles it supported. To constrain
programmers, we evolved our own rules for how C++ should be used
inside EPOC32:

O To avoid design complications, we restricted multiple inheritance
to cases in which the second base class is a specially designed
““mixin”’ (we were pleasantly surprised to learn that both Taligent
and Java imposed similar rules)

O As mentioned above, we disabled the compiler’s native C++
exception handling

0 We developed a naming convention that distinguished between
classes with and without real destructors

O Our rules for templates and inline functions are designed to avoid
there being multiple copies of binary versions of the same code in
the ROM

0 We developed custom classes for some very common opera-
tions — such as the ““descriptor”” class hierarchy for efficient text
string and buffer manipulation.

Symbian has never regretted the decision to adopt C++. It was a
far-sighted decision at the time. That language has served Symbian
OS well. There’s an open question about the best language to use
to develop add-on applications for Symbian OS (the answer depends
on exactly what kind of application you want to write), but there’s no
question that the bulk of Symbian OS itself will continue to exist in
C++ for the foreseeable future.

16.8 Text descriptors

Let me end this chapter with a few comments about text descrip-
tors. Anyone doing any nontrivial amount of Symbian C++ software

210 DESIGNING FOR EFFICIENCY

development quickly encounters the descriptor class hierarchy. First
reactions are almost always the same: “Why is this so different from
the usual text handling libraries?”” The answer is summed up in two
words: efficiency and security.

While working on the earliest prerelease versions of EPOC32,
Colly Myers searched extensively, on the Internet and elsewhere, for
suitable C++ text handling libraries to utilize in the new operating
system. In the end, he decided that none of these existing libraries
came close to meeting the needs of a mobile operating system as he
understood them, so he designed his own. Colly later filed a patent
covering descriptors.

It's easy to find C++ text handling libraries where the code looks
efficient. However, behind the scenes of an innocent-looking line of
source code, a great deal of memory allocating and de-allocating
often occurs. This consumes CPU bandwidth unnecessarily. It also
introduces the possibility of run-time failures, since any of these
(hidden) memory allocations could fail, due to lack of memory. For
something as fundamental as text handling, it's important that routine
operations have maximal efficiency and security.

By the way, Symbian OS descriptors aren’t just for text. They handle
any kinds of contiguous binary data. Text is just one example. The
core definition of a descriptor is that it has a pointer (to where the data
is located) and a length (namely the number of text characters — or
their binary equivalents). So that’s what the root class in the descriptor
hierarchy (TDesC) defines: a pointer and a length. That's all that is
needed for very many APIs, such as the APIs to search for given
characters, to compare two descriptors, and so on. At this level in the
class hierarchy, the descriptor is constant — you can read it, but you
can’t write to it. (The “/C" in ThesC stands for “‘constant’’.)

It's when you introduce writing to descriptors that the security
issues arise. A significant proportion of the security problems with
computer systems throughout the world hinge on so-called “‘buffer
over-runs’”’. That's when software is tricked into copying more data
into a text buffer than there is room in the buffer to receive. So
the excess is copied beyond the end of the buffer, which can often
cause alien new code (as copied beyond the end of the buffer) to be
executed. The design of Symbian OS descriptors is to prevent this kind
of thing from happening. Any descriptor that is modifiable (writable)
also keeps an internal record of its maximum length. So at this level
of the class hierarchy (a class known as TDes) a descriptor consists
of a pointer, a length, and a maximum length. All descriptor APIs
which write data into the descriptor check whether the maximum
length would be exceeded, and if so, the application is immediately
terminated (except for a few special cases when the caller of the API

TEXT DESCRIPTORS 211

is given a chance to deal with the problem). There are two benefits
to this:

O The above-mentioned security threat is blocked

Q It allows for much swifter diagnosis of programming errors (espe-
cially when using the debugger) — the program flow stops as soon
as the maximum length would be exceeded, instead of jumping
off in a random direction depending on how badly the other stack
variables in the routine have been trashed.

The next phase of learning about descriptors is when the developer
decides where the data will be stored. Most C++ text handling libraries
take this decision out of the hands of the developer. However, here
as in other places, Symbian OS requires the developer to make an
explicit decision. There are two choices, with the second choice in
turn splitting into two sub-choices:

Q The “TPtr” variants of descriptors rely on the data already being
in existence, in some other object; these descriptors point to the
data, rather than the data being directly included in the descriptor

Q The “Buf” variants store the data directly inline, after the header
of the descriptor; the ““TBuf’’ sub-variants are designed to exist
on the stack of a function (or as simple elements inside another
object), whereas the ““HBuf’’ sub-variants are designed to exist as
allocated objects from the heap.

(Don’t worry if you don’t know the difference between the stack and
the heap; the point is that these two forms of memory require two
different sorts of descriptor.)

Many C++ text handling libraries essentially rely on every text
object being of the sort Symbian OS calls HBuf. It's true that you
do need classes like this. But for the sake of efficiency, you need
all the other ones too. Because security and efficiency are of such
importance to smartphone software, you should encourage your team
to understand the rationale for descriptors, and learn how to use them
thoroughly.

17

Designing for robustness

17.1 Alloc heaven

One unusual turn of phrase | encountered, on joining the software
development team at Psion in the late 1980s, was ““alloc heaven”.
The term is still in common use in the development teams in Symbian,
two decades later.

““Alloc”” is short for ““allocator”” — the system that allocates cells of
memory to pieces of software for their use. The idea is that pieces
of software tell the allocator their memory requirements, use the
memory cells provided by the system, and then, when finished with
them, notify the allocator that the cells are free for reuse. If software
neglects to inform the allocator that the cells are free, they remain out
of bounds to other use. In Psion-speak, these cells have “died and
gone to alloc heaven”’; they never return. Even though these memory
cells are no longer being used, other applications cannot get their
hands on them.

Other companies use the phrase “memory leak” for the same
phenomenon. When software misbehaves, memory leaks, and is lost
from the main pool. Psion’s term is more whimsical and, at the same
time, denotes greater passion: it’s tragic that the memory is no longer
accessible. Because there has been so little memory on Psion mobile
computers, Psion was passionate about not wasting that memory. The
same is true on smartphones.

A hallmark of a passion, as opposed to a mere intellectual notion,
is that it motivates real action. The creators of Symbian OS were
sufficiently passionate about not wasting memory that:

O The debug variant of the allocator wrote extra tracking information
into the headers of all cells allocated

O The debug variant of the cControlEnv “control environment”
class makes a call to the allocator, on the exit of the application,
to check that no memory cells are in alloc heaven; if there is,

214 DESIGNING FOR ROBUSTNESS

the application panics (meaning that it terminates abnormally;
“panic” is another of the unusual turns of phrase from the Psion
development team).

Software developers frequently regard this CCont rolEnv check as an
inconvenience. It forces them to add extra code to their applications,
ensuring that all the memory structures created during application
start-up are freed during application exit. From one point of view,
this is wasteful, since the operating system itself frees the entire
heap of the application when the application terminates. But from
Symbian’s point of view, this extra code helps to isolate instances
where applications are systematically leaking memory. There are two
bad consequences of these leaks:

0 While the application is still running (that is, before it exits) it
gradually puts larger and larger memory demands on the smart-
phone as a whole; the application’s own heap needs to extend in
size, thereby restricting the memory available to other applications
(until, before long, there is no system memory left)

O Some applications are designed never to exit (unless the smart-
phone itself restarts); these include the telephony application and
many system servers — memory leaks in these applications are
particularly pernicious.

On more than one occasion, I've heard of third-party software authors
complaining about the cControlEnv memory check call during
application shutdown. This check was saying that the application
had leaked memory, whereas the authors did not believe it. They
told me that the same software had been running fine on other
software platforms (such as Microsoft Windows). However, with the
help of a debugger, the source of the memory leak could be clearly
identified. The third-party authors turned red-faced. Not only were
their applications systematically leaking memory, when running on
Symbian OS, the same code was also leaking significant amounts of
memory on all the other platforms. The difference with Symbian OS,
however, is that Symbian cares enough about memory leakages to
incorporate checks that noticed the leakages.
There are actually two kinds of memory leakage:

O Those that always occur, even when the software (otherwise) works
fine
O Those that occur only when a run-time error happens.

By their nature, the former are easier to notice. The latter are harder
to find, but for long-running software, their effects can be just as

EXPECTING THE UNEXPECTED 215

bad. Let’s take some time to explore more fully the notion of “run-
time errors”’.

17.2 Expecting the unexpected

On a constrained smartphone, it’s inevitable that run-time errors will
occur from time to time. These include events such as:

Q Low battery — writes to disk cannot be completed

Q Low system memory — lots of other applications are running at the
same time

Q Loss of communications — the remainder of an expected message

is missing

Low disk space — writes to disk cannot be completed

Password not given — access to a plug-in memory disk is blocked

Q File not found — perhaps because a plug-in memory disk has been
removed

Q Server not responding — which is another cause for broken com-
munications.

(i

To be clear, none of these events are programming errors. Instead, they
are facts about the environment. However, software often makes pro-
gramming errors as it responds to these run-time errors. Here’s how.

A run-time error normally occurs partway through a complex series
of operations. For example, the user starts installing an application,
via Bluetooth, from a nearby PC, but partway through, the smartphone
runs out of memory. At this stage, three things need to happen:

Q Partially constructed resources (including partially written files)
need to be undone

Q The user should be informed, in simple language, about the
problem

Q The user should be given the chance to fix the problem, and then
retry the operation.

However, what often happens is that the partially constructed
resources remain in place —as alloc heaven, disk-space heaven,
or whatever.

Consider another example: the user receives a phone call, and
afterwards wants to add the incoming caller’s number to an existing
record in the contacts list. But suppose the battery fails partway
through updating the record. Ideally, the user should be able to
connect a nearby mains power lead, and retry the operation, with no
il effects. But in a bad case, that record in the contacts database will

216 DESIGNING FOR ROBUSTNESS

be corrupt. And in a very bad case, the whole contacts database will
be unusable.

These are not hypothetical cases. Similar events occurred during
the early days with Psion organizers. Irate beta testers found they were
no longer able to access important personal data that they had entered
into the devices. In a couple of cases, members of the development
team painstakingly used low-level data recovery tools to rescue the
data from the innards of the device. After an experience like that, you
become passionate about never again being in that situation. This is
the root of Psion’s passion for robustness.

As I'll explain in the remainder of this chapter, there are three
fundamental aspects to implementing robust software:

O You need a programming framework that makes it easy to deal
with unexpected run-time exceptions

0 You need a powerful testing program that explicitly seeks out
failure cases

O You need a particular attitude towards programming — this includes
the nature of your reaction whenever aspects of fragile reasoning
are discovered in your software.

17.3 The perils of multitasking

In between any two lines of code in a Symbian OS smartphone
application, numerous other things can happen. Because Symbian
OS is a preemptive multitasking operating system, other applications
or servers can, in general, run at any time, indefinitely suspending
your application in the meantime.

This means that code like the following is faulty:

O Check that there’s a certain amount of free space on a disk

Q If there is, then proceed to write out a file to that disk, with-
out checking for any errors; after all, the program has already
ascertained that there is sufficient room, right?

However, there are numerous problems with such code:

Q First, other kinds of run-time error could occur, such as the user
removing the disk, or the battery becoming too low to write all the
data to disk

a Second, another program could run in the meantime, also writing
to that disk, using up the free space that you thought was secure.

EXCEPTION HANDLING 217

Similar considerations apply for memory allocation: unless memory
is actually allocated to your program, you cannot assume that it will
be made available to you.

These considerations also apply to testing that given servers are
already running. Even though you check in one part of your code that
a certain server is running, you need to cater, in the very next line,
for the possibility that the server has terminated in the meantime.

In practice, what this means is that, for every single line of code
that your team writes, you have to consider the possibility that the line
of code will fail. If you think that this could be a chore, you're right.
That's why it's imperative to come up with an exception handling
framework that prevents the error handling code:

O Obscuring the central logic of the main algorithms of your software
O Taking up a great deal of ROM space in its own right.

In other words, although exception handling is pervasive, it also has
to be lean-and-mean.

17.4 Exception handling

Symbian is by no means the first company to have realized the
importance of exception handling. For example, the C++ program-
ming language contains support for exception handling, inside the
language; likewise for many other modern languages. However, as
explained in Chapter 16, it was Psion’s observation, at the time
when Symbian OS was being created, that the native C++ exception
handling system

O Was insufficiently standardized or mature
Q Involved a considerable hit on the size of software binaries (even
though the source code looks comparatively tidy).

As a result, we decided to use an evolution of the exception handling
system that was present in SIBO, the 16-bit forerunner of Symbian
OS. In broad terms, the resulting system:

O Requires an additional degree of thinking by developers — they
have to understand the system, and know what they’re doing

O Involves a greater amount of explicit source code than other
exception handling systems (though much less source code than
not having any exception handling)

a Compiles to a smaller amount of binary code

Q Provides a highly resilient system.

218 DESIGNING FOR ROBUSTNESS

The first of these points looks like a drawback, but it's actually a
bonus. Regardless of the system used, correct exception handling
requires careful consideration by developers. Anyone who tries to tell
you otherwise doesn’t know what they’re talking about. You can’t
sleepwalk your way through exception handling — you need to be
wide awake. The Symbian system ensures that you are wide awake,
and makes it as easy for you as possible (but no easier!).

The basic idea of any exception handling system is to localize
error-handling code to a comparatively small number of places
in the source code. That is, you avoid testing each line of code
explicitly for whether a run-time error occurred. We avoid writing
code like

err=FunctionCallA() ;

if (err==KErrNone)
err=FunctionCallB () ;

if (err==KErrNone)
err=FunctionCallC(); // etc.

Instead, we simply write

FunctionCallAL() ;
FunctionCallBL() ;
FunctionCallCL(); // etc.

The “/L” at the end of the function names in the second code snippet
is an important part of Symbian’s code-writing conventions. This is
a signal to the reader that the function call can ‘“Leave”. What this
means is that:

O Somewhere in that function (or, very commonly, in another
function called from inside the first one) a run-time error may
be encountered

Q In that case, the function call does not complete; flow of program
execution does not return to the next line of code

Q Instead, flow of program execution jumps (“/leaves’”’) to a preceding
“trap harness”

Q There are several well-positioned trap harnesses in Symbian OS
framework code, and you will sometimes want to add some to
your own code

Q Before the code resumes at the preceding trap harness, all items
that have been placed in the so-called ““cleanup stack” in the

COMMON MISTAKES IN DESTRUCTORS 219

meantime (i.e. between the trap harness and the leave) will be
automatically ““cleaned”.

The native exception handling system of C++ automatically keeps
track of all objects between these two points (which have different
names in C++) and automatically calls the destructors of all of them.
Symbian’s system puts this control instead squarely into the hands
of the programmer. As a result, Symbian OS code is peppered with
explicit calls to the CleanupStack class. Your developers will soon
become used to this!

17.5 Common mistakes in destructors

You have to be sure to free resources when you're no longer using
them. The C++ terminology for this is that you need to call the
destructor of the relevant object — usually by means of a delete
statement.

But equally, you have to be sure not to attempt to free resources
that don’t belong to you.

For example, you may, without realizing it, call the destructor of
an object twice — perhaps once directly, and once indirectly (because
the object has been placed onto the cleanup stack). The second call
will lead to the memory heap being corrupted. One way to guard
against this problem is to change references to the object into NULL
when the object is deleted. The general rule is to pay careful attention
to which objects own others at any given time. At any one time, an
object can only have one owner.

Another common problem is when the destructor of an object
assumes that it will only be called when the object has been fully
constructed. This leads to bugs where the destructor contains calls

such as:

iList->ResetList (); // assumes iList non-NULL
iRequest->Cancel(); // assumes iRequest non-NULL
iSession->Close(); // assumes iSession non-NULL

However, if a run-time error occurs part-way through the construction
of this sub-system, it’s perfectly possible for some of the component
parts (iList, iRequest, or iSession in this example) not to
have been created by this stage. So the above code will cause an
access violation. If you point this out to the developer, they may say,
"I thought there was bound to be enough memory”. That's a bad
answer. You have to change the mindset. And you have to ensure
there are plenty of tests that seek out failure cases.

220 DESIGNING FOR ROBUSTNESS

17.6 Seeking out failure cases
Here are some ideas for checking that your code is robust:

O Enable simulated heap failures; this is a feature supported by the
debug mode of the PC emulator of Symbian OS. Start by noting
the number of memory cells in use by your application (there’s
an emulator hot key for this too). Then subject your application to
various failures. Finally, check that the number of memory cells in
use is the same at the end of the exercise as at the beginning

O Start saving data to disk, and pull the disk out before the write
completes. The application should display an error message, but
the data on the file system should always end up in a good state.
There should be no corrupt sectors, and user data stored there
earlier should remain intact. Repeat this experiment, pulling out
the disk at many different times

Q Wire up a smartphone to a power supply that allows you to vary
the voltage. Slowly turn down the voltage while various operations
are happening on the phone. Check that there is no corruption of
user data, and no memory lost to alloc heaven

Q Put your smartphone in an environment with a test GSM network,
which allows you to control the strength of the signal. Start oper-
ations on the phone (e.g. data transfer) and gradually reduce the
signal. As before, check that there is no corruption of user data,
and that no memory is lost to alloc heaven.

You should also subject your product on a regular basis to an
organized set of “’stress tests”” (as mentioned in Chapter 10).

Perhaps even more important than running the above tests, is to dis-
cover and cultivate people in your team who are skilled at the above
kind of tests. This requires a special kind of mentality — someone who
has a gift for constructive vindictiveness. Make sure that you find such
people in your team, and that they:

O Spend some of their time, on a regular basis, trying hard to break

the software
Q Pass on their testing tips and techniques to others in the team.

17.7 Attitudes towards defects

Suppose that you’ve written some software and someone points out
a potential or actual problem with your code. What is your reaction?

ATTITUDES TOWARDS DEFECTS 221

One really bad reaction is that of defect denial —saying that the
problem must lie elsewhere (for example, in the way that another
piece of software is interfacing to yours, or in the sequence of
operations being carried out by the ““dumb user”). Instead, you need
to take responsibility for investigating the problem more fully, and
proposing a system-wide solution.

Equally, another really bad reaction is that of defect compla-
cency — saying that it’s no surprise that there’s a defect in the code.
Actually, if you find people with this kind of attitude in your team, you
need to give serious thought to retraining them or assigning them to
other responsibilities. Instead, you want to be surrounded by people
who have a high quality ethic — people who think hard beforehand
about possible defects in their code, and who do their best to remove
defects (and potential defects) ahead of submitting it. You don’t want
people in your team who write functionality that only works in ideal
operating conditions. And you don’t want people in your team with
the attitude of ““first we write the functionality, and then we remove
the bugs”’. You want people who strive to write the functionality
bug-free from day one.

So the correct attitude, when a defect is pointed out in code, is
one of surprise and determination:

Q Surprise —“How can this be? What usage case did | neglect to
consider?”’

Q Determination —to fix the defect as soon as possible, and to
consider the wider implications.

It's the consideration of the wider implications of any bug that
distinguishes really great developers from merely good ones. A really
great developer will think, “Where else in the code could a similar
bug be lurking?” Are there any similar usage cases that also need to
be considered? How can repetitions of this kind of bug be prevented?
In this way, the really great developer proactively hunts down and
removes other defects, even before the test team has found them.

Sometimes a bug will stop happening, without the reasons for
this being fully understood. For example, many defects are timing-
dependent; rearranging code, or introducing small delays, can stop
the defect from showing up. However, you must never be satisfied
with this kind of outcome. Don’t let your developers persuade you
that there’s no longer a problem. Until you’ve understood what was
going wrong, and how the change in code fixed it, you can't be
sure whether the problem will recur. So your team needs to keep on
analyzing, until it has a proper grasp of the problem. Be sure that you
address the root causes, rather than just the symptoms.

222 DESIGNING FOR ROBUSTNESS

17.8 Protecting the smartphone vital assets

So far in this chapter, I've talked about two kinds of fundamental
problem that you need to avoid with your smartphone product:

O Cases when user data is lost or corrupted
O Cases when hardware resources become inaccessible — e.g. chunks
of memory lost as alloc heaven.

I've mentioned techniques to avoid these problems. The same tech-
niques have a big role to play in avoiding another kind of fundamental
problem — cases when basic functionality of the smartphone fails.
Whatever is happening on the smartphone, the following operations
should succeed:

Q If there is an incoming phone call, the user must be able to take
that call

a If it is time for an alarm, the alarm must sound and/or (depending
on the profile setting) flash and vibrate

Q If there is a system error, the user must be notified of this problem

O The user must always be able to close down selected applications,
or take other steps to free up memory or other system resources.

No matter how busy the smartphone is, and no matter how many
other applications are running, these critical operations must always
take precedence. This requires a certain amount of pre-allocation of
memory and other system resources. So Symbian OS has support for
pre-allocated “‘notifiers’” and “’sleeping dialogs” (dialogs which exist
but which are not visible — until the required time). But don’t over-
use this kind of resource. Any such resource is tied up permanently,
preventing other applications from using that memory.

One thing that can damage the vital assets of a smartphone is
ill-behaved add-on software. Don’t be misled by stylish appearance
or a rich menu of functionality in an add-on application — be sure that
it won't hinder the fundamental operation of the smartphone. Users
won't care about extra functionality if the basic functionality of the
smartphone becomes damaged. Press the authors for some indication
of quality, such as endorsement from the Symbian Signed program
(discussed in Chapter 3).

The need for high quality is particularly significant for software
that lives inside one of the central applications on the smartphone,
such as customizations or extensions of the telephone application
or the standard top-level menu screen. Creators of new smartphones
are understandably keen to achieve breakthrough differentiation, as

PROTECTING THE SMARTPHONE VITAL ASSETS 223

compared to other phones based on the same Ul system. Each Ul
system typically supports a range of ““official’” customizations. With
each new release of the Ul systems, the range of official customiza-
tions becomes larger. However, smartphone creators quite often want
to take advantage of offerings from third parties to customize the Ul
system in even more radical ways. In some cases, the results are
stunning. But since this add-on software lives inside vital system com-
ponents, the effects of any fragility in this code can be far-reaching.
Any smartphone creator in this situation should:

Q Ensure that the source code for this extension to the system com-
ponent is carefully reviewed (including, if possible, by automated
static code analysis tools)

0 Obtain independent verification that the authors of this software
know what they’re doing, and have significant prior experience
with Symbian OS

O Thoroughly stress-test these extensions.

18

Designing for usability

18.1 ‘““The operation was a success,
but the patient died”

Here’s a tragic outcome to a smartphone development project:

O Your team manages to keep to the requested timescale

Q You deliver software with low defect count

Q The software fulfills the specification that was given to you
O But the product fails to sell well in the shops.

In summary, the project was a success, but the product was a failure.
In medical terms, the operation completed successfully, but the
patient died.

As a special case, it's possible that your product appeals to so-
called “early adopters” and ‘‘technology enthusiasts”, who give it
good reviews, but this interest fails to translate into mainstream sales.

So, despite what you’ll often hear, keeping to the project plan isn’t
the most important priority. The most important priority is to deeply
satisfy customer needs.

In practice, what this means is that you must augment your existing
best practice on smartphone project management with the following
five principles:

Q Invest in world-class product managers and account managers,
who can accurately distil, and even foresee, customer requirements

O Build sufficient slack into your schedule and resourcing plan so
that, when your product management team feed late-breaking new
market requirements to you, you can accommodate them within
the project plan

0 Pay attention to the importance of cosmetics and other aspects of
graphical and emotional appeal — these can make all the difference

226 DESIGNING FOR USABILITY

as to whether a user finds the product enchanting or boring. In
particular, pay close attention to all usability defects raised during
FUT (Friendly User Testing)

a Instill a strong spirit of customer orientation among your devel-
opment team; make sure that they keep on thinking hard about
how their software fits into the larger picture of deeply satisfying
customer needs

a Develop your software with a platform viewpoint from the begin-
ning, so that you can create many variants from it; that way, even if
the first product has limited success, you can quickly make amends
and release version 2, with greater market success.

| return to the last of these points in the next chapter. | have already
addressed the first two points in Chapter 12. In the present chapter,
I'll offer some advice on the issues of enchantment and customer
orientation.

18.2 Enchantment

Mainstream customers have no interest in ““technology for technol-
ogy’s sake”’. They don’t care whether the software is written in C++,
or whether the processor is clocked at 400MHz, or even whether
the operating system is Symbian OS (let alone which version of the
operating system is used). They certainly don’t care to be reminded
of many of the computer-like aspects of their smartphone — such as
the potential pain of viruses and antivirus scanners, techno-speak sys-
tem error messages, hourglass icons, and so on. They’re not buying
a computer. They’re buying an incredibly useful appliance, which
happens to be a great phone, with a whole lot of additional valuable
aspects to it.

Customers rely on various sources of advice when deciding to buy
a relatively expensive piece of consumer electronics:

Q Their own prior experience with products from the same manufac-
turer or network operator

O Marketing brochures and advertisements

O Recommendations by sales staff at retail outlets

O Reviews in trade journals

0 Word-of-mouth recommendations by friends, relatives, and col-
leagues.

Word-of-mouth recommendations can have particular force — both
for good and for ill. If people have a bad experience with a product,

DESIGNING THE USER INTERFACE 227

they tell lots of people about it. Equally, if they are enchanted with a
product, they often pass on this enthusiasm to many other people. |
regularly met owners of Psion PDAs who told me they had personally
recommended these products to literally dozens of their associates.
In effect, these owners were evangelists for Psion PDAs. You need
owners who will become, in effect, evangelists for your product. In
turn, your product needs a sufficient mix of enchantment, to grasp
users’ enthusiasm.

The two foundations for enchantment are the topics of the pre-
ceding two chapters — high performance (efficient use of limited
hardware resources) and rock-solid robustness and reliability. Unless
you get these characteristics right, you can’t even play in this game.
But they’re only the foundation. Next, you have to provide features
and functionality in ways that genuinely delight users. Ideally, users
should find that the software anticipates their ideas and aspirations.
They should find themselves thinking, ““OK, now that | understand
this, | guess it would be nice if this also happened ... oh wow, so it
does, even better than | expected!”

The key goals your team should keep in mind here are:

External simplicity

Consistency of interface
Responsiveness

Attractive graphics

Support for user experimentation

Easy “cancel” and ““undo’” operations.

[y Iy Sy 0y

18.3 Designing the user interface

Ideally, your product has no need for a user manual. Users should be
able to work out by themselves how to use it.

However, this doesn’t mean that you should strive for a user
interface that all users will find ““immediately intuitive’’. This is a false
goal. An “intuitive Ul"" depends on users’ familiarity with a small set
of basic concepts, but sometimes these concepts need to be pointed
out beforehand to the user (e.g. by a retail assistant, by a friend or
colleague, by a magazine article review, or in a “’getting started”
leaflet packed with the product). These basic concepts can include
items such as:

O The difference between a short keypress and a long keypress
Q The difference between a single click and a double click

228 DESIGNING FOR USABILITY

O The difference between clicking on an item that’s already selected,
and clicking on an item that’s not yet selected

Q The possibility for a list to have more items off-screen, whose
existence are indicated by scroll arrows or similar

O An application supporting more than one mode (and more than
one view)

O A special keypress to switch between predictive text input and
“triple tap’’ text input

Q Possible five-way motion of a “/jog dial”.

Concepts like these need to be learned. But the key point is this: once
they’ve been learned, they are very easy to remember. That's what
makes them the basis for a good UI. In turn, this depends upon whether
they are used consistently, and whether they are sufficiently simple.

You can receive early feedback on whether your Ul choices are cor-
rect from the responses from Friendly User Testing (see Chapter 10).
You should involve a wide set of people with different backgrounds
in your FUT program. And when these users query some aspects of
the usability of your product —or when they show signs of disen-
chantment or frustration — you had better pay close attention to what
they say. You need to establish whether:

O These users misunderstand the intent of the product, or one of the
fundamental mechanisms of the Ul —in which case, you should
consider how to make the design intent clearer

O These users are wacky individuals whose viewpoints are unrep-
resentative of mainstream users — but be cautious before reaching
such a conclusion

O These users actually have a good point!

The one thing you should not do is to simply answer, ““This is how
the product is specified to work”, or “This is in line with the style
guidelines of our company”, and therefore, ““There is no defect”.
That way, you may finish your project on time, but find that sales of
the product are dismal.

To resolve issues of this type, you need to involve representatives
from product management and usability design. See Chapter 6 for
more information. In that chapter, | described a five-fold classification
for defect priorities: Immediate patch required, Showstopper, High,
Medium, and Low. Be sure that you don’t always assign so-called
‘cosmetic’ defects as having low priority. If the text looks wrong
on the screen, that's something that will annoy users, and silently
turn them against your product. Cosmetic defects should normally be
assigned medium or even high priority.

UNDERSTANDING THE REAL COMPETITION 229

18.4 Multimedia performance

One factor that has a big impact on users’ feelings about smartphone
products is the multimedia appeal of the device — the quality of the
graphics, sounds, and video on the device. This connects to a different
part of the user’s brain; if you get this right, you are onto a winner.

Good multimedia is partly about good hardware, and a lot about
good software. If your multimedia software is poor, don’t expect new
generations of hardware to miraculously fix things for you. Here are
some of the things you need to solve in software:

0 Dealing appropriately with sound played by applications that are
in background

O Making sure that ““silent”” really does mean silent — no part of the
phone should emit embarrassing sounds if the user has selected
the silent profile

0 Avoiding audio cracks and pops as the sound system is switched
on or off

a Avoiding visible flicker when the screen is updated, or, for
example, when the user cursors up or down a scrolling list.

Flicker-free redrawing is an art-form in its own right. Make sure
that your team learn about the issues here, sufficiently early during
your project.

Customers also look for near-instant response to their input. If they
press “Play”’, they expect it to start playing almost at once; if they
press ““Pause”, they expect it to pause almost at once, and so on.
The multitasking features of Symbian OS help you to achieve high
responsiveness to user input, but you also need to give some careful
thought to your use of active objects. Break up lengthy operations
into smaller chunks, each handled by a single hit of an active object.
(See Chapter 20 for more details about active objects.)

18.5 Understanding the real competition

An important part of understanding your customer is that you under-
stand the alternative systems that they might use, in case they find
your offering unsatisfactory. Sometimes a development team has a
narrow view of the competition. They may say, “‘This solution is
as good as is available on any other smartphone —so it should sell
well””. This is the recipe for a nasty surprise. It ignores the fact that

230 DESIGNING FOR USABILITY

many users won’t use smartphones at all. Instead of smartphones,
they may use:

a Simpler phones, for example, feature phones

Q Pencil and paper diaries

Q Yellow sticky paper for notes and to-dos

Q PC-based PIM and messaging system

O Standalone MP3 players and/or portable games consoles.

So you can’t be satisfied by just being ““among the best in your class”’.
You need to be sure that your offering is sufficiently compelling to
attract many new users into usage of products of this class.

Ideally, that's something that should be planned before your project
has proceeded far. It's something for the product management part of
your organization to address. However, be on the lookout for feedback
during Friendly User Testing. You may discover that some parts of
your product are unexpectedly weak — or unexpectedly strong. Be
ready to feed this information into plans for your current product,
and into plans for follow-on products. The key point is that you are
open to learn from feedback, and that you have the flexibility in your
setup to cope with this kind of feedback. There’s more about this in
the next chapter.

18.6 Customer orientation for developers

One other aspect of customer orientation deserves highlighting. This
is something that marks out first-class software developers as opposed
to average good developers: it's a passionate concern that their
software is ready for use by other developers (who are another kind
of customer). Too many developers allow themselves to be satisfied if
they think that their software has internal quality. But to my thinking,
software has no quality unless it is ready for use. Developers have to
design their APIs for usability. Two fundamental benchmarks here are
the attitudes of your developers towards test code and documentation.

First-class developers have a deep love of test code. They don’t see
test code as a burden or a nuisance; on the contrary, they work hard
to maintain their test code, and to ensure that it is comprehensive and
up-to-date. They observe good coding practices with their test code,
and keep it all properly backed up in configuration management.
When they find a new bug in their code, they add a new case to
their test code, to catch any recurrence of this bug. Although their test
code is comprehensive, it also has a simple overall structure, making
it easier to understand and maintain. In contrast, average developers

DESIGNING PANICS 231

tend to shirk test code: for them, test code is a kind of ““necessary
evil”” — something to be avoided, if possible. As a software leader, you
should reject code submissions that lack evidence of the test code
being up-to-date and well maintained.

First-class developers also have a deep love of APl documentation:

Q They write design documentation at the same time as they write
the code, ensuring that their APIs are clear; actually, they aim to
complete the documentation even before they complete the code

Q If they find that they can’t explain their APIs easily, it means they
need to redesign the APIs; the sooner you find this out, the better

0 They document with both words and pictures: “’A picture is worth
a thousand words”’, but words force greater clarity and precision

O They update their documentation as often as their main code
O They keep their documentation inside configuration management

Q Finally, they keep their documentation simple and efficient — the
same way that their main code is simple and efficient!

18.7 Designing panics

Good API design involves swift penalties in case functions are called
with illegal parameters. In such a case, your API should “panic’”’ the
caller — which is a Symbian term meaning that you call an operating
system function which terminates application execution. (Think of
the phrase, ‘‘Press the panic button”.) You specify a “panic number”’
when you do this. Be sure that you use a different panic number for
each different place in your software where you panic. That way, it's
completely clear which internal check has failed.

Sometimes people think that code should avoid panics — that these
calls should all be removed, prior to the final shipping version of
the software. That's a mistake. If your code doesn’t panic, what else
should it do? If you've received garbage parameters, the only output
you can give is garbage too: ‘‘garbage in, garbage out”. If you try
to muddle along, somehow ignoring the error, the application will
almost certainly fail in some other way shortly afterwards — but that
failure may be harder to diagnose. That's no help to your immediate
customer — the developer who's trying to use your APls. And it's no
help to your ultimate customer, the end-user who doesn’t understand
why the smartphone occasionally malfunctions. So embrace panics.

To be clear, panics are different from the run-time errors discussed
in the previous chapter. Run-time errors involve conditions in the

232 DESIGNING FOR USABILITY

environment of the smartphone, such as shortage of memory, or a
broken communication link, or a low battery. These conditions are
not programming errors. They’re circumstances that the software has
to deal with. In contrast, panics are when a programmer has lost
control of the software. It's like asking for the tenth element in an
array where there are only six items, or trying to take the square
root of a negative number, or dividing by zero. If so, the best service
you can do to your customer (in this case, the other programmer)
is to terminate the software immediately, with a clear panic number
identifying the reason for the termination. That way, bugs will be
identified and fixed more quickly, and the smartphone quality level
will increase.

19

Designing for longevity

19.1 Preparing for variants

If you're really lucky, your Symbian OS smartphone product will be a
great success, and many millions of users will purchase your software.

More realistically, your product won't get everything quite right. It
will appeal to lots of users, but many other users will remain relatively
cool to it. You'll satisfy some customer requirements, but you’ll leave
other customer requirements unmet.

You should foresee that kind of outcome to your project, and plan
ahead for it. That is, you should be planning follow-up projects, even
while you are still in the midst of an existing project. Plan to build on
the software for the existing project, by making innovative additions
and changes, to boost your market share.

Actually, even if you are really lucky, and your initial product hits
the jackpot of widespread acclaim, you should still be planning to
create variants. Even in this situation, you can boost your sales even
further by smart differentiation into new market segments. So, both in
the situations of modest success and stunning success, you should be
considering variants — variants such as:

0 Geographical variants (Chinese, Thai, Arabic, Hindi, US, etc.)

o Different industrial designs (novel keypads, sliders, folders, rota-
tors, etc.)

a Different peripherals (attachable full-size keyboard, GPS tracking
system, additional data storage, biometric sensors, etc.)

Q Variants for youth or sports markets, or with celebrity endorsement
or joint marketing

0 Variants for more intense business use

Q Variants for different network operators

Q Variants with additional functionality (extra built-in middleware
and applications)

Q Variants with reduced manufacturing cost

234

DESIGNING FOR LONGEVITY

Return on investment

[

&5

W

/4
|

|
| e

&= |
@
/

-

Rl

L
-~

<
-

o4

Multiple smartphones from a common platform

Time

Figure 19.1

Q Variants with madcap innovative ideas, just to see what the market
likes (refer to Figure 19.1).

19.2 Be ready to fail fast

The way to succeed is to double your failure rate — so said Thomas
Watson senior, the founder of IBM. Just as you can’t foretell before-
hand the exact course of project execution, you can’t foretell
beforehand which products will be hits in the marketplace. Just
as you need flexibility in your project planning system, you need
flexibility in the product creation system. To incorporate scope for
change, incorporate the following:

O Low-cost experimentation with new concepts and usage models
O Early feedback from the marketplace

O Rapid termination of ideas which receive discouraging feedback

(unless you have reason to believe that, despite appearances,
they can become the basis for a new network equilibrium once
appropriate market conditions have been established)

Rapid evolution of ideas which receive encouraging feedback
Opportunities for further innovation and differentiation

Rapid adoption of product concepts which continue to receive
encouraging feedback.

If you are able to experiment with, say, four times the number of
ideas, you can accept a doubling of your failure rate, and still end
up with a higher success rate than before. Paradoxically, a business

PREPARE YOUR OWN SDK 235

unit with too low a failure rate is probably a failure as a business
unit. On the other hand, a business unit that spends too much money
discovering that an idea is a market failure is also likely to be a failure.
So whilst it’s important to fail often, it's also important to fail fast.
That way, you’ll be more successful.

An important part of rapid experimentation is to make good use of
prototyping tools. These include:

Q PC emulations of your product concept, based on the PC emulators
of Symbian OS

O Macromedia Flash — running either directly on the PC, or running
on existing Symbian OS smartphones

a OPL, AppForge Crossfire, or Java.

Another important part of rapid experimentation is to invite third
parties to create special demo versions of possible new applications
as add-ons for your existing products. If focus groups and research
analysts endorse these demos, the third parties can press ahead with
the development of fuller versions of these applications, ready for
inclusion in your new product releases. The greater the number of
different third-party applications you can experiment with in this
way, the greater your chances of finding an application with gen-
uine breakthrough potential. That's the striking benefit of an open
smartphone operating system and its rich ecosystem of third-party
developers.

19.3 Prepare your own SDK

Your smartphone product builds on top of several interlocking plat-
forms — Symbian OS, a silicon platform, and a Ul system platform.
Each of these platforms supports reuse. These platforms have existing
Software Development Kits (SDKs).

However, in many cases, you’ll want to create a new platform
of your own, which builds further on these existing ones. Your
platform will incorporate some additional software from your own
company, and may also replace some of the software from the
original platforms. Your platform is what distinguishes your range of
smartphone products from those of other customers, based on the
same original platforms.

If you do create your own smartphone platform, please give careful
thought to creating your own specific plug-ins to the existing SDKs.
Such SDK plug-ins will augment the original platform SDKs, and
will describe any special features (or altered features) on your own

236 DESIGNING FOR LONGEVITY

smartphone platform, so that third-party developers can take advan-
tage of them. Items you should document include new APIs, your
company’s style conventions, specialist tools, server-side resources,
modifications to the PC emulator, and so on.

This is important, since supporting a developer community is
something relatively new to many phone manufacturers. As a smart-
phone manufacturer you should plan, long before your projects are
finished, to produce (and support) SDKs:

Q So that there is a thriving community of independent software
vendors ready to add extra value, quickly, to your phones

O So that there is a steady flow of new applications ready for
further innovation and inclusion on your next generation smart-
phone products.

As well as an SDK, you need to plan ahead for providing support to
the third parties who create software especially for your smartphones.
Don’t imagine that the SDK, by itself, will be sufficient to answer
all their questions and to provide all the necessary advice. Some of
your team will need to spend time with the third parties to provide
practical training and consultancy.

19.4 The value of codevelopment

It's been said that you can't tell whether software is usable until it's
been used, and that you can't tell whether software is reusable until
it's been reused.

One reason why the Symbian OS libraries support such a high
degree of reuse by different applications is that the libraries were not
developed in isolation, but were co-developed at the same time as
the applications. In addition to their own test code, they were also
regularly exercised by several different applications:

0 Whenever applications highlighted areas of weakness in the system
libraries, we considered whether we should rewrite some aspects
of the libraries in question

O Most such rewrites involved a temporary impact on nearly all
application writers, since they had to deal with changes in the
APIs; so individual application writers took longer to finish their
applications

O However, as time progressed, application writers were able to take
increasing advantage of functionality that was already present in

BASIC PRINCIPLES FOR REUSABLE SOLUTIONS 237

the system libraries — this functionality was available “/for free’ (as
it already existed in the ROM).

You're not able to take that kind of decision if you're always focused
just on short-term development issues. Although you want to finish
your project as quickly as possible, that doesn’t mean that you need
to finish each individual task as quickly as possible (that would be
another example of “suboptimization”).

You're only able to take that kind of decision if the development
team has a whole-project attitude. Individual sub-teams can accept
slower local development if it contributes to the bigger picture of faster
global development — the creation of a long-lived software platform
which supports numerous high-quality new products.

19.5 Basic principles for reusable solutions
Here are some key steps you can take, to help you design for reuse:

0 Base your product upon elements which are applicable across
several different situations; don’t go too far down the route of
software that is tightly optimized for only one niche circumstance

Q Seek long-term relations with partners and suppliers

O Make sure that you are making correct use of configuration man-
agement, to maintain the different branches for different variants
in the most effective way

Q Spread your skill base across more than one project team — don't
end up in the situation where your entire team is exhausted at the
point where the first product is launched

Q Separate your software into engine modules, view modules, and
Ul modules (as discussed in Chapter 15)

Q Avoid hard-wiring too many assumptions into your code. For
example, just because a text message fits neatly onto one line of
the screen in the English language version, don’t imagine that all
translations of this message into different languages will still fit
easily onto one line

0 Whenever you have to provide some functionality in your software,
consider whether you could, with some forethought, provide it in
a more general way, and then specialize your solution for the par-
ticular requirement of the present moment. In this way, you end up

238 DESIGNING FOR LONGEVITY

with a solution that is more reusable: it meets your present require-
ments, but should also be future-proof for subsequent similar
requirements.

Designing software in a reusable way is harder than designing one-off
solutions. It may slow you down in the short term. However, once
your team becomes skilled at designing for reuse, the quality of your
designs will rise significantly, and you’ll be able to produce a whole
series of new products in quick succession.

19.6 The value of architecture

The skill of being able to see the big picture of a design is called
“software architecture’””. A good tool of the software architect is a
system for drawing diagrams that show features such as:

0 Module dependencies

a Class hierarchies

Q Physical decomposition
Q State transitions

Q Data and ownership flow.

Something that's even more important than a tool that can draw these
diagrams is the skill in knowing:

Q The particular diagrams to draw

O The aspects of detail that can safely be omitted — this is the so-called
““accidental complexity”’

O The aspects of detail that do need to be captured — the so-called
““essential complexity”’.

If you skate over the essential complexity, your architecture diagrams
will be feel-good but content-free.
The real point of an architecture diagram is:

Q To convey meaning that wouldn’t otherwise be so noticeable
Q To clarify important points of constraint for the design

Q To clarify important assumptions of the design

O To demarcate divisions of responsibility

O To raise questions about possible alternative designs.

The best way to develop good skills with software architecture is to
work in close proximity with an existing software architect. If you try

THE VALUE OF IGNORANCE 239

to work at the architecture level from scratch, there’s a big risk that
you'll succumb to one of two conflicting pressures:

0 An architecture that is so vacuous (“fluffy blobs”) that it adds no
real value to the existing, lower-level design information

O ““Analysis paralysis” — whereby you end up in an endless round of
study groups without making any tangible progress.

As with so much in smartphone development, the trick is to proceed
iteratively: ““design little and often”, and build larger architecture
designs upon existing smaller architecture designs.

19.7 The value of ignorance

By looking at an architecture diagram, you may realize that some of
the functionality in your system is positioned suboptimally in your
system. There may be some merit in its present position, because other
software is able to take advantage of knowing how it works. That may
gain you some efficiency benefits — but at the cost of constraining the
future evolution of your design. If you take the short-term view, you’ll
be happy to keep things in their present state. But if you take a longer-
term view, you need to consider future versions of your software.
In the future, some of the assumptions of your present design will
become invalid. The question is, how painful will that be?

Ideally, when a design assumption is changed, it should impact
only a small number of modules. If you realize that an assumption
spreads more widely than that, you have two options:

0 You should change the design (this is sometimes called “refactor-
ing”)
0 You should document the assumption as being of cardinal impor-

tance, and make sure that it never changes (or that anyone who
wants to change it is prepared to cover all the costs involved).

The basic idea of object orientation is to separate the interface from the
implementation. The interface should generally continue to exist in
the future, but the implementation can change. The interface defines
what the software does, but not how it does it. So the implementation
can have secrets.

When [first came across this concept, | was unimpressed. | thought
that, as a smart young programmer, | should be able to discover the
secret internal details of other software modules, and take advantage
of them in my own code. | thought that, the more knowledge my

240 DESIGNING FOR LONGEVITY

modules had, the more efficient they could be. But later | realized that,
the more knowledge of a certain type that my modules had, the more
fragile the overall design became. It could no longer tolerate change.
So it was suboptimal: it had optimized heavily for one situation, but
failed to cope with the requirements of new situations.

The opposite of good modular design is spaghetti (sticky noodles):
everything is tangled up. With spaghetti, if you try to remove one
small piece, you'll find unexpected connections with lots of other
items on the plate. A spaghetti design is fine if you’re sure that you've
got the design perfect and it will never need to change. But in the
real world, there will be lots of change requests — inside projects and
between projects. If you want your software to adapt quickly to these
changes, you need to practice the virtues of secrecy and ignorance.
Don’t let the left hand know what the right hand is doing. And don't
let the right hand know what the left hand is doing. Or rather, make
sure that the interfaces are clear and well known, but that the internal
implementation details remain secrets. That way, your software will
be much longer-lasting.

In the meantime, you may have to undertake the hit of refactoring
your design, so that it can last longer. That's a sign of a healthy
software system. Set aside time for it, and make sure that it happens.
The more you delay a refactoring, the tougher it will eventually be,
and the more likely that it will never happen. And in that case, it’s
more likely that a competing system will leap-frog you. So instead
of your existing system being overtaken by a competitor’s system,
you should refactor it, to prevent any competitor from catching up.
Refactoring will extend the longevity of your system — find out what's
involved, and go ahead with it!

20

Designing for smartphones

20.1 The licensing question

Symbian’s focus on smartphones arose from the confluence of several
strands of events. One of these sequences of events gathered pace in
the mid 1990s. In 1995, analysts and journalists seemed to delight in
posing the following question to Psion representatives: Would Psion
die like Apple, or would Psion die like IBM?

At that time, Psion was widely perceived (in Europe, if not further
afield) as having the best PDAs available — the same way as Apple
was widely perceived to have the best desktop computers. However,
Apple’s software system was only available on Apple hardware;
likewise, Psion’s software system was, at the time, only available on
Psion hardware. So, in both cases, third-party developers needed to
take a leap of faith before learning how to program for this software
system. The leap of faith was that the limited hardware platform
would be strong enough, by itself, to drive sufficient volume sales to
repay the investment.

In contrast, Microsoft Windows was seen as markedly inferior to
Apple’s software system, but it was available on an increasing number
of different hardware devices. Some of these different hardware
manufacturers failed and went out of business, but others brought
some additional market distribution and market share, selling PCs to
many people who previously hadn’t thought of buying such a device.
Because of the larger volume sales, Windows was a more attractive
proposition for the third-party developers. In turn, the third-party
developers created new software for the Microsoft platform, which
increased the value of that platform, and diminished the market share
for Apple.

Psion’s inquisitors, in 1995, wondered whether Psion’s software
system would follow a similar fate. How could a small UK-based
hardware company outperform the likes of Casio, Sharp, HP, and
Compagq (not to mention Apple), all of whom were creating PDAs?

242 DESIGNING FOR SMARTPHONES

So the idea was born of licensing Psion’s software system to other
manufacturers. That way, third-party developers would have the
confidence that, as well as Psion, other companies would be creating
devices from the same software system. Psion’s software would no
longer be proprietary but would become an open standard.

This left the threat of “’dying like IBM”’. IBM developed the original
concept of the PC, but left the control of PC software in the hands
of a small subcontractor — Microsoft. Microsoft subsequently licensed
the same software system to numerous companies who became
competitors to IBM. IBM ended up owning a thinner and thinner
chunk of the value chain for PCs. Might not the same happen
to Psion?

To rigorously examine the pros and cons of external licensing of
some or all of the Psion software system, Psion engaged Stephen
Randall, formerly founder of Eden Group (who had created, in 1993,
what can be called the world’s first pen-based PDA, namely the
Amstrad PenPad). Discussions continued for many months. One of
the key considerations was the fact that the emerging 32-bit software
system, Symbian OS (which was in the process of being written at
the time) almost certainly had wider potential than Psion itself could
directly utilize. External licensing was seen as the best way to realize
the greatest value from Symbian OS.

The decision to license the 32-bit software system was linked to
a restructuring of Psion. Psion Software was created as a separate
division, with its own executive management team meeting on a
weekly basis from May 1996 onwards. A formal board of directors was
constituted in September, consisting of five executive directors (Colly
Myers, Managing Director; Mark Gretton, Technical Director; Bill
Batchelor, Development Director; David Wood, Software Director;
Stephen Randall, Sales Director) and three nonexecutive directors
from Psion Group (David Potter, Marina Wyatt, and Charles Davies).
We started talking to potential customers of Psion Software — many
of whom were competitors of Psion Computers. It was a weird new
world. We quickly adopted new habits and new processes to prevent
customer information from filtering back from Psion Software to Psion
Group. Suddenly there were a whole lot of things that we could no
longer chat about with our former Psion colleagues.

20.2 Focus on strategy

At first, we talked to lots of different kinds of potential companies.
| remember going to one meeting with a well-known manufacturer
of lifts who was considering licensing Symbian OS. After all, we

FOCUS ON STRATEGY 243

reasoned to ourselves (only partly in jest), lifts are mobile, and our
business is mobile software. We soon had far more interest from
potential licensees than we could cope with. We knew we had to
start making some hard decisions. What kinds of sales leads should
we cultivate most carefully, and what kinds of new features should we
build into our software system in anticipation of the best sales leads?
Instead of taking these decisions piecemeal, we initiated another
internal series of strategy discussions.

These meetings culminated in an all-day session at the Clarence
Room of the London Metropole Hotel on 13th November 1996. The
Psion Software team of executive directors was joined for the day by
Nick Healey, our applications and usability guru, and by two recent
recruits into our management team:

O Simon East, who had transferred from Psion Industrial, bringing
huge practical experience of building corporate wireless access
systems on top of Psion PDAs

Q Juha Christensen, who had transferred from Psion Computers; Juha
was highly imaginative, extremely well networked, and had a
strong entrepreneurial bent.

We candidly discussed five possible markets, weighing up our
strengths and weaknesses in each case:

a PDAs (Psion’s traditional market)

a Communicators (such as the recently launched Nokia 9000 Com-
municator, based on the GEOS operating system from GeoWorks)

Q Smartphones

Network computers (as popularized by Larry Ellison of Oracle)

O WebTV (at the time, the subject of very considerable media atten-
tion).

O

After lots of discussion, the meeting ended with the following unani-
mous decisions:

0 We would defend our leadership in the PDA industry segment,
but do no more than that in this segment; we resolved that only
a small team would do follow-on work specifically for PDAs after
the launch of the Series 5

0 We would prioritize the development of Symbian OS as the leading
platform in the emerging smartphone industry segment; to meet
that challenge, we would significantly grow our headcount

244 DESIGNING FOR SMARTPHONES

O We foresaw that the smartphone market would be several orders
of magnitude larger than that for PDAs; we also foresaw that
existing phone operating systems would be hard pressed to scale
up to the increasing needs of smartphones, whereas computer
operating systems (such as Windows CE) were unsuited to phone
requirements — hence the special opportunity for Symbian OS.

At the time of this meeting, the vast majority of our development team
was working flat out on the software for the Psion Series 5. Seen in
this light, our strategic decisions were remarkable. We were setting
a strategic direction at some variance from the primary needs of our
then main customer and 100% owner.

From that time on, the strategic needs of smartphones have always
been squarely at the forefront of the minds of our management team.

20.3 Smartphone heritage

One factor that gave us the confidence to decide to focus on smart-
phones was the implementation project that we had just started with
Philips — to create the Synergy smartphone clip-on for use in conjunc-
tion with their llium GSM phone. Even though that product turned
out not to be a commercial success, we could see the potential huge
fit between the content of Symbian OS and the requirements of smart-
phone products. Several other major phone companies could also
see this potential fit, and were entering into promising discussions
with us.

Another factor in our favor was a long history of prior experience
of interesting projects that interfaced Psion PDAs to various mobile
phones and other wireless devices.

For example, Motorola and Psion carried out a joint project in the
early 1990s to create a wireless terminal known (by Motorola) as the
PDT200 and (by Psion) as the RWAN. This was based on Psion’s HC
industrial-use handheld computer, which in turn used the 16-bit SIBO
system. Here’s some text from a March 1994 Psion Inc. press release:

Psion utilizes Motorola radio modem for Nation-wide NETS

Psion Inc, US subsidiary of British portable computer group Psion
Plc, has launched the world’s first hand-held terminal designed for
nationwide wide area networks.

Developed in concert with Motorola Inc, and called the RWAN,
the system is based on Psion’s HC hand-held computer fitted with a
built-in Motorola Radio Packet Modem. The RWAN will provide users
with nationwide wireless access over the PSDN networks operated by

SMARTPHONE HERITAGE 245

ARDIS and RAM, allowing mobile workers to communicate with other
machines, email gateways and host databases in real time via radio.

To support RWAN, Psion has developed MSIS, a radio communi-
cations job management software to run on the system. With over 40
percent of the US workforce operating outside the office, MSIS helps the
mobile executive deal with decision support, quotations, manpower
management and distribution control on the spot.

Psion was also carrying out joint development projects with Nokia as
early as 1995. Here’s another press release from the time:

Psion has launched a messaging application for its range of handheld
computers. The product, called the Telenote Link, enables users to
connect mobile phones to Psion’s range of palmtop computers. Users
will now be able to send and receive short text messages to and
from other people with a digital phone and a Psion via the Vodafone
digital mobile phone network which supports SMS (Short Messaging
Service).

An intelligent cable, designed by Psion, will connect the Nokia
digital phones to the Psion Series 3a. The system will also work on
Psion’s Workabout range of rugged handheld computers.

From December 1995 customers will be able to buy a Telenote
Link package comprising of a SMS cable that connects the Series 3a
(or Workabout) to the Nokia 2110 phone, and a messaging applica-
tion for use on Vodafone’s digital GSM network. The product will
be priced between £50-70 and will be sold through selected Psion
stockists.

The Telenote Link is the ideal pocketable solution for two-way
mobile messaging. It provides a low cost, easy to use solution for
preparing, viewing, editing, storing, sending and receiving SMS (Short
Messaging Service) messages over GSM digital mobile phone net-
works.

And here’s news of a joint project with Ericsson:

March 13, 1997 — Psion Computers PLC — UK

Psion Computers and Ericsson Mobile Communications AB today
announce a range of connectivity options for their respective phones
and palmtops:

The combination of a Psion Series 3c and an Ericsson Dataphone
GS18 provide a compact Internet and messaging solution designed
for busy mobile professionals. The system links the phone to the
Psion with a cable as portable as a matchbox. It will mean that
mobile executives will be able to send and receive email, browse
the Internet and send and receive short text messages (SMS messages)
whenever they choose, keeping them in touch while they are on
the move.

246 DESIGNING FOR SMARTPHONES

These early joint projects had several important long-term conse-
quences:

O The mobile phone companies came to have a high appreciation
for the capabilities of the Psion software systems; this predisposed
them favorably towards licensing Symbian OS shortly afterwards,
and then taking a financial stake in Symbian

O The Psion software team saw that, in the context of telephony,
parts of the software system worked well, but other parts worked
less well. These realizations resulted in significant improvements
in the telephony capabilities of Symbian OS.

20.4 Active objects

One of the pieces of Symbian OS that was refined and strengthened
through our exposure to telephony systems was our system of ‘“active
objects”. This remains one of the fundamental design patterns of
Symbian OS. All smartphone implementation project teams should
have a thorough appreciation of active objects.

Our original implementation of active objects dates from June
1989, when they were invented by Charles Davies, based on some
ideas derived from HOOD (‘’Hierarchical Object Oriented Design
Tool”) and from the writings of Grady Booch. The role of active
objects was to provide a lightweight mechanism for easily introducing
new asynchronous event sources into an application. Here, “event
sources’” include:

Timers

Keyboards and pens

Messages from other applications

Window redraw requests

Client—server interactions

Serial communications

Messages from other devices

Progress from long-running background calculation tasks.

[iy Sy Sy Wy Wy

The event sources are ““asynchronous’” in the sense that the program
cannot predict which event source will deliver the next event. The
act of “requesting’” an event is separated in time (in other words,
“asynchronous”’) from the delivery of that event.

POWER MANAGEMENT 247

All modern software systems revolve around one or more so-called
“‘get-event loops”. The structure of these loops is:

do

{

get_next_event () ;
process_next_event () ;
} // repeat forever

Different get-event loops differ in the set of event sources that are
monitored at any one time. In Symbian OS (as in SIBO before
it) there is only one get-event loop. This is in a class known as
CActiveScheduler - the class which schedules different active
objects. The CActiveScheduler maintains a prioritized list of all
active objects that are current in the application, including ones which
have been installed by system libraries utilized by the application.
In general, software does not know (nor does it care) which active
objects are current at any one time. Provided software follows the
rules, the whole system works like magic — events are delivered to the
appropriate handlers, and the different handlers coexist with minimal
interference.

So there are two levels of multitasking in any Symbian OS phones:

Q The kernel contains a thread scheduler — which preemptively mul-
titasks between the various live execution threads on the system,
following classic design principles

Q Most threads contain a CActiveScheduler - which non-pre-
emptively multitasks between the various live active objects in
the thread.

Active objects have minimal overhead, and share (within one thread)
the same data space and execution stack. They serve a different need
to multi-threading. Both kinds of multitasking are needed. As Symbian
designed more and more systems involving telephony interactions, the
active object system evolved, and became more and more valuable.

20.5 Power management

One of the cardinal rules of Symbian OS software is: never poll. Do
not burn round a tight loop, continuously testing whether something
has happened. Instead, you should use the active object system. You
should let the system know that you're interested in an event and
... that's all. There’s nothing more for your application to do, so the

248 DESIGNING FOR SMARTPHONES

operating system suspends your application until an event of interest
occurs. At that moment, the operating system wakens your applica-
tion, and routes program execution to the relevant active object.

As you'll realize, this has a big influence upon battery usage. The
operating system is able to put the processor to sleep the moment
that all applications have finished responding to the latest events.
This piece of control occurs in the null thread — the thread with the
lowest priority. The null thread is always ready to run. Whenever it
gets to run, its action is to suspend the processor. It's a stunningly
simple design.

Often, software that is designed with a different heritage (for
example, desktop software) fails to appreciate the critical importance
of battery lifetime and power management. Such software often
contains internal busy loops, or it wakens up the smartphone on
a regular basis to check for particular events. Make sure that your
software follows the rules for good power management. Reflect on
the ways that smartphones differ from laptop computers: smartphone
batteries are much smaller than on a laptop, but smartphone batteries
need to last at least a complete day. This kind of dramatic performance
gain can’t be implemented in hardware alone — it requires huge
software support. Ignore the rules and your software will cause
smartphone battery failure. Follow the rules and users will give your
software a warm endorsement.

20.6 Beware stray signals

The heart of any Symbian OS application is the get-event loop that
is contained in the CActiveScheduler object in the application.
The CActiveScheduler object keeps track of all the event sources
in the application. For each event source, the CActiveScheduler
object knows:

0 Whether the event source is active

O Whether the application is waiting to process an event from that
event source

Q The piece of code to call, when the application gets a chance
to run.

The system relies on a small number of rules. For example, for any one
active object, the application should have at most one outstanding
request at any one time. If you request another event before you
process the previous one from that active object, it's a sign that the
application is out of control. It's akin to polling for events. It’s literally
a waste of energy. The system won’t allow it.

FINAL COMMENTS ON ASYNCHRONOUS EVENTS 249

Each active object implements a Cancel function to cope with
cases when you have issued a request for an event, but now need
to issue another request instead (from the same active object). In
general, you can never be sure whether the cancel will take effect
before the event source actually delivers the event. For this reason,
in Symbian OS, cancel never works as “‘undo”; it always works as
““precipitate completion”’.

These rules are designed to maintain the integrity of the power
management system. The kernel keeps track of the so-called “‘signal
count” of each application. When the signal count becomes negative,
the application is suspended. Any piece of software that messes with
the signal count is a menace, so Symbian OS performs regular sanity
checks. If a signal occurs but no active object can be identified
as being responsible for it, CActiveScheduler calls panic. This
is called a “stray signal panic”. Such panics can be a pest to
diagnose, but it's still better for your project that the application
is terminated. This draws developer attention to the fact that some
software has broken the rules for signals, active objects, and/or
power management. In Symbian’s view, that’s definitely something
to panic about.

20.7 Final comments on asynchronous events

Because of their openness, smartphones involve an unknown number
of event sources running at unpredictable times in an unforeseeable
sequence. You can’t control the number of applications on the
phone; nor can you control the environment that the smartphone
finds itself in. Active objects are the foundation to tame this potential
anarchy, but there are a couple of other critical aspects of handling
asynchronous events that are well worth noting.

First, take care over the lifetimes of objects. Many programming
operations on smartphones involve passing the address of an object
into an API. If that APl is asynchronous, you have to beware the pos-
sibility of the object being destroyed before the APl completes. If that
happens, the APl will attempt to access a nonexistent object — with
random consequences. One complication here is that C++ may cre-
ate a temporary object (on the memory stack) without you realizing
what’s happening. This makes it harder to spot this kind of program-
ming error. On many occasions, your program will survive, because
the asynchronous APl will complete immediately. But once in a while,
the timing will differ, and the object will be destroyed (programmers
call this ““going out of scope”) before the event completes. In a

250 DESIGNING FOR SMARTPHONES

world of synchronous events, there’s no problem. But in the world of
asynchronous events, you need to be more thoughtful.

Second, respect multitasking priorities. There are priority alloca-
tions both for active objects (within a single thread) and for threads
(within the overall smartphone). Developers are sometimes tempted
to try to fix issues by increasing the priorities of threads and/or active
objects in their software. For example, to avoid being interrupted, you
can try to set the priority of a thread to the maximum allowed value.
However, anything that alters the priority structure risks destabilizing
other aspects of the operation of the smartphone. There are good
reasons why certain threads and active objects have the priorities that
have been assigned to them. So unless you are sure you know what
you're doing, stick with the standard priority assignments. Instead
of increasing your priority to avoid your software being interrupted,
design your software to cope with being interrupted. That's how
smartphones work.

Human aspects of smartphone
projects

The essential role of the project manager

Focus

Project manager vs. technical lead vs. product manager
Project review meetings

Commercial negotiations with third parties

Project manager authority

The essential role of the support network
Pros and cons of support consultants
Cultivating connections

Building a team out of nothing

Helping consultants to be effective

The essential role of renewal

The role of the post partum

Line management skills

Circulation of team members
Principles of collaboration

The increasing importance of software
A guide for software leaders

Symbian OS renewal

21

The essential role of the
project manager

21.1 Focus

I now reach the single most important piece of advice in my book.
The one factor which, more than any other, determines the success
or failure of a smartphone development project is the caliber of the
individual assigned to be the full-time leader of that project.

I’'m not saying that all the other pieces of advice are unimpor-
tant — far from it. However, if you find the right person to run the
project, with proper support and backup from the highest levels of
senior management in your company, that person will ensure that the
team correctly implements the other pieces of advice.

A high-powered project manager will bring repeated laser-focus
to the question of what needs to be done to make your project a
success. He or she will regularly survey the entire scope of project
activities, looking for risks, and searching out the best responses to
these risks. Provided the project manager is properly advised (and
that's the subject of the next chapter), this survey will cover all the
matters raised within the chapters of this book. So finding the right
project manager is the key to solving all these other matters.

Different project managers have different styles. There is no one
unique correct style. However, there are some fundamental elements
that your project manager needs, regardless of personal style:

O An understanding of smartphones

O An understanding of complex software systems

O An understanding of agility and dynamic planning

Q The ability to motivate all the different players in the team

O The ability to communicate clearly with all key parties involved in
the project

254 THE ESSENTIAL ROLE OF THE PROJECT MANAGER

O The ability to ““manage up’’ —to gain the necessary organization
support from higher management

Q The ability to drive completion of contractual issues
Q The ability to drive completion of the project as a whole

O The ability to bring organizational focus to the smartphone project
topics that are most important at any one time (as opposed to those
that are merely urgent).

Critically, the project manager needs to be dedicated full time to
your project — and incentivized entirely by the degree of success of
the project. A project manager whose attentions are spread between
two or three different projects will be much less effective. It's when
your project manager gives full commitment to the one smartphone
project that you gain the best returns.

21.2 Project manager vs. technical
lead vs. product manager

The project manager is a distinct role from technical lead. Both roles
are necessary, but don’t confuse them. The technical lead is the
person who has overall responsibility for the technical quality of the
implementation of the smartphone product. This is the person who:

O Understands how all the technology fits together (hardware, soft-
ware, etc.)

0 Can deeply analyze individual defects

O Can deeply analyze the pros and cons of various proposed defect
fixes

0 Understands the technical strengths and weaknesses of all the
software engineers who work on the project.

The reason why the project manager should be a different person
from the technical lead is to ensure that the project manager retains a
focus on overall project issues. In order to have a good understanding
of the day-to-day problems being faced by team members, the project
manager needs to have a strong technical background in smartphone
development, but he or she must resist being sucked into the solution
of individual technical problems. No matter how important an indi-
vidual technical problem may seem, the project manager must retain
a focus on the project as a whole, ready to devote quality mindshare
to any of the rapidly changing issues that could affect the overall
project well-being.

Another role that should be distinct is that of product manager.
Whereas the project manager runs the project as a whole, the product

PROJECT REVIEW MEETINGS 255

manager is responsible for the company making optimal profits from
the product line being served by this project. The project manager is a
world expert in ““getting things done”’, whereas the product manager
is a world expert in the commercial opportunities of this product line.
The product manager has a particular focus on making sure that the
product will be well loved by customers. The product manager:

O Understands the competitive landscape

Q Ensures that appropriate marketing campaigns are organized

O Decides pricing

0 Owns the specification of the product — which features are in or
out, and which quality and performance levels are required.

Just as the project manager needs to be fully comfortable with
technical issues, he or she also needs to be fully comfortable with
product definition issues. However, neither of these areas defines the
primary role of the project manager. The former is handled by the
technical lead, and the latter by the product manager. In contrast, the
project manager handles the project as a whole:

0 Whatever the project needs, the project manager should anticipate
the need, and find a solution

0 Whatever skills or resources are missing from the project team, the
project manager should devise ways to cover this gap

O Whatever obstacles are preventing the team members from work-
ing together optimally, the project manager should find ways to
repair the working relations

O Whatever contradictions are contained within the project setup,
the project manager should find ways to address them, so that the
project can proceed swiftly to commercial success.

All these tasks require support and assistance — the project manager
does not act alone. For this reason, one of the core skills of the project
manager is the ability to draw on the strengths of the different key
players in the team.

21.3 Project review meetings

Project review meetings can be among the most awkward aspects
of a project manager’s job. The meetings are formal (or semi-formal)
occasions where the project leaders report on:

O Recent decisions about the product spec or design

256 THE ESSENTIAL ROLE OF THE PROJECT MANAGER

O The integration timetable

Q The overall project schedule

O Progress with testing and verification
a Customer feedback

Q Current project risks and issues.

Because the project manager tends to know all these issues already,
it may seem that the meeting is a waste of time. Instead of talking
about project issues, it's more pressing to actually fix these issues.
However, you need to resist that pressure. Here are the benefits your
team gains from a regular project review meeting:

O The team members gain a better understanding of the context of
their work

Q Although you may think that people already know various pieces
of news, it often turns out that they do not (or that they haven't
paid much attention to them earlier)

O You may often hear novel suggestions or feedback from team
members during the meeting

O The meeting can include short periods of brainstorming, as the
collective intelligence comes up with new ideas for dealing with
project issues.

It's my experience that a significant amount of time can be wasted
in projects because of communications failures. For example, sub-
team A thinks that sub-team B is working on a particular problem,
whereas sub-team B is still waiting for sub-team A to deal with
it. Or, sub-team A regards a particular issue as a critical blocker
preventing further development work, but sub-team B is planning on
getting round to this in several weeks’ time, being unaware of any
urgency. Regular review meetings are one way to identify these kinds
of communication failure.

| sometimes say (half-joking) that although | used to be a software
engineer, | have long ago changed into a “‘meetings engineer”’. Being
a “‘meetings engineer’’ is a highly skilled job! You have to ensure that:

QO Meetings have a clear purpose
O The right people are attending — neither too many nor too few

Q People know the purpose of the meeting in advance

O The meeting avoids being dominated by a few loud individuals

COMMERCIAL NEGOTIATIONS WITH THIRD PARTIES 257

O The meeting has the right mix of formal reports and unstruc-
tured open discussion — the right balance between snappiness and
thoughtfulness

0 Minutes are distributed promptly afterwards, clearly stating any
decisions reached, and also giving background reasons for these
decisions

Q People follow up the meeting with agreed actions.

Here are some other guidelines to ensure good communications
within your project team:

0 Focus on the successful reception of a communication, rather than
on the successful transmission; it doesn’t matter how well you
spoke or wrote, if the intended audience can’t properly understand
the message

O The best tool available to a project manager is a good pair of
walking shoes; the project manager needs to spend a lot of time
walking into different team areas, to meet with team members
in the context of their work, and to notice the issues that are
occupying their minds

O Make sure that you give your team a chance to talk to you, giving
their version of the status of work in their team, before you tell
them your opinion about this; seek first to understand, then to be
understood.

21.4 Commercial negotiations with third parties

The project manager is responsible, not just for good working relations
between internal team members, but also for good working relations
with the third parties who are also working on this project. For each
company that is supplying people or intellectual property to your
project, you should check that:

O There is an account manager (or partner manager) in your com-
pany, whose job it is to look after the relationship between your
company and this third party; talk regularly to this account manager

0 You have a contract in place that clearly guarantees prompt
support when needed — for example, if you need someone from
that company to provide specialist technical support in a hurry

Q There is clarity about ownership of any intellectual property created
during the project; you don’t want to end up quarreling at the last

258 THE ESSENTIAL ROLE OF THE PROJECT MANAGER

minute about whether you need to pay additional fees to include
some functionality in a follow-up product

O Your payment terms are sufficient to encourage the partner to con-
tinue working on your project for longer than the initial expected
time (in case there is any change in schedule); you want to avoid
the situation that the partner is now giving greater attention to a
different customer

0 You have full access (ideally) to all source code of the partner’s
software — or, failing this, that the partner guarantees to supply a
suitably skilled support engineer on site (with a laptop containing
the source code) whenever needed.

The commercial aspects of software integration can be just as chal-
lenging as the technical ones. Don’t neglect them.

Even before you agree commercial terms with a third party, you
have to be confident that they are a good choice to work with.
See Chapter 3 for information on various Symbian partner programs,
allowing you to understand which partners are endorsed in various
ways by Symbian.

21.5 Project manager authority

Sometimes it seems that companies forget their business is to make
great products that delight their customers. | see many cases when
project managers are held up in their work, not by external obstacles,
but by internal blockages (company politics, red-tape, internal rivalry,
etc.). At the beginning of this chapter, | said that you need to find
the right person to run your project and you need to provide proper
backup to this person from the highest level of senior management
in your company. Senior managers must be ready to support their
project manager in any political battles in the company. Because
smartphones are more complex than other kinds of phones, it is not
appropriate for corporate bureaucrats to insist that exactly the same
processes are followed:

O The QA processes for smartphones need to be more tolerant than
those for feature phones (see Chapter 6)

Q Since a larger number of third parties tend to be involved in a
smartphone project, you need quick turnaround on contractual
reviews from legal and supplier management

PROJECT MANAGER AUTHORITY 259

Q In order to be maximally effective, on-site consultants need good
access to their email and other corporate IT systems; this may need
special cooperation from your own IT department

0 On-site consultants need to be able to compare individual items
of smartphone functionality against those of competing devices;
access to these devices may require special cooperation from
your security department (who may otherwise insist that no one is
allowed to bring any such ““alien’” technology onto your premises)

Q Although you should have systems that enable distributed working
across several different sites, you may also need rapid action to
agree co-locating different teams on the same site during critical
periods of the project

Q Decisions on investment in your project may require coopera-
tion from people in different budget reporting groups; given the
large potential income from timely sales of high-end smartphone
devices, you don’t want to be held hostage to the ordinary pace of
financial approval systems.

In all these cases, be sure that you are adopting agile processes. Agility
isn’t just a technique for assembling software more reliably — it's an
approach that cuts through heavyweight constraints of all sorts, in
order to place breakthrough new products more quickly into the
hands of eager customers. Don’t let it be said that you had a better
product that your external competitors, but you were prevented from
making it a commercial success by internal obstacles.

22

The essential role of the
support network

22.1 Pros and cons of support consultants

One of the hardest things to do — especially for a company that is
highly successful — is to ask for help. Asking for help is perceived as
an indication of weakness. Companies like to think that they have
very smart people working for them, who should be able to figure out,
by themselves, everything involved in creating winning smartphones.
For this reason, they are reluctant to engage specialist consultancy
companies for help with their smartphone projects.

I can well believe that there are lots of bright people working
in your company. And, given time, these people will figure out, by
themselves, a way of making progress of a sort. However, the harder
question is whether that rate of progress will be sufficient to finish
the whole project in good time. It won’t be at all clear whether your
team is paying sufficient attention to all the many hidden variables
involved in completing a smartphone development project. And the
chances are that the progress you do make is being achieved at far too
high a price in terms of resources exerted. With the right guidance,
your development team can utilize Symbian OS to create stylish
smartphones in leaps and bounds; without the right guidance, your
team will make all kinds of unnecessary errors.

Despite their pride, most companies do recognize the advantages
of engaging with support consultants. But still they hesitate — for
two reasons:

Q They are fearful about information leaking from their experience
and projects, to benefit their competitors (especially if the consul-
tant also carries out work for competing companies)

O They wish to gain the benefits from consultancy without paying
the usual costs for this service.

262 THE ESSENTIAL ROLE OF THE SUPPORT NETWORK

Both these reasons are false economies. Let’s start by looking at
the cost argument. Here’s a sequence of events that | know has
often happened, with a phone manufacturer talking to a consultancy
supplier as time progresses:

Q Month 1: “We won’t use your people; they are too expensive’’

Q Month 2: “We won’t use your people for long; they are too
expensive’’

Q Month 4: “You're too expensive, but please can we have two
more of your people”’

Q Month 6: ““You're too expensive, but we have a very important
milestone coming up; we need all of your best people immedi-
ately”’

Q Month 10: ““You're too expensive, but we couldn’t have finished
the project without you!”’

What this exchange shows is that, despite complaining, the phone
manufacturer does end up putting a high value on the services made
available by the consultancy supplier.

If you delay your project by two months because of haggling over
charge rates payable to consultants, you lose two months of revenues
from your project. From the rough estimates presented in Chapter 2,
that could cost you upwards of 20m USD in lost profits. You may
think that your finance department will reward your prudence in
lowering the consultancy rates by, say, 15% through two months
of tough stop—go negotiation. Instead, your CEO should fire you
for losing precious time during the critical start-up phase of your
project. (Of course, I'm not saying that you should cave in during
pricing negotiations with consultancy houses. But | am saying that
you should be negotiating very quickly and constructively.)

The argument about information sharing is more subtle. In broad
terms, all consultancy companies operate strict systems of nondis-
closure. Specific commercial secrets learned during an engagement
can never be passed on to people outside the project team. How-
ever, there’s also the question of so-called “residuals”. These are
the ideas and techniques that consultants pick up from working with
your team, without giving any conscious thought to the matter. These
ideas and techniques then become part of the set of background ideas
and techniques which the consultants occasionally utilize in all their
work. These ideas and techniques dovetail with the general skill-set
the consultants already possess. Afterwards, if you ask a consultant
where they learned the idea of doing such-and-such, they may not

CULTIVATING CONNECTIONS 263

be able to give you a simple answer. If pressed, they may answer
that the idea has many grandfathers — something they learned on a
training course once, something they learned from a magazine article,
something they learned by talking to colleagues, and, yes, some ideas
they picked up while working with various clients.

My advice is that you shouldn’t worry about this. Accept that the
consultants will pick up a few new tips and tricks from working with
your employees. But appreciate, also, the fact that your employees
will pick up many tremendously valuable tips and tricks from working
with the consultants. Take good advantage of this opportunity.

22.2 Cultivating connections

The best smartphone developers, almost invariably, turn out to be
well networked. They don’t themselves know all the answers about
Symbian OS development, but they know people they can ask for
the answers. They know people who will probably be able to answer
questions on topic A, another set of people who will probably be able
to answer questions on topic B, and so on, for all the possible kinds
of questions.

A good starting point for cultivating your own connections with
Symbian OS experts is the set of discussion forums hosted by Sym-
bian’s website. See www.symbian.com/developer/support.html. 1f
you click on the ““‘community links’” section of that site, you'll also
have the option of looking at newsgroups and forums hosted by third
parties. Take the time to explore these sites.

Another invaluable source of information is the set of existing
source code published by Symbian and the wider community, includ-
ing open-source projects.

Whichever sites you end up frequenting, you have to follow the
basic etiquette of newsgroups: if you expect to raise new questions
on these sites, you should also contribute answers to other people’s
questions. Instead of just taking knowledge from these discussions,
you should also add to it. Instead of just downloading existing open-
source projects, consider uploading some of your own source code
(from noncritical projects). In this way, you'll develop your own
online reputation. Then when you have questions to ask, you’ll find
that people will be readier to help you out. You may fear that, by
answering people’s questions and by uploading sample source code,
you are helping your competitors. But think, instead, that you are
enlarging a support network that will, over time, repay you in many
ways.

264 THE ESSENTIAL ROLE OF THE SUPPORT NETWORK

Even before you ask questions, check out the FAQs that are
available. You'll often find these contain the answers to what’s on
your mind. There are some extensive FAQs on Symbian’s developer
support website, at www.symbian.com/developer/techlib/faq.htmi.

You should cultivate similar links and networks inside your com-
pany. People working on Symbian OS smartphone project X should
internally exchange questions and answers with people working on
Symbian OS smartphone project Y, even though they’re based at dif-
ferent sites, or belong to different organizations. Take good advantage
of the knowledge that’s already inside your company.

Even inside a single team, you'll be surprised at the potential for
different team members to be able to help each other, given the
chance to do so. If you have a question about an aspect of Symbian
OS development, you basically have four options:

a Out of pride, keep the question to yourself, being determined not
to show your ignorance

O Ask a few friends — people who you think might know the answer

O Ask the question on a public newsgroup, where it is visible to
everyone in the public Symbian OS developer community

O Ask the question on an in-house newsgroup or discussion database.

Apart from the first approach, there are advantages to each of these
methods. The last approach is often the most attractive; you’ll often
get an answer from someone you wouldn’t have thought of asking.
That's very often how | personally find an answer inside Symbian — |
raise the question on our in-house Programming database (or on a
more specialized variant of it), and the answer pops up from someone
I hadn’t thought of asking individually. It takes effort to set up such a
database but, in my view, this effort is well worth it. It helps you to get
more value from your in-house knowledge. To get even more value
from it, make sure that your in-house knowledge systems support
state-of-the-art searching.

22.3 Building a team out of nothing

You can’t grow a Symbian OS smartphone development team out of
thin air. Any successful large team grows from the seeds of previous
teams. Here’s where you can find these seeds:

Q If your company already has a Symbian OS smartphone develop-
ment project underway, transfer a small number of people from

HELPING CONSULTANTS TO BE EFFECTIVE 265

that team into your new team (this decision will require vigorous
support from senior management)

Q Hire new recruits who have proven prior experience with Symbian
OS smartphone projects

Q Involve consultants who have proven prior experience with Sym-
bian OS smartphone projects; assign these consultants as advisors
to some of the key roles within your organization

O Shortly before the project is due to start, send the entire team
on a dedicated training course, such as the “’boot camp training”
available directly from Symbian, and from some of Symbian’s
training partners

0 Follow up the initial training with regular training refresher courses.

Remember the basic rule of training: you need to keep on reinforcing
the training material, at regular intervals after the course, in order for
the attendees to make best use of it.

Remember also that mistakes made in the early phases of a project
can take a long time to undo afterwards. It's like the way that
childhood traumas can have unexpected effects even into adult life.
So right from the beginning of your project, be sure that you're
receiving the best possible advice.

22.4 Helping consultants to be effective

Once you've taken the decision to include external consultants on
your project team, you need to follow up that decision by providing
full support to these consultants. You have to help them to be able to
help you. This includes the following measures:

O Assign someone in your team to be the “consultants’ uncle” —
someone who constantly tries to find ways for the team to
make more effective use of the consultants, and who searches
for project tasks that would benefit from assistance from the
on-site consultants

a Allow the consultants to walk around freely within the project
team area. Much of the value they add comes from impromptu
discussions with your team members. Don't isolate the consultants
in restricted rooms, where they will be much less effective

a Allow the consultants to study your source code. That way, they’ll
often be able to point out problems with it, by doing proactive
code reviews. It will also allow them to carry out source code

266 THE ESSENTIAL ROLE OF THE SUPPORT NETWORK

debugging, and to try out experimental modifications to the code.
If you prevent the consultants from seeing your source code, out
of a misguided attempt to protect the secrecy of that code, don’t
be surprised if they fail to point out issues with that code

a Allow the consultants to access your software configuration man-
agement system, so that they can review the history of various
changes in the code; this can often be invaluable in shedding light
on the causes of unexpected changes

O Keep the consultants informed about progress and issues in the
project. Don’t imagine that they somehow already know these
things. Perhaps they will, but perhaps they won't

a Allow the consultants to have full access to the IT services in their
own companies, so that they can quickly consult their colleagues
and knowledge-base systems regarding questions arising on the
project. If you are overly paranoid about information leaking from
your project back to the HQ of the consultancy company, don’t
be surprised if you get less value from the consultants.

As is well known in our industry, a really good software developer
can be up to ten times as productive as an average developer. It's the
same when you bring really good consultants into your project team:
the right consultants can make parts of your project proceed up to ten
times more quickly. However, that depends upon the consultants in
turn receiving, from you, the support that they need. Don’t be tardy.

In short, treat the consultants as partners, not as suppliers. The
greater the degree of cooperation, the more likely it is that the
engagement will have a truly successful outcome.

23

The essential role of
renewal

23.1 The role of the post partum

Whether your smartphone development project meets, or falls short
of, your expectations, you owe it to yourself to conduct a formal
review of the lessons you can learn from that project:

O What aspects went well?
O What aspects went badly?
0 What would you do differently in the future?

0 What immediate changes should you make to your organization
to increase the chances of greater success in future smartphone
projects?

Inside Symbian we regularly hold such reviews. In the case of a
failed project — for example, if the smartphone was cancelled prior
to launch — we call the review a ““post mortem”. In the case of a
successful project, we call the review a “post partum”. In either
case, we produce a written document, containing both analysis
and recommendations. For example, I've just taken a few minutes’
break from writing this chapter to read through a 23-page document
written within the last month, at the end of a major project support
engagement by Symbian technical consultants. The document makes
a total of 21 separate recommendations.

Hold these reviews about a month after the end of the project.
A month is long enough for the participants to have gained some
perspective — they’re no longer wrapped up in project minutiae. But
it's not so long that people will have forgotten their key experiences.

To get the best value out of a post partum, you should prioritize
the recommendations that it makes. Otherwise there’s a risk that

268 THE ESSENTIAL ROLE OF RENEWAL

the recommendations will just gather dust inside the document. It’s
also worth rereading the output document after two or three months
have elapsed, to see what other pearls of wisdom in it need greater
promotion.

Investing time in a post partum review is an example of a cardinal
principle of long-term fitness to carry out major smartphone devel-
opment projects. That principle is that you need to take time out of
being busy with the project, to review and reflect on your progress.

Some people characterize smartphone development projects as a
marathon — requiring sustained high-pressure effort. | disagree. A far
better metaphor is to see these projects as a series of hard sprints,
interspersed with recovery time. That's why | call this chapter, ““The
essential role of renewal”. For long-term success, you need your
people to work hard and play hard. Without time devoted to rest and
recreation, your team will burn themselves out. Sure, you'll be able
to recruit new people to replace those that are burned out, but it will
take each new person up to two years (sometimes longer) to reach
a similar state of overall system knowledge as the people they are
replacing.

23.2 Line management skills

As a software leader, you need to ensure that each person in your
team receives a regular performance appraisal. Don’t let more than
six months pass between these appraisals.

In my experience, a good appraisal from your manager is like a
good session with a personal coach:

The coach challenges some of your thinking

The coach helps you to see things in new light

The coach helps you to reevaluate your goals and priorities

Even as you are considering problems and challenges, the coach
helps you to conceive solutions

The coach draws out ideas that are already semi-formed in your
own thinking.

0000

O

It takes special skills to deliver a good appraisal. Just because someone
is a good software engineer, or a good project manager, does not
mean they will (automatically) have the skills required to conduct a
good appraisal. These skills include:

O Perceptiveness to psychological factors
Q Ability to detach their own personal feelings

CIRCULATION OF TEAM MEMBERS 269

0 Knowledge of skills and techniques to aid personal growth

Q A thorough understanding of career development opportunities
available

O Ability to collect feedback, and to weigh it up dispassionately,
separating the substance from the fluff.

That’s why it’s important that there’s good training for line managers,
and also why it's important for senior managers to be able to pick
out people in their teams with genuine potential for line management
roles. (And, where it turns out that someone with line management
responsibilities persistently lacks the necessary skills, senior managers
need to reassign that person to a different role.)

Another area of some difficulty is that of ““management by objec-
tive”’. A lot has been written about the problems here, and about why
measurement systems risk being dysfunctional. In short:

a Clarifying goals and objectives is important for everyone; we all
need to work out the highest priorities, and we all need to attend
to these priorities

0O However, measures of goals and objectives are notoriously hard
to achieve

O Typical measurement schemes may concentrate on measurements
of, say, X and Y, where X and Y are two contributors of the overall
(unmeasurable) goal G; but frequently X and Y are not the only
required causes of G, so too much emphasis on X and Y produces
distorted effects

Q So, it takes special skill to set metrics for goals and objectives

O It also takes a special commitment to review the continuing effec-
tiveness of these metrics.

Once objectives are set at the beginning of an appraisal period,
they need to be regularly reviewed throughout that period, in case
the overall priorities need to be changed. Again, this takes special
dedication from a line manager to carry out. But individuals can help
too: if they judge that conditions have changed, and that previously
set objectives may no longer have the highest priority, they should
book a one-to-one meeting with their manager to discuss this.

23.3 Circulation of team members

Individual career development includes moving people into situations
where they will:

270 THE ESSENTIAL ROLE OF RENEWAL

Q Find new personal challenges
Q Be able to learn from working with new colleagues
a Avoid becoming stale.

This can introduce some tension into management decisions. The
course of action that’s the best outcome for an individual’s career
development sometimes fails to match the short-term needs of a
project team. As a software leader, you need to balance these needs.
You also need to ensure the well-being of one more entity: the team
itself, which needs to possess a suitable mix of skills and personalities.
So you have to simultaneously look after the needs of the individual,
the team, and the project. That's no easy feat. In order to carry it out,
you need to:

a Avoid thinking of your team members as being some kind of
interchangeable resources, who can easily be replaced by one
another (or by newcomers to the team). That's a sure way to
demotivate your team members, and they’ll leave you when the
chance arises

O Allocate some quality thinking time to all three sets of needs.
If your first ideas fail to work out, keep on trying; you may be
surprised at the creative solutions you uncover

O Keep in mind the longer-term needs of the project, as well as
the shorter-term ones; there will be follow-up projects after the
first one.

Circulating team members into new areas of responsibility maintains
freshness in the organization. It’s far better for you that the team
members find some new challenges inside your organization, than
that they feel they have to leave your organization to stimulate their
interest anew.

23.4 Principles of collaboration

I've seen three broad phases of maturity in the development teams at
Psion and Symbian:

Q The first era was an era of ‘‘super heroes’”” — individuals who
worked incredibly hard, and who single-handedly created huge
amounts of software functionality

O Then came an era of “internal teamwork’’. We realized that it
would be better to take the time to hire larger numbers of new

PRINCIPLES OF COLLABORATION 271

developers, and to train these developers. That would slow us down
in the short term, but would increase our collective productivity in
the medium and long term. We needed to learn how to improve our
methods of interviewing, selecting, and mentoring. The outcome,
after a considerable culture shift, was a team that could develop
software significantly faster than the original, smaller group. One
of the greatest strengths of Symbian today is our ability to attract,
year after year, large numbers of the brightest and most productive
young graduates from all over Europe (and beyond) to join our
development teams

Finally we’ve been living for several years in the era of “extended
teamwork’”. We realized that it would be better to take the time
to learn how to work with a large number of external companies.
Even though that slowed us down in the short term, there was,
again, a medium and long-term boon to our overall productivity.
Again, we needed to learn new skills. Extended teamwork was
even harder to learn than internal teamwork. But the benefits
have been greater, too. Symbian’s ecosystem is, today, brim-full
of companies who are ready and willing to work on smartphone
development projects. If you're ready to collaborate, you'll find
very many willing and capable helpers.

To unlock the potential of the Symbian ecosystem to accelerate
your own development projects, your organization may need to pass
through something of a similar culture change. You need a mindset
and processes that favor collaboration:

]

]

Treat companies as partners rather than as suppliers

Err on the side of over-communicating rather than of under-
communicating

Specify the desired outcomes, not (necessarily) the way of reaching
these outcomes

Tolerate creative tension; tolerate differences of approach
Specify principles rather than processes

Focus on the success of the project, rather than the delivery of the
individual task

Reward the sharing of ideas, rather than the hiding of them

Reward early reporting of bad news, rather than attempts to hide
the trail of responsibility

272 THE ESSENTIAL ROLE OF RENEWAL

0 Avoid the culture of blame and antagonism; instead, favor con-
structive suggestions

O Realize that, if your collaboration is successful, the overall pie (the
smartphone marketplace) will be larger; avoid squabbling over
how to divide up the existing pie (thereby risking the destruction
of that pie altogether).

23.5 The increasing importance of software

Over the next few years, the importance of software in smartphones
will continue to grow. The software in these phones is already so
complex that you need an intensely collaborative mindset in order
to play in this space. The complexity has already gone far beyond
what any one company can handle. And the inner complexity is
still growing:

Q Larger screens, with higher resolutions, raise demands for better
Uls to guide the users through the rich sets of available options

Q Users learn that they can customize their smartphones, and seek
ever fancier ways to carry out this customization

O Operators insist on phones containing software variations that
identify the phones as belonging to their networks, rather than as
being ‘“vanilla” phones

0 Companies see how smartphones can plug into corporate data
systems, and stipulate that new capabilities are added to the
phones to cope with specific application requirements

QO Wide area communications protocols (such as GSM and CDMA
networks) are increasingly being supplemented by local area
protocols (such as Bluetooth and WiFi) which have different
cost structures

O The advance of Moore’s Law allows escalating amounts of software
functionality to be packed into the same amount of physical space
inside a smartphone, available at the same cost as before

O Smartphones are gaining increasing acceptance as entertainment
devices, camcorders, games units, personal organizers, and the
repositories for tickets, vouchers, and even money

a All this functionality (and lots more) needs coordination, secu-
rity, and appropriate backup and synchronization with other
software stores

A GUIDE FOR SOFTWARE LEADERS 273

O Users will move from expecting that they can personally customize
smartphones to expecting that they can personally program them;
the advent of widespread graphics programming systems will boost
renewed interest in user-originated content and applications.

23.6 A guide for software leaders

Because software will become increasingly important, it's vital that
we find ways to keep control of it. We don’t want to end up with our
mobile phones running software systems that no one understands.

Personally, 1 have a love—hate relationship with my laptop. |
discern that I'm not alone in this. We can all frequently hear users
of PCs cursing at them. Thankfully, 1 have a much more positive
relationship with my smartphone; again, I’'m not alone in this. We
need to keep things this way. Otherwise, the remarkable promise
of smartphones will stall, before it really starts. Users won’t be
interested in the potentially huge benefits of the forthcoming new
smartphones if they start to experience nasty drawbacks from flaky
smartphones — resets, data loss, mind-numbing complexity of the U,
viruses and virus scanners, etc.

In this book, I've systematically outlined one solution for the task
of creating successful smartphone products: that of applying smart
software development. It's a methodology that requires deep thought
as well as copious hard work. And because smartphone development
projects take considerable time, your plan needs to include renewal
time along the way:

O Take the time to discuss your experiences with your team-mates
and peers

O Take the time to investigate how other people write Symbian
OS software — how they structure their APIs, how they write doc-
umentation, and how they dovetail their test code with their
main code

O Take the time to find out people’s views on best smartphone
development practices

Q Take the time to work with a variety of different team-mates
O Take the time to attend training courses

O Take the time to search hard for simplifying principles. The best
solution to burgeoning complexity is to find a new way of looking
at things, which illuminates an inner simplicity

O Take the time to read and reflect. You should find the material in
the selected bibliography in the appendix to be helpful. I've listed

274 THE ESSENTIAL ROLE OF RENEWAL

books that will repay regular rereading, and which can provide the
basis of highly beneficial group discussions. In many cases, these
books go into more details on the points I've mentioned in my
own book. I've chosen these books with care: they are all guides
for software leaders to become even more successful.

But don’t procrastinate. Make it a guiding principle, in any demanding
project situation, to deliver some value quickly. With each new sprint,
you deliver extra value. Sprint early, and sprint often.

23.7 Symbian OS renewal

Symbian continues to renew Symbian OS, making minor and major
new releases in response to the evolving needs of the marketplace.

We receive regular feedback from multiple parts of the smartphone
value chain: from phone manufacturers, network operators, semicon-
ductor vendors, enterprise solution providers, integration specialists,
middleware specialists, corporate IT departments, venture capitalists,
smartphone retailers, and creators and aggregators of applications,
services, and content. We also keep a close eye on what press and
analysts say, and on feedback from smartphone end-users. We care-
fully weigh up all these ideas and suggestions, thereby renewing our
own internal ideas about the evolution of Symbian OS.

At the time of writing, phone manufacturers are developing smart-
phones based on version 9 of Symbian OS. This version contains
a number of very powerful upgrades to its predecessors. | wish to
highlight two of these:

Q A comprehensive new “platform security’”” framework builds on
previous measures, to defuse the threats of wireless malware (soft-
ware intentionally or unintentionally written to abuse personal
user data, run up large phone bills, or interfere with phone or net-
work performance). This framework is the foundation for increased
user and network confidence in the value and reliability of new
smartphone services

QO A new version of the kernel of Symbian OS, known as “EKA2”,
enables a host of new kinds of solution for mobile comput-
ing and mobile communications —through enhanced real-time
characteristics, improved portability of Symbian OS to new hard-
ware platforms, and revised internal design which makes it easier
(among other things) for smartphone vendors to reduce their
manufacturing costs by combining the application processor and
baseband processor.

SYMBIAN OS RENEWAL 275

Symbian Press is publishing books on both of these topics. They
complement the material in this book.

I'll be very interested to hear of your own experiences creating
smartphone projects (whichever version of Symbian OS you use).
You can reach me at david.wood@symbian.com. Your feedback will
influence the creation of future versions of Symbian OS.

Today’s smartphones offer only a fleeting glimpse of the potential
of the devices we’ll all be using in 10 years’ time. To create the
smartphones of the future, we need to keep on sharing our collective
insight and learnings. | look forward to hearing from you, and to
hearing about the breakthrough smartphone products you create.

Appendix 1

Annotated glossary of
abbreviations

Al Artificial Intelligence — as found in games on smartphones,
in smart messages, and in numerous other aspects of
smartphones

AP Applications Processor — one of the main silicon chips on a

smartphone, which runs the applications visible to the user

API Application Programming Interface. In the narrow sense,
this is the set of functions provided by a platform available
to be used by applications writers. In the broad sense, the
APl includes the HAI and the SPI

AQA Any Question Answered — a service available through
many network operators, whereby mobile users SMS a
question to a predefined number (63336) and receive an
answer by return, again by SMS. This service is provided
by the company IssueBits, founded by Colly Myers
(Symbian’s first CEO) after leaving Symbian. Another of
Symbian’s EVP cofounders, Bill Batchelor, is the Technical
Director at IssueBits

ARM Advanced RISC Machines — the company based at
Cambridge, UK, that designs the silicon architectures (also
called ARM) that are used in most smartphones in the
world. Symbian OS has been specially optimized for
aspects of ARM architecture

BAT Basic Acceptance Tests — a set of tests covering all
functionality in a product, that should be run on every
candidate release of the product

278

BC

BP

BR

CBR

CCB

CDB

CDMA

M

CpP
CPU

CR

C++

ANNOTATED GLOSSARY OF ABBREVIATIONS

Binary Compatibility — where the APIs of two platform
versions are such that executable code built on one version
will successfully run on the other without being rebuilt

Baseband Processor. Another name for this is CP, the
Communications Processor, referring to the
communications between the phone and the wireless
network, but | prefer the name BP, since there are many
other kinds of communication in the smartphone as

a whole

Break Request — a request for approval of a software
change that will cause a break in interface compatibility

Component Based Release tools — which make it easy to
incrementally update the large sets of files forming the
smartphone development environment on developers’ PCs

Change Control Board — a team of software leaders which
reviews CRs submitted to a project

Code Data Base — a tool provided by Symbian to assist in
interface management

Code-Division Multiple Access — a wireless digital
baseband technology that is used in (among other
countries) North and South America, Japan, Korea,
and China

Configuration Management — a system allowing software
teams to keep track of multiple changes in the source code
of the software being developed. Another name for CM

is SCM

Communications Processor. See BP

Central Processing Unit. When someone says “this
consumes CPU’’ they mean that the processor(s) on the
smartphone (AP and/or BP) are being made to work hard,
potentially reducing battery life

Change Request — a request for the product to meet an
additional requirement, or for a change in an existing
requirement. (Occasionally, there are CRs to remove
functionality)

Pronounced *'C plus plus”. The programming language in
which the vast majority of Symbian OS is written. It is an
OO extension of the C programming language, and was
adopted by Psion in late 1994 in a key early design
decision regarding EPOC32

DKL

DLL

EKA2

EPOC

ERA

EVP

F2F

FAQ

FOMA

ANNOTATED GLOSSARY OF ABBREVIATIONS 279

Dev Kit License — a license from Symbian entitling a
partner company to have access to APIs and source code
that are not part of public SDKs

Dynamic Link Library — the format of many smartphone
software components, supporting dynamic (run-time)
linking from other software components

EPOC Kernel Architecture v2 — as available in Symbian
OS v8.1b forwards

EPOC was an early name for the software system now
known as Symbian OS. Before that, EPOC was at one time
the name of the 16-bit precursor to Symbian OS (which is
itself a 32-bit operating system). As the 32-bit version was
being created, we started to differentiate between
“EPOC16” and ““EPOC32". After a while, the older name
“SIBO"" was generally readopted in place of “EPOC16”,
and “EPOC” came just to mean ““EPOC32". For a long
time (until our Marketing department advised us
otherwise), we only capitalized the initial letter, “’Epoc”,
since it was a name, not an acronym. The origins of the
name are a matter of some controversy. David Potter
(Psion’s chairman) has variously joked that “EPOC"” stands
for “Eat Plenty Of Carrots’” and “Electronic Piece Of
Cheese””. Colly Myers, the primary author of both EPOC16
and EPOC32, has stated that the name was chosen out of
reference to “‘epoch’’ (as in ““epoch-making”), and was
restricted to four letters in similarity to both Mach

and Unix

EPOC RISC Architecture — another early name for what we
now call Symbian OS

Executive Vice President — the job title used in Symbian
for executive managers who report direct to the CEO
(Chief Executive Officer)

Face To Face — a meeting where people are present in the
same room, as opposed to a telephone or electronic
discussion

Frequently Asked Question. Any team committed to the
principle of reuse should consider creating a database of
FAQs, to speed up general learning

Freedom Of Multimedia Access — the name given by NTT
DoCoMo in Japan for the Ul system (and associated
platform) that runs on their smartphones

280

FTE

FUT

GSM

HAI

IDE

10T

ISC

ISV

MMS

00

ANNOTATED GLOSSARY OF ABBREVIATIONS

Full Time Equivalent. This is used in the context of
resource estimates, as in “/10 FTE”’, meaning that there
could be 20 people assigned to the project, each working
half-time on it (or 5 people working on it full-time, and
another 10 people each working half-time, etc.)

Friendly User Tests — a system of beta testing in which
selected users agree to provide helpful feedback on their
usage of the smartphone product as their main phone

Originally (in French language) Groupe Spéciale Mobile;
then anglicized to Global System for Mobile
[Communications]. A wireless digital baseband technology
that is in use in virtually every country in the world

Hardware Adaptation Interface — the set of functions
expected by a platform to be provided by
hardware-dependent lower-level plug-ins such as device
drivers

Integrated Development Environment — a core
development tool with multiple features, including support
for plug-ins with extra functionality, providing developers
with a unified dashboard for editing code, compiling it,
debugging it, and (usually) a whole lot more. Most of
Symbian OS was developed using Microsoft’s Visual
Studio IDE

Inter Operability Tests — to confirm that the product
inter-operates well with other products on the market; this
is sometimes also abbreviated to IOP (Inter OPerability)

Inter Systems Communications — referring to the
communications between the applications processor and
the baseband processor

Independent Software Vendor — a company (or person)
who writes software intended to be added into
smartphones

Information Technology — the department in a company
that looks after corporate email, computing resources, and
other information systems; this is also often called IS
(standing for Information Systems)

Multimedia Messaging Service — in which mobile phones
can exchange messages that include multimedia elements,
such as pictures, audio, and video

Object Oriented (or Object Orientation, etc.) — a design
system for large software systems that is in almost
universal usage

OPL

(ON
OTA

PDA

POOC

PSD

QA

RA

RAM

RISC

ANNOTATED GLOSSARY OF ABBREVIATIONS 281

Organizer Programming Language — a programming
language invented by Psion, with some features of Basic
and others of C. It was supported on the Organiser Il, then
on SIBO, then on Symbian OS, and allowed users to
create surprisingly powerful applications on the devices
themselves. Recently OPL has been rechristened as “Open
Programming Language”’

Operating System

Over The Air — a way of sending messages, updating
applications, or patching the operating system, etc., using
the telephony networks, rather than a local connection to
a PC or storage disk

Personal Digital Assistant — one of many names for a smart
handheld computer

Psion Object Oriented C — the proprietary in-house system
used to create SIBO software

Partner Solution Directory — a directory listing from
Symbian, available to phone manufacturers, that lists
solutions from device creation partners that are known to
be available for incorporation into current smartphone
projects

Quality Assurance — the group with responsibility for
determining whether the product has high enough quality
to allow it to be released

Requirements Analyst — someone assigned to write and
review requirements documents, checking for clarity,
proposing measurable outcomes, and unearthing implicit
assumptions

Random Access Memory. More generally, the “RAM”
usage of a product is the amount of working memory
it needs

Reduced Instruction Set Computer. The opposite of RISC is
CISC — Complex Instruction Set Computer, such as those
based on the x86 architectures. Smartphones typically
have RISC hardware, for reasons of cost, execution speed,
and simplicity of design. During 1993 and 1994 Psion
considered targeting its forthcoming EPOC32 software to
x 86 computers, but decided in the end to target RISC,
with a particular focus on the chips designed by ARM

282

ROM

SC

SCB

SCM
SDK

SIBO

SIM

SMS

SPI

SS

TA

™

Ul

ANNOTATED GLOSSARY OF ABBREVIATIONS

Read Only Memory. More generally, the term “ROM”’
often refers to the set of software that is built into a
smartphone, or (for an add-on application) the amount of
storage space taken up by an application when it is
installed onto a smartphone

Source Compatibility — where the APIs of two platform
versions are such that source code which compiles on one
version will successfully compile on the other without
modification

System Compatibility Board — a team of senior engineers
which reviews any BRs submitted to it by engineers on the
project team

Software Configuration Management. See CM

Software Development Kit — containing descriptions of
how developers can use APIs; SDKs are freely available for
download from www.symbian.com

“’Slngle Board Organizer’” and/or *‘Sixteen Bit
Organizer’” — a name often used for the 16-bit precursor to
Symbian OS (see EPOC for more details)

Subscriber Identity Module — the small card that is inserted
into GSM phones so that they can talk to the
telephone network

Short Message Service — the technical term for mobile
phone text messages

Service Provider Interface — the equivalent of API for
providers of service-enablers

]//

Show Stopper — a defect that will “/stop the show”” in the
sense of preventing product release, rather than the
common meaning: something so good the show will stop
as the audience applaud

Technical Authority — a senior engineer who is the
acknowledged expert for a given area of software
functionality

Time To Market — how long it takes you to create a
product and bring it to the market

User Interface — software that includes menus, buttons,
lists, edit windows, dialogs, and so on, allowing the user
to input data to applications

uIQ

usD
USP

XIP

ANNOTATED GLOSSARY OF ABBREVIATIONS 283

The pen-enabled Ul system provided by UIQ Technology.
“UlQ" is said to be short for ““Ul with 1Q”". The “Q’’ also
refers to ““Quartz”, the original codename for this Ul
system, referring in turn to “’Quarter VGA”, which was the
screensize originally targeted

United States Dollars

Unique Selling Point — a reason for someone to buy one
product rather than another

eXecute In Place - a system whereby programs can be run
directly from ROM without needing to be loaded into RAM

Appendix 2
Selected bibliography

The best source of information about books on Symbian is the web
page of Symbian Press at www.symbian.com/books. New books are
being publicized on this site on a regular basis.

For more information about the ways smartphones are transforming
society, see:

Q Smart mobs: the next social revolution, by Howard Rheingold
Q Mobile disruption: the technologies and applications that are driv-
ing the mobile internet, by Jeffrey Lee Funk.

For more about disruptive technologies and network effects for new
products, see:

Q The innovator’s solution: — creating and sustaining successful
growth, by Clayton Christensen and Michael Raynor

Q The slow pace of fast change: bringing innovations to market in a
connected world, by Bhaskar Chakravorti.

For general advice about high-quality software engineering, see the
following by Steve McConnell:

Q Software project survival guide
O Rapid development
a Code complete.

Four books that had a big influence on Psion’s emerging understand-
ing of OO and C++ during the 1980s and 1990s, and which are still
well worth reading:

Q Object-oriented programming: an evolutionary approach, by
Brad Cox
Q Object-Oriented software construction, by Bertrand Meyer

286 SELECTED BIBLIOGRAPHY

Q Object-Oriented analysis and design with applications, by Grady
Booch

Q Taligent’s guide to designing programs: well-mannered object-
oriented design in C++

Q The design and evolution of C++, by Bjarne Stroustrup.

Other true classics in the field of software engineering management
which every software leader should reread every few years:

Q The mythical man-month: essays on software engineering, by
Frederick P. Brookes

Q Peopleware: productive projects and teams, by Tom Demarco and
Timothy Lister.

Some books that are, in their various ways, modern classics on
software engineering:

Q Refactoring: improving the design of existing code, by Martin
Fowler et al.

Q Large-scale C++ software design, by John Lakos

Q Software configuration management patterns: effective teamwork,
practical integration, by Stephen Berczuk and Brad Appleton

Q Joel on software: and on diverse and occasionally related matters
that will prove of interest to software developers, designers, and
managers. . ., by Joel Spolsky.

For the foundational ideas of critical chain project management and
avoiding suboptimization, see:

Q The goal: a process of ongoing improvement, by Eliyahu Goldratt
and Jeff Cox

Q Critical chain: a business novel, by Eliyahu Goldratt

Q Project management in the fast lane: applying the theory of con-
straints, by Robert Newbold

Q Breaking the constraints to world-class performance, by H. William
Dettmer.

For deep insight into combining agility and software process, see:

Q Lean software development: an agile toolkit for software develop-
ment managers, by Mary Poppendieck and Tom Poppendieck

Q Agile management for software engineering: applying the theory
of constraints for business results, by David J. Anderson.

SELECTED BIBLIOGRAPHY 287

For outstanding advice on the overall product development process,
please read:

Q The inmates are running the asylum: why high tech products drive
us crazy and how to restore the sanity, by Alan Cooper

Q The invisible computer: why good products can fail, the per-
sonal computer is so complex and information appliances are the
solution, by Donald Norman

Q Slack: getting past burnout, busywork, and the myth of total
efficiency, by Tom Demarco

Q Experimentation matters: unlocking the potential of new technolo-
gies for innovation, by Stefan Thomke

QO Managing the design factory, by Donald G. Reinertsen

Q Leading the revolution: how to thrive in troubled times by making
innovation a way of life, by Gary Hamel.

For inspiring ideas on how to take best advantage of collaboration in
large teams, | recommend:

Q How to make collaboration work: powerful ways to build con-
sensus, solve problems, and make decisions, by David Strauss and
Thomas C. Layton

Q King Arthur’s round table: how collaborative conversations create
smart organizations, by David Perkins

Q The wisdom of crowds: why the many are smarter than the few
and how collective wisdom shapes business, economies, societies
and nations, by James Surowiecki.

Some fascinating history books, that have in places more parallels
than you might expect with what happened at Psion and Symbian:

Q Showstopper: the breakneck race to create Windows NT and the
next generation at Microsoft, by G. Pascal Zachary

Q Piloting Palm: the inside story of Palm, Handspring and the birth
of the billion dollar handheld industry, by Andrea Butter and
David Pogue

Q Just for fun: the story of an accidental revolutionary, by Linus
Torvalds and David Diamond

288 SELECTED BIBLIOGRAPHY

Q Microsoft secrets: how the world’s most powerful software com-
pany creates technology, shapes markets, and manages people, by
Michael A. Cusumano.

Some other history books, which are also deeply inspiring in their
own ways, dealing with companies in or near the smartphone space:

Q Sony: the private life, by John Nathan

Q Matsushita leadership: lessons from the 20th century’s most
remarkable entrepreneur, by John Kotter

Q Breaking Windows: how Bill Gates fumbled the future of
Microsoft, by David Bank.

Four outstanding books about the conditions for companies to become
world leaders:

Q Good to great: why some companies make the leap. . .and others
don't, by Jim Collins

Q Mastering the dynamics of innovation: how companies can seize
opportunities in the face of technological change, by James Utter-
back

Q Crossing the chasm: marketing and selling technology products to
mainstream customers, by Geoffrey Moore

Q Will and vision: how latecomers grow to dominate markets, by
Gerard J. Tellis and Peter N. Golder.

Finally, five exceptional books about renewal, line management, and
developing true potential:

Q First, break all the rules: what the world’s greatest managers do
differently, by Marcus Buckingham and Curt Coffman

Q The 80/20 principle: the secret to success by achieving more with
less, by Richard Koch

Q Artful making: what managers need to know about how artists
work, by Robert Austin and Lee Devin

Q The power of full engagement: managing energy, not time, is the
key to high performance and personal renewal, by Jim Loehr and
Tony Schwartz

Q The 7 habits of highly effective people, by Stephen R. Covey.

Appendix 3

Acknowledgments

| have been fortunate to have a large number of deeply inspiring
teachers and mentors along my path towards smartphone product
engineering. On this occasion, | can only mention a small number. |
wish to give special thanks to:

0 My mother and father, Cath and Bill Wood, who gave me the best
possible start in life, and who have constantly shown me great
kindness and thoughtfulness

O lanKelman, the brand new mathematics teacher at Turriff Academy,
Aberdeenshire, who arrived fresh out of teacher training college in
1972 and proceeded on the as-then unheard of path of providing
13-year-olds (including me) with extra lunchtime classes on pro-
gramming in Fortran; that was my happy introduction to software
engineering

Q Bill Smith, the head of the mathematics department at Turriff
Academy, who let me loose for two weeks solid on the traveling
neighborhood mini-computer when it finally arrived at our school
in 1977

O Richard Harrison and Charles Davies, for offering me the chance
to work at Psion, in 1988

O My colleagues in all departments in Psion and Symbian over many
years, past and present, from whom | have learned innumerable
insights

Q The board of directors of Psion, especially David Potter, Colly
Myers, Charles Davies, and Marina Wyatt, for having the great
courage and astonishing foresight to create first Psion Software
(1996) and then Symbian (1998)

Q The smartphone visionaries in multiple companies who acted on
the conviction that Symbian should be created, including Anders

290 ACKNOWLEDGMENTS

Waesterlid, Michael Kornby, Hans Wagner, Mikko Terho, Juha
Putkiranta, Jerry Upton, Stephen Randall, Bill Batchelor, and Juha
Christensen

QO The members of the Symbian Press team at Symbian for their
support while writing this book, especially Phil Northam and
Freddie Gjertsen

a All members of the Symbian Press team at Wiley, especially Sally
Tickner and David Barnard

Q Everyone at Symbian who provided me with comments on drafts of
the material in this book, including Richard Harrison (who tirelessly
reviewed every single word in a few short weeks), Freddie Gjertsen,
Twm Davies, Kang Hun Lee, Kevin O’Neill, Ben Morris, Peter
Jackson, Tony Lofthouse, George Purchase, John Pagonis, Matt
Davies, David Mery, Peter Ferguson, Adrian Steward, Christophe
Le Coent, and Andrew Margolis. All errors and the numerous
stylistic quirks that remain are, of course, my own responsibility

Q The authors of the books | have listed in the Bibliography, for pro-
viding me with incalculable inspiration and instruction. | heartily
recommend these books to people wanting to follow up the ideas
in my own book: readers will see the origins of some of these ideas,
and will find many fine explanations that go into considerably more
depth on key points

QO My incomparable soul-mate, Hyesoon, and our wonderful son,
Erroll, for their encouragement and support during my periods
of absence while writing this book, and during very many other
periods of absence over nearly 20 years as | have attended to one
project emergency after another.

3G networks 7

.DEF files 108

.DLL files 85, 108, 118,
279

.IBY files 140

.LIB files 85

.OBY files 140

abstraction principles 118

access

types 115-16
violations 219

accidental complexity
238

account management
160, 225-6, 257-8

““accuracy’”’, ERA document
191

active objects 206-7,
229, 246-50

add-on services 7,15, 19,
26, 54-5, 111,
116-17, 126, 143

adult entertainment 53

advanced investigations,
defects 80-1

adverse side-effects, change
requests 100

Affiliate Partner program
38-40

agenda application 77

aggressive/defensive
scheduling 156-8

agile scheduling 154-60

agility needs, change
requests 68, 85-6,

Index

88-90, 100-2,
117-18, 146, 154,
234-5, 240, 253 -4,
259

Al see Artificial
Intelligence

alarms 222

algebra analogy, Symbian
OS 182-3

algorithm designs 202-4

“alloc heaven’” 213, 222

allocators 213, 222

“’always on” devices 7,

17
““always ready to ship”
quality 106

amazon.com 6
Amstrad PenPad 242
““analysis paralysis’”” 179,
239
AOL 6, 48
APls see Application
Programming
Interfaces
APPARC 188
appendices 277-90
AppForge Crossfire 235
Apple 241
Application Processors
(APs) 19, 28-9,
277
Application Programming
Interfaces (APIs)
concepts 4-5, 10-18,
39-40, 55-6,

61-2,114-18,
142-3, 200-1,
231, 249-50, 277

interface access/status
115-16

multiple layers 11

native/restricted
programmability
11-12, 55-6

applications 4-5,9-18,

20, 34-56, 87-95,
124, 188-96, 200-1,
216-17,222-3
see also software
catalogue 42-4,
124-5
closure options 222,
227,249
concepts 4-5,9-12,
20, 34-44, 45-56,
87-8, 124
188-96, 2001,
216-17,222-3
ISVs 34-44,114-16,
257-9
live interactions 47
multitasking 46-7,
124,216-17, 247,

250
phone-call interruptions
43,216-17,
222-3,250
priorities 43, 162-3,
250

292

applications (continued)
re-use principles
176-7,181-2,
194-6, 206-7,
236-40
sources 10, 19-20,
33-44
appraisals, human
resources 268-70
APs see Application
Processors
AQA service 49,277
architecture
diagrams 238-9
principles 14
software 14, 188-96,
198, 208-10,
238-9
ARM mode 139, 143,
189, 196, 277
Artificial Intelligence (Al)
47-8, 54,277
assembler 198, 204, 208
asserts 139
asynchronous event
sources 246-50
attitudes, defects 220-1,
258-9
audio 19, 48, 52, 229
see also multimedia
audits, large-project
documentation
66-7
authentic/inauthentic
scheduling 158-9
automated emails
see also emails
defect notification 83
automated tests 128-9,
142
see also tests

backups 16, 112,272-3

backwards compatibility,
concepts 110-18

bad news, early reports
271-2

INDEX

BAFL 188-9
Barnes, Huw 205-6
base-porting phase,
projects 27-9, 91
Baseband Processors (BPs)
19, 28-9, 278
baselines 98-106, 141-2
"“always ready to ship”
quality 106
concepts 98-106,
141-2
integration management
98-106
Basic Acceptance Tests
(BAT) 103-4, 123,
132,277
see also tests
Batchelor, Bill 4, 242
batteries 5-6, 14, 17, 20,
199, 200, 215-16,
248
bbcnews.com 6
BC see Binary
Compatibility
benchmarking 259
BenQ 13
beta testers 216
bibliography 273-4,
285-8
Binary Compatibility (BC)
109-12, 114-15,
125,278
binary files, software
108-12, 114-15,
125, 139-41
BITGDI 188
Blackberry 50
blame cultures 196
blogging 52-3
Bluetooth 29, 37, 53, 54,
125,128, 272
bonus payments 152, 171
Booch, Grady 246
bookmarks 49
“boot camp’’ training 265
bottlenecks 136-7,
155-6, 200

bottom-up estimates,
end-dates 156, 200

BPs see Baseband
Processors

brainstorming sessions
256-7

branching concepts,
configuration
management 90-5,
174

brands, reputations 27,
112, 227,263-4

Break Requests (BRs) 113,

278
breakpoints, debuggers
133
breaks 102, 107-18,
131-2,278
interface breaks 102,
107-18
tools 131-2
breakthrough differentiation
222-3
BREW 11
BRs see Break Requests
buddies 47-8

buffer overruns 210-11
bug compatibility, concepts
110-11
build configuration
139-41
build farms, PCs 140
build system 139-41
see also tools
builds 97-8, 100-2,
103-4, 108-12,
139-41
failures 103-4
integration contrasts
97-8
long chains 112
partial builds 109-10
rebuilding limits
108-10
rhythm effects 100-2
bundled software, ISVs
35-7
buttons 47

C++ 4,108, 189, 204-5,
207-11, 217-19,
249-50, 278

C32 188

C 198, 204, 209

cache 203

CActiveScheduler
247-9

call stack, debuggers 133

camera phones 7, 52

Cancel 249

cancel options, applications
222,227,249

career paths 269-70

Carphone Warehouse 37

cartoons, messaging 47-8

Casio 241

catch-up integrations,
codeline strategy
93-5

category translator 208

CBase 138

CBR see Component-Based
Release tool

CCB see Change Control
Board

CControlEnv 213-14

CDB see Code Data Base

CDMA protocol 19,
27-9, 128, 272-3,
278

celebrities 233

Change Control Board
(CCB) 149-51, 278

Change Requests (CRs)

68, 85-6, 88-90,

100-6, 107-18,
145-60, 195-6, 240,
278

see also support and
maintenance

adverse side-effects
100

agility needs 68, 85-6,
88-90, 100-2,
117-18, 146, 154,
234-5, 240,
253-4, 259

INDEX

causes 147-8
CCB 149-51, 278
controls 113, 148-60,
272-4
“’design for change”
146
gate-keeping principles
101-6
handling methods
148-51
interface management
107-18
management
responsibilities
114-15, 148-60
scope incorporation
234-5
“Chinese whispers” 64
chips see silicon chips
Christensen, Juha 4, 243
Circuit City 37
Cirrus Logic CL-PS7111
189
see also Eiger
“‘clarity of design”’, ERA
document 191
“‘clarity of documentation”’,
ERA document 191
‘‘clarity of interface”’, ERA
document 190
classes 118, 138-9, 143,
207-19, 238-9
“cleanliness of interface”,
ERA document 191
Cleanup 138
cleanup stack 138,
218-19
CleanupStack 219
closed phones
see also feature phones
concepts 45-6
closure options,
applications 222,
227,249
clutter, source code 202
CM see Configuration
Management

145-60

293

codevelopments 236-7,
244-5
co-located teams 259
code 4,15,38-9, 61-4,
85-95, 105-6,
108-10, 132-41,
198-202, 239-40
see also source code
code-complete point
27-9
manual code
manipulation 88
0O 205-11, 239-40,
246-50, 280
Code Data Base (CDB)
142-3,278
codeline diagrams 94-5
codeline strategy 90-5,
98-100, 174
authorized
conflict-handler
94-5
configuration
management
90-5, 98-100, 174
multiple projects 93-5
““codesize’”’, ERA document
191
collaboration 4, 270-5
collective experience,
smartphones 15
comfort zones, aggressive
schedules 156-7
mCommerce 51
commercial market 4-5,
6,7-9,21-7,29-30,
33-4, 36-8, 242-50,
257-8
commitments
reliable commitments
165
software management
processes 64-71
Commodore VIC 20 197
comms leads 16, 125
communication
emails 50, 64-5, 83,
275

294

communication
(continued)

failures 256-9,271-2

groupware needs
64-71, 121

human needs 5, 165,
271-2

interface management
113

large projects 63-71,
165, 254-9, 271-2

““loss of communication”’
runtime error 215,

232

teams 254-9, 264-5,
271-2

trends 6-9, 45-56

Communicators 243
community-oriented
services 7-8, 13
Companion Technology
Program (CTP) 40-2
Compaq 241
compatibility issues
interface management
109-18, 124-5
responsibilities 114-15
SCB 112-13, 282
virtuous cycle 111-12
competition factors 4-5,
12,176, 195, 229-30
ISVs 36
operating systems 13,
15, 195
smartphone alternatives
229-30
competitive advantage
176, 229-30
compiled code, concepts
108-10, 138-9,
204-5
complete testing
see also tests
complexity factors,
smartphones 17-18,
35, 61-4, 95, 142,
175-84, 193, 195,
238-9,272-5

119-20

INDEX

Component-Based Release
tool (CBR) 86,
141-2,278

computer science 202-3

conditional logging code

137
CONE 188-9
confidentiality issues, large
projects 65,71,
261-3

Configuration Management
(CM) 16-17, 63,
85-95, 97-100,
105-6, 139-41,
169-70, 174, 180

authorized
conflict-handler
94-5

basic principles 89-90

codeline strategy 90-5,
98-100, 174

concepts 16-17, 63,
85-95, 97-100,
105-6, 139-41,
174, 180

databases 89-95

large projects 63,
85-95, 97-100,
105-6, 139-41,
174

learning 86-8

roles 85-6

tips 85-6, 174

tools 85-6, 95

weak uses 88

configurations, definition
85-6

conflict resolution, source
code 90

connections, information
263-4

constructors 205

consultants

costs 30-1, 168,
261-2

impromptu discussions
265

information leakage

261-3

non-disclosure systems
262

partnership role 266

planning 168, 259

proactive code reviews
265-6

support and maintenance
261-6

“uncles’” 265

uses 261-6

consumer electronics
5_7,48

see also mobile phones
consumers see users
contacts applications 16,
87
contingencies 148-9,
151-60, 172, 217

contracts 24, 36, 99, 254,
258-9
Control Environment 188,
213-14
controls
change requests 113,
148-60, 195-6,
272-4
interface management
113,272-4

copy projects 31
““copy-and-tweak”
problems, source code
201-2, 207
corporate information
organizers 50,
272-3
corporate IT departments
37
corrupt sectors, disks 220
cosmetics 225-6, 228
costs
computer power 7,
198-200
consultants 30-1, 168,
261-2
manufacturing 233
projects 31-2

Cox, Brad 207
CPU bandwidth 210, 278
crash debugging 134
creation contrasts,
integration 97-8
creative tension 271
credit cards 51, 54
critical chains,
development 146,
155-6
critical test areas 81
cross-reference tool 143
CRs see Change Requests
CTIA 173-4
CTP see Companion
Technology Program
cultural fit,
integrated-solutions
providers 21
cultures 21,196, 271-2
customers
see also users
authority 159
brand reputations 27,
112,227, 2634
competing products
229-30
documentation focus
67,231
enchantment factors
226-32
ISVs 35-44
lead customers 182
learning benefits
14-15
planning 146-7,
159-60, 165, 171
relationship management
20, 36, 38-9, 65,
71,1467,
159-60, 165, 171,
181-2,225-32,
274-5
satisfaction 146-7,
159-60, 171, 195,
225-32,272-5
smartphone alternatives
229-30

INDEX

customization benefits 7,
26,36, 223,272-5

““Dancer.OPQ"”’, Psion 53
data compatibility,
concepts 110-12
data hiding 118
data integrity 14, 17
data throughput 203
databases 40, 54, 64—-84,
89-90, 188-92, 198
configuration
management
89-95
defects 73-84, 132
groupware 64-71,
73-84, 132
on-demand output
requests 83
project communications
64-5
world cities and
countries 198
Datapak 197
dating facilities,
smartphones 53
Davies, Charles 198,
205-6, 208, 242, 246
DBMS 188
deadlock 134
debuggers 132-5, 142,
144,213
defects 26-7, 32, 36-7,
63, 69-70, 73-84,
88, 103-6, 110-13,
119-29, 132-4,
173-4,195-6,
220-1,228,231-2,
258-9
see also failures
advanced investigations
80-1, 84
attitudes 220-1,
258-9
categories 78-82, 228
complacent attitudes
221
databases 73-84, 132

295

debuggers 132-5

defensive attitudes
220-1

denial attitudes 221

embarrassing example
76-8

fixes 73-84, 85-6,
88-95, 103-4,
110-12

immediate-patch-
requirement
category 78-9,
112,228

incident reports 73-84

layers 80

logs 81, 137

management 63,
69-70, 73-84, 88,
103-6, 110-12,
119-29, 1734,
220-1, 228,
231-2,258-9

“’ping-pong’’ dangers
84

priorities 73-4, 78-9,
82,228

quality issues 26-7,
32,36-7, 63,
69-70, 73-84,
103-6, 119-29,
173-4,195-6,
220-1,231-2,
258-9, 281

released products
75-8, 110-12

shipping decisions
75-8

showstopper category
78-9, 228

skilled investigators
80—1, 84

statistics 80-1, 83, 84,
132

status values 74-82

team-leader roles
83-4, 120-9

tracking processes 70

296

defensive scheduling
156-8
delays 22-32,171-2
see also timescales
demo releases 173-4
demotivating processes,
human resources 68,
158, 196
denial approach, large
projects 62
DepModel tool 143
depots 89-90
see also databases
Deprecated status,
interfaces 115-16
descriptor classes 209-11
"“design for change” 146
designs 14, 20-1, 30-2,
35, 89-90, 134,
145-7,172-4, 184,
187-211,225-40
active objects 206-7,
229, 246-50
algorithm designs
202-4
codevelopments
236-7,244-5
concepts 20-1, 30-1,
181-4,187-211,
225-40
customer satisfaction
146-7, 159-60,
171,195, 225-32,
272-5
diagram-drawing tools
238-9
differentiation factors
14, 26, 32, 55-6,
139, 222-3,
233-40,272-5
enchantment factors
226-32
evolutionary products
26,32, 36, 45-6,
117-18, 17780,
233-40, 274-5
experimentation benefits
234-5

INDEX

feedback benefits
234-5,274-5

geographical variants
139, 233

get-event loops 247-9

ignorance factors
239-40

industrial designs 233

iterative development
100-2, 163-5,
177-80, 239

licensing considerations
241-2

longevity considerations
233-40

multimedia performance
229

panics 231-2,248-9

peripherals 233

power management
247-9

prototyping systems
174, 235

re-use principles
176-7,181-2,
194-6, 206-7,
236-40

reference designs
20-1,30-1,181-4

SDKs 39, 61-2,
115-16, 235-6

software architecture
14, 188-96, 198,
208-10, 238-9

Symbian OS goals
187-96

usability considerations
194-6, 225-32

variants 14, 26, 32,
55-6, 139, 222-3,
233-40, 272-5

destructors 205, 209, 219
Developer Kit License

(DKL) 38-9, 41, 279

development codelines

92-5, 98-100

development costs, projects

22-32

development phase,

concepts 145-7

development teams 3,

8-9, 18, 19-32,
61-84, 97-106,
154-60, 177-80,
196-211, 230-1,
236-8, 253-9
264-5,268-75
see also human
resources; projects
appraisals 268-70
attitudes 201, 220-1,
230-1, 237
best practices 201-11,
230-1, 233-40,
271-5
career paths 269-70
carefree developers
201
codevelopments
236-7,244-5
co-located teams 259
collaboration principles
270-5
communication
guidelines 254-9,
264-5,271-2
customer satisfaction
146-7, 159-60,
171, 195, 225-32,
272-5
love-of-technical-detail
problems 230-1
“nine passions”’
presentation
193-6
previous teams 264-5
re-use principles
176-7, 181-2,
194-6, 206-7,
236-40
recruitment 265, 271
team-building tips
256-7,264-5,
271-2
training 30-1, 131,
236, 265

device drivers, base-porting
phase 27-9, 91

DevKit see Developer Kit
License

diagnostic checks,
debuggers 134

diagram-drawing tools
238-9

DIAL 188

differentiation factors 14,
26, 32, 55-6, 139,

222-3,233-40,
272-5
digital universe, concepts
6-7,33, 48
“dirty’” devices 112
discussion forums 263-4
disruptive aspects,
smartphones 61-2,
183-4
distribution
strategy 95
tools 141-2
DKL see Developer Kit
License
documentation
audits 66-7
concepts 63-71, 80,
85-6, 121-2, 141,
145-7, 231
configuration
management
85-6
customer-focus needs
67,231
large projects 63-71,

85-6, 121-9, 141,
145-7, 231
paperwork 68
tests 80, 121-9
types 66, 145-7
domain-matter complexity
206-7
dynamic libraries
108, 118
dynamic planning
253-4

85-6,

INDEX

E32 121,187
see also EPOC32
E-books 49
EALWL 188
early adopters 225
East, Simon 243
““eating our own dogfood"’
attitudes 77
ebay.com 6
eCommerce 51
ecosystem 26, 32, 36,
45-6,117-18,271-2
Eden Group 242
education, processes
67-8
“efficiency”
see also performance...
“‘nine passions’’
presentation
194-6, 197-211
Eiger 189-92
eighty-twenty rule,
planning 161-3,
167-8
EIKON 188-9
EKA2 274-5,279
“’Eliza’” mainframe program
54
emails 50, 64-5, 83, 275
emotional appeal 225-6
emulators 135-6, 1434,
220, 235
encapsulation principles
118
enchantment factors,
customers 226-32
encryption keys,
confidential
information 65, 71
endorsement programs,
Symbian 38-44,
114-16, 124-5,
222-3
engines, “‘separating the
engine” 192-3, 237
enum 143
EPOC16 86-7,279

297

EPOC32 4,70, 187-96,
198, 208-10, 278,
279

see also Symbian OS

“epoc.ini” file 136

EPOC RISC Architecture
(ERA) 188-96, 198,
208-10, 278, 279

ERA see EPOC RISC
Architecture

Ericsson Dataphone GS18
245

escalation change control
board 150-1

ESOCK 188

essential complexity 238

estimates, variable task
estimates 1514,
167-8

ETEL 188

ETEXT 188

etiquette of newsgroups
263

Evalid tool 109, 140

event sources 14, 206-7,
229, 246-50

eventually mandatory
features 166-7

evolutionary products 26,
32, 36, 45-6,
117-18, 177-80,
233-40, 274-5

exception handling
204-5,217-19

experimentation benefits
234-5

extended teamwork 271

extension DLLs 118

extranets 70

F2F see Face-To-Face

F32 121,188

Face-To-Face (F2F) 64,
69, 279

failures 102, 103-4,
107-18, 131-4,
214-23,231-2,
234-6,267-8,271-2

298

failures (continued)
see also defects
build/test failures
103-4
communication
256-7,271-2
debuggers 132-4
early reports 271-2
interface breaks 102,
107-18
reviews 267-8
success links 234-6
tests 103-4, 220
tools 131-2
FAQs 195, 264, 279
far-away pieces of code
107-8
fashions 5,225-6
FBSERV 188
feature phones
smartphones 45-56,
61-2,76,119, 168
tests 119-20
features 14, 30-2,
45-56, 61-2, 76,
117-18, 161-74,
194-6, 222-3,
233-40,272-5
differentiation factors
14, 26, 32, 55-6,
139, 222-3,
233-40, 272-5
priorities 161-2,
165-7,172-4
feedback benefits 127,
226,228, 234-5,
274-5, 280
““file not found”’, runtime
error 215
finance uses, smartphones
50
financial approval systems
259
financial payback 179
first-order estimates
167-8
fixes

INDEX
defects 73-84, 85-6,
88-95, 1034,
110-12
peer reviews 79-80,
138-9

quick-fix dangers 104
side-effects 75, 104,
110-11
tests 79-81, 103-4
verification processes
79-80, 82
flicker-free redrawing 229
flow modes 157
“fluffy blobs”” 239
focus
“nine passions”’
presentation
194-6
project management
253-4
strategy 242-4
Symbian 14, 17-18,
194-6, 242-4
focus list 66, 69
FOMA Ul 20, 279
“For Symbian OS” logo
43-4
FORM32 70
FORM 188
formal databases, project
communications
64-5
formal processes, large
projects 63, 67-71
forums 263
forwards compatibility,
concepts 110-18
frequent releases, benefits
177-80, 274-5
Friendly User Testing (FUT)
125-8, 226, 228, 280
see also tests
front-end items 166-7
FTA see Full Type Approval
Fujitsu 13
Full Type Approval (FTA)
128

functional test
specifications
see also tests
concepts 121-9
FUT see Friendly User
Testing
future prospects 33-4,
45-56, 117-18,
234-5,238, 243-50,
272-5
future-proofed software
117-18, 238
fuzzy tasks 170

121-9

G32 188

gaming 8, 39, 48

garbage parameters
231-2

gate-keeping principles,
integration
management

Gates, Bill 199

GDI 188

“generality”’, ERA
document
192

geographical variants
139,233

GEOS operating system
243

GeoWorks 243

"“get rich quick’” schemes
176

get-event loops 247-9

goals, management by
objectives 269

'‘going out of scope”’
dangers 249-50

google.com 6, 49

graduate recruits 271

101-6

189-90,

graphics 11, 19, 40,
47-8, 193, 225-7,
229,273

see also multimedia
Gretton, Mark 189, 242
groupware

central documents 66

concepts 64-71,
73-84, 121
defects database
73-84, 132
large projects 64-71,
73-84, 121
short-cut pitfalls 69
Symbian’s uses 69-71
GSM protocol 19, 27-9,
128, 173 -4, 2445,
272-3,280, 282
GUl 87

HAIs see Hardware
Adaptation Interfaces
"“half computer half phone”
concepts,
smartphones 54
Handango.com 37
handheld PDAs see PDAs
"’hard to reproduce” defect
category 80-2
hardware 7-8, 11, 14,
19-20, 21, 27-32,
40-2, 73-84,
198-200, 272-5
see also smartphones
Apple 241
batteries 5-6, 14, 17,
20, 199, 200,
215-16, 248
high-level components
19-20
IBM 234, 241-2
laptops 3, 125, 192,
197,273
Moore’s Law 7,
198-200, 203, 272
PCs 8, 135-6, 140,
143-4, 168, 195,
197, 220, 230,
241-2,273
silicon chips 11,
19-20, 21, 28-9,
91-5
software performance
14, 136-7, 195,
197-211

INDEX

trends 7-8, 45-56,
272-5
Hardware Adaptation
Interfaces (HAIs)
40-2, 280
Harrison, Richard 192
hash values 203
HBuf 211
HCIL 188-9
header files 85-6, 109,
141-2,213
Healey, Nick 243
health-monitoring benefits,
smartphones 53-4
heap 211, 220
heavyweight education,
large projects 67-8
heavyweight processes,
large projects 67-8
high-level components,
smartphones 19-20
"highly desirable’ features,
products 162
honesty 165
HOOD 246-7
hot lists, planning
168-9
hourglass icons 226
HP 241
Huffman compression
198
human needs,
communication 5,
165,271-2
human resources 21-3,
30-2, 35, 61-71,
131, 145-60, 220-1,
236, 251-75
see also development
teams; people
appraisals 268-70
career paths 269-70
constructive-
vindictiveness skills
220
defensive attitudes
220-1

162-5,

299

demotivating processes
68, 158, 196

FUT 126-8, 226, 228

training 30-1, 131,
236, 265

IBM 234, 241-2
ICQ 48
ideas 20-1, 194-6,
233-40, 2623,
274-5
IDEs 143, 280
ignorance factors, designs
239-40
Ilium GSM phone 244
illustrated organization
charts, large projects
66, 69
immediate-patch-
requirement category,
defects 78-9, 112,
228
impact analysis 150-1
import codelines 91-5
in-house newsgroups 264
inauthentic scheduling
158-9
incident reports
see also defects
closure status 82
incomplete knowledge,
dangers 30
incremental development
model, Symbian OS
26-7
incremental ROM updates
142
Independent Software
Vendors (ISVs)
33-44,114-16,
222-3,257-9, 280
see also third-party
suppliers
common mistakes
35-6
competitors 36
concepts 33-44,
114-16, 257-9

73-84

300

Independent Software
Vendors (ISVs)
(continued)

CTP 40-2

customer types 36-8

late entrants 36

opportunities/risks
33-6

publisher companies
37-8,115-16

routes to market 36-8

support and
maintenance 37

Symbian endorsements
38-44, 114-16,
124-5,222-3

Symbian Signed program
42-4,114-16,
124-5,222-3

indexed data 203

Induction Day sessions,
Symbian OS 193-6

industrial designs 233

inflation dangers, priorities
79

informal processes, large
projects 63

information
see also data...;
knowledge
bibliography 273-4,
285-8
confidentiality issues
65,71,261-3

connections 263-4
groupware 64-71,
73-84, 121
leakage 261
logs 81,137
networks 4, 6, 39,
263-4,273-5
sharing benefits
63-71, 275
sources 4, 6, 39,
263-4,273-4,
285-8
infrared 125
inline functions 205, 209

INDEX

innovations 20-1,
194-6, 233-40,
262-3,274-5

Instant Messaging 47-8

integrated-solutions
providers, concepts
20-1

integration management

authority issues 100-1

baseline releases
98-106

builds 97-102

concepts 97-106

contracts 99

creation contrasts 97-8

discipline needs

105-6, 180
failures 1034
gate-keeping principles

101-6
iterative development

100-2, 177-80,

239

large projects 63, 66,
69, 93-5, 97-106
mainlines 98-106
multiple submissions
105
smartphone projects
20-1, 63, 66, 69,
93-5,97-106
tests 101-6, 114-15,
116, 123-9
tips 101-2
weekly cycle 104-5
integration schedule
100-6
intellectual capital 15,
257-8
intelligent phones
see also smartphones
evolution 6
Inter Systems
Communications (ISC)
19, 28-9, 280
Inter-Operability Tests
(10Ts) 29, 125, 280

interface breaks 102,
107-18
interface management
access/status types
115-16
communication needs
113
compatibility issues
109-18, 124-5
concepts 107-18, 180,
190-1
controls 113,272-4
future prospects
117-18
large projects 63, 95,
102, 107-18
rebuilding limits
108-10
responsibilities 114-15
versioning 116-17
Interim status, interfaces
115-16
internal blockages, project
management 258-9
internal busy-loops 248
internal teamwork 270-1
“internationality”’, ERA
document 190
Internet sales websites, ISVs
37
intranets 70
“intuitive UI”
investments
risks 34
stockmarkets 50
IOTs see Inter-Operability
Tests
IRDA 188
ISC see Inter Systems
Communications
issue list see focus list
IssueBits 49
ISVs see Independent
Software Vendors
iterative development
100-2, 163-5,
177-80, 239

227-8

Java 11,29, 128, 209,
235

KErrNone 218
keypress combinations
51,136, 227-8
design considerations
227-8
emulators 136
knowledge 30, 49-50,
54,63-71,261-3
see also information...
accumulated societal
knowledge 49
capturing needs 63
groupware 64-71,
73-84, 121
incomplete knowledge
30
maps 66, 69
mobile knowledge
49-50, 54
sharing benefits
63-71,275

language translators 49,
52
laptops 3, 125, 192, 197,
273
large projects
see also projects
concepts 61-95
small projects 63-4
late entrants 36
latency problems 199
layers, defects 80
lead customers 182
lead products 31
leaders see team leaders
“/lean and mean”’
approaches 195,
197, 206-7, 217
learning 14-15, 30-1,
63-71, 86-8, 1834,
275

INDEX

configuration
management
86-8
curves 183-4
customers 14-15
incomplete knowledge
30-1
sharing benefits
63-71, 275
Leave 138,218-19
LG 13
librarian activities, large
projects 71
libraries 71, 85-95, 141,
188, 236-7
licensing considerations
241-2
lifetime of objects
249-50
lightweight processes, large
projects 67-8
line management, skills
268-70
linttool 138
live interactions,
multitasking
applications 47,
124, 216-17, 247,
250
local area protocols 29,
37,53, 54, 125, 128,
272-3
localization, language
variants 139, 233
location-based services,
smartphones 54
lock ups 134
logo 43-4
logs, defects 81, 137
long build chains 112
long lead times 166-7,
180
longevity considerations,
designs 233-40
loss of communication”’,
runtime error 215,
232
Lotus Notes 69-70

301

see also groupware

“low battery”, runtime
error 215,232

“low disk space”’, runtime
error 215

“low system memory”,
runtime error 215,
232

luck 34

Macromedia Flash 47,

235
mainlines, codeline strategy
91-5, 98-106

““maintainability”’, ERA
document 191-2

maintenance releases,
codeline strategy
93-5

maintenance see support...

““make files”” 135

““manage up” skills 254

management by objectives
269

mandatory features,
products 161-2,
165-7

mandatory tests 128

see also tests
manual code manipulation

88
manufacturers
costs 233
mobile phones 8, 10,
13, 24-6, 233,
274-5
maps 54

marathon projects 268

market segmentation 26,
243

market threshold, sales 24

market windows 23-4,
32,75-6

market wisdom 196

marketing brochures
226-7

302

markets, commercial
market 4-5, 6, 7-9,
21-7,29-30, 33-4,
36-8,242-50, 257-8
MC200 192
MC400 192, 197
mCommerce 51
meetings, project review
meetings 255-7
memory 19, 28-9, 61,
76-7,109, 117,122,
140-2, 169, 173,
194-207, 213-23,
232,281-3
see also RAM...; ROM...
checks 214-15
emulator problems
135-6, 220
leaks 194-6, 213
“low system memory”’
runtime error 215,
232
Moore’s Law 7,
198-200, 203, 272
““memory efficiency”’, ERA
document 191
Mercury 179-80
messaging 5-6, 28-9,
47-8, 54-5
Metcalfe’s Law
(community-oriented
services) 7-8
metrics, milestones 171
Microsoft Windows
241-2
middleware
milestones
definition 170
delays 171-2
metrics 171
planning 148, 169-74
problems 171-2
purposes 170-1
reviews 169-71
short-cut pitfalls
Mitsubishi 13
MMS see Multimedia
Messaging

15, 40-2

172-4

INDEX

mobile phones
see also designs;
smartphones
concepts 3-18, 45-56,
241-50, 272-5
fashions 5, 225-6
functions 5-9, 45-56,
61-2,121-2,
272-5
manufacturers 8, 10,
13, 24-6, 233,
274-5
quality issues 5-6, 27,
29,32, 61-71,
73-84, 173 -4,
221,253-9
smartphone/feature-
phone contrasts
45-56, 61-2, 76,
119, 168
modular design, benefits
239-40
““modularity”’, ERA
document 190, 192
Moore’s Law 7, 198-200,
203, 272
‘more haste, less speed”
157
motivation, demotivating
processes 68, 158,
196
Motorola 13, 244-5
MP3 players 48, 230
MSIS 245
MSN 48
msn.com 6, 48
multimedia 11, 19, 27-9,
39, 47-8, 52—4, 229,
273,280
Multimedia Messaging
(MMS) 28-9, 47-8,
52, 54-5, 280
multiple inheritance
208-9
multiple submissions,
integration
management 105
multitasking

problems 216-17, 250
smartphones 46-7,
124,216-17, 247,
250
“munger”” 208
music 48,52, 229
Myers, Colly 4, 187, 198,
210, 242

naming convention 209,
218
native exception handling,
C++ 205,217-19
native programmability
APls 11-12,55-6
definition 11
navigation facilities,
smartphones 54
network computers 243
networks 6-9, 13,
14-15,19-20, 37,
73-84, 199-202,
263-4,274-5
applications 10, 37,
200-1
digital universe 6-7,
33, 48
fees 24-5
information 4, 6, 39,
263-4,273-5
latency problems 199
new generations 7-9
3G networks 7
trends 7-9, 45-56,
272-5
value network 7-8, 13,
14-15,37,274-5
never-poll rule 247-9
newsgroups 263-4
“‘nice to have’” features,
products 162
nine passions”’
presentation, Symbian
OS 193-6
Nokia 13,20, 243-5
non-disclosure systems,
consultants 262

nonfunctional test
specifications 122

“not a defect’’ response,
incident reports 74,
82

“not going to fix"’ response,
incident reports 75,
82

notifiers 222-3

NTT DoCoMo phones 20,
279

NULL 138

null threads 248

Object Orientation (OO)
205-11, 246-50, 280
Objective C 207-9
objectives, management by
objectives 269
on-demand output requests,
databases 83
on-line diaries 52-3
online games 48
see also gaming
online reputations 263
OO see Object Orientation
open phones
see also smartphones
concepts 45-6, 55-6,
61-2, 76, 249-50,
274-5
Open Programming
Language (OPL) 53,
235, 281
open-source projects
263-4
OpenGL 11
openness factors
native programmability
11-12, 55-6,
249-50
relationship management
165, 274-5
operating systems
see also Symbian OS
APls 10-12, 39-40
competitors 13, 15,
195, 229-30

INDEX
concepts 9-18,
187-98, 244-5
functions 9-11, 61-2,
197-8

operators see networks
OPL see Open
Programming

Language
opportunities
ISVs 33-5
smartphones 7-9,
33-5
optimization tools 136-7,
168-9
see also performance...
organizers 16-17, 197

see also Psion
organization charts, large
projects 66, 69
organizers 15-17, 50,
197,216, 227, 241-2
Over The Air (OTA) 37,
48-9,117, 281
over-optimism dangers,
timescales 30-1
overview 3-18, 35
Oyster system 51

Panasonic 13

panics 214, 231-2,
248-9

paperwork 68

Parkinson’s Law 152, 154

partial builds 109-10

“partially constructed
resources’’, runtime
errors 215-16

partner manager see
account management

Partner Solution Directory
(PSD) 39-40, 281

Partnering programs,
Symbian 4, 38-42,
115-16

partners 4, 20-1, 30-1,
38-42, 65,71,
115-16, 257-8,
263-6,270-2, 281

303

see also relationship
management
consultants 266
payment terms 258
passions
concepts
216
“nine passions’’
presentation
193-6
“password not given”,
runtime error 215
patches 78-9, 112, 228
PCs 8, 135-6, 140,
143-4,168, 195, 197,
220, 230, 241-2, 273
PDAs 3,7, 15,49-50,
125, 187-93, 198,
227,241-50, 281
PDT200 244-5
peer reviews 79-80,
138-9, 223, 265-6
pencil-and-paper diaries
230
people 20, 35,251-75
see also human
resources
“nine passions’’
presentation
193-6
skills 20, 35,268-70
Perforce 88
“performance’’, ERA
document 191
performance factors
11-12, 14, 68,
89-90, 136-7,
168-9, 191, 195,
197-211,217-23,
227,229, 268-70
see also efficiency...
algorithm designs
202-4
appraisals 268-70
benchmarking 259
best practices 201-11,
230-1, 233-40

193-6, 213,

304

performance factors
(continued)
bottlenecks 136-7,
155-6, 200
bottom-up/top-down
approaches 156,
200
compilers 204-5
exception handling
204-5,217-19
“/lean and mean”’
approaches 195,
197,206-7, 217
Moore’s Law 7,
198-200, 203, 272
multimedia 229
OO 205-11, 239-40,
246-50
optimization tools
136-7, 168-9
re-use principles
176-7,181-2,
194-6, 206-7,
236-40
robustness 194-6,
213-23,227
peripherals, design
considerations 233
personal coaches 54,
268-9
personal codelines 92-5
personal development,
smartphones 53-4
personal investors 50
personal organizers see

organizers
pessimistic belief systems
68
PGP encryption 71
Philips 244
phone calls 43, 46-7,
54-5,216-17,
222-3,250

photographs 52-3

“’ping-pong’’ dangers,
defect management
84

INDEX

“plan is king"” approach
146
planning
see also project
management
aggressive/defensive
approaches
156-8
agile scheduling
154-60
authentic/inauthentic
scheduling 158-9
concepts 63-71,
145-60, 161-74,
253-4
contingencies 148-9,
151-60, 172, 217
customer satisfaction
146-7, 159-60,
171,195, 225-32,
272-5
dynamic planning
253-4
eighty-twenty rule
161-3,167-8
hot lists 162-5, 168-9
large projects 63-71,
145-60, 161-74,
253-4
milestones 148,
169-74
reserves 148, 151-60
slack allowances
154-6, 200, 225-6
variable task estimates
151-4, 167-8
planning phase, concepts
145-7
platforms 26, 32, 93-5,
114-15, 196, 226,
235-6, 274-5
Platinum Partner program
38-40
PLIB access library 86-7
PLP 188
plug-ins 19-20, 27-9,
235-6

plumbing level, integrations
181

pocket consolidators,
smartphones 51-2

political problems, project
management 258-9

polling 247-9

POOC 208, 281

Pope, Alexander 30

“portability”’, ERA
document 190, 193

porting phase, projects
27-9

positive thinking 175

“post mortem’’ reviews
267-8

““post partum’’ reviews
267-8

Potter, David 197, 242

power management
247-9

PowerPoint 193

pre-integrated technology,
CTP 41

predictable delivery 146

predictive text 5

presence facilities 54

prices see sales...

priorities
applications 43,
162-3, 250
defects 73-4, 78-9,
82,228
features 161-2,
165-7,172-4
inflation dangers 79
processes

education 67-8
large projects 63-71,
95, 184
“nine passions”’
presentation
193-6
product design,
documentation 145,
231
product management 3,
14, 74-5,157-8,

160, 161-74, 225-6,
228, 254-5
product specs 145,
164-5
productization, projects
27-9,131, 161-74
products 3, 14, 19-32,
36-7, 63, 69-70,
73-84, 103-6, 131,
145-7,161-74,
175-84, 193-250
see also projects; sales
competing products
229-30
defects 26-7, 32,
36-7, 63, 69-70,
73-84, 103-6,
110-12, 119-29,
132-4,173-4,
195-6, 220-1,
231-2,258-9
delays 22-32
differentiation factors
14, 26, 32, 55-6,
139, 222-3,
233-40, 272-5
evolutionary products
26, 32, 36, 45-6,
117-18, 177-80,
233-40, 274-5
features 14, 30-2,
45-56, 61-2, 76,
117-18, 161-74,
194-6, 222-3,
233-40, 272-5
“"highly desirable”
features 162
mandatory features
161-2, 165-7
““nice to have” features
162
nine passions”’
presentation
193-6
roadmaps 178-80
variants 14, 26, 32,
55-6, 139, 222-3,
233-40, 272-5

INDEX

profilers 136-7
see also tools
profits per unit 24-6
project management 3,
147-74, 1946,
253-9
see also planning; team
leaders
appraisals 268-70
authority issues 258-9
best practice 147-8,
256-7,271-5
communication
guidelines 256-7,
271-2
concepts 147-8,
194-6, 253-9
focus 253-4
internal blockages
258-9
“nine passions”’
presentation
194-6
political problems
258-9
project review meetings
255-7
skills’ needs 253-4,
268-70
styles 253-4
technical leads 254-5
third-party suppliers
257-9
walking-about tool
257,265
project plans
see also planning
concepts 145-6,

1615, 168—74
documentation 145-6,
161-5

hot lists 162-5, 168-9
iterations 163-5
project review meetings
255-7
projects 3, 9-18, 19-32,
61-95, 100-2,

305

117-18, 146, 154,
234-5,253-4, 259
see also products;
timescales
agility needs 68, 85-6,
88-90, 100-2,
117-18, 146, 154,
234-5,253-4, 259
approaches 62-3
audits 66-7
big picture 19-32
codeline strategy 90-5,
98-100, 174
commercial model
21-7,29-30,
33-4,257-8
communication needs
63-71, 165,
254-9,271-2
concepts 3, 9-18,
19-32, 61-95
confidentiality issues
65,71,261-3
configuration
management 63,
85-95, 97-100,
105-6, 139-41,
169-70, 174, 180
consultants 30-1, 168,
259, 261-6
contingencies 148-9,
151-60, 172, 217
copy projects 31
costs 31-2
defect management 63,
69-70, 73-84, 88,
103-6, 110-13,
119-29, 1734,
220-1, 228,
231-2,258-9
delays 22-32
development costs
22-32
documentation 63-71,
85-6, 121-9, 141,
145-7, 231
emails 64-5, 83

306

projects (continued)

evolutionary products
26, 32, 36, 45-6,
117-18, 177-80,
233-40, 274-5

feature phones 55-6,
61-2,76,119, 168

focus list 66, 69

fundamental tasks 20

groupware needs
64-71,73-84,
121,132

heavyweight education
67-8

high-level components
19-20

human resources
21-3,31-2, 35,
61-71, 145-60,
220-1,251-75

incremental
development model
26-7

integrated-solutions
providers 20-1

integration management
20-1, 63, 66, 69,
93-5, 97-106

interface management
63, 95, 102,
107-18, 180,
190-1

ISVs 33-44, 257-9

librarian activities 71

milestones 148,
169-74

“nine passions’’
presentation
193-6

organization charts 66,
69

planning 63-71,
145-60, 16174,
253-4

porting phase 27-9

processes 63-71, 95,
184

INDEX

productization 27-9,
131,161-74

qualitative approach
62-71

quality issues 5-6,
26-7,29, 32,63,
69-70, 73-84,
105-6, 1734,
193-6, 221, 253-9

rates of progress 261

re-use principles
176-7,181-2,
194-6, 2067,
236-40

reduction approach
62-71

reference designs
20-1,30-1, 181—4

renewal considerations
267-75

revenue streams
23-32,33-4,
233-40

rigorous/formal
processes 63,
67-71

risks 29-32, 34-6, 66,
69

simplicity needs
175-84, 190-1,
195-6, 225-32,
273-5

skills’ needs 9, 17-18,
35-6, 63-4, 80-1,
84, 160, 220,
253-4,268-70

smaller projects 63-4

smartphones/feature
phones 55-6,
61-2, 76, 119, 168

source-code
management 63,
85-95

sprints 156, 268, 274

success factors 31-2,
46-56, 175-84,
225-40, 259,
267-8

supplier-management
task 20, 181-2,
257-9, 274-5
support and maintenance
22-3,37,63-4,
85-6, 88-90,
93-5, 147-60,
253-4,261-6
team leaders 18, 20,
30-2, 34-5,
61-84, 85-6,
94-5, 100-6,
120-9, 154-60,
196, 253-9,
268-70,273-5
tests 27-9, 41, 634,
73-84, 1016,
114-15, 116,
119-29, 142,
145-7, 169,
195-6, 220, 228,
230-1
tools 63, 85-6, 95,
109, 128-9,
131-44, 182-4,
220, 235, 238-9
trouble spots 163,
168-9
uncertainty management
161-74

Protea 189
prototyping systems 174,

235

Protype status, interfaces

115-16

PSD see Partner Solution

Directory

Psion

““Dancer.OPO"" 53
historical background
3-4,13-14,
15-17, 53, 69-70,
76-8, 86—7,
187-211, 213,
216,227, 241-4
Lotus Notes 69-70
MSIS 245

Organizers 16, 17, 50,
197,216, 227,
241-2

Series 3 76-8, 188,
192-3, 245

Series 3a 76-8, 245

Series 3c 188, 245

Series 5 187-92, 198,
243

Series 5mx 50

Siena 188

Workabout range 245

Psion Software 242
Published All interface

115-16

Published Internal interface
115-16

Published Partner interface
115-16

publisher companies, I1SVs
37-8, 115-16

PVCS 88

QA see Quality Assurance
Qualcomm chipsets 11
qualitative approach, large
projects 62-71
Quality Assurance (QA),
defects 76, 258-9,
281
quality issues
"“always ready to ship”
quality 106
baselines 105-6
defects 26-7, 32,
36-7, 63, 69-70,
73-84, 103-6,
119-29, 173-4,
195-6, 2201,
231-2,258-9, 281
mobile phones 5-6,
27,29,32,61-71,
73-84, 173 -4
193-6, 221, 253-9
“‘nine passions”’
presentation
193-6

INDEX

projects 5-6, 26-7,
29,32, 63, 69-70,
73-84, 105-6,
173-4, 193-6,
221,253-9

team leaders 18, 20,
32,61-84, 105-6,
120-9, 196, 221,
253-9

quick fixes, dangers 104

RA see Requirements
Analyst

Radio Shack 37

radio-cum-MP3 players
48

RAM 122,169, 173,
197-202, 281

Randall, Stephen 4, 242

rates of progress, projects
261

““re-use”’, “‘nine passions”’
presentation 194-6,
236-40

re-use principles 176-7,
181-2, 1946,
206-7,236-40

see also reference
designs

rebuilding limits, source
code 108-10

recovery time, sprints
268,274

recruitment, development
teams 265, 271

reduction approach, large
projects 62-71

refactor practices, software
202, 239-40

reference designs 20-1,
30-1, 181-4

see also re-use principles

relationship management
20, 36, 389, 65, 71,
146-7, 159-60, 165,
181-2,225-32,
254-9, 261-6,
270-2,274-5

307

see also partners
brand reputations 27,
112,227,263-4
release codelines 93-5,
98-100
Released status, interfaces
115-16
releases 66, 69, 75-8,
93-5, 98-106,
110-16, 139-42,
173-4,177-84
baseline releases
98-106
defective products
75-8, 110-12
frequent releases
177-80, 274-5
notes 66, 69, 114-15
reliability issues 165,
194-6,213-23, 227
Removed status, interfaces
115-16
renewal considerations
267-75
repositories 89-90
see also databases
reputations, brands 27,
112,227,263-4
Requirements Analyst (RA)
149, 160, 281
Research function, Symbian
4
“reserved” virtual functions
118
reserves, planning 148,
151-60
residual knowledge,
consultants 262-3
resource files 139-40,
198
responsibilities 114-15,
148-60, 238-9,
271-2
restricted programmability
APls 11-12,55-6
definition 11
retail outlets 226-7

308

revenue streams
projects 23-32,33-4,
233-40
Symbian OS 14
reviews 79-80, 138-9,
169-71, 223, 255-7,
265-6, 267-75
milestones 169-71
peer reviews 79-80,
138-9, 223, 265-6
““post partum’’ reviews
267-8
post-project reviews
267-75
project review meetings
255-7
revolutionary cycle,
smartphones 8-9,
10,13, 183-4
rights of use, versioning
117
rigorous processes, large
projects 63
RIM Blackberry 50
RISC 188-96, 198,
208-10, 278, 279,
281
risks
investment risks 34
ISVs 33-6
list 66, 69
projects 29-32, 34-6,
66, 69
uncertainty management
161-74
“robustness’”, “‘nine
passions’’ presentation
194-6, 213-23, 227
ROM 61,76-7,109, 117,
122, 140-2, 169,
173, 197-207, 282-3
runtime errors 210,
214-23,231-2
see also failures
RWAN 244-5

safety functions, mobile
phones 5

INDEX

sales 23-32,75-6
market windows
32,75-6
prices 24-6
ramp ups 23-4
unit profiles 23-4
Samsung 13
SC see Source
Compatibility
scale factors 11-12, 35,
61-184
SCB see System
Compatibility Board
schedule arms race 158
schedule risks, market
windows 32
scheduling 32, 100-6,
154-60, 172, 195-6
see also planning
SCM see Software
Configuration
Management
screens
sizes 17,49,76-8,272
visible flicker 229
SDKs see Software
Development Kits
second system effect 177
secret internal details,
software modules
239-40
security issues 27, 39, 40,
51, 54, 210, 259,
272-5
self-monitoring facilities,
smartphones 54
semantic breaks, concepts
108
Sendo 13
senior management,
support needs
253-4
"‘separating the engine”
192-3, 237
Series 60 (Nokia)
142,177
“server not responding”’,
runtime error 215

23-4,

20, 91,

servers 14, 188
Service Provider Interfaces
(SPIs) 40-2, 282
sex-related entertainment
53
sharing benefits, knowledge
63-71, 275
Sharp 241
“‘ship-at-all’” costs mindsets
36
Short Messaging Service
(SMS) 47-8, 245,
282
shortcuts
groupware 69
milestones 172-4
project success
176-84
showstopper category,
defects 78-9, 228

SIBO operating system 4,
188, 192, 197-8,
205-8,217-18,
244-7,282

side-effects

change requests 100
fixes 75,104, 110-11

Siemens 13

signaling stacks
249

silent maintenance releases
116

silent profiles 229

silicon chips 11, 19-20,
21,28-9,91-5

see also Application
Processors;
Baseband
Processors

“silver bullets”” 182-4

SIM types 74, 282

“simplicity of interface”,
ERA document
190-1

simplicity needs

large projects 175-84,
190-1, 195-6,
225-32,273-5

19, 27-9,

users 6-7,175-84,
195-6, 225-32,
273-5
simulated heap failures
220
simulators 143
Sinclair Spectrum 197
skills” needs
constructive-
vindictiveness skills
220
defect investigators
80-1, 84
project managers
253-4,268-70
projects 9, 17-18,
35-6, 63-4, 80-1,
84, 160, 220,
253-4,268-70
slack allowances, planning
154-6, 200, 225-6
“sleeping dialogs” 222-3
small projects, larger
projects 63-4
smart radios 48
smartphones
see also designs; mobile
phones; projects
adult entertainment 53
alternatives 229-30
“always on” devices 7,
17
codeline strategy 91-5
collective experience
15
commercial market
4-5,6,7-9,21-7,
29-30, 33-4,
36-8, 242-50,
257-8
complexity factors
17-18, 35, 61-4,
95, 142, 175-84,
193, 195, 238-9,
272-5
concepts 3, 6-18,
45-56, 61-71,
241-50, 272-5

INDEX

defect management 63,
69-70, 7384

disruptive aspects
61-2,183-4

feature phones 45-56,
61-2,76,119, 168

finance uses 50

functions 45-56,
61-2,121-2,
272-5

future prospects 33-4,
45-56, 117-18,
234-5, 238,
243-50, 272-5

gaming 8, 39, 48

“’half computer half
phone’” concepts
54

health-monitoring
benefits 53-4

heritage 244-6

high-level components
19-20

historical background
6-7,187-211

intellectual capital 15,
257-8

knowledge transfers
49-50, 54

location-based services
54

messaging 5-6, 28-9,
47-8

multitasking 46-7,
124, 216-17, 247,
250

opportunities 7-9,
33-5

organizers 15-17, 50

personal development
53-4

platforms 26, 32,
93-5, 114-15,
196, 226, 235-6,
274-5

pocket consolidators
51-2

309

revolutionary cycle
8-9,10,13,183-4

self-monitoring facilities
54

social aspects 20, 35,
49, 524

synergy benefits 52

trends 6-9, 45-56,

272-5
virtuous cycle 8-9, 10,
13, 111-12

vital-asset protection
measures 222-3

smoke tests 102-5, 132

see also tests

SMS see Short Messaging

Service

social issues 20, 35, 49,

52-4

software

see also applications;
operating systems;
source code

algorithm designs
202-4

Apple 241

architecture 14,
188-96, 198,
208-10, 238-9

best practices 201-11,
230-1, 233-40,
271-5

binary files 108-12,
114-15, 125,
139-41

bloat problems 200-5

bundled software 35-7

C++ 4,108,189,
204-5,207-11,
217-19, 249-50,
278

change requests 68,
85-6, 88-90,
100-6, 107-18,
145-60, 195-6,
240, 278

310

software (continued)

compiled code
108-10, 138-9,
204-5

concepts 6-10, 14,
27-9, 32, 33-44,
61-95, 97-106,
107-18, 131-44,
193-6, 198-240,
272-5

creation/integration
contrasts 97-8

cross-reference tool
143

debuggers 132-5, 139,

142,144, 213
development teams 3,
8-9, 18, 19-32,
61-84, 97-106,
154-60, 177-80,
196-211, 2301,
236-8, 253-9
emulators 135-6,
143-4, 220, 235
engineering common
sense 63
far-away pieces of code
107-8
frequent releases
177-80, 274-5
future-proofed interfaces
117-18, 238
high-level components
19-20
IBM 234, 241-2
interface management
63,95, 102,
107-18, 180
ISVs 33-44, 114-16,
257-9
iterative development
100-2, 1635,
177-80, 239
Java 11,29, 128, 209
management processes
64-71, 85-95,
97-106

INDEX

“nine passions’’
presentation
193-6

OO 205-11, 239-40,
246-50, 280

optimization tools
136-7, 168-9

performance factors
11-12, 14, 68,
89-90, 136-7,
168-9, 195,
197-223, 227

plug-ins 19-20, 27-9,
235-6

profilers 136-7

re-use principles
176-7,181-2,
194-6, 206-7,
236-40

refactor practices 202,
239-40

robustness 194-6,
213-23, 227

secret internal details
239-40

“‘separating the engine”’
192-3, 237

“spaghetti”” code 240

static code analysis
137-9, 142-3

team leaders 18, 20,
30-2, 34-5,
61-84, 94-5,
100-6, 120-9,
154-60, 196,
253-9

tools 131-44, 168-9,
220, 238-9

trends 6-9, 45-56,
272-5

trouble spots 163,
168-9

version labels 89-90

versioning 116-17

waste 32

wireless malware
274-5

Software Configuration
Management (SCM)
85-95, 282

see also Configuration...

Software Development Kits
(SDKs) 39, 61-2,
115-16, 235-6, 282

Sony Ericsson 13

sound 19, 48, 52, 229

see also multimedia

source code 4, 15,38-9,
61-4, 85-95, 105-6,
108-10, 13241,
198-202, 230-1

see also configuration...;
software

best practices 201-11,
230-1, 233-40

bloat problems 200-5

build system 139-41

C++ 4,108, 189,
204-5,207-11,
217-19, 249-50,
278

clutter 202

concepts 108-10,
132-4,139-41,
198-202, 230-1,
239-40

conflict resolution 90

consultant reviews
265-6

“’copy-and-tweak”’
problems 201-2,
207

cross-reference tool
143

debuggers 132-4, 139,
142,144,213

Java 11,29, 128, 209

love-of-test-code
problems 230-1

naming convention
209, 218

OO 205-11, 239-40,
246-50, 280

open-source projects
263-4

peer reviews 79-80,
138-9, 223, 265-6
performance factors
11-12, 14, 68,
89-90, 136-7,
168-9, 195,
197-223, 227
rebuilding limits
108-10
refactor practices 202,
239-40
robustness 194-6,
213-23,227
““spaghetti” code 240
static code analysis
137-9, 142-3
Symbian OS 4, 15,
38-9, 263
version labels 89-90
Source Compatibility (SC)
109-12, 282
“spaghetti’” code 240
"“spare’”’ data members
118
specialist tests
see also tests
specification phase,
concepts 145-7
“speed”, ERA document
191
SPIs see Service Provider
Interfaces
sprawling email threads
64
sprints, development
phases 156, 268,
274
stack 211,218-19
static code analysis
137-9, 142-3
see also tools

123-5

static libraries 85-6, 108
statistics
defects 80-1, 83, 84,
132

unintended breaks 113,
125

INDEX

status types, interface
management
115-16
steady-state codelines see
release codelines
stockmarkets 50
STOR 188
strategy, focus 242-4
stray-signal panics 248-9
stress tests 123-5, 203,
220, 223
see also tests
string floppy disks 87-8
Stroustrup, Bjarne 189,
207-8
student syndrome, planning
152-3
“‘stupid bogus deadlines”’
157
style guidelines 228
suboptimal approaches
156, 200, 237, 240
subclasses 206-7
submissions
integration management
97-106
multiple submissions
105
success factors
failures 234-6
projects 31-2, 46-56,
175-84, 225-33,
234-40, 259,
267-8
re-use principles
176-7,181-2,
194-6, 2067,
236-40
reviews 267-8
“super heroes” 270-1
superclasses 206-7
supplier-management task
see also third-party
suppliers
smartphone projects
20, 181-2, 257-9,
274-5

311

support and maintenance
22-3,37,63-4,
85-6, 88-90, 93-5,
147-60, 253 -4,
261-6
see also change requests
consultants 261-6
essential role 261-6
Symbian Competence
Centres 40
’Symbian fundamentals”’
talk 193-6
Symbian OS
see also EPOC...;
projects...
advantages 9-10,
12-15,17-18
algebra analogy 182-3
bibliography 273-4,
285-8
C++ 4,108,189,
204-5,207-11,
217-19, 249-50,
278
codeline strategy 90-5
competitors 13, 15,
195, 229-30
concepts 3-18, 38-40,
104, 114-16, 177,
179-84, 205,
208-9, 236-7,
241-50, 274-5
connections 263-4
CTP 40-2
design goals 187-96
developer support
website 264
EKA2 274-5,279
endorsement programs
38-44, 114-16,
124-5,222-3
exception handling
204-5,217-19
feedback usefulness
274-5
focus 14,17-18,
194-6, 2424

312

Symbian OS (continued)
frequent release model
179-84, 274-5
functional test
specifications
121-2
get-event loops 247-9
groupware uses 69-71
historical background
4-5, 13-14,
187-211
incremental
development model
26-7
Induction Day sessions
193-6
ISV endorsements
38-44,114-16,
124-5,222-3
learning curve 183-4
libraries 236-7
licenses 241-2
“nine passions’’
presentation
193-6
origins 13-14, 189,
208-9
Partnering programs 4,
38-42,115-16
Research function 4
revenue streams 14
roles 9-18
source code 4, 15,
38-9, 263
Technical Consulting
department 4
v6.1 40
v7.0 40
VO 205,274
versions 21, 40, 104,
179-84, 205,
274-5
virtuous cycle 8-9, 10,
13
Symbian Press 275, 285
Symbian Signed program
42-4,114-16,
124-5,222-3

INDEX

Symbian Training Partners
40

symbol files 134

synergy benefits,
smartphones 52

Synergy smartphone
clip-on 244

syntactic breaks, concepts
108

System Compatibility Board
(SCB) 112-13, 282

system tests 119-29

TA see Technical Authority
Taligent 209
task interference 152
tasks
see also planning
asymmetry 153
fuzzy tasks 170
multitasking 46-7,
124, 21617, 247,
250
variable estimates
151-4, 167-8
TBuf 211
TCP/IP 11,188
TDes 210-11
TDesC 210-11
team codelines see
development
codelines
team leaders 18, 20,
30-5, 61-86, 94-5,
100-6, 120-9,
154-60, 196, 253-9,
268-70, 273-5
see also project
management
appraisals 268-70
codeline strategy 94-5
common mistakes 20,
30-1
defect-management roles
83-4,120-9
integration management
100-6

planning 154-60,
253-9
quality issues 18, 20,
32, 61-84, 105-6,
120-9, 196, 221,
253-9
slack allowances
154-6, 200, 225-6
TeamTrack 70
“teamwork’’, ‘““nine
passions’’ presentation
194-6
Technical Authority (TA)
149, 282
Technical Consulting
department, Symbian
4
technical leads 254-5
techno-speak problems

226

technology enthusiasts
225-6

TechView test interface
28-9

telephony stack 27-9

see also CDMA...;
GSM...

template classes 205, 209
temporary objects
249-50
test lore 80, 121-2
test modes, manufacturing
processes 169
“testability”’, ERA
document 190
testing phase, concepts
145-7
tests 27-9, 41, 63-4,
73-84, 1016,
114-15, 116,
119-29, 142, 145-7,
169, 195-6, 220,
228, 230-1
automated tests
142
BAT 103-4, 123, 132,
277

128-9,

complete testing
119-20

concepts 79-81,
102-5, 119-29,
142, 145-7, 169,
220, 228, 230-1

constructive-
vindictiveness skills
220

context 120-1

critical test areas 81

definition 120-1

documentation 80,
121-9

failures 103-4, 220

feature phones 119-20

fixes 79-81, 103-4

functional test
specifications

121-9

FUT 125-8, 226, 228,
280

integration management
101-6, 114-15,
116, 123-9

love-of-test-code
problems 230-1
management 101-6,
114-15, 116,
119-29, 220, 228
mandatory tests 128
nonfunctional test
specifications 122
smoke tests 102-5,
132
specialist tests 123-5
stress tests 123-5, 203,
220, 223
third-party suppliers
121-2, 124-9
user tests 29, 120-9,
220, 226, 228
text descriptors 209-11
text messages 5-6, 47-38,
54-5
text-to-speech facilities
54-5
thin templates 205

INDEX

third-generation phone
networks (3G) 7-8
third-party suppliers
20-1, 26, 31, 33-44,
61-2, 114-16,
121-2,124-9,
222-3,241-2,
257-9,274-5
see also Independent
Software Vendors
project management
257-8
tests 121-2, 124-9
thread schedulers 247
tickets 51
Time To Market (TTM)
182, 208-9, 282
timescales 22-32, 156,
171-2, 180, 182,
268, 274
delays 22-32,171-2
graphical representation
27-8
incomplete knowledge
30-1
influencing factors
30-1
milestones 148,
169-74
over-optimism dangers
30-1
reasonable extensions
31

sprints 156, 268, 274

tips 30-1,171-2, 268,

274
typical example
27-9
warnings 29-30
tollgates see milestones
tools

automated tests 128-9,

142

build system 139-41

CBR 86, 141-2,
278

champion 131-2,
142-3, 144

313

concepts 128-9,
131-44, 168-9,
174, 182-4, 220,
235,238-9
conflicts 132
cross-reference tool
143
dangers 143-4
debuggers 132-5, 139,
142, 144
DepModel tool 143
diagram-drawing systems
238-9
distribution 141-2
emulators 135-6,
143-4, 220, 235
Evalid tool 109, 140
failures 131-2
large projects 63,
85-6, 95, 109,
128-9, 131-44,
220, 238-9
logs 81,137
miscellaneous tools
142-3
profilers 136-7
prototyping systems
174,235
simulators 143
static code analysis
137-9, 142-3
top-down estimates,
end-dates 156, 200
TPtr 211
trace output 137
see also logs
trade journals 226-7
training 30-1, 131, 236,
265
translators 49, 52
trap harness 218-19
trouble spots, projects
163, 168-9
trust 14, 38-9, 68, 71,
165
TTM see Time To Market
TWiki 70

314

Ul systems 11, 20-1,
27-31, 39-40, 49,
54,74, 87, 90-5, 104,
114, 116, 121-4,
170,177, 1926,
222-32,282-3

see also FOMA...; Series
60

codeline strategy 90-5

functional test
specifications
121-4

ulQ 20,91, 142, 177,
283

uncertainty management
161-74

see also risks

“uncles’”’, consultants 265

Uninstall 43

unintended breaks,
statistics 113, 125

Unique Selling Points
(USPs) 28-9, 283

unread marks, defects
database 83

Unspecified status,

interfaces 115-16
upgrade releases 36-38,
77, 111-12

v

“usability”’, “nine
passions’” presentation
194-6, 225-32

USB cable 37,125

useful websites 4, 6, 39,
263-4, 285

user interfaces 11, 14, 20,
21,27-9, 31, 49, 54,
74, 87,90-5, 192-6,
222-3,227-32,
282-3

see also UI...

user manuals 227

user resets 194

users

see also customers

needs 6-9, 11, 14,
46-56, 146-7,
195-6, 225-32

INDEX

scenarios 46-56

simplicity needs 6-7,
175-84, 195-6,
225-32,273-5

tests 29, 120-9, 220,
226,228

USPs see Unique Selling
Points

value network 7-8, 13,
14-15,37,274-5
variable task estimates
151-4,167-8
variants, products
32, 55-6, 139,
222-3,233-40,
272-5
VAX VMS minicomputer
192
verification processes, fixes
79-80, 82
version labels, software
89-90
versioning, software
116-17
video 229
see also multimedia
views, applications 193
virtual machines 12
virtuous cycle
compatibility 111-12
smartphone trends
8-9, 10, 13,
111-12
viruses 226
visible flicker 229
Vodafone 245
voice over [P 54
vouchers 51

14, 26,

walking-about benefits,
project management
257,265

wallets 51

waste 32

watchdog timers 137

Watson, Thomas, senior
234
websites
ISV sales 37
useful websites 4, 6,
39,263-4, 285
WebTV 243
weekly cycle, integration
management 104-5
whole-project attitudes
237
wide area protocols 19,
27-9,128, 1734,
244-5,272-3
WiFi 272-3
WIMP 87
wireless malware 274-5
wireless technology 12,
19-20, 27-9, 31, 37,
53-4,272-3,274-5
word processor
applications 192
word-of-mouth
recommendations
226-7
Workabout range 245
write-only documents 67
WSERV 188
WSRV 87
www.symbian.com/books
4,285
www.symbian.com/
developer 263-4
www.symbian.com/
partners 20, 38, 40,
42,129
Wyatt, Marina 242

x-ref tool 143
XIP ROM 198, 283

yahoo.com 6, 48
yellow post-it notes 230
“yuppies” 16

zero compiler warnings
138-9

	cover.pdf
	page_c2.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf
	page_z0208.pdf
	page_z0209.pdf
	page_z0210.pdf
	page_z0211.pdf
	page_z0212.pdf
	page_z0213.pdf
	page_z0214.pdf
	page_z0215.pdf
	page_z0216.pdf
	page_z0217.pdf
	page_z0218.pdf
	page_z0219.pdf
	page_z0220.pdf
	page_z0221.pdf
	page_z0222.pdf
	page_z0223.pdf
	page_z0224.pdf
	page_z0225.pdf
	page_z0226.pdf
	page_z0227.pdf
	page_z0228.pdf
	page_z0229.pdf
	page_z0230.pdf
	page_z0231.pdf
	page_z0232.pdf
	page_z0233.pdf
	page_z0234.pdf
	page_z0235.pdf
	page_z0236.pdf
	page_z0237.pdf
	page_z0238.pdf
	page_z0239.pdf
	page_z0240.pdf
	page_z0241.pdf
	page_z0242.pdf
	page_z0243.pdf
	page_z0244.pdf
	page_z0245.pdf
	page_z0246.pdf
	page_z0247.pdf
	page_z0248.pdf
	page_z0249.pdf
	page_z0250.pdf
	page_z0251.pdf
	page_z0252.pdf
	page_z0253.pdf
	page_z0254.pdf
	page_z0255.pdf
	page_z0256.pdf
	page_z0257.pdf
	page_z0258.pdf
	page_z0259.pdf
	page_z0260.pdf
	page_z0261.pdf
	page_z0262.pdf
	page_z0263.pdf
	page_z0264.pdf
	page_z0265.pdf
	page_z0266.pdf
	page_z0267.pdf
	page_z0268.pdf
	page_z0269.pdf
	page_z0270.pdf
	page_z0271.pdf
	page_z0272.pdf
	page_z0273.pdf
	page_z0274.pdf
	page_z0275.pdf
	page_z0276.pdf
	page_z0277.pdf
	page_z0278.pdf
	page_z0279.pdf
	page_z0280.pdf
	page_z0281.pdf
	page_z0282.pdf
	page_z0283.pdf
	page_z0284.pdf
	page_z0285.pdf
	page_z0286.pdf
	page_z0287.pdf
	page_z0288.pdf
	page_z0289.pdf
	page_z0290.pdf
	page_z0291.pdf
	page_z0292.pdf
	page_z0293.pdf
	page_z0294.pdf
	page_z0295.pdf
	page_z0296.pdf
	page_z0297.pdf
	page_z0298.pdf
	page_z0299.pdf
	page_z0300.pdf
	page_z0301.pdf
	page_z0302.pdf
	page_z0303.pdf
	page_z0304.pdf
	page_z0305.pdf
	page_z0306.pdf
	page_z0307.pdf
	page_z0308.pdf
	page_z0309.pdf
	page_z0310.pdf
	page_z0311.pdf
	page_z0312.pdf
	page_z0313.pdf
	page_z0314.pdf

