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Introduction

The Extract-Transform-Load (ETL) system is the foundation of the data
warehouse. A properly designed ETL system extracts data from the source
systems, enforces data quality and consistency standards, conforms data
so that separate sources can be used together, and finally delivers data
in a presentation-ready format so that application developers can build
applications and end users can make decisions. This book is organized
around these four steps.

The ETL system makes or breaks the data warehouse. Although building
the ETL system is a back room activity that is not very visible to end users,
it easily consumes 70 percent of the resources needed for implementation
and maintenance of a typical data warehouse.

The ETL system adds significant value to data. It is far more than plumb-
ing for getting data out of source systems and into the data warehouse.
Specifically, the ETL system:

Removes mistakes and corrects missing data

Provides documented measures of confidence in data

Captures the flow of transactional data for safekeeping

Adjusts data from multiple sources to be used together

Structures data to be usable by end-user tools

ETL is both a simple and a complicated subject. Almost everyone under-
stands the basic mission of the ETL system: to get data out of the source
and load it into the data warehouse. And most observers are increasingly
appreciating the need to clean and transform data along the way. So much
for the simple view. It is a fact of life that the next step in the design of

xxi
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xxii Introduction

the ETL system breaks into a thousand little subcases, depending on your
own weird data sources, business rules, existing software, and unusual
destination-reporting applications. The challenge for all of us is to tolerate
the thousand little subcases but to keep perspective on the simple overall
mission of the ETL system. Please judge this book by how well we meet
this challenge!

The Data Warehouse ETL Toolkit is a practical guide for building successful
ETL systems. This book is not a survey of all possible approaches! Rather,
we build on a set of consistent techniques for delivery of dimensional data.
Dimensional modeling has proven to be the most predictable and cost ef-
fective approach to building data warehouses. At the same time, because
the dimensional structures are the same across many data warehouses, we
can count on reusing code modules and specific development logic.

This book is a roadmap for planning, designing, building, and running
the back room of a data warehouse. We expand the traditional ETL steps of
extract, transform, and load into the more actionable steps of extract, clean,
conform, and deliver, although we resist the temptation to change ETL into
ECCD!

In this book, you’ll learn to:

Plan and design your ETL system

Choose the appropriate architecture from the many possible choices

Manage the implementation

Manage the day-to-day operations

Build the development/test/production suite of ETL processes

Understand the tradeoffs of various back-room data structures,
including flat files, normalized schemas, XML schemas, and star join
(dimensional) schemas

Analyze and extract source data

Build a comprehensive data-cleaning subsystem

Structure data into dimensional schemas for the most effective
delivery to end users, business-intelligence tools, data-mining tools,
OLAP cubes, and analytic applications

Deliver data effectively both to highly centralized and profoundly
distributed data warehouses using the same techniques

Tune the overall ETL process for optimum performance

The preceding points are many of the big issues in an ETL system. But as
much as we can, we provide lower-level technical detail for:
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Implementing the key enforcement steps of a data-cleaning system
for column properties, structures, valid values, and complex business
rules

Conforming heterogeneous data from multiple sources into
standardized dimension tables and fact tables

Building replicatable ETL modules for handling the natural time
variance in dimensions, for example, the three types of slowly
changing dimensions (SCDs)

Building replicatable ETL modules for multivalued dimensions and
hierarchical dimensions, which both require associative bridge tables

Processing extremely large-volume fact data loads

Optimizing ETL processes to fit into highly constrained load
windows

Converting batch and file-oriented ETL systems into continuously
streaming real-time ETL systems

For illustrative purposes, Oracle is chosen as a common dominator when
specific SQL code is revealed. However, similar code that presents the same results
can typically be written for DB2, Microsoft SQL Server, or any popular relational
database system.

And perhaps as a side effect of all of these specific recommendations, we
hope to share our enthusiasm for developing, deploying, and managing
data warehouse ETL systems.

Overview of the Book: Two Simultaneous Threads

Building an ETL system is unusually challenging because it is so heavily
constrained by unavoidable realities. The ETL team must live with the busi-
ness requirements, the formats and deficiencies of the source data, the ex-
isting legacy systems, the skill sets of available staff, and the ever-changing
(and legitimate) needs of end users. If these factors aren’t enough, the bud-
get is limited, the processing-time windows are too narrow, and important
parts of the business come grinding to a halt if the ETL system doesn’t
deliver data to the data warehouse!

Two simultaneous threads must be kept in mind when building an ETL
system: the Planning & Design thread and the Data Flow thread. At the
highest level, they are pretty simple. Both of them progress in an orderly
fashion from left to right in the diagrams. Their interaction makes life very
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xxiv Introduction

Requirements
& Realities 

Architecture
System

Implementation 
Test & Release 

Figure Intro-1 The Planning and Design Thread.

interesting. In Figure Intro-1 we show the four steps of the Planning &
Design thread, and in Figure Intro-2 we show the four steps of the Data
Flow thread.

To help you visualize where we are in these two threads, in each chapter
we call out process checks. The following example would be used when we
are discussing the requirements for data cleaning:

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

The Planning & Design Thread

The first step in the Planning & Design thread is accounting for all the
requirements and realities. These include:

Business needs

Data profiling and other data-source realities

Compliance requirements

Security requirements

Data integration

Data latency

Archiving and lineage

Extract Clean Conform Deliver

Operations

End User ApplicationsMainframe

latigid

Production 
Source

End User Applications

Figure Intro-2 The Data Flow Thread.
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End user delivery interfaces

Available development skills

Available management skills

Legacy licenses

We expand these individually in the Chapter 1, but we have to point out
at this early stage how much each of these bullets affects the nature of your
ETL system. For this step, as well as all the steps in both major threads, we
point out the places in this book when we are talking specifically about the
given step.

The second step in this thread is the architecture step. Here is where we
must make big decisions about the way we are going to build our ETL
system. These decisions include:

Hand-coded versus ETL vendor tool

Batch versus streaming data flow

Horizontal versus vertical task dependency

Scheduler automation

Exception handling

Quality handling

Recovery and restart

Metadata

Security

The third step in the Planning & Design thread is system implementation.
Let’s hope you have spent some quality time on the previous two steps
before charging into the implementation! This step includes:

Hardware

Software

Coding practices

Documentation practices

Specific quality checks

The final step sounds like administration, but the design of the test and
release procedures is as important as the more tangible designs of the pre-
ceding two steps. Test and release includes the design of the:

Development systems

Test systems
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Production systems

Handoff procedures

Update propagation approach

System snapshoting and rollback procedures

Performance tuning

The Data Flow Thread

The Data Flow thread is probably more recognizable to most readers be-
cause it is a simple generalization of the old E-T-L extract-transform-load
scenario. As you scan these lists, begin to imagine how the Planning & De-
sign thread affects each of the following bullets. The extract step includes:

Reading source-data models

Connecting to and accessing data

Scheduling the source system, intercepting notifications and
daemons

Capturing changed data

Staging the extracted data to disk

The clean step involves:

Enforcing column properties

Enforcing structure

Enforcing data and value rules

Enforcing complex business rules

Building a metadata foundation to describe data quality

Staging the cleaned data to disk

This step is followed closely by the conform step, which includes:

Conforming business labels (in dimensions)

Conforming business metrics and performance indicators (in fact
tables)

Deduplicating

Householding

Internationalizing

Staging the conformed data to disk
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Finally, we arrive at the payoff step where we deliver our wonderful data to
the end-user application. We spend most of Chapters 5 and 6 on delivery
techniques because, as we describe in Chapter 1, you still have to serve the
food after you cook it! Data delivery from the ETL system includes:

Loading flat and snowflaked dimensions

Generating time dimensions

Loading degenerate dimensions

Loading subdimensions

Loading types 1, 2, and 3 slowly changing dimensions

Conforming dimensions and conforming facts

Handling late-arriving dimensions and late-arriving facts

Loading multi-valued dimensions

Loading ragged hierarchy dimensions

Loading text facts in dimensions

Running the surrogate key pipeline for fact tables

Loading three fundamental fact table grains

Loading and updating aggregations

Staging the delivered data to disk

In studying this last list, you may say, “But most of that list is modeling,
not ETL. These issues belong in the front room.” We respectfully disagree.
In our interviews with more than 20 data warehouse teams, more than
half said that the design of the ETL system took place at the same time
as the design of the target tables. These folks agreed that there were two
distinct roles: data warehouse architect and ETL system designer. But these
two roles often were filled by the same person! So this explains why this
book carries the data all the way from the original sources into each of the
dimensional database configurations.

The basic four-step data flow is overseen by the operations step, which
extends from the beginning of the extract step to the end of the delivery
step. Operations includes:

Scheduling

Job execution

Exception handling

Recovery and restart

Quality checking
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Release

Support

Understanding how to think about these two fundamental threads (Plan-
ning & Design and Data Flow) is the real goal of this book.

How the Book Is Organized

To develop the two threads, we have divided the book into four parts:

I. Requirements, Realities and Architecture

II. Data Flow

III. Implementation and Operations

IV. Real Time Streaming ETL Systems

This book starts with the requirements, realities, and architecture steps
of the planning & design thread because we must establish a logical foun-
dation for the design of any kind of ETL system. The middle part of the
book then traces the entire data flow thread from the extract step through
to the deliver step. Then in the third part we return to implementation and
operations issues. In the last part, we open the curtain on the exciting new
area of real time streaming ETL systems.

Part I: Requirements, Realities, and Architecture
Part I sets the stage for the rest of the book. Even though most of us are
eager to get started on moving data into the data warehouse, we have to
step back to get some perspective.

Chapter 1: Surrounding the Requirements

The ETL portion of the data warehouse is a classically overconstrained
design challenge. In this chapter we put some substance on the list of re-
quirements that we want you to consider up front before you commit to
an approach. We also introduce the main architectural decisions you must
take a stand on (whether you realize it or not).

This chapter is the right place to define, as precisely as we can, the major
vocabulary of data warehousing, at least as far as this book is concerned.
These terms include:

Data warehouse

Data mart
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ODS (operational data store)

EDW (enterprise data warehouse)

Staging area

Presentation area

We describe the mission of the data warehouse as well as the mission
of the ETL team responsible for building the back room foundation of the
data warehouse. We briefly introduce the basic four stages of Data Flow:
extracting, cleaning, conforming, and delivering. And finally we state as
clearly as possible why we think dimensional data models are the keys to
success for every data warehouse.

Chapter 2: ETL Data Structures

Every ETL system must stage data in various permanent and semiperma-
nent forms. When we say staging, we mean writing data to the disk, and
for this reason the ETL system is sometimes referred to as the staging area.
You might have noticed that we recommend at least some form of staging
after each of the major ETL steps (extract, clean, conform, and deliver). We
discuss the reasons for various forms of staging in this chapter.

We then provide a systematic description of the important data struc-
tures needed in typical ETL systems: flat files, XML data sets, independent
DBMS working tables, normalized entity/relationship (E/R) schemas, and
dimensional data models. For completeness, we mention some special ta-
bles including legally significant audit tracking tables used to prove the
provenance of important data sets, as well as mapping tables used to keep
track of surrogate keys. We conclude with a survey of metadata typically
surrounding these types of tables, as well as naming standards. The meta-
data section in this chapter is just an introduction, as metadata is an impor-
tant topic that we return to many times in this book.

Part II: Data Flow
The second part of the book presents the actual steps required to effectively
extract, clean, conform, and deliver data from various source systems into
an ideal dimensional data warehouse. We start with instructions on select-
ing the system-of-record and recommend strategies for analyzing source
systems. This part includes a major chapter on building the cleaning and
conforming stages of the ETL system. The last two chapters then take the
cleaned and conformed data and repurpose it into the required dimensional
structures for delivery to the end-user environments.
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Chapter 3: Extracting

This chapter begins by explaining what is required to design a logical data
mapping after data analysis is complete. We urge you to create a logical
data map and to show how it should be laid out to prevent ambiguity
in the mission-critical specification. The logical data map provides ETL
developers with the functional specifications they need to build the physical
ETL process.

A major responsibility of the data warehouse is to provide data from var-
ious legacy applications throughout the enterprise data in a single cohesive
repository. This chapter offers specific technical guidance for integrating
the heterogeneous data sources found throughout the enterprise, includ-
ing mainframes, relational databases, XML sources, flat files, Web logs, and
enterprise resource planning (ERP) systems. We discuss the obstacles en-
countered when integrating these data sources and offer suggestions on
how to overcome them. We introduce the notion of conforming data across
multiple potentially incompatible data sources, a topic developed fully in
the next chapter.

Chapter 4: Cleaning and Conforming

After data has been extracted, we subject it to cleaning and conforming.
Cleaning means identifying and fixing the errors and omissions in the data.
Conforming means resolving the labeling conflicts between potentially in-
compatible data sources so that they can be used together in an enterprise
data warehouse.

This chapter makes an unusually serious attempt to propose specific tech-
niques and measurements that you should implement as you build the
cleaning and conforming stages of your ETL system. The chapter focuses
on data-cleaning objectives, techniques, metadata, and measurements.

In particular, the techniques section surveys the key approaches to data
profiling and data cleaning, and the measurements section gives examples
of how to implement data-quality checks that trigger alerts, as well as how
to provide guidance to the data-quality steward regarding the overall health
of the data.

Chapter 5: Delivering Dimension Tables

This chapter and Chapter 6 are the payoff chapters in this book. We believe
that the whole point of the data warehouse is to deliver data in a simple,
actionable format for the benefit of end users and their analytic applications.
Dimension tables are the context of a business’ measurements. They are also
the entry points to the data because they are the targets for almost all data



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH
WY046-FM WY046-Kimball-v4.cls August 18, 2004 13:42

Introduction xxxi

warehouse constraints, and they provide the meaningful labels on every
row of output.

The ETL process that loads dimensions is challenging because it must
absorb the complexities of the source systems and transform the data into
simple, selectable dimension attributes. This chapter explains step-by-step
how to load data warehouse dimension tables, including the most advanced
ETL techniques. The chapter clearly illustrates how to:

Assign surrogate keys

Load Type 1, 2 and 3 slowly changing dimensions

Populate bridge tables for multivalued and complex hierarchical
dimensions

Flatten hierarchies and selectively snowflake dimensions

We discuss the advanced administration and maintenance issues required
to incrementally load dimensions, track the changes in dimensions using
CRC codes, and contend with late-arriving data.

Chapter 6: Delivering Fact Tables

Fact tables hold the measurements of the business. In most data warehouses,
fact tables are overwhelmingly larger than dimension tables, but at the same
time they are simpler. In this chapter we explain the basic structure of all
fact tables, including foreign keys, degenerate dimension keys, and the
numeric facts themselves. We describe the role of the fact-table provider,
the information steward responsible for the delivery of the fact tables to
end-user environments.

Every fact table should be loaded with a surrogate key pipeline, which
maps the natural keys of the incoming fact records to the correct contem-
porary surrogate keys needed to join to the dimension tables.

We describe the three fundamental grains of fact tables, which are suffi-
cient to support all data warehouse applications.

We discuss some unusual fact table varieties, including factless fact tables
and fact tables whose sole purpose is to register the existence of complex
events, such as automobile accidents.

Finally, we discuss the basic architecture of aggregations, which are phys-
ically stored summaries that, much like indexes, serve solely to improve
performance.

Part III: Implementation and Operations
The third part of the book assumes the reader has analyzed his or her
requirements, heeded the realities of his or her data and available resources,
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and visualized the flow of data from extraction to delivery. Keeping all this
in mind, Part 3 describes in some detail the main approaches to system
implementation and to organizing the operations of the ETL system. We
discuss the role of metadata in the ETL system and finally the various
responsibilities of the ETL team members.

Chapter 7: Development

Chapter 7 develops the techniques that you’ll need to develop the initial
data load for your data warehouse, such as recreating history for slowly
changing dimensions and integrating historic offline data with current on-
line transactions, as well as historic fact loading.

The chapter also provides estimation techniques to calculate the time it
should take to complete the initial load, exposes vulnerabilities to long-
running ETL processes, and suggests methods to minimize your risk.

Automating the ETL process is an obvious requirement of the data ware-
house project, but how is it done? The order and dependencies between
table loads is crucial to successfully load the data warehouse. This chapter
reviews the fundamental functionality of ETL scheduling and offers cri-
teria and options for executing the ETL schedule. Once the fundamentals
are covered, topics such as enforcing referential integrity with the ETL and
maintaining operational metadata are examined.

Chapter 8: Operations

We begin this chapter by showing the approaches to scheduling the various
ETL system jobs, responding to alerts and exceptions, and finally running
the jobs to completion with all dependencies satisfied.

We walk through the steps to migrate the ETL system to the production
environment. Since the production environment of the ETL system must
be supported like any other mission-critical application, we describe how
to set up levels of support for the ETL system that must be utilized upon
failure of a scheduled process.

We identify key performance indicators for rating ETL performance and
explore how to monitor and capture the statistics. Once the ETL key per-
formance indicators are collected, you are armed with the information you
need to address the components within the ETL system to look for oppor-
tunities to modify and increase the throughput as much as possible.

Chapter 9: Metadata

The ETL environment often assumes the responsibility of storing and man-
aging the metadata for the entire data warehouse. After all, there is no
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better place than the ETL system for storing and managing metadata be-
cause the environment must know most aspects of the data to function
properly. Chapter 9 defines the three types of metadata—business, techni-
cal, and process—and presents the elements within each type as they apply
to the ETL system. The chapter offers techniques for producing, publishing,
and utilizing the various types of metadata and also discusses the oppor-
tunity for improvement in this area of the data warehouse. We finish the
chapter by discussing metadata standards and best practices and provide
recommended naming standards for the ETL.

Chapter 10: Responsibilities

The technical aspects of the ETL process are only a portion of the ETL
lifecycle. Chapter 10 is dedicated to the managerial aspects of the lifecycle
required for a successful implementation. The chapter describes the duties
and responsibilities of the ETL team and then goes on to outline a detailed
project plan that can be implemented in any data warehouse environment.
Once the basics of managing the ETL system are conveyed, the chapter dives
into more-detailed project management activities such as project staffing,
scope management, and team development. This somewhat nontechnical
chapter provides the greatest benefit to ETL and data warehouse project
managers. It describes the roles and skills that are needed for an effective
team; and offers a comprehensive ETL project plan that can be repeated
for each phase of the data warehouse. The chapter also includes forms that
managers need to lead their teams through the ETL lifecycle. Even if you are
not a manager, this chapter is required reading to adequately understand
how your role works with the other members of the ETL team.

Part IV: Real Time Streaming ETL Systems
Since real-time ETL is a relatively young technology, we are more likely to
come up against unique requirements and solutions that have not yet been
perfected. In this chapter, we share our experiences to provide insight on the
latest challenges in real-time data warehousing and offer recommendations
on overcoming them. The crux of real-time ETL is covered in this chapter,
and the details of actual implementations are described.

Chapter 11: Real-Time ETL

In this chapter, we begin by defining the real-time requirement. Next, we
review the different architecture options available today and appraise each.
We end the chapter with a decision matrix to help you decide which real-
time architecture is right for your specific data warehouse environment.
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Chapter 12: Conclusion

The final chapter summarizes the unique contributions made in this book
and provides a glimpse into the future for ETL and data warehousing as a
whole.

Who Should Read this Book

Anyone who is involved or intends to be involved in a data-warehouse
initiative should read this book. Developers, architects, and managers will
benefit from this book because it contains detailed techniques for delivering
a dimensionally oriented data warehouse and provides a project manage-
ment perspective for all the back room activities.

Chapters 1, 2, and 10 offer a functional view of the ETL that can easily be
read by anyone on the data warehouse team but is intended for business
sponsors and project managers. As you progress through these chapters,
expect their technical level to increase, eventually getting to the point where
it transforms into a developers handbook. This book is a definitive guide
for advice on the tasks required to load the dimensional data warehouse.

Summary

The goal of this book is to make the process of building an ETL system
understandable with specific checkpoints along the way. This book shows
the often under-appreciated value the ETL system brings to data warehouse
data. We hope you enjoy the book and find it valuable in your workplace.
We intentionally remain vendor-neutral throughout the book so you can
apply the techniques within to the technology to your liking. If this book
accomplishes nothing else, we hope it encourages you to get thinking and
start breaking new ground to challenge the vendors to extend their product
offerings to incorporate the features that the ETL team requires to bring the
ETL (and the data warehouse) to full maturity.
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C H A P T E R

1
Surrounding the

Requirements

Ideally, you must start the design of your ETL system with one of the tough-
est challenges: surrounding the requirements. By this we mean gathering
in one place all the known requirements, realities, and constraints affecting
the ETL system. We’ll refer to this list as the requirements, for brevity.

The requirements are mostly things you must live with and adapt your
system to. Within the framework of your requirements, you will have many
places where you can make your own decisions, exercise your judgment,
and leverage your creativity, but the requirements are just what they are
named. They are required. The first section of this chapter is intended to
remind you of the relevant categories of requirements and give you a sense
of how important the requirements will be as you develop your ETL system.

Following the requirements, we identify a number of architectural deci-
sions you need to make at the beginning of your ETL project. These decisions
are major commitments because they drive everything you do as you move
forward with your implementation. The architecture affects your hardware,
software, coding practices, personnel, and operations.

The last section describes the mission of the data warehouse. We also
carefully define the main architectural components of the data warehouse,
including the back room, the staging area, the operational data store (ODS),
and the presentation area. We give a careful and precise definition of data
marts and the enterprise data warehouse (EDW). Please read this chap-
ter very carefully. The definitions and boundaries we describe here drive
the whole logic of this book. If you understand our assumptions, you will
see why our approach is more disciplined and more structured than any
other data warehouse design methodology. We conclude the chapter with
a succinct statement of the mission of the ETL team.

3
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P R O C E S S C H E C K
Planning & Design: Requirements/Realities ➔ Architecture ➔

Implementation ➔ Test/Release
Data Flow: Haven’t started tracing the data flow yet.

Requirements

In this book’s introduction, we list the major categories of requirements we
think important. Although every one of the requirements can be a show-
stopper, business needs have to be more fundamental and important.

Business Needs
Business needs are the information requirements of the end users of the
data warehouse. We use the term business needs somewhat narrowly here
to mean the information content that end users need to make informed
business decisions. Other requirements listed in a moment broaden the
definition of business needs, but this requirement is meant to identify the
extended set of information sources that the ETL team must introduce into
the data warehouse.

Taking, for the moment, the view that business needs directly drive the
choice of data sources, it is obvious that understanding and constantly ex-
amining business needs is a core activity of the ETL team.

In the Data Warehouse Lifecycle Toolkit, we describe the process for inter-
viewing end users and gathering business requirements. The result of this
process is a set of expectations that users have about what data will do for
them. In many cases, the original interviews with end users and the original
investigations of possible sources do not fully reveal the complexities and
limitations of data. The ETL team often makes significant discoveries that
affect whether the end user’s business needs can be addressed as originally
hoped for. And, of course, the ETL team often discovers additional capabili-
ties in the data sources that expand end users’ decision-making capabilities.
The lesson here is that even during the most technical back-room develop-
ment steps of building the ETL system, a dialog amongst the ETL team,
the data warehouse architects, and the end users should be maintained.
In a larger sense, business needs and the content of data sources are both
moving targets that constantly need to be re-examined and discussed.

Compliance Requirements
In recent years, especially with the passage of the Sarbanes-Oxley Act of
2002, organizations have been forced to seriously tighten up what they
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report and provide proof that the reported numbers are accurate, complete,
and have not been tampered with. Of course, data warehouses in regulated
businesses like telecommunications have complied with regulatory report-
ing requirements for many years. But certainly the whole tenor of financial
reporting has become much more serious for everyone.

Several of the financial-reporting issues will be outside the scope of the
data warehouse, but many others will land squarely on the data warehouse.
Typical due diligence requirements for the data warehouse include:

Archived copies of data sources and subsequent stagings of data

Proof of the complete transaction flow that changed any data

Fully documented algorithms for allocations and adjustments

Proof of security of the data copies over time, both on-line and off-line

Data Profiling
As Jack Olson explains so clearly in his book Data Quality: The Accuracy
Dimension, data profiling is a necessary precursor to designing any kind of
system to use that data. As he puts it: “[Data profiling] employs analytic
methods for looking at data for the purpose of developing a thorough un-
derstanding of the content, structure, and quality of the data. A good data
profiling [system] can process very large amounts of data, and with the
skills of the analyst, uncover all sorts of issues that need to be addressed.”

This perspective is especially relevant to the ETL team who may be
handed a data source whose content has not really been vetted. For ex-
ample, Jack points out that a data source that perfectly suits the needs of
the production system, such as an order-taking system, may be a disaster for
the data warehouse, because the ancillary fields the data warehouse hoped
to use were not central to the success of the order-taking process and were
revealed to be unreliable and too incomplete for data warehouse analysis.

Data profiling is a systematic examination of the quality, scope, and con-
text of a data source to allow an ETL system to be built. At one extreme, a
very clean data source that has been well maintained before it arrives at the
data warehouse requires minimal transformation and human intervention
to load directly into final dimension tables and fact tables. But a dirty data
source may require:

Elimination of some input fields completely

Flagging of missing data and generation of special surrogate keys

Best-guess automatic replacement of corrupted values

Human intervention at the record level

Development of a full-blown normalized representation of the data
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And at the furthest extreme, if data profiling reveals that the source data
is deeply flawed and cannot support the business’ objectives, the data-
warehouse effort should be cancelled! The profiling step not only gives the
ETL team guidance as to how much data cleaning machinery to invoke but
protects the ETL team from missing major milestones in the project because
of the unexpected diversion to build a system to deal with dirty data. Do
the data profiling up front! Use the data-profiling results to prepare the
business sponsors for the realistic development schedules, the limitations
in the source data, and the need to invest in better data-capture practices
in the source systems. We dig into specific data- profiling and data-quality
algorithms in Chapter 4.

Security Requirements
The general level of security awareness has improved significantly in the
last few years across all IT areas, but security remains an afterthought and
an unwelcome additional burden to most data warehouse teams. The basic
rhythms of the data warehouse are at odds with the security mentality. The
data warehouse seeks to publish data widely to decision makers, whereas
the security interests assume that data should be restricted to those with a
need to know.

Throughout the Toolkit series of books we have recommended a role-
based approach to security where the ability to access the results from a
data warehouse is controlled at the final applications delivery point. This
means that security for end users is not controlled with grants and revokes
to individual users at the physical table level but is controlled through
roles defined and enforced on an LDAP-based network resource called a
directory server. It is then incumbent on the end users’ applications to sort
out what the authenticated role of a requesting end user is and whether
that role permits the end user to view the particular screen being requested.
This view of security is spelled out in detail in Data Warehouse Lifecycle
Toolkit.

The good news about the role-based enforcement of security is that the
ETL team should not be directly concerned with designing or managing
end user security. However, the ETL team needs to work in a special en-
vironment, since they have full read/write access to the physical tables of
the data warehouse. The ETL team’s workstations should be on a separate
subnet behind a packet-filtering gateway. If the ETL team’s workstations
are on the regular company intranet, any malicious individual on that in-
tranet can quietly install a packet sniffer that will reveal the administrative
passwords to all the databases. A large percentage, if not the majority, of
malicious attacks on IT infrastructure comes from individuals who have
legitimate physical access to company facilities.
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Additionally, security must be extended to physical backups. If a tape or
disk pack can easily be removed from the backup vault, security has been
compromised as effectively as if the on-line passwords were compromised.

Data Integration
Data integration is a huge topic for IT because ultimately IT aims to make all
systems work together seamlessly. The 360 degree view of the business is the
business name for data integration. In many cases, serious data integration
must take place among the primary transaction systems of the organization
before any of that data arrives at the data warehouse. But rarely is that
data integration complete, unless the organization has settled on a single
enterprise resource planning (ERP) system, and even then it is likely that
other important transaction-processing systems exist outside the main ERP
system.

In this book, data integration takes the form of conforming dimensions
and conforming facts. Conforming dimensions means establishing common
dimensional attributes (often textual labels and standard units of measure-
ment) across separate databases so that drill across reports can be generated
using these attributes. This process is described in detail in Chapters 5
and 6.

Conforming facts means agreeing on common business metrics such as
key performance indicators (KPIs) across separate databases so that these
numbers can be compared mathematically by calculating differences and
ratios.

In the ETL system, data integration is a separate step identified in our
data flow thread as the conform step. Physically, this step involves enforcing
common names of conformed dimension attributes and facts, as well as
enforcing common domain contents and common units of measurement.

Data Latency
The data latency requirement describes how quickly the data must be de-
livered to end users. Data latency obviously has a huge effect on the ar-
chitecture and the system implementation. Up to a point, most of the tra-
ditional batch-oriented data flows described in this book can be sped up
by more clever processing algorithms, parallel processing, and more potent
hardware. But at some point, if the data latency requirement is sufficiently
urgent, the architecture of the ETL system must convert from batch oriented
to streaming oriented. This switch is not a gradual or evolutionary change;
it is a major paradigm shift in which almost every step of the data-delivery
pipeline must be reimplemented. We describe such streaming-oriented real
time systems in Chapter 11.
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Archiving and Lineage
We hint at these requirements in the preceding compliance and security
sections. But even without the legal requirements for saving data, every
data warehouse needs various copies of old data, either for comparisons
with new data to generate change capture records or for reprocessing.

In this book, we recommend staging the data at each point where a major
transformation has occurred. In our basic data flow thread, these staging
points occur after all four steps: extract, clean, conform, and deliver. So,
when does staging (writing data to disk) turn into archiving (keeping data
indefinitely on permanent media)?

Our simple answer is conservative. All staged data should be archived
unless a conscious decision is made that specific data sets will never be
recovered. It is almost always less of a headache to read data back in from
permanent media than it is to reprocess data through the ETL system at a
later time. And, of course, it may be impossible to reprocess data according
to the old processing algorithms if enough time has passed.

And, while you are at it, each staged/archived data set should have
accompanying metadata describing the origins and processing steps that
produced the data. Again, the tracking of this lineage is explicitly required
by certain compliance requirements but should be part of every archiving
situation.

End User Delivery Interfaces
The final step for the ETL system is the handoff to end user applications. We
take a strong and disciplined position on this handoff. We believe the ETL
team, working closely with the modeling team, must take responsibility
for the content and the structure of data, making the end user applica-
tions simple and fast. This attitude is much more than a vague motherhood
statement. We believe it is irresponsible to hand data off to the end user ap-
plication in such a way as to increase the complexity of the application, slow
down the final query or report creation, or make data seem unnecessarily
complex to end users. The most elementary and serious error is to hand
across a full-blown normalized physical model and to walk away from the
job. This is why Chapters 5 and 6 go to such length to build dimensional
physical structures that comprise the actual final handoff.

In general, the ETL team and the data modelers need to work closely with
the end user application developers to determine the exact requirements for
the final data handoff. Each end user tool has certain sensitivities that should
be avoided, and certain features that can be exploited, if the physical data
is in the right format. The same considerations apply to data prepared for
OLAP cubes, which we describe in Chapter 6.
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Available Skills
Some of the big design decisions when building an ETL system must be
made on the basis of who builds and manages the system. You shouldn’t
build a system that depends on critical C++ processing modules if those
programming skills are not in house, and you cannot reasonably acquire
and keep those skills. You may be much more confident in building your
ETL system around a major vendor’s ETL tool if you already have those
skills in house and you know how to manage such a project.

In the next section, we look in depth at the big decision of whether to
hand code your ETL system or use a vendor’s package. Our point here
is that technical issues and license costs aside, you should not go off in
a direction that your employees and managers find unfamiliar without
seriously considering the implications of doing so.

Legacy Licenses
Finally, in many cases, major design decisions will be made for you implic-
itly by senior management’s insistence that you use existing legacy licenses.
In many cases, this requirement is one you can live with and for which the
advantages in your environment are pretty clear to everyone. But in a few
cases, the use of a legacy system for your ETL development is a mistake.
This is a difficult position to be in, and if you feel strongly enough about
it, you may need to bet your job. If you must approach senior management
and challenge the use of an existing legacy system, be well prepared in
making your case, and be man enough (or woman enough) to accept the
final decision or possibly seek employment elsewhere.

Architecture

The choice of architecture is a fundamental and early decision in the de-
sign of the ETL system. The choice of architecture affects everything, and
a change in architecture almost always means implementing the entire
system over again from the very start. The key to applying an architec-
tural decision effectively is to apply it consistently. You should read each
of the following subsections with the aim of first making a specific ar-
chitectural choice and then applying it everywhere in your ETL system.
Again, while each one of the categories in this section can be a showstop-
per, the most important early architectural choice is whether to build the
ETL system around a vendor’s ETL tool or to hand code the system yourself.
Almost every detail of the design of your ETL system will depend on this
choice.
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P R O C E S S C H E C K
Planning & Design: Requirements/Realities ➔ Architecture ➔

Implementation ➔ Test/Release
Data Flow: Haven’t started tracing the data flow yet.

ETL Tool versus Hand Coding (Buy a Tool Suite
or Roll Your Own?)
The answer is, “It depends.” In an excellent Intelligent Enterprise magazine
article (May 31, 2003, edited by Ralph Kimball), Gary Nissen sums up the
tradeoffs. We have augmented and extended some of Gary’s points.

Tool-Based ETL Advantages

A quote from an ETL tool vendor: “The goal of a valuable tool is not
to make trivial problems mundane, but to make impossible problems
possible.”
Simpler, faster, cheaper development. The tool cost will make up for
itself in projects large enough or sophisticated enough.

Technical people with broad business skills who are otherwise not
professional programmers can use ETL tools effectively.
Many ETL tools have integrated metadata repositories that can
synchronize metadata from source systems, target databases, and
other BI tools.
Most ETL tools automatically generate metadata at every step of the
process and enforce a consistent metadata-driven methodology that
all developers must follow.
Most ETL tools have a comprehensive built-in scheduler aiding in
documentation, ease of creation, and management change. The ETL
tool should handle all of the complex dependency and error
handling that might be required if things go wrong.
The metadata repository of most ETL tools can automatically
produce data lineage (looking backward) and data dependency
analysis (looking forward).
ETL tools have connectors prebuilt for most source and target
systems. At a more technical level, ETL tools should be able to
handle all sorts of complex data type conversions.
ETL tools typically offer in-line encryption and compression
capabilities.
Most ETL tools deliver good performance even for very large data
sets. Consider a tool if your ETL data volume is very large or if it will
be in a couple of years.
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An ETL tool can often manage complex load-balancing scenarios
across servers, avoiding server deadlock.

Most ETL tools will perform an automatic change-impact analysis for
downstream processes and applications that are affected by a
proposed schema change.

An ETL-tool approach can be augmented with selected processing
modules hand coded in an underlying programming language. For
example, a custom CRC (cyclic redundancy checksum) algorithm
could be introduced into an ETL vendor’s data flow if the vendor-
supplied module did not have the right statistical performance. Or a
custom seasonalization algorithm could be programmed as part of a
data-quality step to determine if an observed value is reasonable.

Hand-Coded ETL Advantages

Automated unit testing tools are available in a hand-coded system
but not with a tool-based approach. For example, the JUnit library
(www.junit.org) is a highly regarded and well-supported tool for
unit testing Java programs. There are similar packages for other
languages. You can also use a scripting language, such as Tcl or
Python, to set up test data, run an ETL process, and verify the results.
Automating the testing process through one of these methods will
significantly improve the productivity of your QA staff and the
quality of your deliverables.

Object-oriented programming techniques help you make all your
transformations consistent for error reporting, validation, and
metadata updates.

You can more directly manage metadata in hand-coded systems,
although at the same time you must create all your own metadata
interfaces.

A brief requirements analysis of an ETL system quickly points you
toward file-based processing, not database-stored procedures.
File-based processes are more direct. They’re simply coded, easily
tested, and well understood.

Existing legacy routines should probably be left as-is.

In-house programmers may be available.

A tool-based approach will limit you to the tool vendor’s abilities
and their unique scripting language. But you can develop a hand-
coded system in a common and well-known language. (In fairness,
all the ETL tools allow escapes to standard programming languages in
isolated modules.)
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Hand-coded ETL provides unlimited flexibility, if that is indeed what
you need. You can literally do anything you want. In many instances,
a unique approach or a different language can provide a big
advantage.

We would add one more advantage to the ETL Tool suite list: It is likely
that the ETL tool suite will be more self-documenting and maintainable over
a period of years, especially if you have a typical IT staff churn. The counter
argument to this is that if your ETL development staff has a strong software-
development tradition and good management, documentation and main-
tenance will not be as big a problem.

Using Proven Technology

When it comes to building a data warehouse, many initial costs are
involved. You have to buy dedicated servers: at least one database server, a
business intelligence server, and typically a dedicated ETL server. You need
database licenses, and you have to pay for the ability of your users to access
your business intelligence tool. You have to pay consultants and various
other costs of starting up a new project. All of these costs are mandatory if
you want to build a data warehouse. However, one cost is often not recog-
nized as mandatory and is often avoided in an effort to reduce costs of the
project—the cost of acquiring a dedicated ETL tool. It is possible to imple-
ment a data warehouse without a dedicated tool, and this book does not
assume you will or won’t buy one. However, it is advised that you do real-
ize in the long run that purchasing an ETL tool actually reduces the cost of
building and maintaining your data warehouse. Some additional benefits
of using proven ETL technology are as follows:

Define once, apply many. Share and reuse business rules and
structured routines, keeping your data consistent throughout the
data warehouse.

Impact analysis. Determine which tables, columns, and processes are
affected by proposed changes.

Metadata repository. Easily create, maintain, and publish data
lineage; inherit business definitions from a data-modeling tool, and
present capture metadata in your BI tool.

Incremental aggregation. Dynamically update summary tables by
applying only new and changed data without the need to rebuild
aggregates with each load process.

Managed batch loading. Reduce shell scripts and enable conditional
loading, load statistics, automated e-mail notification, and so on.
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Simpler connectivity to a wide variety of complex sources such as
SAP and mainframes.

Parallel pipe-lined multithreaded operation.

Vendor experience, including success with dimensional models and
a proven track record of supporting data warehouses.

More important than taking advantage of advanced functionality is that
investing in a proven ETL tool can help you avoid reinventing the wheel.
These tools are designed for one purpose: to do exactly what you are try-
ing to do—load a data warehouse. Most have evolved into stable, robust
ETL engines that have embedded capabilities to extract data from various
heterogeneous sources, handle complex data transformations, and load a
dimensional data warehouse.

Don’t add new and untested products to your ETL configuration. The
dashboard-of-the-month approach, which has a certain charm in the end user
environment, is too reckless in the back room. Be conservative and wait for ETL
technologies to mature. Work with vendors who have significant track record and
who are likely to support your products five years down the road.

Batch versus Streaming Data Flow

The standard architecture for an ETL system is based on periodic batch ex-
tracts from the source data, which then flows through the system, resulting
in a batch update of the final end user tables. This book is mostly organized
around this architecture. But as we describe in Chapter 11, when the real-
time nature of the data-warehouse load becomes sufficiently urgent, the
batch approach breaks down. The alternative is a streaming data flow in
which the data at a record level continuously flows from the source system
to users’ databases and screens.

Changing from a batch to a streaming data flow changes everything.
Although we must still support the fundamental data flow steps of ex-
tract, clean, conform, and deliver, each of these steps must be modified
for record-at-a-time processing. And especially with the fastest streaming
flows, many of the usual assumptions about the arrival of data and even
referential integrity have to be revisited. For instance, the basic numeric
measures of a sales transaction with a new customer can arrive before the
description of the customer arrives. Even after the customer is identified,
an enhanced/cleaned/deduplicated version of the customer record may be
introduced hours or even days after the original event. All of this requires
logic and database updating that is probably avoided with batch-oriented
data flow.



P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

14 Chapter 1

At the beginning of this section, we advise applying each architectural
decision uniformly across the entire data warehouse. Obviously, in the case
of choosing a batch or streaming approach, the choice should be made on
an application-by-application basis. In Chapter 11, we discuss the points of
commonality between the two approaches and show where the results of
the batch approach can be used in the streaming context.

Horizontal versus Vertical Task Dependency

A horizontally organized task flow allows each final database load to run
to completion independently. Thus, if you have both orders and shipments,
these two database loads run independently, and either or both can be
released on time or be late. This usually means that the steps of extract,
clean, conform, and deliver are not synchronized between these two job
flows.

A vertically oriented task flow synchronizes two or more separate job
flows so that, above all, the final database loads occur simultaneously. Usu-
ally, the earlier steps are synchronized as well, especially if conformed di-
mensions like customer or vendor are used by more than one system. Either
all the job streams reach the conform step and the delivery step or none of
them do.

Scheduler Automation

A related architectural decision is how deeply to control your overall ETL
system with automated scheduler technology. At one extreme, all jobs are
kicked off by a human typing at a command line or starting an icon. At the
other extreme, a master scheduler tool manages all the jobs, understands
whether jobs have run successfully, waits for various system statuses to
be satisfied, and handles communication with human supervisors such as
emergency alerts and job flow status reporting.

Exception Handling

Exception handling should not be a random series of little ad-hoc alerts
and comments placed in files but rather should be a system-wide, uni-
form mechanism for reporting all instances of exceptions thrown by ETL
processes into a single database, with the name of the process, the time
of the exception, its initially diagnosed severity, the action subsequently
taken, and the ultimate resolution status of the exception. Thus, every job
needs to be architected to write these exception-reporting records into the
database.



P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 15

Quality Handling

Similarly, you should decide on a common response to quality issues that
arise while processing the data. In addition to triggering an exception-
reporting record, all quality problems need to generate an audit record at-
tached to the final dimension or fact data. Corrupted or suspected data
needs to be handled with a small number of uniform responses, such as
filling in missing text data with a question mark or supplying least biased
estimators of numeric values that exist but were corrupted before delivery
to the data warehouse. These topics are further developed in Chapter 4.

Recovery and Restart

From the start, you need to build your ETL system around the ability to
recover from abnormal ending of a job and restart. ETL jobs need to be re-
entrant, otherwise impervious to incorrect multiple updating. For instance,
a job that subtracts a particular brand sales result from an overall product
category should not be allowed to run twice. This kind of thinking needs
to underlie every ETL job because sooner or later these jobs will either
terminate abnormally or be mistakenly run more than once. Somewhere,
somehow, you must keep this from happening.

Metadata

Metadata from DBMS system tables and from schema design tools is easy
to capture but probably composes 25 percent of the metadata you need to
understand and control your system. Another 25 percent of the metadata is
generated by the cleaning step. But the biggest metadata challenge for the
ETL team is where and how to store process-flow information. An impor-
tant but unglamorous advantage of ETL tool suites is that they maintain
this process-flow metadata automatically. If you are hand coding your ETL
system, you need to implement your own central repository of process flow
metadata. See Chapter 9.

Security

Earlier in this chapter, we describe our recommended architecture for role-
based security for end users. Security in the ETL environment is less gran-
ular than in the end user environment; nevertheless, a systematic approach
to security demands that physical and administrative safeguards surround
every on-line table and every backup tape in the ETL environment. The
most sensitive and important data sets need to be instrumented with oper-
ating system printed reports listing every access and every command per-
formed by all administrators against these data sets. The print log should



P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

16 Chapter 1

be produced on a dedicated impact printer locked in a room that cannot be
opened by any of the normal IT staff. Archived data sets should be stored
with checksums to demonstrate that they have not been altered in any way.

The Back Room – Preparing the Data

P R O C E S S C H E C K
Planning & Design: Requirements ➔ Architecture ➔ Implementation ➔ Release
Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver.

The back room and the front room of the data warehouse are physically,
logically, and administratively separate. In other words, in most cases the
back room and front room are on different machines, depend on different
data structures, and are managed by different IT personnel.

Figure 1.1 shows the two distinct components of a typical data warehouse.
Preparing the data, often called data management, involves acquiring data

and transforming it into information, ultimately delivering that information
to the query-friendly front room. No query services are provided in the back
room. Read that sentence again! Our approach to data warehousing assumes
that data access is prohibited in the back room, and therefore the front room
is dedicated to just this one purpose.

Processes for 
Extracting,
Cleaning,

Conforming,
and

Delivering

The Back Room:
Data Management

Staging 
Schemas in 

DBMS

Staging Area Storage

Flat Files on 
File System

Dimensional 
Tables Ready for 

Delivery
(Atomic & 

Aggregate)

Relational 
Database Systems

Misc. Flat Files

Mainframe 
tapes

(VSAM)

Source Systems
(examples)

The Staging Area

The Front Room:
Data Access

BI App Servers 
& Query Tools

  *   Browsing and Analysis
  *   Standard Reports
  *   Ad hoc Queries & Reports

User Community

The Presentation Area

Figure 1.1 The back room and front room of a data warehouse.
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Think of a restaurant. Imagine that patrons of the restaurant are end users
and the food is data. When food is offered to patrons in the dining room, it is
served and situated exactly as they expect: clean, organized, and presented
in a way that each piece can be easily identified and consumed.

Meanwhile, before the food enters the dining room, it is prepared in the
kitchen under the supervision of an experienced chef. In the kitchen the
food is selected, cleaned, sliced, cooked, and prepared for presentation.
The kitchen is a working area, off limits to the patrons of the restaurant. In
the best restaurants, the kitchen is completely hidden from its customers—
exposure to the kitchen, where their food is still a work-in-progress, spoils
the customer’s ultimate dining experience. If a customer requests infor-
mation about the preparation of food, the chef must come out from the
kitchen to meet the customer in the dining room—a safe, clean environ-
ment where the customer is comfortable—to explain the food preparation
process.

The staging area is the kitchen of the data warehouse. It is a place acces-
sible only to experienced data integration professionals. It is a back-room
facility, completely off limits to end users, where the data is placed after it
is extracted from the source systems, cleansed, manipulated, and prepared
to be loaded to the presentation layer of the data warehouse. Any metadata
generated by the ETL process that is useful to end users must come out of
the back room and be offered in the presentation area of the data warehouse.

Prohibiting data access in the back room kitchen relieves the ETL team
from:

Providing detailed security at a row, column, or applications level

Building query performance-enhancing indexes and aggregations

Providing continuous up-time under service-level agreements

Guaranteeing that all data sets are consistent with each other

We need to do all these things, but in the front room, not the back room.
In fact, the issue of data access is really the crucial distinction between the
back room and the front room. If you make a few exceptions and allow end
user clients to access the back room structures directly, you have, in our
opinion, fatally compromised the data warehouse.

Returning to the kitchen, we often use the word staging to describe dis-
crete steps in the back room. Staging almost always implies a temporary or
permanent physical snapshot of data. There are four staging steps found
in almost every data warehouse, as shown in Figure 1.2, which is the same
four-step data flow thread we introduce in the this book’s introduction, but
with the staging step explicitly shown. Throughout this book, we assume
that every ETL system supporting the data warehouse is structured with
these four steps and that data is staged (written to the disk) in parallel with
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Extract Clean Conform Deliver

Operations: Scheduling, Exception Handling, Recovery, Restart, Quality Check, Release, Support

End User ApplicationsMainframe

latigid
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Cleaned
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(general data 
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Figure 1.2 The Four Staging Steps of a Data Warehouse.

the data being transferred to the next stage. The central chapters of this
book are organized around these steps. The four steps are:

1. Extracting. The raw data coming from the source systems is usually
written directly to disk with some minimal restructuring but before
significant content transformation takes place. Data from structured
source systems (such as IMS databases, or XML data sets) often is
written to flat files or relational tables in this step. This allows the
original extract to be as simple and as fast as possible and allows
greater flexibility to restart the extract if there is an interruption.
Initially captured data can then be read multiple times as necessary
to support the succeeding steps. In some cases, initially captured
data is discarded after the cleaning step is completed, and in other
cases data is kept as a long-term archival backup. The initially
captured data may also be saved for at least one capture cycle so that
the differences between successive extracts can be computed.

We save the serious content transformations for the cleaning and
conforming steps, but the best place to resolve certain legacy data format
issues is in the extract step. These format issues include resolving repeating
groups, REDEFINEs, and overloaded columns and performing low-level data
conversions, including converting bit encoding to character, EBCDIC to ASCII,
and packed decimal to integer. We discuss these steps in detail in Chapter 3.

2. Cleaning. In most cases, the level of data quality acceptable for the
source systems is different from the quality required by the data
warehouse. Data quality processing may involve many discrete steps,
including checking for valid values (is the zip code present and is it
in the range of valid values?), ensuring consistency across values (are
the zip code and the city consistent?), removing duplicates (does the
same customer appear twice with slightly different attributes?), and
checking whether complex business rules and procedures have been
enforced (does the Platinum customer have the associated extended
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credit status?). Data-cleaning transformations may even involve
human intervention and the exercise of judgment. The results
of the data-cleaning step are often saved semipermanently because
the transformations required are difficult and irreversible. It is an
interesting question in any environment whether the cleaned data can
be fed back to the sources systems to improve their data and reduce
the need to process the same data problems over and over with each
extract. Even if the cleaned data cannot be physically fed back to the
source systems, the data exceptions should be reported to build a
case for improvements in the source system. These data issues are
also important for the final business intelligence (BI) user community.

3. Conforming. Data conformation is required whenever two or more
data sources are merged in the data warehouse. Separate data
sources cannot be queried together unless some or all of the textual
labels in these sources have been made identical and unless similar
numeric measures have been mathematically rationalized so that
differences and ratios between these measures make sense. Data
conformation is a significant step that is more than simple data
cleaning. Data conformation requires an enterprise-wide agreement
to use standardized domains and measures. We discuss this step
extensively in the book when we talk about conformed dimensions
and conformed facts in Chapters 5 and 6.

4. Delivering. The whole point of the back room is to make the data
ready for querying. The final and crucial back-room step is physically
structuring the data into a set of simple, symmetric schemas known
as dimensional models, or equivalently, star schemas. These schemas
significantly reduce query times and simplify application
development. Dimensional schemas are required by many query
tools, and these schemas are a necessary basis for constructing OLAP
cubes. We take the strong view in this book that dimensionally
modeled tables should be the target of every data warehouse back
room. In Chapter 5 we carefully describe the structures of
dimensional tables, and we give a fairly complete justification for
building the data warehouse around these structures. For a more
comprehensive treatment of dimensional modeling, please refer to
the other Toolkit books, especially the Data Warehouse Toolkit, Second
Edition (Wiley, 2002).

Figure 1.2 makes it look like you must do all the extracting, cleaning,
conforming and delivering serially with well-defined boundaries between
each pair of steps. In practice, there will multiple simultaneous flows of data
in the ETL system, and frequently some of the cleaning steps are embedded
in the logic that performs extraction.
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The ODS has been absorbed by the data warehouse.
Ten years ago, the operational data store (ODS) was a separate system

that sat between the source transactional systems and the data warehouse.
It was a hot extract that was made available to end users to answer a narrow
range of urgent operational questions, such as “was the order shipped?” or
“was the payment made?” The ODS was particularly valuable when the ETL
processes of the main data warehouse delayed the availability of the data or
aggregated the data so that these narrow questions could not be asked.

In most cases, no attempt was made to transform a particular ODS’s
content to work with other systems. The ODS was a hot query extract from a
single source.

The ODS also served as a source of data for the data warehouse itself
because the ODS was an extraction from the transactional systems. In some
cases, the ODS served only this function and was not used for querying. This
is why the ODS has always had two personalities: one for querying and
one for being a source for the data warehouse.

The ODS as a separate system outside the data warehouse is no longer
necessary. Modern data warehouses now routinely extract data on a daily
basis, and some of the new real-time techniques allow the data warehouse
to always be completely current. Data warehouses in general have become
far more operationally oriented than in the past. The footprints of the
conventional data warehouse and the ODS now overlap so completely
that it is not fruitful to make a distinction between the two kinds of
systems.

Finally, both the early ODSs and modern data warehouses frequently
include an interface that allows end users to modify production data directly.

The Front Room – Data Access
Accessing data in the presentation area of the data warehouse is a client, or
follow-on, project that must be closely coordinated with the building and
managing of the ETL system. The whole purpose of the ETL system is to
feed the presentation layer of dimensionally modeled tables that are directly
accessed by query tools, report writers, dashboards, and OLAP cubes. The
data in the front room is what end users actually see.

Data marts are an important component of the front room. A data mart
is a set of dimensional tables supporting a business process. Some authors
refer to business processes as subject areas. Subject area is a fuzzy phrase
with multiple meanings. For example, we’ve heard people refer to sub-
ject areas as products, customers, and orders. But we believe there is a big
difference between product and customer entities and true measurement-
intensive processes such as orders. In our view, data marts are always
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measurement-intensive subject areas (like orders), and they are surrounded
by descriptive entities like products and customers.

Although this book is not about using data marts, we need to make some
strong statements about them.

1. Data marts are based on the source of data, not on a department’s
view of data. In other words, there is only one orders data mart in a
product-oriented company. All the end user query tools and
applications in various departments access this data mart to have a
single, consistently labeled version of orders.

2. Data marts contain all atomic detail needed to support drilling
down to the lowest level. The view that data marts consist only of
aggregated data is one of the most fundamental mistakes a data
warehouse designer can make. Aggregated data in the absence of the
lowest-level atomic data presupposes the business question and makes
drilling down impossible. We will see that a data mart should consist
of a continuous pyramid of identically structured dimensional tables,
always beginning with the atomic data as the foundation.

3. Data marts can be centrally controlled or decentralized. In other
words, an enterprise data warehouse can be physically centralized on
a single machine and the deployment of data marts can wait until a
certain level of integration takes place in the ETL staging areas, or the
data marts can be developed separately and asynchronously while at
the same time participating in the enterprise’s conformed dimensions
and facts. We believe that the extreme of a fully centralized and fully
prebuilt data warehouse is an ideal that is interesting to talk about but
is not realistic. A much more realistic scenario is the incrementally
developed and partially decentralized data warehouse environment.
After all, organizations are constantly changing, acquiring new data
sources, and needing new perspectives. So in a real environment, we
must focus on incremental and adaptable strategies for building data
warehouses, rather than on idealistic visions of controlling all
information before a data warehouse is implemented.

There are many tasks and responsibilities in the front room that are out-
side the scope of this book. Just so there is no confusion, we do not talk in
this book about:

Indexing dimensional tables in the presentation area for query
performance

Choosing front-end tools, including query tools, report writers, and
dashboards

Writing SQL to solve end user queries
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Data-mining techniques

Forecasting, behavior scoring, and calculating allocations

Security on the tables and applications accessible by end users

Metadata supporting end user tools

End user training and documentation

This book is about the ETL systems for getting data out of its original
source system and delivering it to the front room.

The Mission of the Data Warehouse

The mission of the data warehouse is to publish the organization’s data
assets to most effectively support decision making. The key word in this
mission statement is publish. Just as the success of a conventional publica-
tion like a magazine begins and ends with its readers, the success of a data
warehouse begins and ends with its end users. Since the data warehouse is
a decision support system, our main criterion of success is whether the data
warehouse effectively contributes to the most important decision-making
processes in the organization. Although the costs of hardware, software,
labor, consulting services, and maintenance have to be managed carefully,
the hidden costs of failing to support the important decisions of an organi-
zation are potentially much larger. The tangible costs of a data warehouse,
managed by IT, are tactical, but the more important costs and benefits of
decision support are strategic.

Transaction database applications have been penetrating the corporate
world for over 30 years. Although we have entered data into dedicated
transaction applications for decades, it has become apparent that getting
the data out of these systems for analytic purposes is too difficult. Billions of
dollars have been spent on database applications, and their data is kept pris-
oner within them. An immeasurable amount of time is spent trying to get
data from transaction systems, but like navigating through a labyrinth, most
of that time is spent hitting dead ends. The ETL system must play a major
role in handing the data to the final end user applications in a usable form.

Building a comprehensive, reliable data warehouse is a significant task
that revolves around a set of standard components. The most important and
fundamental components of the data warehouse are the back room and the
front room. This book is about the back room.

What the Data Warehouse Is
Data warehousing is the process of taking data from legacy and transac-
tion database systems and transforming it into organized information in a
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user-friendly format to encourage data analysis and support fact-based
business decision making. The process that involves transforming data
from its original format to a dimensional data store accounts for at least
70 percent of the time, effort, and expense of most data warehouse projects.
After implementing many data warehouses, we’ve determined that a data
warehouse should have the following definition:

A data warehouse is a system that extracts, cleans, conforms, and delivers
source data into a dimensional data store and then supports and implements
querying and analysis for the purpose of decision making.

We’ve come up with this definition to alleviate confusion about data-
warehouse implementation costs. Historically, the most visible part of a
data warehouse project is the data access portion—usually in the form of
products—and some attention is brought to the dimensional model. But by
spotlighting only those portions, a gaping hole is left out of the data ware-
house lifecycle. When it comes time to make the data warehouse a reality, the
data access tool can be in place, and the dimensional model can be created,
but then it takes many months from that point until the data warehouse is
actually usable because the ETL process still needs to be completed.

By bringing attention to building the back room data management com-
ponent, data warehouse sponsors are better positioned to envision the
real value of the data warehouse—to support decision making by the end
users—and allot realistic budgets to building data warehouses.

Unanticipated delays can make the data warehouse project appear to be a
failure, but building the ETL process should not be an unanticipated delay. The
data warehouse team usually knows that the ETL process consumes the majority
of the time to build the data warehouse. The perception of delays can be avoided
if the data warehouse sponsors are aware that the deployment of the data
warehouse is dependent on the completion of the ETL process. The biggest risk to
the timely completion of the ETL system comes from encountering unexpected
data-quality problems. This risk can be mitigated with the data-profiling
techniques discussed in Chapter 4.

What the Data Warehouse Is Not
What constitutes a data warehouse is often misunderstood. To this day, you
can ask ten experts to define a data warehouse, and you are likely to get ten
different responses. The biggest disparity usually falls in describing exactly
what components are considered to be part of the data warehouse project. To
clear up any misconceptions, anyone who is going to be part of a data ware-
house team, especially on the ETL team, must know his or her boundaries.
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The environment of a data warehouse includes several components, each
with its own suite of designs, techniques, tools, and products. The most im-
portant thing to remember is that none of these things alone constitutes a
data warehouse. The ETL system is a major component of the data ware-
house, but many other components are required for a complete implementa-
tion. Throughout our experiences of implementing data warehouses, we’ve
seen team members struggling with the same misconceptions over and
over again. The top five things the data warehouse is mistaken to be are as
follows:

1. A product. Contrary to many vendor claims, you cannot buy a data
warehouse. A data warehouse includes system analysis, data
manipulation and cleansing, data movement, and finally
dimensional modeling and data access. No single product can
achieve all of the tasks involved in building a data warehouse.

2. A language. One cannot learn to code a data warehouse in the way
you learn to implement XML, SQL, VB, or any other programming
language. The data warehouse is composed of several components,
each likely to require one or more programming or data-specification
languages.

3. A project. A properly deployed data warehouse consists of many
projects (and phases of projects). Any attempt to deploy a data
warehouse as a single project will almost certainly fail. Successful
data warehouses plan at the enterprise level yet deploy manageable
dimensional data marts. Each data mart is typically considered a
separate project with its own timeline and budget. A crucial factor is
that each data mart contains conformed dimensions and
standardized facts so that each integrates into a single cohesive
unit—the enterprise data warehouse. The enterprise data
warehouse evolves and grows as each data mart project is completed.
A better way to think of a data warehouse is as a process, not as a
project.

4. A data model. A data model alone does not make a data warehouse.
Recall that the data warehouse is a comprehensive process that, by
definition, must include the ETL process. After all, without data,
even the best-designed data model is useless.

5. A copy of your transaction system. A common mistake is to believe
copying your operational system into a separate reporting system
creates a data warehouse. Just as the data model alone does not
create a data warehouse, neither does executing the data movement
process without restructuring the data store.



P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 25

Industry Terms Not Used Consistently
In this section, we call out industry terms that are given different meanings
by different writers. There is probably no realistic hope of getting the in-
dustry to settle on uniform definitions of these terms, but at least we can
take a clear stand on how we use the terms in this book.

Data Mart

Other authors frequently define a data mart as an aggregated set of data pre-
built to answer specific business questions for a given department. Of course, this
definition contains its own criticism! In this book and in our writings for the
last decade, we have consistently defined a data mart as a process-oriented
subset of the overall organization’s data based on a foundation of atomic
data, and that depends only on the physics of the data-measurement events,
not on the anticipated user’s questions. Note the differences among data
mart definitions:

CORRECT DEFINITION MISGUIDED DEFINITION

Process Based Department Based

Atomic Data Foundation Aggregated Data Only

Data Measurement Based User Question Based

Our data marts (call them dimensional data marts) look the same to all
observers and would be implemented identically by anyone with access
to the underlying measurement events. Furthermore, since dimensional
data marts are always based on the most atomic data, these data marts are
impervious to changes in application focus; by definition, they contain all
the detail that is possible from the original sources. Data marts constructed
according to the misguided definitions will be unable to handle changing
business requirements because the details have been presummarized.

Enterprise Data Warehouse (EDW)

EDW is sometimes used as the name the name for a specific design approach
(as contrasted with the uncapitalized enterprise data warehouse, which refers
generically to the data warehouse assets of a large organization). Many peo-
ple also refer to the EDW as the CIF, or Corporate Information Factory. The
EDW approach differs materially from the Data Warehouse Bus Architec-
ture approach described in our Toolkit books. EDW embodies a number of
related themes that need to be contrasted individually with the DW Bus
approach. It may be helpful to separate logical issues from physical issues
for a moment.
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Logically, both approaches advocate a consistent set of definitions that
rationalize the different data sources scattered around the organization. In
the case of the DW Bus, the consistent set of definitions takes the form of
conformed dimensions and conformed facts. With the EDW approach, the
consistency seems much more amorphous. You must take it on faith that
if you have a single, highly normalized ER model of all the enterprise’s
information, you then know how to administer hundreds or thousands of
tables consistently. But, overlooking this lack of precision, one might argue
that the two approaches are in agreement up to this point. Both approaches
strive to apply a unifying coherence to all the distributed data sources.

Even if we have a tenuous agreement that both approaches have the same
goal of creating a consistent representation of an organization’s data, as soon
as you move into physical design and deployment issues, the differences
between the EDW and the DW Bus become really glaring.

Conformed dimensions and conformed facts take on specific forms in the
DW Bus architecture. Conformed dimensions have common fields, and the
respective domains of the values in these fields are the same. That guaran-
tees that you can perform separate queries on remote fact tables connected
to these dimensions and you will be able to merge the columns into a fi-
nal result. This is, of course, drill across. We have written extensively on
the steps required to administer conformed dimensions and conformed
facts in a distributed data warehouse environment. We have never seen a
comparable set of specific guidelines for the EDW approach. We find that
interesting because even in a physically centralized EDW, you have to store
data in physically distinct table spaces, and that necessitates going through
the same logic as the replication of conformed dimensions. But we have
never seen systematic procedures described by EDW advocates for doing
this. Which tables do you synchronously replicate between table spaces and
when? The DW Bus procedures describe this in great detail.

The denormalized nature of the dimensions in the DW Bus design allows
us to administer the natural time variance of a dimension in a predictable
way (SCD types 1, 2, and 3). Again, in the highly normalized EDW world,
we have not seen a comparable description of how to build and administer
the equivalent of slowly changing dimensions. But it would seem to require
copious use of time stamps on all the entities, together with a lot more key
administration than the dimensional approach requires. By the way, the
surrogate key approach we have described for administering SCDs actually
has nothing to do with dimensional modeling. In an EDW, the root table
of a normalized, snowflaked dimension would have to undergo exactly the
same key administration (using either a surrogate key or a natural key plus
a date) with the same number of repeated records if it tracked the same
slowly changing time variance as the DW Bus version.
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The denormalized nature of dimensions in the DW Bus design allows a
systematic approach to defining aggregates, the single most powerful and
cost effective way to increase the performance of a large data warehouse.
The science of dimensional aggregation techniques is intimately linked to
the use of conformed dimensions. The shrunken dimensions of an aggre-
gate fact table are perfectly conformed subsets of the base dimensions in
the DW Bus architecture. The EDW approach, again, has no systematic and
documented approach for handling aggregates in the normalized environ-
ment or giving guidance to query tools and report writers for how to use
aggregates. This issue interacts with drilling down, described in a moment.

Most important, a key assumption built into most EDW architectures is
that the centralized data warehouse releases data marts. These data marts
are often described as built to answer a business question, as described in the
previous subsection on data-mart definitions. A final, unworkable assump-
tion of the EDW is that if the user wants to ask a precise question involving
atomic data, he or she must leave the aggregated dimensional data mart
and descend into the 3NF atomic data located in the back room. EVERY-
THING is wrong with this view in our opinion. All of the leverage we
developed in the DW Bus is defeated by this two level architecture: drilling
down through conformed dimensions to atomic data; uniform encoding
of slowly changing dimensions; the use of performance-enhancing aggre-
gates; and the sanctity of keeping the back room data-staging area off limits
to query services.

Resolving Architectural Conflict: The Hybrid
Bus Approach
Is it possible to reconcile the two architectural approaches? We think so.
Throughout this book, we support the judicious use of normalized data
structures for data cleaning. A really dirty data source benefits from the
discipline of enforcing the many-to-1 relationships brought to the surface
by the process of normalization. THEN we urge the ETL team to convert
any such normalized structures into simple dimensional structures for the
conforming and final handoff steps. This includes the atomic base layer of
data. At this point, an IT organization that has already invested in normal-
ized physical structures can leverage that investment. We can call this the
Hybrid Bus Approach.

How the Data Warehouse Is Changing
As we write this book, the data warehouse is undergoing a significant
change, perhaps the most significant change since the beginning of data
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warehousing. Everything we have said in this chapter about the data ware-
house supporting decision making remains true, but the focus of new devel-
opment in the data warehouse is in many cases drastically more operational
and real time. Although the basic front room and back room components of
the data warehouse are still very necessary for these real-time applications,
the traditional batch-file-oriented ETL processing is giving way to stream-
ing ETL processing, and the traditional user-driven query and reporting
tools are giving way to data-driven and event-driven dashboards. We de-
scribe these new developments and how they extend the central concepts
of the data warehouse in Chapter 11.

The Mission of the ETL Team

We are finally in a position to succinctly describe the mission of the ETL
team, using the vocabulary of this chapter. The mission of the ETL team at the
highest level is to build the back room of the data warehouse. More specifically,
the ETL system must:

Deliver data most effectively to end user tools

Add value to data in the cleaning and conforming steps

Protect and document the lineage of data

We will see that in almost every data warehouse the back room must
support four keys steps:

Extracting data from the original sources

Quality assuring and cleaning data

Conforming the labels and measures in the data to achieve
consistency across the original sources

Delivering data in a physical format that can be used by query tools,
report writers, and dashboards.

This book deals with each of these steps in great detail.
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ETL Data Structures

The back room area of the data warehouse has frequently been called the
staging area. Staging in this context means writing to disk and, at a minimum,
we recommend staging data at the four major checkpoints of the ETL data
flow. The ETL team will need a number of different data structures to meet
all the legitimate staging needs, and thus the purpose of this chapter is to
describe all the types of data structures you are likely to need.

This chapter does not describe all the source data types you must extract
from. We leave that to Chapter 3!

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

We also try to step back from the details of the data structures to recom-
mend general design principles for the staging area, including planning and
design standards and an introduction to the metadata needed to support
staging. Metadata is a big topic, and we gather a number of more spe-
cific metadata designs in Chapter 4 in the cleaning and conforming steps.
Also, we tie all the metadata topics together toward the end of the book in
Chapter 9.

To Stage or Not to Stage

The decision to store data in a physical staging area versus processing it in
memory is ultimately the choice of the ETL architect. The ability to develop

29
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efficient ETL processes is partly dependent on being able to determine the
right balance between physical input and output (I/O) and in-memory
processing.

The challenge of achieving this delicate balance between writing data
to staging tables and keeping it in memory during the ETL process is a
task that must be reckoned with in order to create optimal processes. The
issue with determining whether to stage your data or not depends on two
conflicting objectives:

Getting the data from the originating source to the ultimate target as
fast as possible

Having the ability to recover from failure without restarting from the
beginning of the process

The decision to stage data varies depending on your environment and
business requirements. If you plan to do all of your ETL data processing in
memory, keep in mind that every data warehouse, regardless of its archi-
tecture or environment, includes a staging area in some form or another.
Consider the following reasons for staging data before it is loaded into the
data warehouse:

Recoverability. In most enterprise environments, it’s a good practice
to stage the data as soon as it has been extracted from the source system
and then again immediately after each of the major transformation
steps, assuming that for a particular table the transformation steps
are significant. These staging tables (in a database or file system) serve
as recovery points. By implementing these tables, the process won’t
have to intrude on the source system again if the transformations fail.
Also, the process won’t have to transform the data again if the load
process fails. When staging data purely for recovery purposes, the
data should be stored in a sequential file on the file system rather than
in a database. Staging for recoverability is especially important when
extracting from operational systems that overwrite their own data.

Backup. Quite often, massive volume prevents the data warehouse
from being reliably backed up at the database level. We’ve witnessed
catastrophes that might have been avoided if only the load files were
saved, compressed, and archived. If your staging tables are on the
file system, they can easily be compressed into a very small footprint
and saved on your network. Then if you ever need to reload the data
warehouse, you can simply uncompress the load files and reload them.

Auditing. Many times the data lineage between the source
and target is lost in the ETL code. When it comes time to audit the
ETL process, having staged data makes auditing between different
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portions of the ETL processes much more straightforward because
auditors (or programmers) can simply compare the original input
file with the logical transformation rules against the output file. This
staged data is especially useful when the source system overwrites
its history. When questions about the integrity of the information
in the data warehouse surface days or even weeks after an event has
occurred, revealing the staged extract data from the period of time
in question can restore the trustworthiness of the data warehouse.

Once you’ve decided to stage at least some of the data, you must settle
on the appropriate architecture of your staging area. As is the case with any
other database, if the data-staging area is not planned carefully, it will fail.
Designing the data-staging area properly is more important than designing
the usual applications because of the sheer volume the data-staging area
accumulates (sometimes larger than the data warehouse itself). The next
section discusses staging-area design considerations and options.

Designing the Staging Area

The staging area stores data on its way to the final presentation area of the
data warehouse. Sometimes, data in the staging area is preserved to support
functionality that requires history, while other times data is deleted with
each process. When history is maintained in the staging area, it is often re-
ferred to as a persistent staging area. When data is deleted with each load, the
area is considered transient. It’s perfectly valid for the data-staging area to
be a hybrid, composed of a mixture of persistent and transient staging tables.

Make sure you give serious thought to the various roles that staging can play
in your overall data warehouse operations. There is more to staging than just
building temp files to support the execution of the next job. A given staging file
can also be used for restarting the job flow if a serious problem develops
downstream, and the staging file can be a form of audit or proof that the data had
specific content when it was processed.

Regardless of the persistence of the data in the staging area, you must
adhere to some basic rules when the staging area is designed and deployed.
The following rules all have the same underlying premise: If you are not
on the ETL team, keep out! You must establish and practice the following
rules for your data warehouse project to be successful:

The data-staging area must be owned by the ETL team. The
data-staging area, and all of the data within it, is off limits to anyone
other than the ETL team. The data-staging area is not designed for
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presentation. There are no indexes or aggregations to support
querying in the staging area. There are no service-level agreements
for data access or consistency in the staging area. All of these data
access requirements are handled in the presentation area.

Users are not allowed in the staging area for any reason. Data in the
staging area must be considered a construction site area. Allowing
unauthorized personnel into the area can cause injuries. Curious
users allowed in the area often misuse the data and reduce the
perceived integrity of the data warehouse.

Reports cannot access data from the staging area. The data-staging
area is a work site. Tables are added, dropped, or modified by the ETL
team without notifying the user community. This concept does not
mean that the area is a free-for-all with tables being added, dropped,
and modified by programmers at will. However, it does mean that
the area is intended to be a workbench, not a display case. The area is
a controlled environment, meaning that modifications to tables in the
production-staging area must go through the same lifecycle of tables
in the data warehouse presentation layer. However, unlike changes
to production data warehouse tables, data-staging tables can be
changed without notifying users, breaking reports that might be using
the altered table. Accordingly, do not allow any reports to point to
the staging area even when such pointing is temporary.

Only ETL processes can write to and read from the staging
area. Every data warehouse requires data sets that don’t have
a conventional outside source, such as a table of data-quality status
types. When the data warehouse requires data that does not exist
in any existing external database environment, nevertheless it must
come into the data-staging area like other data. Keep in mind that
the data-staging area is not a transaction environment and that you
should not allow data to be manually entered into it. If manual tables
must be maintained, an application should be developed outside of
the data-staging area, and the resulting data should be provided to the
ETL team and incorporated into the staging area via an ETL process.

The ETL group owns the data-staging area. That means that the ETL
architect designs the tables within it and decides whether a table belongs in
the database or, based on the requirements of its respective ETL processes,
is best suited for the file system. When the staging area is initially set up,
the ETL architect must supply the database administrator (DBA) team and
OS administrators with an overall data storage measure of the staging area
so they can estimate the space allocations and parameter settings for the
staging database, file systems, and directory structures. Figure 2.1 shows a
sample staging area volumetric worksheet, focusing on the final delivery
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tables at the end of the ETL data flow. A full volumetric tracking system
would have similar worksheets for copies of source data and the staging
files that followed the cleaning and conforming steps.

The volumetric worksheet lists each table in the staging area with the
following information:

Table Name. The name of the table or file in the staging area. There is
one row in the worksheet for each staging table.

Update Strategy. This field indicates how the table is maintained. If it
is a persistent staging table, it will have data appended, updated, and
perhaps deleted. Transient staging tables are truncated and reloaded
with each process.

Load Frequency. Reveals how often the table is loaded or changed by
the ETL process. Quite often, it is daily. It can be weekly, monthly, or
any interval of time. In a real-time environment, tables in the staging
area can be updated continuously.

ETL Job(s). Staging tables are populated or updated via ETL jobs.
The ETL job is the job or program that affects the staging table or file.
When many jobs affect a single staging table, list all of the jobs in this
section of the worksheet.

Initial Row Count. The ETL team must estimate how many rows
each table in the staging area initially contains. The initial row count
is usually based on the rows in the source and/or target tables.

Average Row Length. For size-estimation purposes, you must
supply the DBA with the average row length in each staging table. In
an Oracle environment, we create the table in a development
environment, run statistics, and gather this information from the
ALL TABLES table. For instance, in Oracle, the DBMS STATS
package can be used to populate the appropriate statistics columns.

Grows With. Even though tables are updated on a scheduled
interval, they don’t necessarily grow each time they are touched. The
Grows With field is based on business rules. You must define when
each table in the staging area grows. For example, a status table grows
each time a new status is added. Even though the table is touched
daily to look for changes, the addition of new statuses is quite rare.

Expected Monthly Rows. This estimate is based on history and
business rules. Anticipated growth is required for the DBA to allocate
appropriate space to the table. The monthly row count is a building
block to calculate how many bytes the table grows each month.

Expected Monthly Bytes. Expected Monthly Bytes is a calculation of
Average Row Length times Expected Monthly Rows.
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Initial Table Size. The initial table size is usually represented in
bytes or megabytes. It is a calculation of Average Row Length times
Initial Row Count.

Table Size 6 Months. An estimation of table sizes after six months of
activity helps the DBA team to estimate how the staging database or
file system grows. This measurement is usually represented in
megabytes. It is a calculation of (Average Row Length times Initial
Row Count) + (Average Row Length times Expected Monthly Rows
times 6) / 1,048,576).

So far, the details discussed in this section are mostly applicable to tables
within a database management system (DBMS). The staging area normally
consists of both DBMS tables and flat text files on the file system. Flat files
are especially important when using a dedicated ETL tool. Most of the
tools utilize an area in the file system for placing data down to optimize its
workflow. In many cases, you need to stage your data outside of a DBMS
in flat files for fast sequential processing. You can also use the volumetric
worksheet for file-system planning. A general practice is to set the files
down in a development area and record the space they occupy to provide
the statistics to the appropriate personnel for official space allocation.

The next sections of this chapter provide information to help you select
the appropriate architecture for your staging tables.

The ETL architect needs to arrange for the allocation and configuration of data
files that reside on the file system as part of the data-staging area to support the
ETL process. ETL vendors whose tools use the file system should recommend
appropriate space allocation and file-system configuration settings for optimal
performance and scalability. For nonvendor data files explicitly created by the ETL
process, use the standard volumetric worksheet.

Data Structures in the ETL System

In this section, we describe the important types of data structures you are
likely to need in your ETL system.

Flat Files
In many cases, you won’t need to stage your data within the confines of
a DBMS. If you are not using a dedicated ETL tool and are doing all of
the ETL tasks with SQL in your database, you need to create DBMS table
structures to store all of your staging data. However, if you have an ETL tool
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or are utilizing shell scripts or scripting programs such as Perl, VBScript,
or JavaScript, which can manipulate text files, you can store staging data
right in your file system as simple text files.

When data is stored in columns and rows within a file on your file system
to emulate a database table, it is referred to as a flat or sequential file. If
your operating system is any flavor of UNIX or Windows, data in your
flat files is in standardized character code known as American Standard
Code for Information Interchange (ASCII). ASCII flat files can be processed
and manipulated by ETL tools or scripting languages just as if they were
database tables—and in certain cases much faster!

A DBMS requires overhead to maintain metadata about the data being
processed, which in simple cases is not really needed in the data-staging
environment. It has been the conventional wisdom that sorting, merging,
deleting, replacing, and many other data-migration functions are much
faster when they are performed outside the DBMS. Many utility programs
are dedicated to text-file manipulation. Keep in mind when performing flat-
file manipulations with scripting languages that you may have an obligation
to separately advise your metadata tracking tables of the transformations
you are making. If the metadata tracking (say, for compliance purposes) is
as important as the transformations themselves, you should think instead
about handling these operations through a dedicated ETL tool that can
automatically supply the metadata context.

Arguments in favor of relational tables.

It is always faster to WRITE to a flat file as long you are truncating or inserting.
There is no real concept of UPDATING existing records of a flat file efficiently,
which argues against using a flat file for a persistent staging table. Querying and
other random access lookups are not supported well by operating system utilities
or vendor tools. Finally, flat files cannot be indexed for fast lookups.

When you READ from a staging table in the ETL system, database storage is
superior when filtering is anticipated and when joins between tables on the same
system are performed. Although dedicated sort packages used to be the clear
performance winners, relational databases have made significant progress
recently in leveling the playing field. Being able to work in SQL and get automatic
database parallelism for free is a very elegant approach.

The exact platform to store your data-staging tables depends on many
variables, including corporate standards and practices. However, we’ve
observed that it’s most practical to use flat files over database tables for
portions of the ETL process when the fundamental purpose of the process
is one of the following:
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Staging source data for safekeeping and recovery. When you extract
data from its originating data source, you must quickly enter the
system, select exactly what you need, and exit. If the ETL process
fails after the data is extracted, you must be able to start without
penetrating the source system again. The best approach to restart a
failed process without constantly penetrating the source system is to
dump the extracted data into a flat file for safe keeping. If the
process fails at any point after the data has been placed in flat file,
the process can easily restart by picking up the already extracted
data from the flat file in the staging area. Further details on utilizing
flat files to recover from ETL process failures are discussed in
Chapter 8.

Sorting data. Sorting is a prerequisite to virtually every data
integration task. Whether you are aggregating, validating, or doing
look-ups, presorting data optimizes performance. Sorting data in the
file system may be more efficient than selecting data from a database
table with an ORDER BY clause. Since the nature of ETL is to
integrate disparate data, merging data efficiently is a top priority that
requires intensive sorting. A huge fraction of your ETL system’s
processor cycles will go to sorting. You should carefully simulate the
biggest sorting tasks both in your DBMS and with a dedicated sort
package, if that is possible, to decide whether to base your sorting on
the DBMS or a dedicated package.

Filtering. Suppose you need to filter on an attribute that is not
indexed on the source database. Instead of forcing the source system
to create indexes that may hinder transaction processing, it might be
faster to extract the whole data set into a flat file and grep (A UNIX
command for filtering simple data files) only the rows that meet your
requirements. Another benefit of having the ability to filter data
without using a database is realized when data does not originate
from a database but from data files. A common example of this is
Web logs. While processing clickstream data, we use a grep
statement with the -v switch to select all the rows that do not contain
certain values such as .gif or .jpg so hits that are serving image files
are excluded from the data warehouse. Filtering flat files is
tremendously more efficient than inserting all data into a database
table, indexing the table, and then applying a WHERE clause either
to delete or select the data into another table.

Replacing/substituting text strings. The operating system can blaze
through a text file, translating any string to any other string
amazingly fast using the tr command. Doing substring searching
and replacing data in a database can require nested scalar functions
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and update statements. This type of sequential file processing is
much faster at the file-system level than it is with a database.

Aggregation. Aggregation, discussed in Chapter 6, must be
supported in two ways: in the regular ETL data flow before loading
into a database and in the database itself when aggregating data that
can only be requested with database filtering. Outside the database,
it makes most sense to use a dedicated sort package. Inside the
database, it almost always makes most sense to stay with the
database sort capability, although occasionally it can pay to dump
large volumes of data out of the database and use the sort package.

Referencing source data. In normalized transaction systems, it is
common to have a single reference table support many other tables.
A generic Status table, for example, can support order statuses,
shipping statuses, and payment statuses. Instead of querying the
same table in the source system over and over, it’s more efficient to
extract the reference table and stage it in the staging area once. From
there, you can look up data with your ETL tool. Most ETL tools can
read a look-up table into memory and store it there for the life of the
process. Accessing reference tables stored in memory is blazingly
fast. Moreover, utilizing staged reference data keeps the queries that
hit the source system simpler and more efficient because many of the
table joins can be omitted.

XML Data Sets

At this point, XML data sets are not generally used for persistent staging in ETL
systems. Rather, they are a very common format for both input to and output from
the ETL system. It is likely that XML data sets will indeed become a persistent
data-storage format in the ETL system and in the data warehouse queryable
tables, but the hierarchical capabilities of XML will have to be integrated more
deeply with relational databases before that will be common.

XML is a language for data communication. Superficially, XML takes the
form of plain text documents containing both data and metadata but no
formatting information. XML is expressed with much the same notation as
HTML but departs from the architecture of an HTML document. HTML,
by contrast, contains data and formatting information but no metadata.

Differences between XML and HTML are crucial to understanding how
XML affects data warehousing. XML metadata consists of tags unambigu-
ously identifying each item in an XML document. For instance, an invoice
coded in XML contains sequences such as:

<Customer Name = "Bob" Address= "123 Main Street" City= "Philadelphia" />
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Here Customer is an XML element whose definition has been established
between the sending and receiving parties before the invoice is transmit-
ted. The customer element has been defined to contain a number of XML
attributes, including name, address, city, and possibly others.

XML has extensive capability for declaring hierarchical structures, such
as complex forms with nested repeating subfields. These hierarchical struc-
tures do not directly map into standard two-dimensional relational tables
with rows and columns. When the data warehouse receives an XML data
set, there may be a complex extraction process to transfer the data perma-
nently into a relational data warehouse. There has been some discussion of
extending relational databases to provide native support for XML’s hierar-
chical structures, but this would amount to a substantial extension of the
syntax and semantics of SQL based relational databases, which as of this
writing has not happened.

Setting aside the issues of complex hierarchical structures, XML is today
an extremely effective medium for moving data between otherwise incom-
patible systems, since XML (and the XML Schemas that follow) provide
enough information to do a full CREATE TABLE statement in a relational
database and then populate this table with data with the right column types.
XML defines a universal language for data sharing. That is its strength. The
downside of XML for large-volume data transfer is the overhead of the
XML document structure itself. If you are transmitting millions of similar
and predictable records, you should seek a more efficient file structure than
XML for data transfer.

DTDs, XML Schemas, and XSLT

In XML, the standard way for two parties to define a set of possible tags
is by exchanging a special document known as a Document Type Defi-
nition (DTD). The DTD declaration for our customer example could be
cast as:

<!ELEMENT Customer (Name, Address, City?, State?, Postalcode?)>

<!ELEMENT Name (#PCDATA)>

plus similar lines for Address, City, State, and Postalcode.
Here the question marks after City, State, and Postalcode indicate that

these fields are optional. The #PCDATA declaration indicates that Name is
an unformatted text string.

Notice that the DTD contains somewhat less information than an SQL
CREATE TABLE statement. In particular, there is no field length.

DTDs have until now been the basis for setting up a metadata understand-
ing between two parties exchanging XML. A number of industry groups
have been defining standard DTDs for their subject areas. But as data ware-
housers, we don’t get enough from DTDs to build a relational table. To
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rectify this problem, the W3C standards organization has defined an
industrial-strength successor to DTDs known as XML Schemas. XML
Schemas contain much more database-oriented information about data
types and how the XML elements relate to each other or, in other words,
how tables can be joined.

When an XML Schema has been agreed upon and XML content has
been received, the information content is rendered via another specifica-
tion called Extensible Stylesheet Language Transformations (XSLT). Actu-
ally, XSLT is a general mechanism for translating one XML document into
another XML document, but its most visible use is for turning XML into
HTML for final on-screen presentation.

Relational Tables
Staging data can optionally be stored within the confines of a relational
DBMS. Using database tables is most appropriate especially when you don’t
have a dedicated ETL tool. Using a database to store staging tables has
several advantages:

Apparent metadata. One of the main drawbacks of using flat files is
that they lack apparent metadata. By storing data in a relational
table, the DBMS maintains technical metadata automatically, and
business metadata can easily be attached to the table within the
DBMS. Information such as column names, data types and lengths,
and cardinality is inherent to the database system. Table and column
business descriptions are elements commonly added to DBMS data
catalogs.

Relational abilities. Enforcing data or referential integrity among
entities is easy to accomplish in a relational environment. If you are
receiving data from nonrelational systems, it might make sense to
stage data in a normalized model before transforming into a
dimensional model.

Open repository. Once data is placed in a DBMS, the data can easily
be accessed (assuming permission is granted) by any SQL-compliant
tool. Access to the data is crucial during quality-assurance testing
and auditing.

DBA support. In many corporate environments, the DBA group is
responsible only for data inside the DBMS. Data outside of the
database, in the file system, is usually not looked after. Space
allocation, backup and recovery, archiving, and security are tasks
that the ETL team must coordinate when the staging data is not in a
DBMS.
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SQL interface. You will encounter many times when you need to
write SQL to manipulate data and get it in just the right format. Most
know that SQL is the standard language to speak to data—it is easy to
write and is powerful. SQL is probably the most widely known
programming language in the IT environment. Most database
systems come packed with robust SQL functions that save numerous
hours of manual coding. Oracle, for example, has overloaded
functions such as to char() that can take virtually any data type and
convert it into a character string in a variety of formats. Besides
enforcing referential integrity, having the ability to use native SQL is
the primary reason to store staging data in a database environment.

Independent DBMS Working Tables
If you decide to store your staging data in a DBMS, you have several archi-
tecture options when you are modeling the data-staging schema. Design-
ing tables in the staging area can be even more challenging than designing
transaction or dimensional models. Remember, transaction databases are
designed to get data in; dimensional designs get data out. Staging-area de-
signs must do both. Therefore, it’s not uncommon to see a mixture of data
architectures in the staging area.

To justify the use of independent staging tables, we’ll use one of our
favorite aphorisms: Keep it simple. Independent tables get their name be-
cause they don’t have dependencies on any other tables in the database. In
the transactional environment, these tables are known as orphans because
they don’t have relationships with other tables in the schema. Because inde-
pendent tables don’t have relationships, they are prime candidates to store
outside of a relational database.

Most of the time, the reason you create a staging table is to set the data
down so you can again manipulate it using SQL or a scripting language. In
many cases, especially smaller data warehouse projects, independent tables
are all you need in the staging area.

Just because independent tables are not necessarily normalized, they
must not be treated like dump files. Dump files are typically created arbi-
trarily without concern about disk space or query performance. Each field
of an independent file or table must have a purpose and a logical definition.
Superfluous columns are omitted from any independent table design. For
database tables, a proper index plan must be established and implemented
on all independent tables. Since all of the processes that hit each staging
table are known because only ETL processes use these tables, there is less
need for bitmapped indexes here than in the presentation area, which is
dominated by end user tools and ad-hoc requests. You will find more for use
for single column and compound column b-tree indexes in your ETL system.
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Third Normal Form Entity/Relation Models
There are arguments that the data-staging area is perhaps the central repos-
itory of all the enterprise data that eventually gets loaded into the data
warehouse. However, calling the data-staging area an enterprise-wide cen-
tral repository is a misnomer that makes data architects believe that the area
must be fully normalized. After all, what rightful data architect leaves any
enterprise data vulnerable to the possibility of redundancy? To build on the
analogy of the restaurant kitchen that we describe earlier in this chapter,
imagine that certain foods—fish, for example—must be carefully selected,
cleaned, portioned, filleted, and sautéed before they are finally served. Now
suppose you also serve ice cream. You don’t process ice cream the same way
you process the fish before serving it—ice cream is essentially scooped and
served. Forcing all data from every source system to go through the same
normalization process—fitting it into a third normal form-data model—is
like preparing ice cream as you would fish.

We rarely model the staging area in third normal form. We have had
cases where data elements of a hierarchy have come from disparate data
sources at different levels of granularity, including some external data from
nonrelational sources. In those cases, it makes sense to model the data in a
way that removes redundancy and enforces integrity before it is loaded it
into the dimensional data model. But this ideally takes the form of focusing
on isolated problem dimensions that need to be turned inside out to make
sure that initially dirty data has been cleaned correctly. Remember that the
main result of normalization is to enforce specific many-to-1 relationships.
The typical annotations on an entity-relation diagram are not enforced or
interpreted, except by humans examining the graphical depiction of the
schema. Consider modeling decisions on a case-by-case basis, normalizing
entities only as needed.

Don’t assume that the data-staging area must be normalized. Remember
two of the goals for designing your ETL processes we describe at the be-
ginning of this chapter: Make them fast and make them recoverable. If you
have stages in your process that are not physically manipulating data and
do not enable speed or recoverability, they ought to be removed.

Nonrelational Data Sources
A common reason for creating a dedicated staging environment is to inte-
grate nonrelational data. Your data-integration tasks seem much less chal-
lenging when all data is under one roof (DBMS). Integrating heterogeneous
data sources is a challenge that ETL developers must constantly confront
as the data warehouse expands its scope to include more and more subject
areas.
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In enterprise data warehouse projects, many of the data sources are from
nonrelational data sources or relational data sources that are not necessarily
related to each other. Nonrelational data sources can include COBOL copy
books, VSAM files, flat files, spreadsheets, and so on.

Bringing all of the disparate data sources into a single DBMS is a common
practice, but is it really necessary? The power of ETL tools in handling
heterogeneous data minimizes the need to store all of the necessary data
in a single database. Figure 2.2 illustrates how a platform-neutral ETL tool
can integrate many heterogeneous data sources right from their native data
stores, integrating the data on the fly to migrate it to the data warehouse.
Notice that the ETL tool is linked to the physical staging database and
external files and can optionally set the transient data down for interim
manipulation if required.

Herogeneous
Source Systems

HR System
(Oracle)

FinancialSystem
(DB2)

The Front Room

Misc. Flat Files

Inventory 
System
(VSAM)

Extract
Clean

Conform
and

Deliver
Processes

Specialized Connections Supplied as 
Part of Typical ETL Tools

Native 
SQL*Net 

Connection

Native
DB2

Connection

Native 
ASCII/

EBCDIC
Connection

Native 
MainFame 

VSAM
Connection

Staging 
Schema in 

DBMS

Staging Area Storage

Flat Files on 
File System

Figure 2.2 ETL tools natively integrate heterogeneous sources optionally using the
data-staging area.
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Integrating nonrelational data sources often requires some integrity
checking. Data-integrity assurance is not free. It often requires real estate in
the data-staging area and customized ETL processing to enforce business
rules that would otherwise be enforced by the nature of a source system re-
lational database. Relational means that tables have relationships—usually
parent-to-child—enforced by the database. For instance, if an orders table
has a status column, a status cannot be entered into that table without it
preexisting in a separate status table. In this scenario, the status table is the
parent of its associated children in the orders table. A parent record cannot be
deleted unless all of its children are deleted as well; otherwise, the children
become orphans. An orphan is any child record without a parent. Equiva-
lently, we say that the primary key for an order cannot be deleted if there
are foreign keys in the status table referring to that order. Orphans are a
sign of referential integrity failure.

Nonrelational data sources do not enforce referential integrity. Nonrela-
tional systems are essentially a collection of independent tables. Most often
in legacy transaction systems, parent-child relationships are enforced only
through the front-end application. Unfortunately, after years of operation,
any data integrity that is not enforced within the database is inevitably put
to risk by scripts or any other data manipulation performed outside the
front-end application. It is practically guaranteed that nonrelational data
sources include some data-quality issues.

As is not the case with transaction systems, it’s a good practice to have
integrity checks in the ETL process rather than in the database when design-
ing your data staging area. The difference is due to the fact that transaction
systems expect data to be entered correctly. Moreover, a human being who
enters erroneous data can react to an error thrown by the database and
reenter the data correctly. Conversely, the ETL process must know how to
handle data anomalies in a more automatic way. The process cannot simply
reject all data- integrity failures because there may be no one to reenter the
data correctly in a timely manner. Instead, you need to establish business
rules for different data-quality failure scenarios and implement them in the
ETL process. When erroneous data is passed through the process, some-
times you want to transform the data on the fly; load the data as is; load the
data with an associated code or description describing the impact or con-
dition of the data; or if the data is unacceptable, reject the data completely
and put it into a reject file for investigation.

Don’t overuse the reject file! Reject files are notorious for being dumping
grounds for data we’ll deal with later. When records wind up in the reject file,
unless they are processed before the next major load step is allowed to run to
completion, the data warehouse and the production system are out of sync.
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Basic database referential integrity enforcement is not sufficient to enforce
each of these scenarios. Hand-coded logic in the ETL process is almost
always required to successfully integrate nonrelational data sources.

Dimensional Data Models: The Handoff
from the Back Room to the Front Room
Dimensional data structures are the target of the ETL processes, and these
tables sit at the boundary between the back room and the front room. In
many cases, the dimensional tables will be the final physical-staging step
before transferring the tables to the end user environments.

Dimensional data models are by far the most popular data structures
for end user querying and analysis. They are simple to create, they are
extremely stable in the presence of changing data environments, they are
intuitively understandable by end users, and they are the fastest data struc-
ture for general relational database querying. Dimensional models are also
the foundation for constructing all forms of OLAP cubes, since an OLAP
cube is really just a high-performance dimensional model implemented on
special-purpose software.

This section is a brief introduction to the main table types in a dimension
model.

The other books in the Toolkit series discuss dimensional models in great
detail and provide guidance and motivation for building them in many
different business environments. We assume in this book that you have
studied the motivations for dimensional models (or that you don’t need
motivation because you have been handed a specification for a particular
dimensional design!). So in this section we introduce the basic physical
structure of dimensional models without any of the usual business-content
justification. In section 2 of this book we exhaustively illustrate all the known
dimensional model variations and discuss the ETL system that feeds each
of these structures.

Fact Tables
Dimensional models are built around measurement processes. A measure-
ment is a real-world observation of a previously unknown value. Mea-
surements are overwhelmingly numeric, and most measurements can be
repeated over time, creating a time series.

A single measurement creates a single fact table record. Conversely, a
single fact table record corresponds to a specific measurement event. Ob-
viously, the observed measurement is stored in the fact table record. But
we also store the context of the measurement in the same record. While we
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Policy Key

Customer Key

Agent Key

Coverage Key

Item Key

Transaction Type Key

Effective Date Key

Amount (fact)

Policy dimension

Agent dimension

Item dimension

Effective Date dimension

Customer dimension

Coverage dimension

Transaction Type dimension

Figure 2.3 A dimensional model for an insurance policy transaction.

might be tempted to store this context in many verbose fields directly in the
fact table record, we systematically normalize the contextual attributes out
of the fact table by creating a number of dimension tables that can be viewed
informally as clumps of context.

So, for example, if the measurement is the amount of an insurance pre-
mium booked by an insurance company on a particular policy, a particular
customer, a particular agent, a particular coverage (such as collision dam-
age), an insured item (perhaps an automobile), a specific transaction type
(such as establish premium), on a certain effective date, typical dimensions
attached to the fact record would be Policy, Customer, Agent, Coverage,
Item, Transaction Type and Effective Date. See Figure 2.3, which illustrates
this example.

The grain of a fact table is the definition of what constitutes a unique
fact table record. In the dimensional-modeling world, the grain is always
declared at the beginning of the design in business terms, not in database
terms. The grain of our insurance example could be insurance policy trans-
action. Then, later in the design process, when the available dimensions are
understood, the grain can be formally stated in terms of the key of the fact
table. This key declaration will include some but usually not all of the for-
eign key references to the dimensions attached to the fact table. We assume
that the key to our insurance fact table is Policy X Transaction Type X Time.

The structure and content of a dimensional model depend only on the
physics of the measurement process itself.

Dimension Tables
The dimensional model does not anticipate or depend upon the intended
query uses. It is a superbly flexible, symmetric framework suitable for all
classes of queries. But there is still some room for designer discretion. Many
of the dimensions for a particular fact table will be referenced directly in the
original data source. But the data warehouse team can add dimensions that
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come from other sources, as long as they are single valued at the time of the
measurement event. For instance, in our insurance example, a marketing-
oriented promotion dimension might be added if that data were available.
One of the great strengths of dimensional models is their ability to gracefully
add dimensional context that is valid in the context of the measurement
event.

Similarly, the best dimensions are verbose descriptions of the dimensional
entities. So the Customer dimension in our example should have many
descriptive fields. We call these descriptive fields dimensional attributes.
Fortunately, all dimensional designs allow attributes to be added to dimen-
sions incrementally over the life of the warehouse. The responsibility of the
data warehouse architect is to identify these opportunities for additional at-
tributes and to request that the ETL team add them to the physical schema.

Dimensional attributes are mostly textual or are numbers that take on dis-
crete values. Dimension tables should always be built with a single primary
key field that is a simple meaningless integer assigned by the ETL process.
These keys are called surrogate keys. The many advantages of surrogate keys
are described in the other Toolkit books. In this book, we describe how surro-
gate keys are created and administered in a number of important situations.

The primary surrogate keys in each dimension are paired with corre-
sponding foreign keys in the fact table. When this primary-to-foreign key
relationship is adhered to, we say that the tables obey referential integrity.
Referential integrity is a constant requirement in all dimensional models.
Failure to maintain referential integrity means that some fact table records
are orphans that cannot be retrieved through constraints on the affected
dimensions.

Atomic and Aggregate Fact Tables
You know that a dimensional data model is the best format for data to sup-
port user queries. You might at times need to utilize certain elements at an
atomic level so the data can be presented at a higher level. However, you
need to store the atomic-level facts to produce the precisely constrained
requests required by the users. Often, business users don’t want to analyze
transaction-level facts because the cardinality of each dimension is so exten-
sive that any atomic-level report would be pages long—making it humanly
impossible to examine. However, you need to store the atomic-level facts to
produce the periodic snapshot facts required by the users. When the time
comes that the users request atomic-level data, you can simply migrate it
from the staging area to the presentation layer.

It’s good practice to partition fact tables stored in the staging area because
its resulting aggregates will most likely be based on a specific period—
perhaps monthly or quarterly. Creating partitions alleviates the database
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from scanning the entire table and enables it to go directly to the subsec-
tion that contains the data it needs for that period to create the aggregate.
Partitioning also reduces the burden of pruning or archiving old data. Par-
titioned tables can simply drop the portion of a table that contains the old
data.

Dimensionally designed tables in the staging area are in many cases re-
quired for populating on-line analytic processing (OLAP) cubes. Or you
may implement a hybrid structure where you have the large atomic data
layer in a dimensional RDBMS schema, with progressively more aggre-
gated structures above the atomic layer in the form of OLAP cubes. Some
of the OLAP systems can drill down through the OLAP cubes and access
the lowest-level atomic data in a single application.

Surrogate Key Mapping Tables
Surrogate key mapping tables are designed to map natural keys from the
disparate source systems to their master data warehouse surrogate key.
Mapping tables are an efficient way to maintain surrogate keys in your data
warehouse. These compact tables are designed for high-speed processing.
Mapping tables contain only the most current value of a surrogate key—
used to populate a dimension—and the natural key from the source system.
Since the same dimension can have many sources, a mapping table contains
a natural key column for each of its sources.

Mapping tables can be equally effective if they are stored in a database or
on the file system. The advantage of using a database for mapping tables is
that you can utilize the database sequence generator to create new surrogate
keys. And also, when indexed properly, mapping tables in a database are
very efficient during key value lookups.

Since key mapping tables serve no analytical value, they should never
reside in the presentation layer of the data warehouse nor be exposed to
end users.

C R O S S - R E F E R E N C E Details on how to utilize mapping tables to create
surrogate keys for your dimensions are explained in Chapter 5, and utilizing them
to populate fact tables is discussed in Chapter 6.

Planning and Design Standards

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver
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The data-staging area must be managed and maintained as much, if not
more, than any other database in your environment. Some staging areas
are administered like a sandbox, where developers have a free for all—
creating, dropping, and modifying tables at will. Naturally, because of the
lack of control in these environments, troubleshooting and impact analysis
take much longer than necessary, causing inflated costs to the project.

The data-staging area must be a controlled environment. Only the data
architect should be able to design or modify a table in the staging area. All
physical changes must be owned by the DBA responsible for the database.
Also, if any developer needs a table, a strong chance exists that it can be
used by another developer. As a rule of thumb: If you build a table, expect
that it will be used by someone else for reasons other than you originally
intended. People, especially developers, are very creative when it comes to
reusing existing resources.

Impact Analysis
Impact analysis examines the metadata associated to an object (in this case a
table or column) and determines what is affected by a change to its structure
or content. Changing data-staging objects can break processes that are crucial
to properly loading the data warehouse. Allowing ad-hoc changes to data-
staging objects is detrimental to the success of your project.

Once a table is created in the staging area, you must perform impact
analysis before any changes are made to it. Many ETL tool vendors provide
impact analysis functionality, but this functionality is often overlooked dur-
ing the ETL product proof-of-concept because it is a back-room function and
not really important until the data warehouse is up and running and begins
to evolve.

Impact analysis, an ETL function, is an onerous responsibility because
changes to the source systems and the target data warehouse can be con-
tinuous and only the ETL process knows exactly which of these disparate
elements are connected. Communication among the ETL project manager,
source system DBA, and data warehouse modeling team is crucial to ensure
that appropriate impact analysis is performed whenever changes to any of
the systems to which the data warehouse is dependent occurs.

Metadata Capture
The topic of metadata is discussed in depth in Chapter 9, but it’s necessary
for you to understand what types of metadata you’ll be responsible for while
designing the data-staging area. Metadata has many different meanings
depending on its context. Metadata, which describes or supports other data
elements, is sprinkled throughout the components of the data warehouse.
In the realm of the data warehouse, the data staging area is not the metadata
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repository. However, several metadata elements associated with the data-
staging area are valuable to the data warehouse and must be presented to
its end users.

Enable the presentation of metadata elements by designing the staging
database with a data-modeling tool. Data-modeling tools store applicable
metadata in their own repositories. Also, use an ETL tool that implicitly
provides metadata about its processes and supports presentation of its
transformations. Types of metadata derived by the staging area include
the following:

Data Lineage. Perhaps the most interesting of all data warehouse
metadata, the data lineage, also known as the logical data mapping,
illustrates transformations applied to a data element between its
original data source and its ultimate target in the data warehouse.

Business Definitions. Every table created in the data-staging area
stems from a business definition. Business definitions can be
captured in several different places including the data-modeling tool,
the ETL tool, the database itself, or spreadsheets and Word
documents. Use whatever standards are in place for capturing
business definitions within the presentation layer of the data
warehouse to maintain consistency.

Technical Definitions. In the data-staging area specifically, technical
definitions are likely to be more prevalent than business definitions.
Remember: If it is not documented, it does not exist. Without proper
documentation of the technical definitions of your staging tables, the
tables might be recreated over and over, causing duplication of
efforts and data explosion in the data-staging area. Technical
definitions describe the physical attributes of data elements,
including the structure, format, and location. Properly document
technical metadata for all of your data-staging tables to minimize
ambiguity and ensure reusability.

Process Metadata. Processes that load data-staging tables must
record their statistics along with the statistics of the data warehouse
table loads. Although information regarding staging table loads need
not be presented to end users, the ETL team must know exactly how
many records were loaded into each staging table, with success and
failure statistics for each process. A measure of data freshness is
useful both for ETL administrators and end users.

All tables and files in the data-staging area must be designed by the
ETL architect. Metadata must be well documented. Data-modeling tools
offer metadata capture capabilities that would otherwise cause metadata
documentation to be a laborious task. Use a data-modeling tool to capture
appropriate metadata when designing staging tables, keeping in mind that
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the structure-oriented metadata from these tools is perhaps 25 percent of
the total metadata picture. The next 25 percent of the metadata describes the
results of data cleaning. To capture the additional process metadata, which
is fully 50 percent of the metadata, make sure your ETL tool supplies the
statistics required. At a minimum, the number of rows inserted, updated,
deleted, and rejected should be available for each process. Also, the process
start time, end time, and duration should be obtainable without any code
enhancements.

Naming Conventions
The ETL team should not be in the business of developing naming stand-
ards for the data warehouse team. Nevertheless, data-staging tables must
adhere to a standardized set of naming standards defined by the data ware-
house architect. It’s best practice to adopt the conventions in place in the rest
of the data warehouse and apply those same rules to the staging area. On
occasion, the data-staging area may contain tables or elements that are not in
the data warehouse presentation layer and do not have established naming
standards. Work with the data warehouse team and DBA group to embellish
the existing naming standards to include special data-staging tables.

Many ETL tools and data-modeling tools insist on presenting long
lists of table names alphabetically. You should pay careful attention to grouping
your tables together in useful clumps by using their alphabetic sort!

Auditing Data Transformation Steps
The data transformations in a complex ETL system reflect intricate business
rules. If you kept a formal audit trail of all data transformations used in your
system, you would include at least the following list:

Replacing natural keys with surrogate keys

Combining and deduplicating entities

Conforming commonly used attributes in dimensions

Standardizing calculations, creating conformed key performance
indicators (KPIs)

Correcting and coercing data in the data cleaning routines

In volatile environments, the source system data is constantly changing;
it’s mandatory that the data warehouse have the ability to prove the data
within it is accurate. But how is that accomplished when the source is con-
stantly changing? The ETL process must maintain a snapshot of the before
picture of the data before goes through the data-cleansing routines.
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When data is significantly altered (cleansed) by the ETL process, an extract of
the data before manipulation occurs must be retained for audit purposes.
Furthermore, metadata for all data-cleansing logic must be available without
sifting through code. The original source data, the data-cleansing metadata, and
the final dimensional data must be displayed in a cohesive delivery mechanism to
support questions arising from data-cleansing transformations.

Snapshots of extract data are stored in the data-staging area and made
available for audit purposes. A before and after glimpse of the data, along
with the metadata describing the data-cleansing logic, depicts exactly how
the data within the data warehouse is derived and promotes confidence in
the quality of its data.

Summary

In this chapter, we have reviewed the primary data structures you need in
your ETL system. We started by making the case for staging data in many
places, for transient and permanent needs. You need to be especially diligent
in supporting legal and financial compliance requirements. In these cases,
you need not only to store data but to document the rules by which the data
was created; if that isn’t enough, you need to prove that the data hasn’t
been tampered with.

A mature ETL environment will be a mixture of flat files, independent
relational tables, full-blown normalized models, and maybe some other
kinds of structured files, especially XML documents. But in all cases, we
urge you to remember that the whole point of the ETL system is the final
result: data structures purposely built for ease of use by end user tools. And
of course, we recommend that these purposely built tables take the form of
dimensional models consisting of fact tables and dimension tables. Their
close cousins, OLAP cubes, are usually created from dimensional schemas.

Finally, we touched on some best-practice issues, including adopting a set
of consistent design standards, performing systematic impact analyses on
your table designs, and changing those table designs as you move forward,
and making sure that you capture metadata at each point in the ETL system.
The big categories of metadata include table structure metadata (25 percent),
data-cleaning results (25 percent), and process results (50 percent). Metadata
is developed in depth in Chapter 4 and Chapter 9.

Now that we have all our working data structures organized, in Chapter 3
we dive into the source data structures we must read to populate the data
warehouse.
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C H A P T E R

3

Extracting

Once your data warehouse project is launched, you soon realize that the
integration of all of the disparate systems across the enterprise is the real
challenge to getting the data warehouse to a state where it is usable. Without
data, the data warehouse is useless. The first step of integration is success-
fully extracting data from the primary source systems.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

While other chapters in this book focus on transforming and loading data
into the data warehouse, the focal point of this chapter is how to interface
to the required source systems for your project. Each data source has its
distinct set of characteristics that need to be managed in order to effectively
extract data for the ETL process.

As enterprises evolve, they acquire or inherit various computer systems
to help the company run their businesses: point-of-sale, inventory manage-
ment, production control, and general ledger systems—the list can go on
and on. Even worse, not only are the systems separated and acquired at dif-
ferent times, but frequently they are logically and physically incompatible.
The ETL process needs to effectively integrate systems that have different:

Database management systems

Operating systems

Hardware

Communications protocols

55
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Before you begin building your extract systems, you need a logical data
map that documents the relationship between original source fields and
final destination fields in the tables you deliver to the front room. This
document ties the very beginning of the ETL system to the very end. We
show you how to build your logical data map in Part 1 of this chapter.

Part 2 of this chapter is a tour of the many flavors of source systems you
are likely to encounter. We probe moderately deeply into each one to get
you started choosing the right extraction approach.

At the end of this chapter, we introduce the subject of change data capture
and deleted record capture. Fifteen years ago we thought that the data
warehouse was immutable: a huge write-once library of data. With the
benefit of lots of experience in the intervening years, we now know that
data warehouses constantly need to be updated, corrected, and altered.
The change data capture extraction techniques in this chapter are only the
first step in this intricate dance. We need to revisit this subject in the data-
cleaning chapter, the delivery chapters, and the operations chapter!

Let’s dive into the logical data map.

Part 1: The Logical Data Map

The physical implementation can be a catastrophe if it is not carefully ar-
chitected before it is implemented. Just as with any other form of construc-
tion, you must have a blueprint before you hit the first nail. Before you
begin developing a single ETL process, make sure you have the appropri-
ate documentation so the process complies logically and physically with
your established ETL policies, procedures, and standards.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

The logical data map describes the relationship between the extreme start-
ing points and the extreme ending points of your ETL system.

Designing Logical Before Physical
Diving right into physical data mapping wastes precious time and excludes
documentation. This section describes how to develop the logical ETL pro-
cess and use it to map out your physical ETL implementation. Ensure the
following steps are achieved before you start any physical ETL develop-
ment:
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1. Have a plan. The ETL process must be figured out logically and
documented. The logical data map is provided by the data
warehouse architect and is the specification for the ETL team to
create the physical ETL jobs. This document is sometimes referred to
as the data lineage report. The logical data map is the foundation of
the metadata that is eventually presented to quality-assurance testers
and ultimately to end users to describe exactly what is done between
the ultimate source system and the data warehouse.

2. Identify data source candidates. Starting with the highest-level
business objectives, identify the likely candidate data sources you
believe will support the decisions needed by the business
community. Identify within these sources specific data elements you
believe are central to the end user data. These data elements are then
the inputs to the data profiling step.

3. Analyze source systems with a data-profiling tool. Data in the
source systems must be scrutinized for data quality, completeness,
and fitness for the purpose. Depending on your organization, data
quality might or might not fall under the responsibility of the ETL
team, but this data-profiling step must be done by someone with an
eye for the needs of the decision makers who will use the data
warehouse. Data in each and every source system must be analyzed.
Any detected data anomaly must be documented, and best efforts
must be made to apply appropriate business rules to rectify data
before it is loaded into the data warehouse. You must hold open the
possibility that the project STOPs with this step! If the data cannot
support the business objectives, this is the time to find that out.
More on data profiling in Chapter 4.

4. Receive walk-though of data lineage and business rules. Once the
data sources have been qualified by the data-profiling step and the
final target data model is understood, the data warehouse architect
and business analyst must walk the ETL architect and developers
through the data lineage and business rules for extracting,
transforming, and loading the subject areas of the data warehouse, as
best they understand these rules. Full understanding of the data
lineage and business rules will not be achieved until the ETL team
has encountered all the data realities, but this step aims to transfer as
much knowledge as possible to the ETL team. The data-profiling step
should have created two subcategories of ETL-specific business rules:

4a. Required alterations to the data during the data-cleaning steps

4b. Coercions to dimensional attributes and measured numerical
facts to achieve standard conformance across separate data
sources
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5. Receive walk-through of data warehouse data model. The ETL
team must completely understand the physical data model of the
data warehouse. This understanding includes dimensional modeling
concepts. Understanding the mappings on a table-by-table basis is
not good enough. The development team must have a thorough
understanding of how dimensions, facts, and other special tables in
the dimensional model work together to implement successful ETL
solutions. Remember that a principal goal of the ETL system is to
deliver data in the most effective way to end user tools.

6. Validate calculations and formulas. Verify with end users any
calculations specified in the data linage. This rule comes from the
measure twice, cut once aphorism used in the construction business in
New York City. Just as you don’t want to be caught up on a
skyscraper with the wrong-size material, you similarly don’t want to
be caught deploying the wrong measures in the data warehouse. It is
helpful to make sure the calculations are correct before you spend
time coding the wrong algorithms in your ETL process.

Inside the Logical Data Map

Before descending into the details of the various sources you will encounter,
we need to explore the actual design of the logical data mapping document.
The document contains the data definition for the data warehouse source
systems throughout the enterprise, the target data warehouse data model,
and the exact manipulation of the data required to transform it from its
original format to that of its final destination.

Components of the Logical Data Map
The logical data map (see Figure 3.1) is usually presented in a table or
spreadsheet format and includes the following specific components:

Target table name. The physical name of the table as it appears in the
data warehouse

Target column name. The name of the column in the data warehouse
table

Table type. Indicates if the table is a fact, dimension, or
subdimension (outrigger)

SCD (slowly changing dimension) type. For dimensions, this
component indicates a Type-1, -2, or -3 slowly changing dimension
approach. This indicator can vary for each column in the dimension.
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For example, within the customer dimension, the last name may
require Type 2 behavior (retain history), while the first name may
require Type 1 (overwrite). These SCD types are developed in detail
in Chapter 5.

Source database. The name of the instance of the database where the
source data resides. This component is usually the connect string
required to connect to the database. It can also be the name of a file as
it appears in the file system. In this case, the path of the file would
also be included.

Source table name. The name of the table where the source data
originates. There will be many cases where more than one table is
required. In those cases, simply list all tables required to populate the
relative table in the target data warehouse.

Source column name. The column or columns necessary to populate
the target. Simply list all of the columns required to load the target
column. The associations of the source columns are documented in
the transformation section.

Transformation. The exact manipulation required of the source data
so it corresponds to the expected format of the target. This
component is usually notated in SQL or pseudo-code.

Columns in the logical data mapping document are sometimes com-
bined. For example, the source database, table name, and column name
could be combined into a single source column. The information within
the concatenated column would be delimited with a period, for example,
ORDERS.STATUS.STATUS CODE. Regardless of the format, the content
of the logical data mapping document has been proven to be the critical
element required to efficiently plan ETL processes.

The individual components in the logical data mapping appear to be sim-
ple and straight-forward. However, when studied more closely, the docu-
ment reveals many hidden requirements for the ETL team that might oth-
erwise have been overlooked. The primary purpose of this document is
to provide the ETL developer with a clear-cut blueprint of exactly what is
expected from the ETL process. This table must depict, without question,
the course of action involved in the transformation process.

Take a look at Figure 3.1.
Scrutinizing this figure, you may notice a few revelations that, if they

were to go unnoticed, would cause a lot of time troubleshooting and de-
bugging and ultimately delaying the project. For example, you might notice
that the data types between the source and target for STATE get converted
from 255 characters to 75 characters. Even though the data-scale reduction
might be supported by the data-analysis documentation, should any future
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values with more than 75 characters be created, you would potentially lose
the data. Moreover, some ETL tools would actually abort or fail the entire
process with this kind of data overflow error. Notice the transformation
notation for the STATE does not explicitly define this data conversion—the
conversion is implied. By definition, no one explicitly accounts for implied
conversions. Implied conversions are common and notorious for sneaking
up and destroying your processes. To avoid calamity, the ETL team must
assume responsibility for explicitly handling these types of implied data
conversions.

ETL tool suites typically keep track of these implied data conversions and can
deliver reports that identify any such conversions.

The table type gives us our queue for the ordinal position of our data
load processes—first dimensions, then facts.

Working with the table type, the SCD type is crucial while loading dimen-
sions. As we explain earlier in this chapter, the structure of the table itself
does not reveal what the slowly changing dimension strategy is. Misinter-
preting the SCD strategies could cause weeks of development time gone to
waste. Know exactly which columns have historic relevance and the strat-
egy required for capturing the history before you begin the development of
the load process. The value in this column may change over time. Usually
during unit testing, when your selected users observe the data in the data
warehouse for the first time, they see unexpected results. As hard as the
data modeler may try, the SCD concepts are very hard to convey to users,
and once they are exposed to the loaded dimension, they quite often want
to tweak the SCD strategies. This request is common and should be handled
through the data warehouse project manager and the change management
process.

The transformation within the mapping is the guts of the process, the
place where developers with strong technical abilities look first. But you
must constrain yourself from being completely code focused and review the
entire mapping before you drill into the transformation. The transformation
can contain anything from the absolute solution to nothing at all. Most often,
the transformation can be expressed in SQL. The SQL may or may not be the
complete statement. Quite often, it is the segment of the code that cannot
otherwise be implied from the other elements in the mapping, such as the
SQL WHERE clause. In other cases, the transformation might be a method
that is not SQL specific and is explained in plain English, like instructions to
preload from a flat file or to base the load transformation on criteria outside
of the database or to reject known data anomalies into a reject file. If the
transformation is blank, this means the mapping is a straight load, from
source-to-target, with no transformation required.
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Upon the completion of the logical data map, do a comprehensive
walkthrough of the document with the ETL developer before any actual coding
begins.

Using Tools for the Logical Data Map
Some ETL and data-modeling tools directly capture logical data mapping
information. There is a natural tendency to want to indicate the data map-
ping directly in these tools. Entering this information into a tool that enables
us to share this metadata is a good practice. But, at the time of this writing,
there is no standard for the appropriate data elements related to logical data
mapping. The exact elements available in the various tools differ quite a bit.
As the metadata standards in the data warehouse environment mature, a
standard should be established for the elements defined in the logical data
map. Established metadata standards will enable the tools to become more
consistent and usable for this purpose. You should investigate the usability
of your current toolset for storing the logical data map and take advantage of
any features you have available. However, if your tools do not capture all
of the elements you need, you will wind up having the logical data map in
several locations, making maintenance a horrific chore. Be on the lookout
for vast product improvements in this area.

Building the Logical Data Map

The success of data warehousing stems in large part from the fact that all
data is in one logical place for users to perform cross-functional analysis.
Behind the scenes, the ETL team integrates and transforms disparate, un-
organized data seamlessly and presents it as if it has lived together since
the beginning of time. A key criterion for the success of the data ware-
house is the cleanliness and cohesiveness of the data within it. A unified
data store requires a thorough insight of each of its source data systems.
The importance of understanding the data in the data sources, and the sys-
tems of the sources themselves, is often overlooked and underestimated
during the project-planning phase of the ETL. The complete logical data
mapping cannot exist until the source systems have been identified and an-
alyzed. The analysis of the source system is usually broken into two major
phases:

The data discovery phase

The anomaly detection phase
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Data Discovery Phase
Once you understand what the target needs to look like, you need to iden-
tify and examine the data sources. Some or all of the source systems may
have been accumulated during the data-modeling sessions, but this cannot
be taken for granted. Usually, only the major source systems are identified
during the data-modeling sessions. It’s important to note that the data mod-
eler’s main objective is to create a data model. Any logical data mapping
derived from the data-modeling sessions is merely a byproduct—a starting
point. Moreover, the data modeler spends most of his or her time with end
users, so the source systems defined in the logical data mapping may not
be the true originating or optimal source—the system-of-record. It is up to
the ETL team to drill down further into the data requirements to determine
each and every source system, table, and attribute required to load the data
warehouse. Determining the proper source, or system-of-record, for each
element is a challenge that must be reckoned with. Thorough analysis can
alleviate weeks of delays caused by developing the ETL process using the
wrong source.

Collecting and Documenting Source Systems

The source systems are usually established in various pieces of documen-
tation, including interview notes, reports, and the data modeler’s logical
data mapping. More investigation is usually necessary by the ETL team.
Work with the team’s system and business analysts to track down appro-
priate source systems. In large organizations, you must ask the question
“Who else uses this data?” and find the data source of each user group.
Typical organizations have countless distinct systems. It is the ETL team’s
responsibility to keep track of the systems discovered and investigate their
usefulness as a data warehouse source.

Keeping Track of the Source Systems

Once the source systems are identified, it makes sense to document these
systems along with who is responsible for them. Figure 3.2 is a chart created
for this purpose. This chart, the source system tracking report, has saved us
many times from having to hunt down system administrators or business
owners. If you are lucky, the data modeler will have started this list. Regard-
less of the originator, the maintenance of the list should be a collaborative
effort between the ETL team and the data modeling team. If during your
analysis systems are deemed inappropriate as a source system to the data
warehouse, leave them on the list with the reason for their omission; they
may be used in future phases.
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The source system tracking report also serves as an outline for future
phases of the data warehouse. If there are 20 source systems identified in
the list, and phase 1 includes two or three systems, plan to be on the project
for a long, long time.

Subject area. Typically the name of the data mart that this system
feeds

Interface name. The name of the transaction application that the
source system supports

Business name. The name the system is commonly referred to by the
business users.

Priority. A ranking or ordinal position used to determine future
phases. The priority is usually set after the data warehouse bus
matrix has been completed.

Department/Business use. The primary department using the
database, for example, Accounting, Human Resources, and so on. If
the application is used by many departments, indicate the business
use, for example, Inventory Control, Client tracking, and so on.

Business owner. The person or group to contact for issues or
questions related to the use of the application or database. This
person or group is typically the data steward for the subject area.

Technical Owner. Typically the DBA or IT project manager
responsible for maintaining the database

DBMS. The source database management system name. In most
cases, it will be a relational database such as Oracle, DB2, or Sybase.
It can also be nonrelational data stores like Lotus Notes or VSAM.

Production server/OS. When known, this column includes the
physical name of the server where the database lives. It also includes
the operating system. You need this column when designing OS level
scripts for your ETL. For example, you cannot use UNIX shell scripts
when the server is operating on NT.

# Daily users. Gives you an idea of how many operational people in
the organization the data is exposed to. This number is not the same
as the potential end user data warehouse users.

DB size. The DBA should be able to provide this information.
Knowing the raw size of the source data can help you determine the
ETL priorities and efforts. Generally speaking, the larger databases
tend to be higher on the priority lists because performance is usually
lacking when large tables or several joined tables are queried in the
transaction system.
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DB complexity. The number of tables and view objects in the
system

# Transactions per day. Estimate that gives you an indication of the
capacity requirements for the incremental load process

Comments. Usually used for general observations found while
researching the database. It may include notes about future version
releases of the database or reasons why it is or isn’t a system-of-
record for certain entities.

Determining the System-of-Record

Like a lot of the terminology in the data warehouse world, the system-
of-record has many definitions—the variations depend on who you ask.
Our definition of the system-of-record is quite simple: It is the originating
source of data. This definition of the system-of-record is important because
in most enterprises data is stored redundantly across many different sys-
tems. Enterprises do this to make nonintegrated systems share data. It is
very common that the same piece of data is copied, moved, manipulated,
transformed, altered, cleansed, or made corrupt throughout the enterprise,
resulting in varying versions of the same data. In nearly all cases, data at
the end of the lineage will not resemble the originating source of data—the
system-of-record. We were once on a project where the originally identified
source data was four times removed from the system-of-record. In the pro-
cess between systems 3 and 4, the data was transferred via an algorithm
in an attempt to clean the data. The algorithm had an undetected bug, and
it corrupted the data by inserting data from other fields into it. The bug
was discovered by the ETL team during the data-discovery phase of the
project.

Dealing with Derived Data.

You may run into some confusion surrounding derived data. Should the ETL
process accept calculated columns in the source system as the system-of-record,
or are the base elements, the foundation of the derived data, desired? The answer
to this depends partly on whether the calculated columns are addditive.
Nonadditive measures cannot be combined in queries by end users, whereas
additive measures can. So you may be forced to use the base elements and
calculate the nonadditve measure yourself. But be thoughtful. Should you try to
recreate the calculations in the ETL process, you will be responsible for keeping
the calculations synchronized and for understanding the business rules that
define these calculations. If the calculation logic changes in the source system,
the ETL process will have to be modified and redeployed. It is necessary, therefore,
to capture the calculation as metadata so users understand how it was derived.



P1: KTX
WY046-03 WY046-Kimball-v4.cls September 1, 2004 16:39

Extracting 67

Unless there is substantial evidence that the originating data is not re-
liable, we recommend you don’t sway from our definition of system-of-
record. Keep in mind that a goal of the data warehouse is to be able to share
conformed dimensions across all subject areas. Should you chose not to use
the system-of-record to load your data warehouse, conforming dimensions
will be nearly impossible. Should you need to augment your dimensions
with different versions of data for specific needs, those should be stored as
additional attributes in your conformed dimension.

However, to each rule there is an exception. Identifying the database name
or file name may not be as easy as you might think—especially if you are
dealing with legacy systems. During a project, we once spent weeks tracking
down the orders database. Everyone we spoke to referred to the database by
a different name. We then discovered that each location had a local version
of the database. Since the goal of the data warehouse was to report across
the organization, we began documenting each location database name with
the intent to migrate the data with the ETL process. During our research
of the database names, a programmer finally came forward and said, “You
can get the list of the databases you need by reading this replication pro-
gram.” To our surprise, there was already a process in place to replicate
the local databases to a central repository. Rather than recreate the wheel,
we chose to use this program to get the consolidated database name and
loaded the data warehouse from the central repository. Even though the
true originating source of data was in each location’s database, using the
central repository was the most efficient and reliable solution.

The further downstream you go from the originating data source, the more
you increase the risk of extracting corrupt data. Barring rare exceptions, maintain
the practice of sourcing data only from the system-of-record.

Analyzing the Source System: Using Findings
from Data Profiling

Once you’ve determined the system-of-record, your next step is to analyze
the source systems to get a better understanding of their content. This un-
derstanding is normally accomplished by acquiring the entity relation (ER)
diagrams for the systems you’ve selected to be the system-of-record, if they
are based on relational technology. Should the ER diagrams not exist (and
don’t be surprised if there are none to be found) you may be able to create
them. ER diagrams can be generated by reverse engineering the database.
Reverse engineering is a technique where you develop an ER diagram by
reading the existing database metadata. Data-profiling tools are available
that make this quite easy. Just about all of the standard data-modeling tools
provide this feature, as do some of the major ETL tools.
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Reverse engineering a system of record to get a proper ER model of the data
is obviously useful. But it is not the same as forward engineering a complex ER
model to build simple dimensional schemas. Data-modeling tools, in fact, fail
miserably at this kind of forward engineering when you are trying to see the forest
for the trees in a normalized environment with hundreds of tables.

Before diving into the ER diagram, look for a high-level description of
the tables and fields in the database. If it exists, it may take the form of
unstructured text descriptions, and it may be out of date, but it’s far better
to start with an overview than to try to discover the overview by looking
at reams of mind-numbing detail. Also, don’t forget to debrief the source-
system guru who understands all the arcane logic and incremental changes
that have occurred in the source system!

Having the ability to navigate an ER diagram is essential to performing
data analysis. All members of the ETL team need to be able to read an ER
diagram and instantly recognize entity relationships. Figure 3.3 illustrates
a simple ER diagram.

In the numbered list that follows, we explain the significant characteristics
that you want to discover during this phase, including unique identifiers,
nullability, and data types. These are primary outputs of a data-profiling
effort. But more important, we explain how to identify when tables are
related to each other; and which columns have dependencies across tables.
Specific characteristics in the ER diagram outlined in Figure 3.3 are:

1. Unique identifiers and natural keys. Unique identifiers depict the
columns that uniquely represent a row in a table. This definition can
be misleading, so we want to investigate it a bit further. From a
referential integrity standpoint, a unique identifier is the primary key
for a table. Most of the time, the primary key is artificial, and
although it is unique from an ETL standpoint, it is not enough
information to determine if the row is unique. In every properly
designed transaction table, in addition to the primary key, there is at
least one natural key. The natural key is what the business uses to
uniquely describe the row. For example, a status table can have a
status id, status code, and status description. The status id is clearly
the primary key, but depending on the business rules, for purposes of
the ETL, the status code could be the unique identifier natural key.
Special care must be taken when selecting the correct natural keys,
especially when loading slowly changing dimensions.

2. Data types. Remember, as ETL analysts, you take nothing for
granted. Column names do not infer data types. Just because a
column is named Purchase Order Number, are we certain that only
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numbers, not letters, are stored in the column? Additionally, if there
are only numbers, are there leading zeros? Are these zeros important
to end users? On a particular project, while building a human
resource data mart, we had a source column named SCORE; it was a
CHAR(2) data type. In the target, it was a NUMBER data type. As it
turns out, the data was approximately 80-percent numbers and the
rest were letters (A-D and F). The ETL process needed to convert any
letter grades to their numerical equivalent. DATE and TIME elements
are notorious for being stored as text. It is up to the ETL process to
convert these dates while loading them into the data warehouse.

3. Relationships between tables. Understanding how tables are related
is vital to ensuring accuracy in joins while retrieving data. If you are
lucky, the ER diagram has lines connecting the related tables.
Evaluation of table relationships includes analyzing the connecting
lines. Unfortunately, data-processing people are not lucky and it is
most likely that you’ll need to look at the diagram a bit closer to
determine table relationships. While loading a target table from
heterogeneous sources, it is good practice to bring all of the sources
into a data-modeling tool and map out the relationships. This
integrated ER diagram lends itself to making the logical data map
easier to create.

4. Discrete relationships. It is not uncommon for the design of the
source system to include a single look-up table that stores all of the
static reference data for all of the tables throughout the database. The
look-up table contains a column that identifies which table and
column the associated group of rows support. This takes time for the
unknowing to discover. Carefully document the name of each group
of rows and the associated tables and columns. This information will
be needed while mapping many of the dimensions.

5. Cardinality of relationships and columns. Knowing the cardinality
of relationships is necessary to predict the result of your queries.
Using crow’s feet notation, a single line means the cardinality is 1,
and only 1 of the same value is allowed. A line and a circle indicate
zero or 1 is allowed. The side with 3 lines in the form of a crow’s foot
indicates the same value can be repeated many times. In relational
databases, all associated tables will be joined in one of the following
ways:

One-to-one. You see one-to-one relationships during
super-type/sub-type scenarios and the practice of vertical table
partitioning. One-to-one relationships can be identified by
observing that the relationship is on the primary key of each
table.
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One-to-many. This is the most commonly found relationship for
foreign key references. It is easily identified by noting that a
nonkey attribute in a table refers to the primary key of another
table. We call this nonkey attribute a foreign key, and we insist that
all the foreign keys are good, that is, they are instances of the
primary key they point to.

Many-to-many. This relationship usually involves three tables
with two one-to-many relationships between them. More
specifically, there are two tables with an associative table between
them. The center or associative table has a compound primary key
and two foreign keys, one to the primary key of one table and
another to the primary key of the other table.

Frequently, source systems do not have foreign keys or referential integrity
consistently defined in the database dictionary. These issues may also be
discovered through simple column-name matching and more comprehensive data
profiling.

Be sure you carefully study all data types in your sources, in your intermediate
staging tables, and in the final tables to be delivered. It’s quite common for the
data modeling team to create data elements that don’t exactly match their source.
In some cases, you’ll find data types are purposely mismatched. For example,
some designers deliberately make all code fields allow alphanumeric characters,
even if the current system uses only numbers and is a number data type. Also, be
sure to evaluate the length of each field. In some cases, the target data warehouse
can have smaller data lengths or numeric precision than the source database.
Smaller data lengths in the target causes data truncation (lost data!). When you
see disparities, check with the data modeling team to confirm their intentions.
Either await database corrections or get business rules for conversion and
truncation routines.

Data Content Analysis
Understanding the content of the data is crucial for determining the best
approach for retrieval. Usually, it’s not until you start working with the
data that you come to realize the anomalies that exist within it. Common
anomalies that you should be aware of include:

NULL values. An unhandled NULL value can destroy any ETL
process. NULL values pose the biggest risk when they are in foreign
key columns. Joining two or more tables based on a column that
contains NULL values will cause data loss! Remember, in a relational
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database NULL is not equal to NULL. That is why those joins fail.
Check for NULL values in every foreign key in the source database.
When NULL values are present, you must outer join the tables. An
outer join returns all of the rows regardless of whether there is a
matching value in the joined table. If the NULL data is not in a
foreign key column but is in a column required by the business for
the data warehouse, you must get a business rule on how the NULL
data should be handled. We don’t like to store NULL values in the
data warehouse unless it is indeed an unknown measure. Whenever
possible, create default values to replace NULL values while loading
the data warehouse.

Dates in nondate fields. Dates are very peculiar elements because
they are the only logical elements that can come in various formats,
literally containing different values and having the exact same
meaning. Fortunately, most database systems support most of the
various formats for display purposes but store them in a single
standard format (for that specific database). But there are many
situations where dates are stored in text fields, especially in legacy
applications. The possible variations of date formats in nondate
fields are boundless. Following is a sample of the possible variations
of the same date that can be found when the date is stored in a text
field:

13-JAN-02

January 13, 2002

01-13-2002

13/01/2002

01/13/2002 2:24 PM

01/13/2002 14:24:49

20020113

200201

012002

As you can imagine, it’s possible to fill pages with variations of a single
date. The problem is that when the source database system doesn’t control
or regulate the data entry of dates, you have to pay extra-close attention to
ensure you are actually getting what you expect.

In spite of the most detailed analysis, we recommend using outer join logic
when extracting from relational source systems, simply because referential
integrity often cannot be trusted on remote systems.
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Collecting Business Rules in the ETL Process
You might think at this stage in the process that all of the business rules must
have been collected. How could the data modelers create the data model
without knowing all of the business rules, right? Wrong. The business rules
required for the data modeling team are quite different from those required
by the ETL team. For example, the data modeling definition of the status
dimension might be something like:

Status Code—The status is a four-digit code that uniquely identifies the
status of the product. The code has a short description, usually one
word, and a long description, usually one sentence.

Conversely, the ETL definition of status might be expressed like this:

Status Code—The status is a four-digit code. However, there are legacy
codes that were only three digits that are still being used in some
cases. All three-digit codes must be converted to their four-digit
equivalent code. The name of the code may have the word
OBSOLETE embedded in the name. OBSOLETE needs to be removed
from the name and these obsolete codes must have an obsolete flag
set to ‘Y’. The description should always be in sentence case,
regardless of the case used when entered into the source system.

The business rules for the ETL process are much more technical than any
other collection of business rules in the data warehouse project. Regardless
of their technical appearance, these rules still stem from the business — the
ETL team cannot be in the business of making up rules. It is up to the ETL
architect to translate user requirements into usable ETL definitions and to
articulate these technical definitions to the business people in a way they
can understand. The ETL data definitions go through an evolution process.
As you discover undocumented data anomalies, document and discuss
them with the business—only they can dictate how the anomalies should
be handled. Any transformations that come from these meetings have to be
documented, properly approved, and signed off.

Integrating Heterogeneous Data Sources

The preceding sections of this chapter expose many of the common data
systems that you might come across while sourcing your data warehouse.
This section discusses the challenges you may face integrating the differ-
ent data sources. But before you can integrate data, you need to know
what data integration means. Integrating data means much more than simply
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collecting disparate data sources and storing that data in a single repository.
To better understand what integration really means, consider a corporate
merger. During corporate mergers, one or more companies are joined with
other similar (or dissimilar) companies. When mergers occur, the business
must decide which company is the surviving company and which gets
consumed by the new parent. Sometimes, negotiations are made when the
parent company recognizes value in certain practices and techniques of its
subsidiaries and incorporates those practices in its modified organization.
The result of a successful corporate merger is a cohesive organization that
has a single business interest. This requires a heroic commitment to aligning
terminology (dimension attributes) and aligning key performance indica-
tors (facts in fact tables). If you think of integrating your data in the same
fashion as a corporate merger, the result of your data warehouse is a single
source of information organized to support the business interest.

But what about those half-finished mergers that allow their subsidiary
companies to do their own thing? This situation causes a problem because the
companies are not integrated—they are merely associated. When you build
a data warehouse, integration can occur in several places. The most direct
form of data integration is the implementation of conformed dimensions.
In the data warehouse, conformed dimensions are the cohesive design that
unifies disparate data systems scattered throughout the enterprise.

When a dimension is populated by several distinct systems, it is important to
include the unique identifier from each of those systems in the target dimension
in the data warehouse. Those identifiers should be viewable by end users to
ensure peace of mind that the dimension reflects their data that they can tie back
to in their transaction system.

What happens when those idiosyncratic dimensions cannot completely
conform? Unfortunately, this question is as much of a political issue as a
technical one. Conformed dimensions and facts are crucial to the success
of the data warehouse project. If the result of your project offers disparate
dimensions that are not cohesive across business subject areas, you have
not accomplished your goal. Chapter 5 discusses loading dimensions in
painstaking detail, but we want to mention specific techniques for loading
conformed dimensions in a disparate source system environment here.

1. Identify the source systems. During the data-profiling phase of the
construction of the logical data mapping, the data warehouse team
must work together to detect the various sources of your target
dimensions and facts. The data warehouse architect should uncover
most of the potential sources of each element in the data warehouse
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and attempt to appoint a system-of-record to each element. The
system-of-record is considered the ultimate source for the data being
loaded.

2. Understand the source systems (data profiling). Once the source
systems are identified, you must perform a thorough analysis of each
system. This is also part of data profiling. Data analysis of the source
systems uncovers unexpected data anomalies and data-quality
issues. This phase declares the reliability of the source system for the
elements under scrutiny. During this phase of the project, the
assignment of the system-of-record can actually be reassigned if
data-quality issues persist or if reliability of the data is problematic
for any reason.

3. Create record matching logic. Once you understand all of the
attributes of all of the entities of all of the systems under
consideration (quite a tall order), your next objective is to design the
matching algorithm to enable entities across the disparate systems to
be joined. Sometimes, the matching algorithm is as simple as
identifying the primary key of the various customer tables. But in
many cases, disparate systems do not share primary keys. Therefore,
you must join the tables based on fuzzy logic. Perhaps, there is a
social security number that can be used to uniquely identify your
customer or maybe you need to combine the last name, e-mail
address, and telephone number. Our intention here is not to offer a
matching solution but to get you thinking about how your customers
can be linked. The various business areas must be involved with and
approve of your final matching logic. Don’t forget to make sure that
this record-matching logic is consistent with the various legislated
privacy rules, such as HIPAA in the health care arena.

4. Establish survivorship rules. Once your system-of-record has been
identified and the matching logic has been approved, you can
establish the surviving record when data collisions occur in your ETL
process. This means that if you have a customer table in your
accounts receivable, production control, and sales systems, the
business must decide which system has overriding power when
attributes overlap.

5. Establish nonkey attribute business rules. Remember, dimensions
(and facts) are typically sourced from various tables and columns
within a system. Moreover, many source systems can, and usually
do, contain different attributes that ultimately feed into a target final
dimension. For instance, a list of departments probably originated in
your HR department; however, the accounting code for that



P1: KTX
WY046-03 WY046-Kimball-v4.cls September 1, 2004 16:39

76 Chapter 3

department probably comes from your financial system. Even
though the HR system may be the system-of-record, certain
attributes may be deemed more reliable from other systems.
Assigning business rules for nonkey attributes is especially
important when attributes exist in several systems but not in the
system-of-record. In those cases, documentation and publication of
the data lineage metadata is crucial to prevent doubt in the integrity
of the data warehouse when users don’t see what they expect to see.

6. Load conformed dimension. The final task of the data-integration
process is to physically load the conformed dimension. This step is
where you consider the slowly changing dimension (SCD) type and
update late-arriving data as necessary. Consult Chapter 5 for details
on loading your conformed dimensions.

The beauty of your data warehouse is that it has the ability to truly inte-
grate data, yet also to enable users to see dimensions from their perspective.
Conformed dimensions and facts are the backbone of the enterprise data
warehouse.

Part 2: The Challenge of Extracting from
Disparate Platforms

Each data source can be in a different DBMS and also a different platform.
Databases and operating systems, especially legacy and proprietary ones,
may require different procedure languages to communicate with their data.
On enterprise-wide data warehouse projects, be prepared to have communi-
cation with source systems limited to specific languages. Even if there is no
technical limitation, departments or subsystems can, and usually do, have
a standard language that is allowed to interact with their data. Standards
we’ve been asked to use include COBOL, FOCUS, EasyTrieve, PL/SQL,
Transact-SQL, and RPG. When a specific language beyond the realm of
your ETL toolset or experience becomes mandatory, request that the owner
of the source system extract the data into a flat file format.

Connecting to Diverse Sources through ODBC
Open Database Connectivity (ODBC) was created to enable users to ac-
cess databases from their Windows applications. The original intention for
ODBC was to make applications portable, meaning that if an application’s
underlying database changed—say from DB2 to Oracle—the application
layer did not need to be recoded and compiled to accommodate the change.
Instead, you simply change the ODBC driver, which is transparent to the
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Bypass 
ODBC 

Manager 

Native
Database

Connection

Typical 
ODBC 

Connection

ETL Tool

ODBC Manager

ODBC Driver

Source Database

Figure 3.4 The topology of ODBC in the ETL process.

application. You can obtain ODBC drivers for practically every DBMS in
existence on virtually any platform. You can also use ODBC to access flat
files.

The drawback to ODBC’s flexibility is that it comes at a performance
cost. ODBC adds several layers of processing and passing of data to the
data-manipulation process. For the ETL process to utilize data via ODBC,
two layers are added between the ETL system and the underlying database.
Figure 3.4 illustrates the layers involved in an ODBC environment.

ODBC manager. The ODBC manager is a program that accepts SQL
from the ETL application and routes it to the appropriate ODBC
driver. It also maintains the connection between the application and
the ODBC driver.

ODBC driver. The ODBC driver is the real workhorse in the ODBC
environment. The ODBC driver translates ODBC SQL to the native
SQL of the underlying database.

As you might suspect, once you use ODBC you might lose much DBMS-
specific functionality. Particular non-ANSI standard SQL commands are
not accepted by the ODBC manager because it needs to maintain an open
solution. ODBC, particularly Microsoft’s OLE DB and .Net providers, have
improved significantly in recent years, but for highest performance and na-
tive DBMS functionality you should look first to a native database driver.
Just don’t throw the baby out with the bath water. ODBC can provide a com-
mon format gateway to certain troublesome data sources that are otherwise
not easily extracted.
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Mainframe Sources

The mainframe computer, created in the mid 1960s, is widely used by
most large enterprises around the world. The unique differentiator between
mainframes and other computers is the hardware architecture. Nonmain-
frame, including minicomputers and microcomputers, use their central pro-
cessing units (CPUs) for virtually all of their processing, including getting
data to and from disk and other peripherals. By contrast, mainframes have
a special architecture emphasizing peripheral channels that process all in-
put/output, leaving the CPU dedicated to processing only data, such as
calculating formulas and balances.

In many large companies, much of the day-to-day business data is pro-
cessed and stored on mainframe systems (and certain minicomputer sys-
tems, such as the IBM AS/400) and integrating data from these systems
into the data warehouse involves some unique challenges. There are sev-
eral characteristics of mainframe systems that the ETL team must be familiar
with and develop techniques to handle:

COBOL copybooks

EBCDIC character sets

Numeric data

Redefines fields

Packed decimal fields

Multiple OCCURS fields

Multiple record types

Variable record lengths

The rest of this section discusses these mainframe characteristics and
offers techniques for managing them when they are encountered.

Working with COBOL Copybooks
COBOL remains the dominant programming language used on mainframe
computers, and the file layout for data is described in COBOL copybooks. A
copybook defines the field names and associated data types for a mainframe
data file. As with other flat files you encounter in your ETL process, only
two data types exist in mainframe flat files: text and numeric. However, nu-
meric values are stored in a variety of ways that you need to understand to
accurately process. Likewise, dates are stored simply as strings of numbers
(or text) and typically require transformation to be stored in date columns
in the data warehouse.
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01 EMP-RECORD. Len Positions 

  05 FIRST-NAME PIC X(10). 10 1 - 10 

  05 MIDDLE-INITIAL PIC X. 1 11 - 11 

  05 LAST-NAME PIC X(15). 15 12 - 26 

  05 SSN PIC X(9). 9 27 - 35 

  05 EMP-DOB. 8 36 - 43 

   10 DOB-YYYY PIC 9(4). 4 36 - 39 

   10 DOB-MM PIC 9(2). 2 40 - 41 

   10 DOB-DD PIC 9(2). 2 42 - 43 

  05 EMP-ID PIC X(9). 9 44 - 52 

  05 HIRE-DATE. 8 53 - 60 

   10 HIRE-YYYY PIC 9(4). 4 53 - 56 

   10 HIRE-MM PIC 9(2). 2 57 - 58 

   10 HIRE-DD PIC 9(2). 2 59 - 60 

  05 TERM-DATE. 8 61 - 68 

   10 TERM-YYYY PIC 9(4). 4 61 - 64 

   10 TERM-MM PIC 9(2). 2 65 - 66 

   10 TERM-DD PIC 9(2). 2 67 - 68 

  05 TERM-REASON_CODE PIC X(2). 2 69 - 70 

Figure 3.5 A simple copybook that describes an employee record.

Figure 3.5 illustrates a 70-byte, fixed length record that describes a simple
employee record. Notice that the field names are preceded by level numbers.
Nesting of level numbers is used to group related fields. COBOL programs
can refer to field names at any defined level. For example, a program can
refer to HIRE-DATE to capture the full date of hire or HIRE-YYYY if only
the year portion is needed for processing.

Text and numeric data types are denoted using the PIC clauses. PIC X
denotes text fields, while PIC 9 means the field is numeric. Field lengths are
specified with numbers following the type. For example, the clause PIC 9(4)
indicates a four-byte numeric field, whereas PIC X(15) indicates a 15-byte
text field. PIC clauses can be coded alternatively by repeating the X or 9
data type indicator, such as PIC 9999 for a four-byte numeric field.

The data file represented in Figure 3.5 can easily be transmitted via FTP
and loaded into the data warehouse because all of the data is contained in
display format. But before you try to transfer this file from the mainframe to
the data warehouse platform, you need to take a short lesson on the differ-
ence between the familiar ASCII character set used on UNIX and Windows
platforms and the EBCDIC character set used on the mainframe.

EBCDIC Character Set
Both the legacy mainframe systems and the UNIX- and Windows-based
systems, where most data warehouses reside, are stored as bits and bytes.
Each byte is made of eight bits, and each bit represents a binary (base-2)
digit. The maximum number that can be represented by a byte made of
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binary bits is 255 (that is, 28-1). Thus, the number of unique characters (for
example, A–Z, a–z, 0–9, punctuation, and special characters) that can be
portrayed in a system made up of such bytes is 256 (including character 0).

Converting EBCDIC to ASCII
You might think that since both systems use bits and bytes, data from your
mainframe system is readily usable on your UNIX or Windows system.
But UNIX and Windows systems use the American Standard Code for In-
formation Interchange (ASCII) character set, whereas mainframes use a
different set, known as Extended Binary Coded Decimal Interchange Code
(EBCDIC). EBCDIC uses more or less the same characters as ASCII but uses
different 8-bit combinations to represent them.

For example, take the lowercase letter a . In ASCII, the letter a is character
number 97 (01100001), but in EBCDIC, character number 97 is / (forward
slash). In EBCDIC a is character 129 (10000001). In fact, none of the common
characters are represented by the same character numbers in ASCII and
EBCDIC. To use mainframe data on your UNIX or Windows system, you
must first translate it from EBCDIC to ASCII.

Transferring Data between Platforms
Luckily, translating data from EBCDIC to ASCII is quite simple. In fact
it’s virtually automatic, assuming you use File Transfer Protocol (FTP) to
transfer the data from the mainframe to your data warehouse platform.
An FTP connection requires two nodes—a host and a client. When an FTP
connection is made between systems, the FTP client identifies its operating
system environment to the FTP host, and the host determines whether any
translation is required when transferring data between the two systems.
So when an FTP connection is made between a mainframe and a UNIX or
Windows system, the FTP host translates mainframe data from EBCDIC to
ASCII as it transfers the data. In addition, FTP adds the special line feed
and carriage return characters used to designate the end of a line (or record)
of data on UNIX and Windows. FTP also translates from ASCII to EBCDIC
if the data movement is from UNIX or Windows to the mainframe.

If you receive mainframe data on magnetic tape cartridge or CD-ROM
rather than via FTP, you need to explicitly translate the data from EBCDIC
to ASCII on the data warehouse system. This translation can be performed
using the UNIX dd command with the conv=ascii switch. For Windows,
you can obtain a port of thedd—and many other useful UNIX commands—
on the Internet. In addition, commercial products that handle character-
translation duties are available. ETL tool suites all handle this conversion.
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Most robust tools designed specifically for ETL can convert EBCDIC to
ASCII on the fly.

If your source data resides on a mainframe system, it is crucial that your ETL
tool have the ability to implicitly convert EBCDIC data to ASCII. If at all possible,
you want this to occur on the mainframe to avoid any corruption of low values and
packed decimals. If data is received via tape or other media, the translation must
occur by the ETL tool in the nonmainframe environment. At a minimum, the ETL
tool must automatically execute FTP and process files in stream, passing the data
directly from the mainframe through the ETL process to the target data warehouse.

As a final point, although mainframes and UNIX or Windows systems
use different character sets, translating data from one system to another
is a rather simple task—simple, that is, unless your mainframe data has
some other traits that are typical of the mainframe world. The next few
sections discuss specific characteristics that mainframe data may possess
and recommend strategies for managing them during the ETL process.

Handling Mainframe Numeric Data
When you begin to work with quantitative data elements, such as dollar
amounts, counts, and balances, you can see that there’s more to these num-
bers than meets the eye. For one thing, you won’t typically find decimal
points in decimal data, because the decimal points are implied. For exam-
ple, the value 25,000.01 is stored as 002500001. Worse, the value 2,500,001 is
stored the same way. So how does the mainframe COBOL program know
that 25,000.01 is meant rather than 2,500,001? It’s in the PIC clause. The next
section discusses the importance and power of the PIC clause in COBOL
copybooks.

Using PICtures
You can see in Figure 3.6 that the PIC clause can give the same data value
different meaning. To accurately process a numeric value that comes from
a legacy mainframe system, you must first transform it to its display format
before transmitting it to the data warehouse system; otherwise, your ETL
tool has to handle interpreting these mainframe values on the UNIX or
Windows platform. To resolve decimals in the numeric values, you might
think that you can simply divide the numeric value by the power of ten
equal to the number of implied decimal places. And if all numeric values
were stored with only the decimal point implied, you’d be right. However,
it’s not quite that simple. You also have to consider signed numeric values.



P1: KTX
WY046-03 WY046-Kimball-v4.cls September 1, 2004 16:39

82 Chapter 3

PIC Clause Value DATA 

PIC 9(9) 2,500,001 002500001 

PIC 9(7)V99 25,000.01 002500001 

PIC 9(6)V9(3) 2,500.001 002500001 

PIC S9(W) DISPLAY SIGN LEADING SEPARATE 2,500.001 002500001 

PIC S9(7)V99 DISPLAY SIGN LEADING SEPARATE 25,000.01 +002500001 

PIC S9(7)V99 DISPLAY SIGN LEADING SEPARATE (25,000.01) -002500001 

PIC S9(7)V99 DISPLAY SIGN TRAILING SEPARATE 25,000.01 002500001+ 

PIC S9(7)V99 DISPLAY SIGN TRAILING SEPARATE (25,000.01) 002500001- 

PIC S9(7)V99 25,000.01 00250000A 

PIC S9(7)V99 (25,000.01) 00250000J 

Figure 3.6 The PIC clause in a COBOL copybook indicates the decimal places of a
numeric value.

In mainframe data, the signs may come before or after the numeric value.
What’s more, the sign may be embedded within the numeric value.

The most common format, zoned numeric, embeds the sign within the last
numeric digit as shown in the last two rows of Figure 3.6. So, how does A
in the last position connote both the digit 1 and the sign +, and likewise,
how does J represent both 1 and -? The trick is that the last byte is treated
as two separate half-bytes (each containing four bits) and each half-byte is
interpreted separately—in hexadecimal, of course!

For positive numbers, the first half-byte is set to C , the hexadecimal value
of 1100, and negative numbers are set to D, the hexadecimal value of 1101.
The second half-byte is set to the hexadecimal value that corresponds to
the desired numeric digit. When you combine the first half-byte—1100 for
positive or 1101 for negative—to the second half-byte, you get resulting
EBCDIC characters, as seen in Figure 3.7.

By now, you are probably scratching your head trying to figure out how
to deal with numeric data from your mainframe system. Well, before you
try to solve the problem, there’s still one more twist that you are likely to
encounter in most legacy mainframe systems.
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BIN HEX EBCDIC 

11000000 C0 unprintable 

11000001 C1 A 

11000010 C2 B 

11000011 C3 C 

11000100 C4 D 

11000101 C5 E 

11000110 C6 F 

11000111 C7 G 

11001000 C8 H 

11001001 C9 I 

11010000 D0 unprintable 

11010001 D1 J 

11010010 D2 K 

11010011 D3 L 

11010100 D4 M 

11010101 D5 N 

11010110 D6 O 

11010111 D7 P 

11011000 D8 Q 

11011001 D9 R 

Figure 3.7 Hexadecimal to EBCDIC.

Unpacking Packed Decimals
Though at present computer hard disk storage is relatively inexpensive, in
the past disk storage was among the most expensive components of the
computer system. To save disk space, software engineers devised creative
formats to store numeric data using fewer bytes than the digits in the num-
ber. The most pervasive of these formats is COMP-3, also known as packed
numeric.

In many mainframe systems, most if not all numeric data is stored in
COMP-3 format. COMP-3 format is a simple space-saving technique that
uses half-bytes—or nibbles—rather than full bytes to store numeric digits.
Each numeric digit can be stored in binary format within the four bits of
a nibble. The last nibble of a COMP-3 numeric field stores the sign (posi-
tive/negative) of the numeric value. Using half-bytes to store numeric digits
saves nearly half the space used by the display format. But this simple space-
saving technique throws a wrench into the EBCDIC to ASCII character-set
translation.
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As a result of this translation conundrum, mainframe data that contains
numeric values stored using numeric storage formats such as Zoned Nu-
meric or COMP-3 (not to mention COMP, COMP-1, and COMP-2) cannot
simply be translated from EBCDIC to ASCII and then processed on the
UNIX or Windows warehouse system.

One of the following techniques must be used to maintain the integrity
of mainframe numeric data:

Reformat data on the mainframe into its display format before
transmitting it to the data warehouse system using a simple program
written in COBOL, Assembler, or a fourth-generation language such
as SAS, Easytrieve, or FOCUS. Once data is reformatted in this way,
it can then be translated to ASCII via FTP as described earlier in this
chapter.

Transfer data to the warehouse system in its native EBCDIC format.
This option is viable only if your ETL tools or process can process
EBCDIC data. Several types of tools can perform this task.

Use robust ETL tools that can process native EBCDIC, including
accurately handling numeric data store in any mainframe-type
numeric formats.

Use a utility program that can reformat data into display format on
the warehouse platform. If you receive EBCDIC data and are
writing the ETL process without the aid of a specialized ETL tool,
we strongly recommend purchasing a utility program that can
perform the numeric format conversion and EBCDIC-to-ASCII
translation duties. Some relatively inexpensive, commercially
available programs handle this task quite well.

Working with Redefined Fields
Rather than wasting space—remember it used to be expensive—mainframe
engineers devised REDEFINES, which allow mutually exclusive data ele-
ments to occupy the same physical space. Figure 3.8 contains an excerpt
from a COBOL Copybook that helps illustrate the concept of REDEFINES
in mainframe data files. The excerpt describes the data fields that repre-
sent an employee’s wage information. Notice EMPLOYEE-TYPE, which is
a one-byte code that indicates whether the employee is exempt or hourly.
Also, notice that two separate series of fields carry the wage information
for the employee. The field set used depends on whether the employee is
exempt or hourly. Exempt employees’ wages are represented in three fields
(PAY-GRADE, SALARY, and PAY-PERIOD), which take up a total of eight
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Len Positions 

05 EMPLOYEE-TYPE PIC X. 1 71 - 71 

 88 EXEMPT VALUE ‘E’.     

 88 HOURLY VALUE ‘H’.     

05 WAGES. 8 72 - 79 

 10 EXEMPT-WAGES. 8 72 - 79 

  15 PAY-GRADE PIC X(2). 2 72 - 73 

  15 SALARY PIC 9(6)V99 COMP3. 5 74 - 78 

15 PAY-PERIOD PIC X. 1 79 - 79 

88 BI-WEEKLY VALUE ‘1’.     

88 MONTHLY VALUE ‘2’.     

   10 NON-EXEMPT-WAGES  
REDEFINES EXEMPT-WAGES. 

8 72 - 79 

    15 PAY-RATE PIC 9(4)V99. 6 72 - 77 

    15 JOB-CLASS PIC X(1). 1 78 - 78 

15 FILLER        PIC X. 1 79 - 79 

Figure 3.8 REDEFINES clause in a COBOL copybook.

bytes. Hourly employees use a different set of fields that take up seven bytes
(PAY-RATE and JOB-CLASS).

Since an employee is exempt or hourly, never both, only one of the two
field sets is ever used at a time. The exempt wage fields occupy positions
72 through 79 in the file, and the hourly wage fields occupy positions 72
though 78. Furthermore, notice that the fields for exempt and hourly wages
use different data types even though they occupy the same positions. When
reading the employee record, the program must determine how to interpret
these positions based on the value of EMPLOYEE-TYPE in position 71.

The same positions can have more than one REDEFINES associated with
them, so rather than just two possible uses, the same positions can have
two, three, or more possible uses. REDEFINES introduce one further com-
plication that renders mere EBCDIC-to-ASCII character-set translation in-
sufficient.

When you encounter multiple REDEFINES in your sources, you should consider
making each definition a separate pass of the extract logic over the source data if
the subsequent processing is quite different (using Exempt versus Hourly as an
example). This would allow you to build separate code lines for each extract rather
than one complex job with numerous tests for the two conditions.

Multiple OCCURS
Mainframe and COBOL precede relational databases and Edward Codd’s
normalization rules. Prior to utilizing relational theory to design databases,
repeating groups were handled with mainframe COBOL programs that use
an OCCURS clause to define data fields that repeat within a data file. For
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Len Position 

05 PERFORMANCE-RATING-AREA PIC X(100). 100 80 - 179 

05 PERFORMANCE-RATINGS 100 80 - 179 

 REDEFINES PERFORMANCE-RATINGS-AREA.     

07 PERFORMANCE-RATING OCCURS 5 TIMES. 20 80 - 99 

 15 PERF-RATING PIC X(3). 3 80 - 82 

 15 REVIEWER-ID PIC X(9). 9 83 - 91 

 15 REVIEW-DATE. 8 92 - 99 

 20 REVIEW-DATE-YYYY PIC 9(4). 4 92 - 95 

  20 REVIEW-DATE-MM PIC 9(2). 2 96 - 97 

  20 REVIEW-DATE-DD PIC 9(2). 2 98 - 99 

Figure 3.9 COBOL copybook with OCCURS clause to define repeating groups within a
data record.

example, in Figure 3.9 you can see an area of an employee record that stores
information about performance ratings. The record is designed to keep track
of up to five performance ratings. But rather than creating the needed fields
five times—remember, this precedes relational theory so there won’t be a
separate performance rating table with a foreign key that points back to the
employee—they are named only once within a special OCCURS field. The
OCCURS clause indicates the number of times the fields within it repeat.
Essentially, the OCCURS clause defines an array contained within the file.
Thus, in the employee record, data for the first performance rating occupies
positions 80 to 99, the second rating from 100 to 119, the third from 120 to
139, the fourth from 140 to 159, and the fifth—and last—from 160 to 179.

In most cases, the ETL process needs to normalize any data contained in a
OCCURS section of a mainframe file. Even though it is possible to manually
program the ETL process to manage the repeating data, it is strongly recom-
mended that you use a robust ETL tool that allows you to use the COBOL
copybooks to define inputs or at least allows you to manually define input
file arrays in some other way. If your tools do not support input arrays, you
are stuck with the toil of writing code to deal with repeating groups within
records sourced from your legacy mainframe systems.

Sometimes programmers use OCCURS to store different facts in an array,
rather than storing the same fact N times. For example, suppose O-DATE occurs
four times. The first date is CREATE, the second is SHIP, the third is
ACKNOWLEDGE, and the fourth is PAYMENT. So in this case you don’t normalize
this OCCURS data but rather create discrete fields for each position in the array.

To ensure data integrity, model data that results from a COBOL OC-
CURS clause in a normalized fashion—a master table and child table—in
the staging area of the data warehouse. It’s good practice to stage this data
in separate tables because the result of the process most likely loads data
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into a fact table and a dimension, two separate dimensions, or two separate
fact tables. We find that in these situations it makes sense to set data down
to settle before integrating it with the data warehouse.

Managing Multiple Mainframe Record Type Files
The concept of multiple record type files is touched upon in the section
that discusses REDEFINES. The main difference between REDEFINES as
discussed earlier and what we’re introducing now is that instead of having
just a small portion of a record contain multiple definitions, the entire record
has multiple definitions. Multiple record types are often used to span a sin-
gle logical record across two or more physical records. Figure 3.10 contains
an extract of a COBOL copybook that illustrates the concept of redefining
an entire record.

In Figure 3.10, the REDEFINES clause applies to the entire record. So
now, instead of the file carrying only an employee’s basic information, it
also carries an employee’s job history with the company as well. In this file,
every employee has at least two records: one EMP-RECORD and one JOB-
RECORD. When an employee transfers to a new job, a new JOB-RECORD
is added to the file. So an employee’s total job history is contained in two
or more records on the file: one EMP-RECORD and one or more JOB-
RECORD(s).

In this file, the physical order of the records is critically important because
the JOB-RECORDs do not have any information to link them to their cor-
responding EMP-RECORDs. The JOB-RECORDs for an employee follow
immediately after his or her EMP-RECORD. So to accurately process the
job history of an employee, you must treat two or more physically adjacent
records as one logical record.

The benefit of using multiple record types is—once again—to save space.
The alternative, without using relational theory, is to have extremely wide,
space-wasting records to carry all data in a single record. If, for example,
you want to track job history for up to five prior positions, you have to add
255 bytes to each employee record (the base EMP-RECORD, plus five occur-
rences of JOB-RECORD fields (5 × 51 bytes). But the number of job history
field segments is situational—it depends on how many jobs an employee
has held.

By using multiple record types, the mainframe system can store job his-
tory records only as needed, so employees with only one job require only
one JOB-RECORD (70 bytes including FILLER), saving 185 bytes on the
file. Furthermore, you are no longer limited to a fixed number of jobs in
file. An unlimited number of 70-byte JOB-RECORDs can be added for each
employee.
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Len Positions 

 01 EMP-RECORD. 70 1 - 70 

  05 REC-TYPE PIC X(1). 1 1 - 1 

  05 FIRST-NAME PIC X(10). 10 2 - 11 

  05 MIDDLE-INITIAL PIC X. 1 12 - 12 

  05 LAST-NAME PIC X(15). 15 13 - 27 

  05 SSN  PIC X(9). 9 28 - 36 

  05 EMP-DOB. 8 37 - 44 

   10 DOB-YYYY PIC 9(4). 4 37 - 40 

   10 DOB-MM PIC 9(2). 2 41 - 42 

   10 DOB-DD PIC 9(2). 2 43 - 44 

  05 EMP-ID PIC X(8). 8 45 - 52 

  05 HIRE-DATE. 8 53 - 60 

   10 HIRE-YYYY PIC 9(4). 4 53 - 56 

   10 HIRE-MM PIC 9(2). 2 57 - 58 

   10 HIRE-DD PIC 9(2). 2 59 - 60 

  05 TERM-DATE. 8 61 - 68 

   10 TERM-YYYY PIC 9(4). 4 61 - 64 

   10 TERM-MM PIC 9(2). 2 65 - 66 

   10 TERM-DD PIC 9(2). 2 67 - 68 

  05 TERM-REASON_CODE PIC X(2). 2 69 - 70 

 01 JOB-RECORD REDEFINES EMP-RECORD.  70 1 - 70 

  05 REC-TYPE PIC X(1). 1 1 - 1 

  05 DIVISION PIC X(8). 8 2 - 9 

  05 DEPT-ID PIC X(3). 3 10 - 12 

  05 DEPT-NAME PIC X(10). 10 13 - 22 

  05 JOB-ID PIC X(3). 3 23 - 25 

  05 JOB-TITLE PIC X(10). 10 26 - 35 

  05 START-DATE. 8 36 - 43 

   10 START-YYYY PIC 9(4). 4 36 - 39 

   10 START-MM PIC 9(2). 2 40 - 41 

   10 START-DD PIC 9(2). 2 42 - 43 

  05 END-DATE. 8 44 - 51 

   10 END-YYYY PIC 9(4). 4 44 - 47 

   10 END-MM PIC 9(2). 2 48 - 49 

   10 END-DD PIC 9(2). 2 50 - 51 

  05 FILLER PIC X(19). 19 52 - 70 

Figure 3.10 Recognizing multiple record types within the same file.

Our employee example has only two record types, but multiple REDE-
FINES can be used to create any number of record types that can combine
into a single logical record. If we expand the employee example, you might
imagine a third record type to carry information about the employee’s fringe
benefits and a fourth type to carry information about the employee’s family
dependents.

The ETL process must manage multiple record types by retaining the
values from the first physical record in a set—which is only the first part of
the logical record—in memory variables so they can be joined to the rest of
the data that follows in subsequent records.
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Handling Mainframe Variable Record Lengths
In the previous section, we discuss how information related to a single en-
tity is spanned across two or more records using multiple record types. A
variable record length is another approach used in mainframe files to store
situational information. Rather than storing the job history of an employee
in separate JOB-RECORDs, each job is stored in an OCCURS job history
segment. Furthermore, as illustrated in Figure 3.11, instead of the record
having a fixed number of such segments, the number of segments varies
between 0 and 20, based on the numeric value in the DEPENDING ON

Len LOGICAL Positions 

 01 EMP-RECORD. 70 1 - 70 

  05 REC-TYPE PIC X(1). 1 1 - 1 

  05 FIRST-NAME PIC X(10). 10 2 - 11 

  05 MIDDLE-INITIAL PIC X. 1 12 - 12 

  05 LAST-NAME PIC X(15). 15 13 - 27 

  05 SSN  PIC X(9). 9 28 - 36 

  05 EMP-DOB. 8 37 - 44 

   10 DOB-YYYY PIC 9(4). 4 37 - 40 

   10 DOB-MM PIC 9(2). 2 41 - 42 

   10 DOB-DD PIC 9(2). 2 43 - 44 

  05 EMP-ID PIC X(8). 8 45 - 52 

  05 HIRE-DATE. 8 53 - 60 

   10 HIRE-YYYY PIC 9(4). 4 53 - 56 

   10 HIRE-MM PIC 9(2). 2 57 - 58 

   10 HIRE-DD PIC 9(2). 2 59 - 60 

  05 TERM-DATE. 8 61 - 68 

   10 TERM-YYYY PIC 9(4). 4 61 - 64 

   10 TERM-MM PIC 9(2). 2 65 - 66 

   10 TERM-DD PIC 9(2). 2 67 - 68 

  05 TERM-REASON_CODE PIC X(2). 2 69 - 70 

  05 JOB-HISTORY-COUNT PIC 9(2). 2 71 - 72 

05 JOB-HISTORY OCCURS 20 TIMES 
DEPENDING ON JOB-HISTORY-COUNT. 

varies 73 - varies 

  05 DIVISION PIC X(8). 8 73 - 80 

  05 DEPT-ID PIC X(3). 3 81 - 83 

  05 DEPT-NAME PIC X(10). 10 84 - 93 

  05 JOB-ID PIC X(3). 3 94 - 96 

  05 JOB-TITLE PIC X(10). 10 97 - 106 

  05 START-DATE. 8 107 - 106 

  10 START-YYYY PIC 9(4). 4 107 - 110 

  10 START-MM PIC 9(2). 2 111 - 112 

  10 START-DD PIC 9(2). 2 113 - 114 

  05 END-DATE. 8 115 - 114 

  10 END-YYYY PIC 9(4). 4 115 - 118 

  10 END-MM PIC 9(2). 2 119 - 120 

  10 END-DD PIC 9(2). 2 121 - 122 

Figure 3.11 Variable record lengths in a COBOL copybook using the DEPENDING ON
clause.
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JOB-HISTORY-COUNT clause. Each additional employee job, up to a max-
imum of 20, adds 50 bytes to the length of the record.

Variable-length records that use DEPENDING ON clauses in the copy-
book make straightforward EBCDIC-to-ASCII character-set translation in-
effective. The following is a list of ways to mitigate the risk of creating
corrupt data from variable-length records during the ETL process.

Convert all data to display format on the mainframe and convert to
fixed-length records, adding space at the end of each record for all
unused variable segment occurrences.

Transfer the file in BINARY format to the data warehouse platform.
This technique requires having tools that can interpret all of the
nuances of mainframe data discussed throughout this chapter.
Robust dedicated ETL tools handle most or all of these situations. If
your data warehouse project does not include such a tool, third-party
utility programs are available in various price ranges that can
interpret and convert mainframe data on a UNIX or Windows
platform.

The last option is to develop your own code to handle all of the
known nuances that can occur when dealing with legacy data.
However, this option is not for the faint-hearted. The cost in time and
effort to handle all of the possible data scenarios would most likely
exceed the cost of either developing the reformat programs on the
mainframe or purchasing one of the utilities to assist in handling the
mainframe data.

Extracting from IMS, IDMS, Adabase, and Model 204

If you use any of these systems, you will need special extractors. For starters,
there are ODBC gateways to each of these. It is beyond the scope of this book
to discuss detailed extraction techniques for these legacy database systems,
but we realize they may be important to some of you.

Flat Files

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Flat files are the mainstay of any data-staging application. In most data
warehouse environments you cannot avoid flat files. Flat files are utilized
by the ETL process for at least three reasons:
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Delivery of source data. When data is sourced by mainframes or
external vendors, it is quite often FTP’d to the data-staging area in
flat files. Data that comes from personal databases or spreadsheets is
also usually delivered via flat files.

Working/staging tables. Working tables are created by the ETL
process for its own exclusive use. Most often, flat files are used
because I/O straight reads and writes to the file system are much
faster than inserting into and querying from a DBMS.

Preparation for bulk load. If your ETL tool does not support
in-stream bulk loading, or you want a load file for safekeeping or
archiving, you need to create a flat file on the file system after all of
the data transformations have occurred. Once a flat file is created,
your bulk load processor can read the file and load it into your data
warehouse.

Not all flat files are created equally. Flat files essentially come in two
flavors:

Fixed length

Delimited

Processing Fixed Length Flat Files
At times, you cannot access the physical data required to populate the
data warehouse from its originating system. In those cases, you need to
have a flat file created for you by the programmers who support the source
system. Quite often, those files will be fixed length—also known as positional
flat files. One of us was once on a data warehouse project that required
very complex calculations from the legacy source system. The names of the
calculations were given to the data warehouse architect, but the sources and
calculations were a mystery. After some time-consuming investigation and
detective work, the fields were discovered on a report that was written in
COBOL in 1977. Naturally, the programmers that designed the report were
no longer with the company. Moreover, the source code was nowhere to be
found. As it turned out, the calculations were not so much complex as they
were nonexistent.

Unfortunately, telling business users that data could not be derived and
would not be available in the data warehouse was not an option. The team’s
solution was to redirect the report containing the required data to output
to a flat file and use the prederived data from the report as a data source.
Because of the nature of the report—fixed columns—it was simply treated
as a positional flat file and processed with the rest of the ETL processes.
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Field Name Length Start End Type Comments

Record Type 2 1 2 AlphaNumeric Type of record can be either 'H' for header or 'D' for detail record.

SSN 9 3 11 Numeric Employee's Social Security Number.

First Name 20 12 31 AlphaNumeric First name of employee

Middle Initial 1 32 32 AlphaNumeric Middle initial of employee

Last Name 20 33 52 AlphaNumeric Last name of employee

Name Suffix 5 53 57 AlphaNumeric Jr, Sr, III, etc.

Birth Date 8 58 65 Numeric Employee's data of birth "YYYYMMDD".

Status Code 6 66 71 Numeric Employee's Status ('A','R', 'T', etc).

Office Code 2 72 73 Numeric The code of the employees branch office.

Department Code 2 74 75 Numeric The code of the employees department within his/her office.

Position Code 2 76 77 Numeric The code of the employees position in the organization.

Filler 1 78 78 AlphaNumeric Filler space.

Add Date 8 79 86 Numeric The date the record was add to the system.

Modified Date 8 87 94 Numeric The date the record last modified.

Figure 3.12 Fixed length flat file layout.

Processing a fixed length flat file requires a file layout to illustrate the
exact fields within the file, as illustrated in Figure 3.12. A fixed length file
layout should include the file name, where the field begins; its length; and its
data type (usually text or number). Sometimes, the end position is supplied.
If it is not, you have to calculate the end position of each field based on its
beginning position and length if it is required by your ETL tool.

In most ETL tools, you most likely have to manually input the file layout
of the flat file once. After the layout is entered, the tool remembers the layout
and expects that same layout each time it interacts with the actual flat file.
If the file layout changes or the data shifts off of its assigned positions, the
ETL process must be programmed to fail. Unfortunately, unlike XML, no
implicit validation of the file layout occurs when you process fixed length
flat files—an explicit preprocess test must be successful before the data is
processed.

When processing fixed length flat files, try to validate that the positions of the
data in the file are accurate. A quick check to validate the positions is to test any
date (or time) field to make sure it is a valid date. If the positions are shifted, the
date field most likely contains alpha characters or illogical numbers. Other fields
with very specific domains can be tested in the same way. XML offers more
concrete validation abilities. If data validation or consistency is an issue, try to
convince the data provider to deliver the data in XML format.

Positional flat files are often indicated on the file system by a .TXT exten-
sion. However, positional flat files can have virtually any file extension—or
none at all—and be processed just the same.
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Processing Delimited Flat Files
Flat files often come with a set of delimiters that separate the data fields
within the file. Delimiters are used as an alternative to using positions to
describe where fields begin and end. Delimited files can use any symbol
or group of symbols to separate the fields in the flat file. The most com-
mon delimiter is the comma. Comma-delimited files can usually be iden-
tified by the .CSV extension on the file name. Obviously, however, other
application-specific delimited flat files may simply have a .TXT extension
or no extension.

Most ETL tools have a delimited file wizard that, once the developer
indicates the actual delimiter characters, scans the flat file, or a sample of
it, to detect the delimiters within the file and specify the file layout. Most
often, the first row of delimited files contains its column names. The ETL
tool should be intelligent enough to recognize the column names supplied
in the first row to assign logical column names in the metadata layer and
then ignore the row during all subsequent data processing.

Just as with positional flat files, no implicit validation on delimited files
exists. They must have explicit validation tests written by the ETL team and
embedded in the data-processing routines.

XML Sources

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Extensible Markup Language (XML) is slowly but surely becoming the
standard for sharing data. Much excitement has been generated by this new
paradigm that stores data in a well-formed document. After all of its hype,
we thought by now virtually all data warehouse sources would involve
XML. But so far, we’ve observed that methods for sharing internal data
have not changed all that much. On the other hand, methods for sharing
external data have radically evolved in the past year or so to become almost
completely XML.

XML has emerged to become a universal language for exchanging data
between enterprises. If your data warehouse includes data that comes from
external sources—those from outside of your enterprise—odds are that
those sources will be provided in XML.
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To process XML, you must first understand how it works. XML has two
important elements: its metadata and the data itself. XML metadata can be
provided in various ways. The next section illustrates different forms of
XML metadata and what each means to the ETL.

Character Sets
Character sets are groups of unique symbols used for displaying and print-
ing computer output. The default character set for most relational database
management systems is ISO8859-15 (Latin 9). The character set supersedes
ISO8859-1 (Latin 1) by enabling the euro sign: € The Latin character sets are
intended to be used in the Western world to support languages based on
the English alphabet. However, since XML is primarily used as a language
for the Internet, it must support languages and alphabets from all over the
world, not just the Western world. Therefore, XML supports the UTF-8 char-
acter set. UTF-8 is a character set that preserves the basic ASCII encoding
method and also supports Unicode (ISO10646), the Universal Character Set
(UCS). UTF-8 supports most of the languages and alphabets from around
the world.

Many problems can arise if the source XML document and the target
data warehouse are not based on the same character set. Of course, this
flawed synchronization is always a risk when you integrate disparate sys-
tems (not just XML data sets). But in most cases, the risk is minimal because
with few exceptions database systems use the Latin character sets. Organi-
zations that don’t use Latin-based character sets, but Unicode to support
specific alphabets or characters, should adopt an enterprise-wide standard
character set to avoid integration difficulties. Whenever you have a require-
ment to integrate data, especially using XML, from external sources, you
must be ready to deal with dissimilar character sets. The good thing is that
in XML, you can at least tag the document with the appropriate metadata
to indicate the character set being used. For instance, the tag <?xml ver-
sion="1.0" encoding="UTF-8" ?> indicates that the XML document
is encoded using the UTF-8 character set.

XML Meta Data
We hear quite often that XML is nothing more than a flat file that contains
data. In our opinion, that could not be farther from the truth. The only thing
that makes XML remotely similar to a flat file is that it is stored on the files
system as opposed to in the database. And in fact, many database systems
are adding the capability to read, create, and store XML natively, calling
themselves XML enabled.
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XML is an odd entity because it stores data but is considered a language.
It’s not an application; therefore, it is dependent on other applications to
make it work. Yet it is not merely data because of its embedded tags. The
tags in XML documents are what make XML so powerful. But the self-
describing data comes at a cost. The tags, which contain its metadata, can
consume 90 percent of the XML file size, leaving about ten percent of the
XML file for actual data. If your current flat files were XML, they could
potentially be ten times their original size—containing exactly the same
amount of raw data.

We find it ironic that a primary objective of data warehousing is to keep
data as lean as possible to process it as quickly as possible and that even
though XML tags cause a deviation from that goal by adding a considerable
amount of overhead to the data processes, many still insist on making it
a standard for data exchange. Not only do the tags increase the size of
the data files; they also add substantial complexity to them. Because of
such inherent complexity, never plan on writing your own XML processing
interface to parse XML documents. The structure of an XML document
is quite involved, and the construction of an XML parser is a project in
itself—not to be attempted by the data warehouse team. There are many
XML parsers (or processors) on the market, and most ETL vendors now
include them in their product offerings.

Do not try to parse XML files manually. XML documents need to be processed
by an XML processor engine. Many of the major ETL tools now include XML
processors in their suite. Make sure XML processing capabilities are in your ETL
toolset proof-of-concept criteria.

To process an XML document, you must first know the structure of the
document. The structure of an XML document is usually provided in a
separate file. The next few sections discuss each of the possible metadata
files that might accompany your XML and provide the structure of the XML
document.

DTD (Document Type Definition)

As someone who views XML as a data source as opposed to a programming
language, we equate the DTD to the COBOL file layout. It is a file that
describes the structure of data in the XML document or file. Definitions can
be embedded within an XML document, but to enable validation, keep the
metadata and the actual data files separate. The DTD can be quite complex,
incorporating such allowable XML data structures as the following:

Base Data. If an element must contain only data, it is tagged with the
#PCDATA declaration.
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Element structures. The structure of an element in a DTD is specified
by listing element names within an element. For example,
<!ELEMENT OrderLineItem (ProductID, QuantityOrdered,
Price)> indicates that an order line item is composed of the
Product ID, the quantity ordered, and the price of the item at the time
of the order.

Mixed Content. When either data or elements are allowed, PCDATA
is declared to indicate that the base data is allowed and element
names are indicated to enable the nested elements.

Nillable. That’s not a typo! In XML, you indicate if a field can be
NULL with the ’nill=’ or ’nillable=’ tags. In the DTD, you’ll see a
question mark (?) to indicate that a subelement is optional. For
example, the code <!ELEMENT Customer (FirstName, LastName,
ZipCode?, Status)> indicates that the first and last name and
status are required but the zip code is optional.

Cardinality. One-to-many is indicated by the plus sign (+). For
example, <!ELEMENT Customer (FirstName, LastName,
ZipCode+, Status)> means that the customer can have more than
one zip code.

Allowed Values. Similar to a check constraint, XML enforces allowed
values by listing the acceptable values separated by vertical bars. For
example, <!ELEMENT State (Alabama|Louisiana|
Mississippi )> indicates that the state must contain Alabama,
Louisiana, or Mississippi.

At the time of this writing, the XML paradigm is still evolving and chang-
ing. Today, the DTD is viewed by many as dated technology. Because XML is
evolving into more data-centric roles, similar to relational databases, most
likely the DTD will be replaced by XML Schemas as the standard metadata.
The next section discusses XML Schemas and how they are different from
the DTD.

XML Schema

The XML Schema is the successor of the DTD. XML Schemas are richer and
more useful than the DTD because they were created to extend the DTD.
An XML Schema allows an SQL CREATE TABLE statement to be defined
directly. This is not possible with simple DTDs, because the detailed data
types and field lengths are not specified in DTDs. Some features of the XML
Schema include the following:

Elements that appear in an XML document
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Attributes that appear in an XML document

The number and order of child elements

Data types of elements and attributes

Default and fixed values for elements and attributes

Extensible to future additions

Support of namespaces

Namespaces

XML is growing in popularity because it forces disparate data sources to
send consistent and expected data files. But the reality is that different systems
always have slightly different meanings and usage for the same elements
within an entity. For example, if you receive a customer file from both human
resources and operations, they might have different definitions of a cus-
tomer. One department may deal with organizations, while the other trans-
acts with individuals. Even though both are customers, organizations and
individuals have very different attributes. To alleviate this situation, an XML
document can refer to a namespace. A namespace indicates where to get the
definition of an element or attribute. The same entity can take on a different
meaning based on its declared namespace. The same customer entity with
the namespace tag <Customer xmlns=http://www.website.com/
xml/HRns> can have different meaning than the same entity referring to
<Customer xmlns=http://www.website.com/xml/OPSns>.

Because XML is emerging as the data source for Web-based applications, you
will most likely see that increasingly reflected in your data warehouse data
sources. When you pick your ETL tool, make sure it can natively process XML and
XML Schemas.

Web Log Sources

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Virtually every company in the world has a Web site. Beneath each Web
site are logs—Web logs—that record every object either posted to or served
from the Web server. Web logs are important because they reveal the user
traffic on the Web site.



P1: KTX
WY046-03 WY046-Kimball-v4.cls September 1, 2004 16:39

98 Chapter 3

A Web log in this section is not a weblog or blog ! Our Web log is a control
document automatically produced by every Web server. A blog is a kind of diary
maintained and published by individuals, principally teenagers, for anyone to read.

Understanding the behavior of users on your Web site is as valuable
as following a customer around a store and recording his or her every
move. Imagine how much more organized your store can be and how many
opportunities you can have to sell more merchandise if you know every
move your customers make while navigating your store. Web logs provide
that information. The activity of parsing Web logs and storing the results
in a data mart to analyze customer activity is known as clickstream data
warehousing.

C R O S S - R E F E R E N C E An excellent source for more information on
clickstream data warehousing is the book Clickstream Data Warehousing by
Mark Sweiger, Mark R. Madsen, Jimmy Langston, and Howard Lombard (Wiley
2002).

From the data-modeling perspective, a clickstream data mart may be no
more challenging than any other subject in the data warehouse. The ETL
process, however, is significantly different from any other source you’re
likely to encounter. The difference is that the source to the clickstream is
a text-based log that must be integrated with other source systems. For-
tunately, the format of the text-based log is standardized. The standard is
maintained by the World Wide Web Consortium (W3C).

W3C Common and Extended Formats
Even though the format of Web logs is standardized, its format and the
content can vary. The operating system (OS) of the Web server and the
parameter settings that control the log contents affect exactly what is written
to the logs. Regardless of the OS, Web logs have a common set of columns
that usually include the following:

Date. This field is in a common date format—usually dd/mm/yyyy.
If the time zone is adjusted during the ETL process, you must
concatenate the date and time and adjust them together; otherwise,
you may be a day off. You can split them up again upon loading.

Time. This is the time of the Web hit. The format is HH:MM:SS and is
usually set to Greenwich Mean Time (GMT). However, the time zone
can be changed. Be sure you know what time zone your Web servers
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are set to. This usually involves conversion to the local time for the
data mart.

c-ip. This is the IP address of the user’s Internet service provider
(ISP). It is a standard IP address that can be used for domain name
system (DNS) look-up to estimate where the user came from and
sessionizing. Using the c-ip can be less than reliable because of known
anomalies, such as AOL (the most popular ISP), which gives millions
of users the same IP address and indicates that all of their users are
from the same state in the United States, even though they might
really be from all over the world.

Service Name. This refers to the Internet service that was running on
client computer, for example, w3svc1, w3svc2, w3svc3, and so on.
This field identifies the site the log came from in environments that
host many different Web sites or domains. This field is typically
turned off for single-site environments.

s-ip. This is the server IP address. It is standard IP address format.
This is useful to identify individual Web servers in a Web farm
environment. It also enables analysis of load balancing.

cs-method. There are only two values possible in this field: POST or
GET. Only GET records are usually stored in a Clickstream data
mart.

cs-uri-stem. This is the resource accessed (that is, the HTML or ASP
page requested).

cs-uri-query. This is the query the client passed. This field contains
highly customizable, very valuable data. We call this and the cookie
(discussed later in this list) the golden nuggets of the Web log. This
field typically uses an ampersand (&) as a delimiter between
label=value pairs, but any symbol is possible. More on parsing the
cs-uri-query is discussed later in the “Name Value Pairs” section of
this chapter.

sc-status. This is the HTTP status, for example, 302 (redirect), 402
(error), and 200 (ok). A complete list of HTTP status codes can be
found on the Web with a search for HTTP status codes. We
recommend you preload the HTTP status dimension with all of the
possible codes and their descriptions.

sc-bytes. This is the number of bytes sent by the server. This is
usually captured as a fact of the Hit.

cs(User-Agent). This is the browser type and version used by the
client. The user-agent, along with the date and time, can be used to
determine unique visitors.
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You can refer to The Data Webhouse Toolkit: Building the Web-Enabled Data
Warehouse by Ralph Kimball and Richard Merz (Wiley 2000) for more information
on alternative methods on identifying unique users on your Web site.

cs(Cookie). This is the content of the cookie sent or received, if any.
This field is the other half, along with the cs-uri-query, of the gold
found in the Web log. The cookie is highly customizable and very
valuable. It can explicitly identify the user and many other
characteristics about the user’s session.

cs(Referrer). This is the URL describing the site that directed the user
to the current site.

The following fields are available in the W3C extended format, but it is
not an all-inclusive list. For an exhaustive list of the fields available in your
environment, refer to your Web server documentation or the W3C Web site
(www.w3c.org).

Server Name. This is the name of the server on which the log was
generated. This should be one-to-one with the s-ip, which is the IP
address of the Web server.

cs-username. This is the username and contains values only when
the method is a POST.

Server Port. This is the port number the client was connected to.

Bytes Received. This is the number of bytes received by the user.

Time Taken. This is the length of time the action took.

Protocol Version. This is the protocol version used by the client, for
example, HTTP 1.0, HTTP 1.1.

Name Value Pairs in Web Logs
Web logs consist of standard fields that are all distinct in content. For the
most part, the content of the Web log can be extracted without too much
transformation logic. This straightforwardness is especially true for the
date, time, c-ip, service name, s-ip, cs-method, cs-uri-stem, sc-status, and
sc-bytes. However, fields such as cs-uri-query and cs(Cookie) are not stan-
dard at all. In fact, it would be an extremely rare event to find two unre-
lated Web sites that have the same content in these fields. The cs-uri-query
and cs(Cookie) contain customized name value pairs to capture specific
attributes of a transaction that are important to the business.

The cs-uri-query typically contains detailed information about the trans-
action such as the product being served on the page. Consider the following
cs-uri-query as an example:
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/product/product.asp?p=27717&c=163&s=dress+shirt

Take a look at the query string and notice the following segments:

/product/—The initial portion of the query string represents the
directory that the executing program resides. The directory is always
preceded and followed by a slash ‘/’. In this example, the
product.asp program is in the product directory. If the program were
in the root directory, a single slash would precede the program name.

product.asp—This is the executing program file that generates the
Web page. Common executing programs have the following
extensions: .asp (active server pages) and .jsp (java server pages). The
program file can be found immediately after directory.

?—The question mark indicates that parameters were sent to the
program file. In this example, there are three parameters: p, c, and s.

Before the question mark, the query string is pretty standard. After the
question mark is where the custom parameters for the program are stored.
A different set of parameters can be defined by the Web site developer for
each program file. The parameters are captured in the Web log in name-
value pairs. In this example, you can see three parameters, each separated
by an ampersand (&).

p indicates the product number

c indicates the product category number

s indicates the search string entered by the user to find the product

The ampersand (&) is the most common delimiter for separating parameters in
the Web log, but it is not guaranteed. Make sure you visually scan the logs during
your analysis phase to ensure that the parameter delimiters are identified.

Notice in the s= parameter that the search string is written as dress + shirt.
Actually, the user entered dress shirt. The + was automatically inserted by
the Web browser because HTTP cannot handle spaces. Extra care must be
taken when you are processing textual descriptions in the query string. The
ETL process must substitute any + in textual descriptions with a <space>
before they are used for look-ups or stored in the data warehouse.

The intent of this section is to expose you to Web logs to give you a head
start on your clickstream data mart project. Again, if you are deep into a
clickstream project or plan to be in the near future, you should invest in
either of the two books referenced earlier in this section.
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ERP System Sources

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

The existence of an ERP system has an immense effect on ETL system planning and
design, as described in this section. This can range from treating the ERP system as
a simple arms-length source of data, all the way to having the ERP system be the
data warehouse and subsuming all the components, including the ERP system. We
make recommendations in this section.

Data Flow: Extract ➔ Clean ➔ Conform (maybe) ➔ Deliver

Enterprise resource planning (ERP) systems were created to solve one of
the issues that data warehouses face today—integration of heterogeneous
data. ERP systems are designed to be an integrated enterprise solution
that enables every major entity of the enterprise, such as sales, accounting,
human resources, inventory, and production control, to be on the same
platform, database, and application framework.

As you can imagine, ERP systems are extremely complex and not easily
implemented. They take months or years to customize so they contain the
exact functionality to meet all of the requirements to run a particular busi-
ness. As noble as the effort to be an all-inclusive solution is, it’s very rare to
see an entire enterprise use only an ERP system to run a company.

ERP systems are notoriously large, and because they are really a frame-
work and not an application, their data models are comprehensive, often
containing thousands of tables. Moreover, because of their flexibility, the
data models that support ERP processing are incredibly difficult to navi-
gate. The more popular ERP systems are SAP, PeopleSoft, Oracle, Baan, and
J.D. Edwards.

Because of the sheer number of tables, attributes, and complexity of a
typical ERP implementation, it is a mistake to attack these systems like
any other transaction source system. Performing system and data analysis
from scratch is cost and time prohibitive and leaves much room for error.
If your data warehouse sources are from an existing ERP system, it is best
to acquire someone with vast experience of the underlying database struc-
ture of your specific ERP system as well as the business objectives of the
application.

To help you along, many of the major ETL vendors now offer ERP adapters
to communicate with the popular ERP systems. If you are sourcing
from an ERP system, take advantage of the available adapters. They can
help you navigate the metadata in these systems and make sense of the
application.
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Special Considerations for SAP

Because of the marketplace dominance of SAP as an ERP system, we get asked
about the role of SAP in the data warehouse. Here are our unvarnished
recommendations.

You have probably heard the cliché that, from a decision-support standpoint, SAP
ERP is like a black hole: Rivers of data flow in, but there is no way to get the
information back out. Why?

A contemporary SAP ERP implementation is likely to have a data foundation that
consists of tens of thousands of physical tables, exhibiting few DBMS-defined
table relationships, with entity and attribute names rendered in abbreviated
German! Thus, the SAP RDBMS, for all practical purposes, is incomprehensible and
proprietary. SAP ERP comes with an extensive library of operational reports, but
these typically fall short of fully addressing the decision-support needs of most
business communities. This is not a design flaw. SAP’s OLTP data architecture
simply lacks support for fundamental business-reporting needs, such as historical
retention of transactions and master data images, comprehensible and easily
navigated data structures, and robust query performance characteristics.

Some early SAP adopters tried to free their operational data trapped inside the
ERP labyrinth by creating ERP subject areas in their data warehouses, populated
via hand-crafted ETL. Predictably, with few specialized tools to assist them in this
heroic undertaking, many of these efforts achieved unremarkable degrees of
success.

Recognizing this unmet and blossoming need, SAP created a decision-support
extension to their ERP application called the Business Information Warehouse
(SAP BW). Early generations of SAP BW were rather primitive and consisted mainly
of SAP-specialized ETL feeding proprietary OLAP repositories, thus lacking many of
the foundational architectural elements of the contemporary data warehouse.
Newer releases of SAP BW have evolved considerably and now embrace many of
the core tenets and structures of contemporary data warehousing: better support
for non-SAP data sources and persistent mainstream data repositories (Staging
Areas, ODS, Data Warehouse, Dimensional Data Marts, and OLAP cubes). Some of
these repositories support open access by third-party reporting tools.

SAP BW value proposition, at face value, now offers a compelling price and
timeframe sales story that is likely to attract the attention of CIOs. And so, the
contemporary DW architect will likely be asked to define and defend a role for SAP
BW within the corporation’s overall data warehousing vision.

In the following table, we present pros, cons, and recommendations for several
SAP BW role scenarios within an overall enterprise DW strategy. We humbly
recognize that this is a rapidly evolving area, with many variables, in which few
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fully satisfactory solutions exist. BW and ETL tool capabilities will change, thereby
modifying the decision balances that follow. But we hope nonetheless that our
evaluation process will be useful to you and extensible to your unique situation
and challenges.

BW as Enterprise DW Utilize SAP BW as the foundational core of the enterprise
data warehousing strategy.

We cannot recommend using BW in this role. Making BW
the centerpiece of an enterprise BI architecture seems, at
present, to be architecturally indefensible. As of this writing,
BW offers no unique capabilities for cleansing / integration
of non-SAP data or for the delivery of non-SAP analytics.
Also, packaged BI tends to offer reduced opportunity for
competitive differentiation through analytic capabilities.

Nonetheless, organizations that do not view BI as an area
of strategic competitive differentiation and whose reporting
requirements are SAP-centric and well addressed by SAP
BW might consider using BW in this role.

BW on the Dimensional
DW Bus

Utilize SAP BW as a set of satellite data marts that
interoperate within a broader distributed dimensional data
warehouse bus architecture.

Although this may someday become an appropriate way to
utilize BW, we find (as of this writing) that BW is not yet
well suited to play the role of an ERP-centric data mart
within a broader dimensional data warehouse bus
architecture. As we write this book, SAP has announced a
facility called Master Data Management that claims to
handle cross-functional descriptions of products and
customers. It is too early to tell if this offers unique
capabilities for either creating enterprise-wide conformed
dimensions or for incorporating externally conformed
dimensions into its ETL processing stream and presenting
its facts accordingly. Utilizing conformed dimensions and
facts across subject areas is a core tenet of the dimensional
data warehouse bus architecture.

Nonetheless, IT organizations that already have
dimensional data warehouses and inherit a BW may
choose to take on the task of extending BW to utilize
externally conformed dimensions, thereby allowing it to
plug and play in the bus architecture. Be warned though:
Maintenance of these extensions through SAP upgrades
may not be a trivial undertaking.

ETL and Staging Utilize SAP BW as a gateway and staging area for feeding
ERP data to a downstream dimensional data warehouse.
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This option appears at first to be quite compelling,
because it purports to simplify and shorten the work
effort to add ERP data into a dimensional data
warehouse, while also providing, as a happy benefit,
standard BW reporting capabilities for SAP-only
reporting. But when comparing this option to the
alternative of utilizing a specialized third-party ETL
tool with good SAP connectivity (see “Forgo BW” as
follows), it may no longer be the optimal solution.
Using SAP as a data source through the ETL tool
extracyors results in a single set of tables for the DW,
typically offering greater control, flexibility, and
metadata consistency.

We recommend this option for implementing your
ETL system within SAP only to organizations with
immature ETL teams under tight timeframes for ERP
reporting, who find great value in the canned SAP
BW reports. Others should look seriously at a
mature ETL tool with good SAP connectors. See
“Forgo BW” that follows.

Forgo BW Utilize the SAP connectors offered by most good ETL
tools to populate fully integrated ERP subject areas
within a separate enterprise dimensional data
warehouse bus architecture.

We’re big believers in buy versus build, where
appropriate. But based on BW’s lack of a track
record for either creating or publishing conformed
dimensions or utilizing externally conformed
dimensions, this is our recommended default BW
architectural posture.

Part 3: Extracting Changed Data

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

During the initial load, capturing changes to data content in the source
data is unimportant because you are most likely extracting the entire data
source or a potion of it from a predetermined point in time. But once that
load is complete, the ability to capture data changes in the source system
instantly becomes priority number one. If you wait until the initial load
is complete to start planning for change data-capture techniques, you are
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headed for a heap of trouble. Capturing data changes is far from a trivial
task. You must plan your strategy to capture incremental changes to the
source data at the onset of your project.

The ETL team is responsible for capturing data-content changes during
the incremental load. Desires and hopes are dictated by the users, and the
realities of the feasibility of those hopes are revealed by the source system
DBA team—if you’re lucky. More often than not, a bit of research will be
required to determine the best possible incremental load strategy for your
specific situation. In this section, we offer several options and discuss the
benefits and weaknesses of each. Naturally, you won’t need all of these
techniques for every situation. Choose the practice that best meets each
ETL challenge throughout your project.

Determining the appropriate strategy for identifying changed data in the
source system may take some detective work. When analyzing source systems,
never assume that what you see is what you get. In many cases, there will be
unused or disabled audit columns or, even worse, columns used inconsistently. Be
sure to allocate enough research time to investigate and determine the best
approach to capture data-content changes for your incremental load process.

Detecting Changes
When managers talk about the maintenance of a data warehouse, most
often they are talking about keeping the data current so it is a true reflection
of the company’s operational position. Capturing changes to the source
system content is crucial to a successful data warehouse. The maintenance
of the data content is dependent on the incremental load process. There are
several ways to capture changes to the source data, and all are effective in
their appropriate environments.

Using Audit Columns

In most cases, the source system contains audit columns. Audit columns
are appended to the end of each table to store the date and time a record
was added or modified. Audit columns are usually populated via database
triggers fired off automatically as records are inserted or updated. Some-
times, for performance reasons, the columns are populated by the front-end
application instead of database triggers. When these fields are loaded by
any means other than database triggers, you must pay special attention to
their integrity. You must analyze and test each of the columns to ensure that
it is a reliable source to indicate changed data. If you find any NULL values,
you must to find an alternative approach for detecting change.
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The most common environment situation that prevents the ETL process
from using audit columns is when the fields are populated by the front-end
application and the DBA team allows back-end scripts to modify data. If
this is the situation in your environment, you face a high risk that you will
eventually miss changed data during your incremental loads. A preventa-
tive measure to minimize your risk is to stipulate that all back-end scripts
be validated by a quality-assurance team that insists and tests that the audit
fields are populated by the script before it is approved.

Once you are confident that audit columns are dependable, you need a
strategy for utilizing them. There are various methods to implement the
utilization of audit columns to capture changes to data. All of the methods
have the same logical objective: to compare the last modified date and
time of each record to the maximum date and time that existed during the
previous load and take all those that are greater.

One approach we’ve found effective is to utilize the audit columns in the
source system. Essentially, the process selects the maximum date and time
from the create date and last modified date columns. Some last modified
columns are updated upon insertion and with each change to the record.
Others are left NULL upon insertion and updated only with changes after
the record has already been inserted. When the last modified date is not
populated, you must default it with an arbitrary old date in order to not lose
new records. The following code can help resolve NULL modified dates:

select max(greatest(nvl(create_date,'01-JAN-0001'),

nvl(last_mod_date,'01-JAN-0001')))

In cases where the rows in the fact table are inserted but never updated,
you can simply select records from the source system where the create date
and time is greater than the maximum date and time of the previous load
and ignore the last modified date column.

Since fact tables and dimension tables can be sourced from many different
tables and systems, and since fact tables consist only of foreign keys and
measures, you do not store the audit dates in the fact table directly. You
need to create an ETL last-change table that captures each source table and
the maximum date time found in the source system audit columns at the
time of each extract. If your fact table requires audit statistics for its rows,
consider implementing an audit dimension as described in Chapter 4.

Database Log Scraping or Sniffing

Log scraping effectively takes a snapshot of the database redo log at a
scheduled point in time (usually midnight) and scours it for transactions
that affect the tables you care about for your ETL load. Sniffing involves
a polling of the redo log, capturing transactions on the fly. Scraping the
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log for transactions is probably the messiest of all techniques. It’s not rare
for transaction logs to blow-out, meaning they get full and prevent new
transactions from occurring. When this happens in a production-transaction
environment, the knee-jerk reaction for the DBA responsible is to empty the
contents of the log so the business operations can resume. But when a log
is emptied, all transactions within them are lost. If you’ve exhausted all
other techniques and find log scraping is your last resort for finding new
or changed records, persuade the DBA to create a special log to meet your
specific needs. You presumably need transactions only for a few specific
tables out of the hundreds in the source database. Those tables can populate
your dedicated log via insert and update triggers.

If you want to pursue log sniffing, we recommend that you survey the
available ETL tools in the market to find a proven solution rather than
attempt to write the process from scratch. Many real-time ETL solution
providers utilize log-sniffing techniques.

Timed Extracts

Select all of the rows where the date in the Create or Modified date fields
equal SYSDATE-1, meaning you’ve got all of yesterday’s records. Sounds
perfect, right? Wrong. Loading records based purely on time is a common
mistake made by most beginning ETL developers. This process is horribly
unreliable.

Time-based data selection loads duplicate rows when it is restarted from
midprocess failures. This means that manual intervention and data cleanup
is required if the process fails for any reason. Meanwhile, if the nightly load
process fails to run and misses a day, a risk exists that the missed data will
never make it into the data warehouse. Unless your ETL process is extremely
straightforward and the data volume is exceptionally small, avoid loading
data based purely on time.

Process of Elimination

Process of elimination preserves exactly one copy of each previous extrac-
tion in the staging area for future use. During the next run, the process
takes the entire source table(s) into the staging area and makes a com-
parison against the retained data from the last process. Only differences
(deltas) are sent to the data warehouse. Albeit not the most efficient tech-
nique, the process of elimination is the most reliable of all incremental
load techniques for capturing changed data. Because the process makes a
row-by-row comparison, looking for changes, it’s virtually impossible to
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miss any data. This technique also has the advantage that rows deleted
from the source can be detected. These deleted rows are sometimes missed
by other techniques.

This technique can be accomplished inside or out of a database manage-
ment system. If you prefer using your DBMS, you must bulk load the data
into the staging database for efficiency.

Initial and Incremental Loads

Create two tables: previous load and current load.
The initial process bulk loads into the current load table. Since change

detection is irrelevant during the initial load, the data continues on to be
transformed and loaded into the ultimate target fact table.

When the process is complete, it drops the previous load table, renames
the current load table to previous load, and creates an empty current load
table. Since none of these tasks involve database logging, they are very fast!

The next time the load process is run, the current load table is populated.
Select the current load table MINUS the previous load table. Transform

and load the result set into the data warehouse.
Upon completion, drop the previous load table and rename the cur-

rent load table to previous load. Finally, create an empty current load table.
Since MINUS is a notoriously slow technique when inside the database

management system, you’ll want to use the ETL tool or third-party appli-
cation to perform the process-of-elimination routine.

Extraction Tips
Consider the following points as you approach the extract process:

Constrain on indexed columns. Work with the DBA to ensure all of
the columns in your WHERE clause are indexed in the source
system; otherwise you will probably provoke a relation scan of the
entire production database.

Retrieve the data you need. The optimal query returns exactly what
you need. You shouldn’t retrieve an entire table and filter out
unwanted data later in the ETL tool. One situation that might break
this rule is if the transaction system DBA refuses to index columns
needed to constrain the rows returned in your query. Another
exception is when you are forced to download the entire source
database to search for the deltas.
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Use DISTINCT sparingly. The DISTINCT clause is notoriously slow.
Finding the balance between performing a DISTINCT during the
extract query versus aggregating or grouping the results in your ETL
tool is challenging and usually varies depending on the percentage
of duplicates in the source. Because there are many other factors that
can affect this decision, all we can recommend is to take care to test
each strategy for the most efficient results.

Use SET operators sparingly. UNION, MINUS, and INTERSECT are
SET operators. These, like DISTINCT, are notoriously slow. It’s
understood that sometimes these operators cannot be avoided. A tip
is to use UNION ALL instead of UNION. UNION performs the
equivalent of a DISTINCT, slowing the process. The hitch is that
UNION ALL returns duplicates, so handle with care.

Use HINT as necessary. Most databases support the HINT keyword.
You can use a HINT for all kinds of things, but most importantly to
force your query to use a particular index. This capability is
especially important when you are using an IN or OR operator,
which usually opts for scanning a full table scan rather than using
indexes, even when usable indexes exist.

Avoid NOT. If at all possible, avoid non-equi constraints and joins.
Whether you use the keyword NOT or the operators ‘< >’, your
database will most likely opt to scan a full table rather than utilize
indexes.

Avoid functions in your where clause. This is a difficult one to
avoid, especially when constraining on dates and such. Experiment
with different techniques before committing to use of a function in
your WHERE clause. Try using comparison keywords instead of
functions whenever possible. For example:
LIKE 'J%' instead of SUBSTR('LAST_NAME',1,1 ) = 'J'

EFF_DATE BETWEEN '01-JAN-2002' AND '31-JAN-2002' instead of

TO_CHAR(EFF_DATE, 'YYY-MON' ) = '2002-JAN'

The goal of the extract query is to get all of the relevant natural keys and
measures. It can be as simple as selecting multiple columns from one table or
as complex as actually creating nonexistent data and can range from joining
a few tables to joining many tables across heterogeneous data sources. On a
specific project, we had to create a periodic snapshot fact table that needed
to present sales for every product in inventory even if there were no sales
for the product during the specified period. We had to generate a product
list, get all of the sales by product, and perform an outer join between the
product list and the sales by product list, defaulting the nonselling product
sales amounts with zero.
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Detecting Deleted or Overwritten Fact
Records at the Source
Measurement (fact) records deleted or overwritten from source systems can
pose a very difficult challenge for the data warehouse if no notification of the
deletion or overwrite occurs. Since it is usually infeasible to repeatedly re-
extract old transaction records, looking for these omissions and alterations,
the best we can offer are the following procedures:

Negotiate with the source system owners, if possible, explicit
notification of all deleted or overwritten measurement records.

Periodically check historical totals of measurements from the source
system to alert the ETL staff that something has changed. When a
change is detected, drill down as far as possible to isolate the change.

When a deleted or modified measurement record is identified, the late-
arriving data techniques of the previous section can be used. In cases of
deleted or modified fact records, rather than just performing a deletion or
update in the data warehouse, we prefer that a new record be inserted that
implements the change in the fact by canceling or negating the originally
posted value. In many applications, this will sum the reported fact to the
correct quantity (if it is additive) as well as provide a kind of audit trail that
the correction occurred. In these cases, it may also be convenient to carry an
extra administrative time stamp that identifies when the database actions
took place.

Summary

In this chapter, we have isolated the extract step of the ETL data flow.
We recommended that you step back at the very start and make sure the
proposed extracts are even worth it! You can make this go/no-go decision
with a data-profiling tool that will tell you if data is of sufficient quality to
meet your business objectives.

The next big step is preparing the logical data map that connects the orig-
inal source data to the ultimate final data. Perhaps the most important part
of the logical data map is the description of the transformation rules applied
between these inputs and outputs. Since a certain amount of discovery and
refinement will take place as you actually implement the ETL system, you
should expect to go back and periodically update the logical data map. If it
is well maintained, it will be perhaps the most valuable description of your
ETL system. At some point, a new person will have to decipher what you
did, and he or she should start with the logical data map.
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The central focus of this chapter was a tour of the various source systems
you are likely to encounter. We gave you more than a teaspoon of some
of the extract complexities, but of course, nothing is as valuable as real
experience.

The last part of the chapter described the challenge of extracting just
the new data, the changed data, and even the deleted data. In subsequent
chapters, we point out the special processing needed in these situations.
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Cleaning and Conforming

Cleaning and conforming are the main steps where the ETL system adds
value. The other steps of extracting and delivering are obviously necessary,
but they only move and reformat data. Cleaning and conforming actually
changes data and provides guidance whether data can be used for its in-
tended purposes.

In this chapter, we urge you to build three deliverables: the data-profiling
report, the error event fact table, and the audit dimension. You can build
a powerful cleaning and conforming system around these three tangible
deliverables.

The cleaning and conforming steps generate potent metadata. Looking
backward toward the original sources, this metadata is a diagnosis of what’s
wrong in the source systems. Ultimately, dirty data can be fixed only by
changing the way these source systems collect data. Did we say business
process re-engineering?

Metadata generated in the cleaning and conforming steps accompanies
real data all the way to the user’s desktop. Or at least it should. The ETL
team must make the cleaning and conforming metadata available, and that
is where the audit dimension comes in.

Please stay with us in this chapter. It is enormously important. This chap-
ter makes a serious effort to provide specific techniques and structure for an
often amorphous topic. The chapter is long, and you should probably read
it twice, but we think it will reward you with useful guidance for building
the data cleaning and conforming steps of your ETL system.

If you are new to ETL system design, you may well ask “What should
I focus on as a bare minimum?” Perhaps our best answer is: Start by per-
forming the best data-profiling analysis you are capable of. You will then be

113
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much more usefully calibrated about the risks of proceeding with your po-
tentially dirty or unreliable data. Armed with these understandings from
the data-profiling step, you will have decomposed the problem and you
will be more confident in designing a simple error event fact table and a
simple audit dimension.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

This chapter is organized into four data-quality topics:

Part 1: Design Objectives

Part 2: Cleaning Deliverables

Part 3: Screens and Their Measurements

Part 4: Conforming Deliverables

This is a top-down explanation of data quality. In the objectives section,
we urge you to be thorough, fast, corrective and transparent. The perspectives
of the cleaning and conforming steps are less about the upside potential
of the data and more about containment and control. In some ways, this is
unfamiliar territory for the data warehouse team. In the deliverables section,
we introduce the mainstay structures of the cleaning subsystem: the error
event table and the audit dimension. We also urge you to study Appendix B
of Jack Olson’s book in order to design a systematic structure for the results
of your up-front data-profiling pass.

Descending a level further, the screens section defines a set of checkpoints
and filters that you set up in many places to measure data quality. With
screens, we build a unified approach to capturing data-quality events and
responding to these events with appropriate actions.

Definition: data-quality screen.

Throughout this chapter, we refer to data-quality screens. We use the word screen
both to mean report and filter. Thus, a data-quality screen is physically viewed by
the ETL team as a status report on data quality, but it’s also a kind of gate that
doesn’t let bad data through.

In the fourth part, we describe the big deliverables of the conforming
step: the conformed dimensions and facts and how they are handed off. We
also suggest some metadata approaches to keep track of the decisions the
organization has made to standardize your dimensions and facts.
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Finally, the measurements section is a kind of implementer’s guide to
specific data-quality issues. Much like the details of the different types of
extraction issues we describe in Chapter 3, these data-quality measurements
are a reasonable set for you to build upon.

This chapter draws liberally from the work of the leading data-quality
authors Jack Olsen and Larry English. Their simple and most direct tech-
niques for measuring data quality have been used in this chapter and
placed within a kind of a template for building sensible data-quality ETL
processes.

Defining Data Quality

Let’s agree on some basic vocabulary, focused on accuracy. Accurate data
means that the data is:

Correct. The values and descriptions in data describe their associated
objects truthfully and faithfully. For example, the name of the city in
which one of the authors currently live is called New Hope.
Therefore, accurate data about that home address needs to contain
New Hope as the city name to be correct.

Unambiguous. The values and descriptions in data can be taken to
have only one meaning. For example, there are at least ten cities in
the U.S. called New Hope, but there is only one city in Pennsylvania
called New Hope. Therefore, accurate data about an address in this
city needs to contain New Hope as the city name and Pennsylvania
as the state name to be unambiguous.

Consistent. The values and descriptions in data use one constant
notational convention to convey their meaning. For example, the U.S.
state Pennsylvania might be expressed in data as PA, Penn., or
Pennsylvania. To be consistent, accurate data about current home
addresses should utilize just one convention (such as the full name
Pennsylvania) for state names and stick to it.

Complete. There are two aspects of completeness.

The first is ensuring that the individual values and descriptions in
data are defined (not null) for each instance, for example, by
ensuring that all records that should have current addresses
actually do.

The second aspect makes sure that the aggregate number of records
is complete or makes sure that you didn’t somehow lose records
altogether somewhere in your information flow.
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A related completeness issue surrounds the alternative meanings of miss-
ing values in data. A missing value represented as a null might mean that
the true value is unknown or that it does not apply. Missing values may
be represented as blanks, or strings of blanks, or as creative descriptions
(Don’t Know or Refused to Say).

Assumptions

The chapter makes a simplifying number of assumptions about the environ-
ment in which cleaning and conforming takes place. The first is that there
are distinct points in the ETL job stream into which data-quality processing
can be injected. Two such points are obvious from our model of the overall
ETL data flow.

The first processing milestone is when data has been extracted—
which means that data has been extracted from some number of
sources and placed into a physical or logical structure that is subject
aligned. For example, customer information from various sources
initially can be staged in a table, data file, or in-memory structure
whose configuration is the same regardless of the data source. Such a
structure could be used for incoming data from various data sources
deposited and queued for ETL work. Little or no data cleansing or
integration has yet been applied; data from one or several sources
has simply been restructured and now sits waiting for further
processing. This should not imply that data from multiple sources
must be processed simultaneously, just that source-independent
staging structures are utilized. The ETL data-quality techniques
described still work even if source-specific staging structures and
processing streams are used, but the metadata examples shown at
the end of the chapter might need to be adjusted. We propose
running lots of data-quality processes at this stage to get an accurate
picture of the state of the organization’s data quality while it is still
unvarnished and to weed out hopelessly flawed data before it fouls up
your data-cleansing and integration processes.

The second milestone is when data has been cleaned and conformed—
which means data has successfully passed through all of the
data-preparation and integration components of the ETL stream and
is ready for final packaging in the delivery step. We propose you run
more data-quality processes at this stage, as a safety net for your
data-cleansing and integration software. In essence, you want to run
your newly manufactured information products through some
quality-assurance checks before you turn them loose in the world.
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For simplicity’s sake, this chapter also assumes the use of batch ETL
processing—rather than real-time or near real-time processing. We assume
that batch processing aligns the techniques presented to the reality of most
ETL environments and allows this chapter to direct its focus on data-quality
issues and techniques rather than on the complexities of real-time ETL. We
turn our attention to streaming ETL in Chapter 11.

Part 1: Design Objectives

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release
Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

This part discusses the interrelated pressures that shape the objectives
of data-quality initiatives and the sometimes conflicting priorities that the
ETL team must aspire to balance. We propose some approaches to achieving
this balance and in formulating a data-quality policy that meets the needs
of important user constituencies.

Understand Your Key Constituencies
The data-quality subsystem must support the roles of data warehouse man-
ager, the information steward, and the information-quality leader. Although
these roles may be distributed in different ways across actual personnel, it’s
useful to characterize these roles.

Data Warehouse Manager

The data warehouse manager owns responsibility for the day-to-day deci-
sions that need to be made in running the data warehouse, ensuring that it
is an accurate reflection of the internal and external data sources and that
data is processed according to the business rules and policies in place.

The cleaning and conforming subsystems should support the data ware-
house manager and the surrounding business community by providing a
history of the transformations applied to data as it is loaded into the ware-
house, including a detailed audit of all exceptional conditions.

Information Steward

The information steward is accountable for defining the information
strategy. This person formalizes the definition of analytic goals, selects
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appropriate data sources, sets information generation policies, organizes
and publishes metadata, and documents limitations of appropriate use.

The cleaning and conforming subsystems should support the information
steward by providing metrics on the operational data warehouse’s day-to-
day adherence to established business policy, issues with the source data
that might be testing the boundaries of these policies, and data-quality
issues that might call into question the appropriateness of the source data
for certain applications.

Information-Quality Leader

The information-quality leader detects, corrects, and analyzes data-quality
issues. This person works with the information steward to define policies
for dealing with dirty data, setting publication quality thresholds, and bal-
ancing the completeness versus speed and corrective versus transparent
tradeoffs described in the next section.

The data-quality subsystem should support the information-quality
leader by providing data-quality measurements that describe the frequency
and severity of all data-quality issues detected during the data warehouse
ETL processes. This record should be a complete historical audit, allowing
the information-quality leader to assess the success of data-quality improve-
ment efforts over time.

Dimension Manager

The dimension manager creates and publishes one or more of the con-
formed dimensions used by the overall organization. There may be mul-
tiple dimension managers, each responsible for different dimensions. The
dimension manager implements the agreements on common descriptive
labels reached by various stakeholders in the overall data warehouse. The
dimension manager creates and assigns surrogate keys and assigns version
numbers to each release of a dimension to the target fact table environ-
ments. When a dimension is released to the data warehouse community, it
is replicated simultaneously to all the destinations so that they may install
the new version of the dimension simultaneously. The job of the dimension
manager is centralized: A conformed dimension must have a single, con-
sistent source. We provide more on the role of the dimension manager later
in this chapter.

Fact Table Provider

The fact table provider is the local DBA who owns the single instance of a
given fact table. The fact table provider is responsible for receiving dimen-
sions from various dimension managers, converting local natural keys to
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the surrogate keys in the conformed dimensions, and making updated fact
tables available to the user community. The fact table provider may have to
make complex changes in existing fact tables if postdated (late) dimension
records are received. Finally, the fact table provider is responsible for cre-
ating and administering aggregates, which are physically stored summary
records used to accelerate performance of certain queries. We provide more
on the role of the fact table provider later in this chapter.

Competing Factors
Four interrelated pressures or priorities shape the objectives of your data-
quality system as depicted in Figure 4.1.

ETL Data Quality Priorities
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Figure 4.1 Data-quality priorities.
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Be Thorough

The data-cleaning subsystem is under tremendous pressure to be thorough
in its detection, correction, and documentation of the quality of the infor-
mation it publishes to the business community. End users want to look to
the data warehouse as a source of trusted information—a rock upon which
to build their management metrics, strategies, and policies.

Be Fast

The whole ETL pipeline is under tremendous pressure to process ever-
growing volumes of data in ever-shrinking windows of time. Some of the
newest and most interesting customer touch points are very detailed and
intimate—like Web clickstream—and drive huge data volumes into the data
warehouse.

Be Corrective

Correcting data-quality problems at or as close to the source as possible
is, of course, the only strategically defensible way to improve the infor-
mation assets of the organization—and thereby reduce the high costs and
lost opportunity of poor data quality. However, the reality is that many or-
ganizations have not yet established formal data-quality environments or
information-quality leaders. In such cases, the data warehouse team might
be the first to discover quality issues that have been festering for years. This
team is expected to do all that can be done to fix these problems.

Be Transparent

The data warehouse must expose defects and draw attention to systems and
business practices that hurt the data quality of the organization. These rev-
elations ultimately drive business process re-engineering, where the source
systems and data entry procedures are improved. Undertaking heroic mea-
sures to mask data-quality defects at the source might be one of those situ-
ations where the remedy can be worse than the disease.

Balancing Conflicting Priorities
Clearly, it is impossible for the cleaning subsystem to address in absolute
terms all of these factors simultaneously. They must be properly balanced—
reflecting the priorities of each situation.
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Completeness versus Speed

The data-quality ETL cannot be optimized for both speed and complete-
ness. Instead, we aspire to find an appropriate point on the exponential
relationship curve (see Figure 4.2) that strikes the balance we seek.

A potentially revealing way to best strike this balance is by asking some
tough questions about the latency and quality of the data in your to-be-built
data warehouse, such as:

At what point does data staleness set in?

versus

How important is getting the data verifiably correct?

If your data warehouse sponsors had to choose, for example, between a
higher degree of confidence in data quality and a one-day delay in publi-
cation, which would they choose? A data warehouse that publishes daily
might, for example, choose to trade one full day of latency for additional
data-quality confidence, perhaps through expanded statistical variance test-
ing or data standardization and matching or even selective manual review/
auditing. If Monday’s operational data were published on Wednesday

ETL Architect’s Tightrope
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Figure 4.2 Completeness versus speed.
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rather than Tuesday, would this be an acceptable trade-off? There are no
easy answers to questions like these.

Corrective versus Transparent

The data-cleaning process is often expected to fix dirty data, yet at the same
time provide an unvarnished view into the workings of the organization
warts and all. Striking a proper balance here is essential: A transparency-at-
all-costs system can yield a feeble business-intelligence system that dilutes
potential for insight, and a too-corrective system hides/obscures opera-
tional deficiencies and slows organizational progress.

The solution is to establish a sensible policy boundary between the types
of defects that are corrected verses highlighted by the cleaning and to produce
an easy-to-use audit facility (the audit dimension) that dutifully documents
the modifications, standardizations, and underlying rules and assumptions
of the error- detection and data-reengineering components.

Data Quality Can Learn From Manufacturing Quality

The manufacturing quality revolution is now at least 30 years old. The sem-
inal work on quality is W. Edwards Deming’s total quality management
(TQM) structure. His 14 points of managing TQM are worth reading while
thinking about data quality, although outside the immediate scope of this
book. But perhaps Deming’s main point is that manufacturing quality re-
quires a total commitment across every part of an organization: It is not a
single inspector at the end of the assembly line!

Data quality can learn a great deal from manufacturing quality. One big
step in this direction is the emergence of centralized data-quality groups in
IT organizations. The data warehousing staff concerned with data quality
must not operate independently from the data-quality group. The screens
we define in this chapter should supplement other screens and assessment
capabilities used by the data-quality team. These should feed a compre-
hensive database that incorporates results from all manner of data-quality
measurements, not just the data warehouse. Most of the issues that come
from ETL screens will result in demands to improve source systems, not in
demands for more cleansing. All of the demands for improving data quality
at the source need to be coordinated through the data-quality team.

Formulate a Policy
Shown in Figure 4.3 is one method for categorizing the set of data-quality
challenges faced in data warehouse projects and isolating those that should
be addressed by the ETL data-quality subsystems:
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Universe of Known Data Quality Issues

Category B

BEST
addressed at
the SOURCE

Category A

MUST be addressed at the
SOURCE

Category C

BEST
Addressed

in ETL

Category D

MUST be
Addressed in ETL

ETL Focus is here

Political DMZ

Data Quality Issues Policy

Figure 4.3 Data Quality Issues Policy.

Category A issues, for whatever reason, simply must be addressed at
the data source. Examples might include missing information about
the subject of a customer complaint or bogus information entered
into a field that subjectively captures customer receptivity to a sales
call. There is simply no technological way to derive or recreate this
information. It must be captured correctly at the source, or it is lost.
When addressing Category A data-quality issues, the cleaning
subsystems should recognize them as deficiencies at the source,
remove any clearly bogus information from the primary reporting
and analysis dimensions and facts, and clearly label the information
as missing or bogus thereby drawing management focus directly on
the source system defect. In most data warehouse projects, the
majority of data-quality issues discovered fall into this
category—data-quality issues that must be detected and clearly
communicated to the end user community.

Category D (we know we are skipping) data-quality issues can only
be pragmatically resolved in the ETL system. Examples might
include missing or incomplete information from independent
third-party data suppliers that can be reliably corrected through
integration or the correction of bad data from an inflexible
operational source system. Category D issues tend to be relatively
rare in most data warehouse projects. In dealing with Category D
issues, the ETL system is granted license to undertake
creative/heroic measures to correct the data defect, but it must
ensure that its polices and actions are visible to users through
descriptive and complete metadata.
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Category B issues should be addressed at the data source even if
there might be creative ways of deducing or recreating the derelict
information. The boundary between Categories A and B is therefore
technical rather than political. If a given data issue can be addressed
with acceptable confidence through technology, it clearly belongs
somewhere to the right of Category A in this bell curve.

Category C issues, for a host of reasons, are best addressed in the
data-quality ETL rather than at the source. Again, the boundary
between Categories C and D is technical rather than political. If a
given data-quality issue can be addressed reasonably at the source, it
clearly belongs somewhere to the left of Category D in this bell curve.

By dividing and conquering our data-quality issues, we find that the only
really tough boundary to define is that between Categories B and C: issues
that, from a technology standpoint, can be addressed either at the source or
in the ETL system. This is the Political DMZ (demilitarized zone).

Part 2: Cleaning Deliverables

A serious undertaking to improve data quality must be based on rigorous
measurement. This should include keeping accurate records of the types of
data-quality problems you look for, when you look, what you look at, and
the results. Further, you need to be able to answer questions from the data
warehouse manager, information steward, and information-quality leader
about your processing and the data-quality insights discovered, such as:

Is data quality getting better or worse?

Which source systems generate the most/least data-quality issues?

Are there interesting patterns or trends revealed in scrutinizing the
data-quality issues over time?

Is there any correlation observable between data-quality levels and
the performance of the organization as a whole?

Perhaps the data warehouse manager also asks:

Which of my data-quality screens consume the most/least time in
my ETL window?

Are there data-quality screens that can be retired because the types of
issues that they uncover no longer appear in our data?

The data-cleaning subsystem follows the extract step in the overall ETL
processing stream. The primary deliverables, discussed in the next three
sections, are:
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Data-profiling results

An error event table

An audit dimension

Data Profiling Deliverable
Data cleaning must actually start before the first step of building the ETL
system. We have strongly urged that you perform a comprehensive data-
profiling analysis of your data sources during the up-front planning and
design phase. Good data-profiling analysis takes the form of a specific meta-
data repository describing:

Schema definitions

Business objects

Domains

Data sources

Table definitions

Synonyms

Data rules

Value rules

Issues that need to be addressed

Not only is data profiling a good quantitative assessment of your original
data sources; this output should strongly influence the content of the two
operations deliverables described as follows. Appendix B of Jack Olson’s
book, Data Quality: The Accuracy Dimension, has a comprehensive list of
subcategories expanding the preceding list that should be created through
data-profiling analysis to form the basis of the metadata repository.

Cleaning Deliverable #1: Error Event Table
The first major data-cleaning deliverable is a fact table called the error event
table and a set of dimensions. This deliverable is structured as a dimensional
data model, that is, as a dimensional star schema. (See Figure 4.4)

Each data-quality error or issue surfaced by the data-cleaning subsystem
is captured as a row in the error event fact table. In other words, the grain of
this fact table is each error instance of each data-quality check. Remember
that a quality check is a screen. So, if you were to run ten separate screens
against some set of data and each screen uncovered ten defective records,
a total of 100 records would be written to the error event fact table.
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Event Date Key (FK)

Error Event Fact

Screen Key (FK)

Batch Key (FK)

time of day

record identifier

final seventy score

Table dimension

Table Key (PK)

Table name

Table attributes

Source sys.dim

Source Sys Key (PK)

System name

System attributes

Screen Key (PK)

Screen dimension

Screen Type

Screen Catagory

Table Key (FK)

Source System Key (FK)

ETL Stage

Processing Order#

default seventy score

Screen SQL

Exception action

Date dimension

Event Date Key (PK)

date attributes

Batch Key (PK)

batch attributes

Figure 4.4 Error event table schema.

The event date is a standard dimension representing the calendar date.
The time of day is represented in the fact table as the number of seconds
since midnight, expressed as an integer.

The batch dimension contains a record for each invocation of the overall
batch process—and typically contains interesting timestamps, and numbers
of records processed.

The screen dimension table contains constant descriptive information
about each data-quality check, or screen, applied. It is not a description of
a specific run (that is what the fact table records) but rather is a description
of what the screen does and where it is applied. One of its attributes, the
default severity score, defines a severity value for each of the various types
of errors it may encounter. These error-severity scores are used as the basis of
the final severity score error event fact table. For example, the final severity
score could be higher than the individual default scores if a large number
had accumulated.

The attributes of the screen dimension are as follows:

The ETL Stage describes the stage in the overall ETL process in
which the data-quality screen is applied.

The Processing Order Number is a primitive scheduling/
dependency device, informing the overall ETL master process of the
order in which to run the screens. Data-quality screens with the same



P1: KTX
WY046-04 WY046-Kimball-v4.cls August 18, 2004 11:52

Cleaning and Conforming 127

processing-order number in the same ETL stage can be run in
parallel.

The Default Severity Score is used to define the error-severity score
to be applied to each exception identified by the screen in advance of
an overarching processing rule that could increase or decrease the
final severity score as measured in the fact table.

The Exception Action attribute tells the overall ETL process whether
it should pass the record, reject the record, or stop the overall ETL
process upon discovery of error of this type.

The Screen Type and Screen Category Name are used to group
data-quality screens related by theme, such as Completeness or
Validation or Out-of-Bounds.

And finally, the SQL Statement captures the actual snippet of SQL or
procedural SQL used to execute the data-quality check. If applicable,
this SQL should return the set of unique identifiers for the rows that
violate the data-quality screen so that this can be used to insert new
records into the error event fact table.

For reporting purposes, it is useful to associate each screen to the table or
set of columns that it scrutinizes, so that the information-quality leader can
run reports that identify areas of data-quality problems and track these over
time. This is the purpose of the table foreign key in the screen dimension.

The source system dimension identifies the source of the defective data.
Because data-quality screens are run against both staged data that belongs
to a single data source and data that may have been distilled from several
sources, error events can be associated with a special (dummy) integrated
source system.

The unique identifier of the defective record that allows the error event to
be traced directly to the offending record is represented in the fact table as a
degenerate dimension consisting of the ROWID or other direct pointer to the
record in question. Note that with this design there is an implied responsi-
bility to maintain referential integrity between this identifier in the screen
dimension table and the real record. If you delete the real record, the screen
record will be left as an orphan. The screen category field is simply used to
categorize the types of errors detected by the screen. Possible values might
include: Incorrect, Ambiguous, Inconsistent, and Incomplete, allowing the
analyst to aggregate error events into interesting classifications.

The error event fact table is the central table for capturing, analyzing, and
controlling data quality in the ETL system. All error events from all ETL
processes should be written to this table. The screen dimension, of course, is
the main driver for this table. This schema is the basis of the master control
panel for the ETL system.
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Cleaning Deliverable #2: Audit Dimension
The error event fact table described in the previous section captures data-
cleaning events at the grain of the individual record in any and all tables
in the ETL system. Obviously, these events may not occur at the grain of
an individual record in a final delivered table being sent across to the front
room. To associate data-quality indicators with the final end user fact tables,
we need to build a dimension that is single valued at the grain of these tables.
We will call this the audit dimension. The audit dimension describes the
complete data-quality context of a fact table record being handed to the
front room.

The audit dimension is literally attached to each fact record in the data
warehouse and captures important ETL-processing milestone timestamps
and outcomes, significant errors and their frequency or occurrence for the
that record, and an overall data-quality score. Audit dimension records are
created as the final step of the processing for cleaned and conformed fact
table records and must contain a description of the fixes and changes that
have been applied to the record.

The audit dimension captures the specific data-quality context of an individual
fact table record. This does not usually produce an enormous proliferation of audit
dimension records, because the purpose of the audit dimension is to describe
each type of data quality encountered. For instance, in the ideal case of a
completely clean run of new data to be loaded into a fact table, only one audit
record would be generated. Alternatively, if the run was clean except for a few
input records that triggered out-of-bounds checks because of abnormally high
values, two audit records would be generated: one for normal data records and
one for out-of-bounds records. The vast majority of fact records would use the
surrogate key for the normal audit record, and the few anomalous fact records
would use the surrogate key for the out-of-bounds audit record.

A representative audit dimension design is shown in Figure 4.5.
The data-quality attributes and overall score are calculated by examin-

ing all error event facts for the integrated record and its associated source
system records. The audit dimension contains a number of attributes cal-
culated from the error event fact table by summing the error scores of the
fact record, the scores of the conformed dimension instances that it is as-
sociated with, and each of the source records from which the integrated
dimensions and facts were created. If you classify each screen, the aggre-
gated data-quality score for each of these classifications can be carried in the
audit dimension as descriptive attributes, both in textual and numeric form.
The textual forms are useful for labeling reports with qualitative descrip-
tions of error conditions. The data-quality completeness, validation, and
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audit key (PK)

overall quality category (text)

overall quality score (integer)

completeness category (text)

completeness score (integer)

validation category (text)

validation score (integer)

out-of-bounds category (text)

out-of-bounds score (integer)

number screens failed

max seventy score

extract time stamp

clean time stamp

conform time stamp

FTL system version

allocation version

currency conversion version

other audit attributes

Figure 4.5 Audit dimension.

out-of-bounds, audit dimension attributes shown in Figure 4.4 are exam-
ples of this technique.

Similarly, you can count the total number of error events and the maxi-
mum severity score for any one event as interesting attributes to be carried
into the audit dimension. Finally, the audit dimension is a perfect place-
holder for all of the timestamps and ETL code lineage attributes that you
have collected supporting the analysis and troubleshooting tasks of the data
warehouse manager.

Perhaps the biggest payoff comes from exposing the audit dimension
to the end user community. End user queries and reports can now be run
in normal mode and instrumented mode. By simply dragging one of the
audit dimension attributes into the query or report, the original results get
exploded into the separate contributions made by records with various
data-quality conditions. Thus, a reported sales total for a large number of
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stores could now be broken into three lines (stores with normal sales, stores
with abnormally high sales, and stores with abnormally low sales) merely
by dragging the out-of-bounds category attribute into the report.

Notice that we have sneaked some global metadata context into the audit
dimension! At the bottom of the figure are some global release and version
numbers. Thus, if you have changed your revenue allocation scheme in the
middle of the reporting period, you can drag the allocation logic version
number attribute into the report and it will expand each results set row into
the parts that were computed with the old scheme and the parts that were
computed with the new scheme. We have elevated metadata to the status
of data.

Audit Dimension Fine Points
A broadly accepted method to calculate an overall data-quality score for a
fact record has not yet matured. The challenge is to define a method that
presents the level of data quality that has actually been validated, doing so
in a form that survives anticipated adjustments to the set of data-quality
screens performed over time. After all, you don’t want to have to revisit all
of your data-quality scores for all facts in the warehouse every time that
the information-quality leader adjusts the screens. If very few screens are
performed, for example, the level of data quality actually validated should
be lower than if more comprehensive sets of screens are added to the ETL
stream later.

One technique for calculating the validated overall data score for a fact is
to sum the error-event severity scores for all error-event records associated
to the fact. Of course, this assumes that a source-to-target mapping of IDs
is produced as a byproduct of the ETL matching data integration function
(described later in this chapter). This sum of observed event scores can be
subtracted from a worst-case error score scenario to determine the overall
validated data-quality score used in the audit dimension. Worst-case er-
ror scores represent the sum of the maximum error-severity scores for all
screens performed against extracted, cleaned, and conformed data. Thus,
if ten distinct screens are performed against a single fact record and nine
dimension records—each capable of generating a worst-case, data-quality
severity score of ten—the overall worst-cast score total is 100. Restated: If
every screen found defects in every screen that it applied, the cumulative
data-quality severity score would be 100. Knowing this, you might choose
to give this absolutely flawed fact an overall score of zero and assign a fact
that has zero error events an overall score of 100. This technique, therefore,
provides a measure of the overall data quality against the set of screens ac-
tually applied. If the organization chooses to add more screens to the ETL
process, validated data-quality scores have the potential to rise. This seems
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reasonable, since the organization is now validating its data to a higher level
of quality.

The structure of the audit dimension can be made unique to each fact
table. In other words, you may choose to build a family of audit-dimension
designs rather than forcing al audit dimensions to contain the same infor-
mation. This would allow individual diagnoses of the quality of separate
facts to be represented in a single audit dimension record. The key here is
to preserve the dimensional character of this table.

This section has discussed the design of an audit dimension that describes the
data-quality diagnoses and actions pertaining to fact table records. As such, it is
cleanly modeled as a dimension on each fact table. But is it possible to have an
audit dimension for a dimension? Our answer is no; you don’t need this. We prefer
to embed the data-quality diagnoses and actions directly in the dimension table
itself. Data-quality diagnoses of the overall reliability of the data should be
included as additional fields in the dimension itself. Type 1 changes to a
dimension (overwrites) can also be described in this way. Type 2 changes
(alterations to atrributes at a particular point in time) already have extensive
machinery available, including time stamps and reason codes, that can accomplish
much of the purposes of a separate audit dimension. If a full audit trail of all
changes to the data warehouse structures is needed for compliance reporting, you
need to design special structures that record all these changes individually.

Part 3: Screens and Their Measurements

We are now ready to do some detailed design. This section describes a set of
fundamental checks and tests at the core of most data-cleaning engines. It
describes what these functions do, how they do it, and how they build upon
one another to deliver cleaned data to the dimensional data warehouse.
We are greatly indebted to Jack Olsen for creating the organization and
vocabulary of the following sections, as described in his book Data Quality:
The Accuracy Dimension.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Anomaly Detection Phase
A data anomaly is a piece of data that does not fit into the domain of the rest of
the data it is stored with. Remember when as a child you would be given a
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picture and would be asked, “What is wrong with this picture?” You would
point out the square tires on a bicycle or the upside-down stop sign. Data
anomalies are the square tires in the database. Detecting these anomalies
requires specific techniques and entails analytical scrutiny. In this section,
we explain anomaly detection techniques that have been proven successful
on our data warehouse projects.

What to Expect When You’re Expecting

Exposure of unspecified data anomalies once the ETL process has been
created is the leading cause of ETL deployment delays. Detecting data
anomalies takes a great deal of time and analysis. By doing this analysis
up front, you save time and reduce frustration. The alternative is to have
your time consumed by rebuilding the same ETL jobs over and over again
while attempting to correct failed mappings caused by undiscovered data
anomalies.

Finding data anomalies may be perceived by some as data-quality issues
outside the data warehouse, and they may well be, but unless your project is
budgeted for a full-blown data-quality analysis subproject, chances are that
detecting data anomalies will be the responsibility of the ETL team.

Data Sampling

The simplest way to check for anomalies is to count the rows in a table
while grouping on the column in question. This simple query, whose results
are shown in Figure 4.6, reveals the distribution of values and displays
potentially corrupt data.

select state, count(*)

from order_detail

group by state

As you can see in Figure 4.6, data anomalies are instantly exposed. The
outliers in the result set are data anomalies and should be presented to the
business owner with a strong recommendation that they be cleaned up in
the source system.

T E C H N I C A L N O T E Data-profiling tools are built to perform exactly this kind
of data sampling.

Analyzing source data sounds easy, right? What happens when your
source table has 100 million rows, with 250,000 distinct values? The best
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State Count(*)
1                        

Missisippi 2                        
New Yourk 5                        

7                        
New Mexico 43,844               
Vermont 64,547               
Mississippi 78,198               
Utah 128,956             
Wyoming 137,630             
Missouri 148,953             
Rhode Island 182,067             
Minnesota 195,197             
North Dakota 203,286             
Michigan 241,245             
Washington 274,528             
Pennsylvania 287,289             
Montana 337,128             
Louisiana 341,972             
Virginia 346,691             
West Virginia 359,848             
Delaware 422,091             
Iowa 456,302             
Massachusetts 480,958             
Tennessee 483,688             
New York 494,332             
Nevada 506,235             
South Dakota 514,485             
Indiana 553,267             
Connecticut 562,436             

Rhode Island

Connecticut

Figure 4.6 Result of value distribution query.

approach to analyzing monster data sources is with data samples. We’ve
used many different techniques for sampling data, ranging from simply
selecting the first 1,000 rows to using the most elaborate algorithms, none
of which are especially remarkable. We find that the following query, which
simply counts the rows in the table and slices the table evenly into a specified
number of segments, accurately samples the data regardless of the values
in the table:

select a.*

from employee a,

(select rownum counter, a.*

from employee a) B

where a.emp_id = b.emp_id and

mod(b.counter, trunc((select count(*)

from employee)/1000,0)) = 0

To examine more or less data, simply alter the 1,000 to the number of
rows you’d like returned in your sample.
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Another approach involves adding a random number column to data,
which can be sorted to select any desired fraction of the total table.

Once you have this sample data, you can perform your value-distribution
analysis as usual. Selecting data by any other means, besides selecting all
of it, can skew your tests results.

A common mistake we’ve noticed is selecting a specific range of dates to
narrow a result set. Data corruption usually occurs by bugs in the application
program or by untrained staff. Most anomalies we’ve come across happen
temporarily; then either the application is corrected or the person is replaced, and
the anomaly disappears. Selecting data within a date range can easily miss these
anomalies.

Types of Enforcement
It is useful to divide the various kinds of data-quality checks into four broad
categories:

Column property enforcement

Structure enforcement

Data enforcement

Value enforcement

Column Property Enforcement
Column property enforcement ensures that incoming data contains ex-
pected values from the providing system’s perspective. Useful column
property enforcement checks include screens for:

Null values in required columns

Numeric values that fall outside of expected high and low ranges

Columns whose lengths are unexpectedly short or long

Columns that contain values outside of discrete valid value sets

Adherence to a required pattern or member of a set of patterns

Hits against a list of known wrong values where list of acceptable
values is too long

Spell-checker rejects

A number of specific screening techniques are discussed later in this
chapter for performing precisely this set of validity checks and for capturing
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exceptions. Based on the findings of these screens, the ETL job stream can
choose to:

1. Pass the record with no errors

2. Pass the record, flagging offending column values

3. Reject the record

4. Stop the ETL job stream

The general case is option two, passing records through the ETL stream
and recording any validation errors encountered to the error event fact
table to make these errors visible to the end user community and to avoid
situations where data warehouse credibility is hurt by Swiss cheese data
completeness. Data records that are so severely flawed that inclusion in
the warehouse is either impossible or is damaging to warehouse credibility
should be skipped completely, the error event duly noted, of course, in
the error event fact table. And finally, data-validation errors that call into
question the data integrity of the entire ETL batch should stop the batch
process completely, so that the data warehouse manager can investigate
further. The screen dimension contains an exception action column that
associates one of these three possible actions to each screen.

Structure Enforcement
Whereas column property enforcement focuses on individual fields, struc-
ture enforcement focuses on the relationship of columns to each other. We
enforce structure by making sure that tables have proper primary and for-
eign keys and obey referential integrity. We check explicit and implicit hi-
erarchies and relationships among groups of fields that, for example, con-
stitute a valid postal mailing address. Structure enforcement also checks
hierarchical parent-child relationships to make sure that every child has a
parent or is the supreme parent in a family.

Data and Value Rule Enforcement
Data and value rules range from simple business rules such as if customer
has preferred status, the overdraft limit is at least $1000 to more complex log-
ical checks such as a commercial customer cannot simultaneously be a limited
partnership and a type C corporation. Value rules are an extension of these
reasonableness checks on data and can take the form of aggregate value
business rules such as the physicians in this clinic are reporting a statistically
improbable number of sprained elbows requiring MRIs. Value rules can also pro-
vide a probabilistic warning that the data may be incorrect. There indeed are
boys named Sue, at least in Johnny Cash’s song, but maybe such a record
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should be flagged for inspection. A priori if this record is incorrect, you
don’t know whether it is the name or the gender that should be corrected.

These kinds of findings are hard to include in the error event fact table
because the violations involve multiple records. Individual incorrect records are
impossible to identify. One is left with two choices: Either tag all such records
(sprained elbow requiring MRI) as suspect, or establish a virtual aggregate table
on which errors can be reported as a count of incidences.

Measurements Driving Screen Design

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

This section discusses what needs to go into the data-cleaning baseline
for the data warehouse, including simple methods for detecting, capturing,
and addressing common data-quality issues and procedures for providing
the organization with improved visibility into data-lineage and data-quality
improvements over time.

Overall Process Flow
A series of data-quality screens or error checks are queued for running—
the rules for which are defined in metadata. Each screen is described in
the screen dimension we build as part of the error event schema in the
early part of this chapter. As each screen is run, each occurrence of errors
encountered is recorded in an error event record. The metadata for each
error check also describes the severity of the error event. The most severe
data-quality errors are classified as fatal errors that will cause overall ETL
processing to stop. An example of a condition that drives the creation of a
fatal error event might be discovering that daily sales from several stores
are completely missing or that an impossible invalid value for an important
column has appeared for which there are no transformation rules.

When each of the data-quality checks has been run, the error event fact
table is queried for fatal events encountered during the overall data-quality
process. If none are found, normal ETL processing continues; otherwise, a
halt condition is returned to the overall calling ETL process, which should
then perform an orderly shutdown of the overall ETL process and proac-
tively notify the data warehouse administrator and/or information-quality
steward. This process is depicted in Figure 4.7.
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Figure 4.7 Overall process flow.

For highest performance, the goal of the data-cleaning subsystem pro-
cessing stream is to invoke waves of screens that can be run in parallel.
These screens identify data-quality issues and insert records into the er-
ror event fact table. To minimize database contention issues, you should
avoid unneeded indexing or constraints on the error event fact table so that
records can stream into this table from several screen processes simultane-
ously without causing problems. The calling process waits for each wave of
screens to complete before invoking the next wave of screens—until there
are no more screen waves left to run. As indicated earlier in this chap-
ter, the processing-order number of the screen metadata table is used for
scheduling screens. Screens with the same processing order can be run in
parallel. Standard data warehouse job scheduling tools can also be utilized
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for more comprehensive scheduling of screens and management of their
dependencies.

When the cleaning subsystem completes its processing of the cleaned and
conformed records, it performs some additional work in deriving an over-
all data-quality score for the audit dimension. It does this by aggregating
the error event facts for the cleaned and conformed records in the stream
and their associated source records (if this relationship is available)—saved
as a byproduct of the ETL integration/matching processes. Interestingly,
screens can also be applied to the error event fact table itself, allowing special
screens to be established that measure the number and types of data-quality
errors that have accumulated at any stage of the overall data-cleaning job
stream. This technique is described further in the next section.

The recommended method for running screens is to build a generic soft-
ware module that can execute any screen, given a batch ID and a screen
surrogate key as parameters. This module extracts the metadata for the
screen and constructs a dynamic INSERT statement that populates the er-
ror event fact table for each offending record returned by the screen. The
general form of the dynamic INSERT statement is as follows:

INSERT INTO data_quality_error_event_fact

(etl_batch_surrogate_key, day and time of day surrogate keys,

list of values from the Screen Meta Data record,

offending_record_surrogate_key)

SELECT offending_record_surrogate_keys provided by the Screen's SQL

Statement

The Show Must Go On—Usually
A guiding principle of the data-cleaning subsystem is to detect and record
the existence of data-quality errors, not to skip records or to stop the ETL
stream. Data-quality issues are an unfortunate fact of life in the data ware-
housing arena, and business managers are forced to make tough decisions
every day in the face of incomplete and inaccurate data. This situation will
not change overnight. Instead, you should aspire to provide the organiza-
tion with tools to gauge the quality of the data they are utilizing and to
measure their progress in improving data quality over time.

That said, the data-cleaning subsystem must also provide some mecha-
nism for dealing with unexpected conditions, including data records that
are simply too flawed to be permitted into the data warehouse or data
records that indicate a systemic flaw so severe as to warrant a halt to the
overall ETL process. For practical and political reasons, the thresholds for
triggering these exceptional remedies must be balanced to allow the data
warehouse to remain a viable and useful tool to the business, yet still provide
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enough assuredness of data quality to maintain system credibility within
the end user community. This can be a tough balance to strike and is likely
to be adjusted over time. So the ETL data-quality subsystem should support
the ability to tune these thresholds and change the course of action to take
when data-quality errors are encountered.

In some cases, exceptional actions might need to be taken if too many low-
level error conditions are detected. For example, the existence of an invalid
U.S. state code in a customer address record would typically cause an error
event to be written to the data-quality subject area but would not stop the
overall ETL process. If all of the records in the batch have invalid U.S. state
codes, though, this probably indicates a severe problem in some upstream
process—severe enough to call into question the overall integrity of all data
in the ETL stream. It is recommended that cases like this be handled by
creating additional data-quality screens run directly against the error event
fact table, counting the number of data quality error event records captured
in the overall data-cleaning batch and triggering exception processing.

Take care with these special screens in their writing of their error findings
back to the error event fact. They are reading from and writing to the same
table—a recipe for database contention problems. Rather than writing error events
for each offending record back to the fact, as do most other data-quality screens,
they should instead aggregate error conditions of a specific type from a specific
source table and write a single record error event fact if the aggregate exceeds the
allowable threshold. This should sidestep most common contention issues.

Screens
Before screens can be run, you should have established an overall data-
profiling baseline. This should include defining column specifications for
nullity, numeric column ranges, character column length restrictions, and
table counts. There is no substitute for performing in-depth research on
data, on a source-by-source basis, for determining the characteristics of
high-quality examples of data. This research should contain a review of the
technical documentation of the data providers and a column-by-column
review of the source data itself. For each data source to be loaded into the
data warehouse, a data-profiling checklist should include:

Providing a history of record counts by day for tables to be extracted

Providing a history of totals of key business metrics by day

Identifying required columns

Identifying column sets that should be unique

Identifying columns permitted (and not permitted) to be null
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Determining acceptable ranges of numeric fields

Determining acceptable ranges of lengths for character columns

Determining the set of explicitly valid values for all columns where
this can be defined

Identifying frequently appearing invalid values in columns that do
not have explicit valid value sets

Without dedicated data-profiling tools, a limited subset of the data-
profiling benefits can be obtained with hand-coded SQL, a team of subject
matter experts, and time and effort. This make-versus-buy tradeoff mirrors
the discussion of choosing an overall ETL tool we present at the beginning of
this book. In other words, the vendor-supplied tools are continuously rais-
ing the bar, making it less and less practical to roll your own, unless your
needs and aspirations are very modest. The findings from the data-profiling
exercise should be maintained by the information-quality leader—who can
then apply them directly to the data-quality screen metadata definitions
that drive the ETL data-quality process.

Known Table Row Counts
In some cases, the information-quality leader absolutely knows, through
business policy, the number of records to be expected of a given data type
from a given data provider. An example of this might be a weekly inventory
of parts from a warehouse, where the inventory of all active parts must be
provided—even if zero. In other cases, the information-quality leader can
infer a range of acceptable records to expect from a given data-provider-
based history and build screens that detect record counts that are uncharac-
teristically high or low. The known table record count case can be handled
by simple screen SQL, such as the following:

SELECT COUNT(*)

FROM work_in_queue_table

WHERE source_system_name = 'Source System Name''

HAVING COUNT(*) <> 'Known_Correct_Count'

Because this is a table-level screen, the cleaned or conformed record iden-
tifier of the error event fact should be stored as a NULL.

Column Nullity
The determination of which columns are required (versus allowed to be
null) in data records is very important and typically varies by source sys-
tem. For example, a point-of-sale operational system might be permitted
to have missing customer address attributes, but a record from a shipping
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system might demand non-null values. The metadata structures proposed
capture nullity rules on a source-by-source basis. In dimensional models,
integrated records often have more restrictive nullity rules than source
data, because nearly all dimensional attribute columns are required to be
populated—even if with only Unknown, Not Applicable, or Not Available de-
scriptive strings.

Systematically populating null text fields with an actual value removes the
ambiguity of whether the field is missing or legitimately empty. This technique also
simplifies many SQL lookups; unfortunately, relational databases treat the empty
text field differently from the null text field. Even if a value is not supplied for the
null text field, we recommend at least converting all null text fields to empty text
fields.

The proposed approach for testing nullity is to build a library of source-
specific nullity SQL statements that return the unique identifiers of the
offending rows, such as the following:

SELECT unique_identifier_of_offending_records

FROM work_in_queue_table

WHERE source_system_name = 'Source System Name'

AND column IS NULL

For screening errors from integrated records, you might adjust the SQL
slightly to use your special dummy source system name, as follows:

SELECT unique_identifier_of_offending_records

FROM work_in_queue_table

WHERE source_system_name = 'Integrated'

AND column IS NULL

Rows are inserted into the error event fact for each offending record
returned by this screen, and the unique identifiers of the offending rows
are written into the fact table as degenerate dimensions.

Column Numeric and Date Ranges
Although many numeric and date columns in relational database tables
tolerate a wide range of values, from a data-quality perspective, they may
have ranges of validity that are far more restrictive. Is it believable that
a single customer transaction is for one million units? Perhaps yes, if our
business is a global B2B exchange, but no, if this is a consumer retail point-
of-sale transaction. You want your data-cleaning subsystem to be able to
detect and record instances of numeric columns that contain values that fall
outside of what the information-quality leader defines as valid ranges. In



P1: KTX
WY046-04 WY046-Kimball-v4.cls August 18, 2004 11:52

142 Chapter 4

some cases, these valid value ranges will be defined by the source system. In
other cases, especially for numeric columns that participate in sensitive ETL
calculations, these ranges might need to be set by the information steward.
Here again, columns of integrated data may have valid numeric ranges
different from those of any data source, so you need to validate these with
separate screens. An example of a SQL SELECT statement to screen these
potential errors follows:

SELECT unique_identifier_of_offending_records

FROM work_in_queue_table

WHERE source_system_name = 'Source System Name'

AND numeric_column IS NOT BETWEEN min AND max

Suppose we have a fact table that tracks daily sales in 600 stores, each of
which has 30 departments. We therefore receive 18,000 sales numbers each day.
This note describes a quick statistical check, based on calculating standard
deviations, that allows us to judge each of the 18,000 incoming numbers for
reasonableness. The technique also lets us quickly update the statistical base of
numbers to get ready for tomorrow’s data load.

Remember that the standard deviation is the square root of the variance. The
variance is the sum of the squares of the differences between each of the
historical data points and the mean of the data points, divided by N-1, where N is
the number of days of data. Unfortunately, this formulation requires us to look at
the entire time history of sales, which, although possible, makes the computation
unattractive in a fast-moving ETL environment. But if we have been keeping track
of SUM SALES and SUM SQUARE SALES, we can write the variance as
(1/(N-1))*(SUM SQUARE SALES - (1/N)*SUM SALES*SUM SALES). Check the
algebra!

So if we abbreviate our variance formula with VAR, our data-validity check looks
like:

SELECT s.storename, p.departmentname, sum(f.sales)

FROM fact f, store s, product p, time t, accumulatingdept a

WHERE

(first, joins between tables... )

f.storekey = s.storekey and f.productkey = p.productkey and

f.timekey = t.timekey and s.storename = a.storename and

p.departmentname = a.departmentname and

(then, constrain the time to today to get the newly loaded data... )

t.full_date = #October 13, 2004# and

(finally, invoke the standard deviation constraint... )

HAVING ABS(sum(f.sales) - (1/a.N)*a.SUM_SALES) > 3*SQRT(a.VAR)

We expand VAR as in the previous explanation and use the a. prefix on N,
SUM SALES and SUM SQUARE SALES. We have assumed that departments are
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groupings of products and hence are available as a rollup in the product
dimension.

Embellishments on this scheme could include running two queries: one for the
sales MORE than three standard deviations above the mean and another for sales
LESS than three standard deviations below the mean. Maybe there is a different
explanation for these two situations. This would also get rid of the ABS function if
your SQL doesn’t like this in the HAVING clause. If you normally have significant
daily fluctuations in sales (for example, Monday and Tuesday are very slow
compared to Saturday), you could add a DAY OF WEEK to the accumulating
department table and constrain to the appropriate day. In this way, you don’t mix
the normal daily fluctuations into our standard deviation test.

When you are done checking the input data with the preceding SELECT statement,
you can update the existing SUM SALES and SUM SQUARE SALES just by adding
today’s sales and today’s square of the sales, respectively, to these numbers in the
accumulating department table.

Column Length Restriction
Screening on the length of strings in textual columns is useful in both staged
and integrated record errors. An example of this screen might check cus-
tomer last names that you believe are too long or too short to be credible.
Here is an example of a SQL SELECT that performs such a screening:

SELECT unique_identifier_of_offending_records

FROM work_in_queue_table

WHERE source_system_name = 'Source System Name'

AND LENGTH(numeric_column) IS NOT BETWEEN min AND max.

Column Explicit Valid Values
In cases where a given column has a set of known discrete valid values as
defined by its source system, you can screen for exceptions by looking for
occurrences of default unknown values in the processed columns. Alterna-
tively, you can treat this as a staging screen by using the generic column
validity reference table of valid values for columns from any data providers.
Therefore, a representative SQL statement might be:

SELECT unique_identifier_of_offending_records

FROM work_in_queue_table Q

WHERE source_system_name = 'Source System Name'

AND column NOT EXISTS

( SELECT anything

FROM column_validity_reference_table

WHERE column_name = "column_name"
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AND source_system_name = 'Source System Name'

AND valid_column_value = Q.column_value

)

Column Explicit Invalid Values
In cases where a given column is routinely populated with values known
to be incorrect and for which there is no known set of discreet valid values,
the information-quality leader might choose to explicitly screen for these
invalid values. An example might be the periodic appearance of strings like
UNKNOWN in a customer last name field—where the set of all potentially
valid customer last names is undefined. The explicit invalid values screen
should obviously not attempt to exhaustively filter out all possible invalid
values—just pick off the frequent offenders. Other data-cleaning technolo-
gies, such as name and address standardization and matching, are far more
appropriate for these tasks. For simplicity’s sake, the example that follows
hard-codes the offending strings into the screen’s SQL statement.

SELECT unique_identifier_of_offending_records

FROM work_in_queue_table

WHERE source_system_name = 'Source System Name'

AND UPPER(column) IN ("UNKNOWN", "?", list of other

frequent offenders... )

A slightly more elegant approach might compare the data values to a
table full of frequent offenders, as in:

SELECT unique_identifier_of_offending_records

FROM work_in_queue_table Q

WHERE source_system_name = 'Source System Name'

AND EXISTS

( SELECT 'Got One' FROM Table_Of_Frequent_Offenders WHERE column_name =

Q.column_name)

If the set of valid values for a column is too large to be explicitly defined
or is unknown, this type of screen has limited value, but in some useful
cases the set of recently found violations can be used; data-entry people
tend to repeat these violations over and over.

Checking Table Row Count Reasonability
This class of screens is quite powerful but a bit more complex to implement.
It attempts to ensure that the number of rows received from a data source
is reasonable—meaning that the row counts fall within a credible range
based on previously validated record count histories. To test table row count
reasonability, you can choose from a number of simple statistical tests such
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Figure 4.8 Table level reasonability metadata.

as calculating the number of standard deviations a value falls from the mean
of previous similar values or opting for more advanced and professional
value predictors such as the X.12 standard or even ARIMA (Autoregressive
Integrated Moving Average) techniques. If you are interested in some of
these powerful statistical tools, you’ll need a few weeks of consulting with a
good statistician. A good place to find such a statistician is in your marketing
research department, if you have such a department.

The data-staging table record count table shown in Figure 4.8 captures
the number of records processed from each data source each day for each
table—one row per data source per day.

Figure 4.8 presents these tables in a dimensional structure. Some ETL
tools create similar tables as a byproduct of their normal operation. Using
the data-staging table record count table, the SQL for this screen might be
handled in two passes, as follows:

SELECT AVERAGE(Number_of_Records)−3 * STDDEV(Number_of_Records),

AVERAGE(Number_of_Records) + 3 * STDDEV(Number_of_Records)

INTO Min_Reasonable_Records,

Max_Reasonable_Records

FROM data_staging_table_record_count

WHERE source_system_name = 'Source System Name"

;

SELECT COUNT(*)

FROM work_in_queue_table

WHERE source_system_name = 'Source System Name"

HAVING COUNT(*) NOT BETWEEN

Min_Reasonable_Records AND Max_Reasonable_Records

;

Clever SQL gurus can implement the preceding screen as either multipass
SQL (as shown), single pass SQL for each data source, or a single screen that
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validates table record count reasonability from all sources—depending on
specific data-quality requirements and severity score flexibility needed. The
information-quality leader might also choose to define multiple screens for
the same table and source system, with a different number of standard devi-
ation tolerances applied and different severity scores, for example, record-
ing low severity errors at two standard deviations from mean, graduating to
high severity errors at three standard deviations from mean and to outright
stoppage of the entire ETL stream at four standard deviations.

The table row count screen can easily be extended to support reasonability
testing of any additive metric in the data warehouse. For example, by adding
a total sales metric to the table in Figure 4.8, screens can be written that
identify situations when sales metrics are inexplicitly skewed:

SELECT AVERAGE(Total_Sales_Dollars)−3
* STDDEV(Total_Sales_Dollars),

AVERAGE(Total_Sales_Dollars) + 3

* STDDEV(Total_Sales_Dollars)

INTO Min_Reasonable_Sales_Dollars,

Max_Reasonable_Sales_Dollars

FROM staging_table_record_count

WHERE source_system_name = 'Source System Name"

;

SELECT SUM(Total_Sales_Dollars)

FROM work_in_queue_table

WHERE source_system_name = 'Source System Name"

HAVING SUM(Total_Sales_Dollars) NOT BETWEEN

Min_Reasonable_Sales Dollars AND

Max_Reasonable_Sales_Dollars

Checking Column Distribution Reasonability
The ability to detect when the distribution of data across a dimensional at-
tribute has strayed from normalcy is another powerful screen. This screen
enables you to detect and capture situations when a column with a discrete
set of valid values is populated with a data distribution that is skewed ab-
normally. For example, the column being screened might be the product
presented in a sales call fact from a sales force automation (SFA) system.
Assume that history tells you that most sales calls are devoted to the pre-
sentation of product A (for which sales are highly compensated) and that
very few present product B (which offers little reward to the sales force).
You want to design a screen that will alert the information-quality leader
if, say, you suddenly see too few sales calls for product A or too many sales
calls for product B.

You build this screen by following an approach similar to the table row
count reasonability technique described previously. Again, you are going to
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need a staging table to keep historical counts of the number of records seen
for the valid values of a column over time, from which you can calculate
means and standard deviations for your screen. Because there are often
many possible values for a given column, and many columns with a discrete
set of valid values, you will need to deviate from your metadata norms and
propose staging tables that are specific to the table and sets of columns that
are to be scrutinized by the screen. Of course, this increases the number of
data-staging tables needed, but it affords the ETL architect much greater
flexibility in physical implementation of these potentially large tables. In
some cases, even this less-generalized data-staging approach generates a
table that is too large to be used for high-performance ETL processing, so
one can use the statistical technique described in a previous section for
judging the mean and standard deviation of the data.

Note that the statistical approach described can also be used to support
multicolumn screening—that is, testing for reasonability across several col-
umn combinations of valid values. Earlier in this chapter, we refer to this as
value rule enforcement. An example of this might be scrutinizing daily sales
by product and store, or daily sales by product, store, and day of the week,
looking for results that are unreasonably skewed from historical norms.

Modifying the table in Figure 4.8 to add product as a dimension allows
us capture daily sales-call counts by product. Using this table, the screen
can compare the average sales-call totals by product code and source seen
historically to those in the current ETL batch. Those products whose aver-
ages exceed the established threshold of standard deviations (as defined in
the block of SQL in the screen definition) should have error event records
written to the fact table.

Processing this type of screen using the technique described requires pro-
cedural programming on a level well supported by mainstream procedural
SQL language extensions. This procedural SQL can be included in the screen
SQL statement definition or handled outside of it. The important thing is
for the ETL architect to be consistent in maintaining a screen metadata in-
stance for all screens and in populating the error event fact for all error
events surfaced by all screens.

Regardless of the implementation method chosen, the error event facts
created by this screen are considered to be table-level screens, so the cleaned/
conformed record identifier of the error event fact should be NULL.

General Data and Value Rule Reasonability
Data and value rules as defined earlier in the chapter are subject-matter
specific, so we cannot give a list of specific checks for you to implement.
But the form of the reasonableness queries clearly is similar to the simple
data column and structure checks given in this section as examples.
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Part 4: Conforming Deliverables

Integration of data means creating conformed dimension and fact instances
built by combining the best information from several data sources into a
more comprehensive view. To do this, incoming data somehow needs to
be made structurally identical, filtered of invalid records, standardized in
terms of its content, deduplicated, and then distilled into the new con-
formed image. In this section, we describe a three-step process for building
conformed dimensions and facts:

Standardizing

Matching and deduplication

Surviving

When we conform data, we may convert Gender Codes of (M, F), (M,
W), and (Man, Woman) from three different data providers into a standard
gender dimension attribute of (Male, Female). Similarly we can conform
name and address information using specialized tools.

Conforming descriptive attributes across multiple data sources, multiple data
marts, and multiple remote clients participating in a distributed data warehouse is
one of the key development steps for the data warehouse architect and the ETL
team. Much has been written on the technical, administrative, and organizational
affects this of this subject in the other Toolkit books. The immediate concerns of
the ETL team are capturing the full range of overlapping and conflicting inputs and
supporting the needs of the dimension manager and the fact-table provider.

Conformed Dimensions
Regardless of the hardware architecture, every data warehouse is distribu-
ted in a certain sense because separate kinds of measurements must always
exist in separate fact tables. The same statement is true in an ER-modeled
environment. So, for an end user application to combine data from separate
fact tables, we must implement consistent interfaces to these fact tables so
that data can be combined. We call these consistent interfaces conformed
dimensions and conformed facts.

A conformed dimension means the same thing with every possible fact
table to which it can be joined. Often, this means that a conformed dimen-
sion is identical for each fact table. A more precise definition of conformed
dimensions is:
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Figure 4.9 Drilling across three fact tables.

Two dimensions are conformed if they share one or more attributes whose
values are drawn from the same domains. A requesting application must use
only these common attributes as the basis for constraints and groupings when
using the conformed dimensions to drill across separate fact tables.

Figure 4.9 illustrates the drill-across process for three fact tables support-
ing a conformed product dimension.

Examples of dimensions frequently conformed include customer, prod-
uct, location, deal (promotion), and calendar (time). A major responsibility
of the central data warehouse design team is to establish, publish, maintain,
and enforce conformed dimensions.

The establishment of a conformed dimension is a very significant step for
an organization. We describe the organization decisions and the overall pro-
cedure for arriving at the definitions of conformed dimensions in Data Ware-
house Lifecycle Toolkit. A conformed customer dimension is a master table of
customers with a clean surrogate customer key and many well-maintained
attributes describing each customer. It is likely that the conformed customer
dimension is an amalgamation and a distillation of data from several legacy
systems and possibly outside sources. The address fields in the customer
dimension, for instance, should constitute the best mailable address known
for each customer anywhere within the enterprise. It is often the responsi-
bility of the central data warehouse team to create the conformed customer
dimension and provide it as a resource to the rest of the enterprise, both for
legacy use and for data warehouse use.

The conformed product dimension is the enterprise’s agreed-upon master
list of products, including all product rollups and all product attributes. A
good product dimension, like a good customer dimension, should have at
least 50 separate textual attributes.
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The conformed calendar dimension will almost always be a table of indi-
vidual days, spanning a decade or more. Each day will have many useful
attributes drawn from the legal calendars of the various states and coun-
tries the enterprise deals with, as well as special fiscal calendar periods and
marketing seasons relevant only to internal managers.

Conformed dimensions are enormously important to the data warehouse.
Without strict adherence to conformed dimensions, the data warehouse can-
not function as an integrated whole. If a dimension like customer or product
is used in a nonconformed way, either the separate fact tables simply can-
not be used together or, worse, attempts to use them together will produce
wrong results. To state this more positively, conformed dimensions make
possible a single dimension table to be used against multiple fact tables
in the same database space, consistent user interfaces and consistent data
content whenever the dimension is used, and a consistent interpretation of
attributes and therefore rollups across different fact tables.

Designing the Conformed Dimensions
Identifying and designing the conformed dimensions should take a few
weeks. Most conformed dimensions will naturally be defined at the most
granular (atomic) level possible. The grain of the customer and product
dimensions will naturally be the lowest level at which those entities are
tracked in the source systems. The grain of the date dimension will usually
be a day.

Taking the Pledge
If the central data warehouse team succeeds in defining and providing
a set of master conformed dimensions for the enterprise, it is extremely
important for the owners of separate fact tables to use these dimensions.
The commitment to use the conformed dimensions is much more than a
technical decision. It is a business-policy decision that is key to making the
enterprise data warehouse function. The use of the conformed dimensions
should be supported at the highest executive levels. This issue should be a
sound bite for the enterprise CIO.

Permissible Variations of Conformed Dimensions
It is possible to create a subset of a conformed dimension table for certain
fact tables if you know that the domain of the associated fact table contains
only that subset. For example, the master product table can be restricted to
just those products manufactured at a particular location if the data mart
in question pertains only to that location. We can call this a simple data
subset, since the reduced dimension table preserves all the attributes of the
original dimension and exists at the original granularity.
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Figure 4.10 Building a conformed calendar month table.

A rollup data subset systematically removes both rows and columns from
the original dimension table. For example, it is common to restrict the date
dimension table from days down to months. In this case, we may keep
only the record describing the first day of each month, but we must also
remove all those attributes like Day-of-Week and Holiday-Flag that make
sense only at a daily grain. See Figure 4.10.

Perhaps you are wondering how to create queries in an environment
where the conformed dimensions can be subsetted? Which dimension ta-
ble should be used where? Actually, it is much simpler than it sounds. Each
dimension table is naturally paired with its companion fact table. Any ap-
plication that drills across fact tables must inevitably use multipass SQL
to query each data mart separately and in sequence. It is usually the case
that a separate SQL query is generated for each column in a drill-across
report. The beauty of using conformed dimensions is that the report will
run to completion only if the dimension attributes used in the report are
found in each dimension table. Since the dimensions are conformed, the
business answers are guaranteed to be consistent. The numbers will also be
comparable if we have established conformed fact definitions.

Conformed Facts
We have talked thus far about the central task of setting up conformed
dimensions to tie our data marts together. This is 80 percent of the up-front
architectural effort. The remaining 20 percent is establishing standard fact
definitions.

Fortunately, identifying the standard fact definitions is done at the same
time as the identification of the conformed dimensions. We need standard
fact definitions when we use the same terminology across fact tables and
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when we build single reports that drill across fact tables as described in the
previous section.

Establishing conformed dimensions is a collaborative process wherein
the stakeholders for each fact table agree to use the conformed dimensions.
During conforming meetings, stakeholders also need to identify similar
facts present in each of the fact tables. For instance, several fact tables may
report revenue. If end user applications expect to add or compare these
revenue measures from separate fact tables, the business rules that define
these revenue measures must be the same. Perhaps revenue is measured
by one group at the end of the month, whereas another group measures
revenue on a rolling billing period. Or perhaps one group measures total
sales, but another group measures only the Generally Accepted Accounting
Principles (GAAP) recognized portion of the sale.

Conformed facts can be directly compared and can participate in math-
ematical expressions such as sums or ratios. If the stakeholders of the fact
tables can reach agreement, the data-preparation steps for some or all of
the fact tables may involve transformations of the facts in order to meet the
common definition.

The Fact Table Provider
Although this section is more of an operational discussion, we want to
complete the picture of the conforming dance we have described in this
part of the chapter. In the next section, we define the role of a dimension
manager, a centralized authority who prepares and publishes conformed
dimensions to the community. The fact table provider is the receiving client
of the dimension manager. The fact table provider owns one or more fact
tables and is responsible for how they are accessed by end users. If fact tables
participate in any enterprise-wide drill across applications, by definition
they must use conformed dimensions provided by the dimension manager,
and they must carefully prepare the numeric facts that have been identified
by the organization as conformed (standardized) facts.

The Dimension Manager: Publishing Conformed
Dimensions to Affected Fact Tables
A conformed dimension is by necessity a centrally managed object. A mas-
ter dimension manager needs to be appointed by the organization to admin-
ister and publish each conformed dimension.

When the dimension manager releases a new version of a dimension,
it is incumbent on the fact table provider to update local copies of the
dimension as soon as possible. Ideally, the published dimension contains a
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version number field in every record, and all drill-across applications are
enforcing the equality of this version number as they combine separate
answer sets in the final step of preparing reports. If the fact table provider
is tardy in updating dimensions, the drill-across application should fail
because the version numbers don’t match. Although this sounds harsh, it
is very important for this discipline to be enforced; different versions of
the same dimension can lead to insidious, unobservable errors in the drill-
across results.

Each conformed dimension should possess a Type 1 version number field
in every record (see the discussion of Type 1, 2, and 3 slowly changing di-
mensions in the Chapter 5 if this is unfamiliar vocabulary). This version
number field is overwritten in every record whenever the dimension man-
ager releases the dimension to the separate fact tables. Any drill-across
query that combines data from two or more fact tables using two or more
separate copies of a dimension must make sure that the version numbers
of the dimensions match exactly. This requires the dimension manager to
replicate any revised dimensions to all client fact tables simultaneously. In
an environment supporting drill-across queries between fact tables, failure
to enforce the equality of dimension versions is a very serious error, because
applications may well run to completion, but sums and groupings can be
insidiously wrong, with no real way to detect inconsistencies in the final
reports.

In a single tablespace in a single DBMS on a single machine, managing
conformed dimensions is somewhat simpler because there needs to be only
one copy of a dimension. This single copy is joined at query time to all the
fact tables resident in the tablespace. However, this benefit can be realized
only in the smallest and simplest data warehouses. As soon as fact tables be-
come situated in multiple tablespaces, multiple DBMSs, or multiple remote
machines, the dimension manager must exercise the full set of responsibili-
ties described in the previous paragraph, in order to support drilling across
multiple data sets.

It is worth mentioning one more time that the roles described for the di-
mension manager and the fact table provider apply not only to geograph-
ically distributed and autonomous data warehouse environments but also
to highly centralized warehouses on a single machine administered by a
single set of DBAs. As soon as fact tables reside in separate table spaces, all
these issues are relevant because there must be multiple physical copies of
the dimensions.

Detailed Delivery Steps for Conformed Dimensions
The creation of conformed dimensions is more than just reaching agreement
on certain standard descriptive attributes in a dimension. In the following
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steps, the references to Type 1, 2, and 3 slowly changing dimensions (SCDs)
are explained in detail in Chapter 5. The dimension manager must:

1. Add fresh new records to the conformed dimension, generating new
surrogate keys.

2. Add new records for Type 2 changes to existing dimension entries
(true physical changes at a point in time), generating new surrogate
keys.

3. Modify records in place for Type 1 changes (overwrites) and Type 3
changes (alternate realities), without changing the surrogate keys.
Update the version number of the dimension if any of these Type 1 or
Type 3 changes are made.

4. Replicate the revised dimension simultaneously to all fact table
providers.

The receiving fact table provider has a more complex task. This person
must:

1. Receive or download dimension updates.

2. Process dimension records marked as new and current to update
current key maps in the surrogate key pipeline.

3. Process dimension records marked as new but postdated. This
triggers a complex alternative to the normal surrogate key pipeline
processing (described in Chapters 5 and 6).

4. Add all new records to fact tables after replacing their natural keys
with correct surrogate keys.

5. Modify records in all fact tables for error correction, accumulating
snapshots, and postdated dimension changes. You probably do this
on a partition by partition basis. See comment in Step 9.

6. Remove aggregates that have become invalidated. An existing
historical aggregate becomes invalidated only when a Type 1 or Type
3 change occurs on the attribute that is the target of the aggregation
or if historical fact records have been modified in Step 5. Changes to
other attributes do not invalidate an aggregate. For instance, a
change in the Flavor attribute of a product does not invalidate
aggregates based on the Category attribute.

7. Recalculate affected aggregates. If the new release of a dimension
does not change the version number, aggregates have to be extended
to handle only newly loaded fact data. If the version number of the
dimension has changed, the entire historical aggregate may have to
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be recalculated if it was removed in Step 6. OLAP systems may
handle these steps automatically.

8. Quality-assure all base and aggregate fact tables. Be satisfied that the
aggregate tables are correctly calculated.

9. Bring updated fact and dimension tables on line. The detailed
strategy for taking a fact table (or more likely a partition of a fact
table) offline for the briefest possible duration can be found in the
Lifecycle Toolkit book starting on page 645.

10. Inform end users that the database has been updated. Tell users if
major changes have been made, including dimension version
changes, postdated records being added, and changes to historical
aggregates.

Implementing the Conforming Modules
To implement conformed dimensions and facts, the conforming subsystem
needs reference metadata that captures the relationships between explicitly
valid values from source systems to conformed dimension attribute values
and conformed fact values.

Many ETL tools support these types of domain mappings, either with
prebuilt metadata attributes or by allowing the ETL team to use extensible
metadata attributes for the source table objects. Figure 4.11 shows an exam-
ple of metadata tables that support data conforming. The table and column

Source Key (PK)

source dimension

source attributes

column dimension

Column Key (PK)

Table Key (FK)

source value

other column attributes

table dimension

Table Key (PK)

table attributes

Source Key (FK)

Conformed column
reference fact  table

Column key (FK)

Conformed Value

Figure 4.11 Conformed column support schema.
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entities capture metadata about each table and its associated columns, re-
spectively. The fact table records the officially defined conformed values
from each source system. The identities of the overall source systems are
captured in the source system table. The column dimension contains the
source value mapped into the official conformed value. Thus, in the simple
example cited earlier, if Male and Female were the target conformed values
for gender, the fact table would associate M with Male, F with Female from
source system A; and M with Male but W with Female from source system
B; and Man with Male and Woman with Female from source system C.

Columns in records that contain invalid values—that is, values that are
not in the set of explicit valid values in the column dimension table—should
be replaced with a predefined value like Unknown from the standardized
value reference table; replacement should be noted in the error event fact
table.

It is important that bogus or invalid data that cannot be standardized be
removed from the visibility of downstream ETL processes (like matching) and the
end user community.

More complex forms of standardization are now routinely used to deal
with cleansing of names and addresses. Specialized software tools provide
support in this area that would be very difficult for ETL teams to attempt
to duplicate. By all means, have a look at the leading players in this arena
listed in Chapter 7. In some cases, the standardized value is arrived at
probabilistically by a technique that uses statistical techniques to align im-
perfect data with some known universe of common names or geographies.
Be aware that some probabilistic standardization tools also have self-tuning
integration engines that learn over time more about the distribution of data
specific to the particular application and adjust their processing algorithms
appropriately. This is a powerful feature but one that can challenge the
ETL architect’s ability to test a data-integration engine whose behavior
changes/evolves as it gets smarter. Most standardization tools produce
feedback on their success in reengineering data and in exceptions/errors
encountered in processing of the data. It is important to capture, retain,
and mine data-integration lineage observations—using the log tables left
behind to generate error event facts.

Matching Drives Deduplication
Matching, or deduplication, involves the elimination of duplicate standard-
ized records. In some cases, the duplicate can be easily detected through
the appearance of identical values in some key column—like social security
number, telephone number, or charge card number. This happy situation
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is all-too rare, unfortunately. In other cases, no such definitive match is
found, and the only clues available for deduplicating are the similarity of
several columns that almost match. In still tougher cases, more than one
definitive-match columns are found to be identical, but they contradict one
another.

Specialized data integration matching tools are now mature and in wide-
spread use and deal with these very specialized data-cleansing issues. Of-
ten, these tools are closely associated with data-standardization tools and
are sold together.

The matching software must compare the set of records in the data stream
to the universe of conformed dimension records and return:

A numeric score that quantifies the likelihood of a match

A set of match keys that link the input records to conformed
dimension instances and/or within the standardized record universe
alone

Thus, an input record running through the match processes can be a match
to zero or one conformed dimension records and zero, one, or more other
input records in the batch process queue. In either case, the matching soft-
ware’s job is to associate match keys to these input records that detail these
derived match relationships. These match keys are used by the survivor-
ship module described in the next section in figuring which records have
been matched to one another and are therefore candidates for distillation
into a single integrated record.

Many data-matching tools also include a match score, or matching confi-
dence metric, that describes the likelihood of match obtained. Often, these
match scores are derived by creating several matching approaches, or passes,
scoring match probabilities from each pass and then distilling results into
a recommended set of match keys and an overall weighted score.

Organizations with a need for very robust deduplication capabilities can
choose also to maintain a persistent library of previously matched data,
each still associated with a single data provider, and use this consolidated
library to improve their matching results. In this way, the matching engine
can apply its match passes not just to the conformed dimension records but
also to the complete set of previously matched dimension records that it
has from all source systems. This approach might result in better matches,
because the universe of match candidates is richer, and it is far more re-
silient to gracefully handling matching rule changes, which can now be
satisfied without having to run every source system’s data through the
entire data-integration process. But this approach complicates match pro-
cessing because matches can occur within and across the source and fully
conformed data universes.
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As of this writing, matching tools are far from turn-key implementations that
plug into ETL streams and somehow know what to do. On the contrary, they
require much profiling and training based on the organization’s data, the
establishing of matching strategies for deciding which combinations of attributes
(matching passes or perspectives) are most predictive of duplication, the tuning to
distill these different perspectives into a matching policy, and the setting of match
and no match thresholds based on the organization’s tolerance for over
(aggressive) and under (conservative) matching. ETL tool-suite vendors have
recently been targeting this application, however, and you should examine their
plug-in matching transformers.

Surviving: Final Step of Conforming
Survivorship refers to the process of distilling a set of matched (dedupli-
cated) records into a unified image that combines the highest-quality col-
umn values from each of the matched records to build conformed dimension
records. This entails establishing business rules that define a hierarchy for
column value selections from all possible sources and capturing the source-
to-target mapping to be applied when writing out for survived (conformed)
records.

In addition, survivorship must be capable of distilling combinations of
columns together, rather than individually. This is needed for situations
where the combining of individually survived columns could result in a
nonsensical mishmash, such as combining address lines 1, 2, and 3 from
three different source systems and ending up with a distilled address that is
less credible than all three. It is far better in situations like this to create rules
that mandate that certain combinations of columns (survivorship blocks)
must be survived together: all or nothing. The metadata tables shown in
Figure 4.12 support the most common requirements of survivorship.

The Survivorship Source to Target Map table captures data-
integration mappings between source columns (input data that has
been cleaned but not conformed) and target columns (conformed
dimension table columns). For both flexibility and simplicity, it
allows any combination of columns to be used as sources into any
combination of targets—thus placing a burden on the ETL architect
(rather than referential integrity that might have been included in a
more complex structure) to populate it properly.

The Survivorship Block table groups mapped source and target
columns into blocks that must be survived together (to properly
address the address 1, 2, 3 types of issues described earlier).
Survivorship blocks are allowed to be of one source and one target,
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Table

Table Surrogate Key

Schema Surrogate Key (FK)
Table Name
Other Table Attributes
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Column key

Table Surrogate Key (FK)
Column Name

Source System

Source System Surrogate Key
Source System Name

Survivorship Block

Survivorship Block Surrogate Key

Survivorship Block Name

Survivorship Support Meta Data

Survivorship Meta Data Tables

Survivorship Block Surrogate Key (FK)
Survivorship Block Source Rank Priority
Source System Surrogate Key (FK)

Survivorship Block Source Rank

Source Column Key (FK)
Target Column Key (FK)
Survivorship Block Surrogate Key (FK)

Survivorship Source to Target Map

Figure 4.12 Survivorship support metadata.

too, so by forcing all survivorship to be performed by block, you can
simplify both the metadata model and survivorship processing. This
table includes a rank that allows the priority of source system blocks
of fields to be determined with dynamic SQL, which looks for
non-null values in each block ordered by survivorship block source
rank priority, and builds an appropriate INSERT or UPDATE
statement depending on whether the match key already exists as a
conformed record surrogate key (UPDATE) or not (INSERT).

In cases where the deduplication process successfully coalesces separate
source entities (such as customers) into a single entity, if the source entities have
been assigned separate primary keys in the source system, a table of those
obsolete primary keys should be maintained to speed subsequent deduplication
runs using data from that source system.

Delivering
Delivering is the final essential ETL step. In this step, cleaned and con-
formed data is written into the dimensional structures actually accessed
by the end users and application systems. In the smallest data warehouses
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consisting of a single tablespace for end user access, dimensional tables
are simply written to this table space. But in all larger data warehouses,
ranging from multiple table spaces to broadly distributed and autonomous
networks of data marts, the dimensional tables must be carefully published
in a consistent way. Delivering is so important that we devote Chapters 5
and 6 to its details.

Summary

Stepping back from all the detail, this chapter covered four big topics: ob-
jectives, techniques, metadata, and measurements.

The objectives of data cleaning and conforming are to reduce errors in
data, improve the quality and usefulness of the contents of data, and stan-
dardize key descriptive attributes and numerical measures shared across
the organization.

Data-quality techniques range from examining individual field definitions
at the data-base level (column property enforcement), to checking for field-
to-field consistency (structure enforcement), and finally to business-rule
specific checks on data (data and value rule enforcement). The final phase
of data-quality processing (conforming and deduplicating) is the most far
reaching, since in this phase we resolve differences across separate data
sources.

Data-quality metadata contains declarations and business rules that hold
our techniques together. We described a methodology for building a fam-
ily of screens, each representing a data-quality investigation. Some of the
screens are run routinely as part of every ETL episode, and some are run
occasionally as periodic sanity checks or special investigations. The rou-
tine screens supply diagnostic indicators and measurements that we store
in a detailed error event fact table and in audit dimensions attached to
our fact tables. These audit dimensions are interesting because in a sense
they elevate metadata to real data. Data-quality indicators can participate
in instrumented end user queries just as if they were normal data.

Finally, data-quality measurements we proposed are a starter set of mea-
surements that the ETL team needs in order to build a comprehensive data-
quality processing pipeline.

When data has made it through data-quality processing pipeline, it is
ready for the final delivering step, laid out in detail in Chapters 5 and 6.
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Delivering Dimension Tables

Dimension tables provide the context for fact tables and hence for all the
measurements presented in the data warehouse. Although dimension tables
are usually much smaller than fact tables, they are the heart and soul of the
data warehouse because they provide entry points to data. We often say that
a data warehouse is only as good as its dimensions. We think the main mis-
sion of the ETL team is the handoff of the dimension tables and the fact tables
in the delivery step, leveraging the end user applications most effectively.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Chapters 5 and 6 are the pivotal elements of this book; they describe in a
highly disciplined way how to deliver data to end users and their analytic
applications. While there is considerable variability in the data structures
and delivery-processing techniques leading up to this handoff, the final ETL
step of preparing the dimensional table structures is much more constrained
and disciplined.

Please keep in mind that our insistence on using these highly constrained
design techniques is not adherence to a foolish consistency of a dimensional
modeling methodology but rather is the key to building data warehouse sys-
tems with replicable, scalable, usable, and maintainable architectures. The
more a data warehouse design deviates from these standardized dimen-
sional modeling techniques, the more it becomes a custom programming
job. Most IT developers are clever enough to take on a custom programming

161
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job, and most find such development to be intellectually stimulating. But
custom programming is the kiss of death for building replicable, scalable,
usable, and maintainable systems.

The Basic Structure of a Dimension

All dimensions should be physically built to have the minimal set of com-
ponents shown in Figure 5.1. The primary key is a single field containing a
meaningless, unique integer. We call a meaningless integer key a surrogate.
The data warehouse ETL process should always create and insert the sur-
rogate keys. In other words, the data warehouse owns these keys and never
lets another entity assign them.

The primary key of a dimension is used to join to fact tables. Since all
fact tables must preserve referential integrity, the primary dimension key
is joined to a corresponding foreign key in the fact table. This is shown in
our insurance example in Figure 2.3 in Chapter 2. We get the best possible
performance in most relational databases when all joins between dimension
tables and fact tables are based on these single field integer joins. And
finally, our fact tables are much more compact when the foreign key fields
are simple integers.

All dimension tables should possess one or more other fields that com-
pose the natural key of the dimension. We show this in Figure 5.1 as an ID and

dimension table dim 1

fact table

attribute K

attribute 2

attribute 1

K attributes

Surrogate
value

Possibly multiple
fields dim 1 ID (NK)

dim 1 key (PK)

N
dimensions

M
facts

fact M

fact 2

fact 1

dim N (FK)

dim 1 (FK)

dim 2 (FK)

... ...

...

Figure 5.1 The basic structure of a dimension.
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designate the natural key field(s) with NK. The natural key is not a meaning-
less surrogate quantity but rather is based on one or more meaningful fields
extracted from the source system. For instance, a simple static (nonchang-
ing) employee dimension would probably have the familiar EMP ID field,
which is probably the employee number assigned by the human resources
production system. EMP_ID would be the natural key of this employee
dimension. We still insist on assigning a data warehouse surrogate key in
this case, because we must insulate ourselves from weird administrative
steps that an HR system might take. For instance, in the future we might
have to merge in bizarrely formatted EMP_IDs from another HR system in
the event of an acquisition.

When a dimension is static and is not being updated for historical changes
to individual rows, there is a 1-to-1 relationship between the primary surro-
gate key and the natural key. But we will see a little later in this chapter that
when we allow a dimension to change slowly, we generate many primary
surrogate keys for each natural key as we track the history of changes to the
dimension. In other words, in a slowly changing dimension, the relation-
ship between the primary surrogate key and the natural key is many-to-1.
In our employee dimension example, each of the changing employee pro-
file snapshots would have different and unique primary surrogate keys,
but the profiles for a given employee would all have the same natural key
(EMP_ID). This logic is explained in detail in the section on slowly changing
dimensions in this chapter.

The final component of all dimensions, besides the primary key and the
natural key, is the set of descriptive attributes. Descriptive attributes are pre-
dominately textual, but numeric descriptive attributes are legitimate. The
data warehouse architect probably will specify a very large number of de-
scriptive attributes for dimensions like employee, customer, and product.
Do not be alarmed if the design calls for 100 descriptive attributes in a di-
mension! Just hope that you have clean sources for all these attributes. More
on this later.

The data warehouse architect should not call for numeric fields in a di-
mension that turn out to be periodically measured quantities. Such mea-
sured quantities are almost certainly facts, not descriptive attributes. All
descriptive attributes should be truly static or should only change slowly
and episodically. The distinction between a measured fact and a numeric de-
scriptive attribute is not as difficult as it sounds. In 98 percent of the cases, the
choice is immediately obvious. In the remaining two percent, pretty strong
arguments can be made on both sides for modeling the quantity either as
a fact or as a dimensional attribute. For instance, the standard (catalog)
price of a product is a numeric quantity that takes on both roles. In the final
analysis, it doesn’t matter which choice is made. The requesting applications
will look different depending on where this numeric quantity is located, but
the information content will be the same. The difference between these two
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choices will start to become important if it turns out that the standard price
is actually slowly changing. As the pace of the change accelerates, modeling
the numeric quantity as a measured fact becomes more attractive.

Generating Surrogate Keys for Dimensions

Creating surrogate keys via the DBMS is probably the most common technique
used today. However, we see this trend changing. In the past, it was common
practice to have surrogate keys created and inserted by database triggers.
Subsequently, it has been determined that triggers cause severe bottlenecks in the
ETL process and should be eliminated from any new processes being created. Even
though it is still acceptable for the integers for a surrogate key to be maintained by
the DBMS, these integers should be called by the ETL process directly. Having the
ETL process call the database sequence will produce a significant improvement in
ETL performance over the use of database triggers.

Also, using the database to generate surrogate keys almost guarantees that the
keys will be out of sync across the different environments of the data warehouse—
development, test, and production. As each environment gets loaded at different
intervals, their respective database could generates different surrogate key values
for the same incoming dimension records. This lack of synchronization will cause
confusion during testing for developers and users alike.

For ultimate efficiency, consider having an ETL tool or third-party application
generate and maintain your surrogate keys. Make sure that efficient generation
and maintenance of surrogate keys are in your ETL proof-of-concept success
criteria.

A tempting solution seen repeatedly during design reviews is concatenating the
natural key of the source system and a date stamp that reflects when the record
was either created in the source system or inserted into the data warehouse.
Giving the surrogate key intelligence—the exact time of its creation—may be useful
in some situations, but it is not an acceptable alternative to a true integer-based
surrogate key. Intelligent or smart keys fail as an acceptable surrogate key for the
following reasons:

By definition. Surrogate keys, by definition, are supposed to be meaningless. By
applying intelligence to the surrogate key, their responsibility is broadened,
making them need to be maintained. What happens if a primary key in the
source system changes—or gets corrected in some way? The concatenated
smart key would need to be updated, as will all of its associated records in fact
tables throughout the entire data warehouse.

Performance. Concatenating the source system key with a date stamp degrades
query performance. As part of the data warehouse team, you have no control
over the content of source system keys and must be able to handle any data



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH
WY046-05 WY046-Kimball-v4.cls August 18, 2004 14:7

Delivering Dimension Tables 165

type. This fact forces you to use the CHAR or VARCHAR data types to
accommodate alpha, numeric, or alphanumeric keys coming from the source
systems. Moreover, by appending the date stamp to the key, potentially 16
characters or more, the field can become unwieldy. What’s worse, this key will
need to be propagated into huge fact tables throughout the entire warehouse.
The space to store the data and indexes would be excessive, causing ETL and
end user query performance to diminish. Additionally, joining these large
VARCHAR concatenated columns during query time will be slow when
compared to the same join using INTEGER columns.

Data type mismatch. Veteran data warehouse data modelers will know to build
the dimensional model surrogate keys with the NUMBER or INTEGER data type.
This data type prevents alpha characters from being inserted, thwarting the use
of the concatenated date stamp method.

Dependency on source system. The use of the smart-key approach is
dependent on the source system revealing exactly when an attribute in a
dimension changed. In many cases, this information is simply not available.
Without reliable maintenance of some kind of audit columns, attaining the
exact timestamp of a change can be impossible.

Heterogeneous sources. The concatenation of the natural key and date stamp
supports only a homogeneous environment. In virtually all enterprise data
warehouses, common dimensions are sourced by many different source
systems. These source systems each have their own purpose and can uniquely
identify the same values of a dimension differently. The concatenated natural
key, date-stamp approach falls short with the introduction of a second source
system. Natural keys from each system must be stored equally, in dedicated
nonkey columns in the dimension. Imagine attempting to concatenate each
natural key and their respective timestamps—a maintenance nightmare.

The attractive characteristic of using this forbidden smart-key strategy is its
simplicity at ETL development time when building the first data mart, when it is
quite simple to implement a smart key by appending the SYSDATE to the natural
key upon insertion. Avoid the temptation of this prohibited shortcut. This approach
doesn’t scale to your second data mart.

The Grain of a Dimension

Dimensional modelers frequently refer to the grain of a dimension. By this
they mean the definition of the key of the dimension, in business terms. It is
then a challenge for the data warehouse architect and the ETL team to ana-
lyze a given data source and make sure that a particular set of fields in that
source corresponds to the definition of the grain. A common and notorious
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example is the commercial customer dimension. It is easy to say that the
grain of the dimension is the commercial customer. It is often quite another
thing to be absolutely sure that a given source file always implements that
grain with a certain set of fields. Data errors and subtleties in the business
content of a source file can violate your initial assumptions about the grain.
Certainly, a simple test of a source file to demonstrate that fields A, B, and
C implement the key to the candidate dimension table source is the query:

Select A, B, C, count(*)

From dimensiontablesource

Group by A, B, C

Having Count(*) > 1

If this query returns any rows, the fields A, B, and C do not implement the
key (and hence the grain) of this dimension table. Furthermore, this query
is obviously useful, because it directs you to exactly the rows that violate
your assumptions.

It’s possible that the extract process itself can be the culprit for exploding the
rows being extracted, creating duplicates. For example, in a denormalized Orders
transaction system, instead of referring to a source table that stores the distinct
Ship Via values for the Order, the textual values of the attribute may very well be
stored repeatedly directly in the Orders transaction table. To create the
dimensional model, you build the Ship Via dimension by performing a SELECT
DISTINCT on the Orders table. Any data anomalies in the original Orders table will
create bogus duplicate entries in the Ship Via dimension.

The Basic Load Plan for a Dimension

A few dimensions are created entirely by the ETL system and have no
real outside source. These are usually small lookup dimensions where an
operational code is translated into words. In these cases, there is no real
ETL processing. The little lookup dimension is simply created directly as a
relational table in its final form.

But the important case is the dimension extracted from one or more out-
side sources. We have already described the four steps of the ETL data flow
thread in some detail. Here are a few more thoughts relating to dimensions
specifically.

Dimensional data for the big, complex dimensions like customer, sup-
plier, or product is frequently extracted from multiple sources at different
times. This requires special attention to recognizing the same dimensional
entity across multiple source systems, resolving the conflicts in overlapping
descriptions, and introducing updates to the entities at various points. These
topics are handled in this chapter.
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Data cleaning consists of all the steps required to clean and validate the
data feeding a dimension and to apply known business rules to make the
data consistent. For some simple, smaller dimensions, this module may be
almost nonexistent. But for the big important dimensions like employee,
customer, and product, the data-cleaning module is a very significant sys-
tem with many subcomponents, including column validity enforcement,
cross-column value checking, and row deduplication.

Data conforming consists of all the steps required to align the content of
some or all of the fields in the dimension with fields in similar or identical
dimensions in other parts of the data warehouse. For instance, if we have
fact tables describing billing transactions and customer-support calls, they
probably both have a customer dimension. In large enterprises, the origi-
nal sources for these two customer dimensions could be quite different. In
the worst case, there could be no guaranteed consistency between fields in
the billing-customer dimension and the support-customer dimension. In all
cases where the enterprise is committed to combining information across
multiple sources, like billing and customer support, the conforming step
is required to make some or all of the fields in the two customer dimen-
sions share the same domains. We describe the detailed steps of conforming
dimensions in the Chapter 4. After the conforming step has modified many
of the important descriptive attributes in the dimension, the conformed data
is staged again.

Finally, the data-delivering module consists of all the steps required to ad-
minister slowly changing dimensions (SCDs, described in this chapter) and
write the dimension to disk as a physical table in the proper dimensional
format with correct primary keys, correct natural keys, and final descriptive
attributes. Creating and assigning the surrogate keys occur in this module.
This table is definitely staged, since it is the object to be loaded into the pre-
sentation system of the data warehouse. The rest of this chapter describes
the details of the data-delivering module in various situations.

Flat Dimensions and Snowflaked Dimensions

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Dimension tables are denormalized flat tables. All hierarchies and nor-
malized structures that may be present in earlier staging tables should be
flattened in the final step of preparing the dimension table, if this hasn’t
happened already. All attributes in a dimension must take on a single value
in the presence of the dimension’s primary key. Most of the attributes will
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be of medium and low cardinality. For instance, the gender field in an
employee dimension will have a cardinality of three (male, female, and
not reported), and the state field in a U.S. address will have a cardinality
of 51 (50 states plus Washington, DC). If earlier staging tables are in third
normal form, these flattened second normal form dimension tables are eas-
ily produced with a simple query against the third normal form source. If
all the proper data relationships have been enforced in the data-cleaning
step, these relationships are preserved perfectly in the flattened dimension
table. This point is consistently misunderstood by proponents of delivering
data to end users via a normalized model. In the dimensional-modeling
world, the data-cleaning step is separated from the data-delivery step, in
such a way that all proper data relationships are delivered to the end user,
without the user needing to navigate the complex normalized structures.

It is normal for a complex dimension like store or product to have multiple
simultaneous, embedded hierarchical structures. For example, the store di-
mension could have a normal geographic hierarchy of location, city, county,
and state and also have a merchandising-area hierarchy of location, district,
and region. These two hierarchies should coexist in the same store dimen-
sion. All that is required is that every attribute be single valued in the
presence of the dimension table’s primary key.

If a dimension is normalized, the hierarchies create a characteristic struc-
ture known as a snowflake, if indeed the levels of the hierarchies obey
perfect many-to-1 relationships. See Figure 5.2. It is important to under-
stand that there is no difference in the information content between the two
versions of dimensions in this figure. The difference we do care about is
the negative impact the normalized, snowflaked model has on the end user
environment. There are two problems. First, if the strict many-to-1 relation-
ships in a hierarchical model change, the normalized table schema and the
declared joins between the tables must change, and the end user environ-
ment must be recoded at some level for applications to continue working.
Flat versions of the dimension do not have this problem. Second, complex
schemas are notorious for confusing end users, and a normalized schema
requires masking this complexity in the presentation area of the data ware-
house. Generally, flat dimension tables can appear directly in user interfaces
with less confusion.

Having railed against snowflaked dimensions, there are nevertheless
some situations where a kind of snowflaking is recommended. These are
best described as subdimensions of another dimension. Please refer to the
section with this name later in this chapter.

If an attribute takes on multiple values in the presence of the dimension’s
primary key, the attribute cannot be part of the dimension. For example,
in a retail-store dimension, the cash register ID attribute takes on many
values for each store. If the grain of the dimension is the individual store,
the cash register ID cannot be an attribute in that dimension. To include the
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attribute K

attribute 1

...

dim key (PK)

dim ID (NK)

cleaned and 
conformed

new dimension
record

ready for
delivery step

new surrogate key
= max (existing key) + 1

Figure 5.3 Assigning the surrogate key in the dimensionalizing step.

cash register attribute, the grain of the dimension must be redeclared to be
cash register, not store. But since cash registers roll up to stores in a perfect
many-to-1 relationship, the new cash-register dimension contains all of the
store attributes, since they are all single valued at the cash-register level.

Each time a new dimension record is created, a fresh surrogate key must
be assigned. See Figure 5.3. This meaningless integer is the primary key
of the dimension. In a centralized data warehouse environment, the sur-
rogate keys for all dimensions could be generated from a single source. In
that case, a master metadata element contains the highest key used for all
the dimensions simultaneously. However, even in a highly centralized data
warehouse, if there are enough simultaneous ETL jobs running, there could
be contention for reading and writing this single metadata element. And
of course, in a distributed environment, this approach doesn’t make much
sense. For these reasons, we recommend that a surrogate key counter be es-
tablished for each dimension table separately. It doesn’t matter whether two
different surrogate keys have the same numeric value; the data warehouse
will never confuse the separate dimensional domains, and no application
ever analyzes the value of a surrogate key, since by definition it is mean-
ingless.

Date and Time Dimensions

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Virtually every fact table has one or more time-related dimension foreign
keys. Measurements are defined at specific points and most measurements
are repeated over time.
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Date Dimension
Product Dimension

Promotion Dimension

POS Retail Sales Transaction Fact

Store Dimension

Date Key (FK)
Product Key (FK)
Store Key (FK)
Promotion Key (FK)
POS Transaction Number
Sales Quantity
Sales Dollar Amount
Cost Dollar Amount
Gross Profit Dollar Amount

Date Key (PK)
Date Type (NK)
Full Date (NK)
Day of Week
Day Number in Epoch
Week Number in Epoch
Month Number in Epoch
Day Number in Calendar Month
Day Number in Calendar Year
Day Number in Fiscal Month
Day Number in Fiscal Year
Last Day in Week Indicator
Last Day in Month Indicator
Calendar Week Ending Date
Calendar Week Number in Year
Calendar Month Name
Calendar Month Number in Year
Calendar Year-Month (YYYY-MM)
Calendar Quarter
Calendar Year-Quarter
Calendar Half Year
Calendar Year
Fiscal Week
Fiscal Week Number in Year
Fiscal Month
Fiscal Month Number in Year
Fiscal Year-Month
Fiscal Quarter
Fiscal Year-Quarter
Fiscal Half Year
Fiscal Year
Holiday Indicator
Weekday Indicator
Selling Season
Major Event
SQL Date Stamp
... and more

Date dimension in the retail sales schema.

Figure 5.4 Attributes needed for a calendar date dimension.

The most common and useful time dimension is the calendar date dimen-
sion with the granularity of a single day. This dimension has surprisingly
many attributes, as shown in Figure 5.4. Only a few of these attributes (such
as month name and year) can be generated directly from an SQL date-time
expression. Holidays, work days, fiscal periods, week numbers, last day of
month flags, and other navigational attributes must be embedded in the
calendar date dimension and all date navigation should be implemented
in applications by using the dimensional attributes. The calendar date di-
mension has some very unusual properties. It is one of the only dimensions
completely specified at the beginning of the data warehouse project. It also
doesn’t have a conventional source. The best way to generate the calendar



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH
WY046-05 WY046-Kimball-v4.cls August 18, 2004 14:7

172 Chapter 5

date dimension is to spend an afternoon with a spreadsheet and build it by
hand. Ten years worth of days is fewer than 4000 rows.

Every calendar date dimension needs a date type attribute and a full date
description attribute as depicted in Figure 5.4. These two fields compose the
natural key of the table. The date type attribute almost always has the value
date, but there must be at least one record that handles the special nonappli-
cable date situation where the recorded date is inapplicable, corrupted, or
hasn’t happened yet. Foreign key references in fact tables referring to these
special data conditions must point to a nondate date in the calendar date
table! You need at least one of these special records in the calendar date
table, but you may want to distinguish several of these unusual conditions.
For the inapplicable date case, the value of the date type is inapplicable or
NA. The full date attribute is a full relational date stamp, and it takes on the
legitimate value of null for the special cases described previously. Remem-
ber that the foreign key in a fact table can never be null, since by definition
that violates referential integrity.

The calendar date primary key ideally should be a meaningless surrogate
key, but many ETL teams can’t resist the urge to make the key a readable
quantity such as 20040718, meaning July 18, 2004. However, as with all
smart keys, the few special records in the time dimension will make the
designer play tricks with the smart key. For instance, the smart key for the
inapplicable date would have to be some nonsensical value like 99999999,
and applications that tried to interpret the date key directly without using
the dimension table would always have to test against this value because it
is not a valid date.

Even if the primary surrogate key of the calendar date dimension table is
a true meaningless integer, we recommend assigning date surrogate keys
in numerical order and using a standard starting date for the key value of
zero in every date dimension table. This allows any fact table with a foreign
key based on the calendar date to be physically partitioned by time. In other
words, the oldest data in a fact table could be on one physical medium, and
the newest data could be on another. Partitioning also allows the DBA to
drop and rebuild indexes on just the most recent data, thereby making the
loading process faster, if only yesterday’s data is being loaded. Finally, the
numeric value of the surrogate key for the special inapplicable time record
should probably be a high number so that the inapplicable time-stamped
records are in the most active partition. This assumes that these fact records
are more likely to be rewritten in an attempt to correct data.

Although the calendar date dimension is the most important time dimen-
sion, we also need a calendar month dimension when the fact table’s time
grain is a month. In some environments, we may need to build calendar
week, quarter, or year dimensions as well if there are fact tables at each of
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these grains. The calendar month dimension should be a separate physical
table and should be created by physically eliminating selected rows and
columns from the calendar day dimension. For example, either the first or
the last day of each month could be chosen from the day dimension to be
the basis of the month dimension. It is possible to define a view on a cal-
endar day dimension that implements a calendar month dimension, but
this is not recommended. Such a view would drag a much larger table into
every month-based query than if the month table were its own physical
table. Also, while this view technique can be made to work for calendar
dimensions, it cannot be made to work for dimensions like customer or
product, since individual customers and products come and go. Thus, you
couldn’t build a brand table with a view on the base product table, for in-
stance, because you wouldn’t know which individual product to choose to
permanently represent a brand.

In some fact tables, time is measured below the level of calendar day,
down to minute or even second. One cannot build a time dimension with
every minute or every second represented. There are more than 31 million
seconds in a year! We want to preserve the powerful calendar date di-
mension and simultaneously support precise querying down to the minute
or second. We may also want to compute very precise time intervals by
comparing the exact time of two fact table records. For these reasons, we
recommend the design shown in Figure 5.5. The calendar day component
of the precise time remains as a foreign key reference to our familiar calen-
dar day dimension. But we also embed a full SQL date-time stamp directly
in the fact table for all queries requiring the extra precision. Think of this
as special kind of fact, not a dimension. In this interesting case, it is not
useful to make a dimension with the minutes or seconds component of the
precise time stamp, because the calculation of time intervals across fact ta-
ble records becomes too messy when trying to deal with separate day and
time-of-day dimensions. In previous Toolkit books, we have recommended
building such a dimension with the minutes or seconds component of time

date component

precise date time stamp
(not a dimension)

fact table

Calendar Date (FK)

Other facts...

SQL date-time

Other dims...(FK’S)

Figure 5.5 Fact table design for handling precise time measurements.
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as an offset from midnight of each day, but we have come to realize that the
resulting end user applications became too difficult when trying to com-
pute time spans that cross daily boundaries. Also, unlike the calendar day
dimension, in most environments there are very few descriptive attributes
for the specific minute or second within a day.

If the enterprise does have well-defined attributes for time slices within a
day, such as shift names or advertising time slots, an additional time-of-day
dimension can be added to the design where this dimension is defined as
the number of minutes (or even seconds) past midnight. Thus, this time-of-
day dimension would either have 1440 records if the grain were minutes
or 86,400 records if the grain were seconds. The presence of such a time-
of-day dimension does not remove the need for the SQL date-time stamp
described previously.

Big Dimensions

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

The most interesting dimensions in a data warehouse are the big, wide
dimensions such as customer, product, or location. A big commercial cus-
tomer dimension often has millions of records and a hundred or more fields
in each record. A big individual customer record can have tens of millions
of records. Occasionally, these individual customer records have dozens
of fields, but more often these monster dimensions (for example, grocery
store customers identified by a shopper ID) have only a few behaviorally
generated attributes.

The really big dimensions almost always are derived from multiple
sources. Customers may be created by one of several account management
systems in a large enterprise. For example, in a bank, a customer could be
created by the mortgage department, the credit card department, or the
checking and savings department. If the bank wishes to create a single cus-
tomer dimension for use by all departments, the separate original customer
lists must be de-duplicated, conformed, and merged. These steps are shown
in Figure 5.6.

In the deduplication step, which is part of the data-cleaning module, each
customer must be correctly identified across separate original data sources
so that the total customer count is correct. A master natural key for the
customer may have to be created by the data warehouse at this point. This
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dept 1 customer list

dept 2 customer list

dept N customer list

revised master
customer list

merge lists
on multiple
attributes

change data
capture

process see
Fig 5.17

remove
duplicates

retrieve/
assign data
warehouse

master
natural

key

Figure 5.6 Merging and de-duplicating multiple customer sets.

would be a kind of enterprise-wide customer ID that would stay constant
over time for any given customer.

In the conforming step, which is part of the data-conforming module, all
attributes from the original sources that try to describe the same aspect
of the customer need to be converted into single values used by all the
departments. For example, a single set of address fields must be established
for the customer. Finally, in the merge (survival) step, which is part of the
delivery-module, all the remaining separate attributes from the individual
source systems are unioned into one big, wide dimension record.

Later in this chapter, when we discuss slowly changing dimensions, we
will see that the biggest dimensions are very sensitive to change, if it means
that we generate new dimension records for each change. Hold that thought
for a moment.
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Small Dimensions

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Many of the dimensions in a data warehouse are tiny lookup tables with
only a few records and one or two columns. For example, many transaction-
grained fact tables have a transaction type dimension that provides labels
for each kind of transaction. These tables are often built by typing into a
spreadsheet and loading the data directly into the final physical dimension
table. The original source spreadsheet should be kept because in many
cases new records such as new transaction types could be introduced into
the business.

Although a little dimension like transaction type may appear in many
different data marts, this dimension cannot and should not be conformed
across the various fact tables. Transaction types are unique to each produc-
tion system.

In some cases, little dimension tables that serve to decode operational
values can be combined into a single larger dimension. This is strictly a tac-
tical maneuver to reduce the number of foreign keys in a fact table. Some
data sources have a dozen or more operational codes attached to fact table
records, many of which have very low cardinalities. Even if there is no ob-
vious correlation between the values of the operational codes, a single junk
dimension can be created to bring all these little codes into one dimension
and tidy up the design. The ETL data flow for a typical junk dimension is
shown in Figure 5.7. The records in the junk dimension should probably
be created as they are encountered in the data, rather than beforehand as
the Cartesian product of all the separate codes. It is likely that the incre-
mentally produced junk dimension is much smaller than the full Cartesian
product of all the values of the codes. The next section extends this kind
of junk-dimension reasoning to much larger examples, where the designer
has to grapple with the problem of one dimension or two.

One Dimension or Two

In dimensional modeling, we normally assume that dimensions are inde-
pendent. In a strictly mathematical sense, this is almost never true. Although
you may sell many products in many stores, the product dimension and the
store dimension are probably not truly independent. Some products are sold
in only selected stores. A good statistician would be able to demonstrate
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load

fact table

junk (FK)
surrogate keys for

daily junk dim

compare to existing
dimension : insert

if new

combine into
single record

code 1 code M ind 1 ind P... ...

codes & indicators encountered in daily load:

Figure 5.7 ETL data flow for a typical junk dimension.

a degree of correlation between the product dimension and the store di-
mension. But such a finding normally does not deter us from creating sepa-
rate product and store dimensions. The correlation that does exist between
these dimensions can be faithfully and accurately depicted in the sales fact
table.

Modeling the product dimension with the store dimension in this ex-
ample would be a disaster. If you had a million-row product dimension
and a 100-row store dimension, a combined dimension might approach
100 million rows! Bookkeeping the cross-correlations between dimensions
solely in the fact table is an example of a powerful dimensional-modeling
step: demoting the correlations between dimensions into a fact table.

A final nail in the coffin for combining product and store is that there may
be more than one independent type of correlation between these two dimen-
sions. We have discussed the merchandising correlation between these two
dimensions, but there could be a pricing-strategy correlation, a warehous-
ing correlation, or a changing-seasonality correlation. In general, tracking
all of these complex relationships must be handled by leaving the dimen-
sions simple and independent and by bookkeeping the cross-dimensional
relationships in one or more fact tables.
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At this point, you may be convinced that all dimensions can be indepen-
dent and separate. But that’s because we have been discussing a somewhat
extreme example of two big dimensions where the correlation is statistically
weak. Are other situations not so black and white?

First, let us immediately dispense with the completely correlated overlap
of two dimensions. We should never have a single fact table with both a
product dimension and a brand dimension if product rolls up to brand in a
perfect many-to-1 relationship. In this case, product and brand are part of
a hierarchy, and we should always combine these into a single dimension.

There are other cases where two candidate dimensions do not form a
perfect hierarchy but are strongly correlated. To jump to the bottom line, if
the correlation is reasonably high and the resulting combined dimension is
reasonably small, the two dimensions should be combined into one. Oth-
erwise, the dimensions should be left separate. The test for a reasonably
high correlation should be made from the end user’s perspective. If the pat-
tern of overlap between the two dimensions is interesting to end users and
is constant and unchanging, the combined dimension may be attractive.
Remember that the combined dimension in this case serves as an efficient
target for queries, independent of any fact table. In our opinion, a dimension
is no longer reasonably small when it becomes larger than 100,000 rows.
Over time, perhaps technology will relax this arbitrary boundary, but in
any case a 100,000 row dimension will always present some user-interface
challenges!

Dimensional Roles

The data warehouse architect will frequently specify a dimension to be
attached multiple times to the same fact table. These are called dimensional
roles. Probably the most common role-playing dimension is the calendar
date dimension. Many fact tables, especially the accumulating snapshot fact
tables, have multiple date foreign keys. We discuss accumulating snapshot
fact tables in Chapter 6. See Figure 5.8. Another common example of a role-
playing dimension is the employee dimension, where different foreign keys
in the fact table represent different types of employees being involved in a
single transaction. See Figure 5.9.

In all role-playing dimension implementations, we recommend first build-
ing a generic single dimension table and then implementing each of the roles
with a view on this generic table. See Figure 5.10. For instance, if we have
an order-date, a shipment-date, a payment-date, and a return-date on an
orders transaction accumulating snapshot fact table, we would first build a
generic calendar date dimension and the create four views corresponding
to the four dates needed. If the fields in each view are identically named,
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7 roles
for the 
calendar
date
dimension

Orders

Orig Order Date (FK)

Requested Ship Date (FK)

Actual Ship Date (FK)

Delivery Date (FK)

First Payment Date (FK)

Return Date (FK)

Final Settlement Date (FK)

Warehouse (FK)

Customer (FK)

Product (FK)

+ order line facts

Figure 5.8 A typical accumulating snapshot fact table.

two roles
played by the 
employee
dimension

+ sales facts ...

Sales Date (FK)

Product (FK)

Store (FK)

Promotion (FK)

Sales Clerk (FK)

Store Manager (FK)

Figure 5.9 Two employee role playing dimensions.

the application developer and possibly the end user will need to see the
fully qualified names to distinguish similar fields from the different views
in the same query. For that reason, we recommend creating distinguishable
field names in the original view definitions so that every tool, even those
not supported by metadata, will display the fields unambiguously.
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generic calendar
date dimension

order date
dimension

shipment
date dim

payment
date dim

return date
dim

(view) (view) (view)

(physical table)

(view)

create view

create 
view

create 
view

create 
view

Figure 5.10 Multiple calendar role playing dimensions.

The recommended design of dimensional roles described previously makes
the impact of dimensional roles on the ETL team equal to zero. So why do we
discuss it? Our objective is to make sure the ETL team doesn’t generate multiple
physical tables in cases where view definitions (roles) accomplish the same
purpose.

Don’t use the dimensional-role techniques as an excuse to build abstract,
super-large dimensions. For instance, in a telco environment, nearly everything
has a location. If every possible location of every entity is represented in a single
location dimension, this dimension could have millions of rows. Using a view on a
multimillion row dimension in every application with a location dimension is
probably a performance killer. In this case, actual physical dimensions created as
extracted subsets of the big location dimension are probably better.

Dimensions as Subdimensions
of Another Dimension

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Usually, we think of a reference to a dimension as a foreign key in a fact ta-
ble. However, references to dimensions occasionally appear in other dimen-
sions, and the proper foreign key should be stored in the parent dimension in
the same way as a fact table. In other writings, we have sometimes referred
to these subdimensions as outriggers. Let’s discuss two common examples.
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customer key (FK)

customer ID (NK)

name fields...

address fields...

date (FK)

...

first purchase date (FK)

birth date (SQL date stamp) date
attributes

calendar
date

Figure 5.11 Customer dimension showing two date treatments.

Many dimensions have calendar dates embedded in them. Customer
dimension records often have a first purchase date attribute. This should be
modeled as a foreign key reference to the calendar date dimension, not as
an SQL date stamp. See Figure 5.11. In this way, applications have access to
all the extended calendar attributes when constraining on the first purchase
date. This foreign key reference is really another kind of dimensional role
played by the calendar date dimension. A separate view, in this case on the
calendar date dimension, must be defined for each such reference.

Note that not all dates stored in dimensions can be modeled as foreign
key references to the calendar date dimension, since the calendar date di-
mension has a bounded duration. A customer’s birth date may well precede
the first entry in the calendar date dimension. If that could happen, the cus-
tomer birth date attribute must always be a simple SQL date stamp, not a
foreign key reference. This is also shown in Figure 5.11.

A second common example of a dimension attached to a dimension is
attaching an individual customer dimension to a bank account dimension.
Although there might be many account holders in an account, usually a
single customer is designated as the primary account holder. This primary
account holder should be modeled as a foreign key reference in the account
dimension to the customer dimension. See Figure 5.12.

In this banking example, we have not handled the problem of many
customers being associated with an account. We have dealt only with the
single primary account holder customer. We will associate an open-ended
number of customers to an account later in this chapter when we discuss
multivalued dimensions and bridge tables.

To summarize this section, the ETL dimensional delivery module must
convert selected fields in the input data for the dimension to foreign key
references.
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account key (FK)

account ID (NK)

account type

primary acct holder (FK)

cust key (FK)

 cust ID (NK)

other account attributes
customer
attributes

customer

Figure 5.12 A customer dimension used as a subdimension.

Degenerate Dimensions

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Whenever a parent-child data relationship is cast in a dimensional frame-
work, the natural key of the parent is left over as an orphan in the design
process. For example, if the grain of a fact table is the line item on an order,
the dimensions of that fact table include all the dimensions of the line it-
self, as well as the dimensions of the surrounding order. Remember that we
attach all single-valued dimensional entities to any given fact table record.
When we have attached the customer and the order date and other dimen-
sions to the design, we are left with the original order number. We insert the
original order number directly into the fact table as if it were a dimension
key. See Figure 5.13. We could have made a separate dimension out of this or-
der number, but it would have turned out to contain only the order number,
nothing else. For this reason, we give this natural key of the parent a special

degenerate
dimension

Ship Date (FK)

Return Date (FK)
Sales Rep (FK)
Product (FK)

Order Number (DD)
Quantity (fact)

Payment Date (FK)

Order Date (FK)

Dollar Amount (fact)

Customer (FK)

Figure 5.13 An order line accumulating snapshot fact table.
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status and call it a degenerate (or empty) dimension. This situation arises
in almost every parent-child design, including order numbers, shipment
numbers, bill-of-lading numbers, ticket numbers, and policy numbers.

There is a danger that these source-system-generated numbers can get reused
by different ERP instances installed in separate business units of an overall
organization. For this reason, it may be a good idea to make a smart degenerate
key value in these cases by prepending an organization ID onto the basic order
number or sales ticket number.

Slowly Changing Dimensions

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

When the data warehouse receives notification that an existing row in a
dimension has in some way changed, there are three basic responses. We
call these three basic responses Type 1, Type 2, and Type 3 slowly changing
dimensions (SCDs).

Type 1 Slowly Changing Dimension (Overwrite)

The Type 1 SCD is a simple overwrite of one or more attributes in an existing
dimension record. See Figure 5.14. The ETL processing would choose the
Type 1 approach if data is being corrected or if there is no interest in keeping
the history of the previous values and no need to run prior reports. The Type
1 overwrite is always an UPDATE to the underlying data, and this overwrite
must be propagated forward from the earliest permanently stored staging
tables in the ETL environment so that if any of them are used to recreate

becomes

Primary
Key

Natural
Key

Prod
Name

Category Package
Type

23708

23708

AB29

AB29 120zCola

120zCola

Soft Drinks

Soft Drinks Glass

Plastic

Figure 5.14 Processing a Type 1 SCD.
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the final load tables, the effect of the overwrite is preserved. This point is
expanded in Chapter 8.

Although inserting new records into a Type 1 SCD requires the generation
of new dimension keys, processing changes in a Type 1 SCD never affects
dimension table keys or fact table keys and in general has the smallest
impact on the data of the three SCD types. The Type 1 SCD can have an
effect on the storage of aggregate fact tables, if any aggregate is built directly
on the attribute that was changed. This issue will be described in more detail
in Chapter 6.

Some ETL tools contain UPDATE else INSERT functionality. This functionality
may be convenient for the developer but is a performance killer. For maximum
performance, existing records (UPDATEs) should be segregated from new
ones (INSERTs) during the ETL process; each should be fed to the data warehouse
independently. In a Type 1 environment, you may not know whether an incoming
record is an UPDATE or an INSERT. Some developers distinguish between a VERY
SCD (very slowly changing dimension) where INSERTs predominate and a Fastly
Changing Dimension (FCD?). They use INSERT else UPDATE logic for VERY SCDs and
UPDATE else INSERT logic for the FCDs. We hope this terminology doesn’t catch on.

In most data warehouse implementations, the size of the majority of di-
mensions is insignificant. When you are loading small tables that do not
warrant the complexity of invoking a bulk loader, Type 1 changes can be
applied via normal SQL DML statements. Based on the natural key ex-
tracted from the source system, any new record is assigned a new surrogate
key and appended to the existing dimension data. Existing records are up-
dated in place. Performance of this technique may be poorer as compared
with being loaded via a bulk loader, but if the tables are of reasonable size,
the impact should be negligible.

Some ETL tools offer specialized transformations that can detect whether
a record needs to be inserted or updated. However, this utility must ping
the table using the primary key of the candidate record to see if it exists.
This approach is process intensive and should be avoided. To minimize
the performance hit when using SQL to load a Type 1 dimension, the ETL
process should explicitly segregate existing data that requires UPDATE
statements from data that requires INSERT.

Type 1 SCD changes can cause performance problems in ETL processing. If this
technique is implemented using SQL data-manipulation language (DML), most
database management systems will log the event, hindering performance.

A database log is implicitly created and maintained by the DBMS. Database logging
is constructive for transaction processing where data is entered by many users
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in an uncontrolled fashion. Uncontrolled is used because in the on-line transaction
processing (OLTP) environment, there is no way to control unpredicted user
behavior, such as closing a window midway through an update. The DBMS may need
to ROLLBACK, or undo, a failed update. The database log enables this capability.

Conversely, in the data warehouse, all data loading is controlled by the ETL
process. If the process fails, the ETL process should have the capability to recover
and pick-up where it left off, making the database log superfluous.

With database logging enabled, large dimensions will load at an unacceptable
rate. Some database management systems allow you to turn logging off during
certain DML processes, while others require their bulk loader to be invoked for
data to be loaded without logging.

Bulk Loading Type 1 Dimension Changes

Because Type 1 overwrites data, the easiest implementation technique is
to use SQL UPDATE statements to make all of the dimension attributes
correctly reflect the current values. Unfortunately, as a result of database
logging, SQL UPDATE is a poor-performing transaction and can inflate the
ETL load window. For very large Type 1 changes, the best way to reduce
DBMS overhead is to employ its bulk loader. Prepare the new dimension
records in a separate table. Then drop the records from the dimension table
and reload them with the bulk loader.

Type 2 Slowly Changing Dimension
(Partitioning History)

The Type 2 SCD is the standard basic technique for accurately tracking
changes in dimensional entities and associating them correctly with fact ta-
bles. The basic idea is very simple. When the data warehouse is notified that
an existing dimension record needs to be changed, rather than overwriting,
the data warehouse issues a new dimension record at the moment of the
change. This new dimension record is assigned a fresh surrogate primary
key, and that key is used from that moment forward in all fact tables that
have that dimension as a foreign key. As long as the new surrogate key is
assigned promptly at the moment of the change, no existing keys in any
fact tables need to be updated or changed, and no aggregate fact tables
need to be recomputed. The more complex case of handling late-arriving
notifications of changes is described later in this chapter.

We say that the Type 2 SCD perfectly partitions history because each detailed
version of a dimensional entity is correctly connected to the span of fact table
records for which that version is exactly correct. In Figure 5.15, we illustrate
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Figure 5.15 The Type 2 SCD perfectly partitions history.

this concept with a slowly changing employee dimension where a particular
employee named Jane Doe is first a trainee, then a regular employee, and
finally a manager. Jane Doe’s natural key is her employee number and
that remains constant throughout her employment. In fact, the natural key
field always has the unique business rule that it cannot change, whereas
every other attribute in the employee record can change. Jane Doe’s primary
surrogate key takes on three different values as she is promoted, and these
surrogate primary keys are always correctly associated with contemporary
fact table records. Thus, if we constrain merely on the employee Jane Doe,
perhaps using her employee number, we pick up her entire history in the
fact table because the database picks up all three surrogate primary keys
from the dimension table and joins them all to the fact table. But if we
constrain on Jane Doe, manager, we get only one surrogate primary key and
we see only the portion of the fact table for which Jane Doe was a manager.

If the natural key of a dimension can change, from the data warehouse’s point
of view, it isn’t really a natural key. This might happen in a credit card processing
environment where the natural key is chosen as the card number. We all know
that the card number can change; thus, the data warehouse is required to use a
more fundamental natural key. In this example, one possibility is to use the
original customer’s card number forever as the natural key, even if it subsequently
changes. In such a design, the customer’s current contemporary card number
would be a separate field and would not be designated as a key.

The Type 2 SCD requires a good change data capture system in the ETL
environment. Changes in the underlying source data need to be detected as
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soon as they occur, so that a new dimension record in the data warehouse can
be created. We discuss many of the issues of change data capture at extract
time in Chapter 3. In the worst scenario, the underlying source system
does not notify the data warehouse of changes and does not date-stamp its
own updates. In this case, the data warehouse is forced to download the
complete dimension and look record by record and field by field for changes
that have occurred since the last time the dimension was downloaded from
the source. Note that this requires the prior extract (the master dimension
cross reference file) from the dimension’s source to be explicitly staged in
the ETL system. See Figure 5.16.

For a small dimension of a few thousand records and a dozen fields, such
as a simple product file, the detection of changes shown in Figure 5.16 can be
done by brute force, comparing every field in every record in today’s down-
load with every field in every record from yesterday. Additions, changes,
and deletions need to be detected. But for a large dimension, such as a
list of ten million insured health care patients with 100 descriptive fields
in each record, the brute-force approach of comparing every field in every
record is too inefficient. In these cases, a special code known as a CRC is

Source
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Dimension
Cross Ref
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Find Specific
changed
field(s)
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keys & set

dates/indicator

Update
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 different

Figure 5.16 Dimension table surrogate key management.
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computed and associated with every record in yesterday’s data. The CRC
(cyclic redundancy checksum) code is a long integer of perhaps 20 digits
that is exquisitely sensitive to the information content of each record. If only
a single character in a record is changed, the CRC code for that record will
be completely different. This allows us to make the change data capture step
much more efficient. We merely compute the CRC code for each incoming
new record by treating the entire record as a single text string, and we com-
pare that CRC code with yesterday’s code for the same natural key. If the
CRCs are the same, we immediately skip to the next record. If the CRCs are
different, we must stop and compare each field to find what changed. The
use of this CRC technique can speed up the change data capture process
by a factor of 10. At the time of this writing, CRC calculation modules are
available from all of the leading ETL package vendors, and the code for
implementing a CRC comparison can be readily found in textbooks and on
the Internet.

Once a changed dimension record has been positively identified, the de-
cision of which SCD type is appropriate can be implemented. Usually, the
ETL system maintains a policy for each column in a dimension that deter-
mines whether a change in that attribute triggers a Type 1, 2, or 3 response,
as shown in Figure 5.16.

To identify records deleted from the source system, you can either read the
source transaction log file (if it is available) or note that the CRC comparison step
described previously cannot find a record to match a natural key in the ETL
system’s comparison file. But in either case, an explicit business rule must be
invoked to deal with the deletion. In many cases, the deleted entity (such as a
customer) will have a continuing presence in the data warehouse because the
deleted entity was valid in the past. If the business rule conclusively states that
the deleted entity can no longer appear in subsequent loads from the
dimension-table source, the deleted entity can be removed from the daily
comparison step, even though in the historical dimension tables and fact tables it
will live on.

Without transaction log files, checking for deleted data is a process- intensive
practice and usually is implemented only when it is demanded. An option that has
proven to be effective is utilizing the MINUS set operator to compare the natural
keys from the dimension in the data warehouse against the natural keys in the
source system table. UNION and MINUS are SET operators supported by most
database management systems used to compare two sets of data. These operators
are extremely powerful for evaluating changes between the source and target.
However, for these SET operators to work, the two tables need to be in the same
database, or a database link must be created. Some ETL tools support SET
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operations between heterogeneous systems. If this is a critical requirement for
your environment, be sure it is included in your proof-of-concept criteria when
selecting your ETL toolset.

Notice in Figure 5.16 that when we have created the new surrogate key for
a changed dimension entity, we update a two-column lookup table, known
as the most recent key lookup table for that dimension. These little tables are of
immense importance when loading fact table data. Hold this thought until
you read the surrogate key pipeline section in Chapter 6.

The same benefits that the lookup-table solution offers can be accomplished
by storing all of the relevant natural keys directly in the dimension table. This
approach is probably the most common for determining whether natural keys and
dimension records have been loaded. This approach makes the associated natural
keys available to the users, right in the dimension. The major benefit of this
strategy over the lookup table is that the surrogate key exists only in one place,
eliminating the risk of the dimension and the mapping table becoming out of sync.
During the ETL, the process selects the natural key from the appropriate column
within the dimension where it equals the incoming natural key. If a match is
found, the process can apply any of the SCD strategies described later in this
chapter. If the key is not found, it can generate a surrogate key using any of the
methods discussed in the next section and insert a new record.

Looking directly to dimensions is favored by many data warehouse designers
because it exposes the data lineage to users. By having the natural keys directly in
the dimension, users know exactly where the data in the dimension came from
and can verify it in the source system. Moreover, natural keys in the dimension
relieve the ETL and DBA teams from having to maintain a separate mapping table
for this purpose. Finally, this approach makes a lot of sense in environments
where there is a large fraction of late-arriving data where the most recent
advantages of a lookup table cannot be used.

In this section, we have described a change-data-capture scenario in
which the data warehouse is left to guess if a change occurred in a di-
mension record and why. Obviously, it would be preferable if the source
system handed over only the changed records (thereby avoiding the com-
plex comparison procedure described previously) and ideally accompanied
the changed records with reason codes that distinguished the three SCD re-
sponses. What a lovely dream.

Our approach allows us to respond to changes in the source for a dimen-
sion as they occur, even when the changes are not marked. A more difficult
situation takes place when a database is being loaded for the first time
from such an uncooperative source. In this case, if the dimension has been
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overwritten at the source, it may be difficult to reconstruct the historical
changes that were processed unless original transaction log files are still
available.

Precise Time Stamping of a Type 2
Slowly Changing Dimension

The discussion in the previous section requires only that the ETL system
generate a new dimension record when a change to an existing record is
detected. The new dimension record is correctly associated with fact table
records automatically because the new surrogate key is used promptly in
all fact table loads after the change takes place. No date stamps in the
dimension are necessary to make this correspondence work.

Having said that, it is desirable in many situations to instrument the di-
mension table to provide optional useful information about Type 2 changes.
We recommend adding the following five fields to dimension tables pro-
cessed with Type 2 logic:

Calendar Date foreign key (date of change)

Row Effective DateTime (exact date-time of change)

Row End DateTime (exact date-time of next change)

Reason for Change (text field)

Current Flag (current/expired)

These five fields make the dimension a powerful query target by itself,
even if no fact table is mentioned in the query. The calendar date foreign
key allows an end user to use the business calendar (with seasons, holi-
days, paydays, and fiscal periods) to ask how many changes of a particular
type were made in certain business-significant periods. For instance, if the
dimension is a human resources employee table, one could ask how many
promotions occurred in the last fiscal period.

The two SQL date-time stamps define an exact interval in which the cur-
rent dimension record correctly and completely describes the entity. When
a new change is processed, the Row Effective DateTime is set to the current
date and time, and the Row End DateTime is set to an arbitrary time far in
the future. When a subsequent change to this dimension entity is processed,
the previous record must be revisited and the Row End DateTime set to the
proper value. If this procedure is followed, the two date-time stamps al-
ways define an interval of relevance so that queries can specify a random
specific date and time and use the SQL BETWEEN logic to immediately
deliver records that were valid at that instant. We need to set the Row End
DateTime to a real value, even when the record is the most current, so that
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the BETWEEN logic doesn’t return an error if the second date is represented
as null.

It is seems to be universal practice for back-end scripts to be run within the
transaction database to modify data without updating respective metadata fields,
such as the last_modified_date. Using these fields for the dimension row
effective_datetime will cause inconsistent results in the data warehouse. Do not
depend on metadata fields in the transaction system. Always use the system or as
of date to derive the row effective_datetime in a Type 2 slowly changing
dimension.

The Reason for Change field probably needs to come from the original
data-entry process that gave rise to the changed dimension record. For in-
stance, in the human resources example, you would like a promotion to be
represented as a single new record, appropriately time stamped, in the em-
ployee dimension. The Reason for Change field should say promotion. This
may not be as easy as it sounds. The HR system may deliver a number of
change records at the time of an employee’s promotion if several different
employee attributes (job grade, vacation benefits, title, organization and so
on) change simultaneously. The challenge for the data warehouse is to coa-
lesce these changes into a single new dimension record and correctly label
this new record with promotion. Such a coalescing of underlying transaction
records into a kind of aggregated super-transaction may be necessary with
some source systems, even if no attempt is made to ascribe a reason code
to the overall change. We have seen relatively simple updates such as em-
ployee promotions represented by dozens of micro transactions. The data
warehouse should not carry these microtransactions all the way to the final
end user tables, because the individual microtransactions may not have real
business significance. This processing is depicted in Figure 5.17. Finally, the
Current Flag is simply a convenient way to retrieve all the most-current
records in a dimension. It is indeed redundant with the two SQL date-time
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Figure 5.17 Consolidating source system microtransactions.
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stamps and therefore can be left out of the design. This flag needs to be
set to EXPIRED when a superceding change to the dimension entity takes
place.

Type 3 Slowly Changing Dimension
(Alternate Realities)

The Type 3 SCD is used when a change happens to a dimension record but
the old value of the attribute remains valid as a second choice. The two
most common business situations where this occurs are changes in sales-
territory assignments, where the old territory assignment must continue to
be available as a second choice, and changes in product-category designa-
tions, where the old category designation must continue to be available as
a second choice. The data warehouse architect should identify fields that
require Type 3 administration.

In a Type 3 SCD, instead of issuing a new row when a change takes
place, a new column is created (if it does not already exist), and the old
value is placed in this new field before the primary value is overwritten.
For the example of the product category, we assume the main field is named
Category. To implement the Type 3 SCD, we alter the dimension table to add
the field Old Category. At the time of the change, we take the original value
of Category and write it into the Old Category field; then we overwrite the
Category field as if it were a Type 1 change. See Figure 5.18. No keys need
to be changed in any dimension table or in any fact table. Like the Type 1
SCD, if aggregate tables have been built directly on the field undergoing
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Figure 5.18 Implementing the Type 3 SCD for a product-category description.
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the Type 3 change, these aggregate tables need to be recomputed. This
procedure is described in Chapter 6.

Type 3 changes often do not come down the normal data-flow pipeline. Rather,
they are executive decisions communicated to the ETL team, often verbally. The
product-category manager says, “Please move Brand X from Mens Sportswear to
Leather Goods, but let me track Brand X optionally in the old category.” The Type 3
administration is then kicked off by hand, and can even involve a schema change,
if the changed attribute (in this case, brand) does not have an alternate field.

When a new record is added to a dimension that contains Type 3 fields,
a business rule must be invoked to decide how to populate the old value
field. The current value could be written into this field, or it could be NULL,
depending on the business rule.

We often describe the Type 3 SCD as supporting an alternate reality. In our
product-category example, the end user could choose between two versions
of the mapping of products to categories.

The Type 3 SCD approach can be extended to many alternate realities
by creating an arbitrary number of alternate fields based on the original
attribute. Occasionally, such a design is justified when the end user com-
munity already has a clear vision of the various interpretations of reality.
Perhaps the product categories are regularly reassigned but the users need
the flexibility to interpret any span of time with any of the category inter-
pretations. The real justification for this somewhat awkward design is that
the user interface to this information falls out of every query tool with no
programming, and the underlying SQL requires no unusual logic or extra
joins. These advantages trump the objections to the design using position-
ally dependent attributes (the alternate fields).

Hybrid Slowly Changing Dimensions

The decision to respond to changes in dimension attributes with the three
SCD types is made on a field-by-field basis. It is common to have a dimen-
sion containing both Type 1 and Type 2 fields. When a Type 1 field changes,
the field is overwritten. When a Type 2 field changes, a new record is gen-
erated. In this case, the Type 1 change needs to be made to all copies of
the record possessing the same natural key. In other words, if the ethnicity
attribute of an employee profile is treated as a Type 1, if it is ever changed
(perhaps to correct an original erroneous value), the ethnicity attribute must
be overwritten in all the copies of that employee profile that may have been
spawned by Type 2 changes.
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Sales Team Dimension
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e Sales Team Key (PK)
Sales Team Number (NK)
Sales Team Name
Sales Physical Address (remains unchanged)
District (the district assignment valid between the following dates)
Begin Effective Date (the first date this record is valid)
End Effective Date (the last date this record is vaild)
Obsolete District1 (a selected obsolete definition)
Obsolete District2 (a different obsolete definition, etc.)
Current District (the most current district assignment; periodically overwritten)
... plus other unrelated sales team attributes

2:
2:
2:
3:
3:
1:

Figure 5.19 A hybrid SCD showing all three types.

It is possible to combine all the SCD types in a single dimension record.
See Figure 5.19. In this example, the district assignment field for the sales
team is a Type 2 attribute. Whenever the district assignment changes, a new
record is created, and the beginning and effective dates are set appropriately.
The set of yearly old district assignments are Type 3 fields, implementing
many alternate realities. And finally, the current district assignment is a
Type 1 field, and it is overwritten in all copies of the sales team dimension
records whenever the current district is reassigned.

Late-Arriving Dimension Records and
Correcting Bad Data

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver
Late-arriving data may need to be extracted via a different application or

different constraints compared to normal contemporary data. Bad data obviously
is picked up in the data-cleaning step.

A late-arriving dimension record presents a complex set of issues for the
data warehouse. Suppose that we have a fictitious product called Zippy
Cola. In the product dimension record for Zippy Cola 12-ounce cans, there
is a formulation field that has always contained the value Formula A. We
have a number of records for Zippy Cola 12-ounce cans because this is a
Type 2 slowly changing dimension and other attributes like the package
type and the subcategory for Zippy Cola 12-ounce cans have changed over
the past year or two.
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Today we are notified that on July 15, 2003 (a year ago) the formulation of
Zippy Cola 12-ounce cans was changed to Formula B and has been Formula
B ever since. We should have processed this change a year ago, but we
failed to do so. Fixing the information in the data warehouse requires the
following steps:

1. Insert a fresh new record with a new surrogate key for Zippy Cola
12-ounce cans into the Product dimension with the formulation field
set to Formula B, the row effective datetime set to July 15, 2003, and
the row end datetime set to the row effective datetime of the next
record for Zippy Cola in the product dimension table. We also need
to find the closest previous dimension record for Zippy Cola and set
its row end datetime to the datetime of our newly inserted record.
Whew!

2. Scan forward in the Product dimension table from July 15, 2003,
finding any other records for Zippy Cola 12-ounce cans, and
destructively overwrite the formulation field to Formula B in all such
records.

3. Find all fact records involving Zippy Cola 12-ounce cans from
July 15, 2003, to the first next change for that product in the
dimension after July 15, 2003, and destructively change the Product
foreign key in those fact records to be the new surrogate key created
in Step 1.

Updating fact table records (in Step 3) is a serious step that should be tested
carefully in a test environment before performing it on the production system.
Also, if the update is protected by a database transaction, be careful that some
of your updates don’t involve an astronomical number of records. For operational
purposes, such large updates should be divided into chunks so that you don’t
waste time waiting for an interrupted update of a million records to roll back.

There are some subtle issues here. First, we need to check to see if some
other change took place for Zippy Cola 12-ounce cans on July 15, 2003. If
so, we need only to perform Step 2. We don’t need a new dimension record
in this special case.

In general, correcting bad data in the data warehouse can involve the
same logic. Correcting a Type 1 field in a dimension is simplest because
we just have to overwrite all instances of that field in all the records with
the desired natural key. Of course, aggregate tables have to be recalculated
if they have specifically been built on the affected attribute. Please see the
aggregate updating section for fact tables in Chapter 6. Correcting a Type 2
field requires thoughtful consideration, since it is possible that the incorrect
value has a specific time span.
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This discussion of late-arriving dimension records is really about late-arriving
versions of dimension records. In real-time systems (discussed in Chapter 11), we
deal with true late-arriving dimension records that arrive after fact records have
already been loaded into the data warehouse. In this case, the surrogate key in the
fact table must point to a special temporary placeholder in the dimension until the
real dimension record shows up.

Multivalued Dimensions and Bridge Tables

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Occasionally a fact table must support a dimension that takes on multiple
values at the lowest level of granularity of the fact table. Examples described
in the other Toolkit books include multiple diagnoses at the time of a billable
health care treatment and multiple account holders at the time of a single
transaction against a bank account.

If the grain of the fact table is not changed, a multivalued dimension must
be linked to the fact table through an associative entity called a bridge table.
See Figure 5.20 for the health care example.

To avoid a many-to-many join between the bridge table and the fact
table, one must create a group entity related to the multivalued dimension.
In the health care example, since the multivalued dimension is diagnosis,
the group entity is diagnosis group. The diagnosis group becomes the actual
normal dimension to the fact table, and the bridge table keeps track of the
many-to-many relationship between diagnosis groups and diagnoses. In
the bank account example, when an account activity record is linked to
the multivalued customer dimension (because an account can have many
customers), the group entity is the familiar account dimension.

The challenge for the ETL team is building and maintaining the group
entity table. In the health care example, as patient-treatment records are
presented to the system, the ETL system has the choice of either making

Diagnosis Group
Dimension

Diagnosis Group Key (PK)

Health Care Billing
 Line Item Fact

Foreign Keys...
Diagnosis Group (FK)
Master Bill ID (DD)
Facts...

Diagnosis Group Bridge

Diagnosis Group Key (FK)
Diagnosis Key (FK)
Weighting Factor

Diagnosis Dimension

Diagnosis Key (PK)
ICD-9 Code
Full Diagnosis Description
Diagnosis Type
Diagnosis Category

Figure 5.20 Using a bridge table to represent multiple diagnoses.
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Incoming diagnosis
group list

diag 1

diag 2

..

..

..

diag N

lookup in
existing

diag
groups

use
existing

diag group
key

create new
diag group

add to existing
diag gp

table
no

match

foundmatch

insert
diag gp

key
in fact 
table

Figure 5.21 Processing diagnosis groups in an outpatient setting.

each patient’s set of diagnoses a unique diagnosis group or reusing diagno-
sis groups when an identical set of diagnoses reoccurs. There is no simple
answer for this choice. In an outpatient setting, diagnosis groups would be
simple, and many of the same ones would appear with different patients. In
this case, reusing the diagnosis groups is probably the best choice. See Fig-
ure 5.21. But in a hospital environment, the diagnosis groups are far more
complex and may even be explicitly time varying. In this case, the diagnosis
groups should probably be unique for each patient and each hospitaliza-
tion. See Figure 5.22 and the discussion of time-varying bridge tables that
follows. The admission and discharge flags are convenient attributes that
allow the diagnosis profiles at the time of admission and discharge to be
easily isolated.

Administering the Weighting Factors

The diagnosis group tables illustrated in Figures 5.20 and 5.22 include
weighting factors that explicitly prorate the additive fact (charge dollars)
by each diagnosis. When a requesting query tool constrains on one or more

Diagnosis Group key (FK)

Diagnosis key (FK)

Begin Effective Date (FK)

End Effective Date (FK)

Discharge Flag (T/F)

Admission Flag (T/F)

Weighting Factor

Figure 5.22 A time-varying diagnosis group bridge table appropriate for a hospital
setting.
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diagnoses, the tool can chose to multiply the weighting factor in the bridge
table to the additive fact, thereby producing a correctly weighted report. A
query without the weighting factor is referred to as an impact report. We
see that the weighting factor is nothing more than an explicit allocation that
must be provided in the ETL system. These allocations are either explicitly
fetched from an outside source like all other data or can be simple computed
fractions depending on the number of diagnoses in the diagnosis group. In
the latter case, if there are three diagnoses in the group, the weighting factor
is 1/3 = 0.333 for each diagnosis.

In many cases, a bridge table is desirable, but there is no rational basis
for assigning weighting factors. This is perfectly acceptable. The user com-
munity in this case cannot expect to produce correctly weighted reports.
These front-room issues are explored in some depth in the Data Warehouse
Toolkit, Second Edition in the discussion of modeling complex events like car
accidents.

Time-Varying Bridge Tables

If the multivalued dimension is a Type 2 SCD, the bridge table must also be
time varying. See Figure 5.23 using the banking example. If the bridge table
were not time varying, it would have to use the natural keys of the customer
dimension and the account dimension. Such a bridge table would poten-
tially misrepresent the relationship between the accounts and customers. It
is not clear how to administer such a table with natural keys if customers
are added to or deleted from an account. For these reasons, the bridge table
must always contain surrogate keys. The bridge table in Figure 5.23 is quite
sensitive to changes in the relationships between accounts and customers.
New records for a given account with new begin-date stamps and end-date
stamps must be added to the bridge table whenever:

The account record undergoes a Type 2 update

Any constituent customer record undergoes a Type 2 update

A customer is added to or deleted from the account or

The weighting factors are adjusted

Account key (FK)

Customer key (FK)

Begin effective date (FK)

End effective date (FK)

Primary Account Holder Flag (T/F)

Weighting factor

Figure 5.23 A time-varying bridge table for accounts and customers.
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Blocks represent individual customer entities, connected in an organization tree.
Assume that revenue can be received from any or all of these entities.

Figure 5.24 A representative ragged organization hierarchy.

Ragged Hierarchies and Bridge Tables

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Ragged hierarchies of indeterminate depth are an important topic in the
data warehouse. Organization hierarchies such as depicted in Figure 5.24
are a prime example. A typical organization hierarchy is unbalanced and
has no limits or rules on how deep it might be.

There are two main approaches to modeling a ragged hierarchy, and both
have their pluses and minuses. We’ll discuss these tradeoffs in terms of the
customer hierarchy shown in Figure 5.24.

recursive pointer
identifying the
customer key
of the parent

Commercial Customer
dimension

date_of_first_purchase
purchase_profile
credit_profile
parent_customer_key

customer_key (PK)
customer_ID
customer_name
    (several fields)
customer_address

(several fields)
customer_type
industry_group

fact table

any fact table
containing
customer_key as a
foreign key...

additive facts 

Figure 5.25 A customer dimension with a recursive pointer.
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The recursive pointer approach shown in Figure 5.25.

(+) embeds the hierarchy relationships entirely in the customer
dimension

(+) has simple administration for adding and moving portions of the
hierarchy

but

(−) requires nonstandard SQL extensions for querying and may
exhibit poor query performance when the dimension is joined to a
large fact table

(−) can only represent simple trees where a customer can have only
one parent (that is, disallowing shared ownership models)

(−) cannot support switching between different hierarchies

(−) is very sensitive to time-varying hierarchies because the entire
customer dimension undergoes Type 2 changes when the hierarchy
is changed

The hierarchy bridge table approach shown in Figure 5.26:

(+) isolates the hierarchy relationships in the bridge table, leaving
the customer dimension unaffected

Customer_entity_key
name
address type
_

Parent_entity_key
Subsidiary_entity_key
depth_from_ parent
level_name
lowest_subsidiary_flag
highest_parent_flag

Time_key
Customer_entity_key
Product_key
Contract_key
...
revenue_dollars

Connect the Organization Map as shown to find all revenue dollars at or below a specific Customer.
Optional constrain on depth –1 to restrict to immediate direct subsidiaries.
Optionally constrain on lowest_subsidiary_flag to restrict to lowest level subsidiaries only.

There is one record in the Organization Map for every connection from an customer to each of its 
subsidiaries at all depths. Thus there are 43 records resulting from the graph in Figure 5.24.

The level name attribute in the organization map can be managed to summarize subsidiaries across
partially overlapping hierarchies, such as geographic hierarchies that contain “states” but  may or 
may not contain “counties”.

Customer Dimension Organization Map Revenue Fact

Figure 5.26 A hierarchy bridge table representing customer ownership.
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(+) is queried with standard SQL syntax using single queries that
evaluate the whole hierarchy or designated portions of the hierarchy
such as just the leaf nodes

(+) can be readily generalized to handle complex trees with shared
ownership and repeating subassemblies

(+) allows instant switching between different hierarchies because
the hierarchy information is entirely concentrated in the bridge table
and the bridge table is chosen at query time

(+) can be readily generalized to handle time-varying Type 2 ragged
hierarchies without affecting the primary customer dimension

but

(−) requires the generation of a separate record for each parent-child
relationship in the tree, including second-level parents, third-level
parents, and so on. Although the exact number of records is
dependent on the structure of the tree, a rough rule of thumb is three
times the number of records as nodes in the tree. Forty-three records
are required in the bridge table to support the tree shown in
Figure 5.24.

(−) involves more complex logic than the recursive pointer approach
in order to add and move structure within the tree

(−) requires updating the bridge table when Type 2 changes take
place within the customer dimension

Technical Note: POPULATING HIERARCHY
BRIDGE TABLES

In February 2001, the following technical note on building bridge tables
for ragged hierarchies was published as one of Ralph Kimball’s monthly
design tips. Because it is so relevant to the ETL processes covered in this
book, we reproduce it here, edited slightly, to align the vocabulary precisely
with the book.

This month’s tip follows on from Ralph’s September 1998 article “Help
for Hierarchies” (http://www.dbmsmag.com/9809d05.html), which ad-
dresses hierarchical structures of variable depth which are traditionally
represented in relational databases as recursive relationships. Following is
the usual definition of a simple company dimension that contains such a
recursive relationship between the foreign key PARENT_KEY and primary
key COMPANY_KEY.
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Create table COMPANY (

COMPANY_KEY INTEGER NOT NULL,

COMPANY_NAME VARCHAR2(50),

(plus other descriptive attributes... ),

PARENT_KEY INTEGER);

While this is efficient for storing information on organizational structures,
it is not possible to navigate or rollup facts within these hierarchies using
the nonprocedural SQL that can be generated by commercial query tools.
Ralph’s original article describes a bridge table similar to the one that fol-
lows that contains one record for each separate path from each company in
the organization tree to itself and to every subsidiary below it that solves
this problem.

Create table COMPANY_STRUCTURE (

PARENT_KEY INTEGER NOT NULL,

SUBSIDIARY_KEY INTEGER NOT NULL,

SUBSIDIARY_LEVEL INTEGER NOT NULL,

SEQUENCE_NUMBER INTEGER NOT NULL,

LOWEST_FLAG CHAR(1),

HIGHEST_FLAG CHAR(1),

PARENT_COMPANY VARCHAR2(50),

SUBSIDIARY_COMPANY VARCHAR2(50));

The last two columns in this example, which denormalize the company
names into this table, are not strictly necessary but have been added to make
it easy to see what’s going on later.

The following PL/SQL stored procedure demonstrates one possible tech-
nique for populating this hierarchy explosion bridge table from the COM-
PANY table on Oracle:

CREATE or Replace procedure COMPANY_EXPLOSION_SP as

CURSOR Get_Roots is

select COMPANY_KEY ROOT_KEY,

decode(PARENT_KEY, NULL,'Y','N') HIGHEST_FLAG,

COMPANY_NAME ROOT_COMPANY

from COMPANY;

BEGIN

For Roots in Get_Roots

LOOP

insert into COMPANY_STRUCTURE

(PARENT_KEY,

SUBSIDIARY_KEY,

SUBSIDIARY_LEVEL,

SEQUENCE_NUMBER,

LOWEST_FLAG,

HIGHEST_FLAG,

PARENT_COMPANY,

SUBSIDIARY_COMPANY)
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select

roots.ROOT_KEY,

COMPANY_KEY,

LEVEL - 1,

ROWNUM,

'N',

roots.HIGHEST_FLAG,

roots.ROOT_COMPANY,

COMPANY_NAME

from

COMPANY

Start with COMPANY_KEY = roots.ROOT_KEY

connect by prior COMPANY_KEY = PARENT_KEY;

END LOOP;

update COMPANY_STRUCTURE

SET LOWEST_FLAG = 'Y'

where not exists (select * from COMPANY

where PARENT_KEY = COMPANY_STRUCTURE.SUBSIDIARY_KEY);

COMMIT;

END; /* of procedure */

This solution takes advantage of Oracle’s CONNECT BY SQL extension
to walk each tree in the data while building the bridge table. While CON-
NECT BY is very useful within this procedure, it could not be used by an
ad-hoc query tool for general-purpose querying. If the tool can generate this
syntax to explore the recursive relationship, it cannot in the same statement
join to a fact table. Even if Oracle were to remove this somewhat arbitrary
limitation, the performance at query time would probably not be too good.

The following fictional company data will help you understand the
COMPANY STRUCTURE table and COMPANY EXPLOSION SP proce-
dure:

/* column order is Company_key,Company_name,Parent_key */

insert into company values (100,'Microsoft',NULL);

insert into company values (101,'Software',100);

insert into company values (102,'Consulting',101);

insert into company values (103,'Products',101);

insert into company values (104,'Office',103);

insert into company values (105,'Visio',104);

insert into company values (106,'Visio Europe',105);

insert into company values (107,'Back Office',103);

insert into company values (108,'SQL Server',107);

insert into company values (109,'OLAP Services',108);

insert into company values (110,'DTS',108);

insert into company values (111,'Repository',108);

insert into company values (112,'Developer Tools',103);

insert into company values (113,'Windows',103);

insert into company values (114,'Entertainment',103);

insert into company values (115,'Games',114);
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insert into company values (116,'Multimedia',114);

insert into company values (117,'Education',101);

insert into company values (118,'Online Services',100);

insert into company values (119,'WebTV',118);

insert into company values (120,'MSN',118);

insert into company values (121,'MSN.co.uk',120);

insert into company values (122,'Hotmail.com',120);

insert into company values (123,'MSNBC',120);

insert into company values (124,'MSNBC Online',123);

insert into company values (125,'Expedia',120);

insert into company values (126,'Expedia.co.uk',125);

/* End example data */

The procedure will take the 27 COMPANY records and create 110 COM-
PANY STRUCTURE records make up of one big tree (Microsoft) with 27
nodes and 26 smaller trees. For large datasets, you may find that per-
formance can be enhanced by adding a pair of concatenated indexes on
the CONNECT BY columns. In this example, you could build one in-
dex on COMPANY KEY,PARENT KEY and the other on PARENT KEY,
COMPANY KEY.

If you want to visualize the tree structure textually, the following query
displays an indented subsidiary list for Microsoft:

select LPAD( ' ', 3*(SUBSIDIARY_LEVEL)) || SUBSIDIARY_COMPANY from

COMPANY_STRUCTURE order by SEQUENCE_NUMBER

where PARENT KEY = 100.
The SEQUENCE NUMBER has been added since Ralph’s original article;

it numbers nodes top to bottom, left to right. It allows the correct level-2
nodes to be sorted below their matching level-1 nodes.

For a graphical version of the organization tree, take a look at Visio
2000 Enterprise Edition, which has a database or text-file-driven organi-
zation chart wizard. With the help of VBA script, a view on the COM-
PANY STRUCTURE table, and a fact table, it might automate the generation
of just the HTML pages you want.

Using Positional Attributes in a Dimension
to Represent Text Facts

The SQL interface to relational databases places some severe restrictions on
certain kinds of analyses that need to perform complex comparisons across
dimension records. Consider the following example of a text fact.

Suppose that we measure numeric values for recency, frequency, and
intensity (RFI) of all our customers. We call in our data-mining colleagues
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and ask them to identify the natural clusters of customers in this abstract
cube labeled by recency, frequency, and intensity. We really don’t want
all the numeric results; we want behavioral clusters that are meaningful
to our marketing department. After running the cluster identifier data-
mining step, we find, for example, eight natural clusters of customers. After
studying where the centroids of the clusters are located in our RFI cube, we
are able to assign behavior descriptions to the eight behavior clusters:

A: High-volume repeat customer, good credit, few product returns

B: High-volume repeat customer, good credit, but many product
returns

C: Recent new customer, no established credit pattern

D: Occasional customer, good credit

E: Occasional customer, poor credit

F: Former good customer, not seen recently

G: Frequent window shopper, mostly unproductive

H: Other

We can view the tags A through H as text facts summarizing a customer’s
behavior. There aren’t a lot of text facts in data warehousing, but these
behavior tags seem to be pretty good examples. We can imagine developing
a time series of behavior-tag measurements for a customer over time with
a data point each month:

John Doe: C C C D D A A A B B

This little time series is pretty revealing. How can we structure our data
warehouse to pump out these kinds of reports? And how can we pose inter-
esting constraints on customers to see only those who have gone from clus-
ter A to cluster B in the most recent time period? We require even more com-
plex queries such as finding customers who were an A in the 5th, 4th, or 3rd

previous time period and are a B or a C in either the 2nd or 1st previous period.
We can model this time series of textual behavior tags in several different

ways. Each approach has identical information content but differs signifi-
cantly in ease of use. Let’s assume we generate a new behavior tag for each
customer each month. Here are three approaches:

1. Fact table record for each customer for each month, with the behavior
tag as a textual fact

2. Slowly changing customer dimension record (Type 2) with the
behavior tag as a single attribute (field). A new customer record is
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created for each customer each month. Same number of new records
each month as choice #1.

3. Single customer dimension record with a 24 month time series of
behavior tags as 24 attributes, a variant of the Type 3 SCD many
alternate realities approach

The whole point of this section is that choices 1 and 2, which create sepa-
rate records for each behavior tag, leave the data warehouse with a structure
that is effectively impossible to query. SQL has no direct approach for posing
constraints across records. A sufficiently clever programmer can, of course,
do anything, but each complex constraint would need to be programmed
by hand. No standard query tool can effectively address design choices
1 or 2.

Design choice 3, shown in Figure 5.27, elegantly solves the query prob-
lem. Standard query tools can issue extremely complex straddle constraints
against this design involving as many of the behavior tags as the user needs,
because all the targets of the constraints are in the same record. Addition-
ally, the resulting dimension table can be efficiently indexed with bitmap
indexes on each of the low-cardinality behavior tags, so that performance
can be excellent, even for complex queries.

There are several ways to maintain this positionally dependent set of text
facts over time. Depending on how the applications are built, the attributes
could be moved backward each sampling period so that a specific physical
field is always the most current period. This makes one class of applications
simple, since no changes to a query would have to take place to track the
current behavior each month. An additional field in the dimension should
identify which real month is the most current, so end users will understand
when the time series has been updated. Alternatively, the fields in the di-
mension can have fixed calendar interpretations. Eventually, all the fields
originally allotted would be filled, and a decision would be made at that
time to add fields.

Using positionally dependent fields in a dimension to represent a time
series of text facts has much of the same logic as the many alternate realities
design approach for the Type 3 SCD.

Cust key 
PK

Cust ID 
NK

Cust
name

Period 1
cluster

Period 2
cluster

Period 3
cluster

Period 4
cluster

12766 A23X John Doe C C D A  

Period 24
cluster

B

...

...

Figure 5.27 Using positional attributes to model text facts.



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH
WY046-05 WY046-Kimball-v4.cls August 18, 2004 14:7

Delivering Dimension Tables 207

Summary

This chapter has presented the state-of-the-art design techniques for build-
ing the dimensions of a data warehouse. Remember that while there are
many different data structures in the ETL back room, including flat files,
XML data sets, and entity-relation schemas, we transform all these struc-
tures into dimensional schemas to prepare for the final data-presentation
step in the front room.

Although dimension tables are almost always much smaller than fact
tables, dimension tables give the data warehouse its texture and provide
the entry points into the universe of fact table measurements.

The dimension-table designs given here are both practical and universal.
Every one of the techniques in this chapter can be applied in many different
subject areas, and the ETL code and administrative practices can be reused.
The three types of slowly changing dimensions (SCDs), in particular, have
become basic vocabulary among data warehouse designers. Merely men-
tioning Type 2 SCD conveys a complete context for handling time variance,
assigning keys, building aggregates, and performing queries.

Having exhaustively described the techniques for building dimensions,
we now turn our attention to fact tables, the monster tables in our data
warehouse containing all of our measurements.
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Delivering Fact Tables

Fact tables hold the measurements of an enterprise. The relationship be-
tween fact tables and measurements is extremely simple. If a measure-
ment exists, it can be modeled as a fact table row. If a fact table row exists,
it is a measurement. What is a measurement? A common definition of a
measurement is an amount determined by observation with an instrument or a
scale.

In dimensional modeling, we deliberately build our databases around
the numerical measurements of the enterprise. Fact tables contain mea-
surements, and dimension tables contain the context surrounding mea-
surements. This simple view of the world has proven again and again to
be intuitive and understandable to the end users of our data warehouses.
This is why we package and deliver data warehouse content through di-
mensional models.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Chapter 5 describes how to build the dimension tables of the data ware-
house. It might seem odd to start with the dimension tables, given that
measurements and therefore fact tables are really what end users want to
see. But dimension tables are the entry points to fact table data. Facts make
no sense unless interpreted by dimensions. Since Chapter 5 does a complete
job of describing dimensions, we find this chapter to be simpler in some
ways.

209
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The Basic Structure of a Fact Table

Every fact table is defined by the grain of the table. The grain of the fact
table is the definition of the measurement event. The designer must always
state the grain of the fact table in terms of how the measurement is taken
in the physical world. For example, the grain of the fact table shown in
Figure 6.1 could be an individual line item on a specific retail sales ticket. We
will see that this grain can then later be expressed in terms of the dimension
foreign keys and possibly other fields in the fact table, but we don’t start by
defining the grain in terms of these fields. The grain definition must first be
stated in physical-measurement terms, and the dimensions and other fields
in the fact table will follow.

All fact tables possess a set of foreign keys connected to the dimensions
that provide the context of the fact table measurements. Most fact tables also
possess one or more numerical measurement fields, which we call facts.
See Figure 6.1. Some fact tables possess one or more special dimension-
like fields known as degenerate dimensions, which we introduce Chapter 5.
Degenerate dimensions exist in the fact table, but they are not foreign keys,

Calendar Date (FK)

Sales Transaction Fact Table

Product (FK)

Cash Register (FK)

Customer (FK)

Clerk (FK)

Store Manager (FK)

Price Zone (FK)

Promotional Discount (FK)

Transaction Type (FK)

Payment Type (FK)

Ticket Number (DD)

Line Number (DD)

Time of Day (SQL Date-Time)

Sales Quantity (fact)

Net Sales Dollar amount (fact)

Discount Dollar amount (fact)

Cost Dollar amount (fact)

Gross Profit Dollar amount (fact)

Tax Dollar amount (fact)

Figure 6.1 A sales transaction fact table at the lowest grain.
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and they do not join to a real dimension. We denote degenerate dimensions
in Figure 6.1 with the notation DD.

In practice, fact tables almost always have at least three dimensions, but
most fact tables have more. As data warehousing and the surrounding hard-
ware and software technology has matured over the last 20 years, fact tables
have grown enormously because they are storing more and more granular
data at the lowest levels of measurement. Ironically, the smaller the mea-
surement, the more dimensions apply. In the earliest days of retail-sales
data warehouses, data sets were available only at high levels of aggrega-
tion. These early retail databases usually had only three or four dimensions
(usually product, market, time, and promotion). Today, we collect retail data
at the atomic level of the individual sales transaction. An individual sales
transaction can easily have the ten dimensions shown in Figure 6.1 (calen-
dar date; product; cash register, which rolls up to the store level; customer;
clerk; store manager; price zone; promotional discount; transaction type;
and payment type). Even with these ten dimensions, we may be tempted to
add more dimensions over time including store demographics, marketplace
competitive events, and the weather!

Virtually every fact table has a primary key defined by a subset of the
fields in the table. In Figure 6.1, a plausible primary key for the fact table is
the combination of the ticket number and line number degenerate dimen-
sions. These two fields define the unique measurement event of a single
item being run up at the cash register. It is also likely that an equivalent
primary key could be defined by the combination of cash register and the
date/time stamp.

It is possible, if insufficient attention is paid to the design, to violate
the assumptions of the primary key on a fact table. Perhaps two identical
measurement events have occurred on the same time period, but the data
warehouse team did not realize that this could happen. Obviously, every
fact table should have a primary key, even if just for administrative pur-
poses. If two or more records in the fact table are allowed to be completely
identical because there is no primary key enforced, there is no way to tell
the records apart or to be sure that they represent valid discrete measure-
ment events. But as long as the ETL team is sure that separate data loads
represent legitimate distinct measurement events, fact table records can be
made unique by providing a unique sequence number on the fact record
itself at load time. Although the unique sequence number has no business
relevance and should not be delivered to end users, it provides an ad-
ministrative guarantee that a separate and presumably legitimate measure-
ment event occurred. If the ETL team cannot guarantee that separate loads
represent legitimate separate measurement events, a primary key on the
data must be correctly defined before any data is loaded.
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The preceding example illustrates the need to make all ETL jobs reentrant so
that the job can be run a second time, either deliberately or in error, without
updating the target database incorrectly. In SQL parlance, UPDATES of constant
values are usually safe, but UPDATES that increment values are dangerous.
INSERTS are safe if a primary key is defined and enforced because a duplicate
INSERT will trigger an error. DELETES are generally safe when the constraints are
based on simple field values.

Guaranteeing Referential Integrity

In dimensional modeling, referential integrity means that every fact table
is filled with legitimate foreign keys. Or, to put it another way, no fact table
record contains corrupt or unknown foreign key references.

There are only two ways to violate referential integrity in a dimensional
schema:

1. Load a fact record with one or more bad foreign keys.

2. Delete a dimension record whose primary key is being used in the
fact table.

If you don’t pay attention to referential integrity, it is amazingly easy to
violate it. The authors have studied fact tables where referential integrity
was not explicitly enforced; in every case, serious violations were found.
A fact record that violates referential integrity (because it has one or more
bad foreign keys) is not just an annoyance; it is dangerous. Presumably, the
record has some legitimacy, as it probably represents a true measurement
event, but it is stored in the database incorrectly. Any query that references
the bad dimension in the fact record will fail to include the fact record; by
definition, the join between the dimension and this fact record cannot take
place. But any query that omits mention of the bad dimension may well
include the record in a dynamic aggregation!

In Figure 6.2, we show the three main places in the ETL pipeline where
referential integrity can be enforced. They are:

1. Careful bookkeeping and data preparation just before loading the fact
table records into the final tables, coupled with careful bookkeeping
before deleting any dimension records

2. Enforcement of referential integrity in the database itself at the moment
of every fact table insertion and every dimension table deletion

3. Discovery and correction of referential integrity violations after
loading has occurred by regularly scanning the fact table, looking for
bad foreign keys
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Extract
staging

 Data Quality
staging

Conforming
staging

Final load
tables Process

Dimension 
and fact tables

1. Check load tables
before loading

2. Check while loading
using DBMS RI Check

3. Check Integrity of
Tables at later
times 

Figure 6.2 Choices for enforcing referential integrity.

Practically speaking, the first option usually makes the most sense. One
of the last steps just before the fact table load is looking up the natural keys
in the fact table record and replacing them with the correct contemporary
values of the dimension surrogate keys. This process is explained in detail
in the next section on the surrogate key pipeline. The heart of this procedure
is a special lookup table for each dimension that contains the correct value
of the surrogate key to be used for every incoming natural key. If this table
is correctly maintained, the fact table records will obey referential integrity.
Similarly, when dimension table records are to be deleted, a query must be
done attempting to join the dimension record to the fact table. Only if the
query returns null should the dimension record be deleted.

The second option of having the database enforce referential integrity
continuously is elegant but often too slow for major bulk loads of thou-
sands or millions of records. But this is only a matter of software technol-
ogy. The Red Brick database system (now sold by IBM) was purpose-built
to maintain referential integrity at all times, and it is capable of loading
100 million records an hour into a fact table where it is checking referential
integrity on all the dimensions simultaneously!

The third option of checking for referential integrity after database
changes have been made is theoretically capable of finding all violations
but may be prohibitively slow. The queries checking referential integrity
must be of the form:

select f.product_key

from fact_table f
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where f.product_key not in (select p.product_key from

product_dimension p)

In an environment with a million-row product dimension and a billion-
row fact table, this is a ridiculous query. But perhaps the query can be
restricted only to the data that has been loaded today. That assumes the
time dimension foreign key is correct! But this is a sensible approach that
probably should be used as a sanity check even if the first approach is the
main processing technique.

Surrogate Key Pipeline

When building a fact table, the final ETL step is converting the natural keys
in the new input records into the correct, contemporary surrogate keys.
In this section, we assume that all records to be loaded into the fact table
are current. In other words, we need to use the most current values of the
surrogate keys for each dimension entity (like customer or product). We
will deal with late-arriving fact records later in this chapter.

We could theoretically look up the current surrogate key in each dimen-
sion table by fetching the most recent record with the desired natural key.
This is logically correct but slow. Instead, we maintain a special surrogate
key lookup table for each dimension. This table is updated whenever a new
dimension entity is created and whenever a Type 2 change occurs on an
existing dimension entity. We introduce this table in the Chapter 5 when
we discuss Figure 5.16.

The dimension tables must all be updated with insertions and Type 2
changes before we even think of dealing with the fact tables. This sequence
of updating the dimensions first followed by updating the fact tables is
the usual sequence when maintaining referential integrity between the di-
mension tables and fact tables. The reverse sequence is used when deleting
records. First, we remove unwanted fact table records; then we are free to
remove dimension records that no longer have any links to the fact table.

Don’t necessarily delete dimension records just because a fact table has no
references to such records. The entities in a dimension may well exist and should
be kept in the dimension even if there is no activity in the fact table.

When we are done updating our dimension tables, not only are all the di-
mension records correct; our surrogate key lookup tables that tie the natural
keys to the current values of the data warehouse keys have been updated
correctly.
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Fact Table
Records with
Production IDS

time_ID
product_ID
store_ID
production_ID
dolar_sales
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dolar_cost
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dolar_cost

replace
time_ID with
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Map
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Map
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Figure 6.3 The surrogate key pipeline.

Our task for processing the incoming fact table records is simple to under-
stand. See Figure 6.3. We take each natural dimension key in the incoming
fact table record and replace it with the correct current surrogate key. Notice
that we say replace. We don’t keep the natural key value in the fact record
itself. If you care what the natural key value is, you can always find it in the
associated dimension record.

If we have between four and 12 natural keys, every incoming fact record
requires between four and twelve separate lookups to get the right sur-
rogate keys. First, we set up a multithreaded application that streams all
the input records through all the steps shown in Figure 6.3. When we say
multithreaded, we mean that as input record #1 is running the gantlet of suc-
cessive key lookups and replacements, record #2 is simultaneously right
behind record #1, and so on. We do not process all the incoming records
in the first lookup step and then pass the whole file to the next step. It is
essential for fast performance that the input records are not written to disk
until they have passed though all the processing steps. They must literally
fly through memory without touching ground (the disk) until the end.

If possible, all of the required lookup tables should be pinned in mem-
ory so that they can be randomly accessed as each incoming fact record
presents its natural keys. This is one of the reasons for making the lookup
tables separate from the original data warehouse dimension tables. Suppose
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we have a million-row lookup table for a dimension. If the natural key is
20 bytes and the surrogate key is 4 bytes, we need roughly 24 MB of RAM
to hold the lookup table. In an environment where we can configure the
data-staging machine with 4 to 8 GB of RAM, we should easily get all of
the lookup tables in memory.

The architecture described in the previous paragraph is the
highest-performance configuration we know how to design. But let’s keep things
in perspective. If you are loading a few hundred-thousand records per day, and
your load windows are forgiving, you don’t need to emphasize performance to this
degree. You can define a star join query between your fact tables and your
dimension tables, swapping out the natural keys for the surrogate keys, and run
the whole process in SQL. In this case, you would also define outer joins on certain
dimensions if there were a possibility that any incoming fact records could not be
matched to the dimensions (a referential integrity failure).

The programming utility awk can also be used in this situation because it
supports the creation of in-memory arrays for the natural key to surrogate key
translation by allowing the natural key itself to serve as the array index. Thus, if
you define Translate_Dimension_A[natural_key] = surrogate_key, processing each
fact record is simply: print Translate_Dimension_A($1),
Translate_Dimension_B($2), and so on.

In some important large fact tables, we may have a monster dimension,
like residential customer, that might have a hundred-million members. If
we have only one such huge dimension, we can still design a fast pipelined
surrogate key system, even though the huge dimension lookup table might
have to be read off the disk as it is being used. The secret is to presort both the
incoming fact data and the lookup table on the natural key of this dimension.
Now the surrogate key replacement is a single pass sort-merge through the
two files. This should be pretty fast, although nothing beats in-memory
processing. If you have two such monster lookup tables in your pipeline
that you cannot pin in memory, you will suffer a processing penalty because
of the I/O required for the random accesses on the nonsorted dimension
key.

It is possible for incoming fact records to make it all the way to the surrogate
key pipeline with one or more bad natural keys because we may or may not be
checking referential integrity of the underlying source system. If this happens, we
recommend creating a new surrogate key and a new dimension record
appropriately labeled Unknown. Each such incoming bad natural key should get a
unique fresh surrogate key if there is any hope of eventually correcting the data. If
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your business reality is that bad natural keys must remain forever unresolved, a
single well-known surrogate key value (and default Unknown record) can be used
in all these cases within the affected dimension.

Using the Dimension Instead of a Lookup Table
The lookup table approach described in the previous section works best
when the overwhelming fraction of fact records processed each day are
contemporary (in other words, completely current). But if a significant num-
ber of fact records are late arriving, the lookup table cannot be used and
the dimension must be the source for the correct surrogate key. This as-
sumes, of course, that the dimension has been designed as described in
Chapter 5, with begin and end effective date stamps and the natural key
present in every record.

Avoiding the separate lookup table also simplifies the ETL administration
before the fact table load because the steps of synchronizing the lookup
table with the dimension itself are eliminated.

Certain ETL tool suites offer a high-speed, in-memory cache created by looking
at the natural keys of the incoming fact records and then linking these natural
keys to the right surrogate keys by querying the dimension table in real time. If
this works satisfactorily, it has the advantage that the lookup table can be avoided
entirely. A possible downside is the startup overhead incurred in dynamically
creating this cache while accessing the possibly large dimension. If this dynamic
lookup can successfully search for old values of surrogate keys by combining a
given natural key with the time stamp on the incoming fact record, this technique
could be very effective for handling late-arriving fact table records. You should ask
your ETL vendor specific questions about this capability.

Fundamental Grains

Since fact tables are meant to store all the numerical measurements of an
enterprise, you might expect that here would be many flavors of fact tables.
Surprisingly, in our experience, fact tables can always be reduced to just
three fundamental types. We recommend strongly that you adhere to these
three simple types in every design situation. When designers begin to mix
and combine these types into more complicated structures, an enormous
burden is transferred to end user query tools and applications to keep from
making serious errors. Another way to say this is that every fact table should
have one, and only one, grain.
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The three kinds of fact tables are: the transaction grain, the periodic snap-
shot, and the accumulating snapshot. We discuss these three grains in the
next three sections.

Transaction Grain Fact Tables
The transaction grain represents an instantaneous measurement at a spe-
cific point in space and time. The standard example of a transaction grain
measurement event is a retail sales transaction. When the product passes
the scanner and the scanner beeps (and only if the scanner beeps), a record
is created. Transaction grain records are created only if the measurement
events take place. Thus, a transaction grain fact table can be virtually empty,
or it can contain billions of records.

We have remarked that the tiny atomic measurements typical of transac-
tion grain fact tables have a large number of dimensions. You can refer to
Figure 6.1, which shows the retail scanner event.

In environments like a retail store, there may be only one transaction type
(the retail sale) being measured. In other environments, such as insurance
claims processing, there may be many transaction types all mixed together
in the flow of data. In this case, the numeric measurement field is usually
labeled generically as amount, and a transaction type dimension is required
to interpret the amount. See Figure 6.4. In any case, the numeric measures
in the transaction grain tables must refer to the instant of the measurement
event, not to a span of time or to some other time. In other words, the facts
must be true to the grain.

Transaction grain fact tables are the largest and most detailed of the three
kinds of fact tables. Since individual transactions are often carefully time

time_key (FK) 
customer_key (FK) 
agent_key (FK)
item_key (FK)
coverage_key (FK)
transaction_key (FK)
format_key (FK)
amount

Insurance Policy
Transaction fact tableTime dimension

time_key (PK)
time attributes...

Agent dimension

agent_key (PK)
agent attributes...

Coverage dimension

coverage_key (PK)
coverage attributes...

Policy Format dimension

format_key (PK)
format attributes...

Customer dimension

customer_key (PK)
customer attributes...

Covered Item dimension 

item_key (PK)
item_attributes...

Transaction type dimension

transaction_key (PK)
transaction attributes...

Figure 6.4 A standard transaction grain fact table drawn from insurance.
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stamped, transaction grain tables are often used for the most complex and
intricate analyses. For instance, in an insurance claims processing environ-
ment, a transaction grain fact table is required to describe the most com-
plex sequence of transactions that some claims undergo and to analyze
detailed timing measurements among transactions of different types. This
level of information simply isn’t available in the other two fact-table types.
However, it is not always the case that the periodic snapshot and the accu-
mulating snapshot tables can be generated as routine aggregations of the
transaction grain tables. In the insurance environment, the operational pre-
mium processing system typically generates a measure of earned premium
for each policy each month. This earned premium measurement must go
into the monthly periodic snapshot table, not the transaction grain table.
The business rules for calculating earned premium are so complicated that
it is effectively impossible for the data warehouse to calculate this monthly
measure using only low-level transactions.

Transactions that are time stamped to the nearest minute, second, or mi-
crosecond should be modeled by making the calendar day component a
conventional dimension with a foreign key to the normal calendar date di-
mension, and the full date-time expressed as a SQL data type in the fact
table, as shown in Chapter 5 in Figure 5.5.

Since transaction grain tables have unpredictable sparseness, front-end
applications cannot assume that any given set of keys will be present in a
query. This problem arises when a customer dimension tries to be matched
with a demographic behavior dimension. If the constraints are too narrow
(say, a specific calendar day), it is possible that no records are returned from
the query, and the match of the customer to the demographics is omitted
from the results. Database architects aware of this problem may specify a
factless coverage table that contains every meaningful combination of keys
so that an application is guaranteed to match the customer with the de-
mographics. See the discussion of factless fact tables later in this chapter.
We will see that the periodic snapshot fact table described in the next sec-
tion neatly avoids this sparseness problem because periodic snapshots are
perfectly dense in their primary key set.

In the ideal case, contemporary transaction level fact records are received
in large batches at regular intervals by the data warehouse. The target fact
table in most cases should be partitioned by time in a typical DBMS envi-
ronment. This allows the DBA to drop certain indexes on the most recent
time partition, which will speed up a bulk load of new records into this
partition. After the load runs to completion, the indexes on the partition are
restored. If the partitions can be renamed and swapped, it is possible for
the fact table to be offline for only minutes while the updating takes place.
This is a complex subject, with many variations in indexing strategies and
physical data storage. It is possible that there are indexes on the fact table
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Reporting Month (FK)

Account (FK)

Branch (FK)

Household (FK)

Ending Balance (fact)

Change in Balance (fact)

Average Daily Balance (fact)

Number of Deposits (fact)

Total of Deposits (fact)

Number of Withdrawal (fact)

Total of Withdrawals (fact)

Total of Penalties (fact)

Total Interest Paid into (fact)

Daily Average Backup Reserve amount (fact)

Number of ATM Withdrawals (fact)

Number Foreign System ATM Withdrawal (fact)

Number PayPal Withdrawals (fact)

Total PayPal Withdrawals (fact)

Figure 6.5 A periodic snapshot for a checking account in a bank.

that do not depend on the partitioning logic and cannot be dropped. Also,
some parallel processing database technologies physically distribute data
so that the most recent data is not stored in one physical location.

When the incoming transaction data arrives in a streaming fashion, rather
than in discrete file-based loads, we have crossed the boundary into real-
time data warehouses, which are discussed in Chapter 11.

Periodic Snapshot Fact Tables
The periodic snapshot represents a span of time, regularly repeated. This
style of table is well suited for tracking long-running processes such as
bank accounts and other forms of financial reporting. The most common
periodic snapshots in the finance world have a monthly grain. All the facts in
a periodic snapshot must be true to the grain (that is, they must be measures
of activity during the span). In Figure 6.5, we show a periodic snapshot for
a checking account in a bank, reported every month. An obvious feature in
this design is the potentially large number of facts. Any numeric measure
of the account that measures activity for the time span is fair game. For this
reason, periodic snapshot fact tables are more likely to be gracefully modified
during their lifetime by adding more facts to the basic grain of the table.
See the section on graceful modifications later in this chapter.
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The date dimension in the periodic snapshot fact table refers to the period.
Thus, the date dimension for a monthly periodic snapshot is a dimension of
calendar months. We discuss generating such aggregated date dimensions
in Chapter 5.

An interesting question arises about what the exact surrogate keys for all
the nontime dimensions should be in the periodic snapshot records. Since
the periodic snapshot for the period cannot be generated until the period
has passed, the most logical choice for the surrogate keys for the nontime
dimensions is their value at the exact end of the period. So, for example,
the surrogate keys for the account and branch dimensions in Figure 6.5
should be those precise values at the end of the period, notwithstanding the
possibility that the account and branch descriptions could have changed in
complicated ways in the middle of the period. These intermediate surrogate
keys simply do not appear in the monthly periodic snapshot.

Periodic snapshot fact tables have completely predictable sparseness. The
account activity fact table in Figure 6.5 has one record for each account for
each month. As long as an account is active, an application can assume that
the various dimensions will all be present in every query.

The final tables delivered to end user applications will have completely
predictable sparseness, but your original sources may not! You should outer join
the primary dimensions of your periodic snapshot fact table to the original data
source to make sure that you generate records for every valid combination of
keys, even when there is no reported activity for some of them in the current
load.

Periodic snapshot fact tables have similar loading characteristics to those
of the transaction grain tables. As long as data is promptly delivered to the
data warehouse, all records in each periodic load will cluster in the most
recent time partition.

However, there are two somewhat different strategies for maintaining
periodic snapshot fact tables. The traditional strategy waits until the period
has passed and then loads all the records at once. But increasingly, the pe-
riodic snapshot maintains a special current hot rolling period. The banking
fact table of Figure 6.5 could have 36 fixed time periods, representing the
last three years of activity, but also have a special 37th month updated in-
crementally every night during the current period. This works best if the
37th period is correctly stated when the last day has been loaded in normal
fashion. This strategy is less appealing if the final periodic snapshot differs
from the last day’s load, because of behind-the-scenes ledger adjustments
during a month-end-closing process that do not appear in the normal data
downloads.
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When the hot rolling period is updated continuously throughout the day
by streaming the data, rather than through periodic file-based loads, we
have crossed the line into real-time data warehouse systems, which we
discuss in Chapter 11.

Creating a contunuously updated periodic snapshot can be difficult or even
impossible if the business rules for calculating measures at period end are very
complex. For example, in insurance companies, the calculation of earned premium
at the end of the period is handled by the transaction system, and these measures
are available only at the end of the period. The data warehouse cannot easily
caluclate earned premium at midpoints of the reporting periods; the business
rules are extraordinarily complex and are far beyond the normal ETL
transformation logic.

Accumulating Snapshot Fact Tables
The accumulating snapshot fact table is used to describe processes that have
a definite beginning and end, such as order fulfillment, claims processing,
and most workflows. The accumulating snapshot is not appropriate for
long-running continuous processes such as tracking bank accounts or de-
scribing continuous manufacturing processes like paper mills.

The grain of an accumulating snapshot fact table is the complete history
of an entity from its creation to the present moment. Figure 6.6 shows an
accumulating snapshot fact table whose grain is the line item on a shipment
invoice.

Accumulating snapshot fact tables have several unusual characteristics.
The most obvious difference seen in Figure 6.6 is the large number of cal-
endar date foreign keys. All accumulating snapshot fact tables have a set
of dates that implement the standard scenario for the table. The standard
scenario for the shipment invoice line item in Figure 6.6 is order date, re-
quested ship date, actual ship date, delivery date, last payment date, return
date, and settlement date. We can assume that an individual record is cre-
ated when a shipment invoice is created. At that moment, only the order
date and the requested ship date are known. The record for a specific line
item on the invoice is inserted into the fact table with known dates for these
first two foreign keys. The remaining foreign keys are all not applicable and
their surrogate keys must point to the special record in the calendar date
dimension corresponding to Not Applicable. Over time, as events unfold,
the original record is revisited and the foreign keys corresponding to the other dates
are overwritten with values pointing to actual dates. The last payment date
may well be overwritten several times as payments are stretched out. The
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Order Date (FK)

Requested Ship Date (FK)

Actual Ship Date (FK)

Delivery Date (FK)

Last Payment Date (FK)

the “standard
scenario”

Return Date (FK)

Settlement Date (FK)

Warehouse (FK)

Customer (FK)

Product (FK)

Promotion (FK)

Payment Terms (FK)

Order Number (DD)

Shipment Invoice Number (DD)

Line Number (DD)

Extended List Price (fact)

Promotion Allowance (fact)

Net Invoice Amount (fact)

Amount Paid (fact)

Amount Refunded (fact)

Terms Discount Amount (fact)

Figure 6.6 An accumulating snapshot fact table where the grain is the shipment invoice
line item.

return date and settlement dates may well never be overwritten for normal
orders that are not returned or disputed.

The facts in the accumulating snapshot record are also revisited and over-
written as events unfold. Note that in Oracle, the actual width of an indi-
vidual record depends on its contents, so accumulating snapshot records
in Oracle will always grow. This will affect the residency of disk blocks.
In cases where a lot of block splits are generated by these changes, it may
be worthwhile to drop and reload the records that have been extensively
changed, once the changes settle down, to improve performance. One way
to accomplish this is to partition the fact table along two dimensions such
as date and current status (Open/Closed). Initially partition along current
status, and when the item is closed, move it to the other partition.

An accumulating snapshot fact table is a very efficient and appealing way
to represent finite processes with definite beginnings and endings. The more
the process fits the standard scenario defined by the set of dates in the fact
table, the simpler the end user applications will be. If end users occasionally
need to understand extremely complicated and unusual situations, such as
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a shipment that was damaged or shipped to the wrong customer, the best
recourse is a companion transaction grain table that can be fully exploded
to see all the events that occurred for the unusual shipment.

Preparing for Loading Fact Tables

In this section, we explain how to build efficient load processes and over-
come common obstacles. If done incorrectly, loading data can be the worst
experience for an ETL developer. The next three sections outline some of
the obstructions you face.

Managing Indexes
Indexes are performance enhancers at query time, but they are performance
killers at load time. Tables that are heavily indexed bring your process to
a virtual standstill if they are not handled correctly. Before you attempt to
load a table, drop all of its indexes in a preload process. You can rebuild
the indexes after the load is complete in a post-load process. When your
load process includes updates, separate the records required for the updates
from those to be inserted and process them separately. In a nutshell, perform
the steps that follow to prevent table indexes from causing a bottleneck in
your ETL process.

1. Segregate updates from inserts.

2. Drop any indexes not required to support updates.

3. Load updates.

4. Drop all remaining indexes.

5. Load inserts (through bulk loader).

6. Rebuild the indexes.

Managing Partitions
Partitions allow a table (and its indexes) to be physically divided into mini-
tables for administrative purposes and to improve query performance. The
ultimate benefit of partitioning a table is that a query that requires a month
of data from a table that has ten years of data can go directly to the partition
of the table that contains data for the month without scanning other data.
Table partitions can dramatically improve query performance on large fact
tables. The partitions of a table are under the covers, hidden from the users.
Only the DBA and ETL team should be aware of partitions.
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The most common partitioning strategy on fact tables is to partition the
table by the date key. Because the date dimension is preloaded and static,
you know exactly what the surrogate keys are. We’ve seen designers add
a timestamp to fact tables for partitioning purposes, but unless the times-
tamp is constrained by the user’s query, the partitions are not utilized by
the optimizer. Since users typically constrain on columns in the date dimen-
sion, you need to partition the fact table on the key that joins to the date
dimension for the optimizer to recognize the constraint.

Tables that are partitioned by a date interval are usually partitioned by
year, quarter, or month. Extremely voluminous facts may be partitioned by
week or even day. Usually, the data warehouse designer works with the
DBA team to determine the best partitioning strategy on a table-by-table
basis. The ETL team must be advised of any table partitions that need to be
maintained.

Unless your DBA team takes a proactive role in administering your parti-
tions, the ETL process must manage them. If your load frequency is monthly
and your fact table is partitioned by month, partition maintenance is pretty
straightforward. When your load frequency differs from the table partitions
or your tables are partitioned on an element other than time, the process
becomes a bit trickier.

Suppose your fact table is partitioned by year and the first three years
are created by the DBA team. When you attempt to load any data after
December, 31, 2004, in Oracle you receive the following error:

ORA-14400: inserted partition key is beyond highest legal partition key

At this point, the ETL process has a choice:

Notify the DBA team, wait for them to manually create the next
partition, and resume loading.

Dynamically add the next partition required to complete loading.

Once the surrogate keys of the incoming data have been resolved, the
ETL process can proactively test the incoming data against the defined
partitions in the database by comparing the highest date_key with the high
value defined in the last partition of the table.

select max(date_key) from 'STAGE_FACT_TABLE'

compared with

select high_value from all_tab_partitions

where table_name = 'FACT_TABLE'

and partition_position = (select max(partition_position)

from all_tab_partitions where table_name = 'FACT_TABLE')
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If the incoming data is in the next year after the defined partition allows,
the ETL process can create the next partition with a preprocess script.

ALTER TABLE fact_table

ADD PARTITION year_2005 VALUES LESS THAN (1828)

--1828 is the surrogate key for January 1, 2005.

The maintenance steps just discussed can be written in a stored procedure
and called by the ETL process before each load. The procedure can produce
the required ALTER TABLE statement, inserting the appropriate January
1 surrogate key value as required, depending on the year of the incoming
data.

Outwitting the Rollback Log
By design, any relational database management system attempts to support
midtransaction failures. The system recovers from uncommitted transaction
failures by recording every transaction in a log. Upon failure, the database
accesses the log and undoes any transactions that have not been committed.
To commit a transaction means that you or your application explicitly tells
the database that the entry of the transaction is completely finished and that
the transaction should be permanently written to disk.

The rollback log, also known as the redo log, is invaluable in transaction
(OLTP) systems. But in a data warehouse environment where all transac-
tions are managed by the ETL process, the rollback log is a superfluous
feature that must be dealt with to achieve optimal load performance. Rea-
sons why the data warehouse does not need rollback logging include:

All data is entered by a managed process—the ETL system.

Data is loaded in bulk.

Data can easily be reloaded if a load process fails.

Each database management system has different logging features and
manages its rollback log differently.

Loading the Data
The initial load of a new table has a unique set of challenges. The primary
challenge is handling the one-time immense volume of data.

Separate inserts from updates. Many ETL tools (and some
databases) offer update else insert functionality. This functionality is
very convenient and simplifies data-flow logic but is notoriously
slow. ETL processes that require updates to existing data should
include logic that separates records that already exist in the fact table
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from new ones. Whenever you are dealing with a substantial amount
of data, you want to bulk-load it into the data warehouse.
Unfortunately, many bulk-load utilities cannot update existing
records. By separating the update records from the inserts, you can
first process the updates and then bulk-load the balance of the
records for optimal load performance.

Utilize a bulk-load utility. Using a bulk-load utility rather than SQL
INSERT statements to load data substantially decreases database
overhead and drastically improves load performance.

Load in parallel. When loading volumes of data, physically break up
data into logical segments. If you are loading five years of data,
perhaps you can make five data files that contain one year each.
Some ETL tools allow you to partition data based on ranges of data
values dynamically. Once data is divided into equal segments, run
the ETL process to load all of the segments in parallel.

Minimize physical updates. Updating records in a table requires
massive amounts of overhead in the DBMS, most of which is caused
by the database populating the rollback log. To minimize writing to
the rollback log, you need to bulk-load data in the database. But what
about the updates? In many cases, it is better to delete the records
that would be updated and then bulk-load the new versions of those
records along with the records entering the data warehouse for the
first time. Since the ratio of records being updated versus the number
of existing rows plays a crucial factor in selecting the optimal
technique, some trial-and-error testing is usually required to see if
this approach is the ultimate load strategy for your particular
situation.

Build aggregates outside of the database. Sorting, merging, and
building aggregates outside of the database may be more efficient
than using SQL with COUNT and SUM functions and GROUP BY
and ORDER BY keywords in the DBMS. ETL processes that require
sorting and/or merging high volumes of data should perform these
functions before they enter the relational database staging area.
Many ETL tools are adequate at performing these functions, but
dedicated tools to perform sort/merges at the operating-system level
are worth the investment for processing large datasets.

Your ETL process should minimize updates and insert all fact data via the
database bulk-load utility. If massive updates are necessary, consider truncating
and reloading the entire fact table via the bulk loader to obtain the fastest load
strategy. When minimal updates are required, segregate the updates from the
inserts and process them separately.
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Incremental Loading
The incremental load is the process that occurs periodically to keep the data
warehouse synchronized with its respective source systems. Incremental
processes can run at any interval or continuously (real-time). At the time of
this writing, the customary interval for loading a data warehouse is daily,
but no hard-and-fast rule or best practice exists where incremental load in-
tervals are concerned. Users typically like daily updates because they leave
data in the warehouse static throughout the day, preventing twinkling data,
which would make the data ever-changing and cause intraday reporting
inconsistencies.

ETL routines that load data incrementally are usually a result of the pro-
cess that initially loaded the historic data into the data warehouse. It is
a preferred practice to keep the two processes one and the same. The ETL
team must parameterize the begin_date and end_date of the extract process
so the ETL routine has the flexibility to load small incremental segments or
the historic source data in its entirety.

Inserting Facts
When you create new fact records, you need to get data in as quickly as
possible. Always utilize your database bulk-load utility. Fact tables are
too immense to process via SQL INSERT statements. The database log-
ging caused by SQL INSERT statements is completely superfluous in the
data warehouse. The log is created for failure recovery. If your load routine
fails, your ETL tool must be able to recover from the failure and pick up
where it left off, regardless of database logging.

Failure recovery is a feature prevalent in the major ETL tools. Each vendor
handles failures, and recovering from them, differently. Make sure your ETL
vendors explain exactly how their failure-recovery mechanism works and select
the product that requires minimal manual intervention. Be sure to test
failure-recovery functionality during your ETL proof-of-concept.

Updating and Correcting Facts
We’ve participated in many discussions that address the issue of updating
data warehouse data—especially fact data. Most agree that dimensions, re-
gardless of the slowly changing dimension strategy, must exactly reflect the
data of their source. However, there are several arguments against making
changes to fact data once it is in the data warehouse.

Most arguments that support the notion that the data warehouse must
reflect all changes made to a transaction system are usually based on theory,
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not reality. However, the data warehouse is intended to support analysis of
the business, not the system where the data is derived. For the data ware-
house to properly reflect business activity, it must accurately depict its fac-
tual events. Regardless of any opposing argument, a data-entry error is not
a business event (unless of course, you are building a data mart specifically
for analysis of data-entry precision).

Recording unnecessary records that contradict correct ones is counterpro-
ductive and can skew analytical results. Consider this example: A company
sells 1,000 containers of soda, and the data in the source system records that
the package type is 12-ounce cans. After data is published to the data ware-
house, a mistake is discovered that the package type should have been
20-ounce bottles. Upon discovery, the source system is immediately up-
dated to reflect the true package type. The business never sold the 12-ounce
cans. While performing sales analysis, the business does not need to know a
data error occurred. Conversely, preserving the erroneous data might mis-
represent the sales figures of 12-ounce cans. You can handle data corrections
in the data warehouse in three essential ways.

Negate the fact.

Update the fact.

Delete and reload the fact.

All three strategies result in a reflection of the actual occurrence—the sale
of 1,000 20-ounce bottles of soda.

Negating Facts
Negating an error entails creating an exact duplicate of the erroneous record
where the measures are a result of the original measures multiplied by -1.
The negative measures in the reversing fact table record cancel out the orig-
inal record.

Many reasons exist for negating an error rather than taking other ap-
proaches to correcting fact data. The primary reason is for audit purposes.
Negating errors in the data warehouse is a good practice if you are specifi-
cally looking to capture data-entry errors for analytical purposes. Moreover,
if capturing actual erroneous events is significant to the business, the trans-
action system should have its own data-entry audit capabilities.

Other reasons for negating facts, instead of updating or deleting, involve
data volume and ETL performance. In cases where fact table rows are in
the hundreds of millions, it could be argued that searching and affecting
existing records makes ETL performance deteriorate. However, it is the
responsibility of the ETL team to provide required solutions with optimum
efficiency. You cannot dictate business policies based on technical criterion.
If the business prefers to eliminate errors rather than negate them, it is your
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responsibility to fulfill that request. This chapter discusses several options
to ensure your processes are optimal.

Updating Facts
Updating data in fact tables can be a process-intensive endeavor. In most
database management systems, an UPDATE automatically triggers entries
in the database log for ROLLBACK protection. Database logging greatly
reduces load performance. The best approach to updating fact data is to
REFRESH the table via the bulk-load utility. If you must use SQL to UPDATE
fact tables, make sure you have the column(s) that uniquely identify the
rows in the table indexed and drop all other indexes on the table. Unessential
indexes drastically degrade performance of the updates.

Deleting Facts
Most agree that deleting errors is most likely the best solution for correcting
data in your fact tables. An arguable drawback is that current versions of
previously released reports will not reconcile. But if you accept that you
are changing data, any technique used to achieve that goal amends existing
reports. Most do not consider changing data a bad thing if the current
version represents the truth.

Academically, deleting facts from a fact table is forbidden in data ware-
housing. However, you’ll find that deleting facts is a common practice in
most data warehouse environments. If your business requires deletions,
two ways to handle them exist:

Physical deletes. In most cases, the business doesn’t want to see data
that no longer exists in the source transaction systems. When
physical deletes are required, you must adhere to the business rules
and delete the unwanted records.

Logical deletes. Logically deleting fact records is considered by some
to be the safe deletion practice. A logical delete entails the utilization
of an additional column aptly named deleted. It is usually a Bit or
Boolean data type and serves as a flag in fact tables to identify
deleted records. The caveat to the logical delete approach is that
every query that includes the fact table must apply a constraint on
the new Boolean field to filter out the logically deleted records.

Physically Deleting Facts
Physically deleting facts means data is permanently removed from the data
warehouse. When you have a requirement to physically delete records,
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make sure the user completely understands that the data will never be able
to be retrieved once it is deleted.

Users often carry a misconception that once data enters the data ware-
house, it is there forever. So when users say they will never have a reason
to see deleted data, never and see need to be clarified. Make sure they say
exactly what they mean and mean what they say.

Never. It is quite common for users to think in terms of today’s
requirements because it is based on their current way of thinking
about the data they use. Users who’ve never been exposed to a data
warehouse may not be used to having certain types of history
available to them. There’s an old aphorism: You can’t miss what
you’ve never had. In most cases, when a user says never, he or she
means rarely. Make sure your users are well aware that physical
deletion is a permanent removal of the record.

See. When a user says see, most likely he or she is referring to the
appearance of data in reports. It’s quite common that users have no
idea what exists in raw data. All data is usually delivered through
some sort of delivery mechanism such as business-intelligence tools
or reports that may be automatically filtering unwanted data. It’s
best to check with the team responsible for data presentation to
confirm such requirements. If no such team exists, make sure your
users are well aware that physical deletion is a permanent removal of
the record in the data warehouse.

Once the requirement for permanent physical deletion is confirmed, the
next step is to plan a strategy for finding and deleting unwanted facts.
The simplest option for resolving deleted records is to truncate and reload
the fact tables. Truncating and reloading is usually a viable option only for
smaller data warehouses. If you have a large data warehouse consisting
of many fact tables, each containing millions or billions of records, it’s not
recommended to truncate and reload the entire data warehouse with each
incremental load.

If the source system doesn’t contain audit tables to capture deleted data, you
must store each data extraction in a staging area to be compared with the next
data load—looking for any missing (deleted) records.

If you are lucky, the source system contains audit tables. Audit tables
are common in transaction databases where deleted or changed data may
have significance or may need to be traced in the future. If audit tables are
not available in the source system, another way to detect deleted facts is
to compare the source data to a staging table that contains the last data
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extraction prior to the current data being loaded, which means each day (or
whatever your ETL interval is), you must leave a copy of the data extraction
in your staging area.

During your ETL process, after both the prior day’s extract and the current
extract are in the staging area, perform a SQL MINUS on the two tables.

Insert into deleted_rows nologging

select * from prior_extract

MINUS

select * from current_extract

The result of the MINUS query reveals rows that have been deleted in
the source system but have been loaded into the data warehouse. After the
process is complete, you can drop the prior_extract table, rename the cur-
rent_extract table to prior_extract, and create a new current_extract table.

Logically Deleting Facts
When physical deletions are prohibited or need to be analyzed, you can
logically delete the record, physically leaving it in place. A logical delete
entails the utilization of an additional column named deleted. It is usually a
Bit or Boolean data type and serves as a flag in fact tables to identify deleted
records. The caveat to the logical delete approach is that every query that
includes the fact table must apply a constraint on the new Boolean field to
filter the logically deleted records.

Factless Fact Tables

The grain of every fact table is a measurement event. In some cases, an event
can occur for which there are no measured values! For instance, a fact table
can be built representing car-accident events. The existence of each event is
indisputable, and the dimensions are compelling and straightforward, as
shown in Figure 6.7. But after the dimensions are assembled, there may well
be no measured fact. Event tracking frequently produces factless designs
like this example.

Actually, the design in Figure 6.7 has some other interesting features.
Complex accidents have many accident parties, claimants, and witnesses.
These are associated with the accident through bridge tables that implement
accident party groups, claimant groups, and witness groups. This allows
this design to represent accidents ranging from solo fender benders all the
way to complex multicar pileups. In this example, it is likely that accident
parties, claimants, and witnesses would be added to the groups for a given
accident as time goes on. The ETL logic for this application would have
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Accident
Party (PK)

attributes...

Claimant (PK)

attributes...

Witness (PK)

attributes...

Accident Date (FK)

Location (FK)

Accident Type (FK)

Accident Party Group (FK)

Accident Party (FK)

Accident Role 

Witness Group (FK)

Witness (FK)

Witness Role 

Claimant Group (FK)

Claimant (FK)

Claimant Role 

Accident Party Group (FK)

Claimant Group (FK)

Witness Group (FK)

Figure 6.7 A factless fact table representing automobile-accident events.

to determine whether incoming records represent a new accident or an
existing one. A master accident natural key would need to be assigned
at the time of first report of the accident. Also, it might be very valuable
to deduplicate accident party, claimant, and witness records to investigate
fraudulent claims.

Another common type of factless fact table represents a coverage. The clas-
sic example is the table of products on promotion in certain stores on certain
days. This table has four foreign keys and no facts, as shown in Figure 6.8.
This table is used in conjunction with a classic sales table in order to answer
the question, What was on promotion that did not sell? The formulation of what
did not happen queries is covered in some detail in Data Warehouse Toolkit,
Second Edition, pages 251–253. Building an ETL data pipeline for promoted
products in each store is easy for those products with a price reduction,
because the cash registers in each store know about the special price. But
sourcing data for other promotional factors such as special displays or me-
dia ads requires parallel separate data feeds probably not coming from the
cash register system. Display utilization in stores is a notoriously tricky
data-sourcing problem because a common source of this data is the manu-
facturing representative paid to install the displays. Ultimately, an unbiased
third party may need to walk the aisles of each store to generate this data
accurately.

Calendar Day (FK)

Product (FK)

Store (FK)

Promotion (FK)

Figure 6.8 A factless coverage table.
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Augmenting a Type 1 Fact Table with Type 2 History

Some environments are predominately Type 1, where, for example, the
complete history of customer purchases is always accessed through a Type
1 customer dimension reflecting the most current profiles of the customers.
In a pure Type 1 environment, historical descriptions of customers are not
available. In these situations, the customer dimension is smaller and simpler
than in a full-fledged Type 2 design. In a Type 1 dimension, the natural key
and the primary key of the dimension have a 1-to-1 relationship.

But in many of these Type 1 environments, there is a desire to access the
customer history for specialized analysis. Three approaches can be used in
this case:

1. Maintain a full Type 2 dimension off to the side. This has the
advantage of keeping the main Type 1 dimension clean and simple.
Query the Type 2 dimension to find old customer profiles valid for
certain spans of time, and then constrain the fact table using those
time spans. This works pretty well for fact tables that represent
immediate actions like retail sales where the customer is present at the
measurement event. But there are some fact tables where the records
represent delayed actions like a settlement payment made months after
a disputed sale. In this case, the span of time defined by a specific
customer profile does not overlap the part of the fact table it logically
should. The same weird time-synchronization problem can arise
when a product with a certain time-delimited profile is sold or
returned months later, after the profile has been superceded. This is
another example of a delayed-action fact table. If your fact table
represents delayed action, you cannot use this option.

2. Build the primary dimension as a full Type 2 dimension. This has the
disadvantage that the dimension is bigger and more complicated
than a Type 1 dimension. But you can simulate the effect of a Type 1
dimension by formulating all queries with an embedded SELECT
statement on the dimension that fetches the natural keys of only the
current Customer dimension records; then you can use these natural
keys to fetch all the historical dimensional records for the actual join
to the fact table.

3. Build the primary dimension as a full Type 2 dimension and
simultaneously embed the natural key of the dimension in the fact
table alongside the surrogate key. This has the disadvantage that the
dimension is bigger and more complicated than a Type 1 dimension.
But if the end user application carefully constrains on just the most
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current customer records, the natural key can be used to join to the
fact table, thereby fetching of the entire history. This eliminates the
embedded SELECT of approach #2.

Graceful Modifications

One of the most important advantages of dimensional modeling is that a
number of significant changes can be made to the final delivered schemas
without affecting end user queries or applications. We call these graceful
modifications. This is a powerful claim that distinguishes the dimensional
modeling world from the normalized modeling world, where these changes
are often not graceful and can cause applications to stop working because
the physical schema changes.

There are four types of graceful modifications to dimensional schemas:

1. Adding a fact to an existing fact table at the same grain

2. Adding a dimension to an existing fact table at the same grain

3. Adding an attribute to an existing dimension

4. Increasing the granularity of existing fact and dimension tables.

These four types are depicted in Figure 6.9. The first three types require
the DBA to perform an ALTER TABLE on the fact table or the dimension
table. It is highly desirable that this ALTER TABLE operation be performed
on populated tables, rather than requiring that the fact table or dimension
table be dropped, redefined, and then reloaded.

Break existing
Dimensions
down to a
lower level

New Facts

Consistent
with Grain

New
Dimensions

New
Dimensional

Attributes

Single valued for
each fact record

Time Product

Figure 6.9 The four types of graceful modification.
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The first three types raise the issue of how to populate the old history of the
tables prior to the addition of the fact, dimension, or attribute. Obviously,
it would be nice if old historical values were available. But more often,
the fact, dimension, or attribute is added to the schema because it has just
become available today. When the change is valid only from today forward,
we handle the first three modifications as follows:

1. Adding a Fact. Values for the new fact prior to its introduction must be
stored as nulls. Null is generally treated well by calculations that
span the time during which the fact has been introduced. Counts and
averages are correct.

2. Adding a Dimension. The foreign key for the new dimension must
point to the Not Applicable record in the dimension, for all times in
the fact table prior to the introduction of the dimension.

3. Adding a Dimension Attribute. In a Type 1 dimension, nothing needs to
be done. The new attribute is simply populated in all the dimension
records. In a Type 2 dimension, all records referring to time spans
preceding the introduction of the attribute need to represent the
attribute as null. Time spans that include the introduction of the new
attribute are tricky, but probably a reasonable approach is to populate
the attribute into these records even though part of their time spans
predate the introduction of the attribute.

The fourth type of graceful modification, increasing the granularity of
a dimensional schema, is more complicated. Imagine that we are tracking
individual retail sales, as depicted in Figure 6.1. Suppose that we had chosen
to represent the location of the sale with a store dimension rather than with
the cash register dimension. In both cases, the number of fact table records
is exactly the same, since the grain of the fact table is the individual retail
sale (line item on a shopper ticket). The only difference between a cash-
register view of the retail sales and a store view of the retail sales given
the same fundamental grain is the choice of the location dimension. But
since cash registers roll up to stores in a perfect many-to-1 relationship,
the store attributes are available for both choices of the dimension. If this
dimension is called location, with some care, no changes to the SQL of
existing applications are needed if the design switches from a store-location
perspective to a cash-register-location perspective.

It is even possible to increase the granularity of a fact table without chang-
ing existing applications. For example, weekly data could change into daily
data. The date dimension would change from week to day, and all applica-
tions that constrained or grouped on a particular week would continue to
function.
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Multiple Units of Measure in a Fact Table

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow:Extract ➔ Clean ➔ Conform ➔ Deliver

Sometimes in a value chain involving several business processes monitor-
ing the flow of products through a system, or multiple measures of inven-
tory at different points, a conflict arises in presenting the amounts. Everyone
may agree that the numbers are correct but different parties along the chain
may wish to see the numbers expressed in different units of measure. For
instance, manufacturing managers may wish to see the entire product flow
in terms of car loads or pallets. Store managers, on the other hand, may
wish to see amounts in shipping cases, retail cases, scan units (sales packs),
or consumer units (individual sticks of gum). Similarly, the same quantity
of a product may have several possible economic valuations. We may wish
to express the valuation in inventory-valuation terms, in list-price terms,
in original-selling-price terms, or in final-selling-price terms. Finally, this
situation may be exacerbated by having many fundamental quantity facts
in each fact record.

Consider a situation where we have ten fundamental quantity facts, five
unit-of-measure interpretations, and four valuation schemes. It would be a
mistake to present just the 13 quantity facts in the fact table and then leave it
up to the user or application developer to seek the correct conversion factors
in remote dimension tables, especially if the user queries the product table at
a separate time from the fact table without forcing the join to occur. It would
be equally bad to try to present all the combinations of facts expressed in
the different units of measure in the main fact table. This would require ten
times five quantity facts, plus ten times four valuation facts or 90 facts in
each fact table record! The correct compromise is to build an underlying
physical record with ten quantity facts, four unit-of-measure conversion
factors, and four valuation factors. We need only four unit-of-conversion
factors rather than five, since the base facts are already expressed in one of
the units of measure, preferably either the smallest unit of measure or the
largest so that all the calculations to derive the other units of measure are
consistently either multiplications or divisions. Our physical design now
has ten plus four plus four, or 18 facts, as shown in Figure 6.10.

The packaging of these factors in the fact table reduces the pressure on
the product dimension table to issue new product records to reflect minor
changes in these factors, especially the cost and price factors. These items,
especially if they routinely evolve, are much more like facts than dimension
attributes.
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Fact Table
Date Key (FK)
Product Key (PK)
More foreign keys...
Degenerate dimensions...

Order Quantity
Release to Manufacturing Quantity
Manufacturing Pass Inspection Quantity
Manufacturing Fail Inspection Quantity
Finished Goods Inventory Quantity
Authorized to Sell Quantity
Shipment Quantity
Shipment Damage Quantity
Customer Return Quantity
Invoice Quantity
Retail Case Factor
Shipping Case Factor
Pallet Factor
Car Load Factor
Acquisition Unit Cost
Burdened Inventory Carrying Unit Cost
Original Selling Unit Price
Final Selling Unit Price

Date Dimension
Product Dimension

The factors are physically
packaged on each fact row
in the user interface, a view
multiplies out the combinations.

Figure 6.10 A physical fact table design showing ten facts, five units of measure, and
four valuation schemes.

We now actually deliver this fact table to users through one or more views.
The most comprehensive view could actually show all 90 combinations of
units of measure and valuations, but obviously we could simplify the user
interface for any specific user group by only making available the units of
measure and valuation factors that the group wanted to see.

Collecting Revenue in Multiple Currencies

Multinational businesses often book transactions, collect revenues, and pay
expenses in many different currencies. A good basic design for all of these
situations is shown in Figure 6.11. The primary amount of the sales trans-
action is represented in the local currency. In some sense, this is always the
correct value of the transaction. For easy reporting purposes, a second field
in the transaction fact record expresses the same amount in a single standard
currency, such as the euro. The equivalency between the two amounts is a
basic design decision for the fact table and probably is an agreed upon daily
spot rate for the conversion of the local currency into the global currency.
Now all transactions in a single currency can be added up easily from the
fact table by constraining in the currency dimension to a single currency
type. Transactions from around the world can easily be added up by sum-
ming the global currency field. Note that the fact table contains a currency
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Date Key (FK)

Sales Fact Table

Store Key (FK)

Product Key (FK)

Promotion Key (FK)

Currency Key (FK)

Date Key (FK)

Currency Exchange Fact Table

Source Currency (FK)

Destination Currency (FK)

Source to Destination Rate

Destination to Source Rate

Time of Day

Ticket # (DD)

Sales Quantity

Sales Amount

Standard Sales Amount

Foreign Key to currency dimension identifying
local currency of the transaction

Transaction amount expressed in local currency

Transaction amount expressed in standard
currency

Figure 6.11 A Schema Design For Dealing With Multiple Currencies.

dimension separate from the geographic dimension representing the store
location. Currencies and countries are closely correlated, but they are not
the same. Countries may change the identity of their currency during peri-
ods of severe inflation. Also, the members of the European Monetary Union
must be able to express historical transactions (before Jan 1, 2002) in both
their original native currencies and in the euro.

But what happens if we want to express the value of a set of transactions
in a third currency or in the same currency but using the exchange rate at a
different time, such as the last day of a reporting period? For this, we need a
currency exchange table, also shown in Figure 6.11. The currency exchange
table typically contains the daily exchange rates both to and from each the
local currencies and one or more global currencies. Thus, if there are 100
local currencies and three global currencies, we need 600 exchange-rate
records each day. It is probably not practical to build a currency exchange
table between each possible pair of currencies, because for 100 currencies,
there would be 10,000 daily exchange rates. It is not likely, in our opinion,
that a meaningful market for every possible pair of exchange rates actually
exists.

Late Arriving Facts

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow:Extract ➔ Clean ➔ Conform ➔ Deliver
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Using a customer-purchase scenario, suppose we receive today a pur-
chase record that is several months old. In most operational data ware-
houses, we are willing to insert this late-arriving record into its correct his-
torical position, even though our sales summary for this prior month will
now change. But we must carefully choose the old contemporary dimension
records that apply to this purchase. If we have been time-stamping the di-
mension records in our Type 2 SCDs, our processing involves the following
steps:

1. For each dimension, find the corresponding dimension record in
effect at the time of the purchase.

2. Using the surrogate keys found in the each of the dimension records
from Step 1; replace the natural keys of the late-arriving fact record
with the surrogate keys.

3. Insert the late-arriving fact record into the correct physical partition
of the database containing the other fact records from the time of the
late-arriving purchase.

There are a few subtle points here. We assume that our dimension records
contain two time stamps, indicating the beginning and end of the period
of validity of the detailed description. This makes the search for the correct
dimension records simple.

A second subtle point goes back to our assumption that we have an
operational data warehouse willing to insert these late-arriving records into
old months. If your data warehouse has to tie to the books, you can’t change
an old monthly sales total, even if the old sales total was incorrect. Now you
have a tricky situation in which the date dimension on the sales record is for a
booking date, which may be today, but the other customer, store, and product
dimensions should nevertheless refer to the old descriptions in the way we
have described. If you are in this situation, you should have a discussion
with your finance department to make sure that they understand what you
are doing. An interesting compromise we have used in this situation is to
carry two sets of date dimensions on purchase records. One refers to the
actual purchase date, and the other refers to the booking date. Now you
can roll up the sales either operationally or by the books.

The third subtle point is the requirement to insert the late-arriving pur-
chase record into the correct physical partition of the database containing its
contemporary brothers and sisters. This way, when you move a physical par-
tition from one form of storage to another, or when you perform a backup
or restore operation, you will be affecting all the purchase records from a
particular span of time. In most cases, this is what you want to do. You can
guarantee that all fact records in a time span occupy the same physical par-
tition if you declare the physical partitioning of the fact table to be based on
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the date dimension. Since you should be using surrogate keys for the date
dimension, this is the one case where the surrogate keys of a dimension
should be assigned in a particular logical order.

Aggregations

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow:Extract ➔ Clean ➔ Conform ➔ Deliver

The single most dramatic way to affect performance in a large data ware-
house is to provide a proper set of aggregate (summary) records that coexist
with the primary base records. Aggregates can have a very significant effect
on performance, in some cases speeding queries by a factor of a hundred or
even a thousand. No other means exist to harvest such spectacular gains.
Certainly, the IT owners of a data warehouse should exhaust the poten-
tial for performance gains with aggregates before investing in major new
hardware purchases. The benefits of a comprehensive aggregate-building
program can be realized with almost every data warehouse hardware and
software configuration, including all of the popular relational DBMSs such
as Oracle, Red Brick, Informix, Sybase, and DB2, and uniprocessor, SMP and
MPP parallel processing architectures. This section describes how to struc-
ture a data warehouse to maximize the benefits of aggregates and how to
build and use those aggregates without requiring complex accompanying
metadata.

Aggregate navigation is a standard data warehouse topic that has been
discussed extensively in literature. Let’s illustrate this discussion with the
simple dimensional schema in Figure 6.12.

The main points are:

In a properly designed data warehouse environment, multiple sets of
aggregates are built, representing common grouping levels within
the key dimensions of the data warehouse. Aggregate navigation has
been defined and supported only for dimensional data warehouses.
There is no coherent approach for aggregate navigation in a
normalized environment.

An aggregate navigator is a piece of middleware that sits between
the requesting client and the DBMS. See Figure 6.13.

An aggregate navigator intercepts the client’s SQL and, wherever
possible, transforms base-level SQL into aggregate aware SQL.
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time_key (FK)

product_key (FK)

store_key (FK)

dollars_sold

dollars_cost

units_sold

Time dimension

Sales Facttime key (PK)
SQL date
day of week
month
fiscal period
...

Store dimension

store key (PK)
store ID
store name
address
region
floor_plan_type

Product dimension

product_key (PK) 
SKU
description
brand
category
department
package-type
size

Figure 6.12 A simple dimensional schema at the grain of day, product, and store.

The aggregate navigator understands how to transform base-level
SQL into aggregate-aware SQL because the navigator uses special
metadata that describes the data warehouse aggregate portfolio.

The goals of an aggregate program in a large data warehouse need to be
more than just improving performance. A good aggregate program for a
large data warehouse should:

1. Provide dramatic performance gains for as many categories of user
queries as possible

2. Add only a reasonable amount of extra data storage to the
warehouse. Reasonable is in the eyes of the DBA, but many data

“Base” SQL–SQL to
un-aggregated base
tables

Aggregate Aware
SQL

Aggregate Navigator

Metadata and aggregate
usage statistics Base data and Aggregate Tables 

Contains dynamic list of available aggregates
and their relationships with the base data

Any Client
Query Tool

Backend
Database

Warehouse

Figure 6.13 Aggregate navigator architecture.
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warehouse DBAs strive to increase the overall disk storage for the
data warehouse by a factor of two or less.

3. Be completely transparent to end users and to application designers,
except for the obvious performance benefits. In other words, no end
user application SQL should reference the aggregates directly!
Aggregates must also benefit all users of the data warehouse,
regardless of which query tool they are using.

4. Affect the cost of the data-extract system as little as possible. It is
inevitable that a lot of aggregates will have to be built every time
data is loaded, but the specification of these aggregates should be as
automated as possible.

5. Affect the DBA’s administrative responsibilities as little as possible.
In particular, the metadata supporting aggregates should be very
limited and easy to maintain. Much of the metadata should be
automatically created by monitoring user queries and suggesting
new aggregates to be created.

A well-designed aggregate environment can achieve all these objectives.
A poorly designed aggregate environment can fail all of the objectives!
Here is a series of design requirements, which, if adhered to, will achieve
our desired objectives.

Design Requirement #1
Aggregates must be stored in their own fact tables, separate from base-level
data. Each distinct aggregation level must occupy its own unique fact table.

The separation of aggregates into their own fact tables is very important
and has a whole series of beneficial side effects. First, the aggregate naviga-
tion scheme described in this section is much simpler when the aggregates
occupy their own tables, because the aggregate navigator can learn almost
everything it needs from the DBMS’s ordinary system catalog, rather than
needing additional metadata. Second, an end user is much less likely to
accidentally double-count additive fact totals when the aggregates are in
separate tables, because every query against a given fact table will by def-
inition go against data of a uniform granularity. Third, the small number
of giant numerical entries representing, for instance, national sales totals
for the entire year do not have to be shoehorned into the base table. Often,
the presence of these few giant numbers forces the database designer to
increase the field with of all entries in the database, thereby wasting disk
storage. Since the base table is huge and occupies perhaps half of the entire
database, it is very helpful to keep its field widths as tight as possible. And
fourth, the administration of aggregates is more modular and segmented



P1: NEA
WY046-06 WY046-Kimball-v4.cls August 23, 2004 22:21

244 Chapter 6

when the aggregates occupy separate tables. Aggregates can be built at sep-
arate times, and with an aggregate navigator, individual aggregates can be
taken off-line and placed back on-line throughout the day without affecting
other data.

Design Requirement #2
The dimension tables attached to the aggregate fact tables must, wherever
possible, be shrunken versions of the dimension tables associated with the
base fact table.

The MOST shrunken version of a dimension is a dimension removed
altogether!

In other words, assuming the base-level fact table as shown in Figure
6.12, we might wish to build category-level aggregates, representing the
product dimension rolled up from the individual product to the category.
See Figure 6.14. We call this the one-way category aggregate schema.

Notice that in this case we have not requested aggregates in either the
time dimension or the store dimension. The table in Figure 6.14 represents
how much of a category of a product has sold in each store each day. Our
design requirement tells us that the original product table must now be re-
placed with a shrunken product table, which we might as well call category.
A simple way to look at this shrunken product table is to think of it as con-
taining only fields that survive the aggregation from individual product
up to the category level. Only a few fields will still be uniquely defined.

Time dimension

Sales fact table

Category dimension

Store dimension

time_key (PK)
SQL_date
day_of_week
month
fiscal period
season

time_key (FK)
category_key (FK)
store_key (FK)
dollars_sold
units_sold
dollars_cost

category_key (PK)
category
department

store_key (PK)
store_ID
store_name
address
region
division
floor_plan_type

Figure 6.14 The one-way category aggregate schema.
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For example, both the category description and the department description
would be well defined at the category level, and these must have the same
field names they have in the base product dimension table. However, the
individual UPC number, the package size, and the flavor would not exist
at this level and must not appear in the category table.

Shrunken dimension tables are extremely important for aggregate navi-
gation because the scope of any particular aggregation level can be deter-
mined by looking in the system catalog description of the shrunken table.
In other words, when we look in the category table, all we find is category
description and department description. If a query asks for product flavor,
we know immediately that this aggregation level cannot satisfy the query,
and thus the aggregate navigator must look elsewhere.

Shrunken dimension tables are also attractive because they allow us to
avoid filling the original dimension tables with weird null values for all the
dimension attributes that are not applicable at higher levels of aggregation.
In other words, since we don’t have flavor and package size in the category
table, we don’t have to dream up null values for these fields, and we don’t
have to encode user applications with tests for these null values.

Although we have focused on shrunken dimension tables, it is possible
that the number of measures in the fact table will also shrink as we build
ever-higher levels of aggregation. Most of the basic additive facts such as
dollar sales, unit sales, and dollar cost will survive at all levels of aggrega-
tion, but some dimensions such as promotion and some facts such promo-
tion cost may make sense only at the base level and need to be dropped in
the aggregate fact tables.

A simplification of requirement #2 builds aggregate fact tables only where
specific dimensions are completely eliminated rather than just shrunk. For
example, in a retail sales fact table, the location (or store) dimension could be
eliminated, effectively creating a national total sales fact table. This approach,
when it can be used, has the advantage that the aggregate fact table is now
impervious to changes in the dropped dimension. Thus, you could change the
definitions of your geographic regions and the table in our example would not
change, whereas a partially shrunken location dimension that rolled up to region
would need to be recalculated. This approach is not a panacea; in our example,
the only queries that could use the proposed aggregate table would be ones that
requested the national sales totals.

Design Requirement #3
The base fact table and all its related aggregate fact tables can be associated
together as a family of schemas so that the aggregate navigator knows which
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tables are related to each other. Any single schema in the family consists of
a fact table and its associated dimension tables. There is always exactly one
base schema that is the unaggregated data, and there will be one or more
aggregate schemas, representing computed summary data. Figure 6.12 is a
base schema, and Figure 6.14 is one of perhaps many aggregate schemas in
our family.

The registration of this family of fact tables, together with the associated
full-size and shrunken dimension tables, is the sole metadata needed in this
design.

Design Requirement #4
Force all SQL created by any end user or application to refer exclusively to
the base fact table and its associated full-size dimension tables.

This design requirement pervades all user interfaces and all end user
applications. When a user examines a graphical depiction of the database,
he or she should see only the equivalent of Figure 6.12. The user should
not be aware that aggregate tables even exist! Similarly, all hand-coded
SQL embedded in report writers or other complex applications should only
reference the base fact table and its associated full-size dimension tables.

Administering Aggregations, Including
Materialized Views
There are a number of different physical variations of aggregations, depend-
ing on the DBMS and the front-end tools. From our design requirements
in the previous section, we see that the correct architecture of an aggregate
navigator is a middleware module sitting in front of the DBMS intercepting
all SQL and examining it for possible redirection. The wrong architecture is
an aggregate navigation scheme embedded in a single proprietary front-end
tool, where the aggregation benefit is not available to all SQL clients.

There are two fundamental approaches to aggregating navigation at the
time of this writing. One is to support a variation of the explicit shrunken
fact and dimension tables described in the previous section. The other is to
dynamically create these tables by designating certain ephemeral queries to
be materialized as actual data written to the disk so that subsequent queries
can immediately access this data without recomputing the query. Oracle’s
Materialized Views are an example of the second approach.

Both the explicit-table approach and the materialized-view approach re-
quire the DBA to be aware of the effects on the aggregates of updating
the underlying base fact tables. Immediately after updating the base tables,
the aggregates are invalid and must not be used. In most environments, the
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base tables must be published to the user community immediately, before
all of the aggregates have been recomputed.

Routine daily additions to fact tables may allow the aggregates to be
updated by just adding into the various aggregate buckets. But significant
changes to the content or logic of a dimension table may require aggregates
to be completely dropped and recomputed. For example, Type 1 corrections
to historical dimension data will require aggregates to be recomputed if the
aggregate is based on the attribute that was changed. But the converse is
true! If the changed attribute is not the target of an aggregate, the aggre-
gate can be left alone. For example, one could completely remap the flavor
attributes of a big product file and the Category aggregate would not be
affected. Visualizing these dependencies is a critical skill in managing the
portfolio of aggregates.

Note that Type 2 changes to a dimension generally will not require any
aggregates to be rebuilt, as long as the change is administered promptly
and does not involve the late-arriving data scenario. Type 2 changes do not
affect the existing aggregates; they were correct when they were written.

Generally, a given aggregate fact table should be at least ten-times smaller
than the base fact table in order to make the tradeoff between administra-
tive overhead and performance gain worthwhile. Roughly speaking, the
performance gain of an aggregate is directly proportional to the storage-
shrinkage factor. In other words, an aggregate fact table ten-times smaller
than the base table will be about ten-times as fast.

If the overall aggregate table portfolio occupies only 1 percent of the total
fact table storage, not enough aggregates have been built. A total aggregate
overhead approaching 100 percent (that is, a doubling of the total storage)
is reasonable.

Large hardware-based, parallel-processing architectures gain exactly the
same performance advantages from aggregates as uniprocessor systems
with conventional disk storage, since the gain comes simply from reduc-
ing total I/O. However, the salesperson and system engineers of these
hardware-intensive systems will deny this because their business is based
on selling more hardware, not on improving the performance of the system
with clever data structures. Beware!

Delivering Dimensional Data to OLAP Cubes

Server-based OLAP (online analytic processing) products are an increas-
ingly popular component of the data warehouse infrastructure. OLAP
servers deliver two primary functions:

Query performance. Using aggregates and specialized indexing
and storage structures. The OLAP servers automatically manage
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aggregates and indexes, a benefit whose value may become clear by
reviewing the previous section that discusses how to manage
aggregate tables.

Analytic richness. Using languages that, unlike SQL, were designed
for complex analytics. OLAP servers also have mechanisms for
storing complex calculations and security settings on the server, and
some are integrated with data-mining technologies.

In all cases, the best source for an OLAP cube is a dimensional data ware-
house stored in an RDBMS. The language of the dimensional data ware-
house, dimensions, keys, hierarchies, attributes, and facts, translates exactly
to the OLAP world. OLAP engines are developed primarily to support fast
and complex querying of dimensional structures. OLAP engines, unlike
relational databases and ETL tools, are not designed primarily to cleanse
data or ensure referential integrity. Even if your OLAP technology provides
features that let you build a cube directly from transactional sources, you
should seldom plan to use those features. Instead, you should design a re-
lational data warehouse and populate it using the techniques described in
this book. That relational store should feed data to the cube.

Cube Data Sources
The various server-based OLAP products and versions have different fea-
tures. One area of significant difference is the proximate source of the data
that flows into a cube. Some products require that data be sourced from a
text file; others require that data be sourced from a single brand of relational
database; others permit data to be loaded from practically any source.

If you are sourcing your cube from flat files, one of the last steps in your
ETL process is, obviously, to write out the appropriate datasets. Though
sourcing from flat files is inelegant and slower than sourcing directly from
the relational database, it’s not a terrible performance hit: All relational
databases and ETL tools can efficiently write the results of a query to files.

Analyze any queries that your cube processing issues against the rela-
tional data warehouse. Ensure that such queries are well tuned. If neces-
sary, add indexes or materialized views to improve the performance of these
processing queries.

Processing Dimensions
Just as relational dimensions are processed before the fact tables that use
them, so must OLAP dimensions be processed before facts. Depending
on which OLAP tool you use, you may have the option of processing di-
mensions and facts in a single transaction, which rolls back if an error is
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encountered. This is appealing in theory but tends not to scale very well
for a large OLAP database. Most large OLAP systems process dimensions
one by one, often as the last step in the ETL module that populates the
corresponding relational dimension table.

Your ETL system design needs to be aware of a few characteristics of
OLAP dimensions. First, recall that OLAP systems are designed for ease of
use and good query performance for queries that navigate up and down
the strong dimensional hierarchy or hierarchies (such as Product to Brand
to Category). With a classic relational data warehouse, you should ensure
referential integrity between hierarchy levels (that is, that a product rolls up
to one and only one brand, and so on). But with OLAP tools, you absolutely
must ensure referential integrity. The OLAP server will insist on referential
integrity between the levels of a strong hierarchy. If a violation is found, the
dimension processing will either fail, or, at best, the OLAP server will make
an assumption about how to proceed. You don’t want either of these events
to occur: Thoroughly clean your data before OLAP processing is launched.

Changes in Dimension Data
OLAP servers handle different kinds of dimension-data changes completely
differently. Most OLAP servers handle new dimension rows, such as adding
a new customer, as gracefully as the relational dimensional model does.
Updating attribute values that do not participate in strong hierarchies and
thus do not have permanent aggregations built on them is usually graceful
as well. With changes in dimension attributes where attributes are part of
the OLAP dimension hierarchy, the ETL designer needs to be very careful.

Let’s get the easy case out of the way first. Type 2 slowly changing dimen-
sions, where a new dimension row with a new surrogate key is added for
the changed member, is consumed gracefully by the OLAP servers. From
the OLAP server’s point of view, this is simply a new customer, indistin-
guishable from a completely new customer.

A Type 1 slowly changing dimension that updates in place the strong hi-
erarchical attributes is much harder for OLAP servers to manage. The OLAP
servers’ challenges are exactly analogous to those faced by relational data
warehouses with aggregate tables built on the same dimension attributes.
When the dimension hierarchy is restructured, the existing aggregations
are invalidated. The OLAP servers handle this problem with a wide variety
of gracefulness, from not noticing the change, to simply throwing away the
aggregations and rebuilding them as a background process, to invalidating
the dimension and all cubes that use that dimension, forcing a full OLAP
database reprocessing. You should look to your OLAP server vendor for de-
tailed information about how this problem is handled in your technology.
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Vendors are improving this area with each release, so it’s important to use
the latest software or validate the conditions for your version.

You should test before OLAP dimension processing to verify that no
changes have been made that would put your OLAP database into an in-
valid or inconsistent state. Depending on the costs and system usage, you
could decide to design your system to:

Let the OLAP and relational data warehouse databases diverge:
Defer any further OLAP processing until a convenient time (typically
the next weekend).

Keep the OLAP cubes in synch with the relational data warehouse by
halting relational processing as well (typically accumulating changes
in the staging area).

Keep the OLAP cubes in synch with the relational data warehouse by
accepting the expensive reprocessing operation during a nightly load.
This option would be more palatable if the OLAP cubes were mirrored
or otherwise remain available to business users during reprocessing.

In any case, the extraordinary event should be logged into the ETL error
event table and the operator e-mailed or paged.

Processing Facts
Many people think of cubes as containing only aggregated data. This per-
ception is becoming as old fashioned as the notion that the data warehouse
contains only aggregated data. Server-based OLAP products are capable
of managing very large volumes of data and are increasingly used to hold
data at the same grain as the relational data warehouse. This distinction is
important for the design of the cube-processing portion of the ETL system.

Most server-based OLAP products support some form of incremental
processing; others support only full processing. Full cube processing is
most appropriate for aggregate cubes or small detailed cubes. For good
processing performance on a large volume of detailed data, it is vital to use
incremental processing for fact data. Two types of cube incremental pro-
cessing may be available in your OLAP technology: partition-based and
incremental facts.

Loading into a partition is an appealing way to load a subset of the cube’s
data. If your OLAP technology supports partitions, and your cube is parti-
tioned by time, usually weekly or monthly, you can easily load only that time
period. If you process daily into weekly partitions, your Monday data will
actually be dropped and reloaded seen times during the week until the Sun-
day load closes down the partition. Certainly, this technique doesn’t maxi-
mize load efficiency, but it is perfectly acceptable for many applications. It is
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common to design OLAP cube partitions with the same periodicity as their
corresponding relational partitions and to extend the script that manages
the relational partitions to also manage the OLAP partitions.

Partitioning the OLAP cube can provide significant benefits for both
query and processing performance. Queries against cubes partitioned by
one or more dimensions can be executed only against the partitions included
in the query rather than the whole cube. The advantages of processing are
both to support a simple pseudo-incremental processing as described previ-
ously and also to support the processing of multiple partitions in parallel. If
your cubes use a complex partition design, your ETL system should be de-
signed to launch multiple partition processing jobs in parallel. If your OLAP
server doesn’t manage parallel processing on your behalf, you should de-
sign this part of your ETL system so you can process a configurable number
of partitions in parallel. This is a parameter to optimize during the system-
testing phase.

Some OLAP servers also support true incremental fact processing. You
supply a way to identify the new data (usually Date Processed), and the
OLAP server will add it to the cube or cube partition. If you have late-
arriving facts, incremental processing will almost surely be a better ap-
proach for you than reprocessing the current partition.

An alternative to full or incremental processing is for the OLAP engine
to monitor the source databases for new transactions and to automatically
populate the cube with new data. This is a complex process that requires
close integration between OLAP engine and relational engine. At the time
of this writing, some rudimentary examples of such a feature are available;
more functional features are under development.

Common Errors and Problems

One of the most common errors during fact processing is a referential in-
tegrity failure: A fact row being processed does not have a corresponding
dimension member. If you follow the advice in this and other Toolkit books
and use surrogate keys, you should not confront a fact referential integrity
failure in the normal course of processing. Nonetheless, you should edu-
cate yourself about how your OLAP server will handle this event should
an extraordinary event occur.

OLAP servers are not a natural fit with fact data that is updated in place.
On the relational side, the preferred design is to use ledgered fact tables that
have entries for fact changes as positive or negative transaction amounts. The
ledger design enables auditing of fact changes and for that reason alone is
preferred. An OLAP cube built on a ledgered fact table can accept changes
gracefully, though the processing logic may need to be complex enough to
support late-arriving fact data if the cube is partitioned by time.
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By contrast, an OLAP cube built on a fact table that supports in-place
updates is very likely to need full processing each time an update occurs. If
the cube is small, this may not be a problem. If the cube is large, you should
investigate whether it is acceptable to business users to group updates into
weekly or monthly batches or else forgo incorporating the updateable sub-
ject area into the OLAP database. Note also that the OLAP processing,
which is designed to consume new fact rows, will not identify that fact
rows have been updated. The ETL system must trigger the extraordinary
processing.

Occasional Full Processing

OLAP technology is not, at the time of this writing, as reliable as relational
technology. We believe firmly that the relational dimensional data ware-
house should be managed as the data warehouse system-of-record. OLAP
cubes should be regarded as ephemeral. Many companies go six months,
a year, or more without having to fully reprocess their cubes. However, all
installations should develop and test procedures for fully reprocessing the
OLAP database. A corollary to this stricture is that you should not design
an OLAP cube to contain data that is not in the relational data warehouse
or is not easily recoverable into the data warehouse. This includes writeback
data (most common in budgeting applications), which should be populated
directly or indirectly into a relational database.

Until OLAP servers are as reliable and open as their relational brethren,
they should be considered secondary systems. OLAP vendors are focusing
on reliability and recoverability in versions currently under development,
so we hope this second-class status will soon be unnecessary.

Integrating OLAP Processing into the ETL System
If your data warehouse includes OLAP cubes, they should be as profession-
ally managed as any other part of the system. This means that you should
have service agreements with business users about data currency and sys-
tem uptime. Although we generally prefer cubes to be published on the
same schedule as relational data, it may be acceptable to refresh cubes on a
slower schedule than the relational database. The most important thing is
to negotiate an agreement with business users, stick to it, and notify them
promptly when the inevitably unexpected occurs.

Although the OLAP server vendors haven’t done a great job of providing
tools to manage OLAP databases in a professional way, they have all at the
very least provided a command-line tool in addition to the more familiar
cube management wizard. If you can launch OLAP processing from a com-
mand line, you can integrate it, however weakly, into your ETL system.
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Technologies that include ETL and OLAP offerings from a single vendor
provide more elegant integration.

Many systems can fully process the entire OLAP database on a regular
schedule, usually weekly or monthly. In this case, the OLAP processing
needs merely to verify that week-end or month-end processing of the re-
lational data warehouse has completed successfully. The ETL system can
check the system metadata for that successful condition and, if encountered,
kick off the cube processing.

For larger systems, a common integration structure includes adding the
OLAP dimension processing as the final step in each dimension table pro-
cessing branch, module, or package in your ETL system. As described previ-
ously, you should test for dangerous data operations that might invalidate a
cube before launching the OLAP dimension processing script or command.
Similarly, the fact table processing module or branch should be extended
to include the OLAP processing. The ultimate step of all processing should
update metadata of timing and success (or failure) and post this information
to the business community.

OLAP Wrap-up
If an OLAP database is part of your data warehouse system, it should be
managed rigorously. The ETL team should be expert in the processing fea-
tures and quirks of the corporate OLAP technology and ideally should
have input into the choice of that technology. This is especially true if you
are following the current trend of including most or all data warehouse
data, including fine-grained data, in the OLAP cubes. To truly reap the
benefits of fine-grained cubes, the data warehouse team must own and
integrate OLAP processing with the more familiar relational-focused ETL
system.

Summary

In this chapter, we defined the fact table as the vessel that holds all numeric
measurements of the enterprise. All fact table records have two main parts:
the keys that describe the context of the measurements and the measure-
ments themselves which we call facts. We then described the essential role
of the fact table provider, who publishes the fact table to the rest of the
community.

We saw that referential integrity is hugely important to the proper func-
tioning of a dimensional schema, and we proposed three places where ref-
erential integrity can be enforced.
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We then showed how to build a surrogate key pipeline for data ware-
houses that accurately track the historical changes in their dimensional
entities.

We described the structure of the three kinds of fact tables: transaction
grain, periodic snapshot grain, and accumulating snapshot grain. In our
experience, these three grains suffice to model all possible measurement
conditions. This simple result is made possible by never mixing the grain
of measurements in a single fact table. Adhering to this approach simplifies
application development and makes it far less likely that the end user will
make mistakes by not understanding the structure of the data.

We then proposed a number of specific techniques for handling graceful
modifications to fact and dimension tables, multiple units of measurement,
late-arriving fact data, and building aggregations.

We finished the chapter with a specialized section on loading OLAP
cubes, which are legitimate first cousins of relational dimensional schemas.

With this chapter, we have described the four main steps of the ETL
system in a data warehouse: extraction, quality assurance, conforming, and
structuring data as a series of dimensional schemas ready to be consumed
by end users. In the next Chapters 7 and 8, we’ll dive into the software tools
most commonly used in building ETL systems, and we’ll figure out how to
schedule the operations of such a complicated system.
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C H A P T E R

7

Development
“By failing to prepare, you are preparing to fail.”

Benjamin Franklin

If you have been reading this book in sequence, you now have a detailed
model of the challenges you face building your ETL system. We have de-
scribed the data structures you need (Chapter 2), the range of sources you
must connect to (Chapter 3), a comprehensive architecture for cleaning and
conforming the data (Chapter 4), and all the target dimension tables and fact
tables that constitute your final delivery (Chapters 5 and 6). We certainly
hope that you can pick and choose a subset of all this for your ETL system!

Hopefully, you are at the point where you can draw a process-flow dia-
gram for your proposed ETL system that clearly identifies at a reasonable
level of detail the extracting, cleaning, conforming, and delivering modules.

Now it’s time to decide what your ETL system development platform is
and how to go about the development. If you have the luxury of starting
fresh, you have a big fork in the road: Either purchase a professional ETL
tool suite, or plan on rolling your own with a combination of program-
ming and scripting languages. We tried to give you an even handed assess-
ment of this choice in Chapter 1. Maybe you should go back and read that
again.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow : Extract ➔ Clean ➔ Conform ➔ Deliver
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In the next section, we give you a brief listing of the main ETL tool
suites, data-proofing systems, data-cleansing systems, and scripting lan-
guages available as of this writing, but in writing a book intended to have a
useful shelf life of several years, please understand that we intend this only
as a general guide. We invite you to perform an Internet search for each of
these vendors and scripting languages to get their latest offerings.

The first half of this chapter is a spirited and we hope entertaining tour
through a number of basic low-level transforms you must implement. We
have chosen to illustrate these with simple UNIX utilities like ftp, sort, gawk,
and grep, keeping in mind that the professional ETL tool suites would have
proprietary data-flow modules that would replace these examples.

The second half of this chapter focuses on DBMS specific techniques for
performing high-speed bulk loads, enforcing referential integrity, taking
advantage of parallelization, and troubleshooting performance problems.

Current Marketplace ETL Tool Suite Offerings

In Chapter 1, we discussed the pros and cons of purchasing a vendor’s
ETL tool suite or rolling your own ETL system with hand-coding. From the
data warehouse point of view, the ETL marketplace has three categories:
mainline ETL tool, data profiling, and data cleansing.

In alphabetical order, the main ETL tool suite vendors as of this writing,
with product names where the company has products in other categories,
are:

Ab Initio

Ascential DataStage

BusinessObjects Data Integrator

Cognos DecisionStream

Computer Associates Advantage Data Transformation

CrossAccess eXadas

Data Junction Integration Studio (acquired by Pervasive)

DataHabitat ZeroCode ETL

DataMirror Transformation Server

Embarcadero DT/Studio

ETI (Evolutionary Technologies International)

Hummingbird ETL

IBM DB2 Data Warehouse Manager
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Informatica (PowerCenter and SuperGlue)

Information Builders iWay

Mercator Inside Integrator (acquired by Ascential)

Microsoft SQL Server DTS (Data Transformation Services)

Oracle9i Warehouse Builder

Sagent Data Flow Server (acquired by Group 1)

SAS Enterprise ETL Server

Sunopsis

Most of the names in these lists are copyright, their owners.
The main data-profiling vendors at the time of this writing are:

Ascential (ProfileStage)

Evoke Software

SAS

Trillium/Harte Hanks (with the Avelino acquisition)

The main data cleansing vendors at the time of this writing are:

Ascential (acquisition of Vality)

First Logic

Group 1

SAS DataFlux

Search Software America

Trillium (acquired Harte Hanks)

If you perform an Internet search for each of these products, you will get
a wealth of information and their current statuses.

ETL tool suites typically package their functionality as a set of transforms.
Each performs a specific data manipulation. The inputs and outputs of
these transforms are compatible so that the transforms can easily be strung
together, usually with a graphical interface. Typical categories of transforms
that come built with dozens of examples in each category include:

Aggregators

General expressions

Filters

Joiners

Lookups
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Normalizers

Rankers

Sequence generators

Sorters

Source readers (adapters)

Stored procedures

Updaters

XML inputers and outputers

Extensive facilities for writing your own transforms in a variety of
languages

Current Scripting Languages

Interesting scripting languages available on a variety of platforms (typically
UNIX, Linux, Windows, and, in some cases, IBM mainframes) include:

JavaScript

Perl

PHP

Python

Tcl

All of these scripting languages excel at reading and writing text files and
invoking sort routines including native OS sorting packages as well as com-
mercial packages like SyncSort and CoSort. Several have good interfaces to
commercial DBMSs as well.

Of course, one can always drop down to C or C++ and do anything. While
all the ETL alternatives eventually allow escapes into C or C++, it would
be unusual to build the entire ETL system at such a low level.

Time Is of the Essence

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver
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Throughout the ETL system, time or, more precisely, throughput, is the
primary concern. Mainly, this translates to devising processing tasks that
ultimately enable the fastest loading of data into the presentation tables and
then the fastest end user response times from those tables. Occasionally,
throughput rears its head when cleaning up unwieldy or dirty data.

Push Me or Pull Me
In every data warehouse, there inevitably is data that originates from flat-
file systems. The first step to incorporating this data into the data warehouse
is moving it from its host server to the ETL server. Flat files can either be
pushed from the source host systems or pulled by the ETL server.

Which approach works best? The honest answer to this question is, well,
both. However, the more important question to ask is when?—as in “When
is the source file available to be moved?”

In many cases, the source files that must be moved are from opera-
tional business systems, and the files are often not available to be moved
to the ETL server until after the operational systems nightly batch pro-
cesses are completed. If the ETL server attempts to pull the file, it risks
attempting to start the file transfer before the file is ready, in which case the
data loaded into the warehouse might be incorrect or incomplete. In these
situations, having the host system push the source files has the following
advantages:

The FTP step to push the source file can be embedded into the
operational system’s batch process so that the file is pushed as soon
as it is prepared by the host system, thereby starting the ETL process
at the earliest possible time and minimizing idle time during the load
window.

Errors in the process of preparing the source file can prevent the file
transfer from being initiated, thereby preventing incorrect or
incomplete data from being loaded into the data warehouse.

The ETL server must have an FTP host service running in order to support
pushing source files from the host systems.

In many cases, an interrupted FTP process must be restarted. The larger the
download file and the tighter the batch window, the riskier relying on simple FTP
becomes. If this is important to you, you should try to find a resumable FTP utility
and/or verify the capabilities of your ETL tool suite to resume an interrupted
transfer. Also, when looking at these added-value, higher-end, FTP-like
capabilities, you may be able to get compression and encryption at the same time.
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It is equally likely that some of the files needed by the ETL process are
available at any time the ETL process needs them. In these cases, the ETL
server can pull the files when it needs them. The ETL server must establish
an FTP connection to the host file server. Running FTP from a Unix shell
script or Windows batch file is quite simple. On both platforms, the file-
transfer commands can be passed to FTP via an external command file, as
in the following example.

In the following pages, we describe many low-level data-manipulation
commands including sorting, extracting subsets, invoking bulk loaders, and
creating aggregates. For clarity, we show command-line versions of each of these
commands. Obviously, in a commercial ETL tool suite, all of these commands
would be invoked graphically by clicking with the mouse. Keep that in mind!

You can embed the following command in a Windows batch file:

ftp -n -v -s:transfer.ftp

-n options turns off login prompting

-v turns off remote messages

-s: specifies the command file, In this case "transfer.ftp"

The content of command file transfer.ftp might be something like:

open hostname

user userid password

cd /data/source

lcd /etl/source

ascii

get source_1.dat

get source_2.dat

get source_3.dat

... ... ...

get source_n.dat

bye

On a UNIX system, the commands are the same, but the syntax for passing a
command file is slightly different.

Ensuring Transfers with Sentinels
Whether you are pushing or pulling your flat-file sources, you need to
be sure that your file transfer completes without any errors. Processing a
partially transferred file can lead to corrupt or incomplete data being loaded
into the data warehouse.
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An easy way to ensure your transfers are complete is to use sentinel (or sig-
nal) files. The sentinel file has no meaningful content, but its mere existence
signifies the readiness of the file(s) to which it relates.

In the push approach, a sentinel file is sent after the last true source
file is pushed. When the ETL receives the sentinel file, it signifies that
all of the source files have been completely received and that the ETL
process can now safely use the source files. If the transfer of the
source files is interrupted, the sentinel file is not sent, and the ETL
process suspends until the error is corrected and the source files are
resent.

Sentinel files can also be used in a pull environment. In this case, the
source host sends a sentinel file only to notify the ETL server that the
source files are available. Once the ETL server receives the sentinel, it
can initiate the FTP process to pull the source files to begin the ETL
process.

Either way, the ETL process must include a method to poll the local file sys-
tem to check for the existence of the sentinel file. Most dedicated ETL tools
include this capability. If you are manually developing the ETL process, a
Windows NT/2000 server scheduled task or Unix cron job can accomplish
this task.

Sorting Data during Preload

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Certain common ETL processes call for source data to be sorted in a
particular order to achieve the desired outcome. Such ETL processes as
aggregating and joining flat-file sources require the data to be presorted.
Some ETL tools can handle these tasks in memory; however, aggregating
or joining unsorted data is significantly more resource-intensive and time-
consuming than doing so on sorted data.

When the source data is contained in a database, sorting is easily accom-
plished by including an order by clause in the SQL that retrieves the data
from the database. But if the source data is from flat files, you need to use
a sort utility program to arrange the data in the correct order prior to the
ETL process.
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Sorting on Mainframe Systems
Every mainframe system includes either IBM’s DFSORT or SyncSort’s SORT
utility program. Syncsort and DFSORT commands are virtually identical
and are quite simple. With few exceptions, mainframe data files are format-
ted in fixed widths, so most sorts are accomplished by simply specifying
the positions and lengths of the data elements on which the data are to be
sorted. We use the sample sales file that follows to show how mainframe
sorts are accomplished.

20000405026Discount Electronics 00014SUBWOOFER

^^^^0000015000019800000297000

20000406005City Electronics 00008AMPLIFIER

^^^^0000035000026100000913500

20000407029USA Audio and Video 00017KARAOKE MACHINE

^^^^0000020000008820000176400

20000410010Computer Audio and Video 00017KARAOKE MACHINE

^^^^0000010000008820000088200

20000411002Computer Audio and Video 00017KARAOKE MACHINE

^^^^0000035000008820000308700

20000411011Computer Audio and Video 00008AMPLIFIER

^^^^0000010000026100000261000

20000415019Computer Discount 00018CASSETTE PLAYER/RECORDER

^^^^0000020000006840000136800

20000418013Wolfe''s Discount 00014SUBWOOFER

^^^^0000025000019800000495000

20000418022USA Audio and Video 00008AMPLIFIER

^^^^0000015000026100000391500

20000419010Computer Audio and Video 00023MP3 PLAYER

^^^^0000010000017640000176400

20000419014Edgewood Audio and Video 00006CD/DVD PLAYER

^^^^0000020000044100000882000

20000419016Computer Audio and Video 00014SUBWOOFER

^^^^0000030000019800000594000

20000419021Computer Audio and Video 00014SUBWOOFER

^^^^0000035000019800000693000

20000419028Bayshore Electronics 00020CD WALKMAN

^^^^0000015000004140000062100

The COBOL copybook for this file would be:

01 SALES-RECORD.

05 SALE-DATE PIC 9(8).

05 CUSTOMER-ID PIC X(3).

05 CUSTOMER-NAME PIC X(27).

05 PRODUCT-ID PIC X(5).

05 PRODUCT-NAME PIC X(28).

05 UNIT-COST PIC 9(4)V99 COMP-3.

(this takes up only 4 physical bytes)

05 UNITS PIC 9(7).
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05 UNIT-PRICE PIC 9(7)V99.

05 SALE-AMOUNT PIC 9(7)V99.

The basic structure of the SORT command is:

SORT FIELDS=(st,len,dt,ad)

where st denotes the starting position, len denotes the length, dt denotes
the data type, and ad denotes the sort order (ascending or descending). So,
sorting our sales file by customer-id is coded as follows:

SORT FIELDS=(9,3,BI,A)

meaning, sort on positions 9 to 11 in ascending order, treating the data as bi-
nary. To perform sorts on multiple fields, simply supply thest,len,dt,ad
parameters for each additional sort field.

For example, suppose your ETL task is to aggregate this sale data by year,
product, and customer. The source data is at a daily grain, and its natural
order is also by day. Aggregating data from its natural order would be a
quite complex task, requiring creating, managing, and navigating arrays
of memory variables to hold the aggregates until the last input record is
processed and again navigating the memory arrays to load the aggregates
into the warehouse. But by presorting the source data by the aggregate
key (year + product-id + customer-id), the ETL task to aggregate the data
becomes fairly simple. The command for sorting the data by the aggregate
key is as follows:

SORT FIELDS=(1,4,BI,A,39,5,BI,A,9,3,BI,A)

Once sorted in this way, the ETL process to aggregate the data can be made
extremely efficient. As source records are read, the values of the key fields
year, product-id, and customer-id are compared to the key values of the
preceding record, which are held in memory variables. As long as the keys
are the same, the units and sales amounts are added to cumulative memory
variables. When the keys change, the aggregate values for the preceding
key are loaded to the warehouse from the memory variables, and the mem-
ory variables are reset to begin accumulating the aggregates for the new
keys.

As discussed in earlier chapters, mainframe data often poses certain chal-
lenges unique to mainframes. The SORT utility has a rich set of data types
to help you handle these challenges. While using BI (binary) as the data
type works in many situations, there are a number of alternate data types
that handle special situations, including those listed in Table 7.1.
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Table 7.1 Alternate Mainframe Data Types

DATA TYPE USAGE

PD Use to properly sort numeric values stored in packed
decimal (or COMP-3) format.

ZD Use to properly sort numeric values stored in zoned
decimal format.

AC Use to properly sort data by the ASCII codes associated with
the data, rather than by the mainframe native EBCDIC
codes. Use this format for mixed (alphanumeric) fields
when the data is transferred from a mainframe to an ETL
process on a Unix or Windows system.

dates Believe it or not, you will likely encounter legacy system files
with dates still in pre-Y2K formats (that is, without explicit
centuries). SORT has a rich set of data types for handling
such dates and assigning them to the proper century.

This table represents just a small subset of the available data types. Many
others are available for the multitude of numeric and other data formats
you might encounter.

You can also mix data formats on a compound index. So, for example,
sorting sales file by year and descending unit-cost uses the following com-
mand:

SORT FIELDS = (1,4,BI,A,72,4,PD,D)

Sorting on Unix and Windows Systems
Flat files on Unix and Windows systems, which are ASCII character-based,
are not plagued by the antiquated data formats (packed-decimal, and so on)
concocted on the mainframe systems of old to save disk space. But these
systems present challenges of their own.

Among the most common sorting challenge you’ll face is sorting delim-
ited or other unstructured data files. In this context, unstructured refers to
the fact that the data is not arranged in neat columns of equal width on
every record. As such, unlike the mainframe examples, you can’t specify
the sort keys positionally.

Instead, the sort utility must be able to parse the records using the de-
limiters. (Of course, the mainframe utilities SyncSort and CoSort are avail-
able on Unix and Windows platforms, too.) The following extract shows
the same sales data used earlier in the chapter now formatted as a comma
delimited file.
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04/05/2000,026,Discount Electronics,

00014,SUBWOOFER,124.74,15,198.00,2970.00

04/06/2000,005,City Electronics,00008,AMPLIFIER,164.43,35,261.00,9135.00

04/07/2000,029,USA Audio and Video,00017,KARAOKE MACHINE,

55.57,20,88.20,1764.00

04/10/2000,010,Computer Audio and Video,00017,KARAOKE MACHINE,

55.57,10,88.20,882.00,

04/11/2000,002,Computer Audio and Video,00017,KARAOKE MACHINE,

55.57,35,88.20,3087.00,

04/11/2000,011,Computer Audio and

Video,00008,AMPLIFIER,164.43,10,261.00,2610.00

04/15/2000,019,Computer Discount,00018,CASSETTE

PLAYER/RECORDER,43.09,20,68.40,1368.00

04/18/2000,013,Wolfe''s Discount,

00014,SUBWOOFER,124.74,25,198.00,4950.00

04/18/2000,022,USA Audio and

Video,00008,AMPLIFIER,164.43,15,261.00,3915.00

04/19/2000,010,Computer Audio and Video,00023,MP3

PLAYER,111.13,10,176.40,1764.00

04/19/2000,014,Edgewood Audio and Video,00006,CD/DVD

PLAYER,277.83,20,441.00,8820.00

04/19/2000,016,Computer Audio and

Video,00014,SUBWOOFER,124.74,30,198.00,5940.00

04/19/2000,021,Computer Audio and

Video,00014,SUBWOOFER,124.74,35,198.00,6930.00

04/19/2000,028,Bayshore Electronics,00020,CD WALKMAN,

16.08,15,21.40,621.00

The basic syntax for the Unix sort command is as follows:

sort +start_field_number -stop_field_number file

Fields are numbered beginning from zero, so in the sales file, the field
numbers are as follows:

(0) SALE-DATE

(1) CUSTOMER-ID

(2) CUSTOMER-NAME

(3) PRODUCT-ID

(4) PRODUCT-NAME

(5) UNIT-COST

(6) UNITS

(7) UNIT-PRICE

(8) SALE-AMOUNT

The default delimiter for the sort program is white space. The --t option
allows you to specify an alternate delimiter. To replicate the first example
again, sorting by customer-id, the sort command would be:

sort -t, +1 -2 sales.txt > sorted _sales.txt
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which means, begin sorting on column 1 (customer-id) and stop sorting on
column 2 (customer-name). The sort output is currently directed to standard
output (terminal), so you redirect the output to a new file:sorted_sales.txt.

If the stop column is not specified, sort sorts on a compound key consist-
ing of every column beginning with the start column specified.

Look at how to perform the aggregate key sort (year + product-id +
customer-id) used earlier in the chapter to prepare the data for an aggrega-
tion ETL process. Year is last part of the field 0, product-id is field 3, and
customer-id is field 1. The main challenge is limiting the sort to use only
the year portion of the date. Here’s how:

sort -t, +0.6 -1 +3 -4 +1 -2 sales.txt > sorted_sales.txt

To sort on the year portion of the date (field 0), you specify the starting
byte within the field following a period. As with the field numbers, byte
numbers start with 0, so +0.6 means to sort on the seventh byte of the date.

Up to this point, these Unix sort examples have used alphabetic sorts.
However, alphabetic sorts won’t yield the desired results on quantitative
numeric fields. For example, sorting the sales-file unit cost alphabetically
would yield incorrect results—the CD WALKMAN, with a cost of 16.08,
would be placed after the SUBWOOFER, with a cost of 124.74. To solve this
problem, you need to specify that the unit-cost field is numeric, as follows:

sort -t, +5n -6 sales.txt > sorted_sales.txt

To change the sort order from ascending to descending, use the --r
(reverse) option. For example, sorting the sale data by descending year +
unit cost is specified by the following:

sort -t, +0.6r -1 +5n -6 sales.txt > sorted_sales.txt

Other useful sort options are listed in Table 7.2.

Table 7.2 Switches for the UNIX sort command

DATA TYPE USAGE

-f Ignore case in alphabetic sort fields

-b Ignore leading blanks in sort fields

-d Ignore punctuation characters

-i Ignore nonprintable characters

-M Sort 3-letter month abbreviations (for example, JAN
precedes FEB, and so on)
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A rich set of Unix utility commands, including sort, grep, and gawk to name
few key utilities, have been ported to the Windows operating system and are
available as freeware. There are many Web sites from which you can obtain these
utilities. We found a relatively complete set in a zipped file at http://unxutils
.sourceforge.net/.

Trimming the Fat (Filtering)

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Source files often contain loads of data not pertinent to the data ware-
house. In some cases, only a small subset of records from the source file is
needed to populate the warehouse. Other times, only a few data elements
from a wide record are needed. One sure way to speed up the ETL process
is to eliminate unwanted data as early in the process as possible. Creating
extract files on the source host system provides the greatest performance
gain, because, in addition to the improvement in the ETL process itself, the
time spent on file transfers is reduced in proportion to the reduction in file
size. Whether you shrink a source file by picking, say, half the records in the
file or half the fields on each record, you save time transferring the data to
the ETL server and save I/O time and memory processing the smaller file
during the ETL process.

The easiest extract files to create are those where only a subset of the
source file records is needed. This type of extract can generally be created
using utility programs, which are also typically the most efficient running
programs on the system.

The following sections discuss creating extracts on mainframe systems
and Windows and Unix systems.

Extracting a Subset of the Source File Records
on Mainframe Systems
On mainframe systems, the SORT utility happens to be perhaps the fastest
and easiest way to create extract files without writing COBOL or fourth-
generation language (SAS, FOCUS, and so on) programs.

The simplest case is to create an extract in which only a subset of the
records is needed. SORT allows to you specify source records to either
include or omit from the extract file.
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INCLUDE COND=(st,len,test,dt,val)

OMIT COND=(st,len,test,dt,val)

The st indicates the start position of the input field, len is its length,
test is the Boolean test to perform, dt is the data type of the input field,
and val is the value to compare against. For this example, we use the
sample sales file from the prior sort examples in the chapter. Here’s how to
extract only records for sales from the year 2000 and higher.

SORT FIELDS=COPY

INCLUDE COND=(1,4,GE,CH,C'2000')

This could also be coded with an EXCLUDE as:

SORT FIELDS=COPY

OMIT COND=(1,4,LT,CH,C'2000')

Compound conditions are created by joining condition sets with AND or
OR clauses. To select only records from the year 2000 and later for customer-
ids over 010, use the following:

SORT FIELDS=COPY

INCLUDE COND=(1,4,GE,CH,C'2000', AND,9,3,GT,CH,C'010')

More complex conditions can be created using a combination of ANDs,
Ors, and parentheses to control the order of execution. You can even search
for fields containing a certain value. For example, to choose customers with
the word Discount in their names, code the INCLUDE statement as follows:

SORT FIELDS=COPY

INCLUDE COND=(12,27,EQ,CH,C'Discount')

Because the 27-byte input field specified is longer than the constant Dis-
count, SORT searches through the entire input field for an occurrence of
the constant. (This is equivalent to coding a SQL where clause of LIKE
‘%Discount%’)

Extracting a Subset of the Source File Fields
Creating an extract file containing only the fields necessary for the data
warehouse ETL process can have an enormous impact on the size of the
ETL source files. It is not at all uncommon to have source files with dozens
and dozens of data elements of which only a small handful are needed
for the ETL process. The impact of extracting only the required fields can
have an enormous impact on file size even when the source file record is
relatively small. Considering that some source files have millions of records,
extracting only the required fields can shave tens or hundreds of megabytes
off the data to be transferred to and processed by the ETL server.
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Lo and behold, SORT can also handle the task of selecting a subset of the
fields in a source file to shrink the amount of data that must be transferred
to the ETL server using the OUTFIL OUTREC statement. The sales file we
have used in the examples thus far has a record length of 100 bytes. Suppose
your ETL process required only the sale-date, customer-id, product-id, unit-
cost, units, and sale-amount fields, which total 36 bytes. An extract with
only these fields would be about one-third the size of the full source file.
To shrink it further, you can choose only records from the year 2000 and
later.

SORT FIELDS=COPY

INCLUDE COND=(1,4,CH,GE,C'2000')

OUTFIL OUTREC=(1,8,9,3,39,5,72,4,76,7,92,9)

In this simplest form, the OUTREC clause comprises simply pairs of start-
ing positions and lengths of the fields to copy to the extract file. However,
this still leaves you with some undesirable remnants of mainframe days.
The unit-cost, units, and sale-amount are still in their mainframe storage
formats. These fields are not usable in these native mainframe formats when
transferred to the ETL server. To be usable on the Unix or Windows ETL
server, you must reformat these numeric fields to display format.

SORT FIELDS=COPY

INCLUDE COND=(1,4,CH,GE,C'2000')

OUTFIL OUTREC=(1,8,9,3,39,5,

72,4,PD,EDIT=IT.TT,LENGTH=7,

76,7,ZD,EDIT=IT,LENGTH=7,

92,9,ZD,EDIT=IT.TT,LENGTH=10)

In this format, the unit-cost, which is stored in packed numeric format on
the source file, is exploded to a 7-byte display field taking the form 9999.99.
Likewise, the units and sale-amount are reformatted to display as 9999999
and 9999999.99, respectively.

Clearly, the mainframe SORT utility is a powerful ally in your pursuit of
mainframe data. The techniques cited in the preceding examples demon-
strate just a subset of its rich functionality. Proficiency with SORT can be
your ticket to self-sufficiency when you need to acquire mainframe data.

Extracting a Subset of the Source File Records on Unix
and Windows Systems
Now let’s look at how to accomplish these same extract tasks on Unix and
Windows systems. Again, we use a Unix utility, gawk, that has been ported
to Windows. Gawk is the GNU version of the programming language awk.
The basic function of awk is to search files for lines (or other units of text)
that contain certain patterns.
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The syntax we use for gawk is as follows:

gawk -fcmdfile infile > outfile

The --f option specifies the file containing the gawk commands to exe-
cute. The infile specifies the input source file, and outfile specifies the
file to which the gawk output is redirected.

The first extract task is to select only the sales from 2000 and later. The
gawk command would be something like the following:

gawk -fextract.gawk sales.txt > sales_extract.txt

The extract.gawk command file contains the following:

BEGIN {

FS=",";

OFS=","}

substr($1,7,4) >= 2000 {print $0}

The BEGIN {..} section contains commands to be executed before the
first source record is processed. In this example, FS="," and OFS=","
stipulate that fields in the input and output files are delimited by commas.
If not specified, the default delimiters are spaces.

The extract logic is contained in the statement substr($1,7,4) >=
2000. It says to select records where the seventh through tenth bytes of the
first ($1) field are greater than or equal to 2000.

The {print $0} statement says to output the entire source record ($0)
for the selected records.

Compound conditions are created by joining condition sets with&& (and)
or || (or) clauses. To select only records from the year 2000 and later for
customer-ids over 010, use the following:

BEGIN {

FS=",";

OFS=","}

substr($1,7,4) >= 2000 && $1 > "010" {print $0}

And to find the records where the customer-name contains Discount:

BEGIN {

FS=",";

OFS=","}

$3∼/Discount/ {print $0}

As you can see, with a bit of knowledge of the gawk command, you can
very easily create these time-saving and space-saving extracts.
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Extracting a Subset of the Source File Fields
You can also use gawk to create field extracts. As before, suppose you want
to create an extract containing only the sale-date, customer-id, product-id,
unit-cost, units, and sale-amount fields. Again, you want only to extract
records from 2000 and later. Here’s how:

BEGIN {

FS=",";

OFS=","}

substr($1,7,4) >= 2000 {print $1,$2,$4,$6,$7,$9}

The print statement specifies the columns to include in the output.

Take note that in gawk, the fields are numbered starting with $1, and $0 refers
to the entire input record. This differs from the sort command, where $0

connotes the first field.

Now suppose you want to create an extract file that has fixed field widths
rather than a delimited file. Well, gawk can do that as well. Here’s how you
make the prior extract into a fixed-width file:

BEGIN {

FS=",";

OFS=","}

{substr($1,7,4) >= 2000

{printf "%-11s%-4s%-6s%07.2f%08d%010.2f\ n", $1,$2,$4,$6,$7,$9}}

Here, the printf command (formatted print) takes the place of the reg-
ular print command. printf is followed by a format string. The % sign
denotes the beginning of a format, and the number of formats must match
the number of output fields. The formats you commonly use are:

%ns: For text strings, n is the minimum output length

%0nd: For decimal numbers, n is the minimum output length

%0n.mf: For floating point numbers, n is the total number of digits,
m the decimal digits.

By default, data is right-justified. To left-justify data (as you would for
most text fields), precede the field length with a dash as in the preceding
example. To left-pad numeric formats with zeros, precede the length with
a zero, (for example, %07.2f) The newline indicator \n at the end of the
format string tells gawk to put each output record on a new line.
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Creating Aggregated Extracts on Mainframe Systems
Suppose you want to summarize the sample sales files by month, customer,
and product, capturing the aggregate units and sales-amounts. Here’s the
mainframe SORT commands to accomplish this:

INREC FIELDS=(1,4,5,2,9,3,39,5,3Z,76,7,3Z,91,9)

SORT FIELDS=(1,14,CH,A)

SUM FIELDS=(15,10,ZD,25,12,ZD)

You can see two new commands here—INREC and SUM. INRECwork the
same way asOUTREC, except that it operates on the input records before any
sort operations are processed. In this case, the input records are reformatted
to include only the fields needed for the aggregate—year, month, customer-
id, product-id, units, and sale-amount. Take note as well of the two 3Z
entries. These left-pad units and sale-amount with zeros prevent arithmetic
overflows from occurring from the SUM operation. The effect is to increase
the size of these fields by three bytes each.

Next, the SORT command specifies the fields used to sort the file. The
SORT FIELDS act as the key for the SUM operation, essentially acting like a
SQLGROUP BY clause. But note that theSORT FIELDSuse the reformatted
record layout—so the SORT FIELDS can be simply defined as positions 1
through 14, which now contain year, month, customer-id, and product-id.

Finally, the SUM command specifies the quantitative fields to be summed
(or aggregated). Again, the reformatted field positions (and lengths, in this
case) are used. So whereas units occupied positions 76–82 (a total of 7 bytes)
in the source file, in the reformatted records, units occupies positions 15–24
(10 bytes).

Using this technique, the output file is only 36 bytes wide (versus the
original 100 byte source records) and contains only one record per combi-
nation of year, month, customer-id, and product-id in the file. The network
and ETL server will thank you for shrinking the size of the source file in
this way.

Note, however, that transaction systems are often configured with mini-
mal temp space available. This may affect your decision to compress data
at the source during extraction. See the discussion on this topic later in this
chapter under “Using Aggregates and Group Bys.”

Creating Aggregated Extracts on UNIX
and Windows Systems
Accomplishing the same aggregation using the UNIX/Windows utilities is
a bit more complex but not much. You need to use both the sort and gawk
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utilities together. The sort output is piped to the gawk command using the
|pipe character. Here’s the command:

sort -t, +0.6 -1 +0.0 -0.2 +1 -2 +3 -4 | gawk -fagg.gawk > agg.txt

First, review the sort.

+0.6 -1 = year

+0.0 -0.2 = month

+1 -2 = customer-id

+3 -4 = product-id

Theagg.gawk command file follows. We’ve added comments (preceded
by #) to explain how it works:

# set delimiters

BEGIN {

FS=",";

OFS=","}

#initialize variables for each record

{inrec += 1}

{next_year=substr($1,7,4) substr($1,1,2)}

{next_cust=$2}

{next_product=$4}

#after a new year and month record

#write out the accumulated total_units and total_sales for the

prior year

inrec > 1 && ( \
next_year != prev_year \
|| next_cust != prev_cust \
|| next_product != prev_product ) \
{print prev_year,prev_cust,prev_product,total_units,total_sales}

#accumulate the total_sales sales and count of records

{total_units += $7}

{total_sales += $9}

#if the year changed reinitialize the aggregates

next_year != prev_year {

total_units = $7;

total_sales = $9}

#store the year (key) of the record just processed

{prev_year = next_year}

{prev_cust = next_cust}

{prev_product = next_product}

#after the last record, print the aggregate for the last year

END {print prev_year,prev_cust,prev_product,total_units,total_sales}

It’s a bit more complex than the mainframe sort but not very much. It is
simply a matter of keeping track of the key values as records are processed
and writing out records as the keys change. Note also the END command.
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This command ensures that the last aggregate record is output. Once you
get familiar with the operators and learn how the flow of control works,
you’ll be aggregating in no time.

Using Database Bulk Loader Utilities
to Speed Inserts

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

If after using sorting, extracting, and aggregating techniques to get your
source data to the ETL server as quickly as possible, you still face a daunting
amount of data that needs to be loaded into the data warehouse regularly,
it’s time to master the bulk-load functionality of your database manage-
ment system. Bulk loaders can interact with the database system in a more
efficient manner than plain old SQL can and give your ETL a tremendous
performance boost. We use Oracle’s SQL*LOADER utility to discuss the
benefits of bulk loaders. You can find similar bulk-load functionalities in
most other database management systems.

One important caveat is that many bulk loaders are limited to handling inserts
into the database. As such, they can provide a real benefit for inserting large
volumes of data, but if your process involves updating existing records, you may
be out of luck. Depending on the number of rows you need to insert and update,
you may find that with careful preprocessing of your input data, you can separate
the updates from the inserts so that at least the inserts can be run in pure
bulk-loader mode. Note that IBM’s Red Brick system supports UPDATE else INSERT
logic as part of its bulk loader.

In its basic conventional path method, SQL*LOADER uses INSERT state-
ments to add data to tables, and the database operates in the same manner
as if the inserts were part of a regular SQL procedure. All indexes are main-
tained; primary key, referential integrity, and all other constraints are en-
forced; and insert triggers are fired. The main benefit to using SQL*LOADER
in this mode is that it provides a simple way to load data from a flat file
with minimal coding.
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A variety of syntax styles for invoking SQL*LOADER exist. Here’s an
example for loading the sales file we used in the previous examples into an
Oracle table with SQL*LOADER.

sqlldr userid=joe/etl control=sales.ctl data=sales.txt log=sales.log

bad=sales.bad rows=1000

The control file sales.ctl would contain the following:

LOAD DATA

APPEND INTO TABLE SALES

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'

(SALE_DATE DATE(20) "MM/DD/YYYY",

CUSTOMER_ID,

CUSTOMER_NAME,

PRODUCT_ID,

PRODUCT_NAME,

UNIT_COST,

UNITS,

UNIT_PRICE,

SALE_AMOUNT)

Of course, the target table SALES would have to already exist in Oracle.
Again, this simple example uses conventional SQL INSERT functionality
to load data into the database. Next, we want to look at ways to improve
performance.

The second, performance-enhancing mode for SQL*LOADER is direct
mode. Changing the prior load to use direct mode is achieved by simply
adding the direct=true clause to the sqlldr command, as shown in the
following.

sqlldr userid=joe/etl control=sales.ctl data=sales.txt log=sales.log

bad=sales.bad rows=1000 direct=true

Here’s how direct mode increases performance:

1. SQL*LOADER places an exclusive lock on the table, preventing all
other activity.

2. Database constraints (primary and unique key constraints, foreign
key constraints, and so on) are not enforced during direct loads. If
violations occur, the associated indices are left in an unstable state
and require manual clean up before rebuilding the indices.

3. Foreign key constraints are disabled by the direct load and must be
re-enabled after the load. All rows are checked for compliance with
the constraint, not just the new rows.
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4. Insert triggers do not fire on rows inserted by direct loads, so a
separate process must be developed to perform the actions normally
handled by the triggers if necessary.

So the efficiencies of direct load don’t come free. We’d be particularly
wary of using direct loads if you expect dirty data that will prevent your
primary and foreign key constraints from being re-enabled after the load.
But if you have robust processes for ensuring that the data to be loaded is
clean, direct loads of large source files is the way to go.

Whether you are using conventional or direct path mode, SQL*LOADER
has a fairly rich set of functionality beyond the simple example shown
previously. Some key functions include the following:

Handles fixed-width, delimited, and multiline input

Accepts input from multiple files

Loads to multiple target table

Loads partitioned tables

Manages and updates indexes efficiently

A number of other, more programmatic features allow conditional pro-
cessing, value assignments, and so on. However, these features should be
avoided, since they generally operate on each input row and can consid-
erably degrade the performance of the bulk load. After all, performance is
what using the bulk loader is all about.

Preparing for Bulk Load
Many of the ETL tools on the market today can stream data directly from
their tool through the database bulk-load utility into the database table. But
not all of the tools utilize the bulk-load utilities the same way. Some are
more efficient than others, and some require extra plug-ins to make them
compatible with bulk loaders. Regardless of how you pass data, as an ETL
developer, it is important that you understand how to prepare your data to
be processed by a bulk-load utility.

Bulk loading is the most efficient way to get data into your data ware-
house. A bulk loader is a utility program that sits outside of the database
and exists for the sole purposes of getting large amounts of data into the
database very quickly. Each database management system has a differ-
ent, proprietary, bulk-load utility program. The popular ones are listed in
Table 7.3.

Generally speaking, the various bulk-load utilities work in the same way.
For the purpose of illustrating the functionality of a bulk-load utility, we’ll
discuss Oracle’s SQL*Loader; at the time of this writing, we believe it is the
common denominator of bulk loaders in the domain of data warehouses.



P1: NEA
Wy046-07 WY046-Kimball-v4.cls August 18, 2004 15:59

Development 279

Table 7.3 Bulk Load Utilities

DBMS BULK LOAD UTILITY NAME COMMENTS

Oracle SQL*Loader Requires a control file that
describes the data file layout.

Two important parameters for
optimal performance are:

DIRECT={TRUE | FALSE}
PARALLEL={TRUE | FALSE}

Microsoft SQL
Server

Bulk Copy Program
(BCP)

Microsoft also offers BULK
INSERT that can be faster than
BCP. It saves a significant
amount of time because it
doesn’t need to utilize the
Microsoft NetLib API.

IBM DB2 DB2 Load Utility DB2 accepts Oracle Control and
Data files as input sources.

Sybase Bulk Copy Program
(BCP)

Also supports DBLOAD with the
parameter BULKCOPY = ‘Y’.

Once you understand the general concepts of bulk loading, the similarities
among the loaders makes learning each specific utility a breeze.

Bulk loaders typically need two files to function properly:

Data file. The data file contains the actual data to be loaded into the
data warehouse. Data can be in various file formats and layouts,
including a variety of delimiters. All of these parameters are defined
in the control file.

Control file. The control file contains the metadata for the data file.
The list of the various parameters is extensive. Following is a list of
the basic elements of SQL*Loader control file.

The location of the source file

Column and field layout specifications

Data-type specifications

The data mapping from the source to the target

Any constraints on the source data

Default specifications for missing data

Instructions for trimming blanks and tabs

Names and locations of related files (for example, event log, reject,
and discarded record files)
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For a comprehensive guide to SQL*Loader command syntax and usage,
refer to Oracle SQL*Loader: The Definitive Guide, by Jonathan Gennick and
Sanjay Mishra (O’Reilly & Associates, 2001).

Even if you must pay the penalty for the I/O of writing data to a physical file
before it is bulk loaded into the data warehouse, it is still likely to be faster than
accessing the database directly and loading the data with SQL INSERT statements.

Many ETL tools can pipe data directly into the database via the bulk-load
utility without having to place data on disk until it hits its final destination—
the data warehouse fact table. Others can create the required control and
data files on your files system. From there, you need to write a command-
line script to invoke the bulk loader and load the data into the target data
warehouse.

The main purpose of purchasing an ETL tool is to minimize hand-coding
any routines, whether extracting, transforming, or loading data. But no tool
on the market can solve every technical situation completely. You’ll find that
seamlessly pipelining data through bulk loaders or any third-party load
utilities will be a bit of a challenge. Experiment with tool plug-ins and other
application extenders such as named pipes, and exhaust all options before
you determine bulk loading is not feasible.

If you have not yet purchased your ETL tool, make sure to test potential
products for their compatibility with your DBMS bulk-load utility during
your proof-of-concept. If you already own an ETL tool and it cannot prepare
your data for bulk loading, do not throw it away just yet. You need to prepare
the data manually. Configure your ETL tool to output your data to a flat
file, preferably comma delimited. Then, create a control file based on the
specifications of the output file and required load parameters. The control
file should need to be changed only when physical attributes change within
the source or target, like when new columns are added or data types are
modified.

Managing Database Features to
Improve Performance

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow:Extract ➔ Clean ➔ Conform ➔ Deliver



P1: NEA
Wy046-07 WY046-Kimball-v4.cls August 18, 2004 15:59

Development 281

As we all know, there’s more to the database than tables and the data
contained therein. Powerful features like indexes, views, triggers, primary
and foreign key constraints, and column constraints are what separate a
database management system from a flat-file system. Managing these fea-
tures can consume significant amounts of system resources as your database
grows and, as a result, can drag down the performance of the ETL load pro-
cess.

With this in mind, the first thing to do is review the database design and
remove any unnecessary indexes, constraints, and triggers. Then consider
the following options to improve load performance:

1. Disable foreign key (referential integrity) constraints before loading
data. When foreign key constraints are enabled, for each row loaded
the database system compares the data in foreign key columns to the
primary key values in the parent table. Performance can be enhanced
considerably by disabling foreign key constraints on fact tables
having several foreign key constraints.

Remember, though, that the database validates every row in the table
(not just new ones) when you enable foreign key constraints after the
load. Make sure your foreign key columns are indexed to ensure that
the re-enabling the constraints does not become a bottleneck in itself.

2. Keep database statistics up to date. Database statistics managed by
the database management system track the overall sizes of tables, the
sizes and number of unique values in indexes, and other facts about
the efficiency of how data is stored in the database. When an SQL
SELECT statement is submitted to the database management system,
it uses these statistics to determine the fastest access path to supply
the requested data. Optimally, you should update the statistics after
each load. However, if your load process is frequent (daily) and the
daily percentage change in the size of the database is relatively small,
updating statistics weekly or monthly should be sufficient to keep
performance levels high. Partitioning large tables decreases the time
it takes to update statistics, since the statistics need not be refreshed
on the static (or near-static) partitions but only on the current
partition.

3. Reorganize fragmented data in the database. Tables become
fragmented when rows are frequently updated and/or deleted, and
response time degrades as a result.

When dealing with large fact tables, one way to minimize the
occurrence of such fragmentation is to create partitioned tables.
Partitioned tables are typically organized by time period (for
example, a sales table with separate partitions for each year). Once a
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year is complete, the partition containing the sales data for that year
will in all likelihood remain static and thus no longer be susceptible
to fragmentation. ETL tools have the ability to automatically
streamline loads based on the partition scheme specified in the
DBMS dictionary.

Data for the current year, though, is constantly being deleted and
reloaded, and so the current partition becomes fragmented.
Reorganizing a fragmented table rewrites the data in the table in
contiguous storage blocks and eliminates dead space that arises
when rows are updated and deleted. If your load process performs
updates and deletes on large (fact) tables, consider reorganizing the
table every month or so or more frequently if warranted. The
reorganization can be set to run each time data is loaded, if
significant fragmentation occurs with each load.

Again, partitioning reduces the time it takes to reorganize tables. The
older, static partitions will rarely, if ever, need to be reorganized.
Only the current partition will need reorganizing.

The Order of Things

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow:Extract ➔ Clean ➔ Conform ➔ Deliver

The ordinal position of jobs within a batch is crucial when you are loading
a data warehouse, primarily because the ETL needs to enforce referential
integrity in the data warehouse. Referential integrity (RI) means that a pri-
mary key must exist for every foreign key. Therefore, every foreign key,
which is known as the child in a referential relationship, must have a par-
ent primary key. Foreign keys with no associated parents are called orphans.
It is the job of the ETL process to prevent the creation of orphans in the data
warehouse.

In transaction systems, RI is usually enforced within the database man-
agement system. Database-level RI enforcement is required in a transaction
environment because humans enter data one row at a time—leaving a lot
of room for error. Errors or actions that create RI violations cause data to
become corrupt and of no use to the business. Users find amazing ways to
unintentionally corrupt data during data entry. Once data is corrupt, it is
worthless—a cost that cannot be overturned.
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Enforcing Referential Integrity

Unlike transaction systems vulnerable to volatile data-entry activity, the
data warehouse has its data loaded in bulk via a controlled process—the
ETL system. The ETL process is tested and validated before it ever actually
loads production data. The entry of data into the data warehouse is in a
controlled and managed environment. It’s common practice in the data
warehouse to have RI constraints turned off at the database level, because
it depends on the ETL to enforce its integrity.

Another reason RI is typically disabled in the DBMS is to minimize over-
head at the database level to increase load performance. When RI is turned
on within the database, every row loaded is tested for RI—meaning every
foreign key has a parent in the table that it references—before it is allowed
to be inserted.

RI in the data warehouse environment is much simpler than in transaction
systems. In transaction systems, any table can essentially be related to any
other table, causing a tangled web of interrelated tables. In a dimensional
data warehouse, the rules are simple:

Every foreign key in a fact table must have an associated primary key
in a dimension.

Every primary key in a dimension does not need an associated
foreign key on a fact table.

Those trained in normalization know this is called a zero-to-many rela-
tionship. If you already have a dimensional data warehouse implemented,
or have read any of the Toolkit books, you know that not all dimensional
models are that straightforward. In reality, a fact can be associated to many
records in a dimension (with a bridge table as described in Chapters 5 and 6)
and dimensions can be snowflaked. In addition to facts and dimensions, the
ETL must contend with outriggers and hierarchy tables. The ETL team must
understand the purpose and functions of each of the types of tables in the
dimensional data model to effectively load the data warehouse. Review
Chapter 2 for more information on the different types of tables found in a
dimensional model.

The following list is offered as a guide to the ordinal position of load
processes for a given data mart.

1. Subdimensions (outriggers)

2. Dimensions

3. Bridge tables

4. Fact tables

5. Hierarchy mappings
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6. Aggregate (shrunken) dimensions

7. Aggregate fact tables

Subdimensions

A subdimension, as discussed in Chapter 5, is simply a dimension attached
to another dimension, when the design is permissibly snowflaked. A subdi-
mension may play the role of a primary dimension in some situations. The
calendar date dimension is a good example of an entity that is frequently a
primary dimension as well as a subdimension.

Subdimensions are usually the first to be loaded in the data warehouse
because the chain of dependency starts with the outermost tables, namely
the subdimensions. Facts depend on dimensions, and dimensions depend
on subdimensions. Therefore, subdimensions must be loaded, and their
keys defined, before any other table downstream in the structure can be
populated. The caveat is that depending on business requirements and your
particular environment, it’s possible that some subdimensions are rarely
used and not considered mission critical. That means if a failure occurs to
prevent the subdimension from loading successfully, it may be acceptable
to continue with the load process of its associated dimension anyway.

Dimensions

Once the subdimensions are loaded, you can load the dimensions. Dimen-
sions that have subdimensions need to lookup the surrogate key in the
subdimension so it can be inserted into the dimension during the load pro-
cess. Naturally, dimensions that do not have subdimensions can be loaded
at once, without waiting for anything else to complete.

Smaller dimensions without dependencies should be loaded concurrently and
utilize parallel processing. Larger dimensions can also be loaded in this fashion,
but test their performance for optimal results before you commit to this strategy.
Sometimes, it is faster to load large dimensions individually to alleviate contention
for resources. Unfortunately, trial and error is the best rule for action in these
cases.

Dimension loads must complete successfully before the process contin-
ues. If a dimension load fails, the scheduler must halt the load process from
that point forward to prevent the rest of the jobs from loading. If the pro-
cess continues to load without the dimension information populated, the
data warehouse will be incomplete and viewed as corrupt and unreliable.
Enforcing the dependencies between jobs is crucial for the data warehouse
to maintain a respectable reputation.



P1: NEA
Wy046-07 WY046-Kimball-v4.cls August 18, 2004 15:59

Development 285

Bridge Tables

A bridge table sits between a dimension and a fact table when a single
fact record can be associated to many dimension records. Bridge tables
are also used between a dimension and a multivalued subdimension. For
example, a bridge table is needed when a fact is at the grain of a pa-
tient treatment event in a medical billing database and many patient di-
agnoses are valid at the moment of the treatment. After the patient di-
agnosis dimension is loaded, the treatment transaction table is scanned
to determine which diagnoses occur together. Then the bridge table is
loaded with a surrogate key to assemble the diagnoses ordered together into
groups.

Not all data marts contain bridge tables, but when they do, the tables
must be loaded immediately after the dimensions but before the fact table
load starts. If a fact table depends on a bridge table, the bridge table load
must complete successfully before the fact table load can be executed. If you
attempt to load the fact table with the bridge table partially loaded, groups
will be missing from the table, and data from the fact table will become
suppressed when it is joined to the bridge table.

C R O S S - R E F E R E N C E Information on loading bridge tables can be found in
Chapter 5; techniques for using a bridge table to find the groups while loading
facts are found in Chapter 6.

Fact Tables

Fact tables are dependent on virtually all other tables in the dimensional
data model and are usually loaded last. Once the subdimensions, dimen-
sions, and bridge tables are loaded, the fact table has all of the look-ups it
needs and is ready to be loaded. Remember, RI is enforced here, so you must
ensure that every foreign key in the fact table has an associated primary key
in its relative dimension or bridge table.

Fact tables typically take longest of all the different types of tables in
the data warehouse to load; you should begin the fact table load process
as soon as all of its related tables are loaded. Do not wait for all of the
dimensions in the data warehouse to load before kicking off the fact load.
Only the dimensions and bridge tables directly related to the fact table need
to complete before the associated fact table load can begin.

Because of the extreme volume of data usually stored in fact tables, it’s
a good idea to process their loads in parallel. The scheduler should spawn
the ETL process into multiple threads that can run concurrently and take
advantage of parallel processing. The next chapter discusses more about
optimizing your fact table loads.
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Hierarchy Mapping Tables

Hierarchy mapping tables are specially designed to traverse a hierarchy
that lives within a dimension. See Chapter 5. Hierarchy mapping tables are
not dependent on facts or bridge tables (unless, of course, the fact table
itself contains the hierarchy). Technically, hierarchy tables can be loaded
immediately following their relative dimension load, but we recommend
loading them at the end of the data-mart process to enable the long-running
fact table loads to begin, and finish, sooner.

Regardless of where the hierarchy is physically placed in a batch, its
success or failure should have no bearing on the other processes in the
batch. Don’t kill the launch of a fact table process because of a failure in a
hierarchy mapping table. The mapping table can be restarted independently
of any fact table load.

The Effect of Aggregates and Group Bys
on Performance
Aggregate functions and the Group By clause require databases to utilize
a tremendous amount of temp space. Temp space is a special area man-
aged by the DBMS to store working tables required to resolve certain
queries that involve sorting. Most DBMSs attempt to perform all sort-
ing in memory and then continue the process by writing the data to the
temp space after the allocated memory is full. If you attempt to build
aggregates for the data warehouse with SQL, you have a few issues to
address.

SQL is processed on the server where it is executed. That means that if
you attempt to aggregate data in your extract query, you will likely blow-
out the allocated temp space in the source transaction system. By design,
transaction systems keep their temp space very small compared to the space
allocated on data warehouses. When you need to build aggregate tables,
it’s good practice to utilize the ETL engine or a third-party tool specifically
dedicated to sorting data at lightning-fast speeds.

You should adjust your aggregates incrementally with a dedicated tool
that supports incremental updates to aggregates.

Do not attempt to execute aggregating SQL with a Group By clause in your
data extraction query. The Group By clause creates an implicit sort on all of the
columns in the clause. Transaction systems are typically not configured to handle
large sort routines, and that type of query can crash the source database. Extract
the necessary atomic-level data and aggregate later in the ETL pipeline utilizing
the ETL engine or a dedicated sort program.
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Performance Impact of Using Scalar Functions
Scalar functions return a single value as output for a single input value.
Scalar functions usually have one or more parameters. As a rule, functions
add overhead to query performance, especially those that must evaluate
values character by character. The following functions are known perfor-
mance inhibitors:

SUBSTR()

CONCAT()

TRIM()

ASCII()

TO_CHAR()

This list is not exhaustive. It is served as an example to get you think-
ing about the different types of functions available in your database. For
example, TO_CHAR() is a data-type conversion function. If TO_CHAR()
inhibits performance, you can imagine that TO_DATE() and TO_
NUMBER() also do. Try to substitute database functions with operators.
For example, in Oracle, the CONCAT() function can be replaced with the
double pipe || to concatenate two strings.

Databases are getting better at handling functions. Oracle has introduced
function-based indexes that speed up response time for function-based
constraints on queries. Look for more advanced functionality from the database
vendors as they integrate the ETL with their base products.

Avoiding Triggers
Database triggers are stored procedures executed by the occurrence of an
event in the database. Events such as deleting, inserting, or updating data
are common events related to database triggers. The problem is that each
event is the occurrence of a record trying to get into the database, and the
database must fire off the stored procedure between each record. Triggers
are notorious for slowing down transactions as well.

If you should need event-based execution of a process, use the ETL engine
to accomplish the task, especially for performing such tasks as appending
audit metadata to records or enforcing business rules. ETL engines can
perform such tasks in memory without requiring I/O.
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Overcoming ODBC the Bottleneck
Chapter 3 offers insight into the layers within the Open Database Connec-
tivity (ODBC) manager, but it’s worth mentioning again here that ODBC
is usually an unnecessary layer in your communication between the ETL
engine and the database that can—and should—be avoided. ODBC adds
layers of code to each SQL statement. It is equivalent to using a translator
while teaching a class. The message eventually gets across but is a much
slower process. And at times, things do get lost in translation.

Try to obtain native drivers to communicate between the ETL engine and
the databases in that participate in process. Remember, just as a chain is only
as strong as its weakest link, the ETL is only as fast as its slowest component.
If you include ODBC in your ETL solution, you will not achieve optimal
performance.

Benefiting from Parallel Processing
Processing the ETL in parallel is probably the most powerful way to increase
performance. Each time you add another process, the throughput propor-
tionally increases. This section does not discuss the technical architecture
options (SMP, MPP, NUMA, and so on). Instead, we offer the benefits of
processing the ETL in parallel versus sequential processing.

Parallel processing, in its simplest definition, means that more than one
operation is processed at a time. As you can imagine, three major operations
exist in any given ETL process—extract, transform, and load. You can, and
should, take advantage of parallel processing in as many of them as possible.

Parallelizing Extraction Queries

The effective way to parallelize extraction queries is to logically partition
the data set into subsets of equal size. We say logically partition because
partitioning data is usually a physical database function. In this case, you
divide the data based on ranges of an attribute. For example, you can divide
the effective date by year. Therefore, if you have ten years of data, you have
ten logical partitions. Each partition is retrieved by a separate SQL statement
and executed concurrently. The potential problem with this approach is
that the database identifies each SQL statement as a separate process and
attempts to maximize the memory allocated to each. Therefore, if you have
very memory-intensive extraction queries, you can bring the server to its
knees by replicating and executing such intensive processes.

Fortunately, most DBMSs have the capability to process a query in paral-
lel, realizing it is the same process and managing memory accordingly. Opti-
mal parallel solutions usually combine the two techniques—spawn several
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extract queries, each with a different range of values, and then parallelize
each of those processes with database-specific parallel query techniques.

Each database—those that support it—has its own syntax for executing
queries in parallel. In Oracle, you enable parallelization by setting the degree
parameter when you create a table, or you can alter the table after it’s created
to enable parallelized queries. Run the following query to check to see what
the parallel parameters for a table are:

Select table_name, degree, instances from all_tables where

table_name = '<TABLE_NAME>'

The preceding query returns three columns:

Table Name. The name of the table being checked for parallelism

Degree. The number of concurrent threads that would be used on
each instance to resolve a query

Instances. The number of database instances that the query can span
to resolve a query

You do not need Oracle Parallel Server to run parallel processes. As long as
you have the parallel degree set greater than 1, the query runs in as many
processes as are indicated. However, to span instances, you must have multiple
instances active and have Oracle Parallel Server running.

Unfortunately, most transaction tables have the parallel degree set to 1
by default. And as you have probably found out, the source system DBA
is not about to alter tables for the data warehouse team. Luckily, you don’t
need them to. Since the extraction query is a static, reusable SQL statement,
it is permissible to insert a hint to override the physical parallel degree to
tell the DBMS to parallelize the query on the fly! Dynamic parallelization
is a robust mechanism invaluable for speeding up extract queries.

To dynamically parallelize a query, insert a hint that specifies the number
of threads that you want to run concurrently and the number of instances
you want to span.

select /*+ full(products) parallel(products,4,1) */

product_number, product_name, sku, unit_price from products

where product_status = 'Active'

The hint in the query is marked by a proceeding /*+ and is termi-
nated with */. Notice that the hint made the query execute on four dif-
ferent threads on a single instance dynamically. By quadrupling the execu-
tion threads, you can usually come awfully close to quadrupling the total
throughput for the process. Obviously, other variables, such as memory
and the physical attributes on the source system and tables, which the ETL
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team has no control over, also affect performance. So, don’t expect perfor-
mance increases to be 100-percent proportional to the number of parallel
degrees specified. Refer to your DBMS user’s manual for the calculation to
determine the optimal parallel degree setting for your specific situation.

Parallelizing Transformations

If you are using SQL for your transformation logic, you can use the hint
offered in the last section for any SQL DML statement. However, if you are
using a dedicated ETL tool, and by now you probably are, you have two
options to parallelize your transformations:

1. Purchase a tool that can natively parallelize an operation.

2. Manually replicate a process, partition the input data, and execute
the processes in parallel.

Obviously, you want to strive for the first option. However, some tools
do not natively support parallelism within jobs. If you have very large data
sets, parallelism is not a nice option but a requirement. Luckily, the ETL
vendors realize that data volumes are growing at a rapid pace, and they are
quickly adding parallelization functionality to their tool sets.

If you have a tool (or an add-on to a tool) that enables transformations to
be processed in parallel, simply follow the guidelines set by the vendor to
achieve optimal results.

On the other hand, if you need to replicate processes manually, you should
take the following steps:

1. Analyze the source system to determine the best way to partition
data. If the source table is partitioned, use the column that the
partition is based on. If it is not partitioned, examine the date fields,
that is, effective date, add date, and so on. Usually, partitioning by
date makes a nice, even distribution of volume across partitions.
Often, in cases such as Orders, the volume can increase across
partitions over time (a sign that business is good). In those cases,
consider range partitioning the primary key or creating a hash
partition, perhaps doing MODs on the primary key, which is a simple
way to split data evenly.

2. The next step is to replicate the ETL process as many times as you
want parallel threads to run concurrently. Look for a tool that
minimizes the amount of redundant code. Remember, if you have
four copies of an ETL process, all four copies need to be maintained.
It’s better to utilize a tool that can execute the same job with different
batches that feed the job different data sets.
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3. Finally, set up several batch jobs, one for each process, to collect and
feed the appropriate data sets based on the ranges of values
determined in step one. If you have an extremely volatile source
system, we recommend that you run a preprocess that scans the
source data and determines the best ranges to evenly distribute the
data sets across the replicated ETL jobs. Those ranges (start value and
end value) should be passed to the ETL jobs as parameters to make
the process a completed automated solution.

If you have a substantial amount of data being fed into your data warehouse,
processing all of your ETL operations sequentially will not suffice. Insist on an ETL
tool that can natively process multiple operations in parallel to achieve optimal
throughput (where parallelization is built directly into the transformation engine,
not implemented as parallel extenders).

Parallelizing the Final Load

In the earlier section discussing parallelizing extraction queries, we assume
that you do not have control over the structures in the database and that
you need to add a database hint to have your query spawn multiple threads
that run concurrently. However, in the target, the presentation area of the
data warehouse, you do—or at least should—have some say in how the
structures are built. It’s in the best interest of the data warehouse team to
architect the tables to have multiple degrees of parallelization when they
are created.

Earlier in this chapter, we recommend that you minimize SQL inserts,
updates, and deletes and utilize the bulk-load utility. Furthermore, when
using Oracle’s SQL Loader, you should make sure to set the DIRECT pa-
rameter to TRUE to prevent unnecessary logging.

Now we want to introduce one more technique to extend the extract and
transform parallel processing: Spawn multiple processes of SQL Loader—
one for each partition—and run them in parallel. When you run many SQL
Loader processes concurrently, you must set the PARALLEL parameter to
TRUE. No faster way exists—at least at the time of this writing—to load a
data warehouse than following these three rules:

1. Utilize the bulk loader.

2. Disable logging.

3. Load in parallel.

More information about using bulk loaders can be found in Chapter 8.
For an exhaustive reference for the Oracle SQL Loader utility, read Oracle
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SQL*Loader: The Definitive Guide by Jonathan Gennick and Sanjay Mishra
(O’Reilly & Associates 2001).

Troubleshooting Performance Problems

No matter how efficient you make your ETL system, you still stand a chance
of having performance issues. However, as Robin Williams says so elo-
quently in the film Good Will Hunting, “It’s not your fault.” When you are
dealing with very large data sets, sometimes they decide to make their own
rules. On more than one occasion, we’ve come across a situation where ev-
erything is configured correctly, but for some unexplainable reason, it just
doesn’t work!

When a job catches you by surprise and performs with lackluster results,
don’t fight it. Simply take a pragmatic approach to find the operation within
the process causing the bottleneck and address that specific operation. Mon-
itor areas such as CPU, memory, I/O, and network traffic to determine any
high-level bottleneck.

If no substantial bottlenecks are detected outside of the actual ETL pro-
cess, you need to dive inside the code. Use the process of elimination to nar-
row down potential bottlenecks. To eliminate operations, you must have the
ability to isolate each operation and test it separately. Code isolation tends to
be quite difficult if you are hand-coding the entire process in SQL or another
procedural language. Virtually all of the ETL tools provide a mechanism to
isolate components of a process to determine undesired bottlenecking.

The best strategy is to start with the extraction process; then work your
way through each calculation, look-up, aggregation, reformatting, filtering,
or any other component of the transformation process; and then finally test
the I/O of the actual data load into the data warehouse.

To begin the isolation process for detecting bottlenecks, copy the ETL job
and modify the copy of the job to include or exclude appropriate compo-
nents as needed. As you step through the process, you will likely need to
delete the copy and recopy the job to restore changes made to test preceding
components. Follow these steps to isolate components of the ETL process
to identify bottlenecks:

1. Isolate and execute the extract query. Usually, the extraction query is
the first operation in the process and passes the data directly into the
next transformation in the pipeline. To isolate the query, temporarily
eliminate all transformations and any interaction with databases
downstream from the extract query and write the result of the query
directly to a flat file. Hopefully, the ETL tool can provide the duration
of the query. If not, use an external monitoring tool, or, in Oracle, use



P1: NEA
Wy046-07 WY046-Kimball-v4.cls August 18, 2004 15:59

Development 293

the SET TIMING ON command before you execute the process. That
setting automatically displays the elapsed time of the query once it
completes. If the extract query does not return the rows substantially
faster than when the whole process is enabled, you’ve found your
bottleneck, and you need to tune your SQL; otherwise, move on to
Step 2.

N O T E In our experience, badly tuned SQL is by FAR the most common
reason for slowness.

2. Disable filters. Believe it or not, sometimes feeding data in an ETL
job and then filtering the data within the job can cause a bottleneck.
To test this hypothesis, temporarily disable or remove any ETL filters
downstream from the extract query. When you run the process, watch
the throughput. Keep in mind that the process might take longer, but
its how much data is processed during that time that’s important. If
the throughput is substantially faster without the filter, consider
applying a constraint in the extract query to filter unwanted data.

3. Eliminate look-ups. Depending on your product, reference data is
cached into memory before it is used by the ETL process. If you
retrieve a lot of data in your look-ups, the caching process can take an
inordinate amount of time to feed all of the data into memory (or to
disk). Disable each look-up, one at a time, and run the process. If you
notice an improvement in throughput with one or more look-ups
disabled, you have to minimize the rows and columns being
retrieved into cache. Note that even if you are not caching your
look-up, you may still need to minimize the amount of data that the
look-up query returns. Keep in mind that you need only the column
being referenced and the column being selected in your look-ups (in
most cases, the natural key and surrogate key of a dimension).
Any other data is usually just unnecessary I/O and should be
eliminated.

4. Watch out for sorters and aggregators. Sorters and aggregators tend
to hog resources. Sorters are especially bad because they need the
whole dataset in memory to do their job. Disable or remove any
resource-intensive transformations such as sorters and aggregators
and run the process. If you notice a substantial improvement without
the components, move those operations to the operating system.
Quite often, it’s much faster to sort or presort for aggregates outside
of the database and ETL tool.

5. Isolate and analyze each calculation or transformation. Sometimes
the most innocent transformations can be the culprit that causes ETL
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performance woes. Remove each remaining transformation, one at a
time, and run the process. Look for things such as implicit defaults
or data-type conversions. These seemingly harmless operations
can have substantial impact on the ETL process. Address each
operation independently for the best bottlenecking detection and
remedy.

6. Eliminate any update strategies. As a general rule, the update
strategies that come packaged in ETL tools are notoriously slow and
are not recommended for high-volume data loads. The tools are
getting better, so test this process before removing it. If the update
strategy is causing a bottleneck, you must segregate the inserts,
updates, and deletes and run them in dedicated streams.

7. Test database I/O. If your extraction query and the rest of the
transformations in your ETL pipeline are running efficiently, it’s time
to test the target database. This is a simple test. Redirect the target to
load to a flat file instead of a database. If you see a noticeable
improvement, you must better prepare your database for the load.
Remember to disable all constraints, drop all indexes, and utilize
the bulk loader. If you still cannot achieve desired performance,
introduce a parallel process strategy for the data-load portion of
the ETL.

Increasing ETL Throughput

This section is a summary of sorts. It can be used as a quick reference
and a guideline for building new processes. The ETL development team is
expected to create ETL jobs that obtain the maximum possible throughput.
We recommend the following ten rules, which are applicable for hand-
coded solutions as well as for various ETL tools for boosting throughput to
its highest level:

1. Reduce I/O. Minimize the use of staging tables. Pipeline the ETL to
keep the data in memory from the time it is extracted to the time it is
loaded.

2. Eliminate database reads/writes. When staging tables are necessary,
use flat files instead of database tables when you must touch the data
down to disk.

3. Filter as soon as possible. Reduce the number of rows processed as
far upstream in the process as you can. Avoid transforming data that
never makes its way to the target data warehouse table.



P1: NEA
Wy046-07 WY046-Kimball-v4.cls August 18, 2004 15:59

Development 295

4. Partition and parallelize. The best way to increase throughput is to
have multiple processes process the data in parallel.

Parallelize the source system query with parallel DML.

Pipeline and parallelize transformations and staging.

Partition and load target tables in parallel.

5. Update aggregates incrementally. Rebuilding aggregates from
scratch is a process-intensive effort that must be avoided. You should
process deltas only and add those records to existing aggregates.

6. Take only what you need (columns and rows). Similar to the
filtering recommendation, do not retrieve rows unessential to the
process. Likewise, do not select unessential columns.

7. Bulk load/eliminate logging.

Utilize database bulk-load utility.

Minimize updates; delete and insert instead.

Turn off logging.

Set DIRECT=TRUE.

8. Drop database constraints and indexes. Foreign key (FK) constraints
are unnecessary overhead; they should be dropped—permanently
(unless they are required by your aggregate navigator). If FKs are
required, disable them before the ETL process and enable them as a
post-process. Leave indexes for updates and deletes to support
WHERE clauses only. Drop all remaining indexes for inserts. Rebuild
all indexes as a post-process.

9. Eliminate network traffic. Keep working files on local disk drives.
Also, place the ETL engine on the data warehouse server.

10. Let the ETL system do the work. Minimize any dependency on
DBMS functionality. Avoid stored procedures, functions, database
key generators, and triggers; determine duplicates.

Many of the top ten rules have already been discussed in previous chap-
ters in this book. For a more comprehensive examination, you’ll find that
Chapters 5, 6, and 7 offer especially great details on optimal design strate-
gies.

Each of the top ten rules for boosting ETL productivity is discussed briefly
in the following sections.

T I P Rebuilding indexes can take a lot of time. It’s recommended that you
partition high-volume target tables. Not only can you truncate and reload the data
in a partition, while leaving the rest of the table intact, but indexes local to a
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partition can be dropped and rebuilt, regardless of how data is maintained.
Rebuilding the subset of the index can save a substantial amount of time during
the post-load process.

Reducing Input/Output Contention
Because databases and operating systems each interact with input and out-
put so differently, we don’t attempt to explain the technical operations of
I/O in this section. However, we do maintain the stance that I/O must be
reduced to an absolute minimum. Obviously, you may need to touch down
data for various reasons. The number-one permissible reason to touch down
data is when you need to minimize access to the source system or if your
source system allows only one-shot to retrieve the data you need from it.
In those cases, it’s good practice to write the extraction result set to disk as
soon as it is retrieved. That way, in case of failure, you can always reprocess
data from the saved copy instead of penetrating the source system again.

Excessive I/O is a remarkably common offender. In most cases, interme-
diary tables or files can be omitted without any loss of functionality while
their respective processes benefit from increased throughput. If you find
yourself creating staging tables and many jobs to read and write to them,
stop! Step back and analyze the total solution. By eliminating staging tables,
you not only reduce I/O—the biggest performance hit—but also you re-
duce the number of jobs that need to be maintained and simplify the batch
and scheduling strategy.

Eliminating Database Reads/Writes
The ETL process often requires data to be touched down to disk for various
reasons. It can be to sort, aggregate, or hold intermediate calculations or just
retain for safekeeping. The ETL developer has a choice of using a database
for these purposes of flat files. Databases require much more overhead than
simply dumping data into a flat file. And ETL tools can manipulate data
from a flat file just as easily as database data. Therefore, it’s a preferred
practice to utilize sequential or flat files in the data-staging area whenever
possible.

The irony of this recommendation is that the ultimate goal of the data
warehouse is to present data in a way that it has optimal query response
time and that the solution is a relational database management system.
However, even though the ETL may need to read intermediary data, it
does not query data in the same sense end users do in the data warehouse’s
presentation layer. ETL staging processes are static and repeated, whereas
the data warehouse must support unpredictable, ad-hoc queries.

Dramatic performance improvements can be obtained by simply redi-
recting the staging database tables to flat files. The downside to eliminating
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the database in the staging area is that the associated metadata that comes
for free by the nature of the database is lost. By choosing to use flat files, you
must maintain any metadata related to the files manually (unless your ETL
tool can capture the metadata).

Filtering as Soon as Possible
This tip addresses what is possibly the most common mistake in ETL design.
Whenever we conduct design reviews of existing ETL processes, one of the
first things we look for is the placement of filters. A filter is a component
that exists in most ETL products that applies constraints to the data after it’s
been retrieved. Filters are extremely useful because in many cases you need
to constrain on fields from the source system that are not indexed. If you
were to apply the constraint in the extraction SQL on a nonindexed field,
the source database would need to perform a full table scan, a horrendously
slow process. Conversely, if the source system indexes the field you want
to constrain, this would be the preferred place for filtering because you
eliminate extracting unwanted records.

We often notice that filters are placed downstream of very complex cal-
culations or process-intensive and I/O-intensive data look-ups. Granted, at
times you must perform certain calculations before filters are applied. For
example, when you have to figure the dwell time of a Web page, you must
calculate the difference between the current page hit and the next before
you dispose of the unwanted pages.

As a general rule, you should keep and apply ETL filters as far upstream
in the process as requirements permit. Typically, filtering advantages are
best achieved when they are placed immediately following the initial SQL
statement that extracts data from the source system and before any calcu-
lations or look-ups occur. Precious processing is wasted if you transform
data and then throw it away.

Apply ETL filters to reduce the number of rows to process instead of applying
constraints to the extraction SQL only if the source system database does not have
the appropriate indexes to support your constraints. Because other factors such as
table size, SQL complexity, network configuration, and so on play a role in
data-retrieval performance, it makes sense to test both strategies before deciding
on the optimal solution.

Partitioning and Parallelizing
Partitioning and parallelizing your ETL process is more than a design is-
sue; it requires specific hardware and software and software solutions as
well. One can partition data without executing its ETL in parallel and visa
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versa. But if you attempt to parallelize without partitioning, you can incur
bottlenecking. An effective partition and parallelization strategy for unpre-
dictable source data is to create hash partitions on your target tables and
apply that same partition logic to the ETL process. Be careful though—hash
partitions may not be an optimal solution for the data warehouse ad-hoc
queries. Work closely with the data warehouse architect to implement the
most appropriate partition strategy. Refer to earlier in this chapter for tech-
niques and advantages concerning parallel processing.

Updating Aggregates Incrementally
Aggregates are summary tables that exist in the data warehouse specifically
designed to reduce query time. Aggregates make a dramatic performance
gain in the data warehouse because queries that had to scan through hun-
dreds of millions of rows now can achieve the same results by scanning a
few hundred rows. This drastic reduction in rows is attributable to the ETL
process combining additive facts in a mechanical rollup process. More com-
plex summaries that depend on complex business rules are not what we
call aggregates in the dimensional world. Remember that an aggregate is
used in conjunction with a query rewrite capability that applies a fairly sim-
ple rule to judge whether the aggregate can be used rather than a dynamic
aggregation of atomic data at query time.

Aggregates are computed in several different ways in a mature data ware-
house environment:

Calculating aggregate records that depend only on the most recent
data load. Product rollups and geographic rollups (for instance)
generated entirely from the most recent data load should be
calculated by sorting and summarizing the data outside the DBMS.
In other words, don’t use the DBMS’s sort routines when native OS
sorts are much faster. Remember that the computation of aggregates
is merely a process of sorting and summarizing (creating break rows).

Modifying an existing aggregate in place by adding or subtracting
data. This option is called tweaking the aggregate. An existing
aggregate spanning an extended period of time may be modified
when that period of time includes the current load. Or an existing
aggregate may be modified when the criteria for the aggregate are
changed. This can happen, for example, if the definition of a product
category is modified and an aggregate exists at the category level, or
a rollup above the category level. If the tweak to the category is
sufficiently complicated, a quality-assurance check needs to be run,
explicitly checking the aggregate against the underlying atomic data.
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Calculating an aggregate entirely from atomic data. This option,
called a full rollup, is used when a new aggregate has been defined or
when the first two options are too complex to administer.

Taking Only What You Need
It doesn’t make much sense to retrieve hundreds of thousands or millions
(or even billions) of rows if only a few hundred of the records are new or
have been modified since the last incremental ETL process. You must select
a mechanism for retrieving deltas from the source system only. There are
several ways to approach change-data capture depending on what’s avail-
able in the source transaction system. Refer to Chapter 6 for a display of the
many different techniques for capturing changed data in the source system
and techniques for determining the most appropriate for your particular
situation.

Once you have the rows trimmed down to a manageable size for your in-
cremental loads, you must next ensure that you don’t return more columns
than necessary. Returning excessive columns is commonly encountered in
look-ups in ETL tools. Some ETL tools automatically select all of the columns
in a table whether they are needed or not when it is used for a look-up. Pay
special attention to explicitly unselect columns that are not vital to the pro-
cess. When you are looking up surrogate keys, you typically need only
the natural and surrogate keys from a dimension. Any other column in a
dimension is superfluous during a surrogate key look-up process.

Bulk Loading/Eliminating Logging
Bulk loading is the alternative to inserting data into the data warehouse one
row at a time, as if it were a transaction system. The biggest advantage of
utilizing a bulk loader is that you can disable the database logging and load
in parallel. Writing to the rollback log consumes overhead as well as I/O
and is unnecessary in the data warehouse. Specific bulk-load techniques
and advantages to bulk loading are offered throughout this book.

Dropping Databases Constraints and Indexes
Another certain way to have a positive impact on loading your data ware-
house is to drop all of the constraints and indexes from the target of the
ETL process. Remember, the data warehouse is not transactional. All data
is entered via a controlled, managed mechanism—ETL. All RI should be
enforced by the ETL process, making RI at the database level redundant
and unnecessary. After a table is loaded, the ETL must run a post-process
to rebuild any dropped indexes.
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Eliminating Network Traffic
Whenever you have to move data across wires, the process is vulnerable to
bottlenecking and performance degradation.

Depending on your infrastructure, it sometimes makes sense to run the
ETL engine on the data warehouse server to eliminate network traffic. Fur-
thermore, benefits can also be achieved by storing all of the staging data on
internal disk drives, rather than by having the data travel over the network
just to touch down during the ETL process.

This recommendation can be a Catch-22, meaning that in your situation,
putting the ETL engine on your data warehouse database server might
actually make your performance worse, not better. Work with your ETL,
database, and hardware vendor to achieve the best solution for your specific
requirements.

Letting the ETL Engine Do the Work
ETL products are specifically designed to extract, transform, and load mas-
sive amounts like no other nondata warehousing solution. With minimal
exception, most databases are designed to support transactional and op-
erational applications. Database-procedural programming is good for sup-
porting data-entry applications but is not optimal for processing large data
sets at once. The use of cursors—where each record is analyzed individu-
ally before moving on to the next—is notoriously slow and usually results
in unacceptable performance while processing very large data sets. Instead
of using procedures stored within the database, it’s beneficial to utilize the
ETL engine for manipulating and managing the data.

Summary

This chapter has provided an overview and some examples of the tech-
nologies you need to choose to develop your ETL system. You must start
by choosing a development environment: either a dedicated ETL tool suite
from one of the vendors we have listed or a development environment
based on operating system commands driven by scripting languages, with
occasional escapes into a low-level programming language.

In the second half of this chapter, we have given you some guidance on
DBMS-specific techniques for performing high-speed bulk loads, enforc-
ingRI, taking advantage of parallelization, calculating dimensional aggre-
gates, and troubleshooting performance problems.

Now we’re ready to get operational in Chapter 8 and manage this wonder-
ful technology suite we have built.
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Operations
“Overall system speed is governed by the slowest component.”

—Gene Amdahl

Developing ETL processes that load the data warehouse is just part of the
ETL development lifecycle. The remainder of the lifecycle is dedicated to
precisely executing those processes. The timing, order, and circumstances
of the jobs are crucial while loading the data warehouse, whether your
jobs are executed real-time or in batch. Moreover, as new jobs are built,
their execution must integrate seamlessly with existing ETL processes. This
chapter assumes that your ETL jobs are already built and concentrates on
the operations strategy of the ETL.

In this chapter, we discuss how to build an ETL operations strategy
that supports the data warehouse to make its data reliably on time. In
the first half of this chapter, we discuss ETL schedulers as well as tips
and techniques for supporting ETL operations once the system has been
designed.

The second half of this chapter discusses the many ways in which you
can measure and control ETL system performance at the job or system level.
(We discuss database software performance in Chapter 7.) You have more
than a dozen knobs for controlling performance, and we give you a balanced
perspective on which are most important in your environment.

At the end of this chapter, we recommend a simple but effective approach
to ETL system security at the database, development environment, QA-
environment, production-environment, and basic file-system levels.

301
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P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Test/Release

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

This chapter describes best practices for running your ETL operations.
Operations includes initial data loads, execution and monitoring the daily
flow of data, capacity planning, performance monitoring, maintenance of
the metadata repository, and controlling access to the back room databases.

Scheduling and Support

The ETL execution strategy falls into two major categories:

Scheduling. ETL scheduling is a comprehensive application that
does much more than arrange for jobs to execute at a given time. In
reality, the time of day that a job executes is almost insignificant.
Instead, an effective scheduler involves the designation of
relationships and dependencies between ETL jobs and acts as a
reliable mechanism to manage the physical implementation of the
execution strategy.

Support. Once the data warehouse is deployed, it invariably
becomes a mission-critical application. Users, as well as other
downstream applications, depend on the data warehouse to provide
them with the information they need to function properly. If the data
warehouse is not loaded consistently, it is deemed a failure. To make
certain that the ETL process runs and completes, it must be actively
monitored and supported by a production-support team.

Reliability, Availability, Manageability Analysis for ETL
A data warehouse can have the best dimensional data model, a best-of-breed
business-intelligence tool, and sponsorship from the highest executives. But
it is not a proven solution until it is considered a dependable source for
corporate analytical information.

The goal of a new data warehouse is to build a reputation for being a con-
sistent, reliable data source to support corporate data analysis to empower
the business. To be a success, the ETL and the data warehouse teams must
fulfill three key criteria:

Reliability. The ETL process must run consistently, without fail. The
data within must be trustworthy at any level of granularity.
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Availability. The data warehouse must be up, running, and available
for use as promised by the data warehouse manager during initial
kick-off meetings with the sponsors and users. ETL jobs must execute
and complete within the allocated load window.

Manageability. Remember that the data warehouse is never finished.
It must have the capability to change and expand as your company
grows. The ETL processes must evolve gracefully with the data
warehouse. To achieve extensibility, keep processes as simple as
possible; break down complex routines into smaller, simpler
components. At the same time, avoid an upsurge of jobs to carry out
processes. Moreover, a crucial part of designing the execution
strategy is ensuring the ability to support the ETL. The ETL team
must provide metadata for all components of the ETL and document
recovery procedures for every failure scenario. If you are
hand-coding your system, make sure you have the management
skills and perspectives to control a long-term software development
environment.

The ETL manager must appraise each phase of the data warehouse by
using the Reliability, Availability, and Manageability (RAM) criteria to score
the project. The jobs and scheduling approach must pass each of the three
criteria to get a perfect score and earn the right to deploy. If no metadata or
recovery documentation exists, points are deducted and the processes must
be revisited and enhanced or corrected. Jobs that are overly complex making
them virtually impossible to maintain must be streamlined to progress to
the next stage of the lifecycle. Each deployment of the data warehouse must
achieve a perfect RAM score before it is rolled into production.

ETL Scheduling 101
Scheduling ETL processes is an obvious necessity to get them to run, so
why write nearly a whole chapter about it? This chapter explains not just
execution but execution strategy. A strategy is an elaborate and systematic
plan of action. Anyone can execute a program, but developing an execution
strategy requires skill.

For example, during a data warehouse and ETL design review, a user
was complaining that the data warehouse was not available until 11:00 a.m.
With this information, we immediately started to review ETL jobs to find
where the bottleneck was so we could recommend a remedy. We shortly
discovered the jobs were efficient and should not have taken three full
hours to process from execution to completion. “That’s correct!” claimed
an ETL developer on the project. “I kick them off as soon as I arrive at work,
around 8:00 a.m., and they complete in three hours—by 11 o’clock.” In
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disbelief, we interrogated the developer about automation—and the lack
of it in his implementation. He claimed he was never trained in the ETL
tool’s scheduler, so he had to kick the jobs off manually.

Even though you execute your programs, it is imperative that you do so
systematically. It is crucial that the ETL team understand the tools in your
environment and have the ability to properly schedule and automate the
ETL process to consistently load the data warehouse.

Scheduling Tools
Any enterprise data warehouse must have a robust enterprise ETL sched-
uler. Major ETL vendors package schedulers with their core ETL engine
offerings. Some offer little more than a way to execute your ETL jobs de-
pending on the time of the day, while others offer comprehensive ETL exe-
cution solutions that can trigger ETL jobs based on a variety of vital criteria.

If you are not satisfied with the packaged scheduler bundled with your
ETL product or you opted to venture the ETL without a dedicated product,
you have a few alternatives. Regardless of whether you buy a dedicated ETL
scheduler, use your existing production-scheduling system, or manually
code your ETL jobs to execute, a production ETL scheduler should meet
certain criteria to be a viable enterprise solution.

Required Functionality of an ETL Scheduler

The next sections examine some of the options available to automate the
ETL process. Many options are available, and each varies in cost and ease
of use. Certain functionality is required in production ETL environments.
When you select (or build) your ETL scheduling solution, make sure it
contains the functionality discussed in the following sections.

Token Aware

Often, the data warehouse requires data acquired from an external source.
External data providers are common, and your ETL solution must be able
to accommodate their data. External data sources are usually provided as
a flat file or in XML format. Reading and processing this data is by and
large quite simple; the challenge is to make the ETL process aware of data’s
existence. Unlike database sources, where you can look in tables’ audit
columns to recognize new rows, external sources typically dump data files
into a directory on the file system via FTP. As long as the format is correct
each time, the ETL process can handle the data. But how does the ETL
system know when an externally sourced data file has arrived and should
begin its process? The ETL system must be able to recognize that the file



P1: KTX
WY046-08 WY046-Kimball-v4.cls August 18, 2004 16:4

Operations 305

has appeared in the file system and execute automatically. This process is
called token aware.

Tokens are files created in the file system to trigger an ETL event. Appli-
cations that are token aware can poll a directory (or database table) for the
arrival of a token file (or a row). When you handle flat files, Web logs, or
external sourced data, you must avoid processing the same file repeatedly
and also ensure that you don’t miss running the ETL process if the file ar-
rives late. The token file is considered a token because it is not necessarily
the actual file processed; it can be an indicator file that tells a process to
execute merely by its arrival.

Intra-Day Execution

Daily processing is becoming less acceptable in today’s society, where ex-
pectations for immediate action are set so high. ETL processes must have
the ability to run multiple times throughout the day and even on demand.
Where monthly or daily incremental loads used to suffice, there are now
calls for 12-hour, six-hour and four-hour increments; even hourly updates
are becoming more common where real-time technology does not exist.
These aggressive requirements mean that not only must your ETL jobs be
efficient, but your scheduling system must be steadfast to manage the ex-
orbitant number of processes that run throughout the day.

Moreover, your process must be able to span over the stroke of midnight—
and restart outside of its allocated window. The practice of hard-coding
SYSDATE-1 to look for yesterday’s data is not adequate for launching and
selecting data from your source systems. The ETL system must be able to
capture new data from source systems, regardless of when it was created
or when the process is executed.

Real-Time Capability

Real-time execution is a reality of data warehousing that cannot be ignored.
It is so important that we dedicate an entire chapter to the subject. Chapter 11
discusses several techniques for achieving real-time ETL execution. Real-
time ETL is becoming more commonplace in most enterprises. More and
more users now expect the data warehouse to be continuously updated
and are growing impatient with stale data. Soon, real-time ETL will not be
a luxury but a standing requirement.

Furthermore, as the data warehouse evolves, its value is realized by the
most unexpected users. Because it offers clean, consistent, and reliable data,
the data warehouse is becoming a source system itself. Transaction applica-
tions are increasingly becoming dependent on the data warehouse to be a
standardized source for common reference data elements. To fulfill this so-
called closed-loop movement, the data warehouse must update continuously
to support operational applications.
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Command-Line Execution

ETL products have dedicated so much energy toward creating slick graphi-
cal user interfaces (GUI) for their scheduling packages to reduce the learning
curve for beginning developers and to expedite development time for sea-
soned ETL experts. But most enterprise system operations environments
need the ability to execute ETL jobs from a command-line interface. The re-
ality is that the team that supports the daily operations also supports many
other applications and cannot be expected to learn a different interface to
support each. Therefore, your ETL application must allow processes to be
executed from a command-line interface for the data warehouse ETL to be
supported by your system-operations staff. Note that the major ETL tool
suites all allow command-line execution as an option for these reasons.

Notification and Paging

Once the ETL has been developed and deployed, its execution must be
a hands-off operation. It should run like clockwork, without any human
intervention and without fail. If a problem with the process does occur, the
support group must be notified electronically. Your ETL solution must have
the ability to notify different groups or people depending on the job or the
type of failure. As we write this book, wireless PDAs and smart phones
are exploding. These devices seem likely to be standard equipment for
operational personnel. The displays on these devices can display complex
text and graphical information, and the operator can issue commands to
the ETL system remotely. See the warning that follows!

E-mail notification and paging must be completely automated. There is
simply not enough time to wait for the key support personnel to be notified
manually. Automated notification can be achieved in one of three ways:

Integrated ETL tool. Some of the major ETL products offer paging
and notification features natively in their scheduling application.
Features are usually not very robust, but they are getting better. At a
minimum, you need to differentiate between successful loads and
failures and page-appropriate personnel accordingly. Also, messages
should automatically send vital information about the failure (for
example, job name, time of failure, rows loaded, rows failed, and last
error message dynamically).

Third-party messaging application. A number of companies offer
urgent messaging products dedicated to supporting 24/7 system
operations to minimize downtime. Additionally, operations
management/monitoring tools often include notification features
that can be utilized if your operations-support team utilizes such a
tool.
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Custom scripts. You have the option of manually scripting the e-mail
notification portion of the execution strategy at the operating-system
level. The scripts must interact with the ETL jobs and be triggered as
necessary.

When designing your custom e-mail notification system, use scripts with
embedded e-mail addresses with extreme caution. Scripts can be read on the file
system as simply as a text file. Scripts are vulnerable to having e-mail addresses
hijacked by spammers who can saturate the e-mail recipients with junk mail. Use
encryption techniques or a solution from a secure product whenever possible.

Nested Batching

A batch is a group of jobs or programs that run together as a single opera-
tion. Usually, ETL jobs are grouped together—or batched—to load a single
data mart. And the data warehouse, composed of a collection of data marts,
is loaded with a batch of data mart load batches. The technique of loading
batches of batches is known as nested batching. Nested batching can involve
several layers of ETL jobs. For example, a single dimension can require sev-
eral ETL jobs to load it due to severe complexity within the data or business
rules. Those dimension jobs are grouped together to run in a single batch.
That batch is included in another batch to load the rest of the dimensions
for the data mart. The data mart batch is then incorporated into the data
warehouse batch, making the batch three layers deep. No logical limit to
the depth of nested batching exists.

ETL jobs are typically executed in nested batches. You will rarely run
a single, standalone ETL job in a production environment. A data mart
usually requires at least one job for every dimension and the fact table. As
you can see, multiple levels of nested batching are common while loading
the data warehouse. Therefore, your solution must be able to manage nested
batches. Batch management includes the following:

Graphical interface. ETL batches typically become quite complex
due to the nature of the nesting required to load the data warehouse.
Select a batch-management tool that has the capability to navigate
through your nested batches as easily as navigating through a
directory structure in Windows Explorer. Without a graphical
representation of the nested batches, management can become
unwieldy. Developers should be able to create, delete, edit, and
schedule batches through a GUI, as well as move jobs and nested
batches among outer batches by dragging and dropping them. Batch
management is best achieved graphically, although a logical naming
standard must accompany the graphics. Visualization of the
dependencies between batches is crucial to maintaining a clear
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understanding of which jobs belong in each batch and also to
identifying dependencies between batches.

Dependency management. A dependency occurs when the
execution of one job is contingent upon the successful completion of
another. Rules of dependencies between jobs are defined in the
execution strategy and must be enforced at runtime by the ETL
scheduling system. Your batch-management tool must have the
ability to stop a batch dead in its tracks upon a failed job if business
rules so require. For example, if a dimension job fails, you must not
proceed to load the fact table. Not all scenarios require such a strict
batch-halt policy. For example, if an outrigger fails, it is usually still
okay to load its associated dimension. The batch-management tool
should be robust enough to set dependencies on a batch-by-batch
basis as business rules dictate.

Parameter sharing. Values of parameters might need to be passed
from one job to another or set once at the outermost batch and used
globally throughout the nested batches. The batch manager must
include parameter-management functionality. More information
regarding parameter management is discussed in a section dedicated
to that topic later in this chapter.

Graceful restart. What happens if a job fails in the middle of its
execution? How do you know exactly what has been loaded and
what has not? Upon restart, the batch-management tool must be able
to systematically identify which rows have been processed and
loaded and process only the rest of the input data. Special attention
must be paid to the load process at times of midprocess failure. In
general, the ETL system should have a number of staging points
(steps in the process where data has been written to the disk) if for no
other reason than to support a restart scenario. Also, special care
should be taken if one of the ETL steps involves manual intervention
and correction of data. These manual steps must at least be preserved
in a log so that they can be reapplied if the ETL processing step must
be rerun.

Sequential/Concurrent execution. In some cases, it is necessary to
load tables sequentially. For instance, when tables have dependencies
between them, you must load the parent before you can load child
tables. Outriggers associated with specific dimensions are a good
example of this parent-child sequencing, as well as normal
dimensions and facts. You cannot load a fact until all dimensions are
loaded. Also, sometimes you need to load tables in sequence rather
than concurrently to distribute server resources. If you attempt to
load all dimensions in a data mart at once, you might bring the ETL
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server to its knees by overloading its resources. Conversely, in cases
of long-running processes, you can separate a job into several smaller
jobs run concurrently to improve load performance. Assuming
appropriate resources are available, run as many independent
processes concurrently as possible to maximize processing and
minimize the load window. More information on concurrent and
parallel processing is detailed later in this chapter.

Pre/Post-execution activity. Simply launching scripts before or after
an ETL process is not execution management. The batch manager
must be able to realize that a preprocess script has executed
successfully before it launches the core ETL job. Moreover, it must
trigger only post-process scripts if the core ETL job completes
without failure. Lastly, scripts must be able to be executed at the
batch level as well as the job level. This is especially important for
batches run concurrently, because a different job might complete last
each time the batch is executed. Nevertheless, you might need a
post-process script to fire off only after all jobs are complete.

Metadata capture. All metadata within the control of the batch
manager must be captured, stored, and published. In a best-case
scenario, metadata should be stored in an open repository that can be
shared with other applications. Each ETL job has a scheduled
execution time and frequency, its parameters, and recovery
procedures, which are all forms of metadata that must be presented
and easily obtained by those who need to support the load processes
as well as business users. At a minimum, metadata must have
reporting abilities so users and developers have insight into the
operational aspects of the data warehouse ETL. Refer to Chapter 9 for
an in-depth view of ETL metadata.

ETL tools are becoming better at failure recovery, but graceful restart is an
extremely difficult requirement that we have not yet seen perfected. In many
cases, it is still safest to truncate or delete the information that has been partially
loaded as a result of midprocess failures and begin the failed ETL process from the
beginning. If you entrust your tool set to automatically pick up where it left off, it
is recommended that extra time be spent auditing the data of the completed
process to ensure data quality and integrity.

Parameter Management

The ETL system moves through different environments throughout its de-
velopment lifecycle. Since the lifecycle includes testing the code within the
ETL system, you cannot alter the code between environments. Therefore,
hard-coded parameters are not acceptable while coding variables in the ETL
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system. Parameters are a way to substitute values in code that would other-
wise be constant. A robust ETL scheduling system must have the ability to
manage and pass parameters to ETL jobs as they are executed. Parameters
add flexibility to ETL jobs so they can gracefully change environments or ex-
traction criteria without reprogramming the application. For example, the
natural course of an ETL job is to be developed in a development environ-
ment, tested in a test environment, and ultimately migrated to a production
environment where it supports the production data warehouse.

Each of the environments in the ETL lifecycle has dedicated source, stag-
ing, and target databases; file systems; and directory structures. By making
each of these environment changes parameter driven, the ETL system can
pass the jobs through the environments without changing code to point to
relevant files or databases. You must parameterize environment variables
and allow the scheduler to pass the applicable values to those variables at
run time.

A good list of items to parameterize includes:

Server name

Database or instance name

Schema description file name

Database connection information (without the password in plain
text!)

The root directory or folder in which to find useful control files

Metadata database-connection information

Your scheduler must be able to manage two kinds of parameters:

Global parameters. A global parameter is a single parameter that
supports many ETL jobs. Naturally, ETL jobs can have many global
parameters. For example, the target database name should be set
globally; otherwise, you are forced repeatedly to maintain the
parameter for each job that loads the data warehouse.

Local parameters. Local parameters live only within an ETL job.
Local parameters can be set to change variables within a single job
without affecting other jobs in its batch. An example of a local
parameter is the setting of the earliest date that should be retrieved
from the source table.

Native ETL tool schedulers are the best bet to obtain a robust parameter-
management system because the scheduler is usually natively integrated
with the ETL engine. Native integration of the ETL engine and the scheduler
makes communication between the two components remarkably efficient.
Architectures that involve parameter management by a third-party vendor
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are not as efficient but might provide more flexibility. ETL solutions that
do not support parameters that can be set at runtime fail the Manageability
criteria of RAM.

In an enterprise environment, it’s important to produce metadata for
the parameters in your ETL jobs. If you don’t have a robust parameter-
management system, parameters can be maintained in flat files on your
files system. By utilizing flat files, the operations teams can simply update
a parameter file without at all invading the ETL system.

ETL Scheduler Solution Options

In the previous section, we describe the functionality that one should expect
of an enterprise ETL scheduling system. A few options that achieve the same
functionally exist. In this section, we offer five options to select from when
you are building your ETL scheduler solution:

1. Integrated ETL tool

2. Third-party scheduler

3. Operating system

4. Real-time execution

5. Custom application

The key is to select a solution robust enough to meet all the criteria you
think you’ll need based on your knowledge of the jobs that have been
created to load your data warehouse thus far, yet fits within the budget
of the data warehouse initiative. The final criterion is to consider in-house
expertise. The next sections evaluate each of the five options.

Integrated ETL Tool

Virtually all of the dedicated ETL tools incorporate a scheduling system
to execute ETL jobs created within their toolset. Some tools offer minimal
functionality, while others are robust scheduling applications. If you are
not forced into using a tool that your operations-support team has already
established as the standard scheduling tool and your ETL tool contains a
robust scheduler, it is most beneficial to use your integrated ETL scheduler.
Benefits of an integrated solution include:

Product support by your ETL vendor. Utilize a single Service Level
Agreement (SLA) for both applications. Those with IT experience are
familiar with the passing of the buck that occurs with multivendor
solutions. Funny how problems are never the fault of the vendor on
the phone. (It must be a compatibility issue caused by the other product.)
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Using a single vendor or product suite can improve vendor support
and expedite the resolution of technical issues.

Integration of scheduler and ETL engine. Integrated suites are
designed to pass parameters between components and natively
enforce dependencies between jobs. Dependency between jobs,
meaning the execution of one job depends on the successful
completion of another job or set of jobs, is a crucial to properly
loading the data warehouse and recovering from ETL failures.

Knowledge of toolset within ETL group. Since the ETL toolset is the
specialty of the ETL team, they can set up the execution strategy
without learning another application. Moreover, once an ETL job has
been thoroughly tested, it is rare that it fails in production. When jobs
do fail, the ETL team usually needs to get involved at some level of
capacity. By keeping ETL scheduling within the domain of the ETL
toolset, the team can easily jump into the support role and help
recover any failed ETL processes.

Third-Party Scheduler

Many production-support departments standardize on a single scheduling
system that all applications must adapt to. In some enterprise environments,
the data warehouse is treated like any other application and must abide by
the rules set by the production-support team. In these cases, the ETL is
triggered by a scheduling system that supports all applications throughout
the enterprise. Operating an enterprise-scheduling system is a specialty
beyond the scope of the ETL team’s knowledge. The ETL team needs to work
closely with the production-support team in cases where failure recovery
is not straightforward.

If your production-support team insists that they execute ETL jobs via their
standardized enterprise scheduling application, make sure it has the required
functionality to properly support your ETL execution strategy, including
dependencies between jobs, parameter management, and notification and alerts.

Operating System

It’s not uncommon for the ETL process to be executed by native operating
system scheduling systems such as Unix Crontab or the Windows Sched-
uler. Even if you have a state-of-the-art ETL product, many production-
support groups require scripts to execute the ETL jobs in production because
it is a common denominator of all applications throughout the enterprise.
Virtually any application can be executed via a line command or script at the
operating-system level. In the Windows world, very elaborate batch or .BAT
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or VBScript or JScript files can be constructed to manage the execution of
ETL processes. On Unix, Crontab is used to launch jobs. Operating-system
schedulers can execute the ETL job directly or by way of a script.

As most programmers know, the power of scripting is not trivial. One can
build very robust application-type logic with scripting languages. Most of
the RAM criteria can be met with scripting. Moreover, Perl, VBScript, or
JavaScript can be run on Unix or Windows to handle complex business
logic while executing jobs that load the data warehouse. In fact, scripting
languages can most likely provide the functionality of the logic within the
jobs, too. However, we still recommend a robust ETL tool for building and
maintaining ETL jobs. The shortfall of using scripting instead of a dedi-
cated ETL scheduling tool is its lack of metadata. Any useful information
regarding the ETL schedule lies within the scripts. One needs to be a pro-
grammer to decipher the information within the script. Two techniques can
be utilized to maintain metadata within the execution scripts.

Spreadsheets. The ETL manager or programmer must maintain a
spreadsheet that contains important metadata, including parameters,
jobs within the batch, timing of the execution, and so on.

Tables. A dynamic scripting solution is metadata driven. All
pertinent metadata is stored in tables (either database or flat) and is
passed to scripts at runtime. Metadata-driven scripts are an
achievable goal that should be built and utilized when integrated
ETL schedulers are not an option.

Real-Time Execution

If part of your data warehouse is real-time enabled, you need to select
one of the mechanisms detailed in Chapter 11 to support your real-time
requirements. It is rare that an entire enterprise data warehouse is loaded
in real time. Often, some segments of the data warehouse are loaded real-
time, while others are batched and processed periodically. Special attention
must be paid to the integration of the two types of ETL techniques to ensure
a seamless, cohesive solution.

Custom Application

Building a custom scheduling solution is always an option. However, we
have not come across a reasonable justification for a custom scheduling
application—but that doesn’t stop some from building them anyway. If
you choose to execute all of your jobs via scripts, it might be worthwhile
to build an application to manage them, but building a custom GUI for
this purpose would be overkill. Usually, scripting programs, along with
metadata tables, are a viable solution for custom ETL scheduling.
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Load Dependencies
Defining dependencies between jobs is perhaps the most important aspect
of batching ETL jobs. If a subdimension load job fails, perhaps you can con-
tinue to load a dimension, but if a dimension load fails, should you continue
to load the fact table? It’s usually not recommended. A dependency set be-
tween jobs is metadata that the load process must be aware of. Operational
metadata of this sort is needed for the operation of the ETL to function prop-
erly. A fact table ETL process will load erroneously—missing key data—if it
is executed before all of its dimensions are successfully loaded. Moreover,
if the fact table is not designed to perform updates, all of the erroneous
data must be manually backed out or deleted before the process can restart.
Manual intervention is the costliest approach to rectifying failed ETL loads.
Much of that cost can be avoided by declaring enforceable dependency
rules between ETL jobs.

Dependency holds true between bridge tables and dimensions—and hier-
archy mapping tables and dimensions. Use the preceding list as a reference
for job-dependency definitions. In a nutshell:

Do not load dimensions without successfully completing their
subdimensions.

Do not load bridge tables without successfully completing their
dimensions.

Do not load fact tables without loading all parents, including bridge
tables and dimensions.

However, keep this clever data warehouse aphorism in mind: For each
rule of thumb, there are four more fingers to consider. For example, if a
dimension is designed to update the foreign key that associates itself to a
subdimension, it is not necessary to stop loading the data mart because a
subdimension load has failed, as long as the scheduler issues a warning
whenever a job does not complete as expected.

Metadata
Imagine if your local railroad ran its service without publishing its train
schedule. How would anyone know when to catch the train? Running an
execution strategy without publishing its metadata is equally detrimental
to its users. Earlier in this chapter, we told you that your scheduler must cap-
ture metadata for the contents and schedule of batches and nested batches
and that this metadata must be available to business users as well as to the
data warehouse team. Batch metadata serves as the train schedule for the



P1: KTX
WY046-08 WY046-Kimball-v4.cls August 18, 2004 16:4

Operations 315

data warehouse. It should predict when users should expect data to arrive
and become available for use.

The scheduling system should also let users know when data will be
arriving late. This notification is different from the failure notification dis-
cussed earlier in this chapter. Data-availability metadata is a crucial aspect
of communication and a key mechanism for setting user expectations. Meta-
data used to notify users of data arrival falls under the category of process
metadata. Process metadata captures the operational statistics on the ETL
process. It typically includes measures such as the count of rows loaded
successfully, rows rejected, elapsed time, rows processed per second, and
the row’s estimated time of completion. It is important process metadata
because it helps to set user expectations—just like giving announcements
at the train station.

Metadata collected during the cleaning and conforming steps serves sev-
eral operational roles. It serves to advise the ETL team whether the data is
fit to be delivered to the end user community. The data in the audit dimen-
sion is meant to be combined with normal data in specially instrumented
data-quality reports, both for instilling confidence in the reported results
and supporting compliance reporting. Finally, the cleaning and conforming
metadata is a direct indicator of action items for improving the data quality
of the original sources.

All metadata within control of the batch manager must be captured,
stored, and published. In a best-case scenario, metadata should be stored
in an open repository that can be shared with other applications. At a
minimum, metadata must have reporting capabilities so users and de-
velopers have insight into the operational aspects of the data warehouse
ETL.

Migrating to Production

The migration process can vary depending on many variables, including
politics, technical infrastructure, and the ETL toolset. In general, the ETL
team is usually part of the development side of things and should avoid
the distractions associated with providing first-level production support for
the data warehouse, unless your organization is large enough to warrant a
dedicated production-support ETL team.

For the purpose of this chapter, assume that the ETL team exists only
in development and hands its work over to a production-support team
when the jobs are ready for production. Again, these processes can vary
depending on your organizational structure and the tools employed in your
environment. This section should be used as a guide to the finishing touches
of the ETL lifecycle.
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Operational Support for the Data Warehouse
It’s interesting how many books and articles talk about how the data ware-
house team needs to maintain the data warehouse. In reality, at least in our
experience, the data warehouse team—including the ETL team—are ana-
lysts as well as developers. They gather all of the business requirements,
analyze the findings, and build the data warehouse. Once it is built, they
usually hand it off to another team that monitors and maintains the pro-
duction environment.

The data warehouse architect and data modelers are responsible for the
dimensional data model, and the ETL manager is responsible for populating
the dimensionally designed data warehouse.

The ETL development team builds the processes to load the data ware-
house, and the quality-assurance (QA) team thoroughly tests them accord-
ing to the written test plans. The data warehouse needs to be transitioned to
the group within your organization that can support its day-to-day opera-
tions. If you are a small company or the data warehouse is still in its infancy,
the development team may in fact support the operation of the ETL in pro-
duction. But as the data warehouse grows—more data marts are added to
it—the development team needs to be alleviated from the distractions of
supporting the operational aspects of the production environment.

Once the ETL process is developed and tested, the first level of operational
support for the data warehouse and ETL should be provided by a group dedicated
to monitoring production operations—not the data warehouse development team.
The data warehouse team should be called only if the operational support team
has exhausted all troubleshooting procedures without resolution.

Bundling Version Releases
Once the ETL team gets past the terrific challenges of developing the ETL
process and manages to complete the creation of the jobs required to load
the data warehouse or data mart, the jobs must be bundled and migrated to
the next environment according to the lifecycle that has been implemented
by your data warehouse management team.

Have a discussion with your ETL tool vendor about exactly this step of your
ETL deployment. Does the tool support incremental scripting of all edits, so that
you can migrate your test system into development in a single command? Or do all
the files have to be opened, examined, closed, and transferred one at a time?

With each data warehouse release, the development team should produce
a release procedures document similar to the one displayed in Figure 8.1.
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Environments:  From QA to Production  
Server names: Migrate from na-dwqasvr-01 to na-dwprdsvr-01 
ETL Programs:  Migrate from /DWQA to /DWPRD 
Database Name: Migrate fromDWQA to DWPROD   

File Name:  DW_Release_5.0_SALES_PROD.doc   
Last Modified Date: 16-Feb-04 7:10:00 AM  
Change Type: Major Release   
DW Release #:  5.0  

Following System Change Requests (SCRs) are addressed in this Release/Build.  
Subject Area
/Table 

Change type  Description Lineage Report Name  PVCS Script Name PVCS 
Version

10845 Sales Data Model/ETL code New star schemais added for Sales analysis  Sales_mart_data Lineage.xls Sales_By_Month_Release_5_
Build1.zip

System Operations needs to follow below procedures for moving the Datamart from one environment to another. 

   Standard Release Procedures  

  Procedure 

 Project Code 

•  The DDL, and ETL scripts are in PVCS as Sales_By_Month_Release_5_Build1.zip.   

 Tables/Views 

• Execute the following DDL scripts in order : in DW_PROD database.  

Get The DDL script from  the PVCSProject:/DWQA/sql
DW_SALES_MART_STEP1_CreateTablesIndexes.sql 
DW_SALES_MART_STEP2_CreateStagingTables.sql
DW_SALES_MART_STEP3_CreatePubSynonyms.sql Version 1.0  

Version 1.0  
Version 1.0  

l Security View Changes 

Not Applicable 

 SQL Packages  

• The following Package needs to be migrated to DWPROD : 

Get the scripts from PVCS: 
DWQA/packages/PKG_SALES.sql    Version 1.0  

 Configuration Changes  

 • Include below entries intnsnames.ora on ETL server.  

Change
Request# 

              -Not Applicable - 

 ETL Jobs Migration 

 

• Migrate all of the below jobsfromPVCS or use the zip file.    

Import all the jobs into DWROD from the following file:  

DW_SALES_MART_Release_5.0_ETL_Jobs.zip     Version 1.0  

 Copy Shell Scripts 

 
• Copy below mentioned files from/dw/sales/qa/shellto /dw/sales/prod/shell   

          - Not Applicable -  

 Copy SQL Scripts 

 
• Copy below mentioned files from /dsprojects/DWDEV /sql to /dsprojects/DWQA /sql 

          - Not Applicable -  

 Copy Source Flat Files 

           - Not Applicable -  

  

 

• Change below mentioned parameters in  /dsprojects/DWQA/paramfile/param.ini.  

If the following parameters do not exist in the param.,ini file, then set the value as follows: 
TgtStageUserName : Set this to dwetluser 
TgtStagePassword: Set this to the password for the DB user resultewd. 

 Additional Comments 

  

 Execution Steps 

 

• Follow below mentioned steps to do current Release/Build. 

1. Do all the Migration steps as mentioned above. 
2. Run BatchSalesLoad.sh 

Copy/Edit Parameter file

Figure 8.1 Data mart release document.
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The data mart release document introduces the release and provides tech-
nical details required to migrate and support the release. The document
includes the following:

Environment. This section contains the source and the target
environment. Environment migrations are usually Development to
Test or Test to Production. If you have more environments such as
dedicated User Acceptance or QA, those will also be included in this
section, depending on where your project is in its lifecycle.

Server name. The physical names of the servers in the environments
participating in the migration. This can list the ETL and DW servers.

ETL Programs. Lists the directory where the programs reside. If you
are using an ETL tool, use the component to identify the correct
programs or jobs for the release.

Database Name. The database the migration is coming from and
going to. This is usually Development to QA or QA to Production.

Documentation File Name. The name of the file that contains
information about the migration, including step-by-step recovery
procedures

Last Modified Date. The last time the Release Document has been
modified

Change Type. The description of the type of release. Types include
major, minor, or patch. See Chapter 2 for a complete explanation of
release types.

Release Number. This is the version that the data warehouse
becomes as a result of the release.

Change Request Numbers. This corresponds to the requests
addressed and included in the deployment as a result of your
scope-management procedures.

Procedures. The procedure is a step-by-step guide to migrate the
jobs. The standard information usually provided on the release
document includes:

Project Code. The area in the version-management tool to find the
code to build the release in the data warehouse

Tables/Views. The Data Definition Language (DDL) that created
the new structures and indexes for the new data mart

Security. Any new security policies or requirements to support the
release

SQL Packages. Database store procedures used by the ETL
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Configuration Changes. Global settings or entries required for
the release, such as TNSNames (Oracle’s aliases for remote
database names) or Object Database Connectivity (ODBC)
connections.

ETL Jobs. Where to get the ETL jobs required for the release.
Usually specifies an area in your version-control manager or ETL
tool.

Shell Scripts. Preprocess and post-process OS shell scripts that the
ETL depends on

SQL Scripts. Preprocess and post-process SQL scripts that the
ETL depends on

Flat Files. A list of flat files, including their path for new source or
staging files

Edits to Parameter File. For environments with managed
parameters, this is where you list the new source system databases
or any new changed parameters for the ETL process to utilize.

Additional Comments. Any further instructions or comments
about the release to help the system operations team with the
migration

Execution Steps. Explicit instructions for the execution of the job.
For new data marts or independent ETL processes, you can
specify the schedule and frequency of the run.

Once the data mart release document is complete, the ETL team walks
through the document with the implementation team. During the migra-
tion, the ETL team should be on standby for any emergency issues that
might affect production. Immediate response by the ETL team might not
be a key requirement for the first release of the data warehouse. But as the
data warehouse becomes recognized as a mission-critical application, any
downtime can be detrimental to the organization and must be avoided.
Once the migration is complete, the ETL team can return to their regular
development tasks for the next phase of the data warehouse. Ongoing sup-
port for the production environment should be provided by a dedicated
production-support team. The next section walks you through the different
support levels required for a data warehouse.

Supporting the ETL System in Production
The beginning of this chapter explains how to get the ETL processes run-
ning and shared recommendations on several techniques for scheduling,
batching, and migrating ETL jobs. This section of the chapter concentrates
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on supporting the ETL once it is in Production. Generally speaking, support
for any software implementation essentially has three levels:

1. First-level support. First-level support is usually a Help Desk type of
situation. If a failure occurs or a user notices an error in data,
first-level support is notified. Armed with the appropriate procedures
provided by the ETL team, the first-level support team makes every
attempt to resolve the situation before escalating it to the next level.

2. Second-level support. If the Help Desk cannot resolve the support
issue, the system administrator or DBA is usually notified. The
second level of support is usually technically proficient and can
support general infrastructure type failures.

3. Third-level support. If the production operations technical staff
cannot resolve an issue, the ETL manager is the next to be called. The
ETL manager should have the knowledge to resolve most issues that
arise in production. Sometimes the ETL manager converses with
developers or external vendors for advice on certain situations.

4. Fourth-level support. When all else fails, go directly to the source.
Fourth-level support demands the expertise of the actual developer
of the ETL job to analyze the code to find a bug or resolve an issue. If
the issue involves a potential bug in a vendor application, the vendor
is called in to support its product.

In smaller environments, it is acceptable—and common—to combine
support levels three and four. However, that combination puts more of
a burden and coordination factor on the second-level support team. It is not
advised to call an ETL developer every time a job fails. First-level support
should be more than merely a phone service and must make every effort
to resolve production issues before they are escalated to the next service
level.

Achieving Optimal ETL Performance

Okay, you’ve thoroughly read this book and implemented a luminous ETL
solution. But wait; you are not done yet! As your data warehouse expands,
you must ensure that your ETL solution can grow along with it. A scalable
ETL solution means that the processes you’ve designed have the ability
to process much larger volumes of data without requiring redesign. Your
designs must execute efficiently to achieve the performance required to
process loads far greater than the size of their current volume. Scalability
and performance are attributes that cannot be overlooked when designing
the data warehouse ETL.
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ETL developers, DBAs, and the data warehouse management team will
benefit from this chapter because it outlines strategies that monitor and im-
prove existing ETL implementations. The chapter assumes you’ve already
done your analysis, designed your logical data lineage, and implemented
the physical ETL process. It dives right into the details and techniques that
should be applied to new and existing ETL jobs to obtain optimal technical
performance.

Toward the end of this chapter, you’ll find tips on how to tackle security
issues in the data-staging area. We specifically address vulnerability dur-
ing File Transfer Protocol (FTP) and offer techniques for encrypting and
decrypting data in-stream to provide a secure yet efficient environment.

Upon completion of this chapter, you’ll be able to offer expert ETL tuning
techniques to your data warehouse team. The techniques offered in this
chapter are specific to the data-staging environment and are not intended
to be used to optimize the presentation layer of the data warehouse.

If you need information on optimizing the target data warehouse, we
recommend that you read Essential Oracle8i Data Warehousing: Designing,
Building, and Maintaining Oracle Data Warehouses by Gary Dodge and Tim
Gorman (Wiley 2000).

Estimating Load Time
Estimating the initial load of the data warehouse to bring all history from
the transaction system into the data warehouse can be overwhelming, es-
pecially when the time frame can run into weeks or even months. Through-
out this book, we present the extract, transform, and load processes as a
complete package, according to the goal of the ETL process in its entirety.
However, when you estimate a large initial load, it is necessary to divide
the sections of the ETL system into its three discrete processes.

Extracting data from source systems

Transforming data into the dimensional model

Loading the data warehouse

Estimating Extraction Process Time

Surprisingly, extracting data from the source system can consume the greater
part of the ETL process. The historic load for the data warehouse extracts an
enormous amount of data in a single query and online transaction process-
ing (OLTP) systems are just not designed to return those voluminous data
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sets. However, the breath-of-life historic database load is quite different
from the daily incremental loads.

But in any case, transaction systems are not designed to pull data in the
way required to populate fact tables. ETL extraction processes often require
overhead-intensive methods such as views, cursors, stored procedures, and
correlated subqueries. It is crucial to estimate how long an extract will
take before it is kicked off. Estimating the extract time is a difficult metric
to calculate. The following obstacles prevent straightforward estimation
procedures:

Hardware in the test environment is usually substantially smaller
than in production. Estimates based on executions of the ETL
processes on the test environment can be significantly skewed
because of the hardware difference between the test and production
servers.

Since the ETL jobs that extract historic data can take days to run, it
is impractical to perform a test run of the complete data set. We
have seen projects where an extract job ran and ran until it eventually
failed; then it would be restarted and run again until it failed again.
Days to weeks went by without an ounce of productivity.

To overcome the difficulties of dealing with massive volumes of data, you
need to break the extract process into two smaller components:

Query response time. The time it takes from the moment the query is
executed to the moment the data begins to be returned

Dataset retrieval time. The measurement of time between the first
and last record returned

Since the initial extract load is likely to be massive, it’s recommended that
you take a portion of the data for your estimation. In most cases, the fact table
you are loading is partitioned. We recommend that you retrieve enough data
to populate an entire fact table partition for your sample. Use a partition
worth of data for your sample because database partitions should divide
data—more or less—into equal portions and provide a clean benchmark.
Once the time to extract one partition is obtained, multiply that number
by the number of partitions allocated for the fact table to estimate the total
extraction time. The caveat with this method is that it combines the query
response time with the data retrieval time, which can skew estimates.

Calculating Query Response Time

The best approach to isolating the two processes is to utilize a query-
monitoring tool. Most of the ETL tools have a monitoring tool built into
their application. Keep in mind that if you are using an ETL tool, reference
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tables are loaded into memory before the main extraction begins. Therefore,
you need to separate the cache process from the raw extract process as well.

Calculating Data Retrieval Time

Once the extract query starts to return data, begin timing exactly how long
it takes to load a portion of the data. Select a portion that makes sense for
your situation. If you’ve got 200 million rows to load, perhaps one million
would be a good test. Stop the job when exactly one million rows have
been loaded and check the elapsed time. Then multiply the elapsed time by
200 (200 million rows total/1 million test rows) to derive the data retrieval
portion of the extraction estimate for the entire historic load.

Once the extraction job has been thoroughly tested, insist that the sample job
for the estimate is performed in the production environment to prevent skewed
results that would occur by running the process in a smaller technical
infrastructure.

Estimating Transformation Process Time

One would expect that manipulating data would be a time-intensive effort.
Surprisingly, most of the actual transformations of data are done in memory
at an amazing rate of speed. Relative to its sister processes, extraction and
load, the time it takes to physically transform data can be inconsequential.

If you are using stored procedures that utilize cursors, consider redesign-
ing your system. Depending on your circumstances, it might be best to
utilize an ETL tool and minimize the use of database-stored procedures
for your transformation processes. Most of the ETL process should be con-
sumed by I/O (physically reading and writing to disk). If the transformation
time is not significantly less than that of the extract and load processes, you
might have a major bottleneck in your transformation logic.

The easiest way to estimate transformation time is to gather the extract
estimate and the load estimate and then run the entire process. Once you
have those statistics, subtract the duration of the extract and load processes
from the complete process time. The difference is the time spent on the
transformation process.

Estimating Loading Process Time

When you calculate the load time, you need to ensure that delays aren’t
being caused by the transformation of the data. Even though you may be
pipelining the data from the transformation to the load process, for the
purpose of the estimate, you need to touch down the data to a flat file after
it’s been transformed.



P1: KTX
WY046-08 WY046-Kimball-v4.cls August 18, 2004 16:4

324 Chapter 8

Many variables affect load time. The two most important factors to con-
sider are indexes and logging. Make sure the environment during the test
exactly matches the physical conditions that exist in production. Like data
retrieval, the data load is processed proportionately. That means you can
bulk load a sample data set—say 1 million of 200 million—and then multi-
ply that duration by 200 to derive the complete load time estimate.

Vulnerabilities of Long-Running ETL processes
The purpose of an ETL process is to select data from a source transaction
system, transform it, and load it into the data warehouse. The goal of the
ETL team is to design efficient processes that are resilient against crashes
and unexpected terminations while accomplishing those tasks.

Horizontal versus Vertical ETL System Flows

ETL systems are inherently organized either horizontally or vertically. In
a horizontal organization, a given extract-clean-conform-deliver job runs
from the start to completion with little or no dependency on other major
data flows. Thus, a customer-orders ETL job could run to completion, but
the inventory tracking ETL job could fail to complete. This may leave the
decision makers in the organization with an inconsistent and unacceptable
situation.

In a vertical ETL system organization, several ETL jobs are linked toge-
ther so that comparable steps in each job run to completion and wait for
the other jobs to get to the same point. Using our example, both customer
orders and inventory tracking would need to complete the extract step
before either would advance to the cleaning, conforming, and especially
the delivery steps.

Determining whether your ETL system should be horizontally or verti-
cally organized depends on two big variables in your environment:

1. Detailed data dependencies that require several ETL jobs to progress
through the steps in parallel. (That is, if the inventory tracking job
fails, maybe the customer-orders job could have undefined product
codes.)

2. The sensitivity the end user community might have to partially
updated data (for example, orders being updated but shipments
lagging by a day)

Analyzing the Types of Failure

Unfortunately, to execute and complete successfully, the ETL process de-
pends on many components. Once an ETL process is in production, failures
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are typically due to reasons beyond the control of the process itself. Leading
causes for production ETL failures include:

Network failure

Database failure

Disk failure

Memory failure

Data-quality failure

Unannounced system upgrade

To familiarize you with the variables in your environment that may pose
a threat to your ETL processes, this section discusses each of the ETL vul-
nerabilities and offers tips on minimizing your risks.

Network Failure

The network is the physical infrastructure that connects all components of
the data warehouse. Each server, whether it is for a database or an applica-
tion, connects via the internal corporate network. With the miles of cabling,
routing, and nodes, the risk of network faults always exists. Network fail-
ures will never be completely unavoidable, but the ETL can take measures
to minimize vulnerability to network failures.

A precaution to reduce your vulnerability is to put the ETL engine on
the same server as the target data warehouse database. Obviously, this
choice raises the issue of resource contention between ETL jobs and end
user queries, but in the realm of minimizing network failures this practice
eliminates 50 percent of network traffic because the data can pass from the
ETL engine to the target data warehouse on the internal bus of the server. In
many cases this co-residency makes sense if conventional data warehouse
querying happens during the day while ETL processes take over most of
the system resources at night.

Database Failure

Remember, the initial load does not only happen at the beginning of the
data warehouse implementation. If you have an enterprise data warehouse
implemented using the Data Warehouse Bus Architecture, each phase of
the data warehouse requires an initial load. Each data mart needs to have
historic data loaded into it before it is loaded incrementally.

A physical database failure is known as unscheduled downtime. With
today’s available technology, where virtually everything is redundant, un-
scheduled downtime can and should be avoided. Make sure you have a
comprehensive Service Level Agreement (SLA) that specifies your unsched-
uled downtime rate requirements.
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Moreover, a database does not have to be physically down to be perceived
as down. One of the goals of the ETL team is to conduct the required pro-
cesses to load the data warehouse yet remain transparent to users. If an ETL
process has a table locked or has the temp space pegged, the experience by
the user is a failure. Perceived database failures are as detrimental to the
reputation of the data warehouse as physical failures.

Disk Failure

The storage of data in the data warehouse is perhaps the most vulnerable
component of the data warehouse to all potential points of failure. Typically,
three disk groups are involved in the ETL process:

Source system disk. Typically, the ETL process merely reads data
from the source system disk and risk of failure is minimal. However,
use extra caution while extracting the initial history from the system.
An extract with many years of history can be a quite large data set. If
you run complex extract queries with multiple joins and order by or
group by clauses, you may exceed the disk space allocated for these
types of operations. To reduce your vulnerability, work with the
source system DBA team to monitor temp-space usage while you
perform test runs of the history load process. Make sure ample space
is allocated before you run the whole process.

Staging area. The staging area is the workbench of the ETL process.
Generally, it contains a number of staged files representing different
steps in the flow of data from the source to the final dimensional
targets. Data would normally be staged immediately after each of the
major steps of extracting, cleaning, conforming, and preparing for
delivery. The process reads and writes to this area for several reasons,
including for data persistence and safekeeping, as well as a holding
cell for data in the midst of transition. The data-staging area can be
the size of the source system and the data warehouse combined.
However, this is rarely the case. But keep in mind that the possibility
is there and that the data-staging database is often off the radar for
the data warehouse and DBA teams. As a precaution, periodically
check the available space in the data-staging environment to ensure
you are not running too low.

Data warehouse storage. The data warehouse can grow much faster
than initially anticipated. Quite often, space for indexes and temp
space is underestimated and allocated space is exceeded. When the
ETL process tries to write to unallocated disk, the process crashes. It
is very difficult to recover from errors that involve disk space. To
prevent running out of space, you need to lie to your DBA team and
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exaggerate the volumetric estimate of the initial load and
three-month size estimate of the data warehouse. We used to double
our estimates, but now, after a few close calls, we triple our
volumetric to be safe. We recommend tripling the estimate of your
initial load to avoid potential catastrophe. Trust us; the space will not
go to waste.

It is not enough to simply measure various storage capacities and utilizations.
The ETL team should monitor these numbers regularly and do something when the
alarm thresholds are reached. We have seen alarms set at 90 percent of capacity,
but then the warning gets ignored for six weeks. Boom!

Memory Failure

Memory can fail in any of the three environments:

Source system

Staging area

Data warehouse

These environments are equally vulnerable to overloading their allocated
memory and failing the ETL processes. A memory overload will not nec-
essarily crash your process, but it will slow it down tremendously when
it starts to utilize virtual memory—when the operating system writes data
intended to be in random access memory (RAM) to disk. Make sure you
consult with your ETL application vendor to obtain recommended cache
settings for your particular history load.

If you have a hardware breakdown, you’ll need to correct the problem and
restart your process from the beginning (unless your ETL tool can recover
gracefully).

Temp Space

Temp space is the area of the database used whenever you sort or join data.
Temp space is often blown out when data warehouse type queries are run on
a database environment set up for transactional processing. Fear of blowing
out temp space is one of the primary reasons that historic data should be
extracted from the source system into a staging area in its simplest form
and then transformed further in the dedicated staging environment. If you
fill up the temp space in any of your database environments, your process
will stop dead.

When temp space failures arise, the DBA team needs to allocate more
space, and the process must be restarted. Depending on where and when
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the temp space failure occurs, data cleanup is almost always required. Since
the data warehouse is designed for queries, temp space should be plentiful.
The issue typically occurs in the source system environment, where the ETL
team unfortunately does not have any control.

Data Space

In the data warehouse, data should be stored separately from indexes to
alleviate contention and lessen the burden of managing space. A practical
solution to estimate the size of your historic load is to load a small sample of
data. Loading a single partition of a partitioned table is a good benchmark.
Then you can multiply the amount of space consumed by loaded data by
the number of partitions in your table. Chapter 4 illustrates a volumetric
worksheet that provides more information on estimating data space.

Make sure the data-staging databases and data warehouse databases have
ample space available to load your historic data before the massive load is kicked
off. Running out of disk space is an ungraceful failure that requires manual data
cleanup and a restart of the load process.

Index Space

Estimating space for indexes is a tricky science because indexes do not grow
proportionately like table data. We won’t go into too much detail on index
space; the calculations are fairly complex, and the data warehouse architect,
data modeler, and DBA should have the index space created appropriately
in the data warehouse before you start. As a rule of thumb, make sure there is
at least as much space allocated for the indexes as there is for the base table.

When you load voluminous historic data, drop the target table’s indexes
before the load begins; and rebuild them after the load completes. By dropping
and rebuilding the indexes, not only does performance improve, but you are
insulated from load failure if the index space runs out of room. Once the table is
loaded, you can always allocate more space to the indexes and rebuild them
without affecting the data in the table.

Flat File Space

Just as the space allocated for data in a database can be exceeded, space on
your file system must be monitored to avoid exceeding the space allocated
to your flat files. Fortunately, the space requirement in the staging area is
allocated according to the ETL team requirements, so if you’ve followed
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the recommendations for estimating file system requirements in Chapter 4,
you should be in a safe position for processing your historic loads. Some
robust ETL tools include a checkpoint feature that guarantees that any record
to reach a certain point in the process is written to disk for safekeeping. But
remember, those checkpoint files are written to the file system and might
well be the culprit that is filling up your file space. Checkpoint, cache, hash,
flat, temporary, or any intermediate data staging file can fill your disk space.
If you exceed allocated space and your process crashes for any of these
files, it is recommended that you begin the process from the beginning once
additional space has been granted rather than attempt to salvage already
processed data.

Data-Quality Failure

Data-quality failure in production can either be an easily detected catas-
trophic administrative failure, such as missing fields or referential integrity
violations, or it can be a threshold of data-quality warnings reached gradu-
ally in the course of a long run. A data-quality failure in production should
be an unusual event and generally requires expert intervention. Perhaps
the job can run to completion with known unusual data or perhaps the job
needs to be backed out and the source data fixed.

Unannounced System Upgrade

Perhaps the only good news about unannounced system upgrades is that
they are usually dramatic and obvious. The ETL job hangs. There is often
no simple fix at the scrimmage line. If the reason for the suspended job
cannot be fixed quickly, provision must be made for rolling back the system
upgrade. This situation is no different from any software change; for critical
systems, you must perform the most robust regression tests on a test system
before installing the changes on your production ETL systems.

Recovery Issues

Whenever a process fails, it is a knee-jerk reaction for the ETL team to try to
salvage whatever has been processed up to the point of failure. If you are
lucky and are using an ETL tool that has checkpoint functionality, you may
be able to restart your process, and it will magically pick-up where it left
off when it failed. Notwithstanding vendor claims, we’d be hesitant to rely
on checkpoint technology. If a process fails midstream, it’s good practice to
clean up the data and begin the process from the beginning. Divide your
processes into subsets of data to make recovery issues cleaner and more
efficient; instead of reprocessing the entire history load, you merely have to
reprocess a single subset of the data.
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Minimizing the Risk of Load Failures
Here are some rules of thumb for processing historic data.

Break-up processes. Use dates or ranges or the natural key to break
up the process into smaller manageable chunks. In the event of a
failure, only that portion of data needs to be reloaded.

Utilize points of recovery. Write data to a flat file for safekeeping
after every major intermediate process (for example, upon extract,
significant transformation, or once surrogate keys are assigned).

Load in parallel. Not only the data load but also all of the
components of the ETL should run in parallel to reduce the time it
takes to process data.

Maintain metadata. Operational metadata (for example, the last date
loaded or the number of rows loaded) is crucial to detecting the
status of each of the components of the ETL during a failure.

Purging Historic Data

When any database application is designed, a matrix is created to track
the processes that insert, update, delete, and select the data. The matrix is
commonly referred to as a CRUD (Create, Read, Update, and Delete) Matrix.
The CRUD Matrix ensures that every entity has a process to perform each of
the four ways to manipulate data. While developing application software,
it is most common that the D in the matrix is overlooked. That means
that the data gets entered and can be changed and read but that there is
no formal process for deletion. When no formal process is developed to
purge history, one of two things usually happens: Back-end scripts are run
against the system to delete the history, or the records stay in the system
indefinitely. As you might imagine, neither of these solutions is suitable for
a data warehouse.

A purge process must be laid out as each subject area is planned. If vol-
ume is relatively small and ten or more years of future data will not affect
performance, the ETL need not be developed right away. However, the
purge-policy metadata must still be collected and published with the initial
implementation.

Archiving data warehouse data should be done by the DBA, not by
the ETL team. However, the permanent deletion of data from the data
warehouse must be executed by the ETL team. Business rules surrounding
deleted data must be enforced by a thoroughly tested and quality-assured
ETL process.
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Monitoring the ETL System

The business depends on the data warehouse to be refreshed at an agreed
interval (or continuously). Failure to fulfill that responsibility puts the reli-
ability and dependability of the data warehouse in question. Therefore, the
data warehouse cannot succeed without efficient and persistent data feeds.
The ETL team must monitor and evaluate the ETL jobs to ensure they are
operating efficiently and the data warehouse is being loaded in an effective
manner.

ETL monitoring takes many aspects of the process into consideration.
Resources outside the scope of the ETL system such as hardware and in-
frastructure administration and usage, as well as the source and target en-
vironments, play crucial parts in the overall efficiency of the ETL system.
Here, we introduce several ETL performance indicators that tell you how
well (or not so well) your processes are executing. The indicators are part
of operational metadata and should be stored in a repository so they can be
analyzed over time by the ETL team.

Measuring ETL Specific Performance Indicators
Those of you with exposure to system or database administration are aware
that there are measurements specific to environments captured to ensure
that they are performing properly. As you might expect, the ETL system
has its own set of performance indicators. ETL indicators are specific to
the physical movement and management of the actual data. They are a
step below the typical performance indicators. By below, we mean they do
not measure at the operating-system level or hardware-resource level but
within the ETL process itself.

The measurement most indicative of ETL efficiency is the actual time
it takes to process data. Remember: The goal of the ETL system, besides
creating quality information, is to load the data warehouse within the al-
lotted load window. But if a job takes 20 minutes to complete, is that good?
There’s really no way of knowing unless you know how many records were
processed during that time. For example, 20 minutes is fantastic if you are
processing 50 million rows but less than adequate if the job processes only
100 rows. Following are ETL-specific measurements that prove to be useful
while investigating load performance.

Duration in seconds. This straightforward calculation is the basis of
all other calculations. The duration is the difference between the start
time and the end time of an ETL process in seconds. For example, if a
process is kicked off at 4:00 a.m. and completes at 4:15 a.m., its
duration is 900 seconds.
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Rows processed per second. This is equivalent to the rows loaded
per second calculation, except in cases where the source data is larger
than the target, as in the case of aggregate loads. Then it is the same
as the rows read per second. A sample calculation of rows per second
is 1,000,000 rows processed in 15 minutes (1000000 / (15 * 60)) =
1111.11 rows/sec.

Rows read per second. The row count of the result of the SQL that
retrieves the data from the source system divided by the duration in
seconds. The data is then fed through the downstream
transformation processes in the ETL pipeline where the row count
can increase or decrease depending on the process.

Rows written per second. The count of rows committed to the target
table after they have been transformed, divided by duration in
seconds. In cases with multiple target tables, it is the sum of all rows
inserted into all tables divided by duration in seconds. The rows
written can be greater or less than the rows read.

Throughput. Throughput is the rows processed per second
multiplied by the number of bytes in each row. Throughput, as with
all performance measurements, is an approximation that should be
used as a baseline for improving processes.

Most of the major ETL tools provide the necessary metrics to measure
the performance of the ETL. You should instrument your ETL system to
trigger an alert for any ETL job that takes dramatically more or less time to
run than the historical experience would predict.

Bottlenecking occurs when throughput of a process diminishes due to a
component of a process not being able to handle the output volume sent by a
prior component in the process stream. For example, a bulk loader can feed 1000
rows per second to disk, but the disk may write only 800 rows per second.
Therefore, throughput bottlenecking occurs at the disk component of the process.
As a result, the entire process can be only as fast as its slowest component.

Measuring Infrastructure Performance Indicators
The next component to examine is the infrastructure of the data-staging
area. Many process metrics are available through different monitoring soft-
ware packages or can be written to logs in hand-coded ETL solutions. Only
a few vendor solutions intentionally offer direct indications that ETL perfor-
mance is being affected. The crucial measurements for ETL performance can
be obtained only by monitoring the processes as they run. Measurements
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that offer a direct indication that there may be a bottleneck in the process
include the following:

CPU usage

Memory allocation

Server contention

Naturally, network traffic and other known infrastructure performance
indicators can affect ETL performance. Unfortunately, their measurements
are so volatile that they are not stable or consistent enough to use reliably.
Moreover, the origin of network traffic is extremely hard to identify or
duplicate in a test environment. If you suspect that you are experiencing
network issues, contact your network administrator for assistance.

CPU Usage

The ETL process runs on the central processing unit (CPU) of its server.
CPUs are processors or chips that actually facilitate the computations re-
quired to operate the computer, make software run, and accomplish the
ETL goals. Most ETL servers contain more than one processor to handle the
enormous amount of computations required for the extraction, transforma-
tion, and load of data warehouse data. You are not likely to find CPU-usage
reporting within your ETL tool, as it is outside the scope of the ETL system.
However, if you are running your process on Unix, you can use the SAR –u
command to list the usage of each processor in your system.

On Windows-based operating systems, you can use the Performance
Monitor, a graphical user interface that allows you to add new counters to
the already available performance logs. In Windows XP, the Performance
Monitor can be found in the Administrative Tools applet in the Control
Panel. To add a new counter, open the Performance Monitor, right-click the
System Monitor Details pane, and then click Add Counters. From there you
can select Processor as the performance object and select the relevant coun-
ters. The Performance Monitor will create a log file that captures statistics
of your CPU usage for analysis.

If you find that your CPUs are often reaching their capacity during the
ETL process, you need to add possessors. These CPU monitoring utilities
also help you to reveal if the ETL process is being distributed evenly across
all available processes.

Memory Allocation

Random access memory (RAM) can be allocated to an ETL process in many
different places. First of all, the memory has to be physically available on
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your server. If you are purchasing an ETL tool, your vendor should be able
to provide hardware specifications and recommend how much RAM you
are likely to need to process your load volume with their toolset. Once the
RAM is installed in your server, the memory must be allocated to your
processes. In most ETL tools, memory usage can be specified at the job or
batch level as well.

You must have appropriate memory allocated to each ETL process for
ultimate efficiency. If your process is constantly reading and writing to disk
instead of processing data in memory, your solution will be much slower.
Appropriate memory allocation in your process affects transformation per-
formance more than any other setting, so take extra care to ensure the setting
is correct.

Your ETL tools should be able to tell you how much memory is allocated
to each process, how much the process actually uses, and also how much
spills over to virtual memory (cached to disk). Make sure this operational
metadata is provided by the ETL tool during your proof-of-concept. If much
of the data that should be in RAM is getting written to disk, you need
to allocate more memory to the process or to get more physical memory
installed on your server.

Some ETL tools make memory management completely transparent to
the development team, while others might require certain configurations
to be set manually. Memory settings that can be found in some of the major
ETL tools include:

Shared memory. When ETL engines read and write data, they use a
dedicated area in memory called shared memory. Shared memory is
where data queues up before it enters or exits the physical
transformation portion of the ETL process. If not enough shared
memory is allocated to your job, excessive disk caching occurs.
Conversely, if too much shared memory is allocated, an
unnecessarily large amount of RAM is reserved and taken away from
other processes. Your ETL vendor should provide guidelines on how
to calculate optimal shared memory settings depending on the size of
the data being processed. Some ETL engines may attempt to manage
shared memory dynamically. Look for a tool that allows you to
override the system-assigned setting for special situations that the
engine may not be able to assess.

Buffer block size. The buffer block setting is a key element to
consider when allocating performance-related settings. The proper
setting of buffer block size depends on the row size of the data in the
transformation stream. If your tool requires or allows custom
adjustments to the buffer block size, your ETL vendor can
recommend calculations for optimal settings.
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When a program requires more RAM than is physically available, the operating
system (or application) writes data that doesn’t fit into memory onto disk. As the
overflowed data is needed, the program must read from and write to disk instead
of utilizing RAM. Virtual memory is commonly referred to as page swapping
because memory is stored in pages and as more pages are required, they are
swapped between disk and RAM. Page swapping is a performance killer and
should be avoided during ETL processing. If continual page swapping is detected,
more RAM must be added to the ETL server and process.

If you opt—at least for the time being—to hand-code the ETL, you can
manually monitor memory usage with thevmstat command. Among other
key measurements, the vmstat command reports virtual and real memory
usage as well as paging activity and disk operations.

Server Contention

Another potential performance killer is server contention. Contention oc-
curs when more than one process attempts to use the same resource. You
can encounter contention for memory, disk access, or data access. The most
common offender of contention is when two ETL processes try to access the
same data. The ETL processes can cause deadlocks. A deadlock happens
when process A attempts to lock out process B while process B attempts to
lock out process A, and the system simply hangs. Usually, the DBMS does
a good job at managing data-access contention, but it will happen at some
point in an ETL developer’s career. The ETL system is most vulnerable to
server contention when ETL processes run concurrently but not in parallel.
When this happens, the processes constantly compete for resources, and col-
lision is imminent. Your best defense is to avoid concurrent processes unless
each process has dedicated process streams and appointed data partitions.

Memory Contention

When many applications or processes are running on the same server, they
each need physical RAM to operate. Unfortunately, RAM is a limited re-
source, and the individual processes must contend for it. If you are running
ETL processes concurrently, you may run into memory-contention prob-
lems. The memory-allocating settings at the job level become crucial when
they are processed concurrently. Each ETL product has its own recommen-
dations for alleviating memory contention. As a rule of thumb, minimize
the memory allocated to small jobs, leaving room for larger jobs such as
Type 2 slowly changing dimensions, bridge tables, and facts.

The ETL tools should be able to manage memory usage within its tool
and avoid memory contention. In any case, the tool should provide the
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operational metadata to expose memory contention. If it doesn’t, the Unix
SAR command can assist in detecting memory contention. The SAR com-
mand is especially useful to detect memory usage of processes running
beside the ETL tool and competing for the same RAM. If your process war-
rants it (and the budget allows it), make sure that the ETL engine is the only
process running on your server during the data warehouse load window.

The efficiency of an ETL processes is questioned when it does not com-
plete within the load window. Effective monitoring can usually reveal that
most load delays are not the result of ETL inefficiency but of external pro-
cesses running at the same time as the ETL and competing for server re-
sources.

Disk Contention

Most disks have a limit on the number of accesses and the amount of data
they can read or write at any given time. When that limit is reached, the ETL
processes have to wait in line to access the disk. If you place many tables
loaded concurrently in the same data files on the same disk, hot spots can
occur. A hot spot is an area on disk repeatedly accessed for reading or writing.
If you are using Oracle, you can use the following SQL to detect hot spots
in your source, staging, or target databases:

select d.name datafile_name, f.phyrds reads_count, f.phywrts

writes_count

from v$datafile d, v$filestat f

where f.file# = d.file#

order by greatest(f.phyrds, f.phywrts) desc

Since this query sorts the result set by the number of reads and writes in
descending order, the data files hit the most rise to the top. If you have a few
data files disproportionately larger than the rest, you need to reconfigure
the physical attributes of your staging tables so they are distributed more
evenly.

Disk contention occurs outside the database as well. ETL engines utilize
temporary fields and implicitly create files to hold transient data. Further-
more, developers explicitly create staging tables, configuration, and param-
eter files on the file system. Constant reading and writing to these files can
cause unwanted disk contention. For information about your disk activity
from the operating system point of view, use the IOSTAT Unix command.
The IOSTAT command lists each disk and pertinent information:

Name of the disk

Reads per second

Writes per second
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Kilobytes read per second

Kilobytes written per second

Average number of transactions waiting for service (queue length)

Average number of transactions actively being serviced (removed
from the queue but not yet completed)

Average service time, in milliseconds

Percent of time there are transactions waiting for service (queue
nonempty)

Percent of time the disk is busy (transactions in progress)

Information about how to resolve disk contention is provided later in this
chapter.

Database Contention

Database contention can be most problematic if the ETL processes attempt
to update records in the same table at the same time. Essentially, managing
database contention is the job of the DBMS, but at times processes that
contend for the same resource can block each other out, causing them to
wait indefinitely. Refer to your specific DBMS reference manual or contact
your local DBA for the best procedure for detecting database contention.

Processor Contention

Sometimes, an attempt at parallel processing at the software level can cause
problems if your hardware is not configured to run parallelized. When you
have multiple processes—more than the number of processes available—
attempting to run at the same time, you can overload the CPUs and cause
critical performance issues. You can use the SAR command on Unix or
PerfMon on Windows to capture statistics on the CPU usage.

Measuring Data Warehouse Usage to Help
Manage ETL Processes
If you refer to the supply-chain analogy we provide earlier in this chapter,
you’ll notice that we’ve identified four key components that lend a hand in
transforming raw data to the customer in a useful format for consumption.
So far, we have described how to monitor the activity within the scope of
the ETL system as well as in the hardware and infrastructure of the ETL
environment. Now we outline important measures within the presentation
layer of the data warehouse.
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The measurements in this section indirectly affect the ETL system but are
important to capture and analyze because the do have an impact on the
load processes. Hopefully, the measurements in the list that follows soon
are already being captured by the data warehouse team to help manage
their user experience and prune the data warehouse of data stored but not
used.

The ETL team should take advantage of data-warehouse usage reports
and look for opportunities to rearrange the load schedule, modify the load
frequency, or eliminate the maintenance of jobs that load dormant tables.
For example, if a table is accessed only on the first of the month, it should
not be updated daily. Another efficiency gain can be achieved by analyzing
index usage. A large portion of ETL processing includes rebuilding indexes
in the data warehouse after each load. If usage analysis determines that
certain indexes are never utilized, their reconstruction should be dropped
from the ETL process. Usage metrics that support ETL job management
include:

Table usage. The contents of a table-usage report can vary, but a
useful report contains a list of each table, a timestamp to represent
the first and last time the table is accessed, the count of queries that
reference the table, and the count of distinct users that query the
table. Tables accessed first should be made available first. Tables used
only once a month can be dropped from the daily load process and
switched to a monthly frequency. Tables that appear to have
continuous usage, except for when the table is being refreshed, are
candidates for high availability techniques. Tables highly available
have a duplicate structure loaded in the background. Once the load is
complete, the names of the two identical structures are switched.
This technique leaves the table online while the refresh takes place.

Index usage. Indexes are key performance enhancers for data
warehouse tables but are a burden to the ETL because in many cases
they must be dropped and rebuilt with each data load. When a data
warehouse architect builds the dimensional structures for the
presentation layer, he or she has a tendency to index as many
columns as possible to prevent bad performance experiences by a
user. The fact is that many indexed columns are never constrained on
and the indexes are never utilized. An index-usage report reveals
dormant indexes whose demise can be negotiated with the data
warehouse team.

Aggregate usage. Aggregates are typically built in the same vein as
indexes—when in doubt, build it. But just as the case with indexes,
some aggregates are built but never utilized. Or over time, they
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become less interesting and fall dormant. An aggregate-usage report
can identify aggregates that are no longer used and should be
dropped.

Dormant data. The dormant-data report is always interesting
because the data warehouse is created as a result of user interviews
that find out what data elements are needed to perform the analysis
required to do their job. Yet it’s inevitable that tables refreshed by the
ETL every day lay unused. Even if a table is used, certain columns
may never be selected. We always find fact table column usage to be
interesting because it’s so common to find that the most complicated
derived measures are not used because their definitions are not
properly conveyed to the user community. A dormant data report
can help the ETL team identify and question the effectiveness of
measures and dimension attributes that are never selected.

You have several ways to gather statistics on the usage of the data ware-
house. Some database management systems offer usage information na-
tively. However, be sure to test performance with the usage-reporting func-
tionality turned off versus having it turned on; it may affect query response
and ETL load time. A noninvasive way to track usage statistics is to employ
a middleware such as Teleran Technologies (www.teleran.com). These data
warehouse monitoring tools capture SQL and data outside of the database
at the network-packet level. We’re sure there are other tools that provide
database usage statistics. Try typing data warehouse usage tracking in
www.google.com to find a list of vendors in this space. Also, a list of mon-
itoring vendors is available at the companion Web site to this book.

Tuning ETL Processes

To best understand how to optimize ETL processes, you must be familiar
with how databases work. Some functionality available in most database
management systems should not be used in the data warehouse environ-
ment. And some features are hardly ever used in transaction systems that
are not only applicable but also preferred in the data warehouse environ-
ment.

Many design decisions are based on the volume of data being moved by
the process being developed. For example, if you have a very small dimen-
sion with minimal volatility, it is okay to have your incremental process
update the existing data in the dimension with SQL UPDATE statements.
But if the dimension is a monster with 20 million rows of highly volatile
data, it is probably more efficient to truncate and bulk load the table.
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Use the volumetric report created by the data warehouse architect or
project manager that documents how much data will be loaded into the
data warehouse initially and the planned growth to occur six months after
implementation for capacity planning and to identify scalability expecta-
tions of the ETL system. Then follow up by documenting the actual growth
over time.

The next few sections highlight the functionality of databases that are
unnecessary overhead and should be avoided in a controlled ETL envi-
ronment and provide faster but otherwise equivalent solutions for your
implementation.

Explaining Database Overhead
Before relational databases were created, data was stored in sequential or
flat files. Those files were known for having notoriously bad data quality.
The bad data quality stemmed from repeating groups and elements, lack
of primary keys, and no enforced relationships between tables. Everything
was repeated throughout the database. Additionally, no validation of data
existed at the database level. In those days, a database was nothing more
than a collection of disconnected sequential files. In short, the situation was
a mess.

In 1970, E. F. Codd invented the relational algebra that served as the
basis for the design of relational database systems. Relational databases en-
force referential integrity, data uniqueness, primary keys, check constraints,
foreign keys, and so on. The result is much cleaner, more reliable data, but
much slower operations. Each of the features of the relational database adds
significant overhead to transactions. Overhead is additional processing by a
program to perform behind-the-scenes error checking and controls.

In this section, we discuss different database features that you are likely
to encounter as a member of an ETL team, and we offer suggestions to
overcome database overhead. This is not a substitute for DBA training. In
fact, the content of this section will not help you become a database admin-
istrator. The purpose of this chapter is to help the ETL team and those who
are already DBAs to understand special considerations for optimizing ETL
processes. Much of the work involved in optimizing the ETL is outside of
the database. Portions of this chapter lend some insight into how databases
handle large sets of data and offer tips and techniques for speeding up (or
avoiding) those processes.

Inserts, Updates, Deletes

Data manipulation language (DML) has four main verbs: select, insert, up-
date, and delete. Each of the four DML utilities has the ability to manipulate



P1: KTX
WY046-08 WY046-Kimball-v4.cls August 18, 2004 16:4

Operations 341

data in a database differently. Remember that DBMSs are primarily de-
signed to survive transaction failures. Therefore, as a precaution, virtually
every DBMS maintains a rollback log. A rollback log records DML trans-
actions and provides a mechanism to undo changes that occur as a result
of a DML submission. In the case of a midtransaction failure, the DBMS
automatically rolls back the half-finished transaction, leaving the data in
the exact state it was in before the transaction began.

The Effects of Logging

Each of the four types of DML affects the rollback log in a different way.
Select statements don’t get written to the log, because they don’t alter the
existing data. In most databases, insert statements are written to the log just
in case data is inadvertently entered or the transaction fails midstream, the
DBMS can simply rollback the entry instead of having to delete or clean it
up. Updates and deletes both require writing to the rollback log. Deletes
require some overhead because they store the old records before the deletes
occur. Updates require the most overhead of all DML statements and are
extremely slow to process.

The Effects of Indexes

The data warehouse is utilized because it is substantially faster and more
reliable than the transaction system. The speed advantage that the data
warehouse offers is due to a number of key features:

Dimensional data model that allows purpose-built indexing of
dimensions and facts

Aggressive index strategy

Physically stored aggregate records

Query parallelism

Design techniques and benefits of dimensional data models are sprinkled
throughout this book and are available in a wide range of others. In this
section, we’d like to talk for a minute about indexes.

Indexes are the backbone of query-response time in the data warehouse.
Every query that hits the database utilizes at least one index. Unfortu-
nately, inasmuch as indexes help users query the data warehouse, the ETL
team is burdened with managing the existing indexes during the ETL pro-
cess. Index management accounts for a substantial portion of most ETL
processes.

Before we dive into the techniques for managing indexes during the data
warehouse load, it’s important that we review the different types of indexes
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available in most databases. Primarily, you find two types of indexes, and
it’s important to understand the distinction between the two types:

B-tree indexes. B-tree, or balanced tree, indexes store the key values
and pointers in an inverted tree structure. B-tree indexes are optimal
for columns with very high cardinality. By high cardinality, we mean
the count of distinct values. Inverted tree structures utilize an
extremely effective divide and conquer technique of sifting through
data to find a specified value (or range of values). B-tree indexes are
great for optimizing known queries but are fairly inflexible at
supporting ad-hoc environments such as data warehouses. B-tree
indexes are deemed inflexible because you cannot combine indexed
columns on the fly to dynamically create compound indexes to
resolve new, unexpected queries. All indexes must be made in
advance. The DBA must attempt to guess which columns might be
constrained. Moreover, the order in which the columns are
positioned determines whether they are utilized or not. The result is
the DBA team must make many, many compound B-tree indexes,
many containing the same columns in different orders.

Bitmap indexes. Bitmap indexes function completely different from
B-tree indexes. Bitmap indexes are better suited for lower cardinality
columns. Many single column bitmap indexes can dynamically join
together to create necessary compound indexes to support ad-hoc
queries. Because of their flexibility, it is common practice to create
single-column bitmap indexes on each surrogate key in fact tables in
the data warehouse.

Now we want to turn back to how indexes affect DML transactions. Ev-
ery entry of a B-tree index contains one, and only one, rownum that points
back to the corresponding record in the base table. Conversely, bitmap in-
dexes contain a range of rownums for each value in the index. If a value is
updated, every record that corresponds to the range of rownums is locked.
Ultimately, each time a record is updated, a tremendous burden is put on
the database to manage all of the row locking going on. Unfortunately, fact
tables usually consist only of bitmap indexes, and doing massive updates
creates massive headaches because of the excessive overhead and extremely
poor performance.

In conclusion, it’s recommended to drop all bitmap indexes before you be-
gin to manipulate data in fact tables. It’s further recommended to partition
fact tables so you have to drop only the local index in the current partition
(assuming the table is partitioned on the date key). B-tree indexes are not
excluded from being dropped before the ETL process executes. Statistics
show that in most cases, dropping data warehouse indexes, loading the
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tables, and rebuilding the indexes is substantially faster than loading tables
with scores of indexes enabled.

Addressing Constraints and Foreign Keys

Foreign keys in relational DBMSs enforce integrity in data between tables.
For example, you cannot enter an order status unless that status is an ex-
isting valid value in the order status table. But in the data warehouse, the
transaction has already occurred and has been validated by the source sys-
tem.

In a nutshell, all foreign keys and constraints should be disabled in the
data warehouse, especially during the ETL process. Convincing the DBA
team that it is okay to drop foreign keys can be a political challenge. You
must walk through the ETL process with the DBA team and explain that
fact records simply cannot exist without getting the surrogate keys from
their associated dimensions. Also, point out that dimension natural keys
are looked up to ensure they are not inserted more than once. Once the
DBA team is convinced that the ETL is truly a controlled and managed
environment, they realize that database constraints and foreign keys are
superfluous elements that slow down the ETL process without offering
much benefit.

The fastest way to load data into the data warehouse is to enable the
database to bulk load it by following these four database-preparation steps:

1. Eliminate as many DML statements as possible.

2. Disable rollback logging.

3. Drop all existing indexes.

4. Eliminate database foreign keys and constraints.

Once the four steps are complete, you are ready to utilize the database
bulk-load utility. A guide for utilizing bulk loaders can be found in
Chapter 7.

ETL System Security

Database security in the data-staging area is much simpler to enforce than
in the data warehouse presentation database. Generally speaking, no one is
allowed to read or write to the data-staging area besides the ETL engine or
program. Most databases utilize roles and users to enforce security at the
database level. A role is a mechanism that allows a security administrator to
group together many users that require the same database-access privileges.
Each user has his or her own userID and authentication mechanism. When
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the user is authenticated to the system, he or she is handed the privileges
associated with his or her role.

Without roles, a security administrator would have to explicitly grant
every person appropriate privileges individually. A user is an individual
that uses the database.

Typically, it is sufficient to create a single data warehouse administrative
role with the following privileges:

Select, Insert, Update, and Delete all objects

TRUNCATE TABLE

Utilize bulk loader

Drop and create indexes

If there is highly sensitive data, such as compensation rates or sales leads,
the data should be encrypted by the source system before it is extracted by
the ETL team. Normally, column-level security is handled by the use of
database views that sit on top of a table and conceal the sensitive columns.
However, the ETL team must have the ability to select data from the source
system and also be able to perform any DML required in the data ware-
house. Therefore, views are not an appropriate mechanism for hiding sen-
sitive data. Furthermore, the ETL team should not be responsible for en-
crypting sensitive data. Securing or encrypting sensitive data from the ETL
team is the responsibility of the source system security administrator.

Securing the Development Environment
In the development environment, everyone on the ETL team is granted
the privileges of the DWETL role (all DML and TRUNCATE on all objects
and so forth). This is where all staging tables are created. Even though the
data-staging area is owned by the ETL team, sometimes table creation is
controlled by the data warehouse architect or DBA. In some cases the ETL
architect has the authority to create tables in the data-staging area without
further approval.

Furthermore, any ETL team member can add, delete, or modify files in the
dedicated directories on the file system. No one outside ETL team should
have access to data-staging environments.

Securing the Production Environment
The ETL team typically has read-only access to production. Sometimes, in
very secure environments, such as banking, they have no access at all. The
DWETL role exists in production, but the only the user ID and password
used by the ETL engine is created in production. If for some extreme reason,
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an ETL team member must have write access to production, such as to fix
a bug that exists only in production, it should be granted temporarily and
revoked as soon as the fix is complete.

FTP Vulnerabilities

You must lock out everyone from the FTP inbox. Only the FTP process can
write or delete within the specified directory. Moreover, only the ETL engine
is allowed to read the directory. If there is an emergency situation, temporary
access should be granted to a predetermined administrator whose privilege
is revoked as soon as the issue is resolved.

Encryption/Decryption

The biggest performance inhibitor is writing to and reading from disk (I/O).
However, you must encrypt data in movement for security purposes. Usu-
ally, the following steps are followed to secure data in movement:

1. Encrypt data and store encrypted data on disk.

2. Read and transfer encrypted data across networks.

3. Store encrypted data on data-staging server.

4. Decrypt data and store on disk.

5. Transform and load decrypted data into data warehouse.

It may be possible to reduce this to three steps by encrypting the source
data as it is read into memory, then transferring the encrypted data, and
finally decrypting the data as it enters the transformation and load routines.

As you can see, the second solution does not touch the disk from the time
the data is read until it is loaded into the data warehouse. This process is
known as in-stream decryption. Some ETL tools support in-stream decryp-
tion functionality. If you need to encrypt or decrypt in-stream to improve
performance, make sure you select a tool that supports the functionality;
otherwise, you can write your own applet in Java. In the case of the Java
applet, make sure that your ETL toll can at least embed an external process,
such as the in-stream decryption applet, without incurring more I/O.

Short-Term Archiving and Recovery

There are many reasons to keep the various data-staging results from the
ETL system. In this book, we have identified needs for short-term restart
capabilities, comparisons of day-to-day extracts to detect differences when



P1: KTX
WY046-08 WY046-Kimball-v4.cls August 18, 2004 16:4

346 Chapter 8

you don’t have a proper change data capture system, as well as legal and
financial auditing requirements. All of these archiving and recovery scenar-
ios should be familiar challenges to the IT staff. Back the data up to your
current media and make sure it can be recovered. Make sure you have a
believable audit trail that accounts for all accesses and alterations to the
data. Make sure the data is physically secure, and protect the archived data
as strongly as you protect the on line data.

But what if we are supposed to keep the data for many years?

Long-Term Archiving and Recovery

One of the oaths we take as data warehouse managers is that we will preserve
history. In many ways, we have become the archivists of corporate infor-
mation. We don’t usually promise to keep all history on-line, but we often
claim that we will store it somewhere for safekeeping. Of course, storing
it for safekeeping means that we will be able to get history back out again
when someone is interested in looking at it.

Most of us data warehouse managers have been so busy bringing up
data warehouses, avoiding stovepipe data marts, adapting to new database
technologies, and adapting to the explosive demands of the Web that we
have relegated our archiving duties to backing up data on tapes and then
forgetting about the tapes. Or maybe we are still appending data onto our
original fact tables and we haven’t really faced what to do with old data
yet.

But across the computer industry there is a growing awareness that
preservation of digital data is not being done yet, and that it is a serious
problem and a hard problem.

Does a Warehouse Even Need To Keep Old Data?
Most data warehouse managers are driven by urgent needs of depart-

ments like marketing, who have very tactical concerns. Few marketing de-
partments care about data that is more than three years old, because our
products and our markets are changing so quickly. It is tempting to think
only of these marketing clients and to discard data that no longer meets
their needs.

But with a little reflection we realize we are sitting on a lot of other data
in our warehouses that absolutely must be preserved. This data includes:

Detailed sales records, for legal, financial, and tax purposes

Trended survey data where long-term tracking has strategic value

All records required for government regulatory or compliance
tracking
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Medical records that in some cases must be preserved for 100 years!

Clinical trials and experimental results that may support patent
claims

Documentation of toxic waste disposal, fuel deliveries, and safety
inspections

All other data that may have historical value to someone, sometime

Faced with this list, we have to admit that a plan is needed for retrieving
these kinds of data five, ten, or maybe even 50 years in the future. It begins
to dawn on us that maybe this will be a challenge. How long do mag tapes
last, anyway? Are CD-ROMs or DVDs the answer? Will we be able to read
the formats in the future? We have some eight-inch floppies from just a few
years ago that are absolutely unrecoverable and worthless. All of a sudden,
this is sounding like a difficult project.

Media, Formats, Software, and Hardware
As we begin to think about really long-term preservation of digital data,
our world begins to fall apart. Let’s start with the storage media. There is
considerable disagreement about the practical longevity of physical media
like mag tapes and CD-ROM disks, with serious estimates ranging from as
little as five years to many decades. But, of course, our media may not be
of archival quality, and they may not be stored or handled in an optimum
way. We must counterbalance the optimism of vendors and certain experts
with the pragmatic admission that most of the tapes and physical media
we have today that are more than ten years old are of doubtful integrity.

Any debates about the physical viability of the media, however, pale
when compared to the debates about formats, software, and hardware. All
data objects are encoded on physical media in the format of the day. Ev-
erything from the density of the bits on the media, to the arrangement of
directories, and finally to the higher-level application-specific encoding of
the data is a stack of cards waiting to fall. Taking our eight-inch floppies as
examples, what would it take to read the embedded data? Well, it would
take a hardware configuration sporting a working eight-inch floppy drive,
the software drivers for an eight-inch drive, and the application that origi-
nally wrote the data to the file.

Obsolete Formats and Archaic Formats
In the lexicon of digital preservationists, an obsolete format is no longer
actively supported, but there is still working hardware and software extant
that can read and display the content of the data in its original form. An
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archaic format has passed on to the nether realm. Our eight-inch floppies
are, as far as we are concerned, an archaic format. We will never recover
their data. The Phoenician writing system known as Linear A is also an
archaic format that has apparently been lost forever. Our floppies may be
only slightly easier to decipher than Linear A.

Hard Copy, Standards, and Museums
A number of proposals have been made to work around the format diffi-
culties of recovering old data. One simple proposal is to reduce everything
to hard copy. In other words, print all your data onto paper. Surely, this will
side step all the issues of data formats, software, and hardware. While for
tiny amounts of data this has a certain appeal, and is better than losing the
data, this approach has a number of fatal flaws. In today’s world, copying
to paper doesn’t scale. A gigabyte printed out as ASCII characters would
take 250,000 printed pages at 4000 characters per page. A terabyte would
require 250,000,000 pages! Remember that we can’t cheat and put the paper
on a CD-ROM or a mag tape, because that would just reintroduce the digital
format problem. And finally, we would be seriously compromising the data
structures, the user interfaces, and the behavior of the systems originally
meant to present and interpret the data. In many cases, a paper backup
would destroy the usability of the data.

A second proposal is to establish standards for the representation and
storage of data that would guarantee that everything can be represented
in permanently readable formats. In the data warehouse world, the only
data that remotely approaches such a standard is relational data stored
in an ANSI-standard format. But almost all implementations of relational
databases use significant extensions of the data types, SQL syntax, and sur-
rounding metadata to provide needed functionality. By the time we have
dumped a database with all its applications and metadata onto a mag tape,
even if it has come from Oracle or DB2, we can’t be very confident that we
will be able to read and use such data in thirty years or fifty years. Other
data outside of the narrow ANSI-standard RDBMS definition is hopelessly
fragmented. There is no visible market segment, for instance, that is coa-
lescing all possible OLAP data storage mechanisms into a single physical
standard that guarantees lossless transfer to and from the standard format.

A final somewhat nostalgic proposal is to support museums, where an-
cient versions of hardware, operating systems, and applications software
would be lovingly preserved so that old data could be read. This proposal
at least gets to the heart of the issue in recognizing that the old software
must really be present in order to interpret the old data. But the museum
idea doesn’t scale and doesn’t hold up to close scrutiny. How are we going
to keep a Digital Data Whack 9000 working for 50 years? What happens
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when the last one dies? And if the person walking in with the old data
has moved the data to a modern medium like a DVD ROM, how would a
working Digital Data Whack 9000 interface to the DVD? Is someone going
to write modern drivers for ancient pathetic machines? Maybe it has an
eight-bit bus.

Refreshing, Migrating, Emulating, and Encapsulating
A number of experts have suggested that an IT organization should peri-
odically refresh the storage of data by moving the data physically from old
media onto new media. A more aggressive version of refreshing is migrat-
ing, where the data is not only physically transferred but is reformatted in
order to be read by contemporary applications. Refreshing and migrating
do indeed solve some of the short-term preservation crises because if you
successfully refresh and migrate, you are free from the problems of old me-
dia and old formats. But taking a longer view, these approaches have at
least two very serious problems. First, migrating is a labor-intensive, cus-
tom task that has little leverage from job to job and may involve the loss
of original functionality. Second, and more serious, migrating cannot han-
dle major paradigm shifts. We all expect to migrate from version 8 of an
RDBMS to version 9, but what happens when the world is taken over by
heteroschedastic database systems (HDS’s)? The fact that nobody, includ-
ing us, knows what an HDS is, illustrates our point. After all, we didn’t
migrate very many databases when the paradigm shifted from network to
relational databases, did we?

Well, we have managed to paint a pretty bleak picture. Given all this, what
hope do the experts have for long-term digital preservation? If you are inter-
ested in this topic and a serious architecture for preserving your digital data
warehouse archives for the next 50 years, you should read Jeff Rothenberg’s
treatise Avoiding Technological Quicksand, Finding a Viable Technical Founda-
tion for Digital Preservation. This is a report to the Council on Library and
Information Resources (CLIR). The 41-page report can be retrieved as an
Adobe PDF file by linking to www.clir.org/pubs/reports/rothenberg. Very
well written and very highly recommended.

As a hint of where Jeff goes with this topic, he recommends the develop-
ment of emulation systems that, although they run on modern hardware
and software, nevertheless faithfully emulate old hardware. He chooses the
hardware level for emulation because hardware emulation is a proven tech-
nique for recreating old systems, even ones as gnarly as electronic games. He
also describes the need to encapsulate the old data sets along with the meta-
data needed for interpreting the data set, as well as the overall specifications
for the emulation itself. By keeping all these together in one encapsulated
package, the data will travel along into the future with everything that is
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needed to play it back out again in 50 years. All you need to do is interpret
the emulation specifications on your contemporary hardware.

The library world is deeply committed to solving the digital-preservation
problem. Look up embrittled documents on the Google search engine. Their
techniques need to be studied and adapted to our warehouse needs.

Summary

In this chapter, we have provided an overview of the operations framework
of typical ETL systems. The first half of the chapter was devoted to major
scheduling approaches. Most of the second half dealt with managing per-
formance issues as your system grows and gets more complicated. Finally,
we proposed a simple framework for ETL system security.
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9

Metadata

Metadata is an interesting topic because every tool space in the data ware-
house arena including business intelligence (BI) tools, ETL tools, databases,
and dedicated repositories claims to have a metadata solution, and many
books are available to advise you on the best metadata strategies. Yet, af-
ter years of implementing and reviewing data warehouses, we’ve yet to
encounter a true end-to-end metadata solution. Instead, most data ware-
houses have manually maintained pieces of metadata that separately exist
across their components. Instead of adding to the metadata hoopla, this
chapter simply covers the portions of metadata that the ETL team needs
to be aware of—either as a consumer or a producer. We propose a set of
metadata structures that you need to support the ETL team.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Release to Ops

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Because the ETL system is the center of your data warehouse universe,
it often assumes the responsibility of managing and storing much of the
metadata for the data warehouse. One might think that there is no better
place than the ETL system for storing and managing metadata because the
environment must already know the specifics of all data to function prop-
erly. And the ETL process is the creator of the most important metadata in
the data warehouse—the data lineage. The data lineage traces data from its
exact location in the source system and documents precisely what trans-
formation is done to it before it is finally loaded. The data lineage includes

351
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the data definition of the source system database and also of the final rest-
ing place in the data warehouse. If you are using an ETL tool, attributes
other than the data lineage can also live in the ETL environment. But can
the ETL environment really capture and manage all metadata in the data
warehouse? No way.

If you’d like to explore data warehouse metadata in more detail, a note-
worthy text is Metadata Solutions: Using Metamodels, Repositories, XML, and
Enterprise Portals to Generate Information on Demand by Adrienne Tannen-
baum (Addison Wesley 2002). We want to start by trying to define exactly
what is meant by metadata.

Defining Metadata

A leading cause for the difficulty behind metadata implementations is that
the exact definition of metadata is ambiguous, and defining exactly what
metadata is a very difficult task. In 1998 we tackled the definition of meta-
data in the Data Warehouse Lifecycle Toolkit book. In looking over those words,
we still find them surprisingly relevant. Here’s what we wrote:

Metadata—What Is It?
Metadata is an amazing topic in the data warehouse world. Considering
that we don’t know exactly what it is, or where it is, we spend more time
talking about it, more time worrying about it, and more time feeling guilty
that we aren’t doing anything about it. Several years ago, we decided that
metadata is any data about data. This wasn’t very helpful, because it didn’t
paint a clear picture in our minds as to what exactly this darn stuff was.
This fuzzy view gradually clarified and recently we have been talking more
confidently about the back room metadata and front room metadata. Back room
metadata is process related and guides the extraction, cleaning, and loading
processes. Front room metadata is more descriptive and helps make our
query tools and report writers function smoothly. Of course, process and
descriptive metadata overlap, but it is useful to think about them separately.

Back room metadata presumably helps the DBA bring the data into the
warehouse and is probably also of interest to business users when they ask
where the data comes from. Front room metadata is mostly for the benefit
of end user, and its definition has been expanded to not only be the oil
that makes our tools function smoothly but a kind of dictionary of business
content represented by all data elements.

Even these definitions, as helpful as they are, fail to give the data ware-
house manager much of a feeling for what he or she is supposed to do. But
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one can apply a traditional IT perspective to metadata. At the very least,
we should:

Make a nice annotated list of all of it

Decide just how important each part is

Take responsibility for it or assign that responsibility to someone else

Decide what constitutes a consistent and working set of it

Decide whether to make it or buy it

Store it somewhere for backup and recovery

Make it available to people who need it

Quality-assure it and make it complete and up to date

Control it from one place

Document all of these responsibilities well enough to hand this job
off (soon)

The only trouble is that we haven’t really said what metadata is yet. We
do notice that the last item in the preceding list really isn’t metadata; it’s
data about metadata. With a sinking feeling, we realize we probably need
meta meta data data.

Source System Metadata
To understand this better, let’s try to make a complete list of all possible types
of metadata. We surely won’t succeed at this first try, but we will learn a lot.
First, let’s go to the source systems, which could be mainframes, separate
nonmainframe servers, users’ desktops, third-party data providers, or even
on-line sources. We will assume that all we do here is read source data and
extract it to a data-staging area that could be on the mainframe or could be
a downstream machine.

Source specifications:

Repositories

Source schemas

Copy books

Proprietary or third-party source schemas

Print spool file sources

Old format for archived mainframe data

Relational source system tables and DDL

Spreadsheet sources
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Lotus Notes databases

Presentation graphics (for example, PowerPoint)

URL source specifications:

Source Descriptive Information:

Ownership descriptions of each source

Business descriptions of each source

Update frequencies of original sources

Legal limitations on the use of each source

Access methods, access rights privileges, and passwords for
source access

Process Information:

Mainframe or source system job schedules

The COBOL/JCL or C or Basic or other code to implement
extraction

The automated extract-tool settings if we use such a tool

Results of specific extract jobs, including exact times content and
completeness

Data-Staging Metadata
Now let’s list all the metadata needed to get data into a data-staging area
and prepare it for loading into one or more data marts. We may do this on
the mainframe with hand-coded COBOL or by using an automated extract
tool. Or we may bring the flat file extracts more or less untouched into a
separate data-staging area on a different machine. In any case, we have to
be concerned about metadata describing

Data Acquisition Information:

Data transmission scheduling and results of specific transmissions

File usage in the data-staging area, including duration volatility and
ownership

Dimension Table Management:

Definitions of conformed dimensions and conformed facts

Job specifications for joining sources, stripping out fields, and
looking up attributes
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Slowly changing dimension policies for each incoming descriptive
attribute (for example, overwrite create new record or create new
field)

Current surrogate key assignments for each production key,
including a fast lookup table to perform this mapping in memory

Yesterday’s copy of a production dimension to use as the basis for
Diff Compare

Transformation and Aggregation:

Data-cleaning specifications

Data enhancement and mapping transformations (for example,
expand abbreviations and provide detail)

Transformations required for data mining (for example, interpret
nulls and scale numerics)

Target schema designs, source to target data flows, and target data
ownership

DBMS load scripts

Aggregate definitions

Aggregate usage statistics, base table usage statistics, and potential
aggregates

Aggregate modification logs

Audit, Job Logs, and Documentation:

Data lineage and audit records (where EXACTLY did this record
come from and when)

Data transform run time logs, success summaries, and time stamps

Data transform software version numbers

Business descriptions of extract processing

Security settings for extract files extract software and extract
metadata

Security settings for data transmission (that is, passwords certificates)

Data-staging area archive logs and recovery procedures

Data-staging archive security settings.

DBMS Metadata
Once we have finally transferred data to the data warehouse or data mart
DBMS, another set of metadata comes into play:
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DBMS system table contents

Partition settings

Indexes

Disk-striping specifications

Processing hints

DBMS-level security privileges and grants

View definitions

Stored procedures and SQL administrative scripts

DBMS backup, status-backup procedures and backup security.

Front Room Metadata
In the front room, we have metadata extending to the horizon, including

Business names and descriptions for columns tables groupings and
so on

Precanned query and report definitions

Join specification tool settings

Pretty print tool specifications (for relabeling fields in readable ways)

End user documentation and training aids, both vendor supplied
and IT supplied

Network security user privilege profiles

Network security authentication certificates

Network security usage statistics, including log on attempts access
attempts and user ID by location reports

Individual user profiles with link to human resources to track
promotions transfers resignations that affect access rights

Link to contractor and partner tracking where access rights are
affected

Usage and access maps for data elements, tables, and views reports

Resource charge-back statistics

Favorite Web sites (as a paradigm for all data warehouse access)

Now we can see why we didn’t know exactly what metadata was all
about. It is everything, except for the data itself. All of a sudden, data seems
like the simplest part. In a sense, metadata is the DNA of the data warehouse.
It defines all elements and how they work together.



P1: KTX
WY046-09 WY046-Kimball-v4.cls August 18, 2004 16:7

Metadata 357

So, how do you capture and manage these forms of metadata? You don’t.
At least the ETL team doesn’t. Over the past few decades, consortiums,
alliances, committees, organizations, and coalitions have been formed to
solve the metadata quandary. To this day, no universal solution exists. We
have found that as an ETL team member you need certain metadata to
do your job, and that it is convenient to focus on selected items from the
preceding list and organize them into three major categories:

1. Business metadata. Describing the meaning of data in a business
sense

2. Technical metadata. Representing the technical aspects of data,
including attributes such as data types, lengths, lineage, results from
data profiling, and so on

3. Process execution metadata. Presenting statistics on the results of
running the ETL process itself, including measures such as rows
loaded successfully, rows rejected, amount of time to load, and so on

In addition to the three categories of metadata, you need to consider
another aspect of metadata: standards. Standards are another attempt by IT
to make work throughout your organization consistent and maintainable.
In Chapter 10, we define the role of the metadata librarian and propose a set
of responsibilities for this person. Your organization most likely has many
standards in place, and you can adopt specific data warehouse and ETL
standards from the recommendations found throughout this book. If you
seek to further investigate metadata standards, we’ve provided sources for
your perusal in the next section.

As you read this chapter, please refer to Figure 9.1, showing the three
main categories of ETL system metadata, together with each of the separate
metadata tables discussed in the text.

Here is a comprehensive list of the places so far in this book where we
have urged you to collect and use metadata:

Origins and processing steps for each staged data set (Chapter 1)

Metadata repository as an advantage of the vendor-supplied ETL
tool (Chapter 1)

Need for metadata architecture: source tables, cleaning, and
processes (Chapter 1)

Presenting useful metadata to end users (Chapter 1)

Extract transformations applied (Chapter 2)

Compliance metadata (Chapter 2)

XML data descriptions of metadata (Chapter 2)
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Figure 9.1 Metadata sources in the back room of the data warehouse.

Lack of metadata in flat files (Chapter 2)

Impact analysis metadata (Chapter 2)

Planning for building metadata describing lineage, business
definitions, technical definitions, and processes (Chapter 2)

Logical data map (Chapter 3)

Capturing calculations for derived data during extract (Chapter 3)

Source database descriptions (Chapter 3)

ETL tools reading ERP system metadata (Chapter 3)

Results of data profiling (Chapter 4)

Error event tracking fact table (Chapter 4)

Audit dimension (Chapter 4)

Column survivorship (conforming results) table (Chapter 4)

Surrogate key highest value (Chapter 5)

Aggregate navigator data (Chapter 6)
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Process data to kick off OLAP cube building (Chapter 6)

Bulk loader control file (Chapter 7)

Metadata supporting recovery processes (Chapter 8)

Job schedule metadata (Chapter 8)

Database connection information (Chapter 8)

ETL system parameters (Chapter 8)

Job dependencies (Chapter 8)

Job operational statistics such as performance and resource use
(Chapter 8)

MetaData repository reporting (Chapter 8)

Table purge policies (Chapter 8)

We hope you aren’t too dismayed by these long lists. The rest of this
chapter makes a serious attempt to propose specific metadata structures
for tracking this kind of information!

Business Metadata

The assignment of who is responsible for business metadata in the data
warehouse is often argued. Some say it is the responsibility of the data
warehouse business analyst and should be created during the requirements-
gathering process. Others believe the source system business analyst should
create business terms because most data warehouse attributes originate in
the source systems. Yet others think it is part of the data modeler’s tasks
to create and maintain business metadata because it is a natural part of the
logical data model.

It’s not up to you to settle those arguments, but there is some business
metadata that the ETL team influences and must be maintained to accu-
rately reflect reality. The ETL team should not be responsible for generating
business metadata but must communicate changes that need to be applied
to the appropriate personnel. From the ETL perspective, business metadata
is proxy metadata. Proxy metadata is obtained from one system and made
available to another without any explicit manipulation. Some business-
intelligence tools are designed to look into ETL repositories to get business
definitions to present to its users—making the tool a one-stop shop for data
and data’s metadata.

To keep things interesting, we must make you aware that the data ware-
house can be in a situation where different business definitions are defined
for the same attribute. Remember, by design, that data in the data warehouse
is sourced from multiple systems, and each system can potentially have a
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different definition for the same attribute. For example, the marketing de-
partment defines a customer as anyone who has a registered account with
the company, while the sales department might consider only persons who
have actually made purchases to be customers. As a recommended practice,
the data warehouse manager should bring all of the owners of an overlap-
ping element into a room and have them agree on a single definition from
an enterprise standpoint. We describe this process throughout the book as
conforming business definitions, labels, and measures of the enterprise. That
meaning might be from one of the source systems or an entirely new one.
The enterprise definition is stored in the data warehouse and in ETL tool.

The ETL team is part of the back room of the data warehouse and should not
get involved in creating business metadata. However, you should understand the
purpose of the data you are working with and review business definitions as you
need them.

Business Definitions
Often, the data warehouse team gets caught up in designing the architec-
tural database for query performance and optimizing the ETL process for
load performance. Once the database is designed and loaded, the team
concentrates on the business intelligence of the data warehouse, making
elegant user interfaces and slick graphical reports. But to the business, the
most important ingredient in the data warehouse recipe is the definition of
the elements available to them. If the user cannot make sense of data, as
sophisticated as it may be, it has absolutely no value to the organization.

Business definitions are a crucial requirement to the completion of the
data warehouse. Not only are end users dependent on business definitions;
the ETL team needs business definitions to give context to the data they
are loading. You will notice how important the business definitions are
to the ETL team if you attempt to present them with the data model and
data lineage before the business definitions are complete. If you rush to
complete the data lineage so the ETL development can begin, you’ll be
forced to continually explain the purpose of the main data elements in the
data model to the ETL team before they have enough information to work
on them. Therefore, shift the development priorities away from expediting
the data lineage and to concentrating on the association of the business
definitions with the data warehouse data elements before the data lineage
is handed off to the ETL team. A simple business definition matrix includes
three main components:

Physical table and column name. The business interpretation of data
elements in the data warehouse is based on the actual table and
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column names in the database. The physical names need not be
presented to end users if the BI tool presents only the business names
and completely hides the physical instance of the data structures.
However, the ETL team deals only with physical names and needs
this information to associate the business definitions to the
appropriate data elements.

Business column name. The database stores data elements in
technical terms consisting of prefixes, suffixes, and underscores. The
business community needs a translation of the technical names to
names that make sense and provide context. For example, the
business name for EMP STTS CD might be Employee Status Code or
just Employee Status. We discourage the use of cryptic names.
Remember, the business name is how the column is represented in
the BI tool. Furthermore, the business name often becomes column
and row headings in user reports.

Business definition. A business definition is one or two sentences
that describe the business meaning of an attribute. Each attribute in
the data warehouse must have a business definition associated with
it. If the business cannot define the attribute, it usually indicates that
the attribute has no analytic value and probably does not need to be
stored in the data warehouse. If the business demands that the
attribute remain in the data warehouse, a business definition must be
defined for it.

The business definition matrix can be as simple as a three-column spread-
sheet. However, you should strive to make this particular metadata as
centralized and sharable as your technical environment allows. Virtually
all major ETL tools support capturing and storing business metadata. The
ETL tool should work with your data-modeling tool and database to obtain
business definitions and with your BI tool to present business names and
definitions to your end users.

Source System Information
The ETL team needs to know every intimate detail of each table it accesses
for the data warehouse. Imagine that you need to fill an open position on
your team. Before you hire someone, you have your HR department find
candidates, prescreen them, introduce them to you, and arrange for formal
interviews so you can ensure they are the right fit for the position. During
the interviews, you identify any weaknesses that might need some work
before candidates are deemed satisfactory for the position.

When you populate a data warehouse, the data modeler creates the po-
sition; the data warehouse architect finds and prescreens the source. Then
data must be analyzed thoroughly to identify its weaknesses, and a plan
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of action must be initiated to make data satisfactory enough to be included
in the data warehouse. Some data will be perfect; other data elements will
need some transformation or be rejected because of inadequate quality.

When you analyze source systems, you need certain pieces of metadata.
At a minimum, you need the following metadata attributes:

Database or file system. The name commonly used when referring
to a source system or file. This is not the technical server or database
instance. Names such as Sales database or Inventory Management
System are common values for this piece of metadata.

Table specifications. The ETL team needs to know the purpose of
the table, its volume, its primary key and alternate key, and a list of
its columns.

Exception-handling rules. You must be informed of any data-quality
issues and advised on how they should be handled by the ETL
process.

Business definitions. The infamous yet rarely available business
definitions. Do your best to have these provided to you. These
one-to-two-sentence definitions are invaluable when you are trying
to make sense of data.

Business rules. Every table should come with a set of business rules.
Business rules are required to understand the data and to test for
anomalies. Every business rule must be tested, and each exception to
a rule must be documented and resolved by the source system or the
ETL process. Forms of business rules include an account of when a
table receives new rows, updates, or deletions. If you are lucky,
business rules are enforced in the source database management
system (DBMS) by way of referential integrity, check constraints, and
triggers.

Investigating source systems takes a substantial amount of time during
the data-analysis phase of the data warehouse project. A lack of source
system metadata incurs excessive research and troubleshooting by the data
warehouse team. To curb cost overruns, all source system metadata must
be available to the ETL team before the development of any ETL process.

Data Warehouse Data Dictionary
When we refer to the data dictionary, we are not referring to the DBMS
catalog. The data warehouse data dictionary is a list of all of the data el-
ements in the data warehouse and their business descriptions. Similar to
the source system business definitions, the data warehouse data dictionary
contains the physical table and column names and the business names and
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definitions. In the case of data warehouse business metadata, spreadsheets
are insufficient. Many data warehouse environments depend on the ETL
repository to store the data dictionary because BI tools are designed to look
there to obtain metadata for presentation.

Many BI tools are designed to work cohesively with ETL metadata
repositories. When you are selecting your toolset, make sure that your ETL tool has
an open repository that can be read by any query tool or at least comes with an
adapter or broker for this purpose.

Logical Data Maps
The logical data map is the lifeline of the ETL team. Read Chapter 3 for de-
tailed information about logical data maps from an ETL work-specification
perspective. From a metadata perspective, the logical data map consists of
the source-to-target mapping that explains, logically, exactly what happens
to the data from the moment it is extracted from its origin to when it is
loaded into the data warehouse.

The logical data map is a crucial piece of metadata. The ETL team first uses
the document as a functional specification to create the physical ETL jobs,
then again to validate the work with the end users. The document provides
guidance when questions arise during user-acceptance testing (UAT). It is
also used when data goes through quality-assurance (QA) testing, when
the ETL team provides a walkthrough of each mapping with the QA team.
Finally, the ETL team reviews the document with the DBA team to pro-
vide information about the data transformations so they can support the
processes in the event of a failure.

C R O S S - R E F E R E N C E Refer to Chapter 3 for the exact metadata elements
created in the logical data map and recommendations on how to create, maintain,
and utilize the information.

Technical Metadata

Technical metadata serves many purposes and is the most interesting type
of metadata to the ETL team. Technical metadata can encompass everything
from column names and data types to storage and the configuration of your
RAID arrays. As a member of the ETL team, you needn’t be too concerned
with hardware configurations and the like. Most interesting are the phys-
ical attributes of the data elements in all databases involved in the data
warehouse. To get essential metadata, seek out the physical data model of
each of your source systems and the target data warehouse. If your sources
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include flat files, you need the file layouts for each file you will be working
with.

System Inventory
The ETL team must have access to and thoroughly understand the technical
metadata of each system in the data warehouse environment to accurately
build the physical ETL jobs. The technical definition of data is probably
what technicians think of first when they are asked about metadata. After
all, that really is data about data—it is the container and the structure of
the data. The ETL team must be aware of data definitions for at least three
environments:

Source databases

Staging-area tables (for example, extracted, cleaned, conformed,
prepared for delivery)

Data warehouse presentation area

It is possible that an entity relationship diagram is provided for each
environment. At a minimum, a listing that includes the following elements
for each system is required.

Tables. An exhaustive list of tables or files that are—or might
be—required during the extract and load process. Often, only source
system tables in the logical data mapping are provided. Yet, there are
associative tables that are usually not specified but are required.
Whenever the source system has many-to-many relationships, a
well-designed system has associative tables to enable the
relationship.

Columns. For each table, you will need a list of the required columns
for your data mapping. Hopefully, the source system DBA can
provide a list of only the columns that you need. It works best if the
column listing excludes unnecessary columns.

Data types. Each column is defined with a data type. Data types vary
among different database systems. Luckily, most dedicated ETL tools
implicitly convert equivalent data types. For example, an INTEGER
from SQL Server automatically becomes a NUMBER when it is
loaded into Oracle. Be aware that a DBA can define custom data
types known as User Defined Datatypes. User Defined Datatypes are
based on the database’s core data types but can extend their
definition to include things such as column length, whether the data
type can accept NULL values, or whether the data type contains
special characters, for example, telephone numbers.
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Relationships. Relational databases are designed to support
referential integrity (RI). RI is enforced by relationships designed
between tables to ensure unique and consistent data entry.
Relationships are outlined in data models by linking foreign keys
(FK) in a table to primary keys (PK) in another.

Data Models
Data models in the form of physical schema diagrams (either normalized
or dimensional) are really just a graphical display of metadata but not par-
ticularly metadata itself. However, they can be an invaluable asset to the
ETL team arsenal because they enable you to quickly identify and confirm
relationships at a glance. Even though table joins are depicted in logical data
mapping, you cannot count on it being perfectly complete. We recommend
that you hang the physical schema diagrams from all of the source sys-
tems (and the data warehouse) on the wall of your office. Having physical
schema diagrams hung around you alleviates sifting through rolls of dia-
grams piled in a corner. Furthermore, the hung diagrams make an instant
reference point that expedites the resolution of questions and issues—not
to mention the positive impression it makes on managers!

Data Definitions
Data definitions must be consistent between each of their potential data
stores. Each time your data touches down to a database or file, it is vul-
nerable to data truncation or corruption. If data definitions are not alike
between environments, the ETL team must explicitly convert the data to
avoid catastrophe. In addition to the attributes listed in the previous sec-
tion, the following data-definition metadata elements must also be supplied
to the ETL team.

Table name. The physical name of the table or file that contains the
data

Column name. The physical name of the column within a table or file

Data type. Data elements with a table are categorized into types.
Common data types are Numeric, Character, Date, and Binary. You
will find that custom data types are allowed in most DBMSs. Custom
data types are based on common types and usually enforce
formatting rules. Data types are mutually exclusive and cannot
coexist within a single column.

Domain. The set of values allowed to be entered into a column is
known as its domain. The domain can be enforced by a foreign key,
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check constraints, or the application on top of the database. If the
application enforces the domain, a list of allowed values must be
provided by the programming team to the ETL team.

Referential integrity. If your data comes from a database, you will
most likely find foreign keys that point to a primary key of another
table to ensure the data is unique. If referential integrity (RI) is
enforced at the application level, the programming team must
provide the RI rules. Typically, RI in the data warehouse is deemed
unnecessary overhead because all data is entered in a controlled
fashion—the ETL process—and does not have RI enforced at the
database level.

Constraints. Constraints are another form of a physical
implementation of a business rule. Database constraints can
eliminate NULL values, enforce foreign key look-ups, ensure
compliance with allowed values, and so on.

Defaults. A default in the context of ETL metadata is the assignment
of a string, number, date, or bit, in the case when the actual value is
not available. In your source system, column defaults are usually
assigned at the database level. In the data warehouse, the defaults
should be assigned in the ETL process. It is recommended that
defaults in the data warehouse are used consistently.

Stored procedures. Stored procedures, which store prewritten SQL
programs in the database, offer great insight to how your source data
is used. Each data warehouse project inevitably involves analyzing
stored procedures that exist in the source systems.

Triggers. A trigger is an SQL procedure automatically executed by
the DBMS when a record is added, deleted, or updated. Like stored
procedures, triggers offer information about how data is used.
Triggers often enhance foreign key constraints by adding additional
checks to records added to a table. Triggers also load audit tables
when records are altered or deleted from a table. Audit tables loaded
by triggers are a vital source of deleted data for the data warehouse.

Business Rules
Business rules can be categorized as business or technical metadata. We
like to refer to business rules as technical because they are the essence of the
ETL process—which is very technical. Each and every business rule must be
coded in the ETL process. Business rules can include anything from allowed
values to default values to calculations for derived fields. In source systems,
business rules are enforced by stored procedures, constraints, or database
triggers. But most often, business rules exist only in the application code. In
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older, especially mainframe, environments, the actual source code no longer
exists and only the compiled portion of the application remains. In those
cases, business rules are extremely difficult to obtain. It usually requires
interviewing data analysts and programmers who support the application.
The metadata for business rules varies between functional or technical doc-
umentation and source code in the native programming language of the
application or pseudocode.

Business rules must be incorporated into logical data mapping. Some-
times business rules are omitted from logical data mapping and go unno-
ticed until the first attempt at the ETL process is complete and the exclusions
are detected by users during UAT. As new business rules are learned, the
metadata in the logical data mapping must be updated to reflect the new
rules.

ETL-Generated Metadata

So far in this chapter, we have focused on metadata created outside of the
ETL environment and provided to the ETL team from other sources. The
remainder of this chapter addresses metadata generated by the ETL team
and used either within the team to manage the ETL processes or by end users
or other data warehouse members to better understand the data within the
data warehouse.

As ETL physical processes are built, specific metadata must be generated
to capture the inner workings of each process. ETL metadata falls into four
main categories:

ETL job metadata. The ETL job is a container that stores all of the
transformations that actually manipulate the data. The job metadata
is very valuable because it contains the data lineage of the elements
in the data warehouse. Every ETL task—from extraction to load and
all transformations in between—is captured in the ETL job metadata.

Transformation metadata. Each job consists of many
transformations. Any form of data manipulation within a job is
performed by a dedicated transformation.

Batch metadata. Batching is a technique used to run a collection of
jobs together. Batches should have the ability to be configured to run
sequentially or in parallel. Also, batches should be able to contain
subbatches. Subbatches are common in data warehousing. You may
have a batch that loads dimensions and a batch that loads facts.
Those batches can be batched together to load a specific data mart.
Batches are scheduled to run periodically or according to any
triggering mechanism.
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Process metadata. Each time a batch is executed, process metadata is
generated. Process metadata is crucial for depicting whether the data
warehouse was loaded successfully or not.

If you are not new to ETL, you’ve probably noticed that the metadata
categories are not listed in container order but in the order that they are
generally built or generated in the ETL process. For example, even though
batches contain jobs, you must build your jobs before you can batch them.
Each type of ETL metadata contains its own specific attributes that need to
be created, maintained, and published. The subsequent sections examine
the specifics of the technical metadata in the ETL environment.

For consistency throughout this book, we refer to the physical imple-
mentation of the data mapping as a job and their containers as batches. The
terms may be consistent with some ETL tools but not others. Our generic
designation of the terms does not infer any particular technology. If your
technology calls your physical source-to-target mappings something other
than job, substitute job with your own term for the purposes of capturing
its metadata.

If you implement your ETL solution without a dedicated tool, you are not
excused from generating the metadata outlined in this chapter. Tools are meant to
ease the burden of these tasks. Without them, you will have to produce and
maintain metadata manually. If you must create ETL metadata by hand, use
spreadsheets kept in a version-control system such as PVCS or SourceSafe.

ETL Job Metadata
ETL metadata can be very technical, and end users tend to shy away from
it. Source-to-target mapping usually contains programming code and can
be cryptic to business users or nontechnical end users. However, source-to-
target mapping is crucial for understanding the true data lineage of the data
in the data warehouse. Metadata is sought after by the data warehouse team
as well when credibility of the data is in question and its integrity needs to
be proven.

The optimal way to present source-to-target mappings is to utilize a dedicated
ETL tool. These tools offer reports to present the information to users. Some tools
are better at it than others. Make sure to ask your potential ETL vendor to show
you how their tool handles the presentation of source-to-target mappings.

Figure 9.2 illustrates the elements of ETL job metadata that need to be
created, stored, and shared. The following elements must be tracked to
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help manage your jobs and share their identity and functionality with your
managers and users.

Job name. The name of the physical ETL job

Job purpose. Brief description of the primary focus of the process

Source tables/files. The name and location of all source data

Target tables/files. The name and location of all resulting data after
it has been transformed

Reject file name. The name and location of the file or table that stores
any records intended to be loaded but are not in the ultimate target

Pre-processes. Any other jobs or scripts on which the job is
dependent to run before it can be executed

Post-processes. Any other jobs or scripts that the job needs to run to
complete its process

Jobs

A job is a collection of transformations that perform the physical extraction,
transformation, and load routines. The metadata for a job is the physical
source-to-target mapping. Jobs should be named after the target table or
file that they are loading. If your ETL process has many segments, each job
must contain a prefix that indicates its purpose. ETL jobs generally fall into
one of three categories:

Extraction. EXT_<table name>. Indicates that the job’s primary
purpose is to extract data from the source system.

Intermediate stage (for example, cleaning and conforming).
STG_<table name>. The STG prefix signifies that the job does not
touch the source or the target. It is an intermediate process that lives
only in the staging area. If your process touches down in the staging
area more than once, append a counter to the prefix (for example,
STG1, STG2, STG3, and so on).

Target. TRG_<table name>. Indicates that the job loads the target data
warehouse. Alternatively, we’ve seen these jobs named FAC_<table
name> and DIM_<table name> to indicate if the target table is a
fact or dimension, respectively. We don’t see much value in that, but
it is an acceptable convention if it provides value for your situation.

Transformation Metadata
Transformation metadata is information about the construction of the ETL
process. The ETL developer spends most of his or her time constructing
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or reusing data transformations. Transformations are composed of custom
functions, procedures, and routines that can include cursors, loops and
memory variables, making them extremely difficult to document and offer
as metadata. Any manipulation performed on your data during the ETL
process is considered a transformation. If you are writing your ETL in SQL,
you need to identify each of the distinct sections in your procedures and
label them to be consistent with the common attributes of transformation
metadata.

Dedicated ETL tools predefine transformations common to the data ware-
house environment and provide them as part of their package. Prebuilt
transformations expedite ETL development and implicitly capture trans-
formation metadata. Common data transformations that exist in most ETL
jobs include:

Source data extractions. This could be as simple as an SQL SELECT
statement or involve FTP or reading XML DTDs or mainframe Copy
Books.

Surrogate key generators. These can simply call a database sequence
or involve complex routines that manage memory or involve
third-party software. The last number inserted into the data
warehouse is also metadata that needs to be maintained and
presented as required.

Lookups. Primarily used to get surrogate keys from the dimensions
during a fact table load or referential integrity in the staging area. If
you are using raw SQL, this involves all of your inner and outer joins
and IN statements.

Filters. This rule determines which rows are extracted and loaded.
Metadata is the business rule or constraint used to apply the filter.
Filters can be applied anywhere in the ETL process. It is a
recommended practice to filter your data as early in the process as
possible.

Routers. Conditionally routes rows like a CASE statement

Union. Merges two pipelines with compatible row sets

Aggregates. When the fact table is not the same grain as the
atomic-level transaction, you need to apply aggregates to source
data. Metadata associated to the aggregate includes any calculations
within the aggregate function, the function itself—count, sum,
average, rank, and so on—and the columns on which the aggregate
functions are grouped. The grouped columns declare the granularity
of the aggregate.

Heterogeneous joins. When your source’s data comes from different
systems, they are usually joined outside of any single database
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(unless you use a database link). The way you join heterogeneous
systems outside of the DBMS environment needs to be defined and
presented as metadata.

Update strategies. The update strategy contains business rules that
determine if a record should be added, updated, or deleted. It also
contains the slowly changing dimension policy.

Target loader. The target loader tells the ETL process which database,
table, and column needs to be loaded. Additionally, this documents if
any bulk-load utility is used to load data into the data warehouse.

Each transformation gets data, manipulates it to a certain degree, and
passes it to the next transformation in the job stream. Metadata attributes
that describe the transformation include:

Transformation name. A single job can have a multitude of
transformations, and identification of each is crucial for management
and maintenance. Each transformation must have a unique name
that is meaningful and complies with standard naming conventions.
Transformation-naming conventions are outlined in this chapter.

Transformation purpose. The purpose of the transformation must be
easily identified. Many ETL tools color-code their predefined
transformations. If you are hand-coding your ETL processes, make
sure metadata is captured both within your code and your
transformation matrix.

Input columns. The data elements fed into the transformation

Physical calculations. The actual code used to manipulate data

Logical calculations. The textual equivalent of the physical
calculations is required to make sense of the sometimes cryptic code
required to physically manipulate data.

Output columns. The result of the data transformation sent to the
next transformation

Transformation Nomenclature

Transformations are the components of an ETL job. Each type of transforma-
tion requires a slightly different naming format. For maintainability, adhere
to the following naming conventions while building your ETL transforma-
tions:

Source data extractions. SRC_<table name>

Surrogate key generators. SEQ_<name of surrogate key column
being populated>

Lookups. LKP_<name of table being looked up or referenced>
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Filters. FIL_<purpose of filter> (for example, FIL_SUPPRESS_BOTS
to suppress hits on a Web site generated by bots)

Aggregates. AGG_<purpose of aggregate> (for example,
AGG_HITS_BY_MONTH to aggregate Web site hit counts to the
monthly level)

Heterogeneous joins. HJN_<name of first table>_<name of second
table>

Update strategies. UPD_<type of strategy (INS, UPD, DEL,
UPS)>_<name of target table>

Target loader. TRG_<name of target table>

Batch Metadata
Once all of the jobs are designed and built, they need to be scheduled for exe-
cution. The load schedule is a crucial piece of metadata for the team respon-
sible for incrementally loading the data warehouse. Figure 9.3 illustrates
what a typical load schedule might look like for a clickstream data mart.

In Figure 9.3, notice that the load schedule contains information for the
following metadata attributes:

Load Schedule

Dependent batches. Batches are nested to contain several levels of
batched jobs to execute many jobs in parallel or to maintain integrity

B_Daily_DW_Load - Scheduled to kick off at 12:30 am each morning.

Pre-session process  -- ./Scripts/del_files.pl -- Delete today’s partial logs from /incoming/*

S_DW_DB_Dim
B_DW_Content_Dim_Load

S_Content_Dim_Product
S_Content_Dim_Category - Load new Categories since last data warehouse load.
S_Content_Dim_Ad - Load new Ads since last data warehouse load.
S_Content_Dim_Link - Load new Links since last data warehouse load.

S_Last_Process_Date -- Update the DW_LastProcess table in data staging database.
B_DW_DIMS_AND_FACTS

S_DW_Stg_Web_Log
S_DW_Page_events_dims -- Load all data warehouse clickstream dimension tables concurrently
B_DW_Load_Facts_tables -- Load Clickstream Fact Tables in parellel
S_DW_Hits_Fact - Load Hits_Fact table
S_DW_Pages_Events_Fact  - Load Page_Events_Fact table

S_DW_load_audit -- Add activity to the Audit log table in the data warehouse

S_DW_Prepare_logs -- This session creates an excludes.txt file by querying the clickstream_excludes table
 in the staging area database. This list includes all image extentions and 'bots' that are
 excluded from the page_events_fact table.

Post-Session process  -- ./Scripts/create_output_file.pl -- create output.txt file containing
all pages_views for the previous day. This command is dependent on the success of the creation of
the excludes.txt files.

Post-Session process  -- ./Scripts/update_brio_repo.sql -- this script triggers Brio Broadcasr
 Server to start producing reports.

Post-Session process  -- /Scripts/move_logs.bat -- upon completion, move any logs in the /incoming/ directory
 to the /outgoing/ directory.

 -- All subsequent sessions are dependent on data from the operations database.

 -- Load new Products since last data warehouse load.

 -- Load all Web Logs minus excludes into staging area 

Figure 9.3 Clickstream data mart load schedule.
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between jobs. For example, a batch that loads dimensions of a data
mart must complete successfully before fact table jobs can be
executed. Remember, the data warehouse database does not enforce
referential integrity. Dependent batches are one of the ways to
enforce integrity in the data warehouse.

Frequency. Portions of the data warehouse are loaded monthly,
weekly, daily, or are continuously fed data. This piece of metadata
defines how often the batch is executed.

Schedule. If a job is run daily, this metadata attribute captures the
exact time the batch is executed. If it is run monthly, the exact day of
the month is represented. Batches must have the ability to be
scheduled on any give time of day, day of week, month, or year.

Recovery steps. Actions required in the event of a midprocess
failure. Recovery steps can be a lengthy process and are usually
offered in a separate document. The steps to recover from a failed
process must be walked through with the team that supports the
operation of the execution of batched ETL jobs to ensure they
understand the procedure.

Data Quality Error Event Metadata
Chapter 4 is an in-depth tutorial on capturing metadata describing data
quality. The three main tables are depicted in detail in that chapter, but
for uniformity, we list the data elements we captured in the cleaning and
conforming steps.

First, the screen table includes:

The ETL Injection Stage describes the stage in the overall ETL
process in which the data-quality screen should be applied.

The Processing Order Number is a primitive scheduling/
dependency device informing the overall ETL master process the
order in which to run the screens. Data-quality screens with the same
Processing Order Number in the same ETL Injection Stage can be run
in parallel.

The Severity Score is used to define the error severity score to be
applied to each exception identified by the screen.

The Exception Action attribute tells the overall ETL process whether
it should pass the record, reject the record, or stop the overall ETL
process upon discovery of an error of this type.

The Screen Category Name is used to group data-quality screens
related by theme—such as Completeness, Validation, or Out-of-Bounds.
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The SQL Statement captures the actual snippet of SQL or procedural
SQL used to execute the data quality check. If applicable, this SQL
should return the set of unique identifiers for the rows that violate
the data-quality screen—so that this can be used to insert new
records into the Data Quality Error Event fact.

Second, the main error event fact table includes:

The Staged Record Identifier, which uniquely identifies the error
record

The Error Severity Score, which assigns a severity from 1 to 100 to
the error condition

The error event fact table has foreign keys to calendar date, time of day,
ETL batch, table, and source system dimensions. These dimensions provide
the context for the measures in the error event fact table.

The audit dimension includes the following fields described in Chapter 4:

Overall Data Quality Score

Completeness Score

Validation Score

Out of Bounds Score

Number of Screens Failed

Maximum Error Event Severity

Cleaning and Conforming Timestamps, including the begin times
and end times of specific job runs

Overall ETL Timestamps, including the begin times and end times of
complete end-to-end ETL jobs

The Overall ETL Release Version Numbers to identify the consistent
suite of ETL software tools in use at a point in time

Other Audit Version Numbers such as allocation version, currency
conversion logic version, and conforming logic version, depending
on the business-rules environment

Process Execution Metadata
Virtually all process metadata in the data warehouse is generated by the
ETL. Each time a job or batch is executed, statistics or indicators of success
need to be captured. Load statistics are a vital piece of metadata that captures
information about the execution of the ETL process and contains information
about the actual load-process results.
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Run Results

Metadata elements that help you understand the activity in your jobs or
batches and rate the success of their execution include:

Subject name. This can be the data mart or a description of a batch of
programs being run for a specific area.

Job name. The name of the program executed

Processed rows. The total number and percentage of rows read and
processed from the source system

Success rows. The total number and percentage of rows loaded to
the data warehouse

Failed rows. The total number and percentage of rows rejected by the
data warehouse

Last error code. The code of the last database or ETL exception raised
during the load process

Last error. The textual description of the last database or ETL
exception raised during the load process

Read throughput. Throughput is used to measure the performance
of the ETL process. It is normally represented in rows per second.
This is used to capture if the source system is causing a bottleneck.

Write throughput. Throughput is used to measure the performance
of the ETL process. It is normally represented in rows per second.
This is used to capture if the target data warehouse database is
causing a bottleneck.

Start time. The date, time, and second that the job is initiated

End time. The date, time, and second that the job ends, regardless of
its success

Elapsed time. The difference between the Start time and End time.
This is an important element for analyzing performance. In most
cases, rows per second are not enough, because it can vary
depending on the number of rows being loaded.

Source file name. The name of the table or file where the data in the
process originates. This can include more than one table or file.

Target file name. The name of the table or file where the data in the
process is targeted. This can include more than one table or file.

Process-execution metadata should be retained in a data store so trend
analysis can be performed. Metadata can reveal bottlenecks in the process,
and trending can expose portions of the data warehouse that lack the re-
quired scalability. Measures of data quality should also be trended.
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Exception Handling

This data records exceptional conditions that arose in the running of the
ETL system and what action was taken:

Subject name. This can be the data mart or a description of a batch of
programs being run for a specific area

Job name. The name of the program executed

Exception Condition. One of a standard set of exception conditions

Severity.

Action Taken.

Operator.

Outcome.

Batches Scheduled

Batches are a collection of ETL jobs scheduled for execution. The name of
the batch should reveal the subject area being loaded, the frequency that the
jobs are run, and whether the jobs within the batch are executed sequentially
or in parallel.

Metadata Standards and Practices

One aspect of metadata that is worth investigating is standards. Many orga-
nizations attempt to standardize metadata at various levels. If you are inter-
ested in standards on things such as naming conventions or domain stan-
dards, you may find the standards maintained by the Library of Congress
to be helpful (www.loc.gov/standards/standard.html). Furthermore, links
to additional standards organizations are offered. On their Web site, you’ll
find links to:

Metadata Encoding and Transmission Standard (METS). A
standard for encoding descriptive, administrative, and structural
metadata regarding objects within a digital library

American National Standards Institute (ANSI). The organization
that coordinates the U.S. voluntary standardization and
conformity-assessment systems

International Organization for Standardization (ISO). The body
that establishes, develops, and promotes standards for international
exchange
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Metadata relative to the ETL process includes not only standards in values
and conventions but also in methodology on storing and sharing metadata.
Organizations geared toward the organization and storage of metadata in-
clude:

Dublin Core. The Dublin Core Metadata Initiative (DCMI) is an
open forum created to develop metadata standards. DCMI hosts
periodic working groups and conferences that promote metadata
standards and practices worldwide. More information about Dublin
Core can be found on their Web site at www.dublincore.org.

Meta Data Coalition. The now defunct Meta Data Coalition (MDC)
was created in 1995 as a consortium of approximately 50 vendors and
end users whose efforts attempted to provide technical direction to
exchange metadata between products in the data warehouse
environment. During its existence, MDC helped to establish and
encourage consistent means of sharing metadata. In 2000, MDC
folded into the Object Management Group (OMG), who has a much
larger agenda in the metadata space and combined MDC’s objectives
with their own broader plan.

Common Warehouse Metamodel. The Common Warehouse
Metamodel (CWM) was created as a result of the merger of MDC and
OMG. You can find detailed information about CWM in books
dedicated to the topic and the OMG Web site www.omg.org/cwm.

Establishing Rudimentary Standards
To maintain manageable jobs for all of your enterprise data warehouse ETL
processes, your data warehouse team must establish standards and prac-
tices for the ETL team to follow. Whether you follow the recommendations
of the organizations in this section or follow the practices outlined through-
out this book, at the most rudimentary level, your organization should
adhere to standards for the following:

Naming conventions. Corporations usually have naming-
convention standards in place for their existing software and
database development teams. The data warehouse may be required
to follow those standards. In practice, we tend to deviate from those
standards when we can, especially while naming columns. But often,
you must conform to corporate policies. Therefore, any corporate
policies must be documented and provided to the data warehouse
team.

Architecture. Best-practice guidelines need to be captured as
metadata for your ETL environment. In many cases, high-level
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architecture decisions are made before the ETL team is established or
on the recommendation of your ETL vendor. Decisions such as
whether you should run your ETL engine on your data warehouse
server or on a dedicated box, whether you should have a persistent
staging area (PSA), or whether your target data warehouse should be
normalized or dimensional should be based on best practices that
need to be established, documented, and followed.

Infrastructure. Should your solution be on Windows or UNIX,
mainframe or AS/400? Corporate standards influence the decision-
making process for the products and hardware used for the ETL.
Some ETL engines run only on UNIX or the mainframe, while others
run on Windows. You must have established corporate infrastructure
metadata before any purchasing decision is made for your ETL
environment. Once your environment is established, the metadata of
its infrastructure must be documented and reviewed with your
internal infrastructure support team.

Naming Conventions
Naming conventions for the objects in the data warehouse environment
should be established before the ETL team begins any coding. Conventions
for tables, columns, constraints, indexes, checks, and so on should be offered
by the existing DBA team within your organization or the data warehouse
manager. The ETL team must adopt any conventions that exist in the rest
of the data warehouse environment.

If you decide that your existing corporate naming conventions are not
applicable to your ETL environment, you must document your alternative naming
conventions and seek approval from your corporate standards committee. Once
approved, the corporate standards committee should incorporate the new
ETL-specific conventions with their existing naming standards.

None of the organizations we recognize earlier in this section recommend
naming standards specific to the ETL process. If your ETL processes consist
only of raw SQL, follow your in-house programming practices and nam-
ing standards, with the exception of conventions explicitly defined in this
chapter. In this section, we share conventions that prove to be effective in
the ETL environment.

The naming conventions recommended in this section include the common
transformations found in most ETL tools. Use these conventions regardless of your
tool, even if you are coding your ETL by hand. Tools can come and go—do not set
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up new standards each time you change tools. Use the vendor-recommended
naming conventions for transformations that are not mentioned in this book. It is
acceptable to slightly modify these naming conventions for your purposes—the
important thing is be consistent within your environment.

Impact Analysis

One of the key advantages of maintaining ETL metadata is to enable impact
analysis. Impact analysis allows you to list all of the attributes in the data
warehouse environment that would be affected by a proposed change. Ul-
timately, you should be able to analyze the impact of a change that would
occur in any component of the data warehouse and list all of the attributes
in all of the other components. An impact analysis solution must be able to
answer the following questions:

Which ETL jobs depend on this staging table?

Is this table in the source system used by the data warehouse?

Would the deletion of this source system column affect the ETL
process?

Which source systems populate this dimension?

Which ETL jobs and data warehouse tables will need to be modified
if we change this data type from VARCHAR(2000) to CLOB?

Tools designed specifically for ETL should be able to answer all of these
questions. Without an ETL tool, you need to maintain spreadsheets to cap-
ture every table and column from the source systems and their mapping
into the data warehouse. Each time an ETL job is altered, the spreadsheet
needs to be manually modified to stay current.

Summary

In this chapter, we have brought order to the traditional chaos of meta-
data surrounding a data warehouse, first by focusing only on the metadata
needed to manage the ETL system, and next by dividing the ETL metadata
into three categories.

1. Business metadata. Describing the meaning of the data in a business
sense and consisting of separate tables tracking business definitions,
source system information, the data warehouse dictionary, and
logical data mapping
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2. Technical metadata. Representing the technical aspects of data,
including attributes such as data types, lengths, and lineage, and
consisting of separate tables tracking system inventory, data models,
data definitions, business rules, ETL jobs definitions, specific data
transformations, and batch job definitions

3. Process execution metadata. Presenting statistics on the results of
running the ETL process itself, including measures such as rows
loaded successfully, rows rejected, and amount of time to load. We
proposed particularly important process metadata in the cleaning
and conforming steps, including the screen dimension table, the error
event fact table, and the audit dimension table. All of this metadata
consists of separate tables tracking run results, exception handling,
and the immediate operational schedule.
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C H A P T E R

10

Responsibilities

In this chapter, we discuss managing the development and administration
of a successful ETL system. We could have put this chapter at the beginning
of the book, before the myriad responsibilities of the ETL system were
discussed thoroughly, but we think by putting it at the end of the book,
you will better be able to visualize how to manage a team effectively.

The first part of this chapter looks at planning and leadership issues,
and the second part descends into more detail of managing the ETL sys-
tem. Many of these perspectives were developed in Data Warehouse Lifecycle
Toolkit.

P R O C E S S C H E C K Planning & Design:
Requirements/Realities ➔ Architecture ➔ Implementation ➔ Release to Ops

Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver

Planning and Leadership

In some ways, the data warehouse and ETL process are just like any other
software development project. When a data warehouse team is established,
it usually requires three specialists. The following list contains common
roles required to initiate a data warehouse project. The list includes the pri-
mary role and the secondary role (in parentheses) that the same individual
can perform on small teams.

383
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Data Modeler (Project Manager). The data modeler must be
specially trained in dimensional data modeling and educated in the
principles of dimensional modeling.

ETL Architect/Programmer (DW Architect). The ETL programmer is
usually a SQL and database expert as well as an architect. This person
establishes the technical infrastructure of the ETL system and data
warehouse environment and designs the physical ETL processes.

Application Specialist (Business Analyst). This person gathers and
documents the business, analytical, and reporting requirements. This
specialist writes the front-end interface and initial reports for the
data warehouse. This position is often called the business intelligence
(BI) specialist.

When a data warehouse is kicked off, the often compact team of highly
specialized individuals builds the foundation for what evolves into the most
visible, widely used database application in your enterprise. Like any other
substantial structure, without a thoroughly planned and methodical con-
struction of the foundation, anything built subsequently is certain to topple.

Having Dedicated Leadership
The data warehouse is a complex entity that requires specialized knowl-
edge that most enterprise IT managers don’t quite understand. Initially, the
data warehouse must have a dedicated project manager who has experience
implementing a data warehouse using the principles of dimensional model-
ing. As your data warehouse evolves, each component and subcomponent
must have a dedicated project manager. A mature data warehouse must a
have distinct ETL, data-modeling, and business-intelligence managers as
well as a dedicated project manager who oversees all of the departments
of the data warehouse team to ensure a cohesive solution is implemented
across all areas.

It’s been argued that a single person can manage the entire data ware-
house, but we strongly recommend that specialists for each area be ap-
pointed. Each area requires specialized skills that become diluted if some-
one tries to encompass them all. Remember, a single mind, no matter how
strong, is not as strong as a group.

A group is always stronger than an individual, but that does not mean
that design decisions are made by voting! Design decisions are best made
autocratically, so that consistency is maintained.
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Planning Large, Building Small
When you are building a data warehouse from scratch, it is often difficult
to imagine that it is going to evolve from the single data mart you are work-
ing on into a major enterprise, mission-critical application that has more
exposure than any other application within your company. The big picture
is commonly lost because data warehouses are usually built in an iterative
approach. They start and complete a single business process or data mart,
such as human resources or campaign management, before development
of the next data mart begins.

The data warehouse architect must utilize a methodology known as data
warehouse bus architecture, which outlines the framework of the data ware-
house so all of the resulting data marts work together in a cohesive fashion
using conformed dimensions and conformed facts as we have described
extensively in this book.

Part of the data warehouse bus architecture process includes devising a
data warehouse bus matrix, a list of all the dimensions that need to be created
and their associations to the various data marts in the data warehouse. The
bus matrix helps the architect visualize which dimensions are shared or
conformed across the various data marts in the data warehouse. Once the
bus matrix is created, the physical data marts can be built one at a time.
Figure 10.1 illustrates a sample data warehouse bus matrix.

Just as certain dimensions are reused throughout the data warehouse, cer-
tain ETL routines are reused over and over when you are building the ETL
processes. For example, your first ETL process most likely includes gener-
ating a surrogate key for a dimension. The code that generates the surrogate
key can be reused to generate all surrogate keys in the data warehouse—just
by using different parameters. If you come from a software development
background, you may have heard the saying, Write once, use many. That
adage means to reuse as much code as possible. Not only does reusable
code cut down development time of subsequent processes; it ensures con-
sistency across them.

You need an effective code-reusability strategy. Establish an environment
that encourages developers to share ideas and to trust each other’s work.
The following tips can help you build a team environment.

Agree as a group on strategies. Have regular meetings that discuss
technical and functional strategies and solve problems as a group.

Share ideas as well as code. Reinforce that ETL development is not a
competitive sport. Work together and share issues with others on
your team. We’ve spent hours in isolation agonizing over situations.
Then, by simply explaining the scenario to someone else, the solution
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Employee Transfer
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Attendence
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Compensation Monthly
Summary X X X X X X X

Rating
Monthly

Summary X X X X X X
Compensation

Transaction X X X X X X X
Rating

Transaction X X X X X X

Figure 10.1 Data warehouse bus matrix.

instantly came to mind. It’s amazing how many ideas are born
during simple conversation.

Use a repository. Many ETL tools offer a repository for reusable
code. Make sure your tool includes a repository that allows code to
be reused and shared among various load routines and developers. If
you have not yet invested in a dedicated ETL tool, at least use a
source-code repository such as SourceSafe or PVCS. In mature
installations, you need to develop multiple individual repositories
which then must be managed as a single virtual repository.

Once your team is trained to work together and all of your core rou-
tines are in your repository, development efficiency is sure to increase.
Also, working together helps developers understand the big picture of the
project. Avoid isolating developers by subject area. Over time, each de-
veloper becomes an expert in the specific areas he or she develops. It is
advantageous for the team to be exposed to other areas for which they are
not directly responsible. Broadening the scope of ETL developers promotes
cross-functional planning and builds morale within the team.
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Your ETL team should be encouraged to share and reuse as much of their work
as possible. Make sure appropriate metadata is associated to all of the sharable
code in your repository. Metadata is crucial for identifying the purpose of the
code and providing instructions for its use. But be realistic in your expectations
for literally reusing code across separate operating systems and DBMS platforms.

Hiring Qualified Developers
Skilled ETL developers are invaluable assets to your organization. However,
skill alone does not qualify someone as an expert. We’ve interviewed many
potential ETL developers over the years who knew various tools inside and
out but could not grasp dimensional concepts such as hierarchy mapping
tables. Developers must have the ability to comprehend new techniques
quickly and implement them with minimal hand-holding. When we inter-
view, we tend to spend less time talking about using tool features and more
time on problem solving—technical and functional. We find that candidates
with intelligence and character make much better ETL team members than
those with only technical skill.

During candidate interviews, ask a specific question you know the inter-
viewee does not know the answer to. Watch to see how he or she works it
out. Remember, it’s not whether the candidate gets the answer right, but the
process he or she uses to solve it. The reality is that ETL and data warehous-
ing can be quite complex and are quite specialized. Still, it’s not splitting
atoms. (If it were, a scientist would have to provide a specification!) So,
when you are building your team, make sure that your developers are mo-
tivated to grow technically and professionally. They must be able to grow
with you and your project and be able to accept and adapt new techniques
and strategies.

Building Teams with Database Expertise
Part of the responsibility of the ETL manager is to inventory all of the
source systems within your enterprise and align the appropriate skill sets
in your development team according to the existing databases. If you use
a dedicated ETL tool, staffing your team with specific database expertise
might not be as critical. But even with the best toolsets, you never seem to
get away from rolling up your sleeves and writing raw SQL at some point
in the ETL development process.

Listing specific SQL coding tips and techniques is beyond the scope of this
book—there are several SQL books on the market—but be advised that SQL
is the foundation of any DBMS query. Tools alone cannot adequately fulfill
all of your ETL requirements. When you interview potential candidates for
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your ETL team, be sure they are proficient in the specific flavors of SQL
required both for your transaction DBMSs as well as the system you have
chosen for your main ETL processing.

Each source system DBMS that you encounter requires knowledge and
implementation of specialized SQL syntax. Make sure your team has the specialized
skills to navigate the various databases and that your ETL tool can seamlessly
integrate native SQL code in the ETL process without leaving the application.

Don’t Try to Save the World
The ETL system is just a portion of the data warehouse project, and some
things that happen within it are beyond your control. Accept that the data
warehouse is not, nor will be, perfect. You are going to encounter dirty data,
and in many cases, you will not get the political backing to clean it. Our
philosophy is that the best way to get data cleansed is to expose it. You’ve
been asked to build the data warehouse because the existing data has been
so difficult to analyze. Chances are that much of the data you are publishing
with your ETL process has not been exposed before, especially to the extent
that it is via the data warehouse. If your petition for ultimate data quality
is ignored, be patient. As soon as blemished data is published, managers
have to start explaining the anomalies, and you will witness a change in
heart about the quality of the data and receive the support you need.

Enforcing Standardization
In large ETL projects, it is imperative that you establish standards early on.
Without standards, developers write inconsistent ETL jobs and cause the
maintenance of existing code to be horrendous. The ETL team must stan-
dardize their development techniques to provide a consistent and maintain-
able code environment. The following list contains areas of the ETL process
that need standardization most:

Naming conventions. Establish and enforce a standardized
convention for naming objects and code elements in your ETL
process. Begin by adopting existing naming standards in your
organization. Add to your existing conventions with those
recommended by your ETL tool vendor.

Best practices. Document and follow best practices for building your
ETL routines. Make standards for things such as the ordinal position
of transformations in your routines or the best ways to recover from
a failed process. This book is full of recommended strategies for your
ETL processes. Standards to consider are:



P1: KTX
WY046-10 WY046-Kimball-v4.cls August 18, 2004 14:32

Responsibilities 389

Generating surrogate keys. If you decide to use the database, ETL
tool, or any other mechanism to generate surrogate keys, be
consistent throughout your ETL jobs.

Looking up keys. You may use mapping tables, look to the
physical dimensions, or use other staging techniques to associate
natural keys to their surrogates. Pick one and stick with it. If you
mix techniques, maintaining these routines is a nightmare.

Applying default values. Several approaches and values are
acceptable means of defaulting missing values. Remember that
missing values or NULL values have to be handled carefully in
the data warehouse because those values can cause blank column
or row headings on reports and because some databases do not
include NULLs in their indexes. It’s best to check incoming
records for NULL values and to substitute them with actual values
such as the single character ? during the ETL process.

Monitoring, Auditing, and Publishing Statistics
ETL statistics are invaluable to anyone who uses the data warehouse. If
your data warehouse has a dedicated Web site—and it should—make sure
it includes the daily statistics of your ETL processes. Users often want to
know exactly when a table has been loaded or if any rows were rejected.
Most ETL tools generate load statistics automatically. Make sure your tool
has the ability to automatically publish the required statistical information
upon completion of the daily data load.

C R O S S - R E F E R E N C E A list of the statistical elements that should be
published as part of your metadata strategy can be found in Chapter 9.

Maintaining Documentation
Documentation of what your ETL processes do is an invaluable asset to
the data warehouse team and has become mandatory in many phases of
financial and regulatory-reporting data warehouses. Even with the most
thorough logical data-map specification, only the developer knows exactly
what is done to the data between the data warehouse and its source. It’s the
responsibility of the ETL team to maintain documentation for the lineage
of each data element in the data warehouse with rigorous change control.
Some documentation comes in the form of metadata, but not all forms of
documentation are considered formal metadata. Metadata is a complicated
entity that already has several books to explain its capacity. Regardless
of how you categorize it, several pieces of documentation must exist and
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be maintained and published. Often, descriptions of processes cannot be
captured in the allotted fields in the various tools designed to capture this
information. Inevitably, you need to provide documentation that explains
your ETL processes in Word documents, Excel spreadsheets, PowerPoint
presentations, and so on. Use a version control system such as SourceSafe
or PVCS to maintain the integrity of your documentation.

Providing and Utilizing Metadata
Metadata is crucial for sharing and reusing ETL processes. Virtually all ETL
tools have the ability to capture and utilize metadata. Don’t do your team
an injustice by creating processes without metadata. Each time you create
a new ETL process, keep this in mind: If it’s not captured by metadata, it
doesn’t exist. This is true in established data warehouse environments. If
you don’t expose your work via metadata, someone else on your team may
recreate from scratch something that you’ve already created and tested.

What’s more, the ETL tool repository is often the home of the metadata
repository. Some ETL tools have the ability to transmit existing metadata
from other tools such as data-modeling or reporting tools and associate
elements for impact analysis. Some business-intelligence tools can utilize
the ETL repository to integrate metadata with the data warehouse user
interface. If the metadata in the ETL environment is published, it must be
maintained, or the toolset can publish out-of-date information to its users.

Keeping It Simple
If you think there has to be an easier way to so something, there usually
is. When you are building your ETL processes, take a step back from time
to time and look at your work from a design perspective. Is the design
straightforward, or does it have complexities that could be avoided? The
more complex your processes are, the more difficult they will be to maintain.
Moreover, complex ETL designs are almost impossible to evolve. As business
needs or source systems change, your ETL jobs must be adaptable enough
to change with them. We were called on a project once where an ETL job was
so complex it was untouchable. No one knew exactly what it did, so no one
was able to modify it. It was so convoluted that we were hired to reverse-
engineer, document, and redesign it into a more streamlined, manageable
process.

Optimizing Throughput
No real limitation exists as to how elaborate your ETL processes can be to
transform your source data into usable information for the data warehouse.
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However, a restriction on how long your jobs can take to process does exist.
One of the challenges to being an ETL developer is to have the ability to
extract, clean, conform, and load data within the allotted load window. The
load window is the time set aside each night to run the ETL processes.
Usually, the data warehouse is not available to its users during the load
window, so there is always pressure to keep the load window as small as
possible.

Managing the Project

The ETL process is a critical piece of the data warehouse project. Until
now, it has been thought of as the least glamorous aspect of the project and
typically did not receive the attention it deserved. In the early days of data
warehousing, the primary focus was on front-end tools; then as the size of
data warehouses began to grow, the dimensional data model became the
next focal point. As the data warehouse reaches its next level of maturity,
ETL is finally getting appropriate time in the spotlight.

Most designers agree that at least 70 percent of the entire data warehouse
project is dedicated to the ETL process. Managing the team that builds
these tenacious processes responsible for transforming potentially billions
of rows of unorganized data from disparate systems into a cohesive user-
friendly information repository is an achievement that is highly regarded by
technologists and executives alike. Managing the ETL team takes dedication
and know-how.

The ETL manager position has been established to alleviate the over-
whelming responsibility of the ETL process from the data warehouse project
manager. Also, this position provides business sponsors with confidence
that the ETL team can maintain a controlled, efficient environment to load
the data warehouse with clean, consistent data. The tasks contained in this
chapter should be read carefully by all members of the data warehouse
team to make certain that they understand that the ETL process is not a
trivial byproduct of the data warehouse project but rather the glue that
holds the entire project together. To the ETL manager, this chapter offers
the knowledge required to bring your ETL project to victory.

Responsibility of the ETL Team
At the most rudimentary level, the ETL team is responsible for extracting
data from the source system, performing data transformations, and load-
ing transformed data into the target data warehouse. More specifically, to
achieve optimal ETL results, the following tasks are the responsibilities of
the ETL team:



P1: KTX
WY046-10 WY046-Kimball-v4.cls August 18, 2004 14:32

392 Chapter 10

Defining the scope of the ETL

Performing source system data analysis

Defining a data-quality strategy

Working with business users to gather and document business rules

Developing and implementing physical ETL code

Creating and executing unit and QA test plans

Implementing production

Performing system maintenance

To effectively manage your team in the execution of the preceding tasks,
we’ve outlined an actual project plan that incorporates these tasks and gives
details of your functional responsibility for properly managing each.

Defining the Project
Although the ETL process is only one of the many components in the data
warehouse lifecycle, it is the center of the data warehouse universe. More-
over, the ETL process is by far the most difficult component to manage. As
users begin to see the resulting data in the beginning phases of the project,
you will be faced with an onslaught of change requests. Without a prop-
erly executed project plan and change-management strategy, managing the
ETL process will seem impossible, a never-ending task that could delay the
project to the point of failure. As you go about defining your project, keep
the following guidelines in mind:

For a seamless process, the management of the ETL must be closely
coupled with the other components within the data warehouse
lifecycle. From the standpoint of those who work with it regularly,
the data warehouse is never really finished. As new requirements are
initiated, the modeling team, ETL team, and reporting team must
work together to effectively accomplish these new goals and
complete the tasks that lie ahead. Steps outlined in this chapter
should be reused as each subject area is added to the ever-evolving
data warehouse. Nailing down the methods outlined in this chapter
is crucial to properly managing these iterative processes.

Be realistic when estimating completion dates and defining scope.
Do not let data modelers or business sponsors who do not have the
knowledge to make an informed decision dictate the time frame of
the ETL effort. Use the project plan in this chapter as a guide and
make sure your business users and sponsors are aware of exactly
what is involved in loading your data warehouse.
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Make sure the ETL team is an active participant in the data
warehouse project kick-off meeting. Such a meeting can be a venue
where you introduce the ETL team to key business users and discuss
the ETL-specific goals, roles and responsibilities, and timeframes.
Create an environment that fosters collaboration. This meeting helps
participants understand project needs, and it gives you the
opportunity to manage expectations.

Planning the Project

What is a plan? A plan is a method of action, procedure, or arrangement. It
is a program to be done. It is a design to carry into effect, an idea, a thought,
a project or a development. Therefore, a plan is a concrete means to help you
fulfill your desires. — Earl Prevette

It is your ultimate goal as an ETL manager to successfully manage the ETL
process and integrate the process into all other phases of the lifecycle. You
might assume that managing the ETL process is identical to managing any
other implementation, but it is quite different. In this section, we explain
the methods that have helped us achieve successful implementations. Also,
we expose many obstacles you may be faced with and provide suggestions
to mitigate those risks to achieve your goals.

As a prerequisite to beginning the iterative portions of the project plan,
you need to complete a few housekeeping responsibilities. These tasks in-
clude determining your ETL tool set and staffing your project team.

The order in which these two tasks are executed is important. You want to
select your ETL tool set prior to staffing your team. Doing so will enable you to
recruit individuals who specialize in your selected tool set.

Determining the Tool Set
The ETL manager must determine whether it makes sense to build the ETL
processes by hand or to purchase an ETL tool set, as discussed in Chapter 1.
There are many arguments for either case. However, with the success of
enterprise data warehousing and the expectations of executive sponsors,
we feel there is no time for hand-coding, especially when you consider
the iterative nature of data warehousing. Even the smallest projects benefit
from the transformation reusability of dedicated ETL tools. The features
available in these tools, right out of the box, would take months to design
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manually, not to mention coding the actual data-transformation processes.
The reduced development time obtained via these tools makes them viable
solutions for any data warehouse project.

Furthermore, ETL tools are specifically designed for the task at hand. The
most popular case we hear for building over buying is that programmers
already know SQL. Why waste time learning a tool that essentially has the
same result: moving data? Two analogies immediately come to mind when
we hear this. First, if the only tool you know is a hammer, everything around
you is treated like a nail. Setting screws becomes very difficult, laborious,
and sloppy. The second is the secretary that didn’t have time to learn word
processing because she was too busy typing. As silly as this may sound, it
is synonymous to not training your SQL programmers in dedicated state-
of-the-art ETL tools to perform their assignments.

To aid in the decision-making process, we recommend documenting your
tool-selection criteria. Establish proof-of-concept decisive factors such as
throughput performance, ease of modification, and vendor support and
then perform a proof-of-concept for the tools (including a comparison with
hand-coding) that you feel may meet your criteria. Upon evaluation of your
proof-of-concept results, you will be able to make a firm decision on whether
to build or buy an ETL tool set. If you are purchasing, you will have a firm
idea of exactly which tool fits your needs.

Staffing Your Project
A crucial factor in managing the ETL process is establishing a superior team.
Your team members must possess the necessary skills to perform the duties
expected of them. A properly trained team is vital to your success. Ensuring
that all team members fit into the company culture and work well together
is equally important.

Before data warehousing reached its current point of maturity, all duties of
the project were typically performed by just a few data warehouse experts.
These all-encompassing experts interviewed business users, documented
requirements, designed the data model, loaded the database, and so on.
As the data warehouse project evolves, we are discovering that each of
these specific tasks requires a unique set of specialized skills and that no
individual can achieve expertise in all of them.

ETL Team Roles and Responsibilities

Staffing the roles of the ETL team is an undertaking that must be reck-
oned with. If you have appropriate knowledge internally, you may be able
to recruit or train your internal staff. Otherwise, you need to work with
recruiters to find the appropriate expertise required to construct your team.
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The following bulleted list explains the roles and responsibilities we’ve
found to be fundamental to building an optimal ETL team.

Staffing one person per specific role would be ideal. However, as
circumstances dictate, it is realistic to have people play multiple roles by
overlapping some of their responsibilities, depending on the size of your project.
Remember when you are staffing the project team, your main goal is to ensure
that all duties will be performed. You do not necessarily have to fill each role with
a dedicated person.

ETL Manager. This individual is responsible for the day-to-day
management of ETL team and the on-going data warehouse
maintenance as it relates to the ETL process. The ETL manager is
accountable for managing the development of the data-extract,
transform, and load processes within the data warehouse and
oversees its testing and quality assurance. The ETL manager also
develops standards and procedures for the ETL environment,
including naming conventions and best-development and design
practices.

ETL Architect. Primary responsibilities for this individual include
designing the architecture and infrastructure of the ETL environment
and designing the logical data mappings for the ETL development
team. This architect must have a strong understanding of the
business requirements and the source operational systems. The ETL
architect is responsible for resolving complex technical issues for the
team and migrating ETL routines to production.

ETL Developer. This individual is accountable for building the
physical ETL processes. The ETL developer works closely with the
architect to resolve any ambiguity in specifications before actual
coding begins. The developer is responsible for creating functional
ETL routines and testing their reliability to ensure that they comply
with business requirements. There are usually several ETL
developers assigned to a data warehouse project.

Systems Analyst. The systems analyst is accountable for business
requirements definition activities and documenting those
requirements throughout the data warehouse lifecycle. The systems
analyst works closely with all members of the data warehouse team
and the business users.

Data-Quality Specialist. Data-warehouse quality includes the
quality of the content and the information structure within the data
warehouse. The data-quality specialist typically reports to the ETL
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manager but may also report directly to the data warehouse project
manager. The data-quality specialist primarily works with the
systems analyst and the ETL architect to ensure that business
rules and data definitions are propagated throughout the ETL
processes.

Database Administrator (DBA). The DBA is primarily responsible
for translating the logical database design into a physical structure
and maintaining the physical database. Moreover, the DBA works
very closely with the ETL team to ensure that new processes do not
corrupt existing data. In some environments, the DBA actually owns
the ETL process once it is migrated to production.

Dimension Manager. The dimension manager is responsible for
defining, building, and publishing one or more conformed
dimensions to the extended data warehouse community that agrees
to use the conformed dimensions. This is a truly centralized
responsibility. Conformed dimensions must be version-stamped and
replicated simultaneously to all fact table provider clients. There can
be more than one dimension manager in an organization, since the
data content of each dimension is largely independent. In any case, a
given dimension is the responsibility of a single dimension manager.

Fact Table Provider. The fact table provider owns a specific fact table.
In a conformed dimension environment, the fact table provider
receives periodic updates of dimensions from dimension managers,
converts the natural keys in the fact tables to the dimension’s
surrogate keys, and exposes the fact table appropriately to the user
community.

ETL Project Team Staffing Options

The old aphorism you are only as good as your subordinates holds special im-
portance in a mission-critical environment like the ETL process of the data
warehouse. An intelligent approach to preventing project failure is to build
a superlative team to develop it. This section discusses various options
available to you while building your ETL team.

Working with Recruiters

More often than not, you will need to look outside your organization while
building your ETL team. Typically, organizations work with dedicated re-
cruiters to seek the best candidates. But, just as a data warehouse needs to
be fed complete, reliable information to be valuable to its users, you need to
provide precise requirements to your recruiters for them to be effective. Be
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as detailed as possible when you supply job qualifications to ensure that you
receive candidates that possess the skills and work habits you are looking
for. Let the recruiter know the details of your environment, especially em-
phasizing your programming languages, vendor packages, and database
systems. Also describe the dynamics of your team and exactly what type of
person you are looking for. Provide the most detail possible to ensure that
the candidates they send will meet your expectations.

Recruiting companies that specialize in data warehouse staffing will give
you the benefit of working with recruiters who are knowledgeable in the
data warehouse industry and the tools sets that support it. They are re-
sponsible for pre-screening candidates and weeding out under-qualified
individuals before forwarding any resumes to you, limiting the number of
lacking resumes and individuals you need to evaluate. You will be busy
enough with many other tasks; the time saved using qualified recruiters is
well worth their fees.

Hiring Internally versus Externally

There are advantages to building your team from either internal or external
sources. The benefits of hiring internally include the following:

The primary benefit of performing internal searches and hiring from
within your organization is that internal individuals already have a
strong understanding of your organizational structure and IT
systems. They know who is responsible for what; who to go to for
answers; and how to get things done politically. If you’re lucky, they
may already possess the skills needed to fill a specific role within the
team. If an individual does not have the desired skill level but do
have the potential and desire to be trained appropriately, this person
may very well be a candidate worth considering.

Providing internal employees who possess motivation with the
opportunity to learn new things keeps them challenged and satisfies
their needs.

There is an economic benefit to hiring internally: It will most likely be
more cost effective to hire from within than to go through a recruiter
and incur placement fees, interview expense reimbursements,
relocation costs, and so on.

If you hire externally, you hire an individual who possesses the skills
you are looking for as well as experience using those skills in several
different business cultures. This experience offers more than its face value.
Experience saves you time and money while adding value to your team.
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Selecting Team Members

Once you are armed with a handful of resumes, we recommend that you
schedule a telephone interview to speak with potential candidates before
bringing them in. Asking key questions over the phone instantly reveals
their communication skills and level of understanding of the subject matter.

Candidates that pass phone screenings should be brought in for face-to-
face interviews. Your candidates should be questioned not only by the ETL
manager but also by technical developers, as well as by functional analysts.
Having candidates meet both functional and technical individuals gives
you the ability to gauge how broad their proficiency is. We’ve had many
unpleasant experiences where team members were technically proficient
but did not (and could not) grasp the functional picture. Their inability
required extra work on the part of other team members to ensure their
work actually met the business needs.

You need to be convinced, without a doubt, that all potential members
of your team have sufficient knowledge in ETL process design, ample skill
in required tool sets, and appropriate aptitude of business processes to
comprehend functional requirements. The ability to work collaboratively
with the rest of your team is crucial. Be sure to inquire about team dynamics
on previous projects during your interviews.

During candidate screening and interviewing, it is essential that you and
your recruiters are not only knowledgeable about the role they are seek-
ing to fill but also know the appropriate questions to ask. Figure 10.2 in-
cludes an interview questionnaire that provides you with questions you
need during the interview process. Using this questionnaire helps ensure
your candidate’s knowledge is sufficient for the specific role. Answers to
the questionnaire are sprinkled throughout the book.

Building and Retaining a Winning ETL Team

Once you have staffed your team, your main responsibility as a manager
begins. Retaining a first-rate team is among your biggest challenges. Su-
perstar ETL personnel are in very high demand, and recruiters are not shy
about poaching them from right under your nose. We find the best way
to keep the majority of ETL developers and architects on our projects is to
keep them challenged technically. In our experience, a bored technologist
will be a departing one. It is your responsibility to assign projects that keep
your team members interested and excited.

The tasks that the ETL developer accomplishes are not trivial. They step
up to the plate acknowledging it is their responsibility to transform un-
organized, disparate data into cohesive valuable information, an intense,
sometimes grueling undertaking. Do not take them for granted. Be atten-
tive of their needs; know what makes them tick and starts their fire. We’ve
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Sample Interview Questionnaire 

Analysis
1. What is a logical data mapping and what does it mean to the ETL team? 
2. What are the primary goals of the data discovery phase of the data warehouse project? 
3. How is the system-of-record determined? 

Architecture 
4. What are the four basic Data Flow steps of an ETL process?
5. What are the permissible data structures for the data staging area? Briefly describe the pros

and cons of each. 
6. When should data be set to disk for safekeeping during the ETL?

Extract 
7. Describe techniques for extracting from heterogeneous data sources. 
8. What is the best approach for handling ERP source data? 
9. Explain the pros and cons of communicating with databases natively versus ODBC.
10. Describe three change data capture (CDC) practices and the pros and cons of each. 

Data Quality 
11. What are the four broad categories of data quality checks? Provide an implementation

technique for each.
12. At which stage of the ETL should data be profiled?
13. What are the essential deliverables of the data quality portion of ETL?
14. How can data quality be quantified in the data warehouse?

Building mappings
15. What are surrogate keys?  Explain how the surrogate key pipeline works.
16. Why do dates require special treatment during the ETL process?
17. Explain the three basic delivery steps for conformed dimensions. 
18. Name the three fundamental fact grains and describe an ETL approach for each. 
19. How are bridge tables delivered to classify groups of dimension records associated to a single 

fact? 
20. How does late arriving data affect dimensions and facts? Share techniques for handling each. 

Metadata
21. Describe the different types of ETL metadata and provide examples of each.
22. Share acceptable mechanisms for capturing operational metadata. 
23. Offer techniques for sharing business and technical metadata. 

Optimization/Operations 
24. State the primary types of tables found in a data warehouse and the order which they must be

loaded to enforce referential integrity. 
25. What are the characteristics of the four levels of the ETL support model?
26. What steps do you take to determine the bottleneck of a slow running ETL process?
27. Describe how to estimate the load time of a large ETL job.

Real Time ETL
28. Describe the architecture options for implementing real-time ETL.
29. Explain the different real-time approaches and how they can be applied in different business 

scenarios.
30. Outline some challenges faced by real-time ETL and describe how to overcome them. 

Figure 10.2 Sample interview questionnaire.
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worked with some developers that just love to clean data. They find mak-
ing consistent reliable data from garbage to be rewarding. Others cannot
be bothered. They feel that if data is so important, it would be clean in
the source; those developers would much rather be challenged with solv-
ing nearly impossible SQL puzzles like converting data from tremendously
complex data models into simple dimensional ones. Other developers just
love to race the clock. If an ETL process should take one week to develop,
they work furiously to have it complete in just a few days. Part of your
responsibility as manager is to know what kind of developers you have
and keep them challenged.

If team members are eager and able to accept more responsibility, give
it to them. It’s your duty to navigate each individual’s desires and try to
fulfill them. Also, you need to provide team members with the training they
need to ensure they are the best at what they do. If you let your staff stagnate,
they will leave the project and move on to a more challenging environment.

An effective approach to keeping in tune with your subordinates needs is
to hold weekly status meetings. The ETL environment is a volatile one, and
letting more than a week elapse without receiving your team’s feedback on
progress could be detrimental to the project. These dual-purpose meetings
make sure team members are meeting their goals and that you are meeting
yours. Give them responsibility, empowering them to make decisions where
doing so makes sense. Moreover, you should foster an environment where
team members can voice concerns, convey development needs, and so on.
They must be able to rely on their ETL manager to take action on rectifying
their problems. A well-managed staff is a satisfied one.

Outsourcing the ETL Development

Outsourcing IT responsibilities is a hot topic as we write. Yet the overall
numbers are smaller than the talk would suggest. In 2003, of the $119 bil-
lion spent in the United States on IT budgets, less than five percent was
reportedly vulnerable to outsourcing. In recent reports, some of the hoopla
surrounding outsourcing savings is being offset by realizing that over time,
managing outsourcing projects involves extra communication, travel to for-
eign countries, and resetting of expectations and deliverables that did not
appear in the original financial savings projections. We are not saying that
outsourcing is a bad idea, but we are cautioning that outsourcing is a tricky
topic as far as the data warehouse is concerned.

The data warehouse must always respond to the data sources de jure,
as well as to the changing priorities of management and the end user
community. As we have said many times, the data warehouse is not a
project (with specifications and a final delivery) but is rather a process that is
on-going. Data warehouse development tasks are iterative and changing. In
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fact, that is one of the reasons we like the dimensional approach; it is the most
resilient architecture for adapting to new surprises and changes in scope.

For these reasons, we are generally negative about outsourcing many of
the data warehouse development tasks to remote parties and do not engage
in regular contact with the source data suppliers as well as the end users.
Remember that the data warehouse is a decision support system judged
solely on whether it effectively supports decisions.

ETL system development does provide selected opportunities to out-
source development tasks, if you have a specific transformation that can be
well specified.

Project Plan Guidelines
Now that you have decided on your tool set and staffed your ETL project
team, you are ready to dive into the heart of the ETL project plan. In this
section, we provide a detailed project plan that any ETL team can utilize.

Given the cyclical nature of data warehouse phases, the project plan can, and
should, be reused with each phase of your data warehouse project. Consistent use
of these guidelines enforces standards and ensures that no steps are forgotten.

Details of each step are explained in the remaining portion of this chapter.
High-level steps for managing the ETL process are shown as a project plan
in Figure 10.3.

Building the Development Environment

To perform thorough data analysis and begin ETL development of any
source system, it is good practice to have the DBA team build a develop-
ment environment. Use of a separate development environment guarantees
that data analysis and ETL development will not affect the production trans-
action system. Once the environment has been set up, the ETL architect and
the DBA team work together to install the appropriate software and tool sets
required to perform the analysis and development activities for your team.

Be sure to document the course of actions required and create the devel-
opment environment during your first phase of the project. Documenting
standards from lessons learned minimizes future errors and risk to the
added systems during subsequent iterations.

Business Requirements Analysis

Although many of the business rules have been documented through anal-
ysis during data-modeling sessions, the ETL architect’s is responsibility
to take those rules to their completion. Typically, the ETL architect and
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Task # Task Description Sub Task Sub Task Description Role

1 Set up Hardware Infrastructure DBA

2 Install Software / Tool Sets DBA / ETL Architect

3 Create Best Practices & Standards 
Document

ETL Manager / ETL 
Architect

1 Review Existing Documentation with 
Data Modelers

ETL Architect/Systems 
Analyst

2 Define & Document ETL Business 
Rules

ETL Architect/ Systems 
Analyst

3 Analyze Source Systems ETL Architect/Systems 
Analyst

4 Define Scope for Phase of Project ETL Manager

5 Obtain User Sign-off ETL Manager

3 Design Logical Data 
Mapping

1 Review Data Warehouse Data Model ETL Architect

2 Review Business Rules ETL Architect

3 Analyze Source Systems ETL Architect

4 Create Logical Data Mapping 
Document

ETL Architect

4 Data Quality Strategy 1 Define Data Quality Rules ETL Manger / Data 
Quality Specialist

2 Document Data Defects ETL Manger / Data 
Quality Specialist

3 Determine Data Defect Responsibility ETL Manger / Data 
Quality Specialist

4 Obtain Sign-off for ETL Correction 
Logic

ETL Manger / Data 
Quality Specialist

5 Integrate rules with ETL Logical Data 
Mapping

ETL Manger / Data 
Quality Specialist

1 Review Logical Data Mapping ETL Developer

2 Create Simple Dimension Load 
Processes

ETL Developer

3 Develop Complex SCD-2 Dimension 
Processes (History)

ETL Developer

4 Develop Complex SCD-2 Dimension 
Processes (Incremental)

ETL Developer

5 Develop Fact Table Process (History) ETL Developer

6 Develop Fact Table Process 
(Incremental)

ETL Developer

1 Build Development 
Environment

2 Business Requirements
Analysis 

5 Build Physical ETL 
Process

7 Automate Processes ETL Developer

Figure 10.3 ETL Project Plan.
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Test ETL Processes        
- Unit

1 Create Test Environment DBA / ETL Architect

- Quality Assurance (QA) 2 Create Test Plan and Scripts Systems Analyst

- User Acceptance (UAT) 3 Load Test Data (Historic & Incremental) ETL Developer

4 Execute Unit Test Scripts Systems Analyst

5 Validate Data Quality Controls Systems Analyst

6 Validate Loaded Data Systems Analyst

7 Validate Business Rules Systems Analyst

8 Obtain Sign-Off ETL Manager

1 Create Production Support Documents ETL Architect

2 Create Failure Recover Procedures 
Document

ETL Architect

3 Create Production Environment DBA / ETL Architect

4 Load Historic Data ETL Architect

5 Initiate ETL Scheduler for Incremental 
Processes

ETL Architect

Data Warehouse 
Maintenance

1 Develop Audit Reports for Known 
Issues

ETL Architect

2 Review ETL Logs Regularly to Ensure 
Consistent/Efficient Loading

ETL Architect

6

7 ETL Deployment

8

Figure 10.3 Continued.

the systems analyst review all existing documentation and meet with data
modelers to discuss questions that arise.

It is critical that the ETL architect and systems analyst have a solid un-
derstanding of the source systems and the data inside them. Be sure not to
underestimate the time needed to complete this analysis, and keep in mind
that the logical data mapping cannot be created until the source systems
have been thoroughly analyzed. It is not uncommon for the ETL architect
and systems analyst to meet with the data modelers, the source system
DBAs, or system analysts for multiple sessions, depending on scope, to re-
view details of the source systems. These sessions will facilitate the findings
of business rules that will be used to build the logical data mappings and
finally code the ETL process.

Figure 10.4 is a sample template for gathering and documenting business
rules and data defects. The spreadsheet is broken out as such to allow the
tracking of either data clean up or ETL details or both. We have combined
the two into one template because the ETL architect typically has to tackle
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the business rules and data clean-up transformations simultaneously for
a cohesive, integrated solution. It is important that these rules and trans-
formations are thoroughly documented in detail, not only for purposes of
coding but also because this document is the foundation of the creation of
unit, system, QA, and user acceptance testing test cases. This metadata is
also used for end user training and procedures documents.

In theory, emphasis is always placed on documentation. Unfortunately,
in reality it is common for project teams to start off with good intentions by
creating the documentation, but they rarely go back and update the docu-
ments as things change. Do not fall into this trap. Keeping documentation
up to date is crucial to the success of your project. Up-to-date documentation
is mandatory to perform detailed impact analysis of future enhancements
and subsequent phases of your project. Moreover, current documentation
ensures that you have a handle on the data lineage of your warehouse.
Maintaining your documentation may require time and effort, but con-
sider the alternative: going back and trying to figure out what has changed
within ETL processes, business rules, or data after the fact. It doesn’t take
a lot of imagination to visualize the wasted time, increased costs, and pure
frustration that can be avoided by planning ahead and updating your doc-
umentation as modifications to your ETL processes are made.

Defining the Scope of the ETL project

Defining scope includes determining and documenting what will be in-
cluded for each phase of the ETL process as it relates to subject areas, busi-
ness rules, transformation, and data-cleansing strategies. It can also, and
usually does, indicate what is not included in the phase. Documenting the
scope of each phase and requiring business users to review and sign-off the
scope documents aids in your management and prevents scope-creep.

Be realistic when defining each phase. Although your users expect you
to fulfill your commitment, they will most likely make many changes and
additions throughout the lifecycle of the phase. Changes to scope must be
negotiated and prioritized, leaving low-priority changes for future phases.
Keep potential scope-creep items on your radar when finalizing the scope
documentation.

After business rules have been documented and scope has been defined,
have a user-walkthrough of the documentation and obtain sign-off by the
business users. Techniques for managing scope are discussed in the “Man-
aging Scope” section of this chapter.

Designing the Logical Data Map

To help facilitate the design of the logical data map, the ETL architect
must review the data warehouse data model and all business-rules
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documentation. Additional meetings may be needed to get answers for
any remaining open questions and/or issues. If the existing business rules
gathered during the business-requirements-analysis phase do not provide
enough detail, the ETL architect needs to analyze the source systems man-
ually. Once all questions and issues are resolved, the ETL architect creates
the logical data-mapping document.

C R O S S - R E F E R E N C E Chapter 3 contains the exact details involved in
creating the logical data map.

Defining a Data Quality Strategy

Other than being query friendly, the chief acceptance factor of any data
warehouse is that the data is consistent and reliable. Therefore, conducting
a data-quality assessment and defining a strategy is a vital part of the ETL
process.

The ETL manager and the data-quality specialist are jointly responsible
for defining data-quality rules. They are tasked with analyzing the quality
of the source system data and documenting all identified data defects. This
exercise not only ensures that the cleanest possible data is entering your
data warehouse; it also benefits the source system from a data-quality per-
spective. This analysis exposes flaws in the source system applications and
gives source system administrators the opportunity to make corrections to
their application to prevent future data defects.

Options for cleaning data usually fall into two categories:

Cleanse data at the source.

Transform data in the ETL.

Cleansing data at the source is the most desirable and beneficial option.
Unfortunately, it may be neither feasible, due to resource constraints, nor
timely, due to the transaction application development lifecycle complexity
and schedule. Additionally, data cleanup usually involves political naviga-
tion to settle on appropriate data defect correction activities.

After all details and deadlines are committed and agreed upon, document
the details of each data-cleanup issue and associated cleanup resolution.
Creating a project plan to track the issues to be cleansed in the source sys-
tems as well those to be cleansed by the ETL process will help you manage
user expectations regarding data defects.

We recommend setting up weekly meetings with the administrators re-
sponsible for source system data cleanup. Use these meetings to review
and update the project plan to accurately reflect progress and discuss any
new findings. These meetings will determine the feasibility of cleanup and
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will provide a forum to agree on a strategy for cleaning up new findings.
Be sure to stay on top of progress made to source-data cleansing, as your
data warehouse is depending on source data being clean. It is a good idea
to make the extra effort to query the source database to ensure the cleanup
effort was successful.

Although data is being cleansed in the source system, the source system
owners may not have the ability to add business rules to prevent data from
becoming dirty again. Therefore, it is a good idea for the systems analyst and ETL
architect to meet to determine whether ETL code is necessary to prevent dirty data
from entering the data warehouse. ETL code can either kick out or transform dirty
data, depending on the business rules.

If ETL code is used as a preventative measure, whether through exclusion
or transformation, it is a good idea to define audit reports for the ETL
processes to capture and report dirty data. Such reports aid in the continual
cleanup of the source data and provide a mechanism to tie the corrected
data in the data warehouse back to its source. This metadata also serves
as an audit trail that provides the ability to trace a data discrepancy to its
place of origin, identifying the data owner responsible for its cleanup. Be
sure to obtain user sign-off on the business rules and data cleanup logic
being handled by the ETL.

Building the Physical ETL Process

Once the data analysis is complete and the business rules and logical data
mappings are final, the ETL architect walks through the logical data map-
ping with the assigned ETL developer. This walkthrough ensures that the
ETL developer understands the complete requirements before he or she
begins coding. The ETL developer is responsible for forward engineering
the logical data mapping into physical ETL routines. Whether SQL scripts
are written or a dedicated ETL tool is used, the routines must be developed
and tested and the resulting data must be validated by the developer before
they are turned over to the ETL architect for migration.

When several routines are given to the developer at once, which is usually
the case, an ETL build sequence document is usually prepared by the ETL
architect for the developer to use as a guide. Shown in Figure 10.5, the
document contains a listing of the expected tables to be loaded, the ordinal
position to build the processes, and comments as to what challenges should
be expected in the routine. This document is especially important during
the first phase of the project or for developers new to your team.
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Table Name
ETL JOB BUILD 

SEQUENCE Comments
d_SHIP_TERM_FLAG 1 Straight load from flat file

d_DATE 1 Straight load from flat file

d_DEPARTMENT 2 Straight load From database table. Some 
constraints

d_PRODUCT_TYPE 3 Fairly straight load From database table. Need to 
select distinct

d_VENDOR 3 Fairly straight load From database table. Need to 
select distinct

d_CURRENCY 4 Some table joining, pretty straight forward.

d_ORDER_TERM_FLAG 4 Load Result of UNIONED selects.

d_REGION 4 Some table joining, pretty straight forward.

d_OFFICE 5 Some Validation Checking. Data comes from 2 
different Sources

d_STORE 5 Fairly straight load From database table. Some 
Look-ups from Staging Table

d_SHIP_TYPE 5 Some constraints and substrings, pretty straight 
forward.

d_CLIENT 6 Very Complex Slowly Changing Dimension Logic

f_CLIENT_ORDER_TRANSACTION 7 Fact table load, Pretty straight forward but 
typically done after dims are complete

f_CLIENT_MONTHLY_SNAPSHOT 7 Fact table load. Pretty straight forward but 
typically done after dims are complete

Figure 10.5 ETL build sequence document.

Testing the ETL Processes

Most systems’ lifecycle methodologies include three phases of testing. Dur-
ing your ETL, it is recommended that you follow the three-phase approach
when going live with new source systems, subject areas, or any major re-
lease. Following are the three types of testing that should be conducted with
each phase of your ETL project.

Unit Testing. This testing occurs during and after development
before going to QA testing. This testing is performed by the ETL
developer and the systems analyst in the development environment.

Quality Assurance Testing (QA). This is the testing that typically
occurs by a separate group within your organization in a separate
environment mirroring production. The environment is created and
controlled by the DBA and QA team members. This environment
will be used to ensure all ETL processes are performing as expected,
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meeting all business rules and timeframe (load window)
requirements. Given that it simulates the production environment,
the QA group can validate that the ETL processes will work in
production.

User Acceptance Testing (UAT). This phase typically occurs by your
user group in a separate controlled environment created from the QA
environment. This database is controlled by the DBA team members.
In smaller organizations, after QA testing is complete, it is acceptable
to open the environment to users for user-acceptance testing,
reducing the cost of infrastructure maintenance and hardware. UAT
is the testing phase that benefits the team by letting users have a
hands-on look at the data to ensure processes are running as
expected. At the end of UAT, obtain sign-off from your users. Once
sign-off is received, you are ready to move to production.

We’ve been on projects where the user-acceptance testing phase is bypassed
for small build releases and bug fixes, going directly from quality-assurance
testing to production. In these cases, users inevitably detect issues after code has
been pushed into production. Excluding the user-acceptance testing phase is a
short cut that prevents you from discovering issues that only a user might find
before it is too late: in production.

When testing new ETL processes, be sure to have users test for known
data issues and source system anomalies. Not only will this validate your
efforts; exposure to the clean data will excite your users and make them
eager to use the new data warehouse. Clean data tends to have some positive
effects. Users will enthusiastically spread the word of the success of the ETL
and data warehouse project, causing other subject areas to flock to the data
warehouse project manager begging to be next in line for their data to be
transformed and loaded into the data warehouse.

Developing Test Cases

While ETL development is taking place, using the business rules and data
defects document, the systems analyst and ETL architect are jointly respon-
sible for developing detailed test plans for unit testing, QA testing, and UAT.

Test plans should include cases that test all business-rule scenarios. Val-
idating test results against expected results ensures that the ETL code is
correct and the transformations are working as designed. Your test cases
should deliberately try to load poor data into the data warehouse. The ETL
process should either prevent data from entering or transform data and load
it. In either case, an audit report should be generated. Even when poor data
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is not intentionally loaded, be sure to include queries that test data quality
in the data warehouse to ensure that data-cleansing transformations are
working as expected.

Most likely, issues will be identified during the validation of the test cases.
Some of these issues may be bugs discovered in your code, and some may
be fresh ideas triggered by the users’ exposure to their data in a format that
is new to them. It’s not uncommon to receive user requests for new require-
ments during this phase that may need to be added as enhancements. Be
careful: Data is not the only thing being tested here. Managing the initial
ETL processes is a task in itself; add on bug fixes, additional requests, and
ever-changing business rules and the process can become completely un-
manageable. In-depth change management techniques are detailed in the
“Managing Scope” section of this chapter.

A sample test case template is illustrated in Figure 10.6. It is intended to
capture the requirements you are testing; the detailed steps to perform the
test; the expected results; and the status of the test: pass or fail. Sample test
cases are given to display the level of detail you should capture. This tem-
plate should be used for all three phases of the testing process.

ETL Deployment

Next comes the moment you have all been waiting for: ETL deployment.
To make the migration to production as seamless as possible, be sure to
create production support documents. These documents should include
following information:

The final lineage report

Procedures for running (and restarting) the incremental load process

Details about the automated load schedule

It is important to create and deliver documented failure recovery proce-
dures. Should a load process fail, users could have access to bad data or
data that is not up to date. A plan must be in place to avoid this before
the production environment is unleashed to users. Document and test your
failure recovery procedures, so that when failures occur, you can quickly
recover data and make it available for your users in a timely manner.

Work with the DBA team to create a stable production environment.
Load your historical data and kick off the ETL incremental load processes
with your production scheduler. Be sure to run tests on data in production
(historical and incremental) to ensure data was successfully loaded.
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Maintaining the Data Warehouse (ETL)

Depending on how your organization is structured, the data warehouse
project manager and DBA team are typically responsible for the ongoing
maintenance of the data warehouse. However, you are the owner of the
ETL process, and unless other arrangements have been made, its ongoing
maintenance is your responsibility.

After you go live in production, it is important to continuously monitor
your data warehouse for known content issues. Part of this maintenance
includes the development of audit reports that will capture known issues.
These audit reports should stem from the business rules and data defects
document. The reports can automatically be sent to the appropriate contact
personnel for action via e-mail.

Patches and upgrades are inevitable in any production IT environment.
Such patches and upgrades are especially relevant in the data warehouse
environment, where so many distinct tool sets are integrated for a single
solution. Be diligent in applying patches and upgrades as necessary. It is
recommended that you schedule regular system maintenance and perform
these upgrades during this time. All patches and upgrades must go through
the full development lifecycle, including unit testing in the development
environment, QA testing, and user-acceptance testing. Passing the patches
and upgrades through testing ensures that maintenance was performed
correctly and that all processes are running as expected.

Keep your users abreast of new releases or enhancements as they are
being rolled out to production. That communication helps users prepare for
changes as they enter the data warehouse. Your users could be waiting for a
specific release or enhancement. Giving them a heads up on the time frame
of scheduled releases will boost their experience with the data warehouse.

Managing Scope
It won’t be far into the project when you realize why defining scope and
obtaining sign-off is so important. It’s easy to lose control when you are
trying to tackle the overwhelming bombardment of change requests.

Unmanaged ad-hoc changes to the ETL specifications can be detrimental
to the success of the project. It is common to receive additional requirements
during the development and testing phases. Issues will certainly be found
and new ideas will most likely surface, all of which need to be implemented
immediately. In our experience, when the data warehouse is unveiled, new
wish lists and requirements excitedly begin to trickle in, picking up momen-
tum exponentially as more subject areas are deployed. Before you know it,
you will be bombarded with more work than you and your team can han-
dle. Did someone say scope-creep? Creating a mechanism for tracking and
managing these changes is crucial to your success. The next section provides
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the documents you need to track changes and recommends procedures that
help you execute them.

Change Tracking

Implementing a process to track enhancement requests, bug fixes, or cha-
nges to the initially agreed scope is essential to your success as the ETL
manager. Following is a list of elements that have proven to be significant
while capturing and tracking change requests. You will want the ability
to track and manage the following information even if it means creating a
simple spreadsheet to do it. Capturing the following elements aids in the
management of changes and helps minimize scope-creep.

A system could easily be built in Microsoft Access or any small personal
database application for this purpose. For larger groups, you can implement a
small Visual Basic application or can leverage packaged systems that your
organization has already invested in. And, of course, a good ETL tool may provide
this capability.

Subject Area. This is the name of the data mart (portion of the data
warehouse) the request is being submitted for.

Request Date. The date the request originates

Change Description. This should capture a high-level description of
the request.

Priority. High, Medium, or Low. This is a negotiated rating of the
importance of the request.

Change Type. Indicates whether the request is for a new requirement
or a change to an existing process

Status. Status values can include anything that identifies the state of
the request. Values we’ve used include New request, Developer
investigating, Developer developing, More information needed,
Cancelled, Passed unit testing, Passed QA, Passed UAT, Ready for
production, and so on. The values in this field change throughout the
life of the request.

Submitter. The name of the person submitting the change request

Owner. Indicates the person responsible for the request at a specific
time. It usually begins with the data warehouse or ETL manager and
then gets assigned to the appropriate developer, tester, or so on
throughout the life of the request.

Version Found in. This is the active version number at the time the
bug is detected or the request is submitted.
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Version Fixed in. This is the number of the version that the request is
packaged with when released to production.

State. Open or Closed. Closed should be selected only when the
Status is set to Released to production or Cancelled.

Date Closed. This field should be populated at the time the state
field is set to Closed.

Functional Description. The information provided here should
describe the user’s experience prompting the request.

Technical Description. The information provided here is usually
filled in by power users or the ETL architect. It is used by the
developer for coding the change or new requirement.

Having the ability to generate reports using the elements from this list
is advantageous. If you have the resources to develop this as an IT system,
consult with your team to get their input on the process, making sure the
process meets the needs of everyone on your team.

However, minimizing changes to the production data warehouse envi-
ronment is a good practice, if you can achieve it. Keep in mind, the more
changes made, the greater the risk of affecting other processes. We recom-
mend holding regularly scheduled meetings with appropriate team mem-
bers to discuss the priority of each request. It is important that you make
your users realize how critical it is to minimize changes to production. Make
sure they understand the cost and effort it takes to fulfill each request. Have
them ask themselves the following questions: What is their return on in-
vestment? Are the benefits of the changes worth making? Can they justify
the change requests?

Once it is agreed that a change should be made, you must discuss the
impact of the change. If the change affects another ETL process or another
area, a detailed impact analysis must occur. Proposed changes can result
in multiple new changes to existing ETL processes. Be sure to add these
changes to your new tracking system.

A sample change/enhancement requisition form is shown in Figure 10.7.
This form includes all of the necessary information you need to enter a new
request and perform development to complete the request. This form, in
conjunction with your change-request tracking system, supports effective
management of the change-request process.

Scheduling Version Releases

Typically, a number of changes, enhancement requests, patches, and up-
grades are bundled together as a single build or release. Each release must
go through the full development lifecycle. Before going to production, be
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Change/Enhancement Requisition

Subject Area:  _________________________ Request Date: _________________

Change Description:  _______________________________________________________

_________________________________________________________________________ 

Priority:  ____________________ Change Type: _________________________________

(indicate if this is a new requirement or a
change to an existing requirement)

Submitter:  __________________ Owner:  _____________________

Version found in:  ____________________

Functional Description (attachments):

Technical Description (attachments):

All fields are required

Figure 10.7 Change/enhancement requisition form.
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sure to unit, QA, and UAT test your changes. After the changes have passed
the testing cycles, either the ETL architect migrates the routines or the DBA
team pushes the code to production.

Tracking versions of your data warehouse is beneficial for troubleshoot-
ing problems discovered in production. Use the tracking mechanisms out-
lined earlier in this chapter to maintain control over your version releases.
Normally, following standard-versioning techniques works well in the data
warehouse/ETL environment. It is especially important for the ETL man-
ager to adhere to this standard because much of the data warehouse code
releases to production are created and deployed by the ETL team.

The version number consists of a series of three decimal delimited num-
bers (##.##.##). The first set of numbers signifies major releases; the second,
minor releases; and the third, patches. For example, Version 1.2.1 means
the data warehouse is in its first version and there have been two minor
releases and one patch applied to it.

In the data warehouse environment, a major version release typically con-
stitutes a new subject area or data mart that includes new facts, dimensions,
and ETL processes. A minor release is defined as primarily ETL modifica-
tions, possibly including some minor structural database changes. Patches
are usually a result of a hot fix, where a mission-critical error has been de-
tected in the production environment and needs to be corrected immedi-
ately. If patches are bundled with minor changes or minor changes with a
major, only the leftmost number in the series should be incremented and the
right-hand numbers are reset. For example, if version 1.2.1 is in production
and you have two patches, a minor change, and a major release scheduled
for migration, bundling these changes would be considered a single major
release. In this case, you would now be at release 2.0.0.

It is good practice to bundle and schedule major releases with enough
time between to address hot fixes. With scheduled major releases, perhaps
monthly, it is easier to bundle minor fixes into the controlled release envi-
ronment to minimize code migrations.

Our recommended data warehouse versioning strategy is especially pow-
erful when your project is using the data warehouse bus architecture. In such
a case, each data mart in the bus matrix will be a major version release as
it enters the physical data warehouse. If your data warehouse is at version
1.0.210, you are most likely not using this matrix and probably not sleeping
at night, either.

Summary

In this chapter, we have finally stepped back a little from the myriad tasks
of the ETL team to try to paint a picture of who the players are and what are
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they supposed to think about. We must keep in mind that this chapter and
really the whole book are deliberately limited to the back-room concerns of
the enterprise data warehouse.

We began by describing the planning and leadership challenges faced by
the ETL team; then we descended into the specific tasks that these people
face. In many cases, much more detail is provided in the main text of the
book.



P1: KTX
WY046-10 WY046-Kimball-v4.cls August 18, 2004 14:32

418



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH
WY046-11 WY046-Kimball-v4.cls August 18, 2004 14:43

P A R T

IV

Real Time Streaming
ETL Systems

419



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH
WY046-11 WY046-Kimball-v4.cls August 18, 2004 14:43

420



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH
WY046-11 WY046-Kimball-v4.cls August 18, 2004 14:43

C H A P T E R

11

Real-Time ETL Systems

Building a real-time data warehouse ETL solution demands classifying
some often slippery business objectives, understanding a diverse set of
technologies, having an awareness of some pragmatic approaches that have
been successfully employed by others, and developing engineering flexibil-
ity and creativity. This field remains young, with new technologies, emer-
gent methodologies, and new vocabularies. Clearly, this situation can be a
recipe for trouble, but real-time data warehousing also offers early adopters
great potential to gain a competitive advantage—an intriguing risk versus
reward trade-off. This chapter proposes a four-step process to guide the
experienced data warehousing professional through the selection of an ap-
propriate real-time ETL technical architecture and methodology:

1. This chapter examines the historical and business contexts of the
state of the art real-time data warehouse—providing some How did
we get here? and Where are we going? background.

2. Next, it describes a method for classifying your organization’s
real-time requirements in a manner that is most useful for selecting
design solutions later.

3. The heart of the chapter is an appraisal of several mechanisms for
delivering real-time reporting and integration services, the
technologies most appropriate for each approach, and their strengths
and weaknesses.

4. And finally, a decision matrix is presented; it uses the requirements
classifications and approaches previously described, and it guides

421
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the ETL team through the selection of a technical approach and
methodology.

It must be stated that this material falls short of a recipe for building a
real-time ETL solution; as of this writing, such recipes do not exist. As this new
technology becomes more popular, you are bound to come up against
requirements for which solutions have not yet been perfected. Apply your creativity
and the know-how you have gleaned from personal experience in fashioning a
solution most appropriate for the specific challenges you face. By doing this, you
are doing your part to help advance the progress of real-time data warehousing.

P R O C E S S C H E C K

Planning & Design: This chapter touches every aspect of the ETL system
planning and design. We intend this chapter to be read as an increment to all
the ideas developed in Chapters 1 through 10.

Data Flow: Parts or all of the techniques in this chapter can be added to an
existing ETL system framework. But as we emphasize, the conversion from
batch-oriented ETL to streaming ETL is a profound end-to-end change.

Why Real-Time ETL?

Not very long ago, engineers vehemently defended the notion that the data
warehouse needed to provide an unwavering set of data to business de-
cision makers, providing a reliable information floor upon which to stand.
For up-to-the-moment reporting against a twinkling database, business users
were directed to the production applications that run the business. There-
fore, users had to go to the data warehouse for a historical picture of what
happened in the business as of yesterday and had to look across many OLTP
systems for a picture of what was happening today. Business users never
fully accepted this divide. Why could they not go to one place to get the
business information that they needed?

Well, much has changed, and the data warehouse has now become a vic-
tim of its own success. Although the delay between a business transaction
and its appearance in the data warehouse is typically less than 24 hours,
for many organizations in fast-moving vertical industries, this delay is too
much. The data warehouse has become mission critical, too, feeding en-
riched information back to operational systems that is then used to process
transactions, personalize offers, and present up-sell promotions. The push
for ever-fresher information is on.

Several other important factors have conspired to force data warehouse
practitioners to rethink some earlier positions:
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Customer relationship management (CRM). Modern CRM demands
a contemporary, consistent, and complete image of the customer
available to all operational systems that directly or indirectly serve
the customer—quite a tall order. Despite the marketing claims of
leading packaged CRM vendors, this capability cannot be purchased
off the shelf; unless all customer-facing systems are retired by the
packaged CRM suite, businesses also need to integrate real-time
customer information across all of their legacy transactional
stovepipe applications. Data warehouses, of course, absolutely need
constant customer information streams from operations, but
increasingly, operational systems rely on data warehouse enrichment
of customer information, too. Therefore, it is predictable that
organizations have begun to explore architectural alternatives that
can support more generalized integration scenarios—moving
operational data between applications and simultaneously into and
out of the warehouse—with ever-increasing urgency.

The zero-latency enterprise business ideal. This ideal exhorts the
benefits of speed and a single version of the truth. In a real-time,
zero-latency enterprise, information is delivered to the right place at
the right time for maximum business value. Some people call these
right-time systems. Just-in-time inventory and supply chains and
assemble-to-order/mass customization business models also amplify
the need for absolutely current and pervasive information
throughout the organization. At present, true zero latency is an
unattainable ideal—it takes some time to synchronize information
across several production systems and data marts—but the pressure
on many modern data warehouses to provide a low-latency view of
the health of the business is very real.

Globalization and the Web. Finally, and perhaps most
pragmatically, the combined effects of globalization and the Web,
which demand round-the-clock operations and access to the data
warehouse, in concert with requirements to warehouse ever-broader
and deeper sets of data, have severely compressed the time window
available to load the data warehouse. The amount of data needing to
be warehoused continues to expand, while the window of business
downtime continues to shrink, challenging the already overworked
and under-loved data warehouse’s ETL team. Wouldn’t it be easier if
you could somehow trickle feed your data warehouses throughout the
day, rather than trying to shoehorn expanding data loads into
shrinking windows of acceptable downtime?

These factors have conspired to drive the data warehouse to an increas-
ingly real-time posture.
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Defining Real-Time ETL

Real-time ETL is a misnomer for a category of data warehousing services
that is neither true real-time nor, in many cases, ETL. Instead, the term
refers to software that moves data asynchronously into a data warehouse
with some urgency—within minutes of the execution of the business trans-
action. In many cases, delivering real-time data warehousing demands an
approach quite different from the ETL methods used in batch-oriented data
warehousing. Simply running conventional ETL batches on an ever-more
frequent schedule throughout the day might not be practical, either to the
OLTP systems or to the data warehouse. Conversely, including the data
warehouse in the OLTP system’s transaction commit logic cannot work ei-
ther. The OLTP system does not have the luxury of waiting for the data
warehouse loading transaction to commit before it proceeds with its next
transaction, nor is any locking or two-phase commit logic practical across
systems with different structures and different levels of granularity. In-
stead, you aspire simply to move the new transactions into a special real-
time partition (defined later in this chapter) of the data warehouse within
some timeframe acceptable to the business, providing analytic support for
day-to-day operational decisions. For the time being, this procedure is our
practical definition of real-time ETL.

This chapter explores some pragmatic approaches to achieving these
objectives, using mainstream toolsets familiar to data warehousing engineers.
However, real-time data warehousing is a young field, rife with all manner of
software-vendor claims and higher risk. The approaches to real-time ETL explored
in this chapter attempt to minimize risk through managed expectations and
emphasis on mature approaches and execution strategies rather than
groundbreaking tool selection. This chapter presents approaches that address the
objective of achieving a few minutes latency between business transactions and
their availability in the data warehouse.

Challenges and Opportunities of
Real-Time Data Warehousing

Real-time data warehousing presents a number of unique challenges and
opportunities to the ETL engineer. From a technical architecture perspec-
tive, it has the potential to change the big-bang approach needed during the
nightly batch ETL load windows to a continuous ETL-like flow through-
out the day. System-availability requirements may escalate as the business
comes to rely on low-latency availability of business transactions in the
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data warehouse. If the organization opts for the real-time dimension man-
ager approaches described in this chapter, availability becomes a strategic
advantage.

From a data architecture perspective, real-time data warehousing chal-
lenges the posture of the data warehouse as system of discrete periodic
measurements—a provider of business snapshots—advocating instead a
system of more comprehensive and continuous temporal information. This
shift happens subtly if, for example, the frequency of fact loading increases
from once per day to every 15 minutes, but more dramatically if the loading
of facts and dimension records occurs continuously. The data warehouse
might then capture a record of the business transactions and their dimen-
sional context at all points in time. Slowly changing dimensions become
rapidly changing dimensions, and the data warehouse’s bearing becomes
more operational in nature. In fact, should the real-time data warehouse
also support real-time dimension conforming and synchronization, it then
evolves into a logical extension of the operational systems themselves.

Real-Time Data Warehousing Review

The real-time approach to data warehousing can trace a clear lineage to what
was originally called the ODS. The motivations of the original ODSs were
similar to modern real-time data warehouses, but the implementation of
real-time data warehouses reflects a new generation of hardware, software,
and techniques. The following sections develop these ideas in more detail.

Generation 1—The Operational Data Store
The operational data store, or ODS, is a first-generation data warehousing
construct intended to support lower-latency reporting through creation of
a distinct architectural construct and application separate from the data
warehouse. The ODS is half operational and half decision-support system,
attempting to strike a balance between the need to simultaneously support
frequent updates and frequent queries. Early ODS architectures depicted
it as a place where data was integrated and fed to a downstream data
warehouse, thus acting as a kind of extension to the data warehouse ETL
layer. Later architectures depict it as a consumer of integrated data from
the data warehouse ETL layer and categorize it as a Type 1 through 4 and
internal or external ODS, depending on where within the overall architecture
it resides and the urgency with which it must load data from the operational
world.

In practice, the ODS has become a catch-all architectural component
for data staging, data cleansing, and preparation, as well as operational
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reporting. By virtue of all these different roles, it is a compromise solution
to each of these challenges. A simpler and less compromising alternative
exists.

Generation 2—The Real-Time Partition
The use of the real-time logical and physical partition, as originally de-
scribed by Ralph Kimball, is a pragmatic solution available for delivering
real-time analytics from a data warehouse. Using this approach, a separate
real-time fact table is created whose grain and dimensionality matches that
of the corresponding fact table in the static (nightly loaded) data warehouse.
This real-time fact table contains only the current day’s facts (those not yet
loaded into the static data warehouse table).

Figure 11.1 shows two star schemas associated with a real-time and static
retail point-of-sale fact tables, sharing a common set of dimensions.

Each night, the contents of the real-time partition table are written to the
static fact table, and the real-time partition is then purged, ready to receive
the next day’s transactions. Figure 11.2 gives an idea of how the process

Static Star Schema

Realtime Star Schema

POS Retail Sales Transaction Fact

POS Retail Sales Realtime Transaction Fact

Date Dimension Store Dimension Product Dimension Promotion Dimension

Figure 11.1 The relationship between the static and real-time star schemas.
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Logical Data Warehouse

Near Real Time

Near Real Time

Real-Time
Partition A

Real-Time
Partition B

Data
Mart A

Data
Mart B

Batch

Batch

Figure 11.2 The logical relationship of the real-time partition to its data mart.

works. In essence, this approach brings the real-time reporting benefits of
the ODS into the data warehouse itself, eliminating much ODS architectural
overhead in the process.

Facts are trickled in to the real-time fact table(s) throughout the day, and
user queries against the real-time table are neither halted nor interrupted
by this loading process. Indexing on the real-time fact table is minimal, or
nonexistent, to minimize the data-loading effort and its impact on query
response times. Performance is achieved by restricting the amount of data
in the table (one day only) and by caching the entire real-time fact table in
memory. Optionally, a view can be created that combines (Unions) facts in
both the real-time and static fact table, providing a virtual star schema to
simplify queries that demand views of historical measures that extend to
the moment.
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If fact records alone are trickle-fed to the real-time partition, some pol-
icy is needed to deal with changes to dimensions that occur between the
nightly bulk loads. For example, new customer records created during the
day for which you have facts might need to be defaulted to a series of
generic new customer records in the customer dimension to be updated into
more descriptive customer records in the evening, when a complete batch
load of new and changed customers is loaded into the static customer di-
mension. Alternatively, the real-time data warehouse can opt to maintain
more frequent snapshots of changing dimensional images or to abandon
the point-in-time concept altogether and instead capture all dimensional
changes that occur.

Later, this chapter describes some of the issues associated with selecting
an appropriate policy for dealing with dimensional changes, some prag-
matic approaches to trickling data into real-time partition(s) throughout
the business day, and the pros and cons of these approaches.

Recent CRM Trends
CRM demands a complete understanding of the organization’s history with
each customer across all customer touch points and insight into the chal-
lenges and priorities that the customer faces in their markets. In the past
few years, packaged CRM systems have been widely adopted by businesses
to support the first of these goals, unifying the simplest and most common
customer touch points of the organization. However, while these systems
represent an important advance for organizations that had fragmented cus-
tomer support systems (or no systems support at all), they are not compre-
hensive. Often, there are older and more specialized systems that support
customer interactions that fall outside of the packaged CRM system. These
transactions never find their way back to the packaged CRM system. Also,
packaged CRM systems typically fall short of equipping the organization
with the customer knowledge it needs to be perceived as an intelligent col-
laborator and partner by its customers because they lack any mechanism
for collecting, harvesting, and synchronizing customer and marketplace
intelligence across the enterprise. The further splintering of the packaged
CRM marketplace into Operational CRM versus Analytic CRM amplifies
this divide. Businesses don’t have operational or analytic customers; the same
patron must be intelligently served by both operational and decision sup-
port systems, working together.

What is needed is a way to bring together with great urgency all of the
data about the organization’s past and present interactions with the cus-
tomer, combined with external marketplace information, some mechanism
to convert data into customer intelligence, and a means to share this with
everyone in the organization. Bringing such things together represents a
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melding of data warehouse technologies and application integration tech-
nologies.

CRM vendors are keenly aware of the challenges facing organizations, so some
are bolting on Business Intelligence capabilities to their operational CRM suites.
Too often, the result is rudimentary, simplistic, and difficult to architecturally
defend, ultimately failing to provide a differentiating competitive capability.

Generation 2 CRM as we define it in this chapter is not an application
that can be purchased and installed; rather, it demands a comprehensive
data warehouse of all customer touch points, intelligently selected and uti-
lized marketplace data, a continuous harvesting of customer intelligence
from the data warehouse, and a mechanism for sharing and continuously
synchronizing customer information across the enterprise. The task of pro-
viding such capabilities seems to be landing right in the backyard of the
contemporary ETL architect.

The Strategic Role of the Dimension Manager
The glue that binds logically and/or physically separate subject areas (data
marts) together in the dimensional data warehouse bus architecture is con-
formance of dimensions and facts, achieved through the use of dimension
manager systems as described in this chapter. Traditionally, the dimension
manager has been viewed as a role whose job is the definition, maintenance,
and publication of a particular conformed dimension to all data marts that
interoperate within the data warehouse bus architecture.

Ultimately, the real-time data warehouse plays a role in the larger ob-
jective of providing ready access to the most current and insightful data
to all users throughout the enterprise. In addition, to quickly deliver fact
records to the data warehouse, tremendous competitive advantage might
be found in providing real-time synchronization of key dimensions such as
customer or product across all operational systems in the organization. This
information-synchronization function can be considered a logical extension
of the dimension manager role and is an effective and consistent mecha-
nism for closing the loop between the operational world and that of the
data warehouse by providing a means of distribution of data warehouse-
derived segmentations and other enrichment information to the operational
world.

The customer dimension manager in a strategic real-time data warehouse
might not only trickle-feed all data marts with new conformed customer
information, but might also cooperate with some mechanism for synchro-
nizing customer information across all interested (subscribing) operational
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systems. This real-time customer information should include customer in-
telligence generated by the data warehouse itself.

Clearly, these are ambitious objectives, and as of this writing, no pack-
aged solutions or end-to-end toolsets dramatically simplify the process of
building a bidirectional enterprise application integration (EAI)/real-time
data warehouse solution. Nonetheless, such systems have been created;
the basic building blocks for these systems exist and are getting more ma-
ture. The potential for business differentiation provided by such a system
is striking, so it is likely that today’s early adopters will enjoy marketplace
advantages that drive more widespread adoption of such systems in the fu-
ture. Consider building systems today that, at a minimum, do not impede
the organization’s ability to evolve to a real-time EAI/data warehousing
solution in the future. Organizations under competitive pressures or seek-
ing marketplace differentiation through customer intimacy might need to
take the leap now.

Categorizing the Requirement

Clearly, this topic offers a lot to consider from an architectural perspective.
Given the rather complex set of strengths and weaknesses associated with
the mainstream alternatives for real-time data warehousing, it is important
to nail down the scope of your real-time requirements.

Presented in the sections that follow are some litmus test questions that,
once answered, help you categorize the set of real-time capabilities needed
by your organization and select mainstream methodologies and toolsets
appropriate for the task at hand. A matrix appears near the end of the chap-
ter that summarizes this discussion and guides the ETL team in approach
and architecture selection.

Data Freshness and Historical Needs
The developmental costs and complexity for reducing latency between
OLTP and the data warehouse obey the law of diminishing returns, lower-
ing latency increases complexity and cost in a nonlinear fashion. Therefore,
you need to set realistic goals and expectations about the freshness of the
data needed in the warehouse.

You also need a complete understanding of the set of hard business re-
quirements that cannot be met either through conventional daily data ware-
house publication or transactional reports from OLTP systems. Watch for
the following red flags as you consider the needs of your would-be real-time
data warehouse:
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Less than five minutes of latency. Reports with latency this low, as
of this writing, cannot be reliably met through mainstream real-time
data warehousing. This window of time shrinks continuously, but it
always takes some nontrivial amount of processing and time to
move, transform, and load information from the OLTP systems to the
real-time partition. Organizations that absolutely must have
information more than five-minutes fresh should consider running
their reports directly against the operational system(s).

Enterprise Information Integration (EII) applications do not suffer this
latency limitation and can deliver nearly up-to-the-second reports directly
from the operational systems. However, they have other characteristics and
limitations that must be considered. EII systems and these limitations are
discussed later in this chapter.

Single data source requirements demanding little or no history.
These reports require none of the integrated and historical data
features provided by the data warehouse and are best addressed
through the operational system itself. Happily, they should present a
very small reporting footprint on the OLTP systems and should not
degrade transactional performance significantly. If Web-enabled,
these reports can be presented through the business intelligence
portal, and they then feel to the user community as if they are
data-warehouse based.

Reports with an entirely different audience from that of the
existing data warehouse. These reports might demand new
reporting vocabularies and mechanisms for dissemination, factors
that can overly complicate an already complex real-time data
warehousing development effort. While not an automatic
project-killer, the real-time architect should be aware that business
vocabularies and metrics employed by shipping versus marketing
management, for example, are likely to be quite different and deeply
rooted.

No real need for ad-hoc analysis. If there is little demand for ad-hoc
analysis of the low-latency part of data, you may be able to avoid a
full-blown streaming ETL system redesign. Perhaps you can simply
append a flash report of most-recent data from the transaction system
to a conventional data warehouse report created with data up
through yesterday.

Organizations that have not yet successfully implemented a data
warehouse. Attempting a real-time data warehouse as an initial
business intelligence development effort, at least for now, is not
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recommended, simply because it demands mastery of too many
simultaneous disciplines. Thankfully, dimensional data warehousing
architectures and methods allow the organization to gracefully add
real-time reporting capabilities later.

A symptom of one of these red flags should be a report that requires data
fresher than last night but is tolerant of at least five minutes of latency. Such
a report may also demand continuity in terms of data history, reporting
vocabulary, and presentation with the existing non-real-time data ware-
house. These red flag reports are appropriate candidates for the real-time
data warehousing ETL approaches described.

The next sections discuss some basic requirements for real-time time re-
porting.

Reporting Only or Integration, Too?
Does the organization need a one-way solution for moving operational
data into the data warehouse for reporting purposes only, or are there also
requirements for closing the loop by moving conformed dimension data be-
tween operational applications themselves and/or the data warehouse?
For example, is a mechanism needed for moving data warehouse-derived
customer segmentations back into the operational systems? This question
is perhaps the most influential in selecting a real-time data-warehousing
approach.

Certainly, any strategic CRM initiative is likely to require a means of shar-
ing the timeliest and most complete customer information available, which
includes both operational customer data (information about recent sales
or complaints, for example) and data-warehouse or data mining-derived
customer marketing information such as customer segmentation, profiling,
and lifetime value. Is the request for real-time reporting a first step in the
journey of closing the loop between the operational and decision support
systems of the organization (true CRM)?

Just the Facts or Dimension Changes, Too?
Business people and dimensional data warehouse architects describe the
world in terms of facts and dimensions, but OLTP systems do not make
such crisp distinctions. Nonetheless, as an engineer, you must understand
and categorize the OLTP business transactions of interest to your end users
and design appropriately.

Are the real-time report requirements focused exclusively on fresh facts,
such as recent orders placed, recent telephone calls routed, recent stock
trades executed, recent sales calls made, and so on, or are they also concerned
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with fresh dimension transactions, such as customer or product record up-
dates? If real-time dimensional changes are needed for reporting, are they
slowly or rapidly changing? In other words, does the user community need
an accurate image of these dimensions as they were at the point in time
of the transaction, or can all or some dimensional updates be destructively
overwritten when new updates occur? Do reports need to be repeatable?
Type 1 slowly changing dimensions, in which the changes to a dimension’s
attributes destructively overwrite the prior values, result in a data ware-
house that continuously recasts history, reporting events not as they look at
the time of the transaction but as they look in the context of today’s dimen-
sions. In this scenario, reports run against the same dimensional elements at
different points in time might have slightly or dramatically different results.
Type 1 changes are also dangerous because they can invalidate historical
aggregates if the Type change is applied to a field used as the basis of an
aggregate calculation.

Type 2 and 3 slowly changing dimensions maintain a more granular
picture of the dimension images at certain points in time, perhaps daily,
but they still do not capture the changes to dimensions that occur between
extractions. Real-time dimensional refresh can drive this granularity up to
every few minutes or can capture all dimension changes.

The architectural implications are not subtle. By adopting a policy of
capturing increasingly frequent dimensional change images, the data ware-
house moves away from its earlier posture as a system of periodic measure-
ment (snapshots) and toward a zero-latency decision-support ideal. As data
warehousing and application integration technologies begin to commingle,
the data warehouse becomes, in effect, a true logical extension of the op-
erational systems that run the enterprise. For the time being, as a practical
matter, ETL systems probably need to be designed to provide as near zero
latency for measured facts as possible, but allow some or all dimensional
attributes to be updated in batches, or microbatches, as developed in this
chapter.

Alerts, Continuous Polling, or Nonevents?
Although usually the ETL system has a very well-defined boundary where
dimensionally prepared data is handed to the front room, in many cases a
real time system cannot have this boundary. The architecture of front-end
tools is affected at the same time. There are three data-delivery paradigms
that require an end-to-end perspective reaching all the way from the original
source to the end user’s screen:

Alerts. A data condition at the source forces an update to occur at the
user’s screen in real time.
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Continuous polling. The end user’s application continuously probes
the source data in order to update the screen in real-time.

Nonevent notification. The end user is notified if a specific event does
not occur within a certain time interval or as the result of a specific
condition.

In each of these cases, the real-time ETL system is connected all the way to
the end user’s application, either by sending a notification or by receiving
a direct request.

Data Integration or Application Integration?
Assuming that the real-time data warehouse requirement also entails some
measure of integration across operational systems, you need to categorize
your requirement as either data integration or application integration.

In general, integration that can be satisfied by simply moving data
between databases is called data integration. Often, these solutions are
point-to-point, executed through (for heterogeneous databases)
ASCII file extraction, triggers, database links, and gateways or for
homogeneous databases replication services or table snapshots. In
essence, data is shared across the back rooms of the participating
applications, bypassing application logic entirely. Some higher-end
data-integration tools provide centralized administration support for
the scheduling and movement of data, supporting a bit more
enterprise control and management for point-to-point
data-integration chores.

Application integration (sometimes also called functional integration)
can be described as building new business solutions by gluing
applications together through the use of some common middleware.
Middleware is a class of software that is application independent,
providing a means to capture, route, and execute transactional
messages between applications. In general, connectors or adapters
are used to connect the participating applications to the integration
network, and brokers are used to route messages according to
publication and subscription rules.

Point-to-Point versus Hub-and-Spoke
If your near real-time data warehouse is also supporting some degree of
application (or functional) integration, an important factor in selecting an
architecture is the number of publishing and subscribing systems that you
anticipate supporting in the foreseeable (for example, 24 month) future. This
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Application C Application D

Point-to-Point

Figure 11.3 Point-to-point application integration.

number can help you decide if a relatively simple point-to-point solution
will suffice or if a more robust hub-and-spoke architecture will be required.

Figure 11.3 shows that, even with a relatively small number of applica-
tions exchanging data, point-to-point solutions can demand a very large
number of data-exchange interfaces, each of which requires maintenance
whenever its source or target applications change.

Adding applications to the integration network also demands new data-
exchange interfaces to all publishing and subscribing applications. Nonethe-
less, organizations that have a short, crisp list of applications demanding
conformed dimension integration and that expect this list to remain stable
for the foreseeable future might find a point-to-point integration approach
quite attractive. It avoids the complexity of creating EAI middleware com-
ponents and can be partially supported through the use of data-integration
technologies such as Capture, Transform, and Flow (CTF) tools described
later in the chapter.

In contrast to point-to-point architectures, the number of customer inter-
faces and cross-system dependencies can be minimized through the use of
a hub-and-spoke integration approach (see Figure 11.4).
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Hub-and-Spoke

Application A Application BAdapter A Adapter B

Application C Application DAdapter C Adapter D

Broker

Figure 11.4 Hub and spoke application integration.

However, the additional burden of building EAI middleware adapters
and broker components is not trivial. Each application that participates
in the integration network needs an adapter capable of converting speci-
fied transactions into generic messages and of interpreting and executing
generic messages on the local application. Adapter maintenance is required
whenever an associated host application changes or if the set of generic
messages changes.

Hard-and-fast rules on the decision boundary between point-to-point or
hub-and-spoke architectures do not exist, but organizations anticipating in-
tegration across three or more applications or those that expect a growing
number of integration-network participants in the foreseeable future can
strongly consider hub-and-spoke EAI architectures. This admittedly elas-
tic boundary can also be shaped by the organization’s comfort with and
commitment to EAI messaging technologies.

Customer Data Cleanup Considerations
If the organization needs real-time cleanup and synchronization of cus-
tomer data, you need to consider some additional factors in selecting an
approach. Does the organization have in place some centralized means of
generating new customer keys, one that ensures that no redundant cus-
tomer records are created? Such systems are quite rare, and it often falls
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upon the data warehouse customer dimension manager to provide this
service for the enterprise.

Assuming that such a system is not in place, it may be appropriate for the
real-time customer dimension manager to assume responsibility for match-
ing (deduplicating) customer records. A number of deterministic and proba-
bilistic matching tools available today can help support these requirements,
but unfortunately, many of these tools currently run in batch mode only.
Customer cleanup utilities that support postal address verification, propen-
sity for fraud segmentation, credit worthiness, or householding might also
demand batch processing. It is still possible to approximate real-time per-
formance, however, by building an architecture for moving frequent mi-
crobatches, described later in the chapter, into and out of these utilities
throughout the day.

Real-Time ETL Approaches

Through some creative recycling of established ETL technologies and tools,
a mature and broad palette of technologies is available to address real-
time data warehousing requirements. The sections that follow discuss these
technologies.

Microbatch ETL
Conventional ETL, the file-based approach described throughout this book,
is extremely effective in addressing daily, weekly, and monthly batch-
reporting requirements. New or changed transactions (fact records) are
moved en masse, and dimensions are captured as point-in-time snapshots
for each load. Thus, changes to dimensions that occur between batch pro-
cesses are not available in the warehouse. ETL, therefore, is not a suitable
technique for data or application integration for organizations needing low-
latency reporting or for organizations that need more detailed dimensional
change capture. But conventional ETL is a simple, direct, and tried-and-true
method for organizations that have more casual latency requirements and
complex integration challenges. Figure 11.5 shows the conventional ETL
process.

Microbatch ETL is very similar to conventional ETL, except that the fre-
quency of batches is increased, perhaps to as frequently as hourly. These
frequent microbatches are run through an otherwise conventional ETL pro-
cess and directly feed the real-time partitions of the data marts. Once each
day, the real-time partitions are copied to the static data marts and are emp-
tied. Figure 11.6 shows a diagram of micro-batch ETL.
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Figure 11.5 Conventional ETL diagram.
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Figure 11.6 Microbatch ETL diagram.
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The dimension manager systems generate new dimensional images in
Type 2 or 3 slowly changing dimensions, but due to the increased run fre-
quency, dimensions that change throughout the day may become rapidly
changing and grow deep. An inelegant alternative is to ignore changes
to dimensions that occur during the day and instead generate dimension
records only for new instances, using default values in all columns. This
compromise might suffice for organizations that generate few new records
on a given day and are tolerant of dimensional context latency from the
previous evening, but it clearly dilutes some of the benefits of real-time re-
porting. If unavoidable, the only practical solution for dealing with rapidly
changing dimensions is the judicious use of a minidimension, where you
create separate dimensions for the most frequently changing attributes of
a large dimension and thereby reduce the number of new dimensional in-
stances needing to be created by the ETL process.

An interesting hybrid alternative is to treat intra-day changes to a dimension
as a kind of Type 1, where a special copy of the dimension is associated with the
real-time partition exclusively. Changes during the day trigger simple overwrites.
At the end of the day, any such changes can be treated as Type 2 as far as the copy
of the dimension in the static portion of the data warehouse is concerned. That
way, for instance, a credit-worthiness indicator could be set immediately for a
customer in the real-time data warehouse.

Microbatch ETL demands a comprehensive job control, scheduling, de-
pendency, and error-mitigation method, one robust enough to run unat-
tended for most of the time and capable of executing data warehouse publi-
cation strategies in the face of most common data-loading issues. A number
of job-control utilities support this functionality, but custom development
work is likely to be needed to make the microbatch ETL data warehouse
resemble a lights out automated operation.

Microbatch ETL also demands more frequent detection of new and up-
dated transactional records on the OLTP systems, so the load imposed on
the operational system must be considered and carefully managed.

Several methods exist for identifying changed record candidates for mi-
crobatch ETL load into the real-time data warehouse:

Timestamps. Tried and true, timestamps maintained by the
operational system for the creation and update of records can be
used by real-time microbatch ETL to differentiate candidate data for
extraction. While simple, this method does impose frequent writes of
these timestamps on the operational systems for all changes and
frequent reads whenever the ETL processes run. Indexing the
timestamps improves read performance and reduces read overhead
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but increases the operational overhead on INSERTs and UPDATEs,
sometimes prohibitively so. The ETL engineer must balance these
concerns.

ETL log tables. Another approach is to create triggers in the OLTP
environment to insert the unique legacy identifiers of new and
changed records into a series of special ETL log tables. These
specialized tables exist solely to speed ETL processing and are used
by the microbatch ETL process to determine which rows have
changed since the previous microbatch. The ETL log tables contain
the unique identifier of the new or changed dimensional record and
perhaps a status value, a timestamp, and a run identifier of the
microbatch ETL process that ultimately processes the changed
record. The microbatch ETL process joins the ETL log tables to the
operational tables where the ETL run identifier is null, extracts the
resultant rows, and then deletes (or populates the run identifier of)
the ETL Log records extracted. The overhead on the operational
system is reduced using this method, because trigger-driven
INSERTs do not unduly exercise the OLTP system.

Database management system (DBMS) log scrapers. The DBMS
audit log files, created as a byproduct of backup and recovery
utilities, can sometimes be utilized to identify new and changed
transactions by using specialized utilities called log scrapers. Some of
these log-scraping utilities can selectively extract and recreate the
SQL statements applied to the database tables of interest since some
specified point in time, allowing the ETL to know not just which
records have changed since the last extraction, but what elements
have changed on these records as well, information that can be
utilized by the ETL process in directly applying changes to the target
tables in the staging area.

Network sniffers. These utilities monitor some set of interesting
traffic on a network and filter and record the traffic that they see.
Network sniffers are often used for capturing Web Clickstream traffic
because they eliminate the need to stitch together the Web logs from
multiple servers in a Web farm, provide sessionizing of Web visits,
and improve visibility into the actual Web content delivered from
dynamic Web pages. Network sniffers are an ETL alternative
wherever there is a stream of traffic requiring data-warehousing
analysis, including telecommunication calls routing, manufacturing
floor workflow, or EAI messaging traffic.

Microbatch ETL is an excellent choice for data warehouse requirements
tolerant of hourly latency without intra-hour dimensional updates and that
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do not demand bi-directional synchronization of dimensional data between
the data warehouse and the operational systems. It is by far the simplest
approach for delivering near real-time data warehousing reporting.

Enterprise Application Integration
At the high end of the complexity spectrum lies enterprise application in-
tegration (EAI), sometimes called functional integration. EAI describes the
set of technologies that support true application integration, allowing indi-
vidual operational systems to interoperate in new and potentially different
ways than they were originally designed.

EAI typically entails building a set of adapter and broker components
that move business transactions, in the form of messages, across the various
systems in the integration network, insulating all systems from knowledge
or dependencies on other systems in the integration network. Application-
specific adapters are responsible for dealing with all of the logic needed to
create and execute messages, and brokers are responsible for routing the
messages appropriately, based on publication and subscription rules.

Adapters and brokers communicate via application-independent mes-
sages, often rendered in XML. When a significant application event occurs
such as the update of a customer record, a trigger is fired, and the appli-
cation’s adapter creates a new message. The adapter is also responsible for
initiating transactions in its respective application when it receives a mes-
sage containing information that it has chosen to receive, such as a newly
conformed customer record from the customer dimension manager system.
Brokers route messages between adapters, based on a set of publication and
subscription rules. Messaging queues are often placed between applications
and their adapters, and between adapters and brokers, to provide a staging
area for asynchronous messaging and to support delivery guarantees and
transaction consistency across the integration network.

In the Figure 11.7, applications A and B operate independently but are
able to exchange data and interoperate through EAI messages.

For example, changes to a customer record on application A might fire
a trigger detected by application A’s adapter, which creates and sends an
XML message of the change to a broker. If application B has subscribed
to customer-change messages from application A, the broker forwards the
message to application B’s adapter, which can then apply all or a subset of
the customer record change to application B.

Applications A and B do not need to know anything about one another;
their respective adapters are responsible for capturing, interpreting, and
applying messages for their application. This concept is a powerful one
because it allows EAI networks to extend elegantly; introduction of new
applications into the integration network requires only the creation of a
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Conventional EAI Diagram
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Figure 11.7 Conventional EAI diagram.

new adapter and new publication/subscription rules to the broker(s). When
we say only, we do not imply that the creation of hardened industrial-
strength adapters is trivial; quite the opposite is true. Each adapter must be
capable of executing potentially complex transactions on its host system and
gracefully handling the many concurrency issues that can appear whenever
independent applications operate on common logical data. Regardless of
the integration approach, certain issues must be dealt with somewhere in the
architecture, and EAI adapters do so at the optimal position, as close to the
application as is possible.

EAI technologies can be powerful enabling tools for the real-time data
warehouse because they support the ability to synchronize important data
like customer information across applications, and they provide an effective
means for distributing data-warehouse-derived information assets, such as
new customer segmentation values, across the enterprise.

The real-time EAI data warehouse architecture modularizes the mono-
lithic ETL block by pulling the dimension manager system(s) out as separate
architectural components, each with its own adapters, and placing respon-
sibility for most of the transformation and loading chores of the data mart
real-time partitions on the data mart adapters. Figure 11.8 is a diagram of a
real-time EAI data warehouse.

A typical real scenario might involve implementing adapters for a set of
OLTP systems such as enterprise resource planning, ERP, and sales-force
automation, customer and product dimension manager systems (which
perform real-time cleansing and deduplication), and data marts for orders
and sales calls.

Any customer or product-change transaction would be captured from
the OLTP application by an adapter, sent as a nonconformed dimension
message to the broker, which then routes it to whichever systems subscribe
to nonconformed dimension messages, typically only the appropriate di-
mension manager system. The dimension manager system conforms the
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Figure 11.8 Real-time data warehouse EAI diagram.

dimensional record, and its adapter then sends it back as a conformed di-
mension message to the broker, which then forwards it to all systems that
subscribe to conformed dimension data, typically the OLTP systems and
data marts.

Consider this example. The ERP system updates a customer record; then
the ERP adapter detects this change, generates an XML message labeled
Non-Conformed Customer Transaction from ERP, and sends it to the broker.
The broker forwards this message to the customer dimension manager, typ-
ically the only system that subscribes to nonconformed customer messages
from system ERP. The customer dimension manager receives the message
and places the nonconformed customer information in the work queue
(or staging area, if micro-batch) of the customer dimension manager. The
customer dimension manager works the transaction, and if it results in a
change to one or more conformed customer records, the customer dimen-
sion manager adapter detects that these changes have occurred, packages
these revised customer records into Conformed Customer Transactions from the
Customer Dimension Manager messages, and sends them to the broker. As-
suming that the orders data mart, sales-call data mart, ERP, and SFA systems
have all subscribed to Conformed Customer Transactions from the Customer Di-
mension Manager messages, the broker copies and distributes the message
to all four of these systems. Each of the four adapters is then responsible for
applying the changes to the customer record to their respective applications.
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The acceptance of the conformed customer record by the ERP and SFA
systems might cause a change to their respective customer records, thereby
triggering a new set of EAI transactions.

N O T E Endless loops, or race conditions , must be avoided by devising a selective
publication strategy at the edges of the integration network, either at the OLTP
systems or the dimension manager systems.

Fact transactions are also captured by the OLTP adapters, sent to the bro-
ker as an Order or Sales Call fact message, and then routed to all subscribers
of these types of messages, typically data marts. The data mart adapter per-
forms all transformations needed and inserts the new transaction directly
into the data mart real-time partition.

EAI is a powerful means of synchronizing key business information,
both for trickle-feeding data marts and for publishing and distributing data
warehouse-derived segmentations to customer-facing OLTP systems. But
it can be complex and expensive to implement.

EAI is an excellent approach for organizations whose requirements de-
mand low-reporting latency, who are intolerant of loss of intra-day dimen-
sional updates, or who require bidirectional synchronization of dimension
data between the data warehouse and/or the operational systems.

Using EAI mechanisms for shoveling high-volume transaction data into the
data warehouse may be inefficient if every transaction is separately packaged as
an EAI message with significant communications overhead. Before commiting to
this design approach, make sure you are anticipating the full volume of message
traffic. Also, investigate whether your EAI broker interfaces allow for compact
representations of transactional data.

Capture, Transform, and Flow
Capture, Transform, and Flow (CTF) is a relatively new category of data-
integration tools designed to simplify the movement of real-time data across
heterogeneous database technologies. The application layer of the trans-
actional applications is bypassed. Instead, direct database-to-database ex-
changes are executed. Transactions, both new facts and dimension changes,
can be moved directly from the operational systems to the data warehouse
staging tables with low latency, typically a few seconds.

The transformation functionality of CTF tools is typically basic in com-
parison with today’s mature ETL tools, so often real-time data warehouse
CTF solutions involve moving data from the operational environment,
lightly transforming it using the CTF tool, and then staging it. These
light transformation tasks might include standardization of date formats,
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recasting data types, truncating or expanding field lengths, or applying
application-specific code translations into descriptions. Once data is staged,
additional transformations beyond the capabilities of the CTF tool are then
applied as needed. This subsequent transformation can be invoked either
by microbatch ETL or via triggers that fire on INSERT in the staging area.
In either transformation scenario, records are then written directly into the
real-time partition tables of the data mart. These subsequent transforma-
tions might include tasks like data validation, dimensions-record cleansing
and matching, surrogate key lookups for dimensional records, and creation
of new slowly changing dimensional records as needed. Figure 11.9 dia-
grams CTF.

Some CTF tools can also simplify the batch movement of information
from the data warehouse back to the operational systems, such as periodic
refreshment of customer data. Because they bypass the application-logic
layer, utilizing these features places the burden on the CTF administra-
tor to ensure that the resultant updates do not corrupt operational system
transactions or cause transaction loss.

CTF is an excellent approach for organizations whose requirements de-
mand near real-time reporting with some light data-integration needs and
for organizations whose core applications enjoy common periods of low
activity that can allow minimally disruptive data synchronization to occur.
In situations like these, CTF can offer a compelling blend of the some of the
benefits of EAI, while avoiding much its complexity.

CTF Diagram
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More Complex
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Figure 11.9 CTF diagram.
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Enterprise Information Integration
Enterprise Information Integration (EII) is another relatively new category
of software, built specifically to assist organizations in quickly adding real-
time reporting capabilities to their business-intelligence systems. They are,
in a sense, a virtual real-time data warehouse, a logical view of the current
data in the OLTP systems, presented to the business user in a structure
appropriate for analysis, and delivered on the fly via inline ETL transfor-
mation.

With conventional ETL, you identify a set of source structures in your
OLTP world, a set of target structures in your data warehouse. Then on
some schedule, perhaps nightly, a trigger is pulled, and the ETL tool extracts
the data, transforms it, and loads it into data warehouse tables. EII operates
in a somewhat similar vein, except that instead of a data warehouse, the
target might be a report, spreadsheet, or OLE DB or XML object. The EII
trigger is pulled by the business analyst whenever he or she needs up-to-
the-second operational information. The EII system actually generates a
series of queries, typically via SQL, at the moment requested, applies all
specified transformations to the resultant data, and delivers the results to
the business user.

The capabilities that emerge are quite interesting: a zero-latency reporting
engine enhanced with the robust capabilities for data integration associated
with mature ETL tools. No history beyond the data available in the OLTP
environment is available in EII, so trending reports must still be met by the
data warehouse. Of course, the data warehouse itself can be defined as a
source of information to the EII system, so the integration of real-time data
from the operational world with the historic data from the data warehouse
is at least theoretically possible. EII transformational capabilities, while ro-
bust, are not without limits. Not all modern ETL and data-cleansing func-
tionality can be supported inline (for example, probabilistic matching), so
expectations must be reduced accordingly. Also, because extractions are
directly against the OLTP systems, the frequency and complexity of these
extractions must be managed in order to manage the size of the footprint
on the OLTP technical architecture.

An important strength of EII is its ETL pedigree. EII can be used as an
effective data warehouse prototyping device. Organizations that select ETL
and EII toolsets from the same vendor might find that successful EII sub-
ject areas that need to evolve into data warehouse subject areas that can
be jump-started by reusing the data-transformation rules developed in the
EII tool. EII can also act as a supportive real-time reporting component
within an overall data warehouse business intelligence system. Use of con-
formed dimensions and facts across the data warehouse and EII, as part of
the dimensional data warehouse bus architecture, allows these systems to
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interoperate effectively. Conforming dimensions and facts on the fly, how-
ever, is easier said than done. In this scenario, at a minimum, you must place
fact constraints on the EII queries to exclude facts that have already been
loaded into the data warehouse to avoid double-counting and exercise care
in presenting real-time facts associated with new dimension records that
have not yet been loaded into the data warehouse.

EII may be a very compelling approach for organizations whose require-
ments demand near-zero latency real-time reporting of integrated infor-
mation for a relatively small user base with little historical data. It may
also be valuable to organizations that believe that they need to evolve into
real-time data warehousing but are unsure of their strategic real-time busi-
ness requirements or whose business requirements are rapidly changing.
And finally, EII may be a compelling choice for organizations in the throes
of reorganization or acquisition and need real-time integrated operational
reporting as quickly as possible.

The Real-Time Dimension Manager
The real-time dimension manager system, as proposed in this book, used
primarily on customer information, converts incoming customer records,
which may be incomplete, inaccurate, or redundant, into conformed cus-
tomer records. Conformed does not mean perfect, but it should mean that
dimensional records are brought to the best condition that the organization
is capable of achieving. In practice, this means that all reasonable measures
have been taken to eliminate redundancy, remove untrustworthy data, com-
pile as complete an image as is possible, and assign surrogate data ware-
house keys. A general schematic of the real-time dimension manager is
presented in Figure 11.10.

The EAI broker is the same EAI middleware component depicted in the
other EAI diagrams, and it is responsible for routing messages between
adapters, in accordance with its publication and subscription metadata. In
the case of the real-time dimension manager, it routes messages associated
with nonconformed dimension changes from operational systems to the
dimension manager and routes the conformed dimension changes from
the dimension manager back to any subscribing operational systems or
data marts. The conformed customer messages that come from the real-time
dimension manager must also include the set of all legacy keys from the
OLTP systems that have been joined together by the conformance process.
These keys are then used by the OLTP system adapters in figuring out how
to apply the conformed customer message to their respective applications.
The resultant changes to the OLTP system can result in the creation of a
new record, the update of an existing record, or the merging of two or more
records that have been deemed redundant by the dimension manager. The
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Real-Time Dimension Authority Diagram 
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Dimension
Authority
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Figure 11.10 Real-time dimension manager diagram.

legacy keys are also used by the real-time data mart loading software to map
the legacy keys that appear on incoming fact records to data warehouse
surrogate keys.

This continuous exchange of dimensional images is the mechanism for
synchronization across all systems that participate in the integration net-
work. The net effect, though, transcends simple synchronization. From the
CEO’s perspective, the applications now appear to be working together.

Unless planned for, a kind of boomerang effect can develop between
systems that participate in the integration network. After a nonconformed
dimension record is processed by the dimension manager, the acceptance
of the conformed dimensional record by subscribing applications generates
messages of dimension change themselves. You must carefully manage this
rebound (boomerang) effect and dampen any race conditions, including in-
finite loops of dimension conformance messaging. The importance of firm
EAI architecture is critical to resolving these types of issues; you must es-
tablish sound policies governing message publications. Consider the fol-
lowing example policy: Integration network application participants, both
OLTP and the dimension manager, might choose to publish messages only
whenever they update an existing or create a new dimensional record. This
policy implies that the dimension manager, for example, does not publish
conformed messages for all incoming nonconformed messages, just those
that result in a change to one or more conformed dimension records. Simi-
larly, an OLTP system receiving a conformed dimension message publishes
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a new message only if the loading of this conformed image results in a
change to its dimension table.

The dimension manager adapter is the EAI middleware component that
interacts with the real-time dimension manager system by taking incoming
messages of nonconformed data, placing them in a queue for the dimen-
sion manager, and listening for publication events triggered by the dimen-
sion manager, which it then converts to XML messages and sends on to the
broker. The dimension manager adapter insulates the rest of the EAI ar-
chitecture from any awareness or dependency on the real-time dimension
manager system itself.

Referring to figure 11.10, the business of actually conforming dimensions
in real-time is typically modularized into the following subcomponents:

Cleaning. The cleaning component reads incoming nonconformed
data and discards dimensional instances that are corrupt or invalid
from the job stream. It ensures that required fields are present (which
may vary across different sources) and that the data values contained
in the attributes are valid—again, from the perspective of the
originating system.

Conforming. The conforming component accepts cleaned
information from the job stream and performs field-by-field
translations of the values from the set of valid values according to the
originating system to a conformed domain, a set of enterprise-wide
conformed values for each attribute of the dimension. In some cases,
the conformed value is arrived at deterministically, through lookup
tables that map all source system values to conformed values. In
other cases, the conformed value is arrived at probabilistically, by
deriving relationships using fuzzy statistical calculation. Specialized
tools for probabilistic standardization are often used to clean up
street addresses by putting them in a known format; correcting the
spelling of street, city, and state names; and correcting postal zip
codes. Some fuzzy tools also correct name misspellings and
standardize common names.

Matching. The Matching component accepts cleaned and conformed
data from the job stream and attempts to identify and eliminate
duplicate records. Again, specialized software tools are often
employed to support matching, using deterministic and probabilistic
matching techniques. Detailed descriptions of the workings of these
tools are beyond the scope of this chapter, but suffice to say that these
tools allow developers to define a number of matching scenarios and
matching algorithms. The matching engines score the likelihood of a
match for each pass and generate a combined score, which is a kind
of balanced scorecard for overall likelihood of a match. This final
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score is then compared to high (certain match) and low (certain no
match) thresholds that the dimension manager has defined, and
matching group keys are defined. Records that fall between the high
and low thresholds are marked for special treatment, typically
manual review. The definition of the matching passes and setting of
the matching thresholds is part science and part art and is shaped by
the organization’s tolerance for error, need for low latency, legal and
regulatory considerations, and staff available for manual review.
Undermatching (tending to err on the side of keeping similar but
nonidentical customer records as separate dimensional instances) is
generally regarded as more conservative and less intrusive than
overmatching and is the norm. Undoing an incorrect match in a
real-time EAI environment is not easily accomplished and often
means that customer transactions that have been incorrectly
consolidated by OLTP systems in response to a merge request from
the dimension manager need to be manually split apart and
retransmitted.

In a real-time environment, records requiring manual review are
typically defaulted to a nonmatch state, and the manual review can
then be performed later. For performance reasons, when dealing with
large dimensions such as the customer dimension of a retailer, you
must restrict the set of candidate records used for deduplication for
match performance to meet a reasonable real-time performance
obligation. Extracting candidates can speed these matching processes
significantly, but it sometimes fails to deliver many candidate records
that might have been found to match. Thus, real-time online
matching is often a bit of a compromise, and periodic rematching of
the entire dimension might be required. This monolithic rematching
process can create a large number of conformed dimension messages
and operational system updates, which you must managed carefully.

Specialized metadata is needed by the matching component to
describe matching pass logic, matching thresholds, and matching
override information for records that should never or always be
matched. Often, you must develop a specialized user interface to
support the manual matching processes and the maintenance of the
matching metadata, including pass logic, match thresholds, and
candidate extraction.

Survivorship. Once a set of records has been identified as matches
for one another, the best image of the dimension must be somehow
distilled from the matched records to create a complete and accurate
composite image. This distillation process is often referred to as
survivorship because it ensures that only the best sources of
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dimensional attributes are survived in the overall dimension
conformance process. The survivorship process utilizes business
rules that identify, on an attribute-by-attribute basis, the
source-system priorities to be applied in surviving the resultant
conformed dimension image. Non-null source attribute values are
survived into the final integrated dimension record based on a
hierarchy of source-system rules captured ideally in metadata. The
survivorship component should also support the ability to define
groups of attributes that survive from the same source record as a
block to avoid strange results when plucking, for example, address
line 1 and address line 2 attributes from different source records. The
survivorship module also typically handles the generation of distinct
point-in-time surrogate keys for dimension records that are slowly
changing, while simultaneously maintaining a single key value for
all dimensional instances across time. So a customer whose profile
has changed ten times must have ten distinct point-in-time surrogate
key values, yet each of these should have the same overall customer
surrogate key. These two key-handling perspectives are needed
because the real-time dimension manager serves two constituencies:
the data marts, which must have point-in-time surrogate keys, and
the OLTP systems, which need only the most contemporary image
of the dimension record.

Publication. Once a dimension image has been fully integrated
(cleaned, conformed, matched, and survived), you must determine if
the resultant survived record is new or different enough from
previous dimensional images to warrant publication to the
integration network. The dimension manager typically needs to
publish selectively to dampen infinite publication loops. If
publication is warranted, the publication component’s job is to
awaken the dimension manager adapter, which is continuously
listening for publication requests, so that it can gather all or a part of
the dimensional record, convert it to a conformed dimension XML
message, and push it to the EAI broker for distribution throughout
the enterprise. Awakening the dimension manager adapter typically
takes the form of applying an update to one or more records in a
special repository of conformed data, an event which fires a trigger
that the adapter is listening for.

Design publication policy to ensure that adequate dimension
synchronization is possible throughout the enterprise, while
avoiding any endless feedback or race conditions and without
delving into application-specific publication and subscription rules,
which are best handled by the EAI broker.
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The ETL architect designing the real-time dimension manager’s respon-
sibilities must carefully dissect business requirements and tread bravely
through sometimes difficult political territories. Many managers that seek
one version of the truth assume that it will be their version, not the other
guy’s! Technically, the architect must also decide when and where complete
or partial dimension records are passed between applications in the mes-
sages, which situations should cause conformed records to be published,
how best to deal with possible contention and race conditions, how best to
balance the need for application autonomy and conformance, and whether
to use straight-through processing with very few disk touchdowns or mi-
crobatch processing, discussed in the next section.

Sound complex? Well, it is. But the real-time dimension manager is truly
powerful medicine for the enterprise needing to synchronize enriched cus-
tomer or other key dimensional information across the enterprise and can
provide a competitive advantage to those organizations courageous enough
to become early adopters.

Microbatch Processing
You will often face a common dilemma when designing real-time data mart
partition or dimensional systems: Should the solution embrace straight-
through processing or utilize more frequent microbatches? The current
generation of toolsets that support low-latency data movement, such as
CTF, often lack some of the transformation capabilities of well-established
batch ETL tools. A number of ETL tool vendors have begun to offer real-
time versions of their toolsets that process information in a more transac-
tional manner but sometimes with restricted functionality. Designers of the
real-time dimension manager systems often face a similar dilemma when
selecting deterministic and probabilistic matching tools, some of which op-
erate exclusively operate in batch mode. How can you best coax real-time
performance out of tools that operate in batch mode?

One reasonable compromise to the conflicting demands of delivering
near real-time performance within constraints imposed by batch-oriented
toolsets is to design a solution that processes frequent microbatches, using
state transition job control metadata structures.

Consider Figure 11.11. Each job in the job table represents either a fact
or nonconformed dimension transaction record presented for processing
to either the real-time data mart or dimension manager. These jobs must
pass through several processes, each defined in the process table, such as
cleaning and conforming, before they are ready for publication. In the data
model in Figure 11.11, the microbatch table represents the invocation of
a small batch of a given process, and each microbatch processes several
jobs. The set of jobs processed by each microbatch are captured in the job
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Micro-Batch Control Structure ER Diagram
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Figure 11.11 The microbatch table data model.

process event table shown in the figure, which also captures a job event
process status attribute of the success or failure of the given job within the
microbatch.

The processes run continuously, as daemons, looking for jobs that are
at the appropriate state for processing. When they find some acceptable
minimum number of jobs, they invoke a microbatch, process the jobs, and
generate job process event records with appropriate status values; then they
continue looking for more jobs to process.

The benefits of building modular process daemons, as opposed to us-
ing straight-through processing, is that they can be developed indepen-
dently, have individually tunable batch-sizing specifications, and be re-
placed and/or upgraded independently as new toolsets with more features.
Also, new processes such as specialized address verification or credit-
worthiness scoring can be more easily inserted into the job stream, and
jobs that require selective processing are more easily accommodated.

But this flexibility comes at a cost. The microbatch process flow demands
that each process have defined and persistent interfaces, typically database
tables to pull data from and write to. The additional I/O and complexity
imposed by this requirement can be significant. In practice, the complexity
can be minimized by designing a single set of work tables used as com-
mon sources and targets by all processes, and the I/O can be minimized
by caching these tables in the DBMS memory. Nevertheless, the micro-
batch approach does not perform as well as a straight-through processing
approach. The control records associated with completed jobs should be
purged or partitioned frequently to keep them as small as possible.

Each process flow of a typical process in the microbatch scenario is quite
simple. As each batch process is invoked, a microbatch record is created,
and some appropriate (between minimum and maximum specified batch
size from the process table) number of job process event records are created
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Micro-Batch Flowchart
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Figure 11.12 Microbatch flowchart.

too, one for each job to be processed in the microbatch. This basic technique
provides enough information for managing many concurrent microbatches
and keeping an adequate audit trail of all batch and job processing. Figure
11.12 shows how it works.

Figure 11.12 represents a single process. Each process runs continuously
and simultaneously with other processes as daemons, working a mutually
exclusive set of jobs to completion, setting the job process event and micro-
batch status values accordingly, and then continuing. So, a dimension man-
ager system might have data cleaning, conforming, matching, survivorship,
and publication process daemons sometimes working simultaneously on
different sets of jobs. A data mart real-time CTF system might have trans-
formation and surrogate key lookup process daemons, and so on. Each
daemon is continuously looking for jobs to processes where jobs in this
context are defined as job records that have previously been processed to a
stage that makes them appropriate candidates for the given process.

As you can see in Figure 11.12, the status of the job process events is set
to In Process, and a DBMS transaction begin set point is established. As each
job is worked (cleaned, conformed, and so on), the job process event status
is updated to either success or failure. Alternatively, to reduce processing
overhead, this updating can occur at the end of the batch. Once all jobs
have been processed, the batch completes, and the microbatch control table
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is updated. If it is successful with no fatal failures, and all job process event
records have upgraded from In Process, a COMMIT is then executed, and
the resultant changes are written to the database. If a failure occurs or if
an unacceptably high number of job process events are of status Failure,
a ROLLBACK is executed and the database returns to the state it was in
before the microbatch began.

ROLLBACK events must not rollback error messages or status values on
CONTROL tables. Many DBMSs offer autonomous transaction control options that
support this restriction.

Microbatch ETL applied to a real-time dimension manager is shown in
Figure 11.13 as a series of process daemons that read from and update
control, staging, and conformed libraries of tables.

Each process updates the status values of the job process event table and
modifies and creates data in the staging or conformed dimension libraries.

Cleaning reads nonvalidated records from the staging library and
writes status values only to the control library.

Conforming reads from cleaned and nonconformed records from
staging and writes conformed values back to reserved conformed
attributes in staging.

Matching reads conformed and unmatched records from staging and
writes match key values back to staging.

Conformed
Dimension

Library

Control
Library

Staging
Library

Cleaning Conforming Matching Survivorship Publication

Realtime Dimension Authority Micro-Batch Process Flow

Figure 11.13 Microbatch process flow for the real-time dimension manager.
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Survivorship reads matched and nonsurvived records from staging
and inserts or updates records in the conformed dimension
library.

Publication reads conformed records from the conformed dimension
library and awakens the dimension manager adapter, which then
publishes the record to the integration network.

A microbatch ETL system can also be used in concert with CTF for real-
time data warehouses that demand more complex data transformations
than those supported by CTF tool alone. CTF can be used for near real-time
extraction of data from operational systems and light transformation ser-
vices, dropping data into a staging area. From the staging area, microbatch
ETL can be run to handle complex transformations and trickle feed data
into the real-time data mart partition tables. From there, real-time report-
ing is supported, and the normal nightly batch process moves the data to
the static data mart tables, emptying the real-time partition tables in the
processes, ready for the next day’s transactions.

A properly designed microbatch system exhibits good performance, re-
duced latency, and good scalability due to its high degree of parallel pro-
cessing. It also supports the ability to logically insert jobs at various stages
in the job stream by allowing administrators or other processes to create
new control records with status values set as needed. This capability can
be extremely helpful for dealing with special-case processing that might
be needed by the real-time dimension manager: such as injecting manually
matched records into the job stream for normal survivorship and publi-
cation services. It is a good trick to have in your arsenal for coaxing near
real-time-like behavior from batch-processing toolsets.

Choosing an Approach—A Decision Guide
The entire area of real-time data warehousing, at present, can be quite con-
fusing. With so many technologies to choose from, surrounded by so much
vendor and analyst hype, and with so few successful case studies from
which to draw best practices, selecting an appropriate architecture and ap-
proach can be a very daunting task.

The following tables attempt to cut through some of this uncertainty by
distilling some of the information discussed in this chapter into guidelines
to help you narrow your options. Table 11.1 is a comparison matrix of the
presented approaches for real-time reporting.

Table 11.2 offers a comparison of the approaches presented for real-time
dimension manager systems, both those that demand real-time application
integration and those that can get by with batch-data integration.
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Real-Time ETL Systems 459

Summary

Real-time ETL is much more than a fad or a new feature. Moving to real-time
delivery of data challenges every aspect of the ETL pipeline, both physically
and logically. Perhaps the best sound bite for real-time systems is that they
replace batch-oriented ETL with streaming ETL. In this chapter, we have
presented the state-of-the-art of practical approaches to real-time ETL, and
we have pointed out as many of the challenges as we can.
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C H A P T E R

12

Conclusions

Designing and building an ETL system for a data warehouse is an exercise
in keeping perspective. This is a typical complex undertaking that demands
a comprehensive plan up front. It’s easy to start transferring data from a
specific source and immediately populate tables that can be queried. Hope-
fully, end users don’t see the results of this prototype because such an effort
doesn’t scale and can’t be managed.

Deepening the Definition of ETL

We go to considerable lengths in Chapter 1 to describe the requirements you
must surround. These include business needs; compliance requirements;
data-profiling results; requirements for such things as security, data inte-
gration, data latency, archiving and lineage tracking; and end-user tool de-
livery. You also must fold in your available skills and your existing legacy
licenses. Yes, this is an overconstrained problem.

If you simultaneously keep all these requirements in mind, you must
make the BIG decision: Should you buy a comprehensive ETL tool or roll
your own with scripts and programs? We’ve made a serious effort to not
bias this book too heavily in either direction, but the bigger the scope and the
longer the duration of your project, the more we think a vendor-supplied
ETL tool makes sense. Your job is to prepare data, not be a software devel-
opment manager.

The real value of this book, in our opinion, is the structure we have put on
the classic three steps of extract, transform, and load. This book describes
a specific set of interwoven techniques that build on each other. This is not

461
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a book surveying all possible approaches to building an ETL system! We
have expanded the classic three ETL steps into four steps: extract, clean,
conform, and deliver. The deliverables of these four steps that uniquely
differentiate this book include:

Extract: Methods for choosing the specific original data sources and
then combining the logical data map and the data-profiling efforts
into a plan for the ETL system. It all begins with the sources. We also
suggest specific transformations that take place here rather than in
the more traditional cleaning step that follows.

Clean: Schema designs for an error event fact table, an audit
dimension, and a series of data-quality screens. We show how these
deliverables are usefully integrated into your ETL system.

Conform: Precise definitions for conformed dimensions and
conformed facts (with a full discussion of the dimension manager’s
responsibilities and the replication and publication strategy for
dimensions and facts). Conforming is the basis for what is now being
called master data management in the industry.

Deliver: Detailed structural specifications for the full range of
dimensional models, including slowly changing dimensions, the
major fact table types, and bridge tables for multivalued dimensions
and hierarchical structures. We show how to build all the
dimensional schema variations, and we provide specific detail for
managing surrogate keys in each of these situations.

The deliverables in each of these steps provide the foundation for the ETL
metadata. Much of the mystery and difficulty of dealing with ETL metadata
can be reduced by promoting metadata to the status of real data. The audit
dimension described in the cleaning step captures this perspective directly.
Since dimensions always describe the context of measurements, we see that
the state of the ETL system at the time of delivering a table is just another
kind of context. With this in mind, we gracefully attach variations of the au-
dit dimension to all of the data seen by end users through their familiar tools.

In Chapter 7, which covers development, we take you on a tour of many
of the specific transformation steps and utilities you need to build an ETL
system. If you chose to roll your own, the code snippets we provided are
directly relevant. If you have purchased a vendor’s ETL tool suite, most of
these steps and utilities show up as tangible transformers in the graphical de-
piction of your ETL data flow. In the second half of Chapter 7, we give you
some guidance on DBMS specific techniques for performing high-speed
bulk loads, enforcing referential integrity, taking advantage of paralleliza-
tion, calculating dimensional aggregates, and troubleshooting performance
problems.
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In Chapter 8, which covers operations, we start with a comprehensive dis-
cussion of scheduling the jobs in your ETL environment, keeping in mind
that each environment has its own unique bottlenecks. We then make sug-
gestions for certain control documents to help you manage the ETL system
on a day-to-day basis. These include a datamart release document, an ETL
performance-tracking document, and a list of usage metrics. We conclude
Chapter 8 with recommendations for security and archiving architectures.

In Chapter 11, we open the door to the design of real-time data warehouse
systems. Real-time is anything too fast for your current ETL. But more to the
point, the migration to a real-time perspective almost always requires a
jump from batch-oriented ETL to streaming ETL. When making this jump,
it is likely that every step of your ETL system and your end-user tools
will need to be redesigned. Obviously, this is a step not to be taken lightly.
However, nearly all the important steps of batch-oriented ETL must be ad-
dressed in a streaming ETL design. You still need to extract, clean, conform,
and deliver. For these reasons, we can use the lessons developed in the first
ten chapters as the basis for the real-time design.

The Future of Data Warehousing and
ETL in Particular

IT really has only two complementary missions: Get data in, and get data
out. Getting the data in, of course, is transaction processing. Over the last
30 years, organizations have spent more than a trillion dollars building
progressively more powerful transaction-processing systems whose job is
to capture data for operational purposes. But data cannot be a one-way flow:
At some point, we must consume data and derive value from it. There is
a profound cultural assumption in the business world that if only we could
see all of our data, we could manage our businesses more effectively. This cultural
assumption is so deeply rooted that we take it for granted. Yet this is the
mission of the data warehouse, and this is why the data warehouse is a
permanent entity in all of our organizations, even as it morphs and changes
its shape. Viewed in this way, it seems reasonable that in the long run, the
overall investment in getting data out will rival that of getting data in.

In the last five years, a number of important themes have become the
drivers for data warehousing:

The honeymoon phase for the data warehouse is over. Businesses
have lost their patience for technology, and they are insisting that the
data warehouse deliver useful business results. The name, at least for
now, of this theme is business intelligence (BI). BI is driven by end
users, and BI vendors all control the final screens that the users see.
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The data warehouse has become distinctly operational. The old
classic distinction between the data warehouse and operational
reporting has disappeared. This operational focus gives rise to two
huge requirements for the data warehouse. First, the data warehouse
must have access to the atomic transactions of the business. If you
want to see if a particular order was shipped, you can’t look at
aggregated data. Every subject area in the data warehouse must have
smooth access to the most atomic data at the individual transaction
level. Second, many of the operational views of the business need to
be available in real-time. Of course, we’ve developed the definition
and the technical responses to this real-time challenge in depth in
this book.

Businesses expect a 360 degree view of their operations. The
lightning rod for the 360 degree view is the customer. Every
customer-facing process in the business is expected to be available in
the data warehouse, and end users want a single view of the
customer list across all these processes. This places an enormous
burden on the cleaning and conforming steps of the data warehouse,
especially if little thought has been given to rationalizing all the
views of customer in the operational systems. Although the customer
is the most important dimension driving the 360 degree requirement,
products, citizens, and vendors present the same challenges in other
environments.

Finally, the explosion of data continues unabated. Technical advances
in data capture (especially RFIDs) and data storage are swamping
many of our data warehouses, creating the expectation that every
data mote be available for analysis.

So, how will these themes change the nature of the ETL task?
In our view, the most important reality is the stunning complexity of

developing and running an ETL system. As we’ve stated, this is an over-
constrained problem. Read the list of requirements in Chapter 1 one more
time. As the sheer size of data and the number of software and hardware
processes mushrooms, it will become less and less feasible to roll your own
system. The future will belong to systems that allow you to assemble high-
level building blocks of logic.

Ongoing Evolution of ETL Systems
Other technology areas have gone through similar phases where thresholds
of complexity have simply forced the level of tool integration to be much
more comprehensive. Integrated circuit designs with millions of compo-
nents on each chip and software development with millions of lines of
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code are examples of this evolution. The development of ETL processing
pipelines must inevitably respond in the same way if we are to keep up
with the increasing volumes of data flowing in.

This means that the ETL designer must be increasingly oriented toward
system integration, system monitoring, and system building block assem-
bly, rather than coding. There simply isn’t enough time to program very
much at a low level.

The theme of analyzing atomic data ever-more precisely will only ac-
celerate. Micromarketing is already descending to the individual customer
level, and marketing analysts will want to perform queries that isolate cus-
tom subsets of customers based on very complex combinations of attributes
and sequential behavior. We see a hint of the challenges of analyzing se-
quential behavior in Chapter 6 when we place text facts in a positional time
series in the customer dimension. Again, we repeat our fundamental belief
that the ETL system must be aware of, and participate in, the nature of key
analysis modes such as sequential behavior analysis in order to make end-
user applications possible. The ETL system is very much like the kitchen of
a fine restaurant: The ETL system must arrange the plate before it is brought
out of the kitchen.

Sequential behavior analysis will also create much more pressure to query
distributed systems. RFID tags go on journeys through doorways. Each door-
way is a data-collection device that records the passage of RFID tags. Se-
quential behavior analysis is possible only when the separate databases at
each doorway can be merged into a single data view. Then the journey of
an individual RFID tag and whole groups of tags can be analyzed. This is
clearly an integration and conforming challenge. The recent mad cow scare
was a great example of these issues. The implanted RFID tags in each cow
were already in place. But no one could analyze where the specific cow
in question had come from or been because the separate RFID generated
databases were not accessible or integrated.

Finally, it is appropriate to return to a theme that underlies the whole
approach of this book and, indeed, the authors’ careers. The gold coin for
the data warehouse is being able to respond to the true business needs of
the organization. In the final analysis, the most important characteristics
of ETL system designers are business-oriented, higher-level system skills
that keep the data warehouse aimed in the right direction and succeed most
effectively in delivering the data warehouse mission: getting data out.
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<> operators, 110
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360 degree view of the customer, 7
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accumulating snapshot, 222–224
Adabase, extracting data from,
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adapter, ERP, 102
aggregate

described, 38
extracts

mainframe systems, 274
Unix and Windows systems,
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fact tables, 241–247
ordinal position of jobs, 286
resource allocations, 293
updating incrementally, 298–299
usage report, 338–339

alerts, 433
ampersand (&), 101
AND clause, 270
anomaly detection phase, cleaning

and conforming, 131–134
application integration, 434
architecture

changes in data warehouse, 27–28
choice of, 9–10
conflict, resolving, 27
data access (front room), 20–22
data preparation (back room),

16–20
ETL tool versus hand coding,

10–16
standards and practices,

establishing, 378–379
archiving and lineage, 8
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EBCDIC, converting to, 80
flat files, 36
sorting, 266

atomic and aggregate fact tables
data marts, 21
ETL data structure, 47–48
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attributes, 47
audit columns, detecting changed

data, 106–107
audit dimension, cleaning and

conforming, 128–131, 138
audit record, 15, 52
audit tables, absence of, 231
auditing

data transformation steps,
51–52

staged data, benefits of, 30–31
statistics, 389
awk programming utility, 216

B
back-end scripts, 107
backups, 7, 30
bad data. See dirty data
batch extracts, 13–14
batch metadata, 373–374
big dimension tables, 174–175
bitmap indexes, 342
bleeding-edge products, 13
blown out temp space, 327–328
bottlenecking, 224, 288, 332
breaking reports, 32
bridge table, 285
bridge tables, 196–199
B-tree indexes, 342
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building and retaining a team,

398–400
bulk loading and eliminating

logging, 295, 299
business definitions, 50
business metadata

data warehouse data dictionary,
362–363

definitions, 360–361
described, 359–360
logical data maps, 363

source system information,
361–362

business requirements, 4, 401–405
business rules

enforcing, 135–136
logical data map, 73
metadata, 366–367
nonkey, establishing, 75–76
test cases including, 409–410

C
cache, 217
calendar date dimension

described, 171–172
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periodic snapshot fact table, 221
role playing, 178–180
transactions, modeling, 219–220

canceling data warehouse project, 6
Capture, Transform, and Flow

(CTF), 444–445, 455–456
cardinality of relationships and

columns, 70–71
category, product design, 244–245
changed data

delivering to OLAP cubes,
249–250

detecting
audit columns, 106–107
capture system, 186–187
database log scraping or sniffing,

107–108
initial and incremental loads, 109
microbatch loads, 439–440
process of elimination, 108–109

extracting
deleted or overwritten, 111
described, 105–106
detecting, 106–109
tips, 109–110

impact analysis, 49
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character sets, extracting from XML
sources, 94
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relational data tables, 44

choices, maintaining second,
192–193

CIF (corporate information factory),
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cleaning
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big dimensions, 174–175
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data quality, 18–19, 115–116, 406
deliverables

audit dimension, 128–131
data profiling, 125
described, 124–125
error event table, 125–127
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conflicting priorities, balancing,

120–122
key constituencies, 117–119
policy, formulating, 122–124

screens and measurements
anomaly detection phase,

131–134
column distribution

reasonability, 146–147
column length restriction, 143
column nullity, 140–141
column numeric and data

ranges, 141–143
column property enforcement,

134–135
data-profiling checklist, 139–140

dealing with unexpected
conditions, 138–139

invalid column explicit values,
144

known table row counts, 140
overall process flow, 136–138
structure enforcement, 135
table row count reasonability,

144–146
valid column explicit values,

143–144
closed-loop movement, 305
COBOL

copybooks, extracting, 78–79
OCCURS clause, 85–87

Codd, E. F. (inventor of relational
algebra), 340

collecting and documenting, source
systems, 63

columns
distribution reasonability, 146–147
invalid explicit values, 144
length restriction, 143
nullity, 140–141
numeric and data ranges, 141–143
property enforcement, 134–135
valid explicit values, 143–144

command-line execution,
scheduling and support, 306

Common Warehouse Metamodel
(CWM), 378

COMP-3, 83–84
completeness, data, 115–116
compliance, requirements, 4–5
compound conditions, 270
concurrent execution, 308–309
conflict, architecture, resolving, 27
conflicting priorities, 120–122
conforming

deliverables, 159–160
detailed delivery steps, 153–155
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conforming (cont.)
dimension manager, 152–153
dimensions, 148–150, 449
fact table provider, 152
facts, 151–152
matching, 156–158
modules, implementing, 155–156
need for, 19
permissible variations, 150–151
real-time dimension manager

system, 447, 449
surviving, 158–159

constraints, 343
construction site area, 32
continuous polling, 434
cookie, content, 100
corporate information factory (CIF),

25
correctly weighted report, 198
coverage fact table, 233
CPU usage, 333
CRM (customer relationship

management), 423
CTF (Capture, Transform, and

Flow), 444–445, 455–456
cube data, dimensional data,

delivering to OLAP cubes, 248
currencies, collecting multiple,

238–239
current hot rolling period, 221–222
custom application, scheduling and

support, 313
customer relationship management

(CRM), 423
CWM (Common Warehouse

Metamodel), 378

D
data

access architecture, 20–22
checklist, cleaning and

conforming, 139–140

content analysis, logical data map,
71–72

discovery
analyzing source system, 67–71
collecting and documenting

source systems, 63
system-of-record, determining,

66–67
tracking source systems, 63–66

fact tables, loading, 226–227
latency, requirements, 7
lineage, 351–352
management, 16
metadata models, 365
preparation, 16–20
profiling

cleaning and conforming, 125
requirements, 5–6
source system, analyzing, 67–71,

75
quality

audit dimension, 128, 138
defining, 115–116
error event, 374–375
failure, 329
screen, 114

retrieval time, calculating, 323
rule

enforcement, 135–136
reasonability, 147

space, long-running processes,
328

transfer between mainframe
platforms, 80–81

data, extracting raw. See extracting
data integration, 7, 434
data manipulation language

(DML), 340–342
data mart, 20–21, 25, 385
data warehouse

bus architecture, 385
data dictionary, 362–363
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data mart, 25
described, 22–23
disk failure, 326–327
EDW, 25–27
measuring usage, 337–339
misconceptions, 23–24

database
bulk loader utilities, speeding

inserts with, 276–280
constraints and indexes,

dropping, 299
contention, 337
failure, long-running processes,

325–326
log scraping or sniffing, detecting

changed data, 107–108
overhead, explaining, 340–343
reads/writes, eliminating, 296–297

database management system
(DBMS)

log scrapers, 440
metadata, 355–356

date
of additions or modifications,

106–107
dimension tables, 170–174
in nondate fields, 72
result set, narrowing, 134
sorting, 266
source system key, concatenating,

164–165
stamping dimension records, 191
tables, partitioning, 225
W3C format, 98

DBMS (database management
system)

log scrapers, 440
metadata, 355–356

DCMI (Dublin Core Metadata
Initiative), 378

deadlocks, 335
decimals, unpacking packed, 83–84

decryption security issue, 345
dedicated leadership, 384
deduplication, 156–158
defining project, project

management, 392–393
degenerate dimension

described, 127
fact table, 210–211
tables, 182–183

deleted data
checking for, 188–189
extracting, 111

deletes
facts, 230–232
processes, tuning, 340–341

delimited flat files, extracting, 93
deliverables

audit dimension, 128–131
data profiling, 125
described, 124–125
error event table, 125–127

demoting correlations between
dimensions, 177

dependency, managing, 308
derived data, 66
descriptive attributes, 163
design standards

auditing data transformation
steps, 51–52

described, 48–49
impact analysis, 49
metadata capture, 49–51
naming conventions, 51

detecting changed data
audit columns, 106–107
database log scraping or sniffing,

107–108
initial and incremental loads,

109
process of elimination, 108–109
timed extracts, 108

developers, hiring qualified, 387
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development
aggregated extracts, creating

mainframe systems, 274
Unix and Windows systems,

274–276
database bulk loader utilities,

speeding inserts with, 276–280
database features improving

performance
described, 280–282
ordinal position of jobs, 282–286
troubleshooting, 292–294

environment, ETL system security,
344

error-free transfers, ensuring,
262–263

ETL tool suites available, 258–260
filtering, 269
flat-file systems, data from,

261–262
scripting languages, 260
sorting

data during preload, 263
on mainframe systems, 264–266
on Unix and Windows systems,

266–269
subset of source file fields,

extracting, 269–273
throughput, increasing

aggregates, updating
incrementally, 298–299

bulk loading and eliminating
logging, 299

database reads/writes,
eliminating, 296–297

databases constraints and
indexes, dropping, 299

described, 294–296
engine, utilizing, 300
filtering as soon as possible, 297
input/output contention,

reducing, 296

network traffic, eliminating, 300
partitioning and parallelizing,

297–298
retrieving only needed data,

299
time, 260–261

DFSORT mainframe command,
264–266

dimension
adding, 236
cleaning and conforming,

148–150
data, delivering to OLAP cubes,

247–253
ETL data structure, 45
graceful modifications, 235–236
lookup table versus, 217
models, 19
ordinal position of jobs, 284
referential integrity, 284

dimension manager, 152–153
dimension tables

big, 174–175
date and time, 170–174
defined, 46
degenerate, 182–183
described, 161–162
ETL data structure, 46–47
flat and snowflaked, 167–170
grain, 165–166
hybrid slowly changing, 193–194
keys, 162–165
late arriving records and

correcting bad data, 194–196
load plan, 166–167
multivalued and bridge tables,

196–199
one or two, 176–178
populating hierarchy bridge

tables, 201–204
positional attributes to represent

text facts, 204–206
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ragged hierarchies and bridge
tables, 199–201

roles, 178–180
slowly changing, 183
small, 176
as subdimensions of another,

180–182
Type 1 slowly changing

(overwrite), 183–185
Type 2 slowly changing

(partitioning history), 185–192
Type 3 slowly changing (alternate

realities), 192–193
dirty data

corrective versus transparent
data-cleaning process, 122

dimension tables correcting,
194–196

handling, 5
ignoring, 388

disk contention, 336–337
disk failure, long-running processes

and, 326–327
disk space, numeric data formats,

83
disparate platforms, challenge of

extracting from, extracting, 76
display utilization, store, 233
DISTINCT clause, 110
diverse sources, connecting, 76–77
DML (data manipulation

language), 340–342
Document Type Definition (DTD)

defined, 39–40
extracting, 95–96

documentation, maintaining,
389–390

dormant-data report, 339
drilling down, 27
DTD (Document Type Definition)

defined, 39–40
extracting, 95–96

Dublin Core Metadata Initiative
(DCMI), 378

dump files, 41

E
EAI (Enterprise Application

Integration), 441–444
EBCDIC (Extended Binary Coded

Decimal Interchange Code)
ASCII, converting to, 80
character set, extracting, 79–80
sorting, 266
transferring data, 80–81

EDW (Enterprise Data Warehouse),
data warehouse mission, 25–27

EEI (Enterprise Information
Integration), 446–447

empty dimension, 182–183
emulating, 349–350
encapsulating, 349–350
encryption and decryption security

issues, 345
end user delivery interfaces,

requirements, 8
engine, utilizing for increased ETL

throughput, 300
Enterprise Application Integration

(EAI), 441–444
Enterprise Data Warehouse (EDW)

data warehouse mission, 25–27
Enterprise Information Integration

(EEI), 446–447
ER (entity relation) diagrams, 67–71
ERP system sources, extracting,

102–105
error event

cleaning and conforming, 125–127
data quality and, 374–375
ETL-generated metadata, 377
going around, 138–139
handling, 14
violations, 136
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error-free transfers, ensuring,
262–263

establish premium, 46
ETL

data structure
atomic and aggregate fact tables,

47–48
designing staging area, 31–35
dimension tables, 46–47
dimensional, 45
fact tables, 45–46
flat files, 35–38
independent DBMS working

tables, 41
nonrelational data sources, 42–45
relational tables, 40–41
staging versus processing in

memory, 29–31
surrogate key mapping tables, 48
third normal form

entity/relation models, 42
XML data sets, 38–40

defining, 461–463
evolution of, 464–465
future of, 463–464
metadata generated by

batch, 373–374
described, 367–368
job, 368–370
transformation, 370–373

security
described, 343–344
development environment, 344
production environment,

344–345
team, 28, 391–392
throughput, increasing

aggregates, updating
incrementally, 298–299

bulk loading and eliminating
logging, 299

database reads/writes,
eliminating, 296–297

described, 294–296
dropping databases constraints

and indexes, 299
engine, utilizing, 300
filtering as soon as possible, 297
input/output contention,

reducing, 296
network traffic, eliminating, 300
partitioning and parallelizing,

297–298
retrieving only needed data, 299

tool, 10–16, 258–260
euro sign (€), 94
exception handling, 14, 377
execution, sequential versus

concurrent, 308–309
Extended Binary Coded Decimal

Interchange Code. See EBCDIC
Extensible Markup Language.

See XML
extracting

changed data
deleted or overwritten, 111
described, 105–106
detecting, 106–109
tips, 109–110

described, 18, 55–56, 116
disparate platforms, challenge of

extracting from, 76
diverse sources, connecting

through ODBC, 76–77
ERP system sources, 102–105
flat files

delimited, processing, 93
described, 90–91
fixed length, processing, 91–92

heterogeneous data sources,
integrating, 73–77

logical data map



P1: FCH
WY046-Ind WY046-Kimball-v4.cls August 18, 2004 17:42

Index 475

business rules, collecting, 73
components, 58–62
data content analysis, 71–72
data discovery, 63–71
designing before physical, 56–58
success and, 62
tools, 62

mainframe sources
COBOL copybooks, 78–79
data, transferring between

platforms, 80–81
described, 78
EBCDIC character set, 79–80
from IMS, IDMS, Adabase, and

Model 204, 90
managing multiple record type

files, 87–88
multiple OCCURS, 85–87
numeric data, handling, 81
packed decimals, unpacking,

83–84
PICtures, using, 81–83
redefined fields, working with,

84–85
variable record lengths, 89–90

parallel processing queries,
288–290

process time, load time,
estimating, 321–323

Web log sources
described, 97–98
name value pairs, 100–101
W3C common and extended

formats, 98–100
XML sources

character sets, 94
described, 93–94
DTD, 95–96
meta data, described, 94–95
namespaces, 97
XML Schema, 96–97

F
fact tables

accumulating snapshot, 222–224
aggregations, 241–247
deleting facts, 230
described, 209–212
dimensional data, delivering to

OLAP cubes, 247–253
ETL data structure, 45–46
factless, 232–233
fundamental grains, 217–224
graceful modifications, 235–236
incremental loading, 228
indexes, 224
inserting facts, 228
late arriving facts, 239–241
loading data, 226–227
logically deleting facts, 232
multiple units of measure, 237–238
negating facts, 229–230
partitions, 224–226
periodic snapshot, 220–222
physically deleting facts, 230–232
provider, cleaning and

conforming, 152
referential integrity, 212–214, 285
revenue, collecting in multiple

currencies, 238–239
rollback log, outwitting, 226
surrogate key pipeline, 214–217
transaction grain, 218–220
Type 1, augmenting with Type 2

history, 234–235
updating and correcting facts,

228–229
updating facts, 230

facts
adding, 236
cleaning and conforming, 151–152
delivering to OLAP cubes,

250–252
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failures, long-running processes,
analyzing, 324–325

family of schemas, 245–246
filtering

development, 269
disabling, 293
ETL throughput, increasing, 297
flat file, 37
throughput, improving, 294

final load, parallel processing,
291–292

financial-reporting issues, 5
fixed length flat files, extracting,

91–92
flat and snowflaked, dimension

tables, 167–170
flat files

ETL data structure, 35–38
extracting

delimited, processing, 93
described, 90–91
fixed length, processing, 91–92

integrating data from, 261–262
redirecting from staging database

tables, 296–297
space for long-running processes,

328–329
foreign key

adding, 236
constraints, when to eliminate,

281
defined, 162
fact table, 210
snapshot fact tables, overwriting,

222–223
format

date, 98
dates in nondate fields, 72
disk space, saving, 83
obsolete and archaic formats,

347–348

packed numeric format, 83, 271
zoned numeric, 82, 266

forward engineering, 68
fragmented data, reorganizing, 281
front room, metadata, 356–359
FTP

interrupted process, restarting, 261
security issues, 345

full rollup, 299
fundamental grains, fact tables,

217–224

G
gawk Unix utility

aggregated extracts, 274–276
field extracts, 273
subset, extracting, 271–272

globalization, 423
graceful modifications, fact tables,

235–236
grain

dimension tables, 165–166
fact tables, 46, 210

graphical user interfaces (GUI), 306,
307–308

greater/less than (<>) operators,
110

Group By clauses, 286
group entity, multivalued

dimensions, 196–197
GUI (graphical user interfaces), 306,

307–308

H
half-bytes, 83
halt condition, 136
hand coding, ETL tool versus, 10–16
hard copy, long-term archiving and

recovery, 348–349
hard disk failure, long-running

processes and, 326–327
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hard disk space, numeric data
formats, 83

heterogeneous data sources,
integrating, extracting, 73–77

hierarchy
complex dimension, 168
mapping tables, referential

integrity, 286
XML structures, 39

HINT keyword, 110
historic data, purging, operations,

330
horizontal task flow, 14, 324
hot extract, 20
hot spot, 336
HTTP status, 99
hub-and-spoke architecture,

434–436
hybrid slowly changing dimension

tables, 193–194

I
identifiers, 68
IDMS, extracting data from, 90
impact analysis

metadata, 380
planning and design standards, 49
reporting, 198

implied conversions, 61
IMS, extracting data from, 90
incremental loading, fact tables, 228
indexes

fact tables, avoiding bottlenecks
with, 224

natural key as, 216
processes, tuning, 341–343
space required by long-running

processes, 328
throughput, increasing, 295–296
usage report, 338
WHERE clause columns, 109

initial and incremental loads,
changed data, detecting, 109

INSERT statement
safety of, 212
screens, running, 138
UPDATE versus, 184, 226–227

inserts
fact tables, 228
processes, tuning, 340–341
speeding with database bulk

loader utilities, 276–280
instrument dimension table, 190
integrated scheduling and support

tool, 311–312
integrated source system, 127
integrity checking, nonrelational

data sources, 44
internal versus external hires, 397
interval of relevance, date-time

stamps, 191
intra-day execution, scheduling

and support, 305
I/O contention, 296
IP address, user’s ISP, 99

J
jobs

ordinal position of, 282–286
staging area, 34

joins, NULL value failures, 71–72
junk dimension, 176

K
key constituencies, 117–119
keys

dimension tables, 162–165
foreign

constraints, when to eliminate,
281

defined, 162
dimension, adding, 236
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keys (cont.)
fact table, 210
snapshot fact tables, overwriting,

222–223
natural, 162–163
primary

calendar date dimension, 172
fact table, 211

surrogate
creating, 164
defined, 162
dimensional domains, confusing,

170
mapping tables, 48
pipeline, fact tables, 214–217

Kimball, Ralph (bridge table
expert), 201–202

knobs, 301

L
late arriving records

dimension tables, 194–196, 217
fact tables, 239–241

Latin 9 character set, 94
leadership

dedicated leadership, 384
described, 383–384
developers, hiring qualified,

387
dirty data, handling, 388
documentation, maintaining,

389–390
metadata, providing and utilizing,

390
monitoring, auditing, and

publishing statistics, 389
planning large and building small,

385–387
simplicity, 390
standardization, enforcing,

388–389

teams with database expertise,
building, 387–388

throughput, optimizing, 390–391
legacy software

designing around, 9
format issues, resolving, 18

less/greater than (<>) operators,
110

load dependencies, 314
load failure, 330
load plan, dimension tables,

166–167
load schedule, batch metadata,

373–374
load time, estimating

described, 321
extraction process time, 321–323
loading process time, 323–324
transformation process time, 323

log
database, 184–185
eliminating, 295
processes, tuning, 341
security, 15–16
tables, 440

logic, record matching, 75
logical data map

business and technical metadata,
363

business rules, collecting, 73
components, 58–62
data content analysis, 71–72
data discovery, 63–71
designing before physical, 56–58
success and, 62
tools, 62

long-running processes,
vulnerabilities of

database failure, 325–326
data-quality failure, 329
flat file space, 328–329
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index space, 328
operations

data space, 328
disk failure, 326–327
flat file space, 328–329
horizontal versus vertical system

flows, 324
load failure, minimizing risk of,

330
memory failure, 327
network failure, 325
temp space, blown out, 327–328

recovery issues, 329
unannounced system upgrade,

329
long-term archiving and recovery

operations, described, 346–347
refreshing, migrating, emulating,

and encapsulating, 349–350
lookup table

dimension versus, 217
eliminating, 293

M
mainframe

aggregate extracts, creating, 274
extracting

COBOL copybooks, 78–79
data, transferring between

platforms, 80–81
described, 78
EBCDIC character set, 79–80
EBCDIC, converting to ASCII, 80
from IMS, IDMS, Adabase, and

Model 204, 90
managing multiple record type

files, 87–88
multiple OCCURS, 85–87
numeric data, handling, 81
packed decimals, unpacking,

83–84

PICtures, using, 81–83
redefined fields, working with,

84–85
variable record lengths, 89–90

infrastructure choice, 379
sorting on, 264–266
source file records, subset of,

269–270
manufacturing quality control,

lessons from, 122
many-to-many relationships, 71
masking, 168
match score, 157
matching conforming deliverables,

156–158, 449–450
MDC (Meta Data Coalition), 378
measure, multiple units of,

237–238
media

formats, 347
reading data from permanent, 8

memory
allocation, 333–335
contention, 335–336
failure in long-running processes,

327
processing in versus staging,

29–31
shared, 334

messaging systems, 306–307
Meta Data Coalition (MDC), 378
metadata

access architecture, 356–359
benefits of using relational tables,

40
business

data warehouse data dictionary,
362–363

definitions, 360–361
described, 359–360
logical data maps, 363
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metadata (cont.)
source system information,

361–362
capturing, 49–51, 309
data-staging, 354–355
DBMS, 355–356
described, 15, 351–353
ETL-generated

batch, 373–374
data quality error event, 374–375
described, 367–368
job, 368–370
process execution, 375–377
transformation, 370–373

impact analysis, 49, 380
providing and utilizing, 390
scheduling and support,

314–315
source system, 353–354
standards and practices

described, 377–378
establishing, 378–379
naming conventions, 379–380

technical
business rules, 366–367
data definitions, 365–366
data models, 365
described, 363–364
system inventory, 364–365

understanding, 39–40
XML

defined, 38
extracting, 94–95

microbatch processing, 452–456
Microsoft Windows. See also ODBC

aggregated extracts, creating,
274–276

CPU usage, 333
EBCDIC, converting to ASCII, 80
FTP, running, 262
infrastructure choice, 379

sorting, 266–269
subset of source file records,

extracting, 271–272
migrating, long-term archiving and

recovery, 349–350
migrating to production, operations

described, 315
operational support for data

warehouse, 316
support in production, 319–320

minitables, 224
MINUS query, 232
minutes, time dimension, building,

173
Model 204, extracting data from,

90
modules, cleaning and conforming,

155–156
monitoring

database contention, 337
operations

CPU usage, 333
crucial measurements, 332–333
described, 331
disk contention, 336–337
memory allocation, 333–335
memory contention, 335–336
processor contention, 337
server contention, 335
specific performance indicators,

331–332
statistics, 389

most recent key lookup table, 189
multiple OCCURS, 85–87
multiple record type files, 87–88
multiple units of measure,

237–238
multithreaded application, 215
multivalued and bridge tables

dimension tables, 196–199
weighting factors, 197–198
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museums, long-term archiving and
recovery, 348–349

N
name value pairs, Web log sources,

extracting, 100–101
namespaces, extracting from XML

sources, 97
naming conventions

establishing, 378
metadata, 379–380
planning and design standards,

51
natural key, 68, 162–163
navigation, aggregate, 241–242
needed data, retrieving only, 299
negating facts, fact tables,

229–230
network

failure of long-running processes,
325

sniffers, 440
traffic, eliminating to increase

throughput, 295, 300
nibbles, 83
Nissen, Gary (ETL tool versus hand

coding analysis), 10–11
nonevent notification, 434
nonrelational data sources, ETL

data structure, 42–45
NOT operator, 110
notification and paging, scheduling

and support, 306–307
NULL values

audit columns and, 106–107
described, 71–72
text fields, converting to empty,

140–141
numeric data

in descriptive attributes, 163
mainframe sources, handling, 81

O
obsolete and archaic formats,

347–348
occasional full processing, facts,

delivering to OLAP cubes, 252
ODBC (Open Database

Connectivity)
bottleneck, overcoming, 288
diverse sources, connecting,

76–77
ODS (operational data store), 20
OLAP (on-line analytic processing)

dimensional data, delivering,
247–253

integrating into ETL system,
252–253

OLTP (on-line transaction
processing), 185, 226, 432–433,
442–443

one or two, dimension tables,
176–178

on-line analytic processing (OLAP)
dimensional data, delivering,

247–253
integrating into ETL system,

252–253
on-line transaction processing

(OLTP), 185, 226, 432–433,
442–443

Open Database Connectivity
(ODBC)

bottleneck, overcoming, 288
diverse sources, connecting, 76–77

operating system
scheduling and support, 312–313
text strings, replacing or

substituting, 37–38
operational data store (ODS), 20
operations

data warehouse usage, measuring,
337–339
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operations (cont.)
described, 301–302
historic data, purging, 330
long-running processes,

vulnerabilities of
data space, 328
database failure, 325–326
data-quality failure, 329
disk failure, 326–327
failures, analyzing, 324–325
flat file space, 328–329
horizontal versus vertical system

flows, 324
index space, 328
load failure, minimizing risk of,

330
memory failure, 327
network failure, 325
recovery issues, 329
temp space, blown out, 327–328
unannounced system upgrade,

329
long-term archiving and recovery

described, 346–347
hard copy, standards, and

museums, 348–349
medias, formats, software, and

hardware, 347
obsolete and archaic formats,

347–348
refreshing, migrating, emulating,

and encapsulating, 349–350
migrating to production

described, 315
operational support for data

warehouse, 316
support in production, 319–320
version releases, bundling,

316–319
monitoring

CPU usage, 333

crucial measurements, 332–333
database contention, 337
described, 331
disk contention, 336–337
memory allocation, 333–335
memory contention, 335–336
processor contention, 337
server contention, 335
specific performance indicators,

331–332
optimal ETL performance,

achieving
described, 320–321
load time, estimating, 321–324

ordinal position of jobs, referential
integrity, described, 283–284

processes, tuning
database overhead, explaining,

340–343
described, 339–340

scheduling and support
command-line execution, 306
custom application, 313
described, 302
integrated tool, 311–312
intra-day execution, 305
load dependencies, 314
metadata, 314–315
nested batching, 307–309
notification and paging, 306–307
operating system, 312–313
parameter management, 309–311
real-time execution, 305, 313
reliability, availability, and

manageability analysis, 302–303
strategy, 303–304
third-party scheduler, 312
token aware function, 304–305

security, 343–345
short-term archiving and recovery,

345–346
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operators (<>), 110
OR clause, 270
ordinal position of jobs

aggregates and Group By clauses,
286

ODBC bottleneck, overcoming,
288

operations, referential integrity,
described, 283–284

parallel processing
described, 288
extraction queries, 288–290
final load, 291–292
transformations, 290–291

performance, improving through
database features, 282–286

referential integrity
bridge table, 285
dimensions, 284
fact tables, 285
hierarchy mapping tables, 286
subdimensions, 284

scalar functions, 287
triggers, avoiding, 287

organizational hierarchy, recursive
pointer, 199–201

outriggers, 180–182
outsourcing development, 400–401
overall process flow, cleaning and

conforming, 136–138
overwritten data

dimension tables, 183–185
extracting, 111
snapshot fact tables, 222–223

P
packed decimals

sorting, 266
unpacking, 83–84

packed numeric format, 83, 271
parallel processing

ordinal position of jobs
described, 288
extraction queries, 288–290
final load, 291–292
transformations, 290–291

throughput, improving, 295
parameters, managing, 308, 309–311
parent

degenerate dimensions, 182–183
relational data tables, 44

parsing, XML files, 95
partitions

fact tables, 224–226
logical, 288
processing facts, 250–251
tables, when to create, 281–282
throughput, improving, 295,

297–298
patches, 412
performance

described, 280–282
indexes, managing, 224
indicators, 331–332
ordinal position of jobs, 282–286
real-time fact tables, 427
troubleshooting, 292–294

periodic snapshot, fact tables,
220–222

permissible variations, 150–151
physically deleting facts, fact tables,

230–232
PICtures, mainframe sources,

extracting, 81–83
pipe character (|), 275, 280
planning

auditing data transformation
steps, 51–52

business requirements analysis,
401–405

dedicated leadership, 384
described, 48–49, 383–384
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planning (cont.)
developers, hiring qualified, 387
dirty data, handling, 388
documentation, maintaining,

389–390
impact analysis, 49
large and building small, 385–387
metadata capture, 49–51
metadata, providing and utilizing,

390
monitoring, auditing, and

publishing statistics, 389
naming conventions, 51
planning large and building small,

385–387
project management, 393
simplicity, 390
standardization, enforcing,

388–389
teams with database expertise,

building, 387–388
throughput, optimizing, 390–391

platforms, transferring data
between, 80–81

point-to-point architecture, 434–436
policy, data cleaning and

conforming, 122–124
populating hierarchy bridge tables,

201–204
positional attributes to represent

text facts, 204–206
primary key

calendar date dimension, 172
defined, 162
fact table, 211

process of elimination, changed
data, detecting, 108–109

processes
executing, 375–377
metadata, 50
tuning, 339–340

processing dimensions, delivering
to OLAP cubes, 248–249

processor contention, 337
production environment, ETL

system security, 344–345
project management

defining project, 392–393
described, 391
development environment, 401
ETL team responsibility, 391–392
planning

business requirements analysis,
401–405

data quality strategy, 406–407
deployment, 410
development environment, 401
logical data map, designing,

405–406
maintaining data warehouse, 412
physical ETL process, building,

407–408
scope, defining, 405
test cases, 409–410, 411
testing processes, 408–409

planning project, 393
scope, managing

change tracking, 413–414
described, 412–413
version releases, scheduling,

414–416
staff

building and retaining a team,
398–400

internal versus external hires, 397
outsourcing development,

400–401
recruiters, working with, 396–397
team members, selecting, 398
team roles and responsibilities,

394–396
tool set, determining, 393–394



P1: FCH
WY046-Ind WY046-Kimball-v4.cls August 18, 2004 17:42

Index 485

publication step, 451–452
publishing

conformed dimensions to fact
tables, 152–153

statistics, 389

Q
QA (Quality Assurance) testing,

408–409
quality handling, 15
query response time

calculating, 322–323
OLAP cubes, 247–248

R
ragged hierarchies and bridge

tables, dimension tables,
199–201

RAM (Random Access Memory)
contention, 335–336
virtual memory and, 335

RAM (Reliability, Availability, and
Manageability) Criteria,
302–303

READ
eliminating, 294
from staging table, 36

real-time systems
alerts, continuous polling, or

nonevents, 433–434
approach, choosing, 456–458
benefits of using, 422–423
challenges and opportunities,

424–425
CRM trends, 428–429
CTF, 444–445
customer data cleanup, 436–437
data freshness and historical

needs, 430–432
data or applications, integrating,

434

defining, 424
described, 421–422
dimension manager, strategic role

of, 429–430
dimension manager system,

447–452
EAI, 441–444
EII, 446–447
execution, scheduling and

support, 305, 313
facts versus dimension changes,

432–433
microbatch processing, 437–441,

452–456
operational data store, 425–426
partition, 426–428
point-to-point versus

hub-and-spoke, 434–436
reporting versus integration, 432

reasonableness, 142–143, 242–243
recovery

long-running processes, 329
long-term, 346–347, 349–350
restart and, 15
short-term, 345–346

recruiters, working with, 396–397
recursive pointer, 199–201
redefined fields, mainframe

sources, extracting, 84–85
REDEFINES, multiple, handling,

87–88
referential integrity

fact tables, guaranteeing, 212–214
failure, 251
operations, described, 283–284
ordinal position of jobs

bridge table, 285
dimensions, 284
hierarchy mapping tables, 286

subdimensions, 284
REFRESH tables, 230
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refreshing, long-term archiving and
recovery, 349–350

reject files, 44
relational tables

benefits of, 36
ETL data structure, 40–41

relationships between tables,
70

reliability, availability, and
manageability analysis,
scheduling and support,
302–303

Reliability, Availability, and
Manageability (RAM) Criteria,
302–303

repeating groups, handling with
OCCURS clauses, 85–87

reporting
access and commands, 15–16
barring from staging area, 32
requirements, 4–5

requirements
archiving and lineage, 8
available skills, 9
business needs, 4
compliance, 4–5
data integration, 7
data latency, 7
data profiling, 5–6
end user delivery interfaces, 8
legacy licenses, 9
security, 6–7

restart
batch-management tool, 308
recovery and, 15

resume at ETL
retrieving only needed data, 299
revenue, fact tables, collecting in

multiple currencies, 238–239
reverse engineering, 67–71
right-time systems, 423

roles
dimension tables, 178–180
users, authenticating, 6

ROLLBACK events, 455
rollback log, outwitting, fact tables,

226
Rothenberg, Jeff (author of digital

preservation report), 349–350
rows

count, staging area, 34
deleted, detecting, 232
processing time, 332

S
SAP implementation, 103–105
Sarbanes-Oxley Act, 4–5
scalar functions, ordinal position of

jobs, 287
SCD (slowly changing dimension)

type, 58–59, 76, 183
scheduling

automation, 14
batches, 377
command-line execution, 306
custom application, 313
described, 302
integrated tool, 311–312
intra-day execution, 305
load dependencies, 314
metadata, 314–315, 377
nested batching, 307–309
notification and paging, 306–307
operating system, 312–313
parameter management, 309–311
real-time execution, 305
reliability, availability, and

manageability analysis,
302–303

strategy, 303–304
third-party scheduler, 312
token aware function, 304–305
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schema, family of, 245–246
scope, defining, 405
screens

anomaly detection phase, 131–134
column distribution reasonability,

146–147
column length restriction, 143
column nullity, 140–141
column numeric and data ranges,

141–143
column property enforcement,

134–135
data and value rule enforcement,

135–136
data and value rule reasonability,

147
data-profiling checklist, 139–140
data-quality, 114
dealing with unexpected

conditions, 138–139
invalid column explicit values,

144
known table row counts, 140
overall process flow, 136–138
structure enforcement, 135
table row count reasonability,

144–146
valid column explicit values,

143–144
scripting languages, development,

260
scripts, launching sequence, 309
seconds, time dimension, building,

173
security, 6–7, 15–16
sequential execution, 308–309
server

contention, 335
IP address, 99
proven technology, acquiring,

12

SET operators, 110
shared memory, 334
short-term archiving and recovery,

operations, 345–346
simplicity, planning and leadership,

390
skills, available, 9
slowly changing dimension (SCD)

type, 58–59, 76, 183
snowflake, subdimensions, 284
SORT utility program, 264–266
sorting data

DBMS or dedicated packages,
deciding between, 37

on mainframe systems, 264–266
during preload, 263
on Unix and Windows systems,

266–269
source data

quality control, handling, 123,
124

referencing, 38
source file, records, subset of,

269–270
source system

analyzing, 67–71
collecting and documenting, data

discover, 63
disk failure, 326
metadata, 353–354, 361–362
structured, writing to flat files or

relational tables, 18
tracking, 63–66

SQL
bridge table hierarchies,

202–204
column length screening, 143
current dimension attribute

values, 185
default unknown values, finding,

143–147
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SQL (cont.)
explicit values, finding, 144
fact tables, drilling across, 151
interface, benefits of, 41
MINUS query, 232
null values, returning, 140–141
numeric ranges outside normal,

142
sorting data during preload,

263–264
transformation within logical

map, 61
updating facts, 230

staff
building and retaining a team,

398–400
churn, advantages of tool suites

versus hand-coding, 12
internal versus external hires,

397
outsourcing development,

400–401
recruiters, working with, 396–397
team members, selecting, 398
team roles and responsibilities,

394–396
staging

benefits of, 8, 30–31, 37
processing in memory versus,

29–31
tables, 30, 231–232, 294

staging area
described, 17–18
designing, 31–35
disk failure, 326

stale data, 305
standard scenario, snapshot fact

table, 222
standards

enforcing, 388–389

long-term archiving and recovery,
348–349

star schema, 125, 126
straddle constraints, 206
strategy, scheduling and support,

operations, 303–304
streaming data flow, batch extracts

from source data versus, 13–14
structure enforcement, cleaning

and conforming, 135
subdimensions

of dimension tables, 180–182
referential integrity, 284

subject area, 20
subset, extracting, 269–270,

270–271, 273
surrogate key

creating, 164
defined, 162
dimensional domains, confusing,

170
mapping tables, 48
pipeline, fact tables, 214–217

surviving
cleaning and conforming,

158–159
dimension, managing, 450–451
rules, establishing, 75

SyncSort SORT utility program,
264–266

system inventory, metadata,
364–365

system-of-record, determining, 63,
66–67

T
table

relationships between, 70
row count, 140, 144–146
usage report, 338
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team
database expertise, 387–388
members, selecting, 398
roles and responsibilities, 394–396

technical definitions, 50
technical metadata

business rules, 366–367
data definitions, 365–366
data models, 365
described, 363–364
system inventory, 364–365

temp space, 286, 327–328
testing

position of fixed length flat files,
92

processes, 408–409
project management, 409–410,

411
QA, 408–409
UAT, 409
unit, 408

text string, replacing or
substituting, 37–38

third normal form entity/relation
models, ETL data structure, 42

third-party scheduler, 312
360 degree view of the customer, 7
throughput

optimizing, 390–391
processing time, 332

time
of additions or modifications,

106–107
data retrieval, 323
development, 260–261
dimension tables, 170–174
stamping dimension records, 191
W3C format, 98–99

timed extracts, detecting changed
data, 108

timestamps, 190–192, 439–440
time-varying bridge tables,

dimensions, 198–199
token aware function, operations,

304–305
tool set, determining, project

management, 393–394
tools, logical data map, 62
touch points, 428
TQM (total quality management),

122
tracking, source systems, 63–66
transaction grain, fact tables,

218–220
transformation

ETL-generated metadata,
370–373

legacy data format issues, 18
within logical map, 61
parallel processing, 290–291
process time, 323

transforms, ETL tool suite, 259–260
triggers

avoiding, 287
CTF, 445
surrogate keys, creating with, 164

tweaking the aggregate, 298
twinkling data, 228, 422
.TXT extension, positional flat files,

92
Type 1 slowly changing

(overwrite), dimension tables,
183–185, 234–235

Type 2 slowly changing
(partitioning history)

dimension tables, 185–192
time stamping, 190–192

Type 3 slowly changing (alternate
realities), dimension tables,
192–193
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U
UAT (User Acceptance Testing),

409
uncontrolled OLTP environment,

185
unexpected conditions, cleaning

and conforming, 138–139
unit testing, 408
units of measure, multiple,

237–238
Unix

aggregated extracts, creating,
274–276

EBCDIC, converting to ASCII,
80

FTP, running, 262
infrastructure choice, 379
memory contention, detecting

(SAR command), 336
sorting on, 266–269
subset of source file records,

extracting, 271–272
UPDATE

to flat file, 36
overwriting dimensions, 183–185
safety of, 212
separating from INSERT, 226–227

updates
fact tables, 228–229, 230
processes, tuning, 340–341

upgrades, 412
urgent operational questions,

answering, 20
User Acceptance Testing (UAT), 409
UTF-8 character set, 94

V
value rule

enforcement, 135–136
reasonability, 147

variable record lengths, 89–90

variance formula, fact table,
142–143

verbose descriptions, 47
version releases, migrating to

production, 316–319
vertical task flow, 14, 324
vertical task flow, horizontal

versus, 14
virtual memory, 327, 335

W
wave, calling process, 137
W3C common and extended

formats, 98–100
Web log sources, extracting

described, 97–98
name value pairs, 100–101
W3C common and extended

formats, 98–100
Web, standards raised by, 423
Windows (Microsoft). See also

ODBC
aggregated extracts, creating,

274–276
CPU usage, 333
EBCDIC, converting to ASCII, 80
FTP, running, 262
infrastructure choice, 379
sorting, 266–269
subset of source file records,

extracting, 271–272
WRITE

eliminating, 294
to flat file, 36

writeback data, 252

X
XML (Extensible Markup

Language)
data sets

described, 38–39
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DTDs, XML Schemas, and XSLT,
39–40

extracting
character sets, 94
described, 93–94
DTD (Document Type

Definition), 95–96
meta data, described, 94–95

namespaces, 97
XML Schema, 40, 96–97

Z
zero-latency enterprise, 423
zoned numeric format

described, 82
sorting, 266
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