
Testing Applications on the Web

Page i

Advance Praise for Testing Applications on the Web

Testing Applications on the Web by Hung Q. Nguyen is an absolute must for anyone who has a
serious interest in software testing, especially testing web applications.

This book covers nearly every aspect of the error-finding process, moving from basic
definitions and terminology, through detailed and easy-to-understand explanations of most
testing strategies in use today. It finishes with a chapter on Web testing tools and appendices
with test documentation templates.

This book is written with the practitioner in mind, but can equally well be used by students in
software engineering curriculums. It presents both theory and practice in a thorough and clear
manner. It illustrates both concepts and practical techniques with numerous realistic examples.
This is a very good book on testing Web applications.

—Steve Schuster
Director, Quality Engineering
Carrier Applications Group
Phone.Com, Inc.

Testing Applications on the Web is a long-overdue and much needed guide to effectively
testing web applications. The explosion of e-commerce businesses in the last couple of years
has brought new challenges to software testers. There is a great need for knowledge in this
area, but little available. Nguyen's class, Testing Web Applications, was the only class I could
find of its kind and I was immediately able to put what I learned to use on the job. Nguyen's
first book, Testing Computer Software, is required reading for my entire test team, and Testing
Applications on the Web will now be added to that list.

Nguyen provides a combination of in-depth technical information and sound test planning
strategies, presented in a way that will benefit testers in real world situations. Testing
Applications on the Web is a fabulous reference and I highly recommend it to all software
testers.

—Debbie Goble
Software Quality Control Manager
SBC Services, Inc.

Testing Applications on the Web contains a wealth of practical information. I believe that
anyone involved with web testing will find this book invaluable. Hung's writing is crisp and
clear, containing plenty of real-world examples to illustrate the key points. The treatment of
gray-box testing is articularly insightful, both for general upse, and as applied to testing web

applications.

—Christopher Agruss
Quality Engineering Manager
Discreet (a division of Autodesk)

Years ago I was looking for a book like this. Internet software must work in all kinds of
configurations. How can you test them all? Which do you choose? How should you isolate the
problems you find? What do you need to know about the Internet technologies being used?
Testing Applications on the Web answers all these questions. Many test engineers will find
this book to be a godsend. I do!

—Bret Pettichord
Editor
Software Testing Hotlistbreak

Page ii

If you want to learn about testing Web applications, this book is a 'must-have.' A Web
application comprises many parts—servers, browsers, and communications—all (hopefully)
compatible and interacting correctly to make the right things happen. This book shows you how
all these components work, what can go wrong, and what you need to do to test Web
applications effectively. There are also plenty of examples and helpful checklists. I know of no
other place where you can get a gold mine of information like this, and it's very clearly
presented to boot!

—Bob Stahl
President
The Testing Center

I won't test another Web app without first referring to Testing Applications on the Web! The
test design ideas are specific and would provide excellent support for any tester or test planner
trying to find important problems fast.

This is really one of the first testing books to cover the heuristic aspects of testing instead of
getting caught up in impractical rigor. It's like climbing into the mind of a grizzled veteran of
Web testing. It's nice to see a testing book that addresses a specific problem domain.

—James Bach
Principal
Satisfice, Inc.break

Page iii

Testing Applications on the Web

Test Planning for Internet-Based Systems

Hung Q. Nguyen

Page iv

Publisher: Robert Ipsen

Executive Editor: Carol Long

Associate Editor: Margaret Hendrey

Managing Editor: Angela Smith

Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear
in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

Copyright © 2001 by Hung Quoc Nguyen. All rights reserved.

Published by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:
PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
professional services. If professional advice or other expert assistance is required, the
services of a competent professional person should be sought.

ISBN 0-417-43764-6
This title is also available in print as 0-471-39470-X

For more information about Wiley products, visit our web site at www.Wiley.combreak

Page v

CONTENTS

Foreword xi

Preface xiii

Part One: Introduction 1

Chapter 1
Welcome to Web Testing

3

Why Read This Chapter? 3

Introduction 4

The Evolution of Software Testing 4

The Gray-Box Testing Approach 6

Real-World Software Testing 7

Themes of This Book 8

Chapter 2
Web Testing versus Traditional Testing

11

Why Read This Chapter? 11

Introduction 12

The Application Model 12

Hardware and Software Differences 14

The Differences between Web and Traditional Client-Server Systems 17

Web Systems 22

Your Bugs Are Mine 26

Back-End Data Accessing 27

Thin-Client versus Thick-Client Processing 27

Thin-Client versus Thick-Client Processing 27

Interoperability Issues 28

Testing Considerations 29

Bibliography 29

Page vi

Part Two: Methodology and Technology 31

Chapter 3
Software Testing Basics

33

Why Read This Chapter? 33

Introduction 33

Basic Planning and Documentation 34

Common Terminology and Concepts 34

Test-Case Development 48

Bibliography 56

Chapter 4
Networking Basics

57

Why Read This Chapter? 57

Introduction 57

The Basics 58

Other Useful Information 72

Testing Considerations 82

Bibliography 82

Chapter 5
Web Application Components

85

Web Application Components

Why Read This Chapter? 85

Introduction 86

Overview 86

Web Application Component Architecture 96

Testing Discussion 103

Testing Considerations 109

Bibliography 111

Chapter 6
Test Planning Fundamentals

113

Why Read This Chapter? 113

Introduction 113

Test Plans 114

LogiGear One-Page Test Plan 120

Testing Considerations 123

Bibliography 127

Chapter 7
Sample Application

129

Why Read This Chapter? 129

Introduction 129

Application Description 130

Page vii

Technical Overview 130

System Requirements 132

System Requirements 132

Functionality of the Sample Application 132

Bibliography 137

Chapter 8
Sample Test Plan

139

Why Read This Chapter? 139

Introduction 139

Gathering Information 140

Sample One-Page Test Plan 146

Bibliography 147

Part Three: Testing Practices 149

Chapter 9
User Interface Tests

151

Why Read This Chapter? 151

Introduction 151

User Interface Design Testing 152

User Interface Implementation Testing 174

Testing Considerations 178

Bibliography and Additional Resources 181

Chapter 10
Functional Tests

183

Why Read This Chapter? 183

Introduction 183

An Example of Cataloging Features in Preparation for Functional
Tests

184

Testing Methods 184

Testing Methods 184

Bibliography 196

Chapter 11
Database Tests

197

Why Read This Chapter? 197

Introduction 197

Relational Database Servers 200

Client/SQL Interfacing 204

Testing Methods 206

Database Testing Considerations 223

Bibliography and Additional Resources 225

Page viii

Chapter 12
Help Tests

227

Why Read This Chapter? 227

Introduction 227

Help System Analysis 228

Approaching Help Testing 234

Testing Considerations 238

Bibliography 239

Chapter 13
Installation Tests

241

Why Read This Chapter? 241

Introduction 242

Introduction 242

The Roles of Installation/Uninstallation Programs 242

Common Features and Options 245

Common Server-Side-Specific Installation Issues 252

Installer/Uninstaller Testing Utilities 255

Testing Considerations 259

Bibliography and Additional Resources 264

Chapter 14
Configuration and Compatibility Tests

265

Why Read This Chapter? 265

Introduction 266

The Test Cases 267

Approaching Configuration and Compatibility Testing 267

Comparing Configuration Testing with Compatibility Testing 270

Configuration/Compatibility Testing Issues 272

Testing Considerations 280

Bibliography 283

Chapter 15
Web Security Concerns

285

Why Read This Chapter? 285

Introduction 286

The Vulnerabilities 286

Attacking Intents 290

Goals and Responsibilities 290

Web Security Technology Basics 292

Web Security Technology Basics 292

Testing Considerations 305

Bibliography and Additional Resources 309

Page ix

Chapter 16
Performance, Load, and Stress Tests

311

Why Read This Chapter? 311

Introduction 312

Evaluating Performance Goals 313

Performance Testing Concepts 315

Web Transaction Scenario 317

Understanding Workload 318

Evaluating Workload 319

Test Planning 325

Testing Considerations 332

Bibliography 335

Chapter 17
Web Testing Tools

337

Why Read This Chapter? 337

Introduction 337

Types of Tools 338

Additional Resources 347

Chapter 18
Finding Additional Information

349

Finding Additional Information

Why Read This Chapter? 349

Introduction 349

Textbooks 350

Web Resources 350

Professional Societies 354

Appendix A
LogiGear Test Plan Template

357

Appendix B
Weekly Status Report Template

372

Appendix C
Error Analysis Checklist–Web Error Examples

377

Appendix D
UI Test-Case Design Guideline: Common Keyboard
Navigation and Shortcut Matrix

389

Appendix E
UI Test-Case Design Guideline: Mouse Action Matrix

390

Appendix F
Web Test-Case Design Guideline: Input Boundary and
Validation Matrix I

391

Appendix G
Display Compatibility Test Matrix

393

Appendix H
Browser/OS Configuration Matrix

394

Index 395

Page x

Edited by:

Michael Hackett

Chris Thompsonbreak

Page xi

FOREWARD

Testing on the Web is a puzzle for many testers whose focus has been black-box, stand-alone
application testing. This book's mission is to present the new challenges, along with a strategy
for meeting them, in a way that is accessible to the traditional black-box tester.

In this book, Hung Nguyen's approach runs technically deeper and closer to the system than the
black-box testing that we present in Testing Computer Software. Several people have bandied
about the phrase ''gray-box testing" over the years. Hung's book represents one thoughtful,
experience-based approach to define and use a gray-box approach. I think that this is the first
serious book-length exploration of gray-box testing.

In Hung's view of the world, Web testing poses special challenges and opportunities:

• First, the Web application lives in a much more complex environment than a mainframe,
stand-alone desktop, or typical client-server environment. If the application fails, the problem
might lie in the application's (app's) code, in the app's compatibility with other system
components, or in problems of interactions between components that are totally outside of the
app developer's control. For example, to understand the application's failures, it is important to
understand the architecture and implementation of the network. Hung would say that if we aren't
taking into account the environment of the application, we face a serious risk of wasting time
on a lot of work that doesn't generalize.

• Second, much of what appears to be part of a Web application really belongs to complex
third-party products. For example, the customer has a browser, a Java interpreter, and several
graphics display and audio playback programs. The application presents its user interface
through these tools, but it is not these tools, and it does not include these tools. Similarly, the
database server and the Web server are not part of most applications. The app just uses these
server-side components, just like it uses the operating system and the associated device
drivers. There's a limit to the degree to which the application developer will want to test the
client-side and server-side tools—she or he didn't write them, and the customer might update
them or replace them at any time. Hung would say that if we don't have a clear idea of the
separation between our app and the user-supplied third-party components, we face a serious
risk of wasting time on a lot of work on the wrong components, seeking to manage the wrong
risks.

• Third, because Web applications comprise so many bits and pieces that communicate, we
have new opportunities to apply or create test tools that let us read andcontinue

Page xii

modify intermediate events. We can observe and create messages between the client and the
server at several points in the chain. The essence of testability is visibility (what's going on in

the software under test) and control (we can change the state or data of the software under test).
Hung would say that this environment provides tremendous opportunities for a technically
knowledgeable, creative tester to develop or use tools to enhance the testability of the
application.

The gray-box tester is a more effective tester because he or she can

• Troubleshoot the system environment more effectively

• Manage the relationship between the application software and the third-party components
more efficiently

• Use tools in new ways to discover and control more aspects of the application under test

This book applies these ideas to develop thematic analyses of the problems of Web testing.
How do we test for database issues, security issues, performance issues, and so on? In each
case, we must think about the application itself, its environment, its associated components, and
tools that might make the testing more effective.

Another special feature of this book is that it was written by the president of an independent
test lab, LogiGear, that tests other companies' Web applications and publishes a Web
application of its own. Hung knows the design trade-offs that were made in his product and in
the planning and execution of the testing of this product. He also knows the technical support
record of the product in the field. The examples in this book are directly based on real
experience with a real product that had real successes and real challenges. Normally, examples
like the ones in this book would run afoul of a publisher's trade-secret policies. It is a treat
seeing this material in print.break

CEM KANER, J.D., PH.D.
PROFESSOR OF COMPUTER SCIENCES
FLORIDA INSTITUTE OF TECHNOLOGY

Page xiii

PREFACE

Testing Applications on the Web introduces the essential technologies, testing concepts, and
techniques that are associated with browser-based applications. It offers advice pertaining to
the testing of business-to-business applications, business-to-end-user applications, Web
portals, and other Internet-based applications. The primary audience is black-box testers,
software quality engineers, quality assurance staff, test managers, project managers, IT
managers, business and system analysts, and anyone who has the responsibility of planning and
managing Web-application test projects.

Testing Applications on the Web begins with an introduction to the client-server and Web
system architectures. It offers an in-depth exploration of Web application technologies such as
network protocols, component-based architectures, and multiple server types from the testing
perspective. It then covers testing practices in the context of various test types from user
interface tests to performance, load, and stress tests. Chapters 1 and 2 present an overview of

Web testing. Chapters 3 through 5 cover methodology and technology basics, including a
review of software testing basics, a discussion on networking, and an introduction to
component-based testing. Chapters 6 through 8 discuss testing planning fundamentals, a sample
application to be used as an application under test (AUT) illustrated throughout the book, and a
sample test plan. Chapters 9 through 16 discuss test types that can be applied to Web testing.
Finally, Chapters 17 and 18 offer a survey of Web testing tools and suggest where to go for
additional information.

Testing Applications on the Web answers testing questions such as, "How do networking
hardware and software affect applications under test?" "What are Web application
components, and how do they affect my testing strategies?" "What is the role of a back-end
database, and how do I test for database-related errors?" "What are performance, stress, and
load tests—and how do I plan for and execute them?'' "What do I need to know about security
testing, and what are my testing responsibilities?"

With a combination of general testing methodologies and the information contained in this
book, you will have the foundation required to achieve these testing goals—maximizing
productivity and minimizing quality risks in a Web application environment.

Testing Applications on the Web assumes that you already have a basic understanding of
software testing methodologies such as test planning, test-case design, and bug report writing.
Web applications are complex systems that involve numerous components: servers, browsers,
third-party software and hardware, protocols, connectivity, and much more. This book enables
you to apply your existing testing skills to the testing of Web applications.

This book is not an introduction to software testing. If you are looking for fundamental software
testing practices, you will be better served by reading Testing Computercontinue

Page xiv

Software 2nd ed., by Kaner et al. (1993). If you are looking for scripting techniques or ways to
use test automation effectively, I recommend you read Software Test Automation by Fewster
and Graham (2000). For additional information on Web testing and other testing techniques and
resources, visit www.QAcity.com.

I have enjoyed writing this book and teaching the Web application testing techniques that I use
every day to test Web-based systems. I hope that you will find here the information you need to
plan for and execute a successful testing strategy that enables you to deliver high-quality
applications in an increasingly distributed-computing, market-driven, and time-constrained
environment of this Internet era.

Acknowledgments

While my name appears on the cover, over the years, many people have helped with the
development of this book. I want to particularly thank Cem Kaner and Bob Johnson for their
dedication in providing thorough reviews and critical feedback, and Jesse Watkins-Gibbs and
Chris Agruss for their thoughtful suggestions. I also want to thank the following people for their
contributions (listed in alphabetical order): Joel Batts, James Bach, Kevin Carlson, William
Coleman, Debbie Goble, Thomas Heinz, Heather Ho, Ioana Ilie, Susan Kim, Johnson Leong,
Jeffrey Mainville, Denny Nguyen, Kevin Nguyen, Wendy Nguyen, Cathy Palacios, Bret

Pettichord, Myvan Quoc, Steve Schuster, Karri Simpson, Louis (Rusty) Smith, Lynette
Spruitenburg, Bob Stahl, and Joe Vallejo. Finally, I would like to thank my colleagues,
students, and staff at LogiGear Corporation for their discussions and evaluations of the Web
testing training material, which made its way into this book.

Certainly, any remaining errors in the book are mine.

About the Author

Hung Q. Nguyen is the president and CEO of LogiGear Corporation, a Silicon Valley
company that he founded in 1994, whose mission is to help software development
organizations deliver the highest-quality products possible while juggling limited resources
and schedule constraints. Today, LogiGear is a multimillion-dollar firm that offers many
value-added services, including application testing, automated testing, and Web load and
performance testing for e-business and consumer applications. The Testing Services division
specializes in Web application, handheld communication device, and consumer electronic
product testing. LogiGear also offers a comprehensive "Practical Software Testing Training
Series" and TRACKGEARTM, a powerful, flexible, and easy-to-use Web-based defect
tracking solution. Hung Nguyen develops training materials and teaches software testing to the
public at universities and conferences, as well as at numerous well-known domestic and
international software companies. In the past 2 decades, Hung has held management positions
in engineering, quality assurance, testing, product development, and information technology.
Hung is coauthor of the best-selling book, Testing Computer Software (Wiley, 1999). He
holds a Bachelor of Science in Quality Assurance from Cogswell Polytechnical College, and is
an ASQ-Certified Quality Engineer and active senior member of American Society for Quality.
You can reach Hung at hungn@logigear.com, or obtain more information about LogiGear
Corporation and his work at www.logigear.com.break

Page 1

PART ONE—
INTRODUCTION

Page 3

Chapter 1—
Welcome to Web Testing*

Why Read This Chapter?

The goal of this book is to help you effectively plan for and conduct the testing of Web-based
applications. This book will be more helpful to you if you understand the philosophy behind its
design.

Software testing practices have been improving steadily over the past few decades. Yet, as
testers, we still face many of the same challenges that we have faced for years. We are
challenged by rapidly evolving technologies and the need to improve testing techniques. We
are also challenged by the lack of research on how to test for and analyze software errors from
their behavior, as opposed to at the source code level. Finally, we are challenged by the lack
of technical information and training programs geared toward serving the growing population
of the not-yet-well-defined software testing profession. Yet, in today's world on Internet time,
resources and testing time are in short supply. The quicker we can get the information that we
need, the more productive and more successful we will be at doing our job. The goal of this
book is to help you do your job effectively.break

* During the writing of this book, I attended the Ninth Los Altos Workshop on Software Testing
(LAWST) in March 2000. The topic of discussion was gray-box testing. I came away with a firmed
thought and a comfortable feeling of a discovery that the testing approach I have been practicing is a
version of gray-box testing. I thank the LAWST attendees—III, Chris Agruss, Richard Bender, Jaya
Carl, Ibrahim (Bob) El-Far, Jack Falk, Payson Hall, Elisabeth Hendrickson, Doug Hoffman, Bob
Johnson, Mark Johnson, Cem Kaner, Brian Lawrence, Brian Marick, Hung Nguyen, Noel Nyman, Bret
Pettichord, Drew Pritsker, William (B.J.) Rollison, Melora Svoboda, and James Whitaker—for
sharing their views and analyses.

Page 4

Topics Covered in This Chapter

• Introduction

• The Evolution of Software Testing

• The Gray-Box Testing Approach

• Real-World Software Testing

• Themes of This Book

Introduction

This chapter offers a historical perspective on the changing objectives of software testing. It
touches on the gray-box testing approach and suggests the importance of having a balance of
product design, both from the designer's and the user's perspective, and system-specific
technical knowledge. It also explores the value of problem analysis to determine what to test,
when to test, and where to test. Finally, this chapter will discuss what assumptions this book
has about the reader.

The Evolution of Software Testing

As the complexities of software development have evolved over the years, the demands placed
on software engineering, information technology (IT), and software quality professionals, have
grown and taken on greater relevance. We are expected to check whether the software

performs in accordance with its intended design and to uncover potential problems that might
not have been anticipated in the design. Test groups are expected to offer continuous
assessment on the current state of the projects under development. At any given moment, they
must be prepared to report explicit details of testing coverage and status, and all unresolved
errors. Beyond that, testers are expected to act as user advocates. This often involves
anticipating usability problems early in the development process so those problems can be
addressed in a timely manner.

In the early years, on mainframe systems, many users were connected to a central system. Bug
fixing involved patching or updating the centrally stored program. This single fix would serve
the needs of hundreds or thousands of individuals who used the system.

As computing became more decentralized, minicomputers and microcomputers were run as
stand-alone systems or on smaller networks. There were many independent computers or local
area networks and a patch to the code on one of these computers updated relatively fewer
people. Mass-market software companies sometimes spent over a million dollars sending disks
to registered customers just to fix a serious defect. Additionally, technical support costs
skyrocketed.break

Page 5

As the market has broadened, more people use computers for more things, they rely more
heavily on computers, and the consequences of software defects rise every year. It is
impossible to find all possible problems by testing, but as the cost of failure has gone up, it has
become essential to do risk-based testing. In a risk-based approach, you ask questions like
these:

• Which areas of the product are so significant to the customer or so prone to serious failure
that they must be tested with extreme care?

• For the average area, and for the program as a whole, how much testing is enough?

• What are the risks involved in leaving a certain bug unresolved?

• Are certain components so unimportant as to not merit testing?

• At what point can a product be considered adequately tested and ready for market?

• How much longer can the product be delayed for testing and fixing bugs before the market
viability diminishes the return on investment?

Tracking bugs and assessing their significance are priorities. Management teams expect
development and IT teams, testing and quality assurance staff, to provide quantitative data
regarding test coverage, the status of unresolved defects, and the potential impact of deferring
certain defects. To meet these needs, testers must understand the products and technologies they
test. They need models to communicate assessments of how much testing has been done in a
given product, how deep testing will go, and at what point the product will be considered
adequately tested. Given better understanding of testing information, we make better
predictions about quality risks.

In the era of the Internet, the connectivity that was lost when computing moved from the

mainframe model to the personal computer (PC) model, in effect, has been reestablished.
Personal computers are effectively networked over the Internet. Bug fixes and updated builds
are made available—sometimes on a daily basis—for immediate download over the Internet.
Product features that are not ready by ship date are made available later in service packs. The
ability to distribute software over the Internet has brought down much of the cost that is
associated with distributing some applications and their subsequent bug fixes.

Although the Internet offers connectivity for PCs, it does not offer the control over the client
environment that was available in the mainframe model. The development and testing
challenges with the Graphical User Interface (GUI) and event-based processing of the PC are
enormous because the clients attempt remarkably complex tasks on operating systems (OSs) as
different from each other as Unix, Macintosh OS, Linux, and the Microsoft OSs. They run
countless combinations of processors, peripherals, and application software. Additionally, the
testing of an enterprise client-server system may require the consideration of thousands of
combinations of OSs, modems, routers, and server-software packages. Web applications
increase this complexity further by introducing browsers and Web servers into the mix.

Software testing plays a more prominent role in the software development process than it ever
has before (or at least it should). Companies are allocating more money and resources for
testing because they understand that their reputations rest on the quality of their products. The
competitiveness of the computing industry (not to mention the savvy of most computer users)
has eliminated most tolerance for buggy soft-soft

Page 6

ware. Yet, many companies believe that the only way to compete in Internet time is to develop
software as rapidly as possible. Short-term competitive issues often outweigh quality issues.
One consequence of today's accelerated development schedules is the industry's tendency to
push software out into the marketplace as early as possible. Development teams get less and
less time to design, code, test, and undertake process improvements. Market constraints and
short development cycles often do not allow time for reflection on past experience and
consideration of more efficient ways to produce software.

The Gray-Box Testing Approach

Black-box testing focuses on software's external attributes and behavior. Such testing looks at
an application's expected behavior from the user's point of view. White-box testing (also
known as glass-box testing), on the other end of the spectrum, tests software with knowledge of
internal data structures, physical logic flow, and architecture at the source code level.
White-box testing looks at testing from the developer's point of view. Both black-box and
white-box testing are critically important complements of a complete testing effort.
Individually, they do not allow for balanced testing. Black-box testing can be less effective at
uncovering certain error types, such as data-flow errors or boundary condition errors at the
source level. White-box testing does not readily highlight macrolevel quality risks in operating
environment, compatibility, time-related errors, and usability.

Gray-box testing incorporates elements of both black-box and white-box testing. It considers
the outcome on the user end, system-specific technical knowledge, and operating environment.
It evaluates application design in the context of the interoperability of system components. The

gray-box testing approach is integral to the effective testing of Web applications because Web
applications comprise numerous components, both software and hardware. These components
must be tested in the context of system design to evaluate their functionality and compatibility.

Gray-box testing consists of methods and tools derived from the knowledge of the application
internals and the environment with which it interacts, that can be applied in black-box testing to
enhance testing productivity, bug finding, and bug analyzing efficiency.
—Hung Q. Nguyen

Here are several other unofficial definitions for gray-box testing from the Los Altos Workshop
on Software Testing (LAWST) IX. For more information on LAWST, visit www.kaner.com.

Gray-box testing—Using inferred or incomplete structural or design information to expand or focus
black-box testing
—Dick Bender

Gray-box testing—Tests designed based on the knowledge of algorithms, internal states,
architectures, or other high-level descriptions of program behavior
—Doug Hoffman

Gray-box testing—Tests involving inputs and outputs, but test design is educated by information about
the code or the program operation of a kind that would normally be out of scope of the view of the
tester
—Cem Kanerbreak

Page 7

Gray-box testing is well suited for Web application testing because it factors in high-level
design, environment, and interoperability conditions. It will reveal problems that are not as
easily considered by a black-box or white-box analysis, especially problems of end-to-end
information flow and distributed hardware/software system configuration and compatibility.
Context-specific errors that are germane to Web systems are commonly uncovered in this
process.

Another point to consider is that many of the types of errors that we run into in Web
applications might be well discovered by black-box testers, if only we had a better model of
the types of failures for which to look and design tests. Unfortunately, we are still developing a
better understanding of the risks that are associated with the new application and
communication architectures. Therefore, the wisdom of traditional books on testing [e.g.,
Testing Computer Software (Kaner et al., 1993)] will not fully prepare the black-box tester to
search for these types of errors. If we are equipped with a better understanding of the system as
a whole, we'll have an advantage in exploring the system for errors and in recognizing new
problems or new variations of older problems.

As testers, we get ideas for test cases from a wide range of knowledge areas. This is partially
because testing is much more effective when we know what types of bugs we are looking for.
We develop ideas of what might fail, and of how to find and recognize such a failure, from
knowledge of many types of things [e.g., knowledge of the application and system architecture,
the requirements and use of this type of application (domain expertise), and software
development and integration]. As testers of complex systems, we should strive to attain a broad
balance in our knowledge, learning enough about many aspects of the software and systems
being tested to create a battery of tests that can challenge the software as deeply as it will be

challenged in the rough and tumble of day-to-day use.

Finally, I am not suggesting that every tester in a group be a gray-box tester. I have seen a high
level of success in several test teams that have a mix of different types of testers, with different
skill sets (e.g., subject matter expert, database expert, security expert, API testing expert, test
automation expert, etc.). The key is, within that mix, at least some of the testers must understand
the system as a collection of components that can fail in their interaction with each other, and
these individuals must understand how to control and how to see those interactions in the
testing and production environments.

Real-World Software Testing

Web businesses have the potential to be high-profit ventures. Venture capitalists can support a
number of losing companies as long as they have a few winners to make up for their losses. A
CEO has 3 to 4 years to get a start-up ready for IPO (6 months to prove that the prototype
works, 1 or 2 years to generate some revenue—hence, justifying the business model—and the
remainder of the time to show that the business can be profitable someday). It is always a
challenge to find enough time and qualified personnel to develop and deliver quality products
in such a fast-paced environment.break

Page 8

Although standard software development methodologies such as Capability Maturity Model
(CMM) and ISO-9000 have been available, they are not yet well accepted by aggressive
start-up companies. These standards and methods are great practices, but the fact remains that
many companies will rely on the efforts of a skilled development and testing staff, rather than a
process that they fear might slow them down. In that situation, no amount of improved standards
and process efficiencies can make up for the efforts of a skilled development and testing staff.
That is, given the time and resource constraints, they still need to figure out how to produce
quality software.

The main challenge that we face in Web application testing is learning the associated
technologies to have a better command over the environment. We need to know how Web
technologies affect the interoperability of software components, as well as Web systems as a
whole. Testers also need to know how to approach the testing of Web-based applications. This
requires being familiar with test types, testing issues, common software errors, and the
quality-related risks that are specific to Web applications. We need to learn, and we need to
learn fast. Only with a solid understanding of software testing basics and a thorough knowledge
of Web technologies can we competently test Web-based systems.

Themes of This Book

The objective of this book is to introduce testers into the discipline of gray-box testing, by
offering readers information about the interplay of Web applications, component architectural
designs, and their network systems. I expect that this will help testers develop new testing
ideas, enabling them to uncover and troubleshoot new types of errors and conduct more
effective root-cause analyses of software failures discovered during testing or product use. The
discussions in this book focus on determining what to test, where to test, and when to test. As
appropriate, real-world testing experiences and examples of errors are included.

To effectively plan and execute the testing of your Web application, you need to possess the
following qualities: good software testing skill; knowledge of your application, which you will
need to provide; knowledge of Web technologies; understanding of the types of tests and their
applicability to Web application; knowledge of several types of Web application-specific
errors (so you know what to look for); and knowledge of some of the available tools and their
applicability, which this book offers you. (See Figure 1.1.)

Based on this knowledge and skill set, you can analyze the testing requirements to come up
with an effective plan for your test execution. If this is what you are looking for, this book is for
you. It is assumed that readers have a solid grasp of standard software testing practices and
procedures.

TESTER RESPONSIBILITIES

• Identifying high-risk areas that should be focused on in test planning

• Identifying, analyzing, and reproducing errors effectively within Web environments (which
are prone to multiple environmental and technological variables)break

Page 9

Figure 1.1
Testing skill and knowledge.

• Capitalizing on existing errors to uncover more errors of the same class, or related classes

To achieve these goals, you must have high-level knowledge of Web environments and an
understanding of how environmental variables affect the testing of your project. The
information and examples included in this book will help you to do just that.

There is one last thing to consider before reading on. Web applications are largely
platform-transparent. However, most of the testing and error examples included in this book
are based on Microsoft technologies. This allows me to draw heavily on a commercial product
for real examples. While I was researching this book, my company built TRACKGEARTM, a
Web-based defect-tracking solution that relies on Microsoft technologies. As the president of
that company, I can lay out engineering issues that were considered in the design and testing of
the product that testing authors cannot normally reveal (because of nondisclosure contracts)

about software that they have developed or tested. My expectation, however, is that the testing
fundamentals should apply to technologies beyond Microsoft.break

Page 11

Chapter 2—
Web Testing versus Traditional Testing

Why Read This Chapter?

Web technologies require new testing and bug analysis methods. It is assumed that you have
experience in testing applications in traditional environments; what you may lack, however, is
the means to apply your experience to Web environments. To effectively make such a
transition, you need to understand the technology differences between traditional testing and
Web testing.break

Topics Covered in This Chapter

• Introduction

• The Application Model

• Hardware and Software Differences

• The Differences between Web and Traditional Client-Server Systems

• Web Systems

• Your Bugs Are Mine

• Back-End Data Accessing

• Thin Client versus Thick Client

• Interoperability Issues

• Testing Considerations

• Bibliography

Page 12

Introduction

This chapter presents the application model and shows how it applies to mainframes, PCs, and
ultimately, Web/client-server systems. It explores the technology differences between
mainframes and Web/client-server systems, as well as the technology differences between PCs

and Web/client-server systems. Testing methods that are suited to Web environments are also
discussed.

Although many traditional software testing practices can be applied to the testing of Web-based
applications, there are numerous technical issues that are specific to Web applications that
need to be considered.

The Application Model

Figure 2.1 illustrates how humans interact with computers. Through a user interface (UI), users
interact with an application by offering input and receiving output in many different forms:
query strings, database records, text forms, and so on. Applications take input, along with
requested logic rules, and manipulate data; they also perform file reading and writing
[input/output (I/O)]. Finally, results are passed back to the user through the UI. Results may
also be sent to other output devices, such as printers.

In traditional mainframe systems, as illustrated in Figure 2.2, all of an application's processes,
except for UI functions, occur on the mainframe computer. User interface functions take place
on dumb terminals that simply echo text from the mainframe. No processing occurs on the
terminals themselves. The network connects the dumb terminals to the mainframe.
Dumb-terminal UIs are text-based (nongraphical). Users send data and commands to the system
via keyboard inputs.

Desktop PC systems, as illustrated in Figure 2.3, consolidate all processes—from UI, through
rules, to file systems—on a single physical box. No network is required for a desktop PC.
Desktop PC applications can support either a text-based UI (command-hard

Figure 2.1
The application model.

Page 13

Figure 2.2
Mainframe systems.

line) or a Graphical User Interface (GUI). In addition to keyboard input events, GUI-based
applications also support mouse input events such as click, double-click, mouse-over,
drag-and-drop, and so on.

Client-server systems, upon which Web systems are built, require a network and at least two
machines to operate: a client computer and a server computer, which serves requested data to
the client computer. With the vast majority of Web applications, a Web browser serves as the
UI on the client computer.

The server receives input requests from the client and manipulates the data by applying the
application's business logic rules. Business logic rules are the processes that an application is
designed to carry out based on user input—for example, sales tax might be charged to any
e-commerce customer who enters a California mailing address. Another example includes
customers over age 35 who respond to a certain online survey being mailed a brochure
automatically. This type of activity may require reading or writing to a database. Data is sent
back to the client as output from the server. The results are then formatted and displayed in the
client browser.

The client-server model, and consequently the Web application model, is not as neatly
segmented as that of the mainframe and the desktop PC. In the client-server model, not only can
either the client or the server handle some of the processing work, but server-side processes
can be divided between multiple physical boxes (application server, Web server, database
server, etc.). Figure 2.4, one of many possible client-server models, depicts I/O and logic rules
handled by an application server (the server in the center) while a database server (the server
on the right) handles data storage. The dotted lines in the illustration indicate processes that
may take place oncontinue

Page 14

Figure 2.3
Desktop PC systems.

either the client side or the server side. See Chapter 5, ''Web Application Components," for
information regarding server types.

A Web system may comprise any number of physical server boxes, each handling one or more
server types. Later in this chapter, Table 2.1 illustrates some of the possible three-box server
configurations. Note that the example is relatively a basic system. A Web system may contain
multiple Web servers, application servers, and multiple database servers (such as a server
farm, a grouping of similar server types that share workload). Web systems may also include
other server types, such as e-mail servers, chat servers, e-commerce servers, and user profile
servers. See the Chapter 5, "Web Application Components," for more information.

Keep in mind that it is software, not hardware, that defines clients and servers. Simply put,
clients are software programs that request services from other software programs on behalf of
end users. Servers are software programs that offer services. Additionally, client-server is
also an overloaded term. It is only useful from the perspective of describing a system. A server
may, and often does, become a client in the chain of requests.

Hardware and Software Differences

Mainframe systems (Figure 2.5) are traditionally controlled environments—meaning that
hardware and software are primarily supported, end to end, by the same manufacturer. A
mainframe with a single operating system, and applications sold and sup-soft

Page 15

Figure 2.4
Client-server systems.

ported by the same manufacturer, can serve multiple terminals from a central location.
Compatibility issues can be readily managed in such an environment.

A single desktop PC system comprises mixed hardware and software—multiple hardware
components built and supported by different manufacturers, multiple operating systems, and
nearly limitless combinations of software applications. Configurationcontinue

Figure 2.5
Controlled hardware and software environment.

Page 16

and compatibility issues become difficult or almost impossible to manage in this environment.

A Web system consists of many clients as well as server hosts (computers). The system
various flavors of hardware components and software applications begin to multiply. The

server side of Web systems may also support a mixture of software and hardware and,
therefore, are more complex than mainframe systems, from the configuration and compatibility
perspectives. See Figure 2.6 for an illustration of a client-server system running on a local area
network (LAN).

The GUI of the PC makes multiple controls available on screen at any given time (e.g., menus,
pull-down lists, help screens, pictures, and command buttons.). Consequently, event-driven
browsers are also produced, taking advantage of the event-handling feature offered by the
operating system (OS). However, event-based GUI (data input coupled with events)
applications are more difficult to test. For example, each event applied to a control in a GUI
may affect the behavior of other controls. Also, special dependencies can exist between GUI
screens; interdependencies and constraints must be identified and tested accordingly.break

Figure 2.6
A client-server system on a LAN.

Page 17

The Differences between Web and Traditional Client-Server Systems

The last two sections point out the application architecture, and hardware and software
differences among the mainframe, PC, and Web/client-server systems. This section will
continue that theme. We will begin to explore additional differences between Web and
traditional systems so that appropriate considerations can be formulated specifically for testing
Web applications.

Client-Side Applications

As illustrated in Figure 2.7, most client-server systems are data access applications. A client

typically enables users, through the UI, to send input data, receive output data, and interact with
the back end (for example, sending a query command). Clients of traditional client-server
systems are platform-specific. That is, for each supported client platform (e.g., Windows 16-
and 32-bit, Solaris, Linux, Macintosh, etc.), a client application will be developed and tested
for that target platform.

Most Web-based systems are also data access applications. The browser-based clients are
designed to handle similar activities to those supported by a traditional client. The main
difference is that the Web-based client is running in the context of a Webcontinue

Figure 2.7
Client-server versus Web-based clients.

Page 18

browser. Web browsers consist of platform-specific client software running on a client
computer. It renders static HyperText Markup Language (HTML) as well as active contents to
display Web page information. Several popular browsers also support active content such as
client-side scripting, Java applet, ActiveX control, cascading style sheet (CSS), dynamic
HTML, security features, and other goodies. To do this, browser vendors must create rendering
engines and interpreters to translate and format HTML contents. In making these software
components, incompatibility issues are introduced among various browsers and their releases.
See Chapters 9, "User Interface Tests," and 14, "Configuration and Compatibility Tests," for
more information.

From the application producer's perspective, there is no need to develop platform-specific
clients. Delivering platform-specific Web browsers is, rather, a responsibility of Web browser
vendors (e.g., Netscape, Microsoft, AOL, etc.). In theory, if your HTML contents are designed
to conform with HTML 3.0 standard, your client application should run properly in any
browser that supports HTML 3.0 standard from any vendor.

In practice, we will find ourselves working laboriously to address vendor-specific

incompatibility issues introduced by each browser and its various releases. At the writing of
this book, the golden rule is "Web browsers are not created equal."

Event Handling

In the GUI and event-driven model, inputs are driven by events. Events are actions taken by
users, such as mouse movements and clicks, or the input of data through a keyboard. Some
objects (e.g., a push button) may receive mouse-over events whenever a mouse passes over
them. A mouse single-click is an event. A mouse double-click is a different kind of event. A
mouse-click with a modifier key such as Ctrl is yet another type of event. Depending on the
type of event initiated on a particular UI object, certain procedures in an application may be
executed. In an event-driven environment, these procedures are referred to as event-handling
code.

Testing event-driven applications is more complicated because it's very labor intensive to
cover the testing of many combinations and sequence of events. Simply identifying all possible
combinations of events can be a challenge because some actions trigger multiple events.

Browser-based applications introduce a different flavor of event-handling support. Because
Web browsers were originally designed as a data presentation tool, there was no need for
interactions other than single-clicking for navigation and data submission, and mouse-over
ALT attribute for an alternate description of graphic. Therefore, standard HTML controls such
as form-based control and hyperlinks are limited to single-click events. Although script-based
events can be implemented to recognize other events such as double-clicking and
drag-and-drop, it's not natural in the Web-based user interface to do so. Not to mention that
those other events also cause incompatibility problems among different browsers. In
Web-based applications, users may click links that generate simulated dialog boxes (the server
sending back a page that includes tables, text fields, and other UI objects). Users may interact
with browser-based UI objects in the process of generating input for the application. In turn,
events are generated. Some of the event-handling code is in scripts that are embedded in the
HTMLcontinue

Page 19

page and executed on the client side. Some are in UI components (such as Java applets and
ActiveX controls) embedded in the HTML page and executed on the client side. Others are
executed on the server side. Understanding where (client or server side) each event is handled
enables you to develop useful test cases as well as reproduce errors effectively.

Browser-based applications offer very limited keyboard event support. You can navigate
within the page using Tab and Shift-Tab keys. You can activate a hyperlink to jump to another
link or push a command button by pressing the Enter key while the hyperlink text, graphic, or a
button is highlighted. Supports for keyboard shortcuts and access keys, such as Alt-[key] or
Ctrl-[key], are not available.

Another event-handling implication in browser-based applications is in the one-way request
and submission model. The server generally does not receive commands or data until the user
explicitly clicks a button such as "Submit" to submit form data, or the user may request data
from the server by clicking a link. This is referred to as the explicit submission model. If the
user simply closes down a browser but does not explicitly click on a button to save data or to

log off, data will not be saved and the user is still considered logged on (on the server side).

Application Instance and Windows Handling

Standard event-based applications may support multiple instances, meaning that the same
application can be loaded into memory many times as separate processes. Figure 2.8 shows
two instances of Microsoft Word application.break

Figure 2.8
Multiple application instances.

Page 20

Similarly, multiple instances of a browser can run simultaneously. With multiple browser
instances, users may be able to log into the same Web-based application and access the same
data table—on behalf of the same user or different users. Figure 2.9 illustrates two browser
instances, each accessing the same application and data using the same or different user ID and
password.

From the application's perspective, keeping track of multiple instances, the data, and the users
who belong to each instance can be problematic. For example, a regular user has logged in
using one instance of the browser. An Admin user has also logged into the same system using
another instance for the browser. It's common that the application server may mistakenly
receive data from and send data to one user thinking that the data belongs to the other users.
Test cases that uncover errors surrounding multiple-instance handling should be thoroughly
designed and executed.

Within the same instance of a standard event-based application, multiple windows may be
opened simultaneously. Data altered in one of an application's windows may affect data in
another of the application's windows. Such applications are referred to as multiple document
interface (MDI) applications (Figure 2.10). Applications that allow only one active window at
a time are known as single document interface (SDI) applica-soft

Figure 2.9
Multiple application windows.

Page 21

Figure 2.10
Multiple document interface (MDI) application.

tions (Figure 2.11). Single document interface applications allow users to work with only one
document at a time.

Microsoft Word (Figure 2.10) is an example of an MDI application. Notepad (Figure 2.11) is
an example of a SDI application.

Multiple document interface applications are more interesting to test because they might fail to
keep track of events and data that belong to multiple windows. Test cases designed to uncover
errors caused by the support of multiple windows should be considered.break

Figure 2.11
Single document interface (SDI) application.

Page 22

Multiple document interface or multiple windows interface is only available for clients in a
traditional client-server system. The Web browser interface is flat and nonlinear; therefore, it
does not support MDI. It's flat because it can only display one page at the time. It's nonlinear
(there is no hierarchical structure) because one can easily jump to several links and quickly
lose track of the original position.

UI Controls

In essence, an HTML page that is displayed by a Web browser consists of text, hyperlinks,
graphics, frames, tables, forms, and balloon help text (ALT tag). Basic browser-based
applications do not support dialog boxes, message boxes, toolbars, status bars, and other
common UI controls. Extra effort can be put in to take advantage of Java applets, ActiveX
controls, scripts, CSS, and other helper applications to go beyond the basic functionality.
However, there will be compatibility issues among different browsers.

Web Systems

The complexities of the PC model are multiplied exponentially in Web systems (Figure 2.12).
In addition to the testing challenges that are presented by multiple client PCs, the server side of
Web systems involves hardware of varying types and a software mix of OSs, service
processes, server packages, and databases.

Hardware Mix

With Web systems and their mixture of flavors of hardware to support, the environment can
become very difficult to control. Web systems have the capacity to use machines of different
platforms, such as Unix, Windows NT, and Macintosh boxes. A Web system might include a

Unix server that is used in conjunction with other servers that are either Windows-based or
Macintosh-based. Web systems may also include mixtures of models from the same platform
(on both the client and server sides). Such hardware mixtures present testing challenges
because different computers in the same system may employ different OSs, CPU speeds, buses,
I/O interfaces, and more. Each variation can potentially cause problems.

Software Mix

At the highest level, as illustrated in Figure 2.12, Web systems may consist of various OSs,
Web servers, application servers, middleware, e-commerce servers, database servers, major
enterprise resource planning (ERP) suites, firewalls, and browsers. Application development
teams often have little control over the kind of environment into which their applications are
installed. In producing software for mainframe systems, development was tailored to one
specific system. Today, for Web systems, software is often designed to run on a wide range of
hardware and OS combinations, and risks of software incompatibility are always present. An
example iscontinue

Page 23

Figure 2.12
Web system achitecture

Page 24

that different applications may not share the same versions of a database server. On the
Microsoft platform, a missing or incompatible DLL (dynamic link library) is another example.
(Dynamic link libraries are software components that can exist on both the client and server
sides whose functions can be called by multiple programs on demand.)

Another problem inherent in the simultaneous use of software from multiple vendors is that
when each application undergoes a periodic upgrade (client or server side), there is a chance
that the upgrades will not be compatible with preexisting software.

A Web system software mix may include any combination of the following:

• Multiple operating systems

• Multiple software packages

• Multiple software components

• Multiple server types, brands, and models

• Multiple browser brands and versions

Server-Based Applications

Server-based applications are different from client applications. For one, server-based
applications are programs that don't have a UI with which the end users of the system interact.
End users only interact with the client-side application. In turn, the client interacts with
server-based applications to access functionality and data via communication protocols,
application programming interface, and other interfacing standards. Second, server-based
applications run unattended. That is, when a server-based application is started, it's intended to
stay up, waiting to provide services to client applications whether there is any client out there
requesting services. In contrast, to use a client application, an end user must explicitly launch
the client application and interact with it via a UI. Therefore, to black-box testers,
server-based applications are black boxes. You may ask: ''So it also is with desktop
applications. What's the big deal?" Here is an example. When a failure is caused by an error in
a client-side or desktop application, the users or testers can provide essential information that
helps reproduce or analyze the failure because they are right in front of the application.
Server-based applications or systems are often isolated away from the end users. When a
server-based application fails, as testers or users from the client side, we often don't know
when it failed, what happened before it failed, who was or how many users were on the system
at the time it failed, and so on. This makes bug reproducibility even more challenging for us. In
testing Web systems, we need a better way to track what goes on with applications on the
server side. One of the techniques used to enhance our failure reproducibility capability is
event logging. With event logging, server-based applications can record activities to a file that
might not be normally seen by an end user. When an application uses event logging, the
recorded information that is saved can be read in a reliable way. Have discussions with your
developers and information technology staff to determine how event logging can be
incorporated into the testing process.break

Page 25

Distributed Server Configurations

Server software can be distributed among any number of physical server boxes, which further
complicates testing. Table 2.1 illustrates several possible server configurations that a Web
application may support. You should identify the configurations that the application under test
claims to support. Matrices of all possible combinations should be developed, and testing
should be executed on each configuration to ensure that application features are intact.

The Network

The network is the glue that holds Web systems together. It connects clients to servers and
servers to servers. This variable introduces new testing issues including reliabil-soft

Table 2.1 Distributed Server Configurations

BOX 1 BOX 2 BOX 3

One-box model NT-based Web server

NT-based application server

NT-based database server

Two-box model NT-based Web server NT-based database server

NT-based application server

Three-box model NT-based Web server NT-based Web server Unix-based database
server

NT-based application server NT-based application server

One-box model Unix-based Web server

Unix-based application server

Unix-based database server

Two-box model Unix-based Web server Unix-based database server

Unix-based application server

Three-box model NT-based Web server NT-based Web server NT-based database
server

NT-based application server NT-based application server

Page 26

ity, inaccessibility, performance, security, configuration, and compatibility. As illustrated in
Figure 2.12, the network traffic may consist of several protocols supported by the TCP/IP
network. It's also possible to have several networks using different net OSs connecting to each
other by gateways. Testing issues related to the network can be a challenge or beyond the reach
of black-box testing. However, understanding the testing-related issues surrounding the
network enables us to better define testing problems and ask for appropriate help. See Chapter
4, "Network Basics," for more information.

Your Bugs Are Mine

It is common for Web applications to be built of preexisting objects or components that have

been strung together. They may also be built of preexisting applications that have been strung
together. In either scenario, the newly created systems are subject to whatever bugs may have
existed in the original objects.

One of the important benefits of both object-oriented programming (OOP) and
component-based programming is reusability. (The difference between OOP and
component-based software is in the deliverable: OOP features are delivered in source, and
classes are created or derived from the base class. Component-based software components,
however, are delivered in binary forms, such as DLLs). As to reusability, a developer can take
advantage of preexisting features created by other developers (with proper permission) by
incorporating those features into his or her own application—rather than writing the code from
scratch. In effect, code is recycled, eliminating the need to rewrite existing code. This model
helps accelerate development time, reduces the amount of code that needs to be written, and
maintains consistency between applications.

The potential problem with this shared model is that bugs are passed along with components.
Web applications, due to their component-based architecture, are particularly vulnerable to the
sharing of bugs.

At the low level, the problem has two major impacts on testing. First, existing objects or
components must be tested thoroughly before their functionality can be used by other
applications or objects. Second, regression testing (see "Regression Testing" in Chapter 3,
"Software Testing Basics," for more information) must be executed comprehensively. Even a
small change in a parent object can alter the functionality of an application or object that uses
it.

This problem is not new. Object-oriented programming and component-based software have
long been used in PCs. With the Web system architecture, however, the problem is multiplied
due to the fact that components are shared across servers on a network. The problem is further
exacerbated by the demand that software be developed in increasingly shorter time.

At the higher level, bugs in server packages such as Web servers and database servers, and
bugs in Web browsers themselves, will also have an effect on the software under test. See
Chapter 5, "Web Application Components," for more information.break

Page 27

Back-End Data Accessing

Data in a Web system is often distributed. That is, it resides on one or more (server) computers
other than the client computer. There are several methods of storing data on a back-end server.
For example, data can be stored in flat files, in a nonrelational database, in a relational
database, or in an object-oriented database. In a typical Web application system, it's common
that a relational database is employed so that data accessing and manipulation can be more
efficient comparing to flat-file database.

In a flat-file system, when a query is initiated, the results of that query are dumped into files on
a storage device. An application then opens, reads, and manipulates data from these files and
generates reports on behalf of the user. To get to the data, the applications need to know exactly
where files are located and what their names are. Access security is usually imposed at the

application level.

In contrast, a database, such as a relational database, stores data in tables of records. Through
the database engine, applications access data by getting a set of records without knowing
where the physical data files are located or what they are named. Data in relational databases
are accessed via database names (not to be mistaken with file names) and table names.
Relational database files can be stored on multiple servers. Web systems using a relational
database can impose security at the application server level, the database server level, as well
at the database user level.

Thin-Client versus Thick-Client Processing

Thin client versus thick client is concerned with where applications and components reside
and execute. Components may reside on a client machine and on one or more server machines.
The two possibilities are:

Thin client. With thin-client systems, the client PC does very little processing. Business logic
rules are executed on the server side. Some simple HTML Web-based applications and
hand-held devices utilize this model. This approach centralizes processing on the server and
eliminates most client-side incompatibility concerns. (See Table 2.2.)

Thick client. The client machine runs the UI portion of the application as well as the execution
of business logic. In this case, the browser not only has to format the HTML page, but it also
has to execute other components such as Java applet and ActiveX. The server machine houses
the database that processes data requests from the client. Processing is shared between client
and server. (See Table 2.3.)break

Table 2.2 Thin Client

DESKTOP PC SERVER

THIN CLIENT

UI Application rules

Database

Page 28

Table 2.3 Thick Client

DESKTOP PC SERVER

THICK CLIENT

UI Database

Application rules

The PC doing much of a system's work (i.e., executing business logic rules, DHTML, Java
applets, ActiveX controls, or style sheets on the client side) is referred to as thick-client
processing. Thick-client processing relieves processing strain on the server and takes full
advantage of the client processor. With thick-client processing, there are likely to be more

incompatibility problems on the client side.

Thin-client versus thick-client application testing issues revolve around the compromises
among feature, compatibility and performance issues.

For more information regarding thin-client versus thick-client application, please see Chapter
5, "Web Application Components."

Interoperability Issues

Interoperability is the ability of a system or components within a system to interact and work
seamlessly with other systems or other components. This is normally achieved by adhering to
certain application program interfaces (APIs), communication protocol standards, or to
interface-converting technology such as Common Object Request Broker Architecture
(CORBA) or Distributed Common Object Model (DCOM). There are many hardware and
software interoperability dependencies associated with Web systems. It is essential that our
test-planning process include study of the system architectural design.

Interoperability issues—it is possible that information will be lost or misinterpreted in
communication between components. Figure 2.13 shows a simplified Web system that includes
three box servers and a client machine. In this example, the client requests all database records
with zip code 94444 from the server side. The application server in turn queries the database
server. Now, if the database server fails to execute the query, what will happen? Will the
database server tell the application server that the query has failed? If the application server
gets no response from the database server, will it resend the query? Possibly, the application
server will receive an error message that it does not understand. Consequently, what message
will be passed back to the client? Will the application server simply notify the client that the
request must be resent or neglect to inform the client of anything at all? All of these scenarios
need to be investigated in the study of the system architectural design.break

Page 29

Figure 2.13
Interoperability.

Testing Considerations

The key areas of testing for Web applications beyond traditional testing include:

• Web UI implementation

• System integration

• Server and client installation

• Web-based help

• Configuration and compatibility

• Database

• Security

• Performance, load, and stress

For definitions for these tests, see Chapter 3 ("Software Testing Basics"). In addition, see
Chapters 9 through 16 for in-depth discussions on these tests.

Bibliography

Bourne, Kelly C. Testing Client/Server Systems. New York: McGraw-Hill, 1997.

Coffman, Gayle. SQL Server 7: The Complete Reference. Berkeley, CA:
Osborne/McGraw-Hill, 1999.break

Page 30

Kaner, Cem, et al. Testing Computer Software, second edition. New York: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

Orfali, Robert, et al. Client/Server Survival Guide, Third Edition. New York: John Wiley &
Sons, 1999.

Reilly, Douglas J. Inside Server-Based Applications. Redmond, WA: Microsoft Press,
2000.break

Page 31

PART TWO—
METHODOLOGY AND TECHNOLOGY

Page 33

Chapter 3—
Software Testing Basics

Why Read This Chapter?

In general, the software testing techniques that are applied to other applications are the same as
those that are applied to Web-based applications. Both types of testing require basic test types
such as functionality tests, forced-error tests, boundary condition and equivalence class
analysis, and so forth. The difference between the two types of testing is that the technology
variables in the Web environment multiply. Having the basic understanding in testing
methodologies, combined with a domain expertise in Web technology, will enable you to
effectively test Web applications.

Introduction

This chapter includes a review of some of the more elemental software testing principals upon
which this book is based. Basic testing terminology, practices, and test-casecontinue

Topics Covered in This Chapter

• Introduction

• Basic Planning and Documentation

• Common Terminology and Concepts

• Test-Case Development

• Bibliography

Page 34

development techniques are covered. However, a full analysis of the theories and practices that
are required for effective software testing is not a goal of this book. For more detailed
information on the basics of software testing, please refer to Testing Computer Software
(Kaner et al., 1999).

Basic Planning and Documentation

Methodical record keeping builds credibility for the testing team and focuses testing efforts.
Records should be kept for all testing. Complete test-case lists, tables, and matrices should be
collected and saved. Note that Chapter 6, "Test Planning Fundamentals," details many practical
reporting and planning processes.

There are always limits to the amount of time and money that can be invested into testing. There
are often scheduling and budgetary constraints on development projects that severely restrict
testing—for example, adequate hardware configurations may be unaffordable. For this reason,
it is important that cost justification, including potential technical support and outsourcing, be
factored into all test planning.

To be as efficient as possible, look for redundant test cases and eliminate them. Reuse test
suites and locate preexisting test suites when appropriate. Become as knowledgeable as
possible about the application under test and the technologies supporting that application. With
knowledge of the application's technologies, you can avoid wasted time and identify the most
effective testing methods available. You can also keep the development team informed about
areas of possible risk.

Early planning is key to the efficiency and cost savings that can be brought to the testing effort.
Time invested early in core functionality testing, for example, can make for big cost savings
down the road. Identifying functionality errors early reduces the risk of developers having to
make risky fixes to core functionality late in the development process when the stakes are
higher.

Test coverage (an assessment of the breadth and depth of testing that a given product will
undergo) is a balance of risk and other project concerns such as resources and scheduling
(complete coverage is virtually impossible). The extent of coverage is a negotiable concept
over which the product team will be required to give input.

Common Terminology and Concepts

Following are some essential software testing terms and concepts.

Test Conditions

Test conditions are critically important factors in Web application testing. The test conditions
are the circumstances in which an application under test operates. There are two categories of
test conditions, application-specific and environment-specific, which are described in the
following text.break

Page 35

1. Application-specific conditions. An example of an application-specific condition includes
running the same word processor spell-checking test while in normal view and then again when
in page view. If one of the tests generates an error and the other does not, then you can deduce
that there is a condition that is specific to the application that is causing the error.

2. Environment-specific conditions. When an error is generated by conditions outside of an

application under test, the conditions are considered to be environment-specific.

In general, I find it useful to think in terms of two classes of operating environments, each
having its own unique testing implications:

1. Static environments (i.e., configuration and compatibility errors). An operating
environment in which incompatibility issues may exist regardless of variable conditions such
as processing speed and available memory.

2. Dynamic environments (i.e., RAM, disc space, memory, etc.). An operating environment in
which otherwise compatible components may exhibit errors due to memory-related errors and
latency conditions.

Static Operating Environments

The compatibility differences between Netscape Navigator and Internet Explorer illustrate a
static environment.

Configuration and compatibility issues may occur at any point within a Web system: client,
server, or network. Configuration issues involve various server software and hardware setups,
browser settings, network connections, and TCP/IP stack setups. Figures 3.1 and 3.2 illustrate
two of the many possible physical server configurations, one-box and two-box, respectively.

Dynamic Operating Environments

When the value of a specific environment attribute does not stay constant each time a test
procedure is executed, it causes the operating environment to become dynamic. The attribute
can be anything from resource-specific (available RAM, disk space, etc.) to timing-specific
(network latency, the order of transactions being submitted, etc.).

Resource Contention Example

Figure 3.3 and Table 3.1 illustrate an example of a dynamic environment condition that
involves three workstations and a shared temp space. Workstation C has 400Mb of temporary
memory space on it. Workstation A asks Workstation C if it has 200Mb of memory available.
Workstation C responds with an affirmative response. What happens though if, before
Workstation A receives an answer to its request, Workstation B writes 300Mb of data to the
temp space on Workstation C? When Workstation A finally receives the response to its request
it will begin writing 200Mb of data to Workstation C—even though there will only be 100Mb
of memory available. An error condition will result.break

Page 36

Figure 3.1
One-box configuration.

Test Types

Test types are categories of tests that are designed to expose a certain class of error or verify
the accuracy of related behaviors. The analysis of test types is a good way to divide the testing
of an application methodically into logical and manageable groups of tasks. They are also
helpful in communicating required testing time and resources to other members of the product
team.

Following are a number of common test types. See Chapter 6, ''Test Planning Fundamentals,"
and Chapter 8, "Sample Test Plan," for information regarding the selection of test types.

Acceptance Testing

The two common types of acceptance tests are development acceptance tests and deployment
acceptance tests.

Development Acceptance Test

Release acceptance tests and functional acceptance simple tests are two common classes of test
used during the development process. There are subtle differences in the application of these
two classes of tests.break

Page 37

Figure 3.2
Two-box configuration.

Release Acceptance Test

The release acceptance test (RAT), also referred to as a build acceptance or smoke test, is
run on each development release to check that each build is stable enough for further testing.
Typically, this test suite consists of entrance and exit test cases plus test cases that check
mainstream functions of the program with mainstream data. Copies of the RAT can be
distributed to developers so that they can run the tests before submitting builds to the testing
group. If a build does not pass a RAT test, it is reasonable to do the following:

• Suspend testing on the new build and resume testing on the prior build until another build is
received.

• Report the failing criteria to the development team.

• Request a new build.

Functional Acceptance Simple Test

The functional acceptance simple test (FAST) is run on each development release to check that
key features of the program are appropriately accessible and functioning properly on at least
one test configuration (preferably the minimum or common configuration). This test suite
consists of simple test cases that check the lowest level ofcontinue

Page 38

Testing the Sample Application

Testing the Sample Application

STATIC OPERATING ENVIRONMENT EXAMPLE

This sample application illustrates incompatibility between a version of Netscape Navigator and
a version of Microsoft Internet Explorer. (See Chapter 7, "Sample Application," for more
information.) The application has charting functionality that enables users to generate metrics
reports, such as bar charts and line charts. When a user requests a metrics report, the application
server pseudocode runs as follows:

1. Connect to the database server and run the query.

2. Write the query result to a file named c:\temp\chart.val.

3. Execute the chart Java applet. Read and draw a graph using data from c:\temp\chart.val.

4. Send the Java applet to the browser.

During testing of the sample application, it was discovered that the charting feature works on one
of the preceding configurations, but not the other. The problem occurred only in the two-box
configuration. After examining the code, it was learned that the problem was in steps 2 and 3. In
step 2, the query result is written to c:\temp\chart.val of the database server local drive. In step
3, the chart Java applet is running on the application server, which is not in the same box as the
database server. When the database server attempts to open the file c:\temp\chart.val on the
application server local drive, the file is not found. It should not be inferred from this example
that we should read the code every time we come across an error–leave the debugging work for
the developers. It is essential, however, to identify which server configurations are problematic
and include such information in bug reports. You should consider running a cursory suite of test
cases on all distributed configurations that are supported by the application server under test.
You should also consider replicating every bug on at least two configurations that are extremely
different from each other when configuration-dependency is in suspect.

functionality for each command—to ensure that task-oriented functional tests (TOFTs) can be
performed on the program. The objective is to decompose the functionality of a program down
to the command level and then apply test cases to check that each command works as intended.
No attention is paid to the combination of these basic commands, the context of the feature that
is formed by these combined commands, or the end result of the overall feature. For example,
FAST for a File/Save As menu command checks that the Save As dialog box displays.
However, it does not validate that the overall file-saving feature works nor does it validate the
integrity of saved files.

Typically, errors encountered during the execution of FAST are reported through the standard
issue-tracking process. Suspending testing during FAST is not recommended.break

Page 39

Consider the compatibility issues involved in the following example.
• The home directory path for the Web server on the host myserver is mapped to
C:\INETPUB\WWWROOT\.

• When a page is requested from http://myserver/ , data is pulled from
C:\INETPUB\WWWROOT\.

• A file name, mychart.jar, is stored at C:\INETPUB\WWWROOT\MYAPP\BIN.

• The application session path (relative path) points to
C:\INETPUB\WWWROOT\MYAPP\BIN, and a file is requested from .\LIB.

Using Internet Explorer version 3.x, the Web server looks for the file in
C:\INETPUB\WWWROOT\MYAPP\BIN\LIB, because the browser understands relative paths.
This is the desired behavior and the file will be found in this scenario.

Using Netscape Navigator version 3.x, which uses absolute paths, the Web server looks for the
file in C:\INETPUB\WWWROOT\LIB. This is a problem because the file (mychart.jar) will not
be found. The feature does not work with this old version of Netscape Navigator (which some
people still use).

Bringing up the Java Console, you can see the following, which confirms the finding: #Unable to
load archive http://myserver/lib/mychart.jar:java.io.IOException :<null>.

This is not to say that Internet Explorer is better than Netscape Navigator. It simply means that
there are incompatibility issues between browsers. Code should not assume that relative paths
work with all browsers.

Figure 3.3
Resource contention diagram.

Page 40

Table 3.1 Resource Contention Process

Table 3.1 Resource Contention Process

BEFORE

STEP WORKSTATION A WORKSTATION B

WORKSTATION C: SHARED
TEMP SPACE AVAILABLE
MEMORY

1 Workstation A needs to write
200Mb of data to the shared
temp space on Workstation C.
Workstation A asks Workstation
C if the needed space is
available. Workstation C tells
Workstation A that it has the
available memory space. Note
that Workstation A did not
reserve the space.

400Mb

2 Workstation B needs to write
300Mb of data to the shared
temp space on Workstation C.
Workstation B asks Workstation
C to GIVE it the needed space.
Workstation C tells
Workstation B that it has the
available memory space and it
reserves the space for
Workstation B. Workstation B
writes the data to Workstation
C.

400Mb

3 Workstation A finally gets its
response from Workstation C
and begins to write 200Mb of
data. Workstation C however
now has only 100Mb of temp
space left. Without proper error
handling. Workstation A
crashes.

Page 41

Bug Analyzing and Reproduction Tips

Bug Analyzing and Reproduction Tips

To reproduce an environment-dependent error, both the exact sequence of activities and the
environment conditions (e.g., operating system, browser version, add-on components, database
server, Web server, third-party components, client-server resources, network bandwidth and
traffic, etc.) in which the application operations must be replicated.

Environment-independent errors on the other hand are easier to reproduce–they do not require
replicating the operating environment. With environment–independent errors, all that need to be
replicated are the steps that generate the error.

BROWSER BUG ANALYZING TIPS

• Check if the client operating system (OS) version and patches meet system requirements.

• Check if the correct version of the browser is installed on the client machine.

• Check if the browser is properly installed on the machine.

• Check the browser settings.

• Check with different browsers (e.g., Netscape Navigator versus Internet Explorer).

• Check with different supported versions of the same browsers (e.g., 3.1, 3.2, 4.2, 4.3, etc.).

Note that it depends on the organization for which you work. Each might have different rules in
terms of which test cases should belong to RAT versus FAST, and when to suspend testing or
to reject a build.

Deployment Acceptance Test

The configurations on which the Web system will be deployed will often be much different
from develop-and-test configurations. Testing efforts must consider this in the preparation and
writing of test cases for installation time acceptance tests. This type of test usually includes the
full installation of the applications to the targeted environments or configurations. Then, FASTs
and TOFTs are executed to validate the system functionality.

Feature-Level Testing

This is where we begin to do some serious testing, including boundary testing and other
difficult but valid test circumstances.

Task-Oriented Functional Test

The task-oriented functional test (TOFT) consists of positive test cases that are designed to
verify program features by checking the task that each feature performs against specifications,
user guides, requirements, and design documents. Usually, features are organized into list or
test matrix format. Each feature is tested for:break

Page 42

• The validity of the task it performs with supported data conditions under supported operating

conditions

• The integrity of the task's end result

• The feature's integrity when used in conjunction with related features

Forced-Error Test

The forced-error test (FET) consists of negative test cases that are designed to force a program
into error conditions. A list of all error messages that the program issues should be generated.
The list is used as a baseline for developing test cases. An attempt is made to generate each
error message in the list. Obviously, tests to validate error-handling schemes cannot be
performed until all the handling and error messages have been coded. However, FETs should
be thought through as early as possible. Sometimes, the error messages are not available. The
error cases can still be considered by walking through the program and deciding how the
program might fail in a given user interface (UI) such as a dialog or in the course of executing a
given task or printing a given report. Test cases should be created for each condition to
determine what error message is generated (if any).

USEFUL FET EXECUTION GUIDELINES

Check that the error-handling design and the error communication methods are consistent.

Check that all common error conditions are detected and handled correctly.

Check that the program recovers gracefully from each error condition.

Check that the unstable states of the program (e.g., an open file that needs to be closed, a
variable that needs to be reinitialized, etc.) caused by the error are also corrected.

Check each error message to ensure that:

• Message matches the type of error detected.

• Description of the error is clear and concise.

• Message does not contain spelling or grammatical errors.

• User is offered reasonable options for getting around or recovering from the error condition.

Boundary Test

Boundary tests are designed to check a program's response to extreme input values. Extreme
output values are generated by the input values. It is important to check that a program handles
input values and output results correctly at the lower and upper boundaries. Keep in mind that
you can create extreme boundary results from nonextreme input values. It is essential to analyze
how to generate extremes of both types. In addition, sometimes you know that there is an
intermediate variable involved in processing. If so, it is useful to determine how to drive that
one through the extremes and special conditions such as zero or overflow condition.break

Page 43

System-Level Test

System-level tests consist of batteries of tests that are designed to fully exercise a program as a
whole and check that all elements of the integrated system function properly. System-level test
suites also validate the usefulness of a program and compare end results against requirements.

Real-World User-Level Test

These tests simulate the actions customers may take with a program. Real-world user-level
testing often detects errors that are otherwise missed by formal test types.

Exploratory Test

Exploratory tests do not involve a test plan, checklists, or assigned tasks. The strategy here is
to use past testing experience to make educated guesses about places and functionality that may
be problematic. Testing is then focused on those areas. Exploratory testing can be scheduled. It
can also be reserved for unforeseen downtime that presents itself during the testing process.

Load/Volume Test

Load/volume tests study how a program handles large amounts of data, excessive calculations,
and excessive processing. These tests do not necessarily have to push or exceed upper
functional limits. Load/volume tests can, and usually must, be automated.

FOCUS OF LOAD/VOLUME TESTING

• Pushing through large amounts of data with extreme processing demands

• Requesting many processes simultaneously

• Repeating tasks over a long period of time

Load/volume tests, which involve extreme conditions, are normally run after the execution of
feature-level tests, which prove that a program functions correctly under normal conditions.

Stress Test

Stress tests force programs to operate under limited resource conditions. The goal is to push
the upper functional limits of a program to ensure that it can function correctly and handle error
conditions gracefully. Examples of resources that may be artificially manipulated to create
stressful conditions include memory, disk space, and network bandwidth. If other
memory-oriented tests are also planned, they should be performed here as part of the stress test
suite. Stress tests can be automated.

Performance Test

The primary goal of performance testing is to develop effective enhancement strategies for
maintaining acceptable system performance. Performance testing is a capacity analysis and
planning process in which measurement data are used to predict when load levels will exhaust
system resources.break

Page 44

The testing team should work with the development team to identify tasks to be measured and

to determine acceptable performance criteria. The marketing group may even insist on meeting
a competitor's standards of performance. Test suites can be developed to measure how long it
takes to perform relevant tasks. Performance tests can be automated.

Regression Test

Regression testing is used to confirm that fixed bugs have, in fact, been fixed and that new bugs
have not been introduced in the process, and that features that were proven correctly functional
are intact. Depending on the size of a project, cycles of regression testing may be performed
once per milestone or once per build. Some bug regression testing may also be performed
during each acceptance test cycle, focusing on only the most important bugs. Regression tests
can be automated.

CONDITIONS DURING WHICH REGRESSION TESTS MAY BE RUN

Issue fixing cycle. Once the development team has fixed issues, a regression test can be run to
validate the fixes. Tests are based on the step-by-step test cases that were originally reported.

• If an issue is confirmed as fixed, then the issue report status should be changed to Closed.

• If an issue is confirmed as fixed, but with side effects, then the issue report status should be
changed to Closed. However, a new issue should be filed to report the side effect.

• If an issue is only partially fixed, then the issue report resolution should be changed back to
Unfixed, along with comments outlining the outstanding problems.

Open-status regression cycle. Periodic regression tests may be run on all open issues in the
issue-tracking database. During this cycle, issue status is confirmed either the report is
reproducible as is with no modification, the report is reproducible with additional
comments or modifications, or the report is no longer reproducible.

Closed-fixed regression cycle. In the final phase of testing, a full-regression test cycle should
be run to confirm the status of all fixed-closed issues.

Feature regression cycle. Each time a new build is cut or is in the final phase of testing,
depending on the organizational procedure, a full-regression test cycle should be run to confirm
that the proven correctly functional features are still working as expected.

Compatibility and Configuration Test

Compatibility and configuration testing is performed to check that an application functions
properly across various hardware and software environments. Often, the strategy is to run
FASTs or a subset of TOFTs on a range of software and hardware configurations. Sometimes,
another strategy is to create a specific test that takes into account the error risks associated with
configuration differences. For example, you might design an extensive series of tests to check
for browser compatibility issues. You might not run these as part of your normal RATs,
FASTs, or TOFTs.break

Page 45

Software compatibility configurations include variances in OS versions, input/output (I/O)
devices, extensions, network software, concurrent applications, online services, and firewalls.

Hardware configurations include variances in manufacturers, CPU types, RAM, graphic
display cards, video capture cards, sound cards, monitors, network cards, and connection types
(e.g., T1, DSL, modem, etc.).

Documentation Test

Testing of reference guides and user guides check that all features are reasonably documented.
Every page of documentation should be keystroke-tested for the following errors:

• Accuracy of every statement of fact

• Accuracy of every screen shot, figure, and illustration

• Accuracy of placement of figures and illustrations

• Accuracy of every tutorial, tip, and instruction

• Accuracy of marketing collateral (claims, system requirements, and screen shots)

• Accuracy of downloadable documentation (PDFs, HTML, or text files)

Online Help Test

Online help tests check the accuracy of help contents, correctness of features in the help system,
and functionality of the help system.

Utilities/Toolkits and Collateral Test

If there are utilities and software collateral items to be tested, appropriate analysis should be
done to ensure that suitable and adequate testing strategies are in place.

Install/Uninstall Test

Web systems often require both client-side and server-side installs. Testing of the installer
checks that installed features function properly—including icons, support documentation, the
README file, and registry keys. The test verifies that the correct directories are created and
that the correct system files are copied to the appropriate directories. The test also confirms
that various error conditions are detected and handled gracefully.

Testing of the uninstaller checks that the installed directories and files are appropriately
removed, that configuration and system-related files are also appropriately removed or
modified, and that the operating environment is recovered in its original state.

User Interface Tests

Ease-of-use UI testing evaluates how intuitive a system is. Issues pertaining to navigation,
usability, commands, and accessibility are considered. User interface functionality testing
examines how well a UI operates to specifications.break

Page 46

AREAS COVERED IN UI TESTING

• Usability

• Look and feel

• Navigation controls/navigation bar

• Instructional and technical information style

• Images

• Tables

• Navigation branching

• Accessibility

External Beta Testing

External beta testing offers developers their first glimpse at how users may actually interact
with a program. Copies of the program or a test URL, sometimes accompanied with a letter of
instruction, are sent out to a group of volunteers who try out the program and respond to
questions in the letter. Beta testing is black-box, real-world testing. Beta testing can be difficult
to manage, and the feedback that it generates normally comes too late in the development
process to contribute to improved usability and functionality. External beta-tester feedback may
be reflected in a README file or deferred to future releases.

Ongoing Y2K Testing

A program's ability to handle the year change from 1999 to 2000 has been tested to ensure that
internal systems were not scrambled or shut down on 01 January 2000. However, Y2K-related
considerations will remain an issue well beyond the year 2000 due to future leap-year and
business-calendar changeovers.

Security Tests

Security measures protect Web systems from both internal and external threats. E-commerce
concerns and the growing popularity of Web-based applications have made security testing
increasingly relevant. Security tests determine whether a company's security policies have been
properly implemented; they evaluate the functionality of existing systems, not whether the
security policies that have been implemented are appropriate.

PRIMARY COMPONENTS REQUIRING SECURITY TESTING

• Application software

• Databases

• Servers

• Client workstations

• Networksbreak

Page 47

Unit Tests

Unit tests are positive tests that evaluate the integrity of software code units before they are
integrated with other software units. Developers normally perform unit testing. Unit testing
represents the first round of software testing—when developers test their own software and fix
errors in private.

Phases of Development

The software development process is normally divided into phases. Each phase of
development entails different test types, coverage depth, and demands on the testing effort.
Refer to Table 6.1, ''Test Types and Their Place in the Software Development Process," for a
visual representation of test phases and corresponding test types.

Development phases should be defined by clearly communicated and measurable criteria that
are agreed upon. Often, people on the same development team may have different
understandings of how particular phases are defined. For example, it might be defined that an
application cannot officially begin its beta phase of development until all crash or data loss
bugs have been fixed. Alternatively, beta is also commonly defined as being a product that is
functionally complete (though bugs may still be present, all features have been coded).

Disagreement over how a phase is defined can lead to problems in perception of completeness
and product stability. It is often the role of the test team to define the milestone or completion
criteria that must be met for a project to pass from one phase to another. Defining and agreeing
upon milestone and completion criteria allows the testing, development, and marketing groups
to work better as a team. The specifics of the milestones are not as important as the fact that
they are clearly communicated. It is also a concern that the developers usually consider that
they have made the milestone when the build is done. In practice, testing still must confirm if
this is true, and the confirmation process may take from a few days to a few weeks.

COMMON PHASES OF SOFTWARE DEVELOPMENT

Alpha. A significant and agreed-upon portion (if not all) of the product has been completed
(the product includes code, documentation, additional art, or other content, etc.). The product is
ready for in-house use.

Pre-beta (or beta candidate). A build that is submitted for beta acceptance. If the build meets
the beta criteria (as verified by the testing group), then the software is accepted into the beta
phase of development.

Beta. Most, or all, of the product is complete and stable. Some companies send out review
copies (beta copies) of software to customers once software reaches this phase.

UI freeze. Every aspect of the application's UI is complete. Some companies accept limited
changes to error messaging and repairs to errors in help screens during this phase.

Prefinal [or golden master candidate (GMC)]. A final candidate build has been submitted
for review to the testing team. If the software is complete and all GMC tests are passed, then
the product is considered ready for final testing.break

Page 48

Final test. This is the last round of testing before the product is migrated to the live Web site,
sent to manufacturing, or posted on the Web site.

Release (or golden master). The build that will eventually be shipped to the customer, posted
on the Web, or migrated to the live Web site.

Other Software Testing Terms

Test case. A test that (ideally) executes a single well-defined test objective (i.e., a specific
behavior of a feature under a specific condition). Early in testing, a test case might be
extremely simple; later, however, the program is more stable, so we need more complex test
cases to provide us with useful information.

Test script. Step-by-step instructions that describe how a test case is to be executed. A test
script may contain one or more test cases.

Test suite. A collection of test scripts or test cases that is used for validating bug fixes (or
finding new bugs) within a logical or physical area of a product. For example, an acceptance
test suite contains all the test cases that are used to verify that software has met certain
predefined acceptance criteria. A regression suite, on the other hand, contains all the test cases
that are used to verify that all previously fixed bugs are still fixed.

Test specification. A set of test cases, input, and conditions that are used in the testing of a
particular feature or set of features. A test specification often includes descriptions of expected
results.

Test requirement. A document that describes items and features that are tested under a
required condition.

Test plan. A management document outlining risks, priorities, and schedules for testing. (See
Part Three for more information.)

Test-Case Development

There are many methods available for analyzing software in an effort to develop appropriate
test cases. The following sections focus on several methods of establishing coverage and
developing effective test cases. A combination of most, if not all, of the following test design
methods should be used to develop test cases for the application under test.

Equivalence Class Partitioning and Boundary Condition Analysis

Equivalence class partitioning is a timesaving practice that identifies tests that are equivalent
to one another; when two inputs are equivalent, you expect them to cause the identical sequence
of operations to take place or they cause the same path to be executed through the code. When
two or more test cases are seen as equivalent, the resource savings associated with not running
the redundant tests normally outweighs the risk.break

Page 49

An example of an equivalence class includes the testing of a data-entry field in an HTML form.
If the field accepts a five-digit ZIP code (e.g., 22222) then it can reasonably be assumed that

the field will accept all other five-digit ZIP codes (e.g., 33333, 44444, etc.). Because all
five-digit ZIP codes are of the same equivalence class, there is little benefit in testing more
than one of them.

In equivalence partitioning, both valid and invalid values are treated in this manner. For
example, if entering six letters into the ZIP code field just described results in an error
message, then it can reasonably be assumed that all six-letter combinations will result in the
same error message. Similarly, if entering a four-digit number into the ZIP code field results in
an error message, then it should be assumed that all four-digit combinations will result in the
same error message.

EXAMPLES OF EQUIVALENCE CLASSES

• Ranges of numbers (such as all numbers between 10 and 99, which are of the same two-digit
equivalence class)

• Membership in groups (dates, times, country names, etc.)

• Invalid inputs (placing symbols into text-only fields, etc.)

• Equivalent output events (variation of inputs that produce the same output)

• Equivalent operating environments

• Repetition of activities

• Number of records in a database (or other equivalent objects)

• Equivalent sums or other arithmetic results

• Equivalent numbers of items entered (such as the number of characters entered into a field)

• Equivalent space (on a page or on a screen)

• Equivalent amounts of memory, disk space, or other resources available to a program

Boundary values mark the transition points between equivalence classes. They can be limit
values that define the line between supported inputs and nonsupported inputs, or they can
define the line between supported system requirements and nonsupported system requirements.
Applications are more susceptible to errors at the boundaries of equivalence classes, so
boundary condition tests can be quite effective at uncovering errors.

Generally, each equivalence class is partitioned by its boundary values. Nevertheless, not all
equivalence classes have boundaries. For example, given the following four browser
equivalent classes (Netscape Navigator 4.6 and 4.6.1, and Microsoft Internet Explorer 4.0 and
5.0), there is no boundary defined among each class.

Each equivalence class represents potential risk. Under the equivalent class approach to
developing test cases, at most, nine test cases should be executed against each partition. Figure
3.4 illustrates how test cases can be built around equivalence class partitions. In Figure 3.4, LB
stands for lower boundary and UB stands for upper boundary. The test cases include three
tests clustered around each of the boundaries: one testcontinue

Page 50

Figure 3.4
Boundary condition test cases. *, Smallest/largest possible values allowed via UI.

Source: © 1998–2000 LogiGear Corporation. All rights reserved.

that falls within the partition's boundaries, and two tests that fall well beyond the boundaries.

Figure 3.5 illustrates another boundary condition test-case design example taken from the
sample application. (See Chapter 7, "Sample Application," for more information.)

To develop test cases via equivalence class partitioning and boundary class analysis, one must
do the following:

• Identify the equivalence classes.

• Identify the boundaries.

• Identify the expected output(s) for valid input(s).

• Identify the expected error handling (ER) for invalid inputs.

• Generate a table of test cases (maximum of nine for each partition).break

Figure 3.5
Sample application test cases.

Page 51

Note that this example is an oversimplified one. It indicates only two equivalent classes. In

reality, there are many other equivalent classes such as invalid character class
(nonalphanumeric characters), special cases such as numbers with decimal points, leading
zeros of leading spaces, and so on. Chapter 10, "Functionality Tests," contains additional
information regarding boundary analysis.

State Transition

State transition involves analysis of the transitions between an application's states, the events
that trigger the transitions, and the results of the transitions.

GENERAL STEPS FOR STATE TRANSITION TEST-DESIGN ANALYSIS

1. Identify all of an application's supported states.

2. For each test case, define the following:

• The starting state

• The input events that cause the transitions

• The output results or events of each transition

• The end state

3. Draw a diagram that illustrates the relationships between the states, events, and actions of
the application.

4. Generate a table of test cases that addresses each state transition.

Condition Combination

A long-standing challenge in software testing is having enough time to execute all possible test
cases. There are numerous approaches that can be taken to strategicallycontinue

Testing the Sample Application

Figures 3.6 and 3.7 show two different states that are available within the sample application.
(See Chapter 7, "Sample Application," for details regarding the sample application.) Figure 3.6
shows the application in Edit View mode. Available navigation options from this state include
Full View, First, Previous, Next, and Last. Figure 3.7 shows the application in Full View.
Available navigation options from this state include Edit View and the Report Number
hyperlink. Figure 3.8 diagrams the transitions, events, and actions that interconnect these two
states.

Figure 3.9 is a table of test cases that targets each of the transition states. Each test case has a
beginning state (Start View mode), an event or input (Navigation Command), and an event (End
View Mode).

Continues

Page 52

Testing the Sample Applications (Continued)

Figure 3.6
Edit View state.

Figure 3.7
Full View state.

Full View state.

Page 53

Figure 3.8
Transitions diagram.

Figure 3.9
Test matrix.

Page 54

Figure 3.10
Simplified application example.

reduce the number of test cases to a manageable amount. The riskiest approach is to randomly
reduce test cases without a clear methodology. A better approach is to divide the total test
cases over a series of software builds.

The condition combination approach involves the analysis of combinations of variables, such
as browser settings. Each combination represents a condition to be tested with the same test
script and procedures. The condition combination approach involves the following:

• Identifying the variables

• Identifying the possible unique values for each variable

• Creating a table that illustrates all the unique combinations of conditions that are formed by
the variables and their values

Figures 3.10 and 3.11 illustrate an application that includes three variables with three possible
unique values each. The number of complete combinations formed by the variables is 3 × 3 × 3
× 27. The 27 unique combinations (test cases) formed by the three variables A, B, and C are
listed in Table 3.2. To execute the test cases calculated by these unique combinations, set the
values for each A, B, and C variable using the variables listed in the corresponding rows of the
tables. Execute the procedures and verify expected results.

The Combinatorial Method

The combinatorial method is a thoughtful means of reducing test cases via a pairwise shortcut.
It involves analyzing combinations of variables, such as browser settings, onecontinue

Figure 3.11
Unique combinations.

Page 55

Table 3.2 Total Unique Combinations

pair at a time. Each unique combination pair represents a condition to be tested. By examining
and testing pair combinations, the number of total conditions to be tested can be dramatically
reduced. This technique is useful when complete condition combination testing is not feasible.
The the combinatorial method involves the following:

• Identifying the variables

• Identifying the possible unique values for each variable

• Identifying the unique combinations formed by the variables, one pair at a time

• Creating a table that illustrates all of the unique combinations of conditions that are formed
by the variables and their values

• Generating the unique combinations formed by the first pair, A-B. As illustrated in Table 3.3,
arrange the values in the C column to cover the combinations of the B-C and A-C pairs without
increasing the number of cases. Set the value of the variables A, B, and C using the information
listed in each row of the table, one at a time. Execute the test procedure and verify the expected
output.break

Table 3.3 The Combinatorial Method

Page 56

For more information on this technique, go to AR GREENHOUSE at www.argreenhouse.com.
For a paper on this topic, The AETG System: An Approach to Testing Based on
Combinatorial Design (Cohen et al., 1997), go to
www.argreenhouse.com/papers/gcp/AETGieee97.shtml.

Bibliography

Kaner, Cem, et al. Testing Computer Software, second edition. New York: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.

Cohen, D. M., et al. "The AETG System: An Approach to Testing Based on Combinatorial
Design." IEEE Transactions On Software Engineering, Vol. 23, no. 7 (July 1997).break

Page 57

Chapter 4—
Networking Basics

Why Read This Chapter?

Networks hold Web systems together; they provide connectivity between clients and servers.
The reliability, bandwidth, and latency of network components such as T1 lines and routers
directly influence the performance of Web systems.

Having knowledge of the networking environment enables you to identify configuration and
compatibility requirements for your test planning, and to enhance your bug-analysis abilities.

Introduction

This chapter delivers a brief introduction to networking technologies; the information supports
the effective planning, testing, analysis of errors, and communication that is required for the
testing of Web applications. Network topologies, connection types,continue

Topics Covered in This Chapter

Topics Covered in This Chapter

• Introduction

• The Basics

• Other Useful Information

• Testing Considerations

• Bibliography

Page 58

and hardware components are also discussed. The chapter also offers test examples and testing
considerations that pertain to networking.

POSSIBLE ENVIRONMENTAL PROBLEMS THAT MAY BE THE CAUSE OF AN
APPLICATION NOT OPERATING CORRECTLY

• The client or server may be inaccessible because they are not connected to the network.

• There may be a failure in converting a Domain Name Service (DNS) name to an Internet
Protocol (IP) address.

• A slow connection may result in a time-out.

• There may be an authentication process failure due to an invalid ID or password.

• The server or client may be incorrectly configured.

• Firewall may block all or part of the transmitted packets.

• Childproofing software may be blocking access to certain servers or files.

The Basics

The following sections deliver introductions to network types, connectivity services, and
hardware devices, as well as other useful information such as TCP/IP, IP addresses, DNS, and
subnetting/supernetting.

The Networks

Networks are the delivery system offering connectivity that glues clients, servers, and other
communication devices together.

The Internet

The Internet's infrastructure is built of regional networks, Internet service providers (ISPs),
high-speed backbones, network information centers, and supporting organizations [e.g., the
Internet Registry and, recently, the Internet Corporation for Assigned Names and Numbers
(ICANN)]. Web systems don't exist without the Internet and the networked structures of which

the Internet is composed. Understanding how information moves across the Internet, how
client-side users gain access to the Internet, and how IPs relate to one another, can be useful in
determining testing requirements.

As illustrated in Figure 4.1, government-operated backbones or very high-speed Backbone
Network Services (vBNSs) connect supercomputer centers together, linking education and
research communities. These backbones serve as the principle highways that support Internet
traffic. Some large organizations, such as NASA, provide Internet backbones for public use.

Internet service providers and regional networks connect to the backbones. Internet service
providers are private organizations that sell Internet connections to end users;continue

Page 59

Figure 4.1
The Internet.

both individuals and companies can gain Internet access through ISPs. Online services such as
America Online sell access to private sectors of the Internet—in addition to the general
Internet. Regional networks are groups of small networks that band together to offer Internet
access in a certain geographical area. These networks include companies and online services
that can provide better service as groups than they can independently.

Local Area Networks (LANs)

Web-based applications operating over the Internet normally run on local area networks
(LANs). The LANs are relatively small groups of computers that have been networked to one
another. Local area networks are often set up at online services; government, business, and
home offices; and other organizations that require numerous computers to regularly
communicate with one another. Two common types of LANs are Ethernet networks and
token-ring networks. Transmission Control Protocol/Internet Protocol (TCP/IP), the suite of
network protocols enabling communication among clients and servers on a Web system, runs
on both of these popular network topologies. On an Ethernet LAN, any computer can send
packets of data to any other computer on the same LAN simultaneously. With token-ring

networks, data is passed in tokens (packets of data) from one host to the next, around the
network, in a ring or star pattern. Figure 4.2 illustrates simple token-ring and Ethernet
networks, respectively.

Typically, a LAN is set up as a private network. Only authorized LAN users can access data
and resources on that network. When a Web-based system is hosted on a private LAN (its
services are only available within the LAN) and application access iscontinue

Page 60

Figure 4.2
Toke-ring and Ethernet networks.

only available to hosts (computers) within the LAN or to trusted hosts connected to the LAN
[e.g., through remote-access service (RAS)], the Web-based system is considered as an
intranet system.

Wide Area Networks (WANs)

Multiple LANs can be linked together through a wide area network (WAN). Typically, a WAN
connects two or more private LANs that are run by the same organization in two or more
regions. Figure 4.3 is an illustration of an X.25 (X.25 is one of several available
packet-routing service standards) WAN connecting computers on a token-ring LAN in
onecontinue

Figure 4.3
Wide area networks (WANs).

Page 61

geographic region (San Jose, California, for example) to computers on another Ethernet LAN in
a different geographic region (Washington, D.C., for example).

Connecting Networks

There are numerous connectivity services and hardware options available for connecting
networks to the Internet, as well as to each other; countless testing-related issues may be
affected by these components.

Connectivity Services

The two common connection types are dial-up connection and direct connection, which we
will discuss in turn in this section.

Dial-Up Connection

One of the very familiar connection service types is the dial-up connection through a telephone
line.

Plain Old Telephone Service (POTS). Plain Old Telephone Service is the standard analog
telephone line used by most homes and businesses. A POTS network is often also called the
public switched telephone network (PSTN). Through an analog modem, a POTS connection
offers a transmission rate of up to 56 kilobits per second (Kbps).

Integrated Services Digital Network (ISDN). The ISDN lines are high-speed dial-up
connections over telephone lines. The ISDN lines with which we are familiar can support a
data transmission rate of 64 Kbps (if only one of the two available wires is used) or 128 Kbps
(if both wires are used). Although not widely available, there is a broadband version (as
opposed to the normal baseband version) of ISDN, called B-ISDN. The B-ISDN supports a
data transmission rate of 1.5 megabits per second (Mbps) but requires fiber-optic cable.

Direct Connection

In contrast to dial-up, another series of connection service type is direct connection such as
leased-line, including T1, T3, cable modem, and DSL.

T1 connection. T1s (connection services) are dedicated, leased telephone lines that provide
point-to-point connections. They transmit data using a set of 24 channels across two-wire
pairs. One-half of each pair is for sending, the other half is for receiving; combined, the pairs
supply a data rate of 1.54 Mbps.

T3 connection. T3 lines are similar to T1 lines except that, instead of using 24 channels, T3
lines use 672 channels (an equivalent of 28 T1 lines), enabling them to support a much higher
data transmission rate: 45 Mbps. Internet service providers and Fortune 500 corporations that
connect directly to the Internet's high-speed backbones often use T3 lines. Many start-up
Internet companies require bandwidth comparable with a T3 to support their e-business
infrastructures, yet they cannot afford the associated costs; the alternative for these smaller
companies is to share expensive high-speed connections with larger corporations.

DS connection services. DS connection services are fractional or multiple T1 and T3 lines.
T1 and T3 lines can be subdivided or combined for fractional or multiple levels of service.
For example, DS-0 provides a single channel (out of 24 channels) ofcontinue

Page 62

bandwidth that can transmit 56 Kbps (kilobits per second). DS-1 service is a full T1 line;
DS-1C is two T1 lines; DS-2 is four T1 lines; DS-3 is a full T3 line.

Digital subscriber line (DSL). The DSL offers high-bandwidth connections to small
businesses and homes via regular telephone lines. There are several types of DSL, including
Asymmetric Digital Subscriber Line (ADSL), which is more popular in North America, and
Symmetric Digital Subscriber Line (SDSL). The ADSL supports a downstream transmission
rate (receiving) of 1.5 to 9 Mbps and an upstream transmission rate (sending) of 16 to 640
Kbps. The DSL lines carry both data and traditional voice transmissions; the data portion of the
bandwidth, however, is always connected.

Cable connection services. Through a cable modem, a computer can be connected to a local
cable TV service line, enabling a data transmission rate, or throughput, of about 1.5 Mbps
upstream (sending) and an even much higher rate for downstream (receiving). However, cable
modem technology utilizes a shared medium in which all of the users served by a node
(between a couple hundred to couple thousand homes, depending on the provider) share
bandwidth. Therefore, the throughput can be affected by the number of cable modem users in a
given neighborhood and the types of activities in which those users are engaged on the network.
In most cases, cable service providers supply the cable modems and Ethernet interface cards
as part of the access service.

Internet Connection Hardware

To connect a terminal or a network to the Internet, a hardware device such as a modem must be
used to enable the communication between each side of the connection. With POTS dial-up
connections, analog modems are used. With ISDN, ISDN (digital) modems are used. With DSL

and cable connections, DSL modems and cable modems are used.

With leased lines such as T1, T3, and other DS connection services, a channel service unit/data
service unit (CSU/DSU) device is used. They are actually two different units but often a
packaged as one. You may think of CSU/DSU as an expensive and powerful version of a
modem that is required at both ends of the leased-line connection.

Other Network Connectivity Devices

Local area networks employ several types of connectivity devices to link them together. Some
of the common hardware devices include:

Repeaters. Used to amplify data signals at certain intervals to ensure that signals are not
distorted or lost over great distances.

Hubs. Used to connect groups or segments of computers and devices to one another so that
they can communicate on a network, such as a LAN. A hub has multiple ports. When a data
packet arrives at one port, it is replicated to the other ports so that computers or devices
connected to other ports will see the data packet. Generally, there are three types of hubs.

• Bridges. Used to connect physical LANs that use the same protocol as one another into a
logical network. Bridges examine incoming messages and pass the messages on to the
appropriate computers—on either a local LAN or a remote LAN.break

Page 63

• Routers. Used to ensure that data are delivered to the correct destinations. Routers are
like bridges, except that they support more features. Routers determine how to forward
packets—based on IP address and network traffic. When they receive packets with a
destination address of a host that is outside of the network or subnetwork, they route the
packets to other routers outside of the network or subnetwork so that the packets will
eventually reach their destination. Routers are often not necessary when transmitting data
within the same network, such as over a LAN.

• Gateways. Used like routers, except that they support even more features than routers.
For example, a gateway can connect two different types of networks, enabling users from
one network (Novell IPX/SPX, for example) to exchange data with users on a different
network type (for example, TCP/IP).

Figure 4.4 illustrates a sample configuration in which a bridge, router, or gateway is used to
connect the two networks or subnetworks.break

Figure 4.4
Bridges, routers, and gateways.

Page 64

TCP/IP Protocols

The Internet is a packet-switched network—meaning that all transmitted data objects are
broken up into small packets (each of less than 1500 characters). The packets are sent to the
receiving computer where they are reassembled into the original object.

The TCP is responsible for breaking up information into packets and reassembling packets
once they reach their destination. Each packet is given a header that contains information
regarding the order in which packets should be reassembled and a checksum—which records
the precise amount of information in each packet. Checksums are used to determine, on the
receiving end, if packets were received in their entirety.

The IP is responsible for routing packets to their correct destination. The IP puts packets into
separate IP envelopes that have unique headers. The envelope headers provide such
information as the receiver's and the sender's addresses. The IP envelopes are sent separately
through routers to their destination. The IP envelopes of the same transmission may travel
different routes to reach the same destination—often arriving out of order. Before reassembling
the packets on the receiving end, TCP calculates the checksum of each packet and compares it

with the checksum of the original TCP headers. If the checksums do not match, TCP discards
the unmatched packets and requests the original packets to be resent.

The TCP/IP Architecture

For computers to communicate over the Internet, each computer, client or server, must utilize a
standard set of protocols called TCP/IP. This suite of protocols is referred to as a TCP/IP
stack or socket. There are numerous versions of TCP/IP stack available, for every target
platform and operating system (UNIX, PC, Macintosh, handheld devices, etc.). The TCP/IP
stack, as illustrated in Figure 4.5, is composed of five layers: application, transport, Internet,
data link, and physical.

The Application Layer

The top layer of the TCP/IP protocol is the application layer. End-user applications interact
with this layer. The protocols in this layer perform activities such as enabling end-user
applications to send, receive, and convert data into their native formats, and establishing a
connection (session) between two computers.break

Figure 4.5
TCP/IP stack architecture.

Page 65

Examples of several common protocols associated with the application layer with which you
may be familiar include:

HyperText Transfer Protocol (HTTP). Commonly used in browsers to transfer Web pages
and other related data between client and server across the Internet.

File Transfer Protocol (FTP). Commonly used in browsers or other applications to copy
files between computers by downloading files from one remote computer and uploading them
to another computer.

Network News Transfer Protocol (NNTP). Used in news reading applications to transfer
USENET news articles between servers and clients, as well as between servers.

Simple Mail Transfer Protocol (SMTP). Used by e-mail applications to send e-mail
messages between computers.

Dynamic Host Configuration Protocol (DHCP). Used in server-based applications to
allocate shared IP addresses to individual computers. When a client computer requires an IP
address, a DHCP server assigns the client an IP address from a pool of shared addresses.

For example, a network may have 80 workstations, but only 54 IP addresses available. The
DHCP allows the 80 workstations to share the 54 IP addresses in a way that is analogous to an
office with 80 employees who share a phone system with only 54 trunk lines. In this scenario, it
is expected that in normal operation no more than 54 employees will be on the phone at the
same time. That is, the 55th employee and beyond will not be able to get onto the system.

The Transport Layer

The transport layer breaks data into packets before sending them. Upon receipt, the transport
layer ensures that all packets arrive intact. It also arranges packets into the correct order.

Examples of two common protocols associated with the transport layer that you may be
familiar with are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
Both TCP and UDP are used to transport IP packets to applications and to flow data between
computers. With TCP, it ensures that no transported data is dropped during transmissions.
Error checking and sequence numbering are two of TCP's important functions. Transmission
Control Protocol uses IP to deliver packets to applications and it provides a reliable stream of
data between computers on networks. Once a packet arrives at its destination, TCP delivers
confirmation to the sending and receiving computers regarding the transmitted data. It also
requests that packets be resent if they are lost.

• TCP is referred to as a connection-oriented protocol. Connection-oriented protocols require
that a channel be established (a communications line established between the sending and
receiving hosts, such as in a telephone connection) before messages are transmitted.

• UDP is considered a connectionless protocol. This means that data can be sent without
creating a connection to the receiving host. The sending computer simply places messages onto
the network with the destination address and hopes that the messages arrive intact.break

Page 66

UDP does not check for dropped data. The benefit of being connectionless is that data can be
transferred more quickly; the drawback is that data can more easily be lost during transmission.

The Internet Layer

The Internet layer receives data packets from the transport layer and sends them to the correct
network address using the IP. The Internet layer also determines the best route for data to
travel.

Examples of several common protocols associated with the Internet layer that you may be
familiar with include the following:

Internet Protocol (IP). Responsible for basic network connectivity. Every computer on a
TCP/IP network has a numeric IP address. This unique network ID enables data to be sent to
and received from other networks, similar to the way that a traditional street address allows a
person to send and receive snail mail.

Address Resolution Protocol (ARP). Responsible for identifying the address of a remote
computer's network interface card (such as an Ethernet interface) when only the computer's
TCP/IP address is known.

Reverse Address Resolution Protocol (RARP). The opposite of ARP. When all that is
known is a remote computer's network interface card hardware address, RARP determines the
computer's IP address.

The Data Link Layer

The data link layer moves data across the physical link of a network. It splits outgoing data
into frames and establishes communication with the receiving end to validate the successful
delivery of data. It also validates that incoming data are received successfully.

The Physical Layer

The physical layer is the bottom layer of the TCP/IP stack. It supports the electrical or
mechanical interface of the connection medium. It is the hardware layer—composed of a
network interface card and wiring such as coaxial cable, 10/100-Based-T wiring, satellite, or
leased-line.

Testing Scenarios

With Web-based systems, we may not normally have to be concerned with issues related to
connection services, connectivity devices, or how the TCP/IP stack may affect the applications.
When an HTTP-based (i.e., Web browser-based) application runs within the context of a
third-party browser (e.g., Netscape Navigator or Microsoft Explorer), one can argue that how
a TCP/IP connection is established, which hardware components are used on the network, or
the connection throughput does not seem to matter. However, understanding the basics of the
technologies helps us better decide on the parts that need testing focus, as well as on other
parts that can be left alone.break

Page 67

Generally, the two classes of testing-related issues that need coverage are (1) configuration
and compatibility and (2) performance. By carefully analyzing the delivered features and the
supported system configurations, we can reasonably determine the testing requirements for
configuration and compatibility as well as for performance.

Connection Type Testing

Usually, the issues with various types of connection revolve around throughput and
performance rather than configuration and compatibility.break

How TCP/IP Protocols Work Together

How TCP/IP Protocols Work Together

Figure 4.6 illustrated a simplified version of the data-flow processes that occur when a user
sends an e-mail message. The process on the sender's end begins at the top layer, the application
layer, and concludes at the physical layer, where the e-mail message leaves the sender's
network.

Figure 4.6
E-mail sent.

The process continues on the receiver's end, working in reverse order. The physical layer
receives the sender's message and passes it upward until it reaches the receiver's application
layer. (See Figure 4.7.)

Continues

Page 68

How TCP/IP Protocols Work Together (Continued)

How TCP/IP Protocols Work Together (Continued)

Figure 4.7
E-mail received.

For example, login fails to authenticate with dial-up connections, but it works properly with
direct connection. This symptom may be caused by a number of problems. However, one
common issue is that the slow connection causes a time-out in the login or authentication
process. With slow connections such as dial-up, it may take too long (longer than the script
time-out value) for the client-server to send/receive packets of data; the script will eventually
time-out, causing the login or authentication process to fail. The problem could not be
reproduced when the same procedure is retried on an Intranet or a LAN connection.

As described earlier, the two types of connection we often work with that offer us various
throughput rates are direct connections and dial-up connections. Common direct connection
configurations to consider include:

• Standard LAN and/or WAN connections (Intranet)

• Standard LAN and/or WAN connections with a gateway to the Internet using T1, T3, and DS
services; DSL; or cable services

• Stand-alone connections to the Internet using DSL or cable services

Common dial-up connection configurations to consider include:

• Stand-alone connections to the Internet through an ISP directly, using POTS lines or ISDN
lines (see Figure 4.8 for an example).

In the standard dial-up model (Figure 4.8), a client is a PC that is connected to a modem.
Through a local telephone line or ISDN, a connection is made to an ISP. Depending oncontinue

Page 69

Figure 4.8
Dial-up connection.

 whether the ISP is local or not, the local phone company may have to connect (via satellite,
copper, or fiber-optic cable) to the ISP through a long-distance carrier. The ISP also has a
modem to receive the phone call and to establish a connection to the PC.

• Stand-alone connections to the intranet (LAN) through RAS, using POTS lines or ISDN lines

• Stand-alone connections to the intranet (LAN) through virtual private network (VPN)
services, using POTS lines or ISDN lines

• Stand-alone connections to the intranet (LAN) through RAS, using POTS lines or ISDN lines,
and then to the Internet using a leased line. (See Figure 4.9 for an example.)

Differing from the model where the client dials up through an ISP is the model of the client
dialing up through an RAS. If a LAN is connected directly to the local phone company, there is
no need for a long-distance telephone connection. In Figure 4.9, the modem on the server side
receives the connection from the local phone company and translates it for the RAS; after
proper authentication, LAN resources are made available to the user. If the LAN has a leased
line, the user can link to an ISP and, ultimately, to the Internet through the local phone company.

Potential Modem Compatibility Issues

Users of the Web system under test may be dialing in with a modem that translates digital
computer signals into analog signals; the analog signals are carried over POTScontinue

Page 70

Figure 4.9
Dial-up and leased-line connections.

Page 71

lines. The brand names and baud rates (generally ranging from 14.4 to 56 Kbps) of these
modems may affect the perceived performance of the Web system under test.

Generally, modem is a ''don't care" to a Web application. However, if your application is an
embedded browser that also provides drivers for users to connect to certain modems, then the
connection type and modem brands may be an issue for testing. If modem compatibility issues
are a concern for the system under test, then both client- and server-side modems should be
tested.

Potential Dialer Compatibility Issues

Dialer compatibility testing is often required when a Web system interacts with a dialer. Some
ISPs, such as EarthLink and AOL, supply users with proprietary dialers. Dialup Networking
has more than one version of its dialer. Some ISPs supply their new users with CD-ROMs that
replace existing browsers and dialers so that users can connect to their services. Such CDs
often install new components, which can cause incompatibility or conflict problems that may
lead to errors such as a system crash.

Some dialers also offer users a couple of protocol options from which to choose. Two common
dial-up protocols are Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol
(PPP). The SLIP is the older of the two. Point-to-Point Protocol is the most popular, as well as
the most stable; it enables point-to-point connections and, when necessary, can retransmit

garbled data packets. If the Web application under test is an embedded application and also
delivers a dialer that supports more than one dial-up protocol, compatibility testing should be
considered. Otherwise, this is usually a "don't care" issue to standard browser-based
application testing.

Connectivity Device Testing

Do we need to test our HTTP-based application with various brands and models of hubs,
repeaters, bridges, routers, and gateways under various configurations? I hope that the answer
is No, because a standard Web browser-based application does not interact directly with such
devices. However, if a Web application under test is a custom-embedded application that
supports several protocols at different layers of the TCP/IP stacks, incompatibility issues may
be introduced in interactions with the connectivity devices. For example, an embedded
HTTP-based application uses Reverse Address Resolution Protocol (RARP) at the Internet
layer of the TCP/IP stacks to determine the computer's IP address, compatibility tests should be
conducted with connectivity devices that support RARP, such as routers and gateways.

Many hardware devices do interact with different layers of the TCP/IP stack. Figures 4.10 and
4.11 illustrate the differences in intelligence and network layer interaction that these devices
exhibit. Understanding the implementation and support of Web-based applications in the
context of TCP/IP layering allows you to determine if configuration and compatibility testing of
hardware devices (such as gateways and routers) will be necessary.break

Page 72

Figure 4.10
Network layer/device interaction.

Other Useful Information

This section offers an overview of how IP addresses, DNS, and network subnet work with the
intent to help testers be better at analyzing errors, as well as troubleshooting network/Web
related issues.

IP Addresses and DNS

Every network device that uses TCP/IP must have a unique domain name and IP address.
Internet Protocol addresses are 32-bit numbers—4 fields of 8 bits each, each field separated
by a dot (Figure 4.13). To better understand IP addresses, it is helpful to review the binary
model of computer data storage (Figure 4.12).

Binary is base two; it differs from the standard numerical system, which is base ten. Base two
(binary) dictates that each digit, or bit, may have one of two values: 1 (meaning on) and 0
(meaning off). The value of a bit depends on its position. Figure 4.12 includes four examples of
standard numerals expressed in the binary model: 1, 3, 133, and 255.break

Figure 4.11
Network layer protocols and recognized addresses.

Page 73

Figure 4.12
Binary model of computer data storage.

Starting from right to left, each of the 8 bit positions represents a different number. Depending
on the numeral being expressed, each bit is set either to on or off. To calculate the expressed
numeral, the on bit positions must be added up. In the fourth example, note that all positions are
set to on, and the resulting value—the maximum value for an 8-bit number—is 255.

IP Address

Internet Protocol addresses are segmented into two numbers: a network number and a host

number. The network number identifies a specific organization's network that is connected to
the Internet. Within that network there are specific host computers on individual desktops.
These host computers are identified by host numbers. The amount of hosts that a network can
support depends on the network class of the network. Figure 4.13 is an example of a Class C
IP address.

Network Classes

The Internet is running low on available IP addresses. This is not due to a limitation of the
Internet itself or even of software; it is rather a limitation of the naming convention, or
dotted-decimal notation, the industry has established to express IP addresses. Simply put,
there are mathematical limitations to the amount of numbers that can be expressed in the 32-bit
model.break

Page 74

Figure 4.13
Class C IP address.

THREE CLASSES OF TCP/IP NETWORKS

• Class A networks. There are only 126 class A network addresses available. Class A
networks can support an enormous amount of host devices—16,777,216. Not many
organizations require access to such a large number of hosts. America Online, Pacific Bell, and
AT&T are some of the organizations that have class A networks. Class A networks use only the
first 8 bits of their IP addresses as the network number. The remaining 24 bits are dedicated to
host numbers.

• Class B networks. Class B networks can support about 65,000 hosts. The Internet can
support a maximum of 16,384 class B networks. Class B networks are quite large, but nowhere
near as large as class A. Universities and many large organizations require class B networks.
Class B networks use the first 16 bits of their IP addresses as the network number. The
remaining 16 bits are dedicated to host numbers.

• Class C networks. Class C networks are the most common and the smallest network class
available. There are over 2 million class C networks on the Internet. Each class C network can
support up to 254 hosts. Class C networks use the first 24 bits of their IP addresses as the
network number. The remaining 8 bits are dedicated to host numbers.

Domain Name System (DNS)

Although identifying specific computers with unique 32-bit numbers (IP addresses) makes

sense for computers, the practice makes it very challenging for humans to remember network
and host names. That is why Sun Microsystems developed Domain Name Service (DNS) in the
early 1980s. Domain Name Service associates alphabetic aliases with numeric IP addresses.
The DNS servers match simple alphabetic domain names, such as logigear.com and
netscape.com, with the 32-bit IP addresses that the names represent. With this method, Internet
users only have to remember the domain names of the Internet sites they wish to visit. If a
domain server does not have a certain IP address/domain name match listed in its database,
that server will route a request to another DNS that will hopefully be able to figure out the IP
address associated with the particular domain name.break

Page 75

E-mail addresses are made up of two main components that are separated by an @ symbol. The
far right of every e-mail address includes the most general information, and the far left includes
the most specific. The far left of every e-mail address is the user's name. The second part, to
the right of the @ symbol, is the domain name. In the example webtester@qacity.com,
webtester is the user name, and qacity.com is the domain name.

The domain name itself can be broken down into at least two components, each separated by a
period. The far right component of the domain name is the extension. The extension defines the
domain as being commercial (.com), network-based (.net), educational (.edu), governmental
(.gov), or military (.mil). Countries outside the United States have their own extensions:
Canada (.ca), Great Britain (.uk), and Japan (.jp) are a few of these.

To the left of the domain extension is the name of the host organization, or ISP (.logigear,
.compuserve, etc.). Often, domain names are further subdivided, as in
webtester@montreal.qacity.com. In this example, montreal is the host name; this is the
specific host computer that acts as the "post office" for webtester's e-mail. Figure 4.14 shows
examples of domain names.

When an e-mail is sent to webtester@montreal.qacity.com, a DNS server translates the letters
of the domain name (qacity.com) into the associated numerical IP address. Once in numeric
form, the data is sent to the host computer that resides at the domain. The host computer
(montreal) ultimately sends the e-mail message to the specific user (webtester).break

Figure 4.14
Domain names.

Page 76

Missing a DNS Entry

When you are outside of the intranet and click on the QA Training or TRACKGEAR button in the
page illustrated, the browser appears to hang or you don't get any response from the server.
However, when you report the problem, your developer who accesses the same links could not
reproduce it. One of the possible problems is the DNS entry for the server referenced in the link
is only available in the DNS table on the intranet, and is not known to the outside world. (See
Figure 4.15.)

Figure 4.15
LogiGear screen capture.

Subnet

Subnets divide a single network into smaller networks, or network segments. Routers are used
to send information from one subnet to another. Subnets are useful in managing IP address
allotment. For example, an organization has a class C network and, therefore, only 254 IP
addresses are available to distribute to its employees. There are two physical locations. This
organization could request a second class C network to service the second location. What if the
organization is not currently using all of its IP addresses? Getting a second network address
would be wasteful. A subnet, in this case, allows this organization to partition its existing class
C network into two subnetworks. Figure 4.17 shows a network divided into two subnets with
two IP addresses (192.9.200.100 and 192.9.200.200)

The benefits of subnetting an existing network rather than getting an additional network include:

• Retaining the same network number for multiple locations.

• The outside world will not be aware that the network has been subdivided.break

Page 77

TIPS

1. Use the View Source menu command to inspect the HTML source.

2. Look for the information that's relevant to the links.

Figure 4.16
Tip: ping authorize.qacity.com.

In this example, you will find that clicking on the QA Training and the TRACKGEAR button will
result in requests to the server authorized in the qacity.com domain.

3. Try to pin authorize.qacity.com to see if it can be pinged (Figure 4.16).

4. If the server cannot be pinged, tell your developer or IS staff so the problem can be resolved.

Figure 4.17
Subnetting a network.

Page 78

• A department's network activities can be isolated from the rest of the network—contributing
to the stability and security of the network as a whole.

• Network testing can be isolated within a subnet, thereby protecting the network from
testing-based crashes.

• Smaller networks are easier to maintain.

• Network performance may improve due to the fact that most traffic remains local to its own
subnet (for example, the network activities of business administration and engineering could be
divided between two subnets).

Subnet Masks

Subnet addresses are derived from the main network's network number plus some information
from the host section in the network's IP address. Subnet masks tell the network which portion
of the host section of the subnet address is being used as the network address.

Subnet masks, like IP addresses, are 32-bit values. The bits for the network section of the
subnet address are set to 1, and the bits for the host section of the address are set to 0. Each
network class has its own default subnet mask (Figure 4.18). Every computer on a network
must share the same subnet mask—otherwise, the computers will not know that they are part of
the same network.

As stated earlier, class C IP addresses have 24 bits to the left devoted to network address.
Class B IP addresses have 16 bits, and class A IP addresses have 8 bits. Internet Protocol
addresses that are included in incoming messages are filtered through the appropriate subnet
mask so that the network number and host number can be identified. As an example, applying
the class C subnet mask (255.255.255.0) to the class C address (126.24.3.11) results in a

network number of 126.4.3 and a host number of 11.

The value of 255 is arrived at when all bits of an IP address field are set to 1, or on. If all
values in an IP address are set to 255, as in the default subnet masks, then there are no subnets
at all.

Default Subnet Masks
 Class A Default
 255.0.0.0 or
11111111.00000000.00000000.00000000
 Class B Default
 255.255.0.0 or
11111111.11111111.11111111.00000000
 Class C Default
 255.255.255.0 or
11111111.11111111.11111111.00000000break

Figure 4.18
Subnet masks.

Page 79

Custom Subnets

Subnet masks may be customized to divide networks into several subnets. To do this, some of
the bits in the host portion of the subnet mask will be set to 1's. For example: Consider an IP
address of 202.133.175.18, or 11001010.10000101.10101111.00010010. Using the default
mask of 255.255.255.0, or 11111111.11111111.11111111.00000000, the network address
will be 202.133.175.0, and the host address IP address is 18. If a custom mask such as
255.255.255.240, or 11111111.11111111.11111111.11110000, is used, the network address
will then be 202.133.175.16 (because 28 bits are used for the subnet address instead of 24 as
in the default mask), and the host address will still be 18.

A Testing Example

Following is an example of an embedded HTTP-based application handheld device that
involves testing the host name and IP address resolution logics.

Host Name and IP Resolution Tests

CONSIDERATIONS FOR THE SYSTEM UNDER TEST

• Adapter address

• IP address

• Subnet mask

• Host name resolved by DNS, WINS, or other technologies

• Dynamic Host Configuration Protocol (DHCP)

• Default gateway IP address

By the way, you often need to configure your network stack with the correct information for
each of the items previously listed to enable your computer or any devices connected to the
network to operate properly.

TESTING EXAMPLE SPECIFICATIONS

• There are two applications—one running on the remote host and the other running on the
target host.

• The product supports Windows 95, 98, NT 4.0, or Chameleon TCP/IP stack.

• The remote host connects to the private network via a dial-in server.

• The product supports RAS and several popular PPP- or TCP/IP-based dial-in servers.

• From the remote host, a user enters the phone number, user name, and password that are
required to connect to the desired dial-in server.

• The remote host then establishes a connection with the target host. Therefore, information
about the target host name, IP, and subnet mask must be registered on the remote host.

• The product supports static-based, as well as dynamic-based, IP addresses.

• The product also supports WINS- and DNS-based name/IP resolution.break

Page 80

Figure 4.19
A testing example.

When the target host IP changes, the product has code that relies on the host name alone, or the
host name and the subnet mask information, to dynamically determine the new IP address.

In developing test cases to validate the functionality under various possible scenarios that the

system under test can be exposed to, I examine the following attributes:

The host name. May be available on the device or may not.

IP address. May be available on the device or may not.

Subnet mask. May be standard mask or may be custom mask.

Name server—IP/name resolving. Either configured to use WINS or DNS.

Type of IP address. May be static or may be dynamic.

A table is then developed to represent various unique combinations formulated by these five
attributes and the possible values for each attribute. There are 32 combinations generated. (See
Table 4.1.) Each combination is then configured and tested accordingly. Figure 4.19 shows a
testing example.

In considering testing for compatibility issues, six operating environments were identified:
three of them are Windows 95, 98, and NT 4.0 with Microsoft default TCP/IP stack; the other
three are the same set of operating systems with the latest version of Chameleon TCP/IP
stack.break

Page 81

Table 4.1 The 32 Unique Combinations

Page 82

Validating Your Computer Connection

Validating Your Computer Connection

Ensure that your test machines are properly configured and connected to the network before you
begin testing. To check host connection and configuration in a Windows environment, read the
following instructions. Windows NT offers a utility named ipconfig. Windows 9x has
winipcfg, which has more of a user interface.

1a. For Windows NT. Run IPCONFIG/ALL.

1b. For Windows 9x. Run WINIPCFG.

2. Ping the exact value that is received from IPCONFIG and WINIPCFG. To make sure the DNS
is working properly, ping by the domain name also. If positive responses are received, then there
is a good TCP/IP connection.

3. To ensure that there is a proper TCP/IP connection, ping the loop-back IP address: PING
127.0.0.1 or PING YourMachineIPAddress.

Testing Considerations

• If the application under test runs in its own embedded browser, analyze the application to
determine if it utilizes any protocols beyond ones at the application level. If it does, how
would it affect your configuration and compatibility testing requirements with respect to
connectivity devices?

• Determine the hardware and software configuration dependencies of the application under
test. Develop a test plan that covers a wide mix of hardware and software configurations.

• Examine the Web application as a whole and consider the connection dial-up and direct
connection methods. How would each type of connection affect the performance and
functionality of the product?

• Will users be accessing the system via dial-up connections through an ISP? If so, connectivity
may be based upon proprietary ISP strings, such as the parsing of a login script. Will there be
remote users accessing through an RAS?

• Will the application be installing any special modules, such as a dialer and associated
components, that may introduce conflicts? Consider dialer platforms, versions, and brand
names.

Bibliography

Comer, Douglas. Internetworking with TCP/IP Vol. I: Principles, Protocols, and
Architecture, fourth edition. Upper Saddle River, NJ: Prentice-Hall PTR, 2000.

Gralla, Preston. How the Internet Works. Emeryville, CA: Ziff-Davis Press, 1997.break

Page 83

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:

LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.

Orfali, Robert, et al. Client/Server Survival Guide, Third Edition. New York: John Wiley &
Sons, 1999.break

Page 85

Chapter 5—
Web Application Components

Why Read This Chapter?

Having an understanding of a Web application's internal components and how those
components interface with one another, even if only at a high level, leads to better testing. Such
knowledge allows for the analysis of a program from its developer's perspective—which is
invaluable in determining test strategy and identifying the cause of errors. Furthermore,
analyzing the relationship among the components gives an understanding of the interaction of
the work product of several independent developers, not only from the individual developer's
perspective. You analyze the work product from a perspective that is not evident from the
analysis of any individual component. You are asking how all these components interact with
each other to make up the system. The gray-box tester provides this strength. You look at the
sys-soft

Topics Covered in This Chapter

• Introduction

• Overview

• Web Application Component Architecture

• Testing Discussions

• Testing Considerations

• Bibliography

Page 86

tem at a level that is different from the developer's look. Just like the black-box tester, you add
a different perspective, and, therefore, you add value.

Generally, we learn about an application's architecture from its developers during
walk-throughs. An alternate approach is to do our own analysis by tracing communication
traffic between components. For example, tests can be developed that hit a database server
directly, or on behalf of actual user activities, via browser-submitted transactions. Regardless,
we need to have a firm grasp of typical Web-based application architecture at the component
level if we are to know what types of errors to look for and what questions to ask.

Introduction

This chapter explores the software and hardware components of a typical Web-based
system—from client-based components on the front end (such as Web browsers, plug-ins, and
embedded objects) to server-side components on the back end (such as application server
components, database applications, third-party modules, and cross-component communication).
It offers insight into what typically happens when users click buttons on browser-based
interfaces. It also explores pertinent testing issues such as:

• Which types of plug-ins are used by the application under test? What are the testing
implications associated with these plug-ins? What issues should be considered during
functionality and compatibility testing once these plug-ins have been integrated into the system?

• How should the distribution of server-side components affect test design and strategy?

• Which Web and database servers are supported by the application? How is Web-to-database
connectivity implemented, and what are the associated testing implications?

• How can testing be partitioned to focus on problematic components?

Overview

A Web-based system consists of hardware components, software components, and users. This
chapter focuses on the software components of Web-based systems.

Distributed Application Architecture

In a distributed architecture, components are grouped into clusters of related services.
Distributed architectures are used for both traditional client-server systems and Internet-based
client-server systems.break

Page 87

Traditional Client-Server Systems

A database access application typically consists of four elements:

1. User interface (UI) code. The end-user or input/output (I/O) devices interact with this for
I/O operations.

2. Business logic code. Applies rules, computes data, and manipulates data.

3. Data access service code. Handles data retrieval and updates to the database, in addition to
sending results back to the client.

4. Data storage. Holds the information.

Thin- versus Thick-Client Systems

When the majority of processing is executed on the server side, a system is considered to be a
thin-client system. When the majority of processing is executed on the client side, a system is
considered to be a thick-client system.

In a thin-client system (Figure 5.1), the user interface runs on the client host while all other
components run on the server host(s). By contrast, in a thick-client system (Figure 5.2), most
processing is done on the client side; the client application handles data processing and applies
logic rules to data. The server is responsible only for providing data access features and data
storage.

Web-Based Client-Server Systems

Web-based client-server systems typically group components into three related tiers: (1) User
service components (client), (2) business service components (server), and (3) data service
components (server). Processing, performance, scalability, and system maintenance are all
taken into account in the design of such systems.break

Figure 5.1
Thin-client system.

Page 88

Figure 5.2
Thick-client system.

An example of a three-tiered Web application is shown in Figure 5.3. The components shown
in this example are discussed in later sections of this chapter.

Figures 5.4 and 5.5 illustrate thin-client and thick-client Web applications, respectively. In the
thin-client example, the server is responsible for all services. After retrieving and processing
data, only a plain HTML page is sent back to the client. In the thick-client example, however,
components such as ActiveX controls and Java applets, which are required for the client to
process data, are hosted and executed on the client machine. Each of these models calls for a
different testing strategy.break

Figure 5.3
Three-tiered Web-based system.

Page 89

Figure 5.4
A Web-based thin client.

In thick-client system testing, tests should focus on performance and compatibility. If Java
applets are used, the applets will be sent to the browser with each request (unless the same
applet is used within the same instance of the browser). If the applet is a few hundred kilobytes
in size, it will take a fair amount of bandwidth to download it with reasonable response time.

Although Java applets are, in theory, designed to be platform independent, they should be
tested with various supported browsers because they may have been created with different
versions of the software development kit (SDK). Each SDK supports a different set of
features. In addition, applets need to be interpreted by a Java Virtualcontinue

Figure 5.5
Web-based thick client.

Page 90

Testing the Sample Application

Testing the Sample Application

To illustrate how functionality implementation can affect testing efforts, consider the metric
generation feature of the sample application (See Chapter 7, ''Sample Application," for more
information). The sample application enables users to generate bug-report queries that specify
search criteria such as bug severity and the names of engineers. Query results are tabulated and
ultimately plugged into graphic charts, which are displayed to users. This functionality is
implemented by having the user send a query to the Web server (via a Web browser). The Web
server in turn submits the query to a database. The database executes the query and returns
results. The Web server then sends the resulting data along with a Java applet or ActiveX
control that is to be installed on the client machine. The client side, after downloading the
component, converts the data into a graphically intuitive format for the user. If the downloaded
component executes on the client machine, then the system is a thick-client system. If the
processing is done on the server [i.e., the Structured Query Language (SQL) server gets results
from the database, a GIF graphic is created on the server-side, and the GIF is sent back to the
browser], then the system is a thin-client system. These alternate functionality implementations
will have different consequences on the testing effort.

Machine (JVM). Different browsers, on different platforms and their respective versions, have
different built-in JVMs, which may contain bug incompatibilities with each other. With
ActiveX controls, the performance hit should occur only once. There may, however, be
incompatibility issues with browsers other than Microsoft Internet Explorer and platforms
other than Microsoft Windows.

In thin-client systems, incompatibility issues are less of a concern. Performance issues,
however, need to be considered on the server side where requests are processed and data
transfer takes place (sending bitmaps to the browser).

The thin-client model is designed to solve incompatibility problems as well as processing
power limitations on the client side (the thin-client model concentrates work on the server).
Additionally, it ensures that updates happen immediately because the updates are applied at
that server only. Personal digital assistants (PDAs), for example, due to their small size, are
not capable of handling much processing. The thin-client model serves PDAs well because it
pushes the work to servers, which perform the processing and return results back to the client
(the PDA). Desktop computers (in which the operating systems deliver a lot of power and
processing) enable much more processing to be executed locally; therefore, the thick-client
approach is commonly employed to improve overall performance.

Software Components

A component is any identifiable part of a larger system that provides a specific function or
group of related functions. Web-based systems, such as e-business systems, are composed of a
number of hardware and software components. Software components arecontinue

Page 91

integrated application and third-party modules, service-based modules, the operating system
(and its service-based components), and application services (packaged servers such as Web

servers, SQL servers, and their associated service-based components). Component testing is
the testing of individual software components, or logical groups of components, in an effort to
uncover functionality and interoperability problems. Some key software components include
operating systems, server-side application service components, client-side application service
components, and third-party components.

Operating Systems

Operating systems extend their services and functionality to applications. The functionality is
often packaged in binary form, such as standard dynamic link libraries (DLLs). When an
application needs to access a service, the application does it by calling a predefined
application program interface (API) set. In addition, with object-based technology, these
components extend their functionality by also exposing events (e.g., when a certain applied
event is double-clicked, perform the following action), properties (e.g., when the background
color is white and the foreground color is black), and methods (e.g., remove or add a certain
entry to the scroll list) for other applications to access.

Application Service Components

Server-side packaged servers. A server is a software program that provides services to
other software programs from either a local host or a remote host. The hardware box that a
server software program runs in is also often referred to as a server. Physical hardware boxes,
however, can support multiple client programs, so it is more accurate to refer to the software
as the server, as opposed to the hardware that supports it. Packaged servers offer their services
and extend their functionality to other applications in a manner that is similar to the extended
model of operating systems. Two common packaged servers that are used in Web-based
systems are Web servers and database servers. Web servers typically store HTML pages that
can be sent, or served, to Web clients via browsers. It is common for packaged Web servers to
offer functionality that enables applications to facilitate database activities. Such features can
be packaged in a binary module such as a DLL. Access to these features is achieved via
predefined APIs. See Table 5.1 for examples of server-side service components.

Client-side services. On the client side, a typical browser supports a variety of services,
including Java VM, which runs Java applets, script interpreters that execute scripts. See Table
5.1 for examples of client-side services.

Third-Party Components

Software applications are subdivided into multiple components, otherwise referred to as units
or modules. In object-oriented programming and distributed software engineering, components
take on another meaning: reusability. Each component offers acontinue

Page 92

Table 5.1 Possible Scenario of Software Component Segmentation

APPLICATION SERVICE
COMPONENTS

THIRD-PARTY
COMPONENTS

Server side Java components

Web server ActiveX controls

Scripting Standard EXEs

Scripting Standard EXEs

Java VM Standard DLLs

Database server CGIs

Data access service etc.

Transaction service

Client Side

Web browser

Scripting

Java VM

etc.

INTEGRATED APPLICATION COMPONENTS

HTML, DHTML, JavaScript, VBScript, Jscript, perl Script, etc.

Standard EXEs

CGIs

API-based components

Java components

ActiveX controls

Standard DLLs

etc.

template, or self-contained piece to a puzzle that can be assembled with other components, to
create other applications. Components can be delivered in two formats: (1) source-based, such
as in object-oriented programming class, and (2) binary-based, such as in a DLL or Java
Archive file format (JAR). Binary-based components are more relevant to the testing concerns
of this book.

Integrated Application Components

An integrated application consists of a number of components, possibly including a database
application running on the server side, or a Java-based chart generation application running on
the server side in an HTML page that is running on the client side, as shown in Figure 5.6. In
the Java applet example shown in Figure 5.6, the software component executes within the
context of the Web browser, or a container. A container can also be a Web-server-based
application, a database application, or any other applicationcontinue

Page 93

Figure 5.6
Java applet.

 that can communicate with the component via a standard interface or protocol. Typically,
software components are distributed across different servers on a network. They, in turn,
communicate with each other via known interfaces or protocols to access needed services. See
Table 5.1 for a sample list of integrated software components.

Dynamic Link Library (DLL)

Understanding DLLs and the potential errors that may be associated with them is essential in
designing useful test cases. In the early years of software development, the only way that a
developer could expose created functionality to another developer was to package the
functionality in an object file (.OBJ) or library files (.LIB). This method required the other
developer to link with the .OBJ or .LIB file. The functionality was therefore locked in with the
executable. Some of the implications of this approach were that if several executables used the
same set of functionality, each executable had to individually link to the object. This was
repetitive, and the linked code added to the size of the executable file, which resulted in more
memory requirements at runtime. More important, if new versions of the object or library files
became available, the new code had to be relinked, which led to the need for much
retesting.break

Page 94

Dynamic link library was introduced to improve the method of sharing functionality. A DLL is
a file that contains functions and resources that are stored separately from and linked to on
demand by the applications that use them. The operating system maps the DLL into the

application's address space when the application, or another DLL, makes an explicit call to a
DLL function. The application then executes the functions in the DLL.

Files with .DLL extensions contain functions that are either exported or available to other
programs. Multiple applications or components may share the same set of functionality and,
therefore, may also share the same DLLs at runtime. If a program or component is linked to a
DLL that must be updated, in theory all that needs to be done is replace the old DLL with the
new DLL. Unfortunately, it is not this simple. There are situations where errors may be
introduced with this solution. For example, if a DLL that is referenced in the import library
links to a component that is not available, then the application will fail to load. (See the error
message example in Figure 5.10.)

Here is another example. The DLL caller application illustrated in Figure 5.7 is a Visual Basic
application. It uses a few functions that are exported by the system DLL named
KERNEL32.DLL. After loading the application, clicking the Show Free Memory button
displays the current available physical memory.

To implement this feature, the code that handles the click event on the Show Free Memory
button needs to be written. Because there is an exported function named GlobalMemoryStatus,
which is available in the Windows system DLL named KERNEL32.DLL, a developer can
simply call this function to retrieve the information. The process of using a function in a DLL is
illustrated in Figures 5.8 and 5.9. Call the DLL function when there is a click event on the
Show Free Memory button.

Potential DLL-Related Errors

Missing required DLL. For example, when the application DLLCALLER.EXE is executed on
the developer's machine, everything works fine. When it is first exe-soft

Figure 5.7
DLL caller program.

Page 95

Figure 5.8
DLL function declaration.

cuted on a system other than the developer's, however, the error message shown in Figure 5.10
displays.

As it turns out, the application was created with Visual Basic 4.0 and depends on the DLL
named VB40032.DLL. If that DLL is not installed, the application will not load properly. The
application did not complain about KERNEL32.DLL, because it is a system DLL, which is
expected to be there. Otherwise, even the operating system would not work.

API-incompatible DLL. There may be two versions of the same DLL, but the data type,
structure, or number of parameters has been changed from one version to another. And so, an
error results.

Other incompatibility issues. One of the benefits of using DLL is that when the author of a
DLL needs to change the implementation of a function (to improve performance, for example)
but not change the API, the change should be transparent to the DLL callers. No problems
should result. This is, however, not always the case. You need to test to confirm the
compatibility with your application.

See the section entitled "Testing Considerations" later in this chapter for more DLL-related
issues. The preceding section is not intended to suggest that you should start testing at the API
level, unless you are specifically asked to do so. It is intended tocontinue

Figure 5.9
DLL function call.

Page 96

Figure 5.10
Error caused by missing DLL.

give you enough background information to design powerful test cases that focus on
interoperability issues.

Web Application Component Architecture

Generally, Web applications consist of server-side and client-side components, including
operating systems, browsers, packaged servers, and other associated software. A sampling of
these components, along with their associated testing issues, follows.

Server-Side Components

Any computer that provides services to other computers is a server. A single physical
computer can house multiple servers (software programs). Servers can also be distributed
across multiple physical computers. Testing considerations vary depending on the number and
distribution of servers and other software components associated with a system.

Web systems often have several servers included at their back end—allowing users to gain
access from a client computer (via a browser) and get the services they need (Web page
content or database records). On the hardware side, the characteristics that distinguish server
host quality are similar to those qualities considered favorable in all computers: high
performance, high data throughput, scalability, and reliability.

Server operating systems need to be more robust than desktop workstation operating systems.
Windows 95 and Windows 98, for example, do not offer the reliability or performance
required by most servers. Operating systems such as Unix, Windows NT, and Windows 2000
Advanced Server offer strong security features and administrator tools, in addition to the
scalability and reliability required by servers.

Core Application Service Components

Web Servers

Web servers, or HTTP servers, store Web pages or HTML files and their associated contents.
Web servers make their contents available to client computers. Web servers are the most
essential type of server for Web-based systems. Many software compa-soft

Page 97

nies develop Web servers: Novel, Netscape, Microsoft, Sun Microsystems, and others. Web
servers also serve advanced technology components such as Java Servlets, ActiveX controls,
and back-end database connectors. Web servers may work with protocols such as FTP and

Gopher to pass data back to users.

Database Servers

Database servers act as data repositories for Web applications. Most Web systems use
relational database servers (RDBSs). Database servers introduce a variety of testing
complexities, which are discussed in Chapter 11, "Database Tests."

Prominent database server manufacturers include Microsoft, Oracle, and Sybase. Structured
Query Language (SQL) is the coding language used in relational database management servers
(RDBMS). Refer to Chapter 11, "Database Tests," for more information regarding SQL and
databases.

Application Servers

Application server is a term used to refer to a set of components that extend their services to
other components (e.g., ASP) or integrated application components as discussed earlier. Web
applications support users by giving them access to data that is stored on database servers.
Web applications coordinate the functionality of Web servers and database servers so that
users can access database content via a Web browser interface.

The sample application, a Web-based bug-tracking system, is an example of an application
server that utilizes component-based technologies. See Chapter 7, "Sample Application," for
more information.

Web-to-Database Connectivity

The value of data access applications is that they allow interaction between users and data.
Communication between users, Web servers, and database servers is facilitated by certain
extensions and scripting models.

On the back end, data resides in a database. On the front end, the user is represented by
requests sent from the Web server. Therefore, providing connectivity between Web server
requests and a database is the key function of Web-based applications. There are several
methods that can be employed to establish such connectivity. The most common are Common
Gateway Interface– (CGI) based programs with embedded SQL commands, Web server
extension-based programs, and Web server extension-based scripts.

Common Gateway Interface (CGI)

The CGI is a communications protocol that Web servers use to communicate with other
applications. Common Gateway Interface scripts allow Web servers to access databases
(among other things); CGI applications, on the other hand, receive data from servers and return
data through the CGI. The CGI applications are usually written in Practical Extraction and
Reporting Language (perl), although they can be written in other programming languages, such
as C, C++, and Visual Basic.break

Page 98

Once a CGI program has been written, it is placed in a Web server directory called a CGI bin.
Web server administrators determine which directories serve as CGI bins.

Common Gateway Interface programs must be placed in their correct directories if they are to
run properly. This security feature makes it easier to keep track of CGI programs and to
prevent outsiders from posting damaging CGI programs.

After a CGI program has been placed in a CGI bin, a link to the bin is embedded in a URL on a
Web page. When a user clicks the link, the CGI program is launched. The CGI program
contacts a database and requests the information that the user has requested. The database
sends the information to the CGI program. The CGI program receives the information and
translates it into a format that is understandable to the user. This usually involves converting
the data into HyperText Markup Language (HTML), so that the user can view the information
via a Web browser.

The main drawback of CGI scripts is that they run as separate executables on Web servers.
Each time a user makes a request of a database server by invoking a CGI script, small amounts
of system resources are tied up. The net effect of running a single CGI script is negligible, but
consider the effect of 1000 concurrent users launching CGI scripts simultaneously; the effect of
100,000 simultaneous CGI scripts running on a Web server would likely have disastrous
consequences to system memory and processing resources.

Web Server Extension-Based Programs

An alternate, and sometimes more efficient, means of supplying Web-to-database connectivity
is to integrate with Web server–exported library functions. The NSAPI/ISAPI-based
applications, for example, are in-process applications that take advantage of Web servers'
native API. Library functions work off of features and internal structures that are exposed by
Web servers to provide different types of functionality, including Web-to-database
connectivity.

The NSAPI/ISAPI-based applications can be DLLs that run in the same memory space as Web
server software. Netscape Server uses NSAPI. Microsoft Internet Information Server uses
ISAPI. Both NSAPI and ISAPI effectively offer a similar solution; they are APIs that offer
functions in DLL format. These APIs expose the functionality of the Web server software of
which they are a part so that required processes can be performed by the server software itself,
rather than by a separate executable (such as a CGI script).

Web server extension-based applications, although more efficient from a resource perspective,
are not always the best choice for invoking Web server functionality. For example, a Web
application may be distributed to multiple server platforms. It often makes sense to write
different code for each platform. A CGI script might be written to interface with a Unix server,
whereas NSAPI code might be used to invoke functions on a Netscape server running in the
same system. A third server (e.g., Microsoft Internet Information Server) might require either a
CGI script or ISAPI code. The development of every Web system, as far as Web-to-database
connectivity goes, requires a careful balance between tolerable performance levels,
compatibility, and perceived effort of execution.break

Page 99

A drawback of Web server extension-based applications is that, because they are written in
compiled languages such as C, C++, or Visual Basic, they are binary. Whenever changes are

made to code—for example, during bug fixing—the code has to be recompiled. This makes
remote changes to the code more cumbersome. Furthermore, scripting language is easier to use
and, therefore, many new developers can quickly be trained.

Web Server Extension-Based Scripts

Active Server Page (ASP) is a Microsoft technology that allows for the dynamic creation of
Web pages using scripting language. The ASP is a programming environment that provides the
ability to combine HTML, scripting, and components into powerful Internet applications. Also,
ASP can be used to create Web sites that combine HTML, scripting, and other reusable
components. Active Server Page script commands can also be added to HTML pages to create
HTML interfaces. In addition, with ASP, business logic can be encapsulated into reusable
components that can be called from scripts or other components.

Active Server Page scripts typically run on servers. Unlike the binary code model, ASP scripts
do not have to be compiled. Therefore, ASP scripts can be easily copied from distributed
software unless encryption measures are undertaken; encryption measures add more
components and processing requirements to Web servers, however—not to mention the need
for additional testing. The ASP scripts interact with the DLL layer through an interpreter
(asp.dll). The DLL layer in turn interacts with the ISAPI layer to provide functionality, such as
gateway connectivity. An HTML page that contains a link to an ASP file often has the file name
suffix of .ASP.

Java Server Page (JSP) is a Sun Microsystems technology similar to ASP for the dynamic
creation and control of the Web page content or appearance through the use of servlets, small
programs that run on the Web server to generate the Web page before it is sent to the requested
user. Java Server Page technology is also referred to as the servlet API. Unlike ASP, which is
interpreted, JSP calls a Java program (servlet) that is run on the Java Web Server. An HTML
page that contains a link to a Java servlet often has the file name suffix of .JSP.

ASP/JSP versus CGI

• The CGI programs require Web server operating systems to launch additional processes with
each user request.

• As an in-process component, ASP/JSP can run in the same memory space as Web server
applications—eliminating additional resource drain and improving performance.

ASP/JSP versus Web Server Extension-Based Programs

• Because NSAPI/ISAPI applications are in-process applications that use a Web server's
native API, they run at a speed comparable with that of ASP.

• NSAPI/ISAPI applications must be compiled.break

Page 100

• ASP/JSP uses scripting languages.

• ASP/JSP is faster to develop and deploy than NSAPI/ISAPI.

Other Application Service Components

Search Servers

Often referred to as search engines, search servers catalog and index data that is published by
Web servers. Not all Web systems have search servers. Search servers allow users to search
for information on Web systems by specifying queries. A query, simply put, is a request (to
find certain data) that has been submitted to a search server by a user. Users submit queries so
that they can define the goal and scope of their searches—often specifying multiple search
criteria to better refine search results.

As new information is introduced into a Web system, search servers update their indices.
Robust search servers have the ability to handle large amounts of data and return results
quickly, without errors.

Proxy Servers and Firewalls

Proxy servers are sometimes employed by companies to regulate and track Internet usage. They
act as intermediaries between networks and the Internet by controlling packet transmissions.
Proxy servers can prevent files from entering or leaving networks, log all traffic between
networks and the Internet, and speed up the performance of Internet services. They log IP
addresses, URLs, durations of access, and numbers of bytes downloaded.

Most corporate Web traffic travels through proxy servers. For instance, when a client computer
requests a Web page from the Internet, the client computer contacts the network's proxy server
with the request. The proxy server then contacts the network's Web server. The Web server
sends the Web page to the proxy server, which in turn forwards the page to the client computer.

Proxy servers can speed up performance of Internet services by caching data. Caching
involves keeping copies of requested data on local servers. Through caching, proxy servers
can store commonly viewed Web pages so that subsequent users can access the pages directly
from the local server, rather than accessing them at slower speeds over the Internet.

Firewalls are shields that protect private networks from the Internet. They prevent unauthorized
users from accessing confidential information, using network resources, and damaging system
hardware—while allowing authorized insiders access to the resources they require. Firewalls
are combinations of hardware and software—making use of routers, servers, and software to
shield networks from exposure to the Internet. Two common types of firewalls are
packet-filtering firewalls (such as routers) and proxy-based firewalls (such as gateways).

See Chapter 15, ''Security Tests," for more information regarding proxy servers and
firewalls.break

Page 101

Communication-Related Servers

Numerous communication server types are available to facilitate information exchange
between users, networks, and the Internet. If a Web system under test includes a remote-access
server, e-mail, a bulletin board, or chat feature, then communication server components are
present and should be tested.

E-Commerce-Related Servers

E-commerce servers (though not truly a separate type of server, but rather a specialized use of
Web server technologies) provide functionality for retail operations. Via Web applications,
they allow both merchants and customers to access pertinent information through client-side
Web browsers.

TASKS PERFORMED BY E-COMMERCE SERVERS

• Order taking and order processing

• Inventory tracking

• Credit card validation

• Account reconciliation

• Payment/transaction posting

• Customer orders/account information

COMMON E-COMMERCE SERVER BRANDS

• Ariba

• BroadVision

• Calico

• Vignette

Multimedia-Related Servers

Multimedia servers provide support for high-speed multimedia streaming, enabling users to
access live or prerecorded multimedia content. Multimedia servers make it possible for Web
servers to provide users with computer-based training (CBT) materials.

Client-Side Components

The client side of a Web system often comprises a wide variety of hardware and software
elements. Multiple brand names and product versions may be present in a single system. The
heterogeneous nature of hardware, networking elements, operating systems, and software on the
client side can make for challenging testing.

Web Browsers

Web browsers are applications that retrieve, assemble, and display Web pages. In the
client-server model of the Web, browsers are clients. Browsers request Web pagescontinue

Page 102

from Web servers. Web servers then locate requested Web pages and forward them to the
browsers, where the pages are assembled and displayed to the user. There are multiple
browsers and browser versions available for PCs, Macintosh computers, and Unix computers.

Browsers issue HTML requests (although they can also issue requests for ASP, DHTML, and
more). The HTML code instructs browsers how to display Web pages to users. In addition to
HTML, browsers can display material created with Java, ActiveX, and scripting languages
such as JavaScript and VB Script.

When Web pages present graphics and sound files, the HTML code of the Web pages
themselves does not contain the actual multimedia files. Multimedia files reside independently
of HTML code, on multimedia servers. The HTML pages indicate to Web browsers where
requested sounds, graphics, and multimedia are located.

In the past, browsers required that separate applications, known as helper applications, be
launched to handle any file type other than HTML, GIF, and JPEG. Plug-ins, such as
RealPlayer and QuickTime, are more popular today. They allow streaming media and other
processes to occur directly within browser windows. RealPlayer, by RealNetworks, is a
popular streaming sound and video plug-in. Windows Media Player is a sound and video
plug-in that is built into Windows operating systems. QuickTime, made by Apple, can play
synchronized content on both Macintosh computers and PCs.

Newer browsers are bundled with complete suites of Internet applications, including plug-ins,
e-mail, utilities, and What You See Is What You Get (WYSIWYG) Web page authoring tools.
Netscape Communicator, of which Netscape Navigator is a component, is such a suite. Internet
Explorer 4.x and 5.x allow users to view their entire desktops using HTML; Web links are
used to interact with the operating system and live Web content can be delivered directly to the
user desktop.

Add-on/Plug-in Components

Additional software may reside on the client side to support various forms of interactivity and
animation within Web pages. Java applets and ActiveX controls are examples of such add-on
applications. Java, a full-featured object-oriented programming language, can be used to create
small applications, known as applets, within Web pages. ActiveX is a Microsoft technology
that behaves similarly to both Java applets and plug-ins. ActiveX controls offer functionality to
Web pages. Unlike applets, however, they are downloaded and stored on the user's hard disk
and run independently of Web browsers. Microsoft Internet Explorer is the only browser that
supports ActiveX controls. Java applets and ActiveX controls can also reside on and be
executed from servers.

Communication-Related Components

The client sides of Web systems often contain applications that facilitate various methods of
communication. Such applications take advantage of server-based communication components
such as remote-access dial-up, chat (IRC), discussion groups, bulletin boards, and
videoconferencing.break

Page 103

Testing Discussion

The following component architecture example is useful in illustrating effective testing
strategies. Figure 5.11 details the chart generation example that was mentioned earlier in the

section, "Distributed Application Architecture," in this chapter. The pseudodesign for the
transaction process runs as follows:

• User submits a request for a trend chart that compares daily totals of open bugs with closed
bugs over the past 5 days.

• Web server requests the file named trend.asp.

• trend.dll is called to do some processing work.

• trend.dll connects to the database server and calls a stored procedure named sp_trend to pull
the requested data.

• trend.dll, upon receiving the requested data, calls plot.dll and passes the data for calculation
and formatting in preparation for drawing the trend chart.

• The formatted data is then written to a file named data.tmp in comma-delimited format.

• A third-party Java charting component is requested with the file name data.tmp so that a line
chart can be drawn.

• The JavaApplet is sent to the client and data.tmp is then deleted.

• The Java applet is loaded into the user's browser and a trend chart with the appropriate data
is drawn.

Based on the program logic and its component architecture, we will analyze this design to
determine potential problems. Then, we will design test cases around the potential problems in
an effort to expose possible faults and errors. Note that thecontinue

Figure 5.11
Component architecture example.

Page 104

potential issues and test cases discussed in this section are by no means definitive. They are
designed to encourage you to think more about the possibility of errors in component-based
systems. They will help you to think beyond black-box testing from the end user's point of

view. Some of the testing issues mentioned in this example are discussed in great detail in later
chapters.

Test-Case Design Analysis

Submitting the request.

• What happens if the input data is invalid?

You want to determine if there is any error handling code. Hopefully, there is. You will then
need to devise test cases that test the error handling logic, which consist of three parts: (1)
error detection, (2) error handling, and (3) error communication. You also want to know if
errors are handled on the client side, the server side, or both. Each approach has unique
implications. You may want to know if error handling is done through scripts or through an
embedded component (e.g., if a Java applet or an ActiveX control is used for the input UI).

• What happens if there is too much data for the last 5 days?

Look for potential boundary condition errors in the output.

• What happens if there is no data for the last 5 days?

Look for potential boundary condition errors in the output.

• What happens if there is a firewall in front of the Web server?

Look for potential side effects caused by the firewall such as dropping or filtering out certain
data packets, which would invalidate the request.

trend.asp is requested.

• Is the Web server environment properly set up to allow ASP to be executed?

The environment can be set up manually by the system administrator or programmatically via
an installation program or setup utility. Regardless, if a script is not allowed to execute,
trend.asp will fail.

• Will the ASP be encrypted? If so, has it been tested in encrypted mode?

The application under test may be using third-party technology to encrypt the ASP files.
Incompatibility, performance, time-related, and other environment-related issues may affect
functionality.

trend.dll is called.

• Is trend.dll a standard DLL or a COM-based DLL? If it is a COM-based object, how is it
installed and registered?

• What are the exported functions in the DLLs upon which trend.dll depends? Are they all
available on the local and remote host(s)?

There are numerous errors related to DLLs that should be considered. See "Dynamic Link
Library" in this chapter for more information.

Calling sp_trend.

• The application needs to make a connection to the SQL server before it can execute the
stored procedure sp_trend on the database. What issues might cause the connection to
fail?break

Page 105

There are numerous reasons why this process might fail. For example, there may be an error in
authentication due to a bad ID, password, or data source name.

• When an attempt to connect to the database fails, how is the error condition
communicated back to the user?

The user may receive anything from a cryptic error message to no message at all. What are
acceptable standards for the application under test?

Testing the Sample Application

Please see Chapter 7 for details on the sample application. Following is an example of a real
bug that was discovered in the testing of the sample application. trend.dll crashed an
ISAPI-based DLL that, in turn, generated error messages on the application server console.
However, the end user at the client side received no communication regarding the error. The user
was not notified of the error condition.

• Is the stored procedure properly precompiled and stored in the database?

This is typically done through the installation procedure. If for some reason the stored
procedure is dropped or fails to compile, then it will not be available.

• How do you know that the data set returned by the stored procedure is accurate?

The chart might be drawn correctly but the data returned by the stored procedure may be
incorrect. You need to be able to validate the data. See Chapter 11, "Database Tests," for more
information.

Calling plot.dll. The functions in this DLL are responsible for calculating and formatting the
raw data returned by sp_trend in preparation for the Java chart application.

• Is data being plotted correctly to the appropriate time intervals (daily, weekly, and
monthly)?

Based on the user's request, the data will be grouped into daily, weekly, and monthly periods.
This component needs to be thoroughly tested.

• Does the intelligence that populates the reports with the appropriate time periods reside
in plot.dll or in sp_trend?

Based on what was described earlier, some of the logic can be implemented in the stored
procedure and should be tested accordingly.

Write data to file data.tmp.

• What happens if the directory to which the text file will be written is write-protected?

Regardless if the write-protected directory is a user error or a program error, if data.tmp is not
there, the charting feature will not work.

• What happens if plot.dll erroneously generates a corrupt format of the comma-delimited
file?

The data formatting logic must be thoroughly tested.

• What happens if multiple users request the trend chart simultaneously or in quick
succession?break

Page 106

Multiuser access is what makes the Web application and client-server architectures so
powerful. Yet, this is one of the main sources of errors. Test cases that target multiuser access
need to be designed.

Testing the Sample Application

A hard-to-reproduce bug that resulted in a blank trend chart was discovered during the
development of the sample application. It was eventually discovered that the data.tmp file was
hard-coded. Whenever more than one user requested the chart simultaneously, or in quick
succession, the earlier request resulted in incomplete data, or data intended for the subsequent
request. The application's developer later designed the file name to be uniquely generated with
each request.

Calling the Java charting program.

• What happens if a chart program is not found?

The Java applet must be physically placed somewhere, and the path name in the code that
requests the applet must point to the correct location. If the applet is not found, the charting
feature will not work.

• What happens if there is a missing cls (class) in a JAR?

A jar file often contains the Java classes that are required for a particular Java application.
There is a dependency concept involved with Java classes that are similar to what is described
in "Dynamic Link Library" in this chapter. If one or more of the required classes are missing,
the application will not function.

Sending results back to the client. The Java applet is sent to the browser and the data in
data.tmp is also sent, so that the applet can draw the chart in the browser. data.tmp is then
deleted from the server.

• What is the minimum bandwidth requirement that the application under test supports?

How big is the applet? Is performance acceptable with the minimum bandwidth
configuration?

Check the overall performance in terms of response time under the minimum requirement
configuration. This test should also be executed with multiple users (for example, a million
concurrent users if that is what the application under test claims to support). See Chapter 16,
"Performance, Load, and Stress Tests," for more information.

• Is the temp file properly removed from the server?

Each charting request leaves a new file on the server. These files unnecessarily take up space.

Formatting and executing the client-side component. The browser formats the page, loads
the Java applet, and displays the trend chart.

• Is the applet compatible with all supported browsers and their relative versions?break

Page 107

Testing the Sample Application

The sample application utilizes a third-party Java charting component that enables the generation
of charts. Because the component offers numerous user interaction features, it is a rather large
object to be sent to a browser. Because the sample application required only basic charts, the
developer decided to remove some of the classes in the jar that were not required by the
application. The size of the jar was thereby slimmed down to about half its original size and
performance was greatly improved.

After about a week of testing, in which the testing team had no idea that the number of Java
classes had been reduced, the test team discovered a unique condition that required some
handling by the applet. The applet, in turn, was looking for the handling code in one of the
classes that had been removed. The test team wrote up a bug report and subsequently talked to
the developer about the issue. The developer explained what he had done and told the test team
that they should make sure that this type of error be detected in the future. Several test cases that
focused on this type of error were subsequently designed. The test team ultimately found five
more errors related to this optimization issue.

Each browser has its own version of the sand box, or JVM, and does not necessarily have to be
compatible with all other browsers. This incompatibility may have an effect on the applet.

• What happens when security settings, either on the browser side or on the network firewall
side, prohibit the applet from downloading? Will there be any communication with the user?

Look for error conditions and see how they are handled.

Test Partitioning

Given the distributed nature of the Web system architecture, it is essential that test partitioning
be implemented. For example, at the configuration and compatibility level, if the application
under test requires Microsoft IIS 3.0, 4.0, and 5.0, and Microsoft SQL versions 6.5 and 7.0,

then the test matrix for the configuration should look something like this:break

TEST CONFIGURATION ID MS-IIS MS-SQL

1 3.x 6.5

2 3.x 7.0

3 4.x 6.5

4 4.x 7.0

5 5.0 6.5

6 5.0 6.0

Page 108

Regarding performance, you might wish to compare SQL 6.5 with SQL 7.0. Such a test matrix
would look something like this:

TEST CONFIGURATION ID MS-IIS MS-SQL

1 Don't Care 6.5

2 Don't Care 7.0

On a more micro level, if a component in the system under test is updated at the last minute and
testing must be completed in a hurry, how much testing should be repeated? Should everything
be retested, or should only specific features be retested?

Using the sample application's charting feature as an example (Figure 5.6), say that PLOT.DLL
is recompiled with a later version of the compiler, but other than that, not a single line of code
has been changed. How can test requirements be determined? Here are a few suggestions:

• Reexamine the specific functionality that PLOT.DLL offers and look for error scenarios.

• For each potential error scenario, consider the consequences.

• Use a utility such as Dependency Walker to determine any new dependencies that PLOT.DLL
has and the potential implications of those dependencies.

• Examine other components to make sure that TREND.DLL is the only component using
PLOT.DLL.

• Focus testing on the creation of DATA.TMP and the data integrity.

• Confine testing to the context of the trend chart features only.

• Retest all other functionality.

• Retest browser compatibility (the Java applet remains the same, so there is no need to be
concerned with its compatibility).

• Focus testing on the stored procedure sp_trend (because nothing has changed there).

DIFFERENT CONCEPTUAL LEVELS OF PARTITIONING

• High-level partitioning. If the goal of testing is to measure server-side response time, then
there is no need to run data through the Internet, firewall, proxy servers, and so on. With a
load-testing tool (see Chapter 16, "Performance, Load, and Stress Tests," for more
information), a load generator can be set up to hit the Web server directly and collect the
performance data. Figure 5.12 shows an example of high-level partitioning.

• Physical-server partitioning. If the goal of testing is to measure per-box performance, then
each physical server can be hit independently with a load generator to collect performance
data.

• Service-based partitioning. If the goal of testing is to test the functionality of the data
application and the overall performance of the database server that is providing services to the
application, then testing should focus on the database server.break

Page 109

Figure 5.12
High-level partitioning.

• Application/component-based partitioning. The focus of such testing is on the component
level (refer to the preceding Java chart generation tests for examples). The testing here is
focused at the component level as previously described in the charting example.

Testing Considerations

• Determine the server hardware requirements of the system under test. Then, generate a matrix
of the supported configurations and make sure that these configurations are tested.

• Determine the server software component requirements (Web servers, database servers,
search servers, proxy servers, communications servers, application servers, e-commerce
servers, multimedia servers, etc.) and design interoperability tests to look for errors.

• Determine how the server software components are distributed and design interoperability
tests to look for errors.

• Determine how the server software components interact with one another and design
interoperability tests to look for errors.

• Determine how the Web-to-database connectivity is implemented (CGI, NSAPI/ISAPI, ASP,
or other technologies) and design interoperability tests to look for errors.

• Determine the hardware/software compatibility issues and test for those classes of errors.

• Determine how the processing is distributed between client and server (thin client versus
thick client).break

Page 110

• Test partitioning involves the testing of pieces of a system both individually and in
combination. Test partitioning is particularly relevant in the testing of Web systems due to the
communication issues involved. Because Web systems involve multiple components, testing
them in their entirety is neither an easy or effective means of uncovering bugs at an early stage.

• Design test cases around the identified components that make up the client side of a Web
application, including browser components, static HTML elements, dynamic HTML elements,
scripting technologies, component technologies, plug-ins, and so on.

• One way of evaluating integration testing and test partitioning is to determine where the
components of an application reside and execute. Components may be located on a client
machine or on one or more server machines.

DLL Testing Issues

• Use a utility such as Microsoft Dependency Walker to generate a list of DLLs upon which the
application under test (and its components) depends. For each DLL, determine its version
number and where it is located. Determine if the version number is the latest shipping version.

Here is an example of a component-recursive dependency tool, Microsoft Dependency Walker.
If the utility is run and DLL.CALLER.EXE is loaded in (the example DLL mentioned in
''Dynamic Link Library" in this chapter), its dependencies will be analyzed (as shown in Figure
5.13). To download Dependency Walker and other related utilities, go to the Microsoft site and
search for Dependency Walker. Or visit the URL
www.microsoft.com/msdownload/platformsdk/sdktools.htm.break

Figure 5.13
Component-recursive dependency tool.

Page 111

A comparable utility called QuickView is available for Windows 9.x and NT systems. To
access this utility, right-click on a component that you would like to view and choose
QuickView from the context menu list.

There are at least four categories of DLLs and components:

1. Operating system-based DLLs. In Windows environments, this includes USER32.DLL,
GDI32.DLL, and KERNEL32.DLL.

2. Application service-based DLLs. In Windows environments, this includes ASP.DLL,
CTRL3D32.DLL, VB40032.DLL, and so forth.

3. Third-party DLLs. For example, CHART.DLL offers charting functionality to other
applications.

4. Company-specific DLLs. For example, Netscape Navigator includes the NSJAVA32.DLL.

In testing for DLL-related errors, look for the following issues:

• Ensure that nonsystem DLLs are properly installed and that their paths are properly set so that
they can be found when the components call them.

• Look for potential incompatibility errors, such as API incompatibility, or functional
incompatibility among various versions of the same DLL.

• If there are other applications installed on the system that share the same DLL with
components, how will the installation and uninstallation processes be handled?

• What if the DLL is accidentally erased or overwritten by a newer or older version of the
same DLL?

• What happens if more than one version of the same DLL coexists on the same machine?

• Explicitly loaded DLLs must be unloaded when applications and processes no longer need
them. Typically, this should occur upon the termination of the calling application.

• Test with a clean environment (a system with only the operating system installed on it), as
well as a dirty environment (a system loaded with common applications).

• What if a third-party DLL needs certain files that are not available (printer initialization, for
example)?

• With Windows-based applications, consider looking for errors related to the creation and
removal of DLL keys during installation and uninstallation.

Bibliography

Binder, Robert V. Testing Object-Oriented Systems: Models, Patterns, and Tools. Reading,
WA: Addison Wesley Longman, 2000.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.break

Page 112

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

Orfali, Robert, et al. Client/Server Survival Guide, Third Edition. New York: John Wiley &
Sons, 1999.

Reilly, Douglas J. Inside Server-Based Applications. Redmond, WA: Microsoft Press,
2000.break

Page 113

Chapter 6—
Test Planning Fundamentals

Why Read This Chapter?

A crucial skill required for the testing of Web applications is the ability to write effective test
plans that consider the unique requirements of those Web applications. These skills are also
required to write up the sample test plan for the sample application. (See Chapter 7, "Sample
Application," and Chapter 8, "Sample Test Plan," for details.)

Introduction

This chapter discusses test documentation, including test plan templates and section definitions.

It also explains the efficiencies of the LogiGear One-Page Test Plan, details the components
of issue and weekly status reports, and lists some helpful testing considerations.break

Topics Covered in This Chapter

• Introduction

• Test Plans

• LogiGear One-Page Test Plan

• Testing Considerations

• Bibliography

Page 114

Test planning for Web applications is similar to test planning for traditional software
applications; careful planning is always critically important to effective structuring and
management. Test planning is an evolutionary process that is influenced by numerous factors:
development schedules, resource availability, company finances, market pressures, quality
risks, and managerial whim.

Test planning begins with the gathering and analysis of information. First, the product under test
is examined thoroughly. Schedules and goals are considered. Resources are evaluated. Once
all associated information has been pulled together, test planning begins.

Despite the complex and laborious nature of the test planning process, test teams are not
generally given much direction by management. If a company-approved test-plan template does
not exist, test teams are often simply instructed to "come up with a test plan." The particulars of
planning, at least for the first draft of the test plan, are normally left up to the test team.

Test Plans

A test plan is a document, or set of documents, that details testing efforts for a project.
Well-written test plans are comprehensive and often voluminous in size. They detail such
particulars as testing schedules, available test resources, test types, and personnel who will be
involved in the testing project. They also clearly describe all intended testing requirements and
processes. Test plans often include quite granular detail—sometimes including test cases,
expected results, and pass/fail criteria.

One of the challenges of test planning is the need for efficiency. It takes time to write these
documents. Although some or all of this time might be essential, it is also time that is no longer
available for finding and reporting bugs. There is always a tradeoff between depth/detail and
cost, and in many of the best and most thoughtful test groups, this trade-off is difficult and
uncomfortable.

Another challenge of test planning is that it comes so early in the development process that,
more than likely, there is no product built yet on which to base planning. Planning, instead, is

based on product specifications and requirements documents (if such documents exist, and to
whatever extent that they are accurate, comprehensive, and up-to-date). As a consequence,
planning must be revised as the product develops, often moving in directions that are different
than those suggested by original specifications.

Assuming that they are read (which is often not the case), test plans support testing by
providing structure to test projects and improving communication between team members. They
are invaluable in supporting the testing team's primary responsibility—finding as many bugs as
possible.

A central element of test planning is the consideration of test types. Although every test project
brings with it its own unique circumstances, most test plans include the same basic categories
of tests: acceptance tests, functionality tests, unit tests, systemcontinue

Page 115

tests, configuration tests, and regression tests. Other test types (installation tests, help tests,
database tests, usability, security, load, performance, etc.) may be included in test plans
depending on the type of Web application under test. Sometimes, testing groups also need to
determine how much automation and which automated testing tools will be used. How will test
coverage be measured, and what tools will be used? Other tasks that testing groups are often
asked to do include designing and implementing defect tracking, configuration management, and
build-process ownership.

Table 6.1 details when standard test types are normally performed during the software
development process. See Chapter 3, "Software Testing Basics," for definitions of these test
types. Note that Release Acceptance Tests (RATs), Functional Acceptance Simple Tests
(FASTs), and Task-Oriented Functional Tests (TOFTs) are generally run in each phase of
testing. Web systems may require additional test types, such as security, database, and
load/stress.

The next phase of test planning is laying out the tasks. After all available resources and test
types have been considered, one can begin to piece together a bottom-up schedule that details
which tests will be performed and how much time each test will require (later, delegation of
tasks to specific personnel should be incorporated into the test plan). A bottom-up schedule is
developed by associating tasks with the timecontinue

Table 6.1 Test Types and Their Place in the Software Development Process

Table 6.1 Test Types and Their Place in the Software Development Process

Page 116

needed to complete them—with no regard to product ship date. A top-down schedule, on the
other hand, begins with the ship date and then details all tasks that must be completed if the
ship date is to be met. Negotiations regarding test coverage and risk often involve elements of
both top-down and bottom-up scheduling.

Test plans must undergo peer management and project management review. Like engineering
specs, test plans need to be approved and signed before implemented. During a test-plan
review, the testing group may need to negotiate with management over required
resources—including schedule, equipment, and personnel. Issues of test coverage and
risk-based quality or life-critical and 24/7 up-time quality may also come into play (See
Chapter 1, "Welcome to Web Testing," for more information on test coverage and risk-based
quality). Ultimately, a test plan will be agreed upon, and testing can begin.

Test-Plan Documentation

Test-plan documentation should detail all required testing tasks, offer estimates of required
resources, and consider process efficiencies. Unless one is creating a test plan with the
intention of distributing it to a third party—either to prove that proper testing was performed or
to sell it along with software—it is best to keep test plans focused on only those issues that
support the effort of finding bugs. Enormous, heavily detailed test plans—unless required by a
customer or third-party regulating body—are only valuable in so far as they help you find bugs.

The unfortunate reality is that the majority of test plans sit unread on shelves during most of the

testing process. This is because they are unwieldy and dense with information that does not
support the day-to-day effort of finding bugs. Even if they are read, they are seldom updated as
regularly as they should be—reflecting current changes to schedule, delegation of tasks, test
coverage, and so on.

The LogiGear One-Page Test Plan (included later in this chapter) is designed specifically to
avoid the troubles that more traditional test plans suffer; one-page test plans are more easily
read and updated.

When read, test-plan documentation improves communication regarding testing requirements by
explaining the testing strategy to all members of the product development team. Documentation
is of course also valuable in conveying the breadth of a testing job to testing staff and in
providing a basis for delegating tasks and supervising work.

Documentation generates feedback from testing team members and members of other
departments. Debates are often sparked over the contents of test documentation. For example,
project managers may insist on different levels of testing than those that are proposed by the
testing group. It is always a good idea to make test plans available for review as early in the
development process as possible so that managers, programmers, and members of the
marketing team can assess risk and priorities before testing begins. Debates are also more
fruitful when team members can focus discussions on a clearly laid-out test plan that includes
specific goals.break

Page 117

Issues of test coverage often arise midway through the testing process. Requiring managers to
approve and sign test plans (before testing begins) brings managers into the test coverage
decision process; it places responsibility on management to approve any compromises of test
coverage that may arise from test-plan negotiations.

Accountability is also increased by good test documentation. Clearly defined responsibilities
make it easier for both managers and staff to stay focused. Detailed lists of tests that must be
performed, along with clearly defined expectations, go a long way toward ensuring that all
foreseeable areas of risk are addressed.

Proper test documentation requires a systematic analysis of the Web system under test. Your
understanding of the interdependencies of a system's components must be detailed and thorough
if test planning is to be effective. As a test project is analyzed, a comprehensive list of program
features should be compiled. It is common for a feature list to detail the complete set of product
features, all possible menu selections, and all branching options. It is a good idea to begin
writing up a feature list as early in the test planning phase as possible.

Test plans take into consideration many of the risks and contingencies that are involved in the
scheduling of software development projects. For example, product documentation (e.g., online
help, printed manuals) testing cannot be completed until the documentation itself nears
completion. Documentation, however, cannot be in its final phase until after the user interface
(UI) has been frozen. The UI, in turn, cannot be frozen until at some point in beta testing when
functional errors affecting the UI have been fixed. Another example of testing interdependency
includes not being able to execute performance testing until all debugging code has been
removed.

A list of features that are not to be tested will also be of value. A list of features that are not to
be tested sometimes smokes out resistance within the product team that might not otherwise
have been voiced until midway through the testing process. It also clearly marks what you
believe to be out of scope.

For more in-depth information regarding test planning, refer to Testing Computer Software by
Kaner et al. (1999).

Test-Plan Templates

One effective means of saving time and ensuring thoroughness in test-plan documentation is to
work from a test-plan template. A test-plan template is essentially a fill-in-the-blank test plan
into which information that is specific to the system under test is entered. Because they are
generic and comprehensive, test-plan templates force one to consider questions that might not
otherwise be considered at the beginning of a test project. They prompt one to consider
numerous test types—many of which may not be appropriate for the test project—in addition to
pertinent logistical issues, such as which test tools will be required and where testing will take
place. Test templates can also impose a structure on planning, encouraging detailed
specifications on exactly which components will be tested, who will test them, and how testing
will proceed. See Appendix A of this book for the complete LogiGear Test Plan
Template.break

Page 118

There are many test templates available. After looking over the LogiGear Test Plan Template,
one should consider other test-plan templates. A good place to begin looking for a test-plan
template is the LogiGear Test Resource Web site (www.qacity.com).

A standard test-plan template that is used by the software testing industry is the ANSI/IEEE
Standard 829-1983 for Software Test Documentation. It defines document types that may be
included in test documentation, including test cases, feature lists, and platform matrices. It also
defines the components that the IEEE believes should be included in a standard test plan; so
among other uses, it serves as a test-plan template. For information regarding the ANSI/IEEE
Standard 829-1983, visit www_.computer.org, or phone (202) 371-0101.

Test-Plan Section Definitions

The following lists gives a number of standard test-plan sections that are appropriate for most
test projects.

OVERVIEW SECTION

Test-plan identifier. Unique alphanumeric name for the test plan. See the LogiGear Test Plan
Template (Appendix A) for details.

Introduction. Discussion of the overall purpose of the project. References all related product
specifications and requirements documents.

Objective. Goals of the project, taking quality, scheduling constraints, and cost factors into
consideration.

Approach. The overall testing strategy: Who will conduct testing, what tools will be utilized,
scheduling issues that must be considered, and feature groups that will be tested.

TESTING SYNOPSIS SECTION

Test items. Lists every feature and function of the product. References specifications and
product manuals for further detail on features. Includes descriptions of all software
application, software collateral, and publishing items.

Features to be tested. Cross-references features and functions that are to be tested with
specific test design specifications and required testing environments.

Features not to be tested. Features of the product that will not undergo testing. May include
third-party items and collateral.

System requirements. Specifications on hardware and software requirements of the
application under test: Computer type, memory, hard-disk size, display type, operating system,
peripheral, and drive type.

Entrance/exit. Application-specific: Description of the application's working environment;
how to launch and quit the application. Process-specific: Description of criteria required for
entering and exiting testing phases, such as alpha and beta testing.break

Page 119

Standard/reference. List of any standards or references used in the creation of the test plan.

Types of tests. Tests to be executed. May include acceptance tests, feature-level tests,
system-level tests, regression tests, configuration and compatibility tests, documentation tests,
online help tests, utilities and collateral tests, and install/uninstall tests.

Test deliverables. List of test materials developed by the test group during the test cycles that
are to be delivered before the completion of the project. Includes the test plan itself, the bug
tracking system, and an End of Cycle or Final Release report.

TEST PROJECT MANAGEMENT SECTION

The product team. List of product team members and their roles.

Testing responsibilities. Responsibilities of all personnel associated with the testing project.

Testing tasks. Testing tasks to be executed: The order in which tasks will be performed, who
will perform the tasks, and dependencies.

Development plan and schedule. Development milestone definitions and criteria—detailing
what the development group will deliver to testing, and when it will be delivered.

Test schedule and resource. Dates by which testing resources will be required. Estimates on
amount of tester hours and personnel required to complete project.

Training needs. Personnel and training requirements. Special skills that will be required and
amount of personnel who may need to be trained.

Environmental needs. Hardware, software, facility, and tool requirements of testing staff.

Integration plan. How the integration plan fits into overall testing strategy.

Test suspension and resumption. Possible problems or test failures that justify the suspension
of testing. Basis for allowing testing to resume.

Test completion criteria. Criteria that will be used to determine the completion of testing.

The issue-tracking process. Description of the process, the issue-tracking database, bug
severity definitions, issue report formats (see "Issue Reports" in this chapter for an example).

Status tracking and reporting. How status reports will be communicated to the development
team, and what the content of status reports will be (see "Weekly Status Reports" in this
chapter for an example).

Risks and contingencies. All risks and contingencies, including deliverables, tools, and
assistance from other groups—even those risks and contingencies that are detailed in other
parts of the test plan.

Approval process. Test-plan approval and final release approval.break

Page 120

LogiGear One-Page Test Plan

It is often a challenge for testing groups to communicate their needs to other members of the
software development team. The myriad test types, the testing sequence, and scheduling
considerations can be overwhelming when not organized into a comprehensible plan that others
can read at a glance. The LogiGear One-Page Test Plan is a distillation of test types, test
coverage, and resource requirements that meets this need.

The LogiGear One-Page Test Plan is task oriented. It lists only testing tasks—because some
members of the product team may not be interested in ''testing approach," "features not to be
tested," and so on. They just want to know what is going to be tested and when. Because
one-page test plans are so easy to reference, if they are adequate for your process, they are less
likely to be disregarded by impatient team members.

The LogiGear One-Page Test Plan does not require additional work. It is simply a distillation
of the standard test-plan effort into an easily digestible format. The LogiGear One-Page Test
Plan is effective because it details the testing tasks that a testing team should complete, how
many times the tasks should be performed, the amount of time each test task may require, and
even a general idea of when the tasks should be performed during the software development
process.

The LogiGear One-Page Test Plan is easy to reference and read. Twenty-page test plans are
regularly ignored throughout projects, and 100-page test plans are rarely read. One-page test
plans, on the other hand, are straightforward and can easily be used as negotiating tools when it
comes time to discuss testing time and coverage—the usual scenario being, "What testing time
can be cut?" The test team can point to test tasks listed on a one-page test plan and ask, "Are
we prepared to accept the risk of not performing some of these tests to their described

coverage?"

Developing a One-Page Test Plan

The process of completing a one-page test plan is described in the following steps.

Step 1—
Test Task Definition

Review the standard test types that are listed in Chapter 3, "Software Testing Basics," and in
Table 6.1.

Select the test types that are required for the project. Decisions should be based on the unique
functionality of the system under test. Discussions with developers, analysis of system
components, and an understanding of test types are required to accurately determine which test
types are needed.

Step 2—
Task Completion Time

Calculate the time required to perform the tests. The most difficult aspect of putting together a
test plan is estimating the time required to complete a test suite. With newcontinue

Page 121

testers, or with tests that are new to experienced testers, the time estimation process involves a
lot of guesswork. The most common strategy is divide and conquer. That is, break the tasks
down into smaller subtasks. The smaller subtasks are easier to estimate. You may then sum up
from those. As you gain experience, you miss fewer tasks and you gain a sense of percentage of
tasks that you typically miss so you can add an n percent for contingency or missing-tasks
correction.

Informed estimates may also be arrived at if testing tasks are similar to those of a past project.
If time records of similar past testing are not available, estimates may be unrealistic. One
solution is to update the test plan after an initial series of tests has been completed.

A 20 percent contingency or missing-tasks correction is included in this example. As testing
progresses, if this contingency does not cover the inevitable changes in your project's schedule,
the task completion time will need to be renegotiated.

Step 3—
Placing the Test Tasks into Context

Once the task list has been developed and test times have been estimated, place the tasks into
the context of the project. The development team will need to supply a build schedule.

Determine how many times tests will be run during development. For example, documentation
testing may only be performed once, or it may be reviewed once in a preliminary phase and
then again later after all edits are complete. A complete cycle of functionality tests may be
executed once per development phase, or possibly twice. Acceptance tests are run on every
build. Often, a full bug regression occurs only once per phase, though partial regression tests
may happen with each build.

Step 4—
Table Completion

Finally, multiply the numbers across the spreadsheet. Total the hours by development phase for
an estimate of required test time for the project. Add time for management, including test-plan
writing/updating, test-case creation, bug database management, staff training, and other tasks
that are needed for the test team and for completion of the project.

Step 5—
Resource Estimation

Take the total number of hours required for the alpha phase, divide that by the total number of
weeks in the alpha phase, and then divide that by 30 hours per week. That gives you the number
of testers needed for that week. For example, if you need total testing hours for alpha of 120, a
4-week alpha phase, and testers have a third-hour testing week, your project requires only one
tester [(120 ÷ 4) ÷ 30 = 1]. Apply this same process to arrive at estimates for the beta phase
and project management also.break

Page 122

Note that I use only 30-hour testing week for a full-time tester because by experience, know
that the other 10 (overhead) hours are essentially used for meeting, training, defect tracking,
researching, special projects, and so on.

LogiGear One-Page Test Plan

The LogiGear One-Page Test Plan can be invaluable in negotiating testing resource and testing
time requirements with members of the product team. Figure 6.1 providescontinue

Figure 6.1
LogiGear One Page Test Plan.

Page 123

an example of the LogiGear One-Page Test Plan. Descriptions of each of the tests are included
in Chapter 3, "Software Testing Basics."

Testing Considerations

As part of the test planning process, you should consider how the bug reporting/resolution
cycle will be managed and the procedure for status reporting. In addition, you should give
some thoughts on how to manage milestone criteria, as well as whether to implement an
automated testing program. This section touches on those issues.

Issue Reports

An issue report, or test incident report, is submitted whenever a problem is uncovered during
testing. Figure 6.2 shows an example of an online issue report that is generated by the sample

application. The following list details the entries that may be included in a complete issue
report.

ISSUE REPORT FIELDS

Project. A project may be anything from a complex client-server system with multiple
components and builds, to a simple 10-page user's guide.break

Figure 6.2
Online issue report form.

Page 124

Build. Builds are versions or redesigns of a project that is in development. A given project
may undergo numerous revisions, or builds, before it is released to the public.

Module. Modules are parts, components, units, or areas that comprise a given project.
Modules are often thought of as units of software code.

Configuration. Configuration testing involves checking an application's compatibility with
many possible configurations of hardware. Altering any aspect of hardware during testing
creates a new testing configuration.

Uploading attachments. Attachments are uploaded along with issue reports to assist QA and
developer groups in identifying and recreating reported issues. Attachments may include
keystroke captures or macros that generate an issue, a file from a program, a memory dump, a
corrupted file that an issue report is predicated on, or a memo describing the significance of an
issue.

Error types. The category of error into which an issue report falls (e.g., software
incompatibility, UI, etc).

Keyword. Keywords are an attribute type that can be associated with issue reports to clarify
and categorize an issue's exact nature. Keywords are useful for sorting reports by specific
criteria to isolate trends or patterns within a report set.

Reproducible. Specifies whether a reported issue can be recreated: Yes, No, with Intermittent
success, or Unconfirmed.

Severity. Specifies the degree of seriousness that an issue represents to users. For example, a
typo found deep within an online help system might be labeled with a severity of low, and a
crash issue might qualify for a severity of high.

Frequency. Frequency, or how often an issue exhibits itself, is influenced by three factors:

1. How easily the issue can be reached.

2. How frequently the feature that the issue resides in is used.

3. How often the problem is exhibited.

Priority. An evaluation of an issue's severity and frequency ratings. An issue that exhibits
itself frequently and is of a high severity will naturally receive a higher priority rating than an
issue that seldom exhibits itself and is only of mild annoyance when it does appear.

Summary. A brief summary statement that concisely sums up the nature of an issue. A
summary statement should convey three elements: (1) symptoms, (2) actions required to
generate the issue, and (3) operating conditions involved in generating the issue.

Steps. Describes the actions that one must perform to recreate the issue.

Notes and comments. Additional pertinent information related to the bug that has not been
entered elsewhere in the report. Difficult-to-resolve bugs may develop long, threaded
discussions consisting of comments from developers, project managers, QA testers, and
writers.

Assigned. Assigned individuals who are accountable for addressing an issue.break

Page 125

Milestone stopper. An optional bug report attribute that is designed to prevent projects from
achieving future development milestones. By associating critical bugs with production
milestones, milestone stoppers act as independent criteria by which to measure progress.

Weekly Status Reports

At the conclusion of each week during testing, the testing team should compile a status report.
The sections that a status report normally includes follow.

Weekly status reports can take on critical importance because they are often the only place
where software changes are tracked. They detail such facts as prerequisite materials not
arriving on time, icons not loading onto desktops properly, and required documentation
changes. Once archived, they, in effect, document the software development process.

Consideration needs to be given to what information will be included in weekly status reports
and who will receive the reports. Just as test plans need to be negotiated at the beginning of a
project, so do weekly status reports need to be negotiated. The manner in which risks will be
communicated to the development team needs to be carefully considered because information
detailed in these reports can be used against people to negative effect. Possibly only milestone
status reports should be disseminated to the entire product team, leaving weekly status reports
to be viewed only by a select group of managers, testers, and developers. See Appendix B for
the "Weekly Status Report Template."

Following are descriptions of sections that are typically included in weekly status reports.

TESTING PROJECT MANAGEMENT

Project schedule. Details testing and development milestones and deliverables.

Progress and changes since last week. Tests that have been run and new bugs that have been
discovered in the past week.

Urgent items. Issues that require immediate attention.

Issue bin. Issues that must be addressed in the coming weeks.

To-do tasks by next report. Tasks that must be completed in the upcoming week.

PROBLEM REPORT STATUS

Bug report tabulation. Totals of open and closed bugs, how totals have changed in past week.

Summary list of open bugs. Summary lines from issue reports associated with open bugs.

TREND ANALYSIS REPORT

Stability trend chart. Graph that illustrates the stability of a product over time.

Quality trend chart. Graph that illustrates the quality of a product over time.break

Page 126

Note that there are numerous other document types that may be included in test-plan
documentation. For definitions of other test documentation types (including test-design,
test-procedure, and test-case specifications; test transmittal reports; and test logs), refer to
Testing Computer Software by Kaner et al. (1999).

Automated Testing

The sample one-page test plan (See Chapter 8, "Sample Test Plan," for details) can be
analyzed to uncover areas that may be well suited to automated testing. Considerations
regarding staffing, management expectations, costs, code stability, UI/functionality changes, and
test hardware resources should be factored into all automated testing discussions.

Table 6.2 categorizes the testing tasks called for in the sample one-page test plan by their
potential adaptability to automated testing; further evaluation would be required to definitively
determine whether or not these testing tasks are well suited to automation.

When evaluating test automation, you should do the following:

• Look for the tests that take the most time.

• Look for tests that could otherwise not be run (e.g., server tests).

• Look for application components that are stable early in development.

• Consider acceptance tests.

• Consider compatibility/configuration quick-look tests.

Milestone Criteria and Milestone Tests

Milestone criteria and milestone tests should be agreed upon and measurable (for example,
alpha testing might not begin until all code is testable and installable, and all UI screens are
complete—even if they contain errors). Such criteria can be used tocontinue

Table 6.2 Test Types Suited for Automation Testing

IDEALLY SUITED NOT SUITABLE

RAT Documentation

FAST Boundary

Performance, load, and stress Installation

Metrics/charting Most functionality

Regression Exploratory

Database population Import utility

Sample file generation Browser compatibility

Forced-error

Page 127

verify whether code should be accepted or rejected when it is submitted for milestone testing.
Milestone criteria and accompanying tests should be developed for all milestones, including
completion of testing, entrance, and exit. Ideally, these tests will be developed by the test
team and approved by the development team; this approach may reduce friction later in the
development project.

Bibliography

Kaner, Cem, et al. Testing Computer Software, second edition. New York: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Lead Software Test Project with Confidence.
Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.break

Page 129

Chapter 7—
Sample Application

Why Read This Chapter?

Some of the testing concepts covered in this book may seem abstract until they are applied in
practice to an actual Web application. By seeing how the features of the sample application are
accounted for in the sample test plan (See Chapter 8, "Sample Test Plan," for details) readers
can gain insights into effective Web application test planning.

Introduction

This chapter details the features and technologies that are associated with the sample
application, including system overview and application functionality.

The sample application is helpful in illustrating test planning issues that relate to
browser-based Web systems; it places many of the issues that are raised in upcomingcontinue

Topics Covered in This Chapter

• Introduction

• Application Description

• Technical Overview

• System requirements

• Functionality of the Sample Application

• Bibliography

Page 130

chapters into context. The sample application is TRACKGEAR* 1.0, a Web-based
defect-tracking system that is produced by LogiGear Corporation. In Chapter 8, "Sample Test
Plan," the sample application serves as a baseline from which a high-level test plan is
developed.

Application Description

The sample application (TRACKGEAR) is a problem-tracking system designed for software
development teams. It is used to manage the processing and reporting of change requests and
defects during software development. The sample application allows authorized Web users,
regardless of their hardware platform, to log into a central database over the Internet to
remotely create and work with defect reports, exchange ideas, and delegate responsibilities.
All software development team members (project management, marketing, support, QA, and
developers) can use the sample application as their primary communications tool.

The sample application offers a relatively complex system from which to explore test planning.
The sample application requires a database server, a Web server, and an application server. It
also supports both administrator and user functionality.

The sample application's features include:

• Defect tracking via the Internet, intranet, or extranet

• Customizable workflow that enforces accountability between team members

• Meaningful color metrics (charts, graphs, and tables)

• E-mail notification that alerts team members when defects have changed or require their
attention

Technical Overview

Following are some key technical issues that relate directly to the testing of the sample
application.

• The application server should be installed on the same physical hardware box as the Web
server. Such a configuration eliminates potential performance issues that may result from the
application accessing the Web server on a separate box. Figure 7.1 shows the recommended
configuration of a system.

• The sample application uses Active Server Page (ASP) technology (See Chapter 5, "Web
Application Components," for details about ASP). Web servers process ASPcontinue

* At the time of this writing, TRACKGEARTM 2.0 has been realsed. This version offers many new
features and improvements to release 1.0. For the latest information on this product, please visit
www.logigear.com.

Page 131

Figure 7.1
Recommended configuration of a system.

scripts, based on user requests, before sending customized pages back to the user. The ASP
scripts are similar to server-side includes and Common Gateway Interface (CGI) scripts in that
they run on the Web server rather than on the client side. The ASP scripts do not involve a
client-side install. This thin-client model involves the browser sending requests to the Web
server where ASP computes and parses requests for the application, database server, and Web
server.

• The CGI scripts are not used in the sample application.

• The database activities (queries and stored procedures) are supported via Microsoft SQL 6.5
or higher.

• A single Java applet runs on the client browser to display defect metrics (charts and
graphics). Only fourth-generation browsers (4.0 or higher) are supported by the sample
application.

• Both the Web server and the application server must utilize Microsoft technology (IIS, NT,
etc.).break

Page 132

System Requirements

The hardware and software requirements of the sample application are as follows:

SERVER REQUIREMENTS

• Computer. PC with a Pentium processor (Pentium II recommended)

• Memory. 64Mb (128 recommended)

• Disk space. 100Mb for the server application and 200Mb for the database

• Operating system. Microsoft Windows NT Server 4.0 with most recent service pack

• Web server software. Microsoft Internet Information Server (IIS) 4.0

• SQL server software. Microsoft SQL Server 6.5 or higher with service pack

CLIENT REQUIREMENTS

• Active LAN or Internet connection

• Netscape Navigator 4.x

• Microsoft Internet Explorer 4.x or higher

Functionality of the Sample Application

Following are several sections that help detail the functionality of the sample application.

Installing the Sample Application

The sample application utilizes a standard InstallShield-based installation program that
administrators (or IS personnel) must run to set up the databases that are required by the
application. This installation wizard automates the software installation and database
configuration process, allowing administrators to identify preexisting system components (Web
server, IIS server, physical hardware boxes, etc.), determine where new components should be
installed, and how much disk space should be allocated for databases.

Getting Started

The sample application allows users to define workflow processes that are customized for
their organization's defect-tracking needs. Workflow dictates, among other things, who has the
privilege to assign resolutions (i.e., defect states) and who is responsible for addressing
defect-related concerns. The sample application allows administrators to hardwire such
resolution management process and to enforce accountability. User, group, division, and
project assignments dictate the screen layouts and functionality that administrators and different
user types can access.break

Page 133

The administrator of the application has access to administrator-level functions, such as user
setup, project setup, and database setup, in addition to all standard user functionality, including
report querying, defect report submission, and metrics generation.

Division Databases

The sample application acts as an information hub, controlling data flow and partitioning
defect-tracking data. A company may use as many division-specific databases as it wishes.
Some information is shared globally—for example, the application itself. Other information,
including reports and functional groups, is relevant only to specific projects or divisions, and
therefore is not shared globally across division databases.

Importing Report Data

The sample application comes with an import utility (a separate executable) that allows
administrators to import existing databases. Specifically, the program allows the import of
comma-separated values (CSV) files. These CSV files can be exported from other database
programs, such as Microsoft Access, Excel, and Oracle. In order for the sample application to
properly process imported data, it is important that certain guidelines be adhered to when
creating the CSV files.

System Setup

Many of the sample application's attributes can be customized. Customizable system attributes
include the following:

• Keywords

• Error types

• Resolutions

• Severity

• Phases

• Milestone stoppers

• Frequency

• Priority

• Workflow (the method by which reports are routed)

Project Setup

The key components of every project are project name, project members, project modules,
project builds, and optional e-mail notification.

E-Mail Notification

The sample application utilizes e-mail to notify and inform individuals of their responsibilities
regarding defects that are tracked. E-mail notification settings arecontinue

Page 134

flexible and can be customized for each project. For example, one project team might require
notification for all defects that may prevent their product from going beta. This team's e-mail

notification settings could then be set up to only alert them when a received defect has a
milestone-stopper value of beta. Likewise, a team whose product is nearing release date could
choose to have hourly summaries of every defect report in the system sent to them.

The sample application uses the Simple Mail Transfer Protocol (SMTP) to deliver
notifications (most popular e-mail clients are compatible: Eudora, Microsoft Exchange,
Microsoft Outlook Express, and others).

Submitting Defect Reports

Users of the sample application must go to the report screen to submit new defect reports
(Figure 7.2). The report screen includes fields for recording relevant defect-tracking
information. To get to the report screen, users click the New button on the navigation bar.

Generating Metrics

The sample application includes a third-party Java applet that allows users to generate metrics
(charts, graphs, and tables of information) to gain global perspective over defect reports.
Project managers, developers, and software-quality engineers in particular may gain insight
into defect-fixing trends, personnel workload, and process efficiency by viewing trend and
distribution metrics.

The sample application generates two types of metrics: (1) distribution metrics and (2) trend
metrics. Figure 7.3 shows the distribution metrics setup screen. Figure 7.4continue

Figure 7.2
Sample application report screen.

Page 135

Figure 7.3
Distribution metrics setup screen.

shows a typical distribution metric. Figure 7.5 shows the trend metrics setup screen. Figure 7.6
shows a typical trend metric.

Documentation

Documentation for the sample application comes in the following three forms:

1. Administrator's guide. A printed manual that provides administrators with the information
they need to set up and manage the sample application.break

Figure 7.4
Distribution metric example.

Page 136

Figure 7.5

Trend metrics setup screen.

Figure 7.6
Trend metric example.

Page 137

2. User's guide. A printable Adobe Acrobat Reader .pdf manual that provides software testers
and product team members with the information they need to submit reports, find reports, and
advance workflow.

3. Online help. A context-sensitive help system that resides within the sample application. The
help system is accessible via the Help button on the navigation bar.

Bibliography

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. TRACKGEAR Administrator Guide. Foster City, CA: LogiGear
Corporation, 1999.break

Page 139

Chapter 8—
Sample Test Plan

Why Read This Chapter?

Many of the test planning considerations discussed in this book may seem abstract until they are
applied in practice to an actual Web application. By examining the test planning process for the
sample application (see Chapter 7, ''Sample Application," for details), readers gain insights
into effective test planning practices that can be applied to Web applications.

The test types that are listed in this chapter are explored in more detail in the upcoming
chapters of Part Four. The sample application is also referenced throughout upcoming chapters.

Introduction

This chapter discusses the test types that are appropriate for the sample application. It includes
both a test schedule and a one-page test plan that are designed for thecontinue

Topics Covered in This Chapter

• Introduction

• Gathering Information

• Sample One-Page Test Plan

• Bibliography

Page 140

sample application. Note that the sample test plan is high level by design. A complete test plan
for the sample application is not feasible within the constraints of this book.

Many of the principles employed in this chapter are discussed in Chapter 6, "Test Planning
Fundamentals." It is recommended that both Chapters 6 and 7 be read before proceeding with
this chapter.

The information conveyed in Chapter 7 serves as a technical baseline for the test planning
purposes of this chapter. As far as planning for other projects is concerned, getting involved
early in the development process and discovering reliable sources of information is the best
way to gather required technical data. Product prototypes, page mock-ups, preliminary
documentation, specifications, and any marketing requests should be evaluated; such
information, combined with experience and input from application developers, is the best
means of determining required testing. Input from the project team should focus the test-plan
effort on potential problem areas within the system under test.

Preliminary project schedules and an estimated number of builds should be considered in the
development of any testing schedule.

With basic QA knowledge, the information about Web testing conveyed in this book, input from
the development team, and an understanding of product functionality, a test planner can
confidently develop a list of test types for the system under test (see Table 6.1 for details on
test scheduling). Once a list of test types has been developed, staffing needs can be evaluated
by considering the number of hours and types of skills that will be required of the testing team.
Required tester hours and skills will undoubtedly fluctuate as development progresses.
Estimates of testing hours required for testing the sample project are detailed later in this
chapter.

Gathering Information

The information gathering process consists of four steps: (1) Establishing testing-task
definitions, (2) estimating time required to complete the testing tasks, (3) entering the
information into the project plan, and (4) calculating the overall resource requirements.

Step 1—
Testing-Task Definition for the Sample Application

Step 1 in the one-page test planning process involves assembling a list of tasks for the project
at hand. First, define the test types. The basic tests for Web applications are acceptance [both
release acceptance test (RAT) and functional acceptance simple test (FAST)], functionality
[task-oriented functional test (TOFT)], installation, user interface (UI), regression,
forced-error, configuration and compatibility, server, security, documentation, and exploratory.

By reviewing the product description detailed in Chapter 7, "Sample Application," you can see
a need for specific test types that are not included in the pre-soft

Page 141

ceding list of basic test types. For example, tests should be developed that test the functionality
of the databases, data import utility, e-mail notification, and third-party Java applet (metrics
charting). The screen shots indicate functionality that should be tested. Some security features
that should be tested are also mentioned (login/logout, views, and user permissions). By
reviewing the product's system requirements, you can also glean information about test
platforms, possible configuration tests, and other technologies that will require testing {Java
applets, Microsoft NT [required], Active Server Page [ASP] [rather than Common Gateway
Interface (CGI)]}.

The general descriptions offered by Chapter 7 alone do not offer enough information to help
you develop an informed testing schedule and list of testing tasks. Much more detail than can be
conveyed in this book is required to make such projections. For example, information
regarding the number of error messages (and their completion dates) would be required, as
would details of the installation process. Complete product descriptions, specifications, and
marketing requirements are often used as a starting point from which you can begin to seek out
the specific technical information that is required to generate test cases.

Step 2—
Task Completion Time

The test times listed in Table 8.1 reflect the actual testing of the sample application. These test
times were derived with input from the test team.

As part of evaluating tasks for completion time, you should evaluate resources such as
hardware/software and personnel availability. Some test types require unique resources, tools,
particular skill sets, assistance from outside groups, and special planning. Such test types
include:

• Configuration and compatibility testing. Configuration and compatibility testing require a
significant amount of computer hardware and software. Because the cost of outfitting a
complete test lab exceeds the financial means of many companies, outsourcing solutions are
often considered. See Chapter 14, "Configuration and Compatibility Tests," for more
information.

• Automated testing. Automated testing packages (such as SegueTM SilkTestTM) are valuable
tools that can, when implemented correctly, save testing time, tester enthusiasm, and other
resources. See Chapter 17, "Web Testing Tools," for information about available automated
testing tools.

• Milestone tests. Milestone tests are performed prior to each development milestone. They
need to be developed, usually from TOFT tests, and scheduled according to the milestone plan.

• Special functionality tests (TOFT). In addition to the specified functionality of the
application, SMTP tests (e-mail notification) are also included in the TOFT suite. These tests
may require assistance from other groups or special skill sets.

• Web- and client-server-specific tests. Performance, load, and stress tests, in addition to
security and database tests, normally require specialized tools and skills.break

Page 142

Table 8.1 Task Completion Time

TEST TYPE FUNCTIONAL AREA TIME ESTIMATE NOTES

RAT 30 minutes for each
build

FAST 2 hours for each build

FAST 2 hours for each build

TOFT Admin functionality
User setup
Project setup
System setup
Division setup

User functionality
Submit new report
Easy find
Quick find
Form find
Custom find
Configuration profiles
Preferences
Metrics

Miscellaneous
Upload attachments
Password
Editing reports
Views
Tabular layouts

80 hours for a complete
run.

These tests represent the majority of
testing that must be performed. The
entire suite of TOFT tests should be
run once during alpha testing, twice
during beta testing, and once during
final testing. Testing should be
segmented as coding is completed
and as bugs are fixed.

Installation Full installation
Uninstaller
Database initialization
Division creation

40 hours Test functionality, not compatibility.
These tests should be performed
once at the end of alpha testing, once
during beta testing when the known
installer bugs have been closed, and
once again during final testing.
Often, installers are not ready to be
tested until well into alpha testing, or
even at the beginning of the beta
phase.

Data import
utility

16 hours CSV test data is required.

(table continued on next page)

Page 143

(Continued)

Table 8.1

TEST TYPE FUNCTIONAL AREA TIME ESTIMATE NOTES

Third-party
functionality
testing

Metrics/chart generation
feature

20 hours Sample input data is required for the
metrics function to generate charts.

Exploratory 16 hours per build These are unstructured tests.

User interface Every screen Tested while testing functionality.

Regression 4 hours Test suites are built as errors are
uncovered.

uncovered.

Forced-error Confirm all documented
error messages

20 hours Run suite twice. Can only be
performed after all messages have
been coded. There are 50 error
messages in the sample application.

Configuration
and
compatibility

Browser settings
Cookies
Security settings
Java
Preferences

Browser types for
Macintosh, Windows,
and Unix

Netscape Navigator
Internet Explorer

Browser functions
Back
Reload
Print
Cache settings
Server installation
Compatibility
Hardware compatibility
E-mail notification

80 hours Quick look tests must be developed.
A matrix of browsers, operating
systems, and hardware equivalent
classes must be developed.

Server Performance, load, and
stress tests

100 hours

Documentation Printed manual
Online help system
Downloadable user guide
(PDF file)

80 hours Functionality and content

Continues

Page 144

(Continued)

Table 8.1

TEST TYPE FUNCTIONAL AREA TIME ESTIMATE NOTES

Y2K and
boundary
testing

Test cases included in functionality
tests (TOFT)

Database Database integrity 20 hours

Database Database integrity 20 hours

Security Login
Logout
Permissions
Views
Allowable IP addresses
(firewall)
Trusted servers (intranet)
Password
Preferences

40 hours

All required tests should be identified as early in the development process as possible so that
resource needs for tools, staffing, and outsourcing can be evaluated.

Step 3—
Placing Test Tasks into the Project Plan

For the purposes of the sample test plan, a development schedule of 20 calendar weeks has
been assumed. Testable code is expected early in July. According to the development team,
there will be one build per week.

PRELIMINARY BUILD SCHEDULE

Alpha 12 weeks

Beta 6 weeks

Final 2 weeks

From Table 6.1, you can see which test phases are appropriate for each test type. (See Table
8.2.) Note that test types from Table 8.2 are examined in detail in the upcoming chapters of Part
Four.

WHERE TO FIND MORE INFORMATION

• For information about RAT, FAST, TOFT, regression, and forced-error tests, please see
Chapter 10, "Functional Tests."

• For information about configuration and compatibility tests, please see Chapter 14,
"Configuration and Compatibility Tests."

• For information about install tests, please see Chapter 13, "Installation Tests."

• For information about database tests, please see Chapter 11, "Database Tests."break

Page 145

Table 8.2 Development Phases and Test Planning

Table 8.2 Development Phases and Test Planning

7/12/2000
TWELVE WEEKS =
60 BUSINESS DAYS
ALPHA PHASE

10/04/2000
SIX WEEKS =
30 BUSINESS DAYS
BETA PHASE

11/15/2000
TWO WEEKS =
10 BUSINESS DAYS
FINAL PHASE SHIP

Types of Tests to Be Executed

RAT
FAST
TOFT (User and Admin)
Configuration &
 Compatibility
Install
Exploratory

RAT
FAST
TOFT (User and Admin)
Server Testing:
 Stress/Load/Performance
Complete Configuration
 & Compatibility
Regression
Install
Forced-Error
Documentation
Database
Exploratory
Third-party component
integration
Security

RAT
FAST
TOFT
Regression
Exploratory

• For information about exploratory tests and an example of a third-party component, please
see Chapter 3, "Software Testing Basics."

• For information about security testing, please see Chapter 15, "Web Security Concerns."

• For information about documentation tests, please see Chapter 12, "Help Tests."

• For information about server testing, please see Chapter 16, "Performance, Load, and Stress
Tests."

Step 4—
Calculate Hours and Resource Estimates

Multiply and total test times (refer to "Developing a One-Page Test Plan" in Chapter 6, "Test
Planning Fundamentals," for details). Then calculate resource estimates. The one-page test plan
is now complete!break

Page 146

Sample One-Page Test Plan

Table 8.3 is a one-page test plan that addresses the special needs of the sample application.
Note that time has been budgeted for issue reporting, research, meetings, and more.break

Table 8.3 Sample Test Plan

Table 8.3 Sample Test Plan

MILESTONE TYPE OF TEST
OF
CYCLES

HRS. PER
CYCLE

EST.
HOURS

Alpha RAT: Release Acceptance Test 12 0.5 6

FAST: Functional Acceptance Simple Test 12 2 24

TOFT: Task Oriented Functional Test 2 80 160

Configuration Compatibility 1 80 80

Install 1 40 40

Exploratory Testing 12 16 192

Total: 502

Beta RAT: Release Acceptance Test 6 0.5 3

FAST: Functional Acceptance Simple Test 6 2 12

TOFT: Task Oriented Functional Test 1 80 80

Server Tests (Performance, Stress and Load) 2 100 200

Compatibility/Configuration (Browser, Install) 1 80 80

Regression Testing 6 4 24

Install 1 40 40

Forced Error Test 2 20 40

Documenttion/Help (function and content) 1 80 80

Database Integrity Test 1 20 20

Exploratory Testing 6 16 96

Data Import 1 16 16

Third-party Component Integration 3 20 60

Security 1 40 40

Total: 791

(table continued on next page)

Page 147

(Continued)

Table 8.3

MILESTONE TYPE OF TEST
OF
CYCLES

HRS. PER
CYCLE

EST.
HOURS

Final RAT: Release Acceptance Test 2 0.5 1

FAST: Functional Acceptance Simple Test 2 2 4

TOFT: Task Oriented Functional Test 1 80 80

Regression Testing 1 20 20

Exploratory Testing 1 16 16

Total: 121

Testing
Project
Management

Test Planning & Test Case
Design
Training

40

20

40

20

Management Training 20 20

Total: 60

PROJECT TOTAL HOURS 1474

PROJECT TOTAL DAYS 184

Person Weeks (30hr/wk) 49

20% Contingency Weeks 10

Total person weeks 59

Testers for Alpha 1.25

Testers for Beta 4.4

Testers for Final 2

Project Management 1

Bibliography

Kaner, Cem, et al. Testing Computer Software, second edition. New York: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Lead Software Test Project with Confidence.
Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.break

Page 149

PART THREE—
TESTING PRACTICES

Page 151

Chapter 9—
User Interface Tests

Why Read This Chapter?

To effectively test the user interface (UI) design and implementation of a Web application, we
need to understand both the UI designer's perspective (the goals of the design) and the
developer's perspective (the technology implementation of the UI). With such information, we
can develop effective test cases that target the areas within an application's design and
implementation that are most likely to contain errors.

Introduction

This chapter explores the two primary classes of UI testing issues: (1) the design of UI
components and (2) the implementation of UI components. Web technologies that are used to
deliver UI components or controls (graphic objects that enable users to inter-soft

Topics Covered in This Chapter

• Introduction

• User Interface Design Testing

• User Interface Implementation Testing

• Testing Considerations

• Bibliography and Additional Resources

Page 152

act with applications) are also discussed, as are considerations for the effective testing of both
UI design and implementation.

User interface testing normally refers to a type of integration testing in which we test the
interaction between units. User interface testing is often done in conjunction with other tests
instead of independently. As testers, we sometimes explicitly conduct UI and usability testing,
but more often, we consider UI issues while running other types of testing, such as functionality
testing, exploratory testing, and task-oriented functional testing (TOFT).

User Interface Design Testing

User interface design testing evaluates how well a design takes care of its users, offers clear
direction, delivers feedback, and maintains consistency of language and approach. Subjective
impressions of ease of use and look and feel are carefully considered in UI design testing.
Issues pertaining to navigation, natural flow, usability, commands, and accessibility are also
assessed in UI design testing.

During UI design testing, you should pay particular attention to the suitability of all aspects of
the design. Look for areas of the design that lead users into errors or that do not clearly indicate
what is expected of users.

Consistency of aesthetics, feedback, and interactivity directly affect an application's
usability—and should therefore be carefully examined. Users must be able to rely on the cues
they receive from an application to make effective navigation decisions and understand how
best to work with an application. When cues are unclear, communication between users and
applications can break down.

It is essential to understand the purpose of the software under test (SUT) before beginning UI
testing. The two main issues to consider are:

1. Who is the application's target user?

2. What design approach has been employed?

With answers to these questions, you will be able to identify program functionality and design
that do not behave as a reasonable target user would expect they should. Keep in mind that UIs
serve users, not designers or programmers. As testers, we represent users and must be
conscious of their needs. To learn more about Web UI design and usability, there are several
useful books recommended in ''References and Additional Resources" at the end of this
chapter.

Profiling the Target User

Gaining an understanding of a Web application's target user is central to evaluating the design
of its interface. Without knowing the user's characteristics and needs, it can be a challenge to
assess how effective the UI design is.

User interface design testing involves the profiling of two target-user types: (1) server-side
users and, more important, (2) client-side users. Users on the client sidecontinue

Page 153

generally interact with Web applications through a Web browser. More than likely they do not
have as much technical and architectural knowledge as users on the server side of the same
system. Additionally, the application features that are available to client-side users often differ
from the features that are available to server-side users (who are often system administrators).
Therefore, client-side UI testing and server-side UI testing should be evaluated by different
standards.

When creating a user profile, consider the following four categories of criteria (for both
client-side and server-side users).

Computer Experience

How long has the intended user been using a computer? Do they use a computer professionally
or only casually at home? What activities are they typically involved with? What assumptions
does the SUT make about user skill level, and how well do the expected user's knowledge and
skills match those assumptions?

For client-side users, technical experience may be quite limited, but the typical user may have
extensive experience with a specific type of application, such as a spreadsheet, word
processor, desktop presentation program, drawing program, or instructional development
software. In contrast, system administrators and information services (IS) personnel who
install and set up applications on the server side probably possess significant technical
experience, including in-depth knowledge of system configuration and script-level
programming. They may also have extensive troubleshooting experience, but limited
experience with typical end-user application software.

Web Experience

How long has the user been using the Web system? Web systems occasionally require

client-side users to configure browser settings. Therefore, some experience with Web
browsers will be helpful. Is the user familiar with Internet jargon and concepts, such as Java,
ActiveX, HyperText Markup Language (HTML), proxy servers, and so on? Will the user
require knowledge of related helper applications such as Acrobat reader, File Transfer
Protocol (FTP), and streaming audio/video clients? How much Web knowledge is expected of
server-side users? Do they need to modify Practical Extraction and Reporting Language (perl)
or Common Gateway Interface (CGI) scripts?

Domain Knowledge

Is the user familiar with the subject matter with which the application is associated? For
example, if the program involves building formulas into spreadsheets, it is certainly targeted at
client-side users with math skills and some level of computing expertise. It would be
inappropriate to test such a program without the input of a tester who has experience working
with spreadsheet formulas. Another example includes the testing of a music notation–editing
application. Determining if the program is designed for experienced music composers who
understand the particulars of musical notation, or for novice musicians who may have little to
no experiencecontinue

Page 154

with music notation, is critical to evaluating the effectiveness of the design. Novice users want
elementary tutorials, and expert users want efficient utilities. Is the user of an e-commerce
system a retailer who has considerable experience with credit card–"processing practices? Is
the primary intended user of an online real estate system a realtor who understands real estate
listing services, or is it a first-time home buyer?

Application-Specific Experience

Will users be familiar with the purpose and abilities of the program because of past
experience? Is this the first release of the product, or is there an existing base of users in the
marketplace who are familiar with the product? Are there other popular products in the
marketplace that have a similar design approach and functionality? (See "Design Approach"
later in this chapter for information.)

Keep in mind that Web applications are still a relatively new class of application. It is
possible that you are testing a Web application that is the first of its kind to reach the
marketplace. Consequently, target users may have substantial domain knowledge but no
application-specific experience.

With answers to these questions, you should be able to identify the target user for whom an
application is designed. There may be several different target users. With a clear understanding
of the application's target users, you can effectively evaluate an application's interface design
and uncover potential UI errors.

Table 9.1 offers a means of grading the four attributes of target-user experience. User interface
design should be judged, in part, by how closely the experience and skills of the target user
match the characteristics of the SUT.

Once we have a target-user profile for the application under test, we will be able to determine
if the design approach is appropriate and intuitive for its intended users. We will also be able

to identify characteristics of the application that make it overly difficult or simple. Overly
simplistic design can result in as much loss of productivitycontinue

Table 9.1 Evaluating Target-User Experience

Experience Grades
None = 0
Low = 1
Medium = 2
High = 3

ATTRIBUTE MINIMUM EXPERIENCE

Computer experience

Web expereince

Domain knowledge

Application expereince

Page 155

Testing the Sample Project

Consider the target user of the sample application. The sample application is designed to
support the efforts of software development teams. When we designed the sample
application, we assumed that the application's target user would have, at a minimum,
intermediate computing skills, at least beginning-level Web experience, and intermediate
experience in the application's subject matter (bug tracking). We also assumed that the
target user would have at least beginning experience with applications of this type.
Beyond these minimum experience levels, we knew that it was also possible that the
target user might possess high experience levels in any or all of the categories. Table 9.2
shows how the sample application's target user can be rated.

Table 9.2 Evaluating Sample Application Target User

Experience Grades
None = 0
Low = 1
Medium = 2
High = 3

ATTRIBUTE MINIMUM EXPERIENCE

Computer experience 2–3

Web experience 2–3

Domain knowledge 1–3

Application expereince 0

as an overly complex design can. Consider the bug-report screen in the sample application. It
includes numerous data-entry fields. Conceivably, the design could have broken up the
functionality of the bug-report screen over multiple screens. Although such a design might
serve novice users, it would unduly waste the time of more experienced users—the

application's target.

Considering the Design

The second step in preparing for UI design testing is to study the design employed by the
application. Different application types and target users require different designs.

For example, in a program that includes three branching options, a novice computer user might
be better served by delivering the three options over the course of five interface screens, via a
wizard. An information services (IS) professional, on the other hand, might prefer receiving all
options on a single screen, so that he or she could access them more quickly.break

Page 156

TOPICS TO CONSIDER WHEN EVALUATING DESIGN

• Design approach (discussed in the following section)

• User interaction (data input)

• Data presentation (data output)

Design Approach

Design metaphors are cognitive bridges that can help users understand the logic of UI flow by
relating them to experiences that users may have had in the real world, or in other places. An
example of an effective design metaphor includes Web directory sites that utilize a design
reminiscent of a library card catalog. Another metaphor example includes scheduling
applications that visually mirror the layout of a desktop calendar and address book. Microsoft
Word uses a document-based metaphor for its word-processing program—a metaphor that is
common to many types of applications.

EXAMPLES OF TWO DIFFERENT DESIGN METAPHORS

• Figure 9.1 depicts an application that utilizes a document-based metaphor. This metaphor
includes a workspace where data can be entered and manipulated in a way that is similar to
writing on a piece of paper.

• Figure 9.2 exemplifies a device-based metaphor. This virtual calculator includes UI controls
that are designed to receive user input and perform functions.

TWO DIFFERENT APPROACHES TO CONVEY IDENTICAL INFORMATION AND
COMMANDS

• Figure 9.3 conveys navigation options to users via radio buttons at the top of the interface
screen.break

Figure 9.1
Document-based metaphor.

Page 157

Figure 9.2
Device-based metaphor.

• Figure 9.4 conveys the same options via an ActiveX pull-down menu.

Neither design approach is more correct than the other. They are simply different.

Regardless of the design approach employed, it is usually not our role as testers to judge which
design is best. However, that does not mean that we should overlook design errors, especially
if we work for an organization that really cares about subjective issues such as usability. Our
job is to point out as many design deficiencies early in the testing as possible. Certainly, it is
our job to point out inconsistency in the implementation of the design. That is, if the approach

is using a pull-down menu as opposed to using radio buttons, a pull-down menu should then be
used consistently in all views.

Think about these common issues:

• Keep in mind that the UI tags, controls, and objects supported by HTML are primitive
compared with those available through the Graphical User Interface (GUI) available on
Microsoft Windows or Macintosh operating systems. If the designer intends to use the
Windows UI metaphor, look for design deficiencies.

• If you have trouble figuring out the UI, chances are it's a UI error because your end users
would go through the same experience.

• The UI was inadvertently designed for the designers or developers rather than for the end
users.break

Page 158

Figure 9.3
Navigation options via radio buttons.

• The important features are misunderstood or hard to find.

• Users are forced to think in terms of the design metaphor from the designer's perspective,
although the metaphor itself is difficult to relate to in real-life experience.

• Different terms were used to describe the same functionality.

Ask yourself these questions:

• Is the design of the application under test appropriate for the target audience?

• Is the UI intuitive (you don't have to think too much to figure out how to use the product) for
the target audience?

• Is the design consistently applied throughout the application?

• Does the interface keep the user in control, rather than reacting to unexpected UI events?

• Does the interface offer pleasing visual design (look and feel) and cues for operating the
application?

• Is the interface simple to use and understand?

• Is help available from every screen?break

Page 159

Figure 9.4
Navigation options via pull-down menu.

• Will usability tests be performed on the application under test? If yes, will you be
responsible for coordinating or conducting the test? This is a time-consuming process, and it
has to be very well planned.

User Interaction (Data Input)

Users can perform various types of data manipulation through keyboard and mouse events. Data
manipulation methods are made available through on-screen UI controls and other
technologies, such as cut-and-paste and drag-and-drop.

User Interface Controls

User interface controls are graphic objects that enable users to interact with applications. They
allow users to initiate activities, request data display, and specify data values. Controls,
commonly coded into HTML pages as form elements, include radio buttons, check boxes,
command buttons, scroll bars, pull-down menus, text fields, and more.

Figure 9.5 includes a standard HTML text box that allows limited text input from users, and a
scrolling text box that allows users to enter multiple lines of text. Click-soft

Page 160

ing the Submit button beneath these boxes submits the entered data to a Web server. The Reset
buttons return the text boxes to their default state.

Figure 9.5 also includes radio buttons. Radio buttons are mutually exclusive—only one radio
button in a set can be selected at one time. Check boxes, on the other hand, allow multiple
options in a set to be selected simultaneously.

Figure 9.6 includes a pull-down menu that allows users to select one of multiple predefined
selections. Clicking the Submit button submits the user's selection to the Web server. The Reset
button resets the menu to its default state. The pushbuttons (Go Home and Search) initiate
actions (e.g., CGI scripts, search queries, submit data to a database, hyperlinks, etc.).

Figure 9.6 also includes examples of images (commonly referred to as graphics or icons) that
can serve as hyperlinks or simulated pushbuttons.break

Figure 9.5
Form-based HTML UI controls, including a standard HTML text box and a scrolling text box.

Page 161

Figure 9.6
Form-based HTML UI controls: including a pull-down menu.

Figures 9.7 and 9.8 illustrate the implementation of several standard HTML UI controls on a
Web page. Figure 9.7 shows the objects (graphic link, mouse-over link titles or ALT, and a text
link) as they are presented to users. Figure 9.8 shows the HTML code that generates these
objects.

Standard HTML controls, such as tables and hyperlinks, can be combined with images to
simulate conventional GUI elements such as those found in Windows and Macintosh
applications (navigation bars, command buttons, dialog boxes, etc.). The left side of Figure 9.9
(taken from the sample application) shows an HTML frame that has been combined with
images and links to simulate a conventional navigation bar.

Dynamic User Interface Controls

The HTML multimedia tags enable the use of dynamic UI objects, such as Java applets,
ActiveX controls, and scripts (including JavaScript and VBScript).

Scripts

Scripts are programming instructions that are executed by browsers when HTML pages load or
when they are called based on certain events. Some scripts are a form of object-oriented
programming, meaning that program instructions identify and send instructions to individual
elements of Web pages (buttons, graphics, HTML forms, etc.), rather than to pages as a whole.
Scripts do not need to be compiled and can be inserted directly into HTML pages. Scripts are
embedded into HTML code with <SCRIPT> tags.

Scripts can be executed on either the client side or the server side. Client-side scripts are often
used to dynamically set values for UI controls, modify Web page content, validate data, and

handle errors.break

Page 162

Figure 9.7
Graphic links, mouse-over text, and text links.

Figure 9.8
HTML code for graphic links, mouse-over text, and text links.

Page 163

Figure 9.9
Tables, forms, and frames simulating Windows-based UI controls.

There are a number of scripting languages supported by popular browser. Some browsers
support particular scripting languages and exclude others. JavaScript, produced by Netscape,
is one of the more popular scripting languages. Other popular scripting languages include
Microsoft's version of JavaScript (Jscript) and Visual Basic Script (VBScript).

Java

Java is a computing language developed by Sun Microsystems that allows applications to run
over the Internet (though Java objects are not limited to running over the Internet).

Java is a compiled language, which means that it must be run through a compiler to be
translated into a language that computer processors can use. Unlike other compiled languages,
Java produces a single compiled version of itself, called Java bytecode. Bytecode is a series
of tokens and data that are normally interpreted at runtime. By compiling to this intermediate
language rather than to binaries that are specific to a given type of computer, a single Java
program can be run on several different computer platforms for which there is a Java Virtual
Machine (Java VM). Once a Java program has been compiled into bytecode, it is placed on a
Web server. Web servers deliver bytecode to Web browsers, which interpret and run the code.

Java programs designed to run inside browsers are called applets. When a user navigates to a
Web site that contains a Java applet, the applet automatically downloads to the user's
computer. Browsers require Java bytecode interpreters to run applets. Java-enabled browsers,
such as Netscape Navigator and Internet Explorer, have Java bytecode interpreters built into

them.

Precautions are taken to ensure that Java programs do not download viruses onto the user's
computers. Java applets must go through a verification process when they arecontinue

Page 164

 first downloaded to users' machines—to ensure that their bytecode can be run safely. After
verification, bytecode is run within a restricted area of RAM on users' computers.

ActiveX

ActiveX is a Windows custom control that runs within ActiveX-enabled browsers (such as
Internet Explorer), rather than off servers. Similar to Java applets, ActiveX controls support
the execution of event-based objects within a browser.

One major benefit of ActiveX controls is that they are components. Components can be easily
combined with other components to create new, features-rich applications. Another benefit is
that once a user downloads an ActiveX control, he or she will not have to download it again in
the future; ActiveX controls remain on users' systems, which can speed up load time for
frequently visited Web pages.

Some disadvantages of ActiveX are that it is dependent on the Windows platform, and some
components are so big that they use too much system memory. ActiveX controls, because they
reside on client computers and generally require an installation and registration process, are
considered by some to be intrusive.

Figure 9.10 shows a calendar system ActiveX control. Figure 9.11 shows the HTML code that
generated the page in Figure 9.10. An HTML <OBJECT> tag gives the browser the ActiveX
control class ID so that it can search the registry to determine the location of the control and
load it into memory.break

Figure 9.10
Calendar system ActiveX control.

Page 165

Figure 9.11
HTML code that generated the ActiveX control shown in Figure 9.10.

Sometimes, multiple ActiveX controls are required on the same HTML page. In such instances,
controls may be stored on the same Web server, or on different Web servers.

Server-Side Includes

Server-side includes (SSIs) are directives to Web servers that are embedded in HTML
comment tags. Web servers can be configured to examine HTML documents for such comments
and to perform appropriate processes when they are detected. The SSIs are typically used to
pull additional content from other sources into Web pages—for example, the addition of
current date and time information. Following is an example of an SSI (enclosed between
HTML comment tags) requesting that the Web server call a CGI script named mytest.cgi.

<!--#exec cgi="/cgi-bin/mydir/mytest.cgi"-->

Style Sheet

Style sheets are documents that define style standards for a given set of Web pages. They are
valuable in maintaining style consistency across multiple Web pages. Style sheets allow Web
designers to define design issues such as fonts and colors from a central location, thus freeing
designers from concerns over inconsistent graphic presentation that might result from browser
display differences or developer oversight.

Style sheets set style properties for a variety of HTML elements: text style, font size and face,
link colors, and more. They also define attribute units such as length, percentage, and color.

The problem with traditional style sheets is that they do not take the dynamic nature of Web
design into account. Web pages themselves offer multiple means of definingcontinue

Page 166

styles without the use of style sheets—for example, style properties can be defined in an
HTML page's header, or inline in the body of an HTML document. Such dynamic style
definition can lead to conflicting directives.

Cascading style sheets (CSS) is the most common and most mature style sheet language.
Cascading style sheets offer a system for determining priority when multiple stylistic influences
are directed onto a single Web page element.

Cascading style sheets dictate the style rules that are to be applied when conflicting directives
are present. Cascading style sheets allow Web designers to manage multiple levels of style
rules over an unlimited number of Web pages. For example, a certain line of text on a Web
page might be defined as blue in the page's header, as red in the page's body text (inline), and
as black in an external style sheet. In this scenario, CSS could establish a hierarchy of priority
for the three conflicting style directives. The CSS could be set up to dictate that inline style
commands take priority over all other style commands. Following that in priority might be
''page-wide" style commands (located in page headers). Finally, external style sheet commands
might hold the least influence of the three style command types.

There are different means of referencing style sheets. The browser takes all style information
(possibly conflicting) and attempts to interpret it. Figure 9.12 shows a mixture of styles applied
to a page. Some of the approaches may be incompatible with some browsers. For more
information about CSS, see WebReview's Overview of the CSS Specification at
http://webreview.com/pub/guides/style/glossary.html. The W3C's CSS Validator is available
for download at http://jigsaw.w3.org/css-validator/.break

Figure 9.12
Mixed styles.

Page 167

Some errors that you should look for include:

• The default state of UI controls is incorrect.

• Poor choice of default state.

• The updated state of UI control is incorrect.

• The default input value is incorrect.

• Poor choice of default value.

• The updated input value is incorrect.

• The initial input focus is not assigned to the most commonly used control.

• The most commonly used action button is not the default one.

• The form or dialog box is too big under minimum support display resolution (e.g., 800 ×
600).

• The HTML code is often generated dynamically. It's essential to understand how the HTML
code is generated. Don't assume that you have already tested "that" page, so you won't have to
do it again until something changes.

• Set View Text Size to Largest and the Smallest to see how each setting may affect the UI.

• Check for the existence of ALT attributes.

• Check for correct descriptions in ALT attributes.

• Avoid reporting multiple broken links or missing images used by the same error (e.g., the
same image used in 20 HTML pages is missing).

• Invalid inputs are not detected and handled at client side.

• Invalid inputs are not detected and handled at server side.

• Scripts are normally used to manipulate standard (e.g., set input focus, set default state, etc.)
UI (form) controls. This is a tedious program chore and the process normally produces errors.
Look for them.

• Scripts, CSS, Java applets, and ActiveX controls commonly cause incompatibility errors
among different releases of browser produced by different vendors. Make sure to run
compatibility tests for all supported browsers. See Chapter 14, "Configuration and
Compatibility Tests," for more information.

• If your application uses scripts, Java applets, and ActiveX controls, and the users might have
disabled one or more of these features, can your application function at some capacity (or it
will simply stop functioning)?

• To test for script (such as JavaScript) incompatibility problems between different browser
brands and versions, we first need to identify which pages use script, and for what purposes.
Once these pages are cataloged, run these pages through one of the HTML authoring tools that
has built-in support for checking script incompatibility based on static analysis method. The

one that I am familiar that provides this support with is Macromedia's Dreamweaver.

• Will the Web pages display correctly on handheld devices which often do not support
graphics, and have relatively small screen "real estate"?break

Page 168

Navigation Methods

Navigation methods dictate how users navigate through a program—from one UI control to
another within the same page (screen, window, or dialog box), and from one page to the next.
User navigation is achieved through input devices, such as keyboard and mouse. Navigation
methods are often evaluated by how easily they allow users to get to commonly used features
and data.

Ask yourself these questions:

• Is the application's navigation intuitive?

• Is accessibility to commonly used features and data consistent throughout the program?break

Testing the Sample Application

User navigation within the sample application is achieved via standard UI controls
(keyboard and mouse events). Data updates are submission based, meaning that they are
achieved by clicking action buttons, such as Submit. Figure 9.13 diagrams how users
navigate through the sample application's trend metrics and distribution metrics features.

Figure 9.13
Sample application navigation.

Page 169

• Can users always tell where they are in the program and what navigation options are
available to them?

• How well is information presented to the user?

• If the program utilizes a central workspace, does the workspace remain consistent from
screen to screen?

• Do navigation conventions remain consistent throughout the application (navigation bars,
menus, hyperlinks, etc.)?

• Examine the application for consistent use of mouse-over pop-ups, clicks, and object
dragging. Do the results of these actions offer differing results from one screen to the next?

• Do the keyboard alternatives for navigation remain consistent throughout the application?

• Are all features accessible via both mouse and keyboard action?

• Click the Tab button repeatedly and examine the highlight path that is created. Is it logical and
consistent?

• Click the Shift-Tab button repeatedly and examine the highlight path that is created. Is it
logical and consistent?

• Look at the keyboard shortcuts that are supported. Are they functioning? Is there duplication
among them?

• If the user clicks a credit card payment button on an e-commerce site numerous times while
he or she is waiting for server response, will the transaction erroneously be submitted
numerous times?

Mouse/Keyboard Action Matrices

Appendices D and E contain test matrices that detail mouse and keyboard actions. These
matrices can be customized to track navigation test coverage for the Web system under test.

Action Commands

Occasionally, the names of on-screen commands are not used consistently throughout an
application. This is partially attributable to the fact that the meaning of command names often
varies from one program to the next. If the nomenclature of certain commands varies within a
single program, user confusion is likely to result. For example, if a Submit command is used to
save data in one area of a program, then the Submit command name should be used for all
saving activities throughout the application.

Consideration should be given to the action commands that are selected as the default
commands. Default action commands should be the least risky of the available options (the
commands least likely to delete user-created data).

Table 9.3 lists a number of common confirming-action and canceling-action commands, along

with their meanings and the decisions that they imply.break

Page 170

Table 9.3 Confirming and Canceling Commands

DECISION IMPLIED DECISION

Common confirming-action
commands

Done Dismiss the current dialog box,
window, or page.

Close Dismiss the current dialog box,
window, or page.

OK I accept the settings. Dismiss the current dialog box,
window, or page.

Yes I accept the stated condition. Proceed and dismiss the
current dialog box, window, or
page.

Proceed I accept the stated condition. Proceed and dismiss the
current dialog box, window, or
page.

Submit Submit the data in the form, page,
or dialog box.

Common canceling-action
commands

Cancel I do not accept the settings or stated
condition.

Return to the previous state and
dismiss the current dialog box,
window, or page.

No I do not accept the settings or stated
condition.

Proceed and dismiss the
current dialog box, window, or
page.

Reset Return the settings to their previous
state.

Clear all unsubmitted changes
in current dialog box, window,
or page.

Feedback and Error Messages

Consistency in audible and visible feedback is essential for maintaining clear communication
between users and applications. Messages (both visible and audible), beeps, and other sound
effects must remain consistent and user friendly to be effective. Error messaging in particular
should be evaluated for clarity and consistency. In Chapter 10, "Functional Tests," see the
section entitled "Task-Oriented Functional Test (TOFT)" for more information regarding error
messages.

Examine the utilization of interface components within feedback for unusual or haphazard
implementations. One can identify commonly accepted guidelines within each computing
platform for standard placement of UI elements, such as placing OKcontinue

Page 171

and Cancel buttons in the bottom right corner of dialog boxes. Alternate designs may make user
interaction unnecessarily difficult.

Two types of message-based feedback are available. Figure 9.14 illustrates a typical
client-based error message (generated by error-checking JavaScript on the client side) that
utilizes a browser-based message box. Figure 9.15 shows typical server-based feedback.

Client-based error messages are generally more efficient and cause less strain on servers than
do server-based error messages. Server-based error messages require that data first be sent
from the client to the server and then returned from the server back to the client where the error
message is displayed to the user.

Client-based error messages, on the other hand, using script (such as JavaScript) embedded in
an HTML page, can prevent such excessive network traffic by identifying errors and displaying
error messages locally, without requiring contact with the server. Because scripting languages
such as JavaScript behave differently with each browser version, testing of all supported
platforms is essential.

As a general rule, simple errors such as invalid inputs should be detected and handled at the
client side. The server, of course, has to detect and handle error conditions that do not become
apparent until they interfere with some process being executed on the server side.

Another consideration is that, sometimes, the client might not understand the error condition
being responded to by the server, and it might therefore ignore the condition, or display the
wrong message, or display a message that no human can understand.break

Figure 9.14
Browser-based error message.

Source: © LogiGear Corporation.

Page 172

Figure 9.15 Server-based feedback.
Sourc: © 1999 LogiGear Corporation.

Additionally, the client might not switch to the appropriate state or change the affected data
items in the right way unless it understands the error condition reported by the server.

Some errors to look for include the following:

• Displaying incorrect error message for the condition.

• Missing error messages.

• Poorly worded, grammatically incorrect, and misspelled errors.

• Messages were not written for the user and, therefore, are not useful to the user. For example,
"Driver error 80004005."

• Error message is not specific nor does it offer a plausible solution.

• Similar errors are handled by different error messages.

• Unnecessary messages distract users.

• Inadequate feedback or error communication to users.

• Handling methods used for similar errors are not consistent.

Ask yourself these questions:

• Does the UI cause deadlocks in communication with the server (creating an infinite
loop)?break

Page 173

• Does the application allow users to recover from error conditions, or must the application be
shut down?

• Does the application offer users adequate warning and options when they venture into
error-prone activities?

• Are error messages neutral and consistent in tone and style?

• Is there accompanying text for people who are hearing-impaired or have their computer's
sound turned off?

• If video is used, do picture and sound stay in sync?

Data Presentation (Data Output)

In Web applications, information can be communicated to users via a variety of UI controls
(e.g., menus, buttons, check boxes, etc.) that can be created within an HTML page (frames,
tables, simulated dialog boxes, etc.).

Figures 9.16, 9.17, and 9.18 illustrate three data presentation views that are available in the
sample application. Each view conveys the same data through a different template built using
HTML frames and tables.

In this sample application example, there are at least three types of potential errors: (1) data
errors (incorrect data in records caused by write procedures), (2) database query errors, and
(3) data presentation errors. A data error or database query error will manifest itself in all
presentations, whereas a presentation error in server-side scriptscontinue

Figure 9.16
Single issue report presented in Full View.

Page 174

Figure 9.17
Same issue report presented in Edit View.

will manifest itself only in the presentation with which it is associated. Figure 9.19 illustrates
the data presentation process. Where errors manifest themselves depends on where the errors
occur in the process.

Analyze the application to collect design architectural information. One of the most effective
ways to do this is to interview your developer. Once the information is collected, use it to
develop test cases that are more focused at the unit level, as well at the interoperability level.

User Interface Implementation Testing

User interface implementation testing examines applications with an eye toward their
operation. It evaluates whether UI features work properly. If a UI control does not operate as
designed, it will likely fail to deliver accessibility to underlying features, which,
independently, may be functioning properly. Functionality testing often takes place
simultaneously with UI design testing, but it is helpful to consider the two types of testing
separately.break

Page 175

Figure 9.18
Multiple issue reports presented in Tabular View.

Figure 9.19
Data presentation diagram.

Page 176

NOTE

This section includes some overlap in information with functionality tests that are run
specifically on UIs, and functionality tests that are run on all other features of an application.
The TOFT section of Chapter 10, ''Functional Tests," includes more complete information on
the execution of functional tests. The content of this chapter is useful only in supporting
functional testing efforts that are specific to UI.

The line between design consistency and design functionality is not always a clear one. An
example that illustrates such a gray area is a text link of a certain color that remains consistent
from one screen to the next while the background on which the text is displayed changes. As the
background changes, the text becomes illegible on certain screens. Although the text is
consistent in such an example, the color of the text should be adjusted to improve legibility.

Miscellaneous User Interface Elements

Table 9.4 lists miscellaneous interface elements that require testing.

Complications Specific to Web Applications

• Web browsers present their own unique set of challenges in functionality testing. Most
significantly, the marketplace is crowded with a number of browser brands and versions. If the
goal is to support most browsers out there, developers often must code for the
lowest-common-denominator Web user—meaning those users who have the slowest modems
and the least sophisticated, most outdated browsers. Even with careful HTML development,
variations in graphical presentation are nearly inevitable between browsers. For example,
when viewing an identical table with both Microsoft Internet Explorer and Netscape
Navigator, a user may see different results.

• Browser-server communication is explicit-submission–based, meaning that data entries and
updates are not written to the server until the user initiates an action. For example, input data
will be lost if a user shuts down a Web application before clicking a submission button, such
as Save or Submit.

• Scripting languages, such as JScript, JavaScript, and VBScript, can be used to simulate
limited browser-side, submission-driven event handling. Without browser-side scripting, error
handling must be done on the server side, which is not always effective. For example, someone
in Ireland is interacting with a server in California. If the user submits data in an incorrect
format, the user will be notified immediately only if the scripting is handled on the client side.
If the error is han-soft

Page 177

Table 9.4 Miscellaneous UI Elements

ELEMENT TYPE ISSUES TO ADDRESS

ELEMENT TYPE ISSUES TO ADDRESS

Instructional and technical
information

Accuracy of information and instructions.

Fonts Consistency of style.

Legibility of text.

Difficulty of reading italic and serif fonts.

Visual clutter resulting from multiple font faces on a single document, as well
as the availability of font faces on the targeted platforms.

Colors Suitability of background colors.

Suitability of foreground colors.

Suitability of font colors.

Haphazard use of color can be negative and confusing.

Subtle, complementary color choices are generally more pleasing thatn
saturated, contrasting colors.

Borders Three-dimensional effects on command buttons can be effective visual cues for
users.

Use of three-dimensional effects on noninteractive elements can be confusing.

Images Large images may increase load time.

Visual cues and design details should blend with background, not compete with
it.

Suitability of background.

Legibility of labels.

Legibility of buttons.

Suitability of size of images.

Frames Some older browsers cannot display frames.

Display settings and browser types can affect how frames are displayed.

Back buttons often have unexpected results.

Tables Nested tables (tables within tables) slow down HTML load time.

Presentation may vary depending on display settings and browser type (improper
scaling or wrapping may result).

Testing should include all browsers and display settings and browser window
sizes.

Page 178

dled on the server side, the data will have traveled to California and back to Ireland before the
user learns of the client-side error.

• Web applications use a single-page paradigm. Therefore, they do not have the benefits of
hierarchical organization that GUI-based applications (such as Windows applications) have.
Web applications have no provision for the modal dialog box paradigm that is so common in
other GUI-based environments; when modal dialog boxes are used to present error messages to
users in a Windows environment, they require the user to take an action before control of the
application or operating system is returned to the user.

• The browser Back button can complicate the dependent relationship between pages in Web
applications. Clicking the Back button, rather than an appropriate explicit-submission button, is
a common cause of loss of uncommitted data.

• Changes to monitor color depth settings (16 colors, 24 bit color, 32 bit color, etc.) often
creates unexpected display results, as do changes to screen resolution (640 × 480, 800 × 600,
1280 × 1024, etc.) and font size. It is recommended that all such combinations of color depth,
screen resolution, and font size be addressed in browser-based application testing.

• Different brands and versions of browsers on different platforms (Windows, Solaris,
Macintosh, etc.) may display HTML elements differently. Depending on display settings, even
a single browser can display elements in multiple ways. Additionally, resetting the size of a
browser's window can lead to unexpected table and frame presentation. It is recommended that
Web applications be tested with all common browser brands and versions.

Figures 9.20 and 9.21 illustrate UI errors that are the result of browser incompatibility. The
HTML tags for these examples are specific to one browser. They are not designed to be
compatible with other browsers. These errors are a result of the different manner in which the
two browsers read standard HTML tables and controls. The browser in Figure 9.21 does not
accurately display the scrolling text box and pull-down menu as the browser in Figure 9.20
displays. Both browsers present the same HTML page with different results.

Display Compatibility Matrix

Appendix G, "Display Compatibility Test Matrix," lists variations in display settings that
should be considered during browser-based application testing.

Testing Considerations

USER INTERACTION TESTING CONSIDERATIONS

• How is information presented to the user?

• Is there a central workspace? If so, does it remain consistent from screen to screen?

• Is data presented in frames? If so, is there a choice for nonframe browsers?break

Page 179

Figure 9.20
Browser incompatibility—Browser A.

• What means of data manipulation are included in the application under test?

• Are data manipulation methods presented intuitively and consistently?

• Are data manipulation methods consistent with Web application standards (possibly
platform-specific)?

• Are data manipulation methods consistent with industry standards (possibly
product-specific)?break

Figure 9.21
Browser incompatibility—Browser B.

Page 180

• Is drag-and-drop functionality supported? If so, is the drag-and-drop functionality consistent

with industry standards? Is the support compatible across vendors and platform-specific
browsers?

UI CONTROL TESTING CONSIDERATIONS

• What are the UI controls used by the application under test: dialog boxes, radio buttons,
drop-down menus?

• Are the layout and implementation of UI controls intuitive and consistent throughout the
application?

• Are naming conventions for controls and dialog boxes intuitive and consistent?

• Are the default settings for each control the most commonly used and least risky settings?

• Do control buttons change position from screen to screen? (Are they consistently placed?)

• Do data interaction methods vary illogically from screen to screen (drag-and-drop, text entry,
queries, etc.)?

• Do the property settings of UI-based HTML tags (color, size, style, alignment, wrapping,
etc.) support the design objectives?

• Are properties consistently applied to all HTML elements?

• Are the interface components unusual or confusing in any way?

• What dynamic UI elements (scripts, Java applets, ActiveX controls, SSIs, CSS, DHTML,
etc.) are utilized by the application? Consider testing with all supported browsers to uncover
vendor- or platform-specific errors?

• Do the dynamic UI elements fit with the overall design approach?

• Are dynamic UI elements implemented intuitively and consistently?

• Are third-party plug-ins, such as QuickTime, ShockWave, RealPlayer, and Adobe Acrobat,
included? Which versions of these components does the product claim to support?

UI IMPLEMENTATION TESTING CONSIDERATIONS

• Are all keyboard shortcuts functioning for ActiveX and Java applet components?

• Are combination keyboard/mouse functions operating properly for ActiveX and Java applet
components?

• Do all mouse-rollovers (ALT text) operate properly? Any missing ALT?

• Does the correct text pop up in mouse-rollovers?

• Are appropriate command buttons default-highlighted?

• Do command buttons perform the actions they purport to?

• Are on-screen or in-place instructions accurate?

• Do graphics and text load as required?

• Do links and static text support the intended design?break

Page 181

Bibliography and Additional Resources

Bibliography

Cluts, Nancy Winnick. Programming the Windows 95 User Interface. Redmond, WA:
Microsoft Press, 1995.

Goodman, Danny. Dynamic HTML: The Definitive Reference. Sebastopol, CA: O'Reilly and
Associates, Inc., 1998.

Holzner, Steven. Web Scripting with VBScript. New York: M&T Books, 1996.

Meyer, Jon, and Troy Downing. Java Virtual Machine. Sebastopol, CA: O'Reilly and
Associates, 1997.

McKay, Everett N. Developing User Interfaces for Microsoft Windows. Redmond, WA:
Microsoft Press, 1999.

Microsoft Corporation. The Windows Interface Guidelines for Software Design. Redmond,
WA: Microsoft Press, 1995.

Powell, Thomas A. HTML: The Complete Reference, Second Edition. Berkeley, CA:
Osborne/McGraw-Hill, 1999.

Simpson, Alan. Official Microsoft Internet Explorer 4 Site Builder Toolkit. Redmond, WA:
Microsoft Press, 1998.

Recommended Reading

About Face: The Essentials of User Interface Design
By Alan Cooper, IDG Books Worldwide (1995).

Web Style Guide: Basic Design Principles for Creating Web Sites
By Patrick J. Lynch and Sarah Horton, Yale University Press (1999).

Microsoft Windows User Experience (Microsoft Professional Editions)
By Microsoft Corporation, Microsoft Press (1999).

Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests
By Jeffrey Rubin, John Wiley & Sons (1994).

Useful Links

QA City—More information on Web testing and other software testing–related subjects
www.qacity.com

Microsoft MSDN UI page

http://msdn.microsoft.com/ui

Web Content Accessibility Guidelines
www.w3.org/TR/WAI-WEBCONTENT/

Yale University—Online style guide
http://info.med.yale.edu/caim/manual/break

Page 183

Chapter 10—
Functional Tests

Why Read This Chapter?

The purpose of this chapter is to point out several test types and techniques used in
functionality testing, whether we have specifications or not. The premise of this testing is to
find errors in the process of checking if the product is useful for its intended users and if it
would do what a target user reasonably expected it to do. This chapter analyzes a variety of
functional tests with an eye on their use during the testing process.

Introduction

Functional testing is a broad category of testing. It includes a variety of testing methods such as
FAST, TOFT, Boundary, FET, exploratory testing, and other attacking techniques. This chapter
details some of these functional test types and relates them to Web-testing examples.break

Topics Covered in This Chapter

• Introduction

• An Example of Cataloging Features in Preparation for Functional Tests

• Testing Methods

• Bibliography

Page 184

To better define the scope of functionality tests, look at various degrees of the functioning of an
application:

• FAST. Does each input and navigation control work as expected?

• TOFT1. Can the application do something useful as expected?

• Boundary. What happens at the edge of specified use?

• Forced-error. What happens when an error condition occurs?

• Exploratory. What does experience tell about the potential problematic areas in the
application? This involves simultaneous learning, planning, and executing tests.

• Software attacks. Why does software fail? How do you turn lessons learned into a series of
attacks to expose software failures?

An Example of Cataloging Features in Preparation for Functional Tests

Following is an example of how the features in the Sample Application (described in Chapter
7, "Sample Application") are cataloged.

Testing the Sample Application

We will use the sample project's chart generation feature to detail some specific test cases for
the varieties of functional testing. Chapter 7, "Sample Application," describes this feature as a
single Java applet running on the client browser to display bug metrics.

For the purpose of example, bug metrics measure bug-report activity or resolution at any one
time (distribution metrics) or over time (trend metrics) to support test project status monitoring.
In the sample application, these metrics can be displayed as tables and charts.

This feature under test allows users to generate trend metrics based on a variety of criteria. The
function works by choosing (1) a template to specify the type of data or comparisons to graph;
(2) the period (daily, weekly, or monthly); and (3) the Start and End dates.

Figure 10.1 shows the trend metrics generation page from the Sample Project. Figure 10.2
illustrates the result table and chart from the criteria chosen in Figure 10.1. Figure 10.3 shows
a matrix that lists test cases to target the functionality of the sample project's chart generation
feature.

Testing Methods

Several common black-box testing methods that can be applied to functional tests will be
discussed in this section.break

Page 185

Figure 10.1
Trend metrics generation page.

Functional Acceptance Simple Tests

Functional acceptance simple tests represent the second level of acceptance testing [relative to
the release acceptance test (RAT), which was discussed in Chapter 3, "Software Testing
Basics"]. Rather than including only a small sampling of a program's functionality (as in RAT),
functional acceptance simple test (FAST) coverage is wide in breadth, but shallow in depth.
The FAST exercises the lowest level of functionality for each command of a program. The
combinations of functions, however, no matter how firmly integrated, are not tested within the
scope of FAST. Such issues are considered in task-oriented functional testing (TOFT), which
is discussed later in this chapter.

A test team can reject a build after it has been accepted into FAST. However, this is rare. The
rejection expresses a determination by the test team that further testing of this build would be a
waste of time, either because so many tests are blocked or because the build itself is invalid.
More often, the test team continues testing a buggy build but reassigns some testers to other
work if their tests are blocked by bugs.

One of the objectives of FAST is to check for the appropriate behaviors of user interface (UI)
controls (i.e., text box, pull-down list, radio button, etc.) based on the intended designs. This
entails checking for the existence of UI controls on each page, window, or dialog box; checking
if the default state (such as enable, disable, high-soft

Page 186

Figure 10.2
Result table and chart.

lighted, etc.) is as intended; checking if the default value or selected mode is as intended;
checking if the tab order is as intended; and if the behavior of shortcuts (e.g., Ctrl-X, Ctrl-V,
etc.) and other access keys (e.g., Alt-O for Open) is as intended. Additionally, in this process,
you learn about the developer's thoughts and implementation logic in crafting the functionality
delivered to the end user. You use this information later to design test cases that poke into the
flaws of the design logic.

In a Web environment, things to check for in FAST include:

• Links such as content links, thumbnail links, bitmap links, and image map links.

• Basic controls, such as backward and forward navigating, zoom-in and zoom-out, other UI
controls, and content-refreshing checks.break

Page 187

Figure 10.3
Functionality test cases for the trend-charting feature.

Page 188

Figure 10.3
(Continued)

• Action command checks such as add, remove, update, and other types of data submission;
create user profiles or user accounts including e-mail accounts, personal accounts, and
group-based accounts; and data-entry tests.

Other key features such as log in/log out, e-mail notification, search, credit card validation and
processing, or handling of forgotten passwords.

Some of the simple errors you may find in this process include the following:

• Broken links

• Missing images

• Wrong links

• Wrong images

• Correct links with no or outdated contents

• Errors in ordering/purchasing computation

• Ignoring credit card classifications

• Accepting expired credit

• Accepting invalid credit card numbers

• Incorrect content or context of automated e-mail reply

• No intelligence in address verification

• Server not responding (no server-updating message to user) to Domain Name Service (DNS)
errors

• Inability to validate invalid user's e-mail addresses

Task-Oriented Functional Tests

Task-oriented functional tests (TOFTs) check whether the application can do useful tasks
correctly. They are positive tests that check program functions by comparing thecontinue

Page 189

Testing the Sample Application

''Functional Acceptance Simple Test Matrix–Trend Metrics" checks whether a chart is generated
when the tester selects the specified criteria. The FAST does not necessarily check whether the
generated chart presents accurate data. The tests are passed even if the content of a metric
generated by one of these test cases is incorrect–though an issue report should be written up to
track the problem. The FAST, in this scenario, simply ensures that something is
drawn–regardless of accuracy. The accuracy or the output would be the focus of TOFT, which is
discussed in the next section. For "Functional Acceptance Simple Test–Trend Metrics," we
choose test cases to exercise a combination of functional choices.

results of performed tasks with product specifications and requirements documents, if they
exist, or to reasonable user's expectations. The integrity of each individual task performed by
the program is checked for accuracy. If behavior or output varies from what is specified in
product requirements, an issue report is submitted.

The TOFTs are structured around lists of features to be tested. To come up with a
features-to-be-tested list, the product specification should be carefully dissected. The product
itself must also be examined for those features that are not well defined or that are not in the
specification at all.

Every function and feature becomes an entry on the features-to-be-tested list. Consideration
should also be given to competitive influences and market demands in developing the details of
the list. For example, if competitive pressures dictate that a certain function should execute in
less than 2 seconds, then that requirement should be added to the features-to-be-tested list.
Once your features-to-be-tested list is complete, each entry on it should be used to define a test
case that checks whether the feature's requirements have been met.break

Testing the Sample Application

The "Task-Oriented Functional Test Matrix–Trend Metrics" would include the entire test suite
detailed in Figure 10.3 to completely exercise this aspect of the sample project's trend metrics
feature. Note that it would take a lot more than this simple matrix to completely exercise this part
of the program. Beware of words like complete.

These test cases check whether output data (the trend metrics and charts) accurately reflect input
parameters (in this scenario, a data set that incorporates daily bug-tracking activity). The sample
data set includes the number of new reports opened versus the number of reports closed over a
given period. The TOFT test cases check whether output metrics mirror the particulars of the
input data set.

Page 190

Forced-Error Tests

Forced-error tests (FETs) intentionally drive software into error conditions. The FET's
objective is to find any error conditions that are undetected and/or mishandled. Error
conditions should be handled gracefully. That is, the application recovers successfully, the
system recovers successfully, or the application exits without data corruption and with an
opportunity to preserve work in progress.

Suppose that you are testing text fields in an online registration form and the program's
specification disallows nonalphabetical symbols in the name field. An error condition will be
generated if you enter 123456 (or any other nonalphabetic phrase) and click the Submit button.
Remember, for any valid condition, there is always an invalid condition.

A complete list of error conditions is often difficult to assemble. Some ways of compiling a list
of error conditions include the following:

• A list of error messages from the developers

• Interviewing the developers

• Inspecting the string data in a resource file

• Information from specifications

• Using a utility to extract test strings out of the binary or scripting sources

• Analyzing every possible event with an eye to error cases

• Using your experience

• Using a standard valid/invalid input test matrix (such as the one in Appendix F)

Once you have a complete list of error conditions, each error condition should be run through a
the following testing process:

1. Force the error condition. Direct the software into the error condition specified in the test
case.

2. Check the error detection logic. Error handling starts with error detection. If an error goes
undetected, there is no handling. From the developer perspective, detection is done through
validation. For example, in the code, an input value is validated using some constraints. If the
value does not satisfy the constraints, then do something about it (i.e., disallow the input). Test
cases should be designed to poke into the flaws of the validation logic.

3. Check the handling logic. Now that the detection is in place, we need to check how each
detected error condition is handled from the following dimensions:

• Does the application offer adequate forgiveness and allow the user to recover from the
mistakes gracefully? For example, if one of the inputs in a 20-field form is invalid, does the
application allow the user to reenter valid data to that one field, or does it force the user to
start it all over again?

• Does the application itself handle the error condition gracefully? If the program

terminates abnormally (e.g., due to a critical error, the application exitscontinue

Page 191

without going through the normal exit routines), a variety of cleanup activities might not
have been done. For instance, some files might have been left often, some variables might
have incorrect data, or your database is in an inconsistent state.

• Does the system recover gracefully? Does the system crash or continue operating with
erratic or limited functionality, or compromised security? For example, in a Web-based
system, critical errors should be predicted, examined, and handled so that system crashes
can be avoided. However, a system crash caused by an error condition might be a better
outcome than having the system continue running but produce wrong results or compromise
security.

Keep in mind that if one of the physical servers must reboot itself for any reasons, when the
system is restarted, it is possible that not all services (e.g., SMTP service, database
services, etc.) will restart successfully. You should check to make sure that the restart
routine does what you expect it to do.

4. Check the error communication.

• Determine whether an error message appears. If an error message appears, then this part
of the test is passed (the accuracy of the message is secondary to the fact that a message has
been generated).

• Analyze the accuracy of the error message. Does the message tell the user what's wrong?
Can the user understand it? Do the instructions match the error condition? Will the
instructions help users successfully escape the error condition? You also need to ask
yourself if the application offers adequate instructions so that the user can avoid an obvious
error condition in the first place.

• Note that the communication does not have to be in error messages. It can be in another
medium such as an audio cue or visual cue. Use your judgment to assess which medium is
the most appropriate and voice your concern accordingly.

5. Look for further problems. Are any other related issues uncovered in generating this error
condition? For example, there might be a memory leak, a stack corruption, a partially updated
data structure or table entry, or a wild pointer. A calculation might have been incorrectly
completed. You might use data collected from logging tools to analyze the state of the servers,
thereby detecting the implication associated with error messages.

Figure 10.4 walks you through an example of a Web system to demonstrate the error-handling
process. First, the user takes certain action and puts the system or application in an error state.
This can be done in a variety of ways, simply from invalid keyboard input, disconnecting from
an ISP, removing a network connection cable, or attempting to follow an incorrect path through
the application.

The error must then be detected. There may be code to handle an error, but it's useless if the
application did not detect the error. As illustrated in Figure 10.4, the error might be detected at
any component in the communication chain involved in executing the request. Does a message

go back to the client at all? If not, was there proper silent error handling? Could there be
improper silent error handling? What testcontinue

Page 192

Figure 10.4
Error detection and handling path.

would have to be created to generate an error behind the client that the client will not be
advised of but that will be persistent?

The detected error must then be handled. Will the application fix the error itself? In most cases,
some components may return an error code or message. The error condition is usually
communicated back to the user in the form of an error message. This can be done either on the
client side (if that is the expected behavior) or on the server side (after the user sends a request
to the server).

For example, the user enters a request. The request is sent to the Web server, which then passes
it along to the database server. If the database server experiences an error condition, it will
then return an error code. The Web server either generates an error message that is based on
the error code, or it forwards the error code back to the client. (For more information, see
Chapter 9, "User Interface Tests," for an example of client- and server-side error message
handling).

In this error-handling scheme, consider the following issues:

• An error condition might occur anywhere in the chain transaction processing.

• Each component within the chain might fail to detect or interpret an error condition correctly.

• Each component within the communication chain might fail to forward an error code to the
next component.

• An error condition (code) needs to be translated into an understandable message so that the
user will know what happened. For example, "Exception 80065" does not mean anything to the
user.

• The user does not know or care where the error happens. One only needs to know what the

error is (from the human perspective) and how to correct the situation.break

Page 193

• The goal of forced-error tests is to put the application in an error condition. The first level of
the test is to make sure an error message is received by the client. Second, test that the error
message is correct. That is, it should convey the description of the error and tell the user how
to resolve the error.

The next step is to check if the error condition was properly handled. This may be instantly
apparent, but in most cases, we may not know what has resulted from the error condition. A key
for testers is to keep good notes of what action is taken, and in what order, so that bugs can be
better investigated and reproduced.

As discussed earlier, there are numerous ways to collect error condition information. The most
systematic way of generating a preliminary error condition test is to get a list of all error
messages from the program's developers. Additional error conditions can be uncovered
through guesswork based on past testing experience. You may also discover bugs accidentally
while performing other kinds of testing.

A full cycle of FET may require two to three builds to complete. That is because testers have
to perform countless error-generating activities that, in an ideal world, users would never do.
Only by creating unexpected situations (e.g., entering special characters into fields that are
designed for numerals and by requesting page margin settings that are impossible) can you
generate error conditions that are unrelated to the known error conditions.

Boundary Condition Tests and Equivalent Class Analysis

Boundary tests are similar to FETs in that they are the boundaries of each variable. For
example, in testing an online registration form, you need to check if a text field with a specified
character limit from two to seven characters is, in fact, functioning as expected. Does the field
accept two, three, six, and seven characters? What about one character? Or eight? Can the field
be left empty? Boundary and equivalence class test-case design techniques are discussed in
Chapter 3, "Software Testing Basics."

Boundary tests are an extension of TOFTs and FETs. There is some overlap between the test
types. See Table 10.2 at the end of this chapter for a visual representation of the differences
and overlap between TOFT, FET, boundary, and FAST.

Exploratory Testing

Exploratory testing* is a process of examining the product and observing its behavior, as well
as hypothesizing what its behavior is. It involves executing test cases and creating new ones as
information is collected from the outcome of previous tests. Test execution includes setting up
an environment, creatively coming up with input data to attack the program, observing the
program's response, evaluating what has beencontinue

* "In operational terms, exploratory testing is an interactive process of concurrent product
exploration, test design and test execution."—James Bach

Page 194

Testing the Sample Application

An example of an FET using the sample project includes requesting a metric (or chart) that has a
start date that is later than its end date. In effect, this test case requests the impossible. Such a
chart cannot exist. Yet, the sample project enables users to request such a chart, so the scenario
must be tested.

The intent of this test case is not to ensure accuracy of output, but to examine how the program
responds to the error condition. Does the system crash? Is the user given a chance to amend their
request? Is an error message presented to the user (regardless of the error message's accuracy)?

Getting a list of all error messages is an effective means of generating test cases for FET. Figure
10.5 shows a straightforward FET with a start date for a chart of September 31. We all know
"30 days has September." A "Start Date Not Found or Invalid" error message is returned.

Figure 10.5
Metrics submit screen for incorrect date.

learned, and then starting the next test. Exploratory testing has many names and can take many
forms. It is also referred to as unstructured or ad hoc testing and is, contrary to some beliefs, a
methodical testing strategy. It involves "thinking outside the box," testing behavior that we may
not expect but that any user may, mistakenly or intentionally, do.

You do exploratory testing by walking through the program, finding out what it is, and testing it.
It is called exploratory because you explore. According to Bach, exploratory testing means
learning while testing. It's the opposite of pre-scripted testing—just like playing twenty
questions. If we had to specify all our questions in advance, the game would be nearly
impossible, because with each question we learn more about what the next test should be. The
elements of exploratory testing include:break

Page 195

Testing the Sample Application

Testing the Sample Application

Using the sample project's trend metrics feature as an example, boundary tests can be
used to check if the program responds appropriately to user requests at the boundaries of
the data set. For example, we make a data set in which report data begins on April 1,
1999, and ends on April 30, 1999. The specified limits of this data set are therefore
4/1/99 and 4/30/99. Any user requests that specify start and end dates between 4/1/99
and 4/30/99 should not generate errors. Any user requests that specify start dates before
4/1/99 or after 4/30/99 should generate errors.

In this example, the boundary test requires three values for each end of the
limits–3/31/99, 4/1/99, and 4/2/99 for the start date; and 4/29/99, 4/30/99, and 5/1/99
for the end date. Each boundary test must confirm that accurate trend metric data is
returned for requests that specify start and end dates between 4/1/99 and 4/30/99; and
that error conditions are handled gracefully for requests that specify start and end dates
before 4/1/99 or after 4/30/99. Table 10.1 shows combinations of values that are to be
tested in boundary testing for the sample project's trend metrics.

Table 10.1 Combination of Values to Be Tested in Boundary Testing for the Sample Project's Trend
Metrics

BOUNDARY TEST

CASE NO. START DATE END DATE EXPECTED RESULT

1 4/1/99 4/30/99 Nonerror (TOFT)

2 3/31/99 4/30/99 Forced-error (FET)

3 4/2/99 4/30/99 Nonerror (TOFT)

• • • • • • • • • Forced-error (FET)

• Product exploration

• Test design

• Test execution

• Heuristics

• Reviewable results

See Bach's paper at www.satisfice.com.

Software Attacks

Particularly useful for designing test cases are the 21 attacks on software described by James
A. Whittaker in his paper, "How to Break Software," http://se.fit.edu/papers.htm. According to
this paper, software attacks fall into at least one of three general categories: (1) input/output
attacks, (2) data attacks, and (3) computation attacks.break

Page 196

Table 10.2 Special Characters and Example Boundary Test Input

CHARACTERS TESTED CORRESPONDING TEST TYPE

CHARACTERS TESTED CORRESPONDING TEST TYPE

0 Boundary, special-case, or forced-error?

2–7 Task-oriented functional testing?

1 or <2 Boundary or forced-error?

8 or >7 Boundary or forced-error?

?, +, (, #, !, < Forced-error?

%n, $name, etc. Forced-error or special cases that are meaninglful (used as keyword in that
programming environment) to the application under test?

What Method Is It?

Definition of test types or methods, by itself, is not important. What is important is to make
sure that relevant test cases (and their probability of revealing failures) are used to exercise a
feature in search for errors.

As illustrated in Table 10.2, the lines between boundary tests, TOFTs, and FETs are not
always clear. Using the text field example given above, you can perform any of these three test
types, depending on what character you enter into the field with the two- to seven-character
limits.

It does not matter which method it is. It's important that a test case would have a high
probability of finding errors.

Bibliography

Bach, James. General Functionality and Stability Test Procedure for the Certified for
Microsoft Windows Logo. Redmond, WA: Microsoft, 2000.

Kaner, Cem, et al. Testing Computer Software, second ed. New York: John Wiley & Sons,
Inc., 1999.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corp., 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corp., 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corp., 2000.

Whittaker, James A. "How to Break Software." SQE STAR East Conference Proceedings, May
2000.

Whittaker, James A., and Alan Jorgensen. "Why Software Fails." ACM Software Engineering
Note 24 (1999): 4.break

Page 197

Chapter 11—
Database Tests

Why Read This Chapter?

All Web-based data access applications require database servers. To effectively plan for
database testing and the analysis of database-related errors, it is useful to understand key
database technology concepts, how Web server components interact with the database
components, and other testing issues.

Introduction

This chapter offers an introduction to database components, application-database interaction,
data warehouses, and data marts. Technical terms and examples that are useful in improving
test planning and bug-report communication are also discussed.break

Topics Covered in This Chapter

• Introduction

• Relational Database Servers

• Client/SQL Interfacing

• Testing Methods

• Database Testing Considerations

• Bibliography and Additional Resources

Page 198

Databases play an important role in Web application technology. They house the content that
Web applications manage—fulfilling user requests for data storage and record queries.
Understanding how databases operate within Web applications is essential to effective
database testing. Databases are repositories that are organized in such a way that it is easy to
manage and update the data they contain. One of the database technologies commonly used in
Web-based applications is the relational database. Relational databases are tabular databases
that can be easily reorganized and queried. Additionally, in a Web environment, the term
distributed database is used to refer to databases that are dispersed over multiple servers on a
network.

Two common approaches used to address the needs of target users are online transaction
processing (OLTP) and online analytical processing (OLAP). Online transaction processing
is transaction-oriented. The design objective is to support users who need access to systems to
process sales or other types of transactions. An example of an OLTP-type of application is an

e-commerce system where sales transactions are processed between buyers and merchants. In
contrast, OLAP is intended for users who need access to systems such as data warehouses and
data marts to obtain various types of metrics or analytical reports. Figure 11.1 shows an
example of OLTP versus OLAP design.

Three databases containing operational information are used for product sales, training
registration, and purchasing (OLTP).

A data warehouse collects and transforms the raw data from the operational databases and
stores it in a read-only informational database. This information is used to support
decision-making processes (OLAP). Data replication executes every hour 24/7/52.

Data warehouse information is further parsed and distributed to data marts that are designed for
sales and fulfillment departments to help in marketing expenditure and inventory control
decisions.

Data warehouses are large databases that aggregate and process information from multiple
databases. The data is stored in a format that supports various analytical needs. Data marts are
customized databases normally derived from a data warehouse that has been formatted to meet
the needs of specific workgroups. Data warehouses are structured around data. Data marts are
structured around user needs. Data warehouses also allow Web sites to catalog large amounts
of user profile data, e-commerce purchases, use and session data information, trends, and
statistics. Data warehouses are large databases that aggregate information from multiple
databases. Raw data is transformed via a filtering process and stored in a format that
accommodates the database designer's informational needs. Generally, the data warehousing
process supplies data marts (see following) or users with the data they require. Data
warehouses are commonly referred to as informational databases.

Data marts are informational databases that have been custom formatted to meet the needs of
specific workgroups. They differ from data warehouses, which are structured around data, in
that they are built around the needs of users. Generally, both database types are read-only. They
may be used to collect database activity statistics, such as numbers of calls, page hits, sources
of hits, MIME types, header names, and so on.break

Page 199

Figure 11.1
OLTP versus OLAP (data warehouse and data mart) example.

There are two ways to copy and update databases. With synchronous updates, changes in the
operational database immediately affect the informational database. With asynchronous
updates, changes in the operational database are uploaded to the informational database at
regular time intervals.

Data warehouses can be designed to selectively collect data about operational activities in an
OLTP system. The data can then be transferred to an OLAP system where it can be used for
reporting, analysis, and decision support. Information stored in data warehouses is typically
summarized, historical, read-only data. The goal of such a design is to improve query
performance for decision-supporting systems (DSSs).

Several different data extraction processes may be implemented:break

Page 200

• Subsets of rows and columns may be configured to copy data from a source database to a
target database.

• Aggregations of data, such as summaries or number of hourly transactions, may be copied
from a source database to a target database.

• Data that are sent to target databases may be derived via calculations on raw-source data.

Relational Database Servers

Relational databases organize data into tables, records, and fields. They provide data storage
and data access to clients upon request. Typical services include table and record creation,
deletion, modification, data filtering, and sorting. Relational database servers consist of two
components:

1. Structured Query Language (SQL) (see definition in the following subsection). Structured
Query Language offers front-end query commands used for writing, retrieving, and
manipulating data in two-dimensional table formats.

2. Physical data. Physical data is stored in relational database management systems
(RDBMSs), which offer powerful storage access schemes.

Structured Query Language

Structured Query Language is a programming language that enables users to access and
manipulate data at runtime. Application developers and database administrators use SQL to
design data tables, objects, indexes, views, rules, and data access controls. Using
English-based commands, SQL can maximize database flexibility and system performance
while enforcing certain required security measures. Other programming languages, such as C,
C++, and Visual Basic, can integrate SQL commands to enable data connectivity and data
manipulation features.

Web-based applications offer users a browser-based interface through which they can access
and manipulate data records.

Database Producers and Standards

The key players of the SQL server application market are Sybase, Microsoft, Oracle, IBM, and
Informix. Most SQL server applications support features that are based on one or more of the
following standards: ANSI SQL89, SQL92, and SQL99. Although an in-depth analysis of these
standards is beyond the scope of this book, brief descriptions of each follow.

SQL89. Published in 1989, this is a revised version of the original SQL standard that was
published in 1986 by ANSI and ISO. SQL89 supports the creation of tables, indices, views,
and referential integrity (the ability to add constraints using PRIMARY KEY, FOREIGN KEY,
and REFERENCE clauses within table and column definitions). Support for Embedded Static
SQL was also added with this standard.break

Page 201

SQL92. SQL92 introduced many new features such as support for embedded SQL in
additional languages, additional data types, advanced error handling, and so on.

SQL99. This standard added many new features to the existing one.

Database Extensions

Database extensions are proprietary features that increase database functionality. Stored
procedures, triggers, and rules are examples of database extensions. Most SQL servers support
database extensions of one sort or another. Unfortunately, the extensions supported by one
vendor are often incompatible with the extensions supported by other vendors.

Stored procedures are compiled SQL statements. Stored within databases, these procedures
can be called upon by name as needed. They also accept input parameters. They are analogous
to subroutines or functions in traditional programming terminology. To improve programming
productivity (and, sometimes, to intentionally introduce incompatibility), database vendors
often include stored procedures that perform common database services.

A trigger is a type of stored procedure that is executed when an event occurs. For example, a
trigger may be executed when a certain table is modified.

Rules define restrictions on values of table fields and columns. Rules are used to enforce
business-specific constraints. Entered data that do not meet predefined rules (e.g., values that
do not fall within an acceptable range) are rejected or handled appropriately.

Defaults are defined values that are automatically entered into fields when no values are
explicitly entered.

Example of SQL

Following is a data insertion example that includes data entry for a specific database field. The
example includes a subsequent query for the same data, illustrating how SQL databases are
created and later utilized.

1. First, create a table to store information about company sales staff. Avoid creating duplicate
IDs within the same table.

CREATE TABLE staff
(id INT, city CHAR(20), state CHAR(2), salary INT, name CHAR(20))

2a. Populate the STAFF table using INSERT statements.break

INSERT INTO staff (id, city, state, salary, name) VALUES
(13, 'Phoenix', 'AZ', 33000, 'Bill')
INSERT INTO staff (id, city, state, salary, name) VALUES
(44, 'Denver', 'CO', 40000, 'Bob')
INSERT INTO staff (id, city, state, salary, name) VALUES
(66, 'Los Angeles', 'CA', 47000, 'Mary')

Page 202

2b. An alternate to creating the table directly (as in example 2a), you can populate the STAFF
table using a stored procedure.

/* Create stored procedure that accepts parameters for inserting records */

CREATE PROCEDURE add_staff (@P1 INT, @P2 CHAR(20), @P3 CHAR(2), @P4
INT, @P5 CHAR(20))
AS INSERT INTO staff

VALUES (@P1, @P2, @P3, @P4, @P5)
/* Inserting 3 records with created stored procedure */
add_staff 13, 'Phoenix', 'AZ', 33000, 'Bill'
add_staff 44, 'Denver', 'CO', 40000, 'Bob'
add_staff 66, 'Los Angeles', 'CA', 47000, 'Mary'

3a. Query for all entries in the STAFF table. SQL statements (see Figure 11.2).

SELECT * FROM STAFF

Figure 11.2
Query results.

3b. Query for all entries in the STAFF table using the stored procedure (Figure 11.3).

/* Create a stored procedure that does not use parameters */
CREATE PROCEDURE all_staff
AS SELECT * FROM staff
/* Query for all entries in the STAFF table */
all_staff

Figure 11.3
Query results (comparative selection).

4. Query staff with salaries higher than $35,000 (selecting only certain rows that meet the query
criteria). SQL statements (Figure 11.4).break

SELECT * FROM staff WHERE salary > 35000

Figure 11.4
Query results (column-based selection).

Page 203

5. Query only ID, CITY, and STATE columns for all entries (selecting only certain columns)
(Figure 11.5).

SELECT id, city, state FROM staff

Figure 11.5
Query results (column and comparative selection).

6. Query only ID, CITY, and STATE of staff with salary higher than $35,000 (Figure 11.6).

SELECT id, city, state FROM staff
WHERE salary > 35000

Figure 11.6
Query results.

7. Create a trigger to notify when there is a change to the table.

/* Create a trigger to send an email to a Sales Manager
alias when there is a change in the staff table. */
CREATE TRIGGER DataChangeTr
ON staff
FOR INSERT, UPDATE, DELETE
AS
/* Send an email to the address SALESMGR with change status message
*/
EXEC master..xp_sendmail 'SALESMGR', 'Data in the staff table has
been changed.'
GO

8. Create and bind (associate) defaults.break

/* Create a default to be bound (associated) to the name column. It
means that the default value for the name column in the staff table
will be "Unassigned" */
CREATE DEFAULT name_default as 'Unassigned'
GO
sp_bindefault name_default, 'staff.name'
GO

Page 204

9. Create and bind rules.

/* Create a rule to be bound to a new user-defined data type
age_type. By binding the age_rule to the age_type data type, the
entered value will be constrained to > 18 and < 65. */
sp_addtype age_type, int, 'not null'
GO
CREATE RULE age_rule
AS @age_type > 18 and @age_type < 65
GO

sp_bindrule age_rule, age_type

Client/SQL Interfacing

Client applications may be built from one of several different programming languages. There
are two main approaches to integrating these programming languages with the execution of SQL
queries: (1) embedded SQL (ESQL) and (2) SQL call-level interface (CLI).

Embedded SQL statements must be precompiled for the target programming language and target
database (using vendor-specific precompilers). Structured Query Language statements must be
recompiled for each supported SQL vendor. Every change made to source code requires
recompilation of all vendor-specific SQL statements. Therefore, embedded SQL statements
complicate application installation and deployment. They make the development of
commercial-off-the-shelf (COTS) products more challenging.

With SQL CLI (as opposed to ESQL), applications execute SQL statements and stored
procedures to access data.

Microsoft Approach to CLI

Open Database Connectivity (ODBC) is a Microsoft version of SQL CLI. As illustrated in
Figure 11.7, it is used for accessing data in heterogeneous environments of relational and
nonrelational database management systems (DBMSs). Think of ODBC as a transfer protocol
that is used to move data between Web applications and SQL servers. Open Database
Connectivity is based on the CLI specifications of the SQL access group. In theory, it provides
an open, vendor-neutral means of accessing data that is stored in disparate PC and mainframe
databases. With ODBC, application developers may enable an application to simultaneously
access, view, and modify the data of multiple database types.

As illustrated in Figure 11.8, Microsoft's object-oriented approach to CLI is through OLE DB's
ActiveX Data Objects (ADO). OLE DB is Microsoft's application program interface (API). It
offers applications access to multiple data sources. OLE DB offers Microsoft SQL ODBC
capabilities and access capabilities to data types other than MS SQL.

ActiveX Data Objects is an object-oriented interface that provides data access features to
applications via object and class interfaces instead of procedural APIs. The datacontinue

Page 205

Figure 11.7
ODBC layers.

request process runs as follows: initialize OLE, connect to a data source object, execute a
command, process the returned results, release the data source object, and uninitialize OLE.
For example, if the Web application under test supplies data to users with an Oracle database,
you would include ADO program statements in an Active Server Page–(ASP-) based HTML
file. When a user submits requests for a pagecontinue

Figure 11.8
Microsoft ADO/OLE DB layers.

Page 206

Figure 11.9
JDBC layers.

with data from the database, the requested page would include appropriate data returned from
the database, obtained using ADO code. To make this work, Microsoft and database suppliers
provide a program interface layer between the database and Microsoft's OLE DB. OLE DB is
the underlying system service of ADO that a developer uses.

Java Approach to CLI

As illustrated in Figure 11.9, the Java object-oriented approach to CLI is Java Database
Connectivity (JDBC). Similar to Microsoft's approach, JDBC provides a CLI that can be
accessed via an object interface. The JDBC provides two sets of standard interfaces: one for
application developers and the other for database developers.

Testing Methods

Database testing includes the testing of actual data (content) and database integrity—ensuring
that data is not corrupted and that schemas are correct; as well as the functionality testing of the
database applications (e.g., Transact-SQL components). The SQL scripting is generally used to
test databases. Although not all databases are SQL-compliant, the vast majority of data hosting
is supported via SQL databases, as are most Web applications.

A 2-day introduction-to-SQL course is strongly recommended for those who do not have
enough basic SQL experience to properly test databases. The SQL testingcontinue

Page 207

typically considers the validation of data (i.e., ensuring that entered data shows up in the
database). Accessing structured data with SQL is quite different from Web document searches,
which are full text searches. Structured data in the relational DBMS model implies that data is
represented in tables of rows and columns. Each row in a table represents a different object,

and columns represent attributes of row objects.

Because column values are named and represented in a consistent format, rows can be selected
precisely, based on their content. This is helpful when dealing with numeric data. Data from
different tables can be joined together based on matching column values. Useful analysis can be
performed in this way—for example, listing objects that are present in one table and missing
from a related table. Rows can be extracted from large tables also, allowing for regrouping and
the generation of simple statistics.

Testing can be applied at several points of interaction. Figure 11.10 shows that failures may
occur at several points of interaction: client-side scripts or programs, server-side scripts or
programs, database access services, stored procedures and triggers, and data stored in the
database table. Therefore, testing can and should be applied at several points of interaction.
Although client-side and server-side scripts are independent to the stored procedures and
actual data, the scripts or programs that interact with them play a very important role. They are
used to validate and handle errors for input and output data.

Common Types of Errors to Look For

Two common classes of problems caused by database bugs are data integrity errors and
output errors.

Data is stored in fields of records in tables. Tables are stored in databases. At the
programming level, a data integrity error is any bug that causes erroneous results to be stored
or data corruptions in fields, records, tables, and databases. From the user's perspective, it
means that we might have missing or wrong data in records (e.g., wrong social security number
in an employee record); we might have missing records in tables (e.g., an employee record
missing from the employee database); or data is outdated because it was not properly updated;
and so on.

Output errors are caused by bugs in the data retrieving and manipulating instructions that occur,
although the source data is correct. From the user's perspective, thecontinue

Figure 11.10
Several points of interactions.

Page 208

symptoms seen in the output can be similar to data integrity errors. In doing black-box testing,
it's often a challenge to determine if a symptom of an error is caused by data integrity errors or
output errors. See Chapter 9, ''User Interface Tests," Figure 9.19, for a discussion on this topic.

Instructions for manipulating data in the process of producing the requested output or storing
and updating data are normally in SQL statements, stored procedures, and triggers. Bugs in
these instructions will result in data integrity errors, output errors, or both.

Generally, database operations involve the following activities:

• First-time activities (e.g., the setup process)

• Connect to the database server.

• Create new databases.

• Create tables, defaults, and rules; populate default data.

• Compile stored procedures and triggers.

After the setup process is completed successfully, using the database consists of the following
activities:

• Connect to database.

• Execute SQL statements, stored procedures, and triggers.

• Disconnect from the database.

The common types of errors uncovered in database activities include:

• Failures in connecting to the database. Several potential problems that cause this type of
failure include the following:

• Invalid user name, password, or both.

• User has inadequate privileges required for certain data activities such as creating tables
and stored procedures.

• Invalid or wrong DSN (Microsoft Windows platform—See examples in Figures 11.22
through 11.25 for more information).

• Failure to connect to the server that has the needed file DSN.

Several potential problems that can cause failures in creating databases, tables, defaults, rules,
stored procedures, and triggers, as well as failures in populating default data include:

• Unable to write to the specified volume.

• Fail to create files.

• Inadequate storage required for creating databases and tables.

• Resource contention keeps one or more stored procedures or tables from being created.

Some of the common errors in the instructions (stored procedures, triggers, etc.) include:break

Page 209

• The database is configured to be case-sensitive, but the code is not.

• Using reserved keywords in the SQL statement. For example:

SELECT user FROM mytable.

Since user is the reserved keyword, this can cause a problem.

• NULL is passed to a record field that does not allow NULL.

• Mishandling single quote (') in a string field. See Figure 11.15 for an example.

• Mishandling comma (,) in an integer field. See Figure 11.18 for an example.

• Mishandling wrong data type. For example, if a field such as employee_salary in a
record expects an integer, but receives $500 instead, it will complain because 500 is an integer
but $500 is not. See Figure 11.18 for more examples.

• A value is too large for the size the field.

• A string is too long for the size the field. See Figure 11.17 for an example.

• Timeout—The time it takes the database to complete executing the procedure is longer than
the timeout value set in the script (e.g., ASP script).

• Invalid or misspelled field or column, table, or view name.

• Undefined field, table, or view name.

• Invalid or misspelled stored procedure name.

• Calling the wrong store procedure.

• Missing keyword. An example would be the code written as follows:

• • •
create view student_view
select * from student_tbl
• • •

instead of

• • •
create view student_view as
select * from student_tbl
• • •

Notice that as was omitted.

• Missing left parenthesis. For example:

• • •
INSERT INTO staff id, city, state, salary, name) VALUES
(13, 'Phoenix', 'AZ', 33000, 'Bill')

• Missing right parenthesis. Example:

• • •
INSERT INTO staff (id, city, state, salary, name VALUES
(13, 'Phoenix', 'AZ', 33000, 'Bill')

• • •

• Missing comma. For example:break

• • •
INSERT INTO staff (id, city, state, salary, name) VALUES

Page 210

(13, 'Phoenix', 'AZ', 33000 'Bill')
• • •

• Missing keyword

• Misspelled keyword

• Missing opening or closing parenthesis before the keyword

• Certain functions are disallowed to be used with group by. For example, the following
statement can cause error:

• • •
group by count (last_name), first_name, age
• • •

• Missing arguments for a function.

• Missing values. For example:

• • •
/* Create stored procedure that accepts parameters for inserting
records */
CREATE PROCEDURE add_staff (@P1 INT, @P2 CHAR(20), @P3 CHAR(2), @P4
INT, @P5 CHAR(20))
AS INSERT INTO staff
VALUES (@P1, @P2, @P3, @P4, @P5)
/* Inserting 3 records with created stored procedure */
add_staff 13, 'Phoenix', 'AZ', 'Bill'
• • •

• Insufficient privilege to grant permissions.

• Invisible invalid characters such as ESC.

• Errors in implementing COMMIT TRANSATION and ROLLBACK TRANSACTION. The
COMMIT TRANSACTION statement saves all work started since the beginning of the
transaction. The ROLLBACK TRANSACTION statement cancels all the work done within the
transaction. COMMIT and ROLLBACK errors cause partial data to be undesirably saved.

There are several approaches to database functionality testing. We'll discuss these approaches
in the following sections.

White-Box Methods

Although white-box testing is beyond the scope of this book, it's worth a discussion because
several of these methods are quite effective for database testing. More important, the

discussions offer knowledge that can be useful for black-box testers in designing powerful test
cases.

Code Walk-through

Code walk-through is a very effective method to find errors at the source level. This method is
not unique to database testing. It has been used for many programmingcontinue

Page 211

languages. This is a peer-review process in which the author of the code guides other
developers through her code, one line at a time. Along the way, reviewers are encouraged to
point out any inefficiencies, redundancies, inconsistencies, or poor coding practices they see.
The goal of the reviewers should be to carefully examine the code under review and identify as
many potential errors as possible (but not necessarily to determine how to fix the identified
errors in these sessions). Walk-throughs are effective when black-box testing is impractical for
testing stored procedures at the unit level and when debugging programs are unable to track
down logic errors in code.

Code walk-throughs tend to work better when they are limited to just a few developers and last
no more than a couple of hours. If the reviewed objects require further review, a follow-up
walk-through should be scheduled. Although as a black-box tester, one might not have the
coding skill to contribute, participating in the walk-through is still extremely useful for at least
three reasons:

1. A black-box tester can gain a great deal of knowledge about how the code works internally.
This knowledge becomes of great value in designing black-box test cases.

2. As a tester, one is often very good at asking what-if questions (what if the data type passed
to the parameter is an invalid one?) These questions, in turn, reveal many bugs, as well as
information for designing good error-handling mechanism.

3. The tester can learn to become a good facilitator and record keeper. This helps the group to
be better focused on identifying issues rather than on figuring out the fixes for the identified
issues. This also helps in tracking the identified issues for later checking to make sure
problems are adequately addressed.

As discussed earlier, SQL extensions such as Transact-SQL (supported by Microsoft and
Sybase Server database product) and PL/SQL and SQL*Plus (supported by Oracle Server
database product) are similar to other programming languages. Therefore, there will be
syntactic as well as logic errors to be found in using expressions, conditions, and operators,
along with functions such as date and time functions, arithmetic functions, data conversion
functions, and so on.

Redundancy Coding Error Example

This is a simplified example of a redundancy error in the ASP code that can be caught using the
code walk-through approach. This error will cause performance degradation. However, it will
not expose any visible error at runtime. Therefore, from the black-box testing perspective, we
will not see this bug.break

'Send a query to the SQL database from an ASP

Set RS = Conn.Execute ("Select * from STAFF")
'Now, loop through the records
If NOT RS.EOF Then
'Notice that the If statement is redundant because
'the condition is already covered in the Do while loop.
'From the black-box testing perspective, this error
'will not cause any visible failure.
Do while Not RS.EOF

Page 212

'The code that manipulates, formats and displays
'records goes here
• • •
 Loop
End If

Inefficiency Coding Error Example

Here is a simplified example of an inefficiency error. This error will cause performance
degradation. However, it will not expose any visible error at runtime. Therefore, from the
black-box testing perspective, we will not see this bug.

Using data in the staff table similar to one shown in Figure 11.11, we will be querying the data
and displaying results in an HTML page.

Figure 11.11
Query results.

Now, suppose that the application under test offers two views, a complete view showing all
fields and records, and partial view showing all fields except CITY and all records.

For the complete view, the SQL statement to query data should look something like this:

SELECT * FROM staff

This query statement will be sent to the database. After the database server returns the record
set, the application will then format and display the results in an HTML page. The complete
view in the Web browser would look like the illustration in Figure 11.12.

For the partial view, instead of sending this SQL statement to query data:

SELECT id, state, salary, name FROM staff

The application sends the same SQL statement as one in the complete-view case.break

Figure 11.12
The complete view.

Page 213

After the database server returns the record set, the application will then format and display the
results in an HTML page. The partial view in the Web browser would look like the illustration
in Figure 11.13. Notice that there is no failure from the user or black-box tester perspective.
This type of error only causes the database to do unnecessarily extra work. Hence, the overall
performance might be affected.

Executing the SQL Statements One at a Time

It is possible to test stored procedures by executing SQL statements one at a time against
known results. The results can then be validated with expected results.

This approach is analogous to unit testing. One benefit of this approach is that when errors are
detected, little analysis is required to fix the errors. However, this approach is tedious and
labor intensive.

Executing the Stored Procedures One at a Time

Stored procedures often accept input parameters and contain logic. Sometimes, they call other
procedures or external functions. Therefore, logic and input dependencies must be taken into
account when testing stored procedures. This testing approach is then similar to the testing of
functions. For each stored procedure, analyze the data type and constraint of each input
parameter: the user-defined return status value and conditional logic code within the stored
procedure.

Design test cases that cover both valid and invalid data types. In addition, apply equivalent
class-partitioned values and boundary conditions in designing input parameters. (See the
section entitled "Test-Case Development" in Chapter 3, "Software Testing Basics," for more
information.) Consider exercising various possible paths based on the conditional logic.

Execute the stored procedure by passing various input parameters into the procedure. Validate
the expected results, as well as the user-defined return values, and the handling of error
conditions (by rule enforcement, as well as business logic).

For example, we want to test the add_staff stored procedure created in example 2b earlier.
Using Microsoft SQL 7.0, we launch the SQL Server Query Analyzer. We execute the
following statement to call the add_staff stored procedure and pass in the
parameters:break

Figure 11.13
The partial view.

Page 214

add_staff 13, 'San Francisco', 'CA', 33000, 'Joe'

As shown in Figure 11.14, because the input data is valid, it confirms that the record is added
successfully.

Let's try a test case with potential problematic input data. In this case, we will pass 'Mary's' to
the name parameter (the fifth parameter of this stored procedure). Because it's known that a
single quote (') is used by SQL to mark the beginning and end of a string, the extra single quote
in Mary's is expected to create a problem if it's not handled properly. We execute the following
query to call the add_staff stored procedure and pass in the parameters:

add_staff 13, 'San Francisco', 'CA', 33000, 'Mary's'

As shown in Figure 11.15, a SQL syntax error results.

Now, we run the same stored procedure, this time escaping the single quote character by
placing an additional single quote character.

add_staff 14, 'San Francisco', 'CA', 33000, 'Mary''s'

Notice that the record is now added successfully without error as shown in Figure 11.16.

What this tells us is that we must check all the text parameters passed to this procedure to make
sure that single quotes are escaped with other single quotes. This can be done through the
scripting or the programming language of your choice.break

Figure 11.14
Valid input data.

Page 215

Figure 11.15
A SQL syntax error.

Let's look at what happens when a string passed in exceeds the limit of the maximum number of

characters. In this case, the size of State field is two characters (See example 1 of the section
entitled "Example of SQL," earlier in this chapter.)

add_staff 15, 'Albany', 'New York', 33000, 'John'

Now, we check the contents of the staff table.

Notice that in the State field, as shown in Figure 11.17, "New York" is truncated, becoming
"NE" (Nebraska). We can fix this by ensuring that only two characters are allowed in the Web
form that the user uses to submit to the database. We can do this via client-side scripting with
JavaScript or use server-side validation with the scripting or programming language for our
application (e.g. Asp, perl, Jsp, C++, VB, etc.).

Figure 11.18 shows an example of mishandling a comma. Here, we pass in a supposed integer
with a comma (,) used as a thousand separator.

add_staff 15, 'Albany', 'New York', 33,000, 'John'

Running this query will produce an error. Note that the comma is interpreted as a field
delimiter. The comma in 33,000 causes the parser to think that there is an extra parameter.
Therefore, the "Too many arguments" error is raised. Similar to other cases, we must check our
Web form that passes the data to the stored procedure to make sure that the data is valid and the
error condition should be handled.break

Page 216

Figure 11.16
Single quote (') is properly handled.

Finally, we look at an example of wrong data type passed into the stored procedure. Here, we
pass a string data type to the Salary field.

add_staff 15, 'Albany', 'New York', '33,000', 'John'

Running this query will produce an error. As shown in Figure 11.19, the stored procedure was
expecting an integer data type; instead, it received a string.

Testing Triggers

Triggers are executed when certain events such as INSERT, DELETE, and UPDATE are
applied to table data. Trigger implementation can be very powerful. For example, a trigger can
call itself recursively or call other stored procedures.

We need to identify all the triggers that are part of the application. We then analyze and catalog
the conditions under which a trigger will be executed. We try to understand the tasks that each
trigger carries out. We then write and execute SQL statements or stored procedures to induce
the conditions and validate the expected results.

The testing objectives should include the following:

• Does the stored procedure or trigger meet the design objectives?

• For each conditional statement, does the handling of the condition execute properly?break

Page 217

Figure 11.17
The string is too long.

• For each predefined input, does the procedure produce correctly expected outputs?

• Have all input cases identified in the equivalence class and boundary condition partitioning
process been executed (either by walk-through, executing the stored procedure, or calling the
stored procedure from other procedures)?

• For each possible error condition, does the procedure detect such condition?

• Is the handling of each detected error reasonable?

External Interfacing

In this method, the analysis of test case design is similar to the white-box and black-box testing
approaches. However, instead of executing a stored procedure individually, stored procedures
are called from external application functions. Whether an application is implemented with
compiled programming languages such as C++ or Visual Basic, or with scripting languages
such as perl, JSP (Java Server Page), or Microsoft ASP (Active Server Page), this method
addresses both the testing of the functionality of stored procedures, and the interoperability
between the application and the stored procedures. Additionally, this method also addresses
the testing of proper application-database connectivity and authentication. Several automated
testing tools such as Segue SILK and Mercury Interactive WinRunner also provide scripting
features that allow for database connection and stored-procedure execution.break

Page 218

Figure 11.18
Mishandling a comma (,).

Black-Box Methods

In applying black-box testing methods, we will discuss test-case design, preparation for
database testing, and setup/installation issues.

Designing Test Cases

Using the traditional black-box testing approach, test cases are executed on the browser side.

Inputs are entered on Web input forms and data is submitted to the back-end database via the
Web browser interface. The results sent back to the browser are then validated against
expected values. This is the most common method because it requires little to no programming
skill. It also addresses not only the functionality of the database's stored procedures, rules,
triggers, and data integrity, but also the functionality of the Web application as a whole. There
are two drawbacks to this method. One is that sometimes the results sent to the browser after
test-case execution do not necessarily indicate that the data itself is properly written to a
record in the table. The second drawback is that when erroneous results are sent back to the
browser after the execution of a test case, it does not necessarily mean that the error is a
database error. Further analysis will be required to determine the exact cause of the
error.break

Page 219

Figure 11.19
Wrong data type.

As it turns out, several examples shown in ''Executing the Stored Procedures One at a Time"
earlier in this chapter, are not realistic. For instance, if we already know that a single quote (')
will cause the SQL parser to think that it's the end of the string, when the single quote is not
handled properly, SQL will fail. So what's the point of trying something that you already know
will fail?

There are at least four important lessons learned in these exercises:

1. There are input/output (I/O) validations and error handlings that must be done outside of the
stored procedures. These areas (both client and server sides) should be thoroughly analyzed
and tested.

2. Based on the acquired knowledge about things that would cause SQL to break, we should do

thorough analysis to design black-box test cases that produce problematic inputs that would
break the constraints; feed in wrong data type; pass in problematic characters, such as comma
(,) and single quote ('); and so on.

3. Testing the interaction between SQL and other components such as scripts is an equally
important task in database testing.

4. Understanding how to use database tools to execute SQL statements and stored procedures
can significantly improve our ability to analyze Web-based errors. Forcontinue

Page 220

instance, it can help us determine whether an error is in the stored procedure code, the data
itself, or in the components outside of the database.

Preparation for Database Testing

Generate a list of database tables, stored procedures, triggers, defaults, rules, and so on. This
will help us to have a good handle on the scope of testing required for database testing. Figure
11.20 illustrates a list of stored procedures in a Microsoft SQL 7.0 database.

1. Generate data schemata for tables. Analyzing the schema will help us determine:

• Can a certain field value be NULL?

• What are the allowed or disallowed values?

• What are the constraints?

• Is the value dependent upon values in another table?

• Will the values of this field be in the look-up table?

• What are the user-defined data types?

• What are the primary and foreign key relationships among tables?

Figure 11.21 shows a screen shot of a table design that lists all the column names, data types,
lengths, and so on, of a Microsoft SQL 7.0 database table.break

Figure 11.20
A list of stored procedures.

Page 221

Figure 11.21
Table design view.

2. At a high level, analyze how the stored procedures, triggers, defaults and rules work. This
will help us determine:

• What is the primary function of each stored procedure and trigger? Does it read data and
produce outputs, write data, or both? Pay particular attention to procedures that have
keywords such as INSERT, DELETE, and UPDATE because they might have effects on
data integrity.

• What are the accepted parameters?

• What are the returned values?

• When is a stored procedure called, and by whom?

• When is a trigger fired?

3. Determine what the configuration management process is. That is how the new tables, stored
procedures, triggers, and such are integrated in each build. In other words, how can you
determine if stored procedures are added, removed, or updated? This will help us determine
the effects on our testing.

Setup/Installation Issues

During the installation process, the installer often needs to establish connectivity with the
database server. This process requires authentication, which means that the installer needs to
have a proper database-user ID and password to connect to the database. Generally, the user
ID and password are entered into the installer screen and passed to the database during the
authentication process. The user ID must be one that has adequate rights to create data devices
(the physical files that store data), databases, and tables. The ID must also have rights to
populate data and defaults,continue

Page 222

drop and generate stored procedures, and so on. This process is prone to errors. Each step
within the process is susceptible to failure. It is quite possible that out of 100 tables created, 1
or 2 tables will not be created correctly due to a failure.

Here is an example of data source creation during the installation process. The data source
name (DSN) used in Microsoft ODBC technology is a reference to the collection of
information used by the ODBC manager to connect an application to a particular ODBC
database. A DSN can be stored in a file, or a file DSN. A DSN can also be stored in a
User/System registry or a machine DSN.

Figures 11.22 through 11.25 illustrate the manual process of creating a MS-SQL server DSN.
The first step is to launch the ODBC applet. Click the system DSN tab to view a list of
currently installed DSNs. (See Figure 11.22). Click the Add button to create a new system
DSN and follow the on-screen instructions to complete the process. If a DSN is created
successfully, dialog will display. Once all of the information has been supplied, a summary of
the configuration is presented. From the dialog box shown in Figure 11.23, test the data source
to see if it has been set up correctly. (See Figure 11.24.) Suppose that, in this process, the
supplied ID or password is incorrect; an error message will display (as shown in Figure
11.25).

Now, consider that the preceding manual process can be implemented (coded) in the
installation program—the complete DSN creation procedure being executed programmatically.
Any errors that arise during this process can cause an invalid DSN. An invalid DSN will cause
a failure in connecting to the database server. If thecontinue

Figure 11.22
ODBC data source administrator.

Page 223

Figure 11.23
Configuration summary.

installer cannot establish a connection to the database server and it did not check for such an
error, all the code used to create devices, databases, tables, stored procedures, and triggers

will fail.

Database Testing Considerations

• Using a call-level interface such as Microsoft ODBC, in theory, applications are not
involved with the types of back-end databases because they only interact with the ODBC layer.
In practice, however, there are incompatibility issues among different types of back-end
databases. Therefore, we should test each supported database individually to ensure that errors
specific to incompatibility can be isolated more easily.

• Applications that use Microsoft ASP technology generally rely on DSN to make connections
to SQL servers. An invalid DSN will cause a connectivity failure.

• Structured Query Language databases may not be able to accept special characters (', $, @,
&, etc.) as valid inputs.

• Data sent to a database server may be corrupted due to packet losses caused by slow
connections.break

Page 224

Figure 11.24
Data source test confirmation.

• Script time-out issues may cause data corruptions or erroneous outputs. For example, the time
it takes the database to complete executing the query is longer than the time-out value set in the
script.

• Local browser caching and Web server caching may cause problems in an application's
interaction with the database server.

• Do the automatic database backup recovery procedures need to be tested?

• Database rollback logic, if not properly implemented, can cause data corruption. Identify
where and how rollback logic is implemented. Design test cases to exercise those areas.break

Figure 11.25
Invalid ID or password error message.

Page 225

• Running out of hard disk space can cause serious problems to data in a SQL database. What
happens when your server runs out of disk space?

• Localized support may require the support of the native version of the operating system, Web
server, database server, application server, and browsers. Consider testing the Web
application from different countries, using various browsers with language settings.

• The SQL Server Performance Monitor is available as a selection from the MS-SQL Server
program group.

• With MS-SQL Server, verify that all DSNs correctly point to the appropriate servers;
otherwise, changes may undesirably apply to the wrong database.

• Ensure that new/closed files are assigned correct permissions, owners, and groups. This is a
necessity for Unix and may apply to Windows NT.

• Check for proper permissions on file-based directories. Check for the existence of and
proper permissions for the source and target directories.

• Check for accessibility to the machine on which the target directory resides.

• Test for proper error handling when the logs have incorrect permissions. This is a necessity
for Unix and may apply to Windows NT.

• Check for proper loading of all tables in the database.

• Check for proper error handling when database files fail to load.

Bibliography and Additional Resources

Bibliography

Branchek, Bob, et al. Special Edition Using Microsoft SQL Server 6.5. Indianapolis, IN: Que
Corporation, 1995.

Bourne, Kelly C. Testing Client/Server Systems. New York: McGraw-Hill, 1997.

Coffman, Gayle. SQL Server 7: The Complete Reference. Berkeley, CA:
Osborne/McGraw-Hill, 1999.

Holmes-Kinsella, David, et al. Special Edition Using Gupta SQL Windows 5. Indianapolis,
IN: Que Corporation, 1995.

Kaner, Cem, et al. Testing Computer Software, second edition. New York: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

Orfali, Robert, et al. Client/Server Survival Guide, Third Edition. New York: John Wiley &
Sons, 1999.

Stephens, Ryan, et al. Teach Yourself SQL in 21 Days. Indianapolis, IN: Sams Publishing,
1997.break

Page 226

Additional Resources

Articles and information for Microsoft SQL Server
www.swynk.com/sysapps/sql.asp

The Development Exchange's SQL Zone
www.sql-zone.com/

Microsoft site for information about SQL Server
www.microsoft.com/sql

Microsoft site for information about OLAP Services
www.microsoft.com/sql/olap

Microsoft site for information about English Query
www.microsoft.com/sql/eq

Microsoft Worldwide SQL Server User's Group
www.sswug.org/

SQL Server Magazine
www.sqlmag.com/break

Page 227

Chapter 12—
Help Tests

Why Read This Chapter?

Having an understanding of the technologies that are used in the implementation of Web-based
help systems (and the potential errors associated with those technologies) is critical to
successful test planning.

Introduction

Web-help testing is a two-phase process. The first phase of testing involves the analysis of the
system undergoing testing—determining its type, intended audience, and design approach. Once
the particulars of the system have been identified, the second phase of the process begins—the
testing phase. The testing phase itself is a two-part process that includes:break

Topics Covered in This Chapter

• Introduction

• Help System Analysis

• Approaching Help Testing

• Testing Considerations

• Bibliography

Page 228

1. Testing the system as a stand-alone component.

2. Testing the interaction of the system with the application.

Help System Analysis

Before beginning the testing of a Web-based help system, you should understand the system's
intended purpose, the design approach, the technologies used, and the potential errors
associated with those technologies. The following sections offer analyses of Web-help design
approach, technologies, and potential errors.

Types of Help Systems

There are several types of Web-based help systems. Each type involves unique objectives and
benefits. By clearly identifying the type of help system under test, you can apply appropriate
testing practices. Note that this chapter looks only at the testing of Web-based help systems, not

printed documentation or PDF-based help systems.

Application-Help Systems

Application-help systems reside within and support software applications. They commonly
support users in operating applications by offering context-sensitive assistance.
Context-sensitive help gives users instruction that is relevant to the activities they are actively
engaged in. An example of context-sensitive help includes clicking a Help button while a credit
card billing information form is displayed. Clicking the Help button in this context generates
help content that explains the controls and functionality associated with the billing form.
Sometimes, you also get explanations of the intent of the form and the place of the form in a
long transaction chain—that is, sometimes, you get help that explains the application, not just
its buttons.

Reference-Help Systems

Reference-help systems offer in-depth information about specific subjects, such as building a
Web site or digital photography basics. They do not act as how-to guides for specific
applications. Web-based reference systems are organized around the subject matter they
present in a way that is similar to how printed reference books are organized into chapters.
Unlike printed books, however, online reference systems include cross-referenced hyperlinks
between related topics. Although they are generally context sensitive, they can often be read
linearly like a book, if required. For example, www.CNBC.com has a great deal of reference
material on investing and finance that is not part of the feature set of their Web site.

Tutorial-Help Systems

Tutorial-help systems walk users through specific how-to lessons in an effort to train them in a
given subject matter. Occasionally, such systems are used in tandem withcontinue

Page 229

books (possibly in a school setting). Tutorial-help systems are often interactive, encouraging
user input and offering feedback. This type of help system generally lacks context sensitivity.
See www.cnet.com in their section, ''Tech Help How-Tos and Tips," for examples of tutorials
and how-tos.

Sales and Marketing–Help Systems

Sales and marketing tools convey product benefits to potential customers. The goal of sales
and marketing–help systems is to get users to buy certain products or take an action of some
kind, such as filling out a Web-based questionnaire or requesting information from a
manufacturer via an online form. These systems may include live demonstrations and
interactivity. The products being presented may or may not be software applications. This type
of help system generally lacks context sensitivity.

Evaluating the Target User

There are four primary skill types that should be tracked when evaluating target users: (1)
computer experience, (2) Web experience, (3) subject matter experience, and (4) application
experience. (See Chapter 9, "User Interface Tests," for detailed explanations of target-user

skill types.) Considering your application, English skill or grade level may also need to be
evaluated. A help system should be evaluated by how closely its characteristics match the
experience and skills of its intended users. Discrepancies in experience level between target
user and system indicate the potential for error conditions and poor usability. The key question
is whether the help system communicates the information that the reader needs, in a way that the
reader can understand.

Evaluating the Design Approach

Web-based help system design entails the same testing challenges that are involved in UI
testing. Look and feel, consistency, and usability tests all come into play. Means of navigation,
UI controls, and visual design (colors, fonts, placement of elements, etc.) should be intuitive
and consistent from screen to screen. Please refer to Chapter 9, "User Interface Tests," for
detailed information regarding design approach, consistency testing, and usability testing.
However, the mission is different. Here, the entire point of the application is to present content
in a way that is easy to find and easy to understand, but with a slick display.

Evaluating the Technologies

Some of the authoring technologies used for Web-based help systems are:

Standard HTML (W3 Standard)

Standard HyperText Markup Language (HTML) page technology can be used to build help
systems that combine framesets, multiple windows, and hyperlinks. As with any HTML-based
system, hyperlinks must be tested for accuracy.break

Page 230

Context sensitivity presents complications in HTML-based systems. The correct help page ID
must be passed whenever the Help button is clicked. However, HTML does not allow for the
same hierarchical architecture that Windows-based applications are built upon. Thus, users
may advance to other screens while viewing help content that is no longer applicable, the help
browser window might become hidden by the application window, or the wrong page ID might
be passed, resulting in incorrect help content.

Some applications, such as eHelp's (formerly Blue Sky Software) WebHelp, support the
authoring of Web-based help systems that have Windows-styled help features such as full-text
browsing and pop-up windows. WebHelp uses Dynamic HTML and supports both Internet
Explorer and Netscape Navigator. To learn more about the functionality of WebHelp and read
white papers on many help-authoring subjects, visit:

http://robohelp-resources.helpcommunity.com/resources/ArticlesFiles/articles.htm

www.ehelp.com

www.helpauthoring.com/webhelp/webhelp.htm

www.wextech.com/ts4whitepr.htm

Refer to Figure 12.1 for an example of RoboHelp's HTML-based WebHelp.

Java Applets

Java-based help systems can be run from servers while UI is displayed through Web browsers.
Sun Microsystem's JavaHelp (supported by eHelp's RoboHelp, Figure 12.1) combines HTML
and XML with 100 percent Pure Java. JavaHelp is a platform-independent authoring
environment that enables developers to create online help in Web-based applications and Java
applets. For more information about JavaHelp, go to:

http://robohelp-resources.helpcommunity.com/resources/ArticlesFiles/articles.htm

www.ehelp.com

www.helpauthoring.com/javahelp/javahelp.htm

http://java.sun.com/products/javahelp/

Also, see Figure 12.2 for an example of JavaHelp's Java-based help system.

Netscape NetHelp

NetHelp is a HTML-based, cross-platform, online help-authoring environment. It is based on
technology that is built into the Netscape Communicator suite. It is compatible only with
Navigator. Figure 12.3 shows an example of Netscape's NetHelp help system. For more
information about Netscape NetHelp, visit http://home.netscape".com/"eng/helpbreak

Page 231

Figure 12.1
RoboHelp's HTML-based WebHelp.

Source: Graphics from Demystifying Help, a white paper produced by eHelp Corporation.
Reproduced with permission from eHelp Corporation.

ActiveX Controls

Microsoft's HTML Help ActiveX control allows for the creation of Web-based help systems
that have tables of contents, cross-referencing links, indices, and a splash window that
accompanies the HTML Help Viewer. It is compatible only with Internet Explorer. See Figure
12.4 for an example of Microsoft's HTML Help ActiveX control.

Help Elements

Web-based help systems are commonly made up of the following elements. Help systems
created with authoring programs such as WebHelp have many design elements that mimic the
features of Windows-based help systems. Such elements include the book-and-page metaphor
for help topic organization.

Elements to test include:

Contents tab (optional)

• Book links

• Page linksbreak

Page 232

Figure 12.2
JavaHelp Java-based help system.

Source: Graphics from Demystifying Help, a white paper produced by eHelp
Corporation, Reproduced with permission from eHelp Corporation.

• Topic page names

• Topic displayed in main window

• Topic displayed in secondary window

Index tab

• Single-level

• With sublist

• Without sublist

• Multilevel

• With sublist

• Without sublist

Find tab (optional)

• Full-text search

• Associative links

Other custom tabs (optional)

• Favorites

Glossary

• Self-defining terms

• Browse sequencesbreak

Page 233

Figure 12.3
Netscape NetHelp help system

Rich topics

• Video

• Sound

• Links

• Text

• Graphics

Dynamic content

• Scripting

• ActiveX controlsbreak

Page 234

Figure 12.4
ActiveX-based Microsoft HTML Help.

• DHTML

• XML

• Java applets

Context-sensitive help

Pop-up windows (self-sizing)

Secondary windows (self-sizing)

Buttons

Expanding text (DHTML)

Pull-down text (DHTML)

Approaching Help Testing

Once the technological particulars of the system have been identified, you can begin the testing
process.break

Page 235

Testing the Sample Application

Testing the Sample Application

The help system of the sample application is built with standard HTML. It can be accessed from
any screen in the application by clicking the Help button, so it is an application-help system. An
example is shown in Figure 12.5.

Figure 12.5
Sample application's standard HTML help system.

Looking at the design approach of the help system, you see that the system is context sensitive;
clicking the Help button at any time while using the application links users directly to help
content that supports the current activities and on-screen options. Each help screen includes a
table of contents hyperlink. Users click this link to access the system's table of contents, from
which they can access related content and, if they wish, read the entire system's contents from
start to finish like a reference book. Also, hyperlinked keywords within the text link users to
related content.

Though client-side users (end users and administrators) have access to differing privileges and
UI controls in the sample application, both user types are referred to the same help system. This
approach has positive and negative implications. End users may be exposed to
administrator-level content that they do not expect or understand.

Page 236

Two-Tiered Testing

The testing phase is a two-tiered process that includes testing the help system as a stand-alone
system and testing the help system's interaction with the application.

Stand-Alone Testing

Web-based help systems are subject to the same compatibility and functionality issues as are
all applications. They need to be evaluated as stand-alone applications in accordance with the
technologies that created them—Java-based systems, for example, should be tested in the same
way that any stand-alone Java application would be tested. ActiveX-based systems, like all
ActiveX components, should be evaluated for compatibility issues (they should support all the
relevant versions of browsers).

Interaction between the Application and the Help System

The help system must be tested in combination with the application to ensure that all
context-sensitive IDs are passed and that correct help content is displayed throughout all states
of the application. Issues to consider include the map file:

• Names of help files

• Topic IDs for Help buttons on dialog boxes

• Accessing help through F1, shortcut keys, buttons, and so on

Types of Help Errors

Following are a number of help-related testing issues and error examples.

UI DESIGN

• Functional testing of a help system checks whether everything is operating as intended. Each
link should be operational and lead users to their intended destination. All graphics should
load properly.

• Web systems are vulnerable to environmental conditions surrounding platform compatibility,
display resolutions, and browser types.

• As with all Web content, help systems should operate consistently across multiple screen
resolutions, color palette modes, and font size settings. This is a particularly important issue
for help because these types of legibility errors are common. For information regarding testing
of display settings and fonts, see Appendix G "Display Compatibility Test Matrix." This matrix
shows lists of display settings to use during your help testing. It is good practice to change your
display settings regularly during the course of your testing, and it is particularly important
during help testing as help probably uses different technology to be displayed; formatting and
readability issues are key to a useful help system.break

Page 237

CONSISTENCY OF THE HELP SYSTEM

• Help system implementation should be consistent throughout; otherwise, user confusion may
result.

• Consistency issues to test for include:

• Organization. Is the system structured in a way that makes sense? Are available options
clearly laid out for users? Is the system easy to navigate?

• Design approach. Applications are often designed around familiar structures and
patterns to enhance their usability. Many help systems are organized hierarchically; some
are context sensitive. Is the metaphor used by your system consistent from screen to screen?
Do methods of searching and navigation remain consistent?

• Terminology. Is there consistency of language throughout the system? A command or
term referred to in one context should be referred to in the same way in all other contexts.
See the section entitled "Testing for Consistency" in Chapter 9, "User Interface Tests," for a
list of synonymous commands that are often mistakenly interchanged.

• Fonts and colors. Are font sizes and styles used consistently throughout the system? Are
links, lettering, backgrounds, and buttons presented consistently?

• Format. Text should be formatted consistently.

HELP SYSTEM USABILITY

• Usability concerns how well a help system supports its users. Usability issues are often
subjective. Ideally, users should be able to easily navigate through a help system and quickly
get to the information they need.

• Does context-sensitive assistance adequately support users from screen to screen?

• Is the system appropriately designed for the skill levels of the target user?

• What about user perception—will users consider the system to be useful, accurate, and easy
to navigate?

• How many clicks does it take users to get to the information they are looking for?

• Please refer to Chapter 9, "User Interface Tests," for more information on consistency and
usability testing.

HELP SYSTEM CONTENT

• A help system is only as valuable as the information it conveys. Inaccuracies in procedural
instruction lead to confusion. In some instances, technical inaccuracies in help systems can lead
to serious data loss.

• Every fact and line of instruction detailed in a help system should be tested for accuracy.

• Content should be tested for correct use of grammar and spelling.

• Has important information been omitted?break

Page 238

FUNCTIONAL ERRORS

• Functional testing of a help system ensures that everything is operating as intended. Each link
should be operational and lead the user to the intended destination. All graphics should load
properly. The table of contents links should be working.

• Help elements to be tested for proper functionality include:

• Jumps

• Pop-ups

• Macros

• Keyword consistency

• Buttons

• Navigation

• Context-sensitive links

• Frames/no frames

TECHNOLOGY-RELATED ERRORS

• Compatibility

• Performance

• Look for and research errors that are common to each technology type, then design test cases
that look for those errors.

• Visit online technical support and issue databases that are specific to each technology type.
Such sites list bugs that users have dealt with in the past. They are a great place to begin
research for test-case design. For an example, visit eHelp's technical support knowledge base
at www.helpcommunity.com.

Testing Considerations

APPLICATION-HELP SYSTEMS

• Are there multiple methods available for accessing help from within the application (UI
button, navigation bar, menu, etc.)? If so, each method should be tested for proper functionality.

• Does context-sensitive information meet the needs of the intended audience in every
situation? Different users have different needs; depending on their skill level and where they
are in a program, users will require different information from the help system.

• Does the system include graphics? If so, do the graphics load properly?

REFERENCE-HELP SYSTEMS

• Is the system designed to link to other online resources? If so, are the links working properly?

Are the other resources active and available?break

Page 239

• Is the subject matter compatible with the knowledge and skill levels of the system's target
audience?

• Is the information design of the system intuitive?

TUTORIAL-HELP SYSTEMS

• How are users directed through the content? Are the intended navigation paths clearly
marked?

• Is appropriate user feedback delivered?

• Does the system respond accurately to user input?

SALES AND MARKETING–HELP SYSTEMS

• How will the presentation be delivered? Is the system working properly on all delivery
mediums?

• Is the system compatible with the computing skills of the target audience?

ONLINE HELP VERSUS PRINTED HELP

• Though online help systems and printed help serve effectively the same purpose, their testing
differs in a few important ways:

• Online help systems are interactive. Links, navigation, software functionality, and
browser settings are complexities not found in traditional printed documentation.

• Formatting can be dynamic. The diversity of browser types and browser versions leads to
variations in content display. Where one browser may display content accurately, another
browser may display content with inaccurate font size, unintended background color, and
wrapping text.

ENVIRONMENTAL-CONDITION TESTING

• Web systems are vulnerable to environmental conditions surrounding platform compatibility,
display resolutions, and browser types.

• Environmental variables to pay attention to include:

• Cross-platform compatibility: Mac, Windows, and Unix

• Graphic hotspots

• Display color (i.e., compiled with 16.8 million–color palette, displayed with 16-color
palette)

• Display resolution (i.e., compiled at 1024 × 768, displayed at 640 × 480)

Bibliography

Deaton, Mary, and Cheryl Lockett Zubak. Designing Windows 95 Help: A Guide to Creating
Online Documents. Indianapolis, IN: Que Corporation, 1997.

Horton, William. Designing and Writing Online Documentation: Hypermedia for
Self-Supporting Products. New York: John Wiley & Sons, 1994.break

Page 241

Chapter 13—
Installation Tests

Why Read This Chapter?

To be effective in testing installation programs, we need to analyze the functional roles of both
the installation and uninstallation programs from the designer's perspective. Knowledge of
potential issues and common errors that are specific to the operating system and environment in
which the installation program will be running contributes to effective test-case design. It is
also helpful to learn about available tools and techniques that can be used to track changes to
the environment, both before and after installations and uninstalls.break

Topics Covered in This Chapter

• Introduction

• The Roles of Installation/Uninstallation Programs

• Common Features and Options

• Common Server-Side Specific Installation Issues

• Installer/Uninstaller Testing Utilities

• Testing Considerations

• Bibliography and Additional Resources

Page 242

Introduction

This chapter looks at the functional roles of installation and uninstallation programs. Common
errors and issues that are associated with these programs in Web environments are discussed.
Installation methods for both client-side and server-side installations are explored. Test-case

design and test considerations for testing installation and uninstallation programs are covered.
Tips and tools related to tracking changes to the environment (such as the InCtrl utility shown
in Figure 13.6) are also discussed.

In an installation process, undetected errors—either server-side or client-side—can prevent
robust applications from functioning properly. Web applications involve a server-side
software installation of one sort or another. Occasionally, Web applications, even those that
utilize Web browsers for their user interface (UI), also involve client-side software
installations (installing plug-in components, ActiveX controls, etc.). Some Web applications
install platform-specific TCP/IP clients that are used in place of regular browsers.

Effective installation testing requires solid knowledge of the operating system and the
environment on which the installer will be running and the application will be installed.
Environmental dependencies involving software/hardware configurations and compatibility
need to be clearly understood so that failure symptoms can be quickly identified as either
software errors or user errors.

Installation program bugs may originate from several sources:

• The detection and interpretation of environment variables (e.g., How much disk space is
available? Which browser is installed and where is it installed?).

• The copying of files. For Web installations, a common source of error is having an
intermittent network connection.

• The configuration of the system and the environment.

• Software and hardware incompatibility.

• The user might install the wrong application or the wrong version or might terminate
operation prematurely or do other things that interfere with the installation.

• Background noise—for example, the virus checker that the user runs in the background might
interfere with installation in several ways. Sometimes, the installation itself will propagate a
virus.

We can improve our effectiveness if we learn as much as possible about what the operating
system expects from the installed application and what common application setup errors have
already been discovered.

The Roles of Installation/Uninstallation Programs

Following are descriptions of the typical activities that are associated with installation and
uninstallation programs. Common errors that installation and uninstallation programs are
associated with are also discussed.break

Page 243

Installer

An installer often begins an installation by retrieving user operating environment information.
In this process, installers learn about user hardware/software configurations and memory

information, such as RAM and disk space availability. Based on its interpretation of collected
information, the installer will then create new directories, install files, and configure the
system so that the application will run successfully. Typically, the copying of data files
includes moving executables (.EXEs), software components such as Java classes (.JAR),
dynamic link libraries (DLLs), and so on into appropriate directories on the user's hard disk.
Sometimes, compressed files (such as .ZIP or .TAR) need to be uncompressed before
application files can be copied to the directories. After the copying process is complete, the
installer will configure the application operating environment by adding or modifying
configuration data files and (in Windows-based environments) registry entries.

Here is an example series of activities performed by an installation program:

• Execute the installer from the source host.

• Log in the destination host.

• Interrogate the destination host to learn about its environment.

• Install software components based on the information collected from the user environment
and install option selected by the user (such as Full, Compact, or Custom).

• Uncompress the ZIP or TAR files.

• Search for or create directories.

• Copy application executables, DLLs, and data files, preferably checking for each file whether
a more recent copy is already on the destination system.

• Copy shared files (shared with other applications). For example, in Windows environment
these files are copied to the \Windows\System or \Winnt\System directory.

• Copy shared files (shared within company-only applications). For example, in Windows
environment these files are copied to the \MyCompany\SharedDLLs\.

• Create registry keys (Windows only).

• Validate registry key values (Windows only).

• Change registry, .INI files, and/or .BAT files (Windows only).

• Reboot the system (Windows only).

• Populate database tables, stored procedures, triggers, and so forth.

• Create or update configuration files.

Following are descriptions of several classes of installer errors along with examples of those
errors.

Functionality errors. Installer functionality errors are miscalculations or failures in an
installer's tasks (collecting data, creating folders, installing files, etc.). Examples include an
installer not checking for available disk space or failing to complete an installation due to a
forced reboot in the middle of the install script.break

Page 244

User interface design errors. User interface design errors are failures in conveying
information to the user. Examples include incorrect, incomplete, or confusing instructions;
surprising functions for controls; nonstandard menus; and inappropriate error messages.

User interface implementation errors. User interface implementation errors are failures in
the installation of UI controls and UI functionality. Examples include incorrect behavior of
common function keys (such as ESC, ENTER, F1, etc.) and improper UI updating and refresh
during dialog box interaction.

Misinterpreting collected information. Errors in an installer's interpretation of collected
information about the user environment include any misidentification of user hardware or
software. Examples include an installer not correctly identifying the user's software platform
and failing to detect the preexistence of a browser.

Operating system errors. Operating system errors are failures in user environment settings
and file copying. Examples include the installer failing to add a shortcut to the Start menu,
inaccurate registry settings, and application fonts being placed in an incorrect folder.

Dynamic link library—specific errors. The DLL-specific errors include failures in the
detection and copying of correct DLLs. Examples include the installation of incorrect versions
of DLLs and the failure to check for preexisting required DLLs. Another common one is trouble
installing a DLL that is currently in use (already loaded in memory).

Uninstaller

The role of an uninstaller is to reverse the installation process (reversing the file copying and
configurations that were executed by the associated installation program). Uninstallers often
remove all data files—including application executables and DLLs—that have been installed
by the installer.

Uninstallers generally offer users options for keeping and removing user data. They recover an
application environment to the state it was in prior to the software installation. In Windows
environments, this process involves modifying files, modifying registry entries, and removing
entries that were created by the installer.

Here is an example series of activities performed by an uninstallation program:

• Remove directories.

• Remove application files.

• Remove application EXE and private DLL files.

• Check whether certain files are used by other installed applications.

• Remove shared files (shared with other applications) if no other installed application needs
to use it.

• Remove shared files (shared within company-only applications) if no other installed

application needs to use it.

• Remove registry keys (Windows only).break

Page 245

• Restore original registry key validations (Windows only).

• Execute the uninstaller via links or command lines.

• Execute the uninstaller via Add/Remove programs (Windows only).

Any of these uninstallation activities may introduce errors. Potential errors include the
uninstaller not completely removing files (including program folders, directories, and DLLs) or
removing files that shouldn't be removed (such as data files that were created by the
application but that the user wants to keep; graphics files that came with the application that the
user wants to keep; and files that are not marked as shared system files but are, in fact, used by
more than one application and system DLLs).

Common Features and Options

The primary measure of success for an installation program is the installed application
functioning as expected under all setup options and supported software/hardware
configurations. The secondary measure of success is the quality of the installation program
itself—its functionality, accuracy of instruction, UI, and ease of use. Following is an
examination of common features and options that are supported by installation programs. An
understanding of these functions assists us in identifying and executing adequate test coverage.

User Setup Options

Installation programs often allow users to specify preferred setup options. Here is a sample list
of setup options that might be supported by an installer (each option should be fully tested).

Full, typical, or expanded setup. Typical is usually the default option. It installs most but not
all application files and components. Full might install all files and components. Expanded
might install all files and components, and additionally install files or components that would
normally be left with the vendor or on the CD.

Minimum setup. This installs the fewest possible number of files required to operate the
application. This option helps conserve disk space.

Custom setup. This offers users the option of specifying only the exact components they wish
to have installed (such as additional utilities and certain application features).

An example of server-side custom setup options include:

• Application server only

• Database server setup only

• Initialize database only

• Create and initialize database

Command-line setup. This option uses batch scripts to run the setup without user interaction
via the UI.break

Page 246

Testing should start with the typical setup option, because this is the most commonly selected
option. Once this setup option is considered to be stable, testing of the other setup options may
begin. In theory, the functionality within the code remains unchanged from option to option;
based on the setup conditions specified by the user, a subset of the standard functions will be
called in a particular sequence to carry out the desired result. Errors are often introduced in the
implementation of this conditional logic, however. Typical errors in this class range from
missing files that should have been copied, skipping a configuration procedure that should have
been executed, and missing error detection code that warns users of fatal conditions (such as
''not enough disk space to install"). These errors may ultimately prevent an installer from
executing successfully or the installed application from functioning properly.

Installation Sources and Destinations

The following sections explore the complexities of installing software over distributed-server
systems. Source and destination media types (CD-ROM, Web, hard disk) and branching
options within installation programs are also covered.

Server Distribution Configurations

In the testing of Web-based applications, all supported server-side installations should be
identified and fully tested. Figures 13.1 through 13.3 are examples of possible server
distribution configurations. Just because the installation process successfully executes with one
server distribution configuration does not mean that the installation process will successfully
execute with all other server distribution configurations.

Server-Side Installation Example

In a server-side installation, the user (usually an administrator) must, at a minimum, be able to
specify the following:

• The ID of the host (the physical server) where the software is to be installed

• The ID and password (with adequate login privileges) for the host, so that the installation can
successfully complete its tasks

• The ID and password for the Web server

• The path to the Web server

• The ID and password (with adequate login privileges) for the database server residing on the
host, so that database setup procedures can be completed

• The path where the software components are to be installed and the database is to be created

Installers offer the following functionality through the UI:break

Page 247

Figure 13.1
One-host configuration.

• A clickwrap software license agreement. If you choose not to agree with the terms, the
installation software will normally stop installation.

• An input field for the host ID.

• Two input fields for the user ID and password that are used to log in to the host.

• Two input fields for the user ID and password that are used to log in to the database server.

• An input field used to specify the application path.

As an example (see Figures 13.1 through 13.3), under a one-host configuration (where both the
Web server and the database server reside in the same hardware host) the installation
completes successfully. However, under a two-host configuration (where the Web server lives
on one host and the database server lives on another host), the installation program no longer
works. To understand why this installer error has occurred, one should examine the installer's
functionality:

• The installer only allows one input field for the host ID and a set of input fields for the user
ID and password on that host. Under a two-host configuration, thiscontinue

Page 248

Figure 13.2
Two-host configuration.

Page 249

Figure 13.3 (a)
Three-host configuration.

Page 250

Figure 13.3 (b)
Three-host configuration.

Page 251

does not work because another set of input parameters is required to log on to the second host.

• Misinterpretation may result in a two-host configuration when the application path is set to
C:\MYAPP. Does C:\MYAPP apply for host 1 or host 2?

Media Types

Installation programs may be run from several different media types, and applications may be
installed on several different media types (as well as hosts). Each unique condition should be
identified and thoroughly tested:

• Floppy disk installation from a local or remote drive: 1.44Mb, 120Mg, 233Mb

• CD-ROM installation from a local CD-ROM or a remote shared CD-ROM

• DVD-ROM installation (CD from a DVD player)

• Web installation (purchasing a product over the Web, using secure-server technology to get a
code that unlocks the software)

• Downloading and installing over the Web without saving the downloaded file

• Downloading and saving the file, then executing the installer from the local or remote host

• Installing off a hard disk (includes downloadable installers)

• Local or shared volume, in general

• Local or shared FAT hard drive

• Local or shared NTFS hard drive

• Local or shared compressed NTFS hard drive

• Local or shared Novell NetWare hard drive

• Local or shared removable drives (such as Iomega, Zip, and Jazz)

Many installation errors are the result of running installers from, or installing to, different
media types. For example, an installer might not autorun off a CD-ROM.

Branching Options

Installation programs typically include numerous branching options, which require users to
make decisions about such things as continuing the installation, deciding where software should
be installed, and deciding which type of installation should be performed. Figure 13.4 (a)
through (d), which spans the next several pages, details a typical software installation process
that might be executed on either the server side or the client side. It is a good idea to create a
flow chart that depicts the branching options and use it to guide the creation of test cases.

This flow chart (Figure 13.5) presents the branching options that are illustrated in the
preceding installation program example [Figure 13.4 (a)–(d)]. Charting the branchingcontinue

Page 252

Figure 13.4 (a)
Branching example.

options of an installation program under test is an effective means of guiding testing and
determining required test coverage.

Common Server-Side-Specific Installation Issues

All Web applications require some form of server-side software installation. Although there
are some Web applications that provide client-side functionality by installingcontinue

Page 253

Figure 13.4 (b)
Branching example.

software on the client side, most do not because their UI functions are supplied via Web
browsers (the sample application is an example of this sort of application). Table 13.1 lists a
number of common server-setup issues that may come up during installation testing.

Some common problems in Web application installations include:

• Database rules and permissions.

• Security.

• Server software version issues.break

Page 254

Figure 13.4 (c)
Branching example.

• Time-out/waits.

• Application files being installed on the wrong server (with multiple server systems).

• Drive and path names.

• Unix paths use / such as Unix/MyDir/.

• Windows paths use \ such as Windows\MyDir\.

• Unix file name is case sensitive.

• Windows file name is not case sensitive.break

Page 255

Figure 13.4 (d)
Branching example.

• Unix file name does not allow space.

• Windows long file name does allow space.

• Problems related to installations occurring while other server software (such as .DLLs) is in
use by other applications.

Installer/Uninstaller Testing Utilities

Here are some tools that you should consider for the installation and uninstall phase of your
testing project. These comparison-based testing tools compare system attributes and files both
before and after installation and uninstalls.break

Page 256

Figure 13.5
Branching options diagram.

Comparison-Based Testing Tools Look for the Addition, Deletion, or Change
Of

• Directories and files

• Configuration data in specific files (.ini, .cfg)

• (Windows specific) Registry information in registry database

InControl3 and InControl4

InControl3 and InControl4 track all environment changes that are performed by an installer.
They track changes made to the hard disk, registry, and other configuration files (such as
WIN.INI and SYSTEM.INI). Figure 13.6 shows InControl4. InControl4 can be downloaded for
free from www.zdnet.com/pcmag/pctech/content/18/02/ut1802.001.html.break

Page 257

Table 13.1 Server-Side Installation Issues

SERVER-SETUP
COMPONENT DESCRIPTION ISSUES TO ADDRESS

Server ID ID used by servers/processes to access
services or components that reside on a
server (local or remote host).

Name
IP
Local | Name | IP (if the target server is
local)

Physical server Often referred to as a host. This host
(physical hardware box) has an OS
installed on it and is configured to
communicate with other hosts on a
network.

Minimum versus maximum configuration
issues Service packs
Hardware compatibility issues

Server-software
component

Server software or component installed on
a physical server.

Web server
Database server
Application server
POP server
SMTP server
Proxy server
Firewall

Accessing services The process of logging into, interacting
with, and accessing resources on a server.

Server name
Server IP
Local | Name | IP (if the target server is
local)

Web server Server that hosts HTML pages and other
Web service components. It receives and
processes requests from/to clients and
other services.

Distributed servers
Vendor/OS/Version
Server configuration for operability and
security
Account ID, password, and privileges
Manual versus automated configuration

Database server Typically a SQL DBMS that hosts system
and user data. It may host stored
procedures and/or triggers used by the
application server or related services.

Distributed servers
Vendor/OS/Version
Server configuration for operability and
security
Manual versus automated configuration

ODBC Object Database Connectivity: A
Microsoft application interface that
enables applications to access data from a
variety of data sources.

Datasource name (DSN)
Server name
Login ID and password
Account privileges
Authentication methods (e.g.,
NT versus SQL server)
Driver version incompatibility issues
Target database driver
incompatibility issues

Continues

Page 258

(Continued)

Table 13.1

SERVER-SETUP
COMPONENT DESCRIPTION ISSUES TO ADDRESS

Application server Typically consists of code packaged in
both binary objects (such as .EXEs,
.DLLs, .COMs, JavaClass, and scripts) and
integrated third-party components. These
pieces work in concert with one another
(and with other servers) to provide
end-product functionality.

Distributed servers
Vendor/OS/Version
Server configuration for operability and
security
Manual versus automated configuration

InControl2

InControl2 is similar to InControl3, except that it is designed for 16-bit environments.
InControl2 can also be downloaded from ZDNet.

Norton Utilities' Registry Tracker and File Compare

These tools provide similar functionality to that of InControl3. However, these products are not
shareware.break

Figure 13.6
InControl4.

Page 259

Testing Considerations

SOME OBJECTIVES OF INSTALLATION TESTING

• Test the functionality and UI of the installer.

• Test the functionality of the application that is installed and set up.

• Test the known error conditions and error handling of the installer and uninstaller.

• Test the impact that the installer and uninstaller have on existing system environments.

• Test software and hardware compatibility.

• Test the installer functionality on multiple server configurations.

• Test the installer functionality using multiple installation options and conditions.

• Test the configurations and modifications that the installer makes to existing files and registry
entries.

• Test the uninstall program to see that it removes all data files—including application
executables and .DLLs—that are installed by the installer.

• If your company markets multiple products with independent installers, test for installer
compatibility between products. For example, can you install both products without conflicts?
Can you uninstall individual products without affecting the others?

AREAS OF CONCERN THAT SHOULD BE CONSIDERED DURING
INSTALL/UNINSTALL TESTING

• The functionality of the installed application.

• The functionality of the install and uninstall programs.

• The error handling of the install and uninstall programs.

• The UIs of the install and uninstall programs.

• The environment conditions in which the install and uninstall programs (and, ultimately, the
installed application) will operate. Test coverage should include application-specific and
environment-specific variables (including both dynamic and static conditions).

• Application-specific conditions—all supported user-setup options, all supported upgrade
options, and all reinstallation conditions.

• Environment-specific conditions—all supported software and hardware conditions
(especially when the installer relies on the existing configuration in determining which setup
options to run).

• Does your product require administrative (Admin) privileges to install it? If so, is an explicit
error message to this effect given if you try to install it without Admin rights?break

Page 260

TEST SCENARIOS THAT SHOULD BE CONSIDERED

• Installation under minimum configuration.

• Installation and running of application on a clean system (a clean environment consists of
only the required components of an operating system).

• Installation and running of an application on a dirty system (a dirty environment consists of
the operating system components and other commonly used software such as various versions
for browser, productivity applications, virus checkers, etc.).

• Installation of upgrades that are targeted toward an operating system (e.g., Windows 98 to
Windows 2000).

• Installation of upgrades that are targeted toward new application functionality—Did the
installer remove the dated files? Did any other applications depend on the dated files?

• Installation of software over multiple operating systems.

• Reducing the amount of free disk space during installation to see if the installer can respond
gracefully to an unexpected lack of sufficient space after the installation has begun.

• Canceling the installation midway through to see how well it restores the system to the base
state.

• If you change the default target installation path to a different drive, will all the files really be
installed in the specified path? For example, changing C:\program files\targetdir to D:\program
files\targetdir. Some programs will still place some files in the C:\program files\targetdir path
without warning, thus spreading the installation between two or more drives.

FUNCTIONAL INSTALLATION-TESTING CONSIDERATIONS

• Execute the test cases in Appendix F (Input Validation Matrix).

• Test a mix of UI navigation and transition paths.

• Look for user-level logic errors. For example, run the installer by following all on-screen
instructions and user guide instructions; look for software-to-documentation mismatches.

• Consider test cases for error detection and error handling.

• Make sure that the installer does not prompt inaccurate or misleading error messages.

• Consider whether the installer might obtain incorrect path information and thereby install
shared files in the wrong place or update registry keys with the wrong information.

• Consider incorrect default path errors. For example, the default system directories for NT
3.51 and NT 4.0 are not the same.

• Test with full, compact, and custom installation options.

• Test with various installation branches.break

Page 261

SOME COMMON INSTALLATION-FUNCTIONALITY ERRORS

• The main application does not successfully operate in all setup options.

• The installer fails to operate under the minimum configuration.

• The installer fails to operate under the maximum configuration. For example, if the size of the
variable used to store the value of free disk space is too small for the actual amount of free
disk space, that variable will be overflowed. This error often leads to a negative value
reported for free disk space. In turn, it might prevent the installer from executing.

• The installer assumes (via a hard-coded path) that some source files are on floppy drive A.
Therefore, installation fails if the user installs from floppy drive B or over the network or from
any other drive whose name is not A.

• The installer fails to provide the user with default options.

• The installer does not check for available disk space.

• The installer fails to check whether certain key components (such as Internet Explorer or
Acrobat) are already present on the user's system. Instead, it installs a new version (which
might be older than the copy on the user's disk) and sets a path to that newly installed version.

• The installer fails to inform the user of how much space the installation requires.

• The installer fails to operate on a clean system.

• The installed application fails to operate after the completion of an install on a clean system.

• The installer fails to complete due to a forced reboot in the middle of the install script.

• The uninstaller fails to remove all program files.

• The uninstaller removes files that the user created without informing the user or offering an
alternative.

• The uninstaller moves user files stored in the user directory to a new location without
informing the user or offering an alternative.

• The uninstaller fails to remove empty directories left behind by the application.

USER INTERFACE INSTALLATION TESTING CONSIDERATIONS

• Execute the test cases in Appendices D and E (the mouse and keyboard action matrices).

• Test the default settings of the UI controls.

• Test the default command control for each dialog and message box. Does it lead to a typical
installation?

• Check the behavior of common function keys such as ESC, ENTER, F1, Shift-F1,

WINDOWS, etc.

• Check for proper UI updating and refresh during dialog box interaction. Also check
navigation between dialog boxes (using Back and Next buttons).break

Page 262

• Test the default click path that is generated by clicking the Tab button repeatedly. Is the path
intuitive?

• Test the default click path that is generated by clicking the Tab button repeatedly while
holding down the Shift button. Is the path intuitive?

• Test the implementation of accelerator keys (underscores beneath letters of menu-selection
items). Are the keys functional? Have intuitive character selections been made (N for Next, B
for Back, etc.)?

• Are there conflicts between accelerator commands? If so, is the most commonly used
command given preference?

• If a common command is not given an accelerator shortcut, is a symbolic alternative offered
(for example, Ctrl-X for Cut, and Ctrl-W for Close)?

• Is a quick-key or accelerator key (one-handed) interface possible?

COMMON UI CONVENTION FOR DIALOG BOX COMMANDS

• The X button in the top right corner of Windows means ''close the current window" or "close
the current window and cancel the current operation."

• Next means "go to the next dialog box and close the current dialog box."

• Back means "go to the previous dialog box and close the current dialog box."

• Cancel means "cancel the current operation and close the current dialog box."

• Resume means "resume the current application and close the current dialog box."

• Exit Setup means "exit the setup program and close the current dialog box."

• Yes means "yes to the question being posed and close the current dialog box."

• No means "I choose No to the question being posed and close the current dialog box."

• Finish means "finish the installation and close the current dialog box."

COMMON ERRORS IN MISINTERPRETATION OF COLLECTED INFORMATION
(WINDOWS SPECIFIC)

• The installer misidentifies the existence (or nonexistence) of a certain application (e.g., a
browser) or shared file (e.g., a DLL) because it refers to an unreliable source—for example, a
wrong key in the registry database.

• The installer misidentifies the software platform and configuration (OS, drivers, browsers,
etc.).

• The installer misidentifies the hardware configuration (CPU type, CPU clock speed, physical
or virtual memory, audio or video player settings, etc.) because it misinterprets the return
values of an API call.

COMMON INSTALLATION ERRORS RELATED TO OPERATING SYSTEM ISSUES
(WINDOWS SPECIFIC)

• The installer fails to register basic information (per Microsoft logo guidelines) such as
company name, application name, or version in the registry.break

Page 263

• The installer copies files other than shared DLLs to \WINDOWS or \SYSTEM directories.

• The installer fails to register OLE objects in the registry.

• The installer places application fonts in a folder other than the Fonts folder.

• The installer fails to use a progress indicator.

• The installer fails to add shortcuts to the Start menu.

• The installer fails to register document types.

• The installer fails to support universal naming convention (UNC) paths.

• The installer does not autorun from a CD.

• The name of the installation program is not SETUP.EXE.

• The installer fails to configure the Context menu.

• The uninstaller fails to remove all information from the registry.

• The uninstaller fails to remove shortcuts from the desktop.

• NTFS compression—Some applications have problems and display erroneous I/0 error
messages when they detect NTFS compression.

COMMON DLL-RELATED ERRORS (WINDOWS SPECIFIC)

• The installer fails to copy required DLLs (perhaps the files are not even included in
distributed media).

• The installer fails to install the correct versions of DLLs (MFC DLLs, IFC DLLs, and other
shared DLLs).

• The installer fails to check for the existence of DLLs needed by the application.

• The installer fails to correctly reference count sharable DLLs in the registry. Shared DLLs

that are to be installed in the Windows\System or Program Files\Common Files directories
(that are not part of a clean install of Windows 9x) need to register, increment, and decrement
the reference count in the registry.

• The application fails to operate correctly due to the existence of several incompatible
versions of DLLs that are shared by multiple applications.

• The application fails to operate properly due to the existence of several incompatible
versions of DLLs that are produced or supported by a specific vendor.

• The installer fails to copy system-wide shared files (e.g., VBRUN40O.DLL) to the
Windows\SYSTEM or WinNT\SYSTEM directories.

• The uninstaller fails to correctly reference count sharable DLLs in the registry.

• After decrementing a DLL's usage count that results in a usage count of zero, the uninstaller
fails to display a message offering to delete the DLL or save it in case it might be needed later.

• The uninstaller fails to completely remove files, including program folders (unless there is
user data in them), LNK files, non-system-shared files (if no longer used), directories, and
registry keys.

• The uninstaller mistakenly removes system DLLs.break

Page 264

Bibliography and Additional Resources

Bibliography

Agruss, Chris. "Automating Software Installation Testing." Software Testing and Quality
Engineering (July/August 2000). (See www.stqemagazine.com.)

Chen, Weiying, and Wayne Berry. Windows NT Registry Guide. Menlo Park, CA:
Addison-Wesley Developers Press, 1997.

Microsoft. The Windows Interface Guidelines for Software Design. Redmond, WA: Microsoft
Press, 1996.

Cluts, N. Tips to Ensure Your Windows 95 Application Runs Under Windows NT 4.0 (May
1996). (See www.microsoft.com.)

Nyman, N. Problems Encountered by Some Windows 95 Applications on Windows NT
(October 1996). (See www.microsoft.com.)

Wallace, Nathan. Windows 2000 Registry: Little Black Book. Scottsdale, AZ: Coriolis
Technology Press, 2000.

Additional Resources

Jasnowski, M. "Installing Java with the Browser." Java Developer's Journal (March 2000).
(See www.javadevelopersjournal.com.)

Microsoft Windows 9x/NT/2000 Logo Guidelines (See www.microsoft.com.)break

Page 265

Chapter 14—
Configuration and Compatibility Tests

Why Read This Chapter?

One of the challenges in software development is not only to ensure that the product works as
intended and handles error conditions reasonably well, but also to ensure that the product will
continue to work as expected in all supported user environments. In the PC stand-alone
environment, this testing effort has proven to be a daunting task. Web application's
client-server architecture further multiplies the testing complexity and demands. This chapter
offers an analysis and guidance on configuration and compatibility testing. It discusses the
needs of testing on both server and client sides. It also offers examples of configuration and
compatibility specific errors to suggest testing ideas that can be applied to your testing and bug
analyzing.break

Topics Covered in This Chapter

• Introduction

• The test Cases

• Approaching Configuration and Compatibility Testing

• Comparing Configuration Testing with Compatibility Testing

• Configuration/Compatibility Testing Issues

• Testing Considerations

• Bibliography

Page 266

Introduction

It's not possible to have complete test coverage [see Chapter 2 in Testing Computer Software,
second edition (Kaner et al., 1999)], nor is it cost-effective. The goal of Web configuration and
compatibility testing is to find errors in the application while it operates under the major
real-world user environments. Performance and minimum-system requirements—determined at
the beginning of product development—are used as a baseline in the design of configuration
and compatibility test cases.

The strategy in both configuration and compatibility testing is to run functional acceptance
simple tests (FASTs), subsets of task-oriented functional tests (TOFTs), and modified sets of
forced-error tests (FETs) to exercise the main set of features. These tests focus on data input
and output, settings dependencies, and interactions on a wide range of software and hardware
configurations in an effort to uncover potential problems.

These tests focus on problems that an application may have in running under a certain condition
that is not covered under standard functional testing. Testing covers the expected user-installed
base, in addition to other machines, configurations, connectivity, operating systems (OSs),
browsers, and software that may be identified by the development or marketing team as
problematic.

Configuration and compatibility testing are potentially more labor-intensive for Web systems
compared with the PC stand-alone system due to both their component-based and distributed
architectures. The configuration and compatibility testing of a Web system must take servers,
databases, browsers, and connectivity devices into account.

Configuration and compatibility testing generally covers the following:

SERVER SIDE

• Application server

• Web server

• Database server

• Firewall

• OS

• Hardware

• Concurrent applications

CLIENT SIDE

• Browser type and version

• OS

• Minifirewall

• Childproof blocking

• Concurrent applications (instant messaging, virus checkers, etc.)

• Client-side hardware such as local printers, video, and storagebreak

Page 267

• Minifirewalls—childproof blocking

• Transmission Control Protocol/Internet Protocol (TCP/IP) stack

• AOL stack

• Microsoft Networking stack

• Other third-party TCP/IP stacks

NETWORK DEVICES AND CONNECTIVITY

• Bridges, routers, gateways, and so forth

• Internet/Intranet

• 10/100 Base-T, modems, T1, ISDN, DSL, and so forth

The Test Cases

The goal of configuration and compatibility test cases is to evaluate end-to-end functionality
from a high level for most features and from a lower level for any feature that is expected to be
problematic.

There is usually a time element involved in developing compatibility and configuration tests. It
is not practical to execute the entire set of tests on every environment. Time considerations may
only allow a very short time of testing per environment. If you run 4 hours of tests on 20 OS,
hardware, and browser combinations (not really that many), you have already spent 2 weeks
just testing. This does not take into consideration time for bug submission, research, or system
setups.

Choosing the right set of configuration and compatibility test cases requires experience and
team input. The best approach is to target troublesome areas, as well as to ask developers
about particularly vulnerable configuration or incompatibility scenarios. For example, if
DHTML (Dynamic Hypertext Markup Language) is heavily used, incompatibility issues are
expected among browser types and versions.

Approaching Configuration and Compatibility Testing

Choose the test configurations and test cases wisely. Tests should focus on the types of things
that can go wrong when you change from one configuration to another. A good strategy for
configuration and compatibility test planning is to model it after the seven steps to good
configuration testing, as outlined in Chapter 8 of Testing Computer Software, second edition
(Kaner et al., 1999).

1. Analyze the market share. If you can only support four major releases of browsers or
database servers, which ones do the majority of your target audience use? Focus the testing and
fixing of configuration and incompatibility on those platforms.break

Page 268

2. Analyze the software on both the client side and the server side. For example, you need to
fully understand how the browser works to come up with useful test cases. That is, to

understand how the various settings on the browser will affect the application, how various
releases of the browser will affect the application, how various releases of the Web servers
will affect the application, and so on. How will various settings on server side affect the
behavior of the application or the security of the overall system? (These topics are discussed
throughout this book.)

3. Analyze the ways in which the server generates contents and in which the browser
interprets, then formats and displays the contents. For example, if the application is browser
based (supporting the major commercial releases of browsers such as Netscape Navigator and
Internet Explorer), you might not have to worry about dealing with incompatibility among
various printer, display, audio, and other input/output (I/O) devices. However, you will have
to test with various releases of each major browser because the understanding is that there will
be an incompatibility issue in interpreting HTML, style sheet information and scripts, executing
Java applets or ActiveX control, and so on.

4. Save time. Work in equivalent classes and go for broad and then deep coverage. For
example, start testing with the major release of each supported browser. Look for functionality
and configuration-specific issues first. Have those issues resolved before moving on to testing
various minor releases.

5. Improve efficiency. Always look for ways to automate repetitive tasks. Keep good records
so that you won't have to waste time testing redundant test cases and configurations.

6. Share your experience. Archive configuration lists, test cases, and other test documentation
for later reuse. Build a knowledge base of configuration and incompatibility issues to share
with other testers or to use in the next project.

7. How do software and hardware components interact with each other? Chapter 3, "Web
Application Components," discusses how the various components potentially interact with each
other on both the client side and the server side. In this chapter, the section entitled
"Distributed Server Configurations" also demonstrates an example of how a physical server
configuration might affect the functionality of the application. Focus your thinking around those
issues in deciding the configurations with which the application needs to be tested.

Although it is not feasible to test for every conceivable combination of hardware and software,
compatibility testing can deliver reasonable risk assessment by testing a cross-section of
available hardware and software. Representative models from each class of hardware and
software is tested in combination, thereby offering significant insight into major risk issues.

Equivalence class analysis requires experience, research, knowledge, and careful thought. To
partition various operating environments, you must have knowledge of the technologies used in
the Web site or application. This includes technologies like Java applet, ActiveX control,
QuickTime, or Windows Media Player, along with an understanding of how these components
work in various browsers. The general idea is to cluster like components into classes—so that
the testing of any one member of acontinue

Page 269

class is representative of all other members of the class. Components that are under test should
be grouped into a common class when it is expected that their testing will generate identical
results.

For example, the browser-based application under test supports report printing. It relies on the
browser to render the page and send it to the printer. We know that in this application, most of
the HyperText Markup Language (HTML) pages sent to the browsers are pure HTML. Only a
few of them contain Java applets that are visible in the browser. Analyzing this application, we
discover two classes of content in the Web pages: (1) pure HTML and (2) HTML mixed with
visible Java applets. For the pure HTML class, we would not expect to find any errors in the
outputs sent to the printer because pure HTML printing is well tested by the browser vendor.
When we see a Java applet displayed in the browser, however, that applet might not show up
when the page is sent to the printer. This is an incompatibility issue in the browser. Therefore,
printing tests should be exercised for all pages with Java applets. This type of analysis helps
determine the configurations to focus on, and other configurations that can be overlooked for
the interest of time.

Before testing begins, it's recommended that the test team present the results of their
equivalence class analysis to the project team. The results should be in the form of a test matrix
that clearly details which equivalent classes have been identified and which hardware and
software components represent the various classes. [For more information on equivalent class
partitioning, read Testing Computer Software (Kaner et al., 1999), pages 7–11, 126–133,
399–401.]

Considering Target Users

The system under test should be analyzed against the target-user installed base. For example, a
company's internal Web-based application may be used almost exclusively with Netscape
Navigator 4.73 on laptops of a particular brand or variety. In such a scenario, testing should
focus primarily on the application's performance on laptops.

Remember to also test the not-so-common configurations. Testing that is limited to only the
most popular or common configurations might miss important errors and may give you a false
sense of security that you have covered your bases and know the risk.

User-installed base analysis may indicate that the application:

• Must run on certain current browsers

• Must run on certain current hardware

• Must run on certain types of Internet connections (with and without proxy servers, firewalls,
modems, and direct connections of various bandwidths)

When to Run Compatibility and Configuration Testing

Compatibility and configuration testing should begin after the first round of functional tests has
been completed and, hopefully, after many functional errors havecontinue

Page 270

been discovered. Otherwise, it may be difficult and time consuming to differentiate
configuration errors from functionality errors. If there are suspected problem areas, limited
configuration testing may be run during the functionality testing phase; this may also be done to

validate functionality on specific devices.

Potential Outsourcing

With the rapid advances in hardware manufacturing, OS development, software component
development, and browser releases, it is not always feasible for software development
organizations to maintain an array of system configurations preserved for in-house
compatibility testing. Testing labs that can handle most configuration and compatibility testing
needs are available.

Visit LogiGear Corporation at www.logigear.com or Brian Marick's Corner at RST
Corporation's www.rstcorp.com/marick/root.htm for information regarding organizations that
can help with software testing outsourcing.

Comparing Configuration Testing with Compatibility Testing

The line between configuration and compatibility testing is often misunderstood. Configuration
testing is designed to uncover errors related to various software and hardware combinations,
and compatibility testing determines if an application, under supported configurations,
performs as expected with various combinations of hardware and software flavors and
releases. For example, configuration testing might validate that a certain Web system installed
on a dual-processor computer operates properly; compatibility testing would thereafter
determine which manufacturers and server brands, under the same configuration, are
compatible with the Web system.

Configuration testing of Web systems involves the testing of various supported server software
and hardware setups, browser settings, network connections, TCP/IP stack setups, and so on.
The goal is to ensure that the application is thoroughly exercised with as many configurations
as possible. With each supported configuration, it is expected that the features will operate as a
reasonable user would expect. Should there be an error condition, the error should be detected
and gracefully handled by the application.

Due to the complexity of the client-server architecture, environmental-specific errors are more
difficult to reproduce in client-server systems than they are in the single-PC model. In Web
application environments, we often do not know the actual cause of failure conditions. When
experiencing failures, a Web application might present an incorrect error message because it's
not capable of recognizing the main causes of the failure. Test partitioning is effective in
weeding out such elusive environment-specific errors—commonly caused by session
time-outs, lack of disk space, downloading activities, or security settings that prevent ActiveX
controls from being downloaded. (See Chapter 3, "Web Application Components," for more
information regarding test partitioning.)break

Page 271

Testing the Sample Application: Configuration Issues

Testing the Sample Application: Configuration Issues

This example illustrates the challenge of differentiating configuration issues from actual software
errors. Figure 14.1 shows a failed login error message that has been generated by the sample
application. By simply looking at this error message, it is impossible to determine whether this
error is the result of a software bug, a server-side configuration issue, a compatibility issue, a
browser configuration issue, or all of these.

Figure 14.1
Failed login error message.

Possible conditions that might generate this error message include:

SERVER-SIDE CONFIGURATION ISSUES
IIS (Web server) virtual directory has not been set up properly.
• This is a server configuration issue. However, if the installation program failed to
programmatically configure the Web server according to specification, then this is a software
error. If the system administrator fails to properly configure the Web server according to
specification, then this is a user error.

Application directory has not been configured properly to execute scripts.
• The issue is similar to that described previously.

Default Web page has not been set up properly.
• The issue is similar to that described previously.

SQL server is not running.
• The SQL server must be running for the application to work properly.

DLL/COM objects are missing or were unsuccessfully registered.
• This problem is often caused by software errors in the installation program. If the components
must be manually registered, then this is a configuration issue.

CLIENT-SIDE CONFIGURATION ISSUES
JavaScript has been disabled.
• Because the application requires the browser to have JavaScript enabled, this is a client-or
browser-side configuration issue.

Continues

Page 272

Testing the Sample Application: Configuration Issues (Continued)

Testing the Sample Application: Configuration Issues (Continued)

JavaScript has been disabled.
• Because the application requires the browser to have JavaScript enabled, this is a client-or
browser-side configuration issue.

High-security settings.
• High-security settings prevent the application from downloading and running certain unsecured
active contents (e.g., ActiveX controls, Java applets, etc.) required by the application.

Configuration/Compatibility Testing Issues

The following sections explore some of the many issues that may be encountered during
configuration and compatibility testing. Some error examples are also included.

COTS Products versus Hosted Systems

The testing of commercial-off-the-shelf (COTS) products is potentially more labor intensive
than the testing of hosted Web systems. With a hosted Web system, your development team has
a lot more control over the server environment. Occasionally, your hosted system might be
pulling some contents (e.g., stock quotes information, news, weather information, etc.) from
your partner, but for the most part, this system is considered a controlled environment. The
system is overseen by an information services staff and system developers. The testing of this
type of system is run on only the few configurations that are specified by the system's designers
and network administrators (specific server, specific amount of memory, specific connectivity,
etc.). In contrast, COTS systems should be exercised with all configurations claimed by their
product data sheets. Commercial-off-the-shelf products commonly have to integrate well with
the buyer's environments, and certainly, you don't have much control over the server-side
configurations of your customer.break

Testing the Sample Application: Incompatibility Issues

Figures 9.20 and 9.21 in Chapter 9, ''User Interface Tests," illustrate an incompatibility issue
between two browsers. This example demonstrates that the same HTML page served by a Web
server can be interpreted or formatted very differently by different browsers.

Page 273

Distributed Server Configurations

On the macrolevel, a Web system may work correctly with some distributed server
configurations while not working correctly with others. Figures 14.2 and 14.3 illustrate two
possible distributed server configurations that comprise identical server-software components.
Any errors generated by altering server distribution should be classified as configuration
errors.

A typical system under test may utilize any of the following:

• Application servers

• Database servers

• E-mail servers

• Web servers

• Proxy servers

Client-Side Issues

The client side of Web systems may be responsible for numerous types of compatibility and
configuration issues. To determine which client-side tests a Web application requires, identify
the components that make up the client side of the Web application.

The system under test may include the following client-side components:

Possible OSs

• Windows (95, 98, 2000, NT)

• Various flavors of Unix

• Macintosh

• Linux

• Palm OS, CE, and other mobile-based devices

Communication components

• Browser

• E-mail

• Chat

• FTP

Client-side UI components

• ActiveX

• Java applets

Plug-ins

• QuickTime

• RealPlayer

• Flash

• Windows Media Playerbreak

Page 274

Figure 14.2
Two-box configuration.

Page 275

Figure 14.3
Three-box configuration.

Page 276

Testing the Sample Application

Testing the Sample Application

Configuration may occur at any point within a Web system: client, server, or network. Here is an
example that involves distributed server configurations. Figures 14.4 and 14.5 show two
possible physical server configurations: one-box and two-box configuration.

Figure 14.4
One-box configuration.

The application under test has some charting capabilities that enable a user to generate metrics
reports, such as bar charts and line charts. When a user requests a metrics report, the application
server pseudocode runs as follows:

1. Connect to the database server and run the query.

2. Write the query result to a file name c:\temp\chart.val

3. Execute the chart Java Applet. Read from c:\temp\chart.val and use the data to draw a graph.

4. Send the Java applet to the browser.

Page 277

Figure 14.5
Two-box configuration.

During testing for this application, it's discovered that the charting feature worked on one of the
preceding configurations, but not the other. After further investigation, we learned that the
problem only occurred in the two-box configuration. After examining the code, we realized that
the problem is in steps 2 and 3. In step 2, the query result is written to c:\temp\chart.val of the
database server local drive. In step 3, the Chart Java applet is running on the application server
that is not in the same box with the database server. When it attempts to open the file
c:\temp\chart.val on the application server local drive, the file is not there. Does it mean that we
read the code every time we come across an error? No, we can leave the debugging work for the
developers. The key is we need to clearly identify which server configurations are problematic
and include such information in bug reports. It's also recommended to have a cursory suite of test
cases to be executed on all distributed configurations that are supported by the application server
under test to ensure that configuration-specific errors are uncovered.

Page 278

Connectivity

• Dial-up

• Leased line

• ISDN

• DSL

Hardware

• Manufacturer

• CPU

• RAM

• Graphic display card

• Video capture card

• Sound card

• CD-ROM drive

• Monitor

• Printer device

• Input device (mouse, tablet, joystick, etc.)

• Network card, modem card

Client-side compatibility differences may additionally include the following:

• Input/output device drivers (mouse, sound, graphics display, video, memory manager)

• Extensions running in the background

• Applications that provide input to the application under test, such as a word processor that
creates files or a graphics program that creates images that the application is expected to use

• Applications running concurrently

• Network software

• Online services

Web Browsers

Web browsers are the central client-side component of most Web applications. A browser acts
as an application shell in which a Web application runs. The behavior of different browser
brands can vary, as can their support for Java commands, implementation of security settings,
and other features. Each browser (and its relative release versions) may also have one or more
interpreters—which may not be compatible with one another.

One of the primary challenges of browser testing is that there are more browser versions in use
today than can feasibly be managed in functionality testing. The myriad browser settings that
are available within each browser complicate things further. It is a good idea to include
browser and browser settings testing in the compatibility test phase, rather than in the
functionality test phase.break

Page 279

The number of browsers that are available in the marketplace increases at a rapid rate. For a
list of browsers and the technologies that they support, check out www.browsers.com and
http://websnapshot.mycomputer.com/browsers.html.

It is a good idea for the test team to meet with project management and developers to determine
which browsers and browser settings will be included in test matrices. If the versions of
supported browsers are not identified, test for compatibility with at least the two most recent
releases of all supported browsers.

As with all software, browser patches should be thoroughly tested. In Internet time, people are
shipping now and patching later—patches are nothing more than bug fixes. Without current
patches, software may include buggy components.

Create a Web compatibility matrix to test Web-based applications for compatibility issues
related to scripting, Java applets, ActiveX controls, style sheets, HTML, and plug-ins. The
goal of such tests is to hunt down browser configuration errors. Web application user
interfaces (UIs) are heavily dependent on browser settings. The assigned-size values of tables,
cells, fonts, and other elements can potentially distort a UI and/or printed reports.

Web applications should be tested under a combination of various browser settings:

• General settings

• Connection settings

• Security settings (including ActiveX controls, plug-ins, Java, scripting, downloads, user
authentication, etc.)

• Content settings

• Programs settings

• Other advanced settings (including browsing options, multimedia options, Java VM options,
printing options, and HTTP options)break

Testing the Sample Application: Browser Settings

The sample application requires an ActiveX control to be downloaded for the charting feature to
work. The browser security setting for ActiveX control is set to High. In this case, it means only
signed ActiveX control (a control that comes from a traceable and trustworthy source) is
allowed for downloading.

Testing with this security setting, we discover that the charting feature no longer works, because
the ActiveX we use is unsigned. To support users that will require this particular security setting
to High, we need to have the ActiveX control registered as a signed control. (For more
information on getting control registered, see Chapter 15, "Web Security Concerns.")

Page 280

Testing the Sample Application: Browser Incompatibility

Let's look at another example of a compatibility difference between Microsoft Internet Explorer
and Netscape Navigator.

• The home directory path for the Web server on the host myserver is mapped to:
C:\INETPUB\WWWROOT\

• A file name (mychart.jar) is stored at C:\INETPUB\WWWROOT\MYAPP\BIN

• The application session path (relative path) is pointing to
C:\INETPUB\WWWROOT\MYAPP\BIN, and a file is requested from .\LIB.

• When a page is requested from http://myserver/ , data will be pulled from
C:\INETPUB\WWWROOT\

Using Internet Explorer version 4.x, the Web server looks for the file in
C:\INETPUB\WWWROOT\MYAPP\BIN\LIB because the browser relies on relative paths. This
is the intended behavior and the file will be found; this means that the application will work as
expected using Internet Explorer 4.x.

Instead, if Netscape Navigator version 4.x (a browser that doesn't like .\) is used, the Web server
defaults to C:\INETPUB\WWWROOT\LIB and tries to look for mychart.jar from there. This is a
problem for this particular application because the file (mychart.jar) will not be found there–so
the current implementation for this feature will not work with Netscape Navigator. This is not to
say that Internet Explorer is better than Netscape Navigator; it simply means that there are
incompatibility issues between browsers–and that the code should not assume that relative paths
work for all browsers. More important, it suggests that when you experience an error in one
environment, the same error may not appear in a different environment.

Testing Considerations

It is essential that the system under test be analyzed against the target-user installed base.

• What browsers will the users have?

• What related applications will the users have?

• What hardware will the users have?

• What types of Internet connections will the users have?

Issues involved in server configuration testing fall into the following categories:

• Distributed server configuration

• Server administration and configuration

• Software compatibility

• Hardware compatibilitybreak

Page 281

• Server software running on top of the OS (IIS, SQL)

• Differences between database types (SQL, Oracle, Informix, Sybase, etc.) and versions
(Oracle 7.x versus Oracle 8.x)

• Proxy servers

• Server OSs (Unix, Mac, PC)

• OS/browser combination

• Hubs

• Network cards

• TCP/IP stack

Commercial-off-the-shelf products, such as the sample application, require the following
testing:

• Server-software configuration tests

• Hardware configuration tests

• Connection configuration tests

• Stack configuration tests

Compatibility testing considerations include the following:

• Compatibility issues involve the swapping of comparable elements within a properly
configured system.

• Test only with supported configurations. Focus on how the application performs with
alternate hardware and software components.

• Test multiple releases of supported components.

Software compatibility includes differences in the following:

• Operating system versions

• Input/output device drivers (mouse, sound, graphic display, video, memory manager)

• Extensions running in the background

• Applications running concurrently with tested application

• Network software supported by the tested application

• Online service supported by the tested application

• Firewall configuration

• Effects of the client living behind a proxy

Installation considerations include the following:

• Server installation compatibility tests look for system-specific problems that have not been
uncovered during TOFT or installation functionality tests—not to confirm that the install
functions as prescribed. See Chapter 13, "Installation Tests," for more detail regarding
installation testing. The same is applicable to client installs,continue

Page 282

which should already have been functionality tested. Client installation compatibility tests
evaluate the client installation over a variety of systems to see if there are any reboot problems
or browser-specific issues.

• Server installation compatibility tests verify that the following installation functions operate
correctly across all target OSs and possible system architectures:

• Necessary directories are created in the proper locations.

• System files—such as DLL files—are copied to the correct directories.

• System files—such as registry keys—are modified as appropriate.

• Error conditions are detected and handled gracefully.

• Uninstall program removes all installed files and restores the operating environment to its
original state.

Browser testing considerations include the following:

• The behavior of different browser brands can vary, as can their support for Java commands,
implementation of security settings, and other features. Each browser (and its relative release
versions) may also have one or more interpreters—which may not be compatible with one
another. Browser testing should be thorough, and performed early in the functionality testing
phase, so that as many browser-related bugs as possible can be identified early on.

• Does the application under test utilize a media player? Does the player (for example,
QuickTime) need to be preinstalled with the application?

• Are ActiveX controls, Java scripts, or other scripting downloaded by the application?

• Create a Web compatibility matrix to test your Web-based applications for incompatibility
issues related to scripting, Java applets, ActiveX controls, style sheets, HTML, and plug-ins.

Following are some other browser testing issues that may require attention:

• Active desktop. Different versions of Internet Explorer should be tested both with and

without the use of the active desktop.

• Encryption. 40- versus 128-bit.

• Instant messaging.

• Style sheets. Not all browsers support style sheets. Of those browsers that do support style
sheets, many do not necessarily support full style sheet implementation. For more information
on cascading style sheets, visit the World Wide Web Consortium's site at
www.w3.org/style/css/#browsers , or visit the following URL to access a style sheet
compatibility chart: www.webreview.com/guides/style/mastergrid.html .

For browser statistics and information on which browsers support which technologies, visit
www.browsers.com and http://websnapshot.mycomputer.com/browsers.html . Note that the
functionality issues associated with browser technologies such ascontinue

Page 283

cascading style sheets, JavaScript, dynamic HTML, tables, links, and frames are discussed at
length in Chapter 9, ''User Interface Tests."

Bibliography

Kaner, Cem, et al. Testing Computer Software, second edition. New York: John Wiley &
Sons, 1999.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster City, CA:
LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Windows Desktop and Server-Based
Applications. Foster City, CA: LogiGear Corporation, 2000.

LogiGear Corporation. QA Training Handbook: Testing Computer Software. Foster City, CA:
LogiGear Corporation, 2000.break

Page 285

Chapter 15—
Web Security Concerns

Why Read This Chapter?

Hackers break into [your company name here] e-commerce site! This will not be your favorite
headline. Can this be prevented? Whose responsibility is it? Attempting to answer these
questions could be a challenge for a tester as well as the organization as a whole.

Security issues are of the highest concern to many company executives. Despite this fact,
security testing is often the least understood and least well-defined test type. Security testing is
a broad effort that requires domains of expertise beyond traditional software testing. This

chapter contains a discussion of security issues and outlines how testing roles fit in the big
picture of security testing. It also discusses security-related testing as it's applied to testing
Web-based applications.break

Topics Covered in This Chapter

• Introduction

• The Vulnerabilities

• Attacking Intents

• Goals and Responsibilities

• Web Security Technology Basics

• Testing Considerations

• Bibliography and Additional Resources

Page 286

Introduction

For application producers and users to feel confident in a Web-based system, they must have a
reasonable level of comfort that a system is secure. However, there is no 100 percent secure
Web-based system! Web systems include too many variables to absolutely remove all of their
vulnerabilities. Software is one of the key components in the Web system. Software can never
be bug-free, because it's impossible for us to completely test the system. Bugs in software open
up the vulnerability of the Web system. In addition, every time a new security tool comes out,
many other tools follow with the sole purpose to defeat it. So, what's with the paranoia? Is
there a point in trying to go after something that can't be done perfectly?

Security effort is an ongoing process of change, test, and improvement. Because it's impossible
to have a perfectly secure system, the goal is to figure out the level of protection that is secure
enough for an organization's needs. "Good enough," as narrowly defined, means that the
security solutions will cost significantly less than the damage caused by a security breach. At
the same time, the ideal solutions are ones that deter persistent intruders by making penetrating
the system so difficult and time-consuming that it's not worthwhile as a reward even when their
efforts succeed.

Security trade-offs consist of compromises between security and functionality/usability. If the
security of the system is too rigid, it will be difficult to use the system or to get any work done
effectively. If the security is too primitive, then the system is vulnerable and there is potential
for intrusions.

Web security testing in a traditional sense means testing the effectiveness of the overall Web
system security defenses. It requires a combination of knowledge in security technologies,
network technologies, programming, and, often times, some real-world experience in

penetrating security of network systems. This type of knowledge is normally beyond the reach
of a software tester. It's a good idea, however, for us as testers to understand the scope of
security issues better so we understand what tasks need to be done by ourselves and what other
tasks should be done by other experts. In this discussion, my assumption is that software testers
are responsible for testing the systems to uncover functionality, interoperability, configuration
and compatibility errors as they are related to security implementation, and potential problems
introduced by security design flaws (primarily at the application level). Software testers are
not responsible for the overall effectiveness of Web security defenses. With that in mind, this
chapter introduces various types of system vulnerabilities and the intents of several types of
attacks to introduce you to security concerns. It progresses with discussions on security goals
and responsibilities. It then offers an introduction to Web security technologies, followed by
testing examples and considerations. Additional reference information is also provided for
further research and reading.

The Vulnerabilities

In the Web environment or network environment in general, a security hole is an exposure on
the hardware or software that allows unauthorized users to gain increas-soft

Page 287

ing access privilege without going through the normal authorization process to obtain such a
level of access. Hackers attack the Web system by using numerous techniques to exploit
various security holes in each component of the system. Some of the techniques are designed to
allow unauthorized users to gain access to Web system resources or to disallow authorized
users to access resources. Others are designed to create inconvenience and service degradation
or to destroy data. Following are some of the common vulnerabilities.

Software Bugs

Many security vulnerabilities are the result of bugs in programs such as Web browsers and
Web servers. These bugs, unfortunately, either went undetected during the testing process or
were side effects of fixes, which, in turn, open up security holes. Some are easier to exploit
than others. One of the commonly mentioned bugs is Buffer Overflow, which allows malicious
code to be executed on the client machine. For example, entering a URL into a browser that is
much longer than the buffer size allocated for a URL will cause a memory overwrite (buffer
overflow) error if the browser does not have error detection code to validate the length of the
input URL. A seasoned hacker can cleverly exploit this bug by writing a long URL with code to
be executed that can cause a browser to crash or to alter its security settings (from High to
Low) or, at worst, to corrupt user data.

As these bugs are discovered, software vendors will quickly design and apply fixes. However,
as we already know, there is no such thing as bug-free software. Therefore, these programs
will never be free of security vulnerabilities.

Java Script (and Other Scripting Languages)

Java script security holes often involve compromising a user's privacy or capturing a user's
data. For example, a malicious script can be attached to a request you send to a Web server,
such as a URL or a database query, while you are navigating to a link in a Web page from an

untrusted site. When the Web server responds to your request, the unwanted script tags along.
The malicious script is now on your browser. It is possible that confidential information such
as your user ID and password will be captured and sent off to some place (a server on the
Internet) that you would not know if the script were designed to do so.

Java

Although the Java security model is to restrict the behavior of applets or applications to a set
of safe actions, it is possible to have malicious instruction sets in Java code embedded in
HyperText Markup Language (HTML) pages. For example, a Java application can contain
instructions to delete files or reformat a local drive. If a Java application is allowed to be
downloaded and executed, the user is exposed with this type of attack. This illustrates one of
several security holes caused by bugs in Java implementation. Certainly, many of the bugs in
Java implementation have beencontinue

Page 288

detected and fixed. Undoubtedly, many others are still unexposed, and new ones keep
appearing that can potentially compromise user security.

ActiveX

The key issue with ActiveX controls is that they are distributed as executable binaries and
allowed to have functionality similar to an application that is run on a local drive. It means that
a malicious control can easily delete files on a local drive or transmit the user's confidential
information to an unknown server on the Internet.

The ActiveX security model is very different from Java. ActiveX has no restriction on what a
control can do. Instead, each control can be digitally signed by its author. This model relies on
the user to control security by configuring the browser settings. For example, a browser can be
configured to allow download-signed ActiveX controls only. One potential problem is the
signed control might be certified by an untrustworthy certifying authority. In such a case, how
comfortable are you executing that control on your system?

Cookies

A cookie is data that are created and left on the client browser memory or machine to provide
certain information about the client or user every time the Web server receives a request from
the client. In this model, the user is the target and only the Web server that sends or creates the
cookie can understand the cookie information. Cookies allow a client to maintain information
about itself between HyperText Transfer Protocol (HTTP) requests. The information could be
from simple preferences such as display preferences and last visited page, to personal
information such as user ID and password, snail mail or e-mail address information. That's
right! It means that if your cookie information is exposed to other Web applications or Web
sites, others can use the information to do things such as accessing your Web-based mail
account. For example, a recent (May 2000) security alert from Peacefire.Org reports that
cookies that have been set in Internet Explorer can be read by any third-party Web site outside
of the domain that set the cookie. One of the implications is intercepting a cookie set by a free
Web-based e-mail site that uses cookies for authentication, the operator of a malicious Web
site could break into a visitor's free mail account, such as a HotMail or YahooMail account,

and read the contents of his or her Inbox. By the way, this bug has been fixed by Microsoft. For
more information on this particular security alert, go to
www.peacefire.org/_security/iecookies/. For more information on cookies, go to
www.cookiecentral.com.

From the user's perspective, there are two classes of concern regarding using cookies: (1)
Malicious Web sites can capture cookie information and use it in a way that may harm the user,
and (2) there are privacy concerns of being tracked while using the Web.

Spoofing

Spoofing is the act of deceiving by assuming a different identity for the purpose of stealing
information (such as intercepting a buyer-merchant transaction and pretend-soft

Page 289

ing to be a merchant to steal a credit card number) or gaining access to unauthorized resources.
There are many things that one can spoof: e-mail spoofing to pretend as if an e-mail is sent
from someone else, Internet Protocol (IP) spoofing to pretend as if data are coming from a
trusted machine, Web page spoofing to pretend as if the Web is coming from the trusted source,
and so on.

Virus and Worm

A virus, as most of us are familiar with, is a computer program that is designed to cause
unexpected events or activities, from displaying playful messages to damaging actions such as
erasing data on your hard disk. A computer transmits or receives a virus by interacting with
other computers, usually by sending e-mail messages, attachments in e-mail messages, moving
files, or downloading files. When an infected program or the virus itself (as a program) is
executed, the virus code is loaded and run often with two primary objectives: (1) Do whatever
it's designed to do (erase your hard disk) and (2) affect other programs by appending itself to
those programs so it can then be propagated. A worm is similar to a virus. One difference
between a worm and a virus is that a worm can be self-propagating by sending a copy of itself
to other machines (via e-mail, for example).

Denial-of-Service Attacks

Denial-of-service attacks involve bombarding servers with so many bogus requests or e-mail
messages that the servers are not able to process any legitimate requests that come in. The
attacks commonly involve hackers secretly placing software agents on servers that are not
related to the target server. A master command activates the agents and identifies the target; the
full-bandwidth capacity of the servers hosting the agents is then unleashed upon the target
server. Denial-of-service agents are a challenge to find because they are placed via backdoor
methods. For example, an attack could be initiated from a cheap computer connected through a
pay telephone—in which case the attacker might never be tracked down. The attacks might also
be initiated from foreign countries where prosecution might be more difficult or impossible.

A high-profile example that illustrates the need for better security measures across the Internet
is the 3-day assault that was waged against a number of prominent Web sites beginning
February 7, 2000. Some of the Internet's biggest sites (Yahoo!, Amazon".com, E*Trade,
buy.com, CNN, eBay, and ZDNet) were either temporarily shut down or seriously impaired by

a series of denial-of-service attacks.

Yahoo! was bombarded with server requests from about 50 different IP addresses (at rates of
up to 1 gigabyte per second!). It was a surprise to many that Yahoo!'s servers proved to be
vulnerable to attack. Many experts speculate that the attacks were intended to demonstrate the
lack of security measures that are in operation at most content and e-commerce Web sites. It
does not appear that the attacks resulted in its instigators gaining access to confidential user
information or financial gain other than media exposure.break

Page 290

Physical Attacks

Low-tech intruders can always attack by rummaging through garbage cans to look for
confidential information such as a list of user IDs and passwords, breaking into a facility to
steal a computer to get to the data on the hard disk of that computer, or simply sitting in front of
an already-logged-in computer while the owner is on break to access unauthorized resources.

Attacking Intents

Depending on the magnitude of a security hole, it can allow varying degrees of exposure. A
security hole could allow anything from service disruption due to a denial-of-service attack to
invalid full access from a remote host. Depending on the hacker, each attack is designed with a
certain intent. Some of the common intents include the following:

To steal. This can be stealing money by capturing credit card numbers or spoofing certain
users to conduct financial transactions such as money transferring. It can mean stealing
confidential data such as proprietary information, business plan and financial information, or
private e-mail communication. Also, it can mean stealing intellectual property, including
downloading software applications, source code, or product design information.

To gain information. This means capturing user data such as address information, computer
configuration information, or purchasing patterns for marketing and sales purposes or other
financial gains.

To disrupt activities. Attacks such as denial of service or buffer overflow are often designed
to knock the victim's server(s) out of commission with the intent to disrupt or degrade the level
of service, and perhaps to get media exposure in the process.

To embarrass. Through spoofing or other attack methods, hackers may alter the content of a
Web site with their own content. This type of attack is normally designed to embarrass the
owner or operator of the site.

Goals and Responsibilities

Several common goals of Web system security measures—and therefore their associated
testing considerations—follow.

These following goals are particularly appropriate for e-commerce systems:

• Interactions and transactions between buyers and your company's system should be
confidential.

• Data integrity should be preserved.

• Buyers and your company's system should be able to verify each other's identities (at least,
electronically).break

Page 291

• Transaction records should be in a form that can withstand scrutiny in a court of law.

As a producer of Web-based systems, your company should be protected from the following:

• Exposing private network access to unauthorized external and internal intruders

• Losing confidential data and proprietary technology through hacking activities

• Losing data due to hardware and software errors, natural disasters, and theft

Although many of the security protection measures via browser settings on the client side are
designed to protect users, the users do take on the responsibility to protect themselves from
vulnerabilities by properly controlling these settings. Users of Web-based systems can be
protected from the following:

• Exposure to virus attacks via active contents, plug-ins, cabinet files (.CAB), executables
(.EXEs), DLLs, ActiveX controls, and other components

• Exposure to offensive contents

• Exposure of private information to third parties, either in violation of the Web site's stated
policy or as an unauthorized data capturing by a third party that is independent of the intent of
the Web site owner

Often, there are numerous people within an organization who influence the security concerns
and operational infrastructure; these individuals make up an organization's security team. A
security team may include the following:

• Policy makers who define security requirements that enhance user and producer confidence in
system security defenses.

• Network administrators who design and implement security measures to provide security at
the operational level.

• Software developers who design and implement security defenses at the application level (to
meet security requirements).

• Software testers who are responsible for testing the systems to uncover functionality,
interoperability, configuration and compatibility errors as they are related to security
implementation (primarily at the application level and perhaps at the operational level as
well), and discovering potential problems introduced by security design flaws.

• Security experts and consultants who help test and maintain your security programs as well as
handle security breach. Often, this group of people consists of reformed hackers for hire. As
some are ex-hackers, they developed their domain of expertise through practices over the

years. They are responsible for conducting penetration testing (tests designed to evaluate the
effectiveness of Web system defenses through the use of a combination of attack tools, security
and hacking expertise, and IT knowledge) prior to the deployment of system as well as on an
ongoing basis. Unless you have someone in your organization who is an expert in or designated
to handle penetration testing, it's not expected that a typical software tester or developer would
have this responsibility.break

Page 292

Web Security Technology Basics

The most common security technologies that are employed for Web-based systems follow.

Encryption. Ensures that confidential textual information transmitted over the Internet (user
IDs, passwords, credit card numbers, etc.) is protected (from sniffing devices, for example).
Encryption does not prevent the theft of information; it simply ensures that information cannot
be read by anyone other than its intended recipient.

Authentication. Verifies the identify of clients and servers so that sensitive information is not
mistakenly sent to the wrong people (possibly criminals) and that resources on private
networks cannot be accessed by intruders.

Digital certificates. Verify the identity of people and organizations for the purpose of
public/private key encryption and decryption.

Firewalls. Protects private networks and intranets from unauthorized access and data
transmission via the Internet.

Authorization. Verifies the person performing the given task has the privilege granted to do
so.

Cryptography

Cryptography is the science of encoding messages so that they cannot be read by anyone other
than their intended recipients. Public and private key cryptography, as illustrated in Figure
15.1, is a method of securely transmitting messages between parties by using two types of keys,
which are strings of numbers used to decode encrypted messages. As the names imply, public
keys are published freely, whereas private keys are protected from public access. For
example, Party A might send one of many public keys to Party B in anticipation of Party B
transmitting a confidential message. Party B could use the public key sent by Party A to encrypt
a message that is sent back to Party A. In theory, no one intercepting the message could decrypt
the message because they would not have access to Party A's private key.

Digital certificates are a form of cryptography. They link the identity of certificate owners to
public and private keys that are used for encryption and decryption. They are also used to
verify the purported identity of senders and recipients.break

Figure 15.1
Public and private key cryptography.

Page 293

Digital certificates should, at a minimum, contain the following information:

• Owner's public key

• Owner's name

• Certificate expiration date

• Certificate serial number

• Name of the authority that issued the certificate

• Digital signature of the authority that issued the certificate

Certificates may be obtained from certificate authorities (CAs) such as VeriSign
(www.verisign.com). Available certificate types include site certificates, publisher
certificates, and personal certificates. Personal certificates come in two classes. Class 1
certificates cover e-mail verification. Class 2 certificates cover standard consumer
verification. Certificate authorities should provide the following functions:

• Technology that ensures messaging security

• Logistic infrastructure, such as secure facilities, IS, and customer support staff

• Management infrastructure to monitor subscriber activities and handle disputes

Pretty Good Privacy

Pretty good privacy (PGP), using a variation of the public key system, is a program that allows
files and e-mail messages to be encrypted and decrypted. Originally developed by Philip R.
Zimmermann, PGP today is available both as freeware and in a commercial version, and it has
become a widely accepted standard for e-mail security by individuals as well as corporations.
For more information, downloading, or purchasing a commercial version, go to
www.pgpi.com/ and www.nai.com.

Secure Multipurpose Internet Mail Extensions (S/MIME)

Secure Multipurpose Internet Mail Extensions (S/MIME), using the RSA (RSA Security, Inc.)
encryption system, is a method that allows sending secured e-mail messages over the Internet.
Both latest versions of the Microsoft and Netscape Web browsers have S/MIME included.
RSA has proposed S/MIME as a standard to the Internet Engineering Task Force. For more

information, go to www.rsasecurity.com/_standards/smime/faq.html.

Security Protocols

Several commonly supported security protocols include Secure Sockets Layer (SSL), which
operates at the session layer; Secure-enhanced Hypertext Transport Protocol (S-HTTP),
which operates at the application layer; and IP Security (IPSec), which operates at the network
or IP layer. IP Security is usually implemented in routers and switches. Figure 15.2 shows the
supported security protocols.break

Page 294

For more information on S-HTTP, see the S-HTTP Request for Comments (RFC) draft that has
been submitted to the Internet Engineering Task Force for consideration as a standard. RFC
Internet draft 2660 describes S-HTTP in detail: www.ietf.org/rfc/rfc2660.txt.

Secure Sockets Layer is the security protocol that is most commonly supported by commercial
Web browsers and servers. The SSL protocol provides the following; Figure 15.3 shows an
example of the Secure Sockets Layer security protocol.

• Private client-server communication using encryption

• Data integrity for client-server communication via verification of contents within exchanged
messages—ensuring that messages have not been altered or tampered with during transmission

• Client-server authentication via the exchange of digital certificate

Other supported security protocols that are comparable with SSL include Transport Layer
Security (TLS) and Microsoft Private Communication Technology (PCT).

The SSL security protocol support is a two-sided operation—both client and server sides must
be configured:

• A certificate with public/private keys must be obtained from a CA and installed on the server
side.

• The Web server must support security protocols such as SSL or PCT.

• Support for protocols such as SSL and PCT must be enabled on the client side.

• HTTPs must be properly encoded in HTML pages to enable secure communication.

If the application under test will support both HTTP and HTTPS, then certificates will be
required for the server and proper setup needs to be done for HTTPS communication on both
server and client sides. If the HTTPS server is behind the firewall, port 443 should also be
open for HTTPS traffic between client and server.break

Figure 15.2
Security protocols.

Page 295

Figure 15.3
Secure Sockets Layer (SSL) security protocol.

Firewalls

Firewalls are shields that protect private networks from the Internet. They prevent unauthorized
users from accessing confidential information, using network resources, and damaging system
hardware—while allowing authorized users access to the resources they require. Firewalls are
combinations of hardware and software—hard

Page 296

making use of routers, servers, and software to shield networks from exposure to the Internet.
There are two types of firewalls: packet-filtering firewalls (routers) and proxy-based
firewalls (gateways). See Figure 15.4 for an example of a firewall.

Packet-Screening Firewalls (Routers)

The simplest firewalls block information by screening incoming packets. Packet filtering,
typically implemented in routers, provides basic network security features at the IP level.
Router tables can be configured to drop or permit packets based on communication protocols,
application port numbers, and destination/source IP addresses. Routers inspect the headers of
packets to determine where they are coming from, where they are going, and the protocol that is
being used to send the data; routers can then block certain packets based on this information.
Network administrators determine which types of information are allowed to pass through
firewalls.break

Figure 15.4
Firewall.

Page 297

Proxy-Based Firewalls (Gateways)

Proxy servers are a more secure firewall technique than packet filtering. Proxy servers are
software that runs on host computers in the perimeter of a firewall. Because proxy servers are
located on perimeter networks, they are not part of corporate networks themselves. Proxy
servers are designed to be a private network's only connection to the Internet. Because it is
only the proxy server that interacts with the Internet—as opposed to many client computers and

servers—security is easier to maintain. Proxy servers are also useful for logging traffic that
passes between a network and the Internet.

As shown in Figure 15.5, routers can be used in combination with proxy servers to add an
additional level of network protection; a router can take over in the event that a proxy server
fails.

DMZ

A DMZ is a small network or a host sitting between a company's private network and the
outside public network such as the Internet. It prevents outside users fromcontinue

Figure 15.5
Proxy servers.

Page 298

getting direct access to any server or host on a company private network. Normally, a DMZ
host receives requests from users within the private network for access to Web sites or other
data on the Internet. It will then create sessions for these requests on the Internet. However, the
DMZ host is not able to initiate a session back into the private network. As to outside users on
the Internet, they can only access a DMZ host or network. The DMZ host, typically, also
contains the company's Web servers and FTP servers so the data can be served to the outside
world. However, the DMZ provides access to no hosts within the private network because it
cannot initiate any inward connections. In the event that the DMZ network is compromised, the
data in those servers is compromised. Nevertheless, the private network will not be exposed.

An E-commerce Example

Figure 15.6 tracks a typical e-commerce transaction: from the client, to the vendor's servers, to
the bank, and back to the client. Along the way, numerous databases, fire-soft

Figure 15.6
E-commerce transaction.

Page 299

walls, and open Internet transmissions transpire. Note that steps 7 through 12 (detailed in the
following list) occur beyond the bank's firewalls, and are therefore not accessible for testing.

1. User browses an e-commerce site and purchases a product by entering personal information
and credit card data. Transaction is submitted.

2. User-submitted data are sent from the client to an e-commerce company Web server via the
Internet (the public network).

3. When the submitted data hit the company firewall, the firewall examines the packet headers
to determine the type of protocol used (e.g., HTTP, HTTPS, FTP, etc.). Depending on the
firewall's configuration, the firewall might only allow packets that meet its security criteria
(e.g., allowing only packets using HTTP and HTTPS and disallowing FINGER and FTP).

4. The company Web server receives, examines, and disassembles the packets into the
appropriate data forms. Based on the information (data, function calls, redirection, etc.), the
Web server will pass data to other processes such as ISAPI DLL, CGI, ASP programs, Java
servlet, SQL stored procedures, and so forth. The verification server gets called by the Web
server, receives user data for verification, and responds to the bank server with results. The
Web server then redirects the data to the bank Web server for authorization.

5. Redirected data hit the company firewall. The firewall examines the packet header to
determine if it should allow the data to pass through (e.g., the destination URL is a trusted URL
and therefore the data are allowed to pass through).

6. Company-submitted data are sent to the bank via the Internet.

7. (Bank network) The bank's firewall examines the packet headers to determine the type of
protocol used. Depending on the firewall's configuration, the firewall may or may not allow the
packets to proceed.

8. (Bank network) The bank's Web server receives, examines, and disassembles the packets
into appropriate data form. Based on the information (data, function calls, redirection, etc.), the
Web server passes data to other processes such as ISAPI DLL, CGI, ASP programs, Java
servlet, SQL stored procedures, and so on.

9. (Bank network) The authorization server gets called by the Web server, receives user data
for authorizing the transaction (e.g., determining whether the account is valid by checking the
address and user account name or determining whether the transaction amount is within the
balance limit).

10. (Bank network) Assuming that the transaction is authorized, the user and merchant account
databases are updated with appropriate debit and credit information.

11. (Bank network) Authorization information is sent from the bank Web server back to the
company Web server.

12. (Bank network) The bank's firewall examines the packet headers to determine if they
should be allowed to pass through.

13. Bank-submitted data are sent to the company Web server via the Internet.

14. The company firewall again examines the packet headers to determine the type of protocol
used and whether the packets should be allowed to pass through.break

Page 300

15. The company Web server receives, examines, and disassembles the packets into the
appropriate data forms. Based on the information, the Web server may pass data to other
processes.

16. The Web server calls the company accounting database server. The accounting database is
updated.

17. The company customer-support database is updated.

18.a. Data hit the company firewall. The firewall examines the packet headers to determine if
the packets should be allowed to pass through.

18.b. Customer support/fulfillment staff access database for order-processing information.

19. Confirmation data are delivered to the user via the Internet.

20. User receives confirmation of purchase transaction.

First, we will use the diagram illustrated in Figure 15.6 to highlight all areas of the software
that will be tested at each point and areas that we won't have control over. In this scenario,
testing should focus on points 3 and 5 initially, and then advance to the testing of points 14 and
18.a (assuming that points 7 through 12 are processes that happen at the bank and that are
treated as black-box activities that are beyond the reach of testing).

Testing should begin with a no-firewall environment, so that functionality-specific issues can
be ironed out before firewall issues are explored. Issues to look for include
application-specific errors that result from firewall software, configuration, and security
defenses that cause packet dropping or splitting. For example, suppose your application will
reply on port 25 to talk to the STMP server using SMTP protocol to support an e-mail
notification feature. If your firewall is blocking out port 25, then the e-mail notification feature
will fail. As another example, suppose your application will be deployed within an
environment that uses DMZ. Your system is designed to have a Web and application servers
separated from the database server. If you want the Web servers in DMZ but the database
server inside the private network, the system will fail because the Web server cannot initiate
requests to the database server that lives behind the private network.

Penetration Testing

Penetration testing evaluates the effectiveness of network system defenses. Penetration testing
involves a series of tests that require a combination of attack tools, security expertise, and
information technology (IT) knowledge. Penetration testing is an involved process that exceeds
the skills and resources of many organizations. This type of testing is not normally done by
software testers. Unless there is an in-house expert, it's common practice to bring in external
expertise to help with this testing effort. Some issues to consider during penetration testing
include the following:

• Penetration testing should be conducted before systems go live.

• Penetration testing must continue on a live system, particularly when any part of the system
changes.break

Page 301

• Penetration testing activities often mimic the actions of real-life attackers.

• Penetration testing should consider the vulnerabilities of delivered data and intellectual
property. For example, how easily might hackers be able to decrypt encrypted data, such as
e-commerce transactions, or how easily might hackers be able to reverse-engineer a COTS
application, and thereby steal proprietary source code?

• Have penetration testing requirements been established?

• Given the scope and knowledge that is required for penetration testing of a system, how can
effective testing be implemented?

• Is there a penetration test plan with identified resources?

• Does the testing staff have the required time and skill to effectively run penetration testing?
Can others within the organization help? If not, who will be responsible? Can the testing be
outsourced?

• How effective are system router and firewall defenses?

• How easily might intruders be able to gain access to server or client hosts on a network?

• What are the open and closed ports on a server? If an intruder connects to the open ports,
how far in the network system could they go? Given these vulnerabilities, what are the worst
possible risks the system faces?

• Testing should be done from outside the network perimeter as well as from inside the
perimeter (through limited-privilege accounts within the network).

• How effective are the system's security defenses as far as the delivery of data and
applications go?

• Define objectives, scope, roles, and responsibilities for penetration testing.

• Develop a strategic test planning process.

• Define simple test metrics to evaluate severity and risk (e.g., database can be corrupted via a
break-in).

• Consider evaluating and acquiring COTS testing tools to assist your organization in
penetration testing.

For information on security tools currently available, go to:

CERT/CC site: www.cert.org/tech_tips/security_tools.html

Microsoft site: www.microsoft.com/technet/security/tools.asp

User Protection via Browser Settings

Browser settings that limit exposure to harmful Internet content can be set within Netscape
Navigator and Microsoft Internet Explorer 4.x and 5.x browser. It's expected that the user will
alter some of these settings. Furthermore, there is a major shift on the user side in terms
controlling these settings. Web users are gradually more educated on using various settings to
protect themselves. As a Web site or a Web application development team, you cannot force
users to accept your settings. Therefore, you need to test with various combinations of the
settings.break

Page 302

• For example, in Internet Explorer (IE) 4.x and 5.x, you can configure the browser to use one
of the predefined zones. More important, in IE 5.x, the browser can also be configured to the
security level for each zone. In some corporations, the IT department might specify the zone
and security level settings on user browser. How do you think your application will be affected
by a browser security setting of High? Make sure that you test with all browser security
settings. For example, if the user has set a weak browser-security setting and the server can
only handle strong encryption, errors will result.

• As part of each security level, the behavior of active contents will vary accordingly. One can
customarily set the behavior of each type of active content (Java, ActiveX, scripting, cookies,
etc.). How would the setting of type of content affect your application? For example, if cookies
is disabled, would your application still work? If it would not, is it a software error, design
error (unnecessary reliance on cookies), or is it a technical support issue?

• Is the third-party Java applet used in your application safe for your user to use?

• Is the third-party ActiveX control used in your application safe for your user to use?

• Note that most users never change these settings. Those who do restrict what they allow in
and out of the browser.

Internet zone security settings on Internet Explorer are as follows:

High. Active content that could potentially damage a user's computer is restricted.

Medium. Users are warned before potentially damaging active content is run.

Low. Users are not warned before potentially damaging active content is run.

Custom security settings for active content. Enables users to define support options for
specific active content types, including the following:

• ActiveX controls.

• Java applets and Java scripting.

• File types.

• Fonts.

• Active content downloading and printing.

• Installation and launching of desktop applications.

• Submission of nonencrypted form data.

• Downloading and installation options for software that comes from software distribution
channels.

• Whether you use Netscape Navigator or Microsoft Internet Explorer, you need to test your
Web application with various security configurations of various active content settings
(Java, scripting, cookies, etc.) As discussed earlier, these settings enable users to protect
themselves at the client site, because we have also established that the higher the security

measurements, the lower the functionality and usability. How would these browser side
settings affect the behavior of your application?break

Page 303

Additional browser-security settings include the following:

Do not save encrypted pages to disk. In a shared server environment, this will prevent
people from seeing the user's secure information.

Warn if submitted forms are being redirected. Enables the browser to warn the user when
information on a Web-based form is being sent to a location other than that of the Web page.

Warn if changing between secure and nonsecure model. Enables the browser to warn users
when they are switching from a secure site to a nonsecure site. This is useful when testing an
application in a supposedly secure mode.

Check for certificate revocation. Prevents users from accepting invalid certificates that have
been revoked.

Warn about invalid site certificates. Enables the browser to warn a user when a URL in a
certificate is invalid.

• Certificate. Should your application use certificates such as Site Certificate or Code Signing
to allow users to identify active content such as Java applets and ActiveX controls before
accepting, the installation of these certificates should be tested accordingly.

Accepting cookies: | Always | Prompt | Disable |. Enables users to specify whether cookies
will be allowed to be stored on their system (with or without first alerting them), or
disallowed altogether. A cookie is a file that is sent by an Internet site and stored on a user's
machine. In theory, cookie files track information about user identity and preferences for a
particular Web site.

• Does your application require the use of cookies? If yes, can the use of cookie be avoided?

• If your application requires the use of cookies, is your team prepared to lose sales to the
population of users who will adamantly disallow their browser to accept cookies?

• If cookie is used:

• What information is set in a cookie and how is the information used by the application?

• Is the information in the cookie sensitive (such as ID, password, etc.)?

• Is the information in the cookie personal (potentially violating the user's privacy)?

• If the information in the cookie is sensitive and personal in nature, is it encrypted?

• Does your application tell the user why it wants to use cookie—exactly what information
your application collects, why, and how long does it intend to keep the information?

• If the user chooses not to accept cookies, does your application still work?

• When do cookies expire? What happens when a cookie is expired?break

Page 304

Enable and disable HTTP 1.1 support. Many Web servers still support only HTTP 1.0. This
feature enables users to specify which protocols their browser will use.

Certificate settings. Enables the user to specify how certificates will be used to identify
them, certificate authorities, and publishers.

Content settings. Enables users to specify whether inappropriate contents will be restricted.
If they are, users can specify which rating service will be used for blocking the restricted
content (for example, RSACi, the Recreational Software Advisory Council). Users can also set
levels for restrictions on categories of objectionable content: offensive language, sex, and
violence.

An Error-Handling Bug Example

Applications are often not aware of the actual causes of failure conditions they experience.
Errors may be due to session time-outs, absence of available disk space, incomplete
downloads, or browser security settings that prevent the downloading of active content (Java
applets, ActiveX controls, etc.). An application might misinterpret an error condition and, in
turn, present a misleading error message for all such error conditions.

Figure 15.7 shows the Internet Explorer 4.0 Safety Level setting screen. Note that an active
content security setting of Medium has been selected—which means (among other things) that
ActiveX controls cannot be downloaded. This application is a Web-based e-mail reader. It
requires an ActiveX control to be downloaded before it can download attachments. Because of
the medium security level setting, the ActiveX control cannot be downloaded. However, the
application presents an erroneous error message in this scenario, such as that shown in Figure
15.8. Based on the advice givencontinue

Figure 15.7
Internet Explorer safety level settings.

Page 305

Figure 15.8
Inaccurate error message.

in the message, the user has two choices: (1) Continue to wait or (2) click on the Reload button
to reload the control. Either choice will not download the ActiveX control because, in reality,
the interference of the browser's security setting is the cause of this error condition.

Testing Considerations

General testing considerations include the following:

• Every component in a Web system involves its own security weaknesses. A security system
is only as strong as its weakest link. The four usual places in which security defenses are
imposed are

• The client system (Web browser, other applications and components)

• The server (Web, database and other servers)

• The network

• Online transactions

• An organization's security team, not the software testing team, determines policy on all
security-related issues: user access, time-outs, content availability, database viewing, system
protection, security tools, and more. Whether a company's security defense is secure enough is
not a determination for the testing group to make. The role of a testing group is to test the
existing system to look for errors in security implementation primarily at the application level.

• Usually the IT team holds most of the responsibility for network security. Staff other than the
software testing team generally performs firewall testing, packet counting, traffic monitoring,
virus protection, and server break-in testing.

• The IT team, not the software testing team, is responsible for installing IP address screening
policies.

• Testing objectives should be to, in addition to looking for deficiencies in application-error
detection and handling, gather configuration-related issues for the technical support knowledge
base.

In terms of user-account password, login procedure testing considerations include:

• Does the Web system have an auto log-off feature (such as session time-out)? If so, does it

work properly?break

Page 306

• Does the Web system implement and enforce frequent password changing? If so, does it work
properly?

• If security is controlled at the application server level, rather than at the database server
level, has the application's security logic been tested to see if user access is properly
enforced? For example, to connect to a database server, a Web server needs to have an ID and
password for such a database. It is possible for a Web server to use the same ID and password
to log in a database regardless of who the end user is. The authorization process can then be
done at the application level. In contrast, authorization can be done at the database level; that
is, each end user would have an ID and password for the database account. Depending on who
the end user is, the appropriate ID and password will be used.

• Have you tested the login logic enforced at the application level? Have you tested the login
logic enforced at the database level? Have you tested the login logic enforced at both levels?

• Has any security-related testing been performed on third-party applications or components
integrated with the Web system?

• How many consecutive failed logins are allowed (e.g., 3 times, 10 times, or an unlimited
number of times)? Is this feature configurable by a user in a configuration file or a registry key?
If yes, who has the privilege to make the change? Can the change be easily hacked?

• When the number of failed logins is exceeded, how does the application respond (e.g., by
disallowing logins from that IP address until the security issue is reviewed or the security alert
timer expires)?

• Which logics are applied to user names and passwords? Is it case-sensitive? Is there a
minimum-number-of-characters rule? Is there a mixed rule that requires letter and number
characters to be in combination? Does the implementation of these logics work?

• Are user names and passwords stored in the encrypted format (in user's registry database or
configuration files, such as .INI files)?

• Have you tried to cut and paste user name and password?

• Have you tried to bypass the login procedure by using a bookmark, a history entry, or a
captured URL? (For example, after you logged in a system successfully, try to capture the URL.
Launch a new instance of the browser, then paste in the captured URL to see if you can get to
the system.)

• Have you tested logging in using HTTP as well as HTTPS (assuming that your system
supports HTTPS)?

• Are user name and password encrypted at the application level? If yes, has the feature been
tested?

In terms of authorization procedure, testing considerations include:

• Are all authorized users able to access the system?

• Are unauthorized users blocked from the system? If an unauthorized login is attempted, how
easily can it be done?break

Page 307

• When a new password is created for first-time login, is the default password deactivated if a
new unique password is chosen?

• Do chosen passwords meet specified requirements (e.g., length, letters/numbers)? What
happens if the requirements are not met?

• When the user must periodically change passwords, are old passwords deactivated when
new ones are chosen?

• When there is a time restriction for logins, is transition between authorized and unauthorized
periods handled correctly?

• Are outdated user account features removed and deactivated completely and correctly?

• Do expiration-based user accounts expire as expected?

In terms of database server security, testing considerations include:

• Are users granted excessive database privileges? In most database systems, users are given
permission to access specific data that relate to their responsibilities. Additionally, certain
users can often grant special access privileges to other users. Ensure that users are able to
access appropriate data and that they are denied access to all other data. Can special access
privileges be granted?

• Can special access privileges be granted to unauthorized users?

• Can special access privileges be limited to specific items?

• Can special access privileges be terminated?

• Do users in each group have appropriate access that meets, but does not exceed, their needs?
Do all users get group assignments? Users are generally divided into groups of individuals
who share the same access needs.

• Views are restricted tables that display portions of an entire table. Users can only access and
edit fields that are visible to them within the view. Test to ensure that appropriate and intended
information is accessible through individual views and that all other data is blocked. Also, test
to ensure that views are protected from modification by unauthorized users, via both Graphical
User Interface (GUI) management tools and SQL statements.

• Is the permission required to execute appropriate stored procedures granted to users?

• Do users have more access to the stored procedures than the requirements to perform their
work? They should only have access to those stored procedures needed to perform their jobs.

• Can users other than the database administrator create, modify, or delete stored procedures?
Ideally, only database administrators should have this type of privilege.

A Sample Security Test Planning Table

Here is an example of a security test planning table that I have used for analyzing security
needs—implementation strategies, as well as testing requirements. Figurecontinue

Page 308

Figure 15.9
Security test table.

Page 309

15.9 illustrates the correlation among several key aspects of security issues including testing.
To use it, first I identify the activities and issues with which we have security concerns. I enter
the information in the first column, Activities. Next, for each activity, I identify whom we want
to protect, what type of protection, and the primary or target area to focus upon. Information is
then entered in the Protection and Primary Target columns, respectively. Next, I also identify
the type of security measures applied to each activity and testing implementation. Information
will then be entered in the Security/Policies/Implementation and Testing Issues columns
accordingly. The table is complete. We now have a snapshot of a high-level security plan that
can be used to track and communicate the security implementation throughout the project.

Bibliography and Additional Resources

Bibliography

Bourne, K. C. Testing Client/Server System. New York: McGraw-Hill, 1997.

Larson, E., and B. Stephens. Web Server, Security, and Maintenance. Upper Saddle River,
NJ: Prentice-Hall PTR, 2000.

Orfali, R., et al. Client/Server Survival Guide, third edition, New York: Wiley, 1999.

Schneider, B. Applied Cryptography: Protocols, Algorithms and Source Code in C, second
edition. New York: Wiley, 1996.

Tiwana, A. Web Security. Butterworth, Heinemann: Digital Press, 1999.

Additional Resources

CERT/CC Web site
www.cert.org

Microsoft Web site on security
www.microsoft.com/security

RAS Security Web site
www.rsasecurity.com

Carnegie Mellon SEI Software Technology Review—A directed guide containing the latest
information on several software technologies.
www.sei.cmu.edu/str/

Carnegie Mellon SEI STR Glossary & Keyword Indexes—Glossary and keyword indexes for
software technology review site
www.sei.cmu.edu/str/indexes/

Computer System Security—An Overview, SEI STR
www.sei.cmu.edu/str/descriptions/security.htmlbreak

Page 310

Firewalls and Proxies, SEI STR
www.sei.cmu.edu/str/descriptions/firewalls.html

Cookie Central—This site is dedicated to offer information related to cookies.
www.cookiecentral.com/

Cookie Managers Utilities—PC Magazine download page for cookie manager.
www.zdnet.com/pcmag/features/utilities98/internetsecurity/cookie01.htmlbreak

Page 311

Chapter 16—
Performance, Load, and Stress Tests

Why Read This Chapter?

When a user clicks on the Buy button on your e-commerce site, you want to make sure that your
customer will not have to wait long for service. Otherwise, the potential customer might leave
and go do business somewhere else. To ensure that your system can endure the potential load
due to business demands at the same time, and can serve your user in a reliable and timely
manner, you need to conduct performance, load, and stress testing on your system. Although
these tests are commonly done in a client-server environment, if you have not worked with a
client-server sys-soft

Topics Covered in This Chapter

• Introduction

• Evaluating Performance Goals

• Performance Testing Concepts

• Web Transaction Scenario

• Understanding Workload

• Evaluating Workload

• Test Planning

• Testing Considerations

• Bibliography

Page 312

tem before, or had an opportunity to do these tests before, it might take you some time to grasp
the concept. This chapter is written to quickly introduce you to the issues involved with
defining testing requirements; planning for the testing, identifying, and evaluating the needed
tools; and knowing when to get help.

Introduction

One of the key benefits of Web applications is that they allow multiple users to access system
resources simultaneously; multiple users may request differing services and gain access to
varying features—all at the same time. Because multiuser support is central to the success of
most every Web application, a system's ability to perform critical functions during periods of

peak user activity must be evaluated carefully. In the effort of evaluating multiuser support
capabilities, three types of tests are commonly conducted: (1) performance, (2) load, and (3)
stress tests. Although these terms are often used interchangeably, each represents a test that is
designed to address a different objective.

The primary goal of performance testing is to develop effective enhancement strategies for
maintaining acceptable system performance. Performance testing is an information gathering
and analyzing process in which measurement data are collected to predict when load levels
will exhaust system resources.

Load testing evaluates system performance with predefined load level. Load testing measures
how long it takes a system to perform various program tasks and functions under normal, or
predefined, conditions. Bug reports are filed when tasks cannot be executed within the time
limits (preferably defined by the product management or the marketing group). Because the
objective of load testing is to determine if a system performance satisfies its load requirements,
it is pertinent that minimum configuration and maximum activity levels be determined before
testing begins.

Stress testing evaluates the behavior of systems that are pushed beyond their specified
operational limits (this may be well above the requirements); it evaluates responses to bursts
of peak activity that exceed system limitations. Determining whether a system crashes or
recovers gracefully from such conditions is a primary goal of stress testing. Stress tests should
be designed to push system resource limits to the point where their weak links are exposed.

The terms performance and load are often used interchangeably. A load test is done to
determine if the system performance is acceptable at the predefined load level; a performance
test is done to determine the system performance at various load levels. The similarities
between performance and load tests lie in their execution strategies. Typically, these tests
involve the simulation of hundreds, or even thousands, of users accessing a system
simultaneously over a certain period. Due to the time and effort involved (i.e., money), it is
often impractical to have human testers execute such testing without the aid of automated testing
tools.

Unlike performance and load tests, stress tests push systems past their breaking points. System
components that break are subsequently investigated and reinforced.continue

Page 313

Performance and load tests simulate regular user activity. The results of these tests give
developers insight into system performance and response time under real-world conditions.
Response time is the amount of time a user must wait for a Web system to react to a request.
For example, it might take 4 seconds to complete a purchase transaction on a particular
e-commerce site after a user clicks a Submit button.

Performance, load, and stress tests use actual or simulated workload to exhaust system
resources and other related problematic areas, including:

• Memory (physical, virtual, and storage, plus heap and stack space)

• Central processing unit (CPU) time

• Transmission Control Protocol/Internet Protocol TCP/IP addresses

• Network bandwidth

• File handles

These tests can also identify system errors, such as:

• Software failures caused by hardware interrupts

• Memory runtime errors (such as leakage, overwrite, and pointer errors)

• Database deadlocks

• Multithreading problems

Evaluating Performance Goals

Performance testing involves an extensive planning effort for the definition and simulation of
workload. It also involves the analysis of collected data throughout the execution phase.
Performance testing considers such key concerns as:

• Will the system be able to handle increases in Web traffic without compromising system
response time, security, reliability, and accuracy?

• At what point will the performance degrade, and which components will be responsible for
the degradation?

• What impact will performance degradation have on company sales and technical support
costs?

Each of these preceding concerns requires that measurements be applied to a model of the
system under test. System attributes, such as response time, can be evaluated as various
workload scenarios are applied to the model. Conclusions can be drawn based on the collected
data. (For example, when the number of concurrent users reaches X, response time equals Y.
Therefore, the system cannot support more than X number of concurrent users.) The
complication, however, is that even when the X number of concurrent users does not change,
the Y value may vary due to differing user activities. For example, 1000 concurrent users
requesting a 2K HTML page will result in a limited range of response times; whereas response
times may vary dramatically if the same 1000 concurrent users simultaneously submit purchase
transactionscontinue

Page 314

that require significant server-side processing. Designing a valid workload model that
accurately reflects such real-world usage is no simple task.

Consider the following simplistic example to understand how increased traffic load—and,
consequently, increased response time—can result in lost company revenue. (Refer to Figure
16.1 for detailed analysis of the traffic, percentage, and dollar amounts described in the
following example.)

Suppose your e-commerce site currently handles 300,000 transactions per day. Three hundred
thousand transactions divided by the amount of seconds in a day equates to about 3.47
transactions per second [300,000/(24 · 60 · 60) = ~3.47 transactions per second). Suppose a
marketing survey is conducted, and the findings show that:

• The transaction response time is of an acceptable level as long as it does not exceed 4
seconds.

• If the transaction response time is greater than 4 but less than 9 seconds, 30 percent of users
cancel their transactions.

• If the transaction response time is greater than 8 but less than 10 seconds, 60 percent of users
cancel their transactions.

• If the transaction response time increases to over 10 seconds, over 90 percent of users cancel
their transactions.

Suppose in the next 6 months, the number of transactions is expected to rise between 25 and 75
percent from the current level and the potential revenue for each transaction is $1. Management
would like to learn how the performance would impact company revenue as the number of
transactions per day increases.

A performance test is conducted and the findings show that the system cannot handle such
increases in traffic without increasing response time; consequently, user transaction
cancellations and/or failures result. If the number of transactions increases as expected, the
company will face a potential revenue loss of between $112,500 and $472,500 per day.break

Figure 16.1
Response time to lost-revenue analysis.

Page 315

It takes time, effort, and commitment to plan for and execute performance testing. Performance
testing involves individuals from many different departments. A well-planned testing program
requires the coordinated efforts of members of the product team, upper management, marketing,
development, information technology (IT), and testing. Management's main objective in
performance testing should be to avoid financial losses due to lost sales, technical support
issues, and customer dissatisfaction.

Issues that management should consider before, during, and after performance testing include:

• Will the Web application be capable of supporting the projected number of users while
preserving acceptable performance, and at what cost?

• At which point will the Web application load-handling capability begin to degrade?

• What will be the financial implications of the degradation?

• What can be done to increase the Web application load-handling capability, and at what
cost?

• How can the system be monitored after deployment so that appropriate actions can be taken
before system resources are saturated?

Performance Testing Concepts

Following are some key issues that should be understood and evaluated during performance
testing planning.

Projected number of users. It can be challenging to estimate the number of users that a system
will likely support because user activities can vary, as can access time and activity frequency.
Representing the projected number of users in a workload model requires careful thought, as
does the simulation of real-world users.

Acceptable performance. Determining the level of performance that is acceptable for a
system requires input from marketing and product management. How performance will be
measured, what it will cost, the tools that will be used, and the metrics that will be employed
must be considered. Understanding which components affect system performance is also
important.

Data analysis and corrective action planning. Once performance testing results have been
gathered, corrective measures for improving performance must be considered. For example,
should additional system resources be added? Should network architecture be adjusted? Can
programming improvements be made?

Performance testing involves the evaluation of three primary elements:

1. System environment and available resources.

2. Workload.

3. System response time.break

Page 316

One in Four Online Purchases Thwarted, Study Finds*

One in Four Online Purchases Thwarted, Study Finds*

Palo Alto, California (Reuters)–The problem with the explosion of online stores is that more
than a quarter of all the purchases attempted over the Internet never go through, according to a
study. Andersen Consulting went shopping at 100 of the biggest and best-known online stores.
Out of 480 gifts it tried to buy, it was able to complete only 350 purchases. The study found that
more than one-quarter of the top Web sites either could not take orders, crashed in the process,
were under construction, had entry blocked, or were otherwise inaccessible. ''It was pretty
eye-opening," said Robert Mann of Andersen's Supply Chain practice. He said he was stunned
by the results of the survey, which had initially been designed to study only the time it took to
complete and fulfill orders. Mann said he found instead that "speed is not really the issue. The
issue is reliability." Although Andersen did not single out the best and the worst of these online
stores, Mann said that none of them was problem-free. In general, though, the study found that the
traditional retailers had a worse track record than the pure-play Internet stores, known as
e-tailers. "The e-tailers who depend on this as their bread and butter have generally invested
more on back-end systems. Many retailers have not invested as well," said Mann.

Another big problem was orders not arriving on time. The traditional retailers were once again
the big offenders, according to the study, which found they delivered the order when promised
only about 20 percent of the time. E-tailers, by comparison, were on time about 80 percent of the
time. Curiously, some items took much longer to deliver. The average time for an electronics gift
to arrive was 3.9 days, while music deliveries typically took 7.4 days.

Andersen plans to next study online merchants' ability to handle returns–which Mann said could
be their next big challenge if consumers sent back all those gifts that did not arrive by Christmas
Day.

*Reproduced with permission from Reuters Limited by Andrea Orr, December 20, 1999.
Copyright 1999 Reuters Limited.

Figures 16.2 and 16.3 contrast how a naive view of expected workload and performance may
differ from real-world results. Figure 16.2 illustrates a naive expectation of the relationship
between traffic load and aggregate response time (i.e., the sum of server, network, and
browser response time). Note that the server, network, and browser response times in Figure
16.2 increase in a predictable and regular manner as transactions per second increase. Figure
16.3, on the other hand, depicts a more likely system response scenario; note that system,
network, and browser response times increase in a nonlinear manner. As the number of
transactions rises, the transaction round-trip time increases. Ultimately, the number of
transactions per second becomes saturated. The server response time eventually increases to
such a point that the entire system stops responding to requests.break

Page 317

Figure 16.2
Naive behavior expectation.

Web Transaction Scenario

There are three primary components involved in any online transaction: (1) a browser on the
client side, (2) a network, and (3) a server (Figure 16.4). A typical Web transaction proceeds
as follows:

On the client side

• The user enters a URL or clicks a link within a browser to request a file from a server.break

Figure 16.3
Actual workload and analysis.

Page 318

Figure 16.4
Three primary transaction components.

• The Domain Name Server (DNS) converts the server's hostname into the appropriate Internet
Protocol (IP) address.

• The client connects to Web server.

• Client sends a HyperText Transfer Protocol (HTTP) request (such as GET or POST) to the
server.

On the Internet (network)

• The network delivers data from the client to the server.

On the server side

Once the request reaches the server, data are disassembled based on the appropriate
communication protocol (such as HTTP).

• The server responds to the request.

• The server processes the request by retrieving data or writing to a database. Once the
process is complete, the server returns the requested file or resultant information to the client.

Back on the Internet (network)

• The network delivers data from the server to the client.

Back on the client side

• The browser receives the requested data, displays HTML contents, and executes any active
content.

Figure 16.5 defines the typical resources that cause performance bottlenecks and the activities
that are associated with the three primary components of online transactions.

Understanding Workload

Workload is the amount of processing and traffic management that is demanded of a system. To
evaluate system workload, three elements must be considered: (1) users, (2) the application,
and (3) resources. With an understanding of the amount of users (along with their common
activities), the demands that will be required of the application to process user activities (such
as HTTP requests), and the system's resource requirements, one can calculate a system's
workload.break

Page 319

Figure 16.5
Activities and resources associated with performance bottlenecks.

Consider the following when calculating workload:

Users. The amount of users in each class.

• The maximum amount of concurrent users in each class

• The percentage of concurrent users in each class

• The length of user sessions in each class

• The amounts of each kind of unique activity

The application

• Activities can be expressed in terms of service rates, such as transactions per second (TPS),
or throughput, such as kilobits per second (Kbps).

Resources

• System resources need to handle workload while preserving acceptable performance, which
is normally expressed in response time.

Evaluating Workload

There are a few steps that one should take in determining workload.

• Before the system is deployed, consult any available performance requirement documents.

• Assemble a small group of users who can act as a cross-section of real-world
users—simulating different personnel types and performing associated activities. Configure the
server and use a log analysis tool to log user activity. Use the collected data to estimate
workload.

• Estimate the number of concurrent users that the system will handle, classify the users into
groups, estimate the percentage of each class of user, the length of their sessions, their
activities, and activity frequency (as illustrated in the previous section).

• After system deployment, use log analysis tools or a proxy server to collect workload
data.break

Page 320

Testing the Sample application

The following tables offer a detailed example of how one might analyze the workload of the sample application (a
Web-based bug tracking application) in a hypothetical scenario where 10,000 concurrent users are using the syste
report news bugs, work with existing bug reports, and generate charts.

Requirement documents (if you are lucky enough to get them) should detail the workload that Web applications are
designed to support. For systems that are already employed, the network administration group might be able to provide
information regarding system traffic. This can normally be done by using log analysis tools such as Web Trends Log
Analyzer (www.webtrends.com) or Analog (www.statslab.cam.ac.uk/~sret1/analog/). Be advised
analysis tool you choose to use, use it consistently because each tool will produce slightly different statistics for the same
amount of network traffic.

The three types of users that are factored into the following calculations are (1) testing, (2) development, and (3) project
management. Note that, normally, there would be more types of users. However, the sample application is a defect tracking
system. Therefore, these are the primary users it details. The percentage of user type is also detailed (i.e., the testing group
makes up 60 percent of the system's 10,000 users, equating to 6000 users), as is the average session length of each user
type. From there, user activities and the frequency at which each activity is performed per session are detailed. Finally, the
activities that are requested of the application and the TPS are covered.

Using the first row of the table as an example, TPS calculations are arrived at using the following formula:

User activity data such as that detailed in Table 16.1 should be analyzed to determine how often each transaction type is
executed per second-regardless of which user type requests the transaction. Note that each activity type (reporting,
obtaining

Table 16.1 Calculating Transactions per Second

USER
TYPE

USER
TYPE %

SESSION
LENGTH

USER
ACTIVITY

USER SUB-
ACTIVITY

FREQUENCY
PER SESSION

APPLICATION
ACTIVITY

Testing 60% 60 minutes Reporting Reporting 1 Respond to a
report submission
by displaying the
next blank report
form

(table continued on next page)

Page 321

 (Continued)

Table 16.1

Table 16.1

USER
TYPE

USER
TYPE %

SESSION
LENGTH

USER
ACTIVITY

USER SUB-
ACTIVITY

FREQUENCY
PER SESSION

APPLICATION
ACTIVITY

60% Working
with existing
reports

Simple query 2 Respond by
displaying the
result in a
single-report view

60% Complex query 1 Respond by
displaying the
result in a
single-report view

60% Navigate from
one report to
another

8 Respond by
displaying the
result in a
single-report view

60% Submit an
updated report

0.5 Respond by
displaying the
result in a
single-report view

60% Obtaining
metrics

The first time 0.5 Respond by
displaying the
result in a
single-report view

60% Subsequent
times

0.5 Respond by
displaying the
result in a
single-report view

Development 30% 30 minutes Working
with existing
reports

Simple query 2 Respond by
displaying the
result in a
single-report view

30% Complex query 1 Respond by
displaying the
result in a
single-report view

30% Navigate from
one report to
another

8 Respond by
displaying the
result in a
single-report view

Continues

Page 322

(Continued)

Testing the Sample Application

Table 16.1 (Continued)

USER
TYPE

USER
TYPE %

SESSION
LENGTH

USER
ACTIVITY

USER SUB-
ACTIVITY

FREQUENCY
PER SESSION

APPLICATION
ACTIVITY

TYPE TYPE % LENGTH ACTIVITY ACTIVITY PER SESSION ACTIVITY

30% Submit an
updated report

0.5 Respond by
displaying the
result in a
single-report view

Project
management

10% 90 minutes Working
with existing
reports

Simple query 2 Respond by
displaying the
result in a
single-report view

10% Complex query 1 Respond by
displaying the
result in a
single-report view

10% Navigate from
one report to
another

8 Respond by
displaying the
result in a
single-report view

10% Submit an
updated report

0.5 Respond by
displaying the
result in a
single-report view

10% Obtaining
metrics

The first time 0.5 Respond by
displaying the
result in a
single-report view

10% Subsequent
times

0.5 Respond by
displaying the
result in a
single-report view

metrics, etc.) performed by all user types (testing, development, product management) is aggregated in Table 16.2-
aggregate TPS rate is thereby calculated. The aggregate TPS rate is juxtaposed against the "acceptable" response time that
has been established by management and the marketing group.

Page 323

Table 16.2 Evaluating Transactions per Second

USER
ACTIVITY

USER SUB-
ACTIVITY

FREQUENCY
 PER
SESSION

APPLICATION
ACTIVITY

TRANSACTIONS
PER SECOND
(TPS)

AGGREGATE
TPS

Reporting Reporting 1 Respond to a
report submission
by displaying the
next blank report
form

1.7 1.7

Obtaining metrics Subsequent
times

0.5 Respond by
displaying a chart
in a Java applet

0.8

in a Java applet

Subsequent
times

0.5 Respond by
displaying a chart
in a Java applet

0.1 0.9

Obtaining metrics The first time 0.5 Respond by
displaying a chart
in a Java applet

0.8

The first time 0.5 Respond by
displaying a chart
in a Java applet

0.1 0.9

Working with
existing reports

Complex
query

1 Respond by
displaying the
result in a
single-report view

1.7

Complex
query

1 Respond by
displaying the
result in a
single-report view

1.7

Complex
query

1 Respond by
displaying the
result in a
single-report view

0.2 3.5

Working with
existing reports

Navigate from
one report to
another

8 Respond by
displaying the
result in a
single-report view

13.3

Navigate from
one report to
another

8 Respond by
displaying the
result in a
single-report view

13.3

Navigate from
one report to
another

8 Respond by
displaying the
result in a
single-report view

1.5 28.1

Continues

Page 324

(Continued)

Testing the Sample Application

Table 16.2 (Continued)

USER
ACTIVITY

USER SUB-
ACTIVITY

FREQUENCY
 PER
SESSION

APPLICATION
ACTIVITY

TRANSACTIONS
PER SECOND
(TPS)

AGGREGATE
TPS

Working with
existing reports

Simple query 2 Respond by
displaying the
result in a
single-report view

3.3

single-report view

Simple query 2 Respond by
displaying the
result in a
single-report view

3.3

Simple query 2 Respond by
displaying the
result in a
single-report view

0.4 7.0

Working with
existing reports

Submit an
updated report

0.5 Respond by
displaying the
updated
information in the
current report

0.8

Submit an
updated report

0.5 Respond by
displaying the
updated
information in the
current report

0.8

Submit an
updated report

0.5 Respond by
displaying updated
information in the
current report

0.1 1.8

DETERMINING HOW MANY VIRTUAL USERS TO SIMULATE

The two factors to keep in mind when determining the appropriate number of virtual users are response time
throughput. Five transactions happening simultaneously, for example, may have an effect on response time, but should
have little effect on throughput. Five hundred transactions spaced evenly apart, on the other hand, may not have an effect
on response time, but may present a throughput issue.
The appropriate number of virtual users that load and performance testing require depends on the focus of testing. Considering the sample
application, there are a few different ways that an appropriate number of virtual users can be calculated.

Page 325

To test only the performance of the application and database servers in terms of response time and throughput, 40 (the
aggregate number of transactions per second) is a good number of virtual users to consider.

To test the performance handling of concurrent open sessions on each server, as well as response time and throughput,
10,000 (the actual number of concurrent users) is a good number of virtual users to consider.

Perhaps an arbitrary number of users between 40 and 10,000 should be considered to test certain performance scaling
models that must be validated.

Response and Performance Terms

Performance testing often requires the aid of automated testing tools to simulate workload,
collect measurement data, and present data in a format that can be used for performance

analysis. Each tool vendor uses slightly different terms to describe similar concepts. The
following list includes many of the commonly used response and performance testing terms.

Throughput Calculation Example

The objective of throughput calculation is to determine what level of bandwidth is required to
support system workload. For example, consider a Web server supporting 10,000 concurrent
users who request documents from a pool of 10 different HTML documents (with an average
size of 2K each) every 3.5 minutes. To calculate the bandwidth requirement for handling this
throughput, use the following calculation:

Or

To handle this throughput load, the network connection should be at least a T1 line (1,544,000
bps). Use the time, data size, and bandwidth conversion tables (Tables 16.4 through 16.6) to
perform other workload assessments.

Test Planning

With the objectives of load and stress testing in mind, an effective test planning process can be
developed. In addition to the software testing staff, the testing effort requires the involvement
of the IT staff and the software engineering staff. Many of the following test planning activities
are typical of all test planning projects.break

Page 326

Table 16.3 Response and Performance Testing Terms.

ATTRIBUTE TYPICAL DEFINITION COMMENTS

Connect Time The time (typically in seconds)
required for the client and the server to
establish a connection.

Time spent at network.

Send Time The time (typically in seconds)
required to send data from the client to
the server.

Time spent at client.

Receive Time The time (typically in seconds)
required to send the response data
from the server to the client.

Time spent at client.

Process Time The time (typically in seconds)
required for the server to respond to a
client request.

Time spent at network.

Response Time The time (typically in seconds)
required to complete a particular
transaction.

Time spent at network.

transaction.

Transaction Time The time (typically in seconds)
required for the client to process the
data received.

The total amount of time spent at
network, client, and server to complete
a transaction. This is an interesting
measurement because it represents the
end-to-end performance of the system.

Transaction per Second The total number of transactions such
as Head, Get, or Post per second that
the system received.

As the number of virtual users
increases but the number of
transactions per second decreases or is
saturated, it will cause transactions to
fail.

Failed Transactions per
second

The total number of transactions per
second that the system failed to
complete.

Failed transactions is one of the
primary sources of technical support
or sales loss problems.

Request per Second The number of hits the Web servers
received.

This details the interaction intensity
between browsers and Web servers.
When the number of requests per
second is saturated, it will cause
transactions with multiple requests to
fail.

Failed Request per Second The total number of failed requests. The number of hits the Web server
failed to serve.

(table continued on next page)

Page 327

(Continued)

Table 16.3

ATTRIBUTE TYPICAL DEFINITION COMMENTS

Concurrent Connections The total number of concurrent
connections over the elapsed time.

A Web server connection is opened
when a request is generated from a
browser. If the number of concurrent
connections increases but the number
of requests per second does not
increase, it means that the request
demands cause the connections to stay
open longer to complete the service.
This trend will eventually saturate the
maximum number of open connections
on a Web server, hence introducing a
performance bottleneck.

Throughput-Kilobytes per
Second

The amount of data transmitted during
client-server interactions.

When the number of virtual users or
transactions increases but the amount
of data transmitted is saturated, data
throughput has become a performance
bottleneck.

Defining Baseline Configuration and Performance Requirements

In defining baseline configuration and performance requirements, identify system requirements
for the client, server, and network. Consider hardware and software configurations, network
bandwidth, memory requirements, disk space, connectivity technologies, and so on. To
determine system workload, the system's users and their respective activities will also have to
be evaluated.

Determining the Workload

Please see ''Understanding Workload," earlier in this chapter.break

Table 16.4 Time Conversion

WEEK DAY HOUR MINUTE SECOND MILLISECOND

1 7 168 10,080 604,800 604,800,00

1 24 1,440 86,400 86,400,000

1 60 3,600 3,600,000

1 60 60,000

1 1,000

1

Page 328

Table 16.5 Data Size Conversion

GIGABYTE MEGABYTE KILOBYTE BYTE BIT

1 1,024 1,048,576 1,073,741,824 8,589,934,592

1 1,024 1,048,576 8,388,608

1 1,024 8,192

1 8

1

Determining When Testing Should Begin

Testing should be performed as early in the testing process as possible. It is far cheaper,
easier, and more feasible to correct errors early in the development process than it is to fix
them late in the development process. Additionally, the earlier that testing begins, the more that
tests can be repeated; and the more often that tests are repeated, the more opportunity the
development team will have to improve product performance.break

Table 16.6 Bandwidth Conversion

LINE MBPS KBPS BPS

28K Dial-up 0.028 28 28,000

56K Dial-up 0.056 56 56,000

ISDN single 0.064 64 64,000

ISDN single 0.064 64 64,000

ISDN double 0.128 128 128,000

T1 1.544 1,544 1,544,000

Token ring 4.000 4,000 4,000,000

10-baseT 10.000 10,000 10,000,000

Token ring 16.000 16,000 16,000,000

T3 45.000 45,000 45,000,000

100-baseT 100.000 100,000 100,000,000

FDDI (Fiber Distribution
Data Interface)

100.000 100,000 100,000,000

Gigabit Ethernet 1.000 1,000 1,000,000

ATM 155.520 155,520 155,520,000

ATM 622.080 622,080 622,080,000

Page 329

Performance, load, and stress tests can be a part of the regression testing suite that is performed
with each build. Regression testing determines whether new errors have been introduced into
previously bug-free code. Early detection of performance requirement failures can be critically
important because it offers developers the maximum amount of time to address errors.

Determine if the Testing Process Will Be Hardware-Intensive or
Software-Intensive

The hardware-intensive approach involves the use of multiple client workstations in the
simulation of real-world activity. The advantage of this approach is that one can perform load
and stress testing on a wide variety of machines simultaneously—closely simulating real-world
use. The disadvantage is that one must acquire and dedicate a large number of workstations to
perform such testing.

The software-intensive approach involves the virtual simulation of numerous
workstations—over multiple connection types. The advantage of the software-intensive
approach is that only a few physical systems are required to perform testing. The disadvantage
is that some hardware-, software-, or network-specific errors may be missed.

Developing Test Cases

Generated loads may be designed to interact with servers via a Web browser user interface
(UI), or via HTTP requests such as GET and POST (thereby bypassing the browser).
Consideration must be given to the types of requests that are sent to the server under test by the
load generator (and, hence, the amount of data per transaction that the server processes) and the
resources available to the load generator.

Load and Stress Testing Tools

In deciding which testing tools would best assist the testing effort, determine the operating
environment that the testing tool must support: operating system, hardware platform, network

infrastructure (WAN or LAN), network protocols, and so on. Possibly, the tool has to work on
multiple platforms. Also, consider the number of users that must be simulated; make sure that
the tool can simulate enough users to produce an adequate test.

As far as test-script generation and execution is concerned, determine whether a tool that
provides script capturing (as opposed to manual scripting) will be needed. Make sure that the
tool can log all discrepancies. The tool should also be able to simulate multiple versions of
browsers and network connections. Make sure that the tool also supports user think time.
Finally, look for support of HTTPS, Java, ActiveX, scripts, and cookies.break

Page 330

Off-the-shelf tools, such as those listed in the chapter entitled "Web Testing Tools," can be
expensive. Plus, it takes time to become proficient at them. Off-the-shelf tools may also not
meet the needs of the project; one may end up paying for extra features that the test project does
not require.

Homegrown tools can also be expensive due to the in-house costs related to their development.
The significant maintenance and testing costs associated with the development of homegrown
tools can be considerable. Internal engineering resources may be limited as well—making it
challenging to develop tools in a reasonable time frame and maintain them over time.

The best solution may be a combination of off-the-shelf and homegrown tools. As with most
decisions related to software testing, the earlier that one assesses testing needs, the better.
Evaluate the tools that are available and assess the needs of the system under test as early in the
testing effort as possible. For a list of available testing tools, see the chapter entitled "Web
Testing Tools," or visit the Software QA/Test Resources Web site at
www.softwareqatest.com/qatweb1.html#LOAD.

Analyzing and Reporting Collected Data

When considering tools for the gathering and analysis of data, consider whether a tool that
provides result analysis and publishing features will be needed. Without such features, manual
collection, analysis, and report tabulation of test results will be required. Also consider what
type of data analysis the tool will need to perform: Will specific Structured Query Language
(SQL) statements need to be captured? Should the tool monitor system resource usage and
network communication activity?

Performance Testing Example

During beta testing phase, the testing objective of this performance test is to determine if the
system can handle 100 concurrent users logging in within a reasonably acceptable response
time without any transaction failure.

The process of setting up this test goes something like this:

1. Record a log-in script.

2. Modify the recorded script in such a way that it can rerun the same login procedure by just
reading from an external text file a line at a time. Each line has two fields holding the user ID
and password in each field. The modified script is shown next.break

// This is an example of load testing on the sample
// application, TRACKGEAR

function InitAgenda() {
CopyFile("c:\\login.txt", "c:\\login.txt")

}

Page 331

//Setup the array
login = GetLine("c:\\login.txt" ,",")

//Synchronize the Data points
SynchronizationPoint(3000)

//Go to the Web site
wlHttp.Get("http://engservices.logigear.com/trackgear/default.asp")

wlHttp.FormData["company"] = "trackgear"
wlHttp.Get("http://engservices.logigear.com/bts/bin/login.asp")

wlHttp.FormData["company"] = "trackgear"
wlHttp.Get("http://engservices.logigear.com/bts/bin/login.asp")

//Post Username & Password

Sleep(8840)

wlHttp.FormData["user_name"] = login[1]
wlHttp.FormData["password"] = login[2]
wlHttp.FormData["Login"] = "Login"
wlHttp.FormData["PageNumber"] = "2"
wlHttp.FormData["company"] = "y"
wlHttp.Post("http://engservices.logigear.com/bts/bin/login.asp")

if (login.LineNum = 100) InfoMessage("done with read")

//Time the Login Process, and return that value

SetTimer("LoginTime")

wlHttp.Get("http://engservices.logigear.com/bts/bin/usercont.asp")
wlHttp.Get("http://engservices.logigear.com/bts/bin/title.asp")

wlHttp.Get("http://engservices.logigear.com/bts/bin/mainuser.asp")
wlHttp.Get("http://engservices.logigear.com/bts/bin/refresh.asp")
SendTimer("loginTime")

3. Next is the content of the text file named user.txt (100 users' IDs and passwords) that the
performance test script reads in when it begins to execute the test.

beno, beno
chrisv, chrisv
.., ..
ursulap, john

4. Prepare the controlling and the monitoring consoles as well as a computer to be used as a
load generator spawning threads to simulate hundreds (if not thousands) of users.

5. Set up the test script to be run with the tool. In this example, the performance test tool used in
this example is RadView's WebLoad.

In this particular test, we discover the response time is within expected limits, but transaction
failures are occurring at the Web server. As shown in Figure 16.6, three of the 100 transactions
failed to respond.break

Page 332

Figure 16.6
Three transactions failed to respond.

Testing Considerations

• It takes time, effort, and commitment to plan and execute performance, load, and stress tests.
Performance testing involves more people in an organization than just testers. A well-planned
testing program requires a joint effort between all members of the product team, including
upper management, marketing, development, IT, and testing.

• Aggregate response time is a sum of browser processing time, network service time, and
server response time. Performance analysis takes all of these factors into consideration.

• Server-side analysis of performance bottlenecks often includes examination of the Web
server, the application server, and the database server. Bottlenecks at any of these servers may
result in server-side performance problems, which may ultimately affect overall response time.

• Begin performance testing as early in the development process as possible to allow time for
the analysis of data and the resolution of performance issues.

• Repeat performance tests as many times as possible prior to deployment so that performance
degradation issues can be identified early on. Allow plenty of time to isolate and troubleshoot
performance issues.

• Determining a projected number of users can be complex. Consider the following issues:

• User activities vary.break

Page 333

• User-access behavior and activity frequencies vary from one time period to the next.

• Projected numbers of users must be considered within an appropriate workload model.

• Virtual users do not necessarily behave in the same ways that real users do.

• What happens if the product is wildly successful? That is to say, what happens if the
number of users is grossly underestimated?

• The number of users or the volume of transactions is predictable for the intranet (controlled
environment) but is unpredictable for the Web site, such as an e-commerce site on the Internet
(uncontrolled environment).

Determining acceptable performance can be challenging. Consider the following issues:

• There are different means of measuring performance (metrics); each has different associated
costs.

• What factors affect performance in the system under test?

• Many different tools are available on the market; each offers unique benefits and drawbacks.

Regarding data analysis and corrective action planning, consider how performance
degradation can be resolved.

• By adding system resources.

• By adjusting network system architecture.

• Through programming.

• How can user workload be monitored so that appropriate actions can be taken to avoid
saturation?

• Continue monitoring system performance after deployment so that scalability issues can be
addressed in a timely manner.

• Performance testing is a capability planning process, not pass/fail testing.

• Systems often have multiple performance bottlenecks.

• Test script creation often requires programming skills. Prepare to train your testing staff.

There are several ways of improving server-side performance issues:

• Upgrade hardware to improve service.

• Reconfigure server parameters such as cache size and virtual-memory size.

• Redesign network architecture to better distribute load and thereby improve service.

• Redesign or optimize application code, stored-procedure code, or database tables.

• Does the system's performance meet user expectations during standard operation (when the
load is within specified limits)? If the answer is yes, then how is performance affected when
the load exceeds specified limits?break

Page 334

• When the system is overloaded (i.e., when user demand exceeds system resource
availability) and forced into an error condition, does the system accurately detect, handle, and
recover gracefully from the condition? Does the system crash or begin to behave erratically?

• How scalable is the system? Can the system be upgraded easily and quickly (server memory,
disk space, software, etc.) to accommodate increased load demand?

• Focusing testing on individual objects rather than entire systems yields more detailed and,
consequently, more practical information regarding load limitations.

• In defining baseline configuration and performance requirements, you should identify system
requirements for the client, server, and network. Consider hardware and software
configurations, network bandwidth, memory requirements, disk space, and connectivity
technologies.

• Consider whether your test execution will be hardware-intensive or software-intensive.
Regardless of the method you choose, complete testing is not possible. One can only identify
the best possible risk-based testing strategy available and then plan testing accordingly. Keep
in mind that the risk of a failure in a Web site on the Internet is much more visible and costly
compared with one in an intranet application (exposed internally only).

Determining workload involves the following issues:

• How many groups of users will be involved in a load test?

• How frequently will each user in each group access and interact with the application during a
load test?

• What will be the typical activities performed by each group of users?

Performance testing is a server-capacity planning process that involves three fundamental
steps:

1. Establishing a baseline.

2. Gathering and analyzing data.

3. Predicting future server capacity based on gathered data.

Common attributes that should be considered in Web application load testing include:

• Concurrent Operation Tests

• Web Server Load Tests

• Database Load Tests

In determining which tools are most appropriate for your test project, you should consider the
following:

• What are the operating systems, hardware platforms, network infrastructure types (WANs and
LANs), and network protocols that the tool must support? Must the tool work on multiple
platforms?

• How many users must the tool simulate to produce an effective test?break

Page 335

• Must the tool provide script-capturing functionality in addition to manual scripting?

• Look for a tool that can run unattended and accurately log all discrepancies.

• Does the script support user think time, which more realistically simulates real-world
conditions?

Bibliography

Anderson, M. D. "13 Mistakes in Load Testing Applications." Software Testing and Quality
Engineering (September/October, 1999).

Menasce, D. A., and V. A. F. Almeida. Capacity Planning for Web Performance. Upper
Saddle River, NJ: Prentice-Hall, 1998.

Menasce, D. A., and V. A. F. Almeida. Scaling for E-Business. Upper Saddle River, NJ:
Prentice-Hall, 2000.

Nguyen, N. Q. "Testing Web Applications." LogiGear Corporation Training Handbook
(2000).

Radview Software, Inc. "The Web Load User's Guide." Lexington, MA: 1998.

Savoia, A. "The Science and Art of Web Site Load Testing." STQE STAREAST (2000).

Schelstrate, M. "Stress Testing Data Access Components in Windows DNA Applications."
MSDN News (March/April, 2000). http://msdn.microsoft.com/voices/news.break

Page 337

Chapter 17—
Web Testing Tools

Why Read This Chapter?

Web applications operate in dynamic environments. Occasionally, testing tools are required to
complement manual testing efforts. Some test types (e.g., load and performance testing) would
be impractical without the help of tools that can simulate the actions of thousands of users. The
value of various tools varies according to the specific testing needs, budget, and staffing
constraints associated with the system under test.

Introduction

This chapter describes various types of Web testing tools, how the tools are used, and where
the tools can be acquired. Many of the software vendors listed in this chapter offer evaluation
copies of their products. Return-on-investment calculations (both short-term and long-term) can
help you decide which tool makes the most sense for your particular project.break

Topics Covered in This Chapter

• Introduction

• Types of Tools

• Additional Resources

Page 338

Types of Tools

Following are lists of various Web testing tools and descriptions of each.

Rule-Based Analyzers

• Type: Static analyzer

• Note: The notion of static analyzer means that the code does not have to be compiled and
executed.

• Input: Source (code)

• Output: Various analytical and error reports

• Primary user: Developer

• Secondary user: Tester

Technology principle. This type of tool reads the input source and compares the written code
with the coding standards or language-specific rules in an effort to uncover inconsistencies and
potential errors. They are, in some ways, comparable with grammar and spell checkers found
in word processors.

In some cases, the tool also includes an agent or a bot (short for robot) that simulates human
activities, accessing commands such as hyperlinks in HTML pages. On the content side of Web

development, the two common rule-based analyzers are HTML validators and link checkers.
Often, they are fully integrated into commercial-off-the-shelf products.

A Sample List of Link Checkers and HTML Validators

These tools check for bad links and HTML tags, browser compatibility (to a certain extent),
dead links, popular links, load time, page design, spelling errors, and so on.

Watchfire Linkbot

Description: Link checker and HTML validator

Source: Watchfire

URL: www.watchfire.com

Platform: Windows

Evaluation copy: Yes

ParaSoft SiteRuler

Description: Link checker and HTML validator

Source: ParaSoftbreak

Page 339

URL: www.parasoft.com

Platform: Windows, Linux, and Sun Solaris

Evaluation copy: Yes

Matterform Media Theseus

Description: Link checker and HTML validator

Source: Matterform Media

URL: www.matterform.com

Platform: Macintosh

Evaluation copy: Yes

Allaire Homesite

Description: More than Link checker and HTML validator (HTML Editor)

Source: Matterform Media

URL: www.allaire.com/products/homesite/

Platform: Windows

Evaluation copy: Yes

Free Online HTML Validation and Link-Checking Services

W3C HTML Validation Service: http://validator.w3.org/

Bobby: www.cast.org/bobby/

NetMechanic: www.netmechanic.com/

Web Site Garage: http://websitegarage.netscape.com/

Dr. Watson: http://watson.addy.com/

A Sample List of Rule-Based Analyzers for C/C++, Java, Visual Basic, and Other
Programming and Scripting Languages

These tools generally check for bad syntax, logic, and other language-specific programming
errors at the source level. This level of testing is often referred to as unit testing and server
component testing. The developer executes this testing.

Compuware Numega CodeReview

Description: Source code analysis

Language: Visual Basic

Source: Compuware

URL: www.compuware.combreak

Page 340

Platform: Windows

Evaluation copy: Yes

ParaSoft Codewizard

Description: Source code analysis

Language: C/C++

Source: ParaSoft

URL: www.parasoft.com

Platform: Unix and Windows

Evaluation copy: Yes

ParaSoft Jtest

Description: Source code analyzer with automation features for test-case design and test
execution

Language: Java

Source: ParaSoft

URL: www.parasoft.com

Platform: Windows

Evaluation copy: Yes

Reasoning InstantQA

Description: Code inspection services on the Web

Language: C, C++, Cobol, Java, and others

Source: Reasoning

URL: www.reasoning.com

Platform: N/A

Evaluation copy: Yes

Load/Performance Testing Tools

Type: Web-load simulator and performance analysis

Input: Simulated user requests

Output: Various performance and analytical reports

Primary user: Tester

Secondary user: Developer

Technology principle. This type of tool enables you to simulate thousands of users accessing
the Web site/application requesting data and submitting transactions, in addition to other
e-commerce and e-business activities. Virtual load can also simulatecontinue

Page 341

various versions of Web browsers and network bandwidth. While the simulated load is
applied to the server, performance data is collected and plotted in several useful report formats
for further analysis. See Chapter 16, ''Performance, Load, and Stress Tests," for more
information on this type of test.

Web Load and Performance Testing Tools

These tools generate test scripts by recording user activities and combining them with scripting
languages. They can spawn multiple threads, each thread running a specific test script or
scenario to simulate real-world requests being sent to the servers. Performance metrics such as
response time and data throughput can be tracked and reported in tabular as well as graphical
formats for performance analysis.

Envive Prophecy

Description: Hosted services for load, performance, and scalability testing

Source: Envive

URL: www.envive.com

Platform: Web-based

Evaluation copy: Yes

Mercury Interactive LoadRunner

Description: Load, performance, and scalability testing

Source: Mercury Interactive

URL: www.mercuryinteractive.com

Platform: Windows

Evaluation copy: Yes

RadView WebLoad

Description: Load, performance, and scalability testing

Source: RadView

URL: www.radview.com

Platform: Windows

Evaluation copy: Yes

Rational Performance Studio

Description: Load, performance, and scalability testing

Source: Rational

URL: www.rational.com

Platform: Windows and Unix

Evaluation copy: Yesbreak

Page 342

RSW eLoad

Description: Load, performance, and scalability testing

Source: RSW Software

URL: www.rswsoftware.com

Platform: Windows

Evaluation copy: Yes

Segue SilkPerformer

Description: Load, performance, and scalability testing

Source: Segue

URL: www.segue.com

Platform: Windows

Evaluation copy: Yes

GUI Capture (Recording/Scripting) and Playback Tools

• Description: Captured user activities that are played back, enabling unattended functionality
and regression testing

• Input: Recorded/scripted events or messages applied on GUI controls

• Output: Error logs indicating discrepancies discovered during playback

• Primary user: Tester

• Secondary user: Developer

Technology principle. This type of tool enables you to consistently rerun repetitive test cases
with little to no human interaction. These tools have the capability of recognizing GUI controls
such as form buttons, tables, links, Java applets, and so on in Web browser pages. During the
capturing phase, these tools track input events (generally from keyboard and mouse) as they are
applied to specific GUI control objects. The events represent user activities and are converted
into scripts that, at a later time, the playback engine will use as input to replay the prerecorded
activities. The event-capturing process can also be done via scripting. During playback the
program-state information, as well as output results (whether data or user interface settings),
are compared with the original results. If there is any discrepancy, the tool makes the condition
known. Keep in mind that to fully utilize the capability of this type of tool, a significant amount
of training and planning is required. Otherwise, the return on investment (or lack thereof) may
be disappointing.

A Sample List of Automated GUI Functional and Regression Testing Tools

These tools generate test scripts by recording user activities and combining them with scripting
languages. The recorded or scripted events can then be played back repeat-soft

Page 343

edly. This type of tool is also commonly used for acceptance tests and functionality-regression
tests, because the test cases are so well defined.

Rational VisualTest

Description: Load, performance, and scalability testing

Source: Rational

URL: www.rational.com

Platform: Windows

Evaluation copy: Yes

RSW eTester

Description: Automated GUI functional and regression testing

Source: RSW Software

URL: www.rswsoftware.com

Platform: Windows

Evaluation copy: Yes

Segue SilkTest

Description: Automated GUI functional and regression testing tool

Source: Segue

URL: www.segue.com

Platform: Windows and Unix

Evaluation copy: Yes

Runtime Error Detectors

• Type: Dynamic analyzer

• Note: Code needs to be compiled and executed before dynamic analyzers can catch errors.

• Input: Execution of test cases

• Output: Trap and track runtime errors

• Primary user: Developer

• Secondary user: Tester

Technology principle. This type of tool either inserts its code into the production code prior
to compilation and execution, or it tracks memory read/write activities between the program
(and its components) and the operating system. During the execution of the program, it looks for
invalid and erroneous operations that are requested by the application so that the errors can be
trapped and reported. This type of tool catches errors like memory overwrites, memory leaks,
read errors, and memory double-freezes. Without a way of tracking such errors,
memory-related bugs are difficult to reproduce.break

Page 344

Memory is a dynamic environment condition. When there is an error such as a memory
overwrite problem, the symptoms from the black-box testing perspective may vary from
nothing happening at all to a total system crash. This is due to the fact that the environment
required for the symptom of the error to expose itself varies. This type of tool helps detect
errors at the source level rather than at the symptomatic level.

A Sample List of Runtime Error Detection Tools

These tools check memory and operating system API-specific errors.

MicroQuill HeapAgent

Description: Detecting memory-related and other errors at runtime

Source: MicroQuill

URL: www.microquill.com

Platform: Windows

Evaluation copy: Yes

ParaSoft Insure++

Description: Detecting memory-related and other errors at runtime

Source: ParaSoft

URL: www.parasoft.com

Platform: Unix and Windows

Evaluation copy: Yes

Onyx QC

Description: Memory runtime error detection and stress testing

Source: Onyx Technology

URL: www.onyx-tech.com

Platform: Macintosh

Evaluation copy: Yes

Rational Purify

Description: Detecting memory-related and other errors at runtime

Source: Rational

URL: www.rational.com

Platform: Windows NT and Unix

Evaluation copy: Yesbreak

Page 345

Compuware BoundsChecker

Description: Detecting memory-related and other errors at runtime

Source: Compuware

URL: www.compuware.com

Platform: Windows

Evaluation copy: Yes

A Sample List of Web Security Testing Tools

These tools can be used to detect and analyze potential security issues in a network or Web
application.

Network Toolbox

Description: Suite of tools for analyzing security weaknesses on Windows systems

Source: J.River

URL: www.jriver.com/products/network-toolbox.html

Platform: Windows

Evaluation copy: Yes

NetScan Tools

Description: Traditional Unix network tools ported for use on Windows systems

Source: Northwest Performance Software, Inc.

URL: www.nwpsw.com/

Platform: Windows

Evaluation copy: No

Surfincheck Firewall

Description: Personal firewall detects malicious VBScript, Java, and ActiveX applications

Source: Finjan Software

URL: www.finjan.com

Platform: Windows

Evaluation copy: Yes

PrivaSuite

Description: Easy-to-use encryption tools for use on Windows systems

Source: Aliroobreak

Page 346

URL: www.aliroo.com/privsuit.html

Platform: Windows

Evaluation copy: No

Windows Task-Lock

Description: Controls access to applications

Source: Posum Software Security Technologies

URL: http://posum.com/

Platform: Windows

Evaluation copy: Yes

WebTrends Security Analyzer

Description: Analyzes Internet and intranet for security problems

Source: Webtrends

URL: www.webtrends.com/products/wsa/

Platform: Windows, Solaris, Linux

Evaluation copy: Yes

Java-Specific Testing Tools

Sun Micro Systems offers a suite of tools for testing Java applications including the following
tools:

JavaSpec

Description: Tests Java applications and applets through their APIs

Source: Sun Micro Systems

URL: http://industry.java.sun.com/solutions/

Platform: Windows, Solaris, JavaOS

Evaluation copy: Yes

JavaStar

Description: Tests Java applications and applets through their GUIs

Source: Sun Micro Systems

URL: http://industry.java.sun.com/solutions/

Platform: Windows, Solaris, JavaOS

Evaluation copy: Yesbreak

Page 347

Several Other Types of Useful Tools

• Database testing tools

• Web-based defect tracking tools

• Development/test management tools

• Code-based performance and profiling tools

• Code-based coverage analyzers

Additional Resources

On the Internet

Rick Hower's Software QA/Test Resource Center

 A software testing and QA related site that offers a collection of Quality Assurance FAQs and
useful links to other QA/Testing organizations and tool vendors. It has a compilation of
links to miscellaneous Web testing tools. www.softwareqatest.com.

Bret Pettichord's Software Testing Hotlist

 A well-organized page offering links to several interesting papers on test automation,
testing-related white papers, and other useful information. www.io.com/~wazmo/qa.html.

Marick's Testing Foundations

 A thorough site with lists of test tools, contractors, training courses, papers, and essays. From
Paul Marick, the author of The Craft of Software Testing. www.testing.com and
www.rstcorp.com/marick/

DBMS Online Buyer's Guide Testing and Software Quality

 A compilation of various software testing tools, including Web and load testing tools.
www.dbmsmag.com/pctest.html.

LogiGear Corporation

 The producer of TRACKGEARTM, the Web-based issue tracking and resolution management
solution. Offering information on testing tools, software testing training, and outsourced
testing services. www.loggear.com or www.qacity.com.break

Page 348

Development and Testing Tool Mail-Order Catalogs

These catalogs supply development and testing tools.

Programmer's Paradise, Internet Paradise, and Components Paradise

 www.pparadise.com.

The Programmer's Supershop Buyer's Guide

 www.supershops.com.

VBxtras

 www.vbxtras.com.break

Page 349

Chapter 18—
Finding Additional Information

Why Read This Chapter?

Web technologies (and the testing methods that are appropriate for them) are evolving at a
rapid rate. Inevitably, new technologies have become available since this book went to print.
This chapter will help you gain access to the most up-to-date information regarding
Web-application testing.

Introduction

This chapter lists textbooks, Web sites, and professional societies that are great sources of
information for test-case design and Web-application test planning.break

Topics Covered in This Chapter

• Introduction

• Textbooks

• Web Resources

• Professional Societies

Page 350

Textbooks

About Face: The Essentials of User Interface Design, by A. Cooper, IDG Books Worldwide,
1995, ISBN: 1568843224.

Administrating Web Servers, Security, and Maintenance, by E. Larson and B. Stephens,
Prentice-Hall, 1999, ISBN: 0130225347.

Beginning Active Server Pages 3.0, by D. Buser et al., Wrox Press, 2000, ISBN: 1861003382.

The Craft of Software Testing: Subsystems Testing Including Object-Based and
Object-Oriented Testing, by B. Marick, Prentice-Hall, 1997, ISBN: 0131774115.

Designing Web Usability, by J. Nielsen, New Riders, 1999, ISBN: 156205810X.

Dynamic HTML: The Definitive Reference, by D. Goodman, O'Reilly and Associates, Inc.,
1998, ISBN: 1565924940.

Information Architecture for the World Wide Web: Designing Large-Scale Web Sites, by L.
Rosenfeld and P. Morville, O'Reilly & Associates, 1998, ISBN: 1565922824.

Internetworking with TCP/IP: Client-Server Programming and Applications: Windows
Sockets Version, Volume 3, by D. Comer and D. Stevens, 1997, ISBN: 0138487146.

Internetworking with TCP/IP: Design, Implementation, and Internals, Volume 2, 2nd edition,
by D. Comer and D. Stevens, Douglas, Prentice-Hall, 1994, ISBN: 0131255274.

Internetworking with TCP/IP: Principles, Protocols, and Architecture, Volume 1, by D.
Comer, Prentice Hall, 1991, ISBN: 0134685059.

JavaScript Bible, by D. Goodman and Eich, IDG Books Worldwide, 1998, ISBN:
0764531883.

Learning Perl on Win32 Systems, by R. Schwartz et al., O'Reilly & Associates, ISBN:
1-56592-324-3.

Scaling for E-Business: Technologies, Models, Performance, and Capacity Planning, by D.
Menasce and V. Almeida, Prentice-Hall, 2000, ISBN: 0130863289.

Software Test Automation: Effective Use of Test Execution Tools, by M. Fewster and D.
Graham, ACM Press, 1999, ISBN: 0201331403.

Sql Server 7 Beginner's Guide, by D. Petkovic, McGraw-Hill, 1999, ISBN: 0072118911.

Testing Computer Software, 2nd edition, by C. Kaner et al., VNR/ITP, 1993, ISBN:
1850328471.

Web Resources

Useful Links

www.QACITY.com

An online resource on Web testing and other testing-related subjects hosted by Hung Q.

Nguyen and LogiGear Corporation. www.qacity.com.break

Page 351

Amjad Alhait's BetaSoft Inc.

Hosts QA discussion forums, many QA links, and download directories for automated
testing. www.betasoft.com.

Bret Pettichord's Software Testing Hotlist

A well-organized page offering links to several interesting papers on test automation,
testing-related white papers, and other useful information. www.io.com/~wazmo/qa.html.

Brian Marick's Testing Foundations

A thorough site with lists and descriptions of tools, contractors, training courses, papers,
and essays from Brian Marick, the author of The Craft of Software Testing.
www.testing.com.

Cem Kaner's Web Site

Kaner's site has information on software testing, software quality, and his own work. It
includes several of Cem's papers on quality, software testing, outsourcing, technical
support, and contracts. www.kaner.com/writing.htm.

Elisabeth Hendrickson's Quality Tree Web Site

Offers various papers on automated testing and useful QA-related links.
www.qualitytree.com.

James Bach's Web Site

Offers various useful presentations and articles on software testing. www.satisfice.com.

Kerry Zallar's Software Testing Resources

Includes numerous links and information about test automation.
www.crl.com/~zallar/testing.html.

Rick Hower's Software QA/Test Resource Center

A software-testing and QA-related site that offers a collection of QA FAQs, plus useful
links to QA/Testing organizations and tool vendors.
www.charm.net/~dmg/qatest/index.html.

Software-Engineer.org

A community of software engineers dedicated to free information sharing between software
engineers (i.e., industrials, faculty members, and students). This is a very useful site.
www.software-engineer.org.

STORM

Software Testing Online Resources is hosted by Middle Tennessee State University. A

well-organized site with links to many software testing and QA sites, including directories
of software testers, consultants, and software testing consulting companies.
www.mtsu.edu/~storm/.

Center for Software Development

Established in 1993, the Center for Software Development provides the key resources
software developers need to start and grow the next generation of successful technology
companies. www.center.org/.break

Page 352

Software Productivity Center

Methodology, training, and research center that supports software development in the
Vancouver, British Columbia, area. The SPC is a member-driven technical resource center
that caters to day-to-day problems faced by software development companies.
www.spc.ca/.

Centre for Software Engineering

The Centre for Software Engineering is committed to raising the standards of quality and
productivity within the software development community, both in Ireland and
internationally. www.cse.dcu.ie/.

European Software Institute

An industry organization founded by leading European companies to improve the
competitiveness of the European software industry. Particularly interesting for information
about the Euromethod contracted-software lifecycle and related documents. www.esi.es/.

Software Testing Institute

A membership-funded institute that promotes professionalism in the software test industry.
Includes links to industry resources, including quality publications, industry research, and
online services (Online STI Resource Guide). www.ondaweb.com/sti.

Anybrowser.org

Organization that advocates a nonbrowser-specific World Wide Web.
www.anybrowser.org.

Building a Windows 2000 Test Lab

Includes general considerations for designing and running a test lab to meet the needs of
organizations. www.microsoft.com/technet/win2000/dguide/_chapt4.asp.

CSS2 Selector Support Chart

Lists features of the Cascading Style Sheets 2 standard.
webreview.com/wr/pub/guides/style/css2select.html.

Carnegie Mellon SEI Software Technology Review

Contains papers on many Web-related software technologies. www.sei.cmu.edu/str/.

Counterpane Internet Security, Inc.

Information on Web security and other security-related issues.
www.counterpane.com/about.html.

Cookie Central

A site dedicated to information about cookies. www.cookiecentral.com/.

CNET's ''BROWSERS.COM"

Information, resources, and download page for browsers. www.browsers.com.break

Page 353

DevEdge Online Home Page

Netscape's Web site that's dedicated to developing Web applications.
http://developer.netscape.com/index.htm.

Internet.com Browser Watch Home Page

Source for various versions of different browsers for several platforms.
http://browserwatch.internet.com/.

MSDN

Microsoft's online resource for developers. http://msdn.microsoft.com.

PC Magazine's 1999 Utilities Guide

Comprehensive listing and analysis of system tools.
www.zdnet.com/pcmag/features/utilities99/index.html.

Tech Encyclopedia

A database that offers definitions for various computer-related jargons.
www.techweb.com/encyclopedia.

Whatis.com

A very cool search engine that serves definitions for and links to various technological
terms. www.whatis.com.

ZD Net's Browser Help and How-To Page

Information regarding browser plug-ins, settings, and more.
www.zdnet.com/zdhelp/filters/subfilter/0,7212,6002396,00.html.

webmonkey Home Page-Resource for Web Developers

Extensive how-to resource for Web technologies. http://hotwired.lycos.com/webmonkey/.

webmonkey Brower Reference Chart

Details on what features are supported by which versions of various browsers.
http://hotwired.lycos.com/webmonkey/reference/browser_chart/index.html.

Useful Magazines and Newsletters

Software Testing and Quality Engineering

www.stqemagazine.com.

Software Development

www.sdmagazine.com.

Java Developer's Journal

www.javadevelopersjournal.com.

MSDN News

http://msdn.microsoft.com/voices/newsbreak

Page 354

Miscellaneous Papers on the Web from Carnegie Mellon Software Engineering
Institute

Client/Server Software Architecture—An Overview
www.sei.cmu.edu/str/descriptions/clientserver.html.

Common Object Request Broker Architecture (CORBA)
www.sei.cmu.edu/str/descriptions/corba.html.

Component Object Model (COM), DCOM, and Related Capabilities
www.sei.cmu.edu/str/descriptions/com.html.

Computer System Security—An Overview
www.sei.cmu.edu/str/descriptions/security.html.

Firewalls and Proxies
www.sei.cmu.edu/str/descriptions/firewalls.html.

Java
www.sei.cmu.edu/str/descriptions/java.html.

MiddleWare
www.sei.cmu.edu/str/descriptions/middleware.html.

Multi-Level Secure Database Management Schemes
www.sei.cmu.edu/str/descriptions/mlsdms.html.

Object-Request Broker
www.sei.cmu.edu/str/descriptions/orb.html.

Software Inspections
www.sei.cmu.edu/str/descriptions/inspections.html.

Three-Tier Software Architecture
www.sei.cmu.edu/str/descriptions/threetier.html.

Two-Tier Software Architecture
www.sei.cmu.edu/str/descriptions/twotier.html.

COTS and Open Systems—An Overview
Explains the decisions involved in choosing off-the-shelf software products.
www.sei.cmu.edu/str/descriptions/cots.html#110707.

Professional Societies

American Society for Quality (ASQ)

The ASQ is a society of both individual and organizational members that is dedicated to the
ongoing development of quality concepts, principles, and techniques. The ASQ was founded in
1946 to enable local quality societies in the United States to share information about statistical
quality control in an effort to improve the quality of defense materials. The ASQ has since
grown to more thancontinue

Page 355

130,000 individual and 1000 organizational members. Most of the quality methods now used
throughout the world—including statistical process control, quality cost measurement, total
quality management, and zero defects—were initiated by ASQ members.

This site describes the organization and its activities. It offers information on quality standards,
certification programs (including Certified Software Quality Engineer and Certified Quality
Engineers), and a useful ASQuality Glossary of Terms search engine. www.asq.org/.

Special Interest Group in Software Testing (SIGIST)

Testing branch of the British Computer Society (BCS). www.bcs.org.uk/sigist/index.html.

American National Standards Institute (ANSI)

American National Standards Institute. www.ansi.org/.

The Institute of Electrical and Electronics Engineers (IEEE)

The Institute of Electrical and Electronics Engineers (IEEE) is the world's largest technical
professional society. Founded in 1884 by a handful of practitioners of the new electrical
engineering discipline, today's Institute comprises more than 320,000 members who conduct
and participate in activities around the world. www.ieee.org/.

International Organization for Standardization (ISO)

Describes International Organization for Standardization (ISO) with links to other standards
organizations. www.iso.ch/.

National Standards Systems Network (NSSN)

National Standards Systems Network. Lots of links to standards providers, developers, and
sellers. www.nssn.org/.

Society For Technical Communication (STC)

Society's diverse membership includes writers, editors, illustrators, printers, publishers,
educators, students, engineers, and scientists who are employed in a variety of technological
fields. STC is the largest professional organization serving the technical communication
profession. This site (www.stc.org/) provides many links to research materials on
documentation process and quality, including:

• Links to technical communication conferences

• Links to STC special-interest groups

• Links to technical communication seminars

• Links to educational technical communication–related resources, from indexing to online
help, to usabilitybreak

Page 357

APPENDIX A—
LOGIGEAR TEST PLAN TEMPLATE

Product Name

Test Plan

LG-WI-TPT-HQN-0-01-080500

Date

Copyright © 2000, LogiGear Corporation

All Rights Reserved

W.650.572.1400
F.650.572.2822

E-mail: info@logigear.com

www.logigear.com

Contents

Overview 361

Test Plan Identifier 361

Introduction 361

Objective 361

Approach 361

Testing Synopsis 362

Test Items 362

Software Application Items 362

Page 358

Main Application Executables 362

Installer/Uninstaller 362

Utilities/Tool Kits 362

Online Help 362

Software Collateral Items 362

Font 362

Clip Art 362

Related Multimedia Items 362

Sample/Tutorial 362

Readme 362

Others 362

Publishing Items 362

Publishing Items 362

Reference/User Guide 362

CD/Disk Label 362

Packaging 362

Marketing/Product Fact Sheet/Advertising Blurb 362

Features to Be Tested 363

Features Not to Be Tested 363

System Requirements 363

Product Entrance/Exit 363

Standard/Reference 364

Test Deliverables 364

Test Plan 364

The Original Approved Development Test Plan 364

The Executed Development Test Plan 364

The Original Approved Final Test Plan 364

The Executed Final Test Plan 364

Bug Tracking System 364

Bug Reports 364

Bug Database 364

Final Release Report 365

Page 359

Testing Project Management 365

The Product Team 365

The Product Team 365

Testing Responsibilities 365

Testing Tasks 365

Development Plan and Schedule 365

Milestone Entrance/Exit Criteria 365

Test Schedule and Resource 366

Schedule 366

Resource Estimate 366

Training Needs 366

Environmental Needs 366

Test Components 366

Test Tools 366

Facilities 366

Integration Plan 366

Test Suspension & Resumption 367

Test Completion Criteria 367

The Problem Tracking Process 367

The Process 367

The Bug Tracking Tool (database) 367

Definition of Bug Severity 367

1—Critical 367

2—Serious 367

3—Noncritical 368

Status Tracking & Reporting 368

Status Tracking & Reporting 368

Risks & Contingencies 368

The Approval Process 368

Test Plan Approval 368

Final Release Approval 368

Appendix I: Setup/Installation Test Case 369

Table 1.1 Functional Test: The Installer Executable 369

Table 1.2 Functional Test: XXX 369

Page 360

Appendix II: Test Case for Application Shell 370

Table 2.1 FAST: XXX 370

Table 2.2 FAST: 370

Appendix III: Test Matrix for XXXXX 371

Table 3.1 Task-Oriented Functional Test 371

Appendix IV: Compatibility Test Systems 371

Page 361

Product Name

Test Plan

Author Name Version 1.0

I—
Overview

1—
Test Plan Identifier

[LG]-[client's init]-[project's init]-[author's init]-[phase#][serial#]-[dist. date]

Example:

LG-WI-TPT-HQN-0-01-080500

LG LogiGear Corporation

WI Widget Inc.

TPT Test Plan Template project

HQN Hung Q. Nguyen

0 0 = Development Phase; 1 = Final Phase

01 The first distributed draft

080500 Distributed date: August 5, 2000

2—
Introduction

An introduction of the overall project

3—
Objective

What we strive to accomplish, taking the following factors into account: quality, schedule, and
cost

4—
Approach

The overall testing strategy to satisfy the testing objectivesbreak

Page 362

II—
Testing Synopsis

1—
Test Items

Deliverable products or applications to be tested

1.1—
Software Application Items

1.1.1. Main Application Executables

1.1.2. Installer/Uninstaller

1.1.3. Utilities/Tool Kits

1.1.4. Online Help

1.2—
Software Collateral Items

1.2.1. Font

1.2.2. Clip Art

1.2.3. Related Multimedia Items

1.2.4. Sample/Tutorial

1.2.5. Readme

1.2.7. Others

1.3—
Publishing Items

1.3.1. Reference/User Guide

1.3.2. CD/Disk Label

1.3.3. Packaging

1.3.4. Marketing/Product Fact Sheet/Advertising Blurbbreak

Page 363

2—
Features to Be Tested

List of features to be tested. The list may include the environment to be tested under.

3—
Features Not to Be Tested

List of features that will not be covered in this test plan

4—
System Requirements

SERVER HARDWARE AND SOFTWARE CONFIGURATION REQUIREMENTS

• Pentium® PC (Pentium II or higher recommended)

• 128Mb RAM

• 100Mb of free disk space

• Microsoft® Windows NT Server 4.0 with Latest Service Pack or Windows 2000 Server

• Microsoft® Internet Information Server 4.0 or higher

• Microsoft® SQL Server 7.0 with Service Pack

CLIENT REQUIREMENTS

• An active LAN or Internet connection

• Microsoft® Internet Explorer 4.x or higher

• Netscape® Navigator 4.x

MICROSOFT® INTERNET INFORMATION SERVER

• Microsoft® IIS 5 is bundled as part of the Windows 2000 Server and Windows 2000
Advanced Server Operating Systems.

• Microsoft® IIS 4 is available, free of charge, as part of the Windows NT 4.0 Option Pack.

DATABASE SUPPORT

• Microsoft® SQL Server 7.0

SUPPORTED BROWSERS

• Supports clients using Microsoft® Internet Explorer 4.x or higher, or Netscape® Navigator
4.x on any hardware platform

[The software and hardware requirements to run the application. Normally, this information is
found in the product specification or user manual. See the preceding example.]

5—
Product Entrance/Exit

Describe the milestone/acceptance criteria.break

Page 364

6—
Standard/Reference

• IEEE Standard for Software Test Documentation (ANSI/IEEE std 829-1983).

• Kaner et al. Testing Computer Software, 2nd edition. New York: Wiley, 1993.

• LogiGear Corporation Test Plan Template.

• XXXX 3.0 Test Matrix.

[List of any standards, references used in the creation of this test plan. See the preceding
example.]

7—
Test Deliverables

List of test materials developed by the test group during the test cycle to be delivered upon the
completion of this project.

7.1—
Test Plan

7.1.1—
The Original Approved Development Test Plan

Essentially, this complete document with appropriate approvals

7.1.2—
The Executed Development Test Plan

Test-case tables, matrices, and other test-related materials (as part of this test plan) with
appropriate check marking as verification of test completion.

7.1.3—
The Original Approved Final Test Plan

Usually, the final test plan is a scaled-down version of the development test plan. This plan is
produced and used in the final testing cycle. Appropriate approvals should also be included.

7.1.4—
The Executed Final Test Plan

Test-case tables, matrices, and other test-related materials (as part of the final test plan) with
appropriate check marking as verification of test completion.

7.2—
Bug Tracking System

7.2.1—
Bug Reports

• Summary list of all bugs found

• Full description copies of all bugs found

7.2.2—
Bug Database

A soft copy of the bugbase containing all bugs found during the testing cycles, including
paper-form reports.break

Page 365

7.3—
Final Release Report

The Final Release Report should be submitted prior to the release of this project. This report is
a quality assessment document that describes the scope of the testing project, testing
completeness, test results focused primarily on the areas of concern, and release
recommendation (for or against).

III—
Testing Project Management

1—
The Product Team

List of product team members and their roles

2—
Testing Responsibilities

Who will lead up the testing efforts? Other people resource and responsibilities.

3—
Testing Tasks

• Develop test plans including test cases, matrices, schedule, etc.

• Conduct test-plan reviews and obtain appropriate approvals.

• Procure hardware/software/tools required.

• Create bug database.

• Perform tests.

• Report bugs.

• Conduct bug deferral meeting.

• Produce weekly status report.

• Produce final release report.

4—
Development Plan and Schedule

What is to be delivered for testing. Schedule—When the preceding items will be delivered.

5—
Milestone Entrance/Exit Criteria

Milestone definitions, descriptions, and measurable criteriabreak

Page 366

6—
Test Schedule and Resource

6.1—
Schedule

Testing task grouping—List of task groups and their descriptions. Preliminary schedule
matched with resource needs and test tasks.

6.2—
Resource Estimate

Estimates of people resource required for completing the project.

7—
Training Needs

Identify training needs.

8—
Environmental Needs

8.1—
Test Components

List of all software and hardware resources needed to complete the project. Resources
availability and strategies to acquire them.

• Hardware

• Software

• Online account

8.2—
Test Tools

• Off-the-shelf tools

• In-house tools

• Tools to be developed

8.3—
Facilities

All testing will be done at [Company Name's] lab. If there are needs to outsource some of the
testing tasks, we'll update this plan accordingly.

9—

Integration Plan

Is there an integration plan? If yes, how it would fit in the testing strategy?break

Page 367

10—
Test Suspension & Resumption

When should testing be suspended? When should a suspended testing process be resumed?

11—
Test Completion Criteria

When should testing stop?

12—
The Problem Tracking Process

12.1—
The Process

Describe the bug tracking process.

12.2—
The Bug Tracking Tool (database)

Describe the bug tracking tool.

12.3—
Definition of Bug Severity

Bug severity is a subjective method used by reporters to grade the severity level of each report.
Following are guidelines for grading bug severity.

12.3.1. 1—
Critical

Severity 1—Critical (show-stopper) bugs are those that result in loss of key functionality,
usability, and performance of a product in normal operation; there is no work-around solution
available. These also include nonprogrammatic bugs such as an obviously embarrassing
misspell of a product or company name in the splash screen, wrong video clip in the intro
screen, erroneous instructions for a frequently used feature, and so on. Following are a few
sample categories:

• Crash or core dump

• Data loss or corruption

• Failure of key feature

12.3.2. 2—

Serious

Severity 2—Serious bugs include key features that don't function under certain conditions or
nonkey features that don't function at all, degradation of functionality or performance in normal
operation, difficult-to-use key features, and so on. Usually, these bugs should be fixed during
the normal development cycles. Only during the final testing phase, these bugs might be
carefully assessed and perhaps considered defer as appropriate.break

Page 368

12.3.3. 3—
Noncritical

Severity 3—Noncritical bugs are those that represent some inconvenience to the user but
perhaps don't happen frequently. These include minor display/redraw problems, poorly
worded error messages, minor design issues, and the like. Usually, these bugs should be fixed
provided time permitting or minimum efforts required by the programming team. Keep in mind
that if many Severity 3 Noncritical bugs get deferred, there will be a definite
quality-degradation effect to the product.

13—
Status Tracking & Reporting

In what form will the status be reported?

What is the reporting frequency?

What types of information will be reported?

14—
Risks & Contingencies

Risks and possible adjustments to the plan

15—
The Approval Process

15.1—
Test Plan Approval

How is the test plan approved?

15.2—
Final Release Approval

What is the approval process for releasing the tested product?break

Page 369

Appendix I—
Setup/Installation Test Case

Table A1.1 Functional Test: The Installer Executable

ID CAT. TEST PROCEDURE EXPECTED RESULT
P/
F COMMENTS

N

P

N

P

P

P

S

N

P

N

Table A1.2 Functional Test: XXX

ID CAT. TEST PROCEDURE EXPECTED RESULT
P/
F COMMENTS

P

P

P

P

P

N

P

P

P

Page 370

Appendix II—
Test Case for Application Shell

Table A2.1 Fast: XXX

ID CAT. TEST PROCEDURE EXPECTED RESULT
P/
F COMMENTS

P

N

P

N

P

P

P

P

P

P

Table A2.2 Fast:

ID CAT. TEST PROCEDURE EXPECTED RESULT
P/
F COMMENTS

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Page 371

Appendix III—
Test Matrix for XXXXX

Table A3.1 Tast-Oriented Functional Test

ID CAT. TEST PROCEDURE EXPECTED RESULT
P/
F COMMENTS

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Appendix IV—
Compatibility Test Systems

• Acer Altos 330 Intel® Pentium® II Processor, 300MHz, 512KB 4.3GB Ultrawide 64MB
ECC SDRAM 32X

∗ Compaq Proliant 1600R Intel® Pentium® III Processor, 550MHz, 128MB RAM

• Hewlett-Packard 9780C Minitower, AMD Athlon Processor 900MHz, 128MB RAM, 60
GIG Hard Drive, DVD, CD-ROM

• Hewlett-Packard Netserver LH4 Intel® Pentium® III Processor, 550MHz, 512K

• IBM 300GL P3 733 128MB 20.4GB 48X SDRAM 32MB AGP4 256KB NT

• IBM 300PL P3 733 20.4GB 128MB 48X 16MB ENET SND 98 256KBbreak

Page 372

APPENDIX B—
WEEKLY STATUS REPORT TEMPLATE

Product Name Status Report

Report No. 23

Week Ending Month XX, 200X

Author
Month XX, 200Xbreak

I—
Testing Project Management

1—
Project schedule.

DEVELOPMENT
MILESTONE DATE

TESTING*
MILESTONE DATE

Pre-alpha xx/xx/xx Test plan 1st draft delivered
Test plan 2nd draft delivered
Test plan completed/approved

xx/xx/xx
xx/xx/xx
xx/xx/xx

Alpha xx/xx/xx Begin alpha test phase xx/xx/xx

Beta xx/xx/xx Begin beta test phase xx/xx/xx

Release candidate xx/xx/xx Begin final test phase* xx/xx/xx

Golden master xx/xx/xx Testing completed xx/xx/xx

Italicized milestones are completed milestones.
*Also see the detail test schedule in the test plan.
Assuming the release candidate is accepted.

Page 373

2—
Progress and Changes Since Last Week

• Completed Install/Uninstall tests.

• Completed configuration/compatibility tests.

• Regressed all outstanding fixed bugs.

• Completed testing the online help system.

• Reported 16 new bugs.

3—
Urgent Items

• LogiGear Testing group still has not received the xxxxx and xxxxx to be included with the
product. The missing items might cause a schedule delay of the release candidate.

• It has been 3 weeks, the majority of memory bugs are still unfixed. This is a very high risk
issue. This might cause a delay in the shipping schedule.

4—
Issue Bin

Nonurgent issues to be addressed in the next week or so park here.

5—
To-Do Tasks by Next Report

• Complete regressing all fixed bugs.

• Deliver final test plan for review and approval.

• Review executed test plans to verify testing completeness.

• Complete all procedures in preparation of final testing phase.

• Perform acceptance test for the release candidate.break

II—
Problem Report Status

1—
Bug report tabulation

LAST WEEK THIS WEEK

Bugs Found & Reported 15 9

Page 374

Bugs found this week = Total bugs this week – Total bugs last week

STATUS LAST WEEK THIS WEEK

New 15 9

Open 183 149

Total new and open 198 158

Resolved 65 98

Closed 152 275

Total resolved and closed 317 373

Grand Total 515 531

2—
Summary List of Open Bugs

Summary lines of open bug reports.

III—
Trend Analysis Report

Stability Trend Chart

This line chart Figure B.1 shows the curves of the total number of bug reports and its
breakdowns in term of [open + new] and [closed + resolved] status. As the [closed + resolved]
curve rises and the [open + new] curve drops, they will eventually intersect. This intersection

indicates the beginning of the maturity phase. Ultimately, at the time the product is ready for
release, the [closed + resolved] curve will meet the Total Bug Reports curve and the [open +
new] curve will drop to zero. Observing the progressing trend from the beginning of the
maturity point onward will give you reasonable predictability of the schedule.

For definitions of open, new, closed, and resolved, see the section entitled ''Problem Report
Status."

Quality Trend Chart

Valid bugs may be resolved by either fixing or deferring them. A high number of closed (fixed)
bugs and a low number of deferred bugs indicate that the quality levelcontinue

Page 375

Figure B.1
Stability Trend Chart.

Figure B.2
Quality Trend Chart.

Page 376

is high. The Quality Trend Chart (shown in Figure B.2) includes the cumulative curves of Total
Bug Reports, [closed + resolved] bugs, closed (fixed) and deferred bugs. Similar to the
Stability Trend Chart, [closed + resolved] and Total Bug Reports curves in this chart will
eventually intersect when the product is ready for release. Observing the progressing trend of
the fixed and deferred curves relative to the closed curve will give you reasonable quality
interpretation of the tested product.break

Page 377

APPENDIX C—
ERROR ANALYSIS CHECKLIST—WEB ERROR
EXAMPLES

Check for the Existence of DNS Entry

Symptoms

No response when clicking on certain links. This only happens when you are outside of the
intranet.

Possible Problems

This symptom may be caused by a number of problems. The most common is that the server
cannot be found due to a missing DNS entry rather than coding error.

Examples

When you are outside of the intranet and click on the QA Training or TRACKGEAR button in
the page illustrated in Figure C.1, the browser appears to hang or you don't get any response
from the server. However, when you report the problem, your developer who accesses the
same links could not reproduce it.

One of the possible problems is the DNS entry for the server in the links is only available in
the DNS server on the intranet and is not known to the outside world.break

Page 378

Figure C.1

Tips

1. Use the View Source menu command to inspect the HTML source.

2. Look for the information that's relevant to the links.

In this example, you will find that clicking on the QA Training and the TRACKGEAR button
will result in requests to the server authorize in the qacity.com domain.

• • •
<td>
<map name=01b238de91a99ed9>
<area shape=rect coords="0,0,88,20"
href=https://authorize.qacity.com/training-login.asp?>
<area shape=rect coords="0,20,88,40"
href=https://authorize.qacity.com/trackgear-login.asp?>
• • •
• • •
</td>
• • •

3. Try to ping authorize.qacity.com to see if it can be pinged.

4. If the server cannot be pinged, tell your developer or IS staff so the problem can be
resolved.break

Page 379

Check for Proper Configuration of the Client Machine and Browser
Settings

Symptoms

Cannot get response from a server after entering a URL.

Possible Problems

This symptom may be caused by a number of problems. The two most common problems are:

1. The client machine is not properly configured to connect to the network.

2. One or more browser settings are not properly configured.

Examples

• Your machine is not connected to the network. Therefore, there is no TCP/IP connection for
your browser to be served.

• Your browser is configured to use proxy server. However, the address of the proxy server in
your browser settings is invalid (see Figure C.2) or the proxy server is not accessible.
Therefore, the browser can't be served.break

Figure C.2

Page 380

Tips

To check your network connection on a Windows machine:

1. Run IPCONFIG or WINIPCFG to obtain the default gateway IP and the default DNS IP
address.

2. Ping the default gateway machine to ensure that your machine is properly connected with it.

3. Ping the DNS server to see if it can be found from your machine.

4. Ping one of the known servers on the Internet to ensure that your machine can access a server
outside of your LAN.

To check your browser settings to ensure accessibility:

• Pick a couple of intranet pages on a remote server and try to access those pages to test your
browser accessibility within the LAN.

• Pick a couple of popular nonrestricted Web sites and go there when you need to test your
browser accessibility. I normally use www.cnn.com and www.cnet.com.

• Identify if the proxy server is used. If yes, try to ping the proxy server to ensure it can be
found.

• Check the security settings to ensure that the site you are trying to get to is not part of the
restricted sites.

Check the HTTP Settings on the Browser

Symptoms

Cannot connect to certain Web servers.

Possible Problems

This symptom may be caused by a number of problems. One possible issue is the browser is
having difficulties connecting to server that can only support HTTP 1.0 through proxy server.

Examples

If your Web server only supports HTTP 1.0 by using proxy server and your browser is
configured to only use HTTP 1.1, the communication between the browser and the Web server
will not work. See Figure C.3.break

Page 381

Figure C.3

Tips

• Try to connect to the server with the HTTP 1.1 boxes cleared to see if the problem reoccurs.

• Verify that server can support HTTP 1.1.

Check the JIT Compiler–Enabled Setting on the Browser

Symptoms

Java applet works properly on one browser but not on another, although both browsers are on
the same platform, produced by the same vendor, and their release versions are identical.

Possible Problems

This symptom may be caused by a number of problems. One possible issue is that the Java JIT
(Just-In-Time) compiler enable option is checked. See Figure C.4.break

Figure C.4

Page 382

Examples

If a Java JIT compiler is incompatible with a Java applet, having the compiler setting turned on
may prevent the Java applet from operating successfully. On the browser that has this option
cleared, the Java applet works correctly.

Tips

Before reporting an error, check the Java JIT compiler setting on both browsers to see if they
are different.

Check the Multimedia Settings on the Browser

Symptoms

Unable to play animations, sounds, and videos, or display pictures properly on one browser,
but able to do so on another, although both browsers are on the same platform, produced by the
same vendor, and their release versions are identical.

Possible Problems

This symptom may be caused by a number of problems. The most common problem is that the
multimedia options are not checked to enable multimedia contents to be played in the browser.

Examples

If the "Show pictures" check box is cleared as illustrated in Figure C.5, the graphics will not
display in the browser as shown in the next screen shot.

Tips

Before filing a bug report related to the execution or display of multimedia contents, check the
multimedia settings to see if they are properly enabled.

Check the Security Settings on the Browser

Symptoms

Unable to process purchase transactions or connect in secured mode (HTTPS).break

Page 383

Figure C.5

Possible Problems

This symptom may be caused by a number of problems. One common issue is that the supported
version of the security protocol by the server is not enabled on the server side.

Examples

If your server only supports encryption through SSL 2.0 protocol, but the SSL 2.0 security on
the browser side is cleared, the browser will not be able to connect to the Web server through
HTTPS. See Figure C.6.break

Page 384

Figure C.6

Tips

Before filing a bug report related to public/private encryption, check the security options to
ensure that they are configured properly.

Check for a Slow Connection

Symptoms

Login fails to authenticate with certain types of connection.

Possible Problems

This symptom may be caused by a number of problems. One common issue is that you might
have a slow connection that causes a time-out in the login or authentication process.break

Page 385

Examples

With certain types of connections, such as dial-up, it may take too long (longer than the script
time-out value) for the client-server to send/receive packets of data, the script will eventually
time-out, causing the login or authentication process to fail. The problem could not be
reproduced when your developer tries to do so on an intranet or a LAN connection.

Tips

• Use an alternate dial-up configuration (RAS, a different ISP, or a different modem) with the
same bandwidth to see if the problem is reproducible. This process helps you eliminate the
configuration dependency (other than a slow connection) theories.

• Connect with a slower connection to see if the problem reproduces. If yes, than the slow
connection theory can be further validated.

• Connect with a faster connection to see if the problem reproduces. If no, then the slow
connection theory can be further validated.

Check for Proper Configuration on the Web Server

Symptoms

Unable to access certain pages (on certain servers).

Possible Problems

This symptom may be caused by a number of reasons. One of the possible issues is the
application server has not been configured to allow running scripts or executables.

Examples

When you click on certain links or buttons on a Web page from your ''TEST" server, you get the
error message shown in Figure C.7. When your developer tries the same links or buttons on
another serve such as "DEVELOPMENT" server, the problem does not reproduce. On an IIS
server, this may mean that the "TEST" server is not configured to allow running scripts or
executables. For example, the screen-shot in Figure C.8a shows the Execute Permissions
setting on the "TEST" server for myApp configured to None, and the next screen shot (Figure
C.8b) shows the Execute Permissions setting on the "DEVELOPMENT" server configured to
Scripts and Executables.break

Page 386

Figure C.7

Tips

1. Identify the server names by examining the URL or the HTML source.

2. Once the servers are identified, examine the settings on both servers to identify any
discrepancies.

Note: Is this a software error? It depends. If the documentation instructs the system
administrator to configure the Web server properly but it was not done, then it's a user error,
not a software error. On the other hand, if the installer is supposed to configure the Web server
programmatically but failed to do so, then it's a software error.

Check for the Deletion of Your Browser Cache (Temporary Internet Files)

Symptoms

The recent fixed bug appears to be fixed on your developer's browser but not on yours,
although both browsers are from the same publisher with identical release version.

Possible Problems

This symptom may be caused by a number of problems. The possible reason is that the data is
still cached memory on the browser side.break

Page 387

Figure C.8
(a). (b).

Page 388

Examples

You report a bug. Your developer immediately fixed it and asked you to regression-test the fix.
You execute the test script and discover the problem is still not fixed, although the fix has been

validated on your developer's browser.

Tips

Delete your browser cache and try reexecuting your regression test.break

Page 389

APPENDIX D—
UI TEST-CASE DESIGN GUIDELINE:
COMMON KEYBOARD NAVIGATION AND SHORTCUT
MATRIX

Page 390

APPENDIX E—

UI TEST-CASE DESIGN GUIDELINE:
MOUSE ACTION MATRIX

Page 391

APPENDIX F—
WEB TEST-CASE DESIGN GUIDELINE:
INPUT BOUNDARY AND VALIDATION MATRIX I

Page 392

Web Test-Case Design Guideline:
Input Boundary and Validation Matrix IIbreak

Page 393

APPENDIX G—
DISPLAY COMPATIBILITY TEST MATRIX

Page 394

APPENDIX H—
BROWSER OS CONFIGURATION MATRIX

Page 395

INDEX

A

Acceptance testing, 36–41

Access security, 27

Accountability, and test documentation, 117

Action commands, 169, 188

Active Server Page (ASP), 99–100, 104

ActiveX controls, 102, 164–165

for help system creation, 231

as security holes, 288

ActiveX Data Objects (ADO), 204–206

Address Resolution Protocol (ARP), 66

Ad hoc testing, 194

Aggregate response time, 316, 332

Allaire Homesite, 339

Alpha development phase, 47

American National Standards Institute (ANSI), 355

American Society for Quality, 354–355

Analog, 320

ANSI/IEEE Standard 829–1983 for Software Test Documentation, 118

Applets, 88–90, 102, 163–164, 269

Application directory, 271

Application-help systems, 228, 238

Application layer, 64–65

Application model, 12–14

Application operating environment, 243

static versus dynamic, 35–36

Application program interfaces (APIs), 91

Applications:

business logic rules for, 13

service components, 91

setup options for, 245

test partitioning based on, 109

Application servers, 13–14, 97, 258

Application services, 111

Application-specific test conditions, 35

AR GREENHOUSE, 56

ASP scripts, 99, 130–131

Asymmetric Digital Subscriber Line (ADSL), 62

Attachments, uploading, 124

Authentication, 292

client-server, 294

time-outs during, 68, 384–385

Authorization, 292

testing, 306–307

Automated testing, 126, 141

B

Backbones, high-speed, 58

Back button, 178

Back end, 86

Back-end servers, 27

Bandwidth:

conversion chart, 328

for online transaction loads, 325

Beta development phase, 47

Binary-based components, 92

Binary notation, 72–73

B-ISDN, 61

Black-box testing, 6, 218–223

Bobby Web site, 339

Borders, testing, 177

Bottlenecks, 332

Boundary tests, 42, 144, 193, 195

Boundary values, 49–50

Bret Pettichord's Software Testing Hotlist, 347

Brian Marick's Corner, 270

Bridges, 62

Browser-based applications, 18–19, 22

Browser interface, 22

Browsers, 101–102, 279

cache of, deleting, 386–388

configuration matrix, 394

embedded, compatibility of, 80

event handling by, 176, 178

HTTP settings, checking, 380–381

Java bytecode interpreters in, 163

Java JIT compiler enable setting, 381–382

JVM compatibility issues, 90

multimedia settings, 382

multiple instances of, 20

platform-specificity of, 18

security settings, 301–305, 382–384

testing, 278–280, 379–380

as UI, 13

Buffer overflow bug, 287, 290

Bug reports, 373–374

Bugs, 26, 41, 286, 287

Bug tracking, 5

Build acceptance tests, 37

Builds, 124, 185

Business logic code, 87

Business logic rules, 13

Business service components, 87

C

Cable connection services, 62

Caching, 100, 224

by browsers, 386–388

Canceling commands, 170

Capability Maturity Model (CMM), 8

Cascading style sheets (CSS), 166, 282

C/C++, rule-based analyzers for, 339–340

CD-ROM, installing applications from, 251

CERT/CC Web site, 301

Certificate authorities, 293

Certificates, 292–293

browser security settings for, 303–304

CGI, 97–99

CGI scripts, 97–98

Channel service unit/data service unit (CSU/DSU), 62

Chart generation, example of, 103

Check boxes, 159–160

Checksums, 64

Client-server systems, 13–14, 17, 87, 294

Client side:

application service components, 91, 101–102

compatibility testing, 273, 278

configuration testing, 273, 278, 379–380break

Page 396

(Continued)

Client side

online transactions on, 317–318

users of, 152–153

Closed-fixed regression cycle, 44

Code walk-throughs, 86

for database code, 210–213

errors with, 211–213

Collateral item tests, 45

Color depth, 178

Colors, testing, 177

Combinatorial method, 54–56

Command buttons, 159

Commercial-off-the-shelf (COTS) products, 272

Common Gateway Interface. See CGI

Communication components, 102

Communication-related servers, 101

Compatibility and configuration testing, 44–45

Compatibility testing, 281. See also Compatibility and configuration testing

versus configuration testing, 270

for installations, 281–282

for software, 281

Completion times, estimating, 120–121, 141–144

Component-based programming, reusability of, 26

Components:

ActiveX controls, 164

definition of, 90

interoperability of, 6

sharing, 26

storage and execution of, 27–28

test partitioning based on, 109

of Web system client side, 273, 278

Component testing, 91

Compuware BoundsChecker, 345

Compuware Numega CodeReview, 339–340

Concurrent connections, 327

Condition combinations, 54

Configuration, baseline, 327

Configuration and compatibility testing, 266. See also Compatibility testing; Configuration
testing

application market, analyzing, 267

for browsers, 282–283

client-side, 266–267

completion time estimates, 143

COTS products versus hosted systems, 272

network devices and connectivity, 267

outsourcing, 270

procedure, 267–269

resources for, 141

scheduling of, 269–270

server-side, 266

software analysis, 268

test cases for, 267

Configuration testing, 124. See also Configuration and compatibility testing

client-side, 271–272, 379–380

versus compatibility testing, 270

for COTS products, 281

server-side, 271, 280–281

for Web servers, 385–386

Confirming commands, 170

Connectionless protocols, 65

Connection-oriented protocols, 65

Connections:

direct, 61–62, 68

slow, 68, 223, 384–385

testing, 67–71, 81, 382

Connectivity:

Internet, 61–62

Web to database, 97–100

Connectivity devices:

compatibility testing, 71–72

for LANs, 62–63

Connect time, 326

Containers, 92–93

Content:

browser settings for, 304

dynamic, 99

Context-sensitive help, 228

Context-specific errors, 7

Cookies, 288, 303

Core functionality testing, 34

Cryptography, 292–293

CSS Validator, 166

D

Data access, 27

Data access service code, 87

Data analysis:

of performance statistics, 333

with testing tools, 330

Database activities, 208

Database extensions, 201

Database query errors, 173

Database rollback logic, 224

Databases, 198–200

back-end, 223

configuration management processes, 221

connection with Web servers, 97–100

and connectivity-testing, 104–105

data integrity, 207

external interfacing, 217

Database servers, 13–14, 91, 97, 257

security testing, 307

Database testing, 206–225

black-box methods, 218–223

code walk-throughs, 210–213

completion time estimates, 144

considerations in, 223–225

at interaction points, 207

preparing for, 220–221

SQL statement execution, 213

stored procedure execution, 213–217

white-box methods, 210–217

Data collection, with testing tools, 330

Data errors, 173

Data import test completion time estimates, 142

Data input methods, 159–173

dynamic UI controls, 161–167

UI controls, 159–161

Data integrity, 207–208, 294

Data link layer, 66

Data marts, 198

Data presentation errors, 173–174

Data records, manipulating, 200

Data service components, 87

Data size conversion chart, 328

Data source name (DSN), 222–223

Data storage, 87

Data updates, 168

Data warehouses, 198–199

DBMS Online Buyer's Guide Testing and Software Quality, 348

Defaults, 201, 203, 221

Denial-of-service attacks, 289

Dependencies, testing, 110

Deployment acceptance tests, 41

Development acceptance tests, 37

Development schedules, 6–8

Dialer compatibility testing, 70–71

Dialog box conventions, 262

Dial-up connections, 61, 68–69

login timeouts, 385

proprietary ISP strings, 80

Dial-up protocols, 70–71

Digital certificates, 292–293

Digital subscriber line (DSL), 62

Direct connections, 61–62, 68

Directories, permissions for, 225

Disk space for databases, 225

Display compatibility test matrix, 393

Distributed application architecture, 86–90

Distributed databases, 198

Distributed server configurations, 25, 273–277break

Page 397

DLLs, 24, 93–96, 111

installation errors, 244, 263

missing objects, 271

testing issues, 104, 110–111

DMZ, 297–298

DNS, 74–75

missing entries, 76–77, 377–378

testing, 79–81

Documentation, testing, 34

issue reports, 123–125

of test plans, 116–117

weekly status reports, 125–126, 372–376

Documentation tests, 45, 143

Domain names, 74

Domain Name System. See DNS

Dotted decimal notation, 73

Dr. Watson Web site, 339

DS connection services, 61–62

Dumb terminals, 12

DVD-ROM, installing applications from, 251

Dynamic analyzers, 343–345

Dynamic content, 99

of help systems, 233–234

Dynamic Host Configuration Protocol (DHCP), 65

Dynamic link libraries. See DLLs

Dynamic operating environments, 35–36

Dynamic user interface controls, 161–167

E

E-commerce servers, 101

E-commerce sites:

lost-revenue analysis, 314–315

reliability of, 316

security for, 290–291, 298–300

E-commerce transactions, 298–300, 313–318, 320–324

E-mail address components, 74

E-mail messages, 67–68, 293

Embedded SQL (ESQL), 204

Encryption, 292

Environmental conditions, 239

Environment-independent errors, reproducing, 41

Environment-specific errors, 270

reproducing, 41

Environment-specific test conditions, 35

Envive Prophecy, 341

Equivalence class analysis, 268–269

Equivalence class partitioning, 48–51

Error detection, 190–191

Error handling, 190–193

bugs in, 304–305

client-side, 171

testing, 104

Error messages, 170–173, 191

Errors:

communication of, 191–192

in database activities, 207–210

environment-specific, 270

in feedback and error messaging, 172–173

forcing, 190, 193

in help systems, 236–238

in installation programs, 243–244, 261

misinterpretation, 262

recovery from, 190–191

and UI, 167, 188

in uninstaller programs, 245

E-tailers, 316

Ethernet networks, 59

Event-driven applications, testing, 18

Event handling, 18–19

browser-side, 176, 178

Event logging, 24

Events, 18, 91. See also Errors

Explicit submission model, 19

Exploratory testing, 43, 193–195

completion time estimates, 143

External beta testing, 46

External interfacing, 217

F

Failed requests per second, 326

Failed transactions per second, 326

Feature regression cycle, 44

Features, testing, 41–47, 188–189

Features lists, 117, 189

Feedback, consistency of, 170–173

File Compare, 258

File Transfer Protocol (FTP), 65

Final test, 48

Firewalls, 100, 292, 295–301

Flat-file databases, 27

Floppy disks, installing applications from, 251

Fonts, testing, 177

Font size, 178

Forced-error tests (FETs), 42, 143, 190–194

Form elements, 159

Frames, testing, 177

Front end, 86

Functional acceptance simple tests (FASTs), 37–38, 41, 115, 142, 185–188

Functional testing, 176–178, 183–184

boundary condition tests, 193

exploratory testing, 193–195

FASTs, 185–188

forced-error tests, 190–193

of install/uninstall programs, 260

method selection, 196

TOFTs, 188–189

Functions, testing, 188–189

G

Gateways, 63, 297

Glass-box testing, 6

Golden master, 48

Golden master candidate (GMC) phase, 47

Graphical user interfaces (GUIs), 16

capture and playback tools, 342–343

Graphics, 160

Gray-box testing, 3, 6–7

H

Hacker attacks, 289–290

Hackers, 287

Hard disk, installing applications from, 251

Hardware:

for Internet connection, 62

load and stress testing, 329

Hardware dependencies, 80

Helper applications, 102

Help systems:

analysis of, 228–234

authoring tools, 229–231

contents tab, 231–232

design of, 229

dynamic content, 233–234

environmental-condition testing, 239

errors with, 236–238

online versus printed, 239

target user profiling, 229

technology errors, 238

types of, 228–229

UI design, 236

usability of, 237

Help testing, 227–239

considerations in, 238–239

interaction with application, 236

sample application, 235

stand-alone, 236

two-tiered, 236

High-level partitioning, 108

Homegrown testing tools, 330

Host names, testing, 79–81

Host numbers, 73

HTML, 18, 164

for help system authoring, 229–230break

Page 398

HTML code:

browser use of, 102

for UI controls, 161–162

HTML comments, SSIs in, 165

HTML validators, 338–339

HTTPS, 293–294, 380–381

Hubs, 62–63

HyperText Markup Language. See HTML

HyperText Transfer Protocol (HTTP), 65

browser settings for, 380–381

I

Icons, 160

Images:

and HTML controls, 161

testing, 177

InControl2, 258

InControl3 and InControl4, 256

Information gathering, 140–145

completion time, 141–144

resource estimates, 145

scheduling tasks, 144–145

testing-task definition, 140–141

Input/output (I/O) validations, 219

validation matrix, 391–392

Input values, extreme, 42

INSERT command, 201

Installation programs:

branching options, 251–252

bugs in, 242

errors of, 243–244, 261–263

functions of, 243

media type considerations, 251

misinterpretation of collected information, 262

roles of, 242–245

UI testing, 261–262

user setup options, 245–246

Installations:

compatibility testing, 281–282

server-side, 246–255, 257–258

Install/uninstall testing, 45, 253–263

completion time estimates, 142

considerations in, 259–260

of setup options, 246

utilities for, 255–258

Instances, multiple, 19–20

Institute of Electrical and Electronics Engineers (IEEE), 355

Integrated application components, 92–93

Integrated Services Digital Network (ISDN), 61

International Organization for Standardization (ISO), 8, 355

Internet, 58–59

bug fixes/updates on, 5

installing applications from, 251

and networks, 100

software distribution over, 5

Internet Explorer:

ActiveX control support, 102

error-handling bug, 304–305

and Netscape Navigator, compatibility issues, 38–39, 280

security settings, 302

Internet layer, 66

Internet Protocol (IP), 64, 66

Internet service providers (ISPs), 58–59

Interoperability, 6, 28

Intranets, 60

IP addresses, 72–75

Ipconfig utility, 81

IP envelopes, 64

IPSec, 293

ISO-9000, 8

Issue-fixing cycle, regression testing during, 44

Issue reports, 123–125

IT team, responsibilities of, 305, 325

J

Java, 163–164

for help system authoring, 230

rule-based analyzers for, 339–340

Java applets. See Applets

Java Database Connectivity (JDBC), 206

JavaHelp, 230

Java Just-In-Time (JIT) compiler enable setting, 381–382

JavaScript, 163

enabling and disabling, 271–272

as security hole, 287–288

Java Server Page (JSP), 99–100

JavaSpec, 346

Java-specific testing tools, 346–347

JavaStar, 347

Java Virtual Machine (JVM), 89–90, 163

K

Keyboard action matrix, 169, 391

Keywords, 124

L

Leased lines, 62

Link checkers, 338–339

Links:

checking, 186

to databases, 98

missing DNS entries for, 76–77, 377–378

no response from, 377

to Web testing resources, 350–353

Load generator, 329

Load/volume testing, 43, 312–313

attributes to test, 334

planning, 327–330

resources for, 141

tools for, 329–330, 340–342

user simulation, 324–325

Local area networks (LANs), 59–60

connectivity devices, 62–63

Log analysis tools, 320

LogiGear, 348

One-Page Test Plan, 116, 120–123

Test Plan Template, 357–370

Test Resource Web site, 118

Login:

failures of, 68, 384–385

testing, 305–306

Lost-revenue analysis, 314–315

M

Mainframe systems:

application and UI processes on, 12–13

bug-fixing process, 4

as controlled environments, 14–15

Mann, Robert, 316

Marick, Brian, 270

Marick's Testing Foundations, 347

Matterform Media Theseus, 339

Maturity phase, 374

Maturity point, 374

Media types, application installation on, 251

Memory overwrite problems, 344

Mercury Interactive LoadRunner, 341

Mercury Interactive WinRunner, 217

Methods, exposure of, 91

MicroQuill Heap Agent, 344

Microsoft Dependency Walker, 110

Microsoft MSDN UI page, 182

Milestone criteria, 126–127

Milestone stoppers, 125

Milestone tests, 126–127, 141

Modal dialog boxes, 178

Modems, 62, 69–70

Modules, 91, 124

Monitor color depth settings, 178

Mouse action matrix, 169, 390

Multimedia browser settings, 382break

Page 399

Multimedia servers, 101

Multiple document interface (MDI) applications, 20–22

Multiple-instance handling, 20

N

Name resolution, 79–81

National Standards Systems Network (NSSN), 355

Navigation methods, 168–169

keyboard shortcut matrix, 391

mouse action matrix, 390

NetHelp, 230

NetMechanic, 339

NetScan Tools, 345

Netscape Navigator, 38–39, 280

Network administrators, 291

Network classes, 73–74, 78

Network connection, testing, 380

Network layer protocols, 71

Network News Transfer Protocol (NNTP), 65

Network numbers, subnet addresses from, 76

Networks, 58–61

backbones, 58

classes of, 73–74

client-server systems on, 13

connection type testing, 67–71

connectivity devices, 62–63

connectivity devices, testing, 71–72

connectivity services, 61–62

environmental problems, 58

Internet, 58–59

and Internet, 100

local area, 59–60

security vulnerabilities, 286–290

subnetting, 75–80

testing issues, 25–26

wide area, 60–61

Network Toolbox, 345

NSAPI/ISAPI-based applications, 98

O

Object-oriented programming (OOP), 26

<OBJECT> tag, 164

Offline help tests, 45

Off-the-shelf tools, 330

OLE DB, 204–206

One-page test plan:

LogiGear, 116, 120–123

sample, 146–147

Online analytical processing (OLAP), 198

Online HTML validation and link-checking services, 339

Online transaction processing (OLTP), 198

Online transactions, 382–384. See also E-commerce transactions

Onyx QC, 344

Open Database Connectivity (ODBC), 204–206, 257

data source name, 222

Open-status regression cycle, 44

Operating environments, 243

static versus dynamic, 35–36

Operating systems, 91

DLLs based on, 111

installer errors, 244, 262–263

for servers, 96

Output errors, 207–208

Output results, extreme, 42. See also Boundary tests

Overview of the CSS Specification, 166

P

Packaged servers, 91

Packets, 64

ParaSoft Codewizard, 340

ParaSoft Insure++, 344

ParaSoft Jtest, 340

ParaSoft SiteRuler, 338–339

Partitioning, test, 107–110

Patches, 279

PCs:

application and UI processes on, 12–13

GUIs on, 16

as mixed hardware and software systems, 15–16

thick-client approach for, 90

Penetration testing, 300–301

Performance:

requirements for, defining, 327

server-side, improving, 333–334

Performance testing, 43–44, 312–313, 315–316

acceptable performance, 315, 333

corrective measures, 315

example test, 330–332

hardware- versus software-intensive, 329

number of users, evaluating, 315

organizational support for, 332

performance goals evaluation, 313–315

repeating, 332

resources evaluation, 315

resources for, 141

response time evaluation, 315

scheduling, 328–329

system environment evaluation, 315

tools for, 340–342

user simulation, 324–325

workload evaluation, 315

Personal certificates, 293

Physical attacks, 290

Physical layer, 66

Plain Old Telephone Service (POTS), 61

Plug-ins, 102

Point-to-Point Protocol (PPP), 70

Policy makers, on security team, 291

Practical Extraction and Reporting Language (perl), 97

Pre-beta development phase, 47

Prefinal phase, 47

Pretty good privacy (PGP), 293

PrivaSuite, 346

Private Communication Technology (PCT), 294

Private networks, firewalls for, 100, 295–301

Problem reports, 373–374

Problem report status, 125

Processing:

distribution of, 109

location of, 27–28

Process time, 326

Professional societies related to Web testing, 354–355

Programmer's Paradise, Internet Paradise, and Components Paradise catalogs, 348

The Programmer's Supershop Buyer's Guide, 348

Programming errors, 339–340

Programming languages, integrating with SQL queries, 204–206

Properties, exposure of, 91

Proxy servers, 100, 297

Public and private key cryptography, 292

Public switched telephone network (PSTN), 61

Publisher certificates, 293

Pull-down menus, 159–160

Q

QA City, 181

Quality trend chart, 374–376

QuickView, 111

R

Radio buttons, 159–160

RadView WebLoad, 341

Rational Performance Studio, 341

Rational Purify, 344

Rational VisualTest, 343

Real-world user-level tests, 43

Reasoning InstantQA, 340break

Page 400

Receive time, 326

Redundancy errors, 211–212

Reference-help systems, 228

testing, 238–239

Regional networks, 58–59

Registry Tracker, 258

Regression testing, 26, 44

completion time estimates, 143

performance, load, and stress testing with, 329

Relational database management systems (RDBMSs), 200

Relational databases, 27, 198

Relational database servers (RDBSs), 97, 200–204

Release Acceptance Tests (RATs), 37, 115, 142

Remote access server (RAS), 69

Repeaters, 62

Requests per second, 326

Resource contention process, 40

Resources, estimating, 121–122, 145

Response time, 313–314, 326

aggregate, 316, 332

and simultaneous transactions, 324

Restart routing, testing, 191

Reusability, 26, 91–92

Reverse Address Resolution Protocol (RARP), 66

Rick Hower's Software QA/Test Resource Center, 347

Risk assessment, with configuration and compatibility testing, 268

Risk-based testing, 5

Routers, 63

packet-filtering, 296

RSW eLoad, 342

RSW eTester, 343

Rule-based analyzers, 338–340

Rules, 201

analyzing, 221

creating and binding, 204

Runtime error detectors, 343–345

S

Sales and marketing–help systems, 229, 239

Sample application:

access to functions, 132–133

boundary testing, 195

browser settings, testing, 279–280

configuration testing, 271, 276–277

customizable attributes, 133

data.tmp file generation, 106

defect report submission, 134

description of, 130

distribution metrics, 134–135

division databases, 133

documentation for, 135–137

e-mail notifications, 133–134

FASTs, 189

features, cataloging, 184

forced error testing, 194

help testing, 235

import utility, 133

incompatibility issues, 272

installing, 132

metric generation feature, 90, 134–135

project setup, 133

state transition testing, 51–53

system requirements, 132

target user of, 155

technical overview, 130–131

TOFTs, 189

trend metrics, 135

trend metrics generation page, 185

user navigation, 168

workflow processes, 132

workload, calculating, 320–325

Screen resolution, 178

Script capturing tools, 329

Scripting languages, 163

rule-based analyzers for, 339–340

as security holes, 287–289

Scripts, 161–163

compatibility testing, 167

time-out issues, 224

Scroll bars, 159

Search engines, 100

Search servers, 100

Secure-enhanced Hypertext Transport Protocol (S-HTTP), 293–294, 382–384

Secure Multipurpose Internet Mail Extensions (S/MIME), 293

Secure Sockets Layer (SSL), 293–294

Security:

basic techniques, 292

browser settings for, 301–305

cryptography, 292–293

and denial-of-service attacks, 289

for e-commerce sites, 298–300

experts in, 291

firewalls for, 295–301

goals of, 286, 290–291

holes in, 286–290

IPSec for, 293

penetration testing, 300–301

and physical attacks, 290

placement of, 305

protocols, 293–295

and spoofing, 288–289

tools for, 301

and viruses, 289

vulnerable areas, 286–290

and worms, 289

Security settings, 272, 279

Security team, 291, 305

Security testing, 46, 305–307

completion time estimates, 144

for e-commerce sites, 300

planning table, 307–309

tools for, 345–346

Segue SILK, 217

Segue SilkPerformer, 342

Segue SilkTest, 343

Send time, 326

Serial Line Internet Protocol (SLIP), 70

Server-based applications, 24

Server farms, 14

Server ID, 257

Servers, 13–14

accessing services on, 257

capacity planning, 334

centralized processing on, 27

definition of, 91

distributed, 25, 246–250

hardware, 96, 109, 257

no response from, 381

operating systems for, 96

software, 109, 257

testing, 109, 280–282

test partitioning based on, 108

Server side:

installations on, 246–255, 257–258

online transactions on, 317–318

performance, improving, 333–334

security protocol support settings, 382–383

users of, 152–153

Server-side application service components, 91, 96–101

Server-side includes (SSIs), 165

Server tests, 143

Service packs, 5

Services, test partitioning based on, 108

Simple Mail Transfer Protocol (SMTP), 65

Single document interface (SDI) applications, 20–21

Site certificates, 293

Smoke tests, 37

Society for Technical Communication (STC), 355

Software:

attacks on, 195break

Page 401

bugs in, 287

compatibility testing, 281

components of Web-based systems, 90–93

incompatibilities, 22, 24

load and stress testing, 329

Software dependencies, 80

Software developers:

load and stress testing responsibilities, 325

on security team, 291

Software development:

documentation of, 125

phases of, 47–48

software testing role in, 5–6

Software development kit (SDK), 89

Software testing, 3–6

Source-based components, 92

Special Interest Group in Software Testing (SIGIST), 355

Spoofing, 288–290

SQL, 97, 200, 219

example of, 201–204

SQL89, 200

SQL92, 201

SQL99, 201

SQL call-level interface (CLI), 204

JDBC, 206

ODBC, 204–206

SQL databases, special character use with, 223

SQL Server Performance Monitor, 225

SQL statements:

executing with database tools, 219–220

individual execution of, 213

precompiling and recompiling, 204

Stability trend chart, 374, 375

Start-up companies, 7–8

State transition, 51–53

Static analyzers, 338

Static operating environments, 35

example testing of, 38–39

Status reports, weekly, 125–126, 372–373

Stored procedures, 201–202

analyzing, 221

individual execution of, 213–217

problem input, 215–217

Stress testing, 43, 312–313

planning, 327–330

resources for, 141

tools for, 329–330

Strings, exceeding maximum number of characters, 215

Structured Query Language. See SQL

Style sheets, 165–166

browser support of, 282

Subnet masks, 76, 78

Subnets, 75–80

Surfincheck Firewall, 345

Symmetric Digital Subscriber Line (SDSL), 62

Syntax checkers, 339–340

System changes, tracking, 256

System-level tests, 43

T

T1 connections, 61

T3 connections, 61

Tables:

creating, 201

data schema for, 220

querying, 202–203

testing, 177

Target users:

configuration and compatibility issues, 269

of help systems, 229

profiling, 152–155

testing systems against, 280

Task-oriented functional tests (TOFTs), 38, 41–42, 115, 188–189

completion time estimates, 142

resources for, 141

TCP, 64, 65

TCP/IP stack, 59, 64–68

Test-case design:

analysis of, 104–107

for database testing, 218–220

Test-case development, 48–56

Test cases, 7, 48

for configuration and compatibility testing, 267

equivalent classes, 48–51

for functionality testing, 187–188

for load and stress testing, 329

for multiple-instance handling, 20

for multiple-window handling support, 21

state transition, targeting, 51–53

Test conditions, 34–35

Test coverage, 34

Testers:

responsibilities of, 8–9

on security team, 291

Test incident reports, 123–125

Testing:

automated, 126

documentation for (see Documentation, testing)

requirements for, 108

Testing project management, 125

Testing tools:

data analysis capabilities, 330

features of, 330

GUI capture, 342–343

GUI playback, 342–343

Java-specific, 346–347

for load testing, 340–342

for performance testing, 340–342

resources for, 347–348

rule-based analyzers, 338–340

runtime error detectors, 343–345

for security testing, 345–346

selecting, 334–335

Test partitioning, 107–110

Test planning, 34, 114–116

LogiGear template for, 357–370

Test plans, 48, 114–119

documentation for, 116–117

negotiation of, 116–117

one-page, 116, 120–123, 146–147

overview section, 118

reviews of, 116

sample, 139–147

templates for, 117–118, 357–370

testing synopsis section, 118–119

test project management section, 119

Test requirement, 48

Test scripts, 48

Test specification, 48

Test suite, 48

Test tasks:

completion times, 120–121, 141–144

context of, 121

defining, 120, 140–141

scheduling, 144–145

Test types, 36–47, 114–115

selecting, 120

Text fields, 159

Thick-client systems, 27–28, 87–90

Thin-client systems, 27–28, 87–90

Think time support, 329

Third-party components, 91–92

Third-party DLLs, 111

Third-party functionality tests, 143

Throughput, 327

calculating, 325

Time conversion chart, 327

Time-outs during login process, 68, 384–385

Token-ring networks, 59

TRACKGEAR, 9, 130

Transaction failures, 332

Transaction time, 326

Transmission Control Protocol/Internet Protocol. See TCP/IP stack

Transport layer, 65–66break

Page 402

Transport Layer Security (TLS), 294

Trend analysis reports, 125, 374–376

Triggers, 201

analyzing, 221

creating, 203

testing, 216–217

Tutorial-help systems, 228–229

testing, 239

U

UI code, 87

UI controls, 159–161

checking, 186

dynamic, 161–167

testing of, 180, 185–186

UI design:

approach, 156–159

evaluating, 155–156

inconsistencies in, 157

testing, 152–174

user interaction methods, 159–173

UI freeze phase, 47

UIs, 12

borders, 177

colors, 177

data presentation, 173–174

dialog box conventions, 262

fonts, 177

frames, 177

images, 177

installer errors, 244

tables, 177

target users, 152–155

UI testing, 45–46, 151–180

completion time estimates, 143

of implementation, 174–178, 180

of installer, 261–262

Uninstallation programs. See also Install/uninstall testing

bugs in, 242

errors of, 245

functions of, 244–245

roles of, 242–245

Units, 91

Unit tests, 47

Unstructured testing, 194

Upgrades, compatibility of, 24

User Datagram Protocol (UDP), 65–66

User ID, 221–222

User interaction, testing considerations, 178–180

User interfaces. See UIs

Users. See also Target users

browser security settings, 301–305

concurrent, 319

profiling, 153–155

projected number of, 332–333

security protection for, 291, 301–305

simulating, 324–325, 340–342

think time, 329

User service components, 87

Utilities/toolkits tests, 45

V

VBxtras, 348

Vendor-specific incompatibility issues, 18

VeriSign, 293

Very high-speed Backbone Network Services (vBNSs), 58–59

Viruses, 289

Visual Basic Script (VBScript), 163, 339–340

W

W3C HTML Validation Service, 339

Watchfire Linkbot, 338

Web applications:

browser settings, 279

component architecture, 96–102

model of, 14

multiuser support, 312

single-page paradigm, 178

target users, 152–155

Web browsers. See Browsers

Web compatibility matrix, 282

Web Content Accessibility Guidelines, 182

Web forms, checking, 215

WebHelp, 230

Web pages:

default pages, 271

display, and monitor color depth settings, 178

inability to access, 385–386

style sheets for, 165–166

Web server extension-based applications, 98–100

Web server extension-based scripts, 99

Web servers, 91, 96–97, 257

configuration testing, 385–386

connectivity with databases, 97–100

inability to connect to, 380

virtual directory configuration, 271

Web Site Garage, 339

Web software testing, 8

Web systems, 14

architecture of, 23

component sharing, 26

as data access applications, 17–18

distributed architecture, 86–90

features lists, 117

hardware mix on, 16, 22

hosted, 272

security vulnerabilities, 286–290

software components of, 90–93

software mix on, 16, 22, 24

testing considerations, 29

test partitioning for, 107–109

three-tiered, 88

Web testing, resources for, 348–355

Web Trends Log Analyzer, 320

WebTrends Security Analyzer, 346

Weekly status report, 125–126

template for, 372–376

White-box testing, 6

for database functionality, 210–217

Whittaker, James A., 195

Wide area networks (WANs), 60–61

Windows, multiple, 20–22

Windows environment, host connection and configuration testing, 81

Windows Task-Lock, 346

Winipcfg utility, 81

Workload, 318–319

determining, 319, 327, 334

evaluating, 319–325

Worms, 289

X

X.25 WAN, 60–61

Y

Yahoo!, denial-of-service attack on, 289

Yale University Online style guide, 182

Y2K testing:

completion time estimates, 144

ongoing, 46

Z

Zimmermann, Philip R., 293

