Testing Applications on the Web

Pagei
Advance Praisefor Testing Applications on the Web

Testing Applications on the Web by Hung Q. Nguyen is an absolute must for anyone who has a
serious interest in software testing, especially testing web applications.

This book covers nearly every aspect of the error-finding process, moving from basic
definitions and terminology, through detailed and easy-to-understand explanations of most
testing strategies in use today. It finishes with a chapter on Web testing tools and appendices
with test documentation templates.

This book is written with the practitioner in mind, but can equally well be used by studentsin
software engineering curriculums. It presents both theory and practice in athorough and clear
manner. It illustrates both concepts and practical techniques with numerous realistic examples.
Thisisavery good book on testing Web applications.

—Steve Schuster

Director, Quality Engineering
Carrier Applications Group
Phone.Com, Inc.

Testing Applications on the Web is along-overdue and much needed guide to effectively
testing web applications. The explosion of e-commerce businessesin the last couple of years
has brought new challenges to software testers. There is agreat need for knowledge in this
area, but little available. Nguyen's class, Testing Web Applications, was the only class | could
find of itskind and | wasimmediately able to put what | learned to use on the job. Nguyen's
first book, Testing Computer Software, is required reading for my entire test team, and Testing
Applications on the Web will now be added to that list.

Nguyen provides a combination of in-depth technical information and sound test planning
strategies, presented in away that will benefit testersin real world situations. Testing
Applications on the Web is a fabulous reference and | highly recommend it to all software
testers.

—Debbie Goble
Software Quality Control Manager
SBC Services, Inc.

Testing Applications on the Web contains awealth of practical information. | believe that

anyone involved with web testing will find this book invaluable. Hung's writing is crisp and
clear, containing plenty of real-world examplesto illustrate the key points. The treatment of
gray-box testing is articularly insightful, both for general upse, and as applied to testing web



applications.

—Christopher Agruss
Quality Engineering Manager
Discreet (a division of Autodesk)

Y ears ago | was looking for abook like this. Internet software must work in all kinds of
configurations. How can you test them al? Which do you choose? How should you isolate the
problems you find? What do you need to know about the Internet technologies being used?
Testing Applications on the Web answers al these questions. Many test engineers will find
this book to be agodsend. | do!

—DBret Pettichord
Editor
Software Testing Hotlistbreak

Pageii

If you want to learn about testing Web applications, this book isa'must-have. A Web
application comprises many parts—servers, browsers, and communications—all (hopefully)
compatible and interacting correctly to make the right things happen. This book shows you how
all these components work, what can go wrong, and what you need to do to test Web
applications effectively. There are also plenty of examples and helpful checklists. | know of no
other place where you can get agold mine of information like this, and it's very clearly
presented to boot!

—Bob Sahl
President
The Testing Center

| won't test another Web app without first referring to Testing Applications on the Web! The
test design ideas are specific and would provide excellent support for any tester or test planner
trying to find important problems fast.

Thisisreally one of the first testing books to cover the heuristic aspects of testing instead of
getting caught up in impractical rigor. It'slike climbing into the mind of a grizzled veteran of
Web testing. It's nice to see atesting book that addresses a specific problem domain.

—James Bach
Principal
Satisfice, Inc.break

Pageiii

Testing Applications on the Web
Test Planning for Internet-Based Systems



Hung Q. Nguyen

Wiley Computer Publishing

John Wiley & Sons, Inc.
NEW YORK + CHICHESTER + WEINHEIM « BRISBANE + SINGAPORE » TORONTO

Pageiv
Publisher: Robert Ipsen
Executive Editor: Carol Long
Associate Editor: Margaret Hendrey
Managing Editor: Angela Smith
Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Inc., is aware of aclaim, the product names appear
ininitial capital or ALL CAPITAL LETTERS. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

Copyright © 2001 by Hung Quoc Nguyen. All rights reserved.
Published by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in aretrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:
PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
professional services. If professional advice or other expert assistance is required, the
services of acompetent professional person should be sought.

ISBN 0-417-43764-6
Thistitleisaso availablein print as 0-471-39470-X

For more information about Wiley products, visit our web site at www.Wiley.corrbreak




Pagev

CONTENTS
Foreword Xi
Preface Xiii
Part One: Introduction 1
Chapter 1 3
Welcome to Web Testing
Why Read This Chapter? 3
Introduction 4
The Evolution of Software Testing 4
The Gray-Box Testing Approach 6
Real-World Software Testing 7
Themes of This Book 8
Chapter 2 1
Web Testing versus Traditional Testing
Why Read This Chapter? 11
Introduction 12
The Application Model 12
Hardware and Software Differences 14
The Differences between Web and Traditional Client-Server Systems 17
Web Systems 22
Y our Bugs Are Mine 26
Back-End Data Accessing 27

Thin-Client vera1s Thick-Client Processinn 27



I nteroperability |ssues 28

Testing Considerations 29
Bibliography 29
Page vi
Part Two: Methodology and Technology 31
Chapter 3 33
Software Testing Basics
Why Read This Chapter? 33
Introduction 33
Basic Planning and Documentation A4
Common Terminology and Concepts A
Test-Case Devel opment 48
Bibliography 56
Chapter 4 Y4
Networking Basics
Why Read This Chapter? 57
| ntroduction 57
The Basics 38
Other Useful Information 12
Testing Considerations 82
Bibliography 82
Chapter 5 85

\Aah A nnliratinn Conmnnnante



vV N I_\PPI ITwlAll VI 1T Ut I IPUI (A2 L 6N )

Why Read This Chapter? 85

I ntroduction 86
Overview 86
Web Application Component Architecture 96
Testing Discussion 103
Testing Considerations 109
Bibliography 111
Chapter 6 113
Test Planning Fundamentals
Why Read This Chapter? 113
| ntroduction 113
Test Plans 114
LogiGear One-Page Test Plan 120
Testing Considerations 123
Bibliography 127
Chapter 7 129
Sample Application
Why Read This Chapter? 129
Introduction 129
Application Description 130
Page vii
Technical Overview 130

Quagtem Rentlirements 1?2



R et I ety MR

Functionality of the Sample Application
Bibliography

Chapter 8
Sample Test Plan

Why Read This Chapter?
I ntroduction
Gathering Information
Sample One-Page Test Plan
Bibliography
Part Three: Testing Practices

Chapter 9
User Interface Tests

Why Read This Chapter?

Introduction

User Interface Design Testing

User Interface Implementation Testing
Testing Considerations

Bibliography and Additional Resources

Chapter 10
Functional Tests

Why Read This Chapter?
Introduction

An Example of Cataloging Features in Preparation for Functiond
Tests

Tegtinn Meathonds

NS

132
137

139

139
139
140
146
147
149

151

151
151
152
174
178
181

183

183

184

11



e R IER AR Tl g LA T

Bibliography 196

Chapter 11 197
Database Tests
Why Read This Chapter? 197
| ntroduction 197
Relational Database Servers 200
Client/SQL Interfacing 204
Testing Methods 206
Database Testing Considerations 223
Bibliography and Additional Resources 225
Page viii
Chapter 12 227
Help Tests
Why Read This Chapter? 227
| ntroduction 227
Help System Analysis 228
Approaching Help Testing 234
Testing Considerations 238
Bibliography 239
Chapter 13 241
Installation Tests
Why Read This Chapter? 241

Introdiiction 212



[ R T

The Roles of Installation/Uninstallation Programs 242

Common Features and Options 245
Common Server-Side-Specific Installation Issues 252
Installer/Uninstaller Testing Utilities 255
Testing Considerations 259
Bibliography and Additional Resources 264
Chapter 14 265
Configuration and Compatibility Tests
Why Read This Chapter? 265
Introduction 266
The Test Cases 267
Approaching Configuration and Compatibility Testing 267
Comparing Configuration Testing with Compatibility Testing 270
Configuration/Compatibility Testing Issues 272
Testing Considerations 280
Bibliography 283
Chapter 15 285
Web Security Concerns
Why Read This Chapter? 285
I ntroduction 286
The Vulnerabilities 286
Attacking Intents 290
Goals and Responsibilities 290

Weh Senirritv Technnlonv Rasies 202



i i Attt 7 § 2ttt

Testing Considerations

Bibliography and Additional Resources

Chapter 16
Performance, Load, and Stress Tests

Why Read This Chapter?
Introduction

Eva uating Performance Goals
Performance Testing Concepts
Web Transaction Scenario
Understanding Workload
Evaluating Workload

Test Planning

Testing Considerations
Bibliography

Chapter 17
Web Testing Tools

Why Read This Chapter?
Introduction
Types of Tools

Additional Resources

Chapter 18

Findinn A Aditinnal Infarmatinn

NS e

305
309

Pageix

311

311
312
313
315
317
318
319
325
332
335
337



Illulllgl TV LIVIIGUG T Tnnviiliiarwvi g

Why Read This Chapter?
Introduction

Textbooks

Web Resources

Professional Societies

Appendix A
LogiGear Test Plan Template

Appendix B
Weekly Status Report Template

Appendix C
Error Analysis Checklist—-Web Error Examples

Appendix D
Ul Test-Case Design Guideline: Common Keyboard
Navigation and Shortcut Matrix

Appendix E
Ul Test-Case Design Guideline: Mouse Action Matrix

Appendix F
Web Test-Case Design Guideline: Input Boundary and
Validation Matrix |

Appendix G
Display Compatibility Test Matrix

Appendix H
Browser/OS Configuration Matrix

| ndex

Edited by:
Michael Hackett

357

372

377

389

390

391

393

395

Page x



Chris Thompsonbreak

Page xi

FOREWARD

Testing on the Web is a puzzle for many testers whose focus has been black-box, stand-alone
application testing. This book's mission isto present the new challenges, along with a strategy
for meeting them, in away that is accessible to the traditional black-box tester.

In this book, Hung Nguyen's approach runs technically deeper and closer to the system than the
black-box testing that we present in Testing Computer Software. Several people have bandied
about the phrase "gray-box testing" over the years. Hung's book represents one thoughtful,
experience-based approach to define and use a gray-box approach. | think that thisisthe first
serious book-length exploration of gray-box testing.

In Hung's view of the world, Web testing poses special challenges and opportunities:

- Firgt, the Web application lives in amuch more complex environment than a mainframe,
stand-al one desktop, or typical client-server environment. If the application fails, the problem
might liein the application's (app's) code, in the app's compatibility with other system
components, or in problems of interactions between components that are totally outside of the
app developer's control. For example, to understand the application's failures, it isimportant to
understand the architecture and implementati on of the network. Hung would say that if we aren't
taking into account the environment of the application, we face a serious risk of wasting time

on alot of work that doesn't generalize.

- Second, much of what appears to be part of a \Web application really belongs to complex
third-party products. For example, the customer has a browser, a Javainterpreter, and severa
graphics display and audio playback programs. The application presents its user interface
through these tools, but it is not these tools, and it does not include these tools. Similarly, the
database server and the Web server are not part of most applications. The app just uses these
server-side components, just like it uses the operating system and the associated device
drivers. There's alimit to the degree to which the application devel oper will want to test the
client-side and server-side tools—she or he didn't write them, and the customer might update
them or replace them at any time. Hung would say that if we don't have a clear idea of the
separation between our app and the user-supplied third-party components, we face a serious
risk of wasting time on alot of work on the wrong components, seeking to manage the wrong
risks.

- Third, because Web applications comprise so many bits and pieces that communicate, we
have new opportunitiesto apply or create test tools that let us read andcontinue

Page xii

modify intermediate events. We can observe and create messages between the client and the
server at severa pointsin the chain. The essence of testability is visibility (what's going onin



the software under test) and control (we can change the state or data of the software under test).
Hung would say that this environment provides tremendous opportunities for atechnically
knowledgeable, creative tester to develop or use tools to enhance the testability of the
application.

The gray-box tester is a more effective tester because he or she can
- Troubleshoot the system environment more effectively

- Manage the relationship between the application software and the third-party components
more efficiently

- Usetoolsin new waysto discover and control more aspects of the application under test

This book applies these ideas to develop thematic analyses of the problems of Web testing.
How do we test for database issues, security issues, performance issues, and so on? In each
case, we must think about the application itsalf, its environment, its associated components, and
tools that might make the testing more effective.

Another special feature of this book isthat it was written by the president of an independent
test lab, LogiGear, that tests other companies Web applications and publishes aWeb
application of its own. Hung knows the design trade-offs that were made in his product and in
the planning and execution of the testing of this product. He also knows the technical support
record of the product in the field. The examplesin this book are directly based on real
experience with areal product that had real successes and real challenges. Normally, examples
like the ones in this book would run afoul of a publisher's trade-secret policies. It isatreat
seeing this materia in print.break

CEM KANER, JD., PH.D.
PROFESSOR OF COMPUTER SCIENCES
FLORIDA INSTITUTE OF TECHNOLOGY

Page xiii

PREFACE

Testing Applications on the Web introduces the essential technologies, testing concepts, and
techniques that are associated with browser-based applications. It offers advice pertaining to
the testing of business-to-business applications, business-to-end-user applications, Web
portals, and other Internet-based applications. The primary audience is black-box testers,
software quality engineers, quality assurance staff, test managers, project managers, I'T
managers, business and system anaysts, and anyone who has the responsibility of planning and
managing Web-application test projects.

Testing Applications on the Web begins with an introduction to the client-server and Web
system architectures. It offers an in-depth exploration of Web application technologies such as
network protocols, component-based architectures, and multiple server types from the testing
perspective. It then coverstesting practices in the context of various test types from user
interface tests to performance, load, and stress tests. Chapters 1 and 2 present an overview of



Web testing. Chapters 3 through 5 cover methodology and technology basics, including a
review of software testing basics, a discussion on networking, and an introduction to
component-based testing. Chapters 6 through 8 discuss testing planning fundamentals, a sample
application to be used as an application under test (AUT) illustrated throughout the book, and a
sample test plan. Chapters 9 through 16 discuss test types that can be applied to Web testing.
Finally, Chapters 17 and 18 offer a survey of Web testing tools and suggest where to go for
additiona information.

Testing Applications on the Web answers testing questions such as, "How do networking
hardware and software affect applications under test?' "What are Web application
components, and how do they affect my testing strategies?’ "What is the role of a back-end
database, and how do | test for database-related errors?' "What are performance, stress, and
load tests—and how do | plan for and execute them?' "What do | need to know about security
testing, and what are my testing responsibilities?’

With a combination of general testing methodol ogies and the information contained in this
book, you will have the foundation required to achieve these testing goals—maximizing
productivity and minimizing quality risksin aWeb application environment.

Testing Applications on the Web assumes that you aready have a basic understanding of
software testing methodol ogies such as test planning, test-case design, and bug report writing.
Web applications are complex systems that involve numerous components: servers, browsers,
third-party software and hardware, protocols, connectivity, and much more. This book enables
you to apply your existing testing skills to the testing of Web applications.

This book is not an introduction to software testing. If you are looking for fundamental software
testing practices, you will be better served by reading Testing Computer continue

Page xiv

Software 2nd ed., by Kaner et a. (1993). If you are looking for scripting techniques or ways to
use test automation effectively, | recommend you read Software Test Automation by Fewster
and Graham (2000). For additional information on Web testing and other testing techniques and
resources, visit www.QAcity.con.

| have enjoyed writing this book and teaching the Web application testing techniques that | use
every day to test Web-based systems. | hope that you will find here the information you need to
plan for and execute a successful testing strategy that enables you to deliver high-quality
applicationsin an increasingly distributed-computing, market-driven, and time-constrained
environment of this Internet era

Acknowledgments

While my name appears on the cover, over the years, many people have helped with the
development of this book. | want to particularly thank Cem Kaner and Bob Johnson for their
dedication in providing thorough reviews and critical feedback, and Jesse Watkins-Gibbs and
Chris Agruss for their thoughtful suggestions. | also want to thank the following people for their
contributions (listed in alphabetical order): Joel Batts, James Bach, Kevin Carlson, Williarr
Coleman, Debbie Goble, Thomas Heinz, Heather Ho, loanalllie, Susan Kim, Johnson Leong,
Jeffrey Mainville, Denny Nguyen, Kevin Nguyen, Wendy Nguyen, Cathy Palacios, Bret



Pettichord, Myvan Quoc, Steve Schuster, Karri Simpson, Louis (Rusty) Smith, Lynette
Spruitenburg, Bob Stahl, and Joe Vallgo. Findly, | wauld like to thank my colleagues,
students, and staff at LogiGear Corporation for their discussions and evaluations of the Web
testing training material, which made its way into this book.

Certainly, any remaining errors in the book are mine.

About the Author

Hung Q. Nguyen is the president and CEO of LogiGear Corporation, a Silicon Valley
company that he founded in 1994, whose mission is to help software devel opment
organizations deliver the highest-quality products possible while juggling limited resources
and schedule constraints. Today, LogiGear isamultimillion-dollar firm that offers many
value-added services, including application testing, automated testing, and Web load and
performance testing for e-business and consumer applications. The Testing Services division
specializes in Web application, handheld communication device, and consumer electronic
product testing. LogiGear also offers a comprehensive "Practical Software Testing Training
Series’ and TRACKGEARTM, a powerful, flexible, and easy-to-use Web-based defect
tracking solution. Hung Nguyen devel ops training materials and teaches software testing to the
public at universities and conferences, as well as at numerous well-known domestic and
international software companies. In the past 2 decades, Hung has held management positions
in engineering, quality assurance, testing, product development, and information technology.
Hung is coauthor of the best-selling book, Testing Computer Software (Wiley, 1999). He
holds a Bachelor of Sciencein Quality Assurance from Cogswell Polytechnical College, and is
an ASQ-Certified Quality Engineer and active senior member of American Society for Quality.
Y ou can reach Hung at hungn@logigear.com, or obtain more information about L ogiGear
Corporation and hiswork at www.logigear.con.break

Page 1

PART ONE—
INTRODUCTION

Page 3

Chapter 1—
Welcometo Web Testing*

Why Read This Chapter?

The goal of thisbook isto help you effectively plan for and conduct the testing of Web-based
applications. This book will be more helpful to you if you understand the philosophy behind its
design.



Software testing practices have been improving steadily over the past few decades. Yet, as
testers, we still face many of the same challenges that we have faced for years. We are
challenged by rapidly evolving technologies and the need to improve testing techniques. We
are also challenged by the lack of research on how to test for and analyze software errors from
their behavior, as opposed to at the source code level. Finally, we are challenged by the lack
of technical information and training programs geared toward serving the growing population
of the not-yet-well-defined software testing profession. Y et, in today's world on Internet time,
resources and testing time are in short supply. The quicker we can get the information that we
need, the more productive and more successful we will be at doing our job. The goal of this
book isto help you do your job effectively.break

* During the writing of this book, | attended the Ninth L os Altos Workshop on Software Testing
(LAWST) in March 2000. The topic of discussion was gray-box testing. | came away with afirmed
thought and a comfortable feeling of adiscovery that the testing approach | have been practicingisa
version of gray-box testing. | thank the LAWST attendees—I11, Chris Agruss, Richard Bender, Jaya
Carl, Ibrahim (Bob) El-Far, Jack Falk, Payson Hall, Elisabeth Hendrickson, Doug Hoffman, Bob
Johnson, Mark Johnson, Cem Kaner, Brian Lawrence, Brian Marick, Hung Nguyen, Noel Nyman, Bret
Pettichord, Drew Pritsker, William (B.J.) Rollison, Melora Svoboda, and James Whitaker—for
sharing their views and analyses.

Page 4

Topics Covered in This Chapter

- Introduction

- The Evolution of Software Testing
- The Gray-Box Testing Approach

- Real-World Software Testing

- Themes of This Book

I ntroduction

This chapter offers a historical perspective on the changing objectives of software testing. It
touches on the gray-box testing gpproach and suggests the importance of having a balance of
product design, both from the designer's and the user's perspective, and system-specific
technical knowledge. It also explores the value of problem analysisto determine what to test,
when to test, and where to test. Finally, this chapter will discuss what assumptions this book
has about the reader.

The Evolution of Software Testing

Asthe complexities of software development have evolved over the years, the demands placed
on software engineering, information technology (1T), and software quality professionals, have
grown and taken on greater relevance. We are expected to check whether the software



performsin accordance with its intended design and to uncover potentia problems that might
not have been anticipated in the design. Test groups are expected to offer continuous
assessment on the current state of the projects under developrrent. At any given moment, they
must be prepared to report explicit details of testing coverage and status, and all unresolved
errors. Beyond that, testers are expected to act as user advocates. This often involves
anticipating usability problems early in the development process so those problems can be
addressed in atimely manner.

In the early years, on mainframe systems, many users were connected to a central system. Bug
fixing involved patching or updating the centrally stored program. This single fix would serve
the needs of hundreds or thousands of individuals who used the system.

As computing became more decentralized, minicomputers and microcomputers were run as
stand-alone systems or on smaller networks. There were many independent computers or local
area networks and a patch to the code on one of these computers updated relatively fewer
people. Mass-market software companies sometimes spent over amillion dollars sending disks
to registered customersjust to fix a serious defect. Additionally, technical support costs
skyrocketed.break

Page 5

Asthe market has broadened, more people use computers for more things, they rely more
heavily on computers, and the consequences of software defects rise every year. It is
impossible to find all possible problems by testing, but as the cost of failure has gone up, it has
become essentia to do risk-based testing. In arisk-based approach, you ask questions like
these:

- Which areas of the product are so significant to the customer or so prone to serious failure
that they must be tested with extreme care?

- For the average area, and for the program as awhole, how much testing is enough?
- What are therisksinvolved in leaving a certain bug unresolved?

- Are certain components so unimportant as to not merit testing?

- At what point can a product be considered adequately tested and ready for market?

- How much longer can the product be delayed for testing and fixing bugs before the market
viability diminishes the return on investment?

Tracking bugs and assessing their significance are priorities. Management teams expect
development and I T teams, testing and quality assurance staff, to provide quantitative data
regarding test coverage, the status of unresolved defects, and the potential impact of deferring
certain defects. To meet these needs, testers must understand the products and technol ogies they
test. They need models to communicate assessments of how much testing has been donein a
given product, how deep testing will go, and at wtat point the product will be considered
adequately tested. Given better understanding of testing information, we make better
predictions about quality risks.

In the era of the Internet, the connectivity that was lost when computing moved from the



mainframe model to the personal computer (PC) model, in effect, has been reestablished.
Personal computers are effectively networked over the Internet. Bug fixes and updated builds
are made avail able—sometimes on a daily basis—for immediate download over the Internet.
Product features that are not ready by ship date are made available later in service packs. The
ability to distribute software over the Internet has brought down much of the cost that is
associated with distributing some applications and their subsequent bug fixes.

Although the Internet offers connectivity for PCs, it does not offer the control over the client
environment that was available in the mainframe model. The development and testing
challenges with the Graphica User Interface (GUI) and event-based processing of the PC are
enormous because the clients attempt remarkably complex tasks on operating systems (OSs) as
different from each other as Unix, Macintosh OS, Linux, and the Microsoft OSs. They run
countless combinations of processors, peripherals, and application software. Additionally, the
testing of an enterprise client-server system may require the consideration of thousands of
combinations of OSs, modems, routers, and server-software packages. Web applications
increase this complexity further by introducing browsers and Web serversinto the mix.

Software testing plays a more prominent role in the software development process than it ever
has before (or at least it should). Companies are allocating more money and resources for
testing because they understand that their reputations rest on the quality of their products. The
competitiveness of the computing industry (not to mention the savvy of most computer users)
has eliminated most tolerance for buggy soft-soft

Page 6

ware. Y et, many companies believe that the only way to competein Internet time isto develop
software as rapidly as possible. Short-term competitive issues often outweigh quality issues.
One consequence of today's accel erated development schedules is the industry's tendency to
push software out into the marketplace as early as possible. Development teams get less and
lesstime to design, code, test, and undertake process improvements. Market constraints and
short development cycles often do not allow time for reflection on past experience and
consideration of more efficient ways to produce software.

The Gray-Box Testing Approach

Black-box testing focuses on software's external attributes and behavior. Such testing looks at
an application's expected behavior from the user's point of view. White-box testing (also
known as glass-box testing), on the other end of the spectrum, tests software with knowledge of
internal data structures, physical logic flow, and architecture at the source code level.
White-box testing looks at testing from the developer's point of view. Both black-box and
white-box testing are critically important complerents of a complete testing effort.
Individually, they do not allow for balanced testing. Black-box testing can be |ess effective at
uncovering certain error types, such as data-flow errors or boundary condition errors at the
source level. White-box testing does not readily highlight macrolevel quality risks in operating
environment, compatibility, time-related errors, and usability.

Gray-box testing incorporates elements of both black-box and white-box testing. It considers
the outcome on the user end, system-specific technical knowledge, and operating environment.
It evaluates application design in the context of the interoperability of system components. The



gray-box testing approach isintegral to the effective testing of Web applications because Web
applications comprise numerous components, both software and hardware. These components
must be tested in the context of system design to evaluate their functionality and compatibility.

Gray-box testing consists of methods and tools derived from the knowledge of the application
internals and the environment with which it interacts, that can be applied in black-box testing to
enhance testing productivity, bug finding, and bug analyzing efficiency.

—Hung Q. Nguyen

Here are severa other unofficia definitions for gray-box testing from the Los Altos Workshop
on Software Testing (LAWST) I1X. For more information on LAWST, visit www.kaner.corr.

Gray-box testing—Using inferred or incomplete structura or design information to expand or focus
black-box testing
—Dick Bender

Gray-box testing—Tests designed based on the knowledge of algorithms, internal states,
architectures, or other high-level descriptions of program behavior
—Doug Hoffman

Gray-box testing—Tests involving inputs and outputs, but test design is educated by information about
the code or the program operation of akind that would normally be out of scope of the view of the
tester

—Cem Kanerbreak

Page 7

Gray-box testing is well suited for Web application testing because it factors in high-level
design, environment, and interoperability conditions. It will reveal problems that are not as
easily considered by a black-box or white-box analysis, especially problems of end-to-end
information flow and distributed hardware/software system configuration and compatibility.
Context-specific errors that are germane to Web systems are commonly uncovered in this
process.

Another point to consider is that many of the types of errors that we run into in Web
applications might be well discovered by black-box testers, if only we had a better model of
the types of failures for which to look and design tests. Unfortunately, we are still developing a
better understanding of the risks that are associated with the new application and
communication architectures. Therefore, the wisdom of traditional books on testing [e.g.,
Testing Computer Software (Kaner et al., 1993)] will not fully prepare the black-box tester to
search for these types of errors. If we are equipped with a better understanding of the system as
awhole, welll have an advantage in exploring the system for errors and in recognizing new
problems or new variations of older problems.

Astesters, we get ideas for test cases from awide range of knowledge areas. Thisis partialy
because testing is much more effective when we know what types of bugs we are looking for.
We develop ideas of what might fail, and of how to find and recognize such afailure, from
knowledge of many types of things [e.g., knowledge of the application and system architecture,
the requirements and use of thistype of application (domain expertise), and software
development and integration]. As testers of complex systems, we should strive to attain a broad
balance in our knowledge, learning enough about many aspects of the software and systems
being tested to create a battery of tests that can challenge the software as deeply asit will be



challenged in the rough and tumble of day-to-day use.

Findly, | am not suggesting that every tester in a group be a gray-box tester. | have seen ahigh
level of successin several test teams that have amix of different types of testers, with different
skill sets (e.g., subject matter expert, database expert, security expert, APl testing expert, test
automation expert, etc.). The key is, within that mix, at least some of the testers must understand
the system as a collection of components that can fail in their interaction with each other, and
these individuals must understand how to control and how to see those interactionsin the
testing and production environments.

Real-World Software Testing

Web businesses have the potentia to be high-profit ventures. Venture capitalists can support a
number of losing companies as long as they have afew winnersto make up for their losses. A
CEO has 310 4 yearsto get a start-up ready for |PO (6 months to prove that the prototype
works, 1 or 2 years to generate some revenue—hence, justifying the business model—and the
remainder of the time to show that the business can be profitable someday). It isalways a
challenge to find enough time and qualified personnel to develop and deliver quality products
in such afast-paced environment.break

Page 8

Although standard software devel opment methodol ogies such as Capability Maturity Model
(CMM) and 1 SO-9000 have been available, they are not yet well accepted by aggressive
start-up companies. These standards and methods are great practices, but the fact remains that
many companies will rely on the efforts of a skilled development and testing staff, rather than a
process that they fear might dlow them down. In that situation, no amount of improved standards
and process efficiencies can make up for the efforts of a skilled development and testing staff.
That is, given the time and resource constraints, they still need to figure out how to produce
quality software.

The main challenge that we face in Web application testing is learning the associated

technol ogies to have a better command over the environment. We need to know how Web
technologies affect the interoperability of software components, aswell as Web systenrsas a
whole. Testers also need to know how to approach the testing of Web-based applications. This
requires being familiar with test types, testing issues, common software errors, and the
quality-related risks that are specific to Web applications. We need to learn, and we need to
learn fast. Only with a solid understanding of software testing basics and a thorough knowledge
of Web technologies can we competently test Web-based systems.

Themes of This Book

The objective of this book isto introduce testers into the discipline of gray-box testing, by
offering readers information about the interplay of Web applications, component architectura
designs, and their network systems. | expect that thiswill help testers develop new testing
ideas, enabling them to uncover and troubleshoot new types of errors and conduct more
effective root-cause analyses of software failures discovered during testing or product use. The
discussionsin this book focus on determining what to test, where to test, and when to test. As
appropriate, real-world testing experiences and examples of errors are included.



To effectively plan and execute the testing of your Web application, you need to possess the
following qualities: good software testing skill; knowledge of your application, which you will
need to provide; knowledge of Web technologies; understanding of the types of tests and their
applicability to Web application; knowledge of several types of Web application-specific
errors (so you know what to look for); and knowledge of some of the available tools and their
applicability, which this book offersyou. (See Figure 1.1.)

Based on this knowledge and skill set, you can analyze the testing requirements to come up
with an effective plan for your test execution. If thisiswhat you are looking for, this book is for
you. It is assumed that readers have a solid grasp of standard software testing practices and
procedures.

TESTER RESPONSIBILITIES
- ldentifying high-risk areas that should be focused on in test planning
- ldentifying, analyzing, and reproducing errors effectively within Web environments (which
are prone to multiple environmental and technological variables)break
Page 9

Your apphcation

kmrwl'.'dg-:\

Knowledge in
Web technologies |

Types of tests

Testing skills

Examples of errors Tools and
applicability
Error and
Ll ai Lzl o repriwfucibility
L cecution analysis

Figure 1.1
Testing skill and knowledge.

- Capitalizing on existing errors to uncover more errors of the same class, or related classes

To achieve these godls, you must have high-level knowledge of Web environments and an
understanding of how environmental variables affect the testing of your project. The
information and examples included in this book will help you to do just that.

There is one last thing to consider before reading on. Web applications are largely
platform-transparent. However, most of the testing and error examplesincluded in this book
are based on Microsoft technologies. This alows me to draw heavily on acommercial product
for real examples. While | was researching this book, my company built TRACKGEARTM, a
Web-based defect-tracking solution that relies on Microsoft technologies. As the president of
that company, | can lay out engineering issues that were considered in the design and testing of
the product that testing authors cannot normally reveal (because of nondisclosure contracts)



about software that they have developed or tested. My expectation, however, isthat the testing
fundamentals should apply to technol ogies beyond Microsoft.break

Page 11

Chapter 2—
Web Testing versus Traditional Testing

Why Read This Chapter?

Web technol ogies require new testing and bug analysis methods. It is assumed that you have
experience in testing applicationsin traditiona environments; what you may lack, however, is
the meansto apply your experience to Web environments. To effectively make such a
trangition, you need to understand the technology differences between traditional testing and
Web testing.break

Topics Covered in This Chapter

- Introduction

- The Application Model

- Hardware and Software Differences

- The Differences between Web and Traditional Client-Server Systems
- Web Systems

- Your Bugs Are Mine

- Back-End Data Accessing

- Thin Client versus Thick Client

- Interoperability 1ssues

- Testing Considerations

- Bibliography

Page 12

I ntroduction

This chapter presents the application model and shows how it applies to mainframes, PCs, and
ultimately, Web/client-server systems. It explores the technology differences between
mainframes and Web/client-server systems, as well as the technology differences between PCs



and Web/client-server systems. Testing methods that are suited to Web environments are also
discussed.

Although many traditional software testing practices can be applied to the testing of Web-based
applications, there are numerous technical issues that are specific to Web applications that
need to be considered.

The Application M odel

Figure 2.1 illustrates how humans interact with computers. Through a user interface (Ul), users
interact with an gpplication by offering input and receiving output in many different forms:
query strings, database records, text forms, and so on. Applications take input, along with
requested logic rules, and manipulate data; they also perform file reading and writing
[input/output (1/O)]. Finally, results are passed back to the user through the Ul. Results may
also be sent to other output devices, such as printers.

In traditional mainframe systems, asillustrated in Figure 2.2, al of an application's processes,
except for Ul functions, occur on the mainframe computer. User interface functions take place
on dumb terminals that simply echo text from the mainframe. No processing occurs on the
terminals themselves. The network connects the dumb terminals to the mainframe.
Dumb-termina Uls are text-based (nongraphical). Users send data and commands to the system
via keyboard inputs.

Desktop PC systems, asillustrated in Figure 2.3, consolidate al processes—from Ul, through
rules, to file systems—on a single physical box. No network is required for a desktop PC.
Desktop PC applications can support either atext-based Ul (command-hard

V= =

INFUT LOGIC/RULES FILE SYSTEMS
Data antrias Mangpulate dila P incd Wit S008 data

INTERFACE

[ratabase or flle-based systam

" Requesied dala

Figure2.1
The application model.

Page 13



/_ Human /_ SW/HW

IMPUT LOGIC/AULES FILE SYSTEMS

[hala antries Manipulals dats FaadWite'Sione dala
[hala redqlissts
[hata rulas

Cratelese o fe-basad svstem

Dumb Terminal =l e
Echoing Text Mainframe

Figure 2.2
Mainframe systems.

line) or a Graphical User Interface (GUI). In addition to keyboard input events, GUI-based
applications also support mouse input events such as click, double-click, mouse-over,
drag-and-drop, and so on.

Client-server systems, upon which Web systems are built, require a network and at least two
machines to operate: a client computer and a server computer, which serves requested data to
the client computer. With the vast majority of Web applications, a Web browser serves as the
Ul on the client computer.

The server receives input requests from the client and manipulates the data by applying the
application's business logic rules. Businesslogic rules are the processes that an application is
designed to carry out based on user input—for example, sales tax nmight be charged to any
e-commerce customer who enters a Californiamailing address. Another example includes
customers over age 35 who respond to a certain online survey being mailed a brochure
automatically. Thistype of activity may require reading or writing to a database. Datais sent
back to the client as output from the server. The results are then formatted and displayed in the
client browser.

The client-server model, and consequently the Web application model, is not as neatly
segmented as that of the mainframe and the desktop PC. In the client-server model, not only can
either the client or the server handle some of the processing work, but server-side processes
can be divided between multiple physical boxes (application server, Web server, database
server, etc.). Figure 2.4, one of many possible client-server models, depicts I/0 and logic rules
handled by an application server (the server in the center) while a database server (the server
on the right) handles data storage. The dotted linesin theillustration indicate processes that
may take place oncontinue

Page 14



V= e

IR
Dala antries
Dala raquesls
[Dlata rules
CUTFUT

LOGIC/RULES
Manipulate data

FILE SYSTEMS
FiandWrile/Siore daty

USER
INTERFACE

I Database or flle-based system

!"-

-
Ceskiop PC
Text or GUI
Figure 2.3
Desktop PC systems.

either the client side or the server side. See Chapter 5, "Web Application Components,” for
information regarding server types.

A Web system may comprise any number of physical server boxes, each handling one or more
server types. Later in this chapter, Table 2.1 illustrates some of the possible three-box server
configurations. Note that the example isrelatively abasic system. A Web system may contain
multiple Web servers, application servers, and multiple database servers (such as a server
farm, agrouping of similar server types that share workload). Web systems may also include
other server types, such as e-mail servers, chat servers, e-commerce servers, and user profile
servers. See the Chapter 5, "Web Application Components,” for more information.

Keep in mind that it is software, not hardware, that defines clients and servers. Simply put,
clients are software programs that request services from other software programs on behalf of
end users. Servers are software programs that offer services. Additionally, client-server is
also an overloaded term. It is only useful from the perspective of describing a system. A server
may, and often does, become a client in the chain of requests.

Har dwar e and Softwar e Differ ences

Mainframe systems (Figure 2.5) are traditionally controlled environments—meaning that
hardware and software are primarily supported, end to end, by the same manufacturer. A
mainframe with a single operating system, and applications sold and sup-soft

Page 15



e e

INPUT LOGIC/RULES FILE 5YSTEMS

Dala endrias Manipulats daia ReadWnie'Stora data
Dala requasts

Dgts ras

QUTPUT
Faadback
Aogquesled daly

!
o
e L] e L
(i P | B | S | ! P | T |

Desktop PC--Text orGLUI Server Server

Figure 2.4
Client-server systems.

ported by the same manufacturer, can serve multiple terminals from a central location.
Compatibility issues can be readily managed in such an environment.

A single desktop PC system comprises mixed hardware and software—multiple hardware
components built and supported by different manufacturers, multiple operating systems, and
nearly limitless combinations of software applications. Configurationcontinue

Mainframe
Dumb Diarnky Durrks Crurriky
Terminal Terminal Terminal Terminal
Figure 2.5

Controlled hardware and software environment.

Page 16
and compatibility issues become difficult or almost impossible to manage in this environment.

A Web system consists of many clients as well as server hosts (computers). The system
various flavors of hardware components and software applications begin to multiply. The



server side of Web systems may al so support a mixture of software and hardware and,
therefore, are more complex than mainframe systems, from the configuration and compatibility
perspectives. See Figure 2.6 for an illustration of a client-server system running on alocal area.
network (LAN).

The GUI of the PC makes multiple controls available on screen at any given time (e.g., menus,
pull-down lists, help screens, pictures, and command buttons.). Consequently, event-driven
browsers are also produced, taking advantage of the event-handling feature offered by the
operating system (OS). However, event-based GUI (data input coupled with events)
applications are more difficult to test. For example, each event applied to a control in a GUI
may affect the behavior of other controls. Also, special dependencies can exist between GUI
screens; interdependencies and constraints must be identified and tested accordingly.break

o
/ Internet ""‘\.l
\_ cloud

& i
B b o DSU/CSU ]|

Houter

IBM AS400
_nb:&nnnna&:nnaa_l
RN R LT X
-

Irtel Lapiop Hubs

“-

E Unix Sarver

NT Sarver

Macintosh

Figure 2.6
A client-server systemonaLAN.

Page 17

The Differences between Web and Traditional Client-Server Systems

The last two sections point out the application architecture, and hardware and software
differences among the mainframe, PC, and Web/client-server systems. This section will
continue that theme. We will begin to explore additional differences between Web and
traditional systems so that appropriate considerations can be formulated specificaly for testing
Web applications.

Client-Side Applications

Asillustrated in Figure 2.7, most client-server systems are data access applications. A client



typically enables users, through the Ul, to send input data, receive output data, and interact with
the back end (for example, sending a query command). Clients of traditional client-server
systems are platform-specific. That is, for each supported client platform (e.g., Windows 16-
and 32-bit, Solaris, Linux, Macintosh, etc.), a client application will be developed and tested
for that target platform.

Most Web-based systems are also data access applications. The browser-based clients are
designed to handle similar activities to those supported by atraditional client. The main
differenceisthat the Web-based client is running in the context of a Webcontinue

A Dewvelop and test
4 platfarme-

Winidews 18-t Wiridows 32-bit Salane Client Mecintosh Client spesific clients
I L | L
Wwinig Winaz Solans Macimtosh
p 1 : - - - SERVERS
i r- 1 r = e ]
g’ HTHKL coentents
Macibosh
=
=| 7% Develog and test
- Mool Imenrl Espitee | - Miscaofl Intermed Explonar - Wizrocok limamol Explossy | - R esosolt inloem U E pkenar HTML senlents
Hetmcage Mavigainr Maoiscape Masgale + Hetmoape Maigal Tk Havigakr s e g8t 4
k. -1 [ alo. -
browsars
|
| HTHL Contents | HTML Contents | HTHL Cantants HTML Contents

Browser vandors are respongibla for
producing platform-spacific browsers

Figure 2.7
Client-server versus Web-based clients.

Page 18

browser. Web browsers consist of platform-specific client software running on a client
computer. It renders static HyperText Markup Language (HTML) as well as active contentsto
display Web page information. Several popular browsers also support active content such as
client-side scripting, Java applet, ActiveX control, cascading style sheet (CSS), dynamic
HTML, security features, and other goodies. To do this, browser vendors must create rendering
engines and interpreters to trandate and format HTML contents. In making these software
components, incompatibility issues are introduced among various browsers and their releases.
See Chapters 9, "User Interface Tests," and 14, "Configuration and Compatibility Tests," for
more information.

From the application producer's perspective, there is no need to develop platform-specific
clients. Delivering platform-specific Web browsersis, rather, aresponsibility of Web browser
vendors (e.g., Netscape, Microsoft, AOL, etc.). In theory, if your HTML contents are designed
to conform with HTML 3.0 standard, your client application should run properly in any
browser that supports HTML 3.0 standard from any vendor.

In practice, we will find ourselves working laboriously to address vendor-specific



incompatibility issues introduced by each browser and its various releases. At the writing of
this book, the golden rule is "Web browsers are not created equal .”

Event Handling

In the GUI and event-driven model, inputs are driven by events. Events are actions taken by
users, such as mouse movements and clicks, or the input of data through akeyboard. Some
objects (e.g., a push button) may receive mouse-over events whenever a mouse passes over
them. A mouse single-click isan event. A mouse double-click is adifferent kind of event. A
mouse-click with amodifier key such as Ctrl is yet another type of event. Depending on the
type of event initiated on a particular Ul object, certain procedures in an application may be
executed. In an event-driven environment, these procedures are referred to as event-handling
code.

Testing event-driven applications is more complicated because it's very labor intensive to
cover the testing of many combinations and sequence of events. Simply identifying all possible
combinations of events can be a challenge because some actions trigger multiple events.

Browser-based applications introduce a different flavor of event-handling support. Because
Web browsers were originally designed as a data presentation tool, there was no need for
interactions other than single-clicking for navigation and data submission, and mouse-over
ALT attribute for an alternate description of graphic. Therefore, standard HTML controls such
as form-based control and hyperlinks are limited to single-click events. Although script-based
events can be implemented to recognize other events such as double-clicking and
drag-and-drop, it's not natural in the Web-based user interface to do so. Not to mention that
those other events also cause incompatibility problems among different browsers. In
Web-based applications, users may click links that generate simulated dialog boxes (the server
sending back a page that includes tables, text fields, and other Ul objects). Users may interact
with browser-based Ul objects in the process of generating input for the application. In turn,
events are generated. Some of the event-handling code isin scripts that are embedded in the
HTMLcontinue

Page 19

page and executed on the client side. Some are in Ul components (such as Java applets and
ActiveX controls) embedded in the HTML page and executed on the client side. Others are
executed on the server side. Understanding where (client or server side) each event is handled
enables you to develop useful test cases as well as reproduce errors effectively.

Browser-based applications offer very limited keyboard event support. Y ou can navigate
within the page using Tab and Shift-Tab keys. Y ou can activate a hyperlink to jump to another
link or push a command button by pressing the Enter key while the hyperlink text, graphic, or a
button is highlighted. Supports for keyboard shortcuts and access keys, such as Alt-[key] or
Ctrl-[key], are not available.

Another event-handling implication in browser-based applicationsis in the one-way request
and submission model. The server generally does not receive commands or data until the user
explicitly clicks abutton such as " Submit" to submit form data, or the user may request data
from the server by clicking alink. Thisisreferred to as the explicit submission model. If the
user simply closes down a browser but does not explicitly click on a button to save data or to



log off, datawill not be saved and the user is still considered logged on (on the server side).
Application I nstance and Windows Handling

Standard event-based applications may support multiple instances, meaning that the same
application can be loaded into memory many times as separate processes. Figure 2.8 shows
two instances of Microsoft Word application.break

W Microgoft 'Waord - Instance 1 of Word
[P)Eie Edt yiow Insert Formet Tods Table Window beb =181
|iIZ‘| FHSRY| 2RI v @ g

*= TimesMewRoman | 14 = ”? o ||='- =

..1.......2...|...3...|...q...

I.ntr_u.rlr;-t vy
Explofer JJD@E &Eﬁ?’l#:‘gﬁg]ﬂ_m_

4 |N:urrr-al = | Tes Mew Roman = 14 = “_I] I g !

LR SRNL ISR R T MR R - i T IS R S R TR T R AR BRC

Instance 2 of Microsoft Word application.

1y  [ato1” tn1 Co %2

Figure 2.8
Multiple application instances.

Page 20

Similarly, multiple instances of a browser can run simultaneously. With multiple browser
instances, users may be able to log into the same Web-based application and access the same
data table—on behalf of the same user or different users. Figure 2.9 illustrates two browser
instances, each accessing the same application and data using the same or different user ID and
password.

From the application's perspective, keeping track of multiple instances, the data, and the users
who belong to each instance can be problematic. For example, aregular user has logged in
using one instance of the browser. An Admin user has a'so logged into the same system using
another instance for the browser. It's common that the application server may mistakenly
receive data from and send data to one user thinking that the data belongs to the other users.
Test cases that uncover errors surrounding multiple-instance handling should be thoroughly
designed and executed.

Within the same instance of a standard event-based application, multiple windows may be
opened ssimultaneously. Data atered in one of an application's windows may affect datain
another of the application's windows. Such applications are referred to as multiple document
interface (MDI) applications (Figure 2.10). Applications that alow only one active window at
atime are known as single document interface (SDI) applica-soft



| B welcome ta TRACKGEAT - Mictosolt Tniell =10l
| ce edt vew oo 17| G - ”|J-ﬂd=im]hirk=-"|i
TRACKGEAR 5 EasyFind 3
Submit
Raw

Find - :
CasyFind Search For | Open-ssigned to me |

CruickFirnd mmw |

_ FewrmFind |

PROJECT: I TGBugRepors __TJ

N B ulcome lo THALESEAR - Wil Snfiipi] =loix]
| e Edt wew Favabes Jook *|| & - "]jéﬂdanLrﬂu:”ﬁ
T'--"{--'i“r*“j EasyFind

Submit

R PROJECT: lTG-SElmpIE :[

Find =
EasyFind Saarch For: | Open-dssigned to me ¥
QuickFind Search Now |
FormFind | =

] Done [ | intemet
Figure 2.9

Multiple application windows.

Page 21

W Microsoft Word
[[Eto e wew msert Fomat Toos Table window bep

Ps@&Ry i edo- - e BORE
® | Times Hew Roman #112 = r-.[ o {-' =& i :=

Dncumem 2ofthe Multlple Document Interfhce [I'u!]]l} mmbl

[Page 1 Sect i [Aod® tnl Col59 I‘“F?'EFEFEI"Q

Figure 2.10
Multiple document interface (MDI) application.




tions (Figure 2.11). Single document interface applications allow users to work with only one
document at atime.

Microsoft Word (Figure 2.10) is an example of an MDI application. Notepad (Figure 2.11) is
an example of a SDI application.

Multiple document interface applications are more interesting to test because they might fail to
keep track of events and data that belong to multiple windows. Test cases designed to uncover
errors caused by the support of multiple windows should be considered.break

&) Untitled - Notepad HE!E
Fle Edt Search Hebp

Motepad is an example of the Single Document IntorFacpd
Model {(SDI). That is, when a new document is created,
the existing one should be closed to make space for

the new one in the same window.

_4! | ol -

Figure2.11
Single document interface (SDI) application.

Page 22

Multiple document interface or multiple windows interface is only available for clientsin a
traditional client-server system. The Web browser interface is flat and nonlinear; therefore, it
does not support MDI. It'sflat because it can only display one page at the time. It's nonlinear
(there is no hierarchical structure) because one can easily jump to several links and quickly
lose track of the original position.

Ul Controls

In essence, an HTML page that is displayed by aWeb browser consists of text, hyperlinks,
graphics, frames, tables, forms, and balloon help text (ALT tag). Basic browser-based
applications do not support dialog boxes, message boxes, toolbars, status bars, and other
common Ul controls. Extra effort can be put in to take advantage of Java applets, ActiveX
controls, scripts, CSS, and other helper applications to go beyond the basic functionality.
However, there will be compatibility issues among different browsers.

Web Systems

The complexities of the PC model are multiplied exponentially in Web systems (Figure 2.12).
In addition to the testing challenges that are presented by multiple client PCs, the server side of
Web systems involves hardware of varying types and a software mix of OSs, service
processes, server packages, and databases.

Hardware Mix

With Web systems and their mixture of flavors of hardware to support, the environment can
become very difficult to control. Web systems have the capacity to use machines of different
platforms, such as Unix, Windows NT, and Macintosh boxes. A Web system mi ght include a



Unix server that is used in conjunction with other serversthat are either Windows-based or
Macintosh-based. Web systems may a so include mixtures of models from the same platform
(on both the client and server sides). Such hardware mixtures present testing challenges
because different computersin the same system may employ different OSs, CPU speeds, buses,
I/O interfaces, and more. Each variation can potentially cause problems.

Software Mix

At the highest level, asillustrated in Figure 2.12, Web systems may consist of various OSs,
Web servers, application servers, middleware, e-commerce servers, database servers, magor
enterprise resource planning (ERP) suites, firewalls, and browsers. Application devel opment
teams often have little control over the kind of environment into which their applications are
installed. In producing software for mainframe systems, devel opment was tailored to one
specific system. Today, for Web systems, software is often designed to run on awide range of
hardware and OS combinations, and risks of software incompatibility are aways present. An
example iscontinue

Page 23

WEB BROWSERS !EE Wb Sorver

A0 | M5 IS
Ntisopea ES
FApachs

|
I

Masaic |
|

' |

|

Imtermet
Intranet e
Exiranel
Cperating Sy sboma Hetwark Trattic Back OHice/ERP ApgRoation Server
Liniis HTTE HTTRS Oracha -l.ll.'u'n. .
Wariniosh SEL, TSL, PST Pecplnto BEA Weblugic
Linia AR, SMTE: POP AP s
Windeowis FTP Edhal WME nSP
TERIR S Maalnyasmics
DCOk Middisware
LDAF EEI;;U:WPJ
HLE Microsalt DECIM
#Commance Senver
Ariba
Broadision
Calico
Wignatie
Figure 2.12
Web system achitecture

Page 24




that different applications may not share the same versions of a database server. On the
Microsoft platform, amissing or incompatible DLL (dynamic link library) is another example.
(Dynamic link libraries are software components that can exist on both the client and server
sides whose functions can be called by multiple programs on demand.)

Another problem inherent in the simultaneous use of software from multiple vendors is that
when each application undergoes a periodic upgrade (client or server side), there is a chance
that the upgrades will not be compatible with preexisting software.

A Web system software mix may include any combination of the following:
- Multiple operating systems

- Multiple software packages

- Multiple software components

- Multiple server types, brands, and models

- Multiple browser brands and versions

Server-Based Applications

Server-based applications are different from client applications. For one, server-based
applications are programs that don't have a Ul with which the end users of the system interact.
End users only interact with the client-side application. In turn, the client interacts with
server-based applications to access functionality and data via communication protocols,
application programming interface, and other interfacing standards. Second, server-based
applications run unattended. That is, when a server-based application is started, it's intended to
stay up, waiting to provide services to client applications whether there is any client out there
requesting services. In contrast, to use a client application, an end user must explicitly launch
the client application and interact with it viaa Ul. Therefore, to black-box testers,
server-based applications are black boxes. Y ou may ask: "So it also is with desktop
applications. What's the big deal 7' Here is an example. When afailure is caused by an error in
aclient-side or desktop application, the users or testers can provide essential information that
helps reproduce or analyze the failure because they are right in front of the application.
Server-based applications or systems are often isolated away from the end users. When a
server-based application fails, astesters or users from the client side, we often don't know
when it failed, what happened before it failed, who was or how many users were on the system
a thetimeit failed, and so on. This makes bug reproducibility even more challenging for us. In
testing Web systems, we need a better way to track what goes on with applications on the
server side. One of the techniques used to enhance our failure reproducibility capability is
event logging. With event logging, server-based applications can record activities to afile that
might not be normally seen by an end user. When an application uses event logging, the
recorded information that is saved can be read in areliable way. Have discussions with your
devel opers and information technology staff to determine how event logging can be
incorporated into the testing process.break

Page 25



Distributed Server Configurations

Server software can be distributed among any number of physical server boxes, which further
complicatestesting. Table 2.1 illustrates several possible server configurations that a Web
application may support. Y ou should identify the configurations that the application under test
claimsto support. Matrices of al possible combinations should be devel oped, and testing
should be executed on each configuration to ensure that application features are intact.

The Network

The network is the glue that holds Web systems together. It connects clientsto servers and
servers to servers. This variable introduces new testing issues including reliabil-soft

Table2.1 Distributed Server Configurations

One-box model NT-based Web server

NT-based application server

NT-based database server

Two-box model NT-based Web server NT-based database server
NT-based application server
Three-box model ~ NT-based Web server NT-based Web server Unix-based database
server
NT-based application server NT-based application server
One-box model Unix-based Web server
Unix-based application server
Unix-based database server
Two-box model Unix-based Web server Unix-based database server
Unix-based application server
Three-box model ~ NT-based Web server NT-based Web server NT-based database
server
NT-based application server NT-based application server

Page 26

ity, inaccessibility, performance, security, configuration, and compatibility. Asillustrated in
Figure 2.12, the network traffic may consist of several protocols supported by the TCP/IP
network. It's also possible to have several networks using different net OSs connecting to each
other by gateways. Testing issues related to the network can be a challenge or beyond the reach
of black-box testing. However, understanding the testing-related issues surrounding the
network enables us to better define testing problems and ask for appropriate help. See Chapter
4, "Network Basics," for more information.

Your BugsAreMine

It is common for Web applications to be built of preexisting objects or components that have



been strung together. They may also be built of preexisting applications that have been strung
together. In either scenario, the newly created systems are subject to whatever bugs may have
existed in the original objects.

One of the important benefits of both object-oriented programming (OOP) and
component-based programming is reusability. (The difference between OOP and
component-based software isin the deliverable: OOP features are delivered in source, and
classes are created or derived from the base class. Component-based software components,
however, are delivered in binary forms, such as DLLS). Asto reusability, a developer can take
advantage of preexisting features created by other devel opers (with proper permission) by
incorporating those features into his or her own application—rather than writing the code from
scratch. In effect, code is recycled, eliminating the need to rewrite existing code. This model
helps accelerate development time, reduces the amount of code that needs to be written, and
maintains consistency between applications.

The potential problem with this shared model is that bugs are passed along with components.
Web applications, due to their component-based architecture, are particularly vulnerable to the
sharing of bugs.

At the low level, the problem has two major impacts on testing. First, existing objects or
components must be tested thoroughly before their functionality can be used by other
applications or objects. Second, regression testing (see "Regression Testing" in Chapter 3,
"Software Testing Basics," for more information) must be executed comprehensively. Even a
small change in a parent object can alter the functionality of an application or object that uses
it.

This problem is not new. Object-oriented programming and component-based software have
long been used in PCs. With the Web system architecture, however, the problem is multiplied
due to the fact that components are shared across servers on a network. The problem is further
exacerbated by the demand that software be developed in increasingly shorter time.

At the higher level, bugsin server packages such as Web servers and database servers, and
bugs in Web browsers themselves, will also have an effect on the software under test. See
Chapter 5, "Web Application Components,” for more information.break

Page 27

Back-End Data Accessing

Datain aWeb system is often distributed. That is, it resides on one or more (server) computers
other than the client computer. There are several methods of storing data on a back-end server.
For example, data can be stored in flat files, in anonrelational database, in arelational
database, or in an object-oriented database. In atypical Web application system, it's common
that arelational database is employed so that data accessing and manipulation can be more
efficient comparing to flat-file database.

In aflat-file system, when a query isinitiated, the results of that query are dumped into files on
a storage device. An application then opens, reads, and manipulates data from these files and
generates reports on behalf of the user. To get to the data, the applications need to know exactly
where files are located and what their names are. Access security isusually imposed at the



application level.

In contrast, a database, such as arelational database, stores data in tables of records. Through
the database engine, applications access data by getting a set of records without knowing
where the physical datafiles are located or what they are named. Datain relational databases
are accessed via database names (not to be mistaken with file names) and table names.
Relational database files can be stored on multiple servers. Web systems using arelational
database can impose security at the application server level, the database server level, as well
at the database user level.

Thin-Client versus Thick-Client Processing

Thin client versus thick client is concerned with where applications and components reside
and execute. Components may reside on a client machine and on one or more server machines,
The two possibilities are:

Thin client. With thin-client systems, the client PC does very little processing. Business logic
rules are executed on the server side. Some simple HTML Web-based applications and
hand-held devices utilize this model. This approach centralizes processing on the server and
eliminates most client-side incompatibility concerns. (See Table 2.2.)

Thick client. The client machine runs the Ul portion of the application as well as the execution
of businesslogic. In this case, the browser not only hasto format the HTML page, but it aso
has to execute other components such as Java applet and ActiveX. The server machine houses
the database that processes data requests from the client. Processing is shared between client
and server. (See Table 2.3.)break

Table2.2 Thin Client

DESKTOP PC SERVER

ul Application rules
Database

Page 28

Table2.3 Thick Client
DESKTOP PC SERVER
ul Database
Application rules

The PC doing much of asystem'swork (i.e., executing business logic rules, DHTML, Java
applets, ActiveX controls, or style sheets on the client side) is referred to as thick-client
processing. Thick-client processing relieves processing strain on the server and takes fulll
advantage of the client processor. With thick-client processing, there are likely to be more



incompatibility problems on the client side.

Thin-client versus thick-client application testing issues revolve around the compromises
among feature, compatibility and performance issues.

For more information regarding thin-client versus thick-client application, please see Chapter
5, "Web Application Components.”

Inter oper ability I ssues

Interoperability isthe ability of a system or components within a system to interact and work
seamlesdy with other systems or other components. Thisis normally achieved by adhering to
certain application program interfaces (APIs), communication protocol standards, or to
interface-converting technology such as Common Object Request Broker Architecture
(CORBA) or Distributed Common Object Model (DCOM). There are many hardware and
software interoperability dependencies associated with Web systems. It is essentia that our
test-planning process include study of the system architectural design.

Interoperability issues—it is possible that information will be lost or misinterpreted in
communication between components. Figure 2.13 shows a smplified Web system that includes
three box servers and a client machine. In this example, the client requests all database records
with zip code 94444 from the server side. The application server in turn queries the database
server. Now, if the database server fails to execute the query, what will happen? Will the
database server tell the application server that the query has failed? If the application server
gets no response from the database server, will it resend the query? Possibly, the application
server will recelve an error message that it does not understand. Consequently, what message
will be passed back to the client? Will the application server smply notify the client that the
request must be resent or neglect to inform the client of anything at all? All of these scenarios
need to be investigated in the study of the system architectural design.break

Page 29
CLIENT-SI0E METWORK SERVER-SIDE
Operating System ' Tiparating Sysiem
WEB Browees ; . WER Server
Cliant-basad Componants Applicatien Server
Cperatng Sysiens

Application Servar

TCRAP Tratfic Diparating Syatem

24L 08 Hored Froceduras
Data




Figure2.13
Interoperability.

Testing Consider ations

The key areas of testing for Web applications beyond traditional testing include:
- Web Ul implementation

- System integration

- Server and client installation

- Web-based help

- Configuration and compatibility

- Database

- Security

- Performance, load, and stress

For definitions for these tests, see Chapter 3 ("Software Testing Basics'). In addition, see
Chapters 9 through 16 for in-depth discussions on these tests.

Bibliography
Bourne, Kelly C. Testing Client/Server Systems. New Y ork: McGraw-Hill, 1997.

Coffman, Gayle. QL Server 7: The Complete Reference. Berkeley, CA:
Osborne/McGraw-Hill, 1999.break

Page 30

Kaner, Cem, et a. Testing Computer Software, second edition. New Y ork: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

Orfali, Robert, et a. Client/Server Survival Guide, Third Edition. New Y ork: John Wiley &
Sons, 1999.

Reilly, Douglas J. Inside Server-Based Applications. Redmond, WA: Microsoft Press,
2000.break

Page 31



PART TWO—
METHODOLOGY AND TECHNOLOGY

Page 33

Chapter 3—
Softwar e Testing Basics

Why Read This Chapter?

In general, the software testing techniques that are applied to other applications are the same as
those that are applied to Web-based applications. Both types of testing require basic test types
such as functionality tests, forced-error tests, boundary condition and equivalence class
anaysis, and so forth. The difference between the two types of testing is that the technology
variables in the Web environment multiply. Having the basic understanding in testing

methodol ogies, combined with a domain expertise in Web technology, will enable you to
effectively test Web applications.

I ntroduction

This chapter includes areview of some of the more elemental software testing principals upon
which this book is based. Basic testing terminology, practices, and test-casecontinue

Topics Covered in This Chapter

- Introduction

- Basic Planning and Documentation

- Common Terminology and Concepts
- Test-Case Development

- Bibliography

Page 34

devel opment techniques are covered. However, afull analysis of the theories and practices that
arerequired for effective software testing is not agoal of this book. For more detailed
information on the basics of software testing, please refer to Testing Computer Software
(Kaner et al., 1999).



Basic Planning and Documentation

Methodical record keeping builds credibility for the testing team and focuses testing efforts.
Records should be kept for all testing. Complete test-case lists, tables, and matrices should be
collected and saved. Note that Chapter 6, "Test Planning Fundamentals,” details many practical
reporting and planning processes.

There are dways limits to the amount of time and money that can be invested into testing. There
are often scheduling and budgetary constraints on development projects that severely restrict
testing—for example, adequate hardware configurations may be unaffordable. For this reason,
it isimportant that cost justification, including potential technical support and outsourcing, be
factored into al test planning.

To be as efficient as possible, ook for redundant test cases and eliminate them. Reuse test
suites and locate preexisting test suites when appropriate. Become as knowledgeable as
possible about the application under test and the technol ogies supporting that application. With
knowledge of the application's technologies, you can avoid wasted time and identify the most
effective testing methods available. Y ou can also keep the development team informed about
areas of possible risk.

Early planning is key to the efficiency and cost savings that can be brought to the testing effort.
Timeinvested early in core functionality testing, for example, can make for big cost savings
down the road. Identifying functionality errors early reduces the risk of developers having to
make risky fixes to core functionality late in the devel opment process when the stakes are
higher.

Test coverage (an assessment of the breadth and depth of testing that a given product will
undergo) is a balance of risk and other project concerns such as resources and scheduling
(complete coverage is virtually impossible). The extent of coverage is a negotiable concept
over which the product team will be required to give input.

Common Terminology and Concepts

Following are some essentia software testing terms and concepts.

Test Conditions

Test conditions are critically important factors in Web application testing. The test conditions
are the circumstances in which an application under test operates. There are two categories of
test conditions, application-specific and environment-specific, which are described in the
following text.break

Page 35

1. Application-specific conditions. An example of an application-specific condition includes
running the same word processor spell-checking test while in normal view and then again when
in page view. If one of the tests generates an error and the other does not, then you can deduce
that there is a condition that is specific to the application that is causing the error.

2. Environment-specific conditions. When an error is generated by conditions outside of an



application under test, the conditions are considered to be environment-specific.

In general, | find it useful to think in terms of two classes of operating environments, each
having its own unique testing implications:

1. Satic environments (i.e., configuration and compatibility errors). An operating
environment in which incompatibility issues may exist regardless of variable conditions such
as processing speed and available memory.

2. Dynamic environments (i.e., RAM, disc space, memory, etc.). An operating environment in
which otherwise compatible components may exhibit errors due to memory-related errors and
latency conditions.

Static Operating Environments

The compatibility differences between Netscape Navigator and Internet Explorer illustrate a
static environment.

Configuration and compatibility issues may occur at any point within a Web system: client,
server, or network. Configuration issues involve various server software and hardware setups,
browser settings, network connections, and TCP/IP stack setups. Figures 3.1 and 3.2 illustrate
two of the many possible physical server configurations, one-box and two-box, respectively.

Dynamic Operating Environments

When the value of a specific environment attribute does not stay constant each time a test
procedure is executed, it causes the operating environment to become dynamic. The attribute
can be anything from resource-specific (available RAM, disk space, etc.) to timing-specific
(network latency, the order of transactions being submitted, etc.).

Resource Contention Example

Figure 3.3 and Table 3.1 illustrate an example of a dynamic environment condition that
involves three workstations and a shared temp space. Workstation C has 400Mb of temporary
memory space on it. Workstation A asks Workstation C if it has 200Mb of memory available.
Workstation C responds with an affirmative response. What happens though if, before
Workstation A receives an answer to its request, Workstation B writes 300Mb of datato the
temp space on Workstation C? When Workstation A finally receives the response to its request
it will begin writing 200Mb of data to Workstation C—even though there will only be 100Mb
of memory available. An error condition will result.break

Page 36



Application
Server

Web Server Databass £
Server £

Figure 3.1
One-box configuration.

Test Types

Test types are categories of tests that are designed to expose a certain class of error or verify
the accuracy of related behaviors. The analysis of test typesis agood way to divide the testing
of an application methodically into logical and manageable groups of tasks. They are also
helpful in communicating required testing time and resources to other members of the product
team.

Following are a number of common test types. See Chapter 6, "Test Planning Fundamentals,”
and Chapter 8, "Sample Test Plan," for information regarding the selection of test types.

Acceptance Testing

The two common types of acceptance tests are development acceptance tests and deployment
acceptance tests.

Development Acceptance Test

Release acceptance tests and functional acceptance simple tests are two common classes of test
used during the development process. There are subtle differences in the application of these
two classes of tests.break

Page 37



PHYSICAL SERVER 2

Databags Sarver

Figure 3.2
Two-box configuration.

Release Acceptance Test

Therelease acceptance test (RAT), also referred to as a build acceptance or smoke test, is
run on each development release to check that each build is stable enough for further testing.
Typically, this test suite consists of entrance and exit test cases plus test cases that check
mainstream functions of the program with mainstream data. Copies of the RAT can be
distributed to developers so that they can run the tests before submitting builds to the testing
group. If abuild does not pass a RAT test, it is reasonable to do the following:

- Suspend testing on the new build and resume testing on the prior build until another build is
received.

- Report the failing criteriato the development team.
- Request anew build.
Functional Acceptance Smple Test

The functional acceptance simpletest (FAST) is run on each development release to check that
key features of the program are appropriately accessible and functioning properly on at least
one test configuration (preferably the minimum or common configuration). Thistest suite
consists of ssimple test cases that check the lowest level ofcontinue

Page 38

Toactinn tha Camnla A nnlircatinn



I SAY UIT oAl ipic Appliivacivl

STATIC OPERATING ENVIRONMENT EXAMPLE

This sample application illustrates incompatibility between aversion of Netscape Navigator and
aversion of Microsoft Internet Explorer. (See Chapter 7, "Sample Application,” for more
information.) The application has charting functionality that enables users to generate metrics
reports, such as bar charts and line charts. When a user requests a metrics report, the application
server pseudocode runs as follows:

1. Connect to the database server and run the query.

2. Write the query result to afile named c:\temp\chart.val.

3. Execute the chart Java applet. Read and draw a graph using data from c:\temp\chart.val.
4. Send the Java applet to the browser.

During testing of the sample application, it was discovered that the charting feature works on one
of the preceding configurations, but not the other. The problem occurred only in the two-box
configuration. After examining the code, it was learned that the problem wasin steps 2 and 3. In
step 2, the query result is written to c:\temp\chart.val of the database server local drive. In step
3, the chart Java applet is running on the application server, which is not in the same box asthe
database server. When the database server attempts to open the file c:\temp\chart.va on the
application server local drive, thefileis not found. It should not be inferred from this example
that we should read the code every time we come across an error—eave the debugging work for
the developers. It is essential, however, to identify which server configurations are problematic
and include such information in bug reports. Y ou should consider running a cursory suite of test
cases on all distributed configurations that are supported by the application server under test.

Y ou should aso consider replicating every bug on at least two configurations that are extremely
different from each other when configuration-dependency isin suspect.

functionality for each command—to ensure that task-oriented functional tests (TOFTS) can be
performed on the program. The objective is to decompose the functionality of a program down
to the command level and then apply test casesto check that each command works as intended.
No attention is paid to the combination of these basic commands, the context of the feature that
isformed by these combined commands, or the end result of the overall feature. For example,
FAST for a File/Save As menu command checks that the Save As dialog box displays.
However, it does not validate that the overall file-saving feature works nor doesiit validate the
integrity of saved files.

Typicaly, errors encountered during the execution of FAST are reported through the standard
issue-tracking process. Suspending testing during FAST is not recommended.break

Page 39



Consider the compatibility issues involved in the following example.
- The home directory path for the Web server on the host myserver is mapped to
CAINETPUB\WWWROOQOT\.

- When a page is requested from http://myserver/ , dataispulled from
CAINETPUB\WWWWROOQT\.

- A file name, mychart.jar, is stored at C\INETPUB\WWWROOT\MY APP\BIN.

- The application session path (relative path) points to
CAINETPUB\WWWROOT\MYAPP\BIN, and afile is requested from .\LIB.

Using Internet Explorer version 3.x, the Web server looks for the file in
CAINETPUB\WWWWROOT\MY APP\BIN\LIB, because the browser understands rel ative paths.
Thisisthe desired behavior and the file will be found in this scenario.

Using Netscape Navigator version 3.x, which uses absolute paths, the Web server looks for the
filein CAINETPUB\WWWROQOT\LIB. Thisis a problem because the file (mychart.jar) will not
be found. The feature does not work with this old version of Netscape Navigator (which some
people still use).

Bringing up the Java Console, you can see the following, which confirms the finding: #Unable to
load archive http://myserver/lib/mychart.jar:java.io.l OException :<null>.

Thisis not to say that Internet Explorer is better than Netscape Navigator. It smply means that
there are incompatibility issues between browsers. Code should not assume that relative paths
work with all browsers.

PERRARRA =1 —
Workstation A Workstation C
(] : Ethernet

W rkstation B

Figure 3.3
Resource contention diagram.

Page 40

T Aklan PAanniivman M Aankand A DNeAaaaan



I dUIE OS. L IKESLUILe CUIILET LU FTULESS

BEFORE
- ] 1 I
Workstation A needsto write 400Mb
200Mb of datato the shared
temp space on Workstation C.
Workstation A asks Workstation
Cif the needed spaceis
available. Workstation C tells
Workstation A that it hasthe
available memory space. Note
that Workstation A did not
reserve the space.
2 Workstation B needsto write 400Mb
300Mb of datato the shared
temp space on Workstation C.
Workstation B asks Workstation
Cto GIVE it the needed space.
Workstation C tells
Workstation B that it has the
available memory space and it
reserves the space for
Workstation B. Workstation B
writes the data to Workstation
C.
3 Workstation A finally getsits

response from Workstation C
and beginsto write 200Mb of
data. Workstation C however
now has only 100Mb of temp
space |eft. Without proper error
handling. Workstation A
crashes.

Page 41

Diin A nahvizinAa anA Donradiinrtinn Tine



DUy AllAalyZilly A iu ncui vuuuuvll 1i1pyos

To reproduce an environment-dependent error, both the exact sequence of activities and the
environment conditions (e.g., operating system, browser version, add-on components, database
server, Web server, third-party components, client-server resources, network bandwidth and
traffic, etc.) in which the application operations must be replicated.

Environment-independent errors on the other hand are easier to reproduce-they do not require
replicating the operating environment. With environment—independent errors, all that need to be
replicated are the steps that generate the error.

BROWSER BUG ANALYZING TIPS

- Check if the client operating system (OS) version and patches meet system requirements.
- Check if the correct version of the browser isinstalled on the client machine.

- Check if the browser is properly installed on the machine.

- Check the browser settings.

- Check with different browsers (e.g., Netscape Navigator versus Internet Explorer).

- Check with different supported versions of the same browsers (e.g., 3.1, 3.2, 4.2, 4.3, etc.).

Note that it depends on the organization for which you work. Each might have different rulesin
terms of which test cases should belong to RAT versus FAST, and when to suspend testing or
to rgject abuild.

Deployment Acceptance Test

The configurations on which the Web system will be deployed will often be much different
from develop-and-test configurations. Testing efforts must consider thisin the preparation and
writing of test cases for installation time acceptance tests. This type of test usually includesthe
full installation of the applications to the targeted environments or configurations. Then, FASTs
and TOFTs are executed to validate the system functionality.

Feature-Level Testing

Thisiswhere we begin to do some serious testing, including boundary testing and other
difficult but valid test circumstances.

Task-Oriented Functional Test

The task-oriented functional test (TOFT) consists of positive test cases that are designed to
verify program features by checking the task that each feature performs against specifications,
user guides, requirements, and design documents. Usually, features are organized into list or
test matrix format. Each feature is tested for:break

Page 42

- The validity of the task it performs with supported data conditions under supported operating



conditions

- Theintegrity of the task's end result

- The feature's integrity when used in conjunction with related features
Forced-Error Test

The forced-error test (FET) consists of negative test cases that are designed to force a program
into error conditions. A list of all error messages that the program issues should be generated.
Thelist is used as a baseline for developing test cases. An attempt is made to generate each
error message in the list. Obvioudly, tests to validate error-handling schemes cannot be
performed until all the handling and error messages have been coded. However, FETs should
be thought through as early as possible. Sometimes, the error messages are not available. The
error cases can still be considered by walking through the program and deciding how the
program might fail in a given user interface (Ul) such asadiaog or in the course of executing a
given task or printing a given report. Test cases should be created for each condition to
determine what error message is generated (if any).

USEFUL FET EXECUTION GUIDELINES

Check that the error-handling design and the error communication methods are consi stent.
Check that al common error conditions are detected and handled correctly.

Check that the program recovers gracefully from each error condition.

Check that the unstable states of the program (e.g., an open file that needs to be closed, a
variable that needsto be reinitialized, etc.) caused by the error are also corrected.

Check each error message to ensure that:

- Message matches the type of error detected.

- Description of the error is clear and concise.

- Message does not contain spelling or grammeatical errors.

- User is offered reasonable options for getting around or recovering from the error condition.
Boundary Test

Boundary tests are designed to check a program'’s response to extreme input values. Extreme
output values are generated by the input values. It isimportant to check that a program handles
input values and output results correctly at the lower and upper boundaries. Keep in mind that
you can create extreme boundary results from nonextreme input values. It is essential to analyze
how to generate extremes of both types. In addition, sometimes you know that there isan
intermediate variable involved in processing. If so, it is useful to determine how to drive that
one through the extremes and special conditions such as zero or overflow condition.break

Page 43

System-Level Test



System-level tests consist of batteries of tests that are designed to fully exercise a program as a
whole and check that al elements of the integrated system function properly. System-level test
suites also validate the usefulness of a program and compare end results against requirements.

Real-World User-Level Test

These tests smulate the actions customers may take with a program. Real-world user-level
testing often detects errors that are otherwise missed by formal test types.

Exploratory Test

Exploratory tests do not involve atest plan, checklists, or assigned tasks. The strategy hereis
to use past testing experience to make educated guesses about places and functionality that may
be problematic. Testing is then focused on those areas. Exploratory testing can be scheduled. It
can aso be reserved for unforeseen downtime that presentsitself during the testing process.

Load/Volume Test

L oad/volume tests study how a program handles large amounts of data, excessive calculations,
and excessive processing. These tests do not necessarily have to push or exceed upper
functiona limits. Load/volume tests can, and usualy must, be automated.

FOCUS OF LOAD/VOLUME TESTING

- Pushing through large amounts of data with extreme processing demands
- Reguesting many processes s multaneously

- Repesting tasks over along period of time

L oad/volume tests, which involve extreme conditions, are normally run after the execution of
feature-level tests, which prove that a program functions correctly under normal conditions.

Stress Test

Stress tests force programs to operate under limited resource conditions. The goal isto push
the upper functional limits of a program to ensure that it can function correctly and handle error
conditions gracefully. Examples of resources that may be artificialy manipulated to create
stressful conditions include memory, disk space, and network bandwidth. If other
memory-oriented tests are also planned, they should be performed here as part of the stress test
suite. Stress tests can be automated.

Performance Test

The primary goa of performance testing isto develop effective enhancement strategies for
maintaining acceptable system performance. Performance testing is a capacity analysis and
planning process in which measurement data are used to predict when load levels will exhaust
system resources.break

Page 44

The testing team should work with the development team to identify tasks to be measured and



to determine acceptabl e performance criteria. The marketing group may even insist on meeting
a competitor's standards of performance. Test suites can be developed to measure how long it
takes to perform relevant tasks. Performance tests can be automated.

Regression Test

Regression testing is used to confirm that fixed bugs have, in fact, been fixed and that new bugs
have not been introduced in the process, and that features that were proven correctly functiona
are intact. Depending on the size of a project, cycles of regression testing may be performed
once per milestone or once per build. Some bug regression testing may also be performed
during each acceptance test cycle, focusing on only the most important bugs. Regression tests
can be automated.

CONDITIONSDURING WHICH REGRESSION TESTSMAY BE RUN

| ssue fixing cycle. Once the development team has fixed issues, a regression test can be run to
validate the fixes. Tests are based on the step-by-step test cases that were originally reported.

- If anissueis confirmed as fixed, then the issue report status should be changed to Closed.

- If anissueis confirmed as fixed, but with side effects, then the issue report status should be
changed to Closed. However, a new issue should be filed to report the side effect.

- If anissueisonly partially fixed, then the issue report resolution should be changed back to
Unfixed, aong with comments outlining the outstanding problems.

Open-statusregression cycle. Periodic regression tests may be run on all open issuesin the
issue-tracking database. During this cycle, issue status is confirmed either the report is
reproducible asis with no modification, the report is reproducible with additional
comments or modifications, or the report is no longer reproducible.

Closed-fixed regression cycle. Inthefina phase of testing, a full-regression test cycle should
be run to confirm the status of all fixed-closed issues.

Featureregression cycle. Eachtimeanew buildiscut or isinthe fina phase of testing,
depending on the organizational procedure, afull-regression test cycle should be run to confirm
that the proven correctly functional features are still working as expected.

Compatibility and Configuration Test

Compatibility and configuration testing is performed to check that an application functions
properly across various hardware and software environments. Often, the strategy isto run
FASTsor asubset of TOFTs on arange of software and hardware configurati ons. Sometimes,
another strategy isto create a specific test that takes into account the error risks associated with
configuration differences. For example, you might design an extensive series of tests to check
for browser compatibility issues. Y ou might not run these as part of your normal RATS,
FASTSs, or TOFTs.break

Page 45

Software compatibility configurations include variances in OS versions, input/output (1/0)
devices, extensions, network software, concurrent applications, online services, and firewalls.



Hardware configurations include variances in manufacturers, CPU types, RAM, graphic
display cards, video capture cards, sound cards, monitors, network cards, and connection types
(eg., T1, DSL, modem, etc.).

Documentation Test

Testing of reference guides and user guides check that all features are reasonably documented.
Every page of documentation should be keystroke-tested for the following errors:

- Accuracy of every statement of fact

- Accuracy of every screen shot, figure, and illustration

- Accuracy of placement of figures and illustrations

- Accuracy of every tutorial, tip, and instruction

- Accuracy of marketing collateral (claims, system requirements, and screen shots)
- Accuracy of downloadable documentation (PDFs, HTML, or text files)
OnlineHelp Test

Online help tests check the accuracy of help contents, correctness of featuresin the help system,
and functiondlity of the help system.

Utilities/Toolkits and Collateral Test

If there are utilities and software collateral items to be tested, appropriate analysis should be
done to ensure that suitable and adequate testing strategies are in place.

I nstall/Uninstall Test

Web systems often require both client-side and server-side installs. Testing of the installer
checks that installed features function properly—including icons, support documentation, the
README file, and registry keys. The test verifies that the correct directories are created and
that the correct system files are copied to the appropriate directories. The test also confirms
that various error conditions are detected and handled gracefully.

Testing of the uninstaller checks that the installed directories and files are appropriately
removed, that configuration and system-related files are al so appropriately removed or
modified, and that the operating environment is recovered in its original state.

User I nterface Tests

Ease-of-use Ul testing evaluates how intuitive a system is. Issues pertaining to navigation,
usability, commands, and accessibility are considered. User interface functionality testing
examines how well a Ul operates to specifications.break

Page 46
AREAS COVERED IN Ul TESTING
. Usability



- Look and feel

- Navigation controls/navigation bar

- Ingtructional and technical information style
- Images

- Tables

- Navigation branching

- Accessibility

External Beta Testing

External betatesting offers developerstheir first glimpse at how users may actually interact
with aprogram. Copies of the program or atest URL, sometimes accompanied with aletter of
instruction, are sent out to a group of volunteers who try out the program and respond to
guestions in the letter. Betatesting is black-box, real-world testing. Beta testing can be difficult
to manage, and the feedback that it generates normally comestoo late in the development
process to contribute to improved usability and functionality. External beta-tester feedback may
be reflected in a README file or deferred to future releases.

Ongoing Y2K Testing

A program'’s ability to handle the year change from 1999 to 2000 has been tested to ensure that
internal systems were not scrambled or shut down on 01 January 2000. However, Y 2K -related
considerations will remain an issue well beyond the year 2000 due to future leap-year and
business-calendar changeovers.

Security Tests

Security measures protect Web systems from both internal and externa threats. E-commerce
concerns and the growing popularity of Web-based applications have made security testing
increasingly relevant. Security tests determine whether a company's security policies have been
properly implemented; they evaluate the functionality of existing systems, not whether the
security policies that have been implemented are appropriate.

PRIMARY COMPONENTSREQUIRING SECURITY TESTING
- Application software

- Databases

- Servers

- Client workstations

- Networksbreak

Page 47



Unit Tests

Unit tests are positive tests that evaluate the integrity of software code units before they are
integrated with other software units. Developers normally perform unit testing. Unit testing
represents the first round of software testing—when devel opers test their own software and fix
errorsin private.

Phases of Development

The software development processis normally divided into phases. Each phase of
development entails different test types, coverage depth, and demands on the testing effort.
Refer to Table 6.1, "Test Types and Their Place in the Software Development Process,” for a
visual representation of test phases and corresponding test types.

Development phases should be defined by clearly communicated and measurable criteria that
are agreed upon. Often, people on the same development team may have different
understandings of how particular phases are defined. For example, it might be defined that an
application cannot officially begin its beta phase of development until all crash or dataloss
bugs have been fixed. Alternatively, beta is aso commonly defined as being a product that is
functionally complete (though bugs may still be present, all features have been coded).

Disagreement over how a phase is defined can lead to problemsin perception of compl eteness
and product stability. It is often the role of the test team to define the milestone or completion
criteriathat must be met for a project to pass from one phase to another. Defining and agreeing
upon milestone and completion criteria alows the testing, development, and marketing groups
to work better as ateam. The specifics of the milestones are not as important as the fact that
they are clearly communicated. It is aso a concern that the developers usually consider that
they have made the milestone when the build is done. In practice, testing still must confirm if
thisistrue, and the confirmation process may take from afew days to afew weeks.

COMMON PHASES OF SOFTWARE DEVELOPMENT

Alpha. A significant and agreed-upon portion (if not al) of the product has been completed
(the product includes code, documentation, additional art, or other content, etc.). The product is
ready for in-house use.

Pre-beta (or beta candidate). A build that is submitted for beta acceptance. If the build meets
the beta criteria (as verified by the testing group), then the software is accepted into the beta
phase of development.

Beta. Mogt, or al, of the product is complete and stable. Some companies send out review
copies (beta copies) of software to customers once software reaches this phase.

Ul freeze. Every aspect of the application's Ul is complete. Some companies accept limited
changes to error messaging and repairs to errorsin help screens during this phase.

Prefinal [or golden master candidate (GMC)]. A fina candidate build has been submitted
for review to the testing team. If the software is complete and all GMC tests are passed, then
the product is considered ready for final testing.break

Page 48



Final test. Thisisthelast round of testing before the product is migrated to the live Web site,
sent to manufacturing, or posted on the Web site.

Release (or golden master). The build that will eventually be shipped to the customer, posted
on the Web, or migrated to the live Web site.

Other Software Testing Terms

Test case. A test that (ideally) executes a single well-defined test objective (i.e., a specific
behavior of afeature under a specific condition). Early in testing, atest case might be
extremely ssmple; later, however, the program is more stable, so we need more complex test
cases to provide us with useful information.

Test script. Step-by-step instructions that describe how atest case isto be executed. A test
script may contain one or more test cases.

Test suite. A collection of test scripts or test casesthat is used for validating bug fixes (or
finding new bugs) within alogical or physical area of aproduct. For example, an acceptance
test suite contains all the test cases that are used to verify that software has met certain
predefined acceptance criteria. A regression suite, on the other hand, contains all the test cases
that are used to verify that all previoudly fixed bugs are till fixed.

Test specification. A set of test cases, input, and conditions that are used in the testing of a
particular feature or set of features. A test specification often includes descriptions of expected
results.

Test requirement. A document that describesitems and features that are tested under a
required condition.

Test plan. A management document outlining risks, priorities, and schedules for testing. (See
Part Three for more information.)

Test-Case Development

There are many methods available for analyzing software in an effort to develop appropriate
test cases. The following sections focus on several methods of establishing coverage and
developing effective test cases. A combination of most, if not all, of the following test design
methods should be used to devel op test cases for the application under test.

Equivalence Class Partitioning and Boundary Condition Analysis

Equivalence class partitioning is a timesaving practice that identifies tests that are equivalent
to one another; when two inputs are equivalent, you expect them to cause the identical sequence
of operations to take place or they cause the same path to be executed through the code. When
two or more test cases are seen as equivalent, the resource savings associated with not running
the redundant tests normally outweighs the risk.break

Page 49

An example of an equivalence class includes the testing of a data-entry field inan HTML form.
If the field accepts afive-digit ZIP code (e.g., 22222) then it can reasonably be assumed that



the field will accept al other five-digit ZIP codes (e.g., 33333, 44444, etc.). Because all
five-digit ZIP codes are of the same equivalence class, there islittle benefit in testing more
than one of them.

In equivalence partitioning, both valid and invalid values are treated in this manner. For
example, if entering six lettersinto the ZIP code field just described resultsin an error
message, then it can reasonably be assumed that all six-letter combinations will result in the
same error message. Similarly, if entering a four-digit number into the ZIP code field resultsin
an error message, then it should be assumed that all four-digit combinations will result in the
same error message.

EXAMPLES OF EQUIVALENCE CLASSES

- Ranges of numbers (such as all numbers between 10 and 99, which are of the same two-digit
equivalence class)

- Membership in groups (dates, times, country names, etc.)

- Invalid inputs (placing symbolsinto text-only fields, etc.)

- Equivalent output events (variation of inputs that produce the same output)

- Equivaent operating environments

- Repetition of activities

- Number of records in adatabase (or other equivalent objects)

- Equivalent sums or other arithmetic results

- Equivalent numbers of items entered (such as the number of characters entered into afield)
- Equivalent space (on a page or on a screen)

- Equivaent amounts of memory, disk space, or other resources available to a program

Boundary values mark the transition points between equivalence classes. They can be limit
values that define the line between supported inputs and nonsupported inputs, or they can
define the line between supported system requirements and nonsupported system requirements.
Applications are more susceptible to errors at the boundaries of equivalence classes, so
boundary condition tests can be quite effective at uncovering errors.

Generally, each equivalence classis partitioned by its boundary values. Nevertheless, not all
equivalence classes have boundaries. For example, given the following four browser
equivalent classes (Netscape Navigator 4.6 and 4.6.1, and Microsoft Internet Explorer 4.0 and
5.0), there is no boundary defined among each class.

Each equivalence class represents potential risk. Under the equivalent class approach to
developing test cases, at most, nine test cases should be executed against each partition. Figure
3.4 illustrates how test cases can be built around equivalence class partitions. In Figure 3.4, LB
stands for lower boundary and UB stands for upper boundary. The test cases include three
tests clustered around each of the boundaries: one testcontinue



8 1

- —— Partition's Valid INpuls e

oL

|T—LB+'I ; |L
Lowar Boundary (LB | 3

LE-1

B+
Uppar

LE-1

i

Figure 3.4

5

7

Boundary (UB) | 5

>

Boundary condition test cases. *, Smallest/largest possible values allowed via Ul.
Source: © 1998-2000 L ogiGear Corporation. All rights reserved.

Page 50

that falls within the partition's boundaries, and two tests that fall well beyond the boundaries.

Figure 3.5 illustrates another boundary condition test-case design example taken from the
sample application. (See Chapter 7, "Sample Application," for more information.)

To develop test cases via equiva ence class partitioning and boundary class analysis, one must

do the following:
- ldentify the equivalence classes.
- |dentify the boundaries.

- ldentify the expected output(s) for vaid input(s).

- ldentify the expected error handling (ER) for invalid inputs.

- Generate atable of test cases (maximum of nine for each partition).break

: fln IxF Tesl Case Inpud Daipisi
Fi= Edet Wiew ™ lnks ™) Agdess G0 | 2o - =r"- 1 Any Vbt Ihpul [Funclicral Pesull
= 2 4 Funeliona Rasull
it QuickFind 3 1 {Functionat Ruzull
Pl 4 ] Ermr Handi
ke 1 = 5 10000 Eror Handi
- - m j B 9900 Funciicrat Result
1 Fi ‘IS5E Funcicra Pasull
] OO0 |Evrar Handing
| boarsdis Slabe Open =] ] Soccg Eror Harcli
=B Ll_l 1 Any Vabd lpul [Functions? Rasull
i, Local wiraret F] F] Funclicna Rasull
3 1 Funchionat Rasull
L HLLL Erar Harding
Valid Values: 1 to 2958 5 5 Ermr Hancling
or1to d-ﬂlﬂ“ value [F 4 Funcligna Resuylt
F, 3 Funciigna! RPasult
i [ ey
] §9568  |Erar Handing

Figure 3.5
Sampl e application test cases.

Page 51

Note that this example is an oversimplified one. It indicates only two equivalent classes. In



reality, there are many other equivalent classes such asinvalid character class
(nonalphanumeric characters), specia cases such as numbers with decimal points, leading
zeros of leading spaces, and so on. Chapter 10, "Functionality Tests," contains additional
information regarding boundary analysis.

State Transition

Sate transition involves analysis of the transitions between an application's states, the events
that trigger the transitions, and the results of the transitions.

GENERAL STEPSFOR STATE TRANSITION TEST-DESIGN ANALYSIS
1. Identify all of an application’s supported states.
2. For each test case, define the following:

- The starting state

- Theinput events that cause the transitions

- The output results or events of each transition

- The end state

3. Draw adiagram that illustrates the relationships between the states, events, and actions of
the application.

4. Generate atable of test cases that addresses each state transition.
Condition Combination

A long-standing challenge in software testing is having enough time to execute all possible test
cases. There are numerous approaches that can be taken to strategicallycontinue

Testing the Sample Application

Figures 3.6 and 3.7 show two different states that are available within the sample application.
(See Chapter 7, "Sample Application,” for details regarding the sample application.) Figure 3.6
shows the application in Edit View mode. Available navigation options from this state include
Full View, First, Previous, Next, and Last. Figure 3.7 shows the application in Full View.
Available navigation options from this state include Edit View and the Report Number
hyperlink. Figure 3.8 diagrams the transitions, events, and actions that interconnect these two
states.

Figure 3.9 isatable of test cases that targets each of the transition states. Each test case has a
beginning state (Start View mode), an event or input (Navigation Command), and an event (End
View Mode).

Continues

Page 52



Testing the Sample Applications (Continued)

Navigation Command

| 2 'Welcome to TRACKGEAR - Miciozofl ntemnet Exploner

'143@121 399 H L
| To be Fixed | Mocined:

:5 Config I0: .ILInu.551gnEd E

Metrics
Distsibution | | Lt U bl _ crien i
—Teend |8} Error Type:[| | Keyword: | Unassigned [~ &R Reproducible: "l
Setwp B} Sewerit: [TrHigh 5]  Freauency: 1EveryTime |~ Proie 7
Pt | ary: Deleted cita ean be sdted. Bt Profils ewn b ccessed W o profiles avalabla, e oo gl
Preferences i - s e - '-I
conngs ||| Steps (READ-ONLYY: R Hm:iﬂumm:ﬁmﬁ: ST
htep://jupiter/ john | The old deleced profile info appea: -":'
Logout | except the Miscellaneous field dact

0 ] - Bk

1) Login a3 admin 8] 101d data should not reappear and mi

Figure 3.6
Edit View state,

Navigation Command
Current View Mode

Figure 3.7

Fodl N s kb a



Full vVIiew slde.

Coda

a

-

B o

Figure 3.8
Transitions diagram.

Page 53
Edit View 1 FY | Edit view
] Aecord
(1]
e Fy [Last]
Edit View * M
L R
LS [TV
F F P
R ;
| F
|
|
F
Edit Vi Edit Vi
oy 2w Fy _..-‘l
Resord Ruacard I.f
Ix [Last-1]
L

MAVIGATICN COMMAND

Start View hMode

& B e 1 FLE f g  h h

Na\-igatiq}n Comimand {iIIpI.IT:I

F{P|F| F|N|L|FREVEY

LK

Emd View Made

a|flglalela|g | a|alc

Figure 3.9
Test matrix.

VIEW MIODE {State} [Event)

Edit View-Record [1s1] Edit Wiew displaying the 15t record F First

Edrt Wiew-Record [1st + 1] Edit View displaying the Znd record P Pravious

Edit View-Record [x] Edit View displaying the record [x] M Mext

Edit View-Record [x- 1] Edit View displaying the record [x-1] L Last

Edit View-Record [Last] Ednt View displaying the last record v Full iew

Edit View-Record [Last - 1] Edit View displaying the next to last record

Full Vieww Record [15] Full View displaying the 1st record Ev Edit Wiew

Full View Racord [x] Full View displaying record [x] LK Record ID Link
TEST CASE 0. | I 1 3 4 5 & T & & 1 M T 13 14 15
Start View Mode alala|fblb|b|b|c|lec) c | c|d|d|d]|d
Mavigation Command {input) | M | L |V [F|P|L|FF]F|P| L |FW| F | N |L|FR
End View Mode ble|lg|lalale|g|a|d]| e g | a C [ £
TEST CASE O. 16 17 18 18 20 21 22 23 24 15




Page 54

& Combination Test Case Design | _ |Of %]
- Group A . GrowB | GroupT
@ Oplnt @ Opiont | & Dgbont
| Option2  Optisn2 || € Dption2
Cilipind || Cogw3 || ¢ G
ak LCancel
Figure 3.10

Simplified application example.

reduce the number of test cases to a manageable amount. The riskiest approach is to randomly
reduce test cases without a clear methodology. A better approach isto divide the total test
cases over a series of software builds.

The condition combination approach involves the analysis of combinations of variables, such
as browser settings. Each combination represents a condition to be tested with the same test
script and procedures. The condition combination approach involves the following:

- |dentifying the variables
- ldentifying the possible unique values for each variable

- Creating atable that illustrates all the unique combinations of conditions that are formed by
the variables and their values

Figures 3.10 and 3.11 illustrate an application that includes three variables with three possible
unique values each. The number of complete combinations formed by the variablesis3 x 3 x 3
x 27. The 27 unique combinations (test cases) formed by the three variables A, B, and C are
listed in Table 3.2. To execute the test cases calculated by these unique combinations, set the
valuesfor each A, B, and C variable using the variables listed in the corresponding rows of the
tables. Execute the procedures and verify expected results.

The Combinatorial Method

The combinatorial method is a thoughtful means of reducing test cases via a pairwise shortcut.
It involves analyzing combinations of variables, such as browser settings, onecontinue

EE |

Figure3.11
Unique combinations.



Page 55

Table3.2 Tota Unique Combinations

g
]
=
@
o

Pl Pl | B3| B | RO | P | P | B [ B
o |ma| =l ma] = ra | =0

WD~ O h e B =
| | i [t e | e | | e
oo e [ma oo = | ==
L ma | = (Lo |na| =) capa| =
L | S | Ll | | BT | ol | = | = | = | ER
o] ] wleelw|w ||
Cod | L | | B BT P e | ok | ek | T
Ealt | B | | i | B | k| o | i | D

pair at atime. Each unique combination pair represents a condition to be tested. By examining
and testing pair combinations, the number of total conditions to be tested can be dramatically
reduced. Thistechnique is useful when complete condition combination testing is not feasible.
The the combinatoria method involves the following:

- ldentifying the variables
- ldentifying the possible unique values for each variable
- |dentifying the unique combinations formed by the variables, one pair at atime

- Credting atable that illustrates al of the unique combinations of conditions that are formed
by the variables and their values

- Generating the unique combinations formed by the first pair, A-B. Asillustrated in Table 3.3,
arrange the values in the C column to cover the combinations of the B-C and A-C pairs without

increasing the number of cases. Set the value of the variables A, B, and C using the information
listed in each row of the table, one at atime. Execute the test procedure and verify the expected
output.break

Table 3.3 The Combinatorial Method

I [

ul| | =f ] e = m

=
-

| | =) adf ba| =] | ea| =) @
| = G —=| G| Ra| A R =)
| s e paf ba| ) =) =] =] =
baf = e =| | paf ] oea| =)

L
[

al
("]

4
Ju_u.._,..-u_w+

A =] | =) W s ] Rl =]

i i




Page 56

For more information on this technique, go to AR GREENHOUSE at www.argreenhouse.corr.
For apaper on thistopic, The AETG System: An Approach to Testing Based on
Combinatorial Design (Cohen et d., 1997), go to
www.argreenhouse.com/papers/gcp/AET Gieee97.shtml.

Bibliography

Kaner, Cem, et d. Testing Computer Software, second edition. New Y ork: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.

Cohen, D. M., et d. "The AETG System: An Approach to Testing Based on Combinatorial
Design." |EEE Transactions On Software Engineering, Vol. 23, no. 7 (July 1997).break

Page 57

Chapter 4—
Networking Basics

Why Read This Chapter?

Networks hold Web systems together; they provide connectivity between clients and servers.
The rdiability, bandwidth, and latency of network components such as T1 lines and routers
directly influence the performance of Web systems.

Having knowledge of the networking environment enables you to identify configuration and
compatibility requirements for your test planning, and to enhance your bug-anaysis abilities.

I ntroduction

This chapter delivers abrief introduction to networking technologies; the information supports
the effective planning, testing, analysis of errors, and communication that is required for the
testing of Web applications. Network topologies, connection types,continue

I TAnire CAvorod in Thie Chantar



I UNILO wuva U T 1D wliaula

- Introduction
- The Basics
- Other Useful Information

- Testing Considerations

- Bibliography

Page 58

and hardware components are also discussed. The chapter aso offers test examples and testing
considerations that pertain to networking.

POSSIBLE ENVIRONMENTAL PROBLEMSTHAT MAY BE THE CAUSE OF AN
APPLICATION NOT OPERATING CORRECTLY

- The client or server may be inaccessible because they are not connected to the network.

- There may be afailure in converting a Domain Name Service (DNS) name to an Internet
Protocol (1P) address.

- A dow connection may result in atime-out.

- There may be an authentication process failure due to an invalid ID or password.
- The server or client may be incorrectly configured.

- Firewall may block all or part of the transmitted packets.

- Childproofing software may be blocking access to certain serversor files.

TheBasics

The following sections deliver introductions to network types, connectivity services, and
hardware devices, as well as other useful information such as TCP/IP, IP addresses, DNS, and
subnetting/supernetting.

The Networks

Networks are the delivery system offering connectivity that glues clients, servers, and other
communication devices together.

ThelInter net

The Internet's infrastructure is built of regiona networks, Internet service providers (1SPs),
high-speed backbones, network information centers, and supporting organizations [e.g., the
Internet Registry and, recently, the Internet Corporation for Assigned Names and Numbers
(ICANN)]. Web systems don't exist without the Internet and the networked structures of which



the Internet is composed. Understanding how information moves across the Internet, how
client-side users gain access to the Internet, and how IPs relate to one another, can be useful in
determining testing requirements.

Asillustrated in Figure 4.1, government-operated backbones or very high-speed Backbone
Network Services (VBNSs) connect supercomputer centers together, linking education and
research communities. These backbones serve as the principle highways that support Internet
traffic. Some large organizations, such as NASA, provide Internet backbones for public use.

Internet service providers and regional networks connect to the backbones. Internet service
providers are private organizations that sell Internet connections to end users;continue

Page 59

Supercomputer

Regional Metwaork

Figure4.1
The Internet.

both individuals and companies can gain Internet access through 1SPs. Online services such as
America Online sell accessto private sectors of the Internet—in addition to the general
Internet. Regional networks are groups of small networks that band together to offer Internet
access in a certain geographical area. These networks include companies and online services
that can provide better service as groups than they can independently.

L ocal Area Networks (LANS)

Web-based applications operating over the Internet normally run on local area networks
(LANSs). The LANs are relatively small groups of computers that have been networked to one
another. Local area networks are often set up at online services; government, business, and
home offices; and other organizations that require numerous computersto regularly
communicate with one another. Two common types of LANSs are Ethernet networks and
token-ring networks. Transmission Control Protocol/Internet Protocol (TCP/IP), the suite of
network protocols enabling communication among clients and servers on a Web system, runs
on both of these popular network topologies. On an Ethernet LAN, any computer can send
packets of datato any other computer on the same LAN simultaneoudly. With token-ring



networks, datais passed in tokens (packets of data) from one host to the next, around the
network, in aring or star pattern. Figure 4.2 illustrates simple token-ring and Ethernet
networks, respectively.

Typicaly, aLAN is set up as a private network. Only authorized LAN users can access data
and resources on that network. When a Web-based system is hosted on a private LAN (its
services are only available within the LAN) and application access iscontinue

2§ 182

a."-r var Soreur Maciniosh Wiorkstahion

— | | |
Token Ring ' 0 —Ethernet— )

Workslalion '\'\ A . D ‘ Prinler

P4
i =
" Wiorkalation
Huﬂ:-slnlm
[

Figure 4.2
Toke-ring and Ethernet networks.

Page 60

only available to hosts (computers) within the LAN or to trusted hosts connected to the LAN
[e.g., through remote-access service (RAS)], the Web-based system is considered as an
intranet system.

Wide Area Networks (WANS)

Multiple LANSs can be linked together through awide area network (WAN). Typicaly, aWAN
connects two or more private LANSs that are run by the same organization in two or more
regions. Figure 4.3 is an illustration of an X.25 (X.25 isone of several available
packet-routing service standards) WAN connecting computers on atoken-ring LAN in
onecontinue



X.25 Network Cloud

4

BN compalible IT

1
‘D| Token Ring 1 ;
- % ¥ -
L 2l Prinies
) o=— )

TR=iabon
|

[F )
Maciniosh

0O O

= =3 —r——"

1

__'_1]
il
(L]

)

I-!-_ie:rmr Macmbcsh I.';r-'l.srallcﬂ

£

i Ethermnet I

Warksiaton

Figure 4.3
Wide area networks (WANS).

Page 61

geographic region (San Jose, California, for example) to computers on another Ethernet LAN in
adifferent geographic region (Washington, D.C., for example).

Connecting Networks

There are numerous connectivity services and hardware options available for connecting
networks to the Internet, as well as to each other; countless testing-related issues may be
affected by these components.

Connectivity Services

The two common connection types are dial-up connection and direct connection, which we
will discussin turn in this section.

Dial-Up Connection

One of the very familiar connection service typesis the dia-up connection through a telephone
line.

Plain Old Telephone Service (POTS). Plain Old Telephone Service is the standard analog
telephone line used by most homes and businesses. A POTS network is often aso called the
public switched telephone network (PSTN). Through an analog modem, a POTS connection
offers atransmission rate of up to 56 kilobits per second (Kbps).

Integrated Services Digital Network (ISDN). The ISDN lines are high-speed dial-up
connections over telephone lines. The ISDN lines with which we are familiar can support a
datatransmission rate of 64 Kbps (if only one of the two available wiresis used) or 128 Kbps
(if both wires are used). Although not widely available, there is a broadband version (as
opposed to the normal baseband version) of ISDN, caled B-1ISDN. The B-ISDN supports a
datatransmission rate of 1.5 megabits per second (Mbps) but requires fiber-optic cable.



Direct Connection

In contrast to dial-up, another series of connection service typeis direct connection such as
leased-line, including T1, T3, cable modem, and DSL.

T1 connection. T1s (connection services) are dedicated, |eased telephone lines that provide
point-to-point connections. They transmit data using a set of 24 channels across two-wire
pairs. One-half of each pair isfor sending, the other half isfor receiving; combined, the pairs
supply adatarate of 1.54 Mbps.

T3 connection. T3 linesare similar to T1 lines except that, instead of using 24 channels, T3
lines use 672 channels (an equivalent of 28 T1 lines), enabling them to support a much higher
data transmission rate: 45 Mbps. Internet service providers and Fortune 500 corporations that
connect directly to the Internet's high-speed backbones often use T3 lines. Many start-up
Internet companies require bandwidth comparable with a T3 to support their e-business
infrastructures, yet they cannot afford the associated costs; the aternative for these smaller
companies isto share expensive high-speed connections with larger corporations.

DS connection services. DS connection services are fractional or multiple T1 and T3 lines.
T1 and T3 lines can be subdivided or combined for fractional or multiple levels of service.
For example, DS-0 provides a single channel (out of 24 channels) ofcontinue

Page 62

bandwidth that can transmit 56 Kbps (kilobits per second). DS-1 serviceisafull T1 line;
DS-1Cistwo T1lines, DS-2isfour T1 lines, DS-3isafull T3 line.

Digital subscriber line (DSL). The DSL offers high-bandwidth connections to small
businesses and homes viaregular telephone lines. There are severa types of DSL, including
Asymmetric Digital Subscriber Line (ADSL), which is more popular in North America, and
Symmetric Digital Subscriber Line (SDSL). The ADSL supports a downstream transmission
rate (receiving) of 1.5 to 9 Mbps and an upstream transmission rate (sending) of 16 to 640
Kbps. The DSL lines carry both data and traditional voice transmissions; the data portion of the
bandwidth, however, is aways connected.

Cable connection services. Through a cable modem, a computer can be connected to alocal
cable TV service line, enabling a data transmission rate, or throughput, of about 1.5 Mbps
upstream (sending) and an even much higher rate for downstream (receiving). However, cable
modem technology utilizes a shared medium in which all of the users served by anode
(between a couple hundred to couple thousand homes, depending on the provider) share
bandwidth. Therefore, the throughput can be affected by the number of cable modem usersin a
given neighborhood and the types of activities in which those users are engaged on the network.
In most cases, cable service providers supply the cable modems and Ethernet interface cards
as part of the access service.

I nternet Connection Hardware

To connect atermina or a network to the Internet, a hardware device such as a modem must be
used to enable the communication between each side of the connection. With POTS dial-up
connections, analog modems are used. With ISDN, ISDN (digital) modems are used. With DSL



and cable connections, DSL modems and cable modems are used.

With leased lines such as T1, T3, and other DS connection services, a channel service unit/data
service unit (CSU/DSU) deviceisused. They are actually two different units but often a
packaged as one. Y ou may think of CSU/DSU as an expensive and powerful version of a
modem that is required at both ends of the leased-line connection.

Other Network Connectivity Devices

Loca area networks employ severa types of connectivity devicesto link them together. Some
of the common hardware devices include:

Repeaters. Used to amplify data signals at certain intervals to ensure that signals are not
distorted or lost over great distances.

Hubs. Used to connect groups or segments of computers and devices to one another so that
they can communicate on a network, such asaLAN. A hub has multiple ports. When a data
packet arrives at one port, it is replicated to the other ports so that computers or devices
connected to other ports will see the data packet. Generally, there are three types of hubs.

- Bridges. Used to connect physical LANSs that use the same protocol as one another into a
logical network. Bridges examine incoming messages and pass the messages on to the
appropriate computers—on either alocal LAN or aremote LAN.break

Page 63

- Routers. Used to ensure that data are delivered to the correct destinations. Routers are
like bridges, except that they support more features. Routers determine how to forward
packets—based on | P address and network traffic. When they receive packets with a
destination address of a host that is outside of the network or subnetwork, they route the
packets to other routers outside of the network or subnetwork so that the packets will
eventually reach their destination. Routers are often not necessary when transmitting data
within the same network, such asover aLAN.

- Gateways. Used like routers, except that they support even more features than routers.
For example, a gateway can connect two different types of networks, enabling users from
one network (Novell IPX/SPX, for example) to exchange data with users on a different
network type (for example, TCP/IP).

Figure 4.4 illustrates a sample configuration in which a bridge, router, or gateway is used to
connect the two networks or subnetworks.break



L]
e

Server Macintosh Workstation

() ' ~— Ethernet - )

D Printer

Workstation [= o |

Bridge,
router, or

] [] |seewe
awe Macintash Warkstation

| |
Ethernet — 1 !

=
D =

Workstation Disk Array

-

Figure 4.4
Bridges, routers, and gateways.

Page 64
TCP/IP Protocols

The Internet is a packet-switched network—meaning that all transmitted data objects are
broken up into small packets (each of less than 1500 characters). The packets are sent to the
receiving computer where they are reassembled into the original object.

The TCP isresponsible for breaking up information into packets and reassembling packets
once they reach their destination. Each packet is given a header that contains information
regarding the order in which packets should be reassembled and a checksum—which records
the precise amount of information in each packet. Checksums are used to determine, on the
receiving end, if packets were received in their entirety.

The IPisresponsible for routing packets to their correct destination. The IP puts packets into
separate | P envel opes that have unique headers. The envel ope headers provide such
information as the receiver's and the sender's addresses. The IP envelopes are sent separately
through routers to their destination. The IP envelopes of the same transmission may travel
different routes to reach the same destination—often arriving out of order. Before reassembling
the packets on the receiving end, TCP calculates the checksum of each packet and comparesiit



with the checksum of the original TCP headers. If the checksums do not match, TCP discards
the unmatched packets and requests the original packets to be resent.

The TCP/IP Architecture

For computers to communicate over the Internet, each compuiter, client or server, must utilize a
standard set of protocols called TCP/IP. This suite of protocolsisreferred to asa TCP/IP
stack or socket. There are numerous versions of TCP/IP stack available, for every target
platform and operating system (UNIX, PC, Macintosh, handheld devices, etc.). The TCP/IP
stack, asillustrated in Figure 4.5, is composed of five layers: application, transport, Internet,
data link, and physical.

The Application Layer

The top layer of the TCP/IP protocol isthe application layer. End-user applications interact
with this layer. The protocolsin this layer perform activities such as enabling end-user
applications to send, receive, and convert datainto their native formats, and establishing a
connection (session) between two computers.break

Application

Transport
Internet
Data link
Physical

Figure 4.5
TCP/IP stack architecture.

Page 65

Examples of several common protocols associated with the application layer with which you
may be familiar include:

HyperText Transfer Protocol (HTTP). Commonly used in browsers to transfer Web pages
and other related data between client and server across the Internet.

File Transfer Protocol (FTP). Commonly used in browsers or other applications to copy
files between computers by downloading files from one remote computer and uploading them
to another compuiter.

Network News Transfer Protocol (NNTP). Used in news reading applications to transfer
USENET news articles between servers and clients, as well as between servers.

Simple Mail Transfer Protocol (SMTP). Used by e-mail applications to send e-mail
messages between computers.

Dynamic Host Configuration Protocol (DHCP). Used in server-based applications to
allocate shared | P addresses to individual computers. When a client computer requires an IP
address, a DHCP server assigns the client an IP address from a pool of shared addresses.



For example, a network may have 80 workstations, but only 54 |P addresses available. The
DHCP alows the 80 workstations to share the 54 |P addresses in away that is analogousto an
office with 80 employees who share a phone system with only 54 trunk lines. In this scenario, it
is expected that in normal operation no more than 54 employees will be on the phone at the
sametime. That is, the 55th employee and beyond will not be able to get onto the system.

The Transport Layer

Thetransport layer breaks data into packets before sending them. Upon receipt, the transport
layer ensures that al packets arrive intact. It also arranges packets into the correct order.

Examples of two common protocols associated with the transport layer that you may be
familiar with are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
Both TCP and UDP are used to transport | P packets to applications and to flow data between
computers. With TCP, it ensures that no transported data is dropped during transmissions.
Error checking and sequence numbering are two of TCP'simportant functions. Transmission
Control Protocol uses IP to deliver packets to applications and it provides areliable stream of
data between computers on networks. Once a packet arrives at its destination, TCP delivers
confirmation to the sending and receiving computers regarding the transmitted data. It also
requests that packets be resent if they are logt.

- TCPisreferred to as a connection-oriented protocol. Connection-oriented protocols require
that a channel be established (a communications line established between the sending and
receiving hosts, such asin atelephone connection) before messages are transmitted.

- UDP is considered a connectionless protocol. This means that data can be sent without
creating a connection to the receiving host. The sending computer smply places messages onto
the network with the destination address and hopes that the messages arrive intact. break

Page 66

UDP does not check for dropped data. The benefit of being connectionlessis that data can be
transferred more quickly; the drawback isthat data can more easily be lost during transmission.

The Internet Layer

The Internet layer receives data packets from the transport layer and sends them to the correct
network address using the IP. The Internet layer also determines the best route for data to
travel.

Examples of several common protocols associated with the Internet layer that you may be
familiar with include the following:

Internet Protocol (1P). Responsible for basic network connectivity. Every computer on a
TCP/IP network has a numeric IP address. This unique network ID enables data to be sent to
and received from other networks, similar to the way that atraditional street address allows a
person to send and receive snail mail.

Address Resolution Protocol (ARP). Responsible for identifying the address of aremote
computer's network interface card (such as an Ethernet interface) when only the computer's
TCP/IP address is known.



Rever se Address Resolution Protocol (RARP). The opposite of ARP. When al that is
known is aremote computer's network interface card hardware address, RARP determines the
computer's | P address.

The Data Link Layer

The data link layer moves data across the physical link of a network. It splits outgoing data
into frames and establishes communication with the receiving end to validate the successful
delivery of data. It also validates that incoming data are received successfully.

The Physical Layer

The physical layer isthe bottom layer of the TCP/IP stack. It supports the electrical or
mechanical interface of the connection medium. It is the hardware layer—composed of a
network interface card and wiring such as coaxia cable, 10/100-Based-T wiring, satellite, or
leased-line.

Testing Scenarios

With Web-based systems, we may not normally have to be concerned with issues related to
connection services, connectivity devices, or how the TCP/IP stack may affect the applications.
When an HTTP-based (i.e., Web browser-based) application runs within the context of a
third-party browser (e.g., Netscape Navigator or Microsoft Explorer), one can argue that how
a TCP/IP connection is established, which hardware components are used on the network, or
the connection throughput does not seem to matter. However, understanding the basics of the
technol ogies helps us better decide on the parts that need testing focus, as well as on other

parts that can be |eft alone.break

Page 67

Generally, the two classes of testing-related issues that need coverage are (1) configuration
and compatibility and (2) performance. By carefully analyzing the delivered features and the
supported system configurations, we can reasonably determine the testing requirements for
configuration and compatibility aswell asfor performance.

Connection Type Testing

Usually, the issues with various types of connection revolve around throughput and
performance rather than configuration and compatibility.break

I A TOD/ID Dratarnale \ AN Arly T Aanothaor



TIUVW 1T or/ir riUltuLuIio vV Ul N 1T vy i

Figure 4.6 illustrated a simplified version of the data-flow processes that occur when a user
sends an e-mail message. The process on the sender's end begins at the top layer, the application
layer, and concludes at the physical layer, where the e-mail message leaves the sender's
network.

User “A" sends an email
message to User “B"”

Email program sends massage fo the Transpot Laper

Application | s

The Transpart Layer receives the dala, divides it info
packets, and adds franspornt header information.

Transpnrt=[_

| Data packeis are piaced in 1P dalagram with dafagram

headars. [P delermines where the dalagrams showld
I n te rn et be sent (directiy fo destination or alse, fo a gafeway).

L]
Data l In k The netwark interface transmits the IF datagrams, as

framas, fo the recelving IF address, Network hardware
“ Ph ys ica I and wires suppart iransmission,

Figure 4.6
E-mail sent.

The process continues on the receiver's end, working in reverse order. The physical layer
receives the sender's message and passes it upward until it reaches the receiver's application
layer. (See Figure 4.7.)

Continues

Page 68

A TOD/IID Dratanale\N Aarly TAanothar (CAanti nniad)



FTIUVY 1 Oor/1r I ULULUID VY UL N 1T UyTu i \(“ulliuliucu)

Fraamas raceivad by the netvark go through the protecal
layers in reverse. Each layar strips off the cormasponding
heradier information until the data reaches the application
level.

[
I > User “B" receives an email message

Application

The daia is displayed 0 the vser. The wusar can row inkract
with the dafa through an amaid applicafion.

The Tran: L chacks packels br accuracy and
Transport roassames O pockets, |
In te' rn et The Imiarnel Protocod simps off S 15 headar
Dﬂta I II'I k The Physical and Dala ink layers recalve dalagrams i the

form of frames. It then passes the datagrams onlo the
Physical __| | ==&

Figure 4.7
E-mail received.

For example, login fails to authenticate with dial-up connections, but it works properly with
direct connection. This symptom may be caused by a number of problems. However, one
common issue is that the ow connection causes atime-out in the login or authentication
process. With dow connections such as dial-up, it may take too long (longer than the script
time-out value) for the client-server to send/receive packets of data; the script will eventually
time-out, causing the login or authentication process to fail. The problem could not be
reproduced when the same procedureis retried on an Intranet or aLAN connection.

As described earlier, the two types of connection we often work with that offer us various
throughput rates are direct connections and dial-up connections. Common direct connection
configurations to consider include:

- Standard LAN and/or WAN connections (Intranet)

- Standard LAN and/or WAN connections with a gateway to the Internet using T1, T3, and DS
services, DSL; or cable services

- Stand-alone connections to the Internet using DSL or cable services
Common dial-up connection configurations to consider include:

- Stand-alone connections to the Internet through an ISP directly, using POTS lines or ISDN
lines (see Figure 4.8 for an example).

In the standard dial-up mode (Figure 4.8), aclient isa PC that is connected to a modem.
Through alocal telephone line or ISDN, a connection is made to an | SP. Depending oncontinue

Page 69



FIEEERe T Ty
fToooo T or T3 ﬁ-f l'"'\-_"‘
[ Internet |

)

St

Long-Distance
Telephone Company

Copper,
fiber-optic, or
satellite links

Local Telephone [===1
Company Modem : %“

POTS or
ISDM

Daskiop computer

Figure 4.8
Dial-up connection.

whether the ISP isloca or not, the local phone company may have to connect (via satellite,
copper, or fiber-optic cable) to the ISP through along-distance carrier. The ISP also hasa
modem to recelve the phone call and to establish a connection to the PC.

- Stand-alone connections to the intranet (LAN) through RAS, using POTS linesor ISDN lines

- Stand-aone connections to the intranet (LAN) through virtua private network (VPN)
services, using POTS linesor ISDN lines

- Stand-alone connections to the intranet (LAN) through RAS, using POTS lines or ISDN lines,
and then to the Internet using aleased line. (See Figure 4.9 for an example.)

Differing from the model where the client dials up through an ISP is the model of the client
dialing up through an RAS. If aLAN is connected directly to the loca phone company, thereis
no need for along-distance telephone connection. In Figure 4.9, the modem on the server side
receives the connection from the local phone company and trandates it for the RAS; after
proper authentication, LAN resources are made available to the user. If the LAN has aleased
ling, the user can link to an ISP and, ultimately, to the Internet through the local phone company.

Potential Modem Compatibility | ssues

Users of the Web system under test may be dialing in with amodem that trandates digital
computer signalsinto analog signals; the analog signals are carried over POT Scontinue

Page 70



Local Telephone __,f’ff- PR
Company '
{ Internt
l.\' "\
Digital Leased|Line Ty s
Long-Distance
Telephone Company
Corporala
Servar
| A b
{::' Ethamst }I Cﬂppﬁn
fiber-optic, or
satellite links
: = Local Telephone R
Macintosh Deskiop computer Company Modam b
POTS or -
Corporate Network ISDN
Figure4.9
Dial-up and leased-line connections.
Page 71

lines. The brand names and baud rates (generally ranging from 14.4 to 56 Kbps) of these
modems may affect the perceived performance of the Web system under test.

Generally, modem isa"don't care" to a Web application. However, if your applicationisan
embedded browser that also provides drivers for users to connect to certain modems, then the
connection type and modem brands may be an issue for testing. If moder compatibility issues
are a concern for the system under test, then both client- and server-side modems should be
tested.

Potential Dialer Compatibility | ssues

Dialer compatibility testing is often required when a Web system interacts with a dialer. Some
| SPs, such as EarthLink and AOL, supply users with proprietary dialers. Dialup Networking
has more than one version of its dialer. Some | SPs supply their new users with CD-ROMs that
replace existing browsers and dialers so that users can connect to their services. Such CDs
often install new components, which can cause incompatibility or conflict problems that may
lead to errors such as a system crash.

Some diaers also offer users a couple of protocol options from which to choose. Two common
dial-up protocols are Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol

(PPP). The SLIP isthe older of the two. Point-to-Point Protocol isthe most popular, as well as
the most stable; it enables point-to-point connections and, when necessary, can retransmit



garbled data packets. If the Web application under test is an embedded application and aso
deliversadiaer that supports more than one dial-up protocol, compatibility testing should be
considered. Otherwise, thisisusually a"don't care" issue to standard browser-based
application testing.

Connectivity Device Testing

Do we need to test our HT TP-based application with various brands and models of hubs,
repeaters, bridges, routers, and gateways under various configurations? | hope that the answer
is No, because a standard Web browser-based application does not interact directly with such
devices. However, if a Web application under test is a custom-embedded application that
supports several protocols at different layers of the TCP/IP stacks, incompatibility issues may
be introduced in interactions with the connectivity devices. For example, an embedded
HTTP-based application uses Reverse Address Resolution Protocol (RARP) at the Internet
layer of the TCP/IP stacks to determine the computer's | P address, compatibility tests should be
conducted with connectivity devices that support RARP, such as routers and gateways.

Many hardware devices do interact with different layers of the TCP/IP stack. Figures 4.10 and
4.11 illustrate the differences in intelligence and network layer interaction that these devices
exhibit. Understanding the implementation and support of Web-based applications in the
context of TCP/IP layering allows you to determine if configuration and compatibility testing of
hardware devices (such as gateways and routers) will be necessary.break

Page 72
Application
Transport Gatenay
Internet
Eouter Data link ‘
Physical .
Repeatec | y Bridge
Figure4.10

Network layer/device interaction.

Other Useful Information

This section offers an overview of how IP addresses, DNS, and network subnet work with the
intent to help testers be better at analyzing errors, as well as troubleshooting network/\Web
related issues.

| P Addresses and DNS

Every network device that uses TCP/IP must have a unique domain name and | P address.
Internet Protocol addresses are 32-bit numbers—4 fields of 8 bits each, each field separated
by adot (Figure 4.13). To better understand | P addresses, it is helpful to review the binary
model of computer data storage (Figure 4.12).



Binary is base two; it differs from the standard numerical system, which is base ten. Base two
(binary) dictates that each digit, or bit, may have one of two values: 1 (meaning on) and O
(meaning off). The value of a bit depends on its position. Figure 4.12 includes four examples of
standard numerals expressed in the binary model: 1, 3, 133, and 255.break

Hubs | Repeaters | Bridges | Routers | {Gateways
Application Mo Mo Mo Mo Yes
Transport MO Mo Mo Mo Yes
Internet Mo Mo Mo Yes Yes
Diata Link (1] Mo Yes Yes Yes
Physical Yes Yes Yfes Yes Yes
P Mo Mo Mo Yes Yes
Hardware Interface Mo Mo Yes Yes Yes
Figure 4.11
Network layer protocols and recognized addresses.
Binary Numbers: IIﬁtim—ﬁalﬁﬂ_ _.EE]_ Gdr .3?[ ﬁl T ﬂl_ 4-,_ . 2 -._1
On-hil 1 1 1 1 1 1 1 1
ol +0] +0] +0] «0] 0] 4] 41
Example 1: Dacimal Value 1
Binary Value {3 [ [ 1] { 0 1] 1
o] +o|] +o0] +0] +n] +0] +2] 1
Example 2: Decimal Vailue 3
Binary Value { [ [ 1] { 0 1 1
1 e8] so] +o] +o] 0] s4] 40| 41
Example 3: Decimal Value 133
Binary YValue 1 [ 0 0 0 1 0 1
128]  +5a] +32] +18] e8]  sa] ezl 41
Exampie 4: Decimal Value 255
Binary Value 1 1 1 1 1 1 1 1
Figure4.12

Binary model of computer data storage.

Page 73

Starting from right to left, each of the 8 bit positions represents a different number. Depending
on the numeral being expressed, each bit is set either to on or off. To calculate the expressed
numerd, the on bit positions must be added up. In the fourth example, note that all positions are
set to on, and the resulting value—the maximum value for an 8-bit number—is 255.

|P Address

Internet Protocol addresses are segmented into two numbers. a network number and a host



number. The network number identifies a specific organization's network that is connected to
the Internet. Within that network there are specific host computers on individual desktops.
These host computers are identified by host numbers. The amount of hosts that a network can
support depends on the network class of the network. Figure 4.13 is an example of aClass C
| P address.

Network Classes

The Internet is running low on available |P addresses. Thisis not due to alimitation of the
Internet itself or even of software; it is rather alimitation of the naming convention, or
dotted-decimal notation, the industry has established to express IP addresses. Simply put,
there are mathematical limitations to the amount of numbers that can be expressed in the 32-bit
model.break

Page 74

192.9.200.15

Metwork number Host Number

11000000 | oooo1o01 | 11001000 | 00001111 |

T T T G S
8 bit 8 bkit B Bbit B Bbit

An IP Address is a 32-hit number

Figure 4.13
Class C IP address.

THREE CLASSES OF TCP/IP NETWORKS

- Class A networks. There are only 126 class A network addresses available. Class A
networks can support an enormous amount of host devices—16,777,216. Not many
organizations require access to such alarge number of hosts. America Online, Pacific Bell, and
AT&T are some of the organizations that have class A networks. Class A networks use only the
first 8 bits of their IP addresses as the network number. The remaining 24 bits are dedicated to
host numbers.

- Class B networks. Class B networks can support about 65,000 hosts. The Internet can
support a maximum of 16,384 class B networks. Class B networks are quite large, but nowhere
near as large as class A. Universities and many large organizations require class B networks.
Class B networks use the first 16 bits of their |P addresses as the network number. The
remaining 16 bits are dedicated to host numbers.

- Class C networks. Class C networks are the most common and the smallest network class
available. There are over 2 million class C networks on the Internet. Each class C network can
support up to 254 hosts. Class C networks use the first 24 bits of their |P addresses as the
network number. The remaining 8 bits are dedicated to host numbers.

Domain Name System (DNS)
Although identifying specific computers with unique 32-bit numbers (1P addresses) makes



sense for computers, the practice makesit very chalenging for humans to remember network
and host names. That iswhy Sun Microsystems developed Domain Name Service (DNS) in the
early 1980s. Domain Name Service associates al phabetic aliases with numeric | P addresses.
The DNS servers match ssimple al phabetic domain names, such as logigear.com and
netscape.com, with the 32-bit IP addresses that the names represent. With this method, Internet
users only have to remember the domain names of the Internet sites they wish to vigit. If a
domain server does not have a certain | P address’domain name match listed in its database,
that server will route arequest to another DNS that will hopefully be able to figure out the IP
address associated with the particular domain name.break

Page 75

E-mail addresses are made up of two main components that are separated by an @ symbol. The
far right of every e-mail address includes the most general information, and the far left includes
the most specific. The far left of every e-mail addressis the user's name. The second part, to
the right of the @ symboal, is the domain name. In the example webtester @qgacity.com,
webtester isthe user name, and gacity.com is the domain name.

The domain name itself can be broken down into at least two components, each separated by a
period. The far right component of the domain name is the extension. The extension defines the
domain as being commercial (.com), network-based (.net), educationa (.edu), governmental
(.gov), or military (.mil). Countries outside the United States have their own extensions:
Canada (.ca), Great Britain (.uk), and Japan (.jp) are afew of these.

To the left of the domain extension is the name of the host organization, or ISP (.logigear,
.compuserve, etc.). Often, domain names are further subdivided, asin

webtester@montreal .qacity.com. In this example, montreal isthe host name; thisisthe
specific host computer that acts as the "post office" for webtester's e-mail. Figure 4.14 shows
examples of domain names.

When an e-mail is sent to webtester@montreal.gacity.com, a DNS server trand ates the letters
of the domain name (gacity.com) into the associated numerical |P address. Once in numeric
form, the datais sent to the host computer that resides at the domain. The host computer
(montreal) ultimately sends the e-mail message to the specific user (webtester).break



Exlensien

webtester @ montreal.gacity.com

UseriD Hostname  Domain name

212:25.0.18

Destination: webtester @ montreal.gacity.com

Figure4.14
Domain names.

Page 76

Missing a DNS Entry

When you are outside of the intranet and click on the QA Training or TRACKGEAR button in the
page illustrated, the browser appears to hang or you don't get any response from the server.
However, when you report the problem, your devel oper who accesses the same links could not
reproduce it. One of the possible problems is the DNS entry for the server referenced in the link
isonly available in the DNS table on the intranet, and is not known to the outside world. (See
Figure 4.15.)

a Shopping Caill - Microsoll Internet Exploier

| Fila Edit Wiew Favoitez Tooks Help

o LOgiGear

e e

| TRACKGEAR

P —
{Show Ordes

o ltem 0
_

| Help [REACKIGEAR

Figure 4.15
LogiGear screen capture.

Subnet



Subnets divide a single network into smaller networks, or network segments. Routers are used
to send information from one subnet to another. Subnets are useful in managing | P address
allotment. For example, an organization has a class C network and, therefore, only 254 IP
addresses are available to distribute to its employees. There are two physical locations. This
organization could request a second class C network to service the second location. What if the
organization is not currently using al of its IP addresses? Getting a second network address
would be wasteful. A subnet, in this case, allows this organization to partition its existing class
C network into two subnetworks. Figure 4.17 shows a network divided into two subnets with
two | P addresses (192.9.200.100 and 192.9.200.200)

The benefits of subnetting an existing network rather than getting an additional network include:
- Retaining the same network number for multiple locations.

- The outside world will not be aware that the network has been subdivided.break

Page 77

TIPS
1. Use the View Source menu command to inspect the HTML source.

2. Look for the information that's relevant to the links.

=g

map name=01lb23ifde?laddadd>
<aresa shape=rect coords="0,0,88,20" href=https:/ authorize.gacity

.comftraining-login.aspr>
~araa shapesrect coords="0,20,88,.40" hrefshttps: /fauthorize.gacikty
.eomy trackgear-laogin. asp?s

L o 2

Figure4.16
Tip: ping authorize.gacity.com.

In this example, you will find that clicking on the QA Training and the TRACK GEAR button will
result in requests to the server authorized in the gacity.com domain.

3. Try to pin authorize.gacity.com to seeif it can be pinged (Figure 4.16).

4. If the server cannot be pinged, tell your developer or IS staff so the problem can be resolved.




IF Address: 102.9.200.15 W .| |. IP Address: 192.8.200.16
Crefault Gateway: 192 9 200100 Defaull Gateway: 182.9.200.100

T =
Workstabon 1 Workstation 2

Subnet B

IF Address: 192.0,200,100
Rowtar
IF Address: 1929 200,200
Subnet A
IF Address: 192.9.200.150 I I I I IF Address: 192.9.200.151
Default Galawany: 192.9.200.200 Cefault Gateway: 1929 200,200

=2 " _1 l_-
|

: - - s
Worlkstation 3 Workstation 4

Figure 4.17
Subnetting a network.

Page 78

- A department's network activities can be isolated from the rest of the network—contributing
to the stability and security of the network as awhole.

- Network testing can be isolated within a subnet, thereby protecting the network from
testing-based crashes.

- Smaller networks are easier to maintain.

- Network performance may improve due to the fact that most traffic remains local to its own
subnet (for example, the network activities of business administration and engineering could be
divided between two subnets).

Subnet Masks

Subnet addresses are derived from the main network'’s networ k number plus some information
from the host section in the network's | P address. Subnet masks tell the network which portion
of the host section of the subnet addressis being used as the network address.

Subnet masks, like | P addresses, are 32-bit values. The bits for the network section of the
subnet address are set to 1, and the bits for the host section of the address are set to 0. Each
network class hasits own default subnet mask (Figure 4.18). Every computer on a network
must share the same subnet mask—otherwise, the computers will not know that they are part of
the same network.

As stated earlier, class C | P addresses have 24 bits to the left devoted to network address.
Class B |P addresses have 16 hits, and class A |P addresses have 8 hits. Internet Protocol
addresses that are included in incoming messages are filtered through the appropriate subnet
mask so that the network number and host number can be identified. As an example, applying
the class C subnet mask (255.255.255.0) to the class C address (126.24.3.11) resultsin a



network number of 126.4.3 and a host number of 11.

The value of 255 is arrived at when all bits of an |P address field are set to 1, or on. If al
valuesin an IP address are set to 255, as in the default subnet masks, then there are no subnets
at all.

Default Subnet Masks

Class A Default

255.0.0.0 or
11111111.00000000.00000000.00000000

Class B Default

255.255.0.0 or
11111111.111121111.11111111.00000000

Class C Default

255.255.255.0 or
11111111.11111111.11111111.00000000break

Figure 4.18
Subnet masks.

Page 79
Custom Subnets

Subnet masks may be customized to divide networks into several subnets. To do this, some of
the bitsin the host portion of the subnet mask will be set to 1's. For example: Consider an IP
address of 202.133.175.18, or 11001010.10000101.10101111.00010010. Using the default
mask of 255.255.255.0, or 11111111.11111111.11111111.00000000, the network address
will be 202.133.175.0, and the host address |P addressis 18. If a custom mask such as
255.255.255.240, or 11111111.11111111.11111121.212220000, is used, the network address
will then be 202.133.175.16 (because 28 bits are used for the subnet address instead of 24 as
in the default mask), and the host address will still be 18.

A Testing Example

Following is an example of an embedded HTTP-based application handheld device that
involvestesting the host name and I P address resol ution logics.

Host Name and | P Resolution Tests
CONSIDERATIONSFOR THE SYSTEM UNDER TEST
- Adapter address

- |P address

- Subnet mask

- Host name resolved by DNS, WINS, or other technologies

- Dynamic Host Configuration Protocol (DHCP)



- Default gateway IP address

By the way, you often need to configure your network stack with the correct information for

each of theitems previoudly listed to enable your computer or any devices connected to the
network to operate properly.

TESTING EXAMPLE SPECIFICATIONS

- There are two applications—one running on the remote host and the other running on the
target host.

- The product supports Windows 95, 98, NT 4.0, or Chameleon TCP/IP stack.
- The remote host connects to the private network viaadial-in server.
- The product supports RAS and severa popular PPP- or TCP/IP-based dia-in servers.

- From the remote host, a user enters the phone number, user name, and password that are
required to connect to the desired dial-in server.

- The remote host then establishes a connection with the target host. Therefore, information
about the target host name, | P, and subnet mask must be registered on the remote host.

- The product supports static-based, as well as dynamic-based, |P addresses.

- The product aso supports WINS- and DNS-based name/I P resol ution. break

| R

Page 80

= e e Configured to dial-in and
—=F ACCESS BECUNESE on

[ SUFER Servar on behalf of

Narne: myhoslsofigsariesh.gom MO A ERArECharm

IPAddrsss: 202.133.175.18 F

Subnet mask: 255 255,255,240

SUPERServer Sarver: Dial-in Server;
WINS RAS
DNE FFF o
DHCP TCRIP-hased
Figure4.19

A testing example.

When the target host 1P changes, the product has code that relies on the host name alone, or the
host name and the subnet mask information, to dynamically determine the new |IP address.

In developing test cases to validate the functionality under various possible scenarios that the



system under test can be exposed to, | examine the following attributes:

The host name. May be available on the device or may not.

| P address. May be available on the device or may not.

Subnet mask. May be standard mask or may be custom mask.

Name server—I P/nameresolving. Either configured to use WINS or DNS.
Typeof IP address. May be static or may be dynamic.

A tableisthen developed to represent various unique combinations formulated by these five
attributes and the possible values for each attribute. There are 32 combinations generated. (See
Table 4.1.) Each combination is then configured and tested accordingly. Figure 4.19 shows a
testing example.

In considering testing for compatibility issues, six operating environments were identified:
three of them are Windows 95, 98, and NT 4.0 with Microsoft default TCP/IP stack; the other
three are the same set of operating systems with the latest version of Chameleon TCP/IP
stack.break

Page 81

Table4.1 The 32 Unique Combinations
Mo=0 | Yas=1
Mo=0 | Yes=1
Mo=0 | Yas=1
WINS=0 | DNS=1
Static=0 | Dymamic=1

12l a[4]5|6[Fla]9 (1011 12{13]14[1516|17[18]19]20]29[22| 23|24 |25]126
Host Mame plojijijojof1j1jofoj1j1jofoji1j1jafojt1j1jojaoji1)1{ajao
P gl{i1jojijojq1{aojdijaoj1joj1jofq1jojijafqijoj1joji1joefi1{oj1
Subnet Mask gjloejofaj1l1f1j1jajoejofajil1f1fjqijafoloajoajil1f1](1]al0
Mams Servar plojojojojofojoj1fq1jt1]1j1fjij1j1i(fofojojojojo|jajoO]1]1
Static/Dynamic IP Dlojojojolofjojolojojojlojofojojol1fd0 1] 111111111111

Page 82

\/alidatinAa VAailir Camniitar CAannantinn



vaiuallily 1 vul wullipuila vullicuiiuvlng

Ensure that your test machines are properly configured and connected to the network before you
begin testing. To check host connection and configuration in a Windows environment, read the
following instructions. Windows NT offersautility named i pconf i g. Windows 9x has

W ni pcf g, which has more of auser interface.

la. For Windows NT. Run IPCONFIG/ALL.
1b. For Windows 9x. Run WINIPCFG.

2. Ping the exact value that is received from IPCONFIG and WINIPCFG. To make sure the DNS
isworking properly, ping by the domain name aso. If positive responses are received, then there
isagood TCP/IP connection.

3. To ensure that there is a proper TCP/IP connection, ping the loop-back 1P address: PING
127.0.0.1 or PING Y ourMachinel PAddress.

Testing Considerations

- If the application under test runs in its own embedded browser, analyze the application to
determineif it utilizes any protocols beyond ones at the application level. If it does, how
would it affect your configuration and compatibility testing requirements with respect to
connectivity devices?

- Determine the hardware and software configuration dependencies of the application under
test. Develop atest plan that covers awide mix of hardware and software configurations.

- Examine the Web application as awhole and consider the connection dial-up and direct
connection methods. How would each type of connection affect the performance and
functionality of the product?

- Will users be accessing the system via dial-up connections through an ISP? If so, connectivity
may be based upon proprietary | SP strings, such as the parsing of alogin script. Will there be
remote users accessing through an RAS?

- Will the application be installing any special modules, such as adialer and associated
components, that may introduce conflicts? Consider diaer platforms, versions, and brand
names.

Bibliography

Comer, Douglas. Internetworking with TCP/IP Vol. |: Principles, Protocols, and
Architecture, fourth edition. Upper Saddle River, NJ: Prentice-Hall PTR, 2000.

Gralla, Preston. How the Internet Works. Emeryville, CA: Ziff-Davis Press, 1997.break

Page 83
LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:



LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.

Orfali, Robert, et a. Client/Server Survival Guide, Third Edition. New Y ork: John Wiley &
Sons, 1999.break

Page 85

Chapter 5—
Web Application Components

Why Read This Chapter?

Having an understanding of a Web application's internal components and how those
components interface with one another, even if only at a high level, leads to better testing. Such
knowledge allows for the analysis of a program from its devel oper's perspective—which is
invaluable in determining test strategy and identifying the cause of errors. Furthermore,
analyzing the relationship among the components gives an understanding of the interaction of
the work product of several independent devel opers, not only from the individual developer's
perspective. Y ou analyze the work product from a perspective that is not evident from the
analysis of any individual component. Y ou are asking how all these components interact with
each other to make up the system. The gray-box tester provides this strength. Y ou look at the
Sys-soft

Topics Covered in This Chapter

- Introduction

- Overview

- Web Application Component Architecture
- Testing Discussions

- Testing Considerations

- Bibliography

Page 86

tem at alevd that is different from the developer's look. Just like the black-box tester, you add
adifferent perspective, and, therefore, you add value.



Generally, we learn about an application’s architecture from its devel opers during
walk-throughs. An aternate approach isto do our own analysis by tracing communication
traffic between components. For example, tests can be developed that hit a database server
directly, or on behalf of actual user activities, via browser-submitted transactions. Regardless,
we need to have afirm grasp of typical Web-based application architecture at the component
level if we are to know what types of errorsto look for and what questions to ask.

I ntroduction

This chapter explores the software and hardware components of a typical Web-based
system—from client-based components on the front end (such as Web browsers, plug-ins, and
embedded objects) to server-side components on the back end (such as application server
components, database applications, third-party modules, and cross-component communication).
It offersinsight into what typically happens when users click buttons on browser-based
interfaces. It also explores pertinent testing issues such as:

- Which types of plug-ins are used by the application under test? What are the testing
implications associated with these plug-ins? What issues should be considered during
functionality and compatibility testing once these plug-ins have been integrated into the system?

- How should the distribution of server-side components affect test design and strategy?

- Which Web and database servers are supported by the application? How is Web-to-database
connectivity implemented, and what are the associated testing implications?

- How can testing be partitioned to focus on problematic components?

Overview

A Web-based system consists of hardware components, software components, and users. This
chapter focuses on the software components of Web-based systems.

Distributed Application Architecture

In a distributed architecture, components are grouped into clusters of related services.
Distributed architectures are used for both traditional client-server systems and Internet-based
client-server systems.break

Page 87
Traditional Client-Server Systems
A database access application typically consists of four elements:

1. User interface (Ul) code. The end-user or input/output (I/O) devices interact with thisfor
1/O operations.

2. Business logic code. Appliesrules, computes data, and manipul ates data.

3. Data access service code. Handles data retrieval and updates to the database, in addition to
sending results back to the client.



4. Data storage. Holds the information.
Thin- versus Thick-Client Systems

When the mgjority of processing is executed on the server side, asystem is considered to be a
thin-client system. When the mgjority of processing is executed on the client side, asystemis
considered to be athick-client system.

In athin-client system (Figure 5.1), the user interface runs on the client host while all other
components run on the server host(s). By contrast, in athick-client system (Figure 5.2), most
processing is done on the client side; the client application handles data processing and applies
logic rulesto data. The server isresponsible only for providing data access features and data
storage.

Web-Based Client-Server Systems

Web-based client-server systems typically group componentsinto three related tiers: (1) User
service components (client), (2) business service components (server), and (3) data service
components (server). Processing, performance, scalability, and system maintenance are all
taken into account in the design of such systems.break

CLIENT SERVER

User Logic/Rule
Interface Components

Data Access
Components

-

Data Storage |
———

Figure5.1
Thin-client system.

Page 88



CLIENT SERVER
Usar
Interface
Logic/Rule Data Access
Componentis Components
O
— _—'—"'/
Data Storage
T

Figure 5.2
Thick-client system.

An example of athree-tiered Web application is shown in Figure 5.3. The components shown
in this example are discussed in later sections of this chapter.

Figures 5.4 and 5.5 illustrate thin-client and thick-client Web applications, respectively. In the
thin-client example, the server isresponsible for all services. After retrieving and processing
data, only aplain HTML page is sent back to the client. In the thick-client example, however,
components such as ActiveX controls and Java applets, which are required for the client to
process data, are hosted and executed on the client machine. Each of these models callsfor a

different testing strategy.break
CLIENT SERVER
Script Ul e ADOI/OLE-DB ﬁ
; (8 P | ¥
{ mBF |
& E g __|_r Script | Data '
1H.|A™ <
E =
o
o || &
W Services/Rules/Logics Data

Figure 5.3

Three-tiered Web-based system.

Page 89



Browser

Script
Sen.rices
TCPIP
| Web Server
Network '
Componants
— ]

Figure5.4

A Web-based thin client.

In thick-client system testing, tests should focus on performance and compatibility. If Java
applets are used, the applets will be sent to the browser with each request (unless the same
applet is used within the same instance of the browser). If the applet is afew hundred kilobytes
insize, it will take afair amount of bandwidth to download it with reasonable response time.

Although Java applets are, in theory, designed to be platform independent, they should be
tested with various supported browsers because they may have been created with different
versions of the software development kit (SDK). Each SDK supports a different set of
features. In addition, applets need to be interpreted by a Java Virtual continue

i CLIENT
i
| ! Script
Scr
| et Services
i
| TCPIP
! Web Server
| Browser Network
i
|
I
I Components e
5 R
i
! Data Storage
! s
Figure5.5

Web-based thick client.

Page 90

ToctinA tha Camnla A nnlicatinn



I SAY UIT oAl ipic Appliivacivl

To illustrate how functionality implementation can affect testing efforts, consider the metric
generation feature of the sample application (See Chapter 7, "Sample Application,” for more
information). The sample application enables users to generate bug-report queries that specify
search criteria such as bug severity and the names of engineers. Query results are tabulated and
ultimately plugged into graphic charts, which are displayed to users. This functionality is
implemented by having the user send a query to the Web server (viaaWeb browser). The Web
server in turn submits the query to a database. The database executes the query and returns
results. The Web server then sends the resulting data along with a Java applet or ActiveX
control that isto be installed on the client machine. The client side, after downloading the
component, converts the data into a graphically intuitive format for the user. If the downloaded
component executes on the client machine, then the systenr is a thick-client system. If the
processing is done on the server [i.e., the Structured Query Language (SQL) server gets results
from the database, a GIF graphic is created on the server-side, and the GIF is sent back to the
browser], then the system is a thin-client system. These aternate functionality implementations
will have different consequences on the testing effort.

Machine (JVM). Different browsers, on different platforms and their respective versions, have
different built-in JVMs, which may contain bug incompatibilities with each other. With
ActiveX contrals, the performance hit should occur only once. There may, however, be
incompatibility issues with browsers other than Microsoft Internet Explorer and platforms
other than Microsoft Windows.

In thin-client systems, incompatibility issues are less of a concern. Performance issues,
however, need to be considered on the server side where requests are processed and data
transfer takes place (sending bitmaps to the browser).

The thin-client model is designed to solve incompatibility problems as well as processing
power limitations on the client side (the thin-client model concentrates work on the server).
Additionally, it ensures that updates happen immediately because the updates are applied at
that server only. Personal digital assistants (PDAS), for example, due to their small size, are
not capable of handling much processing. The thin-client model serves PDAswell because it
pushes the work to servers, which perform the processing and return results back to the client
(the PDA). Desktop computers (in which the operating systems deliver alot of power and
processing) enable much more processing to be executed locally; therefore, the thick-client
approach is commonly employed to improve overall performance.

Software Components

A component is any identifiable part of alarger system that provides a specific function or
group of related functions. Web-based systems, such as e-business systems, are composed of a
number of hardware and software components. Software components arecontinue

Page 91

integrated application and third-party modules, service-based modules, the operating system
(and its service-based components), and application services (packaged servers such as Web



servers, SQL servers, and their associated service-based components). Component testing is
the testing of individual software components, or logical groups of components, in an effort to
uncover functionality and interoperability problems. Some key software components include
operating systems, server-side application service components, client-side application service
components, and third-party components.

Operating Systems

Operating systems extend their services and functionality to applications. The functionality is
often packaged in binary form, such as standard dynamic link libraries (DLLsS). When an
application needs to access a service, the application doesit by calling a predefined
application program interface (API) set. In addition, with object-based technology, these
components extend their functionality by also exposing events (e.g., when a certain applied
event is double-clicked, perform the following action), properties (e.g., when the background
color iswhite and the foreground color is black), and methods (e.g., remove or add a certain
entry to the scroll list) for other applications to access.

Application Service Components

Server-side packaged servers. A server isasoftware program that provides servicesto
other software programs from either aloca host or aremote host. The hardware box that a
server software program runsin is also often referred to as a server. Physical hardware boxes,
however, can support multiple client programs, so it is more accurate to refer to the software
asthe server, as opposed to the hardware that supports it. Packaged servers offer their services
and extend their functionality to other applicationsin amanner that is similar to the extended
model of operating systems. Two common packaged servers that are used in Web-based
systems are Web servers and database servers. Web serverstypically store HTML pages that
can be sent, or served, to Web clients via browsers. It is common for packaged Web serversto
offer functionality that enables applications to facilitate database activities. Such features can
be packaged in a binary module such asa DLL. Access to these featuresis achieved via
predefined APIs. See Table 5.1 for examples of server-side service components.

Client-side services. On the client side, atypica browser supports avariety of services,
including Java VM, which runs Java applets, script interpreters that execute scripts. See Table
5.1 for examples of client-side services.

Third-Party Components

Software applications are subdivided into multiple components, otherwise referred to as units
or modules. In object-oriented programming and distributed software engineering, components
take on another meaning: reusability. Each component offers acontinue

Page 92

Table5.1 Possible Scenario of Software Component Segmentation

APPLICATION SERVICE THIRD-PARTY
COMPONENTS COMPONENTS
Server side Java components

Web server ActiveX controls

Cormil imdl i~ CmimAlmvAl N/ A




SUIpuIry Oldl lUdlU CA S

JavaVM Standard DLLs
Database server CGls
Data access service etc.

Transaction service
Client Side

Web browser
Scripting

JavaVM

etc.

HTML, DHTML, JavaScript, VBScript, Jscript, perl Script, etc.
Standard EXEs

CGls

API-based components
Java components

ActiveX controls
Standard DLLs
etc.

template, or self-contained piece to a puzzle that can be assembled with other components, to
create other applications. Components can be delivered in two formats: (1) source-based, such
as in object-oriented programming class, and (2) binary-based, such asinaDLL or Java
Archivefileformat (JAR). Binary-based components are more relevant to the testing concerns
of this book.

Integrated Application Components

Anintegrated application consists of a number of components, possibly including a database
application running on the server side, or a Java-based chart generation application running on
the server sdein an HTML page that is running on the client side, as shown in Figure 5.6. In
the Java applet example shown in Figure 5.6, the software component executes within the
context of the Web browser, or acontainer. A container can also be a Web-server-based
application, a database application, or any other applicationcontinue

Page 93



8 wWelcome o THACKGEAHR - Micosoft Intermet Explooes

Fie Edt Vs Faottes Took Help Leke * |acden[E] =] F80 | & - ”I-
S U Distribution Metrics )
Submit
et e k3rrs im Sudnin 3
Fimd tgir Admin i
E.'HIFIMI | g in O &
_Quickfind |
FimEF |
e Distribution: All Reports by Reparter
T Project: TC-Sampla
Metrics
_Ontvivatin |
Trand |
Selup (=
Waer | ;Mr
e ] lemaris im Al
%ﬂ.an Elig it
__System | Bignoa
__Divisien |
_Frefemences |
Lomfigs |
Laget |
© Help | T Zl
'E] Done [ |28 Cocal imane:
Figure 5.6
Java applet.

that can communicate with the component via a standard interface or protocol. Typically,
software components are distributed across different servers on a network. They, in turn,
communicate with each other via known interfaces or protocols to access needed services. See
Table 5.1 for asamplelist of integrated software components.

Dynamic Link Library (DLL)

Understanding DLLs and the potential errors that may be associated with them is essential in
designing useful test cases. In the early years of software development, the only way that a
developer could expose created functionality to another developer was to package the
functionality in an object file (.OBJ) or library files (.L1B). This method required the other
developer to link with the .OBJ or .LIB file. The functionality was therefore locked in with the
executable. Some of the implications of this approach were that if several executables used the
same set of functionality, each executable had to individualy link to the object. Thiswas
repetitive, and the linked code added to the size of the executable file, which resulted in more
memory requirements at runtime. More important, if new versions of the object or library files
became available, the new code had to be relinked, which led to the need for much
retesting.break

Page 94

Dynamic link library was introduced to improve the method of sharing functionality. A DLL is
afilethat contains functions and resources that are stored separately from and linked to on
demand by the applications that use them. The operating system mapsthe DLL into the



application's address space when the application, or another DLL, makes an explicit call to a
DLL function. The application then executes the functionsin the DLL.

Fileswith .DLL extensions contain functions that are either exported or available to other
programs. Multiple applications or components may share the same set of functionality and,
therefore, may aso share the same DLLs at runtime. If aprogram or component islinked to a
DLL that must be updated, in theory all that needsto be doneis replace the old DLL with the
new DLL. Unfortunately, it is not this smple. There are situations where errors may be
introduced with this solution. For example, if aDLL that is referenced in the import library
links to a component that is not available, then the application will fail to load. (See the error
message examplein Figure 5.10.)

Hereis another example. The DLL caler application illustrated in Figure 5.7 isaVisua Basic
application. It uses afew functions that are exported by the system DLL named
KERNEL32.DLL. After loading the application, clicking the Show Free Memory button
displays the current available physical memory.

To implement this feature, the code that handles the click event on the Show Free Memory
button needs to be written. Because there is an exported function named Global MemoryStatus,
which is available in the Windows system DLL named KERNEL32.DLL, adeveloper can
smply call this function to retrieve the information. The process of using afunctioninaDLL is
illustrated in Figures 5.8 and 5.9. Call the DLL function when thereis aclick event on the
Show Free Memory button.

Potential DLL-Reated Errors

Missing required DLL. For example, when the application DLLCALLER.EXE is executed on
the developer's machine, everything works fine. When it isfirst exe-soft

T e e - |
Show Windows Vesion
Shiws Physical Memosny

Available Physicd Mamory 5351 49 Kb { 1

About DLL Caber... Reverse Tet .. Euit

Figure 5.7
DLL caller program.

Page 95



Data Struciure

PN | R

Tvpe MEMORYSTATUS
dwlLangth A2 Long
duwMenoryLoad As Long
dwlotal Phy= As Long
dwdva L LPlys As Lony
duwTotal PageFile A=z Long
duwtvailPageFilse &s Londg
duTotalvVirtual As Long
dwAvailVirtual As Long

End Type

Figure 5.8
DLL function declaration.

cuted on a system other than the developer's, however, the error message shown in Figure 5.10
displays.

Asit turns out, the application was created with Visual Basic 4.0 and depends on the DLL
named VB40032.DLL. If that DLL is not installed, the application will not load properly. The
application did not complain about KERNEL32.DLL, becauseitisasystem DLL, whichis
expected to be there. Otherwise, even the operating system would not work.

API-incompatible DLL. There may be two versions of the same DLL, but the data type,
structure, or number of parameters has been changed from one version to another. And so, an
error results.

Other incompatibility issues. One of the benefits of using DLL isthat when the author of a
DLL needsto change the implementation of afunction (to improve performance, for example)
but not change the API, the change should be transparent to the DLL callers. No problems
should result. Thisis, however, not always the case. Y ou need to test to confirm the
compatibility with your application.

See the section entitled "Testing Considerations’ later in this chapter for more DLL-related
issues. The preceding section is not intended to suggest that you should start testing at the AP
level, unless you are specifically asked to do so. It isintended tocontinue

Yanable Declaration

Sub cmdShewPreeMem CLlick ()
Dim A= [MEMORTSTATUS
[GlobalMemo rv 5t atuz] [fourMemory]
lblFreeHenFl:aptic-n = Aua‘ilable Physical Memory: " &

Format { (YourMemory . dwhAvaillPhys| / 1024), "Fixed") & " Eb "
End &ub

Function Call Parameter Passed to Function

Figure5.9
DLL function call.

Page 96



Envor Starting Progiam B

,"! } Apequired DLL fle, VEBADOG2 DLL, weas ot foomd

Figure5.10
Error caused by missing DLL.

give you enough background information to design powerful test cases that focus on
interoperability issues.

Web Application Component Architecture

Generally, Web applications consist of server-side and client-side components, including
operating systems, browsers, packaged servers, and other associated software. A sampling of
these components, along with their associated testing issues, follows.

Server-Side Components

Any computer that provides services to other computersisaserver. A single physical
computer can house multiple servers (software programs). Servers can also be distributed
across multiple physical computers. Testing considerations vary depending on the number and
distribution of servers and other software components associated with a system.

Web systems often have severa serversincluded at their back end—allowing usersto gain
access from a client computer (viaabrowser) and get the services they need (Web page
content or database records). On the hardware side, the characteristics that distinguish server
host quality are similar to those qualities considered favorable in all computers: high
performance, high data throughput, scalability, and reliability.

Server operating systems need to be more robust than desktop workstation operating systems.
Windows 95 and Windows 98, for example, do not offer the reliability or performance
required by most servers. Operating systems such as Unix, Windows NT, and Windows 2000
Advanced Server offer strong security features and administrator tools, in addition to the
scalability and reliability required by servers.

Core Application Service Components
Web Servers

Web servers, or HTTP servers, store Web pages or HTML files and thelr associated contents.
Web servers make their contents available to client computers. Web servers are the most
essential type of server for Web-based systems. Many software compa-soft

Page 97

nies develop Web servers. Novel, Netscape, Microsoft, Sun Microsystems, and others. Web
servers also serve advanced technology components such as Java Servlets, ActiveX controls,
and back-end database connectors. Web servers may work with protocols such as FTP and



Gopher to pass data back to users.
Database Servers

Database servers act as data repositories for Web applications. Most Web systems use
relational database servers (RDBSs). Database serversintroduce a variety of testing
complexities, which are discussed in Chapter 11, "Database Tests."

Prominent database server manufacturers include Microsoft, Oracle, and Sybase. Structured
Query Language (SQL) isthe coding language used in relationa database management servers
(RDBMS). Refer to Chapter 11, "Database Tests," for more information regarding SQL and
databases.

Application Servers

Application server isaterm used to refer to a set of components that extend their servicesto
other components (e.g., ASP) or integrated application components as discussed earlier. Web
applications support users by giving them accessto data that is stored on database servers.
Web applications coordinate the functionality of Web servers and database servers so that
users can access database content via a Web browser interface.

The sample application, a Web-based bug-tracking system, is an example of an application
server that utilizes component-based technologies. See Chapter 7, "Sample Application,” for
more information.

Web-to-Database Connectivity

The value of data access applicationsis that they allow interaction between users and data.
Communication between users, Web servers, and database serversis facilitated by certain
extensions and scripting models.

On the back end, data resides in a database. On the front end, the user is represented by
requests sent from the Web server. Therefore, providing connectivity between Web server
requests and a database is the key function of Web-based applications. There are several
methods that can be employed to establish such connectivity. The most common are Common
Gateway Interface— (CGI) based programs with embedded SQL commands, Web server
extension-based programs, and Web server extension-based scripts.

Common Gateway | nterface (CGl)

The CGI is acommunications protocol that Web servers use to communicate with other
applications. Common Gateway | nterface scripts allow Web servers to access databases
(among other things); CGI applications, on the other hand, receive data from servers and return
data through the CGI. The CGI applications are usualy written in Practical Extraction and
Reporting Language (perl), athough they can be written in other programming languages, such
asC, C+*, and Visual Basic.break

Page 98

Once a CGlI program has been written, it is placed in a Web server directory called a CGI bin.
Web server administrators determine which directories serve as CGlI bins.



Common Gateway Interface programs must be placed in their correct directoriesif they areto
run properly. This security feature makesit easier to keep track of CGI programs and to
prevent outsiders from posting damaging CGI programs.

After a CGI program has been placed in aCGl bin, alink to the binisembedded inaURL on a
Web page. When auser clicks the link, the CGI program is launched. The CGI program
contacts a database and requests the information that the user has requested. The database
sends the information to the CGI program. The CGI program receives the information and
trandatesit into aformat that is understandable to the user. This usually involves converting
the datainto HyperText Markup Language (HTML), so that the user can view the information
viaaWeb browser.

The main drawback of CGI scriptsisthat they run as separate executables on Web servers.
Each time a user makes arequest of a database server by invoking a CGl script, small amounts
of system resources are tied up. The net effect of running asingle CGI script is negligible, but
consider the effect of 1000 concurrent users launching CGI scripts simultaneoudly; the effect of
100,000 simultaneous CGI scripts running on a Web server would likely have disastrous
conseguences to system memory and processing resources.

Web Server Extension-Based Programs

An dternate, and sometimes more efficient, means of supplying Web-to-database connectivity
isto integrate with Web server—exported library functions. The NSAPI/ISAPI-based
applications, for example, are in-process applications that take advantage of Web servers
native API. Library functions work off of features and internal structures that are exposed by
Web serversto provide different types of functionality, including Web-to-database
connectivity.

The NSAPI/ISAPI-based applications can be DLLs that run in the same memory space as Web
server software. Netscape Server uses NSAPI. Microsoft Internet Information Server uses
ISAPI. Both NSAPI and ISAPI effectively offer asimilar solution; they are APIs that offer
functionsin DLL format. These APIs expose the functionality of the Web server software of
which they are a part so that required processes can be performed by the server software itself,
rather than by a separate executable (such as a CGI script).

Web server extension-based applications, athough more efficient from aresource perspective,
are not always the best choice for invoking Web server functionality. For example, a \Web
application may be distributed to multiple server platforms. It often makes sense to write
different code for each platform. A CGI script might be written to interface with a Unix server,
whereas NSAPI code might be used to invoke functions on a Netscape server running in the
same system. A third server (e.g., Microsoft Internet Information Server) might require either a
CGlI script or ISAPI code. The development of every Web system, as far as Web-to-database
connectivity goes, requires a careful balance between tolerable performance levels,
compatibility, and perceived effort of execution.break

Page 99

A drawback of Web server extension-based applicationsis that, because they are writtenin
compiled languages such as C, C+*, or Visual Basic, they are binary. Whenever changes are



made to code—for example, during bug fixing—the code has to be recompiled. This makes
remote changes to the code more cumbersome. Furthermore, scripting language is easier to use
and, therefore, many new developers can quickly be trained.

Web Server Extension-Based Scripts

Active Server Page (ASP) is a Microsoft technology that allows for the dynamic creation of
Web pages using scripting language. The ASP is a programming environment that providesthe
ability to combine HTML, scripting, and components into powerful Internet applications. Also,
ASP can be used to create Web sites that combine HTML, scripting, and other reusable
components. Active Server Page script commands can also be added to HTML pagesto create
HTML interfaces. In addition, with ASP, business logic can be encapsulated into reusable
components that can be called from scripts or other components.

Active Server Page scripts typically run on servers. Unlike the binary code model, ASP scripts
do not have to be compiled. Therefore, ASP scripts can be easily copied from distributed
software unless encryption measures are undertaken; encryption measures add more
components and processing requirements to Web servers, however—not to mention the need
for additional testing. The ASP scripts interact with the DLL layer through an interpreter
(asp.dil). The DLL layer in turn interacts with the ISAPI layer to provide functiondlity, such as
gateway connectivity. An HTML page that contains alink to an ASP file often has the file name
suffix of .ASP.

Java Server Page (JSP) is a Sun Microsystems technology similar to ASP for the dynamic
creation and control of the Web page content or appearance through the use of servlets, small
programs that run on the Web server to generate the Web page before it is sent to the requested
user. Java Server Page technology is also referred to asthe serviet API. Unlike ASP, which is
interpreted, JSP calls a Java program (servlet) that is run on the Java Web Server. An HTML
page that contains alink to a Java servlet often has the file name suffix of .JSP.

ASP/JSP versus CGI

- The CGlI programs require Web server operating systems to launch additional processes with
each user request.

- As an in-process component, ASP/JSP can run in the same memory space as Web server
applications—eliminating additional resource drain and improving performance.

ASP/JSP versus Web Server Extension-Based Programs

- Because NSAPI/ISAPI applications are in-process applications that use aWeb server's
native AP, they run at a speed comparable with that of ASP.

- NSAPI/ISAPI applications must be compiled.break

Page 100
- ASP/JSP uses scripting languages.
- ASP/JSP isfaster to develop and deploy than NSAPI/ISAPI.

Other Application Service Components



Search Servers

Often referred to as search engines, search servers catalog and index data that is published by
Web servers. Not all Web systems have search servers. Search servers allow usersto search
for information on Web systems by specifying queries. A query, ssimply put, is arequest (to
find certain data) that has been submitted to a search server by a user. Users submit queries so
that they can define the goal and scope of their searches—often specifying multiple search
criteriato better refine search results.

As new information is introduced into a Web system, search servers update their indices.
Robust search servers have the ability to handle large amounts of data and return results
quickly, without errors.

Proxy Serversand Firewalls

Proxy servers are sometimes employed by companies to regulate and track Internet usage. They
act as intermediaries between networks and the Internet by controlling packet transmissions.
Proxy servers can prevent files from entering or leaving networks, log all traffic between
networks and the Internet, and speed up the performance of Internet services. They log IP
addresses, URLs, durations of access, and numbers of bytes downloaded.

Most corporate Web traffic travels through proxy servers. For instance, when a client computer
requests a Web page from the Internet, the client computer contacts the network's proxy server
with the request. The proxy server then contacts the network's Web server. The Web server
sends the Web page to the proxy server, which in turn forwards the page to the client computer.

Proxy servers can speed up performance of Internet services by caching data. Caching
involves keeping copies of requested data on local servers. Through caching, proxy servers
can store commonly viewed Web pages so that subsequent users can access the pages directly
from the local server, rather than accessing them at slower speeds over the Internet.

Firewalls are shields that protect private networks from the Internet. They prevent unauthorized
users from accessing confidential information, using network resources, and damaging system
hardware—while alowing authorized insiders access to the resources they require. Firewalls
are combinations of hardware and software—making use of routers, servers, and software to
shield networks from exposure to the Internet. Two common types of firewalls are
packet-filtering firewalls (such as routers) and proxy-based firewalls (such as gateways).

See Chapter 15, "Security Tests,” for more information regarding proxy servers and
firewalls.break

Page 101

Communication-Related Servers

Numerous communication server types are available to facilitate information exchange
between users, networks, and the Internet. If aWeb system under test includes a remote-access
server, email, a bulletin board, or chat feature, then communication server components are
present and should be tested.

E-Commerce-Related Servers



E-commer ce servers (though not truly a separate type of server, but rather a speciaized use of
Web server technologies) provide functionality for retail operations. Via Web applications,
they alow both merchants and customers to access pertinent information through client-side
Web browsers.

TASKSPERFORMED BY E-COMMERCE SERVERS
- Order taking and order processing

- Inventory tracking

- Credit card validation

- Account reconciliation

- Payment/transaction posting

- Customer orders/account information

COMMON E-COMMERCE SERVER BRANDS
- Ariba

- BroadVision

- Calico

- Vignette

Multimedia-Related Servers

Multimedia servers provide support for high-speed multimedia streaming, enabling users to
access live or prerecorded multimedia content. Multimedia servers make it possible for Web
servers to provide users with computer-based training (CBT) materials.

Client-Side Components

The client side of a Web system often comprises awide variety of hardware and software
elements. Multiple brand names and product versions may be present in asingle system. The
heterogeneous nature of hardware, networking elements, operating systems, and software on the
client side can make for challenging testing.

Web Browsers

Web browsers are applications that retrieve, assemble, and display Web pages. In the
client-server model of the Web, browsers are clients. Browsers request Web pagescontinue

Page 102

from Web servers. Web servers then locate requested Web pages and forward them to the
browsers, where the pages are assembled and displayed to the user. There are multiple
browsers and browser versions available for PCs, Macintosh computers, and Unix computers.



Browsersissue HTML requests (although they can a so issue requests for ASP, DHTML, and
more). The HTML code instructs browsers how to display Web pages to users. In addition to
HTML, browsers can display material created with Java, ActiveX, and scripting languages
such as JavaScript and VB Script.

When Web pages present graphics and sound files, the HTML code of the Web pages
themselves does not contain the actual multimedia files. Multimedia files reside independently
of HTML code, on multimedia servers. The HTML pages indicate to Web browsers where
requested sounds, graphics, and multimedia are |ocated.

In the past, browsers required that separate applications, known as helper applications, be
launched to handle any file type other than HTML, GIF, and JPEG. Plug-ins, such as
RealPlayer and QuickTime, are more popular today. They allow streaming media and other
processes to occur directly within browser windows. Real Player, by RealNetworks, isa
popular streaming sound and video plug-in. Windows Media Player is a sound and video
plug-in that is built into Windows operating systems. QuickTime, made by Apple, can play
synchronized content on both Macintosh computers and PCs.

Newer browsers are bundled with complete suites of Internet applications, including plug-ins,
e-mail, utilities, and What You See Is What You Get (WY SIWY G) Web page authoring tools.
Netscape Communicator, of which Netscape Navigator is acomponent, is such a suite. Internet
Explorer 4.x and 5.x allow usersto view their entire desktops using HTML ; Web links are
used to interact with the operating system and live Web content can be delivered directly to the
user desktop.

Add-on/Plug-in Components

Additional software may reside on the client side to support various forms of interactivity and
animation within Web pages. Java applets and ActiveX controls are examples of such add-on
applications. Java, afull-featured object-oriented programming language, can be used to create
small applications, known as applets, within Web pages. ActiveX isaMicrosoft technology
that behaves similarly to both Java applets and plug-ins. ActiveX controls offer functionality to
Web pages. Unlike applets, however, they are downloaded and stored on the user's hard disk
and run independently of Web browsers. Microsoft Internet Explorer isthe only browser that
supports ActiveX controls. Java applets and ActiveX controls can also reside on and be
executed from servers.

Communication-Related Components

The client sides of Web systems often contain applications that facilitate various methods of
communication. Such applications take advantage of server-based communication components
such as remote-access dia-up, chat (IRC), discussion groups, bulletin boards, and
videoconferencing.break

Page 103

Testing Discussion

The following component architecture exampleis useful in illustrating effective testing
strategies. Figure 5.11 details the chart generation example that was mentioned earlier in the



section, "Distributed Application Architecture,” in this chapter. The pseudodesign for the
transaction process runs as follows:

- User submits arequest for atrend chart that compares daily totals of open bugs with closed
bugs over the past 5 days.

- Web server requests the file named trend.asp.
- trend.dll is called to do some processing work.

- trend.dIl connects to the database server and calls a stored procedure named sp_trend to pull
the requested data.

- trend.dll, upon receiving the requested data, calls plot.dll and passes the data for calculation
and formatting in preparation for drawing the trend chart.

- The formatted data is then written to afile named data.tmp in comma-delimited format.

- A third-party Java charting component is requested with the file name data.tmp so that aline
chart can be drawn.

- The JavaApplet is sent to the client and data.tmp is then del eted.

- The Java applet isloaded into the user's browser and atrend chart with the appropriate data
isdrawn.

Based on the program logic and its component architecture, we will analyze this design to
determine potential problems. Then, we will design test cases around the potential problemsin
an effort to expose possible faults and errors. Note that thecontinue

CLIENT ; SERVER |

- Web Server |
: oMo
E — L7 trend.dil
=1 O | trend. E O

g Iy | nEp o

(1) —F 3
Browser
e
k. bmyp

Figure5.11
Component architecture example.

Page 104

potential issues and test cases discussed in this section are by no means definitive. They are
designed to encourage you to think more about the possibility of errorsin component-based
systems. They will help you to think beyond black-box testing from the end user's point of



view. Some of the testing issues mentioned in this example are discussed in great detail in later
chapters.

Test-Case Design Analysis
Submitting the request.
- What happensif the input data isinvalid?

Y ou want to determine if there is any error handling code. Hopefully, thereis. Y ou will then
need to devise test cases that test the error handling logic, which consist of three parts: (1)
error detection, (2) error handling, and (3) error communication. Y ou also want to know if
errors are handled on the client side, the server side, or both. Each approach has unique
implications. Y ou may want to know if error handling is done through scripts or through an
embedded component (e.g., if aJava applet or an ActiveX control is used for the input Ul).

- What happens if there is too much data for the last 5 days?
Look for potentia boundary condition errorsin the outpuit.

- What happens if there is no data for the last 5 days?

Look for potentia boundary condition errorsin the outpuit.

- What happensif thereisafirewall in front of the Web server?

Look for potential side effects caused by the firewall such as dropping or filtering out certain
data packets, which would invalidate the request.

trend.asp isrequested.
- Isthe Web server environment properly set up to allow ASP to be executed?

The environment can be set up manually by the system administrator or programmatically via
an installation program or setup utility. Regardless, if a script is not allowed to execute,
trend.asp will fail.

- Will the ASP be encrypted? If so, hasit been tested in encrypted mode?

The application under test may be using third-party technology to encrypt the ASP files.
Incompatibility, performance, time-related, and other environment-related issues may affect
functionality.

trend.dll is called.

- Istrend.dll a standard DLL or a COM-based DLL? If it isa COM-based object, how isit
installed and registered?

- What are the exported functions in the DLLs upon which trend.dll depends? Are they all
available on the local and remote host(s)?

There are numerous errors related to DLLs that should be considered. See "Dynamic Link
Library" in this chapter for more information.



Calling sp_trend.

- The application needs to make a connection to the SQL server before it can execute the
stored procedure sp_trend on the database. What issues might cause the connection to
fail ?break

Page 105

There are numerous reasons why this process might fail. For example, there may be an error in
authentication due to abad ID, password, or data source name.

- When an attempt to connect to the database fails, how isthe error condition
communicated back to the user?

The user may receive anything from a cryptic error message to no message at al. What are
acceptable standards for the application under test?

Testing the Sample Application

Please see Chapter 7 for details on the sample application. Following is an example of areal
bug that was discovered in the testing of the sample application. trend.dll crashed an
ISAPI-based DLL that, in turn, generated error messages on the application server console.
However, the end user at the client side received no communication regarding the error. The user
was not notified of the error condition.

- Isthe stored procedure properly precompiled and stored in the database?

Thisistypically done through the installation procedure. If for some reason the stored
procedure is dropped or fails to compile, then it will not be available.

- How do you know that the data set returned by the stored procedure is accurate?

The chart might be drawn correctly but the data returned by the stored procedure may be
incorrect. Y ou need to be able to validate the data. See Chapter 11, "Database Tests," for more
information.

Calling plot.dil. Thefunctionsin this DLL are responsible for calculating and formatting the
raw data returned by sp_trend in preparation for the Java chart application.

- Is data being plotted correctly to the appropriate time intervals (daily, weekly, and
monthly)?

Based on the user's request, the data will be grouped into daily, weekly, and monthly periods.
This component needs to be thoroughly tested.

- Doesthe intelligence that populates the reports with the appropriate time periods reside
inplot.dll or insp_trend?

Based on what was described earlier, some of the logic can be implemented in the stored
procedure and should be tested accordingly.



Write datato file data.tmp.
- What happens if the directory to which the text file will be written iswrite-protected?

Regardlessif the write-protected directory isauser error or aprogram error, if data.tmp isnot
there, the charting feature will not work.

- What happensif plot.dil erroneously generates a corrupt format of the comma-delimited
file?

The data formatting logic must be thoroughly tested.

- What happens if multiple users reguest the trend chart simultaneously or in quick
succession?break

Page 106

Multiuser access is what makes the Web application and client-server architectures so
powerful. Y et, thisis one of the main sources of errors. Test cases that target multiuser access
need to be designed.

Testing the Sample Application

A hard-to-reproduce bug that resulted in a blank trend chart was discovered during the
development of the sample application. It was eventually discovered that the data.tmp file was
hard-coded. Whenever more than one user requested the chart smultaneoudly, or in quick
succession, the earlier request resulted in incomplete data, or data intended for the subsequent
request. The application's developer later designed the file name to be uniquely generated with
each request.

Calling the Java charting program.
- What happensif a chart programis not found?

The Java applet must be physically placed somewhere, and the path name in the code that
requests the applet must point to the correct location. If the applet is not found, the charting
feature will not work.

- What happensif thereisa missing cls (class) in a JAR?

A jar file often contains the Java classes that are required for a particular Java application.
There is adependency concept involved with Java classes that are similar to what is described
in "Dynamic Link Library" in this chapter. If one or more of the required classes are missing,
the application will not function.

Sending results back to the client. The Java applet is sent to the browser and the datain
data.tmp is aso sent, so that the applet can draw the chart in the browser. data.tmp is then
deleted from the server.

- What is the minimum bandwidth requirement that the application under test supports?



How big isthe applet? I's performance acceptable with the minimum bandwidth
configuration?

Check the overall performance in terms of response time under the minimum requirement
configuration. This test should also be executed with multiple users (for example, amillion
concurrent usersif that is what the application under test claims to support). See Chapter 16,
"Performance, Load, and Stress Tests,” for more information.

- Isthe temp file properly removed from the server?
Each charting request leaves anew file on the server. These files unnecessarily take up space.

For matting and executing the client-side component. The browser formats the page, loads
the Java applet, and displays the trend chart.

- Isthe applet compatible with all supported browsers and their relative versions?break

Page 107

Testing the Sample Application

The sample application utilizes a third-party Java charting component that enables the generation
of charts. Because the component offers numerous user interaction features, it is arather large
object to be sent to a browser. Because the sample application required only basic charts, the
devel oper decided to remove some of the classes in the jar that were not required by the
application. The size of the jar was thereby simmed down to about half its origina size and
performance was greatly improved.

After about aweek of testing, in which the testing team had no idea that the number of Java
classes had been reduced, the test team discovered a unique condition that required some
handling by the applet. The applet, in turn, was looking for the handling code in one of the
classes that had been removed. The test team wrote up a bug report and subsequently talked to
the devel oper about the issue. The developer explained what he had done and told the test team
that they should make sure that this type of error be detected in the future. Several test cases that
focused on this type of error were subsequently designed. The test team ultimately found five
more errors related to this optimization issue.

Each browser has its own version of the sand box, or VM, and does not necessarily have to be
compatible with all other browsers. This incompatibility may have an effect on the applet.

- What happens when security settings, either on the browser side or on the network firewall
side, prohibit the applet from downloading? Will there be any communication with the user?

Look for error conditions and see how they are handled.
Test Partitioning

Given the distributed nature of the Web system architecture, it is essential that test partitioning
be implemented. For example, at the configuration and compatibility level, if the application
under test requires Microsoft 1S 3.0, 4.0, and 5.0, and Microsoft SQL versions 6.5 and 7.0,



then the test matrix for the configuration should ook something like this:break

TEST CONFIGURATION ID MSIIS MS-SQL
1 3.X 6.5
2 3.x 7.0
3 4.x 6.5
4 4.x 7.0
5 5.0 6.5
6 5.0 6.0

Page 108

Regarding performance, you might wish to compare SQL 6.5 with SQL 7.0. Such atest matrix
would look something like this:

TEST CONFIGURATION ID MSIIS MS-SQL
1 Don't Care 6.5
2 Don't Care 7.0

On amoremicro level, if acomponent in the system under test is updated at the last minute and
testing must be completed in a hurry, how much testing should be repeated? Should everything
be retested, or should only specific features be retested?

Using the sample application's charting feature as an example (Figure 5.6), say that PLOT.DLL
isrecompiled with alater version of the compiler, but other than that, not a single line of code
has been changed. How can test requirements be determined? Here are afew suggestions:

- Reexamine the specific functionality that PLOT.DLL offers and look for error scenarios.
- For each potential error scenario, consider the consequences.

- Use a utility such as Dependency Walker to determine any new dependenciesthat PLOT.DLL
has and the potential implications of those dependencies.

- Examine other components to make sure that TREND.DLL isthe only component using
PLOT.DLL.

- Focus testing on the creation of DATA.TMP and the data integrity.
- Confine testing to the context of the trend chart features only.
- Retest dl other functionality.

- Retest browser compatibility (the Java applet remains the same, so there is no need to be
concerned with its compatibility).

- Focus testing on the stored procedure sp_trend (because nothing has changed there).



DIFFERENT CONCEPTUAL LEVELSOF PARTITIONING

- High-level partitioning. If the goal of testing isto measure server-side response time, then
there is no need to run data through the Internet, firewall, proxy servers, and so on. With a
load-testing tool (see Chapter 16, "Performance, Load, and Stress Tests,” for more
information), aload generator can be set up to hit the Web server directly and collect the
performance data. Figure 5.12 shows an example of high-level partitioning.

- Physical-server partitioning. If the goa of testing isto measure per-box performance, then
each physical server can be hit independently with aload generator to collect performance
data.

- Service-based partitioning. If the goa of testing isto test the functionality of the data
application and the overall performance of the database server that is providing servicesto the
application, then testing should focus on the database server.break

Page 109
CLIENT-SIDE NETWORK SERVER-SIDE
Dperasing System
Cperaling Systes
WEB Browser
WEB Server
Clieni-based Componanis
Appllcatlan Server

S0L D8 StaredProceduran

TCPAP Traffic

]
n
L]
]
L]
L]
=]

Figure5.12
High-level partitioning.

- Application/component-based partitioning. The focus of such testing is on the component
level (refer to the preceding Java chart generation tests for examples). The testing hereis
focused at the component level as previoudly described in the charting example.

Testing Considerations

- Determine the server hardware requirements of the system under test. Then, generate a matrix
of the supported configurations and make sure that these configurations are tested.

- Determine the server software component requirements (Web servers, database servers,
search servers, proxy servers, communications servers, application servers, e-commerce
servers, multimedia servers, etc.) and design interoperability teststo look for errors.

- Determine how the server software components are distributed and design interoperability
tests to look for errors.



- Determine how the server software components interact with one another and design
interoperability teststo look for errors.

- Determine how the Web-to-database connectivity isimplemented (CGI, NSAPI/ISAPI, ASP,
or other technologies) and design interoperability tests to look for errors.

- Determine the hardware/software compatibility issues and test for those classes of errors.

- Determine how the processing is distributed between client and server (thin client versus
thick client).break

Page 110

- Test partitioning involves the testing of pieces of a system both individually and in
combination. Test partitioning is particularly relevant in the testing of Web systems due to the
communication issues involved. Because Web systems involve multiple corrponents, testing
themin their entirety is neither an easy or effective means of uncovering bugs at an early stage.

- Design test cases around the identified components that make up the client side of aWeb
application, including browser components, static HTML elements, dynamic HTML elements,
scripting technologies, component technol ogies, plug-ins, and so on.

- One way of evaluating integration testing and test partitioning is to determine where the
components of an application reside and execute. Components may be located on a client
machine or on one or more server machines.

DLL Testing I'ssues

- Use autility such as Microsoft Dependency Walker to generate alist of DLLs upon which the
application under test (and its components) depends. For each DLL, determine its version
number and where it is located. Determine if the version number is the latest shipping version.

Here is an example of a component-recursive dependency tool, Microsoft Dependency Walker.
If the utility isrun and DLL.CALLER.EXE isloaded in (the example DLL mentioned in
"Dynamic Link Library" in this chapter), its dependencies will be analyzed (as shown in Figure
5.13). To download Dependency Walker and other related utilities, go to the Microsoft site and
search for Dependency Walker. Or visit the URL

www.mi crosoft.com/msdownl oad/pl atformsdk/sdktool s.htm.break




. Dependency Walker - [DLLCaller. exe] i I IDI_{E_'
By Fil= Edit Miew Window Help -|5|£|

2| 8| e &l BB ¥

SR CALLER FAE Ordingl * | Hint | Function | Enty Paint |
l@} VE400GE2 DLL

Opdinal * | Hint: | Function | Enty Point

Wocule Time Stamp Size Altributes M achine Subszpstam Di=bug
] DLLCALLEREXE | 05715/99 500p| 44544 | RA Intel 285 WwiEaz U Mo
< | +
For Help, presz F1 ;
Figure5.13

Component-recursive dependency tool.

Page 111

A comparable utility called QuickView is available for Windows 9.x and NT systems. To
access this utility, right-click on a component that you would like to view and choose
QuickView from the context menu list.

There are at least four categories of DLLs and components:

1. Operating system-based DLLs. In Windows environments, thisincludes USER32.DLL,
GDI32.DLL, and KERNEL32.DLL.

2. Application service-based DLLs. In Windows environments, thisincludes ASP.DLL,
CTRL3D32.DLL, VB40032.DLL, and so forth.

3. Third-party DLLs. For example, CHART.DLL offers charting functionality to other
applications.

4. Company-specific DLLs. For example, Netscape Navigator includes the NSIAVA32.DLL.
In testing for DLL-related errors, look for the following issues:

- Ensure that nonsystem DL Ls are properly installed and that their paths are properly set so that
they can be found when the components call them.

- Look for potential incompatibility errors, such as APl incompatibility, or functional
incompatibility among various versions of the same DLL.

- If there are other applications installed on the system that share the same DLL with
components, how will the installation and uninstallation processes be handled?

- What if the DLL is accidentally erased or overwritten by anewer or older version of the
sameDLL?



- What happens if more than one version of the same DLL coexists on the same machine?

- Explicitly loaded DLLs must be unloaded when applications and processes no longer need
them. Typicaly, this should occur upon the termination of the calling application.

- Test with a clean environment (a system with only the operating system installed on it), as
well asadirty environment (a system loaded with common applications).

- What if athird-party DLL needs certain files that are not available (printer initialization, for
example)?

- With Windows-based applications, consider looking for errors related to the creation and
removal of DLL keys during installation and uninstallation.

Bibliography

Binder, Robert V. Testing Object-Oriented Systems: Models, Patterns, and Tools. Reading,
WA: Addison Wedley Longman, 2000.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.break

Page 112

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

Orfali, Robert, et a. Client/Server Survival Guide, Third Edition. New Y ork: John Wiley &
Sons, 1999.

Reilly, Douglas J. Inside Server-Based Applications. Redmond, WA: Microsoft Press,
2000.break

Page 113

Chapter 6—
Test Planning Fundamentals

Why Read This Chapter?

A crucia skill required for the testing of Web applicationsis the ability to write effective test
plans that consider the unique requirements of those Web applications. These skillsare also
required to write up the sample test plan for the sample application. (See Chapter 7, "Sample
Application,” and Chapter 8, "Sample Test Plan,” for details.)

I ntroduction

This chapter discusses test documentation, including test plan templates and section definitions.



It also explains the efficiencies of the LogiGear One-Page Test Plan, details the components
of issue and weekly status reports, and lists some helpful testing considerations.break

Topics Covered in This Chapter

- Introduction
- Test Plans
- LogiGear One-Page Test Plan

- Testing Considerations

- Bibliography

Page 114

Test planning for Web applicationsis similar to test planning for traditional software
applications; careful planning is aways critically important to effective structuring and
management. Test planning is an evolutionary process that is influenced by numerous factors:
development schedules, resource availability, company finances, market pressures, quality
risks, and managerial whim.

Test planning begins with the gathering and analysis of information. First, the product under test
is examined thoroughly. Schedules and goals are considered. Resources are evaluated. Once
all associated information has been pulled together, test planning begins.

Despite the complex and laborious nature of the test planning process, test teams are not
generally given much direction by management. If a company-approved test-plan template does
not exist, test teams are often ssmply instructed to "come up with atest plan." The particulars of
planning, at least for the first draft of the test plan, are normally left up to the test team.

Test Plans

A test plan is adocument, or set of documents, that details testing efforts for a project.
Well-written test plans are comprehensive and often voluminousin size. They detail such
particulars as testing schedul es, avail able test resources, test types, and personnel who will be
involved in the testing project. They also clearly describe all intended testing requirements and
processes. Test plans often include quite granular detail—sometimes including test cases,
expected results, and pass/fail criteria.

One of the challenges of test planning is the need for efficiency. It takes time to write these
documents. Although some or al of thistime might be essentid, it isaso timethat is no longer
available for finding and reporting bugs. There is always a tradeoff between depth/detail and
cost, and in many of the best and most thoughtful test groups, this trade-off is difficult and
uncomfortable.

Another challenge of test planning is that it comes so early in the development process that,
more than likely, there is no product built yet on which to base planning. Planning, instead, is



based on product specifications and requirements documents (if such documents exist, and to
whatever extent that they are accurate, comprehensive, and up-to-date). As a consequence,
planning must be revised as the product devel ops, often moving in directions that are different
than those suggested by original specifications.

Assuming that they are read (which is often not the case), test plans support testing by
providing structure to test projects and improving communication between team members. They
areinvaluable in supporting the testing team's primary responsibility—finding as many bugs as
possible.

A central element of test planning is the consideration of test types. Although every test project
brings with it its own unique circumstances, most test plans include the same basic categories
of tests: acceptance tests, functionality tests, unit tests, systenrcontinue

Page 115

tests, configuration tests, and regression tests. Other test types (installation tests, help tests,
database tests, usability, security, load, performance, etc.) may be included in test plans
depending on the type of Web application under test. Sometimes, testing groups also need to
determine how much automation and which automated testing tools will be used. How will test
coverage be measured, and what tools will be used? Other tasks that testing groups are often
asked to do include designing and implementing defect tracking, configuration management, and
build-process ownership.

Table 6.1 details when standard test types are normally performed during the software
development process. See Chapter 3, " Software Testing Basics,” for definitions of these test
types. Note that Release Acceptance Tests (RATS), Functional Acceptance Simple Tests
(FASTSs), and Task-Oriented Functional Tests (TOFTSs) are generally run in each phase of
testing. Web systems may require additional test types, such as security, database, and
|oad/stress.

The next phase of test planning islaying out the tasks. After al available resources and test
types have been considered, one can begin to piece together a bottom-up schedule that details
which tests will be performed and how much time each test will require (later, delegation of
tasks to specific personnel should be incorporated into the test plan). A bottom-up scheduleis
developed by associating tasks with the timecontinue

TAla P, A Tadd Tinmmnm mmnd Thalv Nana im thha Cafbiiimva NavAl mmanmnd M aaaaa



1adlie 0.1 15l IypesSdiu Lligl Flacelll e dUINwd € UEVEIUPITIETIL FTULESS

TIME

>

Begin Alpha Testing
Begin Beta Tesiing

Begin Final Testing

| Alpha Phase | Beta Phase | Final Phase I
| TYPES OF TESTS RECOMMENDED |
TOFT TOFT TOFT
FAST FAST FAST
RAT RAT RAT
Conliguration Real World User Test Install Uninstall Test
Compatibility * Exploratory Test Real World User-
Boundary Test Forced-Error Test Lewvel Test
HTess Full Configuration Exploratory Test
Tmstallation Test Compatibility Tesi
Exploratory Test Volume Test
Stress Test
Install/Uninstall Test
Performance Test
User Interface
Regression
Drocumentation

= Test one representative from cach equivalence class,

Page 116

needed to complete them—with no regard to product ship date. A top-down schedule, on the
other hand, begins with the ship date and then details al tasks that must be completed if the
ship date is to be met. Negotiations regarding test coverage and risk often involve elements of
both top-down and bottom-up scheduling.

Test plans must undergo peer management and project management review. Like engineering
specs, test plans need to be approved and signed before implemented. During a test-plan
review, the testing group may need to negotiate with management over required
resources—including schedule, equipment, and personnel. Issues of test coverage and
risk-based quality or life-critical and 24/7 up-time quality may also come into play (See
Chapter 1, "Welcome to Web Testing," for more information on test coverage and risk-based
quality). Ultimately, atest plan will be agreed upon, and testing can begin.

Test-Plan Documentation

Test-plan documentation should detail all required testing tasks, offer estimates of required
resources, and consider process efficiencies. Unless oneis creating atest plan with the
intention of distributing it to athird party—either to prove that proper testing was performed or
to sell it along with software—it is best to keep test plans focused on only those issues that
support the effort of finding bugs. Enormous, heavily detailed test plans—unless required by a
customer or third-party regulating body—are only valuable in so far as they help you find bugs.

The unfortunate redlity is that the mgjority of test plans sit unread on shelves during most of the



testing process. Thisis because they are unwieldy and dense with information that does not
support the day-to-day effort of finding bugs. Even if they are read, they are seldom updated as
regularly as they should be—reflecting current changes to schedule, delegation of tasks, test
coverage, and so on.

The LogiGear One-Page Test Plan (included later in this chapter) is designed specifically to
avoid the troubles that more traditional test plans suffer; one-page test plans are more easily
read and updated.

When read, test-plan documentation improves communication regarding testing requirements by
explaining the testing strategy to all members of the product development team. Documentation
isof course also valuable in conveying the breadth of atesting job to testing staff and in
providing a basis for delegating tasks and supervising work.

Documentation generates feedback from testing team members and members of other
departments. Debates are often sparked over the contents of test documentation. For example,
project managers may insist on different levels of testing than those that are proposed by the
testing group. It is always a good idea to make test plans available for review as early in the
development process as possible so that managers, programmers, and members of the
marketing team can assess risk and priorities before testing begins. Debates are also more
fruitful when team members can focus discussions on a clearly laid-out test plan that includes
specific goals.break

Page 117

Issues of test coverage often arise midway through the testing process. Requiring managers to
approve and sign test plans (before testing begins) brings managers into the test coverage
decision process; it places responsibility on management to approve any compromises of test
coverage that may arise from test-plan negotiations.

Accountability is aso increased by good test documentation. Clearly defined responsibilities
make it easier for both managers and staff to stay focused. Detailed lists of tests that must be
performed, along with clearly defined expectations, go along way toward ensuring that all
foreseeable areas of risk are addressed.

Proper test documentation requires a systematic analysis of the Web system under test. Y our
understanding of the interdependencies of a system’s components must be detailed and thorough
if test planning isto be effective. As atest project is analyzed, acomprehensive list of program
features should be compiled. It is common for afeature list to detail the complete set of product
features, al possible menu selections, and all branching options. It isagood ideato begin
writing up afeature list as early in the test planning phase as possible.

Test plans take into consideration many of the risks and contingencies that are involved in the
scheduling of software development projects. For example, product documentation (e.g., online
help, printed manuals) testing cannot be completed until the documentation itself nears
completion. Documentation, however, cannot bein its fina phase until after the user interface
(UI) has been frozen. The UI, in turn, cannot be frozen until at some point in beta testing when
functional errors affecting the Ul have been fixed. Another example of testing interdependency
includes not being able to execute performance testing until all debugging code has been
removed.



A list of featuresthat are not to be tested will also be of value. A list of features that are not to
be tested sometimes smokes out resistance within the product team that might not otherwise
have been voiced until midway through the testing process. It also clearly marks what you
believe to be out of scope.

For more in-depth information regarding test planning, refer to Testing Computer Software by
Kaner et al. (1999).

Test-Plan Templates

One effective means of saving time and ensuring thoroughness in test-plan documentation is to
work from atest-plan template. A test-plan template is essentially afill-in-the-blank test plan
into which information that is specific to the system under test is entered. Because they are
generic and comprehensive, test-plan templates force one to consider questions that might not
otherwise be considered at the beginning of atest project. They prompt one to consider
numerous test types—many of which may not be appropriate for the test project—in addition to
pertinent logistical issues, such as which test tools will be required and where testing will take
place. Test templates can aso impose a structure on planning, encouraging detailed
specifications on exactly which components will be tested, who will test them, and how testing
will proceed. See Appendix A of this book for the complete LogiGear Test Plan
Template.break

Page 118

There are many test templates available. After looking over the LogiGear Test Plan Template,
one should consider other test-plan templates. A good place to begin looking for atest-plan
template isthe LogiGear Test Resource Web site (www.gacity.corr).

A standard test-plan template that is used by the software testing industry is the ANS/IEEE
Standard 829-1983 for Software Test Documentation. It defines document types that may be
included in test documentation, including test cases, feature lists, and platform matrices. It aso
defines the components that the |EEE believes should be included in a standard test plan; so
among other uses, it serves as a test-plan template. For information regarding the ANS/IEEE
Standard 829-1983, visit www_.computer.org, or phone (202) 371-0101.

Test-Plan Section Definitions

The following lists gives a number of standard test-plan sections that are appropriate for most
test projects.

OVERVIEW SECTION

Test-plan identifier. Unique aphanumeric name for the test plan. See the LogiGear Test Plan
Template (Appendix A) for details.

Introduction. Discussion of the overall purpose of the project. References all related product
specifications and requirements documents.

Objective. Goals of the project, taking quality, scheduling constraints, and cost factors into
consideration.



Approach. The overal testing strategy: Who will conduct testing, what tools will be utilized,
scheduling issues that must be considered, and feature groups that will be tested.

TESTING SYNOPSIS SECTION

Test items. Lists every feature and function of the product. References specifications and
product manuals for further detail on features. Includes descriptions of all software
application, software collateral, and publishing items.

Featuresto betested. Cross-references features and functions that are to be tested with
specific test design specifications and required testing environments.

Featuresnot to betested. Featuresof the product that will not undergo testing. May include
third-party items and collateral.

System requirements. Specifications on hardware and software requirements of the
application under test: Computer type, memory, hard-disk size, display type, operating system,
peripheral, and drive type.

Entrance/exit. Application-specific: Description of the application's working environment;
how to launch and quit the application. Process-specific: Description of criteriarequired for
entering and exiting testing phases, such as apha and beta testing.break

Page 119
Standard/reference. List of any standards or references used in the creation of the test plan.

Types of tests. Teststo be executed. May include acceptance tests, feature-level tests,
system-level tests, regression tests, configuration and compatibility tests, documentation tests,
online help tests, utilities and collateral tests, and install/uninstall tests.

Test deliverables. List of test materials developed by the test group during the test cycles that
are to be delivered before the completion of the project. Includes the test plan itself, the bug
tracking system, and an End of Cycle or Final Release report.

TEST PROJECT MANAGEMENT SECTION
The product team. List of product team members and their roles.
Testing responsibilities. Responsibilities of all personnel associated with the testing project.

Testing tasks. Testing tasks to be executed: The order in which tasks will be performed, who
will perform the tasks, and dependencies.

Development plan and schedule. Development milestone definitions and criteria—detailing
what the development group will deliver to testing, and when it will be delivered.

Test schedule and resource. Dates by which testing resources will be required. Estimates on
amount of tester hours and personnel required to complete project.

Training needs. Personnel and training requirements. Special skills that will be required and
amount of personnel who may need to be trained.



Environmental needs. Hardware, software, facility, and tool requirements of testing staff.
I ntegration plan. How the integration plan fitsinto overall testing strategy.

Test suspension and resumption. Possible problems or test failures that justify the suspension
of testing. Basis for allowing testing to resume.

Test completion criteria. Criteriathat will be used to determine the completion of testing.

Theissue-tracking process. Description of the process, the issue-tracking database, bug
severity definitions, issue report formats (see "Issue Reports' in this chapter for an example).

Statustracking and reporting. How status reports will be communicated to the devel opment
team, and what the content of status reports will be (see "Weekly Status Reports' in this
chapter for an example).

Risks and contingencies. All risks and contingencies, including deliverables, tools, and
assistance from other groups—even those risks and contingencies that are detailed in other
parts of the test plan.

Approval process. Test-plan approval and final release approval.break

Page 120

L ogiGear One-Page Test Plan

It is often a challenge for testing groups to communicate their needs to other members of the
software devel opment team. The myriad test types, the testing sequence, and scheduling
considerations can be overwhelming when not organized into a comprehensible plan that others
can read at aglance. The LogiGear One-Page Test Plan isa distillation of test types, test
coverage, and resource requirements that meets this need.

The LogiGear One-Page Test Plan istask oriented. It lists only testing tasks—because some
members of the product team may not be interested in "testing approach,” "features not to be
tested,” and so on. They just want to know what is going to be tested and when. Because
one-page test plans are so easy to reference, if they are adequate for your process, they are less
likely to be disregarded by impatient team members.

The LogiGear One-Page Test Plan does not require additional work. It issmply adistillation
of the standard test-plan effort into an easily digestible format. The LogiGear One-Page Test
Plan is effective because it details the testing tasks that a testing team should complete, how
many times the tasks should be performed, the amount of time each test task may require, and
even agenera idea of when the tasks should be performed during the software devel opment
process.

The LogiGear One-Page Test Plan is easy to reference and read. Twenty-page test plans are
regularly ignored throughout projects, and 100-page test plans are rarely read. One-page test
plans, on the other hand, are straightforward and can easily be used as negotiating tools when it
comes time to discuss testing time and coverage—the usual scenario being, "What testing time
can be cut?' The test team can point to test tasks listed on a one-page test plan and ask, "Are
we prepared to accept the risk of not performing some of these tests to their described



coverage?"
Developing a One-Page Test Plan
The process of completing a one-page test plan is described in the following steps.

Step 1—
Test Task Definition

Review the standard test types that are listed in Chapter 3, " Software Testing Basics," and in
Table6.1.

Select the test types that are required for the project. Decisions should be based on the unique
functionality of the system under test. Discussions with devel opers, analysis of system
components, and an understanding of test types are required to accurately determine which test
types are needed.

Step 2—
Task Completion Time

Calculate the time required to perform the tests. The most difficult aspect of putting together a
test plan is estimating the time required to complete atest suite. With newcontinue

Page 121

testers, or with tests that are new to experienced testers, the time estimation process involves a
lot of guesswork. The most common strategy is divide and conquer. That is, break the tasks
down into smaller subtasks. The smaller subtasks are easier to estimate. Y ou may then sum up
from those. As you gain experience, you miss fewer tasks and you gain a sense of percentage of
tasks that you typically miss so you can add an n percent for contingency or missing-tasks
correction.

Informed estimates may also be arrived at if testing tasks are similar to those of a past project.
If time records of similar past testing are not available, estimates may be unrealistic. One
solution is to update the test plan after an initial series of tests has been compl eted.

A 20 percent contingency or missing-tasks correction isincluded in this example. Astesting
progresses, if this contingency does not cover the inevitable changes in your project's schedule,
the task completion time will need to be renegotiated.

Step 3—
Placing the Test Tasksinto Context

Once the task list has been developed and test times have been estimated, place the tasks into
the context of the project. The development team will need to supply a build schedule.

Determine how many timestests will be run during development. For example, documentation
testing may only be performed once, or it may be reviewed once in a preliminary phase and
then again later after all edits are complete. A complete cycle of functionality tests may be
executed once per development phase, or possibly twice. Acceptance tests are run on every
build. Often, afull bug regression occurs only once per phase, though partial regression tests
may happen with each build.



Step 4—
Table Completion

Finally, multiply the numbers across the spreadsheet. Tota the hours by devel opment phase for
an estimate of required test time for the project. Add time for management, including test-plan
writing/updating, test-case creation, bug database management, staff training, and other tasks
that are needed for the test team and for completion of the project.

Step 5—
Resour ce Estimation

Take the total number of hours required for the apha phase, divide that by the total number of
weeks in the apha phase, and then divide that by 30 hours per week. That gives you the number
of testers needed for that week. For example, if you need total testing hours for apha of 120, a
4-week alpha phase, and testers have a third-hour testing week, your project requires only one
tester [(120 + 4) + 30 = 1]. Apply this same process to arrive at estimates for the beta phase
and project management also.break

Page 122

Note that | use only 30-hour testing week for afull-time tester because by experience, know
that the other 10 (overhead) hours are essentialy used for meeting, training, defect tracking,
researching, special projects, and so on.

LogiGear One-Page Test Plan

The LogiGear One-Page Test Plan can be invaluable in negotiating testing resource and testing
time requirements with members of the product team. Figure 6.1 providescontinue



Milestone | Type of Test it of Hrs. per Est
Cycles | Cycle Hours

Alpha
Total:
Beta

Total: #
Firal

| | Total: | #
Testing Project Management
Test Planning & Test Case Design
Training
Test Automation
Total:
FROJECT TOTAL DAYS
. FERSON WEEKS
. 20% Contingency (wks)
. Total person weeks
. Testers for Alpha
: Testers for Beta

Testers for Final

it

Project Management

Figure 6.1
LogiGear One Page Test Plan.
Page 123

an example of the LogiGear One-Page Test Plan. Descriptions of each of the tests are included
in Chapter 3, "Software Testing Basics."

Testing Considerations

As part of the test planning process, you should consider how the bug reporting/resol ution
cyclewill be managed and the procedure for status reporting. In addition, you should give
some thoughts on how to manage milestone criteria, as well as whether to implement an
automated testing program. This section touches on those issues.

| ssue Reports

Anissue report, or test incident report, is submitted whenever a problem is uncovered during
testing. Figure 6.2 shows an example of an online issue report that is generated by the sample



application. The following list details the entries that may be included in acomplete issue
report.

ISSUE REPORT FIELDS

Project. A project may be anything from a complex client-server system with multiple
components and builds, to asmple 10-page user's guide.break

I'-\l'llll_:n.rpﬂ to TRACEGEAR - Moot Indomasl Explosor

|§}Eﬂ1mﬂuFmﬂub

~ Submit New Report

SM| Seve d Clona |

Fumed
EappFind | PROJECT: Ti-Sample TI B Il'-‘lpnﬂp Select TI el Unessigned -vI

L . B Config ID |I.|r-:|-::|;n|:d - Attachmeant.

FomwFad |

Camtnrabird | Enmor Trpa LInsas-£igned ¥ Kegwnrd IL'I'I-:IS-i-lgIIE'U ""i Repraducibis hi-L] =
Wt Sewetity assignsd Fregusncy I'.llla'nlglll:l.‘- ""I Franty: Unessigned "I

Dlosritrion | | SURMBUARY-

_ Tesnd | |

SElup STEPS: Motas & Corments

Payacrd |
Prsfernces | .-'-I .;J
[
st |
) Belp |
f - | .|
A ':l-_a"lﬁli: | -"-55-":_||'I‘."I'.| ""i SA0pper W ’-ﬁ:‘-‘.—ll:_nl:-J "'I

Sml Sewve 4 Clona |

©

Figure 6.2
Onlineissue report form.

Page 124

Build. Builds are versions or redesigns of a project that isin development. A given project
may undergo numerous revisions, or builds, before it is released to the public.

Module. Modules are parts, components, units, or areas that comprise a given project.
Modules are often thought of as units of software code.

Configuration. Configuration testing involves checking an application's compatibility with
many possible configurations of hardware. Altering any aspect of hardware during testing
creates a new testing configuration.

Uploading attachments. Attachments are uploaded along with issue reports to assist QA and
developer groups in identifying and recreating reported issues. Attachments may include
keystroke captures or macros that generate an issue, afile from a program, a memory dump, a
corrupted file that an issue report is predicated on, or amemo describing the significance of an

issue.

Error types. The category of error into which an issue report fals (e.g., software
incompatibility, Ul, etc).



Keyword. Keywords are an attribute type that can be associated with issue reports to clarify
and categorize an issue's exact nature. Keywords are useful for sorting reports by specific
criteriato isolate trends or patterns within areport set.

Reproducible. Specifies whether areported issue can be recreated: Yes, No, with Intermittent
success, or Unconfirmed.

Severity. Specifiesthe degree of seriousness that an issue represents to users. For example, a
typo found deep within an online help system might be labeled with a severity of low, and a
crash issue might qualify for a severity of high.

Frequency. Frequency, or how often an issue exhibitsitself, is influenced by three factors:
1. How easily the issue can be reached.

2. How frequently the feature that the issue residesinis used.

3. How often the problem is exhibited.

Priority. Anevaluation of an issue's severity and frequency ratings. An issue that exhibits
itself frequently and is of a high severity will naturally receive a higher priority rating than an
issue that seldom exhibitsitself and is only of mild annoyance when it does appear.

Summary. A brief summary statement that concisely sums up the nature of anissue. A
summary statement should convey three elements: (1) symptoms, (2) actions required to
generate the issue, and (3) operating conditions involved in generating the issue.

Steps. Describes the actions that one must perform to recreate the issue.

Notes and comments. Additional pertinent information related to the bug that has not been
entered elsewhere in the report. Difficult-to-resolve bugs may develop long, threaded
discussions consisting of comments from devel opers, project managers, QA testers, and
writers.

Assigned. Assigned individuals who are accountable for addressing an issue.break

Page 125

Milestone stopper. An optional bug report attribute that is designed to prevent projects from
achieving future devel opment milestones. By associating critical bugs with production
milestones, milestone stoppers act as independent criteria by which to measure progress.

Weekly Status Reports

At the conclusion of each week during testing, the testing team should compile a status report.
The sections that a status report normally includes follow.

Weekly status reports can take on critical importance because they are often the only place
where software changes are tracked. They detail such facts as prerequisite materials not
arriving on time, icons not loading onto desktops properly, and required documentation
changes. Once archived, they, in effect, document the software devel opment process.



Consideration needs to be given to what information will be included in weekly status reports
and who will receive the reports. Just as test plans need to be negotiated at the beginning of a
project, so do weekly status reports need to be negotiated. The manner in which risks will be
communicated to the devel opment team needs to be carefully considered because information
detailed in these reports can be used against people to negative effect. Possibly only milestone
status reports should be disseminated to the entire product team, leaving weekly status reports
to be viewed only by a select group of managers, testers, and developers. See Appendix B for
the "Weekly Status Report Template.”

Following are descriptions of sections that are typically included in weekly status reports.
TESTING PROJECT MANAGEMENT
Project schedule. Details testing and development milestones and deliverables.

Progress and changes since last week. Tests that have been run and new bugs that have been
discovered in the past week.

Urgent items. Issuesthat require immediate attention.

Issuebin. Issuesthat must be addressed in the coming weeks.

To-do tasks by next report. Tasksthat must be completed in the upcoming week.

PROBLEM REPORT STATUS

Bug report tabulation. Totals of open and closed bugs, how totals have changed in past week.
Summary list of open bugs. Summary lines from issue reports associated with open bugs.
TREND ANALY S SREPORT

Stability trend chart. Graph that illustrates the stability of a product over time.

Quality trend chart. Graph that illustrates the quality of a product over time.break

Page 126

Note that there are numerous other document types that may be included in test-plan
documentation. For definitions of other test documentation types (including test-design,
test-procedure, and test-case specifications; test transmittal reports; and test logs), refer to
Testing Computer Software by Kaner et al. (1999).

Automated Testing

The sample one-page test plan (See Chapter 8, "Sample Test Plan," for details) can be
analyzed to uncover areas that may be well suited to automated testing. Considerations
regarding staffing, management expectations, costs, code stability, Ul/functionality changes, and
test hardware resources should be factored into all automated testing discussions.

Table 6.2 categorizes the testing tasks called for in the sample one-page test plan by their
potential adaptability to automated testing; further evaluation would be required to definitively
determine whether or not these testing tasks are well suited to automation.



When evaluating test automation, you should do the following:

- Look for the tests that take the most time.

- Look for tests that could otherwise not be run (e.g., server tests).

- Look for application components that are stable early in development.
- Consider acceptance tests.

- Consider compatibility/configuration quick-look tests.

Milestone Criteria and Milestone Tests

Milestone criteria and milestone tests should be agreed upon and measurable (for example,
alphatesting might not begin until all codeis testable and installable, and all Ul screens are
complete—even if they contain errors). Such criteria can be used tocontinue

Table6.2 Test Types Suited for Automation Testing

RAT Documentation

FAST Boundary

Performance, load, and stress Installation

Metrics/charting Most functionality

Regression Exploratory

Database population Import utility

Sample file generation Browser compatibility
Forced-error

Page 127

verify whether code should be accepted or rejected when it is submitted for milestone testing.
Milestone criteria and accompanying tests should be developed for all milestones, including
compl etion of testing, entrance, and exit. Ideally, these tests will be developed by the test
team and approved by the development team; this approach may reduce friction later in the
development project.

Bibliography

Kaner, Cem, et a. Testing Computer Software, second edition. New Y ork: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Lead Software Test Project with Confidence.
Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.



LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.break

Page 129

Chapter 7—
Sample Application

Why Read This Chapter?

Some of the testing concepts covered in this book may seem abstract until they are applied in
practice to an actual Web application. By seeing how the features of the sample application are
accounted for in the sample test plan (See Chapter 8, "Sample Test Plan,” for details) readers
can gain insghtsinto effective Web application test planning.

I ntroduction

This chapter details the features and technol ogies that are associated with the sample
application, including system overview and application functionality.

The sample application is helpful in illustrating test planning issues that relate to
browser-based Web systems; it places many of the issues that are raised in upcomingcontinue

Topics Covered in This Chapter

- Introduction

- Application Description

- Technical Overview

- System requirements

- Functionality of the Sample Application

- Bibliography

Page 130

chapters into context. The sample application is TRACKGEAR" 1.0, a Web-based
defect-tracking system that is produced by LogiGear Corporation. In Chapter 8, "Sample Test
Plan,” the sample application serves as a baseline from which a high-level test planis
developed.



Application Description

The sample application (TRACKGEAR) is a problem-tracking system designed for software
development teams. It is used to manage the processing and reporting of change requests and
defects during software devel opment. The sample application allows authorized Web users,
regardless of their hardware platform, to log into a central database over the Internet to
remotely create and work with defect reports, exchange ideas, and delegate responsibilities.
All software development team members (project management, marketing, support, QA, and
developers) can use the sample application as their primary communications tool.

The sample application offers arelatively complex system from which to explore test planning.
The sample application requires a database server, a Web server, and an application server. It
also supports both administrator and user functionality.

The sample application’s features include:

- Defect tracking viathe Internet, intranet, or extranet

- Customizable workflow that enforces accountability between team members

- Meaningful color metrics (charts, graphs, and tables)

- E-mail notification that alerts team members when defects have changed or require their
attention

Technical Overview

Following are some key technical issues that relate directly to the testing of the sample
application.

- The application server should be installed on the same physical hardware box as the Web
server. Such a configuration eliminates potential performance issues that may result from the
application accessing the Web server on a separate box. Figure 7.1 shows the recommended
configuration of a system.

- The sample application uses Active Server Page (ASP) technology (See Chapter 5, "Web
Application Components,” for details about ASP). Web servers process A SPcontinue

* At the time of thiswriting, TRACKGEARTM 2.0 has been real sed. This version offers many new
features and improvementsto release 1.0. For the latest information on this product, please visit
www.logigear.com.

Page 131



=

Client Cliant

Application
Server

D ’
/
/
/
Web Server Database J.r
Server p 4
’
K
/

Figure 7.1
Recommended configuration of a system.

scripts, based on user requests, before sending customized pages back to the user. The ASP
scripts are similar to server-side includes and Common Gateway | nterface (CGlI) scripts in that
they run on the Web server rather than on the client side. The ASP scripts do not involve a
client-sideinstall. This thin-client model involves the browser sending requests to the Web
server where ASP computes and parses requests for the application, database server, and Web
server.

- The CGI scripts are not used in the sample application.

- The database activities (queries and stored procedures) are supported via Microsoft SQL 6.5
or higher.

- A single Java applet runs on the client browser to display defect metrics (charts and
graphics). Only fourth-generation browsers (4.0 or higher) are supported by the sample
application.

- Both the Web server and the application server must utilize Microsoft technology (11S, NT,
etc.).break

Page 132

System Requirements

The hardware and software requirements of the sample application are as follows:



SERVER REQUIREMENTS

- Computer. PC with a Pentium processor (Pentium Il recommended)

- Memory. 64Mb (128 recommended)

- Disk space. 100Mb for the server application and 200Mb for the database

- Operating systerr. Microsoft Windows NT Server 4.0 with most recent service pack
- Web server software. Microsoft Internet Information Server (11S) 4.0

- QL server software. Microsoft SQL Server 6.5 or higher with service pack
CLIENT REQUIREMENTS

- Active LAN or Internet connection

- Netscape Navigator 4.x

- Microsoft Internet Explorer 4.x or higher

Functionality of the Sample Application
Following are severa sections that help detail the functionality of the sample application.

I nstalling the Sample Application

The sample application utilizes a standard Install Shield-based installation program that
administrators (or |S personnel) must run to set up the databases that are required by the
application. Thisinstallation wizard automates the software installation and database
configuration process, alowing administrators to identify preexisting system components (Web
server, |1S server, physical hardware boxes, etc.), determine where new components should be
installed, and how much disk space should be alocated for databases.

Getting Started

The sample application allows users to define workflow processes that are customized for
thelr organization's defect-tracking needs. Workflow dictates, anong other things, who has the
privilege to assign resolutions (i.e., defect states) and who is responsible for addressing
defect-related concerns. The sample application alows administrators to hardwire such

resol ution management process and to enforce accountability. User, group, division, and
project assignments dictate the screen layouts and functionality that administrators and different
user types can access.break

Page 133

The administrator of the application has access to administrator-level functions, such as user
setup, project setup, and database setup, in addition to all standard user functionality, including
report querying, defect report submission, and metrics generation.

Division Databases



The sample application acts as an information hub, controlling data flow and partitioning
defect-tracking data. A company may use as many division-specific databases as it wishes.
Some information is shared globally—for example, the application itself. Other information,
including reports and functional groups, is relevant only to specific projects or divisions, and
therefore is not shared globally across division databases.

I mporting Report Data

The sample application comes with an import utility (a separate executable) that allows
administrators to import existing databases. Specificaly, the program allows the import of
commar-separated values (CSV) files. These CSV files can be exported from other database
programs, such as Microsoft Access, Excel, and Oracle. In order for the sample application to
properly process imported data, it isimportant that certain guidelines be adhered to when
creating the CSV files.

System Setup

Many of the sample application’s attributes can be customized. Customizable system attributes
include the following:

- Keywords

- Error types

- Resolutions

- Severity

- Phases

- Milestone stoppers

- Fregquency

- Priority

- Workflow (the method by which reports are routed)
Project Setup

The key components of every project are project name, project members, project modules,
project builds, and optional e-mail notification.

E-Mail Notification

The sample application utilizes e-mail to notify and inform individuals of their responsibilities
regarding defects that are tracked. E-mail notification settings arecontinue

Page 134

flexible and can be customized for each project. For example, one project team might require
notification for all defects that may prevent their product from going beta. Thisteam's e-mail



notification settings could then be set up to only aert them when areceived defect has a
milestone-stopper value of beta. Likewise, ateam whose product is nearing rel ease date could
choose to have hourly summaries of every defect report in the system sent to them.

The sample application uses the Simple Mail Transfer Protocol (SMTP) to deliver
notifications (most popular e-mail clients are compatible: Eudora, Microsoft Exchange,
Microsoft Outlook Express, and others).

Submitting Defect Reports

Users of the sample application must go to the report screen to submit new defect reports
(Figure 7.2). The report screen includes fields for recording relevant defect-tracking
information. To get to the report screen, users click the New button on the navigation bar.

Generating Metrics

The sample application includes a third-party Java applet that allows users to generate metrics
(charts, graphs, and tables of information) to gain global perspective over defect reports.
Project managers, developers, and software-quality engineersin particular may gain insight
into defect-fixing trends, personnel workload, and process efficiency by viewing trend and
distribution metrics.

The sample application generates two types of metrics. (1) distribution metrics and (2) trend
metrics. Figure 7.3 shows the distribution metrics setup screen. Figure 7.4continue

PROJECT: ﬁ.:-l,l-l g = Euio [UNASSIGHED x| Wadsls [Unassignec =]
Canfig Ib: <13 - Agmchmant
[Emnr Type ['.!ﬁ:lE-E-l:_II'lE"C j s g ] nassigned TE Aepmdusibla 1 ‘85 T]
S wwa ity Fraquancy Linassigned =] Prioiby | Unassigned '|
SUMMARY
STEFS Mietes & Commanty
|uasi gna Airin A slgred Slepped: Alphe o
Save 1 Save & Clone ]
Figure 7.2

Sampl e application report screen.

Page 135

FROJECT: ITGEj

Template: | Closed by Report Validity =
Generate Matrics

Figure 7.3
Distribution metrics setup screen.



shows atypical distribution metric. Figure 7.5 shows the trend metrics setup screen. Figure 7.6
shows atypical trend metric.

Documentation
Documentation for the sample application comes in the following three forms:

1. Administrator's guide. A printed manual that provides administrators with the information
they need to set up and manage the sample application.break

Distribution: Closed by Report Validity

Project: TG2
User; karris
Date: 040600

Raport Validity m
Inwvalid 90
valid Fod

Figure7.4
Distribution metric example.

Page 136

proszer: [TG2 ]

el ITuiuI vs. Open vs. Closed - Over time i
IPariad: C paiy & westy © wiantuty
[etart Date:

& Use the flst submitted report date

* H_tl.l'l!h_: W Cay: I b .a “i".]!: | oo i
[End Date: B
*] pwy m Faar | 00 E

Figure 7.5



Trend metrics setup screen.

Trend: Total vs. Open vs, Closed - Over Time

Project: TG2

Weekhy: From 092999 To 11/8/99
Usar: kams

Date: 040600

7 21

ozad
10403799 14
10/10/99 48 11 59
10417099 54 ia 72
10424599 S4 ig T2
1043199 54 18 72
11407199 T4 iz T2

Figure 7.6
Trend metric example.

Page 137

2. User'sguide. A printable Adobe Acrobat Reader .pdf manual that provides software testers
and product team members with the information they need to submit reports, find reports, and
advance workflow.

3. Online help. A context-sensitive help system that resides within the sample application. The
help system is accessible via the Help button on the navigation bar.

Bibliography

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. TRACKGEAR Administrator Guide. Foster City, CA: LogiGear
Corporation, 1999.break



Page 139

Chapter 8—
Sample Test Plan

Why Read This Chapter?

Many of the test planning considerations discussed in this book may seem abstract until they are
applied in practice to an actua Web application. By examining the test planning process for the
sample application (see Chapter 7, "Sample Application,” for details), readers gain insights
into effective test planning practices that can be applied to Web applications.

The test types that are listed in this chapter are explored in more detail in the upcoming
chapters of Part Four. The sample application is also referenced throughout upcoming chapters.

I ntroduction

This chapter discusses the test types that are appropriate for the sample application. It includes
both atest schedule and a one-page test plan that are designed for thecontinue

Topics Covered in This Chapter

- Introduction
- Gathering Information

- Sample One-Page Test Plan

- Bibliography

Page 140

sample application. Note that the sample test planis high level by design. A complete test plan
for the sample application is not feasible within the constraints of this book.

Many of the principles employed in this chapter are discussed in Chapter 6, "Test Planning
Fundamentals." It is recommended that both Chapters 6 and 7 be read before proceeding with
this chapter.

The information conveyed in Chapter 7 serves as atechnical baseline for the test planning
purposes of this chapter. Asfar as planning for other projectsis concerned, getting involved
early in the development process and discovering reliable sources of information is the best
way to gather required technical data. Product prototypes, page mock-ups, preliminary
documentation, specifications, and any marketing requests should be evaluated; such
information, combined with experience and input from application developers, is the best
means of determining required testing. Input from the project team should focus the test-plan
effort on potential problem areas within the system under test.



Preliminary project schedules and an estimated number of builds should be considered in the
development of any testing schedule.

With basic QA knowledge, the information about Web testing conveyed in this book, input from
the devel opment team, and an understanding of product functionality, atest planner can
confidently develop alist of test types for the system under test (see Table 6.1 for details on
test scheduling). Once alist of test types has been developed, staffing needs can be evaluated
by considering the number of hours and types of skills that will be required of the testing team.
Required tester hours and skills will undoubtedly fluctuate as devel opment progresses.
Estimates of testing hours required for testing the sample project are detailed later in this
chapter.

Gathering Information

The information gathering process consists of four steps: (1) Establishing testing-task
definitions, (2) estimating time required to compl ete the testing tasks, (3) entering the
information into the project plan, and (4) calculating the overall resource requirements.

Step 1—
Testing-Task Definition for the Sample Application

Step 1 in the one-page test planning process involves assembling alist of tasks for the project
at hand. First, define the test types. The basic tests for Web applications are acceptance [both
release acceptance test (RAT) and functional acceptance simple test (FAST)], functionality
[task-oriented functional test (TOFT)], installation, user interface (Ul), regression,
forced-error, configuration and compatibility, server, security, documentation, and exploratory.

By reviewing the product description detailed in Chapter 7, "Sample Application,” you can see
aneed for specific test types that are not included in the pre-soft

Page 141

ceding list of basic test types. For example, tests should be devel oped that test the functionality
of the databases, dataimport utility, e-mail notification, and third-party Java applet (metrics
charting). The screen shots indicate functionality that should be tested. Some security features
that should be tested are also mentioned (login/logout, views, and user permissions). By
reviewing the product's system requirements, you can also glean information about test
platforms, possible configuration tests, and other technologies that will require testing { Java
applets, Microsoft NT [required], Active Server Page [ASP] [rather than Common Gateway
Interface (CGlI)]J}.

The genera descriptions offered by Chapter 7 alone do not offer enough information to help
you develop an informed testing schedule and list of testing tasks. Much more detail than can be
conveyed in this book is required to make such projections. For example, information
regarding the number of error messages (and their completion dates) would be required, as
would details of the installation process. Complete product descriptions, specifications, and
marketing requirements are often used as a starting point from which you can begin to seek out
the specific technical information that is required to generate test cases.



Step 2—
Task Completion Time

Thetest timeslisted in Table 8.1 reflect the actual testing of the sample application. These test
times were derived with input from the test team.

As part of evaluating tasks for completion time, you should evaluate resources such as
hardware/software and personnel availability. Some test types require unique resources, tools,
particular skill sets, assistance from outside groups, and special planning. Such test types
include:

- Configuration and compatibility testing. Configuration and compatibility testing require a
significant amount of computer hardware and software. Because the cost of outfitting a
complete test lab exceeds the financia means of many companies, outsourcing solutions are
often considered. See Chapter 14, "Configuration and Compatibility Tests," for more
information.

- Automated testing. Automated testing packages (such as Seguetm SilkTesttm) are valuable
tools that can, when implemented correctly, save testing time, tester enthusiasm, and other
resources. See Chapter 17, "Web Testing Tools," for information about available automated
testing tools.

- Milestone tests. Milestone tests are performed prior to each development milestone. They
need to be developed, usually from TOFT tests, and scheduled according to the milestone plan.

- Special functionality tests (TOFT). In addition to the specified functionality of the
application, SMTP tests (e-mail notification) are aso included in the TOFT suite. These tests
may require assistance from other groups or special skill sets.

- Web- and client-server-specific tests. Performance, load, and stress tests, in addition to
security and database tests, normally require specialized tools and skills.break

Page 142

Table8.1 Task Completion Time

TEST TYPEJJFUNCTIONAL AREAJlITIME ESTIMATEINOTES

RAT 30 minutes for each
build

A OT N v~ fav ~mmal LA



FAJDI Z 1IVUIS Ul Eall buliu

TOFT Admin functionality These tests represent the majority of
User setup 80 hoursfor acomplete  testing that must be performed. The
Project setup run. entire suite of TOFT tests should be
System setup run once during al pha testing, twice
Division setup during beta testing, and once during

final testing. Testing should be

User functionality segmented as coding is completed

Submit new report and as bugs are fixed.

Easy find

Quick find

Form find

Custom find

Configuration profiles

Preferences

Metrics

Miscellaneous

Upload attachments
Password
Editing reports
Views
Tabular layouts
Installation Full installation 40 hours Test functionality, not compatibility.
Uninstaller These tests should be performed
Database initialization once at the end of alphatesting, once
Division creation during beta testing when the known
installer bugs have been closed, and
once again during final testing.
Often, installers are not ready to be
tested until well into alphatesting, or
even at the beginning of the beta
phase.
Dataimport 16 hours CSV test dataisrequired.
utility
(table continued on next page)
Page 143
(Continued)
Table8.1
TEST TYPEJlIFUNCTIONAL AREAJIITIME ESTIMATEJINOTES
Third-party Metrics/chart generation 20 hours Sample input datais required for the
functionality feature metrics function to generate charts.
testing
Exploratory 16 hours per build These are unstructured tests.
User interface Every screen Tested while testing functionality.

Regression 4 hours Test suites are built as errors are



uricuvel eu.

Forced-error Confirm all documented 20 hours Run suite twice. Can only be
error messages performed after all messages have
been coded. There are 50 error
messages in the sample application.

Configuration Browser settings 80 hours Quick look tests must be devel oped.

and Cookies A matrix of browsers, operating

compatibility Security settings systems, and hardware equivalent
Java classes must be developed.
Preferences

Browser typesfor
Macintosh, Windows,
and Unix

Netscape Navigator

I nternet Explorer

Browser functions
Back
Reload
Print
Cache settings
Server installation
Compatibility
Hardware compatibility
E-mail notification

Server Performance, load, and 100 hours
stress tests
Documentation  Printed manua 80 hours Functionality and content
Online help system
Downloadable user guide
(PDFfile)
Continues
Page 144
(Continued)
Table8.1
TEST TYPEJFUNCTIONAL AREAJlIT'ME ESTIMATEJlINOTES
Y2K and Test casesincluded in functionality
boundary tests (TOFT)
testing

M ~dbAla~~ L T I AN ams v



Ddlducse Ddldauase Ieyrity £V 110Ul s

Security Login 40 hours
L ogout
Permissions
Views
Allowable IP addresses
(firewall)
Trusted servers (intranet)
Password
Preferences

All required tests should be identified as early in the development process as possible so that
resource needs for tools, staffing, and outsourcing can be evaluated.

Step 3—

Placing Test Tasks into the Project Plan

For the purposes of the sample test plan, a development schedule of 20 calendar weeks has
been assumed. Testable code is expected early in July. According to the devel opment team,
there will be one build per week.

PRELIMINARY BUILD SCHEDULE

Alpha 12 weeks
Beta 6 weeks
Fina 2 weeks

From Table 6.1, you can see which test phases are appropriate for each test type. (See Table
8.2.) Note that test types from Table 8.2 are examined in detail in the upcoming chapters of Part
Four.

WHERE TO FIND MORE INFORMATION

- For information about RAT, FAST, TOFT, regression, and forced-error tests, please see
Chapter 10, "Functional Tests."

- For information about configuration and compatibility tests, please see Chapter 14,
"Configuration and Compatibility Tests."

- For information about install tests, please see Chapter 13, "Installation Tests."

- For information about database tests, please see Chapter 11, "Database Tests."break

Page 145

T AllA O N NaAlmnmimnmnd Daanan AamA Tacdk N Al s



I duleo.£ DEVEIUPITIEIIL FTiaseS dl iU 1 ESL Fd iy

7/12/2000 TIME LINE 11/26/2000

-
10/04/2000 11/15/2000
TWELVE WEEKS= TWO WEEKS=
60 BUSINESS DAY 10 BUSINESS DAY S
ALPHA PHASE FINAL PHASE
Typesof Teststo Be Executed
RAT RAT RAT
FAST FAST FAST
TOFT (User and Admin)  TOFT (User and Admin) TOFT
Configuration & Server Testing: Regression
Compatibility Stress/L oad/Performance Exploratory
Install Complete Configuration
Exploratory & Compatibility
Regression
Install

Forced-Error
Documentation
Database

Exploratory
Third-party component
integration

Security

- For information about exploratory tests and an example of athird-party component, please
see Chapter 3, "Software Testing Basics."

- For information about security testing, please see Chapter 15, "Web Security Concerns.”
- For information about documentation tests, please see Chapter 12, "Help Tests."

- For information about server testing, please see Chapter 16, "Performance, Load, and Stress
Tests"

Step 4—
Calculate Hours and Resource Estimates

Multiply and total test times (refer to "Developing a One-Page Test Plan” in Chapter 6, "Test
Planning Fundamentals,” for details). Then calculate resource estimates. The one-page test plan
isnow completelbreak

Page 146

Sample One-Page Test Plan

Table 8.3 is a one-page test plan that addresses the special needs of the sample application.
Note that time has been budgeted for issue reporting, research, meetings, and more.break

T AlAaO N Cananl A TAa~d N Ak



1 dIE 0.5 DdlIpIE 1esl Flidl

# OF HRS. PERJIIEST.
CYCLESJCYCL HOURJ

Alpha RAT: Release Acceptance Test 12 0.5 6
FAST: Functional Acceptance Simple Test 12 2 24
TOFT: Task Oriented Functional Test 2 80 160
Configuration Compatibility 1 80 80
Install 1 40 40
Exploratory Testing 12 16 192
Total: 502
Beta RAT: Release Acceptance Test 6 0.5 3
FAST: Functional Acceptance Simple Test 6 2 12
TOFT: Task Oriented Functional Test 1 80 80
Server Tests (Performance, Stress and L oad) 2 100 200
Compatibility/Configuration (Browser, Install) 1 80 80
Regression Testing 6 4 24
Install 1 40 40
Forced Error Test 2 20 40
Documenttion/Hel p (function and content) 1 80 80
Database Integrity Test 1 20 20
Exploratory Testing 6 16 96
Data Import 1 16 16
Third-party Component Integration 3 20 60
Security 1 40 40
Total: 791
(table continued on next page)
Page 147
(Continued)
Table8.3
# OF HRS. PER EST.
MILESTONEJJfTYPE OF TE CYCLE CYCLE‘ HOURJI
Final RAT: Release Acceptance Test 2 0.5 1
FAST: Functional Acceptance Simple Test 2 2 4
TOFT: Task Oriented Functional Test 1 80 80
Regression Testing 1 20 20
Exploratory Testing 1 16 16
Total: 121
Testing Test Planning & Test Case 40 40

Project Design

L e e Twmimimn N N



viai iayeliier i rarniy r4v) y4v)

Total: 60
PROJECT TOTAL HOURS 1474
PROJECT TOTAL DAYS 184
Person Weeks (30hr/wk) 49
20% Contingency Weeks 10
Total person weeks 59
Testersfor Alpha 1.25
Testersfor Beta 44
Testersfor Final
Project Management 1

Bibliography

Kaner, Cem, et a. Testing Computer Software, second edition. New Y ork: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Lead Software Test Project with Confidence.
Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.break

Page 149

PART THREE—
TESTING PRACTICES

Page 151

Chapter 9—
User Interface Tests

Why Read This Chapter?

To effectively test the user interface (Ul) design and implementation of a Web application, we
need to understand both the Ul designer's perspective (the goals of the design) and the

devel oper's perspective (the technology implementation of the Ul). With such information, we
can develop effective test cases that target the areas within an application's design and
implementation that are most likely to contain errors.



I ntroduction

This chapter explores the two primary classes of Ul testing issues: (1) the design of Ul
components and (2) the implementation of Ul components. Web technologies that are used to
deliver Ul components or controls (graphic objects that enable users to inter-soft

Topics Covered in This Chapter

- Introduction
- User Interface Design Testing
- User Interface Implementation Testing

- Testing Considerations

- Bibliography and Additional Resources

Page 152

act with applications) are also discussed, as are considerations for the effective testing of both
Ul design and implementation.

User interface testing normally refersto atype of integration testing in which we test the
interaction between units. User interface testing is often done in conjunction with other tests
instead of independently. Astesters, we sometimes explicitly conduct Ul and usability testing,
but more often, we consider Ul issues while running other types of testing, such as functionality
testing, exploratory testing, and task-oriented functional testing (TOFT).

User Interface Design Testing

User interface design testing evaluates how well a design takes care of its users, offers clear
direction, delivers feedback, and maintains consistency of language and approach. Subjective
impressions of ease of use and look and feel are carefully considered in Ul design testing.

| ssues pertaining to navigation, natural flow, usability, commands, and accessibility are aso
assessed in Ul design testing.

During Ul design testing, you should pay particular attention to the suitability of all aspects of
the design. Look for areas of the design that lead usersinto errors or that do not clearly indicate
what is expected of users.

Consistency of aesthetics, feedback, and interactivity directly affect an application's
usability—and should therefore be carefully examined. Users must be able to rely on the cues
they receive from an application to make effective navigation decisions and understand how
best to work with an application. When cues are unclear, communication between users and
applications can break down.

It is essential to understand the purpose of the software under test (SUT) before beginning Ul
testing. The two main issuesto consider are:



1. Who is the application's target user?
2. What design approach has been employed?

With answers to these questions, you will be able to identify program functionality and design
that do not behave as a reasonable target user would expect they should. Keep in mind that Uls
serve users, not designers or programmers. Astesters, we represent users and must be
conscious of their needs. To learn more about Web Ul design and usability, there are severa
useful books recommended in "References and Additional Resources' at the end of this
chapter.

Profiling the Target User

Gaining an understanding of aWeb application's target user is central to evaluating the design
of itsinterface. Without knowing the user's characteristics and needs, it can be a challenge to
assess how effective the Ul design is.

User interface design testing involves the profiling of two target-user types: (1) server-side
users and, more important, (2) client-side users. Users on the client sidecontinue

Page 153

generaly interact with Web applications through a Web browser. More than likely they do not
have as much technical and architectural knowledge as users on the server side of the same
system. Additionally, the application features that are available to client-side users often differ
from the features that are available to server-side users (who are often system administrators).
Therefore, client-side Ul testing and server-side Ul testing should be evaluated by different
standards.

When creating a user profile, consider the following four categories of criteria (for both
client-side and server-side users).

Computer Experience

How long has the intended user been using a computer? Do they use a computer professionally
or only casually at home? What activities are they typically involved with? What assumptions

does the SUT make about user skill level, and how well do the expected user's knowledge and
skills match those assumptions?

For client-side users, technical experience may be quite limited, but the typical user may have
extensive experience with a specific type of application, such as a spreadsheet, word
processor, desktop presentation program, drawing program, or instructional development
software. In contrast, system administrators and information services (IS) personnel who
install and set up applications on the server side probably possess significant technical
experience, including in-depth knowledge of system configuration and script-level
programming. They may aso have extensive troubleshooting experience, but limited
experience with typical end-user application software.

Web Experience
How long has the user been using the Web system? Web systems occasionally require



client-side usersto configure browser settings. Therefore, some experience with Web
browsers will be helpful. Isthe user familiar with Internet jargon and concepts, such as Java,
ActiveX, Hyper Text Markup Language (HTML), proxy servers, and so on? Will the user
require knowledge of related helper applications such as Acrobat reader, File Transfer
Protocol (FTP), and streaming audio/video clients? How much Web knowledge is expected of
server-side users? Do they need to modify Practical Extraction and Reporting Language (perl)
or Common Gateway Interface (CGlI) scripts?

Domain Knowledge

Isthe user familiar with the subject matter with which the application is associated? For
example, if the program involves building formulas into spreadshests, it is certainly targeted at
client-side users with math skills and some level of computing expertise. It would be
inappropriate to test such a program without the input of atester who has experience working
with spreadsheet formulas. Another example includes the testing of a music notation—editing
application. Determining if the program is designed for experienced music composers who
understand the particulars of musical notation, or for novice musicians who may have little to
No experiencecontinue

Page 154

with music notation, is critical to evaluating the effectiveness of the design. Novice users want
elementary tutorials, and expert users want efficient utilities. Is the user of an e-commerce
system aretailer who has considerable experience with credit card—"processing practices? Is
the primary intended user of an online real estate system arealtor who understands real estate
listing services, or isit afirst-time home buyer?

Application-Specific Experience

Will users be familiar with the purpose and abilities of the program because of past
experience? Isthis the first release of the product, or is there an existing base of usersin the
marketplace who are familiar with the product? Are there other popular productsin the
marketplace that have a similar design approach and functionality? (See "Design Approach”
later in this chapter for information.)

Keep in mind that Web applications are still arelatively new class of application. Itis
possible that you are testing a Web application that is the first of itskind to re