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PREFACE

The concept of a course in advanced calculus has a long history in American
colleges and universities. Quite naturally, the concept has not remained static.
Nor does it have exactly the same connotation to all teachers, students, and users
of mathematics at any given time. There are a variety of needs to be served by
a textbook in advanced calculus. In planning this edition of our book, we have
retained the basic qualities that contributed to user satisfaction with the first two
editions while changing and introducing some new features that we believe to be
important as well as appropriate in the light of current conditions.

We believe that the scope of a book on advanced calculus should be broad
enough to:

1. Build a bridge from elementary calculus to higher mathematical analysis suitable
for use by students of two sorts, both those intending to specialize in mathematics
and those who need more advanced mathematics as a tool in other studies or in
their employment.

2. Provide a thorough treatment of the calculus of functions of several variables and
of vector functions of vector variables. :

3. Provide a firm grounding in the fundamentals of analysis, embracing at least the
following topics: point set theory on the line and in Euclidean space, continuous
functions and mappings, uniform convergence, the Riemann integral, and infinite
series.

4. Pay due attention to some topics important for applied mathematics, including
some theory of curves and surfaces; vector fields; such notions as gradient,
divergence, and curl and their occurrence in integral theorems; some notions about
numerical methods and the potential for use of simple computers in problems
calling for approximation or minimization; and improper integrals.

Our mode of treatment of the material is based on our belief that the book
should be more than a skeletal framework of tersely stated assumptions,
definitions, theorems, and proofs. The exposition is designed to make the book
readable and understandable by a student through his/her own efforts if he/she
will read carefully and learn to verify or carry through for himself/herself the
steps of reasoning that are either given or indicated. An important part of an
advanced calculus course is the training that it entails in deductive reasoning from
explicit assumptions and definitions. The.best way of assuring that a student will

v



vi PREFACE

benefit from this training is to make the process interesting by providing suitable
motivation and enough guidance to assure to the diligent student the pleasure of
success. With confidence thus gained the student may proceed to become an ever
more independent learner.

Our book is written on the assumption that students using it have normal skill
in the formal aspects of elementary calculus and that they can draw freely on the
standard subject matter of algebra, trigonometry, analytic geometry, and
elementary calculus. In Chapter 1, we present a systematic overview of the more
theoretical side of elementary calculus of functions of one real variable, but
without a full treatment of those topics that depend in a crucial way on a rigorous
exposition of the properties of the real number system. Such an exposition is
given in Chapter 2, followed in Chapter 3 by a rigorous presentation of those
properties of continuous real functions of a real variable that are essential to the
theoretical structure of differential calculus of such functions. These chapters
form a part of the bridge to higher mathematical analysis. The extent to which
Chapter 1 will need to be formally included in a course of advanced calculus will
depend on the level of preparation of the students and judgment of the teacher.
Even if not extensively used for regular assignments, Chapter 1 is useful for
reference and supplementary reading and study and can provide motivation for
the work in Chapters 2 and 3.

Chapter 4 is on several special topics somewhat apart from the mainstream
of a course on advanced calculus. The results are occasionally used in important
ways here and there in the book; they are available for reference and can be taken
up by the individual student or by the teacher if the need arises.

Parts of Chapter 6 and 13 will be to some extent familiar to students from
work in more elementary courses. It is feasible to omit Chapter 13 almost entirely
from a course based on the book except insofar as some parts early in Chapter
13 may be needed for reference in connection with §14.6 and §§18.6 and 18.61.

A thorough treatment of the differential calculus of real functions of several
variables and vector functions of vector variables is provided in Chapters 6, 7,
8, 9, and 12, with important supporting material on vectors, matrices, and linear
transformations in Chapters 10 and 11. Two different approaches to implicit
function theorems and inversions of mappings are provided: without vectors in
Chapters 8 and 9, with vectors in Chapter 12. The vector approach is the modern
way, and it has many advantages. But the older, classical, way of dealing with
implicitly defined real functions of several variables (Theorem I, §8,1) is simple,
elegant, and very instructuve; it deserves to be remembered. We think the local
inversion of mappings should be understood and appreciated in the context of
mappings from R?to R? as in Chapter 9, before dealing with the general inversion
theorem in §12.6.

The amount of linear algebra needed to support the vector differential
calculus of Chapter 12 is presented in Chapter 11 (and, to some extent, in parts
of Chapter 10). Chapter 11 also contains the minimum amount of material on
norms and metrics that is needed to discuss continuity and differentiability of
vector functions of vectors. Qur discussion is, for the most part, limited to finite
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dimensional vector spaces with the standard orthonormal system of basis vectors
associated with a Cartesian system of coordinates. Thus we regularly use the
Euclidean norm and metric in R". We also use the matrix representation of linear
transformations from R" to R™ that goes along with the use of standard
orthonormal bases. Students using the book are expected to have some familiarity
with matrices and elementary linear algebra. Some glimpses using more abstract
points of view are offered.

In Chapter 12 we present with care the definitions of the differential and the
derivative (taken in that order) of a vector function from R” to R™ This is a
subject that has needed some clarification in the textbook literature. If f(x) is a
function from a part of R" to R™, differentiable for certain values of x, the
differential df of f is a function of two variables x and dx that is linear in dx (where
dx varies over all of R") and has values in R™. For a given x at which f is
differentiable the linear transformation that takes dx into the value of df at (x, dx)
is called the derivative of f at x and denoted by f'(x). Thus the value of df is
f'(x) dx, where the juxtaposition means that f'(x) acts on dx. Observe that the
value of f' is a linear transformation from R" to R™, whereas the value of df is
a vector in R™ Thus the derivative and the differential are quite different
functions.

A third important block of material for courses in advanced calculus is
provided by Chapters 16, 17, 20, and at least the first part of Chapter 18. These
provide essential material for the study of limits, convergence, and continuity for
functions from R"to R™ (including the special cases when n = 1 or m = 1, or both),
together with a completion of the theoretical structure of elementary integral
calculus. To this block may be added, if time permits, selections from Chapters
19, 21 and 22, depending on the interests of the class and the teacher.

Most of the main topics mentioned thus far in this survey of the book are
important for applied as well as for pure mathematics. The same is true for other
topics yet to be mentioned, although the treatment of these topics is aimed rather
more at those interested in applications than at those interested in pure theory.
We are referring to the later part of Chapter 10 (on scalar and vector fields), most
of Chapters 14 and 15 and parts of Chapter 22. Some selection from this body
of material will very likely be appropriate and desirable in a course in advanced
calculus with a broad clientele.

There is another way of looking at mathematical analysis, in which one
classifies the content of a book, not by the various topics and different subjects,
but according to the following categories: ideas and concepts, theorems and
proofs, and specific problems, together with methods for dealing with them and
the information provided by the solution. These categories are not completely
separate from each other, of course. Concepts enter into the statements and
proofs of theorems. Some theorems provide answers to interesting problems, and
techniques of proof may (but do not in all cases) furnish explicit solutions to
problems. We believe that the vitality of mathematics derives in a highly
significant way from interest in the solution of problems that can be formulated
mathematically. The generation of powerful methods for solving problems
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necessitates the building of theories (which may be somewhat abstract or
elaborate) to justify the methods and to amass a body of knowledge useful to
those who apply the theories and the methods. We have endeavored to deal with
our subject with a judicious (and, we hope, instructive) mixture of attention to
concepts, theories, problems, and techniques of proofs and solutions.

Among the specific ways in which this edition differs from the second edition
are these: substantial changes in the discussion of quadratic forms in §6.9, a
number of changes in Chapter 7, especially in the discussion of critical points in
§7.6, a considerable revision of Chapter 9, addition to Chapter 10 of material on
vectors in space of n-dimensions, a number of revisions in Chapters 11 and 12
(including major revisions of the treatment of the differential and the proof of the
inversion theorem) and a change in the discussion of Stirling’s formula (§22.8)
with a sharper result.

An important innovation is the use made of programmable pocket calculators.
This is in Chapter 12, which some students regard as forbiddingly theoretical. We
think this may be partly due to the difficulty in developing a feeling for the
derivative of a function from R" to R™ To alleviate this difficulty we have
introduced Newton’s method at the level of problems involving the derivative of
functions from R" to R". We have also tried to present more clearly the gradient
as a derivative by including some numerical applications of the method of
steepest descent. Along similar lines we give a generalization of the elementary
product formula for differentiation, which gives the derivative of the scalar
product of two vector-valued functions. This formula is then used to arrive at the
method of least squares and the idea of a generalized matrix inverse. These
practical applications cannot, of course, make the basic theory easier, but
according to our experience, they are helpful to the students’ understanding. It
is still too early to discern exactly what the optimal role of abudant, cheap, and
easy computational capability in teaching advanced calculus is going to be. We
believe however that the present state of calculator technology offers oppor-
funities to combine theory and practice in a way that illuminates both.

In conclusion we want to express, as we did in the second edition, our debt
of gratitude to the students we have taught, from the teaching of whom we have
learned much. We have enjoyed our teaching, partly because it has deepened our
own learning, but especially when we have seen our students growing in
understanding and appreciation of mathematical analysis. The questions and
comments of students have often led us to new insights both in the subject and
in our ways of teaching. We hope that other students and other teachers will find
that this book opens the doors to understanding and enjoyment.

Angus E. Taylor
W. Robert Mann
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1/ FUNDAMENTALS
OF ELEMENTARY

CALCULUS

1/INTRODUCTION

A course in advanced calculus must build upon the presumption that students
studying the subject have already gained some knowledge of elementary cal-
culus. We shall therefore begin by taking a backward look over those parts of
calculus with which the reader of this book should have facility and a measure
of understanding. Our object in such a retrospect is not to conduct a systematic
review. The purpose is, rather, to establish a common point of view for students
whose training in calculus, up to this point, must inevitably reflect a wide variety
of practices in teaching, choice of subject matter, and distribution of emphasis
between the acquisitions of problem-solving skills and mastery of fundamental
theory. As we survey the field of elementary calculus we shall stress the
conceptual aspect of the subject: fundamental definitions and processes which
underlie all the applications. In a first course in calculus it is often the case that
the fundamental notions are introduced through the medium of particular
geometrical or physical applications. Thus, to the beginner, the derivative may
be typified by, or even identified with, the speed of a moving object, while the
integral is thought of as the area under a curve. We now seek to take a more
general, or abstract, view. Differentiation and integration are processes which
are carried out upon functions. We need to have a clear understanding of the
definitions of these processes, quite apart form their applications.

Another aspect of our survey will be our concern with the logical unfolding
of the fundamental principles of calculus. Here again we strive to take a more
mature point of view. We wish to indicate in what respects it is desirable and
necessary to look more deeply into the derivations of rules and proofs of
theorems. There are places in elementary calculus, as usually taught to begin-
ners, where the development is necessarily inadequate from the standpoint
of logic. In many places the reasoning leans heavily on intuition or on one sort or
another of plausibility argument. That this state of affairs persists is partly due to
a deliberate placing of emphasis: we make our primary goal the attainment of
skill in the manipulative techniques of calculus which lend themselves readily to
applications at an elementary level in physics, engineering, and the like. This
kind of skill (up to a certain point) can be imparted without paying much
attention to questions of logical rigor. But it is also true that there are logical
inadequacies in a first course in calculus which cannot be made good entirely
within the customary time limits of such a course (two or three semesters), even

1



2 FUNDAMENTALS OF ELEMENTARY CALCULUS Ch. 1

where a reasonably heavy emphasis is laid upon “theory.” At bottom the subject
of calculus rests upon the real number system and the theory of limits. A full
appreciation and understanding of this foundation material must come slowly,
but the need for such understanding becomes more acute as we progress in
learning. In advanced calculus we must make a deeper study of the real number
system, of the theory of limits, and of the properties of continuous functions. In
this way only can we proceed easily and with confidence to a mastery of many
new concepts and processes of higher mathematics.

1.1 / FUNCTIONS

At the very outset we must discuss the mathematical concept of a function, for
we shall constantly be talking about properties of functions and about processes
which are applied to functions. The function concept has been very much
generalized since the early development of calculus by Leibniz and Newton. At
the present time the word “‘function” is used broadly to mean any determinate
correspondence between two classes of objects.

Example 1. Consider the class of all plane polygons. If to each polygon we make
correspond the number which is the perimeter of the polygon (in terms of some
fixed unit of length), this correspondence is a function. Here the first class of
objects is composed of certain figures, while the members of the second class are
positive numbers.

To begin with, let us consider functions which are correspondences between
sets of real numbers. Such functions are called real functions of a real variable.
The first set of numbers is the domain of definition or simply the domain of the
function. The second set, consisting of the values taken on by the function, is
called the range. Once the domain, which we may call D, has been specified, the
function is defined as soon as a definite rule of correspondence has been given,
assigning to each number of D some corresponding number in the range. If x is a
symbol which may be used to denote any member of D, we call x the
independent variable of the function. In some situations it is very natural to have
more than one number associated with a given value of x and to call such a
correspondence a multiple-valued function. If each value of x corresponds to
just one number in the range we have a single-valued function, which is what is
properly meant by the term function. We usually find it possible to deal with
multiple-valued functions by separating them into several (possibly infinitely
many) single-valued functions. Hereafter we shall always assume that all func-
tions referred to are single-valued, unless the situation explicitly indicates the
contrary.

A function may be defined by an algebraic or trigonometric formula, but it
need not be so.

Example 2. If x denotes any real number, let [x] denote the algebraically
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largest integer which does not exceed x; e.g.,
[-23]=-3,[-1]=-1,[0]1=0,[3.5]=3,[71=7,[7.2] = 7.

The correspondence between x and [x] defines a function. If we use f to denote
this function, then we would say that f is defined by f(x) = [x].

Example 3. Another simple function is defined by associating with x its
absolute value |x|. The definition of x| is:

|x|=x if x=0, |x|=—x if x<O0.

Thus [7]=17, 0| =0, |-5|= 35, |3 — 10| = 7. If we think of x as a point on a number
scale (the x-axis), then |x| is the numerical distance (always nonnegative)
between x and the origin.

The concept and the symbolism of absolute value are quite important. The
student will need to get accustomed to reading sentences that contain in-
equalities and absolute values. Thus, for instance, |[7—5|=2, |[-16—(—10)| =6,
and, in general, |x; — x,| is the distance between points x; and x, on the x-axis. As
another example, |x — 5| <2 means that the distance between x and 5 is less than
2; this is equivalent to saying that x lies between 3 and 7. We can write this in
the form 3 <x <7. A general statement of the same sort is that |x — a] <b (where
b >0)is equivalenttoa—b <x <a-+b.

We regard functions as mathematical entities, and represent them by sym-
bols. The commonly used symbols are the Latin letters f, g, h, F, G, H, and the
Greek letters ¢, ¢, @, ¥, but in principle any symbol may be used. If f is the
symbol for a particular function, we use f(x) to represent the number which the
function makes correspond to any particular value of the independent variable
x; this is called the value of the function at x.

Example 4. Let f be the symbol for the function which makes correspond to
a positive number the natural logarithm of that number. Then f(x) = log. x. (We
shall normally drop the subscript e and write log x in place of log, x.)

There is some ambiguity in the use of functional notation, for f(x) is
frequently used as a symbol for the function itself, as well as for the value of the
function. Thus, for example, we speak of the “function sin x,” ‘‘the function
x?—3x +5,” or “the function ¢(x).” There is of course a difference between the
function and the value of the function. If the symbol f(x) appears, the context
will usually make clear whether reference is being made to the function or to
the value of the function. To avoid possible ambiguity we shall cultivate the
practice of writing ‘‘the function f* instead of “the function f(x).” This usage is
in accord with prevalent practice in current literature, and the student will do
well to become familiar with it.

If y is a symbol for the value of the function f at x, we can write y = f(x).
Here y is called the dependent variable; we say that y is a function of x. In
elementary calculus most of the stress is upon functions which are defined by
means of fairly simple formulas connecting the independent variable x and the
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dependent variable y. Here, however, we look toward understanding the prin-
ciples of calculus as they apply to functions which are arbitrary except insofar
as they are restricted by specified hypotheses.

We shall in due course have to deal with functions of more than one
variable. The general notion of a function is still that of a correspondence. A real
function F of two real variables x, y is a correspondence which assigns a
number F(x, y) as the value of the function corresponding to the pair of values
x, y of the two independent variables. The use of functional notation and the
designation of the function by the single letter F require no detailed comment,
since the basic ideas are no different from those already explained.

The characteristic feature of calculus is its use of limiting processes.
Differentiation and integration involve certain notions of passage to a limit. A
fuller discussion of ideas about limits is presented later on in this chapter
(§81.6-1.64). Here we wish to touch on only one limit notion, that of the limit of
a real function of one real variable. This notion is fundamental in the definition of
a derivative.

Suppose f is a function which is defined for all values of x near the fixed
value xq, and possibly, though not necessarily, at x, as well. We wish to attach a
clear meaning to the statement: f(x) approaches A (or tends to the limit A) as x
approaches xo. The symbolic form of the statement is

lim f(x)= A. (1.1-1)
——
The symbol A is understood to stand for some particular real number. The arrow
is used as a symbol for the word “approaches.” Sometimes (1.1-1) is expressed
in the form f(x)— A as x — x,. Here are three typical examples of statements of
this kind: (a) x*>8 as x—2, (b) (x—1">3 as x> 10, (¢) logpwx—2 as
x — 100.

Definition. The assertion (1.1-1) means that we can insure that the absolute value
If(x) — Al is as small as we please merely by requiring that the absolute value |x — x|
be sufficiently small, and different from zero. This verbal statement is expressible
in terms of inequalities as follows: Suppose € is any positive number. Then there
is some positive number 8 such that

f(x)— Al <e if 0<|x—xo|<8. (1.1-2)

Note that 0 <|x — x| is the same as x # x,. Note also that |[f(x) — A| <€ is the
same as A—e <f(x) <A+ e and |x ~ xo| < & the same as xp— 8 <x <<xot 8.

We can give a geometrical portrayal of the inequalities (1.1-2). Let the points
{x, y) with y = f(x) be located on a rectangular co-ordinate system; also locate
the point (xp, A). For any € >0 draw the two horizontal lines y = A+ e. Now
(1.1-1) means that, by choosing § small enough, those points of the graph of
y = f(x) which lie between the two vertical lines x = xo+ 8 and not on the line
x =x, will also lie between the horizontal lines y=A=*e Fig. 1 shows a
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specimen of this situation. The diagram also shows Y
how 6 may have to be made smaller as € becomes

restrictions whatever on the value of f at xo, in case
it is defined at that point. A—e

Appreciation of the formal definition of the
meaning of (1.1-1) takes time and experience. The
formal definition is the basis for exact reasoning on Fig. 1.
matters involving the limit concept. But it is also
quite important to develop an intuitive understanding of the notion of a limit. This
may be done by considering a large number of illustrative examples and by
observing the way in which the limit conceptis used in the development of calculus.
One needs to learn by example how a function f(x) may fail to approach a limit as x
approaches x,.

The variable x may approach x, from either of two sides. Let us use x - xo+
to indicate that x approaches x, from the right, and x — x, — to indicate approach
from the left. The conditions for lim,.,, f(x)=A are then that f(x)—> A as
x—>xo+ and also f(x)> A as x > xo—. In terms of inequalities the meaning of
f(x)=> A as x> xo+ is this: to any € >0 corresponds some & >0 such that
If(x)— Al <e if xo<x <xo+ 8, The meaning of f(x)> A as x >x,— may be
expressed in a similar way.

smaller. A+ep
It is to be emphasized that (1.1-1) places no _\_ 7{
/‘

x
Z,—9 Zo+0

Example 5. The limit of f(x) as x - xo may fail to exist because:
(a) The limits from right and left exist but are not equal. This is the case

with
. x
f)=1+5,

where f(x)>2 as x>0+ and f(x)>0as x—>0—.

(b) The values of f(x) may get larger and larger (tend to infinity) as x = x,
from one side or the other, or from both sides. This is the case with f(x) = 1/x as
x—0.

(¢) The values of f(x) may oscillate infinitely often, approaching no limit.
This is the case with f(x) = sin(1/x) which oscillates infinitely often between —1
and +1 as x >0 from either side.

The graphs of the three foregoing functions are shown in Figs. 2a, 2b, and 2c,
respectively.

Example 6. If f(x)= e " then lim,.o f(x) = 0. To “see” the correctness of
this result, one must have clearly in mind the nature of the exponential function.
When x is near zero, —1/x? is large and negative; now e raised to a large negative
power is a small positive number. Hence ¢ " is nearly 0 when x is nearly 0, and
f(x)—>0 as x > 0. This is an example of a rough intuitive argument leading to a
conclusion about a certain limit.

It is instructive to see how the intuitive argument is made precise by
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fla) =1~
flxl =0 7 0 * 0
Fig. 2a. Fig. 2b.
y =sin ~
1l
| x
2
m m
LZ—1
Fig. 2¢.

~U** — 0 means that to

reference to the definition of a limit. The statement lim,_.q €

each € >0 corresponds some & such that
le™'—0|<e if 0<|x—0]<8. (1.1-3)
Let us see how we may find a suitable 8 when € is given. In doing this we take
for granted the properties of the exponential and logarithmic functions.
-1k 0] < € is equivalent to e”'** <e. We

Since e to any power is positive, |e
rewrite this inequality in several successive equivalent forms:

1 1 1x2 ( ) 1
< — < — | < —-
P log e/ x?
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Let us suppose that € <1, so that log(1/e) > 0. Then further equivalent forms are

) 1 1 112
0<x"<ioe(lje) °<""<[log(1/e)] :

It now appears that, if 0 <e <1, we can choose

o= g

and then (1.1-3) will hold, as required.

Even in very obvious situations it is worth while to practice finding a &
corresponding to a given e, just to drive home an appreciation of the meaning of
the definition of a limit.

Example 7. Given € >0, find 6 so that |[f(x)—4| <e if 0<|x —2|< 3§, where
f(x) = x> — x% This will show that lim,., (x> — x? = 4. We have
X}—xT—4=(x-2)(x*+x+2).
To begin with, let us consider only values of x such that |x —2| <1, or 1 <x <3.
For such x we certainly have 4 < x>+ x + 2 < 14, and hence
| x> —x*— 4| =< 14]x —2].
Now we see that |x’— x*— 4| < e provided 14 |x —2| <€, or |x —2| <e/14. Hence

we choose for 8 any positive number such that both § =1 and 6 = ¢/14. This
choice meets the requirements.

Reasoning with limits is facilitated by various simple theorems. Among the
most important such theorems are the following rules, which we state here
informally:

Suppose that

lim f(x) = A and lim g(x) = B; then

lim [f(x)+g(x)]=A+B, (1.1-4)
lim [f(x)g(x)] = AB, (1.1-5)
@ _A _
Jl(lg}o 2(x)" B’ provided B # 0. (1.1-6)

Formal proofs of the validity of these three rules are made in §1.64. Meanwhile

we accept them and use them.
Closely related to the limit concept is the concept of continuity.

Definition. Suppose the function f is defined at xo and for all values of x near x,.
Then the function is said to be continuous at x, provided that

lim f(x) = f(xo). (1.1-7)

X—=>xp
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Most of the functions which we deal with in calculus are continuous; points
of discontinuity are exceptional, but may occur. A function may fail to be
continuous at x, either because f(x) does not approach any limit at all as x — x,,
or because it approaches a limit which is different from f(x).

Example 8. The function f(x) = [x] (see Example 2) is discontinuous at x; if
Xo is an integer, but is continuous at x, if x, is not an integer.

We observe in this case that lim,_, f(x) does not exist, for when x is near 2,
f(x)=1if x <2 and f(x) =2 if x > 2. The situation is similar at other integers.

¥

]

—2 —1

)

b

1 1
! 01 2
! Fla) = [
|

Fig. 3.

The graph of y = f(x) is shown in Fig. 3. At the breaks in the graph when x is an
integer n, the value of f(n) is indicated by a heavy dot.

Example 9. Suppose we define a function by
f(x)=[x]1+[12x—x]—1.

Direct inspection shows the following:

fo)=1,
f(x)y=0 if 0<x<l,
fay=1,
f(x)=0 if 1<x<2,
f2y=1.

y

-
[
l-—-o

e

N e
w o
®

flx) =Ix] + [2—x] —1

Fig. 4.
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Consequently, lim,.; f(x) =0; but f(1)=1, and so f is not continuous at x = 1.
The graph of y = f(x) is indicated in Fig. 4. From the definition it may be seen
that f(n) = 1if n is an integer and f(x)=0if n <x <n+1.

Example 10. Let us define f(x) = (sin x)/x if x# 0. This definition of f(x) has
no meaning if x =0, since division by 0 is undefined. However, let us make the
additional definition f(0) = 1. With this definition, f is continuous at x = 0. For, as
we learn in elementary calculus,

. sinXx
lim——=
x-0 X

1. (1.1-8)

Since we have defined f(0) =1, (1.1-8) shows that lim,_, f(x) = f(0); therefore f
is continuous at x = 0, by the definition.

We have based the concept of continuity directly upon the concept of a
limit. A condition for continuity of a function may be given directly in terms of
inequalities, just as we defined a limit in terms of inequalities. Thus, if f is
defined throughout some interval containing X, and all points near xo, f is
continuous at x, if to each positive e corresponds some positive 8 such that

lf(x) — f(xo)] <€ whenever |x— x| <. (1.1-9)

This form of the condition for continuity is equivalent to the original definition.

Many common words are used in mathematics in a specialized way. Usually
the mathematical meaning of a word has some relation to the common meaning
of the word; but mathematical meanings are precise, whereas common meanings
are broad or variable. The adjective “‘continuous” is a word of this kind, with a
restrictive and precise mathematical meaning. Experience shows that students
tend to read more, in the way of preconceived notions about the meaning of the
term, into the word ‘“continuous” than is implied by the definition. In analytic
geometry and calculus we become familiar with the graphs of many functions,
and there is a tendency to associate the term ‘‘continuous function” with the
picture of a smooth, unbroken curve. Now it is true that if f is continuous at
each point of an interval, the corresponding part of the graph of y = f(x) will be
an unbroken curve. But it need not be smooth. Smoothness is related to
differentiability; the more derivatives f has, the smoother is its graph. A function
may be continuous without having a derivative. In that case the graph of y = f(x)
might be so crinkly, so devoid of smoothness, as to make correct visualization of
it quite impossible.

EXERCISES
Where the square-bracket notation occurs in these exercises, [f(x)] denotes the
algebraically largest integer which is = f(x) (see Example 2).
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1. Find each of the limits indicated, using algebraic simplification and therules (1.1-4)-
(1.1-6).

. x’—16 L1001 1\,
@ lim = @ tim (55 3)

.o x"—1 1/ 1
®) hm == ® lim E((4+ x)Z_T6>’

n__ 3 2_ _

() lin} ); — 1] (n apositive integer); (2 ]in; f—i%%—z;

. (x+2°—4 . 108(x*+2x)(x + 1)*
(d) lxlfé — (h) ,11[91 CF D=1

2. Find each of the following limits, using roughly quantitative arguments based on
your knowledge of the various functions involved (somewhat as in the first paragraph of the
discussion of Example 6).

(a) lim 2'#*%;

x—0
(b) ]in(1) cos(e Y.
(© lim l+cosx |

x-0 1 + (log x*)*

. - X . . .. . _
(d) lim tan ‘(tan2 5)’ where the inverse tangent has its principal value, i.e., v =tan ' u
means u = tan v and —%<v <%;
(e) lim log(Sm x>‘

e x

3. Draw the graphs for each of the following functions and then answer the questions:
(@) f(x)=2x—-1if x=1, f(x)=6—5x if x> 1. Is f continuous at x = 1?
(b) fx)=(x*2)—-2if 0<x <2, f(x)=2—(8/x?) if 2<x. Does lim,_.,f(x) exist? How
should f(2) be defined to make f continuous at x = 2?
(¢) f(x)=[1-x7?]. Consider only —1=x =1. Does lim,.o f(x) exist? Is f continuous at
x=0?
(d) f(x)=(x—1)[x]. Consider only 0 =x =2. Is f continuous at x =1?
(e) f(x)= x/|x| (undefined if x = 0). Does lim,_o f(x) exist?

4. In each of the following cases f is defined by the given formula only if x# 0. How
should f(0) be defined to make f continuous at x = 0?

. 3
@ f =3 () f) =20 (g feo - EED =8
Exercises 5-7 form a natural unit.

5. If f(x) = cx, where c is a constant, show that lim._., f(x) = f(x0) by applying the
definition of alimit as expressed by (1.1-2). If ¢ # 0 what can you take 8 tobe in terms of € and
c?

;) f(x)=10"""

6. If ¢ is constant and n is a positive integer, show that lim .« ¢x™ = cxg. Use Exercise
5, mathematical induction, and (1.1-5).

7. By a polynomial in x we mean a function defined by an expression

P(x)=aox" +a:x" '+ -+ an
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where the coeflicients ao, a1, ..., a. are constants, and n is an integer 20. If n =0, P(x) is
constant in value, and the degree of P(x) is said to be zero. If n = 1 and ao # 0, we say that the
degree of polynomial is n. Prove that P(x) is continuous at every point x,. Use the result of
Exercise 6. What other result about limits do you use?

8. By a rational function of x we mean a function defined by an expression
_px)
R(x) PG

where p(x) and P (x) are polynomials (see Exercise 7). The function is defined except when
P(x) = 0. Show that it is continuous at xo if it is defined there. Use definition (1.1-7) and state
exactly what appeal you make to facts about limits stated in the text or established in
previous exercises.

.1 1 . . 2 . .
9. If f(x)=sin~, (a) find f(;;), n=1,2,...; (b) find f(mr), n=1,5,9,...;
(¢) find f(%), n=3,7,11,.... (d) How does the derivative f'(x) behave as x—>0?
10. (a) How does 2 '* behave as x>0+2 (b) as x>0—? (c¢) What can you say
bout lim 1 ?
abo xl—-() 1_—‘*’_2—_?;.
11. Graph each of the following functions: (a) |x|, (b) |[x—1], (¢) |x+2],
(d) |x*], (e) |1—x%. Do any of these functions have any points of discontinuity?
12. Graph the function x — [x] and discuss its discontinuities.

13. Which of the following functions is continuousatx = 0? (a) [x*+2], (b) [4—x7],
(¢) [x*— 11. Graph each function when —1=x=1.

14. If f(x) = [%_+x3_—[_%] (a) find f(1), f(—1),f@), F(=3), f@,f(=2)." (b) Without using
the square brackets, write expressions for f(x) if 0<x <3 and if -3 <x <0. (c) What is
limy_o f(x)?

15. If f(x) = L’;—__—” (@) find f@), 1@, @), FO), f@, f@. () Express f(x) without
absolute values if x > 1;if 0 <x <1. (c) What can you say about lim,_, f(x)?

16. If f(x)=m%£];2, (a) find f(1), f(~1),f(—2),f(2). (b) Write an expression

for f(x) without absolute values if 0 <x; if —2<x<0. (c) What can you say about
lim—o f(x)?

17. If f(x) = [7x*~ 141, (a) find £(0), (1), f(2), f®), f@), fG). (b) Is f continuous at
x=0? (¢) Is it continuous at x = 1?7 (d) at x =V2?

18. If f(x) ={sinx], (a) find f(O), f(5/2), f(—7/2), f(n/4), f(—7/4). (b) Does Llira f(x)
exist? (c) What does f(x) approach as x—(m/2)—-? (d) as x>0-?

19. Prove that lim,..(x>+2x) = 3 by finding 8 in terms of a given positive € so that
|x>+2x —3| <€ if [x — 1| <8.
|x — 3| if 2 < x <4.Hence,forany € > 0,find 8 so that

1

1 1 7
20. Show that m—‘z—s‘ ésoo

1 1 . . . . 1 1
PT 2—5| < e if |x — 3| < 8, thus proving directly that L1£I31 Tii6= 25

21. Show that|(1+ x)— 1] = 7|x| if =1 <x <1.Then prove by the definition (1.1-2) that
limeo(1+ x)* = 1 (i.e., find a suitable & for any given positive €). .
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22. Show that

1/ 1 11 . .
;(2 T 5) + 1l <€ if 0 <|x| < 8, where 8 is the smaller of the numbers

1, 4€ (e being positive). Translate this situation into a statement of the form limx_., f(x) = A,
specifying what you take for f, xo, and A.

-1
23. Show that,if0<e<1,107"* <e when0 <x < (log,o %) . What is the correspond-

ing statement about a limit?
1/x
24. Does lim Sy exist?

w02+ 1
25. Suppose that a function f is defined by setting f(x) = /n if x = 1/2", wheren = 1,2,
3,..., and f(x)= 0 for all other values of x. Is f continuous at x = 0?

1.11 / DERIVATIVES

Elementary calculus deals with the processes of differentiation and integration,
the techQiques of these processes as they pertain to various common functions,
and the applications of the processes to problems of geometry, physics, and
other sciences. Let us examine the concept of the derivative.

Consider a function f, defined for values of the variable x in the interval
a <x < b. Let xq be any fixed point of the interval, and consider the ratio

£ = f(x0) (111-1)
X — Xo
where x # x, and x is a variable point of the interval. The ratio (1.11-1) is called a
difference quotient.

Definition. If the difference quotient (1.11-1) approaches a limit as x approaches
Xo, the limit is called the derivative of f at x = x,, and is denoted by f'(xo). Thus,
by definition,

X

f(xo) = lim L= {0) (1.11-2)
0

)_
x-xg X— X

provided the limit exists.

Quite likely the student is familiar with another notation in connection with
this definition. Sometimes we write x = x,+ Ax, and then (1.11-2) takes the form

£1(x0) = lim {0+ A0 = f(x0) (1.11-3)
Ax—0 Ax
Here the symbol Ax denotes an independent variable. For many algebraic
calculations it is convenient to use h in place of Ax. Also, we may drop the zero
subscript; we then have the definition
f’(x)=limf——————(x+hh)_f(x)a (1.11-4)
h—0

—

provided the limit exists.
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In addition to the notation f'(x) for the derivative we frequently use the

. d
notation o f(x).

Example 1. Using form (1.11-2), calculate f'(x,) if f(x) = x2. Here
f(x) = f(xo0) = x> = x§ = (x — Xo)(x + x0);

F'(x0) = lim (x + x¢) = 2x,.

X->Xg

Example 2. Using form (1.11-4), calculate f'(x) if f(x) = 1/x. Here

1 1__-h
fGx+h) f(x)_x+h x (x+h)x’
v -1 1
fx)= l;.lf(} (x+h)x  x¥
Definition. A function which has a derivative at a certain point is said to be
differentiable at that point.

In the definiton (1.11-2) we were assuming that f was defined in an interval
extending some distance on each side of the point x,. It is understood that x may
approach x, from either side, and that the limit of the difference quotient is the
same when x approaches x, from the left as when the approach is from the right.

It is useful to define one-sided derivatives. Using the notation for limits from
the right and left, respectively, as explained just prior to Example 5 in §1.1, we
define the right-hand derivative fi(xo) and the left-hand derivative f’(xp) as
follows: -

fi(x0) = lim ﬁ’%:—ﬁ?"—) (1.11-5)
fixg) = lim ﬁ—"g—:ﬁi’) (1.11-6)

provided the limits exist.

If in discussing a function we confine our attention wholly to an interval
a = x = b, then we shall understand that f'(a) means fi(a), and that f'(b) means
f(b). If a <x,< b, however, and if the function is differentiable at x,, then we
must have fi(xg) = f’(xo). The derivative f'(xo) is then the common value of the
two one-sided derivatives. For an example of a case in which the two one-sided
derivatives exist but are unequal, see Exercise 12.

Example 3. Let f(x)=V2(1—cos2x). Show that this function is not
differentiable at the points x =0, =, £27, ... and find the one-sided derivatives

at these points.
We recall the trigonometric identity

1—cos 2x =2 sin? x.
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Y
W\/\/
x
=21 = /10 T, Jor
\‘ i LY 'l
N S N/

Fig. 5.

Thus*
f(x) = V4sin®x = 2Jsin x|.

This means that f(x) =2 sin x when sin x = 0; but f(x) = — 2 sin x when sin x <0.
The graph of f(x) is shown in Fig. 5. The dotted portions represent the function
2 sin x when sin x < (. From the symmetry of the figure we see that the situation
at all the points x = nw (n =0, £1,...) is the same. The right-hand derivative at
each of these points is 2, and the left-hand derivative is —2:

Oy - Jie 280X —0
f+(0)—}lgl -0 2,

£2(0) = lim —2sinx—0

x—0— x_O =_2'

We take it for granted that readers of this book are acquainted with the
interpretation of the derivative f'(x) as the slope of the curve y = f(x) when we
employ a graphical representation in rectangular co-ordinates with equal scales
on the two axes (see Fig. 6). To say that f is differentiable at a point means
geometrically that the curve y = f(x) has at that point a unique tangent line
which is not parallel to the y-axis.

We also take it for granted that the student is familiar with the interpretation
of the derivative as an instantaneous rate of change. Without going into detail we
emphasize the fact that the concepts of velocity, acceleration, and all kinds of
instantaneous rates of change find their precise mathematical formulation in
terms of the notion of the derivative of a function.

Students beginning this book are expected to know the general rules of
differentiation, including the rules for dealing with sums, products, and quo-
tients.

*In this book we adhere to the standard convention that if A =0, VA means the nonnegative
square root of A. According to this convention Vai=aif a =0, but Va’=—a if a <0. Both cases
are covered by the formula Va’= |a|. Finally, A" and VA are merely different notations for the
same thing.

T veTATY
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It will be convenient to draw up a list of v
differentiation formulas

GENERAL RULES

dii;[f(x)+g(x)]=f’(x)+g’(x). (1.11=7)

T T P,

d o o] /
= [cf(x)] = cf'(x) (¢ constant). (1.11-8) tan (;:f’(x)

ig. 6.
L e = f0g @+ Fge).  (11-9)

d [f&X)]_8X)f'(x)—f(x)g'(x)
dx [g(x)} h [g(x)P - (L1-10)

Each of these rules is in fact a theorem. We understand that the functions f(x),
g(x) are defined on some interval a <x <b. Rule (1.11-7), when stated more
fully as a theorem, may be expressed as follows: If f(x) and g(x) are differenti-
able for a particular value of x, then their sum is also differentiable for this value
of x, and (1.11-7) holds. The student should amplify each of the rules (1.11-8)-
(1.11-10) into a formally stated theorem in the same manner. What special
provision must be made in connection with (1.11-10)?

We mentioned at the end of § 1.1 that a function may be continuous and yet
not differentiable. For instance, the function of Example 3 is continuous for all
values of x, but it is not differentiable at the points nw, n =0, +1, *2,....
However, differentiability does imply continuity as the following theorem
shows.

“1¥ If f is differentiable at x,, it is continuous there.

BE: When x# x, we can write

fo =IO () + v,

X

Then, by (1.1-4) and (1.1-5),

lim f(x) = f'(xo) - 0+ f(xo) = f(xo0).

X—xg

This completes the proof.

The student must already be accustomed to using the rule for differentiating

a composite function (sometimes called the chain rule). By a composite function
we mean a function formed by substitution of one function in place of the

independent variable in another function:
F(t) = flg(1)]. (1.11-11)
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To fix the ideas precisely, suppose that g is defined when a <t < 8, and that the
values of the function satisfy the inequality a < g(t) <b. Suppose that f is
defined when a <x <b. Then, replacing x by g(t), we obtain the composite
function F defined by (1.11-11).

THEOREM II. Suppose g is differentiable at a point t, of the interval a <t <.
Let x, = g(ty), and suppose that f is differentiable at x,. Then the composite
function F is differentiable at t,, and

F'(ty) = f'(x0)g'(to). (1.11-12)

In elementary calculus this theorem is often expressed symbolically in a
different way, by writing

y =f(x), x = g(t).
Then
dy dy Cdx

dt  dx dt’
Example 4. Suppose f(x)=x", g(t)=1t— 1t Then
F)=(@—~t)" and F'(t)=17(t —t)'°(1 - 21).

We accept Theorem II as known from elementary calculus. The proof is a
somewhat delicate matter, however, and the student who wishes to study the
proof will find a discussion of it in Exercise 26 at the end of this section.

Throughout calculus there are two aspects of the development of the
subject. On the one hand we formulate concepts and rules applicable to arbitrary
functions having certain properties. Theorems I and II are of this type. On the
other hand there are the particular functions which we deal with as illustrations
and in all practical applications, e.g.,

(1= x)'", sin 2x, tan"' x, log x, e 72,
and many others. We assume that the student knows the formulas for differen-
tiation of the standard elementary functions, and in general we shall regard all
such functions as being available for illustrative purposes.

In order to illustrate the possibility of various kinds of situations which do
not ordinarily arise with the standard elementary functions, we sometimes resort
to the contrivance of functions specifically defined so as to exhibit some
peculiarity. Such specially contrived functions serve to help the student ap-
preciate the generality of the concept of a function. They also teach him to be
wary of tacitly assuming more than is implied in a given definition or hypothesis.

Example 5. Let a function be defined as follows:
fx)=xsin if x#0,

£(0)=0.
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We shall see that this function is differentiable for all values of x, but that the
calculation of its derivative at x = 0 requires special attention.

We note first of all that the formula by which f(x) is defined when x# (0
cannot be used when x = 0, since 1/x is then undefined. Hence the assignment of
the value of f(0) may be made as we choose. The value f(0)=0 is chosen
because this makes the function continuous at x = 0; that is,

lim x* sm1=0. (1.11-13)

x>0

The correctness of this result is seen from the inequality

x? sin%. =x2 (1.11-14)

which holds since the value of the sine function never exceeds unity.
To find the derivative, we follow standard procedures in writing

"x) = x2 l(:i) 1

f'(x)=x cos e +2x sin —

, 1 1

f'(x)=-— cos;+ 2x sin T (1.11-15)

This result is correct when x# 0. If x = 0, however, the foregoing procedure for
finding f'(x) is not valid, for it is based on the rule for the derivative of the
product of two functions, namely x? and sin(1/x); the second of these functions
is not defined at x = 0, and cannot be defined there so as to be differentiable.

As yet, then, we do not know whether f(x) is differentiable at x = 0. Now, by
definition,

f(0)=1lim

x-0

f&x)—-f(0)
x—0 ~’

provided the limit exists. Since f(0) =

fG)—fO _ f(X)

—xsm
x—0 x’

and we see that

£10) = lim x sin==0. (1.11-16)

It is worth pointing out that f(x) is not continuous at x =0; for from

(1.11-15) we see that as x -0, f'(x) approaches no limit but oscillates infinitely
often from —1 to +1.

A graph is helpful in visualizing the nature of the function f. The student

should construct such a graph, using the method of multlphcatlon of ordinates.

The curve v = f(x) oscillates between the curves y = x?, y =—x?, crossing the

. 1 1 1
+— 4+ 4+ —
axes at the points E L E I
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In concluding this section we point out a certain principle of reasoning about
limits which we used in arriving at (1.11-13) and (1.11-16). It is the following:
If two functions, F, G satisfy an inequality of the form

A=F(x)=G(x), (1.11-17)

where A is some fixed number, and if lim,_.,, G(x) = A, then lim,., f(x) = A also.

For example, in applying this principle to arrive at (1.11-16) we put F(x) =
[x sin(1/x)|, G(x) = |x|, A =0, xo = 0. The principle just stated is a special case of
Theorem XII, §1.61. Its truth is an immediate consequence of the definition of a
limit.

EXERCISES

1. (a) If f(x) = x", where n is a positive integer, compute f'(x,), using (1.11-2) and a
factorization theorem. (b) Compute f'(x), using (1.11—4) and the binomial theorem.

2. Suppose p and g are positive integers without a common factor. Let f(x) = x>/

Suppose x, X, are positive, and write u = x "%, uq= x§'%. Verify that
f&x)—fxo) _u® —ug
X —Xo u? —ugy’
1

Proceed from here to show directly that f'(xo) = nxg~', where n = p/q.

3. Let f(x)=x", where x >0 and c is irrational. Since ¢ cannot be expressed as a
ratio of integers, the method of Exercise 2 is not available for calculating f'(x). However,
assuming as known the differentiability properties of the exponential and logarithmic

functions, show that the formula f'(x)=cx“"' may be deduced from the fact that

f(x) = ec logx.
4. Let f(x)=sinx, g(x)=cosx. Show that finding f'(0) is the same as finding
lim S‘: x’ and that finding g'(0) is the same as finding lirr(l’ ggg_X_—_l_ Taking for granted that

x>0
these limits have values 1, 0 respectively, deduce the formula f'(x) = cos x, using (1.11-4)
and the expansion formula for sin(x + h).

5. Show that the formula g'(x) = —sin x may be derived from the relations f'(x) =
COS X, COS X = sin (%— x). (f and g are defined in Exercise 4). What theorem do you use?
6. Let f(x) =log x. Using only the definition of the derivative and standard proper-

ties of the logarithm function, explain why f'(1) = lim,_, log(1+ h)"*.
7. If f(x)=log x, show that

fe+h) =) _
h

1fa+—-fM
X t ’
where t = h/x. Hence explain why f is differentiable at x if it is differentiable at 1, and
show that f'(x) =]¥.
e’ —1
X

can deduce f'(x) = e* with the aid of the laws of exponents. Start from (1.11-4).

9. The radius of a sphere is being increased at a variable rate. This rate is 2

8. Let f(x) = e”. Explain why f'(0) = lim . Show that, if f'(0) = 1 is known, one
x>0
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centimeters per second when the radius is 5 centimeters. Find the rate of change of the
volume of the sphere, in the cubic centimeters per second, at this particular moment.

10. A rocket is being launched straight upward from the earth. It burns liquid fuel at
a variable rate, the rate being N gallons per mile when the rocket is 10 miles high. If the
speed of the rocket at this time is 1000 miles per hour, what is the instantaneous rate of
fuel consumption in gallons per hour? Let x be the altitude of the rocket ¢t hours after
launching. Suppose the rate of fuel consumption is kx~ "2 gallons per mile and 3k(ct)"?
gallons per hour where ¢ and k are positive constants. Find a formula for the rate of rise
of the rocket, and deduce the formula connecting x and t.

11. If f is the function of Example 5 and F(t) = f(t*- 1), find F'(1).

12. Show that f(x) = |x| is not differentiable at x = 0. Is it continuous? Find f:(0) and
£10).

13. Let f(x)=e ™. (a) Graph this function. (b) Is it continuous at x =0? (¢) Is it
differentiable there?

14. Let f(x)=x|x|. (a) Graph the function. (b) Find f'(x) if x>0; if x =0; if
x <0. (c¢) Is the derivative f' differentiable at x = 0?

15. (a) If f(x) =[x], compute G by (1.11-4). (b) How does Theorem I show that f
is not differentiable at x =2? (¢) What is the value of fi(2)? (d) How does

)%)‘f@) behave as h—»0—-?

16. Discuss the continuity and differentiability at x =0 of f, where f(x) = x sin(1/x)
when x# 0, f(0)=0.

17. Show that the function defined as f(x)=x’sin(l/x) if x#0, f(0)=0, has a
derivative for all values of x, and that f’ is continuous at x = 0 but not differentiable there.

18. (a) For what values of the exponent n (an integer) will f'(x) exist at x =0 if
f(x)=x"sin(1/x?) when x# 0, and f(0)=0? (b) For what values of n will f' be con-
tinuous at x =0? (¢) For what values of n will f’ be differentiable at x =0?

19. Let f(x)= T—+—xev; if x# 0, f(0) =0. Does f'(0) exist? Sketch the graph near x =0,

showing the directions from which a point approaches the origin along the curve.

20. Discuss the differentiability at x =1 of f(x) =(x — 1)[x]. Draw the graph when
0=x=2.

21 If f(x)=[x]+ (x—[x])'? sketch the graph when 0 =x =3. What can you say
about continuity and differentiability of f at x =1 and x =2? Write a formula for f(x)
without square brackets when 0 < x < 1, and use it to find f'(3).

22. Let f be a function which is defined for all x, with the properties (i) f(a+b)=
fla)f(b), (i) f(0)=1, (iii) f is differentiable at x = 0. Show that f is differentiable for all
values of x, and that f'(x) = f'(0)f(x).

23. Let functions f and g be defined for all x and possess the following properties:
(i) flx+y)=Ff(x)g(y)+f(y)g(x), (ii) f and g are differentiable at x =0, with f(0)=0,
f'(0) =1, g(0) = 1, g'(0) = 0. Show that f is differentiable for all values of x, with f'(x) = g(x).
If it is also known that g(x + y) = g(x)g(y) — f(x)f(y), show that g is differentiable for all
values of x, with g'(x) = —f(x).

24, Suppose f(%,,)z%,,—, n=1,2,...,and f(x)=0 for all other values of x. Is f

differentiable at x = 0? What is the situation if instead we define f(il,;) = i%?
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25. Construct proofs for rules (1.11-7)-(1.11-10), using (1.11-4).

26. Given f, g, and F as in (1.11-11) and Theorem II, consider any nonzero value of
At so small that a <to+ At <, and define

Ax = g(to+At) —g(to), Ay = f(xo+ Ax)— f(xo).
Then define
c =%—f’(xo) if Ax#0 and e=0 if Ax=0.

Show that

F(to+ A= F(to)) _ Ay _ ., Ax
———At—————At —[f(x°)+€] At.

Explain carefully why Ax and € approach 0 as At >0, and then explain how you can carry
through the proof of Theorem II.

1.12 / MAXIMA AND MINIMA

One of the important things about the derivative is that it helps us to locate the
relative maxima and minima of a function. Let us formulate exactly what can be
said about such things.

It is necessary to say what we mean by an open interval of the x-axis. If a
and b are numbers such that a < b, all numbers x such that a <x < b form what
is called the open interval from a to b, or more briefly, the open interval (a, b).
The end points a, b do not belong to the open interval. By contrast, the set of all
numbers x such that a = x =b is called a closed interval; here the end points
belong to the interval. We shall denote closed intervals by the use of square
brackets: [a, b]; for open intervals we shall use ordinary parentheses: (a, b). By
a neighborhood of x, we mean an open interval containing x.

yDefinition. Let f be a function which is defined on an
open interval (a, b), and let xy be a point of the interval.
We say that f has a relative maximum at x, if there is some
neighborhood of x, (say (a;, by), where a;<xo<b)) ;
contained in (a, b) and containing xo such that f(x) = .:
f(xo) if a;<x <by. This means that f(x,) is at least as <
large (algebraically) as f(x) at all points x for some
distance on either side of xy (see Fig. 7). Fig. 7. A relative maximum.

t—

a; x, b,

O~ fpmmm—m————

A similar definition is made for a relative minimum, the inequality being
reversed: f(x) = f(xo) when x is near Xx.

Both a relative maximum and a relative minimum are covered by the term “a
relative extremum.”

THEOREM II1.: Suppose that f has a relative extremum at the point x, of the
open interval (a, b) and suppose that f is differentiable at x,. Then f'(xy) = 0.
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sider the one-sided derivatives at x,, and bear in mind that f(x) = f(x,) when x is
sufficiently near x,. Then f(x)— f(x,) = 0: accordingly

f(x) ~ f(xo)

X — X

=0 when x > x,

and so (see (1.11-5))
filxg)=0.
Likewise

&) = f(xo)

X — X

=0 when x <xq,

so that f'(xe)=0 (see (1.11-6)). But, since f is differentiable at x,, we have
F'(xg) = fi(x0) = f2(xy). Therefore f'(x¢) = 0, for it is neither positive nor negative.
The proof for the case of a relative minimum is entirely similar.

It may happen, of course, that a function has a relative extremum at a point
Xy, but is not differentiable there. This happens with f(x) =1~ x** at x =0, and
with f(x)=|x — 1| at x = 1. See Fig. 8, also.

The proof of Theorem III rests on the following reasoning about limits: If a
variable quantity is =0 and approaches the limit A, then A =0; likewise, if the
variable quantity is =0 and approaches the limit B, then B = 0. This principle is
considered further in §1.61 (Theorem X).

In defining a relative extremum we compared the value f(x,) with values f(x)
at points x on both sides of x,. Theorem III applies only when x, is an interior
point of the interval on which we are examining the values of f. By contrast, let
us consider a function which is defined only when a = x = b, and suppose that
f(a) is greater than f(x) when x is near a on the right. Then, if the right-hand
derivative fi(a) exists, we can infer that fi(a) =0, but not that fi(a)=0 (see
Fig. 9). We leave it for the student to draw the appropriate conclusion about
fi(b) if f(x)= f(b) when x is near b on the left.

Of course, the mere fact that f'(xy) =0 does not guarantee that f has a
relative extremum at x,. This is illustrated by f(x) = x> at x = 0, where the graph
has a horizontal tangent but the function has neither a relative maximum nor a

:

Qf-~
[y U

]
)
!
1
1
1
1
1
i
1
1
1
1
H
a

Fig. 8. A relative minimum. Fig. 9.
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relative minimum. If f is differentiable at x,, f'(xy) = 0 is a necessary, but not a
sufficient, condition for f to have a relative extremum at x,.

There are tests which are sufficient, but not necessary, for a relative
extremum at xg, and which at the same time provide a means of distinguishing a
relative maximum from a relative minimum. We postpone consideration of such
tests to later sections. See, for instance, Example 8, §1.2.

In many problems we are interested in a function which is defined over some
given interval, and we wish to find the largest (or smallest) value which the
function assumes on the given interval. The interval may be closed, e.g.,
0=x=4, or open, e.g., | <x <3, or neither. Examples of intervals which are
neither open nor closed are furnished by inequalities such as 0 <x =10 and
2= x <8 (open at one end and closed at the other). Also, we may be interested
in finding the greatest or least value of f(x) for an infinite range of values of x.
For example, let x denote the altitude of a right circular cone circumscribed
about a sphere of radius b, and let f(x) denote the volume of the cone. One finds
without much trouble that

fex) = %(xb—zxzzb)'

The significant values of x are those for which x > 2b, since if x =2b there can
be no cone of altitude x circumscribed about the sphere. For further con-
sideration of this problem see Exercise 10, page 25.

There may or may not be an absolute maximum or an absolute minimum in a
given situation. This will depend on the nature of the function and the interval
which are involved.

Example 1. f(x) = x; interval 0 <x = 10.

Here there is no absolute minimum, since f(x) can be as near 0 as we please,
but never attains that value on the specified interval. There is an absolute
maximum, occurring at x = 10.

Example 2. f(x)=x?; interval — 1 = x <2.

Here there is an absolute minimum at x = 0; there is no absolute maximum
on the interval, for f(x) can approach but never reach the value 4 when x is
restricted to the specified interval.

Example 3. f(x)=tan x; interval — /2 <x < /2.
Here there is neither absolute maximum nor absolute minimum.

There is a very important theorem to the following effect:

If f is defined and continuous at each point of the finite closed interval a =x = b,
then at some point of the interval f(x) attains an absolute maximum value.
Likewise, at some point of the interval f(x) attains an absolute minimum value.

This theorem is taken up carefully and proved in §3.2. For the present we shall
accept the theorem and strive to appreciate its usefulness. The requirement that
the interval be finite and closed is quite essential, for in the absence of these
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limitations f(x) might not attain any absolute extreme values, as we see by
Examples 1-3.

In practice the functions we are interested in are usually differentiable at all
points of the interval (there may sometimes be isolated exceptional points). If an
absolute extreme value occurs at an interior point of the interval, it is also a
relative extreme value in the sense of Theorem III, and therefore we must have
f(x)=0 at the point, provided f is differentiable. We therefore have the
following guiding principle in searching for points at which f(x) can attain an
absolute maximum or minimum value: Suppose f is differentiable on the given
interval, except perhaps at a finite number of points, and suppose it is known that
an absolute maximum (or minimum) value is actually attained. Then the point of
attainment is either

(a) a point where f'(x)=0,
(b) a point at one end of the interval,
or (c) a point where f is not differentiable.

In the common type of problem studied in elementary calculus, the solution is
usually found under (a). In fact, it usually happens with physical or geometrical
problems that there is only one interior point of the given interval where
f'(x)=0. Solutions under (b) do occur sometimes, even in physical problems,
and a carefully reasoned solution should always take account of the situation at
the ends of the interval, perhaps even before computing f'(x). The situation (c)
may occur also, but this will be more rare in common practice.

Example 4. Find a number x between 0 and 1 such that f(x) = 2+ I E is as
small as possible. * *

We observe that f(x)>0 when 0<x <1; f is continuous in the specified
open interval. Also, f(x) becomes very large (in fact f(x)— + ) as x approaches
either end of the interval. We conclude that the graph of y = f(x) near the ends of
the interval has an appearance somewhat as shown in Fig. 10. It follows from
this reasoning that if we choose a closed interval a = x = b, with a >0 and very
near 0, and b <1 and very near 1, the function f will have smaller values in the
interior of the interval [a, b] than it has in the rest of the interval (0, 1). Since f is
continuous on the finite closed interval [a, b], it must attain a value at some
point of [a, b] which is an absolute minimum among all the values occurring on
the interval. This absolute minimum will also be an
absolute minimum among all the values of f occurring on
the open interval (0, 1). Now f is differentiable in (0, 1);
hence the required point of absolute minimum must be a
point at which f’(x) = 0. We therefore proceed to com-
pute the derivative and solve the equation f'(x) = 0:

Y

L =2 8 6x’+4x—2 .
f(x)_'x_2+(1__x)2_ x2(1_x)2 s [2) 1

3x242x-1=0,x=5 or x=—1. Fig. 10.
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The solution in the interval (0, 1) is x =3 We conclude that f(x) attains its
minimum value at x =3, the minimum value is 18. Observe that no test, by
second derivatives or otherwise, is necessary to distinguish between a maximum
and a minimum in this case, since we know that a minimum value exists, and
there is only one point in the interval at which f'(x) = 0.

We emphasize that the assurance of the existence of an absolute minimum in
Example 4 is based on use of the theorem cited following Example 3 on page 22.
Likewise, in Example 5 (following), the existence of an absolute maximum is
assured by the same theorem.

Example 5. If f(x)=x(4—x)}{(x —2)*+2}, find the absolute maximum value
of f(x) when 0 =x =4.

Here we see that f is differentiable (and continuous) for all values of x.
Moreover, f(0) =f(4)=0, and f(x)>0 if 0 <x <4. There must be an absolute
maximum for f somewhere on the closed interval [0, 4], and it clearly does not
occur at either end of the interval. Hence it must occur at some interior point
where f'(x) = 0. A simple calculation shows that

f(x)=—x*+8x>—22x"+ 24x,
fl(x)=—4x>+24x*>— 44x + 24,
fi(x)=—4(x—D(x —2)(x —3).
There are three points where f'(x) = 0: x = 1, 2, and 3. Calculation shows that

f()=9,f2)=8,f(3)=9.

Hence the absolute maximum value of f on [0,4] is 9, occurring at x = 1 and
x =3. All of this shows up clearly on a graph, which the student should
construct for himself. It is noteworthy, however, that the reasoning is conclusive
without the graph.

EXERCISES

1. (a) Find all the points of relative maxima and minima and sketch the graph of
f(x)=(x +5)%(x>*~10). (b) Find the absolute maximum and minimum values of f(x) on
the interval —6=x = - 2.

2. Find the algebraically largest and smallest values of f(x)=20x>—2700x + 7000
when 0 = x =10.

3. Find the absolute maximum of f(x) = (x>*—75)/(x — 10) for 0 = x < 10. Begin by
sketching the graph enough to show why a maximum must be attained in this interval.

4. Consider f(x) = x/(x*+ a*)** for x = 0. Explain why f(x) must attain an absolute
maximum value at some point. Find the point

5. Find the absolute. maximum of sin®26(1 + cos 26) for 0 = 6 = /2.

6. Discuss the possible absolute extrema of f(x)=x*+ (256/x%) for 0 <x =4, and
find any that exist.

7. Consider the function (27/sin x) + (64/cos x), 0 < x < /2. Why must there be an
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absolute minimum in this open interval? Find where it occurs, and the corresponding
value of the function.

8. Without drawing the graph, find the absolute maximum and minimum values of
the function (a) 5cos’x ~3cosx; (b) 2sinx —1+2cos’«x.

9. A right circular cone of altitude x is inscribed in a sphere of radius c. Express the
volume of the cone as a function of x. What open interval of values of x is of significance
in considering nondegenerate cones? Explain why there must be an absolute maximum
volume for some x in this interval, and find the x for which the maximum._is attained.

10. Let V be the volume of a right circular cone of altitude x circumscribed about a
sphere of radius b. Show that V attains its absolute minimum when x = 4b. Write the
argument out fully and carefully after the manner of the discussion of Example 4.

11. A right circular cylinder with radius of base x is inscribed in a right circular cone
with radius of base r and altitude h. (a) Express the total surface area of the cylinder
(including ends) as a function of x. (b) What interval of x-values are of significance if a
nondegenerate cylinder is wanted? (¢) What inequality must be satisfied by r and h if
there is to be a nondegenerate cylinder of maximum area? (d) What is the situation if
h=6,r=2%if h=4,r=22if h=4,r=37

12. Consider f(x) = xs—(lil'_w—i) if 0<x <1. (a) Complete the definition of f at x =0, 1
so as to make f continuous on [0, 1]. (b) Find the absolute maximum and minimum of
f(x) on [0, 1] after completing (a). (c) Sketch the graph of y = f(x).

13. Let f(x)= 5V 16+ x>+ 4V (3 — x)* (taking the positive square root in both cases,
so that V(3—x)’=|3—x|). Note that f is differentiable except when x =3 and that
f(x)>+® as x>+ or x—>—», (a) How do you infer from this that f must attain an
absolute minimum value? (b) Find formulas for f'(x) according as x <3 or x >3, and
show that F'(x) <0 if x <3, while f'(x)>0 if x >'3. (¢) What do you infer about the
point of attainment of the minimum? (d) What is the minimum value of f(x)?

14. A spring is located at (0,a), and a man’s house is located at (b,0), where
a>0,b >0. A pipeline is to be laid in two straight parts, the first part from the spring to
(x,0), and the second part from (x, 0) to the house. The two parts will cost ¢, and ¢, dollars
per unit length, respectively. -

(a) Show that the total cost of the pipeline, for any value of x, is
f)=cVa*+ x>+ calb—x|.
(b) Show that f has-its absolute minimum value for some x such that 0 <x = b.
HINT: Consider the sign of f'(x) when x =0 and x > b respectively.
(¢) Find the inequalities which must be satisfied by c1, €2, a, and b if f is to attain its
minimum for an x such that 0 <x <b.

Observe that Exercise 13 is a special case of this exercise. A contrasting special case is
afforded by taking ¢, =3, c.=4, a =3, b = 5. If one does these two special cases first, the
general problem will be more interesting.

15. Discuss the intervals of definition of the function

Fx)={(16~x*)(x>— N},
and find the absolute maximum of the function.

16. A man wishes to get from point A to point B, these points being diametrically
opposite each other on the shores of a circular pond. The man can row 12 miles per hour
and walk 5 miles per hour.
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(a) If there is a boat available at A, what combination of rowing and walking will take
him to B in the least possible time?
(b) Discuss the problem in case the rowing and walking speeds are, respectively, u and v
miles per hour. Check your results carefully in the special case u =2, v = 4.

17. Consider a and b as fixed, with b < a. Let ¢ be a variable such that b <c¢ < a.
Let ¢ be the acute angle between the tangents to the circle x*+ y>=c? and the ellipse
b*x*+ a’y*>= a®b? at a point of intersection. Find tan ¢ when ¢ is chosen so that ¢ is
greatest.

18. Write out the proof of Theorem ITI for the case of a relative minimum.

Show that, if f has a relative minimum at xo, and g{x) = — f(x), then g has a relative
maximum at xo. Hence deduce the proof for the case of a minimum from the facts already
established for a maximum.

1.2 / THE LAW OF THE MEAN (THE
MEAN-VALUE THEOREM FOR DERIVATIVES)

The theorem which goes by the name of the law of the mean is one of the most
important theoretical results in the subject of differential calculus. It is used as a
tool in many places in the later developments of calculus, both differential and
integral, particularly in connection with proofs. We wish to emphasize very
strongly that the student of advanced calculus needs to gain an appreciation of
the power of the law of the mean as an instrument of systematic reasoning. The
ﬁljrst step should be to become thoroughly famitiar with the content of the law
itself.

THEORE! 2% (The law of the mean.) Let f be a function which is continuous at
each point of the closed interval a =x =b, and let it have a derivative at
each point of the open interval a <x < b. Then there is a point x = X in the
open interval (a < X < b) such that

f(b)~f(a) = (b~ D) (X). (1.2-1)

The theorem has a geometrical interpretation. Represent the function
graphically by the curve y = f(x), and let A, B be the points on the curve
corresponding to x = a, x = b, respectively. The formula (1.2-1) states that there
is some point on the curve, with abscissa x = X, at which the tangent is parallel
to the line AB. There may be more than one suitable value of X; the essential
thing is that there is always at least one (see Fig. 11).

It is worth noting that (1.2-1) remains true if we
exchange a and b, for both sides merely change sign
when this is done. Thus, suppose x;, x, are the end-points
of an interval on which the conditions of the law of the
mean are satisfied. Then we can write

f(x2) = f(x1) = (2= xDf'(€), (1.2-2)

where x =¢ is some point between x; and Xx;. In
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writing this formula we do not need to know which of the numbers xi, x;, is the
larger.

The geometrical interpretation of the law of the mean makes its truth
plausible. A proof must be based on analytical reasoning, however. We follow
the usual procedure of basing the proof on an auxiliary theorem named after the
seventeenth-century mathematician Michel Rolle.

XEM. Let g be a function which satisfies the conditions of
nd suppose further that g(a) =g(b)=0. Then for some X such
that a < X < b it is true that g'(X) =

roofiWe distinguish two cases: (1) the case in which g(x) is zero on the
whole interval, and (2) the case in which g(x) assumes values other than 0 at
some points of the interval. In case (1) the derivative g'(x) is identically zero and
the existence of X is assured. In case (2) let M and m be the maximum and
minimum values, respectively, of g(x) on the closed interval [a, b]. At least one
of the values M, m must be different from 0, and must therefore occur at point x
of the open interval (a, b). By TH 12¥%we conclude that g'(X)=0

We have glossed over the main difficulty in this proof, namely the matter of
the existence of the extreme values M and m. Here we appeal to the theorem
which asserts that if a function is continuous on a finite closed interval, it
actually attains its absolute extremal values at certain points of the interval. This
theorem has been referred to before (see §81.12, following Example 3); we treat
it formally as¥Eheo: B

The law of the mean is deduced from Rolle’s theorem by an artifice. The
function f in Theorem IV need not vanish at x = a and x = b. Suppose, however,
that y = F(x) is the equation of the straight line AB in Fig. 11, so that
F(a)=f(a), F(b)=f(b). Let g(x)=F(x)—f(x). Then g will be a function
meeting the conditions of Rolle’s theorem. The equation of the line in question is

_f(b)—f(a)
b—a

(x—a)+ f(a).
Hence we set
g0 =PI ( oyt fia) - fo).

Note that g(a) = g(b) = 0. The derivative is

R (LS (IR
The conclusion g'(X) = 0 of Rolle’s theorem is now seen to be equivalent to the

law of the mean in the form (1.2-1). .
We now give some simple examples illustrating the law of the mean in

particular instances.
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Example 1. Suppose f(x)=x’. Find a suitable value for X in (1.2-1) when
a=—1and b =2.

Since f'(x) = 3x?, the law of the mean takes the form b*—a’>= (b — a)3X?in
the present case. With a=—1, b=2 we have 8—(—-1’=[2—-(-D]3X?, or
X?=1. Solving, we find X =+ 1. We want a value of X such that a < X <b,
i.e.,, =1 <X <2. Hence X =1 is the suitable value in question.

Example 2. If f(x) = x2, show that the suitable value of X in the law of the
mean is X = (a + b)/2.

We have f'(x) = 2x. Hence the law of the mean becomes b>—a’*= (b —a)2X,
or X = (a -+ b)/2. Where is this point located in relation to a and b?

Example 3. If f(x) =sinx and x, =0, x,=57/6, find ¢ such that x; <§& <x,
and (1.2-2) holds.
We have f'(x) = cos x and sin(57/6) = 3. Hence (1.2-2) takes the form

—0=sin5—w—sin0=§1

1
2 6 6

cos ¢

or

3
cos &= So 0.19099.
Since 0 < ¢ <54/6, we find £ = cos (0.19099) = 1.37863. This is somewhat less
than #/2, which is to be expected, as may be seen from a carefully drawn graph.

In actual practice we are seldom interested in the exact value of the X
occurring in (1.2-1); the important thing is that X lies between x = a and x = b.
This enables us to obtain inequalities for estimating the value of f(x).

Example 4. Show that 3 <log 1.5 <3.
This may be done as follows: We take f(x)=logx,a=1,b=1.5; then
f'(x) = 1/x, and by the law of the mean )
logl.5—-logl=1log1.5=(1.5— 1)3(1—= (;(;5,

where 1 < X < 1.5. It follows that
05 05 05

1
E<y<T,OI'§<

0.5 1

X “7
This gives the required result.

Example 5. Use the law of the mean to show that

logx loga 1 (1.2-3)
X X a

if 0 <a <x.
We use (1.2-1) with f(x) =log x and b replaced by x. Then

logx—loga=%,a<x<x.
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Hence
logleoga+x—a 1
b X x X
Now
x-a 1 _1_1
x X X a

and so (1.2-3) is seen to be correct.

A much used variant form of the law of the mean is obtained from (1.2-1) in
the following way: Let h = b —a, so that b =a+h. Then X may be written
X =a+ 0h, where 0 < 9 <1, because any number between a and a + h can be
expressed in this latter form. Thus we have

fla+h)=f(a)+hf'(a+06h),0<g<1. (1.2-4)
Example 6. Use (1.2-4) to show that
(A+h)*>1+ah (1.2-5)

f h>0and a > 1.
We take f(x) = x% a = 1. Then by (1.2-4),

(1+h)*=1+ha(l+6h)*".

If 0<h we have (1+6h)*'>1, since 1+8h>1 and a >1. The inequality
(1.2-5) follows at once.

One very important consequence of the law of the mean will be formally
stated here as a theorem.

M. V.. Let f be differentiable at each point of the open interval a < x <
b and suppose that f'(x)=0 at each such point. Then the value of the
function is constant on the interval.

% Proof; It follows by Fhe that f is continuous at each point
of the open interval (a, b). Con51der any two distinct points of the interval, say
X1, X2, where a <x,<x,<b. We may apply the law of the mean, obtaining
formula (1.2-2). But f'(£) = 0, by hypothesis, and so f(x;) = f(x,). We have now
proved the theorem, for we have shown that f has the same value at any two
points of the interval.

yTheorém V plays an essential role in the explanation of the relation between
differentiation and integration, as we shall see when we come to the proof of
iTheoret VI §1.53. fChedie Vs also useful in dealing with the concept of
the “‘general solution™ of a certam elementary type of differential equation, as
we shall see in §1.4.

The following example also affords an important application of the law of

the mean.

i
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Example 7. Suppose that f satisfies the conditions of the law of the mean on
the interval a = x = b, and that f'(x)>0 when a <x <b. Show that f(x) in-
creases as x increases.

We are to show that x; < x, implies f(x;) <f(x;) whenever a = x, <x,=b.
The law of the mean tells us that there is some £ such that x; <£ <x, and
f(x2) = f(x) = (x2— x)f'(£). Since (x,—x;) >0 and f'(¢) >0, we infer that f(x;)—
f(x1) > 0; this is equivalent to f(x;) < f(x2).

Example 8. Suppose that f is defined and differentiable on an open interval
containing the point x,. Suppose that f'(x,) = 0 and that for all x sufficiently near
X0, f'(x)>0 when x <x, and f’'(x) <0 when x > x,. Show that these conditions
are sufficient to guarantee that f has a relative maximum at x,.

The argument is based on Example 7. As x increases, f(x) increases when
f'(x) > 0. By similar reasoning f(x) decreases when x increases if f'(x) <0. In the
present case we see that the given conditions imply that for some small number
h, f(x) is increasing as x goes from x,— h to xy, and decreasing as x goes from x,
to xo+ h. Hence f(x) must attain a relative maximum at x,.

From this argument it will be apparent to the student how one may
formulate sufficient conditions for a relative minimum at x,.

EXERCISES -
1. Use the law of the mean to show that 5 < V66 —8 <.

2. Prove that there is no value of m such that x>~ 3x + m = 0 has two distinct roots
in the interval 0 = x = 1. Use Rolle’s thoerem.

3. If f(x)=x>—-3x+2x, a=0, h=3, find a suitable value of 6 in the formula
(1.2-4).

4. For what values of C is Cx — sin x an increasing function of x (for all x)?

5. Show that 2/m <(sin 6)/0 <1 if 0<6 < «/2. HINT: Examine the sign of the
derivative of (sin 8)/6.

6. Prove the following inequalities, using the law of the mean.
(@) VI+x<4+(x—15)8if x > 15.

(b) tan™'x < (m/d)+(x — D)2 if 1 <x.

1_—x<t'cnf'x<£—l_x if 0<x<I.

it
© 7 1722 4 2
(@ hi(l+h)<tan' h<h if 0<h.

7. Prove that the inequality (1.2-5) also holds if —1 < h < 0. Explain the reasoning
about inequalities with care, noting that if 0 <A <1 and B <0, then AB > B.

8. Prove the following inequalities:

(@) 735 <log(1+x) <x,if~1<x<0or0<x.

X

2V1+x

X 1 X
© 1= <gro” <! 2070

) 1+ <Vi+x<l+ax if—1<x<0or0<ux.

3, iIf— 1 <x <0or0<x.
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@ px—1D<xP—1<px"'(x~1Dif 1 <x,1<p.
(e) m)(:fg—:,l)<x"‘—1<m(x—1)if0<m<1,1<x.
9. If a>b>0and m and n are positive numbers such that m +n = 1, show that

a™b" <ma + nb. Use Exercise 8(e).

10. (a) Prove that x" + ax + b = (a, b real) has at most two distinct real roots if n is
even, and at most three if n is odd.
(b) Prove that x" +ax*+ b =0 (a, b real) has at most three distinct real roots if n is odd,
and at most four if n is even.

11. Explain why aex*+ a:1x* + a,x*+ asx + a, = 0 must have a root between 0 and 1 if
(ao/5) +(a:/4) + (a2/3) + (as/2) + as = 0.

12. Let F(x) = (f(x) — f(a))(g(b) — g(x)), where f and g are continuous when a = x =
b and differentiable when a < x < b. Suppose further that g'(x) is never zero. Show that
there is a £ between a and b such that

'@ _1&—f(a)
g'¢) gb)—g&y

13. Suppose f"(x) >0 when a = x = b. Explain by an analytical argument why there
can be at most one point of the interval at which f'(x)=0. What is the geometrical
interpretation as regards the curve y = f(x)?

14. Suppose f is continuous on the interval a <x <b, and that f is known to be
differentiable on this interval except possibly at one point Xx,. Suppose further that
limx.xo f'(x) exists. Use the law of the mean to prove that f is differentiable at x, and that
the derivative f’ is continuous at that point.

15. Generalize the result of [llustrative Example 7 as follows: Suppose f is con-
tinuous on a = x = b and differentiable on a < x < b. Suppose further that f'(x)=0 when
a <x <b and that f'(x) >0 for at least one value of x. Prove that f(a) < f(b). [It is easy
to see that f(a) = f(b); what requires more care is to show that f(a) # f(b).]

16. Suppose f(x)=x’sin(1/x)+ (x/2) if x#0, and define f(0)=0. (a) Show that
f'(0)>0. (b) Show that, no matter how small the positive number h may be there are
infinitely many points on both sides of x =0 and within distance h of x =0 at which
f'(x) =3 and also infinitely many at which f'(x) = — . This shows that there is no interval
containing x = 0 in which f(x) is always increasing as x increases, in spite of the fact that
the slope of the curve y = f(x) is positive at x = 0.

17. Suppose the following things: that f is continuous when 0 = x = q, differentiable
when 0 <x < a; that f(0)=0; and that f'(x) increases as x increases. Show that f(x)/x
increases as x increases. (A suitable use of the law of the mean is indicated.) Examples
are furnished by f(x)=e*—1 and by f(x)=tanx, 0 = x = 7/2.

18. Let f be differentiable when a < x < b. Suppose x; and x, are distinct points of
the interval, and let P, and P, be the corresponding points of the curve.

(a) Show that the condition for P, to lie above the line tangent to the curve at Pz is

F(x) = f(x2) — (x1— x2)f'(x2) > 0.

(b) If the condition in (a) holds for every pair of points on the curve, show that f'(x)
increases as x increases. In fact, if x; < x,, show that

f’(xl) < f(X2) — f(xl) < f’(XZ)-

X2 X1t
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(c) Show, conversely, that if f'(x) increases as x increases, the condition in (a) is satisfied
whenever x; # x,. (Use the law of the mean.)

(d) Under the conditions in (¢) show that the curve y = f(x) between any two of its points
lies entirely below the chord joining those points. Begin by showing that an analytic
expression of this state of affairs is

fO)=f(x) _ fxa) = f(x)

X — X1 X2— X

whenever x; <x < Xa.

1.3 / DIFFERENTIALS

The notion of a differential is closely related to that of a derivative. For
functions of a single independent variable this relationship is very close indeed,
and very simple. For functions of several independent variables the relationship
is less simple. At this point we are concerned only with functions of a single
variable. We presume that the student is acquainted with differentials and their
uses in the formal procedures of elementary calculus. Our purpose here is
mainly to define differentials carefully and demonstrate the fundamental pro-
perty upon which much of the usefulness of differentials depends.

Suppose that f is a function of the independent variable x, and let us assume
that f is differentiable for certain values of x (i.e., that f'(x) exists for these
values).

Definition. Let dx denote an independent variable which may take on any value
whatsoever. Then the function of x and dx whose value is f'(x)dx is called the
differential of f. Observe that the differential is a homogeneous linear function of
dx; that is, for a fixed value of x, the differential has as its value a fixed multiple
of dx.

If we write y = f(x), and if f is differentiable for a particular value of x, it is
customary to write

dy = f'(x) dx, R1.3-1

so that dy is the value of the differential of f for
assigned values of x and dx.

If we regard x as fixed, dy is a dependent vari- v dy
able whose value depends on the independent i
variable dx. The variables dx and dy are often refer- !
red to as the differentials of x and y, respectively. !
The adjacent Fig. 12 illustrates geometrically !
the functional dependence of dy on dx, as well as =
the relation to the function f itself. The xy- -
co-ordinate axes and the graph of the function 5 ‘; 2 o) i
y = f(x) are shown in unbroken lines. A second LIRN

co-ordinate system is showing with its origin at a  Fig. 12.

@ =r@)ds
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typical point (x, y) of the curve y = f(x). The axes in this system are scales for the
measurement of the variables dx, dy. The equation (1.3-1) has as its graph a straight
line of slope f'(x). This line is, of course, the tangent to the curve y = f(x) at the
origin of the dx-dy co-ordinate system.

From (1.3-1) we have the quotient relation

dy .,
d—x—f(x)

whenever dx# 0. The d-notations dx and dy go back to Leibniz’s work in the
seventeenth century, but Leibniz did not define the derivative by the limit of a
quotient as we did in (1.11-4). It is to be emphasized that there is no need for dx
and dy to be small in (1.3-2).

Example 1. If y = f(x) = sin x, calculate the value of dy for x = #w/3, dx =
71-/6. Here f'(x) = cos x, so dy = cos x dx. Evaluating, we obtain
dy = (cos 1) T=Z
3/6 12
Probably the most important feature of the formula (1.3-1) is that its truth is
unaffected by the introduction of a new independent variable.

Example 2. Suppose y =x%and x = t3+¢t,sothat y = (t*+ ¢’ =t + 2t* + 2. If
we regard x as an independent variable, then dy = 2x dx, by (1.3~1). Here dx is
an independent variable. But if we regard ¢t as an independent variable, then both
x and y are dependent on t, and the notations dy, dx acquire new meanings:

x=t'+tdx =3+ 1 dt,
y=1t5+2t4+ 12, dy = (6t°+ 8>+ 2t) dt.
But even with these new meanings, it is still true that dy = 2x dx. We verify this
by writing
2x dx =2(£* + OB+ 1) dt = (6t + 8>+ 2t) dt = dy.
What we have verified here in a particular case may be demonstrated in
general by appealing to the rule for differentiating a composite function

(Theorem II, § 1.11). Suppose y = f(x) and x = g(t), so that y = F(t), where
F(t) = f(g(t)). Then, with ¢t as independent variable,

dy = F'(t) dt,dx = g'(t) dt.

By Theorem II we have
F'(t) = f'(x)g'(0).
Hence combining (1.3-3) and (1.3—4),
dy = f'(x)g'(t) dt = f'(x) dx,

so that (1.3-1) holds, even though x and dx are no longer independent variab.les.
The use of differentials is a great convenience in algebraic manipulations
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which are incidental to much work in calculus. Using differentials rather than
derivatives, one is often enabled to retain a desirable symmetry by not forcing a
decision as to which variable is independent. The differential formula for arc
length of a plane curve illustrates this point. The formula is

ds*=dx>+ dy*;

the co-ordinates (x, y) of a point on the curve are functions of some parameter,
and the arc length s, measured from some chosen initial point on the curve,
likewise depends on the parameter. But the formula (1.3-5) holds (granted
suitable conditions on the curve) no matter what the parameter may be.

The fact that f'(x) is the ratio of dy to dx no matter what variable is
independent is of great usefulness when we wish to compute the slope of a curve
defined parametrically.

EXERCISES

1. (a) If y=(1-x»/(1+x?, compute dy when x =1, dx = 2.
(b) If x = tan(t/2), compute dx when t = w2, dt = 2.
(¢) If x in (a) is replaced by its value in terms of ¢t from (b), show that, on simplification,
y =cos t. From this formula compute dy when t = w/2, dt = 2. Compare the answers to
(b) and (c¢) with your result in part (a).

2. From x=rcosf, y=rsin6, and ds®>=dx>+dy® derive the formula ds’>=
dr*+ r* do>.

3. (a) If y=f(x), y=f'(x), and so on, why is dy’' = y" dx?
(b) What are dy” and d(y’)* when expressed with dx as a factor?
(c) Suppose that x = f(t), y = g(t), and write x' = f'(t), y' = g'(t), and so on. Show that

d (dy) _ xry//_ y/x//

dt\dx)  (x')?
4. For a plane curve C, construct the tangent at a typical
point P(x, y), and let angles ¢, ¢, 6 be as indicated on Fig. 13, 4
so that for the general case ¢ = 8 + ¢ + nw where n is an in-
teger (n =0 in Fig. 13). From this equation and the relations v
dy _ y_ P
dx tan ¢, . tan 0, ”
show that ) ¢
x
tanlp:x‘iy ydx_rd()' 2 //

xdx+ydy dr
dr Fig. 13.
5. From ctn ¢ =740 (see Exercise 4) find d¢ in terms

_dr

of r, ', r", and d6, where r’ =£, and r’ = 36

de
6. The curvature of a plane curve y = f(x) is defined as K = d¢/ds, where dy/dx =
tan ¢ and ds®>= dx”+ dy?®. Derive the formula

"

K=y
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7. Using the definition of K in Exercise 6, and the relation between ¢, ¥, and 9 in
Exercise 4, derive the formula
2 2
re4+2r—rr’
= +
K==
(Exercise 5 should be worked first.)

8. Let y = f(x) be the equation of a plane curve C. The center of curvature of the
curve corresponding to a particular point (x, y) on C is a point (X, Y) a distance R from
(x, y) along the normal to C at (x,y), in the direction toward the concave side of the
curve; here R is the radius of curvature. It may be shown that

l/ 1”2
X=x——————y(“:,y )
1+y”
Y=y+—2
Y y

It is assumed, of course, that y” # 0. .

The locus of (X, Y) as (x, y) moves along C, is a curve called the evolute of C. We
may regard the above equations as parametric equations of the evolute, with x as
parameter. Show that dY/dX = —1/y’. This proves that the normal to C at (x,y) is
tangent to the evolute at (X, Y).

1.4 / THE INVERSE OF DIFFERENTIATION

Many applications of calculus, some of them quite elementary, require the
determination of a function from the knowledge of its first or second derivative,
together with supplementary data about the function for particular values of the
independent variable. The first and simplest general problem of this kind may be
put as follows:

Problem. Given a continuous function f(x), defined on a certain interval, find all
functions defined on this interval and having f(x) as derivative. In symbols, find y
as a function of x such that

dy _
d—x—f(x). (1.4-1)

Directly out of his or her experience with differentiation, the student is able
to solve many problems of this type. The process is one of using standard
differentiation formulas in reverse. Let us examine the reasoning carefully in a
typical case.

Example. Find y as a function of x such that y =1 when x =0 and

d
2ok 12

Here f(x) is defined and continuous for all values of x, so we want the solution
to be defined for all values of x.
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The normal procedure is to write

ay =24 1L+ 1, (1.4-3)
y=llog+x)+C; (1.4-4)
1=3log(1+0)+C, C=1;
y=zlog(1+x)+1. (1.4-5)

The supporting argument (usually not made explicit in practice) runs as follows:
If there is a function y satisfying (1.4-2), then it also satisfies (1.4-3). In this
latter form, as finally written, we recognize that a y satisfying (1.4-2) is
furnished by (1.4-4), where C is an arbitrary constant. The proper determination
of C is made by substituting the given matched values for x and y. Thus we
obtain (1.4-5), which is actually a solution of the problem, as may be checked.

One question remains: Is (1.4-5) the only solution to the problem? Once we
obtain (1.4—4) it is clear that C is uniquely determined by the condition that y = 1
when x = 0. The question is then: Does (1.4—4) give all the functions y satisfying
(1.4-2)? The answer is affirmative, and is supplied by Theorem V, § 1.2. For let y
be any funcfion which is differentiable for all values of x and satisfies (1.4-2).
Then the derivative of the function

y —3log(1+ x?)

is zero for all values of x; hence, by Theorem V, this function is constant, so
that y is given by (1.44) for some value of C.

The equation (1.4-1) is the very simplest type of first-order differential
equation. The problem which we have posed in connection with this equation
may be called the problem of finding the ‘“‘general solution” of (1.4-1). The
general solution is the family of all functions y = y(x) satisfying the equation.
Any member of this family may be called ““a particular solution.”” By appeal to
Theorem V, §1.2, we obtain the following conclusion:

If y(x) and y,(x) are any two particular solutions of (1.4-1), they differ by a
constant. Thus, if y,(x) is any particular solution, the general solution is given by

y =yi(x)+C, (1.4-6)

where C is an arbitrary constant. In all this we assume, of course, that all the
solutions considered are differentiable on the interval where f(x) is defined.
The main problem is thus reduced to the finding of any one particular
solution of (1.4-1). In many important simple problems such a particular solution
may be found either by direct inspection or by various ingenious devices, all of
which depend upon extensive familiarity with formulas of differentiation and
manipulation of differentials. But it is not difficult to give examples in which no
solution is forthcoming from the class of functions which a student meets and
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learns to differentiate in elementary calculus. Thus, for example, the equations

e, dy _ Vi+x®
dx

dy _
dx

have no solution within this class.

It is well to pause at this point and reflect upon the meaning of the word
“function.” In elementary differential calculus practically all our experience is
with functions of a few basic types: algebraic, trigonometric and inverse
trigonometric, exponential and logarithmic, and rather simple compounding of
these types. It turns out that within this class of ‘“‘elementary” functions,
differentiation always leads to functions which are again in the class. Such is not
the case with the inverse of differentiation, however; there are elementary
functions which are not derivatives of elementary functions, e.g., e * and
V1+x> Now the general theorems of calculus deal with functions which are
arbitrary except for requirements of differentiability or continuity, and which
certainly need not be elementary in the sense of the first part of this paragraph.
Once we have rejected the limitation of our considerations to ‘“‘elementary”
functions, we may well ask: What nonelementary functions do we know? If e~
is not the derivative of any elementary function, how are we to find solutions of
the equation dy/dx = e **? Evidently it is necessary in some fashion to acquire a
supply of nonelementary functions of which we know the derivatives.

There are several very important methods for building such a supply. One
method is that of integration of known functions. Starting with a given con-
tinuous function f(x) defined on some interval, we form

F(x)= f f(t) dt, (1.4-7)
where a and x belong to the interval, and a is kept fixed. Another method is that
of forming infinite series whose terms are given functions of x:

F(x)=u(x)+ ua(x)+ us(x)+---.
We shall later be able to show that

f\/1+t3dt
0

is a function F(x) such that F'(x)=V1+ x°, and that

x? x° x’

Xy mitsoa 7t

is a function F(x) such that F'(x) = e™™.

The study of functions defined by infinite series will concern us in a later
chapter of this book. Our immediate interest will be confined to functions of the
type (1.4-7) defined by integration. We shall presently learn (see the end of
§1.52) that if f(x) is continuous on a given interval a <x =b, the general
solution of the equation dy/dx = f(x) on that interval is y = F(x) + C, where C is
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an arbitrary constant and F(x) is defined by (1.4-7). The integral is defined by a
limiting process involving sums.

Every student who has come this far in his study of calculus knows that
there is a very close connection between differentiation and integration. But
elementary calculus books vary widely in their discussions of integration and in
their treatment of the link between differentiation and integration. Thus we shall
not assume any uniformity of knowledge on this subject by the readers of this
book. The next sections will be devoted to the subject of integration and its
relation to differentiation. Our aim will be to lay out a precise logical pattern of
definitions and theorems which will provide a common understanding of the
integration concept and of the connection between differentiation and in-
tegration.

EXERCISES
1. What is the logical objection to the following procedure? Let the symbol [; e ds
be defined as that function F(t) such that F'(1) = e=* and F(0) = 0. Then %(F(IH- )=

“’ds+ C is the general solution of the equation

F'(t)=e¢™", and therefore v=[{ e
dvldt = e,

2. What is the logical objection to the following procedure? Let f(x) be a given
function defined when a=x=b. Let F(x) be any differentiable function such that
F'(x) = f(x) for each x of the given interval. Then define [ f(x) dx = F(b) — F(a).

3. Try to find a continuous F(x) such that F(0)=0 and F'(x)=[x] when 0=x =3
(where [x] denotes the greatest integer =x). Do you succeed fully? Where is the

difficulty?

1.5 / DEFINITE INTEGRALS

We are going to define what we mean by the definite integral of a function. We
start with a function f, which we suppose to be defined and continuous on a
closed interval a = x = b. These things being given, the definite integral of f over
the interval is a certain number, which we denote by

fb f(x) dx, (1.5-1

and which we arrive at by a defining process which we shall outline in four steps,
as follows:
Step 1. Choose an integer n =1 and subdivide the interval [a, b] into n
subintervals by choosing points xg, X;, . . . , X, such that a = xo <x; <- - - <
x, = b. We adopt the notation

Ax;=x—xi-, i=1,...,n.

Step 2. In each subinterval choose an arbitrary point, denoting the point in
the ith subinterval by x}, so that

X =EXi= X
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Step 3. Find the value of the function at each of the points chosen in Step 2,
and form the sum

FOXD Axy + f(x5) Axp + - - -+ flx)) Ax,. (1.5-2)

This is called an approximating sum.

Step 4. Find the limit of the sums (1.5-2) as n is increased and the maximum
of the numbers Ax,, ..., Ax, is made to approach zero. This limit is, by
definition, the definite integral (1.5-1), so that

fb f(x) dx =lim 2 f(x) Ax. (1.5-3)

In Chapter 18, we shall study the theory of integration systematically. At
that time we shall prove that the sums (1.5-2) do actually approach a limit in the
case of any continuous function. For the present we take for granted the
existence of this limit, and its uniqueness. A further discussion of the limit
concept associated with the integral will be found in §1.63.

A definite integral is thus defined as the limit of a certain kind of sum
associated with the function. A geometrical interpretation of the integral can be
made in terms of the area under the curve y = f(x) from x = a to x = b. Each
term in the approximating sum (1.5-2) is the area of one of the shaded rectangles
in Fig. 14. The area under the curve is the limit of the sum of the areas of these

rectangles. We assume that the student is already familiar with this geometrical
interpretation of the integral, and with the extension of the interpretation (by the
concept of negative area) to those situations where the curve y = f(x) goes
below the x-axis. We emphasize, however, that we do not define the definite
integral as the area under the curve. The area interpretation is merely a
convenient method of bringing our intuition into play to aid us in grasping the
nature of the definition (1.5-3). We “feel’”” that the area exists, and that a good
approximation to it can be obtained by the sums (1.5-2), provided we take all the
subintervals short enough. Actually, the area is defined as being equal to the

limit in (1.5-3).
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Area is only one of many geometrical and physical concepts whose exact
quantitative measurement is furnished by a definite integral. The student is no
doubt already familiar with such applications of integration as the finding of
volumes (including volumes of solids of revolution) by slicing them into thin
slabs or thin cylindrical shells, the calculation of arc-lengths of curves, the
location of centroids and centers of gravity, and the reckoning of force due to
water pressure on submerged plane surfaces. In every one of these applications
the integral as the limit of a sum is the fundamental concept. Now we wish to
emphasize that the concept is applicable to any continuous function, and that
the concept itself does not depend on any geometrical or physical interpretation.

Suppose that m; is the smallest value of f(x) in the subinterval x; | = x = x;.
If we choose x} as a point at which f(x) takes on the value m;, the sum (1.5-2)
becomes

mle1+m2Ax2+---+m,. Ax,,. (15—4)

This particular approximating sum is called a lower sum. Likewise we define an
upper sum by choosing x} to be a point of the subinterval x;_; = x = x; at which
f(x) takes on its greatest value M; for that subinterval. The upper sum is

Ml AX|+M2AXZ+‘ . +M" Ax", (1.5—5)

The upper and lower sums have the property that
b
s éf f(x)dx =S, (1.5-6)

where s represents the lower sum and S represents the upper sum. This system
of inequalities makes it possible to obtain numerical estimates of the value of an
integral. Upper and lower sums are discussed at greater length in §18.1.

Example 1. Estimate the value of f§(75x — x*) dx by lower and upper sums,
using four equal subintervals.

We take f(x) =75x — x>, xo=2,x,=3,x,=4, x3=5, x4= 6. See Fig. 15. Each
Ax; = 1. Since f'(x) = 75— 3x?, it appears that f(x) increases from x =2to x =5,
and decreases from x =35 to x = 6. From the accompanying table of values we

2001 o

1001

O 2 3 4 b6 6

Fig. 15.
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can then read off the values of m; and M;:

X f(x) i m; M;
2 142 1 142 198
3 198 2 198 236
4 236 3 236 250
5 250 4 234 250
6 234

I —

Thus the lower and upper sums are
s =142+ 198 + 236 + 234 = 810,
S =198 + 236+ 250 + 250 = 934.

Therefore

6
810 <f (75x — x) dx <934,
2

A better estimate could be obtained by using more and smaller subintervals.
One of the simple but very important facts about integrals is expressed by the
formula

f: f(x) dx = fabf(x) dx + J:f(x) dx, (1.5-7)

where g < b <c¢, and f is continuous on the interval a = x = ¢. The analytical
proof of this formula runs as follows: Divide the whole interval [a, ¢] into parts
in such a way that x = b is always one of the points of subdivision. Suppose that
[a, b] is divided into m parts and [b, ¢] into n parts:

a=x<1 < - <x,=b=§&(E<CE< <G =

Choose points x} and & such that x,,=xi=x, i=1,...,m, and § = £ 6,
j=1,...,n Then, as m -« and n -, and as the greatest of the differences Ax;,

A¢ approaches zero, we have
fb f(x)dx =lim 2 f(x}) Ax;,
[ 1 ax =1im 3, 1eep a5y
=

But also,

[ 700 ax = 1im| $ £ +2 f&n a5 )
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Formula (1.5-7) then follows from the principle that the limit of a sum is equal to
the sum of the limits. We apply the principle to the sum of the two expressions

2 f(x)Ax and 3 f(€) Ag,

There are various limiting processes used in calculus: limits of functions,
limits of sequences, and the type of limit (of approximating sums) used in
defining an integral. For each of these limiting processes there is the principle
that the limit of a sum is equal to the sum of the limits. For limits of functions
this principle was formulated in the rule {1.1-4). A proof of the validity of the
rule (1.1-4) is given in §1.64. With slight formal modifications, the idea of this
proof applies equally well to sequences and to limits of approximating sums.
Basically, all these various forms of the principle are covered by the theorem
that the process of addition is a continuous function of the things which are
added (see Theorem VI, §17.5).

Of course, the geometric interpretation of (1.5-7) is
very simple and obvious: The area between the curve
y = f(x) and the x-axis from a to c is the algebraic sum of the
partial areas from a to be and from b to ¢ (see Fig. 16).

We do not in practice compute the precise values x
of definite integrals by direct application of the definition ¢ b ¢
(1.5-3). In some simple cases, however, we may be able Fig. 16.
to find the precise value of the limit of the approximating
sums by a direct examination of the sums. Usually these direct procedures involve
subdivisions of the interval into equal parts.

Example 2. Find the value of [ x? dx, assuming 0 << a < b.
For convenience we write (by (1.5-7))

b b a
I xzdx=f xzdx—f x? dx.
a 0 0

We concentrate on finding the value of f¢ x? dx.

Dividing [0, b] into n equal parts, we write

xO:O,x,=%’x2=%?’...,x,,=nn—b=b.

Here each Ax; = % We choose x| = x;. Then
> fxh Ax, =D, x} Ax;
i=1 i=1
2 2 2
=[<2> +<@> +...+<@> ]2
n n n n

b3
=F(12+22+-~-+n2).
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There is a convenient formula for the sum of the squares of the integers from 1 to n
(see Exercise 6):

nn+H2n+1)

134224 .- 4 pl= 6 (1.5-8)
Combining the foregoing observations, we see that
b 3
fo x* dx = lim ntnx Dizp = Db (1.5-9)
Now
prrDEntl oy 2y L, (1.5-10)

so that, as n — o, the expression on the right in (1.5-10) approaches 2 as a limit.

Hence, from (1.5-9),
b 2b3 b3
2 _<«0 0 |
fo xtdx = 6 3

Since b was arbitrary, it follows that

a 3
34, =4,
fox dx = 3

b 3i_ 3
fxzdxzb 4.

Therefore

3

EXERCISES
1. (a) Using four equal subintervals, calculate upper and lower sums for the integral
J20(x* = 3x%+3) dx.
(b) Repeat (a), using eight equal subintervals.
(¢) Calculate the value of the approximating sum (1.5-2), using four equal subintervals,
and taking x/ to be the midpoint of the kth subinterval.

3
2. (a) Calculate the value of the approximating sum (1.5-2) for the integral f gx{’
1

using six equal subintervals and taking xi to be the midpoint of the kth subinterval.
(b) Calculate upper and lower sums for the integral in (a), using six equal subintervals. A
table of reciprocals will be found convenient for this exercise.

3. Follow the instructions of Exercise 1 as applied to the integral [§(4x*—12x +
10) dx.

4. Apply the definition (1.5-3) to find the value-of the integral {2 f(x) dx if f(x)=c,
where ¢ is a constant.

5. (a) Let A(n)=1+2+---+n. Noting that A(n)=n+(n~1)+---+1, show
that 2A(n)=n(n+1).
(b) Using the formula for A.(n) found in (a), calculate f2 x dx by a method like that used
in Example 2.

6. LetAx(n)=1>+2°+ -+ n’ Obtain a formula for Ax(n) as follows: Start with

(p+1’-p’=3p*+3p+1.
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Write this out with p =0, 1, ..., n, putting the results in order as shown.
’-0°=3-0"+3-0+1
2—1’=3-1"+3-1+1
m+1)’-n’=3-n+3-n+1.
Now add, noting the cancellations on the left, to obtain
(n+1=34n)+3A,(n)+(n+1).
Use the formula for A(n) from Exercise 5(a) to solve for A,(n), obtaining A,(n)=
nn+1D2n+1)
— 6
Imitate the foregoing procedure (a) to find the formula for A.(n) in this new
way; (b) to obtain a formula for As(n)=1’+2’+---+n> Then use your result to
calculate f7 x* dx by the method of Example 2.

7. Let f(x)=¢™ and assume b >0. Using n equal subintervals and a method
somewhat like that of Example 2, show that

b h_ 1y -1
f e* dx = lim(e® — 1)(8———1) ,
o e h
where h = b/n. Use the definition of f'(0) to calculate the value of the limit, and so find the
value of the integral.

8. Taking f(x) = x, and choosing x} = (xi—s + x;)/2, show that the approximating sum
(1.5-2) has a value which is independent of n and the choice of the points x;, X2, . . ., Xa-1.
From this result calculate [ x dx, using the definition (1.5-3).

9. The function f(x) defined as (sin x)/x when x# 0 and f(0) = 1 is continuous for all
values of x. Why? Show that the value of f(x) decreases steadily as x increases from 0 to
7/2. Below is given a table of values of sin x. Use it to obtain high and low estimates of
the value of [§* f(x) dx.

n 1 2 3 4 5 6 7

sin% 0.1951 0.3827 0.5556 0.7071 0.8315 0.9239 0.9808

10. Calculate J7 x” dx, where p is a positive integer, by the following procedure. Divide
the interval [1,2] into n parts by the points xo=1, xi=h, x,=h? ..., x, = h", where
h =2'", so that h" = 2. This does not give subintervals of equal lengths, but of lengths in
geometric progression. Choose xi = xx—;, and show that (using (1.5-3))

2 __Alin
[ xrac=rr- 0 tim T

Use the formula for the sum of a geometric progression on (1— h)/(1—h"*"), and thus
show that the limit in the above formula has the value 1/(p + 1). Make use of the fact that
limu—e CY" =1 if C >0. This is proved in §1.62, Exercise 16.

11. After careful study of Exercise 10, adapt the method to find the value of fJ x” dx
where 0 < a < b and p is a positive integer. Start with xo = a, x; = ah, x> = ah?, etc., where
h=(bla)".
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1.51 / THE MEAN VALUE THEOREM FOR INTEGRALS

The theorem which we prove in this section has an importance much like that of
the law of the mean (Theorem IV, §1.2), in that it is valuable as a tool in
systematic reasoning in calculus. We are introducing it here because of the use
we shall have for it in our program of outlining the relation between differen-
tiation and integration.

THEOREM V1. (The mean value theorem for integrals.) Let f be continuous on
the closed interval [a, b]. Then there is some number X such that a= X =b
and

fbf(x) dx = (b — a)f(X). (1.51-1)

Proof. Let m and M denote the minimum and maximum values of f on the
interval. Consider the approximating sums (1.5-2) of Step 3 in the definition of the
integral (§1.5).

We have
m=f(x)=M.
Therefore

M=

miAxié

i=1 i=1

f(x) Ax; =M D Ax,
i=1

L

But evidently

o

Ax;=b-—a.
1

Hence the approximating sum (1.5-2) lies between m(b —a) and M(b — a).
Consequently the definite integral, being the limit of the approximating sums,
must also lie between these two numbers; that is,
b
m(b —a)éf f(x)dx =M — a),
or
1 b
méﬁ——b—af f(x)dx =M. (1.51-2)

Let us set
1 b
_ 1.51-3
i b—af,,. f(x) dx. ( )

We now reason that f(x) must take on the value p at some point x = X,
a =X =b, since by (1.51-2) u lies between the smallest and largest values of
f(x) on the interval. Once this argument is accepted, the proof is complete, for
the equation f(X) = u is equivalent to (1.51~1), in view of the definition of u.

The existence of X such that f(X)= w depends upon the hypothesis that f is
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continuous. Such existence is made plausible by intuitive consideration of the
variation in value of a continuous function. An indubitable proof of the exis-
tence of X must await our systematic consideration of the properties of
continuous functions (in Chapter 3). The remarks which we made about the
existence of m and M in connection with the proof of Rolle’s theorem (§1.2)
apply equally here to the existence of X.

The number u defined by (1.51-3) is called the average value of the function
f(x) on the interval [a, b]. The sense in which this concept of average value is an
extension of the simple notion of the arithmetic mean as an average value is
indicated in Exercise 1.

EXERCISES
1. Let [a, b] be divided into n equal parts, and let y; be the value of f(x) at the
midpoint of the ith subinterval. The arithmetic mean of y,,..., y. is
A,,=———*—y'+.“+y".
n

Show that p = lim, . A..

2. By interpreting the integral as an area, calculate the average value of f(x)=
Va®—x? on the interval —a =x < a.

3. A right circular cone of altitude H and radius of base R has its axis along the
x-axis. For a given value of x let A(x) denote the area of cross section of the cone by a
plane perpendicular to the x-axis at that point. What is the average value of A(x), x
ranging over all values for which the plane cuts the cone?

4. In Theorem VI it was asserted that an X can be found on the closed interval [a, b]
such that (1.51-1) holds. If f(x) is constant on [a, b], say f(x)= C, then X may be taken
as any point of the closed interval, for in that case [ f(x) dx = C(b — a), and C = f(X),
no matter how we choose X. Hence certainly we can choose X so that a <X <b. Show
that this can also be done if f(x) is not constant on [a, b]. State precisely what you are
taking for granted about continuous functions.

1.52 / VARIABLE LIMITS OF INTEGRATION

Before coming to the main subject of this section it will be well to consider a
matter of notation. In the symbolic expression

Lb f(x) dx

we refer to x as the variable of integration. The value of the integral does not
depend upon the letter which is used for the variable of integration. For

example,
2 2 2
jx3dx=j t3dt=j u® du.
0 0 0

In cases where the limits of integration are literal symbols it is important to
avoid using the same letter for a limit of integration and also for the variable of
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integration. The danger of confusion is made apparent by asking: What is the
value of the expression
X
f x* dx
0
when x =27

Let us now suppose that we have a function f(t) which is continuous on the
interval a =t = b. Regarding x as a variable, consider the function F(x) defined
by the integral

F(x)= fx f(t) dt. (1.52-1)

It is clear that the integral does actually define a function of the upper limit x
provided a =x = b, for once the function f(t) and the lower limit t =a are
chosen and fixed, the integral has a definite numerical

value which depends only on x. If we resort to the y=A1)
interpretation of the integral as an area, we may obtain
a geometrical representation of the function F(x) as
the area under the curve y = f(t) fromt=a tot =x
(see Fig. 17). It is natural to complete the definition
(1.52-1) by setting F(a) =0. As a matter of fact, it is
usual to define

f f(t)dt =0 (1522 ©
a Fig. 17.
and
a b
L f(t) dt = —f f(tydt, a<b. (1.52-3)

These formalities are convenient when dealing with
integrals as functions of the limits of integration. With Y=F(x)
these two formulas available it is not difficult to see
that formula (1.5-7) is valid for any positions of a, b, ¢
on an interval where f is continuous.
A graph of y = F(x), corresponding to a graph of
y = f(t) as shown in Fig. 17, would appear somewhat p
as in Fig. 18.
We are going to be primarily interested in the gjg 18,
derivative of the function F(x) defined by the integral
(1.52-1).

THEOREM VII. Let f(t) be continuous, a =t = b, and define

F(x) =J'x f()dt, a=x=b.
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Then F(x) is differentiable, with derivative
F'(x) = f(x). (1.52-4)

The formula (1.52-4) may be put verbally in the form: the derivative of the
definite integral of a continuous function with respect to the upper limit of
integration is equal to the value of the integrand function at this upper limit.

Proof. We consider two points x, x + Ax of the interval [a, b]. Then

x+Ax

F(x+Ax)—F(x)=j £(t) dt—jxf(t)dt

a

x+Ax
=[swat
By the mean value theorem for integrals (Theorem VI, §1.51) we have
[ rwar=ax-500,
where X is some number between x and x + Ax. Thus we see that

F(x+ Ax)— F(x) _
Ax —f(X)-

In this equation we now hold x fixed and make Ax approach zero. Then X
approaches x, and f(X) approaches f(x). Therefore
lim Fx+Ax)— F(x) _
Ax—0 Ax
The limit on the left is F'(x), by definition. Thus (1.52-4) is established. It is clear
from the proof that if x is at one end of the interval [a, b], Ax must be restricted
to have but one sign (e.g., Ax >0 if x = a). In this case F'(x) is a one-sided
derivative.

f(x).

Theorem VII furnished us with a complete solution to the problem raised in
§1.4 in connection with (1.4-1). If f(x) is a given function, continuous on the
closed interval [a, b], then the general solution of the equation

dy _
dx - f(x)
on this interval is
y=[fwar+c

where C is an arbitrary constant. This follows at once from Theorem VII and
the italicized statement accompanying (1.4-6).
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EXERCISES
1. The functions f, g, h are assumed to be continuous for all values of their
independent variables. Complete each of the following equations:

d " x y
@ g f fwa= o L[ eoas= © 6= [ hoaeo -
21 $(0) = G +x) " dx, find (@) 60, () (D, (©) 4.

3. 1f F(x) = f. xSi%ydy, find (a) F’(%), ®) F(%) (© F'(m).

4. If G(x) = [Xls| ds, find (a) G'(-1), () G'(0), (¢} G'Q2), (d) G'(a).

5.(a If Fx)=Jst(t— e~ dt, find the points of relative maxima and minima of
F(x). (b) What is the value of F(0)? (c) For what values of x is F'(x)>0, and for
what values of x is F'(x) < 0?

6. If F(x) = f& £>¢ " dt, find the absolute minimum value of F(x).

1.53 / THE INTEGRAL OF A DERIVATIVE

The theorem which we shall prove in this section is fundamental, for it
establishes the standard technique whereby definite integrals are calculated in
practice. The four-step defining process of arriving at a definite integral, as set
forth in §1.5, is difficult to apply. For a large and important class of integrands
the following theorem provides a convenient method of finding the value of the
integral.

THEOREM VIIL. Let f be a given function continuous on the closed interval
[a, b). Suppose that F is any differentiable function such that F'(x) = f(x)
when a =x =b. Then

J’bf(X)dx = F(b)~ F(a). (1.53-1)

Proof. We are by hypothesis given a function F(x) whose derivative is f(x).
By Theorem VII (§1.52) we know another function with this same derivative,
namely

f: £(t) dt.
Thus the function
G(x)= F(x)— j £(0) dt

is constant, by Theorem V (§ 1.2), since its derivative is zero.

Now G(a)=F(a)—0,

by (1.52-2). Also, G(b) = F(b)—jb f(t) dt.
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Since G(x) is constant we have G(b) = G(a),
b
or Fb)~ [ 1) dt = Fla)

This result is equivalent to (1.53-1), so the proof is complete.

Example 1. Find the value of the integral [ sin x dx.

Applying Theorem VIII, we seek a function of x whose derivative is sin x. Such
a function is ~cos x. Therefore

a2
fo sin x dx :—cos%+coso= 1.

We are now in a position to see clearly the connection between differentiation
and integration. As concepts, by their definition, these processes are quite
independent of each other. It turns out, however, that each process is in a
certain sense inverse to the other. The two aspects of this mutual inverseness
are displayed by Theorems VII and VIII. If we want a function defined when
a =x = b and having as its derivative a certain given continuous function f(x),
the class of all functions satisfying our want is the family [ f(t) dt + C. If, on the
other hand, we wish to integrate a given continuous function f(x), we can do so
by the formula

fbf(x) dx = F(b)— F(a)

provided we can find a function F(x) having f(x) as its derivative at all points of
the interval [a, b].

-2
Example 2. Evaluate the integral f %
-10

We seek a function whose derivative is 1/x when —10 = x = — 2. The familiar

formula

d _1
L logx =1 (1.53-2)

will not quite do, for log x is not defined if x < 0. But, if x <0, log(—x) is defined,
and

d =1 _
I losx) =— (D=~ (1.53-3)
Hence, by Theorem VIII, with f(x) = 1/x, F(x) = log(—x), we have
-2 2
dx _ log(—x) =log2—log 10=1logt
10 X -10

The formulas (1.53-2) and (1.53-3) can be combined in the single formula

d 1.
—_— =— . 1.534
I log x| =~ if x#0 ( )
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We now consider a theorem which is much used in transforming definite
integrals by substitution.

THEOREM IX. Suppose the following conditions are fulfilled:
(1) f(x) is continuous, a=x=b;
(2) o(t) and ¢'(t) are continuous, and a = ¢p(t) =b when a =t = B
(3) ¢(a)=a, d(B)=D.
Let g(t) = f(¢(t))d'(t). Then

b B
faf(x)dx=f g(t) dt. (1.53-5)

We note that the formula (1.53-5) is easily remembered in the following way:
when x = ¢(t), dx = ¢'(t) dt, so that f(x)dx = g(t) dt. The limits x=a, x=5b
correspond to the limits t = o, t = B by (3). The proof of the theorem is left to
the student (Exercise 10).

EXERCISES
1 What is wrong with the following equations?
2 ™ T
@ (&1 =—%—1=—%.‘(b)f sec’xdx=tanx| =0.
-1 X X |- Q o
2. Show that di— log|x—c|= —l— Under what restrictions on a, b, ¢ is the formula
b dx _ b — 0
s xX—cC a— correct?

3. Find the values of the following integrals:

@[ 2 w2 o f ""’;5,

@ [ @ [ 55

a+x 2a .. 2
= if x“#a
a_x' 2 2 ’

a —x
R e
« @ -x 2a %
provided that x, and x, are not separated by either of the points x=a, x=—a.

5. The student will need to recall that, by the standard conventions about principal
values of the inverse sine and inverse tangent, y =sin”'x is the unique y such that
x=siny and — w/2=y = n/2, while y =tan"' x is the unique y such that x =tany and
— /2 <y < /2. Find the values of the following integrals:

[ e w[ e & e fM L
Al/z\/l“‘x —1 l+x2 7\/3‘3+x2 \/16_x

4. Show that dilo

and hence that

a+ xz
a— X2

a—x
a+x,
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6. Show that
tan™' x = Lx littz;
sinflx:fox \/]di = —-l1<x<l.
7. Show that
J:ztanxdx =log %ﬁ; s —%<x|§x2<%-

8. Standard tables of integrals list the formula

22" B2 tan &
a+bcosx Va’—-b? | a+b ’ '

L -
(a) Let Va®=b tan>
F(x) = ——2— tan™! | ———— 2

Va*-b L a+b

and verify that
F’(x)z—L_
a+bcosx

whenever x is not an odd multiple of 7. What can be said about F(x) for these
exceptional values of x?

(b) Assuming 0 < b < a, find the limit of F(x) as x >« from the left; as x > 7 from the
right.

(¢) Considering F(x) as defined at 7 by its limit as x > 7 from the left, use Theorem VIII to
show that

. dx T .
= if a>b>0.
fo at+bcosx Va-—b?

3aw/2 dx
5—3cosx’
9. (a) Discuss critically the integration formula

f dx L tan™" (2 tan x)
a’cos’x +bZsin’x  ab a ’
assuming that a and b are positive. Compare with Exercise 8 (a), (b).

(b) Explain the reason for the apparent failure of Theorem VIII in the obviously false
result

(d) Find the value of f
0

Ed

. dx 1 -1
s ———=3tan” (2tan x
L cos’x+4sin’x ° ( )

[}

=3tan (0)—3tan '(0) = 0.
(¢) Show that

2 dx By
o a’cos’x+bZsin*x 2ab’

10. Prove Theorem IX with the aid of the following suggestions: Define F(x)=
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Ja f(s)ds, H(t) = F(¢(1)). Show that H'(t)=g(t) (by what theorem?). Then H(B)—~
H() = [? g(1) dt (by what theorem?). Now complete the proof of Theorem IX.

11. Show that [5”sin” x dx = [¢" cos" y dy by an appropriate substitution.

12. Show that [3 x™(1—x)" dx = f¢ x"(1— x)™ dx by an appropriate substitution.

13. If f is continuous on [a, b}, show that J2 f(x) dx = J¢ f(a + b - x) dx.

4. f ¢ is a continuous function on [0,1], show that [i*(sinx)dx =
Ja2 ¢ (sin x) dx, and hence that [§7 $(sin x) dx = 2f7" ¢(sin x) dx.

15. Show that the substitution x = a cos” ¢t + b sin® ¢ fulfills condition (2) of Theorem
IX for the integral [® V/(x — a}(b — x) dx. Use the substitution to find the value of the
integral.

16. Show that f2, f(x) dx = [¢[f(x)+ f(—x)] dx if f is continuous on [—a, a]. What do
you conclude about the value of the integral if f is an odd function? an even function? (We
call f even if f(—x) = f(x) for all x, and odd if f(—x)=—f(x).)

17. Show that [? xf"(x) dx = bf'(b) — f(b) + f(a) — af (a).

18. Show that, if f is continuous on [0, 1], f¢" xf(sin x) dx = (7/2) f¢’ f(sin x) dx. Use

this result to find the value of f ~x—§1—n—)§— dx.
o 1+cos™ x

1.6 / LIMITS

Most students of calculus get their first extensive experience with the limit
concept in the course of learning about differentiation. In the process of working
out formulas for the derivatives of x", sin x, and other elementary functions, as
well as in the establishment of the rules for differentiating sums, products, and
quotients, students are taught to use some of the fundamental theorems about
limits, such as:

The limit of a sum is equal to the sum of the limits.
The limit of a product is equal to the product of the limits.

The limit of a quotient is equal to the quotient of the limits, provided the limit of the
denominator is not zero.

These are not fully and precisely formulated theorems in the form here
given; nevertheless, each statement conveys the central idea of an important
theorem about limits. No doubt most students accept the truth of these three
propositions as being intuitively evident. Probably the most that can be expec-
ted, perhaps all that is desirable, in an elementary course in calculus, is the
cultivation in the student of an awareness that these propositions exist and that
it is necessary to appeal to them in building up the structure of calculus. As we
proceed to a more advanced level, howevgr, it becomes more important for us to
analyze the limit concept carefully, and to see how the whole theory of limiting
processes is developed. As with any part of mathematics, we cannot build a
clear and precise theory of limits unless we formulate our basic definitions in
terms sharp enough for use in the giving of clean-cut proofs.

There are at least three recognizably distinct limit concepts in elementary
calculus. We describe them briefly in turn.
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(1) The limit of a function of a continuous variable: lim,_, f(x). As exam-
ples of this kind of limit we cite

. X . sinx _ . _
(a) 111111 2122 () lim===1, (c) limlog.x = 1.
The limits (1.11-2)—(1.11-4) defining a derivative are also of this type. The
definition of this kind of limit was given in § 1.1 (see 1.1-2).

(2) The limit of a sequence of numbers: lim,_.. s,.
As examples we may choose

2n sin(nm/2) —0
n 9

@ fmyyi=2 (O lim

(c) im2"™ =1, (a) lim(1+;ll—) —e

Here the variable n is discrete, running through the natural numbers 1, 2, 3, . ...
We have not yet defined this kind of limit formally.
(3) The type of limit occurring in the definition of an integral:

lim 2: f(x) Ax; = fb f(x) dx

(in the notation of §1.5). Here the variable quantity is an approximating sum; it

does not depend merely on n, nor does it depend on a single continuous variable

x. This kind of limit is therefore different from either of the types (1) and (2).
We shall now discuss these three types of limit in more detail.

1.61 / LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE

In speaking of lim,., f(x) it is usually understood that there is some open
interval (a, b) such that a < xy < b, and such that f is defined at each point of the
interval except possibly at x, itself. We repeat the definition of a limit from §1.1:

Definition. The function f has the limit A (a certain real number) as x — x,
provided that to each positive number € there corresponds some positive number
& such that

fx)—Al<e if 0<|x—x0 <8 (1.61-1)
and if f is defined at x.

In certain cases f may be defined only on one side of x,; then we speak of
one-sided limits.

In all these cases we speak of x as a continuous variable, because it is free
to assume all values on certain intervals of the real-number scale. The adjective
“continucus” here contrasts with ““discrete”.

The foregoing definition of limit was first used systematically in the foun-
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dations of calculus by the French mathematician Augustin-Louis Cauchy (1789—
1857). Prior to Cauchy there had been various attacks on the problem of putting
the fundamental concepts of the calculus on a sound basis. During the period
from Newton and Leibniz to the work of Cauchy (roughly 1665-1821) a good
part of the formal side of calculus and the technique of applying it to physics
and geometry had been developed, but the reasoning was often hazy and
dependent upon intuition rather than logic. The work of clarifying the fun-
damentals and establishing a satisfactory standard of logical rigor did not end
with Cauchy, of course. A more adequate understanding of the real number
system had yet to come.

We have put in this brief reference to mathematical history in order to draw
a parallel. The student’s understanding of calculus will normally pass through
stages of development not unlike the historical ones, but with a difference. The
student need not embrace all or even many of the miscenceptions which have
been nourished about calculus in the long evolution of the subject since the time
of Newton and Leibniz, provided he will put aside preconceived notions of
fundamental mathematical concepts and base his understanding on careful study
of modern definitions and theorems. Intuition and experience must play their
part in learning, of course.

The notation for a limit is frequently employed in conjunction with the use
of the symbols +w, —». These symbols are associated with the words “‘infinity”’
and “‘infinite,” with which the student no doubt already has some familiarity.
Our present object is to discuss the meanings of such symbolic assertions as

lim f(x)=+0, limf(x)=—x,
X=Xg X=Xp

These statements are given various verbal renderings. The first one may be put
in the form “f(x) becomes positively infinite (or approaches plus infinity) as
x - xy.”” For the second statement ‘“positively” is replaced by ‘“‘negatively,” and
“plus” by “minus.” The meanings of statements are contained in the following
definitions:

Definition. We write lim,_,, f(x) =+ if to every M >0 there corresponds some
8 >0 such that M < f(x) whenever 0 <|x — xo| < 8. We write lim,.,, f(x) = —« if
to every M >0 there corresponds some 8 >0 such that f(x)<—M whenever
0 <|x — x| < 8.

The definitions are modified in obvious ways for one-sided approach of x to
Xo.

Example 1. lim, o x™? =+,

To obtain this result from the definition, we consider the inequality
M < 1/x2, where M is any positive number. An equivalent inequality is x*> < 1/M,
or |x|<M™, Thus we may choose =M ' and the assertion stated in
Example 1 is seen to be true by definition.
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A possible misconception of the definition may be allayed by the following
example:

Example 2. Consider f(x) = (1/x?) sin’(w/x) as x - 0.

In this case it is not true that lim _,f(x) =+, in spite of the fact that f
takes on values as large as we please as near 0 as we please. For, considering the
definition, choose M = 1. The inequality (1/x2) sin*(a/x)>1 is true for some
values of x very close to 0, e.g., x =3,3,3,3,...; but for certain other values of x

near 0 it is not true, e.g., x =3, 3,...,1/n,....

The symbols +o, —o are also used in connection with the independent
variable. We use x -+« as a symbolic equivalent of the phrase “‘x tends to plus
infinity” (or “x becomes positively infinite’”). This occurs in such contexts as
lim,_+» f(x) = A, which by definition means “to each € > 0 there corresponds an
M >0 such that |f(x) — A| <e whenever M <x.”

Example 3. lim,, .(2x — D/(x—3)=2.
To verify this assertion by direct application of the definition, we proceed as
follows:

2x—1_2:2x—1—2x+6: 5
x—3 x—3 x—=3
Therefore, if x > 3 we have
2x —1 5
x—3 -zb_x—?,<'E

provided (5/¢)<x—3, or 3+ (5/e¢) <x. This shows that, for given € >0, the
conditions of the definition are fulfilled with M = 3 + (5/¢).

The following theorem states explicitly an important principle which is
frequently used in mathematical arguments,

THEOREM X. Let f(x) be defined at all points except x =a of some open
interval containing that point, and suppose that, as x tends to a, f(x)
approaches a limit which is positive. Then f(x) is positive when x is
sufficiently near the point a.

Proof. Let the limit of f(x) be A. Then, according to the definition, if any
positive number € is given, there is some corresponding positive number 8 such
that |f(x) — A] < € when 0 <|x —a| < 8. Now A >0, by hypothesis. Suppose that
we take A/2 for the e. Then there is a certain 8 such that [f(x)— A| < A/2 if
0<|x—al<8 Now [f(x)— A]<A/2 is equivalent to the double inequality
—A2<f(x)— A < A2, as the student will easily see. Using the left one of these
last two inequalities, and transposing, we see that —A/2+ A <f(x) when 0<
|x — a] < 8. Certainly then f(x) is positive, for A/2> 0. This completes the proof.

Example 4. As an illustration of the use of Theorem X, we shall prove the
following statement: Let f be defined in some open interval containing x = a, and
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suppose that f'(a) exists and is positive. Then, for points x,, x, sufficiently close to
x=a, x;<a<x, implies

f(x) <f(a) <f(xy). (1.61-2)

To prove this assertion, consider the definition

f'(a) =lim f—————("x) :’;(“).

X—=>a

We are assuming that f'(a) > 0; consequently, by Theorem X,

f=fla_, (1.61-3)
xX—a
when x is sufficiently close to a. But from (1.61-3) we infer that f(x) > f(a) if
x >a, and f(x) <f(a) if x <a. Thus the assertion about the inequalities (1.61-2)
is seen to be true.

We shall state two further theorems which, like Theorem X, are frequently
used in the kind of reasoning with limits which occurs regularly in calculus.

THEOREM XI1. Let f be defined at all points except x = a of some open interval
containing that point. Suppose that there is a number M such that f(x)=M
when x is sufficiently near a. Further suppose that lim,_, f(x)= A. Then
A=M.

THEOREM XH. Let f, g, h be functions of x defined at all points except x = a of
some open interval containing that point. Suppose that f(x) = g(x) = h(x),
and suppose that the limits lim,.,, f(x), lim,_, h(x) exist and are equal. Then
lim,., g(x) exists also, and all three limits are equal.

We leave the proofs of these theorems as exercises for the student, but we
shall use the theorems whenever the need arises. These theorems have analo-
gues for other kinds of limits (e.g., limits of sequences and the limits defining
definite integrals). For example, the proof of (1.51-2) employed a principle
similar to that of Theorem XI, as applied to the integral as the limit of
approximating sums. One of the standard proofs that lim,_e(sin x)/x = 1| uses the
principle of Theorem XII, with f(x) = cos x, g(x) = (sin x)/x, h(x) = 1/cos x.

EXERCISES
1. Show that lim,_o(cos x)/x*> = +». SUGGESTION: Note that cos x =3 if |x| = af3.
If M >0 is given, choose & as the lesser of the numbers /3, (2M)™", and explain why
M < (cos x)/x7 if x| < 8.
2. Show that limx_o(1+ sin” x)/x* = + <.
3. What is lim._o(sin® x)/x*? Justify your answer.
4. Suppose f(x)Z m >0 and g(x) >0 when x is any point in an interval a <x <b
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containing xo. Also suppose g(x)—0 as x - xo. Show that
oy ic)]
x—xp g(x)
5. Show that lim,_ (2 + sin x)fe ™ = + =,
6. Given € >0, find M so that
9x +4
Ix—1

What statement about a limit does this prove?

=+ o0,

-3

<eif M <x.

7. Suppose that, as x =+ (or as x - Xo), |f(x)| = M, where M is a constant, and

that |g(x)|— + . Show that flx ;-»0

~x—1_4-(1/x)—(1/x?)
2+ 2x =3 1+@2/x)—-(3/x?

/
8. Write f(x) =

Then find lim,_. .. f(x), using the rules for limits of sums and quotients.

9. If P(x) and Q(x) are polynomials of degrees m and n respectively, discuss

QE ; according as m > n, m = n, m < n. Show that the results when x - — o are the
same as when x >+, if m =n orif m —n is even.

10. In the following cases discuss the behavior of the given function f(x) as x >+ «,
Does f(x) approach a number as limit? Does f(x) tend to +« or to —»? Does it do none of
these things?

(a) sinx; (b) sin(1/x); (¢) (sinx)/x; (d) xsinx; (e) x>+ x sinx;
(f) x*+x%cosx; (g) x+x*sinx.

f&x+h)—f(x)
h

limyre

11. If lim

h—0

Likewise we define the meaning of f'(x) = —c. (a) If f(x) = x"? whatis f'(0)? (b) If
f(x) = x>, what about f'(0)? What about f.(0) and f(0)? (c) If f(x) =0 when x <0,
f(0)=1and f(x) = 2 when x >0, show that f'(0) = + . This shows that f'(x,) = + 0 does not
imply that f is continuous at x,.

12. Prove that the law of the mean is true with the following hypotheses, which are
weaker than those imposed in § 1.2; f is continuous when a = x = b, and, for each x of the
openinterval a <x <b, f is either differentiable (i.e., f'(x) exists as a finite limit) or f’(x) is +o
or — as defined in Exercise 11.

13. Prove Theorem XI and Theorem XII. For Theorem XI begin by supposing M < A,
and show that this leads to a contradiction. For Theorem XII let f(x) and h(x) approach A as
limit, and note that, if € >0, the inequalities A — e <f(x) <A+ € A— e <h(x) <A+ € must
hold when |x — a] is sufficiently small.

14. State and prove a theorem similar to Theorem XI in which the inequalities are
reversed.

= + 0 we say that f'(x) = +oo.

1.62 / LIMITS OF SEQUENCES

A sequence is an ordered set of numbers in one-to-one correspondence with the
positive integers. This correspondence may be shown by numbering the terms of
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the sequence in order:
S15 525 83,000y Spy e v s
The sequence is then denoted symbolically by {s,}. As examples we cite:

(a) 2,4,6,8,...,2n,...;

B 34 8...,102n),...;
(©) 5510, 9., 0P+ 1), ..
(d) 14514540, 145+ +(Q/n),...;

(e) 1,0,1,0,...<s,.=%_——1)—,n=1,2,...>.

A sequence is in fact a particular kind of function, a function whose
independent variable n ranges over the set of positive integers. We could (and
ocassionally do) use the functional notation f(n) for a sequence, but notations
such as {x,}, {s,}, {a.} are more common. Observe that {s,} is the symbol for the
sequence (function) as a whole, whereas s, is the symbol for the nth term (the
value of the function).

Sometimes it is convenient to have a notation in which the terms are
numbered 0,1,2,...instead of 1,2,3,.... For instance, if the sequence is
1,2,4,8,16,32,..., it is convenient to denote it by sy, Si, Sz,..., S, SO that
s, = 2" (note that s,=2%=1).

The definition of the limit of a sequence is quite similar to the definition of the
limit of a function of a continuous variable, as given in 81.61. Thinking of the
sequence {s,} as a function, let us compare {s,} with a function f(x) of the
continuous variable x. The definition of lim,_.. s, is then very similar to the definition
of lim,... f(x) (just preceding Example 3 in §1.61).

Definition. We say that lim,.. s, = A if for each positive € there is some integer
N depending on € such that |s, — A| < € whenever N = n. In this case we say that
the sequence {s,} is convergent and that it has the limit A.

Example 1. We shall show that lim,_.(3)" = 0.

Suppose € >0 is given. We wish to find N so that N = n will insure Q)" <e,
or, what is equivalent, 1/e <()". Now, in the sequence {()"}, each term is half
again as large as its predecessor, and the first term is 3. Hence certainly
Gy > n(l). Thus, to get 1/e <)), it is amply sufficient to have 1/e <n(}), or
2/e < n. Therefore we take N as the first integer which is greater than 2/e, and
then certainly " < e if N = n. This is proof that lim,_.(3)" =0.

Example 2. We now show that lim,..a"=0 if 0<a <I1. This includes
Example 1 as a special case.
We can express a in the form

1

m, h>0.

a=
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This is because 0 < a <1; h is given by

We now use (1.2-5), with o = n;
a"=(0+h)"=1+nh.

This implies a" 1
14 nh’

IA

Suppose now that € >0 is given. We wish to find an N such that N = n implies
a” < e. It is sufficient to have

1 1 1—€
l—m<€’ or g<1+nh, or

Since h >0, some multiple of h will exceed (1 —¢€)/e. Let N be a positive integer
such that (1—e€)/e < Nh. Then N = n implies a, <€, and the proof is complete.

< nh.

Theorems X, XI, and XII have analogues for sequences. The student can
easily formulate these analogues alone. The general theorems about sums,
products, and quotients (see §1.6) also apply to sequences.

Example 3. Find lim 2n*+n*—"7n

n—o n3 + 2". + 2 )

We write the general term of the sequence in the form

2+(1/n) = (7[n?)
1+ @)+ @n’y

By the theorem on sums,

lim<2+l——7§>=2 and 1im(1+%+%)= ..
n n n n

n-o n—o
By the theorem on quotients,

. 2+ (/m)—=(TIn* _2
T i) = T

Hence the required limit is 2.

Many important sequences have a property which is described by the word

monotonic. A sequence {s,} is called nondecreasing if s, =s,=s;=---, i.e., if
Sn = sp41 for every positive integer n. It is called strictly increasing (or just
increasing) if s, <s,<s3;<---. For example, the sequence

1,1,2,2,3,3,...

. . . .. +1
is nondecreasing. The nth term of this sequence is given by [EZ—J (the greatest
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n+1
2

. n . . . .
integer = ) The sequence {s,}, where s, = TR strictly increasing:

Wit
N

1
203545000

Likewise, we call a sequence nonincreasing if s, = s, for every n, and (strictly)
decreasing if s, > s, for every n. A sequence of any one of these four types is
called monotonic.

One very important type of nondecreasing sequence is the sequence of
decimal approximations to a positive number. For example, let s, be the number
obtained by writing the first n decimal places of the number 3:

5, =03, 5,=0.33,5;=0.333,....

The general formula for s, may be written

3,3 0.3
=ttt
Using the formula
atar+ar’+-- -+ar"*'=a<11__rr> (1.62-1)

for the sum of a geometric progression, we find
1- ()" n
o = A = 41 - G
We see from this that

lim s, = 3. (1.62-2)

When we write
1=0.333...,

the meaning is exactly that expressed by (1.62-2).
Similar remarks apply to all nonterminating decimal representations, e.g.,

}=1im $n, $2=0.66...6, V3=lim x,,
n—co n" - n—oo
where x; = 1.7, x, = 1.73, x3=1.732, x4, = 1.7321, etc.

Suppose that {s,} is a nondecreasing sequence. There are just two pos-
sibilities: either (1) there is some number M such that s, = M for every n, or (2)
s, = + o (this means that no matter what M is chosen, M < s, for all sufficiently
large values of n). In case (1) we say that the sequence is bounded above.
Likewise, for a nonincreasing sequence {s,} there are just two possibilities:
either (1) the sequence is bounded below, i.e., there is some number M such that
M=g, forevery n,or (2) s,>—® as n>®.

A sequence is called bounded if it is bounded both above and below.
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Observe that an increasing or nondecreasing sequence is always bounded below,
since §; = s, for every n. Likewise, a decreasing or nonincreasing sequence is
bounded above, since s, = s;.

There is a very important theorem which asserts that a monotonic sequence
is convergent (i.e., has a limit) provided it is bounded.

THEOREM XII1. Suppose that either

(a) s, =58, and s,=M,n=1,2,...,
or b)) s,p=s, and M=s,n=12,...,

where M is a constant. Then lim,_. S, exists.

The great importance of this theorem lies in the fact that by using it we can
be sure that certain sequences are convergent without knowing precisely what
the limits are. The theorem is proved in Chapter 2 (Theorems III and IV). The
proof is based upon a careful discussion of the nature of the real number system.

1-3:5---Q2n—
2:4-6---(2n)
tonic and bounded, and therefore convergent.
In order to make sure the notation is understood, let us write a few terms of
the sequence, by substituting successively n =1, 2, 3,.... We have

113 3 _1:3:5_5
22T 24Ty % T 246 16

Example 4. Let 5, = 1). Show that this sequence is mono-

§1 etc.

The sequence is decreasing. For,

3 5 _1
87 =151, $3 =552, $4 = 853,
and in general

2n+1

Sn+1 = m Sn < Sp.

All the terms are positive; so that 0<s, =3 Thus the sequence is bounded.
Hence it must have a limit. This argument does not show what the limit may be.
Example 5. Consider the sequence defined by

1 1 1 1
SR TR TR TR

the first few terms of which are

1 3 1 -

1 5
si=bsn=ltys=2s=1t73%72373

This sequence is plainly monotonic, for

Sp+1= Sn +m, Sp < Spi-
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We shall show that the sequence is bounded above. Now, if n > 2,

_ 1 1 _ 1
Rl 123 n 2.2 .2 2"
n—1
Therefore, if n >2,
1,1 1
S,,<1+§+—2-2+"'+"2—n—_1.
But, by (1.62-1) taking a = 1, r =3, we have
1.1 1 "
1+§+?+"'+F=2[1_6)]<2~

Therefore s, <2 for all n. Consequently, by Theorem XIII, the sequence {s,} is
convergent. The theorem does not tell us the exact value of the limit, though of
course we can see that it is not larger than 2.

Example 6. 1.et {s,} be the sequence

Sp = (1 + l) .
n
We shall show that the sequence is increasing and bounded above. First we write

the binomial expansion

nn—1) , nn—Dn-2) ,
12 ¢t 123 ¢

The coefficient of a*(1 =k =n) is

nn—Dn—-2)---(n—k+1)
k! )

+---+a.

(1+a)=1+na+

Putting 1/n in place of a, we have

(1+1Y = (L) B D (1 (2)

The expression on the right has n + 1 terms, a typical one of which is

nn—Hn—=2)---(n—k+1)_ Fli,1,<1_l)<1_%)...<1—k_1)_

k!n* n n
Thus | )
ne ey (-p)(-7)
(1+;> =1+1+ 3 + 30
-1
(12 (1-221)
bt n . (1.62-3)
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Now suppose that n is replaced by n+1, so as to form the corresponding
formula for the expression
n+1
(v 9)
n+1

We see from (1.62-3) that each of the numerators after the first two terms on the
right in (1.62-3) is increased when n is replaced by n + 1. Moreover, the total
number of terms on the right is increased from n+1 to n+2. Hence it is

certainly the case that
1 n 1 n+1
(1+;) <(1+—n+1) .

This shows that our sequence is increasing. Moreover, from (1.62-3) it is clear
that

1\" 1 1 1
<1+;) <1+1+‘2“!+i+“‘+m.

In Example 5, we saw that

1 1 1
1+5+§—!+"'+m<2.
Therefore
(1+%) <3. (1.62-4)

This shows that our sequence is bounded above. It therefore has a limit. The
limit is denoted by the letter e:

=lim<1+%) . (1.62-5)
This number e is taken as the base in defining natural logarithms, of which we
assume the student already has a working knowledge.

The definition of the limit of a sequence enables us (theoretically, at least) to
decide whether any specified number A is or is not the limit of a given sequence
{s»}. To make the decision in a given case we must work with inequalities to
form an estimate of the magnitude of the difference s, — A as n becomes larger
and larger. In practice we often find the limits of sequences by using the theorem
on limits of sums, products, and quotients. In this procedure the given sequence
is expressed in terms of other sequences whose limits we already know.

There are many cases, however, in which we cannot find the limit of a
sequence by direct use of the definition or by using the theorem on limits of
sums, products, and quotients. It is very important to be able to recognize, by
intrinsic characteristics of the sequence itself, that the sequence is convergent.
Then we can say with certainty: “By virtue of such and such a characteristic
possessed by this sequence {s.}, there must exist a number A such that
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lim,. s, = A.” One such feature is the property of being monotonic and boun-
“ded. Not all convergent sequences possess this characteristic, of course, but it is
nevertheless of great importance.

In higher analysis there are many situations in which we assert the existence
of something having specified properties. A problem leading to such an assertion
may be called an existence problem. Many important concepts are introduced via
existence problems. Definite integrals and functions defined by infinite series are
examples.

EXERCISES -1
1. Which of the following sequences is convergent? (a) {(~1)"}, (b) { ) }

© {n(=D"Y, (@ {n[1—D", (&) {1, (D {S‘""]

2
+ —

2. If s, =n3—2n+—1—1 and € >0, find N so that |s, —3/<e if N =n.

3. Ifs, —6—%?2'&—1 find A so thatif 0 <e <6, |s, — A| < e provided n > 6—76 What
does this show about lim, .. s, ?

_ 10" 10" 10

4. If s, =T show that s, éﬁ’? if n>10. Hence, if € >0, find N so that

[sx] <€ if N =n. From what value of n onward is $x+1 < $,?
21 241 2461 ; ;
5. Let s, = 1 1%"153 53 =1375 3 etc. Write the general expression for

s, and show that s, s%, What do you conclude about lim,_.. 5,? Show that 5,.; <S$..

6. Let P(x)=aox” +aix" '+ - -and Q(x)=box?+ b x?"" - - - be polynomials, with
aobo #0. Discuss lim,_. P(n)/Q(n) according as (a) p<gq, () p=gq, (c) p>q.
(Compare with Example 3.)

7. (a) If P(x) is a polynomial of degree r >0, show that lim,..P(n+1)/P(n)=
1. (b) What is lim,_. P(2n)/P(n)?

8. Find 1_<1_l)4

9. Using rationalization techniques, find the limits of the following sequences:

(@) (Vn+1- x/E}- ) {(Vr(Vn+1-Vn)}

10. If lim 22— X = =(, show that lim x, = x. (Write y. =

n—ow Xp n—co

—X
p and solve for x..)

11. Let f(x) be defined as f(x) = lim mlx_’"’ where x > 0. Find the value of f(x) for

each positive x.

2\ n
12. Consider lim(—ﬁ_—%> . For what values of x does the limit exist? Classify the
values of x according to the value of the limit.

13. Let f(x)=x/|x|] if x#0, and define f(0)=0. Show that f(x)=

lim—«(2/7) tan"'(nx).
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14. Find each of the following limits:

1 2
(a) hm( 2t ot -+%>;

n—o

2 2 2
(b) llHl(] %+ - +%>

n—om

1 1 1
\/n2+1+\/n2+2+ +\/n2+n
hence find lim,—. s,.

16. (a) Prove that, if C>1, lim,...C"" =1, using the following suggestions. First
explain why C'™ > 1. Then let x, = C""—1 and use (1.2-5) to show that C > 1+ nx,. It
then follows that lim, ... x, = 0. (Why?) Why then does C""—>1? (b) If 0< C <1, show
that lim,_... C'" = 1 by applying the result (not the method) of (a).

17. Let a.=n'?". For n>1 write a,=1+ x,, Use (1.2-5) to prove that x,=

Vin - 1<— Use this to deduce that n''" <1 +—+ 1 , and hence that [imne.n'" = 1.

n Vn Vn
__18. Let s, =n/C", where C>1. Write VC = 1+x and use (1.2-5) to show that
Vs, < 1/(xVn). What do you conclude about lim ,_.. $,?

15. If s. =

—-1/2
, show that <1+—> <8, <1, and
n

n+1 _ n+1
19. Let s, = (1 +l> . Show that San B 1 (1 + ,_1 ) , and then use (1.2-5)
n Sn n n-—1

to prove that .- > s,. Show that lim, .. s, = e (see (1.62-5)).

20. (a) Show that 11m<1+2—> —Ve.

(b) Observe that (1 +2> = (1 +—]><1 + ) Now find llm<1 + 2) .
n n+1 N

(¢) Find llm(l + 3) .

21. Suppose 0<<s, and s.+1 <rs., where r is a constant such that 0 <r <1. Show
that lim,_. s, = 0.

22. Suppose 0<s, and s,.; = rs,, where r is a constant such that r > 1. Show that
lim,—w S, =+ o0,

23. Suppose C > 1 and s, = C"". Show that 1 <s, and s..1 < s, (assume the contrary
in each case, and deduce a contradiction). Hence, by Theorem XIII, lim,_. S, eXists.
Denote the limit by r. Why is r = 1? Prove that r = 1 by showing that r > 1 leads to the
contradiction that 1/C =0.

24. let a. =1+ 11,+ 21'+ %, b, = (1 +%> . In the course of Example 6 it was
proved that b, < a,. Let a =lim,-« a. (the existence of the limit follows from Example
5). By definition, e =lim,... b, (see (1.62-5)). Show that a = e, using the following

suggestions: First explain why you know that e = a. Then refer to (1.62-3) and explain

why
1 (1 ri) (1 r11><1 3) (1 r11><1 pn 1)
! 1! 2! 3! p! <e

if 1<p <n. In this result let n —> = and obtain a, = e. Now complete the argument as to
why a = e.
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1.63 / THE LIMIT DEFINING A DEFINITE INTEGRAL

Here we have to do with a limit different in kind from the limit of a function of a
continuous variable and the limit of a sequence. Our discussion will be couched
in terms of the notation used in the definition of a definite integral in §1.5. Consider
the approximating sums

2f(x’,-) Ax; (1.63-1)

associated with a given fixed function f which is defined on the interval
a =x =b. Although the index n appears here, these sums do not form a
sequence. A particular sum depends not merely on n, but on the points of

subdivision x, x,,..., X,—; and on the intermediate points x/,..., x, We may
say that, the function and the interval being fixed, the approximating sum
(1.63-1) is a function of n and of the points x,, X;,. .., Xs—1, X[,..., X When we
say that
n b
nmz1 fxh) Ax; = f f(x) dx, (1.63-2)
1= a

we mean that to each positive number € corresponds another positive number §
such that

<€

lg‘f(xE) Ax;—f; f(x) dx

for all choices of n and the points x;, x; such that the greatest of the numbers
Axq,...,Ax, is less than é§.

We give this definition here for comparison with the definitions of the two
kinds of limits already discussed. The problem of showing that the sums (1.63-1)
do actually have a limit (when f is a continuous function) is another example of
an “existence problem” for a real number. (See the two final paragraphs of
§1.62.) As with most such problems, we cannot obtain a solution without having
at our command a systematic knowledge of the fundamentals of the real number
system.

1.64 / THE THEOREM ON LIMITS
OF SUMS, PRODUCTS, AND QUOTIENTS

In § 1.6 we stated three fundamental theorems about limits [see also (1.1-4)—(1.1-
6)]. The student has used these theorems from the very beginning of his study of
calculus. We are now going to give formal statement and proof of the pro-
positions as they apply to limits of functions of a continuous variable. First,
however, it will be convenient to consider certain rules governing the use of
absolute values. The absolute value |A| of a number A was defined in Example 3,
§1.1. Now for any two numbers A, B, it is always true that

|A+B|=|A|+|B|. (1.64-1)
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There are four cases to consider: (1) A and B both positive, (2) A and B both
negative, (3) A=0or B =0, (4) A and B of opposite sign, and neither of them
equal to 0. In the first three cases it is easily seen that |A + B| = |A|+ B, while in
case (4) |A+ B| <|A|+|B|. Thus (1.64-1) is true in all cases.

We now turn to the limit theorem.

THEOREM XIV. Let f and g be defined in an interval containing x = x,, but not
necessarily at the point x = x, itself. Suppose that the limits

lim f(x), lim g(x)
X=Xy x—=xp

exist. Then the sum f(x)+ g(x) and the product f(x)g(x) approach limits as x
tends to x,, given by

lim {f(x) + g(x)} = lim f(x)+ lim g(x), (1.64-2)
lim{f(x)g (x)} = {lgn f (x)}{chigl g(x)}. (1.64-3)
Furthermore, if lim g(x) # 0, the quotient i((—);)j has a limit given by
lim f(x)
lim £ —xox” (1.64-4)

Angx)  limg(x)

X—>Xq

Proof. Let the limits of f(x) and g(x) be denoted by A and B, respectively.
We shall prove (1.64-2) and (1.64-4), leaving the proof of (1.64-3) as an exercise
for the student. The prove (1.64-2) we must show that, if a positive € is given,
we can choose a positive & such that

Fx)+8(x)—(A+B)|<e if 0<|x—xo|<8. (1.64-5)
Now
(Ff(x)+g(x)—(A+B)=(f(x)— A)+(g(x) - B),
and therefore, by an application of (1.64-1),
|(f(x)+ g(x)) = (A + B)| =|f(x) - A|+|g(x) - B|. (1.64-6)

Now by hypothesis we can make [f(x)— A| and [g(x)— B| as small as we like by
restricting x to lie sufficiently near x,. In particular, there are positive numbers &,
and 8; such that

|f(x)—A;<§ it 0<|x — xo| < 8 (1.64-7)
and
|g(x)—B|<—;— if 0<|x — xo < 8. (1.64-8)
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Let 8 be the smaller of the numbers §,, 6,. It then follows from (1.64-6), (1.64-7),
and (1.64-8) that (1.64-5) holds. This completes the proof of (1.64-2).

In proving (1.64-4) we first of all observe that, since lim,_,, g(x)= B and
B# 0, we can be sure that |g(x)| >3|B| if we require x to be sufficiently near x,. It
suffices to choose 8, so that

lg(x)— B] <3|B| if 0<|x — xo < &,
for then
B = (B~ g(x)) +g(x),
and by (1.64-1) we have
Bl =B —g(x)|+1g(x)| <3Bl|+[g(x)l,
and consequently
Bl <lg(0)] if 0< fx = xof < 8. (1.64-9)
Now we can write

f(x) _A_Bf(x)— Ag(x) _ BIf(x)— Al + A[B — g(X)]

g(x) B 2(x)B 2()B
and so
f(x) Al _[B]lf(x)— A|+]|A||B —g()] )
g(x) B 12| |B] (1.64-10)

(Here we have used the fact that the absolute value of a product is the product
of the absolute values.) Now let a positive € be assigned arbitrarily. We wish to
choose a positive 8 so that the left member of (1.64-10) is less than e if
0 <|x —xq| < 8. Let

€ = Bfe .
2(Bl+ A
Choose 8, and 8, so that
f(x)~ Al <e if 0<|x— x| <8y, (1.64-11)
|g(x)— Bl <& if 0<|x — x| < 8s. (1.64-12)

At the same time we make sure that §, <8y so that (1.64-9) will hold. Now,
making use of (1.64-9), (1.64-11), and (1.64-12) we see that the right member of

(1.64-10) is less than
B € +]A € =¢
B[

if 0<[x —xo|<§, where 8 is the smaller of the numbers 8,, 8;. This completes
the proof of (1.64-4).
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EXERCISES
1. Prove part (1.64-3), using the following suggestions: Show that |g(x)|<|B|+1 if
|g(x)— B| < 1. Write
f(x)g(x)— AB = (f(x) — A)g(x) + (g(x) — B)A,
and use (1.64-1). If € >0 is given, let
¢ =——5
T JA[+|B|+ T
Now show that |[f(x)g(x) — AB| < e provided |f(x)— A| <€, |[g(x)— B| <1 and |g(x)— B| <
€;. Explain how these last inequalities are to be guaranteed by appropriate restrictions on
x. Write out the entire proof in full detail.
2. Formulate and prove the counterpart of Theorem XIV for limits of sequences.

MISCELLANEOUS EXERCISES
1. Suppose that f is continuous on [a, b], that f'(x) and f"(x) exist when a <x < b,
that f(a) = f(b) =0, and that there is a number ¢ such that a <c¢ <b and f(c) > 0. Prove
that there is a number & between a and b such that f"(¢) <0.

f()

2. Let f(x)=log.x (0<<a,a#1). Deduce that f'(x)==——, using nothing about

logarithms other than: (1) the assumption that f'(x) exists when x>0, and (2) the
property log.(xu) =log, x +log. u when x >0 and u > 0.

3. Find lim {V(x + a)(x + b) — x}.

4. In each of the following cases, investigate the one-sided limits at the point
indicated, and decide whether or not lim.., f(x) exists.
(@) f(x)=[x]1+[3—x], x0=2

lanx_l T

(b) f(x)= SE e =2
(©) f(x)=2"""sin % xo=0.

5. Let 5= V2, spe1=V2s,, n=1,2,...; find lim,_.. s,.
6. Suppose 0<a;=a,=---=a, where the a’s are fixed numbers. Let b, =
(al+as+---+ap)’" Show that lim,_.. b. = a,.
mw

7. (a) Show that lim 2 il

(Bring in consideration off T dx 2.)

() Find lim — p 2 sm—n— where o > 0.

n—»c p4
8. In (1.2-4) take f(x) = x>, a# 0. Obtain a formula connecting a, 8, and h, and show
that |6 — 3| <J|—% Hence conclude that lim § =
9. Let (xo, yo) be a point of the ellipse b°x>+ a’y”>= a’b”. Let the tangent to the
ellipse at (xo, yo) intersect the x-axis at A and the y-axis at B. Find the minimum possible
value of the distance AB.
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10. Define f(x)=x tan '(1/x) if x#0, and f(0)=0. Is f continuous at x =07 Is it
differentiable there?

11. Show, using the law of the mean, that
[x log x| <|x log |+ ¢
if 0 <x <& From this deduce that lim,_o. x log x = 0. Specify carefully how to choose & so
that 0 <x < & will imply |x log x| < €, where € is given in advance. Begin by choosing ¢ in
terms of € in a suitable manner.

12. Suppose f(x) = x"+2x, and define g by g(t) = t*sin(m/t) + t if t# 0, g(0) = 0. Let
F(t) = f(g(t)). Find F'(0).

13. Find the absolute maximum and minimum of f(x)=x’(1—x)* on the interval
—1=x =2 without using a graph.

14. Coansider the functions

fo(x) =cosx—1
fi{x)=sinx—x

fa(x) =cos x — 1 +3x?

fa(x) = sin x — x +¢x°
fa(x)=cosx — 1 +3x*—2x*
fs(x) = sin x ~ x +ax* — 7ax>.

Note that fi(x) = fo(x) and that fo(x) = 0 if x > 0. Thus fi(x) decreases as x increases,
and since f(0) =0, we conclude that f,(x) <0 when x > 0. Next note that fi(x) = — fi(x).
Explain how you conclude that f,(x) >0 when x > 0. Continuing in this way, show that
for x >0,

x—ax><sinx <x—gx’+ mox’
and 1—3x+2ax* —mex® < cosx < 1—3x2+25x”.
What is the generalization?

15. Suppose that f satisfies the hypotheses: f is defined and continuous when
a = x < b, differentiable when a <x <b, f(a)=0, and f(x)>0 if a <x <b. Prove that

there cannot be a positive constant M such that 0§%‘5)§ M when a <x <b.
16. Let {a.} be a sequence and suppose that {o.} is the sequence whose nth term is
the arithmetic mean of the first n terms of {a,}, i.e. 0. = (1/n) E a.. Prove that if {a.}
k=1

converges, then {g.} converges and has the same limit. Construct an example which
shows that {¢}T may converge even when {a.}7 does not.



2 | THE REAL

NUMBER SYSTEM

2 / NUMBERS

Our experience with numbers begins with the positive integers (also called the
whole numbers, or natural numbers). Next we become acquainted with zero, and
in due course we become familiar with negative integers and with rational
fractions (ratios of positive and negative integers). At some stage we learn the
adjective irrational for numbers such as V2, V5, m. In algebra we meet the
equation x*= —1 and are told that it gives rise to a new number i. Numbers such
as i, 2i, —7i are called pure imaginary, and numbers such as 3+ 5i are called
complex. Our learning, with numbers as with everything else, proceeds mainly
by particular cases and illustrative examples. But in due time it is possible to
reduce our knowledge to order and to give it logical coherence by a systematic
study of number and number systems. We make a beginning on such a sys-
tematic study in this chapter.

The integers, the rational fractions, and the irrational numbers compose the
number system which lies at the foundation of calculus and of all analysis. The
numbers of this system are called the real numbers, and the system of all such
numbers is called the real number system.

The adjectives “‘real” and “imaginary,” as applied to numbers, have entirely
conventional technical meanings. They are not meant to convey, and the student
should not let them convey, any implications whatsoever of a philosophical
nature about existence or nonexistence as genuine entities.

We shall not attempt to define the concept of number or to build up the
concepts of rational and irrational numbers from the concept of the integers.
Instead, we shall take the real number system as something known (though
somewhat imperfectly and unsystematically) by the student, and shall make
specific the algebraic laws governing the real numbers. The student is already
familiar with most of these laws, but it is now very important to know a
complete set of properties of the real number system. From such a complete set
we may deduce every property of the system.

2.1 / THE FIELD OF REAL NUMBERS

Addition and multiplication are the fundamental operations with ordinary num-
bers. These operations conform to the following laws:

Addition Multiplication
The commutative law: atrb=b+a ab = ba
The associative law: a+(bt+c)y=(a+b)+c . a(bc) = (ab)c
The distributive law: a(b+c)=ab +ac

72
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Throughout this section the word ‘“‘number” will be understood to mean
“real number,” and symbols a, b, ¢, x, ... will stand for real numbers.

There are two numbers with special properties, namely 0 and 1. The special
properties are expressed by the laws

a+0=a and a-1=a 2.1-1

for every number a.

The number 0 is special for addition, while 1 is special for multiplication.
The operations of subtraction and division may be defined with the aid of these
special numbers in the following way: To every number a corresponds its
negative, —a, which is the “additive inverse” of a. By this we mean that x = —a
satisfies the equation

a+x=0. (2.1-2)

Likewise every number a except 0 has a multiplicative inverse, denoted by a™".
That is, if a## 0, x = a ' satisfies the equation

ax = 1. (2.1-3)
We then define the subtraction of b from a by the equation
a—b=a+(-b). 2.1-4)
Similarly, we define the division of a by b as
%: a(b™). (2.1-5)

The properties of the real numbers which we have just been discussing are
summed up briefly in the language of modern algebra by saying that the real
numbers form a field. The word “field” here has a special technical meaning.
When we say that a system of numbers F constitutes a field we mean the
following:

. If aand b are in F, then a+ b and ab are in F.

The commutative, associative, and distributive laws hold.

. F contains distinct special numbers 0 and 1 with the properties (2.1-1).

Equation (2.1-2) has a solution in F for each a, and (2.1-3) has a solution in F for
each a# 0.

In abstract algebra it is shown how the other familar laws of elementary
algebra are deducible from the laws governing a field. Among the important rules
that can be proved are: a - 0 = 0 and (—a){—b) = ab. We shall not undertake any
systematic deductions of this kind. We mention, however, the rule:

If ab =0 and b # 0, then a = 0. 2.1-6)

This is proved as follows: Since b > 0, there is a number b! such that bb™' = 1.
From ab = 0 we conclude that a(bb™)=0-b" , ora-1=0,0r a=0.

Note that the system of integers (positive, negative, and zero) is not a field,
although it fails to be one only through the fact that a™' need not be an integer
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when a is. The rational numbers do form a field. Thus there are fields other than
the field of real numbers.

2.2 / INEQUALITIES. ABSOLUTE VALUE

One of the important properties of the real numbers is that they are ordered ; that
is, there is a notion “a is less than b’ expressed by the inequality a < b; of any
two numbers a, b one and only one of the following three things is true:

a<b or a=b or b<a.

The properties of order can be stated simply in terms of properties of positive
numbers. We express the fact that a is positive by the symbols 0 < a. The basic
laws governing the positive numbers are three in number:

If0<a and 0<b, then0<a+b. 2.2-1)
If 0 <a and b, then 0 < ab. 2.2-2)

For each a, one and only one of the following relations is true:
0<aor0=aor0<-—a. (2.2-3)
In terms of positivity we lay down the following definitions:

If b — a is positive, we say that a is less than b and write a < b. Under the same
conditions we also say that b is greater than a and write b > a.

Other properties of order, or rules for manipulating inequalities, are deduci-
ble from the above definitions and the three basic laws. Among the important
rules are the following:

0<a’if a#0. 2.2-4)

If a<b and b <c, then a <c. (2.2-5)

If a <b, then forany ¢, a+c <b +c. (2.2-6)
If a<b and 0 <c, then ac < bc. 2.2-7)

A field is said to be ordered if certain of its members are distinguished by
calling them positive and if this notion of “being positive” satisfies the laws
(2.2-1), (2.2-2), and (2.2-3).

For many purposes it is convenient to introduce the symbolism a = b,
meaning that either a < b or a = b. The symbolism b = a has the same meaning.

The notion of the absolute value of a real number is defined as follows (the
absolute value of a is denoted by |a|):

laj=aif0<a; la|=—-aifa<0; |0]=0.
In actual calculations with absolute values we rely largely upon the two rules:

lab| = |al|b|, (2.2-8)
la+b|=|a|+|b|. 229

(See §1.64 for a brief discussion of (2.2-9)).
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The further rule

;a4—|b|| <|a—b| (2.2-10)

is also convenient; it is deducible with the aid of (2.2-9).

We observe in passing that the inequality |x| =< € (where € >0) is equivalent
to the inequalities x =€ and —e = x, which we write as a double inequality
—e=xZe By setting x=b-—a and doing a little transposing we see that
l[a—b[=¢€isequivalenttob—e=a=b+e

EXERCISES

1. Prove (2.2-4). Note first that a>=a - a and a®>= (—a) - (—a). Then use (2.2-2) and
(2.2-3).

2. Prove (2.2-5). Appeal to (2.2-1) and the fact that x <y is equivalent to 0 <y — x."

3. Prove (2.2-6).

4, Prove (2.2-7).

5. Write @ = (a — b) + b and apply the rule (2.2-9) to obtain |a| = |a — b| +|b|, whence
la]~|b| =|a — b|. Why is it also true that [b|—|a|=|a — b|? Explain now why (2.2-10) is
correct.

2.3 / THE PRINCIPLE OF MATHEMATICAL INDUCTION

The natural numbers 1, 2, 3, ... occupy a position of especial importance in the
field of real numbers. To single out the class of all natural numbers from the rest
of the real numbers we may make the following assertion: The totality of natural
numbers forms the smallest class of real numbers possessing the following
two properties:

1. The number 1 is a member of the class.
2. If x is a member of the class, sois x + 1.

The statement that the natural numbers form the smallest class having these
properties means that any collection of real numbers having these two properties
must include all the natural numbers.

The characteristic feature of the totality of natural numbers, as just des-
cribed, is logically equivalent to the principle of mathematical induction (also
called complete induction). We formulate the principle as follows:

Let A(n) denote a proposition (e.g., a verbal statement, or a formula)
associated with the natural number n. Suppose it is possible to show that the
proposition is true if n = 1, and suppose also that, for each particular n, we can
prove the truth of A(n + 1) if weassumethe truth of A(n). Then A(n) is true for every
natural number n.

To see the validity of the principle, let S be the class of natural numbers n
such that A(n) is true. The assumption that A(1) is true means that 1 belongs to
S. Also, the fact that assumption of the truth of A(n) allows us to deduce the
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truth of A(n + 1) means that if n is in S, so is n + 1. Hence, by the remarks made
in the first paragraph of this section, S must contain all the natural numbers.
That is, A(n) must be true for every n.

We shall not analyze in detail the logical position of the principle of
mathematical induction in the description of the natural numbers. If the real
numbers are thought of as having been built up from the numbers 1, 2, 3,..., we
need the principle of mathematical induction as an axiom about the natural
numbers. If, on the other hand, we start from the assumption that the real
numbers are somehow presented to us as a particular sort of ordered field, we
may define the natural numbers as the smallest class of real numbers which
contains the number 1, and which contains x + 1 if it contains x. The theory of
classes or sets, into which we prefer not to venture at this stage, permits us to
prove that there is such a smallest class. The principle of mathematical induction
is, from this latter point of view, a theorem about the class of natural numbers.

By way of illustrating the principle of mathematical induction, we shall
prove formally some things about natural numbers.

Example 1. Every natural number is positive.

In the first place, 0 < 1. This follows from (2.2-4), since 1 #0 and 1= 1% To
complete the proof of the general assertion, suppose 0 <<n for a particular n.
Then 0<n and 0<1 imply 0 <n+ 1, by (2.2-1). Thus 0 <n for every natural
number n, by the induction principle.

From now on we shall usually refer to ‘“‘the natural numbers” as ‘“‘the
positive integers.” The unmodified term ‘“‘integers’ refers to the class consisting
of the positive integers 1, 2, 3,..., their negatives —1, —2, =3,..., and the
number 0.

We shall take for granted without formal proof such familiar facts as that
there is no integer between n and n + 1, if n is an integer.

Example 2. If S is a class of positive integers containing at least one
member, it contains a smallest number.

Most students will feel inclined to accept this as true without demonstration.
A proof is logically necessary, however. Observe that the assertion ceases to be
true if the word “integers” is replaced by “‘real numbers’’; for instance, there is
no smallest member of the class of positive rational numbers.

The proof of the assertion in Example 2 uses the characteristic properties of
the class of natural numbers in an interesting way. Observe, in the first place,
that if 1is in S, 1 is the smallest member of S, since there is no positive integer
less than 1. Hence, we need consider only the case in which 1 does not belong to
S. We now let T be the class of positive integers p such that p <n for every n
in S. This class T contains 1 since 1 is not in S. On the other hand, T does not
contain all positive integers, since some positive integers belong to S. Hence, it
cannot be that T contains p + 1 whenever it contains p, for in that case T would
contain all positive integers, by the characteristic properties of the class of all
such integers. There must therefore be some integer po in T such that po+1 is
not in T. Then, by the way in which T is defined, there must be an integer no in S
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such that no= po+ 1. We assert that n, is the smallest integer in S. For, if n is
any member of S, we have po<n. Let m=n—p,, or pp+ m =n. Here m is a
positive integer. Therefore, no=<po+1=po+m=n, or ny=n. This completes
the argument.

EXERCISES

1. Prove by induction that, for every natural number n, either 1 =n or 1 <n.

2. Prove the validity of the following form of the principle of mathematical in-
duction, resting your argument on the form enunciated in the text. Let B(n) denote a
proposition associated with the integer n. Suppose B(n) is known (or can be shown) to be
true when n = no, and suppose the truth of B(n+ 1) can be deduced if the truth of B(n) is
assumed. Then B(n) is true for every integer n such that n, = n.

SUGGESTION: Let A(n) be the proposition B(ng+n — 1).

2.4 / THE AXIOM OF CONTINUITY

The facts expressed in the statement that the real numbers form an ordered field
are quite familiar. We are now going to discuss a much less familiar property of
the real number system. Most students beginning a course in advanced calculus
will have had no experience in making use of this property, and quite possibly
may never have heard of it. We call it the axiom of continuity.

The Axiom of Continuity. Suppose that all real numbers are separated into
two collections, which we denote by L and R, in such a way that

1. every number is either in L or in R.
2. each collection contains at least one number.
3. ifaisin L and b is in R, then a <b.

Then there is a number ¢ such that all numbers less than ¢ are in L and all
numbers greater than ¢ are in R. (The number c itself may belong either to L or to
R, depending on the particular way in which L and R are formed.)

It is convenient to have a name for a separation of all real numbers into
collections L and R meeting the specifications (1)~(3). We call such a separation
a cut; the number c is then called the cut number. The cut number correspond-
ing to a particular cut is unique. For suppose a given cut has the distinct cut
numbers ¢; and c,. One of them is the greater, say ¢; < ¢,. Consider the number

_Cy + ¢y

===

which lies halfway between c, and ¢;:¢; < b < ¢,;. Now ¢; < b implies that b is in
R, by one of the properties of the cut number c,. Likewise b < ¢, implies that b
is in L. Hence b is in both L and R. This is impossible, however, for by the
specification (3) L and R cannot have any members in common. The assumption
of distinct cut numbers has led to a contradiction. Therefore, we conclude that
any cut has but one cut number.

b
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It is clear that if ¢ belongs to L then L consists of all numbers x such that
x = ¢, while R consists of all numbers x such that ¢ <x. If ¢ belongs to R, then
L consists of all x such that x <c¢ and R consists of all x such that ¢ = x.

The idea of a cut was originated by the German mathematician Dedekind for
use in his theory of the structure of the real number system (published in 1872
under the title Continuity and Irrational Numbers). If the number system is built
up by stages from the integers, it is possible to arrange the exposition in such a
way that what we have called the axiom of continuity is provable as a theorem
about the real numbers. But since we are taking the point of view that the real
numbers are somehow given to us to work with, we are listing our assumptions
about them. The axiom of continuity is one of our assumptions. It is a
far-reaching assumption, for with it we can deal satisfactorily with the existence
problems for real numbers referred to near the end of each of §§1.62 and 1.63.

No further assumptions need be made about the real number system. The
system is described with logical completeness by saying that it is an ordered field
satisfying the axiom of continuity.

At this point it is convenient to introduce a theorem which expresses what is
called the Archimedean law of real numbers. Its proof is a good illustration of
arguments using the axiom of continuity.

THEOREM 1. Let a and b be positive real numbers. There exists a positive
integer n such that b < na.

Proof. Suppose the theorem false, so that na = b for every positive integer
n. We shall define a cut as follows: Let L consist of all numbers x such that
x < na for some n, and let R consist of all numbers not in L, i.e., all numbers y
such that na = y for every n. We must verify that the three specifications for a cut
are fulfilled:

1. Every number is in either L or R, by definition.

2. b is in R by our initial supposition, and a is in L, since a <na if n =2. Thus
neither L nor R is without members.

3. If xisin L and y is in R, we have x <na =y for some n, and hence x <y.

Now let ¢ be the cut number. We observe that all the numbers na are in L,
since na <(n + 1)a. Therefore na = ¢, for ¢ < na would mean that na is in R, by
one of the properties of a cut number. Hence, also (n + 1)a = c. But this implies
na = ¢ —a. This being true for all n, we conclude that ¢ —a is in R. But
¢ —a<c,and hence ¢ — a is in L. We have now reached a contradiction, and the
proof is complete.

2.5 / RATIONAL AND IRRATIONAL NUMBERS

Numbers of the form p/g, where p and g are integers, are called rational. Real
numbers which are not rational are called irrational. The theory of the nature of
irrational numbers began with the ancient Greeks. It has been known since the
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time of Pythagoras that V2 is not a rational number. (With a little knowledge
about expressing integers as products of their prime factors the student may
easily prove this fact for himself.) The theory of incommensurable ratios,
developed by Eudoxus, is in essence a geometrical treatment of irrational
numbers. It was not, however, until the nineteenth century that mathematicians
(Dedekind with his cuts important among them) arrived at the understanding we
have today of the real number system and of the position of irrationals in it.

It can be shown that between any two real numbers there are both rational
and irrational numbers. If a and b are given real numbers with a < b, we obtain
a rational number r such that a <r <b by the following argument: since 0 <1
and b —a >0 there exists (by Theorem I, §2.4) a positive integer n such that
1 <n(b— a). Let m be the smallest integer such that m > na. Then (m — 1) = na,
and therefore

m=na+1<na+n(b—a)=nb.

Consequently m
—<
a< p b,

so that ¥ = m/n is a rational number of the required sort. Finding an irrational
number between a and b is left as an exercise for the student (see Exercise 2).

It follows from the previous paragraph that if x is a real number, rational or
irrational, we can find a rational number r as near it as we please. That is, if € is
any positive number, we can find r so that x — e <r <x + e. We do in fact, in any
actual computations or measurements, use rational approximations to real
numbers. For many purposes we even limit ourselves to special kinds of rational
numbers, namely decimal fractions. A decimal fraction is simply a rational
number of the form m/10", where m and n are integers and n=0. There is a
number of this form between any two real numbers, as may be readily shown
from the fact that if a <b, then 1 <10"(b — a) for a suitably chosen n.

EXERCISES

1. Assume that V2 = m/n, where m and n are integers and the fraction is reduced to
its lowest terms. Then m2 = 2n>. Now deduce a contradiction, and hence prove that V2 is
irrational. Use the fact that if the product of two integers is even, then at least one of
them is even.

2. Show that if a < b there is an irrational number x between a and b.
SUGGESTION: Let y be a positive irrational number, e.g., /2. Then show that there are
integers m, n with m#0 and n >0, such that a <(m/n)y <b. Why is x=(m/n)y
irrational?

3. Prove by induction that n < 10" if n is a positive integer. Then prove that if a <b,
there are integers m, n, with n > 0, such that a <m/10" <b.

2.6 / THE AXIS OF REALS

It is customary and convenient to use geometric language a good deal in
speaking about the number system. On a given straight line we take an arbitrary
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point as an origin, an arbitrary direction as positive, and = —~+—+—tr—t—t—r

an arbitrary unit of length. We then mark off segments —2~1.0 1 2 3

of unit length on either side of the origin, thus obtaining Fig. 19.

the points which we label as shown in Fig. 19. There

is a one-to-one correspondence between the real numbers

and the points on the line. This entitles us, for brevity, to speak of ‘‘the point a”

instead of “‘the point corresponding to the number a.” The inequality a < b has the

geometrical interpretation that b lies in the positive direction from a along the line.
We call the line, thus regarded as a geometrical representation of the real

number system, the axis of reals, or the real number scale.

2.7 / LEAST UPPER BOUNDS

By a set of real numbers we mean an aggregate or class of numbers. It may be
formed according to any rule, and the number of its members may be finite or
infinite. If the conditions laid down for determining the set are such that no
number satisfies them, the set is said to be empty. It is very convenient to have a
brief symbolism to indicate that a number belongs to a given set. The statement
that the number s belongs to the set S is expressed symbolically in the form
s € S (read s is a member of S). The symbolic form of the statement that s does
not belong to S is sZ S. Thus, if S is the set of prime positive integers, 3€ S
and 8 S.

If S is a set of numbers, and if M is a number such that s = M for each
s € S, we say that M is an upper bound of S. Evidently any number larger than
M is also an upper bound of S. If A is an upper bound of S and if there is no
number smaller than A which is also an upper bound for S, we call A the least
upper bound of S. Obviously a set cannot have more than one least upper
bound.

Example. The set S of numbers of the form n/(n + 1), for all positive integers
n, consists of 1/2, 2/3, 3/4, 4/5 ... etc. Evidently 1 is an upper bound of S. But
more is true; 1 is the (unique) least upper bound of S. To verify this we must
show that if ¢ <1, ¢ cannot be an upper bound of S, i.e., that there is some n
such that ¢ < n/(n+1). To get such an n we appeal to Theorem I in §2.4, which
tells us that there exists an n such that 1<n(l—c¢). But ¢ <1, and so ¢ <
n(l1—c)=n-nc, or nc + ¢ <n. But then (n + 1)c <n, and so ¢ <n/(n + 1). This
completes the argument.

The following theorem is of fundamental importance:

THEOREM II. If S is a set of real numbers which is not empty and which has an
upper bound, then it has a least upper bound.

Proof. We appeal to the axiom of continuity. Let L be the set of all numbers
x such that x < s for some s in S, and let R be the set of all numbers y such that
I3

i
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s =y for every s in S. Clearly L and R together comprise all real numbers. If
s€S,then s—1€L; AER if A is an upper bound of S. Thus neither L nor R
is empty. If x €L and y ER, we have x <s for some s in S. But s =<y, and
therefore x <y. We have therefore defined a cut. Let ¢ be the cut number. We
shall prove that c is the least upper bound of S. It certainly is an upper bound.
For if we suppose ¢ < s for some s in S, we can choose a number z between ¢
and s. Then z € R since ¢ <z, and z € L since z < s; thus we have a contradic-
tion, for a number cannot belong to both L and R. If b is any number smaller
than c, the properties of the cut number insure that b € L, and hence b <s for
some s in S. Thus b cannot be an upper bound of S. The proof that ¢ is the least
upper bound of S is now complete.

Theorem II expresses a property of the real number system which is a direct
consequence of the axiom of continuity. It is easily demonstrated that if the
statement of Theorem II is taken as an axiom concerning the real numbers, the
truth of the axiom of continuity may be deduced (making it a theorem instead of
an axiom). For a key to this demonstration see Exercise 1. Thus the axiom of
continuity and the existence of least upper bounds as stated in Theorem II are
equivalent propositions. Hereafter, in arguments where we could lean equally
well either on the axiom of continuity or on Theorem II, we shall usually appeal
to the latter.

As an immediate application we shall prove Theorem XIII of Chapter
1 (§1.62). We reword it slightly.

THEOREM II1. Let {x,} be a sequence. such that x, =x; = =X, =EXpn1 =. ..,
and suppose that the set of numbers x, has an upper bound: x, = M for every
n. Then the sequence is convergent, its limit being the least upper bound of
the numbers x,.

Proof. Let A be the least upper bound of the numbers x,. Then if € >0 we
have A ~ € <x, for some n, say n = N, and x, = A for every n. Since xy = x, for
every n = N (by virtue of the assumption that x, = x,.,), we see that A —e€ <
X, £ A if N =n. Thus by definition lim,_.. x, = A. This proves the theorem.

The notion of lower bound of a set, and of the greatest lower bound, are
defined in exactly the same way as upper bound and least upper bound, except
that the notions of “less than” and ‘‘least” are replaced throughout by “‘greater
than” and ‘‘greatest.” We may summarize the defining properties of the least
upper bound and greatest lower bound as follows:

The set S has the least upper bound A if s = A for every s in S and if, €
being any positive number, A — € <s for at least one s in S.

The set S has the greatest lower bound B if B =s for every s in S and, €
being any positive number, s < B + € for at least one s in S.

THEOREM IV. If S is a set of real numbers which is not empty and which has a
lower bound, then it has a greatest lower bound.
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Proof. We could give a proof similar to that of Theorem II. Instead, we base
the proof on Theorem II itself. Define a set T as consisting of all numbers
t = —s, where s € S. If M is a lower bound of S, we have M =5, or —s =—M for
each s in S. Thus T has an upper bound —M. By Theorem II, T has a least upper
bound, say A. We leave it for the student to show that —A is the greatest lower
bound of S, thus completing the proof.

Just as Theorem IV matches Theorem II, so there is a theorem which
matches Theorem III.

THEOREM V. Let {x,} be a sequence such that x,Z x,=--- (in general x, =
Xn+1), and suppose that the set of numbers x, has a lower bound: x, = M for
every n. Then the sequence is convergent, its limit being the greatest lower
bound of the numbers x,.

We leave it for the student to base a proof of this theorem on Theorem IV or
to deduce the proof from Theorem III by considering the sequence {y,} = {—x.}.

EXERCISES

1. Let L and R be sets of real numbers satisfying the conditions of the axiom of
continuity. Assuming the truth of Theorem II, show that the set L has a least upper
bound ¢ and that this least upper bound has the properties assetted for the cut number in
the axiom of continuity.

2. Prove Theorem IV by an argument similar to that used in proving Theorem II,
using the axiom of continuity.

3. Carry out the proof of Theorem V in each of two ways, as suggested in the text.

4. Prove Theorem I (§2.4), starting as follows: Suppose the assertion in the theorem
false, so that na = b for all positive integers n. Use Theorem II and the defining property
of a least upper bound to arrive at a contradiction.

5. Let xi = V2, Xue1 = V2 + x,.. Use mathematical induction to show that x, < Xn.,.
Next show that if x, =2 (where n > 1), then x,_ = 2 also. How do you conclude from this
that x, <2 for all n? State why lim,_... x, exists, and find the limit.

6. Suppose ¢ >0, and let x,= V¢, xns1=Ve +x,. Show that x, < Xx..; and x, <
1+Vc (see Exercise 5). State why lim,_.. X, exists, and find the limit.

2.8 / NESTED INTERVALS

The theorem which we are going to discuss in this section is an immediate
consequence of Theorems I and V of §2.7. We are going to use the language of
geometry rather than the language of numbers; the theorem is about closed
intervals on the real axis. It will be convenient to denote intervals by single
letters, such as I, I, I, and so on. If I, and I, are closed intervals, and if the end
points of I, lie in I, we say that I, is contained in I|.

Now suppose that we are given a sequence of closed intervals, I1, I, I, . . .,
I,, ... with the property that I, is contained in I, I5 is contained in I, and so on;
that is, we assume that each interval contains the one which follows it in the
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sequence. Let us denote the length of the interval I, by the symbol I,, and let us
assume that lim,... 1, =0. In these circumstances we shall say that {I,} is a
sequence of nested intervals, or that the sequence forms a nest.

THEOREM V1. If {I.} is a nest of closed intervals, there is exactly one point
which is common to all the intervals.

Proof. Let the interval I, be described by the inequalities a, =x = b,
(a, <b,). The fact that {I,} is a nest is then described as follows. The
inequalities

A =dapi1, by =b,, n=1,2,... (2.8-1)

correspond to the fact that I, contains I,.. Also

lim (b, —a,)=0, (2.8-2)

n-o

since I, = b, — a,. Now a, <b, = b;, and a,; = a, < b,. It now follows by Theorem
III of §2.7 that the sequence {a,} has a limit; likewise, by Theorem V, {b,} has a
limit. Let us write

lima,=a, limb,=b.

noom n—>%

These two limits must coincide, thatis a = b, by virtue of

(2.8-2). Now a, = a = b, for a is the least upper bound of L
the sequence {a,}; likewise a = b = b,. Hence the point a I
belongs to every one of the intervals I,. Obviously there 1,

cannot be more than one such point common to all the

intervals. For if two such points existed, say at a positive

distance h apart, we could choose n so large that

I, = b, — a, < h, and under this condition the two points

could not both lie in I,. Fig. 20.
Theorem VI is illustrated in Fig. 20. Uses of

Theorem VI will appear in the next chapter. '

MISCELLANEOUS EXERCISES
1. Suppose f is defined as follows: f(x) =1 if x is a rational number, f(x) =0 if x is
an irrational number. For what values of x (if any) is f continuous?

n

exists without finding the limit.

n

2. Show that lim =
noo N1E

3. Show that lim {7—2-3-1‘—(5('%'_’)—1)
4. If x, = (log n)/n, show that x, > x.., when n = N, where N is a certain fixed
integer. What is N? What do you conclude about the sequence {x.}?
5. Let S be the set of all rational numbers r such that r* <2. What is the least upper

bound of S? What is the greatest lower bound of S?

2
} exists without finding the limit.



84 THE REAL NUMBER SYSTEM Ch. 2

6. Let S be the point set consisting of all the points x. = (—1)" [2—%},n =1,

2,.... Find the least upper bound and greatest lower bound of S.

7. The same as Exercise 6, except that x, = (—=1)" +(1/n).

8. Let a sequence of numbers a;, a2, ... be such that (2—a.) d.; = 1. (a) Show that
lim,- a. exists. Consider two cases: either a, <2 for all n, or a. > 2 for some n. (b) Find
the limit of the sequence.

9. Let x, and y, be given with x; >y, >0, and define

nt Yn ST
Xpri =2 2y S Ya1= VXY, n=1,2,...

Show (a)that y, < yni1 <x;, (b)thaty, <X.ri<xn, (€)that0<Xpii— Vo1 <(x,—y1)/2"
Explain why the sequences {x.} and {y.} are convergent and have the same limit.

10. The number V3 is defined as the positive number ¢ such that ¢*>= 3. That there
is such a number may be proved as follows: Let S be the set of all positive numbers x
such that x> < 3. This set is not empty, since 1 € S. It is a bounded set, for, if x € S, either
x =1 or x > 1, and in the latter case x < x> < 3. By Thoerem II, S has a least upper bound,
which we shall denote by c. It remains to prove that ¢” = 3. (Why must ¢ be positive?) If
€ >0, there is some x in S such that ¢ —e <x. Hence (c —€)*<3, or ¢>—2ce +€°<3,
since x*>< 3. Now let € >0, and by Theorem XI, §1.61, we conclude that ¢*> = 3. Finally,
we show that ¢>< 3 is impossible. For, if ¢><3, the fact that limn_o (c>+ 2ch + h?) = c*
shows that (¢ + h)> <3 if h is sufficiently small. This means that ¢ + h is in S if h is any
sufficiently small positive number. Since c¢ is the least upper bound of S, this is a
confradiction. Therefore ¢ = 3.

Now let the student develop a similar argument to show that if A>0 and n is a
positive integer, there is a positive number ¢ such that ¢" = A.



3/ CONTINUOUS

FUNCTIONS

3 / CONTINUITY

In §1.12 and §1.2 we pointed out the need to know that if a function is
continuous at all points of a finite closed interval it actually attains an absolute
maximum and an absolute minimum at points of the interval. Again, in §1.51, we
saw that another property of continuous functions occupies a key position in the
proof of the mean-value theorem for integrals. After our study of the real
number system in Chapter 2 we are prepared to prove that continuous functions
do in fact possess the properties referred to above.

The definition of a continuous function was given in §1.1. We repeat the
definition.

Definition. Let f be a function which is defined in some interval containing the point
X either inside or at one end. We say that f is continuous at xy provided that
lim,, f(x) = f(xo). If xo is at one end of the interval, x must approach x, from one
side only. We say that f is continuous on an interval if it is continuous at each point
of the interval.

Often it is convenient to express the definition of continuity in an alternative
but equivalent way, using inequalities: f is continuous at x, provided that to each
positive number e corresponds some positive number § such that |f(x) — f(xo)| <
€ whenever |x —xo| < & and x is in the interval on which f is defined. Observe
that |f(x)— f(xp)] <€ is equivalent to the double inequality f(xo)—e <f(x)<
f(xo) + €. The choice of the number 8 will as a rule depend both on € and on x,
(and of course on the particular function f).

Among the important theorems about continuity is the following assertion
about the continuity of sums, products, and quotients:

THEOREM 1. Let f and g be functions defined on the same interval. If f(x) and
g(x) are continuous at a point x = x, so are f(x)+ g(x) and f(x)-g(x). If

fx)

g(xq) # 0, the quotient 2(x) is also continuous at x = x,.

The proof stems directly from the fundamental limit theorem (Theorem XIV,
§1.64). We have, for example,

M LA e
=% g(x) lim g(x) g(xq)’
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provided g(xg) #0. This is precisely the statement that the quotient % is

continuous at x = xg. The other parts of the theorem are proved in the same way.

EXERCISES

1. Assuming it is known that the functions sin x, cos x are continuous for all values
of x, discuss the continuity of tan x and ctn x. Is either of these functions discontinuous at
a point where it is defined?

2. If f is defined and continuous on a = x = b, is 1/f(x) defined on the same interval?
What about continuity of 1/f(x)? May it be discontinuous at a point where it is defined?

3. May a product f(x) - g(x) be continuous at a point x, where g is discontinuous?
Support your answer. May the product be continuous at a point where both f and g are
discontinuous?

4. May a sum f(x)+g(x) be continuous at a point where f is continuous and g
discontinuous? May the sum be continuous at a point where both f and g are dis-
continuous?

69)

5. Suppose f(x), g(x), and =~ are defined in some open interval containing x,, and

g(x)
suppose % and g(x) are continuous at xo. May f be discontinuous at x,?

3.1 / BOUNDED FUNCTIONS

A set of real numbers is said to be bounded if the set has both an upper and a
lower bound. Consider a function f, defined on a given interval. We say that the
function is bounded on the interval if the set of all the values of the function is a
bounded set. This means that there is some number A such that |f(x)| = A for all
x on the interval; or, alternatively, there are two numbers m, M such that
m = f(x)= M for all x on the interval. We make this definition whether or not
the interval on which the function is defined is closed.

Example 1. The function f(x) = sin x is bounded on the interval 0 = x =2,
because —1=sin x = 1. Actually, the function is bounded on every interval in
this case.

Example 2. The function f(x) = 1/x is not bounded on the interval 0 <x =1,
for there is no upper bound to its values. We can make f(x) as large as we please
by taking x sufficiently near zero.

Example 3. The function f(x) = x sin x is not bounded on the infinite interval
0 = x. There is neither an upper nor a lower bound to the values of the function,
since f(nm/2)=nm2 if n=1,59,13,... and f(nw/2)=—nn/2 if n=3,7,11,
15,....

THEOREM 1I. If a function is continuous on a finite closed interval, it is
bounded on that interval.
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First Proof. Let the function f be continuous on the interval a = x = b. We
observe in the first place that if x, is any point of the interval [a, b] there is some
subinterval containing x, in which f is bounded. For, if we take e =1 in the
criterion for continuity as stated in §3, and denote the corresponding & by §,, we
have f(xq) — 1 <f(x)<f(x¢)+ 1 provided that x is a point of the interval [a, b]
such that xy— 8§, <x < xo+ 8;. Note that this subinterval extends on both sides of
X if a <x,< b, and on one side of x, if xo=a or x, = b. To show the dependence
of 8, on x, we shall write 8§, = 8,(x¢). A second observation of importance is this:
If f is bounded on each of two abutting or overlapping subintervals, then it is
bounded on the single interval which consists of all points which belong to either
one or both of the original subintervals. For example, if |f(x)]=10 when
0=x =3/2 and |f(x)| = 15 when 1 = x = 3, then certainly |[f(x)| =15 when 0= x =
3.

Now let us define T as the set of all numbers ¢ for
which a <t=b and such that f is bounded on the I A 1f(a)+1
interval a = x =t. The set T is not empty, for by the
previous paragraph it certainly contains f if a <t f(a)
< a + §,(a) (see Fig. 21). Furthermore, T has the upper
bound b. Therefore, by Theorem II, §2.7, T has a least o 4 fay-1
upper bound, say c. To complete the proof we shall ! ;
prove two things: (1) that ¢ belongs to T, so that f is o at5.@)
bounded on [a,c], and (2) that ¢ =b. By defini-
tion of ¢ we know that either ¢ belongs to T, or there Fig. 21.
are points of T as near ¢ as we please on the left
of ¢. Now, as we observed at the outset, f is
bounded in some subinterval containing ¢ and extending at least a distance §:(c)
to the left of c¢. There will certainly be a point of T, say t;, such that
c—8(c)<t=c. If ty=c¢, (1) is clear; if t,<c, f is bounded on each of the
overlapping intervals [a, t,], [¢c — §,(c), c], and hence on the single interval [a, c].
In either case we see that ¢ belongs to T. This proves (1).

To prove (2) we assume ¢ < b and deduce a contradiction. Once more we
use the fact that f is bounded in some subinterval containing c; since ¢ < b this
subinterval will extend somewhat to the right of ¢, say as far as ¢ + 8:(c). But
now we know that f is bounded on each of the abutting intervals [a, c],
[c,c +8,(c)], and hence on the single interval [a, ¢+ 8,(c)]. This means,
however, that ¢ + 8,(c) is in the set T, by definition. Here we have a contradic-
tion, since ¢ + 8i(c) is greater than the least upper bound of T. We have thus
proved (2), and thereby completed the proof of the theorem.

2.

Second Proof. This proof uses the theorem of nested intervals (Theorem VI,
§2.8). As in the first proof, we observe that if a function is bounded on each of
two abutting closed intervals, it is bounded on the interval which is obtained by
combining the two intervals into one. Now suppose the theorem to be proved
were false; that is, suppose f is not bounded on [a, b]. Denote the interval [a, b]
by I.. Consider the closed intervals {a, (a+ b)/2], [(a+ b)/2, b] obtained by
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bisecting I,. On at least one of these closed subintervals (denote such a one by
I) f must fail to be bounded. We proceed to bisect I,, obtaining a new
subinterval I; on which f fails to be bounded. By repetition of this process we
generate a sequence I, of closed intervals on each of which f is not bounded.
The length of I, is (b —a)/2"". Hence it is clear that I, is a nest, as defined in
§2.8. By Theorem VI of §2.8 there is a single point, say x = ¢, which is in each of
the intervals I,, and hence in the interval [a, b]. Now, as shown at the beginning
of our first proof, f is bounded on some interval containing the point c¢. Denote
such an interval by J. Since the length of I, tends to zero as n increases, and
since c¢ is in I, it is clear that J must contain I, when n is sufficiently large. But
this involves a contradiction, for f is not bounded on I, and it is bounded on J.
Because of this contradiction, our initial assumption that the theorem is false
must be rejected. We have thus completed the proof.

EXERCISES

1. Let f(x) =2x sin(1/x) — cos(1/x). Is this function bounded on the interval 0 <x =
1?7

2. Consider the function tan' x, defined for all values of x. Is it bounded?

3. Which of the following functions are bounded on the indicated intervals?

=X <x<ly (© =y
1+x V5-2sinx

sin x T |
0<x=+; () —sin—,0<x=1.
P X=53 ()x o 1

0=x=2mw,

(a)

(b) JL;z-l,0<x<l; )

4. Without attempting to find exact absolute maxima, find numbers M such that
|f(x)|= M on the intervals indicated in each of the following cases:

(@) f(x)=x"—6x"+5x2-2, -1=x=1;:
(b) f(x)=3sinzx—ZCosx—sin%cosg,Oéx§21r;

3_ 2
© fo= 2 —1=x=2

3.2 / THE ATTAINMENT OF EXTREME VALUES

Suppose we are given a function f, and suppose we know that the function is
bounded on a certain given interval. Let m and M be the greatest lower bound
and least upper bound, respectively, of the values of f(x)
on the given interval. Is it necessarily the case that f(x)
actually takes on the values m and M on the interval?
Examples show that the answer to this question is negative.

Example 1. Suppose we define f(x)=x?if 0=x <1,
f{x)=0if x =1 (see Fig. 22). This function has M =1 for
the interval 0 = x = 1, but there is no x on the interval such
that f(x)=1. Note, however, that the function is not
continuous at x = 1.

e —————
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Example 2. Let f(x)= o sin xl’ 0 < x. This func- \\y
- » . -, w‘
tion is continuous for all positive values of x. We have n\\ y= xi—l
1 N e
=
PR E P 0 x

and hence —1 < f(x) <1 when x > 0. Actually m = —1 V/,/’:;
and M =1 for this function on any interval 0 <x =< a, Y=271
where a > 0. As x approaches 0, f(x) oscillates in value -

between 1/(x + 1) and —1/(x + 1) an infinite number of

times (see Fig. 23). If N is any number such that Fig. 23.
—1< N <1, there are infinitely many values of x as

near 0 as we please such that f(x) = N. But the values

+1 are never attained.

There is, however, a companion to Theorem II of the preceeding section, in
which it was assumed that f is continuous on an interval that is both finite and
closed. In that case the answer to the question raised in the opening paragraph of the
present section is positive.

N 2 Let f be cornitinuous when a =x=b, and let m and M be the
est lower bound and least upper bound of the values f(x) on this
interval. Then f(x) assumes each of the values m and M at least once in the
interval.

Proofl Suppose the value M is never attained, so that M — f(x) >0 for all x
in the interval. Consider the function

1
g(x)=m-

It is a continuous function, since the denominator never vanishes (see Theorem
I, §3). Hence, by Theorem II, §3.1, g(x) is bounded. Let A be an upper bound of
g(x) (A is necessarily positive):

1

M0 —f(x)é A.

This inequality may be transformed successively into

=M -f@). f=M -5

But we now have the result that M —(1/A) is an upper bound for f(x). This is a
contradiction, however, for M —(1/A) <M, and M is the least upper bound of
f(x). We must then conclude that M — f(x) vanishes for some value of x. This
completes the proof so far as M is concerned. A similar proof can be given that
the value m is assumed. Alternatively, one can consider the function —f(x),
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whose least upper bound is —m. Then, by what has already been proved,
—f(x) =—m must hold for some x. This is equivalent to f(x) = m, of course.

EXERCISES

1. Let f(x) =3x if 0<x <1, and define f(0) =1, f(1) = 2. Find m and M for f on the
interval [0, 1]. Are these extreme values attained? What can you say about the continuity
of f?

2. Let f(x) = x —[x], where [x] denotes the greatest integer less than or equal to x.
Find m and M for f on [0, 2]. Are these extreme values attained? Graph the function.

3. Find m and M for f(x)=tan ' x, where x can range over all values. Are these

extreme values attained?
x*+x + x’—x
2 2

Find m and M for this function on the indicated interval. Are these extreme values
attained?

5. Given a point Q and a circle in the xy-plane, with Q not on the circle, explain with
the aid of Theorem III how you know that there is a point P, on the circle which is at
least as near to Q as any other point of the circle is; also explain why there is a point P,
on the circle which is at least as far from Q as any other point on the circle is.

6. Given a point Q and a parabola in the xy-plane, with Q not on the parabola,
explain why there is a point P on the parabola at least as close to Q as any other point of
the parabola is? Why, in contrast to the case of the circle in Exercise 3, is there no point
of the parabola at maximum distance from Q? If you wish, you may choose a co-ordinate
system in which the parabola has a very simple equation.

4

4. Let f(x) = sin%,0< x=1.

3.3 / THE INTERMEDIATE-VALUE THEOREM

THEOREM 1V. Suppose that f is continuous on the closed interval a =x = b,
and that f(a) # f(b). Then, as x varies from a to b, f(x) takes on every value
between f(a) and f(b).

This theorem expresses a property of continuous
functions which has a simple geometric interpretation.
Suppose, for example, that f(a) < f(b), and that k is a
number between f(a) and f(b). Consider the graph of
y = f(x). Itis a continuous curve joining the points (a, f(a))
and (b, f(b)). These points are on opposite sides of the line a
y = k; the theorem asserts that the curve y = f(x) intersects  Fig. 24.
the line y = k at some point x = ¢ between a and b (see Fig.

24).

With this geometric interpretation, the student may be strongly tempted to
say that the theorem is obviously true and requires no further proof. If the
student does so, however, he or she is not relying upon our definition of
continuity given in §3, but upon intuitive assumptions about the geometrical
meaning of the term ‘“‘continuous curve.” We wish to show that the theorem can
be proved on the basis of the definition.

\

1\
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Before proving Theorem IV we shall find it convenient to prove the
following proposition:

THEOREM V. Let f be defined on an interval containing the point c, and let f be
continuous at x =c. Then, if f(c)#0, there is a subinterval containing c
throughout which f(x) has the same sign as f(c).

Suppose, for example, that f(x) is defined when
¢ —h <x <c+ h,where h >0, and that f(c) > 0. Then if y
f is continuous at x = ¢ the theorem asserts that we can
choose 8,0 <8 < h, sothat f(x) >0 when |x — ¢| < & (see
Fig. 25). The proof is an immediate consequence of
Theorem X, §1.61, since lim,... f(x) = f(c) > 0. Theproof ~ ©| /
when f(c) <0 is left to the student. If ¢ is at one end of
the interval on which f is defined, the subinterval on Fig. 25.
which f is of constant sign will extend on one side only of
c.

T

LN,
5cc+5\

Proof of Theorem IV. Consider the function g(x)= f(x)—~k, where k is
between f(a) and f(b). Let us assume for definiteness that f(a) <k <f(b). We
shall assume the theorem false and deduce a contradiction, thus completing the
proof. Thus we assume that g(x) is never zero on the interval [a, b].

Now g(a) <0 and g(b) > 0. Bisect the interval [a, b]. At the midpoint g(x) is
not zero, and hence is either positive or negative. Choose that half interval for
which g(x) is positive at one end and negative at the other, denoting it by I,. The
interval [a, b] we denote by I,. We now repeat the bisection process, suc-
cessively obtaining intervals I, I, I, . . . such that g(x) is negative at the left end
of I, and positive at the right end. These intervals obviously form a nest, and so
by Theorem VI, §2.8, close down on a unique point c. Now g(c) # 0, and so by
Theorem V g(x) is of one sign throughout some interval J containing c¢. But such
an interval will contain I, when n is sufficiently large, because the length of I,
approaches zero as n increases. Thus g(x) takes on both positive and negative
values in J. We have now reached a contradiction, and the proof is complete.

EXERCISES

1. Suppose f is defined as f(x) = |x| log |x| if x# 0, f(0) = e. Without investigating the
limit of f(x) as x -0, explain why it is certain that f is not continuous at x = 0.

2. A point Q is inside a circle C. The point of C nearest Q is a distance d from Q,
and the point of C furthest from Q is a distance D from Q. Explain how you know that
there is a point P on C whose distance from Q is 3(d + D).

3. If f is continuous and f(x)=0 on [a, b], while f(x) >0 for at least one x of the
interval [a, b], prove that [2f(x) dx >0. Give a carefully reasoned proof, not merely an
intuitive argument based on geometric plausibility.

4. Let P be a point on an ellipse. Consider rays (half-lines) emanating from P.
Explain how you know that there is one such ray which divides the area enclosed by the
ellipse into two equal parts.
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5. Suppose f is continuous on [a, b] and let A be a number such that 0 <A < 1. Show
that there is an x such that a <x<b and [} f(t)dt = Af5f(t) dt, provided that the
condition [%f(t) dt# 0 is fulfilled.

MISCELLANEOUS EXERCISES
1. Six functions are defined below, each by a certain formula. For each function

answer the questions: (a) For what values of x is the function defined? (b) For what
values of x is the function continuous? (c) Are there any values of x where the function is
not already defined, but may be defined so as to make the function continuous?

x*—1 24 3
w0 =Jrg

x*—16 ,
x+6—5Vx

M fx)=

(i) g0) = 5=+ (iv) F(v) =
x°—1
x“—5x—50
(x*—8x —20)VxZ=-25
3x+5 .
V2x-3-V5x—6+V3x -5

2. Given that f is defined for all x, continuous at x =0, and that, for all x and
¥, f(x+y)=f(x)f(y), show that f is continuous for all values of x.

3. Given that f is defined for all x, continuous at x =0, and that, for all x and vy,
f(x+y)=f(x)+f(y), show that f is continuous for all values of x.

4. A function f is defined and continuous on the interval a =x =b, and f(x)=0
when x is rational. Using Theorem V, explain why f(x) =0 at all points of the interval.

5. Show that [f(x)— f(xo)| <|x —xo| if f(x)=V4+ x> and x# xo,. What does this
prove about f?

6. Let P(x) be a polynomial of odd degree with real coefficients. Then the equation
P(x) =0 has at least one real root. Prove this by use of Theorem IV.

7. Let P(x)=x"+a:x""'+ - -+ a,, where n is an even positive integer, the a’s are
real, and a. <0. Show that the equation P(x) =0 has at least two real roots. What more
can you say about them?

2 4
8. Explain why x_+1+ x+1

(v) G(x)=

(vi) H(x)=

=0 has at least one root between —2 and 3.

x+2 x-3
9. Let f(x)= azﬁx +bzlix+czix—l, where A, B, and C are positive and a >

b > ¢ >0. Discuss the nature of the graph of y =f(x) and explain why the equation
f(x) =0 has exactly three roots xi, X2, x5 satisfying the inequalities —a* <x, <—-b><x, <
—c? < xa.

10. Suppose that f is continuous for all values of x, that lim,. . f(x)=—1, and
lim, .+ f(x) = 10. Explain how you use Theorem IV to show that there is at least one
value of x such that f(x) =0.

11. Suppose that f is given continuous for all x, with f(x)<0 when x <x; and
f(x)>0 when x> x,, where x;<x2 (a) Define a cut (see §2.4) in such a way that
the cut number c satisfies the conditions f(¢) =0, f(x) <0if x <c¢. (b)Defineacutinsucha
way that the cut number satisfies the conditions f(c) =0, f(x)>0if x >c.
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12. Prove Theorem III by using a repeated bisection method, as in the second proof
of Theorem II. At each bisection, retain a half interval on which the least upper bound of
f is M. Let {I.} be the resulting nest of intervals. Choose a point x, in I, such that
f(x.)>M —(1/n). Why is this possible? What happens as n —»»? Write out the whole
argument carefully, showing how you are led to a point ¢ such that f(c)= M.

13. Consider the following theorem: If f is continuous when a=x=b and if
fla)f(b) <0 (i.e., if f(a) and f(b) are of unlike signs), then there is some point ¢ between a
and b at which f(c)=0. As we saw in §3.3, the proof of Theorem IV may be made very
easily once this theorem is proved. Give a proof, using the existence of a least upper
bound, as guaranteed in Theorem I1, §2.7. Start by defining S to be the set of all x such
that a = x <b and f(x)f(a) >0. Why does S have an upper bound? Let ¢ be this upper
bound and prove that f(¢)=0. Write out your whole argument clearly, with specific
justification for each step in the reasoning.

14. A function f is defined and continuous when 0 = x = 1, and f(1) = 2. The function
has the further property that the value f(x) is always a rational number. Find f(0).

15. A function f is defined when 0 = x =2, with at most one point of discontinuity.
Furthermore, the value f(x) is rational if 0 = x <1 and irrational if 1 <x =2. Why must f
have exactly one point of discontinuity? What is that point?

16. Let f be defined on [0, 1] as follows: f(x) = x if x is rational, f(x)=1—x if x is
irrational. (a) For what values of x is f continuous? (b) In spite of the fact that f does not
satisfy the hypothesis of Theorem IV on [0, 1}, show that as x varies from 0 to 1, f(x)
takes on every value between f(0) and f(1). What is x, for example, if f(x) = V2/2?

17. Let f be defined for all x by the conditions: f(x) =0 if x is irrational or if x =0,
f(x)= 1/n if x is the rational number m/n, where m# 0, n >0, and the fraction is reduced
toits lowest terms. Explain carefully (a) why f is discontinuous at x, if x, is rational and not
zero, (b) why f is continuous at xo if x, is irrational. (c) Is f continuous at x = (?

18. Suppose that f is defined and has a continuous derivative when a =x = b, and
suppose that f(a)=f(b)=0, but that f(x) is not 0 for every x. Let A be a constant
different from zero, and let g(x) = f'(x) + Af(x). Prove that there is some number ¢ such
that a < £ <b and g(¢) = 0. This is fairly hard. There are two cases: Case 1, in which f(x)
assumes both positive and negative values, and Case 2, in which f(x) takes on values of
one sign only. The proof in Case 1 is easy. For Case 2 it is fairly easy to prove that
g(£€) =0 for some £ such that a = £ = b, but it is much more difficult to prove the result as
originally stated, with g <& <b.

19. A function f is continuous on a = x = b and differentiable on a < x < b. Further-
more, f(a) = a and f(b) = b. Show that there are two points x;, X2 such that a <x;<x; <

1 1
b and f’(x1)+f’(x2) 2.

20. Suppose that f is defined and differentiable on the closed interval [a, b], with
f'(a) >0, f'(b) <0. Prove that f'(¢) = 0 for some £ such that @ <& < b. Show also that the
same conclision may be reached if f'(a) <0, f'(b) >0.

21. There is a counterpart of Theorem IV for functions which need not be con-
tinuous, but are known to be derivatives of continuous functions. The theorem reads as
tollows: Suppose that f is defined and differentiable on [a, b), with f'(a) # f'(b). Let k be a
number between f'(a) and f'(b). Then f'(£) =k at some point {, where a <& <b. This
theorem is known as Darboux’s theorem. Prove it by setting g(x) = f(x) — kx and using
the results of Exercise 20.
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22. Let f be a function which is defined for all x, continuous at x =0, and such that
f(x +y)=f(x)+ f(y) for all values of x and y. Show that f(x) = Cx, where C = f(1). Begin
by proving (a) that f(m/n) = (m/n)f(1) if m and n are positive integers, (b) that f(—x) =
~f(x), and (c) that f(0) = 0. Then note Exercise 3 and apply Exercise 4 to the function
fG)—xf(D).

£
-~



4 | EXTENSIONS OF THE

LLAW OF THE MEAN

4 / INTRODUCTION

In this chapter we consider various generalizations of the law of the mean
(Theorem IV, §1.2), and related topics. The most important extension of the law
of the mean is Taylor’s formula with remainder. In elementary calculus Taylor’s
formula is often closely associated with the study of expansions of functions in
power series. There is indeed an important connection between Taylor’s formula
and expansions in power series, but the formula is not important solely because
of that connection. The chapter closes with a discussion of I’'Hospital’s rule.

4.1 / CAUCHY’S GENERALIZED LAW OF THE MEAN

Cauchy’s generalization of the law of the mean deals with two functions instead
of with just one.

THEOREM 1. Let F(x) and G(x) be continuous on the closed interval a = x = b,
and differentiable on the open interval a <x <b. Assume further that
G(a) # G(b), and that F'(x) and G'(x) never vanish simultaneously. Then for
some value x = X such that a <X <b we have

F(b)~F(a) _ F'(X)

G(b)—-G(a) G'(X) (4.1-1)

As a special case we obtain the ordinary law of the mean (Theorem 1V, §1.2)
if we take G(x) = x.

Proof. As with the proof of the ordinary law of the mean, we appeal to
Rolle’s theorem (§1.2). Let us set

_ F()—F(a)

k= G(b)— G(a)

(4.1-2)

and define
¢(x)= F(x)— F(a)— k[G(x)— G(a)].

Observe that ¢(a) = 0. Also, because of the definition of k, we see that ¢(b) = 0.
Now

¢'(x) = F'(x) ~— kG'(x).

The function ¢(x).satisfies the conditions of Rolle’s theorem; therefore ¢'(X) =

95
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0 for some X, a < X < b. That is,
0=F'(X)—-kG'(X).

In this formula G'(X)#0. For if G'(X)=0 then F'(X)=0 also, whereas we
assumed that these derivatives never vanish simultaneously. Thus we can write
_F(X)

G/(X)y
a formula which is equivalent to (4.1-1) because of (4.1-2). This completes the
proof.

k

A geometrical interpretation of (4.1-1) may be given as follows: Let a plane
curve be represented parametrically by equations

y=F({t),x=G{),a=t=b. (4.1-3)
The slope of the curve for a given t is
dy _F'(t)
dx ~ Gy 4.14)

The constant k in (4.1-2) is the slope of the straight line
joining the points on the curve corresponding to t = a
and t = b, respectively. The theorem says that the two
slopes (4.1-2) and (4.1-4) are equal for at least one value
of t between a and b (see Fig. 26).

The uses of Theorem I are largely in proving other
theorems, notably Theorem III (84.3) and Theorem VI
(84.5).

EXERCISE
Cauchy’s generalized mean-value formula (4.1-1) may be written in the form
F(a) G(a) 1
Fb) Gbm) 1
F'(X) G'(X) 0
This suggests the following more general theorem:
Suppose that F, G, H are continuous when a=x=b and differentiable when
a <x <b. Then there is a value X such that a <X <b and
F(a) G(a) H(a)
F(b) G(b) H(b)
F'(X) G'(X) H'(X)

Prove this theorem by considering

=0.

=0.

F(a) G(a) H(a)
F(b) G(b) H(b)
F(x) G(x) H(x)

d(x)=
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4.2 / TAYLOR’S FORMULA WITH INTEGRAL REMAINDER
Consider a polynomial P(x) of degree n:
P(x)=byx"+bx""'+---+b, nz0, (4.2-1)

where by # 0. If we choose any particular value of x, say x = a, it is possible to
express P(x) as a sum of powers of (x — a), the highest power being n:

PX)=cix—a)+c(x—a)"*+---+c, (4.2-2)

That this is the case may be seen as follows: It is clearly true if n = 0, for in that
case the two expressions for P(x) are identical in form. For n =1 we have a
linear function P(x) = byx + b,, and we wish to express it in the form cy(x — a) +
¢. Choosing ¢y = by, we have

P(X)— bo(x - a) = b] + abo,

so that P(x)= by(x —a)+ ¢, with ¢, = b,;+ ab,. In general, we proceed by in-
duction, assuming that the desired type of representation is possible with
polynomials of degree =n — 1, where n = 1. Then for the polynomial (4.2-1) we
choose ¢q = by, so that P(x)— bo(x — a)" is a polynomial of degree at most n — 1.
Hence we can express this polynomial as a sum of powers of (x —a):

PxX)~byx—a)=c(x—a)" '+ - - +cn.

This is equivalent to (4.2-2), and completes the induction proof.

Once we know that the representation (4.2-2) is possible, it is very easy to
find convenient formulas for cq,...,c.. Let us differentiate (4.2-2) k times,
where 0=k = n [if k =0, P®(x) means P(x)]. After doing this we set x = a. In
this process the only term of P(x) which leads to a non-zero result is

Cn_r(x — a)*. Therefore
k

PO@) = { L feox -t} =Kieo,

where, according to the usual convention, 0! = 1.
Consequently

_ P("’(a) _ P(n—l)(a) B
Co =~ n! 7C)'—(n_1)!""scn—P(a)s
so that (4.2-2) may be written in the form

" (n)
P(x)=P(a)+P'(a)(x—a)+ Pz(!a) (x—a)+-- ~+P—n—(!£2(x ~a)",

where we have reversed the order of the terms to suit our convenience.

Now let us ask whether there is any counterpart of this formula when the
polynomial P(x) is replaced by a function f(x) which is not a polynomial. That
is, let us ask what relation the expression

" (n)
f@)+ @ - a+ 8 =gy + B -y
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bears to f(x). Naturally we assume that f can be differentiated n times at x = a.

Let us assume more than that, however. A convenient assumption is that f and

its first n + 1 derivatives are continuous in a closed interval containing x = a.
Now by Theorem VIII, §1.53, we know that

[ at = 0 fca.
Let us write this in the form
fo=f@+ [ o . (424

We transform the integral by integration by parts, taking
u=f'(t), dv=dt,
du=f"{)dt, v=—-(x—1t).
Thus

[ rwa=-fwe-v E f O — 1) dt,

and so x
fx)=f(a)+f'(a)x—a) +f fr()(x —t) dt. (4.2-5)
We can now integrate by parts again, taking
u = f"(t), dv = (x — t) dt,
_ _ 2
du=fod, v=—9"t
The integral in (4.2-5) now becomes
x 2= x )2
[ roe-va=—-roB5 | [ rom gt a

and so

— 2 x
£ = F(@)+ @)~ )+ (@) S5+ L [ oo — ot ar

It is now clear that repeated integration by parts will lead to the formula
fy=fla)+f'(a)x—a)+---
(n) x
+L—ﬁ('—al (x—a)y'+ %f (x = Hf" () dt. (4.2-6)
This is the generalization of (4.2-3) which we have been seeking. The function

f(x) has been expressed as a polynomial of degree n in (x — a), plus a remainder

term.
We state our findings in a formal theorem.
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THEOREM II. Let f(x) and its first n+ 1 derivatives (n 2 0) be continuous in a
closed interval containing x = a (either inside or at one end). Let x be any
point of this interval. Then

(n),
fy=fla)+f(a)x—a)+--- +Lni!‘9 (x — a)" + Rus1, 4.2-7)

the remainder being given by

R,i= % f (x = 1" f0(e) dt. (4.2-8)

We have indicated the procedure for proving the theorem by successive
integration by parts, starting from (4.2-4). If one wishes, he may give the proof
more formally by mathematical induction.

Formula (4.2-7) is called Taylor’s formula with remainder. Various formulas
for the remainder may be given, as we shall see in §4.3.

The size of the remainder may sometimes be estimated from (4.2-8). Thus,
for example, if |[f"""(t)] = M when a =t = x, we can see that

M(X — a)n+l

M [* n gt =
an+1|§FJ’a (X‘—t) dt = (n+1)'

4.3 / OTHER FORMS OF THE REMAINDER

It is possible to obtain (4.2-7) with a different formula for R,.;, under slightly
less stringent assumptions. It will suffice to assume merely that f"*(x) exists on
an interval, without necessarily being continuous.

THEOREM III. Let f and its first n derivatives be continuous when a=x=b
(where a < b), and let the (n + 1)st derivative f™*V(x) exist when a <x <b.
Then there is a value x = X, a < X < b, such that

f(n+l)(X)

A a)".

f0) =f@ + @b - )+ -+ B p - ayr +
' (4.3-1)

The same formula holds in case b < a, all the inequalities then being reversed.

This is a generalization of the law of the mean, and actually coincides with
the law of the mean in the special case n =0.

It is difficult to give a proof of (4.3—-1) which will seem well motivated and
free from artifice. The following proof has been discovered as a result of careful
study and a certain amount of trial and error.

We define two functions

(n)
F0=10) -0 fob -0 -E&p—xr @32

and

_ n+1
G(x)= %’%T (4.3-3)
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Observe that F(b) = G(b) = 0. In calculating the derivative of F(x) we find that
a great deal of cancellation occurs between terms arising from the differentiation
of the right member of (4.3-2). Thus

d
2 &b = x)] == f"(x)(b — x) + f'(x).
The f'(x) here cancels the derivative of the previous term, —f(x); the term

—f"(x)(b — x) is canceled by one of the terms coming from the differentiation of

—i% (b — x)’. The final result, which the student should verify, is

Fi(x)=— ﬁr:—:(i) (b —x)". (4.3-4)

We also have
G = -2 43-5)
Let us now apply Cauchy’s form of the law of the mean (4.1-1). Since F(b) and

G (b) are zero, it reads

F(a) _ F'(X) _FX)
G axy o FO=Gx) 6@
Taking account of (4.3-3), (4.3-4), and (4.3-3), this may be written
_ f(n+l (b —a)™’
F(a)= "0 =5 (4.3-6)

If we now put x = a in (4.3-2) and use (4.3-6), we obtain the desired formula
(4.3-1). This proof is valid whether a <b or b <g, because Cauchy’s formula
(4.1-1) is unaffected by an interchange of a and b.

The formula in Theorem III is written in a variety of different ways by
changes in notation. One important form commonly occurring in the literature is
obtained by putting b = a + h, where h may be either positive or negative. The
number X between a and a + h may then be written in the form X = a + 0h,
where 0 is some number such that 0 < 6 < 1. Thus we have

@) . fa Bh)
P S e @3

Another form results by putting b = x in (4.3-1). In this form we may write

flath)=fla)+f(a)h+--

00 = fla)+ fi@)x — a)+ - - - +Ql(—,“—) (x—a)f + R, (43-8)
with
) )
R+ —W(x a)y*, 4.3-9)

where X lies between x and a.
Formula (4.3-9) is called Lagrange’s form of the remainder.
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Brook Taylor (English) published in 1715 the form of the infinite series
(4.3-10) which bears his name today. The formulas (4.3-8) and (4.3-9) were
derived by I. L. Lagrange (French) in 1797. Lagrange’s proof utilized integrals.
The first proof using the law of the mean appears to have been by Ampére in
1806.

The student should distinguish between (4.3-8) and Taylor’s series, which is
the infinite-series formula

f"(a)

f=fla)+fa)Yx—-a)+-- S x—a) (4.3-10)

This expansion of a function in powers of (x —a) is valid under certain
circumstances. Proofs of such validity in particular cases may be made with the
aid of Taylor’s formula and one or the other of the forms of the remainder.
Power-series developments are considered systematically in Chapter 21.

Example 1. Write Taylor’s formula for f(x)=1/(2+x) with a =—1 and
n =2, using Lagrange’s form of the remainder.
We have f(—1)=1 and
-1

f'(x)=ma f-D=-1,

" _ 2 "1\ —
f(x)_(2+x)39 f( 1)_27

P =gree  [OCD=-6.

Thus (4.3-8) becomes

—1——=1—(x+1)+(x+1)2+R3

2+ x
with R =6 D A1y
TR+X)Y 3 2+ X)”
where X is between x and —1. If we wish to estimate R; we observe that

3
1/(2+ X) lies between 1/(2+ x) and 1, and hence |R;| lies between H and

|x + 1P’. For example, if x = —0.9, R; is negative, and in absolute value between
0.001/(1.1)* and 0.001.

Example 2. Write Taylor’s formula for f(x)=1log(l +x) with a =0 and a
general value of n. Estimate R, if 0= x =3.
We have f(0) =0 and

o =1 Fo=1,
" — -1 " — _
f (x)'—(l_,_x)l’ f (0) 17

f("’(x) = ﬁ—_l%%%:_m, f(")(()) — (_l)n—l(n _ 1)!
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The general formula for f™(x) may be surmised after the first few instances and
verified by induction. Thus

log(1+x)=x—3x>+4x’— -+ (—1)""‘%x’l + Roi1, (4.3-11
X n+1
Reoi= 0 5 (725) @3-12)

where X is between 0 and x. Of course we must have 0<<1+x, or —1<x. If
0=x=1! then

X <

1
O=17x=7»

A

and so

1 1
Rci| =577 5o

There are many other possible formulas for R,:+, besides that of Lagrange.
Probably the most important of these other forms is that due to Cauchy. It
appears in formula (4.3-13), which follows.

THEOREM 1V, An alternative form of the remainder in (4.3-1), with hypotheses
as in Theorem III, is

£

Rpii = (b—X)"(b—a), (4.3-13)

where X is some number between a and b (in general different from the X of
(4.3-1)). Withb=a+h, X = a+ 6h (0<0 <1), this takes the form

(n+1)
Ry = f————(a + 6h) h™ (1~ 0)". (4.3-14)

This last form is an alternative to the last term in (4.3-7), but the 0’s in the two
forms are usually different.

Proof. We start with F(x) as defined by (4.3-2), but instead of using (4.3-3)
we define G(x) = b — x. Then, following the method of proof of Theorem III, we
have (4.3—4) and the formula G'(x) = — 1 in place of (4.3-5).

Just as before we have, for some X between a and b,

_F (X)
or f(n+1)(X)
F(a)=——(0b—X)"(b - a).

This is equivalent to (4.3-13), for comparison of (4.3-2) and (4.3-1) shows that
the remainder term is R, = F(a).
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Other forms of the remainder, as well as other proofs of Theorems IIT and
IV, are indicated in the exercises.

Example 3. Find Cauchy’s form of R,., for f(x)=log(1+ x) with a =0.

Using the work of Example 2, and putting h = x, a = 0 in (4.3-14), we find
xn+1(1 _ e)n
(1+6x)"™""

Example 4. Show that, in Taylor’s formula (4.3-11) for log(1 + x), the fol-
lowing estimates of the remainder hold:

Ry =(=1)" (4.3-15)

X n+1

1+x

n+l

Rl <257 if 0<x=1. (4.3-17)

|Rpii| < if —1<x<0, (4.3-16)

We use Cauchy’s form of the remainder to get (4.3-16), and Lagrange’s form
to get (4.3-17). If —1 < x <0 we write (4.3-15) in the form

n+l _ n
Ruoi= (-1 P (Y,

1+ 06x \1+ 6x

and observe that 1+ 60x > 1+ x and

1_6'<1

O<1-H71x )

The inequality (4.3-16) is then seen to be correct. On the other hand, if 0 <x =1,
we observe that 0 <X <x and hence 1+ X >1 in (4.3-12). The inequality
(4.3-17) is then seen to be correct.

We observe from the foregoing inequalities that R,,;—0 as n > o if —1<
x<Qorif 0<x=1.0f course R, =0 if x = 0. It follows that Taylor’s formula,
neglecting the remainder, gives a better and better approximation to log(1+ x)
when n is increased, provided that —1<x =1. Accordingly, we have the
Taylor’s series expansion, valid if —1<x =1:

log(14x) = x —dx2+ -+ (=1 Tt (4.3-18)

EXERCISES
1. Arrange x* in powers of (x —3).
1
x*+3

2. Write Taylor’s formula with Lagrange’s remainder in the case of f(x)=
witha=1,n=2.

3. Write Taylor’s formula with Lagrange’s remainder in each of the following cases:
(a) f(x)=sin’x,a=0,n=3;
M) f(x)=tanx,a=0,n=3;
(© fy=e™, a=0,n=3;
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(d) f(x)=log(l+e*),a=0,n=2;

(&) fx) =1o81=0)

4. Find Rs in (4.3-9) with f(x)=sin x, a = #/2.
5. Write Taylor’s formula for f(x) = sin x with a = 0. Show that

n+l
IRy = 2
(n+1)!
Show that the same inequality holds for f(x) =cos x, a =0.
6. Show that

,a=0,n=1.

2 n
e =l xHFat e+ R,
2! n!
with x x"t
O0<R.,.<e mlf 0<x
and x|=t .
|Rnx| <(n D if x<0.
7. Show that
-2 o -3 . 1-3---@2n—-1) ,
(1-x) L+ox +a—x™+ +—2_4__’(2n) x" + Rnsi,
and write both Lagrange’s and Cauchy’s form of the remainder. Show that
1-3---Q2n+1 1 -
|Rn+l|<§ﬁ%‘_‘_.—52:—+2;|xl" Lif —1<x <0
and 1-3---2n+1) x™" .
|Rn+1] < APy TG if 0<x<1.

8. Observe that the curves y = sin x, y = Ax intersect near x = 7 if A is small. Let
f(x)=sinx — Ax and apply Taylor’s formula with a = 7, n = 2, assuming that x is near o
and neglecting Rs. Use this result to show that an approximate solution of sin x = Ax is
x=m/(1+A).

9. Proceed as in Exercise 8 to find an approximate formula for the solution of
ctn x = Ax near x = /2 (assuming that A is small).

10. Suppose that f is twice differentiable in the interval a <x <b and that f"(x)= 0
at each point. If a <x¢<<b and yo = f(x0), show that in the given interval no point of the
curve y = f(x) is below the line which is tangent to the curve at (xo, yo). In particular, if
f'(x6) = 0, the function has a minimum value at xo.

11. In the method of proof for Theorem III let the function G(x) in (4.3-3) be
replaced by G(x) = (x — b)". Then carry on the method and show that the expression for
the last term in (4.3-7) is replaced by

R = o %a + 6h)
n+1 — n!p

This is called Schlémilch’s form of the remainder. Lagrange’s form is the special case
p = n+ 1, and Cauchy’s form is the special case p = 1.
12. The following suggestions provide a method of proving Taylor’s formula with

remainder without appeal to Cauchy’s generalized law of the mean. Suppose that g is
continuous on the closed interval [a,a+ h] and differentiable on the open interval

h"'(1—9)"+'77, 0<o<l.
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(a,a+h). Assume further that g has the properties (i) g(a)=1, (ii) gla+h)=0,
(ii)) g'(x)#0 if a <x <a+ h. Define F(x) by (4.3-2) with a+ h in place of b. Define
&(x)= F(x)—g(x)F(a). Apply Rolle’s theorem to ¢ and hence obtain a formula for
R.+1 = F(a). The result is

_f""™a+6mh"(1- )"

fla+ )= fla)+ fl@h+- -+ LD e

nlg'(a+ 6h)
If we choose
_ n+1
g(x) = <_‘.’+_::_.£)
we obtain (4.3-7) (Lagrange’s form). The choice g(x) = %_—i leads to Cauchy’s form

(4.3-14).

4.4 / AN EXTENSION OF THE
MEAN VALUE THEOREM FOR INTEGRALS

Theorem VI of §1.51 may be generalized somewhat as follows:
THEOREM V. Let f(x) and p(x) be continuous functions defined on the closed

interval a = x = b, and suppose that p(x) = 0 for every x of the interval. Then
there is some number X such that a= X = b and

b b
[ s ax =506 [ px) d. (44

Proof. Let m and M be the minimum and maximum values of f(x) on the
interval [a, b]. Then

mp (x) = f(x)p (x) = Mp (x)

and so
b b b
m f p(x)dx éf fOpx)dx=M J; p(x) dx. (4.4-2)
There are two cases to consider:
b b
§))] J p(x)dx >0; (2) J p(x) dx =0.
In case (1) we have
b
| s ax
e
L p(x) dx

A

m =M.

Since the quotient of the integrals lies between the extreme values attained by
f(x) on the interval, it follows by Theorem IV of §3.3 that there must be some
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point x = X on the interval such that
b
[ fope ax

f(x)="2a
f p(x) dx

This is equivalent to (4.4-1).
In case (2) we see by (4.4-2) that the left member of (4.4-1) is zero. The right
member is also zero, no matter how we choose X. Thus the proof is complete.

As one application of Theorem V we shall show how Lagrange’s form of the
remainder in Taylor’s formula (see (4.3-9)) may be deduced from the integral
form (4.2-8) of the remainder. Suppose first that a < x. Then the function (x —t)"
is 20 when a =t =< x. Hence we can apply Theorem V to the integral in (4.2-8),
taking p(t) = (x —t)". Thus

Jx (x = )"f(t) dt = fI(X) f (x—t)"dt

— (X _ li)nﬂ]x _ f(n+l)(X) (X _ a)n+l
n+

= 00| a A

where X is some number such that a = X = x. When this result is put back into

(4.2-8) we obtain the Lagrange form (4.3-9). If x < a we write (4.2-8) in the form

Rn+1 = (—

1)!n+l J’xa (t _ x)nf(n+l)(t) dt.

n

If we take p(t)=(t—x)" in this integral, then p(t)=0, and we can apply
Theorem V. We leave it for the student to carry out the details of showing that
we are once more led to formula (4.3-9).

It should be pointed out that in the present section we are assuming the
continuity of f"*9(x), whereas in §4.3 we merely assumed the existence of

f(nﬂ)(X).

4.5 L’HOSPITAL’S RULE

Theorem XIV of §1.64 states that
lim f(x
i 1) _ 222
e 8(x) lim g(x)’
provided that lim,_,. f(x) and lim,_,. g(x) both exist and lim,... g(x) # 0. There are
many instances in which these conditions are not fulfilled, however, e.g.,

. e —cosx . logx
lim————=7 lim 08X _ 9
x—=0 tan x X400
x —1/x2
. e . e
lim =7 lim——=7?

x>+ -0 X
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The important cases not covered by the theorem of §1.64, and not otherwise
easily disposed of, are of two kinds. The first kind is that in which f(x) and g(x)
both approach 0 as x — ¢. The second kind is that in which |g(x)| >~ as x > ¢. In
both cases it may be that x — ¢ from one side only; it may also happen that x - ¢
is replaced by x >+ or x > — o,

There is a useful rule for finding the limit of a quotient in the most
commonly occurring instances of the cases just mentioned. This rule was popu-
larized by the Marquis de I'Hospital in his textbook on calculus published in
1696, and is generally known as I’Hospital’s rule. The exact statement of the rule
actually amounts to the statement of two theorems, or of one theorem with two
alternative assumptions leading to the same conclusion. Before coming to the
formal statement of the theorem, we need to make a few preliminary remarks,
We shall have two functions f(x) and g(x) to consider. Let ¢ denote either a real
number or one of the symbols +o, —, We assume that f and g are defined on a
portion of the x-axis which we denote by I, and we assume that, if c¢ is a real
number, I is a finite open interval with ¢ as one of its end-points, while if ¢ is
+o or —o, I is a semi-infinite open interval, extending indefinitely in the positive
direction if ¢ = + o, and indefinitely in the negative direction if ¢ = — . We then
talk about limits as x — ¢, it being understood that x is to range over I, and to
approach ¢ from one side only. We furthermore assume that the derivatives
f'(x), g'(x) exist at each point of I, and that g(x) and g'(x) are never equal to
zero:

THEOREM V1. (L’Hospital’s rule.) Suppose either that
Case 1. f(x)—>0 and g(x)>0 as x—>c,
or that

Case 2. |g(x)|>» as x > c.

Let A denoteeither areal number or one of the symbols +o, —o, Suppose that

. f'(x)

1 ——L = A, 4.5-1

o g'(x) ( )
Then it is also true that

lim £) = 4, (4.5-2)

e 8(X)

Proof. The proof of Theorem VI is easiest when I is a finite interval and
Case 1 is assumed. Indications as to the procedure to be followed are given in
Exercise 8. The situation is less simple if ¢ is +o or —, or if we assume Case 2.
We shall give the proof in such a way that the argument does not depend on
whether or not I is a finite interval, and also so that the arguments for Case 1
and Case 2 are very much alike.

We take x and y to be any distinct points of I, with y between x and c. Then,
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by Cauchy’s generalized law of the mean (Theorem I, §4.1), there is some point
X between x and y such that

fx)=-fly) _ (X

=1 4.5-3

e g0) gX) *>-3)
Observe that X also is between x and c. We are assured that g(x) # g(y) by the
ordinary law of the mean, since g'(x) is never zero, by hypothesis.

Now consider Case 1, and rewrite (4.5-3) in the form

f&x) &)

2 g(0)_ f1(X)

-8 g (XY
g(x)

Now suppose, for definiteness, that A is not +o or —«. Suppose € >0. The
meaning of (4.5-1) is that there is some number x, such that, if x is between x,
and c,

_ . I'x)
A—¢€ <g,(x)<A+e. (4.5-5)

If x is such a number, so is X, and hence, no matter how y is chosen, it follows
from (4.5-4) that

) fy)
A_e<g(x) g(x)
iy {0))
g(x)

<A+e

Now make y — ¢. Then, since we are assuming Case 1, we conclude that

A—-e= ) =A+e
g(x)
This holds if x is between x, and ¢, where x, may depend on e. But this means
that (4.5-2) is true.
The argument is essentially the same if A is +o or —e. For example, if
A =+ =, we take any number M, and choose x, so that

f'(x)
M<g’(x)

if x is between x, and c. Then we find that, for such values of x,
f&x)
M =—,
g(x)

So we get (4.5-2) from (4.5-1) in this case also. The student may wish to review
the definitions of limits involving the symbols 4+, —ow; these definitions are
found in §1.61.
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To treat Case 2, we return to (4.5-3) and write it in the form

fy)  f(x)

gly) gly)_ fX)
N10) = (X) (4.5-6)
g(y)

As in the previous argument, we may suppose the assumption (4.5-1)
expressed in the form (4.5-5), with the consequence from (4.5-6) that

&) _fx)

8(y) g(y)
_8)
g(y)

for all x between xy and ¢ and all y between x and ¢. We shall now let y —>c,
keeping x fixed. Since |g(y)| > =, we may safely assume that

A—e< <A+e

g(x)
1— prs )>0

We then see that
_ _g(x) f&x) _f(y) f(x) _8x)
(A e)[l g(y)] g(y)<g(y) g(y)+(A+ )[ g(y)]'

As y —>c, the left and right members of this set of inequalities approach A —e€
and A + ¢, respectlvely Certainly then it will be true that, for y beyond a certain
point,

A 2€<f§y;<A+2€

This, however, is equivalent to saying that

tim O — A

yoe 8(Y)
which is what we set out to prove. As in Case 1, the argument is not very different
if A is 4+ or —,

Example 1. Take f(x)=e*—cosx and g(x)=tanx with ¢ =0. The con-
ditions of Theorem VI, Case 1, are fulfilled with x approaching zero from either
side. Thus

e’ —cosx e*+sinx 1+0

lim ——————=1lim 5 = =1.
10 tanx x>0 SEecTXx 1

If, in attempting to apply Theorem VI, it should turn out that we have
lim,-. f'(x)=0 and lim,_. g'(x) =0, or that lim,_ |g'(x)|—> %, it may be that the
rule can be applied a second time.

. . e te =2
Example 2. Find lim f_%___

x—0
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Here one application of Theorem VI gives

. efte -2 . ef—e”
Iim 5 = lim
x—0 3x x-0 6x
A second application gives
. ef—e* . efte”
lim = lim =%=1
x—-0 6x x-0 6

Hence the original limit is equal to 1.

The effect of Theorem VI is to replace the original problem of finding

f&x) f'x)
m &) g(x) c g'(xy
or is +o or —w, Any legitimate methods may be brought to bear on the new
problem, including algebraic or trigonometric transformations of the problem,
breaking the quotient up into a product of simpler quotients, repeated use of
Theorem VI, etc.

by the new problem of finding 11m provided this latter limit exists

Example 3. Find lim (—M
-0 COS X —cos” X

We first apply Theorem VI:

(e 1)sinx _li (e*—1cosx+e*sinx
,_,ocosx—cosx x>0 —sinx +2cosx sinx.

Next we simplify the new quotient:

X

(e"—1)cosx+e'sinx _ cosx e —1 e
—sinx+2cosxsinx 2cosx—1 sinx 2cosx—1

Now
im-——8X ___ 1 =1, lim ¢ - =1
w02cosx—1 2—1" 7 502cosx—1 2—-1 7
and
limE L opim-¢ _=1_

xs0 SINX  pcosx 1
Hence the original limit is equal to 2.

The next example illustrates Case 1 with ¢ = +co.

Example 4. Find lim x log i
x—>+co
Here we write log * +1
x+1_ %Bx—1
x log =

- xX-1
x—1 1
X
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taking f(x) = log 1, g(x )— ~. It is clear that Theorem VI is applicable. Thus

log x+1
lim x—1 — lim log(x +1)—log(x— 1)
X—+00 / X400 I/X
1 _ 1
— Iim ¥ +1 x-—1
h xir-il::l:c _1/x2

On simplification, the new limit takes the form

2 2
lim
X—oc X - 1

:2’

so that the original limit has the value 2.

Next we illustrate Case 2 of Theorem VL.

X

Example 5. Find lim 31_0

x40
Case 2 of Theorem VI is applicable, but it must be applied ten times before
we reach a result. We have
. et e’ .et
lim S0 = lim {5 = lim g == lim j5y=+o
It might at first sight appear as though we could solve the problem of
Example 5 by use of Case 1. For we can write

and if f(x)=x""°, g(x) = e*, the conditions of Case 1 are satisfied. But when we
differentiate, things get worse instead of better:

x° . —10x " 11-10x"
—=lim ———= lim ————="- -
— € (4

x—=+o € x>+t x>+

As one of the very interesting applications of 'Hospital’s rule, let us discuss
the function e~ "%,

Example 6. Let us define f(x)= eV if x#0, and f(0)=0. Then all the
derivatives of f(x) have the value 0 at x = 0, as we shall now show.

In the first place, f is continuous at x =0, for f(x)—0 as x — 0 (see Example
6, §1.1). Now, by definition,
f(x) f(O) R

=lim &
x-0 X

()= lim

This appears to be a place to use Case 1 of Theorem VI, but the application of
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the method gives

Z1x2 -3 - _
. e 1/x . 2X 3 I{X 2e 1/x2
lim =lim~————=1lim ,
-0 X x-0 1 x-0 x

and the new limit is harder to deal with, rather than easier. We may, however,
use Case 2 of Theorem VI, as follows:

-1/x2 2
. e otx . —1x . e
lim = lim —gjzz = lim —~=— = lim jxe~"** = 0.
-0 X x-0 € x—0 2 1/x2 x—=0
~Se

This shows that f'(0) =0
To deal with higher derivatives we observe that, if x# 0,

£y =277,
fr/(x) 4x76 —1/x2 _ 6x—4 —1/x2

It is easy to see, by induction, that f(x) is'a linear combination of terms of the

10r]|l
—1/x2
e 1x /x'"

with 0 < m = 3n. Consequently, to see that f™(0) =0, as well as to see that f™(x)
i1s continuous at x =0, it will be sufficient to show that

—1/x2
el/x

Ll_l?(} PO =0 : (4.5-7)

for all positive integers m. We prove (4.5-7) by repeated use of Case 2 of
Theorem VI:

x™m -—mx"' x mr?
lim =z = lim llm T
—3 1
x—0 € 1 X0 —2x Ix 2 x=0 €

after a finite number of steps the exponent in the numerator will be positive, and
then the limit is seen to be 0.

The graph of y = e~ "’ is indicated in Fig. 27. It is very
flat (but of course not perfectly straight) in the neighbor- -1
hood of the origin.

There are various kinds of fanctions whose limiting 1
values may be found by using suitable devices to bring the -\
problem to a form where ’'Hospital’s rule is applicable. The O
principal types of problems and the appropriate devices are
indicated in Exercises 3 and 4. Fig. 27.

EXERCISES

1. Evaluate the following limits:

. sin 3x 1, 1+x . tan”'x—x
(a) xlir(gm (e) 11m~log1 - (o) ll_r}io -

. tan x —sinx . x’sinx . log(1+e™™),

b lxl-.mo x’ - @ £1_r3(1) (1—cosx)’ ® x]iTm —
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2. Evaluate the following limits:
n 3 2
(a) lim z—,’ n a positive integer. (d) lim x_(lgxg_)g__
X+ x—+o
n 2x
(b) lim gﬂgx—x—z—’ n a positive integer. (e) lim %ﬂx

X—>+00 x—+oo

. logx . log(1+xe™)
© M Viee O =

3. One sometimes wants to find the limit of a function of the form y = [F(x)]°* as x
approaches some limit xo, or as x — 0. In such problems F(x) is positive. If F(x) and G(x)
both approach nonzero limits, the problem presents no unusual difficulty. There are,
however, three cases in which the limit of y is not apparent without some investigation:

CASE 1. F(z)—1 and G(x) —>=;
CASE 2. F(x)—> = and G(x)—0;
CASE 3. F(x)—0 and G(x)—0.
In these cases it is usually appropriate to investigate the limit of the logarithm of y:

log F(x) .
1/G(x)

The rule of ’'Hospital may then be applicable. If log y — b, then y —¢".

Use this procedure to evaluate the following limits:
x2

logy =G(x)log F(x)=

. . 1
@ limx. @ Jim(1+5)
(b) lim x"*. (e) lim (e* + )"~
. /sin x\ " . 1\*
© m( 2 ) . ® Jim (log;) .

4. Sometimes a limit is not easy to determine because it is of the type lim,_..(f(x) —
g(x)), where f(x) and g(x) both become infinite as x — xo (or as x - ). In practice the
best plan for such cases is usually to bring the expression f(x)—g(x) to the form of a
single quotient, e.g.,

. ( ) sinx — x
lim{——— =lim——-
x>0\X  Sin X x>0 X sinx

The limit may then be treated by I'Hospital’s rule, or by devices of algebraic or
trigonometric reduction. In some cases an algebraic device alone will be sufficient, e.g.,
— —
. — - + D(x + +1
lim (x —Vx*+ 1) = lim (x = Vx )(xz—\/x )
xotor x>t x+Vx+1

-1
= lim ———m—==
ot X+ VX341

0.

Evaluate the following limits:

. (1 1 . 1 1
(a) lim (; T sinx ) (d) ll_r.lg<log(1 +x) ;)'
. 1 1 . 1 1
) lxl_rg (x sinx —2)' ; (&) llirg (?_ tan® x)‘

x—0+

X
© lim (%—log %) 0 lim x(Vx*Fa* = x).
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5. Suppose that f and g have continuous derivatives of the first n orders in a closed
interval a =x =b. Furthermore, assume that f(a)=f(a)=---=f""a)=0, g(a)=
g'(a)=---=g"""a)=0, and that g"(a) # 0. Without using I’'Hospital’s rule, show that

i 117

x=a+ 8(x) ™)
Use Taylor’s formula with remainder.

f'(x)
. . . g,(X)

numerical limit or as +% or —«? Give your answer after a careful examination of the

limits

6. What can you conclude in Theorem VI, if lim fails to exist either as a definite

P |

x*sin— .
. x—sinx

and lim ————-

x—0 S x>0

7. Evaluate each of the following limits:

(a) lim x sin - © lim 5 f sin’ ¢ dt.
Xx—»00 X x—>+4m X 1
.1 [*logt . e—(1+x)'"”
b)lim = |, T4 4 @ lim X

8. Give a proof of Case 1 of Theorem VI, assuming that ¢ is a real number, and
utilizing the following suggestions: Let b be a point of the interval, I, and consider the
functions f, g on the closed interval with end-points b and c, after defining f(c) = g(c) =
0. Now apply Theorem I, §4.1, and make the deduction of (4.5-2) from (4.5-1). Explain
the argument carefully. Why do we define f(c) = g(c) =0?

MISCELLANEOUS EXERCISES
1. Suppose that f is defined and differentiable in an interval containing x = a (the
point x = a may be at one end of the interval, in which case derivatives at x = a are to be
considered as one-sided limits). Suppose also that f”(a) exists, but assume nothing else
about second derivatives. Show that

ey = i £ = f@) = (x — a)f'(a)
f(a) lim x—ay
2!

2. Suppose that f satisfies the conditions of Exercise 1, and that x = a is an interior
point of the interval in question. Show that, if f has a relative minimum at x = a, then
f"(a)Z 0, while f"(a)=<0 if f has a relative maximum at x = a. These are necessary
conditions for a relative extreme at x = a. Now assume that f'(a) =0 and f"(a) >0, and
prove that f must have a relative minimum at x = a. These are sufficient conditions for a
relative minimum. State a set of sufficient conditions for a relative maximum at x = a, and
prove the sufficiency of the conditions.

3. Generalize the result of Exercise 1, obtaining

n—1
, xX—a ne
f0 - @)= - @)=+~ B )
(n) —1; 4 s
fa) =1im G—ay

n!
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with the assumptions that f is defined and has derivatives of orders 1, ..., n — linaninterval
including x = a, while f™(a) exists. Suggestion: Apply Theorem VI (n — 1) times. Use this
result to show that there is a function E,(x) defined in the interval, except at x = g, such that

n—1 n
£6)= @)+ = a)f@)+- -+ G 7o)+ E 88 o) + B ()
and lim,_. En(x) = 0. The function E.(x) depends upon the function f(x), of course. Find
Ex(x) explicitly if f(x) is defined as x*sin(1/x) when x# 0, and f(0) = 0; take a = 0.

4. With the conditions of Exercise 3 on f suppose that f'(a)=--- = f"""(a) =0 and
that f has a relative minimum at x = a. Also suppose that n is even. Show that f™(a) = 0.
What if there is a relative maximum at x = a? What about sufficient conditions for a
relative maximum or minimum when f'(a) = - - - = f" "(a) = 0? What can you say if n is
odd, f'(a)="---=f"""(a)=0 and f"(a) # 0? (Assume that x = g is an interior point of
the interval.)

5. Use the result of Exercise 3 to prove the following theorem:

Let f and g be defined and have derivatives of orders 1,...,n—1 in an interval
including x = a, while f™(a) and g™ (a) exist and g"’(a) # 0. Suppose that both f and g,
as well as their first n — 1 derivatives, have the value 0 at x = a. Then

im [) _ ["(a)
im0~ g™
This theorem holds for n = 1. It may give a result when Theorem VI is inapplicable,
e.g., in the case f(x) = x?sin(1/x), f(0) =0, g(x) = x.
6. Calculate the following limits:

(a) lim x(log x)", n a positive integer. (b) lim x "™,
x>0+ x—1

7. Discuss lim,—-(a®+ b™)"*, assuming 0<<a =b. Generalize to the case of
limesre(ai+as+---+ap)"’, where 0<a; =a,=---=a,.
X —12
8. Find lim XJ0 ¢ " dt,
=0 ]—e”
9. If f(x)=e "<, show that f™(x) = e "*’P,(1/x), where P,(t) is a polynomial of
degree 3n in t, with leading term 2"t’". Show also that P,..(t) = 2t>Pa(t) — t*P /().
10. Show that to each positive integer n corresponds a number 6., 0 << 6, <1, such
1 1 6,
that log(l + n) =Ty
11. Apply (4.3-7) to f(x)=1/(1—x) with a=0, h =x, and find the form of the

remainder term. Then compare with the algebraic indentity
n+l
—1—=1+x+~--+x"+ x_ ’

1—x 1—x
1— (1 _ x)l/(n+2)

and so find that § =

12. Suppose that f is differentiable in an interval of which x = a is an interior point,
and assume that f"(a) exists. Show that
fla+2h)=2f(a+h)+f(a)
h2

(where x <1). Now find ling 0.

f"(a)=1lim
-0
This may be proved using the result of Exercise 1. If one assumes that the second

derivative exists on the whole interval and is continuous at x = a, the proof may be given
by using (4.3-7) in a suitable way.



5/ FUNCTIONS OF

SEVERAL VARIABLES

5 / FUNCTIONS AND THEIR REGIONS OF DEFINITION

Thus far in this book we have dealt with functions of a single independent
variable. But we do not go far in either pure or applied mathematics until we
have occasion to consider functions of two or more variables. We assume that
the student has some familiarity with the concept of a function of several
independent variables.

One of the first things that claims our attention when we begin to study
functions of several variables is the nature of the region of definition of such a
function. The functions of one variable which we study in calculus are usually
defined on intervals of the real axis. There are only a few different types of
intervals. If the interval is finite, it may contain both its end-points, or just one,
or neither. If the interval is infinite, but is not the entire axis, it has just one
end-point, and this may or may not be counted as belonging to the interval.
There is much more variety in the case of functions of several variables. We
shall give some illustrative examples, taking the number of independent vari-
ables to be two.

Example 1. f(x,y)=log(l—x2— y?.

The function is defined only when x*+ y* <1, since otherwise the logarithm
is undefined. The region of definition is the interior of the unit circle with center
at the origin. In Fig. 28 the circle is dashed to indicate that the boundary of the
circular area does not belong to the region of definition.

7
/

x X

1,9 7, (2,0)
7 /

Fig. 28. Fig. 29.

NZh

4

\Y

Example 2. F(x,y)=Vx>+y>—1+log(4—x*— y?.

Here we must have x?+ y2= 1 in order for the square root to be real, while
we must have x>+ y? < 4 for the logarithm to be defined. The region of definition

116
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of F(x,y) is the annular region between the circles x>+ y?>=1 and x*+ y*=4.
The inner circumference is part of the region of definition, while the outer
circumference is not (see Fig. 29).

x
E 2 = .
xample 3. g(x,y) T —dx
The function is defined except when the denominator is zero, that is,
everywhere except at the points of the parabola y? = 4x (see Fig. 30).

Fig. 30.

Example 4. G(x,y)=Vx*—y*+ VxZ2+y?~1.

The region of definition here is defined by the inequalities x2= y?, x2+ y?= 1.
The lines x —y =0, x + y = 0 divide the plane into four quadrants. The inequality
x*= y? states that the point (x, y) lies in (or on the edge of) one of those two of
the four quadrants which contain the x-axis. The other inequality states that
(x, y) lies outside or on the circle x>+ y?= 1. Hence the region of definition of
G(x, y) is that part of the xy-plane which is shaded in Fig. 31.

Similar examples might be given for functions of three independent vari-
ables. The region of definition might be the interior of a cube, the interior and
boundary of an ellipsoid, the space between two concentric spheres, or the
interior of a surface formed like the inner tube of a bicycle tire.

Because of the great variety of possible regions of definition of a function of
two or more variables, it is desirable to devote some attention to matters of
terminology about configurations of points in the plane. Not only will this make
it easier for us to state things clearly, but it will eventually become absolutely
indispensable in developing parts of our subject. We shall sometimes use the
word ‘“‘domain” for ‘“‘region of definition,”” and by the range of a function we
shall mean the set of values which the function takes on.

5.1 / POINT SETS

In §2.7 we explained the meaning of the phrase “a set of real numbers.” Since
we identify real numbers with points on the axis of reals, we may equally well
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speak of sets of points on a line. We are now going to talk about sets of points,
or point sets, in the plane or in space of three dimensions. For the sake of
simplicity and definiteness we shall speak principally of point sets in the plane.

In dealing with intervals we found it necessary to introduce the notions of
closed and open intervals. Likewise, in our discussion of regions of definition of
a function of several variables, we find it necessary to introduce and use the
concepts open set and closed set. Furthermore, it is well to give a precise
definition of the boundary of a set. It is much more difficult to define these
concepts carefully than one might at first suppose, because of the great variety
of configurations of points which are available for consideration. We proceed as
follows: First let us define the phrase a circular neighborhood of the point
(x0, yo) to mean the set of all points (x, y) lying inside some circle with center at
(x0, yo). That is, if 8 >0, the set of all (x, y) such that

(x —xo) + (y — yo)* < &°

constitutes a circular neighborhood of (x4, yo) (see Fig. 32). A
neighborhood may have any positive number as its radius. The

further concepts which we are now going to introduce are built

upon the concept of a neighborhood. It is convenient to abandon

the coordinate notation for the time being, and denote points by

such symbols as P, Q, Py, P,, .. ..

.. . . . Fig. 32.
Definition. A set S is called open if each point P of S has some
circular neighborhood which belongs entirely to the set S.

Example 1. A circular neighborhood, for instance the set of
all points inside the circle x*+ y2=1, is an open set. For, if P is
inside the unit circle, say at a distance r from the center (where
r < 1), the circular neighborhood of P of radius & also lies inside
the unit circle provided & is chosen so that 0 <8 <1 —r (see Fig.
33). Fig. 33.

Example 2. The set of all points in the plane not on the parabola y* = 4x is
an open set. The student should verify this for himself.

Example 3. Let S consist of all points on or inside the circle x*+ y*> = 1. This
set is not open, for if P is on the circle there is no neighborhood of P which
belongs entirely to S.

Definition. If S is any point set, the set of all points of the plane which are not in
S is called the complement of S. On occasion it is convenient to use the notation
C(S) for the complement of S.

To illustrate this notion, consider the sets defined in the foregoing examples.
For the S of Example 1, C(S) is the set of all points outside or on the circle
x2+ y*=1, i.e., all points for which x*+ y>*= 1. In Example 2, C(S) consists of
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the points on the parabola y?>=4x. In Example 3, C(S) is the exterior of the
circle, i.e., all points such that x*+ y2> 1.

Definition. A set S is called closed if its complentent is open.

The set of Example 3 is closed (the student should verify this to his own
satisfaction); the sets of Examples 1 and 2 are not closed. A set consisting of any
finite number of points is closed. A set may be neither open nor closed, as we
see in the next example.

Example 4. Let S be the set of all points for which 1 = x?+ y? <4. This set is
the region of definition of the function F(x, y) of Example 2, §5. It is not open,
because a point of the circle x>+ y?=1 has no circular
neighborhood which belongs entirely to S (see Fig. 29). The Y

complement of S has two parts: the set of all points for which 7777 2

x2+ y2< 1, and the set of all points for which x>+ y2=4.Itis % | 7

easily seen that C(S) is not open, for a point on the circle ,/ % 7

x*+y*=4 has no circular neighborhood which belongs 7\~ ¥ | i x
yr

entirely to C(S). Therefore S is not closed. The set C(S) is /

shown in Fig. 34. 0 %
If S is a set, the complement of C(S) is S itself. Hence,

by definition, C(S) is closed if S is open. Thus, if one of the Fig. 34.

two sets S, C(S) is open, the other is closed.

Definition. If S is a point set, a point P is called a boundary point of S if every
neighborhood of P contains at least one point of S and one point of the
complement C(S). The collection of all boundary points of S is called the
boundary of S. We denote it by B(S).

The sets introduced in Examples 1-4 have the following boundaries:
Example 1. B(S) is the circle x>+ y*= 1.

Example 2. B(S) is the parabola y* = 4x.

Example 3. B(S) is the circle x>+ y*=1.

Example 4. B(S) consists of the two circles x>+ y>=1 and x*+ y*= 4.

It is clear from the definition of boundary that a set S and its complement
C(S) have the same boundary. If a set S is open, no boundary point of S is
actually in S. If S is closed, B(S) is part of S. These statements may be verified
by referring to the definitions. In Example 4, B(S) is partly in S and partly in
C(S).

Definition. A point P of a set S is called an interior point of S if there is some
circular neighborhood of P which belongs entirely to S. The interior of a set S is
the set consisting of all interior points of S.
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An open set consists entirely of interior points. A set may have no interior
points.

We are going to be most interested in sets of points which are of one of the
following kinds:

(a) Open.
(b) A closed set formed by an open set together with its boundary.
(¢) The boundary of an open set.

Furthermore, the sets which we consider will usually have boundaries which are
composed of one or more curves or segments of curves (straight lines included),
or possibly of isolated points.

Definition. By a region we shall mean a set of points which is either a nonempty
open set or such a set together with some or all of the points forming its
boundary.

All the sets occurring as domains of definition of the functions in Examples
1-4 of §5 are regions in the sense just defined. Of these regions, those of
examples 1 and 3 are open; that of Example 4 is closed (i.e., the entire boundary
is part of the region); that of Example 2 is neither open nor closed (it contains
only one of the two circles forming the boundary).

If we wish to deal with point sets in three-dimensional space we define
spherical neighborhoods instead of circular neighborhoods. Once this is done
we can define open set, closed set, and boundary just as in the case of point sets
in the plane. These concepts also apply to point sets on a line. In that case we
define a neighborhood of xy as an open interval xo— 8 < x <
X9+ 8, where & is any positive number. Y

Finally, we remark that we could use square neighbor- B p—————
hoods instead of circular neighborhoods without affecting
the whole development of the concepts of open sets, closed 26
sets, boundary of a set, and so forth. A square neighborhood _L
of (xq, yo) is the set of all points inside a square with center
(x0, yo) (see Fig. 35). If the square has sides of length 26 the 0 <251
neighborhood is defined by the inequalities

[x — Xo <8,y — yo| <8.

In the future we shall often speak of neighborhoods without the adjectives
circular or square. It will usually be immaterial which is meant or which the
student chooses to think of on any particular occasion.

Recall that the union of any collection of sets consists of all points belonging
to at least one of them, and the intersection consists of all points belonging to
each of them. Two sets are said to be disjoint in case they have no points in
common.

Example 5. An open rectangle is a rectangle without its boundary. It consists
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entirely of interior points. For a rectangle with each side parallel to a coordinate
axis, to say that R is open means that there are number pairs a, b witha <b and ¢, d
with ¢ <<d such that R is the set of all points (x, y) for which a <x <b and
¢ <y < d. The same thing is frequently said more briefly as follows:

{R=(x,y):a<x<b and c<y<d}

A property of open rectangles which we shall find useful later in proving the
inverse function theorem (in Chapter 12) is brought out in the following:
Assertion: No open rectangle R is the union of two nonempty disjoint open
subsets.

When we undertake to justify this very plausible assertion, we see that the
key to a proof is a good understanding of the property of openness. Let us reason
by contradiction and begin by supposing that R is the union of two nonempty
disjoint open subsets, A and B. Now consider the line segment [PQ] connecting
a point P in A to a point QQ in B. Since R is an open rectangle, the line segment
[PQ] obviously lies entirely in R. Since the subset A to which P belongs is
open, there is some positive number r such that the disc of radius r centered at
P is contained in A. Therefore there is some interval extending along [PQ], from
P toward Q, which lies in A. Since B also is open, the same argument shows
that all points of the line segment [PQ] which are sufficiently close to Q must,
like Q itself, lie in B.

Now let D be the set of all numbers which are distances from P of points on
[PQ] which belong to A. Then D is a set of nonnegative numbers which is
bounded above, since the distance from P to Q is obviously one upper bound.
By the least upper bound property of the real numbers (§2.7), D must have a
least upper bound; call it d. By the preceding paragraph, we know that d is a
positive number less than the distance from P to Q. From now on, we shall
concentrate our attention on that point C of [PQ] which is at the distance d
from P. Obviously C must belong to R, yet we shall soon see that it cannot
belong to either A or B. This contradiction will prove the Assertion.

Suppose first that C belongs to A. Then C must be farther than any other
point of A, that is also in [PQ], from the point P. Since A is open there must be
some disc centered at C and contained in A. But this implies that there are
points of A on the segment [PA] which are farther than C is from P, which is a
contradiction. Now try assuming that C belongs to B. Clearly no point between
C and Q can belong to A. Since B is open, there is some disc of positive radius
w centered at C and contained in B. But this would imply that d — p is an upper
bound for D, contradicting the fact that d is the least upper bound. This
completes the proof.

EXERCISES

1. The set S consists of all points (x,y) such that x>+ y*<1 and x <0 if y=0.
Describe S in geometrical language, with the aid of a figure. Is S open, closed, or neither?
What is the boundary of S?
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2. The set S consists of all points (x, y) such that either x*+ y>=1 or y=0 and
0 = x = 1. Does this set have any interior points? Is it closed?

3. The set S consists of all points (x, y) such that y = x* and y = 1. Draw a figure, and
describe S in geometrical language. Is S open, closed, or neither? What is the boundary
of S?

4. The set S consists of all points (x, y) such that 0 <xy =1 and x >0. Is this set
open, closed, or neither? What is B(S)?

5. The set S consists of all points (x, y) such that y = sin(1/x) and x > 0. Does this set
have any interior points? It is closed? What is B(S)?

6. The set S consists of all points (x, y) for which x>+ y* <4 and y >0 except for the
points with 0<<y=1 and x=1/n, n=1,2,..., i.e.,, except for the points of a certain
infinite sequence of line segments each one unit long. Is this set S open? What is the
boundary of S? Are there any points of B(S) which are also in S? Is S a region? Is its
complementary set C(S) a region?

-1
7. Let f(x,y)= (y - sin%) , the function being defined whenever this expression

has a meaning, but not otherwise. Is the set of points where f is defined a region? What
is the boundary of the set?

8. Let f(x, y) =logsin x + y~'?, the function being defined whenever this expression
has a meaning (real numbers only are to be considered). Describe, with the aid of a
diagram, the set of points (x, y) where f is defined. Is the set open, closed, or neither? Of
what does its boundary consist?

5.2 / LIMITS

We wish to define what is meant by the statement “f(x, y) approaches A as a
limit when the point (x, y) approaches (xo, yo).”” The statement is written in the
form

lim f(x,y)= A. (5.2-1)
(x, ¥)>(xq. yo)

In giving the definition we shall assume that the function f is defined in a region
R and that (x, yo) is either an interior point of R or on the boundary of R. The
point (x,, yo) may, but need not, belong to R. If it is in R, the meaning of (5.2-1)
has nothing whatever to do with the value f(xo, yo) at the point (xq, yo). The
statement (5.2-1) is now defined to mean that if € is any positive number, there is
some neighborhood of (x, y¢) such that if (x, y) is in the neighborhood, in R, and
different from (xo, yo), then |f(x, y) — A] <e. This definition may be compared
with that for functions of one variable in §§1.1, 1.61. The limit notion can be
expressed verbally as follows: The meaning of (5.2-1) is that f(x,y) is in a
prescribed neighborhood of A on the real axis provided (x, y) is any point other
than (xo, o) in a suitably chosen (sufficiently small) neighborhood of (xo, yo) in

the plane.
With the adoption of the term neighborhood we obtain a unification of the
limit concept for functions of one, two, or three independent variables. The
extension to more than three variables causes no trouble and involves no new
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principle. We continue to use geometric language; the meaning of a “spherical
neighborhood™ in a space of four variables is made clear by the inequality

(x = x0)* + (y = yo)* + (z — zo)* + (W — wp)* < 82

The fundamental theorems about limits carry over to functions of several
variables. We cite particularly Theorems X (§1.61) and XIV (§1.64).

When we say that f(x, y)—> A as (x, y)— (x, yo), it must be stressed that the
limit must exist and be the same, no matter how (x, y) approaches (xy, y,). The
student will recall that, for a function of one variable, f(x)—> A as x - x, means
that f(x)> A as x -» x,+and also as x > xo—. But in the case of two variables,
(x, y) can approach (xo, ¥¢) in a infinite number of ways. If it is possible to find
two different modes of approach to (x,, yo) such that f(x, y) approaches different
limits in the two cases, or no limit at all in at least one of the cases, then
lim x, (5, y9 F (X, y) doOes not exist.

2
24 y2'
Let us show that the limit of f(x,y) as (x, y)—(0,0) does not exist. If (x, y)—>
(0, 0) along the x-axis, we have f(x, 0) = 1(x# 0). If (x, y) = (0, 0) along the y-axis,
we have f(0, y) = —1 (y# 0). Thus the limits for the two modes of approach are 1
and —1 respectively. This shows that f(x, y) has no limit as (x, y)— (0, 0).

Example 1. Let f(x,y) = This function is defined except at the origin.

To prove directly that a certain function approaches a certain limit as
(x, y) = (x0, Yo), we have to work with inequalities. The following example will
illustrate the technique. It is not our intent, at this stage of a student’s training, to
have him cultivate extensively the technique of working exercises of the type
represented by the example. The purpose is merely to make clearer the essential
content of the definition of a limit.

Example 2. Show that
3

L y2 =0. (5.2-2)
In terms of inequalities, this means that if € is any positive number, we have to
show that another positive number & (depending on €) can be found, such that

2x3—-y?

S| Sei o<y <s; (5.2-3)

in other words, denoting the function under consideration by f(x, y), we have to
show that, if € >0, there is some circular neighborhood of the origin (whose
radius we denote by &) such that |f(x,y)—0]<e if (x,y) is in the specified
neighborhood of the origin but not actually at the origin. We proceed to ﬁnd such
a number 8, considering € as given. \ Voo ¢ Lt

\\,;z;\

Now [2x =y = 20xP + [y = 2fx[x* + |yly* 0.2

Also, x| =(x*+y)" and [y[=(7+y)"

TR
LAy
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Therefore 2x7 = yY = (2 + y)"202x2 + yH) = 2(x2 + y)P2,
and M < 2(x2 + y2)1/2 if0< x2 + y2
x2+y* |7 )

It is now clear that (5.2-3) will hold if 8 is chosen in any manner such that
0 <8 = ¢€/2. Thus (5.2-2) is proved.

In work of this kind the student will find the simple inequalities
Vo bl © lakdia 2lab| = a®+ b?, (5.2-4)
lew b <HOd+iet la|+ [b] = V2(a>+ b)) (5.2-5)

quite useful. See Exercise 6 for remarks about these inequalities.

EXERCISES
w2
1. Find the limit of ;,2 as (x, y) approaches (0, 0) along the line y = x; along the
line y = mx.
2. Does - })i-q(loAO)F):-_y? exist? Give reasons.
4.4
3. Examine the behavior of (72% as (x,y) approaches (0,0) along various

straight lines. Then consider what happens for approach to the origin along the curve
y> = x. Is there a limit as (x, y) > (0, 0) without restriction?

4. Show in each case that the given function does not approach a limit as
(x,y)—(0,0), by examining the behavior of the function for at least two modes of

approach.
x>+
(a) 2+§ (©) I y2y)1/2-
y? x*+3x%y2 + 2xy>
(b) X + y (d) (x2+y2)2

5. Define a function by setting f(x,y)=0 if y=0 or if y=x? and f(x,y)=1if
0<y < x> Show that f(x, y)—0 as (x, y) - (0, 0) along any straight line through the origin.
Find a curve through the origin along which f(x, y) = 1 (except at the origin).

6. If A and B are nonnegative numbers, the inequality A =B is equivalent to
A?= B2 Use this fact to prove the correctness of (5.2-4); then show that (5.2-5) is
correct.

x2
7. Let f(x,y) =y (5
f(x, ¥) approaches a limit as (x, y)—=(0,0).

2,2

8. Let f(x,y) = x§+yy2. If € >0, find 8 so that 0 <(x>+ y?)

) Show that |f(x, y)]=3(x"+ y%, and hence prove that

2 < & implies |f(x, y)| <e.

9. If € >0, show that |2x>~ 6xy + 5y°] <e when (x*+ y?)'? < (¢/13)"".

4 4
10. Show that x2 : zz <€ if 0 <x®+ y? <&, for a suitably chosen & depending on e.

Gy ),f

/-lq
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1L Show that |x*— y?| = (x* + y?)*2.
2x° 4+ 2y°(2x* - y9)

12. Does 0Ty

approach a limit as (x, y)— (0, 0)?

5.3 / CONTINUITY

The notion of continuity depends on the notion of limit, as was pointed out at
the beginning of Chapter 3.

Definition. Let f(x, y) be defined in a region R, and let (xq, yo) be a point of R. We
say that f is continuous at this point if

o Jim o f(x, ¥) = (X0, Yo).
If (xy, ¥o) is an interior point of R, the mode of approach of (x, y) to (xq, ¥o) is
unrestricted in this definition. But, if (xg, yo) is a boundary point of R, there is the
restriction that (x, y) must remain in R. We say that f is continuous in R if it is
continuous at each point of R.
If f and g are defined in the same region R, and each is continuous at a point
(x0, ¥o) of R, then the sum and product functions

f,y)+g(x,y), f(x,y)8x,y)

are also continuous at (x,, yo). The quotient function

f(x,y)
glx, y)

is continuous at (xg, yo) provided g(xo, yo) #0. These assertions are direct
generalizations of Theorem I, §3. They may be extended to functions of more
than two variables.

The theorem of Chapter 3 all have important analogues for functions of
several independent variables. We do not wish at this point to prove all these
analogous theorems, but we shall discuss the statements of certain theorems
which will be used in the chapters immediately following.

In dealing with the analogues of Theorems II (§3.1) and III (§3.2) of Chapter
3 it is necessary to introduce the concept of a bounded point set.

Definition. A point set S in the plane is called bounded if all its points are inside
some sufficiently large circle. For a point set in space the definition is similar; we
write ‘“‘sphere” instead of “‘circle.”

Examples. The interior and boundary of a triangle form a bounded point set.
The set of all points between the lines y =0, y =1 is not a bounded point set.

We now state two important theorems.

THEOREM 1. If a function is continuous at each point of a closed and bounded
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region R, the function is bounded on the region (i.e., the values of the
function form a bounded set of real numbers).

THEOREM 1I1. Let f be continuous on a closed and bounded region R. Let m
and M be the greatest lower bound and least upper bound of the values of f
on R. Then f takes on each of the values m, M at least once in R.

Proofs of these two theorems will be considered later, in §§17.2, 17.3.
Theorem V of Chapter 3 (§3.3) has the following analogue. We state it for
the case of two independent variables.

THEOREM III. Let f be defined in an open set containing the point (xo, yo).
Suppose that f is continuous at the point and that f(xo, yo) # 0. Then there is
a neighborhood of (xy, yo) throughout which f(x, y) has the same sign as at
(X0, Yo).

The proof is left to the student.

There is a feature of the continuity of a function f(x,y) which deserves
notice. If we fix y, say y = yo, f(x, yo) is a function of x alone. Likewise f(x,, y) is
a function of y alone. It can happen that each of these functions of a single
variable is continuous, and’ ‘yet that f(x, y) is not continuous. An 1llustrat10n of
““this possibility is given in Exercise 3. )

There is another theorem which will be needed later. It deals with composite
functions, and may be roughly stated in the form: A continuous function of
continuous functions is continuous. The number of variables is immaterial.

Examples. F(z) = sin z is a continuous function of z, and f(x, y) = (1+ xy)’is
a continuous function of x, y. Therefore

F(f(x, y)) = sin(1 + xy)’
is a continuous function of x, y. Or, again,
F(x,y,2)=x>+y*+2* and f(x,y)=x(1+x>+y?) "

are continuous functions of x, y, z and x, y, respectively. Therefore

2
— 24 2 X
F(x,y,f(x,y))—x +y +(1+x2+y2)3

is a continuous function of x, y.

We formalize one such theorem about composite functions.

THEOREM 1V. Let F(x, y, z) be continuous in an open set B of space. Let
f(x,y) be continuous in an open set R of the xy-plane. Writing z = f(x, y),
suppose that the point (x, y, z) is in B when (x, y) is in R. Then the composite
function F(x,y, f(x,y)) is continuous in R. ‘ ‘
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We shall not give a proof here. This theorem is a special case of the
Theorem 11 which is proved in §11.7.

EXERCISES
sin(x” + y?)

L If f(x,y)= g when x°+ y?# 0, how must f(0,0) be defined so as to
make f continuous at (0, 0)?
2. Let us define f(x, y) :ggfzx_y_) if x#0, and f(x,y) =y if x =0. Does f have any

points of discontinuity?

3. If we define f(x, y) = xy/(x*+ y*) when x*>+ y*>#0, and f(0,0) = 0, show that f is
discontinuous at (0, 0), but also that f(x, 0) and f(0, y) are continuous functions of x and y,
respectively, with no exceptions.

4. Let f(x, y)= (x> + y) tan"'(y/x) if x# 0, and define f(0,0) = 0, but do not consider
f defined if x =0and y#0. (a)Is f continuous at (0, 0) according to the definition in the
text? (b)Isitpossibleto define f at the one additional point (0, 1) so as to make it continuous
there?

5. Let f(x, y) = xy log(xy) if xy >0, and define f(x, y) = 0 if xy = 0. Where, if at all,
is f discontinuous?

6. Let f(x, y)=(5x + y){(x — y). Show directly by the definition that f is continuous
at (4, 1) by proving that, if € >0, |f(x, y)— f(4, 1)} <e provided (x, y) is in a sufficiently
small neighborhood of (4, 1). Start by showing that

fCx, y) = f(4, D] =2x — 4] + 8y —

at the points of the square 3 <x <5,0<y <2.

7. If f(x, y)=e " when x# y, how must f be defined when x = y so as to make
it continuous at all points of the plane?

8. Let us define f(x,y)=0 if y=0 or if x*=y, and f(x,y)=4y(x>*—y)/x* if
o<y <x™
(a) Is f continuous at (0, 0)? (b) Discuss possible discontinuity at other points on the line
y =0 or the curve y = x”.

9. Let f(x,y)=x(1—x>—y» ', the region R of definition being defined by x>+
y>< 1. It is possible to add the single point (0,1) to R and define f so as to make it
continuous at that point? Consider values of f on the circle x>+ y>*—y =0, and also at
other points in R near (0, 1).

10. If f(x,y,2)=xyz/(x*+ y*>+z") when x>+y*+2z>#0, is it possible to define
£(0,0,0) so as to make f continuous at the origin?

5.4 / MODES OF REPRESENTING A FUNCTION

The standard method of representing a function of one variable is by graphing in
rectangular co-ordinates. We write y = f(x) and plot the points (x,y). If f is
continuous on an interval, the graph will be a curve in the plane.

The corresponding procedure for the case of two independent variables is
familiar. We write z = f(x, ¥), and plot the points (x, ¥, z). If f is continuous in a
region R of the xy-plane we obtain a surface in space (see Fig. 36).

I - R RN S
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Ol 1 2 3 4 5

Fig. 36. Fig. 37.

When we go to three independent variables there is no satisfactory analogue
of the foregoing methods of graphical representation, for we cannot draw upon
any familiar geometric intuition to visualize w = f(x,y,z) as defining a
configuration in space of four dimensions. There is, however, another mode of
representation which is helpful. It is available as well in the case of two
independent variables, and since the figures are easier to draw, we begin with that
case.

When f is defined in a region R, we can think of each point of R as being
given a label, namely, the value f(x, y) at that point. A good example is obtained
by thinking of the xy-plane as a map on which elevations above sea level are
marked at various locations, f(x, y) being the elevation in feet at (x, y) (see Fig.
37). To carry this example further, imagine that the map is a topographic map
with contour lines drawn in, showing lines of equal elevation. Each line is
labeled; there is a line for 500 feet above sea level, others for 400, 600, and so
on. In the aggregate, the configuration of these lines, together with their
numbering, gives us a good visual representation of the elevation as a function
of x and y.

This “topographic map’ idea can be carried over to any function f(x,y).
Instead of contour lines we consider curves along which f(x, y) is constant in
value. Such a curve is called a level curve of the function. If the constant value is
C, the equation of the level curve is f(x, y) = C. See Fig 38 and Fig. 39. Isobars

Fig. 38. Level curves of f(x,y)=x+y".
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Fig. 39. Level of curves of f(x,y)=x*+y>—2.

(curves of equal atmospheric pressure) on a meteorological chart furnish another
good example of level curves of a function.

The three-dimensional analogue of this mode of representation is now easily
grasped. Instead of level curves we shall have level surfaces f(x,y,z)=C.
Common physical examples of functions of three variables which are con-
veniently visualized in this way are density and temperature in a gas or other
medium.



6/ THE ELEMENTS
OF PARTIAL

DIFFERENTIATION

6 / PARTIAL DERIVATIVES

In this chapter the main objective is the exposition of the fundamentals of
differential calculus for functions of two or more variables, with emphasis on
the formal procedures which are used in dealing with various kinds of particular
problems. The subject is developed from the beginning. Many students will
already know some things about partial differentiation from courses in elemen-
tary calculus. For them the earlier parts of this chapter will serve as a review. By
concentrating on procedures and techniques in this chapter, and putting most of
the theoretical considerations in later chapters, the authors have hoped to make
the treatment of partial differentiation adaptable to the needs of students of
varying degrees of preparation. For further expression of the authors’ intentions
in the organization of Chapters 6, 7, and 8, see the introductory sections of
Chapters 7 and 8.

Let f(x, y) be defined in a region R of the xy-plane. If we think of y as fixed
and x as variable, the derivative of f(x, y) with respect to x is called the partial
of

derivative with respect to x. This partial derivative is denoted by ax If we write

u = f(x,y), the partial derivative is also denoted by g—z Likewise, the partial

i, ou

derivative with respect to y, g—y or 3y

y when x is regarded as a constant.

, is the derivative of f(x, y) with respect to

Example 1. 1f u=xxy+e™,
a_u = o y3,xy?
ax 2y T ye
% =x2—3xyle ™.

Similar definitions and notations apply in dealing with functions of three or
more independent variables.

% and % are called the second partial derivatives
of f(x,y). There are in all four second derivatives of f(x, y). The notations for

130

The partial derivatives of
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these derivatives, if we write u = f(x, y), are the following:
2y (o)
ax \ox)  ax? ay \ax/  dyax
AL T A
ay) axay  ay \ay/  ay’

Example 2. For the function of Example 1 we have

2
— —xy3
(, =2y +ye™,
6%u =2x +3xy’e ™ —3yle
dy dx
o'u__ 2x + 3xy’e 3 — 3yle ?
ax dy ’
3 —-xy3 __ -xy3
—a— =9x’y‘e 6xye™°,
We observe that
’u _ u
ay ax  9x dy 6-1)

in this example. We shall ordinarily find that the relation (6-1) holds true for the
functions we meet in practice, for the relation is valid at a point provided both
the second derivatives are defined in a neighborhood of the point and continuous
at the point. This will be proved in §7.2 (Theorem III).

A partial derivative of f(x, y) is again a function of x, y. To denote the value

f

at the point (xq, yo) we may use one of the expressions

(iﬁ) af
X (x0s Yo)’ ox

These notations are rather awkward, however; it is desirable to have a standard
functional notation for partial derivatives. For a function f(x,y) of two in-
dependent variables we shall write

(xq, yo)

O e

For the value of a partial derivative at a point we then have expressions such as

fi(xo, yo) = (gi)(xo‘m, fZ(a’b):(%)(a,b)'
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For second derivatives we use the notations

=2 (8 ruxn=-L(4)

ax
falx, }’)—_<a_§) folx ,)’)——(%)

Observe the ordering of the numerical subscripts in relation to the order of
carrying out the differentiations; 1 refers to x and 2 refers to y.

The notation is extended in an obvious way to derivatives of order higher than
the second, and also to functions of more than two independent variables. Thus
for example,

fialx, ) = (ngc)

and 4 a {d
n gx(x, y, 2) =£’ gin(x, y, Z)“ [ay ( g)]

6.1 / IMPLICIT FUNCTIONS

We often deal with functions which are defined implicitly as the solution of
certain equations. In ordinary practice we can find the partial derivatives of such
a function by the same procedures which we learn in elementary calculus.

Example 1. Find g—i from the equation

x2 y2 ZZ _
Tg-i‘ﬁ-i"g——l, (6.1-1)
on the understanding that z is dependent and x, y are independent.
We have
2x Jr2z 62 -0
16" 9 2 ’
and so
dz 9x
ox 16z (6.1-2)

The equation (6.1-1) actually defines two functions of (x, y), corresponding to
the two choices of sign in

2= =3( _x__y_‘>”2. (6.1-3)

By substituting (6.1-3) in (6.1-2) we obtain the partial derivative for each of
these two functions:

2 2\ —1/2
3_7~=;3_x( _i‘__&’_) , (6.1-4)
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The result (6.1-4) could also have been obtained by differentiating (6.1-3)
directly.

The procedure can also be applied in the case of functions defined by
simultaneous equations.

Example 2. 1If u and v are defined as functions of x, y by the equations

ucosv—x=0
. (6.1-3)
usinv—y=0,

find the partial derivatives du v,
ax o0x
Method 1. One method of procedure is to attempt to solve for u, v in terms
of x, y. If this can be accomplished, we can then calculate the required partial
derivatives directly.
From (6.1-5) we have

u?cos*v =x% ulsin’v =y
Now add these equations and use a familiar trigonometric identity. The result is
w=x2+y%oru=+=Vxi+y. (6.1-6)

Next, going back to (6.1-5), we substitute the value just found for u. We find

x . y
COSV=———— Sinv=—F—= 6.1-7
+VxI+y? +VxT+y? ¢ )

the same sign being taken before the radical in both cases. We might also write
tanv =2 (6.1-8)
X

in cases x # (0. We see that there are in general two possible determinations of u
from (6.1-6); for v there are an infinite number of possible determinations from
(6.1-7), differing by multiples of 2#7. The derivatives of u may be found from
(6.1-6):

ou X

—_— i__—_‘.
ax VxI+ y2

In finding the derivatives of v it is easier to work from (6.1-8). We have

— 2
sec?v 00 = 2y,sec2v=1+tan2v=1+y—2’
0x X X
vy Ty .
ax xIsec’v xI+y?

This result could have been obtained by expressing v as an inverse tangent and
then differentiating. It should, however, be noted that v is not necessarily the
principal value of the inverse tangent of y/x.
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Method II.  As an alternative to the first method we may proceed directly to
differentiate the equations (6.1-5). In doing so we must bear in mind that x, y are
independent variables and that u, v are dependent variables. Since we are
seeking partial derivatives with respect to x, we think of y as a constant. Then

ou . Jv
cosv-——usinv——1=0,
0x 0x

(6.1-9)

sinvili-l-ucosva—u—O:O.
0x 0x

These simultaneous equations are now solved for ou and QE. The solution may

ox ox
be achieved by elimination, or by determinants and Cramer’s rule. We leave it
for the student to carry out the solution and find

ou dv _ —sinv. N
ax - Cos v, Fiala— (6.1-10)

To reconcile these answers with the answers as found by Method I, observe
that, by (6.1-5) and (6.1-6),

X
cosv=—= ek
+Vx +y
—sinv__y _ -y
u u’ x*+y?

One of the things to be noted in connection with problems like that of
Example 2 is that the solution by Method II can be carried out even if the
explicit solution for u and v in terms of x, y is impracticable.

In all the procedures which have been illustrated here it has been taken for
granted that the given equations do implicitly define certain functions, and that
these functions do have partial derivatives. The deeper theoretical questions on
these matters are considered fully in Chapter 8.

EXERCISES
1. Find z—l; and g—;’ from Example 2. Use both of the methods given in the text, and

reconcile your answers.

2. Suppose that u and v are defined in terms of x, y by the equations u”—v” = xy,
uv =x”+y”>. Find the first partial derivatives of u and v with respect to x and y,
respectively. Use the implicit function procedure (Method II). See how far you can go
with Method T in this case.

3. Assuming that z is defined as a function of x and y by the equation 4sin” x +
2 cos(y + z) =2, find 9z/dx when 3z/dy when x = w/6, y = @[3, z = 0.

4. Find 9z/9x and 8z/dy from the equation x*+ y’ + z*— 3xyz = 0.
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6.2 / GEOMETRICAL SIGNIFICANCE OF PARTIAL DERIVATIVES

Just as the ordinary derivative of a function of one variable has its geometric
realization in the slope of a line which is tangent to a curve, so the partial
derivatives of a function of two variables have a geometrical significance in
connection with a plane which is tangent to a surface. Qur purpose in this

section is to show how the partial derivatives g—}{ and a—i, when x =a and y = b,
are related to the plane which is tangent to the surface z = f(x, y) at the point
(a, b, ¢). In this section we shall not give a formal definition of the tangent plane.
We reserve full discussion of this matter to §6.4, because the concept of the
tangent plane is the geometrical counterpart of the concept of the differential of
a function of two variables.

Let S be the surface z =f(x,y), and let (a, b,c) be a point on S. Then
¢ = f(a, b). Consider the line through the point (a, b, ¢) parallel to the z-axis. Let
us visualize various planes containing this line, each such plane cutting the
surface S in a curve. One such plane, cutting the y-axis
perpendicularly at y =b, is shown in Fig. 40. In the
diagram, the curve of the intersection of S and this
plane, y = b, is represented as having a tangent line L at
the point (a, b, ¢). One can also imagine a plane x = qa,
passing through (a, b,c) and intersecting the x-axis
perpendicularly at (a,0,0). More generally, one can
imagine a plane different from either of these two, but
so placed that it passes through (a, b, ¢) and is parallel
to the z-axis. The student should construct for himself a
diagram similar to Fig. 40, with a plane through (a,b,c)
parallel to the z-axis but cutting neither the x-axis nor Fig. 40.
the y-axis at right angles. This exercise in geometrical
visualization will be helpful for the following discussion.

Suppose that each plane through (a, b, ¢) and parallel to the z-axis cuts the
surface S in a curve which has at the point (a, b, ¢) a tangent line which is not
parallel to the z-axis. Suppose further that all of these tangent lines, correspond-
ing to the different planes of the type described, lie in a single plane. Then this
single plane must surely be the tangent plane to the surface S at (a, b, ¢), if indeed
there is such a tangent plane. Fig. 40 shows four different curves on S, together
with their tangent lines, all intersecting at (a, b, c).

Assuming now that there is a tangent plane to S at (a, b, ¢) not parallel to the
z-axis, let us see how to find its equation. If cos a, cos B, cos y are the direction
cosines of a line which is normal (perpendicular) to this plane, the equation of
the plane can be written

(cos a)(x —a)+ (cos B)(y —b)+(cos y)(z—c)=0.

Since the plane is not parallel to the z-axis, we know that cos y# 0; we can
therefore solve for z — ¢ by dividing by cos v, thus obtaining an equation of the
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form
z—c=A(x—-a)+ B(y—b). 6.2-1)

Our problem is to find A and B. If we put y =b in this equation, we find the
relation between x and z on the line in which the tangent plane (6.2-1) cuts the
plane y = b. This line of intersection must be the line L which is tangent to the
curve in which the surface S is cut by the plane y = b (see Fig. 40). The relation
between x and z on L is obtained by putting y = b in (6.2-1); that is,

z—c¢=A(x—a).

The relation between x and z along the curve in which S is cut by the plane
y=>bis

z = f(x, b).
Hence, according to the usual relationship between slopes and derivatives, A
must be the derivative of z with respect to x when y is held constantly equal to
b:
a
A= a—xf(x, b) ‘ = fi(a, b). (6.2-2)

In the same way, putting x = a in (6.2-1) and interpreting B as a slope in the
relation between y and z, with x held constantly equal to a, we see that

= fxAa, b). (6.2-3)

a
B =—f(a,
3y fa,y) .,
Consequently, we see that the equation of the plane tangent to S at (a, b, ¢) can
be written in the form

z—c¢ = fua, b)(x —a) + fa, b)(y — b), (6.2-4)
or

z = f(a, b) + fi(a, b)(x — a) + fi(a, b)(y — b). (6.2-5)

The foregoing discussion of the tangent plane is not complete because of the
fact that no full and formal definition of the tangent plane has been given.
However, the discussion here is wholly consistent with the definition to be given
in §6.4. It is shown there that when S has a tangent plane at (a, b, ¢), not parallel
to the z-axis, then f has partial derivatives when x = a and y = b. The arguments
we have just given can then be used to derive the equation (6.2-4) for the
tangent plane. Observe that the assumption that f has partial derivatives at
x =a, y = b rules out the possibility that the tangent plane might be parallel to
the z-axis.

The line through (a, b, ¢) perpendicular to the plane (6.2-5) is called the
normal to the surface S at that point. As we see from the equation (6.2-5), the
direction of the normal is determined by the ratios

fi(a,b):fAa, b): -1,



6.2 GEOMETRICAL SIGNIFICANCE OF PARTIAL DERIVATIVES 137

for the direction cosines of the normal to a plane are proportional to the
coefficients of x, y, and z respectively, in the equation of the plane. Here is a
result to be remembered:

The line normal to the surface z = f(x,y) at a given point has direction ratios
8z az

o ay —1, the partial derivatives being evaluated at the point in question.
Example 1. (a) Find the equation of the plane tangent to the paraboloid

48z = 2x*+ 3y? at the point (3,2,3). (b) Find the direction cosines of the normal

to the surface at the point.

(a) We have 489£=4 ’ 482 _ 6y,
ax
dz 1 3z 1 .
at the point in question, therefore, -— x4 —a—); =7 and the equation of the tangent
plane is
—3=3x—-3)+¥y—2), or2x +2y —8z =5.
(b) To obtain the direction cosines from the ratios :3:—1, we first compute
@+ G + (117 = —3\4/2-
. . . s 11 3V2
The direction cosines are found by dividing 7, 4, —1 by R They are,
accordingly 1 ! —4
"3V2 3V2 3V2

Example 2. Show that at every point of intersection of the two surfaces
z=2x*+y%, 82=17—~(x2+y?, the normals to the two surfaces are per-
pendicular. (Because of this we say that the surfaces intersect orthogonally.)

The student will readily find that the surfaces are paraboloids of revolution
intersecting each other all along the circle x*+ y>=1 in the plane z = 2. There
are no other intersections. Now, at a point of the first paraboloid the direction
ratios of the normal to the surface are

4x:4y:—1;
for the second paraboloid the direction ratios of the normal are found to be

X._¥._(

rRaE
The condition for perpendicularity of these two normals at a point which is
common to the two surfaces is therefore

4x(“~1>+4yﬂ(’4>+1—0
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or —(x>+ y*+1=0. Since this equation is satisfied along the intersection of the
surfaces, the demonstration of perpendicularity is complete.

EXERCISES

1. Find the equation of the tangent plane to the surface z = e * sin y
(a) at x=0, y=m2, (b)at x=0, y=m, (c) at x=0, y=0. (d) Make as good a
diagram as you can of the surface for 0=y =<, x > 0.

2. Find the equation of the plane tangent to the surface x>+ 2xy>—7z>+ 3y + 1=0at
1,1, 1.

3. Prove that the plane tangent to the surface z =x>—y? at the point (a, b, ¢) is
pierced by the z-axis at the point for which z = —c.

4. Find the points of the praraboloid z = x>+ y*—1 at which the normal to the
surface coincides with the line joining the origin to the point. What is the acute angle
between the normal and the z-axis at these points?

5. If a’# b2, prove that no normal to the surface z = (x’/a®) + (y*/b®) — c, at a point
for which x# 0 and y# 0, can pass through the origin.

6. Prove that the spheres x>+ y2+z°>=16, x>+ (y — 5)*+z> =9 intersect orthogon-
ally, using the method of Example 2.

6.3 / MAXIMA AND MINIMA

We sometimes have occasion to inquire about the largest or smallest value
attained by a function under specified circumstances. In speaking about maxi-
mum (or minimum) values it is very important to distinguish between a relative -
maximum and an absolute maximum. Suppose we are dealing with a function
f(x, y) defined in a region R of the xy-plane.

Definition. We say that the function f has a relative maximum at the point (a, b)
if there is some neighborhood of (a, b) such that f(x,y)= f(a, b) for all points
(x,y) of R which are in this neighborhood. We may express the definition
otherwise by saying that the value of f at (a, b) is at least as big as at any of the
points (x,y) around (a, b) and not too far away.

Thus for instance, within a given range of mountains, the elevation of the land
surface above sea level attains a relative maximum at the summit of any particular
peak in the range.

Definition. Let f be defined in a region R, and let S be any part of R (i.e., any
point-set in R). In particular, S might be all of R. Suppose there is in S a point
(a, b) such that f(x, y) = f(a, b) for all points (x,y) in S. We then say that on the
set S the function f has an absolute maximum at (a, b).

Observe that, on a given set S, f can have a relative maximum which is not
an absolute maximum. Observe also that a function may fail to have an absolute
maximum on a given set (think of the function 1/(xy) in the first quadrant).

Similar definitions are made for relative and absolute minima of a function.
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In problems where we have to find the absolute maximum of a function on a
given set we usually find that it is convenient to begin by looking for relative
maxima. If there are only a few of the latter we may be able easily to select one
which furnishes an absolute maximum. Hence it is useful to have criteria for
locating relative extrema.

THEOREM 1. Let f be defined on a region R, and let the function have a relative
extreme (maximum or minimum) at the point (a,b) of R. Suppose further
that (a, b) is an interior point of R (not on the boundary), and that f has first
partial derivatives at (a, b). Then these derivatives are zero at that point:

fila,b)=0,  fxa, b)=0. 7 (6.3<1)

Proof. This theorem should be compared with Theorem III of §1.12. The
proof is based on this earlier theorem. Consider f(x, b); this is a function of the
single variable x, its values being those of the function f(x, yJ along the line
y = b. As a function of x, f(x, b) has a relative extreme at x = a. Moreover, the
derivative of f(x, b) at x = a is fi(a, b). Therefore, by Theorem III, §1.12, we
conclude that f;(a, b) =0. In the same way, applying this earlier theorem to the
function f(a, y) of the single variable y, we conclude that f.(a, b) = 0.

The hypothesis that (a, b) is an interior point of R is essential. A relative
extreme can occur at a boundary point of R, and in that case equations (6.3-1)
may not hold.

It is important to realize that, under the conditions stated in Theorem I, the
vanishing of the first partial derivatives is a necessary, but not sufficient,
condition for a relative extreme. If the surface z = f(x, y) has at the point x = q,
y = b a tangent plane which is parallel to the xy-plane, then equations (6.3-1)
hold; but z need not be a relative extreme at such a point. A “saddle-point” of a
surface is an illustration of such a situation.

The foregoing definitions and Theorem I extend to functions of three or
more variables in an obvious manner.

As in elementary calculus, sufficient conditions for a relative maximum or
minimum can be formulated by adding to (6.3—1) certain conditions on the
second derivatives of f at the point (a, b). We discuss such conditions in §7.6.
For the present, however, we proceed to illustrate some uses of Theorem I.

Example 1. Find the point of the plane 2x — 3y — 4z =25 which is nearest to
the point (3, 2, 1). .

If D is the distance from the point (x, y, z) of the plane to (3,2, 1), we have
D?=(x =32+ (y —2)*+(z - 1)? and z = i{(2x — 3y — 25). Hence, eliminating z,

D*=(x =3y +(y -2+ Gx —3y — 9.

We seek the minimum value of D? as x, y range through all possible values. In
this case all points are interior points of the region (namely the whole xy-plane),
and D? has partial derivatives at all points. We therefore look for points at which
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(DY) _ a(DY

I P = (0. The equations to be considered are

20x =3)+26x —iy P -1=0,
Ay =2 +26x—3y -9 - @D =0.
On simplifying, we obtain
10x — 3y = 53,
—6x +25y = —55.

The solution is found to be x =5, y = — 1. Substituting in the equation of the
plane, we find z = — 3. We now argue as follows: The function D? certainly has
an absolute minimum (from the geometrical nature of the problem). This
absolute minimum is also a relative minimum, and the conditions of Theorem 1
apply. But we obtain a unique point at which the two first partial derivatives
vanish. Hence, this point must furnish the desired absolute minimum.

Example 2. Locate the points which might furnish relative maxima and
minima of the function

f(x,y)=2xy —(1—x2—y?)*"

in the closed region x?+ y*= 1 (which is the region of definition of the function).
Hence, find the absolute maximum and minimum values of the function.
We first apply the criterion of Theorem I. We have

a_f: L2 iR
ax 2y +3x(1—x"—y9)"",

if._ w2 GiR
ay—2x+3y(l x5—yie

The interior points of the region are those for which x*>+ y><1. The interior
points which might furnish a relative maximum or minimum are among those
which we find by solving the equations

3x(1-x"—y)'?= =2y,
3y(1—x2— y)"? = -2x.

An obvious solution of these equations is x =0, y = 0. If neither x nor y is zero
we may divide one equation by the other and obtain the result

x_¥ 12
3=y o=y

Hence, substituting back in the first equation of (6.3-2) after squaring both sides,

we obtain
9x%(1—2x2) = 4x%, or 9— 18x* = 4.

Thus we find x2= y2= . Going back again to (6.3-2) we have (1—x*—y)'? =3

*6.322)
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and hence 3x(3)= -2y, or x =—y. Note that x = y is ruled out. There are
therefore three points in all which satisfy (6.3-2). They are

Py=(0,0), P, = GV —1V3), P, = (-}VE V).
The accompanying table of values may now be constructed:

Point Value of f
P, -1
P, and P, -23/27

We emphasize that Theorem I does not assert that the function has relative
extrema at all three of these points; it only states that if any relative extrema
occur at interior points, such extrema are found among these three points.
Before drawing any conclusions about absolute extrema we must investigate the
behavior of the function on the boundary of the region. On the boundary we
have x*+ y>=1 and therefore f(x, y) = 2xy. To look for extreme values of f on
the boundary we might solve for y: y = +V'1— x?, and look for the extremes of
+2xV1—- x? by the methods of elementary calculus. We find such extremes when
x?=3. A more elegant procedure is to introduce the parametric equations x = cos 6,
y = sin § for the boundary circle (here 0 is the usual angle of polar co-ordinates).
Then 2xy = 2 cos 6 sin 6 = sin 260, and we see that the values range between

37 = _m 5m
—1<at O—Tor~4—> and +1(at 6= 4or 2 )

We have now found four more points which must be considered along with the
original three when we look for the absolute minimum and maximum values of
the function in the closed region. When we compare the values =1 with the
values at the points listed in the table, we see that the function has the absolute
maximum value +1, and the absolute minimum value —1. The maximum occurs
at the two boundary points (V2/2, V'2/2), (~V2/2, —V'2/2). The minimum occurs
at the interior point P, and at the two boundary points (V2/2, —V2/2,
(—V2/2, V2/2). Our work has not settled the questions as to whether the interior
points Py, P, are points of relative extrema or saddle points. They are in fact saddle
points, as may be shown by an examination of the function in polar co-ordinates.

Example 3. A shelter for use at the beach is to be built in the form of a
box-like space with canvas covering on the top, back, and ends. If 96 square feet
of canvas are available, what should be the dimensions of the shelter to give it
maximum cubic content?

Let the shelter be y feet between ends, x feet from front to back, and z feet
high. Its volume is V = xyz. The area to be covered by canvas is

A=2xz+xy+yz
Since A = 96, we can use this last equation to eliminate one variable, say y:

=96—2xz’ V = 2xz 48— xz
x+z x+z

f&4
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Here V is expressed in terms of the independent variables x, z; we can set
av _av
ax oz
ways preferable is the following: Differentiate both of the equations

=0 and solve for x and z. An alternative procedure which is in some

V=xyz, A=2xz+xy+yz

with respect to x and z, regarding y as a function of x and z. Differentiation with
respect to x gives

9V _ 9 5= 9y 9y,
O—Bx —yz+xzax,0—2z+xax+y+zax

.. a .
We now eliminate 5% between these two equations

& - ~-Y0=2; +x<—x>+y +z<—x>,
ax x x X
Zz—y+y—¥=0,2x =y.
Since x and z enter symmetrically, we infer that 2z = y also, and hence that
x = z. To get the values of x, y, z we return to the formula for A. We now have

96 = 2x(x) + x(2x) + 2x)x = 6x°.

Hence x*= 16, x = z = 4, y = 8. The volume of the shelter of these dimensions is
128 cubic feet.

One logical issue still remains to be settled in the foregoing ‘“‘solution” of the
problem posed in Example 3. How do we know that we really found the
dimensions which yield maximum volume? Our method was based on two
assumptions: First, that there is a shelter of maximum volume under the given
conditions, and second, that when V is expressed as a function of the in-
dependent variables x, z, the equations % = % = 0 are satisfied when V attains
its maximum. If we can justify these two assumptions, our solution will be fully
established. Let us then consider V as a function of x and z. The formula is

48— xz,

S (6.3-3)

V =2xz

we do not consider all values of x and z, however, but only
those which have a meaning for the problem under consid-
eration. Thus we must have x = 0, z = 0. We must have xz =<
48 also, since a negative volume would have no meaning.
The region R in which we consider the values of V is thus
composed of all points of the xz-plane for which x 20, z =
0, xz =48, except the one point x =0, z=0. This point is
ruled out, since V is not defined there. The region R is
shown in Fig. 41. Fig. 41.

. Do

%\\\\\\\\\\\\\\\\N
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Let us now establish the fact that among all possible values of V in the
region R, there is an absolute maximum value, and that this maximum occurs at
an interior point of R. Observe that V is positive in the interior of R and that
V =0 at all points of the boundary of R except the origin (where V is not
defined). Now, from the fact that xz =48 in R we see that

48 Voo

V =96
9 x+z ¥ ’

and hence V —0 as a variable point (x, z) of R moves in such a way that either
x> or z-o, Finally, V>0 as (x,z)—(0,0). For, 2xz=x*+z* and x+z2
VxZ+ 2% are true inequalities (the latter when x and z are non-negative), and
therefore

2 2
V<~9£(}+—Z)—96\/x7+27,

0 = =
VxI+ 22

lIA

so that V>0 as (x, z)-> (0, 0). From the foregoing arguments it is now clear that
if we form a new region R, by excluding from R the points for which x2+ z? < §2
and x2+ z2>1/82%, where 5 is sufficiently small, the values of V at these excluded
points will all be smaller than some of the values of V in the remaining region
R,. Since Ry is a bounded and closed region in which V is continuous, V must
have a maximum value in Ry (Theorem II, §5.3). The maximum valie of V in R,
will also be a maximum value of V in relation to all points of the larger region R.
Since this maximum is positive, it must occur at an interior point of R.

We now apply Theorem I to draw the conclusion that %= %= 0 at the
point where V is a maximum. Since there turned out to be only one point in R,
namely x = z = 4, at which these conditions are satisfied, this point must be the
point where V is a maximum.

EXERCISES

1. Find the point of the plane x + 4y + 42 = 39 nearest the point (2,0, 1).

2. Find the greatest value of the function xy(c —x —y) in the closed triangular
region with vertices (0, 0), (c, 0), and (0, ¢). Assume ¢ >0.

/ 3. Find the absolute maximum of 144x3y*(1—x —y) in the first quadrant of the
xy-plane.

4. Does f(x, y)= x>+3xy + y>+ (576/x) + (576/y) have any absolute extrema in the
region x >0, y >0? If so, find where such extrema occur, and the type (maximum or
minimum). Give all the supporting details of your argument.

5. Find the absolute minimum value of

f(x,y)=x2+y2+(

where A, @, b, and ¢ are positive constants. All values of x and y are admitted. How do
you know that a minimum exists?

/6. Find the absolute extreme values of the function f(x, y) = 2xy +(1~x*—y% in
the region x>+ y>= 1.

2A-ax— by)2
c
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7. Find the absolute extreme values of the function f(x, y)=xy —(1—x”—y»** in
the region x>+ y>*= 1.

8. (a) Introducing polar co-ordinates, show that the function of Example 2 becomes
f(x,y)=F(r,8)=r"sin 26 ~ (1—-r>)*”. (b) Find the extreme values of F for —1=r=1,
6 unrestricted, considering F as defined in a region of the rf plane. (¢} At the points of

the ro-plane which correspond to the points P,, P, of Example 2, show % =0, %1;— =,
3°’F 3°’F , . . .
P <0, 0% > 0. From these facts explain why these points are saddle points and not points

of relative extrema.
9. Solve Exercises 6 and 7 by the introduction of polar co-ordinates as independent
variables.

10. Find the greatest value of the function sin x sin y sin(x +y) in the closed trian-
gular region with vertices (0, 0), (m, 0), (0, 7).

11. Find the absolute maximum value of the function (x*>+ 2y?%e
all possible values of x and y.

12. Find the absolute extrema of the function 3x*— 8xy — 4y’ + 2x + 16y in the square
0=x=2,0=sy=2.

13. Find the absolute extrema of the function x*+ y*+ 3xy?— 15x — 15y in the square
0=x=3,0=y=3.

. 14. Find the minimum value of the function (12/x) +(18/y)+ xy in the first quadrant.
How do you know there is a minimum?

15. Find the maximum value of the function (xy — 4y — 8x)/x*y? in the first quadrant.
How do you know there is a maximum?

16. A rectangular box without a top has length x, width y, and depth z. The combined
area of the sides and bottom is fixed as S square feet. Express the volume V of the box as a
function of x, y, and show that V is greatest when x =y = (8/3)'?, z = x/2. Justify your
solution completely.

17. Consider the function Vx2+ y2+V(x — 1)+ y% (a) Explain carefully why this
function must have an absolute minimum at some point of the plane. (b) What is the
minimum and where does it occur? (c) Are all the minimum points found by setting the
partial derivatives equal to zero?

v 18. Consider the function f(x,y) =|y|+ Vx> +(y — 1)~

(a) At what points do one or both of the first partial derivatives of f fail to exist? (b) Find all
points where they both exist and are equal to zero. (c) What is the absolute minimum value
of f, and at what points does it occur?

19. For what position of the point (x, y) is the sum of the distance from (x, y) to the
x-axis and twice the distance from (x, y) to the point (0, 1) a minimum?

20. Let f(x, y, z) be the sum of the three distances: from (x, y, z) to the y-axis, from
(x, y, z) to the z-axis, and from (x, y, z) to the point (1, 0, 0). Find the absolute minimum value
of f, and where it occurs.

—(x2+y2 . .
&9 considering

6.4 / DIFFERENTIALS

Our purpose in this section is to define what is meant by saying that a
real-valued function of several real variables is differentiable and to define the
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differential of such a function. These definitions are needed in order that we may
derive the chain rules for differentiating composite functions (Theorem 111, §6.5 and
Theorem V, §7.3). We stress the case of two variables, but the ideas apply to
functions of three or more variables, as we shall see.

In §1.3 we defined the differential of a function f of the independent variable x
as the function of x and an independent variable dx whose value is f'(x) dx. The
differential of f is defined at each point x where f has a derivative. The independent
variable dx can have any value. For a fixed value of x the value of the differential is
a multiple of dx, the multiplier being the value f'(x) of the derivative of f at x. Itis
useful to restate the definition of differentiability as follows: the function f is called
differentiable at x if it is defined at x and all points near x and if there exists a
number C such that

lim |f(x + Ax) — f(x) = CAx| —o.
Ax—0 |AX|

We can rewrite (6.4-1) in the equivalent form

lim w_c =0,
Axms0 -Ax

and this new form is in turn equivalent to the assertion

lim L(_""'_A’C_)LM =C.
x—0 AX

But (6.4-2) is the same as the assertion that f has a derivative at x, with value
f(x)=C. ;

Let the functional symbol for the differential be df, and denote by df (x; dx) the
value of df as a function of x and dx. We use a semicolon rather than a comma to
separate x and dx in order to emphasize the fact that dependence of df on dx is in
general different from its dependence on x; df is a linear function of dx. We can
replace dx by other symbols, such as Ax or h. We can write (6.4-1) in the
form

i PG+ ) = i i Bl _ o,

h—0

This is because CAx = f'(x)Ax = df(x; Ax); we simply replace Ax by h. The
characteristic features of the differential are: (1) that df(x; h) is (for fixed x) a
multiple of h and (2) that the limit relation (6.4-3) is valid. This limit relation can be
described by saying that df(x; h) is a good approximation to f(x + h)— f(x) in the
sense that the difference

f(x+h)=f(x)—df(x; h)

is small in comparison with |h| as |h|—>0.

The foregoing discussion of the one-variable case provides us with a
motivation for the definitions of differentiability and the differential for the
case of a function of two variables. For a function f of x and y we want the
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differential df(x, y; dx, dy) to be a linear combination A dx + B dy, where A and
B are numbers determined by f and (x,y), and we want a limit relation
analogous to (6.4-3). In speaking of points near (x,y) we represent them by
(x + h, y + k), where the distance from (x + h, y + k) to (x, y) is Vh*+ k°.

Definition. The function f of (x,y) is called differentiable at (x,y) if it is
defined for all points near (x, y) [that is, in a neighborhood of (x, y)] and if there
exists numbers A, B {depending on f and (x, y)] such that

o fGthy + k)= f(x, y) (AR + BK)| _ F
l 172 =0.
*, k:f(tw,m VhIFK? L

The differential of f at (x,y) is then defined to be the function df of (x,y) and
(dx, dy) with the value

df(x, y; dx, dy) = A dx + B dy. e

Observe that the differential is a linear function of dx and dy, that is, a linear
combination of them. The variables dx and dy can be assigned any values
whatsoever. If we set z = f(x, y), the value of the differential is often denoted by
dz as given by the formula

_of of
dz—ax dx + == dy.

ay
As an immediate consequence of the definitions we can see that when f is
differentiable at (x, y) the partial derivatives g{—c and g—]; exist at (x, y) and are

given by the formulas

Sefwn=a L-peyn=s

Take k = 0, h# 0 in (6.4-4) and let h — 0. The result is

h—0 h

3

which is equivalent to

lim f(x + h, yh)—f(X, )’) = A.

h-0

Therefore, by definition, A is the partial derivative of f at (x, y). The result for B
is obtained in the same way. It follows that when f is differentiable at (x, y) the
paif of numbers A, B satisfying (6.4-4) is unique.

It is important to observe that the requirement on f of being differentiable at
a point is stronger than the requirement that f have partial derivatives with
respect to x and y at the point. This fact is illustrated by the functions in

- Exercises 2-and 7. In each case there the function is not differentiable at (0, 0)

and yet has first partial derivatives with respect to x and y, respectively, there.
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It will be proved later that if the first partial derivatives of f exist throughout
a neighborhood of a point and are continuous at that point, then f is differenti-
able at the point. (See Theorem II, §7.1.) This simple criterion assures us that
most of the functions we ordinarily encounter are differentiable at most points.

The following theorem is useful (in the proof of Theorem V, §7.3, for
example).

THEOREM I1. If a function is differentiable at a point, it is continuous there.

Proof. Let us define a function u of (h, k) by the formula

f(x+h,y+k)—f(x,y) — (Ah + Bk)
VhT+ K

when (h, k)# (0,0). Then we see from (6.4-4) that the limit of u(h,k) as
(h, k)—>(0,0) is 0. From the definition of u it follows that

f(x+h,y+k)—f(x,y)= Ah + Bk + u(h, k)Vh*+ k*

u(h, k)=

and from this we see at once that

lim [f(x+h,y+k)=f(x,y)]=0

(h, k)=(0,0)
But by §5.3 this means that f is continuous at (x, y).

It follows from the theorem that if f is not continuous at (x, y) it cannot be
differentiable there.

A function can be continuous without being differentiable, as the following
example shows.

Example 1. Let f(x, y) = Vx> + y2 This function is continuous at all points,
(0, 0) included. But it is not differentiable at (0, 0). In fact, it does not even have
first partial derivatives at (0, 0). To verify this consider the ratio (for h# 0)

f(h,)—f(0,0) _Vh*—0 _|h|
h " h T h

This ratiois 1if h > 0 and —1if h < 0. Hence it has no limit as h - 0, and the partial
derivative f does not exist at (0, 0). The argument is the same as regards f , by
symmetry.

We shall presently give an example to illustrate the property of the differential
expressed in (6.4—4). For the details of the example and other problems itis useful to
know the following inequalities:

2lab| = a*+ b%;

Va'+b = |a|+|b|=V2Va + b

&
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The proof of (6.4-9) is simple:
0=<(|a|—|b)*=|al* - 2|a]|b] + |b|* = a*—2|ab| + b2.

On transposing 2|ab| we obtain (6.4-9). The first part of (6.4-10) follows from the
obvious fact that

a*+b*= a’+2lallb|+ b*=(Ja] + b))%
The second part of (6.4-10) is obtained with the aid of (6.4-9):
(Ja|+|b]y¥ = a*+2|ab|+ b*= a’+ (a’+ b+ b*=2(a*+ b?).
Now extract square roots at each of the ends of the foregoing inequality.

Example 2. Let f(x,y)=3x?y +2xy?+ 1. Find the differential at x =1, y =2
after verifying that the limit relation (6.4-4) holds for this case.
We use (6.4-7) to find A and B. We have

of _ 2 of _~2
ax—6xy+2y, 3y 3x%+4xy.

Evaluating at (1, 2), we find f(1,2) = 13, f(1,2) =20, f(1,2) = 11, so we form the
expression

f(A+h,2+k)—f(1,2)— (20h + 11k)
=3(1+h)* 2+ k)+2(1+ h)2+k)*+1—15—(20h + 11k).
Upon expansion and simplification, we find that the expression reduces to
2(3h%+ Thk + k) + hk(3h + 2k).
Thus, for this case, the expression on the left side of (6.4-4) becomes
. [2(3h* + Thk + k?) + hk(3h + 2k)|
lim — .
(h, k)>(0, 0) Vhi+k
Now, clearly, 3h2+ k2= 3(h>+ k?). Also, by (6.4-9), 2|hk| = h?+ k2. Therefore, the
fraction whose limit we are considering is not larger than
(h*+ k})(13 + 33k +2k))
VhI+ kK

which equals

VRT+K2(13 + 3|3k + 2k)).
This clearly approaches 0 as (h,k)—>(0,0), so we are through with the
verification. The differential at (1, 2) is

df(1,2; h, k) =20h + 11k.

We saw in Fig. 12 of §1.3 that for the function f, when we consider the
differential of f at (x, y), the relationship between dx and dy is this: as dx varies,
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the point (x +dx, y + dy) moves along the line tangent to the graph at (x,y).
There is a similar relationship in the case of a function of two variables. Let us
assume that f is continuous, and consider the surface S defined by z = f(x, y).
To say that f is differentiable at a particular point (xo, yo) can be interpreted
geometrically. The implication of differentiability is that at the point (xq, Yo, Zo),
where z; = f(xq, yo), the surface S has a tangent plane not parallel to the z-axis.
The equation of this plane is

z—=2p=A(x — x0) + B(y — yo)
of of

where A and B are the values of Ix and 7y
that this plane is indeed the tangent plane, we need a definition of what is meant
by saying that a plane is tangent to a surface at a certain point. Let P, be the
point (X, Yo, Zo) and let M be a plane containing Po. We define M to be the
tangent plane to S at P, if, when P is a point of S different from Py, the angle
between the line PyP and the plane M approaches 0 as P approaches P,. We
shall show that this condition is fulfilled by the plane (6.4-11) as a consequence
of the differentiability of f at (x, yo).

For this purpose we anticipate a result from Chapter 10 that may already be
familiar to the reader—that the cosine of the angle 6 between two vectors is
equal to the dot product of the two vectors divided by the product of their
lengths. See (10.2-3). We take 0 to be the nonobtuse angle between the line P,P
and the normal to the plane (6.4-11) at Py. Because 6 is the complement of the
o
2
that cos § — 0. Now, let P be the point on S determined by x = x¢+ h, y = yo + k,
where h and k are small and not both zero. The vector PoP has components h, k,
Az, where

, respectively, at (xy, yo). To show

angle between PyP and the plane, we have to show that 8 - = or equivalently,

Az = f(xp+ h, yo+ k) = f(xo, Yo)- 16:4-12)
A unit vector normal to the plane (6.4-11) has components A/d, B/d, —1/d, where
d==*(A*+B*+ 1),

and the sign of d is chosen so that the angle between PyP and the normal is
nonobtuse. Then (using formula (10.21-3) for the dot product),

g = |Ah + Bk ~ Az|
ST AT B DT+ K+ (A

Because A and B are constants we see from (6.4-13) that we have to prove that

. |Ah+ Bk —Az| _ .
h. l!:—[»l(lo.(n [h2+ k% (Az)7 7 0. 13

Now, considering (6.4-12), we see that the fraction in (6.4-14) is not larger than

|f(xo+ hy Yo+ k) — f (X0, Yo) = (Ah + Bk)| )
(K> + k)" ‘
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But the limit of the expression in (6.4-15) is 0 as a consequence of the
differentiability of f at (x,, yo). Therefore (6.4-14) must be true.

It can be shown, conversely, that if (6.4-14) is true, then the limit of the
expression in (6.4-15) is 0, and hence f is differentiable at (x, yo) if and only if
the plane (6.4-11) is tangent to S at P,. We forego the details of the proof of
this converse.

Now that we know the relationship between differenti-
ability and the tangent plane, it is easy to see how a func- z
tion f can have both partial derivatives f(a, b), f2(a, b) ex- ‘
isting and yet fail to be differentiable at (a, b). All that is ‘ S
necessary is to have a surface z = f(x, y) such that it has no ‘
tangent plane at x = g, y = b, and yet such that the surface D
is cut by the two planes x = a, y = b in curves which have
tangents at the point in question. The cone z = Vx?+ y?
does not have a tangent plane at its vertex (the origin). The Y
paraboloid z = x2+ y? has the tangent plane z =0 at the
origin. We can readily imagine a surface which coincides x
with the paraboloid where the latter intersects the planes Fig. 42.

x =0, y=0, and which coincides with the cone where

the cone intersects the planes y = xx. Such a surface

z = f(x, y) willhave f,(0, 0) = 0, f>(0, 0) = 0, but it will not have a tangent plane at the
origin (see Fig. 42). One such surface is defined by the equation

2xy

Z:(|x|—I)’l)z"‘\/;ﬂ_—y2 (with z =0 when x = y = 0).

For functions of more than two variables the definitions of differentiability
and differentials follow the model of the two-variable case. For a function f of

the n variables x,, ..., x, we want the differential of f at (x,,..., x,) to have as
its value a linear combination
df(xl,...,x,,;hl,...,h,,)=Alh1+---+A,,h,. Q”
of the independent variables h,, ..., h,, and we want this linear combination to
be a suitable approximation to the difference
foxi+hy,. ., x+h)—f(x, ..., X)

when all the h;’s are sufficiently small. To express this precisely let us for

convenience write
Ihl = (hi+---+h)'"™

Then ||h|| >0 means that each of the h;’s approaches 0. We now define f to be

differentiable at (x,, ..., x,) if there exist n numbers Ay, ..., A,, depending on f
and on the x;’s, such that
lim ‘f(xl+ hl, o 9xn+ hn)_f(xl,- .. ’xn)_(Alhl+ st Anhn)|=0
[T @] 5
%(6:

When this condition is satisfied we define the differential of f by (6.4-16).
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Just as in the two-variable case, we see that, when f is differentiable at

(x1,...,x,), f has first partial derivatives given by
if—=Ai, i=12,...,n
6x,-
If we use a dependent variable u to denote the value of f, then du is defined
as a function of x;,..., x, and dx,,..., dx, by the formula
_9f o .
die =gy, it ot dxn §los0)

As a matter of technique in using differentials, it is important to know the
standard formulas

d(u +v)=du+ dv,
d(uv) =udv + vdu,

d(ﬁ)_vdu—udv_

() D2

Here u and v may represent differentiable functions of several independent
variables. Suppose, for example, that

u=f(x,y),v=g(xy).
Then, by definition,

_ou  du
du—ax dx+ay dy,
av Jv
dv axdx+6yd’

But

with a similar formula for %‘;D) With these relations before him the student can

readily write out the work necessary to verify the relation d(uv) = udv + v du.
We likewise have such formulas as

de" = e" du,
d sin u = cos u du,

du
1+u®

dtan™'u =

’

where u is any differentiable function of several variables. Since these are all
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exactly the same in appearance as the formulas of elementary calculus, we
refrain from presenting a formal list.

All the formulas just considered afford us special instances of the following
principle: A differentiable function of differentiable functions is differentiable. A
fully precise statement and proof of the theorem embodying this principle will be
given later (see §7.3). For the present we observe that it covers such statements
as the following:

Let u= f(x, y) and v = g(x, y) be differentiable functions of x, y. Let F(u, v)
be a differentiable function of u, v, and let w = F(f(x, y), g(x, y)). The w is a
differentiable function of x, y, and

dw=£du +£dv
u av

when the right side of this last equation is expressed entirely in terms of x, y, dx,
and dy.

A particular consequence of the principle enunciated in the previous
paragraph is that the form of the relation

3 3
df(x,y) = % dx +£ dy

is valid even when x and y are not independent variables, but are differentiable
functions of other variables. This invariance of form is one of the very important
properties of differentials.

Example 2. If z = log(x*+ y?), find dz.
We use the formula

du
dlogu—T

with u = x>+ y2 The result is

_d(x*+y%) _2xdx+2ydy

dz x2+y2 = x2+y2

The coefficient of dx here is g—i, and that of dy is g—i—, as the student should

verify.

Example 3. Let a, b, ¢ be the sides of a triangle, and let 6 be the angle
opposite the side c. Regarding ¢ as a function of a, b, and 6, find the differential
dc. Use the result to find ¢ approximately when a = 6.20, b = 5.90, and 6 = 58°.

By the law of cosines we have

¢?=a*+b*—2ab cos 6.
Hence (using radian measure for 6),

2c¢dc =2ada+2bdb +2ab sin 6d6 —2a cos 6 db —2b cos 0 da.




6.4 DIFFERENTIALS 153

This equation permits us to calculate dc when a, b, 6, da, db, dé are known. To
solve the numerical problem proposed in the example we start from a triangle
with a =6, b =6, 6 = 7/3 (60°). Then cos 6 =3 and ¢ = 6. We are interested in Ac
when Aa =0.20, Ab = —0.10, and A6 = — 7/90 radians (the equivalent of —2°).
Hence we set da=0.20, db =-0.10, d0 = — 7/90, and use dc as an ap-
proximation for Ac. We obtain from (6.4-20), after dividing by 2,

6dc = 1.20—0.60 + 36(\—/2—3)(

6dc =—0.79,dc = —0.13.

Hence the new value of ¢ is approximately 6 —0.13 = 5.87. This result does in
fact agree with the exact value of ¢ to two decimal places.

w

- 9—0> +0.30 - 0.60,

EXERCISES
1. Find the differential of f(x, y) in each of the following cases.
(a) x*+ y*+6xy (©) (x*+yH/xy

(b) ey (@) (x*+y3)*?
2. Suppose f(x,y) = xziyyz for all (x, y) except (0,0), and let f(0,0) = 0. Show that

£1(0,0) and f»(0, 0) both exist with values equal to 0 but that f is discontinuous at (0, 0).

3. (a) Show that

X y
vt ) ya( ) =0
Vx +y Y Vx +y

for all values of x and y such that x>+ y>>0, and for all values of dx and
dy. (b) Generalize (a) by proving that Si. xd(x/r)=0 if r=(xj+---+x%)'" and
Xi,..., X, are independent variables.

4. Find dz at x =1, y = @/2 if z = x*y + €” sin y. What is the resulting value of dz if
dx =1 —e, dy = €*?

5. If f(x,y)=(50~x>—y)" find an approximate value of the difference f(3,4)—
f(2.9,4.1) by use of differentials.

6. If u and v are differentiable functions of x and y, prove the formula
d(5>=vdu —Zu dv ,

v v

assuming that v# 0.

7. Let f(x,y)= \/IYy~|. (a) Verify that fi(0,0) = f»(0,0)=0. (b) Does the surface
z = f(x, y) have a tangent plane at x = 0, y = 0? Consider the section of the surface made
by the plane x = y. (c) Verify that for this case the requirement (6.4-4), with x =y =0,
cannot be satisfied, no matter how A and B are chosen.

8. Assuming that f; and f, both exist at (x, y), prove that if

llm f(x+h’y+k)_f(x7y)*f|(x’y)h~f2(x,y)k
(h, k)0, 0) VI

exists, the limit is 0.
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6.5 / COMPOSITE FUNCTIONS AND THE CHAIN RULE

We use the term composite function for a function which is obtained from a
given function of one or more variables by substituting other functions in place
of the variables in the first function. As an example, consider the function

F(x,y)=Vx*+yL
It is a composite function which may be built up as follows: Let
fa)=u'", ¢(x, y)=x*+y>
On r\eplacing u by ¢(x, y) we get
f($(x,¥)) = F(x,y).
As another example, consider the function
f(x, y) = xy +log >-

In this function let us replace x and y by certain functions of new variables r, 6,
as follows:
x=rcos 0,y =rsin 6.

The result is a function of r and 6:
F(r, 8) = r*sin 6 cos 6 + log tan 6.
Note that we may also write
F(r, 0) = f(rcos 8, rsin ).

Most of the functions we deal with are built up as composite functions. We
meet the concept of a composite function very early in the study of elementary
differential calculus; it is there that” we learn the very important rule of
differentiation embodied in Theorem II, §1.11. We are now going to be concer-
ned with extensions of this rule for functions of several variables.

Let us first consider a function of three variables, say

u=F(x,y,z). & ﬁ—;i')ﬂ

We are going to suppose that the variables x, y, z are made to depend upon a
variable t; let the notation for this dependence be

x = f(t),y = g(t), z = h(t). (a8

On substituting these functions for x, y, z in the function u = F(x, y, z), we
obtain u as a composite function of t; if we denote this function by G(t), we
have

u = F(f(t), g(1), h(t)) = G(1). (6.5-3)
The formula of differentiation for this composite function is

dt  ax dt 9y dt | oz dt
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We shall presently prove this formula under suitable hypotheses. 1t is very
important for the student to learn the structure of this formula; as a part of such
learning, he must grasp clearly the role of the variables in the notation of each

term in {6:5<4). In the term %%, u and x are related by .

% u is dependent,

and x is one of the three independent variables x, y, z. In the term %)tﬁ’ x and ¢t

{ x is dependent and t is independent.

are related by the first of equations¥

In the term %Lti, u and t are related by #.523); u is dependent and t is

Yiis
dG _aF df , aF dg , oF dh

independent. An alternative notation for (%},5@

dt ~ ax dt ' ay dt ' 9z dt

This notation is clearer and less subject to misunderstanding. However, both
methods of writing the formula are widely used, and the student should become
familiar with both of them.

There are other varieties of composite functions in addition to the type
presented in (6:5«3). The function F may depend on a different number of
variables (e.g., 2, or 4,5,...). Also, the variables x, y, z may depend upon more
than one variable. Suppose, for example, that we have

u = F(x, y),

x=f(s, 1),y =g(s,1).
Then, under suitable differentiability assumptions, if we write G(s, )=
F(f(s,t), g(s, 1)), we have the differentiation formulas

9G _ OF of  oF dg,

as Jx ds dy 0s

(6:5-6).

€5
4G _oF of _oF o,
at  ox at | ay ot
The general rule covering all formulas such as #&:.545) and ¥ ¥is often

called the chain rule, or the composite-function rule.

To describe the situation generally, let us use the term first-class variables
for the independent variables on which F depends, and the term second-class
variables for the variables on which G depends. Observe that G is formed by
replacing each first-class variable in F by a function of the second-class
variables. In the differentiation formulas such as (6.5-7) we have as many
different formulas as there are variables of the second class; each formula has as
many terms as there are variables of the first class.

We shall now formulate and prove a theorem about formulas such as (6.5-5)
or (6.5-7). For simplicity we assume the situation is that represented in (6.5-6).

THEOREM I11. Let F(x, y) be defined in some region R of the xy-plane having
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the point (a, b) as an interior point, and let F be differentiable at (a, b). Let
f(s, t), g(s, t) be defined in some neighborhood of the point (so,ty) in the
st-plane. Let these functions admit first partial derivatives at (s, to), and
suppose further that

a = f(so, to), b = g(s0, to). (6.5-8)
Then the composite function G(s,t)= F(f(s,t),g(s,t)) has first partial

derivatives at (s, ty), given by formulas (6.5-7), where %, % are evaluated

at (a, b), and the partial derivatives with respect to s, t are evaluated at s, to.

Proof. It is to be emphasized that, although we are assuming that F is
differentiable at (a, b), we are not drawing a conclusion about differentiability of
G. Nor are we assuming differentiability of f and g. We deal merely with partial
derivatives of f, g, and G. This form of the chain rule is therefore a little different
from the chain rule for differentials given in Theorem V, §7.3.

The proof begins with use of the fact that F is differentiable at (a, b). This
means that the ratio

F(a+Ax,b+ Ay)— F(a, b)— F\(a, b)Ax — Fx(a, b)Ay

V(@Ax) +(Ayy
approaches 0 as Ax -0 and Ay - 0. Here we assume that Ax and Ay are small,
but not both 0. Let us define € (depending on Ax and Ay) to be the value of the

fraction in (6.5-9) if the denominator is not 0; if Ax = Ay =0 we define ¢ = 0.
Then we can write

F(a+ Ax,b + Ay)— F(a,b)= F\(a, b)Ax + Fxa, b)Ay + eV(Ax) + (Ay).
(6.5-10)

This is true even if Ax = Ay = 0. It is clear from the definition of e that e -0 as
Ax -0 and Ay - 0.

Now we undertake to prove the first formula in (6.5-7). The second formula
is proved in the same way. For small As(# 0) let us write

Ax = f(So+ As, t)) — f(S0, to),
Ay = g(so+ As, to) — g(so, to), (6.511)
Au=F(a+ Ax,b+ Ay)— F(a, b).
Then it follows from (6.5-8) and the definition of G that
Au = G(so+ As, to) — G(Sq, to),

(6.559)

so that, by definition,

. Au
}ISI‘I,})'A—S = G1(So, to)

if the limit exists. Now, from (6.5-10) and the third formula in (6.5-11) we see
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that

Au _ Ax Ay V(@Ax)+(Ay)
As Fi(a, b) As + Fy(a, b)H+ € ———A;————

We are now ready to take limits on both sides of this equation as As — 0. On the
right we have

Ax A
E_)fl(s()’ tO)’ A—i'_) gl(s(b tO)

Also € >0 because Ax —» 0 and Ay — 0. [The fact that Ax —» 0 is a consequence of
the continuity of f(s, to) as a function of s alone, at s = s¢; see Theorem I, §1.11.
The reasoning for Ay — 0 is the same.] Finally,

V(Ax)Y + (Ay)? [(Ax)z (Ay)2]”2
—_— T2 | == = + —_—
As As
has a definite limit. Thus we see that

As
G (50, to) = Fila, b)fi(so, to) + Fx(a, b)g(so, to).

This is the same as the first formula in (6.5-7) when the partial derivatives are
expressed in the appropriate notations to show the values at (a, b) and (s, tp).

Example 1. If F(x,y) is a given differentiable function of x, y, and if we
introduce polar co-ordinates r, § by writing x = rcos 8, y = rsin 0, then F is
transformed into a function G of r and 6:

G(r, )= F(r cos 6, r sin 9). 16:5-12)
Use the chain rule to find 96 and G in terms of IF and 9k
ar 00 ox ay

Here the first-class variables are x, y and the second-class variables are r, 6.
We have

ax ay _ .
ar =cos 8, ar sin 6,
%:-—rsin@, %=rcos().

The chain rule, in the form (6.5-7) with r, 8 replacing s, t, then gives

G oF oF .
ar - ox cos(H-ay sin 6,

aG aF . oF
o = 4+ — .
20 I rsin 6 3y rcosf

To emphasize the meaning of these formulas, let us evaluate each part of them
for r =1, 8 = w/6. The corresponding values of x, y are x = V3/2, y =34. Then,



158 THE ELEMENTS OF PARTIAL DIFFERENTIATION Ch. 6

using the subscript notation for partial derivatives, equations (6.5-13) become

GI(1,3)=F1(\/§ 1)\/_§+F2(\/§ 1)1

; 2022 TN (6:5-14)
: - B f(6:5:14)y
(13RI RENE
2 96 1 2 ,2 2 2 2 ’2 2

Thorough familiarity with the chain rule is of great importance to any student
who wants to read books and journals in which mathematical methods are used
extensively. Adequate training in the use of the chain rule must include, among
other things, stress on the idea of transforming a given function of one set of
variables into a new function of another set of variables, with a resulting set of
formulas relating the two sets of partial derivatives of these functions. Ideas of
this sort are constantly used in the theory of partial differential equations, and
such ideas are at the very root of tensor analysis, which is an important subject
beyond the scope of this book. Tensor analysis is an outgrowth and generaliza-
tion of vector analysis. A brief discussion of some of the fundamental concepts
of Euclidean vector analysis is given in Chapter 10. The chain rule plays an
important part in the discussion of such concepts as gradient, divergence, and
curl in vector analysis.

FPr an example of a physical problem where the chain rule is involved see

4

Matters of notation play a considerable role in connection with the chain
rule. Wide varieties of usage exist in mathematical writing where the chain rule
is concerned. Consider the situation expressed in (6.5-6). Instead of writing the
chain rule here in the form (6.5-7), it is frequently written

ou _ ou dx | du dy pa

3s " oxds ayas’ 16.5-15)
with a similar formula in which t replaces s. The difference between (6.5-7) and
(6.5-15) is that in (6.5-15) we have used dependent variables in place of
functional symbols. The student must bear in mind some of the subtleties of
distinction between a dependent variable and a function. If we write u =
F(x,y), u denotes the value of F at the point (x, y). If x = f(s,t) and y = g(s, t),
and if F(x, y) is thereby transformed into G(s, t), we may also write u = G(s, t),
since the value of G at (s, t) is the same as the value of F at (x,y) when x and y
are the values of f and g, respectively, at (s,t). But though we may write
u = F(x, y) = G(s, t), this does not mean that F and G are the same function; in
general they are not.

Example 2. If F is a differentiable function of two variables, and
u=F(s—1t%t2—s?%,
show that
u ou _

t—+s

75 TN 0. ®:5<16)
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One method of handling this problem is to introduce new variables
x=s2—t%y=1—s2,

so that u = F(x, y). Then, by the chain rule,

au
Te= (s >+~( 2s),
u _
T ( 2t)+—~(2t)

The correctness of (6.5-16) is now readily deduced.

It sometimes happens that a problem involves several variables and several
relations between them. Consider, for example, the four variables V, S, r, h
connected by the two equations

V = arth, S = 2mrh + 271k

These formulas arise if we consider a right circular cylinder of height h, radius
of base r, volume V, and total surface area S. Of the four variables, just two are
independent. Ordinarily we most naturally think of r and h as independent, but
other choices are legitimate. We may choose r and S as independent. Then

S

" 2ar

h - V=4S~ 7r 615418y

In view of what has been said, it is evident that a notation such as % is

ambiguous, for if we calculate from (6.5-17) we have %= 24rrh, while if we

calculate from (6.5-18) we have % =18 — 372, and these two results are not in

agreement. What is needed is a notation that makes clear the choice of the
independent variables. A customary notation employs subscripts. According to

thlS praCthC,
(a ! )
a h

indicates that we are regarding V as a function of the independent variables r, h,
with h held constant in the differentiation. With this notation we have

’ - S -2 ’

Situations like this arise in thermodynamics, for example, with different
variables, of course, and different relations between them

EXERCISES
In all these exercises it is assumed without explicit reference that all the functions
introduced are differentiable.
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1. If w is a function of p, q, r and each of these latter variables is a function of s,

write the chain-rule formula for Z—:

2. If u=x*>—y” and v =2xy transform F(u,v) into G(x,y), find —JC: and % in

terms of —F and E
ov

3. Deﬁne the composite function G and write the formula or formulas of the chain
rule in each of the following situations. Identify the first- and second-class variables in
each case.

(@) u=F(x,y,2),x=f(p,q), y =8(p, q), z = h(p, q).
(b) u=F(w),w=d(x,y).
(€ u=F(x,y,28),x=ft),y=g),z=h(@),0 =t.
- 4. If x=u, y=u+v and z=u+o+w transform F(x,y, z) into G(u, v, w), find
each of the first partial derivatives of G in terms of the first partial derivatives of F.

5. Suppose u depends on x;, x2, x3 and the x’s depend on &, & as follows:
xy=anéi+ané
X2 = anéit+ axné
X3 = anéi t ané:

where the a’s are constants. Write the formulas connectmg — and— tha—u du, and ou,
&, 3¢z X1 0x2 0X3

Generalize for the case of nx’s and mé’s.
6. If w=F(a+ at,b+ Bt, c +vt), where a, b, ¢ and «, B, v are constants, write a

formula for dw involving Fi(a + at, b + Bt, ¢ + yt) and other similar expressions.

dt
/7. If u=f(x—y,y—x), prove thata—u+a—u=0.
ox dy
8. Ifu ZF(y_—_x,z—x>’ prove that L yza—u+ 2% .
xy xz ax ay 0z

_oF(2 ., ow, dw_
J9. Ifu xF(» )provethatx +yay+zaz 3u.

10. Let f(x,y) be transformed into g(u,v) by x=ucosé—vsin8, y=
u sin 6 + v cos 0, where 0 is constant. Show that

(3 (8 - G0+ ()

is an identity in u and v.

s aw\*_1 G_W>2- w
11. Ifw=f(x,y)andx—rcoshe,y—rsmhe,ﬁnd(ar> 7(86 mtermsofax
andﬂ

ay

12. Let F(x, 1) = f(x +2t)+ f(3x — 2t). Set u = x+2t, v = 3x —2t, and show by the
chain rule that

Fi(x, t) = f'(u) + 3f'(v),
Fa(x, t) = 2f"(u) = 2f (v).
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Hence show that F«(0, 0) = 4f'(0), F»(0, 0} =0.

13. Let z = yf(x*>— y?). Show that y g—i+ x ===

- y 9z 0z _
14. If z=xy + xF(x), show that x Ix +y 3y Xy + z.

2 2
15. Suppose u is a function of r and r = (x> + y>+ z%)"%. Show that (a_u) + <6u) +

; ou
(3 -G c
az dr/ -

16. Consider the determinant

dsy QA ds;

Let A;; be the cofactor (appropriately signed minor) of a; in D. If the nine elements of D

. . D
are regarded as independent variables, show that ——ga = A;. Now suppose that the
ij

. . . d .
elements a;; are differentiable functions of x, and let a}; = Ix (a;}). Show by the chain rule
that
ap an ais
a1 Az  d23
dsy  dsz dss

an  di2 dis
as ak ais
ds;; A3z dss

an diz dis
a2t 42 d2|-
as asxn as

dD

dx

+ +

17. Generalize the results of Exercise 16 for determinants of order n. State the final
result as a verbal rule,.

18. If
f{x)  fax)  fa(x)
F(x,y,2)=| fuy) fAy) fa(y) |’
fuz) fA2) fs(2)
calculate §£’ a—li, and oF by the results of Exercise 16.
ax dy 9z

19. Write out in detail and prove the version of Theorem III that corresponds to
(6.5-1), (6.5-2), and (6.5-5).
20. In Example 2 let G(s,t)= F(s*— > t*—s%). Formula (6.5-16) now becomes
tG (s, 1)+ sGs, t) = 0. Rewrite the chain-rule formulas in the solution of Example 2
without using the letters x, y, u.
aS

i IS) (2 (35 (k)
21. From the situation expressed by (6.5-17) find <6V);.’ (av),’ (av \ar )y and
(%)
aS/n

22. (@) If u=x*+y*>+2z*> and z=xyv, how many meanings are there for
g—;‘? (b) Find g_u in each of its meanings, indicating the meaning in each case by proper
subscripts.

23. (a) If V =xyz and S = xy + 2xz + 2yz, find % in each of its possible meanings,



162 THE ELEMENTS OF PARTIAL DIFFERENTIATION Ch. 6

indicating the meaning in each case by proper subscripts. (b) Find

(55), (25),, e (25)
0x y,V’ vV X,y aS xy.

_ _ du _du , dudy. .
24. If u=F(x,y) and y = f(x), show that - x +— 3y dx Explain carefully the
du

difference between a— and I

25. If G(x,y)= F(x, ¥, f(x,¥)), show that Gi(x,y)=Fux,y, 2} + Fi(x, y, 2)f:(x, y),
where z = f(x, y). Classify the variables and show that this is an instance of the chain
rule. Write the corresponding formula for Gi(x, y).

6.51 / AN APPLICATION IN FLUID KINEMATICS

A very good illustration of the occurrence of formulas such as (6.5-4) or (6.5-5)

in physics is furnished in the very beginning of the study of the flow of a fluid.
To build up a mathematical model of an arbitrary

fluid in motion, let us fix our attention upon a certain

portion of the fluid at a certain instant of time, say the ‘
fluid occupying a region R, at the time t = 0. Then,
selecting an arbitrary particle of the fluid in Ry, we

follow its motion as t increases. Each particle of the

fluid will occupy a certain point of space at a certain R, R

time. At a general instant t the portion of the fluid  Fig. 43.

which occupied Ry at t = 0 will occupy a new region

R the particle which was at the point (xy, yo, zo) of Ry will have moved to a point
(x,y,2z) of R (see Fig. 43). We assume that the law of motion of the fluid is a
definite (but perhaps very complicated) law, so that the co-ordinates (x, y, z) of
the particle in R are determined by (i.e., are functions of) x,, ¥o, 2o, t, say

X = f(X(), Yo, Zo, t)’
y = g(Xo, Yo, o, 1), (6.51-1)
z= h(x()’ Yo, 2o, t)'

These equations define the flow of the fluid for time subsequent to t = 0. In what
follows we shall regard the functions f, g, h as known without specifying them in
any particular manner.

The velocity of an individual particle at a given instant has components

at’ at ot

The velocity is a vector quantity; it is tangent to the path which is being followed
by the particle under consideration.

Now let us consider the density of the fluid. If the mass of a substance is not
distributed uniformly throughout its volume, it has variable density, and we must
speak of the density at a point. Let us then consider the fluid in the region R at
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time t; fet p be the density at the point x, y, z. Then p is a function of x, y, z.
Conceivably p might be constant, but it need not be so. (The fluid might be the
atmosphere, and R might be a region extending from sea level up to a height of
30,000 feet.) It is important to note that p does not depend merely on x, y, z. It is
also a function of t, for the fluid which occupies a given region at time t need not
have the same mass distribution as the fluid which occupies that region at some
other time. Let us write

p=F(xy,z1). (6.51-2)

If in this equation we keep t fixed and vary the point (x, y, z), we obtain the
density of the fluid in R at time t. On the other hand, if we fix the point (x, y, z)
and vary t, then we obtain the density at (x, y, z) of the fluid occupying R at
different times.

There is still another important way of examining the variability of p.
Imagine an observer moving along with a particle of the fluid. If he were capable
of measuring p at his own position at any time, by what equation would he
describe his observations? For him p is the composite function obtained by
substituting x, y, z from (6.51-1) in (6.51-2). The result is that p is a function of
Xo, Yo, Zo, L. Since the observer stays with the same particle always, xy, yo, 2o are
to be considered as constants, and p becomes a function of t alone, say

p = G(1). (6.51-3)

Now let us ask the question: From the point of view of the observer moving
with the particle, what is the rate of change of p? The answer is, of course, the
value of the derivative G'(t). Since G is a composite function we may express
G'(t) by the chain rule. We see in (6.51-2) that F depends on four variables, x, y,
z, t. These are first~class variables. By equations (6.51-1) the variables x, y, z, t.
depend on other variables xo, yo, 2o, t. These are second-class variables. Note
that t is both a first-class variable and a second-class variable. One way out of
the perplexity which the student may at first experience in this situation may be
found by an artifice of notation. Let us temporarily introduce a different letter,
say 0, to stand for t in the set of first-class variables. We then write p =
F(x,y,z,0) and add the equation 6 =t to the set (6.51-1). The chain rule then
gives

dG _ oF of , oF sg , aF oh  F 36
dt dx at  dy ot dz at a8 at

Having obtained the formula, we may forget the artifice, and write t again in

place of 6. Note that %(tz = 1. It is more usual, in the literature of this subject, to

write the letters p, x, ¥, z instead of the functional symbols for these variables.
When this is done we have

dp dpox  dpdy  dpdz  dp
—_———= = '_‘—‘I"—" 6.51_4
dt ox ot * ay ot * dz at  at ( )
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The derivative of p with respect to t occurs here in two different forms, with
different meanings.

EXERCISES

1. Let the fluid flow be the movement of the atmosphere. From the point of view of
an observer standing on a street corner with the wind rushing by, what is the expression
for the rate of change of density of air on the street corner? If the observer were to ride
in the gondola of a freely-drifting balloon, what would be the expression for the rate of
change of density of air at the gondola?

2. Suppose the atmosphere over a great plain is in a state such that at any given time
p is a function only of altitude above the plain. Suppose that a free balloon is drifting
along at a constant elevation of 500 feet. Explain why an observer carried by the balloon

dp _dp,
finds that a = ot

3. Suppose that,in (6.51-1), z is independent of ¢, and that
p=H(E*>+y>+2°1).

Show that Zp 3’; at all points on the z-axis.

6.52 / SECOND DERIVATIVES BY THE CHAIN RULE

The purpose of this section is to illustrate by examples the use of the chain rule
in dealing with second derivatives.

Example 1. If F(x,y) is transformed into G(r, ) by the equations x =
2

rcos 8, y=rsin g, find in terms of derivatives of F with respect to x and

or a0
y.

We start from the work already done in Example 1, §6.5. From (6.5-13) we
have

6G _oF oF

0 - ax s1n0+ayrcos0
We now differentiate both sides of this equation with respect to r, bearing in
mind that % and —1—;— depend on x and y, and are thus to be regarded as

composite functions of r and 6. We have

’G _ 9F 8 9 (rsi )__ (aF)r sin 6
ara6  ox or ax

o
aya(rc s0)+

6.52-1
aF ( )

3y )r cos 6.
The problem now facing us is that of doing something further with expressions

like — <%E> Now %f— = Fi(x, y). What we really have before us is the problem
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of finding %, where H(r, 9) = Fi(r cos 8, r sin 0). This is a problem exactly like

that of finding %—Cr;, except that we have F; in place of F, and H in place of G.

Thus, just as in (6.5-13),

oH _ oF, oF,
ar ax cos 6+ 3y sin 6.

This may be written

d (0F\ _0°F 3’F .
P (a—x) = 557 €Os 0+ By ox sin 6. (6.52-2)
In a similar way we find
d (dF\ _ 8°F 3°F .
ar <ay) = 2% 3y cos 0 + 3y sin 6. (6.52-3)
If we now use (6.52-2) and (6.52-3) in (6.52-1), we obtain
3°G _ OF . 3°F *F . .
ra0 - ax i 6—<ax2 c0s6+ayaxsm6>rsm6
oF 3’F 3°F (6.52-4)
+WCOS 0+ <ax 3y cos 0 +.a—y2 sin B)r cos 0.

In order to get this far we naturally assume that F and its partial derivatives F,
F, are differentiable functions of x, y. Under this assumption it is true that

’F _ 3°F . .
3y dx - ax dy (see Theorem IV, §7.2). Therefore (6.52-4) may be written in a
slightly more compact form. If we write u = F(x, y) = G(r, 0), (6.52-4) becomes
iu . 3’u ) .2y %
3790 r sin 0 cos 0 axz-|~r(c0s 0 —sin” 0) 5% 3y
52 s Py (6.52-5)
. TR u u
+rsinfcosf 3y’ 51n()ax-l~cosf)ay
. 8%u u., ..
The work of finding formulas for 57 and S0 18 similar.

Example 2. If u = F(x, y) becomes G(s, t) when we set

x=st+tt,y=s—1,
u  du . . .
find what Eroami becomes in terms of derivatives with respect to s and ¢.

For this purpose we express s and t in terms of x and y; we regard s, t as
first-class variables and x, y as second-class variables. We have

= x+y)t=Hx—y).
Then
ou ouds duaot 1 du 1du. 5
ax asax T atox 2 as 24t (6.52~6)
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Likewise,
ou_lou_1du.
dy 29s 24t (6.52-7)
Differentiating again,
Pu_19 (), 17 (o)
ax®  2dx \as/ 2ax \ot
L, Ou .
Now, by (6.52-6), with P place of u,
2 ()10 (), 10 (ouy.
dx \as/ 24s \as/ 2at \ds
We find — (a—';> in the same way. Thus
'u _10%u 1 8% 1 3°u [ 1d°u
ox’ 405’ " 4atas dasat 4 ar (6.52-8)
. d’u a2u
We shall assume enough about u to insure that 335 353 - The student should
show for himself that
o'w 19 1 0w | 13°u
Gy’ 4as’ 20tas 4ot (6.52-9)
Subtraction of (6.52-9) from (6.52-8) now gives the result
2 2 2
o'u  90°u ’u (6.52-10)

ax* " 9y’ atos

The basic point to be noted in using the chain rule in connection with second
derivatives is this: Suppose u is a function of first-class variables x, y, . .. and of
second-class variables s,t,.... Then, if we have written down a chain-rule

formula for one of the derivatives %E’ %lti’ ..., this same formula is valid if we

replace u throughout by any one of the derivatives %’ g—';n ... We are thus able

to express symbols like aa—s (g—;‘) entirely in terms of second derivatives of u with

respect to the first-class variables x, y, ...

c

EXERCISES
G °G .
1. Find formulas comparable to (6.52-4) for a5 and 57 In the problem of

Example 1. Hence show that
aZG

= 2+

3G 19G_2°F O°F
or " r2 807 ox® ayr

6,1
r
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2. If u=F(x,y) becomes G(r, 8) when x = r cosh 8, y = r sinh 6, show that
1ou 1% _d*u_ du

o T rar P ee® ax® oyl

3. If G(s,t)=F(e'cost, e sint), show that G,; + G = > (F,; + F»), where G,
and Go, are evaluated at (s, t) and F,; and F,, are evaluated at (e® cost, ¢’ sin t).

4. Give a complete proof of (6.52-9).

S5.If¢t=x+ct, n=x-ct, and u = F(x, t) = G(§, szg

derivatives with respect to & and .
u *u  d’u . a1 B

l 6. ShowthatS 2+2axay+ ay? agz+aﬁr]21fweset.f—;(x+y),~n—
3(x —2y).

7. If u=d(x—ct)+ y(x 2 0%

. 0x2
2

8. (@ If wu=F(x>-2xy), let w=x>-2xy and show that %x—lﬁ =
2F'(w) + (2x — 2y)°F"(w).
(b) Find similar expressions for 6"u and il;

dx dy ay

: au ou
(c) Verify that x 2=+ (x — y)a =0,

0 au o’u _d’u  2du
6y a2 dar rar
Hence find the form of F(r) if this last expression is equal t0 zero when r > Q.

(b) Generalize the results of (a) for u = F(r), r = (x}+ x3+ - -+ xD)'"

9, (@) If u=F(r) and r=x*+y*+2)"?,

10. If V —lg< c) where c is constant and r = (x> + y*>+ z%)"?, show that

<

3’V _ 13V,
822 et

+

FEAAN L
+
2 ayz

au 9u auau

11. If u = F[x + f(y)], show that 5; axay 3y ax’

3 20U ou
12. Show that y a y 3y’ 2t 35 30 2t as when we set
s=y —-X ,t=y—x.
13. If u = x*F(y/x, z/x), show that
2 a u 2 0 U_ 2 8 u 3%u au _
NI TY T T 2 T gy az+4y ay +az 5 =6bu

il
14. If u=F(x,y)=G(s,t), where s=xy, t=%, find 2 2+2xy +(y 3)%+

x*y*u in terms of s, t, u, and derivatives of u with respect to s and t.
u ,0%u au . 3%u
- —_— _ +
+y z+ X + y ay into —— 52

82
. = p° = pf 2
15. Prove that setting x = ¢*, y = e' changes x e 3y
’u
at?
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16. Suppose that x = f(u, v), y = g(u, v) transform F(x, y) into G(u, v). Suppose also

3f o _ og
that a an o o
2GazGazFazFazaz_...

Prove that — ” 8v2 (ax + af)[(ﬁ) + (5—9 ] Is an identity in # and v.
17. If u = x"f(y/x) + x "g(y/x), show that

a%u a%u ’u . _du . du

20 U 20 U ou ou _ 2

T Gy TY gy Ty TV Gy Tk

18. (@) If u=F(x,y)=G(s,t) and x=f(s,t), y=g(s,t), show that G, =
Fisfi+ Faug’+ 2Fof 181 + Fif iy + Fagui, where for convenience all the variables have been
omitted from the functional symbols. (b) Write this same formula using the variable u
and not using any of the functional symbols F, G, f, g. (¢) Write analogous formulas for
Gz and Ga.

19. Let
& =a,x;+ apx:
£2= a21X1 t AnX2
where the coefficients ai,...are constants With this change of variable, show that
d’u 0’u ’u d’u d’u d’u
a2, +c > wh h
AP 2b ax o €z QF 2B FERFTR +y- T where the coefficients a, b, ¢, and

a, 3, v are related in such a way that
- Bz = (ac — bz)(auazz- 11211112)2.

20. If the change of variable (with constant coefficients)

changes

show that

6.53 / HOMOGENEOUS FUNCTIONS. EULER’S THEOREM

Consider the functions

Xy
x+y

. x2y log -
xyng

x'+yh

Each of these functions has the interesting property that, if the variables x, y are
replaced by tx, ty respectively, where t is a parameter, we obtain the original
function multiplied by a power of t:

(tx)*+ (ty)* = 2(x* + y?),
((ty) _, xy
(tx) + (ty) x+y

2 by _ 3< 2 Z)
(tx) (ty)logtx t xylogx .
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Functions of this type are called homogeneous. In general, we say that F(x, y) is
homogeneous of degree n if

F(tx, ty) =t"F(x,y) (6.53-1)
for all values of x, y, and ¢t for which F(x,y) and F(tx,ty) are defined. The

degree n is a constant; it need not be an integer, and it may be negative. It may
also be zero.

x
x1+y?

Example 1. (a) is homogeneous of degree —1. (b) x"+xy™2? is

2__ 2
homogeneous of degree §. (c) %r-l——y_z is homogeneous of degree 0.

If the fundamental relation (6.53-1) holds true only when t is restricted to
positive (or nonnegative) values, we say that F is positively homogeneous of
degree n. An example in which the limitation to nonnegative t is essential is
furnished by the function V x>+ y?, which is positively homogeneous of degree
1. Since by definition the radical sign calls for the nonnegative square root of the
radicand,

V(tx) + (ty) = tVx* + y*
holds only if ¢t =0.

The definition of homogeneity is extended in an obvious way to functions of
any number of variables.

The meaning of homogeneity can be interpreted
geometrically. We refer back to §5.4, where we discus- Y
sed modes of representing a function. If (x, y) is a point (tl: tty)
distinct from the origin in the plane, the set of all
points (tx, ty), as t varies, fills out the line determined )
by (x, y) and the origin (see Fig. 44). The fundamental z
relation (6.53—1) states that the value of the function 0
Ij“ at the point (tx, ty) is t" times the value of the func- (i, ty)
tion at the point (x, y). Thus, once we know the value t<0
of F at a point other than (0, 0) on the line, we can
compute its value at all other points on the line where Fig. 4.
it is defined. We must of course know the degree n. If .
the function is merely positively homogeneous, the requirement ¢ = 0 limits us to
points (tx, ty) on the same side of the origin as (x, y) itself. It is clear that if F is
positively homogeneous, and if we know its values at all points of the circle
x2+ y?=1, we can compute its value at any other point where it is defined.

Many simple or important functions arising in applied mathematics are
homogeneous or positively homogeneous. For example, if F is such that its
values are directly proportional to the nth power of the distance from the qrigin
to (x, y), then F is positively homogeneous of degree n. In fact, we can write

F(x, y) = Ar", r = (x*+ y)'?, whence F(tx, ty) = t"F(x, y) if t=0.

One of the useful pieces of information about homogeneous functions is that
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furnished by a theorem named after the 18th century Swiss mathematician
Leonard Euler.

EULER’S THEOREM (THEOREM 1V). Let F(x, y) be positively homogeneous
of degree n. Then at any point where F is differentiable we have

oF oF _
X E—F y Fy— =nF(x, y). (6.53-2)

Proof. Write u = tx, v = ty. Consider u, v as first-class variables, and t, x, y
as second-class variables. The partial derivative of F(u,v)= F(tx,ty) with
respect to t is

Fi(u, v) 52+ Fata, ) 5,

or
XFl(tx, ty) + yF2(tX, t)’),

provided that F is differentiable at (tx, ty). On the other hand, for positive ft,
F(tx,ty) =t"F(x, y), and %(t"F(x, y)) = nt" 'F(x, y). Thus

xF(tx, ty) + yFatx, ty) = nt" 'F(x, y). (6.53-3)

If we put t = 1 here we obtain the desired relation (6.53-2).
The theorem and the proof extend to functions of three or more independent
variables. There is also a converse theorem; see Exercise 6.

Example 2. If F(x,y) is positively homogeneous of degree 2, and u =
r"F(x,y), where r*= x>+ y2, show that

’u  3’u F
(AN TRl

ay )+m(m +4)r™*F.

In working this problem it is convenient to observe that
or 2
2rf=2x, or L=
ox /4

ox
We have, therefore,
u_ , 8F

m—lﬂ m oF

= —_—+ — vi m-—2 j
Ix r Ix mr Ix F=r Ix + mr™" “xF.
Differentiating again,
u . 0°F , dr 8F aF
v " _ + m 4 m-2 U4
ax? r ax” ax ox T o
+ mprmiF + m(m — 2)r’"‘3% xF

3°’F 3F
P 2mr™ % s mr™F + m(m — 2)r" *x*F.

=r"
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Because of the symmetrical occurrence of x and y in r, we can write down at
once

d%u 3°F oF i 42
—= + —+mr"?F + -2r" )
2y r" ay2 2mr™?y oy mr™ "F+m(m —-2yr""y°F
If we now add, and take note of the relations
aF aF ) _
X Yoy = =2F, x*+y*=1r’,
we find
o‘u a _ 2F m-2 m-2 _ m—2
™ 2+——ay =r (ax2+ay2>+4mr F+2mr"“F+m(m —2)r"°F
_ w(3*F  3°F 2
=r (82+3y )+m(m+4)r F.

This is the required result. Question for the student: Where was use made of the
homogeneity of F?

EXERCISES

1. (a) If F is positively homogeneous of degree n, and if F, F,, and F, are
differentiable, the equation

3°F 3’F . ,3°F

2 ox o T axay+y ay?

is valid. Prove this by differentiating (6.53-3) partially with respect to t. (b) State and
prove the corresponding result for third derivatives.

2. If F is positively homogeneous of degree n, and differentiable, its first partial
derivatives are positively homogeneous of degree n — 1. Prove this.

3. Let H(x, y) be positively homogeneous of degree p, and let u = r"H (x, y), where
r’=x>+y> Show that

=n(n—1)F(x,y)

Au=r"AH+mQ2p +m)r"H,
where, for any function F(x, y), the notation AF means
d’°F  3°F
AF = P + 3%

4. The equation AF = 0 (see the explanation of notation at the end of Exercise 3) is
called Laplace’s equation in two dimensions. Here it is understood that (x,y) are
rectangular co-ordinates of a point in the plane. If H(x, y) is positively homogeneous of
degree p, and AH =0, show that A(r"?H) =0 also. Use Exercise 3. Examples are
furnished by taking H(x, y) to be one of the functions x, y, x>— y2 2xy, 3x%y — »*, with
appropriate values of p in each case.

5. (a) If x, y, z are rectangular co-ordinates in space, we write
2F 3’F

+ .
ay° = 8z°

AF(x,y,z)=

If u=r"H(x,y, z), where r* = x>+ y>+ 2% and if H is positively homogeneous of degree
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p, work out the result analogous to that of Exercise 3. (b) What is the result for three
dimensions comparable to that of Exercise 4? (¢) Develop generalizations of the results
of (a) and (b) for the case of n dimensions, taking r’=x1+---+x%.

6. Suppose that F(x, y) is defined and differentiable in an open region R, and suppose
that x 0F/ax + y aF/dy = nF(x, y) at each point of the region. Then, if (x, y) is in R, the
relation F(tx, ty) =t"F(x, y) holds in any interval to <t <t, (Where to=0) provided that

=1 is in this interval and provided that, for all such ¢, the points (tx, ty) are in R. To
prove this converse of Euler’s theorem, let f(t) = F(tx, ty), where (x,y) is a fixed point of
R. Use the hypothesis on F to prove that tf'(t) = nf(t). From this, infer that f(¢t)t™" is a
constant (depending on x, y). Then complete the proof.

6.6 / DERIVATIVES OF IMPLICIT FUNCTIONS

In §6.1 we dealt with the differentiation of implicit functions in a variety of
particula\r situations. We did not attempt to deal with general cases in which the
functions were merely indicated by some functional symbol. In practice it is
necessary to have formulas to deal with implicit functions in terms of general
notation.

A simple but typical case is that arising when z is defined as a function of x,
y by an equation of the form

F(x,y,z)=0. 6.6-1)
Suppose, for instance, that the equation is
X2+ 2xz+z —yz—-1=0,
so that in this case
F(x,y,2)=x*+2xz+z*—yz— 1. (6.6-2)

Proceeding as in §6.1, we have

0z 0z 9z
2x+2xax+2z+2zax yax—O,
0z 9z a9z
— —_—— —_— :O
2xay+22ay yay z s
z _ 2x +2z

ax  2x+2z-y

(6.6-3)
oz____ —z |
ay  2x+2z—y

Now let us observe that if we regard x, y, z as independent in (6.6-2), then

oF %—F— aF=2x-1—22—y.

a—=2x+22, Z,E
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Accordingly, equations (6.6-3) take on the form
9F oF
9z _ _ox 9z __dy
ox aF ay  9F
az az

(6.6-4)

We are going to show that these formulas are general; that is, they hold when z
is defined by (6.6-1), subject to certain general assumptions on the otherwise
arbitrary function F.

We are not just now concerned with knowing what assumptions to make
about F in order to guarantee that equation (6.6-1) does in fact define z as a
function of x, y. Questions of this kind will be dealt with in Chapter 8. We
assume that z is a well-defined function of x, y, and that equation (6.6-1) is an
identity in x, y when z is replaced by its functional value:

z=f(x,y), (6.6-5)
F(x,y,f(x,y)=0. (6.6-6)
A simple instance of these last relations would be afforded by
z=V1-x"—yL F(x,y,2) = x>+ y?+ 27— 1.
Another instance is
z =log xy, F(x,y,z)=xy— e~

We also assume that F is a differentiable function of the three independent
variables and that f(x, y) has first partial derivatives. Under these conditions we

shall prove formulas (6.6-4). Naturally we must assume that the denominator %

is not zero.

Under the foregoing hypotheses we look upon G(x, y) = F(x,y, f(x,y)) as a
composite function of x, y. The first-class variables are.x, y, z, and the
second-class variables are x, y. The relations between the variables of the two
classes are

x=x,y=y,z2=f(x,y).
Therefore,
%:,%=m%=m%=L
The chain rule gives
9G _9F ox  9F dy | 9F oz,
dx 9x dx Ay dx 9z ax

or
aG _ 9z
ax Fy+ s 0x



174 THE ELEMENTS OF PARTIAL DIFFERENTIATION Ch.6

Likewise
3G _ 3z
7};‘ =F+F; 3y .
_ aG G _ .
Now by (6.6-6), G(x, y) =0, and Frin By = (. Therefore, assuming that F;# 0,
we have

8z _ _F, oz_ K
ax F; dy F;
These are the same equations as (6.6-4) except for the difference in notation. It
is understood that the derivatives F,, F,, F; are evaluated with z = f(x, y).
It is easily seen that the foregoing considerations may be generalized as

follows. Suppose a function of n variables, say u = f(x,,..., x,) is determined
implicitly as a solution of an equation F(xy,...,x,, u) = 0. Then, under suitable
assumptions of differentiability, we have

of Fi(xiy . oo X f(X15 .., X))

——=— ? ? i=1,...,n 6.6-7

ax; FoolXt, oo, X, f(X1, .00, X0)) ( )

Example 1. Show that if z = f(x, y) is a solution of the equation F(x, y, z) =
0, then the line normal to the surface z = f(x, y) at a given point has direction
ratios F,: F,: F;, the partial derivatives being evaluated at the point in question.

It was shown in §6.2 that the line normal to the surface has direction ratios
0z 0z

5;.3}—,:—1. By (6.6-4) an equivalent set of ratios is

The ratios will not be altered if we multiply by ~F;. In this way we obtain the
ratios F;: F,: Fy for the direction of the normal line.

Next let us consider the case of two functions which arise as solutions of a
pair of simultaneous equations. Suppose, for instance, that

u=f(x,y,z) and v=g(x,y,2) (6.6-8)
are solutions of
F(x,y,z,u,v) =0, G(x,y,z,u,v)=0. (6.6-9)
That is, suppose that
F(x,y,z f(x,y,2),8(x,y,2)) =0 (6.6-10)

is true for all values of x, y, z in some region, with a similar relation for G. We
assume that the functions F, G, f, g are all differentiable. The problem which we
pose is that of expressing the partial derivatives of f and g in terms of those of I
and G. As usual, we write

_iF

aF aF
F= ax 3y

) 2=6y,..., 5 30
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The required formulas are then of the form
F, F; F; F;
u__ |G Gs du_  1Gs Gs
ax Fi Fy’"""’ 3z |Fy Fs
Gy G;s Gy Gs‘
(6.6-11)
F, F, F, F;
v _ _ 1Gs Gy o _ G, G3|
ax F4 F5 Y ) F4 F5‘ '
Gy Gs Gy Gs

This is on the assumption that the determinant appearing in the denominators is
not equal to zero. The expressions Fy,..., Gs are evaluated with u and v given
by (6.6-8). '

We shall indicate briefly the manner of deriving formulas (6.6—-11). We regard
X, v, z, u, v as first-class variables, and x, y, z as second-class variables. Then,
from the identity (6.6-10), we have (differentiating with respect to x)

F + F4 + F5 =(.
There is a similar equation involving G:
G+ G4 + Gs

ou .
These two linear equations are now solved for — and o with the results

ax
indicated in (6.6-11). The procedure is entirely similar for ﬁndmg the derivatives
of u and v with respect to y or z. -

The student need not memorize the formulas (6.6-11), though it is useful to
have ready reference to such formulas. It is the procedure for deriving the
formulas which is important, and the student should be able to carry out the
derivation himself.

Determinants such as those occurring in the formulas (6.6-11) are called
Jacobians, after Carl Jacobi, a prominent German mathematician of the nineteenth
century. There is a more compact notation which is often used for a Jacobian:

oF OF
I(F,G) | du ov
au,v) |G 3G
ou v

This is called a Jacobian of second order. The form of a general nth-order
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Jacobian involves n functions, each of n variables:

aF OF | OF,
ouy auy ouy
oF;
[‘)ul

3(F1,...,F,,):

oty ..., )
IF, | ... O
ouy ou,

In concluding this section we emphasize that here we are concerned with the
structure of general formulas for the derivatives of implicit functions. Questions
of existence and differentiability of implicit functions are taken up in Chapter 8.

EXERCISES
1. If the equations

F(x, y,u,v,w)=0,G(x,y,u,v,w)=0, H(x, y,u, v, w) =0

have solutions for u, v, and w as functions of x and y, show, taking for granted certain
general conditions, that

d(F, G, H)
u_ dx,v,w)
ox ~ 3(F,G,H)
d(u, v, w)

Write five other similar formulas.
2. Suppose y = f(x) is a solution of G(x,y)=0, where %#0, and let g(x)=

F(x, f(x)). Show that g'(x) = (Fi1G,— F>G)/G>, the right side being evaluated with y = f(x).
3. If z=f(x,y) is a solution of F(x,y,2)=0 (with F;#0), and if H(x,y)=
aF 9H __3(F,G)
G(x, y, f(x, y)), show that =~ 3y =~ a2
4. Suppose u =f(x,y,2), v=g(x,y,z) are solutions of F(x,y,z,u,0v)=0,
G(x,y,z,u,v)=0. Let K(x, y,z) = H(x, y, z, f(x, y, ), g(x, y, z)). Show that

Write a similar formula involving %

d(F,G,H)
0K _ d(z,u,v)
3z = a(F,G)
da(u, v)

under suitable conditions.

5. As an instance of (6.6-8) and (6.6-9) consider u = x sin xyz, v = y coS Xyz as
solutions of yu — xvtan xyz =0, y?u’+ x*v?—x’y>=0. Verify all six of the formulas
(6.6-11) in this case.

6. If the equation F(x, y, z) = 0 can be solved for each one of the variables in terms
of the other two, show, taking for granted certain general conditions, that

(5.2, =
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7. Let G(x, y, z, v) = 0 have solutions x = f(y, z, v), y = g(x, z, v), z = h(x, y, v), and
by means of one of these equations at a time let u = F(x, y,z) become a function of
(y, z, v), (x, z, v), and (x, y, v) respectively. Show that, subject to certain conditions,

&)..- ). =G, GG G)
0y /o \OY/zy \0z/xy \8Y/xw \0X/y. \8Y/z

An example is furnished by xyv —z =0, u = x*+ y>+ z2, and the student should check the
meaning of the problem in terms of this special case if he feels an illustration to be
necessary.

8. Suppose u = f(x,y) is a solution of F(x,y,u)=0, and that y=g(x,z) is a
solution of G(x,y,z)=0. Let H(x, z)=f(x, g(x,z)). Show that F;G.H,= F,G; and
FsG:H, = F,G, — F,G; are identities in x and z.

9. (a) Starting from (6.6—4), show that

9’z _ F3iFu—2F FsFi+ FiFss

ax® -F;
(b) Derive analogous formulas for 8%z and QZ—ZZ

Jy dx ay

10. If z = f(x, y) satisfies an equation of the form z = F(ax + by + cz), where a, b,
9z
i
11. If z = f(x, y) satisfies an equation of the form F(x +y + z, x>+ y*+ z%) = 0, show

that (y—x)+(y—z)—g—i+(z—x)g§=0.

and c are constants, show that b g—i =a

12. Suppose that the function z=f(x,y) satisfies an equation of the form
F(ax + by + cz, Ax*+ By*>+ Cz>) =0, where a, b, ¢ and A, B, C are constants. Show
that g = _aF1 + ZAsz_

ax c¢F,+2CzF,

13. If z = ¢(x, y) satisfies the equation F(f(x, y, z), g(x, y, z)) = 0, show that

9z __ Fif,+ Fag>
3}’ F1f3 + F2g3

14. If Gi(x1,x2,¥), Gax1,%2,¥) and f(xi,x2) are given, and if gi(x1,x)=

Gi(x1, X2, f(x1, x2)) (i =1, 2), show that

3(81,82) _ 8(G1, G2) | 3f 3(G1,G2) | 9f 3(G1, G
0(x1,X2)  3(x1,X2)  0x1 d(y,x2)  0x2 A(x1,y)

with y replaced by f(xi, x2) after the differentiations. This formula is used in the theory
of first-order partial differential equations.

6.7 / EXTREMAL PROBLEMS WITH CONSTRAINTS

Many interesting maximum or minimum problems arise in such a form that we
are required to find an extremal value of a function, say F(x,y, z), where the
variables x, y, z are not independent of each other, but are restricted by some
relation existing between them, this relation being expressed by an equation
G(x,y,2)=0.
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Example 1. Find the minimum value of
Flx,y,2)=(x =3P+ (y -2y +(z - 1)’
subject to the condition
G(x,y,2)=2x—3y—4z-25=0.

This problem has already been solved; see Example 1, §6.3.

The equation G(x, y, z) = 0 is called a constraint on the variables x, y, z. It is
immaterial whether the equation of constraint has the form G(x,y,z)=0 or
G(x,y,z) =k, where k is a specified constant, for the latter form of constraint
can be written G(x, y,z)—k =0.

An extremal problem with constraint may occur with any number of
variables, and there may be more than one equation of constraint.

Example 2. Find maximum and minimum values of x>+ y?+ z? subject to the
two conditions

— = + 24,22
X+y—z 0, TR 2t=1.
In this problem there are two constraints on the three variables, so that there
is actually only one independent variable.

Example 3. Find the minimum value of (x — u)*+ (y — v)*+ z? subject to the
condition 3x2+ y?—6x —4y — 12z + 43 =0.

In this problem there are five variables and one constraint, which happens to
involve only three of the five variables.

There are various methods for dealing with extremal problems with con-
straints. One method is to use the equation or equations of constraint to express
certain of the variables in terms of the remaining variables. These latter
variables are chosen as the independent variables, and the function whose
extremal value is sought is then expressed in terms of the independent variables
only. The solution is then carried out by standard methods We shal] call this
the problem of Example e 1 in the present sectlon by the solutlon given in
Example 1, §6.3.

A second method may conveniently be called the method of implicit func-
_ tions. Suppose the problem is to find the point or pomts at which F(x, Y, Z) has
extreme values subject to the conditions G(x, y, z) = k. Here we assume that F
and G are given functions with continuous first partial derivatives, and that k is

. oG
a given constant. Let us assume, for definiteness, that E#O and that the

equation
G(x,y,z2)—k=0 (6.7-1)
has a solution
z = f(x,y). (6.7-2)
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We then seek to make the quantity
u=F(xy,f(x,y))

a maximum or minimum. Accordingly we want to solve the equations

ou _ , ou _
Geodt-o (6.7-3)
Now
ou_0oF OFof  gu_ aF  oF of
ax x| 0z ax 3y ay oz ay (6.7-4)
where z is replaced by f(x, y) after the differentiations are performed.
We also have the identity
G(X, y5f(x’ y))_k = 03
from which it follows by differentiation that
3G , 3G of _, 4G | 4G of _
ax "9z ox O ay Tz dy =0. (6.7-5)
. of of . . .
If we solve these equations for ax and 5; and substitute in (6.7-4), we obtain the
equation
dF 3G _ 9F 3G
Qg= 0x 9z 0z ax’
ax G
9z

and a similar equation for %’;—’ Equations (6.7-3) now take the form

oF 0G oF 4G dF oG dF 4G
ox 9z oz ox  ay oz ez ay O (6.7-6)
in which z is replaced by f(x, y) after the differentiations are performed. Now
the method of implicit functions for this extremal problem with constraint may
be described as follows: We do not actually solve for z at the outset. Instead,
we carry the work along and arrive at equations (6.7-6) as equations in all three
variables. These two equations, together with the constraint (6.7-1), give us three
equations which we solve as simultaneous equations in x, y, z. The required
points of extreme value will be among the points found in this way. This general
assertion is subject to some qualifications to rule out exceptional cases. We
could, of course, think of y as a function of x and z, or of x as a function of y
and z, the functional relation in each case being determined by the constraint.
These alternatives would give us pairs of equations different from (6.7-6), but
equivalent to them.
The implicit-function method was used in the solution of the problem of
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Example 3, §6.3, with y regarded as a function of x and z. Our purpose just now
is not to illustrate the method in particular cases, but to obtain the equations
(6.7-6) in preparation for study of other aspects of extremal problems with
constraints.

It is often useful to regard an extremal problem with constraint from a
geometrical point of view. Consider, for instance, the problem of extremal value
for the function F(x,y, z) with the constraint G(x, y, z) = k (a given constant).
We shall suppose that the equation G(x, y, z) = k defines a surface S possessing
a tangent plane at each of its points with which we are concerned. We then
consider the values of the function F at points of the surface S; we wish to find
the points of S where F has maximum or minimum values. Now consider the
family of surfaces

F(x,y,z)=C, (6.7-7)

where C is a parameter. Suppose that M is the absolute maximum value attained
by F at points of S. Then, if C > M, the surface (6.7-7) and the surface S will
have no points in common, whereas if C = M the two surfaces will have at least
one point (xo, Yo, Zo) in common, and this will be a point where F attains its
maximum value on S. We shall prove that the two surfaces G(x, y,z) =k and
F(x,y,z)= M are tangent at this point (xo, ¥o, z0). The direction ratios of the
normals to the two surfaces are, respectively,

Gl:GQ:G} and F]ZleFg,

with the partial derivatives evaluated at (xo, yo, z9) (see Example 1, §6.6). The
condition of tangency is therefore that these two sets of ratios be the same, i.e.,
that G,, G», G; and F,, F,, F; be proportional. Now we saw earlier that equations
(6.7-6) must hold at a point of extreme value, provided G; # 0. These equations
may be written

FlGj;‘ F3G| = 0, FQG:;— FgGg = 0,
or
Fy

F1=(}1

G, F,= % Gz,

whence it follows that F,, F,, F; and G,, G,, G; are proportional at (xg, Yo, 2o). If
it should happen that G; = 0 at the point, the same conclusion of proportionality
can be reached by assuming that G, # 0 or G, # 0.

The argument and the conclusion are essentially the same in the case of a
minimum rather than a maximum. Also, the surfaces will be tangent at a point of
relative extreme value of F on the surface S. There may also be tangencies at
points where F is neither a maximum nor a minimum. We sum up our findings in
a formal statement.

THEOREM V. Suppose the functions F and G have continuous first partial
derivatives throughout a certain region of space. Let the equation
G(x,y,z) =k define a surface S, every point of which is in the interior of the
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region, and suppose that the three partial derivatives G,, G,, Gs are never
simultaneously zero at a point of S. Then a necessary condition for the
values of F(x,y,z) on S to attain an extreme value (either relative or
absolute) at a point of S is that F,, F,, F; be proportional to G,, G,, G; at
that point. If C is the value of F at the point, and if the constant of
proportionality is not zero, the geometrical meaning of the proportionality is
that the surface S and the surface F(x, y, z) = C are tangent at the point in
question.

A fully detailed analytic proof of this theorem depends upon the theory of
implicit functions, as developed in Chapter 8. The geometric arguments which
precede the statement of the theorem do not constitute a rigorous proof, but
they give a good basis for understanding the theorem; with adequate knowledge
of implicit-function theory, the argument given here can be developed into a
complete proof.

Example 4. Consider the maximum and minimum values of F(x,y, z)=
x2+ y2+ z? on the surface of the ellipsoid

_x2 vy 2
G(x, y,z)—@+%+25—
Since F(x, y, z) is the square of the distance from (x, y, z) to the origin, it is
clear that we are looking for the points on the ellipsoid at maximum and
minimum distances from the center of the ellipsoid. The maximum occurs at the
ends of the longest principal axis, namely at (£8, 0,0). The minimum occurs at
the ends of the shortest principal axis, namely at (0,0, =5). Consider the
maximum point (8,0,0). The value of F at this point is 64, and the surface
F(x, y, z) = 64 is a sphere. The sphere and the ellipsoid are tangent at (8, 0, 0), as
asserted in the general theory. In this case the ratios G,:G,: G; and F;: F,: F; at
(8,0,0) are }:0:0 and 16:0:0, respectively.

1.

This example brings out the fact that the tangency of the surfaces, or the
proportionality of the two sets of ratios, is a necessary but not_a_sufficient _
condition_for a maximum or minimum value of F; for the condition of propor-
tionality exists at the points (0, £6, 0), which are the ends of the principal axis of
intermediate length. But the value of F is neither a maximum nor a minimum at
this point, as the student can readily see by considering the geometrical situa-
tion.

A similar geometrical interpretation can be given to the problem of extremal
values for F(x,y) subject to a constraint G(x,y)=k. Here we have a curve
defined by the constraint, and a one-parameter family of curves F(x, y)=C. Ata
point of extremal value of F the curve F(x,y)= C through the point will be
tangent to the curve defined by the constraint. Suitable hypotheses must be
made to rule out singular cases.

Example 5. Find the maximum value of F(x, y) = xy subject to the constraint
x?+y?=8.
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Fig. 45.

Here we have a fixed circle; the curves xy = C are hyperbolas. The hyper-
bola xy = 4 is tangent to the circle at the points (2,2) and (-2, —-2) (see Fig. 45).
These are the points at which the maximum value is attained.

An advantage of the geometrical point of view is that we can often use it to
conclude with certainty that F actually attains an absolute maximum or mini-
mum subject to the given constraint. Suppose, for example, that the surface S
forms a closed and bounded set of points in space. Then, since F is continuous
at the points of S, we can infer that F actually attains an absolute maximum and
an absolute minimum on S. This inference is based on a theorem analogous to
Theorem III, §3.2, and Theorem II, §5.3. The general theorem covering this
situation is Theorem IV, §17.3.

Once we know that a maximum or minimum exXists, we apply one of the
methods which leads us to solve certain equations. If these equations have just a
few solutions, as they often do in practice, it is an easy matter to tell which
solutions give us the absolute maximum and which the absolute minimum

6.8 / LAGRANGE’S METHOD

In §6.7 we discussed extremal problems with constraints, and described two
methods for handling such problems. We referred to these methods as (1) the
method of direct elimination, and (2) the method of implicit functions. Tn this
‘section we shall explain and illustrate a method known as Lagrange’s method; it
was devised by the great 18th-century mathematician Joseph Louis Lagrange. Our
explanations depend upon Theorem V and the discussions leading up to it in §6.7.
In the case of the problem of extremal values of F(x,y,z) subject to a
constraint G(x, y, z) = k, Lagrange’s method directs us to proceed as follows:

Form the function

u=F(x,y,z) + AG(x,y, z), (6.8-1)
where A is a constant, as yet undetermined in value. Treat x, y, z as
independent variables, and write down the conditions

du
ou 0 U _9M_y 6.8-2
6x ’dz ( )
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Solve these three equations along with the equation of constraint
G(x,y,z)=k (6.8-3)

to find the values of the four quantities x, y, z, . More than one point (x, y, z)
may be found in this way, but among the points so found will be the points of
extremal values of F.

To understand the reason for the validity of Lagrange’s method, observe
that the equations (6.8-2) are precisely

F]+)\Gl-_‘0, F2+ )\Gz=0, F3+)\G3=0. (6.8——4)

Here A is a certain constant. These equations state, therefore, that at a point
where they are satisfied, F,, F,, and F; are proportional to G,, G,, and G,. But
we know from Theorem V that such proportionality occurs at the points of the
surface G(x, y, z) = k where F has an extreme value. Thus the points of extreme
value will be among those found by solving the four simultaneous equations
(6.8-3) and (6.8—-4). Thus Lagrange’s method is justified in this type of problem.

The parameter A occurring in Lagrange’s method is called Lagrange’s
multiplier.

One of the great advantages of Lagrange’s method over the method of
implicit functions or the method of direct elimination is that it enables us to
avoid making a choice of independent variables. This is sometimes very im-
portant; it permits the retention of symmetry in a problem where the variables
enter symmetrically at the outset.

Example 1. Find the dimensions of the box of largest volume which can be
fitted inside the ellipsoid

[S)

x2
2

2
- £ =1, (6.8-5)

c?

+ 35+

trl\c
[

assuming that each edge of the box is parallel to a co-ordinate axis.

Each of the eight corners of the box will lie on the ellipsoid. Let the corner
in the first octant have co-ordinates (x, y, z); then the dimensions of the box are
2x, 2y, 2z, and its volume is V = 8xyz. We wish to find the absolute maximum of
V subject to the constraint (6.8-5). By the remarks at the end of §6.7 we know
that an absolute maximum exists. Following Lagrange’s method, we set

2 2 2
_ X,y .z
u=8xyz+ A<a2+ b2+ Cz)
The equations (6.8-2) in this case are

X
8yz+2)\?—0,

82x + 2\ % =0, (6.8-6)
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After dividing by 2, let us multiply these three equations by x, y, z respectively,
and add. In view of equation (6.8-5) the result is

12xyz+ A =0, or A =—12xyz.

We now put this result back into the first of the equations (6.8-6), and obtain,
after a slight simplification,

yz(a®’=3x%)=0.
By symmetry we obtain the two further equations
zx(b2—3y) =0, xy(c2—3z)=0.

For maximum V it is clear that we want positive values of x, y, and z. The only
possible solutions of (6.8-6) meeting these requirements are thus seen to be

a b

c
X =—= = —r 7 = ——>
RV IRVE

and
A=—12xyz= _4 abc
V3o
The box of maximum volume therefore has dimensions
2a _ 2b _ 2c
— X=X —
V3 V3 V3

Lagrange’s method may be extended to the case of several constraints. The
number of variables is immaterial. An undetermined multiplier is introduced
corresponding to each constraint. We shall illustrate the extended method
without formal proof.

Example 2. Find the semiaxes of the ellipse in which the plane

Ix+my+nz=90 (6.8-7)
cuts the ellipsoid

x2 2 22

?+%+?=1. (6.8-8)

Since the plane passes through the origin, it is clear that the ends of the
semiaxes of the ellipse are at the points (x, y, z) where the function

F(x,y,2)=x*+y*+ 22

is 2 maximum or a minimum subject to the side-conditions (6.8-7) and (6.8-8).
We set up the expression

x2 yZ ZZ
u=x+ y2+z2+)\,(1x+my+nz)+)\2(57+F+?),

using two Lagrange multipliers, A, A,. The method of Lagrange leads us to write
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. ou _ou _du
the equations oxdy 0z 0, or

2x+)\11+2)\2‘—):—2=0,

2y + am +2>\2%=o, (6.8-9)

22+)\1n+2/\2§=0.

Theoretically we may solve these three equations together with the two
equations of constraint to find the values of x, y, z, Aj, A,. Actually, the solution
presents great difficulties. However, since we are merely interested in the lengths
of the semiaxes of the ellipse, it will suffice to solve for the value of F(x,y, z).
Let us write p>=F(x,y,z), so that p is the length of the semimajor or
semiminor axis according as F has a maximum or a minimum.

If we multiply equations (6.8-9) by x, y, z resp=ctively, and add, we obtain

x2 y2 ZZ
2(x2+ y2+ 22) + )\1(lx + my + nz) +2)\2<?+B§+—é—i) =(.

In view of (6.8-7) and (6.8-8), this becomes
2p2+2X,=0, or A,=—p-2.
Returning to (6.8-9) with this result, we have
2(a®>—pHx + Ma’l =0, (6.8-10)

and similar equations involving y and z. Except in special cases the situation will

be such that x, y, z are all different from zero at the end of a semiaxis; and

furthermore, p? will be different from a2, b% and c2. Thus in equation (6.8-10)

we may assume a*—p?# 0 and A, # 0 except in special cases. Thus
@l bm

207-a) TN 27-bY T T M 27D

If we substitute these values in (6.8-7) and cancel the factor A, we obtain the
equation.

212 b2m2 C2n2
pg_ az+p2_bz+pz_cz=0- (6.8-11)

When cleared of fractions this equation is a quadratic in p* as an unknown. The
two roots of the equation thus determine the lengths of the semiaxes of the
ellipse. For some consideration of the exceptional special cases see Exercise 18.

The foregoing problem illustrates very clearly the merits of Lagrange’s
method in the preservation of symmetry.
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EXERCISES

1. A rectangular box lies in the first octant, with one corner at the origin and the
diagonally opposite corner on the plane (x/a)+(y/b)+(z/c)=1(a, b, c >0). Find the
maximum possible volume of the box.

2. Apply Lagrange’s method in finding the extreme values of x>+ y*+ z” subject to
the constraint (x*/a®) + (y*/b®) + (z*/c*) = 1, where a > b > ¢ >0.

3. A triangle is such that the product of the sines of its angles is a maximum. Show
that the triangle is equilateral.

4. Find the maximum value of xyz/(a’x + b’y +c®z) subject to the conditions
xyz=A>x,y,z2>0(a, b, c, A all >0).

5. Find the minimum of x + y + z subject to the conditions (a/x)+ (b/y)+(c/z) =1,
x,y,2>0(a, b, c and x, y, z all >0).

6. The perimeter of a triangle has a prescribed value 2s. Determine the sides of the
triangle 50 as to maximize the area.

7. Let D= ﬁ Z . Find the maximum value of D” subject to the conditions

x*+y*=4a? u’+v>*=b? where a>0, b>0. Solve the problem in two ways: (1) by
Lagrange’s method, and (2) by setting x =acos 0, y=asin8, u =b cos ¢, v =">b sin ¢,
and using 6, ¢ as independent variables.

8. Find the minimum value of x>+ y*>+ z* for positive x, y, and z, if it is required
that ax + by + cz = 1, where a, b, ¢ are positive constants.

9. Suppose a, b, ¢ are positive constants. If x, y, z are positive and ayz + bzx +
cxy = 3abc, show that xyz = abc.

10. Solve the following problems by Lagrange’s method: (a) Example 1,
§6.3; (b) Example 3, §6.3; (c) Example 2, §6.7; (d) Example 3, §6.7.

11. Let the lengths of the sides of a fixed triangle of area A be a, b, ¢c. From an
interior point O draw the perpendiculars to the sides of the triangle, and let their lengths
be x, y, z corresponding to a, b, c. If now a parallelepiped is constructed with edges x, y, z
and volume V, show that V is a maximum when the lines from O to the vertices of the
triangle divide it into three equal areas. What is the maximum value of V?

12. For the situation described in Exercise 11, show that
X2+ y2+z2)(a*+ b*+ c?) = 4A%

13. Find the minimum distance from (0,0,c¢) to the cone z”>=(x*/a’®)+(y*/b?.
Assume ¢ >0 and 0<b <a.

14. Given the ellipse b*x>+ a*y>= a’b’, find the points (x, y) on the ellipse so that
the line normal to the ellipse at (x, y) passes as far as possible from
the origin. What is this greatest distance from the origin to a normal? 4

15. Find, by Lagrange’s method, an extreme value of xyz
subject to the conditions (1/x)+ (1/y)+(1/z)=c, x, y, z all >0 (c a
positive constant). Is this value an absolute maximum, an absolute
minimum, or neither?

16. A particle is to travel from A to P and thence to B, by a A
broken line as indicated in Fig. 46. Velocity from A to P is vy,
and from P to B is v,. Show by Lagrange’s method that when the
time of travel is least, (sin 8,)/(sin 8,) = v,/v,. Fig. 46.
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17. Let p>= x>+ y> + z°. Consider the extreme values of p?, subject to the conditions
Ix + my +nz =0, (x>+ y*+ 23> = a®’x>+ b?y? + c*z%, where a > b > ¢ > 0. The minimum of
p? is obviously zero. Show that, barring exceptional cases, the maximum is given by one
of the roots of the equation

2 m? n’

pz‘-a2+p2—bi+p2—02=

0.

Observe from the second constraint that the maximum of p? is less than a’.

18. This exercise is devoted to one of the exceptional cases which can arise in
connection with the derivation of (6.8-11) in Example 2. Suppose a >b >0 and b = ¢, so
that the ellipsoid has circular cross sections in planes perpendicular to the x-axis.
Suppose also that [ 0. Show that, in this case, the minimum p? is b> and that the
maximum p? is the sole root of (6.8-11):

19. Find the maximum and minimum values of the squared distance from the origin
to the first octant portion of the curve in which the plane x + y + z = 12 meets the surface
xyz = 54.

20. Find the minimum of xi+ - - - + x2 subject to the constraint a.x,+ - - -+ a.x, = 1,
where ai+---+ai>0.

21. Find the maximum of (£, a:x:)> subject to the condition 7., x7 = 1. Assume
that at least one of the a’s # 0.

22. If P(x,y) is a point on the ellipse 256x>+81y>= 2304 and Q(u, v) is a point on
the line 4x + 3y = 24, find the minimum value of the distance PQ.

23. Find the minimum distance between the curves x>+ y*> =1, x’y = 16.

24. Let y = f(x) be the equation of a smooth curve, and let P(a, b) be a point not on
the curve. Let D be the distance from P to a variable point Q of the curve. Prove by
Lagrange’s method that PQ is normal to the curve when D is a minimum or a maximum.

25. (a) Use the result of Exercise 24 to give a simple solution of Exercise
23. (b) Proceed as directed in (a) to solve Exercise 22.

26. If P(xo, Yo, zo) is a fixed point outside the ellipsoid (x*/a®) + (y*/b?) + (z%/c?) =1,
and Q is on the ellipsoid, show that the line PQ is normal to the ellipsoid when the
distance PQ is a minimum.

27. Let G(x, v, z) =0 define a surface S with a tangent plane at each point, and let
P(a, b, ¢) be a point not on S. Show that, if Q is a point on S, the line PQ is normal to S
whenever the distance PQ attains a relative extreme. From this result prove that, if A and
B are variable points on two smooth nonintersecting surfaces, then, when A and B are
located so as to make the distance between them an absolute minimum, the line AB is
normal to both surfaces.

28. Show that the maximum value of x2y>z” subject to x>+ y>+ z> = R” is (R*/3)’.
Deduce from this that

2]/3<x2+y2+22
= 3

(x*y*z
for all values of x, y, z. Generalize this result to n variables, and so obtain a proof of the
inequality

aa+ -+ a.

(@az- - a)" = "
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between the geometric mean and arithmetic mean of n positive numbers. What condition
is both necessary and sufficient for equality?

29. In the case of two positive numbers, Exercise 28 gives
u'"v"? = 3u + 0.
Derive from this the fact that

lz‘ ab;

if the a’s and b’s are any real numbers. This is known as Cauchy’s inequality. Hint: Let

i=1

b2
and v=-—> where

B

ai
A

u=

A=§]a% and B=§)lb?.

What condition is both necessary and sufficient for equality?

30. If a1, az,...,a, are nonnegative numbers whose sum is 1, then «;x;+ ax>+
-+« 4+ anx, is called a weighted arithmetic mean of the x’s. If the x’s are positive, then one
can define the corresponding weighted geometric mean to be x71x32 - - - xzn. Show that if
all the x’s are positive, the weighted geometric mean is always less than or equal to the
corresponding weighted arithmetic mean. Hint: Maximize x71x32-- - xy» subject to the
constraint a;Xx;+ waX2+ -+ -+ axXx, = C. This will show that for all positive x’s having a
given weighted arithmetic mean C, the weighted geometric mean is less than or equal to
C.

Notice that this result contains that of Exercise 28 as a special case.

31. If u, v, p, and q are positive and (1/p) + (1/q) = 1, then Exercise 30 gives

1

1
u' Vi = y+—yo.
p q

Deduce from this that under the above restrictions on p and ¢,
n n 1/p s n 1/q
13, ab| = (3 1) " (3, 10a) ™,

=1 =1 im1

where the a’s and b’s are any real numbers. This is known as Hdolder’s inequality. Notice
that it is a generalization of Cauchy’s inequality.

Hint: Let

al? b9
u=—— and v=—=

2 lail? 2 bl

32. Use Holder’s inequality (Exercise 30) to deduce the inequality of Minkowski:

1/ 1/

n P n 1/p n P
(Sesk) = (E k)" + (S )" 01

Write |x; + yil” = |xi + yillxi + wil”? = |x] | + yi”? + |yil|x: + yi”"%, and then apply Holder’s
inequality, once with a; = [x;] and once with a; = |y;|. Observe that Minkowski’s inequality
obviously holds when p = 1.
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6.9 / QUADRATIC FORMS

Another application of Lagrange multipliers is to the study of central conics and
their generalizations. A central conic is simply one that has a center—that is, an
ellipse or a hyperbola. The parabola, which has no center, will not be treated in
this approach. Our problem is that of recognizing and describing a central conic
from its equation. Since this problem for the parabola is comparatively easy, its
omission from our consideration here is not serious. When we describe a central
conic in terms of a co-ordinate system whose origin coincides with the center, the
equation looks like

Ax*+2Bxy + Cy*=k. (6.9-1)
The left-hand side,
Q(x, y) = Ax*+ 2Bxy + Cy*

is called a quadratic form. We can define a quadratic form without reference to
conics by saying that it is a homogeneous polynomial of second degree in two or
more variables. Homogeneity means the same here as in §6.53. A quadratic form
in three variables looks like

Q(x, y,z) = Ax*+ By*+ Cz*+ 2Dxy + 2Exz + 2Fyz, (6.9-2)

and so on for any number of variables. We shall be mainly concerned with two

variables, but quadratic forms in three variables will be given some attention.
Beginning with the simplest case, the problem is to plot the graph of the

equation (6.9-1). This is easy if B happens to be zero and (6.9-1) reduces to

Ax*+ Cy?=k.

If A and C are positive we have an ellipse if k is positive, the point (0, 0) if
k =0, and no graph at all if k <0, If A and C are of opposite signs, we have a
hyperbola if k# 0 and two straight lines if k = 0. The case where A=0o0or C=0
is trivial.

The ease with which these special cases can be treated suggests that when
confronted by (6.9-1) we try to find some other co-ordinate system in terms of
which the coeflicient B is reduced to zero. If we hold the origin fixed and rotate
the axes through an angle 6, then the co-ordinates in the new system—say the x/,
y'-system—are related to those in the x, y-system by the equations

x=x"cos0—y’'siné,
(6.9-3)
y=x"sin 8+ y' cos 6.
Substituting for x and y in (6.9-1) the new equation of the graph can be written
(after some simplification) in the form

A/(x/)2+231xryl+ Cr(yr)2= k

where A’, B’ and C’ are functions of A, B, C, and 6.
At this point in an introductory analytic geometry course, two very im-
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portant results are established. The first is that by proper choice of 6, B’ can be
made equal to zero and the equation thereby reduced to canonical form,

Al(xl)2+ C;(yr)Z =k. (69_4)

The second is a far-reaching and surprising identity relating the original
coefficients and the new ones. Although A’, B', and C’' won’t look at all like A,
B, and C, it is nevertheless true that

AIC!_(B!)Z_:Ac_B2: A B

B C (6.9-5)

no matter what angle of rotation is used. This result is called the invariance of
the discriminant because it says that AC?>— B?>—the discriminant of the quadra-
tic form—remains unchanged under all rotations of the co-ordinate axes. These
facts from analytic geometry play an essential role in what is to follow.

We recall from our elementary courses that finding the proper angle of
rotation and then going through the steps of actually reducing a quadratic form
to canonical form is rather tedious. By using Lagrange multipliers we are now
going to develop a way of obtaining the canonical form without going through so
much computation.

Suppose that we are given equation (6.9-1) and Y
asked to describe its graph. We can begin by observing Y
that since quadratic forms are continuous, and the %
unit circle is closed and bounded, it follows from (x1,)
Theorem II, §5.3 that Q(x, v), subject to the constraint g x
x>+ y?=1, has both a maximum and minimum. Let 0
(x1, y1) be the co-ordinates in the x, y-system of a point
where Q(x, y) takes on one of these extreme values.

We could then rotate the co-ordinate axes to where the

positive axis of abscissas passed through the point, Fig. 47.

as in Fig. 47. Then in the rotated co-ordinate system

the new co-ordinates of this point would be x’' = 1, ' = 0. The quadratic form Q(x, y)
would be transformed into

Q’(x', yl) — A!(x/)2+2B/xryI+ C’(y’)z.

’

The equation of the unit circle would be the same in the rotated co-ordinate
system as in the original system, (x')*+(y)*=1, and we would know that the
function Q'(x’, y") would have an extreme value, subject to the constraint
x)+(y)Y=1atx'=1, y =0. In terms of the associated Lagrange function

L'(x', y) = A<D+ 2B'x'y' + C'(y'V = M)+ (y)]
this means that the two equations

1aL'=
2 ox'
16L'__ 1t ' ’r—
an,~Bx+(C Ay’ =0

(A= M)x'+ B’y =0
(6.9-6)
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must be satisfied by x' =1, y'= 0. Substituting these two values into the second
equation reveals that B’ = 0 and therefore that we have hit upon a rotation which
reduces Q(x, y) to the canonical form

Q'(x',y) =AY+ C'(y',
and the transformed equation of the conic is the canonical form (6.9-4).
It is the invariance of the discriminant which now allows us to find A’ and C’
easily. Notice that the Lagrange function, L{x,y)= Ax*+2Bxy+

Cy*>— \(x*+ y* associated with Q(x, y) is itself a quadratic form having as
its discriminant (A — A)(C — X\) — B% This can be written as the determinant

A—-A B
B C—AY

We have just seen that the rotation which transforms the co-ordinates (x;, y,) into
(1, 0) transforms L(x, y) into

L'(x', y) = AP+ C'(y) = M+ (')

which is a quadratic form with discriminant (A’ — A)(C'— ). By (6.9-5) we have
that

A—-A B

B Coal=A=0C ).

The discriminant of L(x,y) is clearly a second-degree polynomial in A whose
leading coefficient is 1. Each such polynomial has the unique factorization
(A —r)(A —r,) where ry and r, are the zeros of the polynomial. From this it
follows that the coefficients A’ and C’ in the canonical form of the quadratic
form Q(x, y) are simply the two roots of the quadratic equation

A—A B

5 coal=0 (6.9-7)

These two roots can of course be found as soon as equation (6.9-1) is given, and
the equation of the conic reduced immediately to canonical form, without going
through again each time our fairly lengthy argument which justifies the process.

Since there are two roots, the reader might wonder which to call A’ and
which C’. The answer is that it doesn’t matter—there are two equally good
canonical forms to which every quadratic form in two variables (and every
central conic) can be reduced. This ambiguity was presaged when we began by
picking a point (x, y;) where one of the extreme values of Q(x, y) on the unit
circle was taken on. For our purposes at that time—the elimination of the
xy-term—it made no difference whether this point gave a maximum or a
minimum value to Q. The only difference it makes now is that if this point,
whose co-ordinates in the primed system are x' =1, y’ =0, is a point of maxi-
mum, then A’ is the larger of the two roots. If this point (x,, y;) to which we rotate
the positive axis of abscissas gives a minimum, then A’ is the smaller of the two
roots. We see this from the obvious fact that if a > B, then the maximum value
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of ax?+ By’ on the unit circle is «, and this value is taken on at (1, 0)—as well as
at (—1,0) of course. If o < then « is the minimum value, and it is taken on at
(1,0) and (—1,0). The following example shows how easy it is to find the
canonical form of the equation of a central conic by this method.

Example 1. Find the dimensions of the ellipse 73x*+ 72xy + 52y* = 100.
Here A=73, B =36, C =52.
The equation (6.9-7) becomes

AZ—1251 42500 =0,

with roots A =25, A = 100. This means, therefore, that the equation of the ellipse
can be put in the form

72
25x+ 100y = 100, or 54—+ y2=1,

by a rotation of axes. The principal semiaxes of the ellipse are therefore 2 and 1.

The generalization to the case of three variables is now a rather easy matter.
The essential statement of the generalization is this: Given the quadratic form
Q(x, y, z) as in (6.9-2), it is possible to make a rotation of the co-ordinate axes so
that Q(x, y, z) becomes

G(x!’ yl, Z/) = )\1x12+ )\2}"2+ A3Z’2, (69—8)
and the \’s are the roots of the equation

A—A D E
D B—A F | =0.
E F C—-A

A proof of this statement is indicated in Exercise 14. If one wishes, matters may
be arranged so that A; = A, = A,.

(6.9-9)

Example 2, Reduce the quadratic form xy + xz — yz to the form (6.9-8) and
so identify the surface xy + xz —yz=—1.
The equation (6.9-9) becomes

(ST
(ST
<

—-A
P
2 T2 —A
in this case. On expansion and simplification this becomes
—i+IA—A=0,
the roots of which are found to be 3, 1, —1. Thus, after a suitable rotation, our

equation becomes
%x¢2+%y/2_ Zl2= —-1.

This defines a hyperboloid of two sheets with circular cross sections per-
pendicular to the z’-axis (for |z’| > 1).
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A more symmetrical notation for quadratic forms is in some ways extremely
desirable. If we write x;, x, x5 instead of x, y, z, a quadratic form in x;, x,, x3 will
have terms of all possible types x;x;, with i and j assuming the values 1, 2, 3. If
we write a; for the coefficient of xx;, the quadratic form will have the ap-
pearance

F(xi,x,x3) = apxi +apxix;+apxx;
2
+ anxoX1 +anpxs + anx)xs (6.9-10)
+ ayX3Xqy + ApXiXs + apxi.
Since x1x; = x,x,, we agree to make a;; = d, = half the total coefficient of x,x,;

similarly for a;; and a,;. The discriminant of the form is, by definition, the
determinant

an ap ap
ay axn Aax
asz; a4z dss

, (6.9-11)

The determinant appearing in (6.9-9) is seen to be the discriminant of the form
Qx,y,2) = A(x*+ y>+ 27).

EXERCISES

1. Find the dimensions of the ellipse 41x”>— 24xy + 34y> = 25.

2. Show that F(x,y)=x>—4xy—2y>=1 is the equation of a hyperbola. Find a
point on the unit circle at which F(x, y) is a maximum. Then draw the xy-axes, the axes
of symmetry of the hyperbola, and the hyperbola itself.

3. Find the maximum and minimum values of F(x, y)=9x>—6xy + y” on the circle
x>+ y>=1. If A, is the maximum value, show that F(x, y)= A, is the equation of two
lines, each tangent to the circle at a point where the maximum occurs.

4. Let F(x,y,z)=y*+ 22— V2xy + V2xz + 2yz. Find the maximum and minimum
values of this function on the surface of the unit sphere. What does (6.9-8) become in this
case?

5. Reduce each of the following quadratic forms to the standard form (6.9-8);

(a) y2+z3—V2xy — V2xz +2yz.
(b) 13x%+13y>+ 102+ 8xy — 4xz — 4yz.

6. (a) Put F(x, y,z)=xy + yz + 2x in the form (6.9-8).
(b) What is the maximum value of F on the unit sphere?
(¢) At what points does it occur?

7. Determine the signs of Ay, A2, As for each of the following quadratic forms, and
so identify the type of each quadric surface. You need not find the actual value of the A’s.
(@) x> +xy+yz=1.

(b) yz+xz—xy=1.
() x?+2y*+322—2xy —2yz =2.

8. Find maximum and minimum values of 17x%—30xy + 17y> when 5x”—6xy +
Sy’=4,
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9. Find the minirzum value of x>+ y>+ xy subject to the condition 2x”+ 6xy + 2y* =

10. Suppose that the locus of Ax>+2Bxy+ Cy”>=1 is an ellipse. Consider the
problem of locating the maximum and minimum values of x*+ y* on the ellipse. Apply
Lagrange’s method, starting with the expression x*+ y*— A(Ax>+ 2Bxy + Cy?. Show that,
in the resulting equations for locating the extreme values, A must be a root of the
equation

I-AM  -BA | _,

-Br  1-Cx ’
and that the roots of this equation are the extreme values of x>+ y>. What is the relation
between these roots and the semiaxes of the ellipse?

11. If x, y, A are solutions of the simultaneous equations

(A-M)x+By=0,
Bx+(C—-\N)y=0,

show that Ax?+2Bxy + Cy> = A. Hence show that, in the notation used in the text, A, and
A2 are respectively the maximum and minimum values of F(x, y) when x>+ y>= 1.

12. (a) Assume that F(x, y) = k(k > 0) defines a family of ellipses. Let A; and A, be
the roots of (6.9-7), with A, = X,. Show that the ellipse F(x, y) = A, is externally tangent to
the circle x>+ y>=1 at the ends of the minor axis of the ellipse, and that the ellipse
F(x,y)= X, is internally tangent to the circle at the ends of the major axis of the ellipse.
Draw a figure showing these two ellipses, the circle, and the x'y’-axes. What can you infer
from the figure about maximum and minimum values of F(x, y) on the circle?

(b) Assume that F(x, y) = k defines a family of hyperbolas. If A, and A are the roots of
(6.9-7) with A; = ., explain why ;>0 and X, <0. Draw a figure showing the x'y’-axes,
the unit circle, the hyperbolas F(x, y) = A1, F(x, y) = A,, and other members of the family.

13. Prove (6.9-5) by actually substituting (6.9-3) in (6.9-1) and computing A’, B', C'.
Also prove that A'+ C'= A+ C.

14. (a) Suppose that Q(x,y,z) in (6.9-2) becomes a new form G(x',y’, z') with

coefficients A’, B',..., F' when we shift to new axes x'y’z’ obtained by a rotation from
the xyz-system. Write the equations which correspond to (6.9-6) for the problem of
making G(x’, y’, z’) a maximum on the unit sphere. If the new axes are chosen so that this
maximum occurs at x'=1, y'=z"=0, show that D'=E'=0, and that G(x',y", z") =
Mx?+ B'y?+ C'2”+2F'y'z', where A is the maximum value of G on the unit sphere.
Now explain how it is possible to choose a new set of axes x”, y”, z", by a rotation from
the x'y’z'-system, rotating about the x'-axis, in such a way that the form becomes
Mix" 4 X2y" 4+ A32", where A, and s are respectively the maximum and minimum values
of G subject to the two constraints x' =0, y*+z7 = 1.
(b) It may be proved algebraically that the discriminant of a quadratic form Q(x, y, z) is
equal to the discriminant of the new form G(x’, y’, z") which is obtained from Q(x, y, z) by
a rotation of axes. Use this fact to prove that the numbers A, A», As described in part (a)
of this problem are the roots of the cubic equation (6.9-9).

MISCELLANEOUS EXERCISES
1. Choose a and b so that J¢ (Vx —a — bx)? dx is as small as possible; a + bx is
then called a ‘least-square” approximation to Vx in the interval [0, 1].
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2. If ¢(u, v) = f(x,y), where u = y>*— x>, v = y*>+ x?, show that
1 3% 3’ d8°¢

4xy axay  ov>  ou®

3. (a) Show by a diagram the part of the xy-plane in which f(x, y)=
(a—x)a-y)x+y—a)=0. Assume a>0. (b) Find all points of the plane at which
fi(x, ¥)=fax,y). (¢) Which of these points yield relative maxima or minima of f(x,y),
and which do not? (d) Does f have any absolute extrema?

4, Let S= 32V§(xl+ %) + xy(sec @ —3tan 0). Find the minimum value of S in the

region x >0, y >0, 0= 0 < /2 of xyf-space. How do you know that the minimum does
not occur when 6 = 0?

5. Find the point of occurrence of the maximum value of x’yz> on the part of the
plane x +y + z = 24 that lies in the first octant.

6. Find the maximum and minimum values of x>+ y?+z” subject to the two
conditions (x*/25)+ (y*/25)+ (z?/9)=1, x + y + 2z = 0.

7. Find the ratios y/x and x/z to make x>+2xy+xVx’+z> a minimum when
3x’y + x°z has a prescribed positive value (x, y, z all >0).

8. Find the maximum and minimum values of z subject to the conditions x>+ y*+
22=125, (x —2V6)*+ (y — 2V3)? + (z — 6)* = 13.

9. Suppose a, b, ¢, p given all positive, and p <1. Find the maximum of ax” +
by” + cz” subject to the conditions x +y+z=1, x, y, z>0.

10. Consider S = 2(xy + yz + zx), subject to the conditions ax + by + cz =2A and x,

y, z are all positive, where A>0and0<a<b+c¢,0<b<c+a0<c<a+b. Show that
the maximum possible value of S is 8A%[2(ab + bc + ca) —(a®>+b*+c)]™".

11. Find the absolute maximum and minimum values of
flx,y)=3x"-2(y+ Dx+3y—1
in the square 0=x=1,0=y=1.
12. (a) Find the minimum distance from the point (3, 4, 15) to the cone 4z%> = x>+ y>.
(b) Find the minimum distance from the point (9, 12, —5) to the cone 4z° = x>+ y°.

(¢) Are there any relative extrema in addition to the absolute minimum in part (a)? in part
(b)?



7/ GENERAL
THEOREMS OF

PARTIAL
DIFFERENTIATION

7 / PRELIMINARY REMARKS

This chapter is not primarily concerned with the technique of partial differen-
tiation, but with statements and proofs of some of the important theorems about
differentials and partial differentiation. We have separated the material of the
chapter from that of Chapter 6 for a number of reasons. In studying the subject
of partial differentiation the student needs first of all to get acquainted with the
new ideas which the subject presents to him. He needs to assimilate these ideas
through the medium of examples and problems. He will want a ‘reasoned
development of the subject, but he will be more interested in mastery of
technique and appreciation of some applications than in the details of the longer
proofs, particularly as regards the proofs of theorems which he is quite willing to
take for granted in the early stages. The theorems of §§7.1, 7.2 and 7.3 have been
referred to in Chapter 6. The student needs to know these theorems, but he can
very well go through Chapter 6 without studying their proofs.

Sections 7.4 and 7.5 are on a somewhat different footing. Every student who
uses advanced calculus is likely to have need of Taylor’s formula for a function
of several variables. One meets references to the formula frequently in the liter-
ature of applied mathematics and in various branches of higher analysis. The law
of the mean is merely a special case of Taylor’s formula. We have put this mater-
ial here rather than in Chapter 6 because its applications are not so immediate.

The final section of the chapter deals with tests for maximum or minimum
values of a function in terms of the second partial derivatives. These tests are of
great importance—both practical and theoretical.

Within the limits of time of an ordinary year course in advanced calculus the
instructor may wish to make only a selection from Chapter 7 with such a degree
of emphasis on the proofs as he or she sees fit. The various sections are
practically independent of each other, except that §§7.4 and 7.5 go together.

The definition of differentiability given in §6.4 can be reformulated slightly in
equivalent ways that we shall find useful. We shall give the reformulations for a
function of n variables. We use the notation

k| = (h3+- -+ h)'"? «7-1)

introduced in connection with #.4~17).

196
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A function f of n variables that is defined in a neighborhood of the point
(xi, ..., x,) is differentiable at (x,. .., x,) if and only if (1) all of the first partial
derivatives of f exist at (x,.. ., x,) and (2) we can write the formula

fxxi+hy, .. xath)—f(x,...,x,) = 2: filxt, ..., x.) hi +€|n|, ¥7=2)

where € is a variable quantity depending on hy,..., h,, with value 0 when
hy=---=h, =0, and such that e > 0 when ||h||— 0.

This formulation is obviously equivalent to that stated in connection with
‘§'§.4-I7), because the A;’s in .4=17) must of necessity be given by A;=
fi(x1, ..., xn) [see (6.4-18)].

Another equivalent formulation is obtained if we replace ||h| in (7-2) by ||k,
where

hlle = [hal + - - + |al. «7-3)
The reason for the equivalence is that
Ikl <Rlx = Vnlhl, W(7-4)
or, in more explicit form.
(R34 +h)2<|hy|+ -+ k| =Vn(hi+- -+ h)H" -5y

The first of these inequalities is easily proved, for if we calculate
(|hy| + - - - + |ha|)’, we obtain all of the terms h?,. . ., h2 plus additional terms, none
of them negative. The second inequality in (7-5) is a consequence of Cauchy’s in-
equality, given in [Exercise 29, §6.8. (In that inequality put a; = || and b; = 1)

Because of the foregoing we can see that it does not matter whether we write
el|h| or ek« in (7.2) (with €4 — 0 as ||h]+— 0). For we see by (7.4) that ||h||— 0 is
equivalent to ||hllx— 0, and if €l|h] = e4|h|lx, we see that e >0 is equivalent to
€+—0 because € = €,V n and €4 = € (with € = €4, =0 if all the h}s are 0).

7.1/ SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY

The concept of differentiability for a function of several variables was defined in
§6.4. To be differentiable at a given point a function must have first partial
derivatives at that point. But this alone is not enough. We may have a function
f(x, ) such that £,(0, 0) and f(0, 0) exist, and yet such that f is not differentiable
at (0,0); for an illustration see Exercise 7, §6.4. The following theorem deals
with sufficient conditions for differentiability:

THEOREM 1. Suppose the function f(x, y) is defined in some neighborhood of
af
ax’
point of the neighborhood and is continuous at (a, b), while the other partial
derivative is defined at least at the point (a,b). Then f is differentiable at
(a, b).

the point (a, b). Suppose one of the partial derivatives, say exists at each
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Proof. We shall use one of the formulations of differentiability from the
preceding section. We shall show that we can write

fla+h,b+k)—f(a,b)=fi(a, b)h +fxa, b)k +e(h|+|k|), K7.1=1)

where € >0 as (h, k)—(0,0). We work with small values of h and k,- and we
express the left side of (7.1-1) as the sum of two differences: o)

fa+h,b+k)—f(a,b)=f(a+h,b+k)—f(a,b+k)+f(a,b+k)—f(a,b).
%(7.1=-2)

Next we apply the law of the mean (Theorem IV, §1.2) to f(x,b +k) as a
function of x alone. The result is that there is a point between x = a and
x = a + h, which we may denote by x = a + 8h, where 0 <8 <1, such that

fla+h,b+k)—f(a,b+k)=fi(a+ 6h,b+k)h
Because f, is assumed to be continuous at (a, b), we can write
fi(a+ 6h,b+k)=fi(a,b)+ e,
where €,—>0 as h =0 and k - 0. Thus we have
f(a+h,b+k)—f(a,b+k)=fia,b)h + €h,

and we can put the expression on the right of the equality sign here in place of
the first difference on the right in (7.1-2). For the other difference on the right in
(7.1-2) we use the definition of f,(a, b) as the limit of a quotient to write (when
k=0)

f(a, b+ kk)—f(a’ D) - f(a, b) + e,

where €,— 0 as k - 0. We define €, to be 0 if k = 0. This permits us to replace the
second difference on the right in (7.1-2) by fa(a, b)k + €;k. The result is that we
have

f(a+h, b +k)—f(a, b)=fi(a, b)h +fi(a, b)k + €,h + &;k.
To bring this equation into the form of (7.1-1) we define

Elh +€2k
k] + k|

and € = 0 if |h|+ |k| = 0. Then, if |h|+ k| #0,

if |h|+|k|#0

€ =

k| K]
€| =|eil [h]+ K] + €| [h]+ K] =€ + e,
because, clearly, |h|=<|h|+ k| and |k|=|h|+ [k{. But now it is evident that e >0
when |h|+ |k| >0, because €,— 0 and €;,— 0. The proof is now complete.

It will be observed that the conditions of the theorem are not symmetrical as
regards x and y. We might equally well have assumed the mere existence of
fi(a, b), while assuming the continuity of fx(x,y) at (a, b). In general, for a
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function of more than two variables, we assume the mere existence of one of the
first partial derivatives, and the continuity of the other first partial derivatives.
We may then conclude that the function is differentiable. The proof is similar to
that of Theorem I. For most practical purposes the following statement is
sufficient:

THEOREM II. A function of several variables is differentiable at a point if the
function and all its first partial derivatives are defined in' some neighborhood
of the point and if these derivatives are continuous at the point.

EXERCISES

1. Let f(x, y) = (x*+ y9/(x*>+ y?) if x>+ y># 0, and define f(0, 0) = 0. Show that f has
first partial derivatives at all points, satisfying the inequalities |fi(x, y)| = 6|x], |f2(x, y)| =
6|y|. Is f differentiable at (0, 0)?

2. Let f(x,y) = (x>*—y)/(x>*+ y? if x>+ y># 0, and define f(0, 0) = 0. Show that f has
first partial derivatives at all points, but that these derivatives are discontinuous at (0, 0).
The function is not differentiable at (0,0). To prove this, show first that if it were
differentiable, one could write

3__ .3
iz—*_;,—z= x—y+e(x|+]yD,

where € >0 as (x, y) > (0, 0). Then show that this is impossible. SUGGESTION: Consider
the situation when y = —x.

3. Let f(x,y) = (x*+ y®) sin \/—21—+——5 if x>+ y># 0, and define g(0, 0) = 0. Show that f

x*+y

has first partial derivatives at all points, but that these derivatives are discontinuous at (0, 0).
Show that |fi(x, y)| = 2|x|+ 1. Prove that f is differentiable at (0, 0).

This example shows that the hypotheses in Theorems I and IT are sufficient, but not
necessary, conditions for differentiability.

4. Prove that the function

- Xy :
f(x’ y)_(x2+y2)2 lf (x’ )’)*(Q 0)
£(0,0)=0
f  8%f _

satisfies Laplace’s equation, W+3—y2“ 0, everywhere, but that f is not even continuous

(let alone differentiable) at the origin.

7.2 / CHANGING THE ORDER OF DIFFERENTIATION

We mentioned at the outset of Chapter 6 that we ordinarily find the relation

3
ay ax  9x dy (7.2-D

to be valid for the functions f(x, y) which we meet in everyday use of calculus.
The relation (7.2-1) may be false in particular cases, however, and so it is well to
know something of the conditions sufficient to guarantee its validity.
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THEOREM III. Let the function f(x,y) be defined in some neighborhood of the
point (a, b). Let the partial derivatives f\, f,, f1» and f,, also be defined in this
neighborhood, and suppose that fi, and f, are continuous at (a,b). Then
fi(a, b) = fy(a, b). In other words, (7.2-1) holds at the point (a, b).

Proof. We shall work entirely inside a square having its center at (a, b), and
lying inside the neighborhood referred to in the theorem. Let h be a number
different from zero such that the point (a + h, b + h) is inside the square just
referred to. Consider the expression

D=f(a+h,b+h)—f(a+h,b)—f(a,b+h)+f(a,b).
If we introduce the function
¢(x)=f(x,b+h)—f(x,b),
we can express D in the form
D = ¢(a+ h)—- ¢(a). (7.2-2)
Now ¢ has the derivative
¢'(x) = fi(x, b+ h) = fi(x, b).

Hence ¢ is continuous, and we may apply the law of the mean to (7.2-2), with
the result

D = hd’'(a+ 6,h) = h[f(a+ 6:h, b+ h)—fi(a+ 6h,b)], (7.2-3)
where 0 < 8, <1. Next, let
g(y) = fila + 61h, y).

The function g has the derivative

g'(y)=frla+6,h,y).
Now we can write (7.2-3) in the form

D = hig(b + h)—g(b)]
and apply the law of the mean. The result is

D = h’g'(b + 6;h) = h*f;x(a + 6,h, b + 6h),

where 0 <9, <1.
We might instead have started by expressing D in the form

D = (b + h)—(b),

where

Pp(y)=fla+h,y)—f(a,y).
This procedure would have led to an expression

D= h2f21(a + 64’1, b+ 63’1),
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with 0 <8, <1, 0< 8, <1. On comparing the two expressions for D we see that
f.z(a + 61’1, b+ ezh) = f21(a + 64h, b+ 63h) (72—4)

If we now make h—0, the points at which the derivatives in (7.2-4) are
evaluated both approach (a, b). Hence, by the assumed continuity of f,, and f,
we conclude that fix(a, b) = fx(a, b). This completes the proof.

The conditions of Theorem III are not the only known sufficient conditions
for the truth of (7.2-1). The theorem provides a useful working criterion,
however. Another criterion is furnished by the following theorem:

THEOREM 1V. Let f(x,y) and its first partial derivatives f,, f, be defined in a
neighborhood of the point (a, b), and suppose that f, and f, are differentiable
at that point. Then f)(a, b) = fy(a, b).

This theorem requires more of the function f in some ways, and less in
others, than Theorem III. We omit the proof, which begins very much like that
of Theorem III.

We may use Theorem III or Theorem IV to prove that a mixed partial
derivative of order higher than the second is independent of the order of
performing the differentiations, provided we make appropriate assumptions
about the continuity or differentiability. Thus, for example, suppose that f(x, y)
and all its partial derivatives of orders one, two, and three are continuous. (This
is more than we actually need.) Then

af  f  _ f
ayZox dyaxdy oxay’

For fiz=(f12)2= (f21)2 = fan,
and fae= (22 = (f2)1 = f1.

By similar arguments we can deal with functions of more than two in-
dependent variables.

EXERCISES
2 2

L Let f(x, ) =xy (5o iz) if x>+ y>#0, and define £(0,0) = 0. Show that f,(0, y) =
—y and fa(x,0) = x for all x and y. Then show that f,2(0,0)=—1 and f,(0,0) = 1.

2. Define f(x, y) = x* tan”'(y/x) — y* tan”'(x/y) if neither x nor y is zero, and f(x, y) =
0 if either x =0 or y =0 (or both). Show as in Exercise 1 that f2(0,0) = —1, f2,(0,0) = 1.

3. Theorem III can be improved as follows:

Assume that f is defined in some neighborhood of the point (a, b), and that thepartial
derivatives fi, f2, fi» are also defined in this neighborhood. Suppose finally that fi is
continuous at (a, b). Then it is true that f, is defined at (a, b) and that fix(a, b) = f2(a, b).

(This theorem is due to H. A. Schwarz.)

Prove the theorem with the assistance of the following suggestions: Let h, k be small
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numbers different from zero. Let
A=f(a+hb+k)—f(a+h b)—f(a,b+k)+f(a,b).
Show that there are numbers 6, 6, between 0 and 1, depending on h and k, such that

A= hkfu(a + Glh, b+ sz)

If € >0, choose § >0 so that hAk—f“(a’ b)

<e if 0<|h|< 8 and 0 <|k|< 8. Why is this

possible? Find the limit of hA_k with h fixed, as k> 0, and so conclude that

faa+h, bh)—fz(a, b)_; a b)} <e

if 0<|h| < 8. Now complete the proof of Schwarz’s theorem.

4. To prove Theorem IV, start as in the proof of Theorem III, and obtain (7.2-3). Then,
from the fact that f, is differentiable at (g4, b), one can write

fi(a+ 6ih, b+ h) = fi(a, b)+ fii(a, b)0:h + fia(a, b)h + €h),

where €, -0 as h - 0. Explain why this is so.
Then go on to explain how to obtain the expression

D = h*fu(a, b)+ €|hlh,

where € »0 as h - 0. Explain the derivation of the similar expression (where €' -0 as
h—-0)
D= h2f21((1, b)+ €’|h|h,

using the fact that f, is differentiable at (a, b). Now complete the proof of Theorem IV.

7.3 / DIFFERENTIALS OF COMPOSITE FUNCTIONS

In §6.4 we made the statement that a differentiable function of differentiable
functions is differentiable. We now formulate this proposition in precise terms,
and prove it. There may be any number of independent variables in each of the
functions involved. For simplicity we deal with the case of two variables
throughout.

sTHEOREM V. Let F(x, y) be defined in some neighborhood of the point (a, b),
and let it be differentiable there. Let f(s,t) and g(s,t) be defined in some
neighborhood of (so, to), and differentiable at that point. Assume further that

f(s0, to) = a, 8(s0, t0) = b,
and consider the composite function
G(s,t)=F(f(s, 1), g(s, t)).
Then G is differentiable at (so, to). Its differential may be written

= — — 43_1
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where

_of of 7.3-2
dx_asds+6tdt’ (7.3-2)
_ 98 ag
dy = 7s ds-l-—at dt.

It is to be understood that the partial derivatives of F are evaluated at (a, b),
those of f and g at (so, to), and that ds, dt are independent variables.

yProof. Let us write u = G(s, t), x = f(s,t), y = g(s, t). For arbitrary As, At
write Au = G(so+ As, to+ At) — G(so, ty), with corresponding meanings for Ax,
Ay. Note that Au = F(a+ Ax, b + Ay)— F(a, b). Accordingly, using one of the
formulations of the differentiability condition discussed in §7, we may write
Au = F, Ax + F, Ay + e(|Ax|+|Ay)),
Ax = fiAs + f, At + 8(|As| + |At)), (7.3-3)
Ay = g, As + g, At + n(|As| +|At]),
where € >0 as Ax and Ay -0, while § >0 and n -0 as As and At — 0. Here, for

convenience and brevity, we are using F; to stand for F((a, b), f| for fi(xo, to),
and so on. From (7.3-3) we see that

Au = Fy(fi As + f, At) + Fa(gy As + g, At) + (F18 + Fan)(|As| + [At]) + e(|Ax| + [Ay]).
This may be rewritten in the form

Au = (F\f1 + F2g\) As + (Fif2+ Fag2) At

Ax{+|A
+{F16+ Fyn +EIIA—’;"T|I—A%|1} (As] + [At)).

If we can show that

: Ax|+]|Ay }_
s 200 {F‘8 TEm e ayf T (7.3-4)

we shall have proved that G is differentiable, with the differential
dG = (F]f] + FZgl) dS + (F1f2+ Fzgz) dt

This last form is equivalent to the combination of (7.3-1) and (7.3-2). Hence it
remains only to prove (7.3-4).

Now F, and F, denote constants in (7.3-4), so that F8 + F,n—0. The
functions f and g are continuous at (so, t,) by Theorem II, §6.4. Hence Ax and
Ay —0, and therefore €e >0 as As and At >0. Let M be a constant larger than
the greatest of the numbers [fi], |f2], |g1], |g2l- Then by (7.3-3) we see that

|Ax| S (M + 8)(As| + [At]), [Ay| = (M +n)(|As| +[At].

Hence Ax|+|Ay

€ |AS|+|At’§e(2M+8+n).
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This quantity approaches zero as As and At approach zero. The assertion (7.3—4)
is there established.

7.4 / THE LAW OF THE MEAN

The student is already familiar with the law of the mean for functions of a single
independent variable, in the form
fla+h)—f(a)=hf'(a+6h),0<6<1 (7.4-1)

s (see (1.2-4) and Theorem IV, §1.2). It is useful to have a generalization of this
result for functions of several independent variables. In seeking an appropriate
form for such a generalization, we look upon (7.4-1) as furnishing a convenient
formula for the difference between the values of the function f at two points of
the x-axis, namely x = a and x = a + h. This leads us, in the case of a function of
two variables, to search for a means of expressing the difference

F(a+h,b+k)—F(a,b),

where the line segment joining the points (a, b), (a + h, b + k) lies in the region of
definition of the function F.

§ THEOREM VI. Let F be defined in a region R of the xy-plane. Let L be the line
segment with ends (a, b), (a + h, b + k). We suppose that L lies in R and that
all points of L except possibly the ends are interior points of R. Finally, we
assume that F is continuous at each point of L and differentiable at each
such point with the possible exception of the ends. Then, for a certain value
of 6, such that 0 <0 <1, we have

F(a+h, b+k)— F(a, b) = hF,(a + 6h, b + 6k)+ kFy(a + 6h, b + k).
(7.4-2)

t Proof.. By introducing a parametric representation of the line segment L,
x=a+thyy=b+tk,0=t=1,

we are able to regard the value of F along L as a function of the parameter ¢. Let
us write

f(t)=F(a+th,b+tk). (7.4-3)
The derivative of this composite function is
f'(t) = hFi(a + th, b + tk) + kFx(a + th, b + tk). (7.4-4)
Applying the ordinary law of the mean in the form (7.4-1), we have
f()—f(0)=f'(6),0<6<1. (7.4-5)

On setting t = 0, 1 successively in (7.4-3), and t = 6 in (7.4-4), we see that (7.4-5)
becomes the formula (7.4-2). The proof is therefore complete.
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Observe that the point (a + 6h, b + 0k) is a point of
the segment L somewhere between its ends (see Fig.
48).

(a+hb+k)

When a set has the property that for each pair of
points belonging to it the straight line segment connec- (g +84, b+6k)
ting them consists entirely of points which also belong to
the set, then the set is said to be convex.

If the domain R of the function F in Theorem VI is
both open and convex, then clearly (7.4-2) holds for
every pair of points (a,b) and (a+h,b+k) in R. It
follows immediately that if both first partial derivatives of F vanish throughout R,
then F has the same value at (a + h, b + k) as at (a, b). By holding a and b fixed
while letting h and k vary, (a + h, b + k) can be made to represent each point in R.
Therefore we see that F must take on the same value at each point of its domain—
in other words, F must be constant. This result is an analogue, for functions of two
variables, of Theorem V, §1.2.

Actually, we can get a more general analogue if we replace the condition of
convexity by a weaker condition called connectedness. For our purpose here it
will suffice to define connectedness for sets that are open.

(a,d)
Fig. 48.

*Definiition, An open set S in the plane (or in space of three dimensions) is called
‘connected in case each pair of points in S can be joined by a path consisting of a
finite number of straight line segments joined end to end consecutively, the whole
path lying entirely in S and not crossing itself anywhere. Such a path may be
called a polygonal arc.

Later, in §17.7, we shall give a general definition of connectedness, applic-
able to any set, open or not. When that definition is applied to open sets, it turns
out to be equivalent to the definition which we are using here.

As an example of a nonconnected set, let S consist of all
points of the plane for which x*>> 1, that is, all points except
those for which —1 = x = 1. Plainly S consists of two separated
parts (see Fig. 49). Two points, one in each part, cannot be
joined by a broken-line path lying entirely in S. This particu-
lar set S comes naturally to our attention if we study the
function

f,y)=y+VxI—1.

Now we come to the theorem.

ITHEOREM VH. Let F(x,y) be a function which is defined and differentiable
throughout a connected open set S, and suppose that the first partial
derivatives of F vanish at each point of S. Then F(x,y) is constant in
S.
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é;Proof. Suppose A and B are any two points of S. Let

them be joined by a path consisting of segments Pn
AP, P\P,, ..., P, P, P,B, all lying in S (see Fig. 50). By \& 2/}

the comment just after the proof of Theorem VI we see B
that F has the same value at A as at Py, the same value at Py

P, as at P,, and so on, so that F has the same value at B as

at A. This means that F is constant in S. Fig. 50.

Theorems VI and VII admit of immediate extension to functions of more
than two independent variables. The extension of the law of the mean for three
independent variables is

F(a+h b+k c+1)—F(a,b,c)=hF(% 7, 2)+ kFyZ, 3, Z) + IF(X, ¥, ),
(7.4-6)

where X=a+6h,y=b+0k,Z=c+ 6L
Formula (7.4-2) can also be written in the form
F(x,y)=F(a,b)= Fi(X, Y)(x —a) + Fi(X, Y)(y — b), (7.4-7)

where (X, Y) is a certain point on the line joining (a, b) and (x, y).

In §2.7 we had occasion to refer to the fact that a set may be empty. For
logical reasons we need to be aware that, even though a set is empty, it may
have certain properties ‘“‘by default.” For example, we cite the fact that the
empty set is open, The logic of the situation is that a set S is called open if for
every point P in S there is a neighborhood of P contained in S. If S is empty
there is no point P in S and hence the requirement about a neighborhood of P
has no force as a restriction on S. We say that the requirement “‘is satisfied
vacuously,” which means that it is satisfied by default. Hence S is open.
Similarly, an empty set is connected.

EXERCISES

1. Let F(x, y) = xy>— x’y. Find the appropriate value of 6 in (7.4-2) if (a) a=b =
O,h=1L,k=2;(b)a=b=0,h=3,k=2;(c)a=b=1,h=3,k=2.

2. Let F(x, y) be the quadratic function Ax>+ 2Bxy + Cy>. Show that (7.4-7) holds
with X =3%x +a), Y =3y + b). What does this mean about the value of 8 in (7.4-2)?

3. Taking F(x, y) = sin x cos y, prove that for some 6 between 0 and 1 it is true that
3 w0 ™ w . mwh . 7o
Z~§COS'3—COS—6"—E smT sm—6—-

4. (a) Write out formula (7.4-2) for F(x, y) = log(xe’z), witha=1,b=0,h=e—1,
k=1. (b) Write out (7.4-7) for this same function, with a, b, x, y arbitrary, except that
a>0,x>0.

5. If x#a in (7.4-7), show that Y = b+%{—z~(X—a). Hence show that, under

suitable conditions, F(1,0)— F(0, )= Fi(X, 1 - X)—- FAX, 1 - X).
6. Let F(x,y)=(1-2xy+x»)"'". As a result of considering F(1,0)— F(0, 1), show
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that there is a number 6 such that 0 < <1 and
1-V2=V2(1-36)(1-20+36%) 7",
7. Let F(x,y, z) = xyz. Find the appropriate value of 8 in (7.4-6) if (a) a=b=c=
0, h—k=l=l; Ma=b=0,c=1,h=k=1,1=-1; (¢c)a=c=0,b=1, h—l=
k=
8. Show that the open disc {(x, y):x*+ y*> <1} is convex.

HINT: Begin by showing that the line segment determined by any two points (a, b) and
(a+ h, b + k) in the disc is the set of all points of the form {a + th, b + tk} where 0 <t <1.

(Actually, we still have a convex set if we join to this open disc some or all of its
boundary.)

9. Explain why the empty set is connected, and why every set consisting of just one
point is connected.

7.5/ TAYLOR’S FORMULA AND SERIES

Just as we extended the ordinary law of the mean to functions of several
variables, so we may extend the version of Taylor’s formula given in §4.3. The
method is the same as that employed in the proof of Theorem VI, §7.4. We write

f(t)=F(a+th,b+tk) (7.5-1)

and apply Taylor’s formula to f(t), using the two values t =0, t = 1. From (4.3-7)
with a =0, h = 1 we have

(n) (n+1)
f=fO)+f O+ -+ fn(,o) {n+(1(;3’ 0<6<l. (7.5-2)

The assumptions are that F and its partial derivatives of orders 1 to n inclusive
are differentiable at all points along the line joining (a, b) and (a + h, b + k). The
main problem now is that of calculating the higher derivatives of f from (7.5-1).
The first derivative is given by (7.4-4) in the previous section. Working from that
formula, we see that

f'(t) = h[hFy + kF2] + k[hF2 + kF2],

where all the partial derivatives on the right are evaluated at (a + th, b + tk).
Since Fy, = F; (Theorem 1V, §7.2), we have

f"(t) = h®Fyy+ 2hkFy, + k*Fa,.
This is sometimes written in the form
; d d )2 ]
= _—+ —_
f (t) [(h 0x k 3}7 F(X, y) x:a+lh.y=b+tk’

it being understood that
) azF
y

(h %+ k %)2F(x, y) =

The analogy with the pattern of the binomial expansion is now evident. We have
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f"(t) = h*Fy; + 3h°kF 1, + 3hk*F 5+ kK*Fony
(i 0y

with x and y set equal to a +th and b + tk, respectively, in the partial deriva-
tives. The general formula is

s = | (e k %)nF(x, o] (7.5-3)

x=a+th, y=b+tk

To get Taylor’s formula for F(x, y) we use (7.5-1) and (7.5-3) to substitute in
(7.5-2). For n =1 the result is

F(a+h,b+k)=F(a,b)+ hF(a, b)+ kFs(a, b)+ R,, (7.5-4)
where
(Y
R2_2! (h 6x+k ay) Fx, y)]

x=a+8h,y=b+9k’
and 0 <0 < 1. For n =2 the result is
F(a+h,b+k)=F(a, b)+ hFi(a, b)+ kFx(a, b)

+ % [th”(a, b) + 2hkF|2(a, b) + kan(a, b)] + R3, (75—5)
where

1 d a\
R3—§[(ha—x‘+k5) F(x,y)]

’
x=a+6h, y=b+6k

and 0 < 8 <1. The extension to higher values of n is obvious. Observe that from
f™(0) we get a homogeneous polynomial of degree n in h and k, the coefficient

_ . n! d"F
n-ppp
of h" Pk’ being pitn —p)l ax™7 3y

-, with the partial derivative evaluated at

x=a,y=bh.
Under certain conditions on the function F, the point (a, b), and the size of h
and k, it may happen that F(a + h, b + k) can be represented as the infinite series

Fla+hb+k)=Fab)+ 3| (h gk o) Feey) L:M:b. (7.5-6)
This is the form of Taylor’s series for a function of two variables. If we use only
a specified number of terms of this series we get an approximate expression for
F(a+ h, b+ k). Frequently it is more convenient to write (x,y) in place of
(a+ h,b+k). The typical term of the series then becomes a homogeneous
polynomial in (x — a) and (y — b).

Example. Write Taylor’s formula (7.5-4) with n =1, and carry the series
(7.5-6) through the term in n =2, if F(x,y)=1/(xy),a=1,b=—1.
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From F(x,y) = x"'y™! we readily find

oF _ 2 1 0F _ .

ax— y ’ay_ X y ’
?*F ., 5 . 8F _ 4_2MF_ S
axz_zx y ’axay_x y > 9y’ 2x :

It is now easily seen that (7.5-4) becomes

1

h? + hk . k2
(14 6h)*(—1+ 6k) ' (1+ 6h)X(—1+ 6k)* ' (1+ 6h)(—1+ 6k)*

R,=

The series (7.5-6) begins

1
(A+h)(—1+k)

Detailed verification should be supplied by the student as he reads this example.

—14+(h—k)+(=h*+hk —k*) +- - -.

If we write x = 1+ h, y = —1 + k, the last formula becomes
1 e fr— —
o= 1 =D=-(+ D)

H-x -+ -D+D -+ DT+ -

We shall not investigate the precise limitations on (x — 1) and (y + 1) which are
necessary in this expansion.

There are situations in which we need the Taylor series with remainder for
functions of more than two variables. Suppose for example that we wish to
expand a function F(xi, Xxs,...,X,) about the point a, as,..., a,. One way of
writing the expansion to terms of degree k, followed by a remainder, is

F(al+hla a2+h2,-",an+hn)=F(alaa2"--9 an)+

k ] r
— —)F+
+r 1r'(h' +h2 + +h"ax,,)F
1 9 k+1
—_— —_— ___.+ RN —_ F’
+(k+1)! (hl ax1+h2 3Xs +hy ax,,)
where all the derivatives up through those of order k are evaluated at the point
(ai, as,...,a,), and those of order k+1 are evaluated at a;+ 0h,a,+
6h,, . .., a, + 6h, where 0 is some number properly between 0 and 1. The line
through (ay, as, . . ., a,) and (a;+ hy, a;+ hy, . . ., a, + h,) has parametric equations
X;=a;+th,, x,=a+thy,..., x,=a,+th,. Therefore the point at which the

(k + 1)st order partial derivatives in the remainder term are evaluated is between the
two points where t =0 and t = 1.

Another way of saying the same thing results from letting x; = a;+ hy,
X;=ay+hy, ..., x, = a,+ h, Replacing the h’s by their equivalents in terms of
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the x’s gives
F(xi, x x.) = F(a;, a Ek‘,—l—[(x )i+~--+(x —a)L]YF
15 A2y + s o5 An 19 U25 . -« < r 1 a; axl n n axn

1 g 9 k+1
+—~—(k+1)![(xl—al)a—xl+---+(x,,— 3an*F’

where all derivatives or order less than or equal to k are evaluated at

(ay, ay, ..., a,) and the derivatives in the remainder term, all of which are of
order (k + 1), are evaluated at some point P* on the line segment connecting
(ai,...,a,) and (xq, ..., X,).

In the theory of maxima and minima of functions of several variables, we
are interested in the case where k = 1. The above formula then reduces to

F(xy, x3,...,x,)=F(aj, as,...,a,)+(x;—a)F(a,,...,a,)+---+ 7.5-7)
+ (xn. - a,,)F,,(a1, a, ..., an) +

+l[(x1—al)i+‘--+(x —a)i]2 F
21 3%, T 9x, | pe

n
=F(a,ay,...,a,)+ 2 (x; —a;)Fi(ay, as, . .., a,) +
=

2 (xi — @)(x; — a;) Fy(P*)

i,j=1
where F;; is evaluated at some point of the form [a;+8(x;—a),a:+
0(x,— ay),. .., a, + 08(x, — a,)]—in other words, at some point on the line segment
connecting (ay, 4, . . ., a,) and (xi, X2, . . ., X;). The remainder term in this special
case can be recognized as a quadratic form in the n variables x;—a;, x,—
az, ..., X, — a,. See §6.9, and recall that by Theorem IIl F; = F;; under very
general hypotheses on F.

EXERCISES

1. Write Taylor’s formula (7.5-5) for F(x, y)=sinx siny, using a =0, b =0, and
n=2. ;

2. Write Taylor’s formula for F(x,y)=cos x cos y, using a=0,b=0,and n =2.

3. Write Taylor’s formula with a =3, b =3, n =3 for F(x,y)= x>+ y>—9xy +27.

4. Let F(x, y) =log(x + e”). Expand according to Taylor’s series in powers of x — 1
and Y, going far enough to include all terms of degree 2 in these quantities.

5. Follow the instructions of Exercise 4 for F(x, y) = sin(e”® + x> —2).

6. Write Taylor’s series for e* cosy in powers of x and y, going far enough to
include all terms of third degree.

7. Write Taylor’s series for e -y2+2v in powers of x and y, going far enough to include
all terms of fourth degree.

8. Write Taylor’s series for x>y + xy>+ 1 in powers of x —1 and y — 1.

9. Write Taylor’s series for xy’>— y”+ y +2 in powers of x —1 and y — 2.
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10. (a) Find a linear function of x and y which is a good approximation for

F(x,y)= tan_'(lx—;%) when x and y are small.

(b) Write the constant and linear terms in Taylor’s series of F(x, y) in powers of x — 3 and
y—2
11. Write out in full the expression

1 0 3\
5 (ha+k5> F(x, y).

What does the expression become (a) if F(x,y)=x*—x*y’>+y* (b) if F(x, y) = sin xy
and if one sets x = y = (7/2)"” after doing the differentiation?

12, (a) Carry on the work of the illustrative example in the text, showing that
d"F n 1
X oy (=D"(n —P)!P!mﬁ’
and that the polynomial of degree n in h and k in the Taylor’s series is
D" 'R =R Tk + RV =+ (1)K
(b) Assuming that |h| <1 and |k| <1, write

1 -
A+ h)—1+k)
=—(I—h+h’—h+--Y1+k+k*+-).

—~(1+h)'1-k)"

Then multiply the two series together term by term, and collect together the terms of like
degree. Compare with the result found in (a).

7.6 / SUFFICIENT CONDITIONS FOR A RELATIVE EXTREME

In §6.3 we discussed relative maxima and minima for a function f(x,y). In
Theorem I of that section we reached the important conclusion that if f attains a
relative extreme value at an interior point of its region of definition, then

necessarily the partial derivatives % and % vanish at the point (provided these
derivatives exist, of course). The conditions
of of
9 g oL - 7.6-1
a0 2y 0 ( )

at a point do not in themselves guarantee a relative extreme, however. In this
section we wish to develop criteria which, taken together with conditions (7.6-1),
will guarantee a relative extreme, and enable us to distinguish a relative
maximum from a relative minimum.

It will be helpful if we begin by reviewing briefly the analogous con-
siderations for a function of one variable. Suppose we have a function y = f(x)
defined on some interval having x = a as an interior point. We suppose f to be
differentiable on the interval, and we assume that the second derivative exists at

X =d.
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YTHEOREM VIIL.: Under the conditions on f as just stated, suppose that f'(a) = 0.
Then
(1) If f"(a) >0, f has a relative minimum at x = a;
(1) If f"(a) <0, j has a relative maximum at x = a;
(iii) If f"(a)=0 no conclusion may be drawn; f may have a relative maxi-
mum or minimum, or it may have neither.

© Proof. Consider the value of f at any point x = a +h near x = a. We take
h# 0, but it may be either positive or negative. By the law of the mean,
f(a+h)—f(a)=hf'(a+6h), 0<0 <1. (7.6-2)

Now, by the definition of f"(a), we have

. flatAx)—f(a)_ ..
Alirﬂ) Ax = f"(a@).
Since f'(a) =0 we can write this in the form
flla+Ax) _
Ax

where € is a variable quantity such that e >0 as Ax — 0. Consequently, if we
choose Ax = 6h, we have

f(a)te

f'(a+ 6h) = (f"(a)+ €)6h,
and (7.6-2) becomes ,
f(a+h)~—f(a)=(f"(a)+ €)6h’. (7.6-3)

If we now suppose that f’(a) # 0, we see that, as soon as h is small enough to
insure that |e| <|f"(a)], the sign of the left member of (7.6-3) is the same as the
sign of f"(a). Consequently, if f"(a) >0, we conclude that f(a + h) > f(a) for all
sufficiently small values of h different from zero. This means that f has a relative
minimum at x = a. We have thus proved part (i) of the theorem; the same kind of
argument is used for part (it). If f”(a) =0 no conclusion is reached, however,
since we do not know the sign of € in (7.6-3). The three examples y = x*, y =
—x* y=1x’ with a =0, show that any of the possibilities mentioned in part (iii)
may arise.

Let us now turn to the case of two independent variables. We have the
following corresponding theorem:

\THEOREM IX. Suppose that F(x,y) is defined and differentiable throughout a
region R of which (a, b) is an interior point, and suppose that the first partial
derivatives of F vanish at that point. Suppose further that the partial
derivatives F, and F, are differentiable at (a, b). Let us write

A= F”(a, b)s B = FIZ(a’ b)’ C= FZZ(a9 b)
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Then
(i) If B>— AC <0 and A >0, F has a relative minimum at (a, b);
(i) If B>~ AC <0 and A <0, F has a relative maximum at (a, b);
(iii) If B*— AC >0, F has neither a maximum nor a minimum at the point;
(iv) If B*— AC =0, no conclusion may be drawn and any of the behaviors of
F described in parts (i)-(iii) may occur.

Proof.' Note that part (iii) of Theorem IX has no counterpart in Theorem
VIII. The method of proof of Theorem IX is similar to that of Theorem VIII. We
consider the point (a + h, b + k), where h and k are both small, but not both
zero. By the law of the mean we have (with 0 <6 <1)

F(a+h,b+k)— F(a, b)= hFi(a+ 6h, b + 6k) + kF,(a + 6h, b + 6k).

Since we assumed F; and F, differentiable, we may write (see the discussion of
differentiability near the end of §7)

F](a + Gh, b+ Gk) - Fl(a, b) = OhF”(a, b) + OkFlz(a, b) + 61('0h| + 'Okl),

where €,—0 as h and k—0. A similar expression may be written for F,, with
some quantity e, in place of ;. Since F(a, b) = Fy(a, b) = 0, by hypothesis, we
have

F(a+h,b+k)—F(a,b)=0[Ah*+2Bhk + Ck>) + (|h|+ |k])(e:h + €2k)].  (7.6-4)

This formula is the counterpart of (7.6-3). To get the information we desire from
it, however, it is more convenient to express h and k in terms of polar
co-ordinates with origin at (a, b). Let us write

h=rcosd¢,k =rsind.

When these expressions are substituted in (7.6—4), a factor r* can be taken out,
and we get

F(a+ h,b+k)—F(a, b)=0r'[G(¢)+ 8], (7.6-5)
where for abbreviation we have set
G(¢)= Acos’ ¢ + 2B sin ¢ cos ¢ + C sin’ ¢,
8 = (|cos ¢| + Isin ¢|)(€, cos ¢ + € sin P).

Here 0 <6 <1, and 8 -0 as r » 0. Since G(¢) is independent of r, it is clear that,
if G(¢) # 0, the sign of the left member of (7.6-5) will be the same as the sign of
G(¢) when r is sufficiently small. Moreover, G(¢) is continuous, whence it
follows that, if G(¢) is never zero, it always has the same sign, and, when r is
sufficiently small, the sign of G(¢)+ 8 will be the same as the sign of G(¢).
Therefore, if G(¢) is always positive, F has a minimum at (a, b), while if G(¢)
is always negative, F has a maximum at (a, b). On the other hand, if G(¢) is
sometimes positive and sometimes negative, F has neither a maximum nor a
minimum at (a, b). We shall show that the cases (i)-(iii) in the statement of
Theorem IX lead to exactly these three types of behavior for G(¢).
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Observe that vk
AR’ +2Bhk + Ck* = r’G(¢).
This shows that the sign of G(¢) is the same as the sign y ;I\(h.k) '
of the quadratic function s i\\ h
f(h, k) = Ah*+2Bhk + CK>. Palss X
Now let us regard h, k as rectangular co-ordinates in =a,y=b

a system with origin at the point x =a,y=b. Let h’,
k' denote rectangular co-ordinates in a system
obtained from the hk-system by a rotation about the
origin of the system (see Fig. 51). As we saw in §6.9,
it is possible to choose the rotation in such a way that f(h, k) becomes

Mh2+ 0k = rPG(¢), (7.6-6)

Fig. 51.

where A, and A, are roots of the equation

A—)t B 22 _np2_
B C—1 =A—-(A+ A+ AC—-B°=0. (7.6-7)

Here h®+ k*>= h'*+ k' = r%. Observe that the product of the roots of (7.6-7) is
AMA,= AC — B%, (7.6-8)

and that the sum is
M+HAa=A+C. (7.6-9)

Everything now depends on the sign of the expression (7.6-6). It is clear that if
A1 and A, are both positive, G(¢) is positive, and we have the case of a minimum
at (a, b), whereas if A; and A, are both negative, we have the case of a maximum
at (a, b). Let us now consider cases (i) and (ii) of the theorem. The hypothesis
B?— AC <0 implies that A and C are of the same sign, and also, by (7.6-8), that
A and A, are of the same sign. Consequently, from (7.6-9) we see that
B*—~ AC <0 and A >0 imply that A, and A, are positive, whereas B>— AC <0
and A <0 imply that A, and A, are negative. The conclusions in cases (i) and (ii)
are therefore established by the foregoing arguments.

In case (iii), B’— AC >0 implies that A\, and A, are of opposite signs. Now
we can choose ¢ so as to make h'=0, k' #0, r*G(¢) = A;k’*, and we can also
choose ¢ so as to make h'#0, k' =0, r’G(¢) = Ah™. Thus G(¢) can change
sign, and so we have neither a maximum nor a minimum at (a, b).

Finally, if B?— AC =0, at least one of the roots A; and X, is zero, by (7.6-8).
No conclusion about a maximum or minimum can be drawn in this case. The
reasons for this are clear from (7.6-6) and (7.6-5). As examples we cite the three
functions

2 2 4 2
X5, —y,x —y.
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Each of these functions comes under case (iv) of Theorem IX, with a=b =0.
The first has a minimum at (0, 0), the second a maximum, while the third has
neither.

A point at which all the first partial derivatives of a function are equal to
zero is called a critical point of the function. If (a, b) is a critical point of
F(x,y), and if B*— AC# 0 at (a, b) (in the notation of Theorem IX), we call the
critical point nondegenerate. The point is called a saddle point if B*— AC >0.

It should be noted that, if we assume that F has partial derivatives of all
orders, and that it can be represented by its Taylor’s series (see §7.5), then, when
(a, b) is a critical point, the Taylor’s series starts as follows:

F(a+h,b+k)=F(a,b)+%[Ah2+2Bhk+Ck2]+ .

Observe also that AC — B? is the discriminant of the quadratic form
Ah?+2Bhk + Ck>.

This gives us a clue to the proper method of defining nondegenerate critical
points for functions of more than two variables. We illustrate briefly for the case
of three variables. Suppose the origin is a critical point of the function
F(xl, X2, x3), so that Fl(O, 0, 0) = Fz(o, 0, 0) = F}(O, 0, 0) =0. Let an = F]](O, 0, 0),
ap = F»0,0,0), a3 = F;5(0,0,0), and so on.
Then Taylor’s series is

3

F(xy, x,, x3) = F(0,0, 0)+% 2 A+ - e
L=

The critical point is called nondegenerate in case the determinant
ap ap ap
a; dan» axn
as axn a4y

is not zero. For nondegenerate critical points there is a generalization of
Theorem IX. We consider the roots A;, Az, A; of the equation

an—A a as
an Ay — A an =().
asy asz as—A

If these roots are all of the same sign, F has a minimum at the critical point if
the roots are all positive, and a maximum there if they are all negative. But, if
some roots are positive and some negative, there is neither a maximum nor a
minimum at the critical point. These facts follow quickly from the discussion of
quadratic forms in §6.9. It is not actually necessary to assume the convergence
of Taylor’s series. All that is needed is that the first derivatives of F be
differentiable at the critical point.
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We shall now indicate how the foregoing critical point theory can be
developed for functions of more than two variables. We suppose that we have a
function F(xi,..., x,) of n independent variables, defined and differentiable at
all points in a region including (ay, ..., a,) as an interior point. We shall assume
that (ay,..., a,) is a critical point of F that is, that all the first partial derivatives
of F vanish at this point. And finally we assume that each of the first partial
derivatives of F is differentiable at least at this one point (ay, ..., a,). By an easy
extension of Theorem IV to n variables, these hypotheses assure us that the
second partial derivatives exist at the critical point, and that the symmetrical

2 2
relations of the type oF _ OF are all valid. As usual, we use the notation
ax; ax,- Bx,- 0X;
3°F ) ) . . i
—3;137 = Fj;. From now on we restrict our attention to the points contained within
some ball centered at (ay, . . ., a,) where the radius of the ball is small enough so

that all points within the ball belong also to the region in which our assumptions
about F hold.

To compare the value of F at(x, . . ., x,) with the value at(a,, . . ., a,) we use the
law of the mean. This was proved for functions of two variables in Theorem VI,
and later in §7.4 it was pointed out that the natural extension to functions of n
variables is also valid. For convenience let h; = x; — a;.. Then there is some 0,
(0 <6 <1), such that

F(xi,...,x)—F(ay,..., a,)=2 hFi(a\+ 6h,,...,a, +6h,) (7.6-10)
=1

Next, we use the differentiability of all the F;’s at (a,,..., a,). It enables us tc
write
F(a,+Ax,,...,a,+Ax,)— Fi(ay,..., a,)

=Y Fy(ay, ..., a,) Ax;+ ¢V (Ax )’ + - - - + (Ax,)’ (7.6-11,
i=1

where € depends on Ax, ..., Ax, in such a way that ¢ — 0 when all the Ax;’s—> 0.
See (7.2). If we now put Ax; = 6h; in (7.6-11) and combine with (7.6-10), bearing
in mind that the first order partial derivatives all vanish at the critical point, we
see that

F(xl, ceey x,,) - F(al, .y a,.) =0 [ F;,-(al, ey an)h(h,‘]

ij=1

>
Li=
n

+0(h}+---+hY"? €h. (7.6-12)

The value of 8 is unknown but we do know that it is properly between 0 and 1}
and hence positive. Consequently, the sign of the difference F(xy,...,X.)—
F(ai,...,a,) is the same as the sign of

1 i=1

L

i Fi(a,. .., a,) hihj+(h}+- -+ hD'? 3 eh;. (7.6-13)
SE
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The first summation is a quadratic form in the variables h,, .. ., h,. The absolute
value of the second part is small in comparison with (h?+ - - -+ h2) when the
latter is small, because the €’s approach zero as the h;’s— 0. In fact, by Cauchy’s
inequality, (see §6.8, Exercise 8),

n

2 €h;

i=1

[t nd2 3 ah| = (3 e%)m (Zm) (7.6-14)

- (zn: 6%)1/2 (2,.:1 h%)ln’

i=1

justifying the assertion made in the preceding sentence.
This brings us to the essential aspect of our theory, and we focus attention
on the quadratic form

Q(h], .y h,,) = igl F},-(al, ey a,,)hih,-.

If this quadratic form remains always of the same sign, no matter how the h;’s
are chosen, so long as they are not all zero, then as we shall see in a moment, the
sign of the quadratic form and the sign of F(x,,...,x.)— F(ai,..., a,) will be
the same when (xy,..., x,) is sufficiently close to (ay,..., a,), that is, when
(h}+---+h)" is sufficiently small. Then we have a relative minimum at
(ay, ..., a,)if the difference is positive and a relative maximum at (ay, . . ., a,) if the
difference is negative.

The proof of what has been said depends on a straightforward generalization
from F(x,y,z) to F(xy,...,x,) in Exercise 14 of §6.9. This shows that by a
suitable rotation of axes we can transform the quadratic form to one having only
squares,

> Fylay, ..., a)hih; = X Ak3, (7.6-15)
i7 i=1

i,j=1

where the coeflicients are roots of the equation

Fn—-A F, ... Fu,
Fn  Fun—\ ... Fu —o

; (7.6-16)
Fu Fn oo Fum—A\

and Fj, of course, is an abbreviation for Fj(a; ... a,). It is not hard to see that
this determinant is a polynomial of degree n in the variable A, and therefore we
can think of the equation in the form

Cn/\n+cn—lhn_1+ . '+C1)\+Co=0, (7.6—16)'

in which it is not hard to see that ¢, = (—1)", while the constant term, cy, is given
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by
Fll Fl2 L Fln
Fn Fn ... Fy
Fnl Fn2 CECIR an

If this determinant is not zero, then we say that the critical point is non-
degenerate. The significant -thing about nondegenerate critical points is im-
mediately apparent from (7.6-16)', that none of the \;’s can be zero. It is also
clear that if the critical point is degenerate, that is, if the above determinant is
zero at the critical point, then at least one of the A;’s is zero.

We should perhaps remind ourselves at this point that it follows from the
generalization of Exercise 14 of §6.9 that, whether the critical point is degenerate
or nondegenerate, all the A;’s have to be real. This is seen from the fact that the
A’s arise there as a sequence of extreme values of a real function under a
sequence of increasingly limiting constraints. To those who have studied matrix
theory it is also obvious from the fact that the A;’s are characteristic values of a
real symmetric matrix.

It is obvious from (7.6-15) that the quadratic form cannot change sign if all
the A;’s are positive or if they are all negative. However, if some are positive and
others are negative then the quadratic form does change sign. Quadratic forms
which are positive (negative) except when all the variables are zero are said to
be positive (negative) definite. If a form is never negative (positive) but may
vanish when not all the variables are zero, it is called positive (negative)
semidefinite. Quadratic forms which take both positive and negative values are
said to be indefinite.

The ordered n-tuple (ki,...,k,) in (7.6-15) represents the same vector
after the rotation of axes as was represented by (hy,..., h,) in the original
coordinate system. The individual components of a vector change under a

n n
rotation of axes but length does not. Therefore >, hi= > k2. Using this fact we
i=1 i=1

can infer from (7.6-14) and (7.6-13) that the sign of F(x,,..., x,)— F(ay,..., a,)
n n 142 n

is the same as the sign of 2, Ak?+ R, where |[R| =< (2 e%) 21 k2. Consider first
i=1 i=

the case where all the A;’s are, positive and let the smallest one be m. Then from
the above we see that

n n 129 k
E)\ik%+R2[m~(z e%) ]Zlk%,
i=1 i=1 i=

and the €’s will be so small that this is positive if we stay close enough to
(ai, - - ., a,). Similarly, turning now to the case where all the \’s are negative and
the largest is —m, we can write

n 1/2 n )
=1 i=1

Eik%+R$|:—m+(

i
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The right-hand side will be negative if we constrain the ¢’s to be small enough
by staying sufficiently close to (ay,..., a,).

So in summary we can say that if the A’s are all positive, F(xy,..., X,) >
F(ay,...,a,) for all (xi,...,x,) sufficiently close to (a,...,a,) and thus the
critical point is one where F has a local minimum. Similarly, if all the A;’s are
negative, then F(x,.. ., x,) <F(ay,..., a,) throughout some neighborhood of the
critical point and hence F has a local maximum. Actually we have proved a little
bit more than this. By definition, F has a local minimum at (a,,..., a,) in case
there is some neighborhood of this point at every other point of which the value
of the function is merely greater than or equal to the value at (ay, ..., a,). We
have shown that at a critical point where all the A;’s are positive, there is a
neighborhood at all other points of which F is strictly greater than F(a,,.. ., a,).
Such a point is not just a local minimum but a strict local minimum. In a similar
way we distinguish between a local maximum and a strict local maximum. Now,
what we have actually proved is that at a critical point where all the A;’s are
positive the function has a strict local minimum and at a critical point where all
the A;’s are negative, the function has a strict local maximum.

These criteria which we have just obtained are not very practical because
they give no way of telling whether the A;’s are all positive or all negative and it
would usually not be feasible to compute all these numbers by solving (7.6-16)".
Fortunately there is a method, sometimes known as Gundelfinger’s rule, which
can, without finding all the A;’s, tell us whether they are all of the same sign. To
use it we begin by computing d,, d., . . ., d, defined as follows:

Fu Fn ... Fu

F F . M

di=Fun;dy= 112: FZ cdy= Y Fa Fa
Fu Fn ... Fu

Gundelfinger’s rule tells us that:

(i) A necessary and sufficient condition that all the A;’s be positive is that all the d;’s be
positive.

(ii)) A necessary and sufficient condition that all the A;’s be negative is that the d;’s
alternate in sign with d, being negative.

Both (i) and (ii) apply only to critical points where all the A;’s are different from
zero, that is, to nondegenerate critical points, but they do enable us to classify
nondegenerate critical points by looking at the easily obtainable d;’s instead of
the hard-to-find A;’s. Our previous arguments allow us to assert immediately
that:

(i) A necessary and sufficient condition that a nondegenerate critical point give a
strict local minimum is that all the d;’s be greater than zero.

(i) A necessary and sufficient condition that a nondegenerate critical point give a
strict local maximum is that the d;’s alternately less than zero and greater than
zero with d; being less than zero.
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(iii) A nondegenerate critical point which is neither a strict local minimum nor a strict
local maximum is a saddle point, where the function has a strict local maximum
from some directions and a strict local minimum from others.

There are extensions of Gundelfinger’s rule which enable us to classify
degenerate critical points, where the maxima and minima are nonstrict, but we
shall not include these details.

EXERCISES
1. Find all the critical points of each of the following functions. Test each critical
point by Theorem IX, and state your conclusion.

(a) y>+3x*—4x>—12x%+24.
(b) x>— 12y +4y>+3y*.

(© x*+y*—2x*+4xy — 2y~
d) x*y*—5x>—8xy — 5y>.
(e) xy(12—3x —4y).

® x’y(a—-x-y),a>0.

@ A-x)A—-y)x+y—-1).
(h) x’y(24-x—y)’.

O

(G) x2+y)—18x —24y + 5V X2+ y2 + 250.
(k) 5(x*+ y?) —24x — 32y — 60V x>+ y> + 1000.
() 12xsiny—2x’siny +x>sin y cos y.

2. If a and b are positive, show that (a/x)+ (b/y) +xy has a minimum at its only
critical point. What is the situation if a and b are both negative? if they have opposite
signs?

3. How many critical points has the function (ax”+ by’)e”‘z’y2 if b > a >0? Discuss
the nature of each of them.

4. Find the shortest distance from the point (1, —1, 1) to the surface z = xy. Set up
the squared distance as a function of x, y, find the critical points of the function, and test
them by Theorem IX.

5. Discuss the problem of finding the shortest distance from the point (0, 0, a) to the
surface z = xy, where a >0. Proceed as directed in Exercise 4. Separate the case
0<a=sland 1<a.

6. If z is defined as a function of x, y by the equation 2x”>+2y*+ 2>+ 8xz — 2z +8 =
0, find the points (x, y, z) at which 2z has a relative extreme, and test by second derivatives
for a maximum or minimum in each case.

7. Proceed as directed in Exercise 6, starting from the equation

x2+2y%+32°—2xy —2yz =2.

8. Suppose that F is defined in the neighborhood of (a, b), and that Fy(a, b) =0,
Fii(a, b) <0. Why is it impossible for F to have a relative minimum at (a, b)?

9. Locate the critical points of the function xyz(x + y + z — 1). Show that there are
six lines all of whose points are degenerate critical points, and one nondegenerate critical
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point. Is this a maximum or a minimum point? Can you answer this last question without

second derivative tests?

x*+y*+7°
z

10. Show that every critical point of the function is degenerate.

11. Locate the critical points of the function

—x2-y2_ 52

F(x,y,2)=(ax’+ by’ + cz’)e ,

where a > b > ¢ > 0. Show that there are two points of maximum value of F, one point of
minimum value, and four critical points at which there is neither a maximum nor a
minimum.

12. Study the function F(x,y)=(y”— x*)(y*—2x?). Show that there are four lines
which divide ti:e plane into eight regions, in each of which F has a constant sign. Discuss
the critical point of the function. Are there any relative extrema?

13. Discuss the sign of the function F(x, y) = (2x* — y)(x*>— y) at various points of the
plane, by appropriate consideration of the regions into which the plane is divided by the
two parabolas y = x*, y = 2x° Discuss the critical points of the function. Show that, along
every straight line through the origin, the values of F reach a minimum at (0, 0) but that F
has neither a maximum nor a minimum at (0, 0).

MISCELLANEOUS EXERCISES

1. Generalize Theorem I of §6.3 to functions of n variables.

2. Suppose f(x,y) is differentiable at (a, b), with A= fi(a,b), B =fxa, b). Let
F(r,0)=f(a+rcos 0, b+rsin6). Then F,(0, §) exists and is equal to A cos 6 + B sin 6,
for every 6. Prove this directly from the definition of differentiability of f and the fact
that F.(0, 6) = lim, (1/r) {F(r, 6) — F(0, 0)}.

3. F(x,)=0-x)A—-y)x+y—1), a=b=3% write Taylor’s series for
F(a + h, b + k). What do you conclude about the sign of the difference F(a + h, b + k) —
F(a, b) when h and k are small?

4. Define f(x,y)=(x>—y>)/(x*+y?) if x>+ y>#0, and f(0,0)=0. If we introduce
cylindrical co-ordinates (r, 6, z) in the usual way, the surface z = f(x, y) is represented by
z = r(cos® 6 —sin® 8). Observe that the surface consists of a bundle of half-lines; the
half-line corresponding to a fixed value of 6 starts at the origin and passes through the
cylinder x*+ y>=1 at a point for which z = cos® 6 — sin’ 6.

By plotting the curve z = cos® § — sin® § with 6 and z treated as plane rectangular co-
ordinates, and then rolling up the plane to form a cylinder, one can visualize the surface.
Do this. Does the surface have a tangent plane at the origin?

5. Suppose that f and ¢ are functions of a single variable, and that each function has
continuous first and second derivatives. We shall suppose that é(a)=c#0 and that
¢'(a)#0. Let F(x,y,2)=f(x)+f(y)+f(2), G(x,y, 2)=d(x)P(y)p(z). Consider the
extremal problem for F(x,y,z) subject to the constraint G(x,y,z)=c’. Show that a
possible solution of the problem occurs when x =y = z = a, and that the extreme will be a
relative minimum if

' jg"(a)_tb’(a)}< "
r@{Ss -5} <@,
and a relative maximum if the inequality is reversed. As instances consider: first,
f(x)=x% ¢(x)=x, a>0; and second, f(x) = e, $(x) = x.



8 /| IMPLICIT-FUNCTION

THEOREMS

8 / THE NATURE OF THE PROBLEM OF IMPLICIT FUNCTIONS

We have already acquired some familiarity with implicit functions, in §§6.1 and
6.6. Thus far what we have learned about implicit functions has been concerned
almost entirely with techniques for differentiating such functions in concrete
special cases (86.1), or with general formulas for the derivatives of implicit
functions in terms of functional notation (86.6). In all this earlier work we have
taken for granted the existence and differentiability of the implicit functions. In
this chapter we shall inquire into these matters which have been taken for
granted.
Consider then an equation in three variables,

F(x,y,2)=0. @-1)
In certain situations we say that an equation of this form has a solution
z=f(x,y). &-2)

Our present purpose is to examine the following questions: What does it mean to
say that (8-2) is a solution of (8-1)? Under what conditions is a solution
possible? What can be said about the differentiability of the function f in terms
of what may be known about the function F? The answers to these and related
questions will occupy us in this chapter.

Questions of the same sort can be asked about other implicit-function
situations. We may have y=f(x) as a solution of F(x,y)=0, or z=
f(u, v, w, x, y) as a solution of F(u, v, w,x,y,2z)=0. Or, there may be several
functions which arise as solutions of a system of several equations. Under
suitable conditions a set of r equations in n + r variables may determine r of the
variables as functions of the remaining n variables.

The nature of the problem is most easily understood, and the explanation of
the theory is the simplest, in the case of an implicit function arising as a solution
of a single equation in a small number of variables. We shall discuss the case of
two variables first, and then the case of three variables. The discussion in this
section is intended to provide motivation for, and understanding of, the formal
statements of theorems in later sections. v

Let F be a function of x and y, defined in a certain region of the xy-plane.
Consider the equation ‘

F(x,y)=0. (8=3)
222
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This equation expresses a condition which a point (x, y) may or may not satisfy.
If there are some points which satisfy the condition, the set of all such points
may be called the locus defined by (8-3). We know that, in many cases, the locus
is some kind of curve. For instance, if F(x, y)=4x*+9y?— 36, the locus is an
ellipse. Now let f(x) be a function defined for a certain set of values of x. We
say that y = f(x) is a solution of (8-3) if all the points (x, f(x)) are part of the
locus defined by (8-3), that is, if F(x, f(x)) =0 for all the values of x which are
involved in the definition of the function f. We assume without any further
explicit mention that all functions which enter the discussion are single-valued.

In our work with implicit functions we do not attempt to get a solution of
(8-3) in the form y = f(x) such that it gives us all the locus defined by (8-3), for
this may be impossible. Thus in the case of the ellipse 4x%+ 9y?— 36 = 0, part of
the locus is given by the graph of y = 3(36 — 4x%)'2, and another part of the locus
by the graph of y=—}(36—4x%"2. What we do attempt is to start with a
particular point (xy, yo) of the locus defined by (8-3), and then to obtain a
function f(x), defined in some interval xo— a < x <xy+ a, such that y = f(x) is a
solution of (8-3), and such that, in a sufficiently restricted neighborhood of
(X9, ¥0), all the points for which F(x, y) =0 are given by y = f(x). This localiza-
tion of the problem to a neighborhood of a particular point (x, yo) is charac-
teristic of all the treatment of implicit-function problems in this chapter.

Fig. 52 shows how, in the case of the equation
4x*+9y*—36 =0, localization of attention to a suit- y
able neighborhood of one particular point of the
locus leads to the determination of a solution y =
f(x) whose graph comprises all that part of the
locus which is in the neighborhood. In Fig. 52 /
two such localizations are shown, the neighbor- ) 3.0y
hood being rectangular in each case. Observe that, /
if the center of one of the rectangular neighbor- B\
hoods is a point (xo, yo) on the ellipse, the permis-
sible size of the rectangle is governed by the consid-  Fig. 52.
eration that every line parallel to the y-axis and
passing through the interior of the rectangle shall
intersect the ellipse exactly once inside the rectangle. It is always possible to
choose the rectangle so as to satisfy this condition provided that the point (xo, yo)
is not one of the points (+3,0). These are the points where dF/dy =0, with
F(x, y) =4x%*+9y*—-36. In our study of functions y = f(x) defined implicitly as
solutions of F(x, y) =0 we shall always localize the problem within a neighbor-
hood of a point at which dF/dy# 0. If we wanted to solve for x terms of y
instead of for y in terms of x, we would impose the requirement 8F/dx# 0.

Let us turn now to a consideration of equations in three variables. Suppose that
F(x, y, z) is defined in a certain region in three-dimensional space. We consider the
locus defined by the equation

F(xs y, Z)=0’ (H)‘
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and suppose that (x,, yo, 2o) is a point of this locus. We then confine our attention
to points near (xq, yo, 2o), and ask the following question: Is it possible to find a
rectangular box defined by certain inequalities

x = xol < a,|y =yl <b,|z -z <c

such that every line parallel to the z-axis and passing through the interior of the
box intersects the locus defined by (8-4) exactly once inside the box? If so, then
to each pair (x,y) for which |x —xo|<a and |y — yo| <b there corresponds a
unique z such that |z — zg| < ¢ and F(x, y, z) = 0. This defines z as a single-valued
function of (x,y), say z=f(x,y), and gives a solution of (8-4), that is,
F(x,y, f(x,y))=0.

Under certain conditions it is possible to choose a
box of the sort just described. We shall explain the F(z,y,2)=0
plausibility of this statement from a geometrical point of
view. Suppose that the locus defined by (8—4) is a surface,
such as an ellipsoid, a hyperboloid, or a cone. Suppose
that the surface is smooth, and that the tangent plane at
the point (xo, yo, Zo) is not parallel to the z-axis. Then we
expect the part of the surface near (xy, yo, o) to be almost
like the nearby part of the tangent plane; it should then be
represented by an equation z = f(x, y), since each line
parallel to the z-axis may be expected to intersect the
surface exactly once in the vicinity of (xq, yo, Zo), pro-
vided that x — xgand y — yo are sufficiently small (see Fig.  Fig. 53.

53).
The condition on F in order that the plane tangent to the surface at

z

z z=f(x,y)

(x0, Yo, Zo) shall not be parallel to the z-axis is oK # 0 at the point, for the ratios

0z

9F . 9F 3F jefine the direction of the normal to the surface; therefore F_y
dx ~dy 9z 0z
means that the normal is perpendicular to the z-axis.

Our discussions of the implicit-function problem for the two cases F(x, y) =
0 and F(x,y,z)=0, with geometrical evidence for the solutions y = f(x) and
z = f(x,y) in a localized form of the problem, suggest the kind of answers we
may expect to some of the questions raised at the beginning of the present
section. We do not yet have any real proofs, however. The proofs must come
out of the analytical situation, for we do not really know the facts about
geometry of the curves and surfaces except by an examination of the functions

and equations.

8.1 / THE FUNDAMENTAL THEOREM

The following theorem is concerned with a precise statement bearing on the
questions raised at the outset in §8.
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THEOREM 1. Let F(x, v, z) be a function defined in an open set S containing the
point (Xo, Yo, Zo). Suppose that F has continuous first partial derivatives in S.
Furthermore assume that

F(xo, Yo, 20) = 0, F3(xo, yo, 20) # 0.

Under these conditions there exists a box-like region defined by certain
inequalities

[x — xo| < a, |y = yo| < b,z — 2| <,

lying in the region S and such that the following assertions are true:
Let R be the rectangular region |x — xo| <a,|y — yo|<b in the xy-plane.
Then

1. For any (x,y) in R there is a unique z such that
|z—z)<c and F(x,y,2)=0.
Let us express this dependence of z on (x,y) by writing
z=f(x,y) | Bty

2. The function f is continuous in R.
3. The function f has continuous first partial derivatives given by

_Fi(x,y,2) _Fyx, y,2)

heey) =-Faa 2y PV ="Ec32)

where z is given by (8.1-1).

Proof. The first part of the proof is concerned with determining suitable
values for the positive constants a, b, ¢ which are mentioned in the theorem. Let
A be a rectangular parallelpiped (box) with center at (xo, o, zg) such that the
whole of A is entirely in the region S, and such that, moreover, Fi(x, y, z) has
everywhere in A the same sign which it has at (xg, Yo, Zo). This choice of A is
possible since S is open and F; is continuous (see Theorem III, §5.3).

For definiteness let us assume F;>0 in A. Consider the top and bottom
faces of the box A. If we denote the height of the box by 2c, these faces will lie
in the planes z = zy + ¢, Since F; >0, the value of F increases as we go upward
along any line parallel to the z-axis. Since F(xo, Yo, 20) = 0, it follows that

F(xo, o, Zo+¢)>0 and F(xy, yo, 20— c) <0.

Because of the continuity of F we see that F will be positive in a small rectangle
with center at (X, ¥, Zo+ ¢) in the plane z = 29+ ¢, and negative in a small
rectangle with center at (xg, yo, zo—¢) in the plane z = z,— c. Let us choose
positive numbers a, b, so that these rectangles are determined by the inequalities

Ix = xol < a, |y — yo <b.
We also take care to choose a and b so that the box B defined by the
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Fig. 54. Boxes A and B. Fig. 55. Box B.

inequalities
‘x_xo|<a,|y_}’0|<b,lz_20|<c

is no larger than the box A (see Fig. 54).

Now consider the value of F along the segment in which a line parallel to
the z-axis intersects the box B. As we go up along this segment the value of F
increases. At the lower end of the segment, F <0, while at the upper end F > 0.
Hence there is just one point on the segment at which F = 0; for a given pair
(x, ), the z-co-ordinate of this point is denoted by z = f(x, y) (see Fig. 55).
Assertion 1 of the theorem is now proved. Observe that thus far we have made
no use of the partial derivatives F;, F,.

Having obtained the function f(x, y) by the foregoing argument, let us now
prove that it is continuous. To prove continuity at (x,, yo) we must show that,
given € >0, there exists & > 0 such that

If(x, y) — f(xo, Yo)| <€ when|x —xo|<8 and |y—yi<8  #8.1-2)

We may assume that € = ¢. Now f(x, yo) = zo; also,
F(XO, Yo, ZO+ E) > 0’ F(X(), Yo, Z0 — E) < 0

Hence, by the very argument used in proving assertion 1 of the theorem, we see
that if we choose & >0 so that

F(x,y,z0+€)>0and F(x,y,z,—€)<0
when
|x — x| <& and |y —yo| <39, 8.1-3)

then to each (x, y) satisfying (8.1-3) corresponds a unique z such that |z — zo| <€
and F(x, y, z) =0. This z must be equal to f(x, y), however, by 1. Thus (8.1-2)
holds, and the continuity at (xo, yo) is proved.

To prove continuity of f at any other point (x;, y1) of R, let z;= f(xy, y1).
Observe that F satisfies at (x;, y1, z;) the same hypotheses as are stated in the
theorem relative to the point (xo, yo, Zo). Hence, by what has already been proved
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(as applied to this new situation), all the points (x,y,z) in the vicinity of
(x1, y1, 1) such that F(x, y, z) = 0 are furnished by a single-valued function (let us
call it g(x, y)) which is continuous at (x;, y;). However, since all these points are
in the box B, the uniqueness clause of conclusion 1 of the theorem assures us
that f(x, y) = g(x, y) when (x, y) is near (x;, y;). Hence f is continuous at (x;, y)).

It remains only to prove assertion 3 of the theorem. We shall deal with %;
af

ay
mean (§7.4). Let (x, y) be a point of R, and let z = f(x, y). We wish to show that

limf(x+Axay)_f(x’y)= Fl(X,)’,Z)
Ax—0 Ax FS(x7 y, Z)

the treatment of - is different only in the letters used. We employ the law of the

(8 1-4F
We assume that Ax is so small that (x + Ax, y) is also in R, and write

Az =f(x+Ax, y)— f(x, y).

Now, considering F as a function of x and z only, we have by the law of the
mean,

F(x +Ax,y,z+Az)— F(x,y,z)= AxF\(X, y, Z) + AzFy(X, y, Z), (B.1=5)%
where
X=x+0Ax,Z=2+0A20<0<1.
The left member of (8.1-5) is zero, by the definition of the function f. Hence

Az F(X,y,72) ——
Ax~ TR(X, Y, 2) s
Now Az — 0 when Ax — 0, by the continuity of f; therefore X —x and Z — z. The
truth of (8.1-4) is now seen to follow from (8.1-6), because F, and F; are

continuous. The formula

_Fl(xa Yy, f(x, y))
FB(x’ Y, f(x’ }’))

has now been established. From it we see that f; is continuous (see Theorem IV,
§5.3). This completes the proof.

filx, y) =

8.2 / GENERALIZATION OF THE FUNDAMENTAL THEOREM

In the theorem of §8.1 we dealt with the existence of a function z = f(x, y)
defined implicitly by an equation F(x,y, z) =0. We chose to state the theorem
for the case of three variables, but nothing essential in the theorem or its proof is
really dependent upon the particular number three. The analytical details and the
geometrical language presented in §8.2 may all be modified easily to meet the
situation of a different number of variables. We shall state the theorem formally
in the general case (n + 1 variables). The proof will be omitted. The theorem tells
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us what we can be certain of, under appropriate conditions, in speaking of a
function :

Z:‘f(xh" '5x'1)
defined implicitly by an equation of the form
F(xi, x5 ..., %, 2) = 0.

We use geometrical language in speaking of the regions of definition of the
above functions.

"THEQREM 1L Let F(xy,...,X,, 2) be defined in an (n+ 1)-dimensional neigh-
borhood of the point (ay,..., a, c). Suppose that F has continuous partial
derivatives in this neighborhood, and furthermore, assume that

F(ay,...,anc)=0,F,(ay,...,a,c)#0.

Under these conditions there exists a box-like region defined by certain
inequalities

|xi—ai]| <Ay, .. |x—an <Anlz—c|<C,

lying in the ab .ve neighborhood, and such that the following assertions are
true:
Let R be the n-dimensional region

[xl—a1|<A1,. . .,|x,,—a,,|<A,,

in the space of the variables x,. . ., x,. Then

1. For any (xi,...,X,) in R there is a unique z such that
lz—c|<C and F(xi,... xu2)=0.
Let us express this dependence of z on (xy,...,x,) by writing
z=f(X1,...s Xn).

2. The function f is continuous in R.
3. Th