
TEAM LinG



Theory and Applications of
OFDM and CDMA





Theory and Applications of
OFDM and CDMA

Wideband Wireless Communications

Henrik Schulze
and
Christian Lüders
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Preface

Wireless communication has become increasingly important not only for professional appli-
cations but also for many fields in our daily routine and in consumer electronics. In 1990,
a mobile telephone was still quite expensive, whereas today most teenagers have one, and
they use it not only for calls but also for data transmission. More and more computers use
wireless local area networks (WLANs), and audio and television broadcasting has become
digital.

Many of the above-mentioned communication systems make use of one of two sophis-
ticated techniques that are known as orthogonal frequency division multiplexing (OFDM)
and code division multiple access (CDMA).

The first, OFDM, is a digital multicarrier transmission technique that distributes the
digitally encoded symbols over several subcarrier frequencies in order to reduce the symbol
clock rate to achieve robustness against long echoes in a multipath radio channel. Even
though the spectra of the individual subcarriers overlap, the information can be completely
recovered without any interference from other subcarriers. This may be surprising, but
from a mathematical point of view, this is a consequence of the orthogonality of the base
functions of the Fourier series.

The second, CDMA, is a multiple access scheme where several users share the same
physical medium, that is, the same frequency band at the same time. In an ideal case,
the signals of the individual users are orthogonal and the information can be recovered
without interference from other users. Even though this is only approximately the case, the
concept of orthogonality is quite important to understand why CDMA works. It is due to
the fact that pseudorandom sequences are approximately orthogonal to each other or, in
other words, they show good correlation properties. CDMA is based on spread spectrum,
that is, the spectral band is spread by multiplying the signal with such a pseudorandom
sequence. One advantage of the enhancement of the bandwidth is that the receiver can take
benefit from the multipath properties of the mobile radio channel.

OFDM transmission is used in several digital audio and video broadcasting systems.
The pioneer was the European DAB (Digital Audio Broadcasting) system. At the time when
the project started in 1987, hardly any communication engineers had heard about OFDM.
One author (Henrik Schulze) remembers well that many practical engineers were very sus-
picious of these rather abstract and theoretical underlying ideas of OFDM. However, only
a few years later, the DAB system became the leading example for the development of the
digital terrestrial video broadcasting system, DVB-T. Here, in contrast to DAB, coherent
higher-level modulation schemes together with a sophisticated and powerful channel esti-
mation technique are utilized in a multipath-fading channel. High-speed WLAN systems
like IEEE 802.11a and IEEE 802.11g use OFDM together with very similar channel coding
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and modulation. The European standard HIPERLAN/2 (High Performance Local Area Net-
work, Type 2) has the same OFDM parameters as these IEEE systems and differs only in
a few options concerning channel coding and modulation. Recently, a broadcasting system
called DRM (Digital Radio Mondiale) has been developed to replace the antiquated analog
AM radio transmission in the frequency bands below 30 MHz. DRM uses OFDM together
with a sophisticated multilevel coding technique.

The idea of spread spectrum systems goes back to military applications, which arose
during World War II, and were the main field for spread spectrum techniques in the follow-
ing decades. Within these applications, the main benefits of spreading are to hide a signal,
to protect it against eavesdropping and to achieve a high robustness against intended in-
terference, that is, to be able to separate the useful signal from the strong interfering one.
Furthermore, correlating to a spreading sequence may be used within radar systems to obtain
reliable and precise values of propagation delay for deriving the position of an object.

A system where different (nearly orthogonal) spreading sequences are used to sepa-
rate the signals transmitted from different sources is the Global Positioning System (GPS)
developed in about 1970. Hence, GPS is the first important system where code division
multiple access (CDMA) is applied. Within the last 10 years, CDMA has emerged as the
most important multiple access technique for mobile communications. The first concept
for a CDMA mobile communication system was developed by Qualcomm Incorporated
in approx 1988. This system proposal was subsequently refined and released as the so-
called IS-95 standard in North America. In the meantime, the system has been rebranded
as cdmaOne, and there are more than 100 millions of cdmaOne subscribers in more than
40 countries. Furthermore, cdmaOne has been the starting point for cdma2000, a third-
generation mobile communication system offering data rates of up to some Mbit/s. Another
very important third-generation system using CDMA is the Universal Mobile Telecommu-
nications System (UMTS); UMTS is based on system proposals developed within a number
of European research projects. Hence, CDMA is the dominating multiple access technique
for third generation mobile communication systems.

This book has both theoretical and practical aspects. It is intended to provide the reader
with a deeper understanding of the concepts of OFDM and CDMA. Thus, the theoretical
basics are analyzed and presented in some detail. Both of the concepts are widely applied
in practice. Therefore, a considerable part of the book is devoted to system design and
implementation aspects and to the presentation of existing communication systems.

The book is organized as follows. In Chapter 1, we give a brief overview of the basic
principles of digital communications and introduce our notation. We represent signals as
vectors, which often leads to a straightforward geometrical visualization of many seemingly
abstract mathematical facts. The concept of orthogonality between signal vectors is a key
to the understanding of OFDM and CDMA, and the Euclidean distance between signal
vectors is an important concept to analyze the performance of a digital transmission system.
Wireless communication systems often have to cope with severe multipath fading in a
mobile radio channel. Chapter 2 treats these aspects. First, the physical situation of multipath
propagation is analyzed and statistical models of the mobile radio channel are presented.
Then, the problems of digital transmission over these channels are discussed and the basic
principles of Chapter 1 are extended for those channels. Digital wireless communication
over fading channels is hardly possible without using some kind of error protection or
channel coding. Chapter 3 gives a brief overview of the most important channel coding
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techniques that are used in the above-mentioned communication systems. Convolutional
codes are typically used in these systems, and many of the systems have very closely
related (or even identical) channel coding options. Thus, the major part of Chapter 3 is
dedicated to convolutional codes as they are applied in these systems. A short presentation
of Reed–Solomon Codes is also included because they are used as outer codes in the DVB-
T system, together with inner convolutional codes. Chapter 4 is devoted to OFDM. First,
the underlying ideas and the basic principles are explained by using the basic principles
presented in Chapter 1. Then implementation aspects are discussed as well as channel
estimation and synchronization aspects that are relevant for the above-mentioned systems.
All these systems are designed for mobile radio channels and use channel coding. Therefore,
we give a comprehensive discussion of system design aspects and how to fit all these
things together in an optimal way for a given channel. Last but not least, the transmission
schemes for DAB, DVB-T and WLAN systems are presented and discussed. Chapter 5
is devoted to CDMA, focusing on its main application area – mobile communications.
This application area requires not only sophisticated digital transmission techniques and
receiver structures but also some additional methods as, for example, a soft handover, a
fast and exact power control mechanism as well as some special planning techniques to
achieve an acceptable radio network performance. Therefore, the first section of Chapter 5
discusses these methods and some general principles of CDMA and mobile radio networks.
CDMA receivers may be simple or quite sophisticated, thereby making use of knowledge
about other users. These theoretically involved topics are treated in the following three
subsections. As examples of CDMA applications we discuss the most important systems
already mentioned, namely, GPS, cdmaOne (IS-95), cdma2000 and UMTS with its two
transmission modes called Wideband CDMA and Time Division CDMA. Furthermore,
Wireless LAN systems conforming to the standard IEEE 802.11 are also included in this
section as some transmission modes of these systems are based on spreading.

This book is supported by a companion website on which lecturers and instructors
can find electronic versions of the figures contained within the book, a solutions manual
to the problems at the end of each chapter and also chapter summaries. Please go to
ftp://ftp.wiley.co.uk/pub/books/schulze





1

Basics of Digital Communications

1.1 Orthogonal Signals and Vectors

The concept of orthogonal signals is essential for the understanding of OFDM (orthogonal
frequency division multiplexing) and CDMA (code division multiple access) systems. In
the normal sense, it may look like a miracle that one can separately demodulate overlapping
carriers (for OFDM) or detect a signal among other signals that share the same frequency
band (for CDMA). The concept of orthogonality unveils this miracle. To understand these
concepts, it is very helpful to interpret signals as vectors. Like vectors, signals can be
added, multiplied by a scalar, and they can be expanded into a base. In fact, signals fit into
the mathematical structure of a vector space. This concept may look a little bit abstract.
However, vectors can be visualized by geometrical objects, and many conclusions can
be drawn by simple geometrical arguments without lengthy formal derivations. So it is
worthwhile to become familiar with this point of view.

1.1.1 The Fourier base signals

To visualize signals as vectors, we start with the familiar example of a Fourier series. For
reasons that will become obvious later, we do not deal with a periodic signal, but cut
off outside the time interval of one period of length T . This means that we consider a
well-behaved (e.g. integrable) real signal x(t) inside the time interval 0 ≤ t ≤ T and set
x(t) = 0 outside. Inside the interval, the signal can be written as a Fourier series

x(t) = a0

2
+

∞∑
k=1

ak cos

(
2π

k

T
t

)
−

∞∑
k=1

bk sin

(
2π

k

T
t

)
. (1.1)

The Fourier coefficients ak and bk are given by

ak = 2

T

∫ T

0
cos

(
2π

k

T
t

)
x(t) dt (1.2)
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2 BASICS OF DIGITAL COMMUNICATIONS

and

bk = − 2

T

∫ T

0
sin

(
2π

k

T
t

)
x(t) dt. (1.3)

These coefficients are the amplitudes of the cosine and (negative) sine waves at the respec-
tive frequencies fk = k/T . The cosine and (negative) sine waves are interpreted as a base
for the (well-behaved) signals inside the time interval of length T . Every such signal can
be expanded into that base according to Equation (1.1) inside that interval. The underlying
mathematical structure of the Fourier series is similar to the expansion of an N -dimensional
vector x ∈ RN into a base {vi}Ni=1 according to

x =
N∑

i=1

αivi . (1.4)

The base {vi}Ni=1 is called orthonormal if two different vectors are orthogonal (perpendi-
cular) to each other and if they are normalized to length one, that is,

vi · vk = δik,

where δik is the Kronecker Delta (δik = 1 for i = k and δik = 0 otherwise) and the dot
denotes the usual scalar product

x · y =
N∑

i=1

xiyi = xT y

for real N -dimensional vectors. In that case, the coefficients αi are given by

αi = vi · x.

For an orthonormal base, the coefficients αi can thus be interpreted as the projections of
the vector x onto the base vectors, as depicted in Figure 1.1 for N = 2. Thus, αi can be
interpreted as the amplitude of x in the direction of vi .

�

�

�
�
�
�
�
�
�
�
�
�
���

v1

v2

α1

α2

x

Figure 1.1 A signal vector in two dimensions.
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The Fourier expansion (1.1) is of the same type as the expansion (1.4), except that the
sum is infinite. For a better comparison, we may write

x(t) =
∞∑
i=0

αivi(t)

with the normalized base signal vectors vi(t) defined by

v0(t) =
√

1

T
�

(
t

T
− 1

2

)
and

v2k(t) =
√

2

T
cos

(
2π

k

T
t

)
�

(
t

T
− 1

2

)
for even i > 0 and

v2k+1(t) = −
√

2

T
sin

(
2π

k

T
t

)
�

(
t

T
− 1

2

)
for odd i with coefficients given by

αi =
∫ ∞

−∞
vi(t)x(t) dt,

that is,
α2k =

√
T /2ak

and
α2k+1 =

√
T /2bk.

Here we have introduced the notation �(x) for the rectangular function, which takes the
value one between x = −1/2 and x = 1/2 and zero outside. Thus, �(x − 1/2) is the
rectangle between x = 0 and x = 1. The base of signals vi(t) fulfills the orthonormality
condition ∫ ∞

−∞
vi(t)vk(t) dt = δik. (1.5)

We will see in the following text that this just means that the Fourier base forms a set of
orthogonal signals. With this interpretation, Equation (1.5) says that the base signals for
different frequencies are orthogonal and, for the same frequency fk = k/T , the sine and
cosine waves are orthogonal.

We note that the orthonormality condition and the formula for αi are very similar to
the case of finite-dimensional vectors. One just has to replace sums by integrals. A similar
geometrical interpretation is also possible; one has to regard signals as vectors, that is,
identify vi(t) with vi and x(t) with x. The interpretation of αi as a projection on vi is
obvious. For only two dimensions, we have x(t) = α1v1(t)+ α2v2(t) , and the signals can
be adequately described by Figure 1.1. In this special case, where v1(t) is a cosine signal
and v2(t) is a (negative) sine signal, the figure depicts nothing else but the familiar phasor
diagram. However, this is just a special case of a very general concept that applies to many
other scenarios in communications.
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Before we further discuss this concept for signals by introducing a scalar product for
signals, we continue with the complex Fourier transform. This is because complex signals
are a common tool in communications engineering.

Consider a well-behaved complex signal s(t) inside the time interval [0, T ] that vanishes
outside that interval. The complex Fourier series for that signal can be written as

s(t) =
∞∑

k=−∞
αkvk(t) (1.6)

with the (normalized) complex Fourier base functions

vk(t) =
√

1

T
exp

(
j2π

k

T
t

)
�

(
t

T
− 1

2

)
. (1.7)

The base functions are orthonormal in the sense that∫ ∞

−∞
v∗i (t)vk(t) dt = δik. (1.8)

holds. The Fourier coefficient αk will be obtained from the signal by the Fourier analyzer.
This is a detection device that performs the operation

αk =
∫ ∞

−∞
v∗i (t)s(t) dt. (1.9)

This coefficient is the complex amplitude (i.e. amplitude and phase) of the wave at frequency
fk . It can be interpreted as the component of the signal vector s(t) in the direction of the
base signal vector vk(t), that is, we interpret frequency components as vector components
or vector coordinates.

Example 1 (OFDM Transmission) Given a finite set of complex numbers sk that carry
digitally encoded information to be transmitted, we may use the complex Fourier series for
this purpose and transmit the signal

s(t) =
K∑

k=0

skvk(t). (1.10)

The transmitter performs a Fourier synthesis. In an ideal transmission channel with perfect
synchronization and no disturbances, the transmit symbols sk can be completely recovered at
the receiver by the Fourier analyzer that plays the role of the detector. One may send K new
complex symbols during every time slot of length T by performing the Fourier synthesis for
that time slot. At the receiver, the Fourier analysis is done for every time slot. This method
is called orthogonal frequency division multiplexing (OFDM). This name is due to the fact
that the transmit signals form an orthogonal base belonging to different frequencies fk .
We will see in the following text that other – even more familiar – transmission setups use
orthogonal bases.



BASICS OF DIGITAL COMMUNICATIONS 5

1.1.2 The signal space

A few mathematical concepts are needed to extend the concept of orthogonal signals to
other applications and to represent the underlying structure more clearly. We consider (real
or complex) signals of finite energy, that is, signals s(t) with the property∫ ∞

−∞
|s(t)|2 dt < ∞. (1.11)

The assumption that our signals should have finite energy is physically reasonable and leads
to desired mathematical properties. We note that this set of signals has the property of a
vector space, because finite-energy signals can be added or multiplied by a scalar, resulting
in a finite-energy signal. For this vector space, a scalar product is given by the following:

Definition 1.1.1 (Scalar product of signals) In the vector space of signals with finite en-
ergy, the scalar product of two signals s(t) and r(t) is defined as

〈s, r〉 =
∫ ∞

−∞
s∗(t)r(t) dt. (1.12)

Two signals are called orthogonal if their scalar product equals zero. The Euclidean norm
of the signal is defined by ‖s‖ = √〈s, s〉, and ‖s‖2 = 〈s, s〉 is the signal energy. ‖s − r‖2 is
called the squared Euclidean distance between s(t) and r(t).

We add the following remarks:

• This scalar product has a structure similar to the scalar product of vectors s =
(s1, . . . , sK)T and r = (r1, . . . , rK)T in a K-dimensional complex vector space given
by

s†r =
K∑

k=1

s∗k rk,

where the dagger (†) means conjugate transpose. Comparing this expression with the
definition of the scalar product for continuous signals, we see that the sum has to be
replaced by the integral.

• It is a common use of notation in communications engineering to write a function with
an argument for the function, that is, to write s(t) for a signal (which is a function
of the time) instead of s, which would be the mathematically correct notation. In
most cases, we will use the engineer’s notation, but we write, for example, 〈s, r〉 and
not 〈s(t), r(t)〉, because this quantity does not depend on t . However, sometimes we
write s instead of s(t) when it makes the notation simpler.

• In mathematics, the vector space of square integrable functions (i.e. finite-energy
signals) with the scalar product as defined above is called the Hilbert space L2(R).
It is interesting to note that the Hilbert space of finite-energy signals is the same as
the Hilbert space of wave functions in quantum mechanics. For the reader who is
interested in details, we refer to standard text books in mathematical physics (see e.g.
(Reed and Simon 1980)).
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Without proof, we refer to some mathematical facts about that space of signals with finite
energy (see e.g. (Reed and Simon 1980)).

• Each signal s(t) of finite energy can be expanded into an orthonormal base, that is,
it can be written as

s(t) =
∞∑

k=1

αkvk(t) (1.13)

with properly chosen orthonormal base signals vk(t). The coefficients can be obtained
from the signal as

αk = 〈vk, s〉 . (1.14)

The coefficient αk can be interpreted as the component of the signal vector s in the
direction of the base vector vk .

• For any two finite energy signals s(t) and r(t), the Schwarz inequality

|〈s, r〉| ≤ ‖s‖ ‖r‖
holds. Equality holds if and only if s(t) is proportional to r(t).

• The Fourier transform is well defined for finite-energy signals. Now, let s(t) and r(t)

be two signals of finite energy, and S(f ) and R(f ) denote their Fourier transforms.
Then,

〈s, r〉 = 〈S, R〉
holds. This fact is called Plancherel theorem or Rayleigh theorem in the mathematical
literature (Bracewell 2000). The above equality is often called Parseval’s equation .
As an important special case, we note that the signal energy can be expressed either
in the time or in the frequency domain as

E =
∫ ∞

−∞
|s(t)|2 dt =

∫ ∞

−∞
|S(f )|2 df.

Thus, |S(f )|2 df is the energy in an infinitesimal frequency interval of width df ,
and |S(f )|2 can be interpreted as the spectral density of the signal energy.

In communications, we often deal with subspaces of the vector space of finite-energy
signals. The signals of finite duration form such a subspace. An appropriate base of that
subspace is the Fourier base. The Fourier series is then just a special case of Equation
(1.13) and the Fourier coefficients are given by Equation (1.14). Another subspace is the
space of strictly band-limited signals of finite energy. From the sampling theorem we know
that each such signal s(t) that is concentrated inside the frequency interval between −B/2
and B/2 can be written as a series

s(t) =
∞∑

k=−∞
s(k/B)sinc (Bt − k) (1.15)

with sinc (x) = sin (πx)/(πx).
We define a base as follows:
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Definition 1.1.2 (Normalized sinc base) The orthonormal sinc base for the bandwidth B/2
is given by the signals

ψk(t) =
√

B sinc (Bt − k) . (1.16)

We note that
√

B ψ0(t) is the impulse response of an ideal low-pass filter of bandwidth
B/2, so that the sinc base consists of delayed and normalized versions of that impulse
response. From the sampling theorem, we conclude that these ψk(t) are a base of the
subspace of strictly band-limited functions. By looking at them in the frequency domain,
we easily see that they are orthonormal. From standard Fourier transform relations, we see
that the Fourier transform �k(f ) of ψk(t) is given by

�k(f ) = 1√
B

� (f/B) e−j2πkf/B.

Thus, �k(f ) is just a Fourier base function for signals concentrated inside the frequency
interval between −B/2 and B/2. This base is known to be orthogonal. Thus, we rewrite
the statement of the sampling theorem as the expansion

s(t) =
∞∑

k=−∞
skψk(t)

into the orthonormal base ψk(t). From the sampling theorem, we know that

sk = 1√
B

s(k/B)

holds. The Fourier transform of this signal is given by

S(f ) =
∞∑

k=−∞
sk�k(f ).

This is just a Fourier series for the spectral function that is concentrated inside the frequency
interval between −B/2 and B/2. The coefficients are given by

sk = 〈ψk, s〉 = 〈�k, S〉 .
This relates the coefficients of a Fourier expansion of a signal S(f ) in the frequency domain
to the samples of the corresponding signal s(t) in the time domain. As we have seen from
this discussion, the Fourier base and the sinc base are related to each other by interchanging
the role of time and frequency.

1.1.3 Transmitters and detectors

Any linear digital transmission setup can be characterized as follows: As in the OFDM
Example 1, for each transmission system we have to deal with a synthesis of a signal (at
the transmitter site) and the analysis of a signal (at the receiver site). Given a finite set
{sk}Kk=1 of coefficients that carry the information to be transmitted, we choose a base gk(t)

to transmit the information by the signal

s(t) =
K∑

k=1

skgk(t). (1.17)
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Definition 1.1.3 (Transmit base, pulses and symbols) In the above sum, each signal gk(t)

is called a transmit pulse, the set of signals {gk(t)}Kk=1 is called the transmit base, and sk

is called a transmit symbol. The vector s = (s1, . . . , sK)T is called the transmit symbol
vector.

Note that in the terminology of vectors, the transmit symbols sk are the coordinates of the
signal vector s(t) corresponding to the base gk(t).

If the transmit base is orthonormal, then, for an ideal transmission channel, the infor-
mation symbols sk can be recovered completely as the projections onto the base. These
scalar products

sk = 〈gk, s〉 =
∫ ∞

−∞
g∗k (t)s(t) dt (1.18)

can also be written as

sk =
[∫ ∞

−∞
g∗k (τ − t)s(τ ) dτ

]
t=0

= [
g∗k (−t) ∗ s(t)

]
t=0 . (1.19)

This means that the detection of the information sk transmitted by gk(t) is the output of the
filter with impulse response g∗k (−t) sampled at t = 0. This filter is usually called matched
filter, because it is matched to the transmit pulse g(t).

Definition 1.1.4 (Detector and matched filter) Given a transmit pulse g(t), the corres-
ponding matched filter is the filter with the impulse response g∗(−t). The detector Dg for
g(t) is defined by the matched filter output sampled at t = 0, that is, by the detector output
Dg[r] given by

Dg[r] =
∫ ∞

−∞
g∗(t)r(t) dt (1.20)

for any receive signal r(t). If two transmit pulses g1(t) and g2(t) are orthogonal, then the
corresponding detectors are called orthogonal.

Thus, a detector extracts a (real or complex) number. This number carries the informa-
tion. The detector may be visualized as depicted in Figure 1.2.

The matched filter has an interesting property: if a transmit pulse is corrupted by white
(not necessarily Gaussian) noise, then the matched filter is the one that maximizes the
signal-to-noise ratio (SNR) for t = 0 at the receiver end (see Problem 6).

We add the following remarks:

• For a finite-energy receive signal r(t), Dg[r] = 〈g, r〉 holds. However, we usually
have additive noise components in the signal at the receiver, which are typically not
of finite energy, so that the scalar product is not defined.

� �r(t) Dg Dg[r]

Figure 1.2 Detector.
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�

� �

�r(t)

g(t)

Dg

Dr

Dg[r]

Dr[g]

Figure 1.3 Input and detector pulses.

• The detector Dg[r] compares two signals: in principle, it answers the question ‘How
much of r(t) looks like g(t)?’. The role of receive signal and the pulse can be
interchanged according to

Dg[r] = D∗
r [g],

as Figure 1.3 depicts.

• The Fourier analyzer given by Equation (1.9) is a set of orthogonal detectors. The
sinc base is another set of orthogonal detectors.

• For an orthonormal base, the energy of the transmit signal equals the energy of the
vector of transmit symbols, that is,

E =
∫ ∞

−∞
|s(t)|2 dt =

K∑
k=1

|sk|2,

or more compactly written as E = ‖s‖2 = ‖s‖2 . For the proof, we refer to Problem 1.

The following example shows that the familiar Nyquist pulse shaping can be understood
as an orthogonality condition.

Example 2 (The Nyquist Base) Consider a transmission pulse g(t) with the property∫ ∞

−∞
g∗(t)g(t − kTS) dt = δ[k] (1.21)

for a certain time interval TS , that is, the pulse g(t) and its versions time-shifted by kTS build
an orthonormal base. This property also means that the pulse shape h(t) = g∗(−t) ∗ g(t) is
a so-called Nyquist pulse that satisfies the first Nyquist criterion h(kTS) = δ[k] and allows a
transmission that is free of intersymbol interference (ISI). For the Fourier transforms G(f )

and H(f ) of g(t) and h(t), the relation H(f ) = |G(f )|2 holds. Therefore, g(t) is often
called a sqrt-Nyquist pulse. If we define gk(t) = g(t − kTS) as the pulse transmitted at time
kTS , the condition (1.21) is equivalent to

〈gi, gk〉 = δik. (1.22)
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We then call the base formed by the signals gk(t) a (sqrt-) Nyquist base. Equation (1.22)
means that if the pulse is transmitted at time kTS , the detector for the pulse transmitted at
time iTS has output zero unless i = k. Thus, the pulses do not interfere with each other.

We note that in practice the pulse g(t) is the impulse response of the transmit filter, that
is, the pulse-shaping filter that will be excited by the transmit symbols sk . The corresponding
matched filter g∗(−t) is the receive filter. Its output will be sampled once in every symbol
clock TS to recover the symbols sk . The impulse response of the whole transmission chain
h(t) = g∗(−t) ∗ g(t) must be a Nyquist pulse to ensure symbol recovery without intersymbol
interference.

The Nyquist criterion
h(kTS) = δ[k]

in the time domain can be equivalently written in the frequency domain as

∞∑
k=−∞

H

(
f − k

TS

)
= TS,

where H(f ) is the Fourier transform of h(t). Familiar Nyquist pulses like raised cosine
(RC) pulses are usually derived from this criterion in the frequency domain (see e.g. (Proakis
2001)). In the following text, we shall show a simple method to construct Nyquist pulses
in the time domain.

Obviously, every pulse of the shape

h(t) = u(t) · sinc (t/TS)

satisfies the Nyquist criterion in the time domain. u(t) should be a function that improves
the decay of the pulse. In the frequency domain, this is equivalent to

H(f ) = TS U(f ) ∗� (f TS) ,

where U(f ) is the Fourier transform of u(t). The convolution with U(f ) smoothens the
sharp flank of the rectangle. Writing out the convolution integral leads to

H(f ) = TS

(
V

(
f + 1

2TS

)
− V

(
f − 1

2TS

))
with

V (f ) =
∫ f

−∞
U(x) dx.

V (f ) is a function that describes the flank of the filter given by H(f ).

One possible choice for U(f ) is

U(f ) = π

2α
TS cos

(π

α
f TS

)
�

(
1

α
f TS

)
, 0 ≤ α ≤ 1

with a constant α between that we call the rolloff factor . The corresponding time domain
function obviously given by

u(t) = π

4

(
sinc

(
α

t

TS

+ 1

2

)
+ sinc

(
α

t

TS

− 1

2

))
,
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which equals the expression

u(t) = cos (παt/TS)

1 − (2αt/TS)
2 .

The filter flank is obtained by integration as

V (f ) =


0 : f TS ≤ −α/2
1

2

(
1 + sin

(π

α
f TS

))
: −α/2 ≤ f TS ≤ α/2

1 : f TS ≥ α/2.

(1.23)

The shape of the filter is then given by the familiar expression

H(f ) =


TS : 2|f |TS ≤ 1 − α

TS

2

(
1 − sin

(
π

α

(
|f |TS − 1

2

)))
: 1 − α ≤ 2|f |TS ≤ 1 + α

0 : 2|f |TS ≥ 1 + α.

(1.24)

The corresponding pulse is

h(t) = sinc (t/TS) · cos (παt/TS)

1 − (2αt/TS)
2 . (1.25)

Other Nyquist pulses than these so-called raised cosine (RC) pulses are possible. A
Gaussian

u(t) = exp
(− (βt/TS)

2)
guarantees an exponential decay in both the time and the frequency domain. β is a shaping
parameter similar to the rolloff factor α. The Fourier transform U(f ) of u(t) is given by

U(f ) =
√

πT 2
S /β2 exp

(− (πTSf/β)2) ,

and the filter flank is

V (f ) = 1

2

(
1 + erf

(
π

β
TSf

))
.

The filter curve is then given by

H(f ) = 1

2
TS

(
erf

(
π

β

(
TSf + 1

2

))
− erf

(
π

β

(
TSf − 1

2

)))
. (1.26)

The RC pulse and the Gaussian Nyquist pulse

h(t) = sinc (t/TS) · exp
(− (βt/TS)

2) (1.27)

have a very similar shape if we relate α and β in such a way that their flanks V (f ) have
the same first derivative at f = 0. This is the case for

β = 2α

π
.
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Figure 1.4 RC and Gaussian Nyquist filter shape for α = 0.2.
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Figure 1.5 RC and Gaussian Nyquist filter shape for α = 0.2 (decibel scale).
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Figure 1.6 RC and Gaussian Nyquist pulse shape for α = 0.2.

For this case and α = 0.2, both filter shapes are depicted in Figure 1.4, and with a
logarithmic scale, in Figure 1.5. The Gaussian shaping is slightly broader at the outer
flanks, but the difference is very small even on the logarithmic scale. Figure 1.6 shows the
corresponding pulses. The Gaussian pulse has slightly smaller amplitudes, but the difference
is very small. Of course, both curves differ significantly in their asymptotic behavior (which
can be seen on a logarithmic scale), but this is in a region where pulses are practically
zero.

1.1.4 Walsh functions and orthonormal transmit bases

In this subsection, we introduce the Walsh functions that play an important role in CDMA
signaling. We regard them as an example to discuss an orthonormal base that can be
interpreted as a base of signals or as a base in an Euclidean space.

The M ×M Walsh–Hadamard (WH) matrices HM , where M is a power of two, are
defined by H1 = 1 and the recursive relation

HM =
[

HM/2 HM/2

HM/2 −HM/2

]
.

For example, the matrix H4 is given by

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
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The column vectors of the WH matrix are pairwise orthogonal but not normalized to one.
We may divide them by their length

√
M to obtain the normalized WH vectors gk related

to HM by √
M HM = G = [

g1, . . . , gM

]
. (1.28)

The column vectors are orthonormal, that is,

gi · gk = δik.

For a given value of M , the Walsh functions gk(t), k = 1, . . . , M are functions defined on
a time interval t ∈ [0, TS] that are piecewise constant on time sub-intervals (called chips) of
duration Tc = TS/M . The sign of the function on the ith time sub-interval (i = 1, . . . , M)
is given by the ith component hik of the kth column vector in the WH matrix HM . The
absolute value is normalized to 1/

√
TS to obtain an orthonormal signal base, that is,

〈gi, gk〉 = δik.

Outside the interval t ∈ [0, TS], the Walsh functions vanish. For M = 8, the Walsh functions
are depicted in Figure 1.7.

We can write the normalized Walsh functions as

gk(t) =
M∑
i=1

gikci(t), (1.29)

where gik = hik/
√

M , and the chip pulse ci(t) is defined by ci(t) = 1/
√

Tc in the ith chip
interval and zero outside. Obviously

〈ci, ck〉 = δik

holds, that is, the chip pulses are orthonormal. Given the transmit base {gk(t)}Mk=1, we may
transmit information carried by the symbols {sk}Mk=1 by using the signal

s(t) =
M∑

k=1

skgk(t). (1.30)

Instead of {gk(t)}Mk=1, we can use the equivalent discrete base {gk}Mk=1 and transmit the
vector

s =
M∑

k=1

skgk. (1.31)

This representation allows the geometrical interpretation of the transmit signal as a vector
s in an M-dimensional Euclidean space. The transmit symbols sk are the components of
the vector s in the orthonormal Walsh–Hadamard base {gk}Mk=1, which is a rotated version
of the canonical Euclidean base e1 = (1, 0, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . . , eM =
(0, . . . , 0, 1)T with the rotation given by the matrix G. Equation (1.29) is the coordinate
transform corresponding to the base transform from the base of chip pulses to the base of
normalized Walsh functions. Thus, the chip pulse base can be identified with the canonical
Euclidean base. For an ideal channel, the components sk of the vector s can be completely
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Figure 1.7 Walsh functions for M = 8.

recovered by projecting the receive vector on the base vectors gk. For M = 2, the situation
is depicted in Figure 1.8.

The orthogonality of the base can be interpreted as the existence of M independent
channels without cross talk as illustrated in Figure 1.9 for M = 2. The orthogonal detectors
Dgi

correspond to the projections on the base vectors. If the symbols {sk}Mk=1 are part of the
same data stream, M symbols are transmitted in parallel via M channels during the time
interval TS . Orthogonality means absence of ISI between these channels. Another possibility
is to use the M channels to transmit M independent data streams, each of them with the
rate of one symbol transmitted during the time interval TS . In that case, the orthogonality
is used for multiplexing or multiple access, as it is the situation in CDMA (code division
multiple access). Each Walsh function corresponds to another code that may be allocated to
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Figure 1.8 The orthonormal Walsh–Hadamard base.
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Figure 1.9 Orthogonal channels.

a certain user in a mobile radio scenario. The downlink of the Qualcomm CDMA system
IS-95 (now called cdmaOne, see Subsection 5.5.6) is an example for such a setup (see the
discussion in Chapter 5).

Walsh functions may also be used for orthogonal signaling. In that case the term Walsh
modulation is often used. This transmission scheme is very robust against noise, but it leads
to a significant spreading of the bandwidth. For CDMA systems, both properties together
are desirable. This modulation scheme is used in the uplink of the Qualcomm system IS-95.
In a setup with orthogonal Walsh modulation, only one base pulse gk(t) will be transmitted
during the time period TS . One can transmit log2(M) bits during TS by selecting one of
the M base pulses. The transmit signal during this time period is simply given by

s(t) =
√

ES gk(t)
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or
s =

√
ES gk,

where
√

ES is the energy of the signal in the time period of length TS .
We note that all the properties discussed in this subsection hold not only for the

piecewise constant chip pulse but also for any set of chip pulses ci(t) that satisfies the
orthonormality condition 〈ci, ck〉 = δik , and the base signal given by Equation (1.30) holds.
One may, for example, choose any Nyquist base for the pulses ci(t) with smoother pulse
shape than the rectangular pulses in order to get better spectral properties. It is also possible
to use the Fourier base pulse for ci(t) in Equation (1.30), resulting in multicarrier (MC-)
CDMA. Then, a chip may be interpreted as a frequency pulse rather than a time pulse.

1.1.5 Nonorthogonal bases

Orthonormal transmit bases have desirable properties for simple detection. However, some-
times it is necessary to deal with nonorthogonal bases. This may be the case when a
transmission channel corrupts the orthogonality. For example, the channel may introduce
ISI, so the ISI-free Nyquist base used for transmission will be convolved by the channel
impulse response resulting in nonorthogonal base vectors. In such a case, the channel must
be regarded as a part of the transmit setup.

Now, let the pulses bk(t) be such a base of nonorthogonal, but linearly independent,
transmit pulses and let xk, k = 1, . . . , K be the finite set of transmit symbols. The trans-
mitted signal is then given by

s(t) =
K∑

k=1

xkbk(t). (1.32)

There exists an orthonormal base {ψk}Kk=1 for the finite-dimensional vector space spanned
by the transmit pulses bk(t), which can be obtained using the Gram–Schmidt algorithm.
The two bases are related by the base transform

bk(t) =
K∑

i=1

bikψi(t) (1.33)

with bik = 〈ψi, bk〉. We take the scalar product of Equation (1.32) with the vector ψi(t)

and obtain

si =
K∑

k=1

xkbik,

where we have defined si = 〈ψi, s〉. This is a coordinate transform of the coordinates xk of
the signal corresponding to the nonorthogonal base bk(t) to the coordinates sk corresponding
to the orthonormal base ψk(t) by writing

s(t) =
K∑

k=1

skψk(t).

Defining x = (x1, . . . , xk)
T and s = (s1, . . . , sk)

T , the coordinate transform can be written
in the more compact matrix notation as

s = Bx
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with the matrix B of entries bik . Because this coordinate transform is invertible, the transmit
symbols xk can be recovered from the sk by x = B−1s. Thus, in a channel without noise, the
receiver may use the detector outputs corresponding to the orthonormal base and transform
them by using the inverse matrix. However, in a noisy channel, this inversion is not optimal
for the detection, because it causes noise enhancement.

For a receive signal r(t), the detector outputs in the nonorthogonal base

yk = Dbk
[r] =

∫ ∞

−∞
b∗k (t)r(t) dt

are related to the detector outputs

rk = Dψk
[r] =

∫ ∞

−∞
ψ∗

k (t)r(t) dt

in the orthogonal base by

yk =
K∑

i=1

b∗ikri

or, in matrix notation, by
y = B†r.

Because this transform is invertible, the detector outputs rk can be recovered from the yk

by r = (
B†
)−1

y.

1.2 Baseband and Passband Transmission

It is convenient to describe a digitally modulated passband signal by a so-called complex
equivalent low-pass or complex baseband signal. Let s̃(t) be a strictly band-limited1 pass-
band signal of bandwidth B centered around a carrier frequency f0. We have chosen the
sign ˜ for the signal s̃(t) to indicate a wave for the RF signal. It is possible to completely
describe s̃(t) by its equivalent low-pass signal s(t) of bandwidth B/2. Both signals are
related by

s̃(t) =
√

2
{s(t)ej2πf0t }. (1.34)

This one-to-one correspondence between both signals s̃(t) and s(t) is easy to visualize
if we look at them in the frequency domain. Writing S̃(f ) and S(f ) for their respective
Fourier transforms, Equation (1.34) is equivalent to

S̃(f ) = 1√
2

(
S (f − f0)+ S∗ (−f − f0)

)
.

This is because, in Equation (1.34), multiplication with the exponential corresponds to a
frequency shift by f0, and taking the real part corresponds (up to a factor of 2) to adding

1We note that strictly band-limited signals do not exist in reality. This is due to the fact that a strictly band-
limited signal cannot be time limited, which should be the case for signals in reality. However, it is mathematically
convenient to make this assumption, always keeping in mind that this is only an approximation and the accuracy
of this model has to be discussed for any practical case.
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Figure 1.10 Equivalence of (a) passband and (b) complex baseband representation of the
same signal.

the negative spectral component (see Problem 2). Figure 1.10 shows the energy spectral
densities |S̃(f )|2 and |S(f )|2 for both signals. We have chosen a normalization such that
the total energy of both signals is the same, that is,∫ ∞

−∞
|s(t)|2 dt =

∫ ∞

−∞
|s̃(t)|2 dt

and ∫ ∞

−∞
|S(f )|2 df =

∫ ∞

−∞
|S̃(f )|2 df.

It is obvious from the figure that both signals S̃(f ) and S(f ) are only located at different
frequencies, but they carry the same information. The signal S(f ) can be obtained from
S̃(f ) by a frequency shift by −f0 followed by an ideal low-pass filter of bandwidth B/2,
and a scaling by the factor

√
2. Denoting the low-pass filter impulse response by 	(t), this

operation can be written in the time domain as

s(t) = 	(t) ∗
[√

2 exp (−j2πf0t) s̃(t)
]
. (1.35)

We note that the upconversion from s(t) to s̃(t) as described by Equation (1.34) doubles
the bandwidth of the two components (real and imaginary part) of the baseband signal,
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resulting in one signal of bandwidth B instead of two (real) signals of bandwidth B/2. We
write s(t) = x(t)+ jy(t) and call the real part, x(t), the I- (inphase) and the imaginary
part y(t) the Q- (quadrature) component. Both components together are called quadrature
components. Equation (1.34) can then be written as

s̃(t) =
√

2 x(t) cos (2πf0t)−
√

2 y(t) sin (2πf0t) , (1.36)

which is the superposition of the cosine-modulated I-component and the (negative) sine-
modulated Q-component. It is an important fact that the passband of width B is shared by
two separable channels: one is the cosine and the other is the sine channel. We shall see
that the I-component modulated by the cosine is orthogonal to the Q-component modulated
by the sine. Thus, they behave like two different channels (without cross talk) that can be
individually used for transmission. We will further see that both the I-modulation and the
Q-modulation leave scalar products invariant. To make the following treatment simpler, we
first introduce a formal shorthand notation for the quadrature modulator and demodulator.

1.2.1 Quadrature modulator

First we define the quadrature modulator as given by Equation (1.36), but separately for
both components.

Definition 1.2.1 (I- and Q-modulator) Let x(t) and y(t) be some arbitrary real signals.
Let 	(t) denote the impulse response of an ideal low-pass filter of bandwidth B/2. Let
f0 > B/2. We then define the modulated signals x̃(t) and ỹ(t) as

x̃(t) =
√

2 cos (2πf0t) [	(t) ∗ x(t)] (1.37)

and
ỹ(t) = −

√
2 sin (2πf0t)

[
	(t) ∗ y(t)

]
. (1.38)

We write x̃(t) = I {x(t)} and ỹ(t) = Q{y(t)} or, shorthand, x̃ = Ix and ỹ = Qy and call the
time-variant systems given by I and Q the I-modulator and the Q-modulator, respectively.
The time-variant system that converts the pair of signals x(t) and y(t) to the passband signal
s̃ = Ix +Qy is called quadrature modulator.

In a practical setup, the signals x(t) and y(t) are already low-pass signals, and thus the
convolution with 	(t) at the input is obsolete. For mathematical convenience, we prefer to
define this time-variant system for arbitrary (not only low-pass) signals as inputs.

The following theorem states the orthogonality of the outputs of the I- and Q-modulator
and that both modulators leave scalar products invariant for band-limited signals.

Theorem 1.2.2 Let x(t) and y(t) be arbitrary real signals of finite energy and let x̃(t) =
I {x(t)} and ỹ(t) = Q{y(t)}. Then,

〈x̃, ỹ〉 = 0. (1.39)

Furthermore, let ũ(t) = I {u(t)} and ṽ(t) = Q{v(t)} be two other signals of finite energy. If
x, y, u, v are real low-pass signals strictly band-limited to B/2, then

〈ũ, x̃〉 = 〈u, x〉 , 〈ṽ, ỹ〉 = 〈v, y〉 (1.40)

holds. As a special case, we observe that both I- and Q-modulator leave the signal energy
unchanged, that is, ‖x‖2 = ‖x̃‖2 and ‖y‖2 = ‖ỹ‖2.
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Figure 1.11 Equivalence of baseband and passband detection.

The proof of the theorem is left to Problem 3. Equation (1.39) states that the sine and the
cosine channels are orthogonal. In particular, it means that a detector for a Q-modulated sine
wave detects zero if only an I-modulated cosine wave has been transmitted and vice versa.
For strictly band-limited baseband signals, Equation (1.40) states the following equivalence
between baseband and passband transmission: we consider the detector for the baseband
pulse u(t) and denote it shorthand by D = Du. For the passband detector corresponding
to the I-modulated pulse ũ(t) = I {u(t)}, we write shorthand D̃ = Dũ. Then, as depicted in
Figure 1.11, the baseband detector output for the baseband signal x(t) is the same as the
passband detector output for the I-modulated signal x̃(t) = I {x(t)}:

D̃[x̃] = D[x].

The same holds for the Q-modulation.
Now let s(t) = x(t)+ jy(t) and z(t) = u(t)+ jv(t) be strictly band-limited complex

low-pass signals. The corresponding passband signals can be written as s̃ = Ix +Qy and
z̃ = Iu+Qv. Their scalar product is

〈z̃, s̃〉 = 〈Iu, Ix〉 + 〈Qv, Qy〉 + 〈Iu, Qy〉 + 〈Qv, Ix〉 .
As a consequence of the above theorem, the last two terms vanish and the first two can be
converted, resulting in

〈z̃, s̃〉 = 〈u, x〉 + 〈v, y〉 .
We compare this expression with the scalar product of the two complex baseband signals

〈z, s〉 = 〈u, x〉 + 〈v, y〉 + j (〈u, y〉 − 〈v, x〉)
and find the relation

〈z̃, s̃〉 = 
{〈z, s〉}. (1.41)

We note that there is a similar relation between the scalar products of vectors in the complex
N -dimensional vector space CN and in the real 2N -dimensional space R2N . Let s = x + jy
and z = u + jv be vectors in CN and define the real vectors

s̃ =
[

x
y

]
, z̃ =

[
u
v

]
.
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Then,
z̃ · s̃ = u · x + v · y

and
z†s = u · x + v · y + j (u · y − v · x)

and thus,
z̃ · s̃ = 
{z†s} (1.42)

hold.

1.2.2 Quadrature demodulator

Consider again the detector D = Du and the detector D̃ = Dũ for an I-modulated pulse
ũ(t) = I {u(t)}. The detector output to an input signal s̃(t) is given by D̃[s̃]. We may ask
for a time-variant system ID called I-demodulator that maps s̃(t) to a low-pass signal
x(t) = ID {s̃(t)} which is defined by the property

D[x] = D̃[s̃],

(see Figure 1.12). Using simple integral manipulations, one can derive the explicit form of
the I- (and similarly for the Q-) demodulator from this condition (see Problem 4). It turns
out that ID and QD are just given by the real and imaginary part of the Equation (1.35).
We summarize the result in the following definition and theorem.

Definition 1.2.3 (I- and Q-demodulator) Let s̃(t) be a real signal. Let 	(t) denote the
impulse response of an ideal low-pass filter of bandwidth B/2. Let f0 > B/2. We define the
demodulated signals x(t) and y(t) as

x(t) = 	(t) ∗
[√

2 cos (2πf0t) s̃(t)
]

(1.43)

and
y(t) = −	(t) ∗

[√
2 sin (2πf0t) s̃(t)

]
(1.44)

�

� �

�

� x(t) D D[x]

D̃

=

s̃(t) D̃[s̃]

I-DEMOD

Figure 1.12 Characterization of the I-demodulator.
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and write x(t) = ID{s̃(t)} and y(t) = QD{s̃(t)} or, using shorthand, x = IDs̃ and y =
QDs̃. We call the time-variant systems given by ID and QD the I-demodulator and the Q-
demodulator, respectively. The time-variant system given by ID + jQD that converts s̃ to
the complex signal

s(t) = 	(t) ∗
[√

2 exp (−j2πf0t) s̃(t)
]

(1.45)

is called quadrature demodulator.

Theorem 1.2.4 For real signals of finite energy, the I- and Q-demodulator have the follow-
ing properties:

〈Iu, s̃〉 = 〈
u, IDs̃

〉
, 〈Qv, s̃〉 = 〈

v, QDs̃
〉
, (1.46)

QDIx = 0, IDQy = 0.

Conversely, Equation (1.46) uniquely determines the I- and Q-demodulation given by the
above definition. Furthermore, let x(t) and y(t) be real signals of finite energy that are
strictly band-limited to B/2. Then,

IDIx = x, QDQy = y

holds. Thus, for band-limited signals, the I- (Q-)demodulator inverts the I- (Q-)modulator.

We may also write Equation (1.46) in the detector notation as

Dũ[s̃] = Du[IDs̃], Dṽ[s̃] = Dv[QDs̃] (1.47)

with ũ(t) = I {u(t)} and ṽ(t) = Q{v(t)}. Without going into mathematical details, we
note that if the detection pulses u(t) and v(t) are sufficiently well behaved, these
equations – written as integrals – still make sense if the input signal is no longer of fi-
nite energy. This is the case, for example, for a sine wave, for a Dirac impulse, or for white
noise, which is the topic of the next section.

1.3 The AWGN Channel

In reality, transmission is always corrupted by noise. The usual mathematical model is the
AWGN (Additive White Gaussian Noise) channel. It is a very good model for the physical
reality as long as the thermal noise at the receiver is the only source of disturbance. Nev-
ertheless, because of its simplicity, it is often used to model man-made noise or multiuser
interference. The AWGN channel model can be characterized as follows:

• The noise w(t) is an additive random disturbance of the useful signal s(t), that is,
the receive signal is given by

r(t) = s(t)+w(t).

• The noise is white, that is, it has a constant power spectral density (psd). The one-
sided psd is usually denoted by N0, so N0/2 is the two-sided psd, and BN0 is the noise
inside the (noise) bandwidth B, see part (a) of Figure 1.13. For thermal resistor noise,
N0 = kT0, where k is the Boltzmann constant and T0 is the absolute temperature. The
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Figure 1.13 Equivalence of (a) wideband and (b) complex baseband AWGN for band-
limited detection.

unit of N0 is [W/Hz], which is the same as the unit [J] for the energy. Usually, N0 is
written as dBm/Hz. For T0 = 290 K, N0 ≈ −174 dBm/Hz. However, this is only the
ideal physical limit for an ideal receiver. In practice, some decibels according to the
so-called noise figure have to be added. Typically, N0 will be a value slightly above
−170 dBm/Hz.

• The noise is a stationary and zero mean Gaussian random process. This means that
the output of every (linear) noise measurement is a zero mean Gaussian random
variable that does not depend on the time instant when the measurement is done.

One must keep in mind that the AWGN model is a mathematical fiction, because it implies
that the total power (i.e. the psd integrated over all frequencies) is infinite. Thus, a time
sample of the white noise has infinite average power, which is certainly not a physically
reasonable property. It is known from statistical physics that the thermal noise density
decreases exponentially at (very!) high frequencies. But to understand the physical situation
in communications engineering it is better to keep in mind that every receiver limits the
bandwidth as well as every physical noise measurement. So it makes sense to think of the
noise process to be white, but it cannot be sampled directly without an input device. Each
input device filters the noise and leads to a finite power.
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1.3.1 Mathematical wideband AWGN

The mathematical AWGN random process w(t) can be characterized as a zero mean Gaus-
sian process with the autocorrelation function

E{w(t1)w(t2)} = N0

2
δ(t1 − t2). (1.48)

We see that for t1 = t2, this expression is not well defined, because δ(t) is not well defined
for t = 0. As for the δ-impulse, we must understand white noise as a generalized function
that cannot be sampled directly, but it can be measured by a proper set of linear detectors.
These linear detectors are the sampled outputs of linear filters. Thus, formally we can write
the output of the detector for the (real) signal φ(t) of such a white noise measurement as
Dφ[w] = [φ(−t) ∗ w(t)]t=0 or

Dφ[w] =
∫ ∞

−∞
φ(t)w(t) dt, (1.49)

that is, φ(−t) is the impulse response of the measuring device. In the mathematical litera-
ture, φ(t) is called a test function (Reed and Simon 1980). Note that the integral in Equation
(1.49) formally looks like the scalar product 〈φ, w〉. Keeping in mind that the scalar product
is well defined only for finite-energy signals, we have avoided such a notation. We can now
characterize the white noise by the statistical properties of the outputs of linear detectors.

Definition 1.3.1 (White Gaussian Noise) White Gaussian noise w(t) is a random signal,
characterized by the following properties: the output of a (finite-energy) linear detector
Dφ[w] is a Gaussian random variable with zero mean. Any two detector outputs Dφ1 [w]
and Dφ2 [w] are jointly Gaussian with cross-correlation

E
{Dφ1 [w]Dφ2 [w]

} = N0

2
〈φ1, φ2〉 . (1.50)

Since Gaussian random variables are completely characterized by their second-order
properties (Papoulis 1991), all the statistical properties of w(t) are fixed by this definition.
Using the integral representation (1.49), it is easy to show that the characterization by
detector outputs (1.50) is equivalent to (1.48) (see Problem 5).

Note that the AWGN outputs of orthogonal detectors are uncorrelated and thus, as
Gaussian random variables, even statistically independent. In many transmission setups as
discussed in the above examples, the transmission base and therefore the corresponding
detectors are orthogonal. Thus, for an orthonormal transmission base, the detector outputs
are both ISI-free and independent. Orthogonality thus means complete separability, which
will lead us to the concept of sufficient statistics (see Subsection 1.4.1).

1.3.2 Complex baseband AWGN

Up to now, we have only considered wideband white Gaussian noise. The question now is
what happens at the receiver when this additive disturbance of the useful signal is converted
(together with the signal) to the complex baseband.
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Consider a baseband detector for the real low-pass signal φ(t) and the detector that
corresponds to the I-modulated version for the signal, φ̃ = Iφ. We know from Equation
(1.47) that the output of the detector for φ̃ for any signal r is the same as the output of φ

for the I-demodulated version IDr of that signal. This same property also holds for white
noise, that is, Dφ̃[w] = Dφ[IDw] . Similarly, for the Q-demodulated noise, we have the

property Dψ̃ [w] = Dψ [QDw] with ψ̃ = Qψ . Using this fact, together with the definition
of AWGN and Theorem 1.2.2, we get the following Proposition.

Proposition 1.3.2 Let w(t) be additive white Gaussian noise and its I- and Q-demodulated
versions be denoted by IDw and QDw. Let φ1 and φ2 be two strictly band-limited low-pass
detectors. Then, the following properties hold:

E
{Dφ1 [IDw]Dφ2 [IDw]

} = N0

2
〈φ1, φ2〉 (1.51)

E
{Dφ1 [QDw]Dφ2 [QDw]

} = N0

2
〈φ1, φ2〉 (1.52)

E
{Dφ1 [IDw]Dφ2 [QDw]

} = 0. (1.53)

The last equation means that the I- and the Q-demodulator produce statistically inde-
pendent outputs2. Since both demodulators include a low-pass filter, both IDw and QDw

are well-behaved random processes having finite average power BN0/2. The samples (with
sampling frequency B) of the low-pass white noise are given by the outputs of the detec-
tor corresponding to 	(t), the impulse response of the ideal low-pass filter of bandwidth
B/2. Thus, the low-pass white noise can be characterized by its detector outputs and by its
samples as well.

We now define the complex baseband noise process n(t) as the IQ-demodulated white
noise

n = (ID + jQD)w. (1.54)

From the above proposition, we conclude

E{Dφ1 [n]D∗
φ2

[n]} = N0 〈φ1, φ2〉 (1.55)

and
E{Dφ1 [n]Dφ2 [n]} = 0. (1.56)

Complex random variables are characterized by these two types of covariances. Here the
second one, the so-called pseudocovariance, has vanished. Gaussian processes with this
property are called proper Gaussian. Nonproper Gaussian random variables have undesired
properties for describing communication systems (Neeser and Massey 1993). The autocor-
relation properties of n(t) can simply be obtained by setting φ1(t) = 	t1(t) = 	(t − t1)

and φ2(t) = 	t2(t) = 	(t − t2), where 	(t) is the impulse response of the ideal low-
pass filter of bandwidth B/2. Using

〈
	t1 , 	t2

〉 = 	(t1 − t2) we easily derive the following
properties

E{n(t1) n∗(t2)} = N0	(t1 − t2) (1.57)

2Equivalently, we may say that the I- and the Q-component of the noise are statistically independent.
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and

E{n(t1) n(t2)} = 0. (1.58)

n(t) has similar properties as w(t). It is white, but restricted to a bandwidth B, and the
constant psd is N0 instead of N0/2. This can be understood because n(t) is complex and
the total power is the sum of the powers of the real and the imaginary part. Passband and
complex baseband white noise psd is depicted in Figure 1.13.

Instead of dealing with complex white Gaussian noise with psd N0 band-limited to B/2,
many authors regard it as convenient to perform the limit B →∞, so that Equation (1.57)
turns into

E{n(t1) n∗(t2)} = N0δ(t1 − t2),

that is, n(t) becomes complex infinite-bandwidth white noise with one- sided psd N0 (see
e.g. (Kammeyer 2004; Proakis 2001)). This is reasonable if we think of downconverting
with a low-pass filter of bandwidth much larger than the signal bandwidth. We wish to point
out that the limit B →∞, that is, the wideband complex white noise does not reflect the
physical reality but is only a mathematically convenient model. The equivalence between
passband and baseband is only true for band-limited signals, especially B/2 < f0 must
hold.

Proposition 1.3.3 (Baseband stochastic processes) Consider a (real-valued) stochastic
process z̃(t) that influences the useful signal in the air. We want to characterize the IQ-
demodulator output

z(t) = 	(t) ∗
[√

2 exp (−j2πf0t) z̃(t)
]

by its second-order properties, that is, an autocorrelation function. Here 	(t) = B sinc (Bt)

is the impulse response of the ideal low-pass filter of bandwidth B/2. We may think of white
noise w(t) as such a process, but also of an RF carrier that is broadened by the Doppler
effect in a mobile radio environment (see Chapter 2). The following treatment is very general.
We only assume that the random RF signal z̃(t) has zero mean and it is wide-sense stationary
(WSS), which means that the autocorrelation function

R̃(τ ) = E {z̃(t + τ )z̃(t)}

of the process does not depend on t . We want to show that

E
{
z(t + τ )z∗(t)

} = 	(τ) ∗
[
2 exp (−j2πf0τ ) R̃(τ )

]
(1.59)

and

E {z(t + τ )z(t)} = 0. (1.60)

Obviously, for the special case of AWGN, this property is just given by the two Equations
(1.57, 1.58) above.
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To prove Equation (1.59), we apply the convolution in the definition of z(t)

E
{
z(t + τ )z∗(t)

}
= 2 E

{∫ ∞

−∞
dt1	(t + τ − t1)e

−j2πf0t1 z̃(t1)

∫ ∞

−∞
dt2	(t − t2)e

j2πf0t2 z̃(t2)

}
= 2 E

{∫ ∞

−∞
dt1

∫ ∞

−∞
dt2	(t + τ − t1)	(t − t2)e

−j2πf0(t1−t2)R̃(t1 − t2)

}
= 2 E

{∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
df 	(t + τ − t1)	(t − t2)e

j2π(f−f0)(t1−t2)S̃(f )

}
,

where we have expressed R̃(τ ) by means of its Fourier transform, that is, the power spectral
density S̃(f ) of the process. We have used the simpler notation

∫
dx
∫

dyf (x, y) instead of∫ (∫
f (x, y) dy

)
dx. Substituting the time integration variables according to t ′1 = t + τ − t1

and t ′2 = t − t2 and noting that t1 − t2 = τ − t ′1 + t ′2, we get the expression

2 E

{∫ ∞

−∞
df S̃(f )

∫ ∞

−∞
dt ′1	(t ′1)e

j2π(f−f0)(τ−t ′1)

∫ ∞

−∞
dt ′2	(t ′2)e

+j2π(f−f0)t ′2
}

= 2 E

{∫ ∞

−∞
df ej2π(f−f0)τ S̃(f ) �

(
f − f0

B

)}
= 2 E

{∫ ∞

−∞
df ej2πf τ S̃(f + f0) �

(
f

B

)}
,

which completes the proof. We note that

S(f ) = 2 S̃(f + f0) �

(
f

B

)
,

the power spectral density of the process in the complex baseband, is the Fourier transform
of the complex baseband autocorrelation function

R(τ ) = 	(τ) ∗
[
2 exp (−j2πf0τ ) R̃(τ )

]
.

The proof of Equation (1.60) is similar. Applying again the convolution in the definition
of z(t) leads to

E {z(t + τ )z(t)}

= 2 E

{∫ ∞

−∞
dt1	(t + τ − t1)e

−j2πf0t1 z̃(t1)

∫ ∞

−∞
dt2	(t − t2)e

−j2πf0t2 z̃(t2)

}
= 2 E

{∫ ∞

−∞
dt1

∫ ∞

−∞
dt2	(t + τ − t1)	(t − t2)e

−j2πf0(t1+t2)R̃(t1 − t2)

}
= 2 E

{∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
df 	(t + τ − t1)	(t − t2)e

−j2πf0(t1+t2)ej2πf (t1−t2)S̃(f )

}
.
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We now substitute the time integration variables according to t ′1 = t + τ − t1 and t ′2 = t − t2
and get the expression

2 E

{∫ ∞

−∞
df S̃(f )

∫ ∞

−∞
dt ′1	(t ′1)e

j2π(f−f0)(t+τ−t ′1)

∫ ∞

−∞
dt ′2	(t ′2)e

−j2π(f+f0)(t ′2−t)

}
= 2 E

{∫ ∞

−∞
df S̃(f ) ej2π(f−f0)(t+τ) �

(
f − f0

B

)
ej2π(f+f0)t �

(
f + f0

B

)}
.

We note that

�

(
f − f0

B

)
�

(
f + f0

B

)
= 0,

which completes the proof.

1.3.3 The discrete AWGN channel

Consider a complex baseband signal s(t) band limited to B/2 to be transmitted at the carrier
frequency f0. The corresponding passband transmit signal s̃(t) given by Equation (1.34) is
corrupted by AWGN, resulting in the receive signal

r̃(t) = s̃(t)+w(t).

The IQ-demodulated complex baseband receive signal is then given by

r(t) = s(t)+ n(t), (1.61)

where n(t) is complex baseband AWGN as introduced in the preceding subsection. Let
{gk(t)}Kk=1 be an orthogonal transmit base, for example, a Nyquist base, and

s(t) =
K∑

k=1

skgk(t). (1.62)

Let nk = Dgk
[n] be the detector outputs of the noise for the detector gk(t). The detector

outputs at the receiver rk = Dgk
[r] are then given by

rk = sk + nk. (1.63)

We conclude from Equations (1.55) and (1.56) that nk is discrete complex AWGN charac-
terized by

E{ni n∗k} = N0δik (1.64)

and
E{ni nk} = 0. (1.65)

For nk = xk + j yk, these two equations are equivalent to

E{xi xk} = N0

2
δik, (1.66)

E{yi yk} = N0

2
δik, (1.67)
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and
E{xi yk} = 0. (1.68)

The random variables xk have the joint pdf

p(x1, . . . , xK) = 1
√

2πσ 2
K

exp

(
− 1

2σ 2

(
x2

1 + · · · + x2
K

))
for σ 2 = N0/2. The random variables yk have the same pdf. Defining the vectors

x = (x1, . . . , xK)T , y = (y1, . . . , yK)T

results in

p(x) = 1
√

2πσ 2
K

exp

(
− 1

2σ 2
‖x‖2

)
,

p(y) = 1
√

2πσ 2
K

exp

(
− 1

2σ 2
‖y‖2

)
.

The joint pdf for the xk, yk is the product of both. We define the complex noise vector

n = (n1, . . . , nK)T ,

and write, with p(n) = p(x, y) = p(x)p(y),

p(n) = 1
√

2πσ 2
2K

exp

(
− 1

2σ 2
‖n‖2

)
.

Using the vector notation s = (s1, . . . , sK)T and r = (r1, . . . , rK)T for the transmit symbols
and the detector outputs, we write the discrete AWGN transmission channel (1.63) as

r = s + n. (1.69)

If the symbols sk are real numbers, one can depict this as a transmission mission of a vector
in the K-dimensional real Euclidean space with the canonical base e1 = (1, 0, 0, . . . , 0)T ,
e2 = (0, 1, 0, . . . , 0)T , . . . . For complex sk, one may think of a 2K-dimensional real Eu-
clidean space, because it has the same distance structure as a K-dimensional complex
space.

We have assumed that the transmit base is orthonormal. This is not a fundamental
restriction, because one can always perform a base transform to an orthonormal base. In
that case, the symbols si are related to the original transmit symbols xk by a transform
s = Bx, where B is the matrix that describes the coordinate transform.

1.4 Detection of Signals in Noise

1.4.1 Sufficient statistics

For the sake of simplicity, consider the model of Equations (1.63) and (1.69) for only
three real dimensions as illustrated in Figure 1.14. Assume that two real symbols s1, s2
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Dimension 3

Dimensions 1 and 2

r

s

n

(r1, r2)

r3

Figure 1.14 The noise in dimension 3 is irrelevant for the decision.

chosen from a finite alphabet are transmitted, while nothing is transmitted (s3 = 0) in the
third dimension. At the receiver, the detector outputs r1, r2, r3 for three real dimensions
are available. We can assume that the signal and the noise are statistically independent.
We know that the Gaussian noise samples n1, n2, n3, as outputs of orthogonal detectors,
are statistically independent. It follows that the detector outputs r1, r2, r3 are statistically
independent. We argue that only the receiver outputs for those dimensions where a symbol
has been transmitted are relevant for the decision and the others can be ignored because
they are statistically independent, too. In our example, this means that we can ignore the
receiver output r3. Thus, we expect that

P (s1, s2|r1, r2, r3) = P (s1, s2|r1, r2) (1.70)

holds, that is, the probability that s1, s2 was transmitted conditioned by the observation of
r1, r2, r3 is the same as conditioned by the observation of only r1, r2. We now show that this
equation follows from the independence of the detector outputs. From Bayes rule (Feller
1970), we get

P (s1, s2|r1, r2, r3) = p(s1, s2, r1, r2, r3)

p(r1, r2, r3)
, (1.71)

where p(a, b, . . .) denotes the joint pdf for the random variable a, b, . . . . Since r3 is
statistically independent from the other random variables s1, s2, r1, r2, it follows that

P (s1, s2|r1, r2, r3) = p(s1, s2, r1, r2)p(r3)

p(r1, r2)p(r3)
. (1.72)

From

P (s1, s2|r1, r2) = p(s1, s2, r1, r2)

p(r1, r2)
, (1.73)

we obtain the desired property given by Equation (1.70). Note that, even though this property
is seemingly intuitively obvious, we have made use of the fact that the noise is Gaussian.
White noise outputs of orthogonal detectors are uncorrelated, but the Gaussian property
ensures that they are statistically independent, so that their pdfs can be factorized.
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The above argument can obviously be generalized to more dimensions. We only need
to detect in those dimensions where the signal has been transmitted. The corresponding
detector outputs are then called a set of sufficient statistics. For a more detailed discussion,
see (Benedetto and Biglieri 1999; Blahut 1990; Wozencraft and Jacobs 1965).

1.4.2 Maximum likelihood sequence estimation

Again we consider the discrete-time model of Equations (1.63) and (1.69) and assume a
finite alphabet for the transmit symbols sk , so that there is a finite set of possible transmit
vectors s. Given a receive vector r, we ask for the most probable transmit vector ŝ, that is,
the one for which the conditional probability P (s|r) that s was transmitted given that r has
been received becomes maximal. The estimate of the symbol is

ŝ = arg max
s

P (s|r). (1.74)

From Bayes law, we have
P (s|r)p(r) = p(r|s)P (s), (1.75)

where p(r) is the pdf for the receive vector r, p(r|s) is the pdf for the receive vector r
given a fixed transmit vector s, and P (s) is the a priori probability for s. We assume that
all transmit sequences have equal a priori probability. Then, from

p(r|s) ∝ exp

(
− 1

2σ 2
‖r − s‖2

)
, (1.76)

we conclude that
ŝ = arg min

s
‖r − s‖2 . (1.77)

Thus, the most likely transmit vector minimizes the squared Euclidean distance. From

‖r − s‖2 = ‖r‖2 + ‖s‖2 − 2
 {s†r
}
,

we obtain the alternative condition

ŝ = arg max
s

(

 {s†r

}− 1

2
‖s‖2

)
. (1.78)

The first (scalar product) term can be interpreted as a cross correlation between the transmit
and the receive signal. The second term is half the signal energy. Thus, the most likely
transmit signal is the one that maximizes the cross correlation with the receive signal,
thereby taking into account a correction term for the energy. If all transmit signals have
the same energy, this term can be ignored.

The receiver technique described above, which finds the most likely transmit vector, is
called maximum likelihood sequence estimation (MLSE). It is of fundamental importance
in communication theory, and we will often need it in the following chapters.

A continuous analog to Equation (1.78) can be established. We recall that the continuous
transmit signal s(t) and the components sk of the discrete transmit signal vector s are related
by

s(t) =
K∑

k=1

skgk(t),
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and the continuous receive signal r(t) and the components rk of the discrete transmit signal
vector r are related by

rk = Dgk
[r] =

∫ ∞

−∞
g∗k (t)r(t) dt.

From these relations, we easily conclude that

s†r =
∫ ∞

−∞
s∗(t)r(t) dt

holds. Equation (1.78) is then equivalent to

ŝ = arg max
s

(

 {Ds[r]} − 1

2
‖s‖2

)
(1.79)

for finding the maximum likelihood (ML) transmit signal ŝ(t). In the first term of this
expression,

Ds[r] =
∫ ∞

−∞
s∗(t)r(t) dt

means that the detector outputs (= sampled MF outputs) for all possible transmit signals
s(t) must be taken. For all these signals, half of their energy

‖s‖2 =
∫ ∞

−∞
|s(t)|2 dt

must be subtracted from the real part of the detector output to obtain the likelihood of each
signal.

Example 3 (Walsh Demodulator) Consider a transmission with four possible transmit
vectors s1, s2, s3 and s4 given by the columns of the matrix

[s1, s2, s3, s4] =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,

each being transmitted with the same probability. This is just orthogonal Walsh modulation
for M = 4. We ask for the most probable transmit vector ŝ on the condition that the vector r =
(1.5, −0.8, 1.1, −0.2)T has been received. Since all transmit vectors have equal energy,
the most probable transmit vector is the one that maximizes the scalar product with r. We
calculated the scalar products as

s1 · r = 2.0, s2 · r = 3.2, s3 · r = 0.4, s4 · r = 1.4.

We conclude that s2 has most probably been transmitted.
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1.4.3 Pairwise error probabilities

Consider again a discrete AWGN channel as given by Equation (1.69). We write

r = s + nc,

where nc is the complex AWGN vector. For the geometrical interpretation of the following
derivation of error probabilities, it is convenient to deal with real vectors instead of complex
ones. By defining

y =
[ 
 {r}
� {r}

]
, x =

[ 
 {s}
� {s}

]
,

and

n =
[ 
 {nc}
� {nc}

]
,

we can investigate the equivalent discrete real AWGN channel

y = x + n. (1.80)

Consider the case that x has been transmitted, but the receiver decides for another symbol
x̂. The probability for this event (excluding all other possibilities) is called the pairwise
error probability (PEP) P (x �→ x̂). Define the decision variable

X = ‖y − x‖2 − ‖y − x̂‖2

as the difference of squared Euclidean distances. If X > 0, the receiver will take an erro-
neous decision for x̂. Then, using simple vector algebra (see Problem 7), we obtain

X = 2

[(
y − x + x̂

2

)
(x̂ − x)

]
.

The geometrical interpretation is depicted in Figure 1.15. The decision variable is (up
to a factor) the projection of the difference between the receive vector y and the center
point 1

2 (x + x̂) between the two possible transmit vectors on the line between them. The
decision threshold is a plane perpendicular to that line. Define d = 1

2 (x̂ − x) as the difference
vector between x̂ and the center point, that is, d = ‖d‖ is the distance of the two possible
transmit signals from the threshold. Writing y = x + n and using x = 1

2 (x + x̂)− d, the
scaled decision variable X̃ = 1

4d
X can be written as

X̃ = (−d+ n) · d
d

.

It can easily be shown that

n = n · d
d

,

the projection of the noise onto the relevant dimension, is a Gaussian random variable
with zero mean and variance σ 2 = N0/2 (see Problem 8). Since X̃ = −d + n, the error
probability is given by

P (X̃) > 0) = P (n > d).
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x̂

x

n

d

Decision threshold

n

yX̃

Figure 1.15 Decision threshold.

This equals

P (n > d) = Q

(
d
σ

)
, (1.81)

where the Gaussian probability integral is defined by

Q(x) = 1√
2π

∫ ∞

x

e−
1
2 ξ2

dξ

The Q-function defined above can be expressed by the complementary Gaussian error
function erfc(x) = 1 − erf(x), where erf(x) is the Gaussian error function, as

Q (x) = 1

2
erfc

(
x√
2

)
. (1.82)

The pairwise error probability can then be expressed by

P (x �→ x̂) = 1

2
erfc

(√
1

4N0
‖x − x̂‖2

)
. (1.83)

Since the norms of complex vectors and the equivalent real vectors are identical, we can
also write

P (s �→ ŝ) = 1

2
erfc

(√
1

4N0
‖s − ŝ‖2

)
. (1.84)

For the continuous signal,

s(t) =
K∑

k=1

skgk(t), (1.85)
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this is equivalent to

P (s(t) �→ ŝ(t)) = 1

2
erfc

(√
1

4N0

∫ ∞

−∞
|s(t)− ŝ(t)|2 dt

)
. (1.86)

It has been pointed out by Simon and Divsalar (Simon and Divsalar 1998) that, for
many applications, the following polar representation of the complementary Gaussian error
function provides a simpler treatment of many problems, especially for fading channels.

Proposition 1.4.1 (Polar representation of the Gaussian erfc function)

1

2
erfc(x) = 1

π

∫ π/2

0
exp

(
− x2

sin2 θ

)
dθ. (1.87)

Proof. The idea of the proof is to view the one-dimensional problem of pairwise error
probability as two-dimensional and introduce polar coordinates. AWGN is a Gaussian ran-
dom variable with mean zero and variance σ 2 = 1. The probability that the random variable
exceeds a positive real value, x, is given by the Gaussian probability integral

Q(x) =
∫ ∞

x

1√
2π

exp

(
−1

2
ξ 2
)

dξ. (1.88)

This probability does not change if noise of the same variance is introduced in the second
dimension. The error threshold is now a straight line parallel to the axis of the second
dimension, and the probability is given by

Q(x) =
∫ ∞

x

(∫ ∞

−∞

1

2π
exp

(
−1

2
(ξ 2 + η2)

)
dη

)
dξ. (1.89)

This integral can be written in polar coordinates (r, φ) as

Q(x) =
∫ π/2

−π/2

(∫ ∞

x/ cos φ

r

2π
exp

(
−1

2
r2
)

dr

)
dφ. (1.90)

The integral over r can immediately be solved to give

Q(x) =
∫ π/2

−π/2

1

2π
exp

(
−1

2

x2

cos2 φ

)
dφ. (1.91)

A simple symmetry argument now leads to the desired form of 1
2 erfc(x) = Q(

√
2x).

An upper bound of the erfc function can easily be obtained from this expression by
upper bounding the integrand by its maximum value,

1

2
erfc(x) ≤ 1

2
e−x2

. (1.92)

Example 4 (PEP for Antipodal Modulation) Consider the case of only two possible
transmit signals s1(t) and s2(t) given by

s1,2(t) = ±
√

ES g(t),
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where g(t) is a pulse normalized to ‖g‖2 = 1, and ES is the energy of the transmitted
signal. To obtain the PEP, according to Equation (1.86), we calculate the squared Euclidean
distance

‖s1 − s2‖2 =
∫ ∞

−∞
|s1(t)− s2(t)|2 dt

between two possible transmit signals s1(t) and s2(t) and obtain

‖s1 − s2‖2 =
∥∥∥√Es g −

(
−
√

Es g
)∥∥∥2 = 4ES.

The PEP is then given by Equation (1.86) as

P (s1(t) �→ s2(t)) = 1

2
erfc

(√
ES

N0

)
.

One can transmit one bit by selecting one of the two possible signals. Therefore, the energy
per bit is given by Eb = ES leading to the PEP

P (s1(t) �→ s2(t)) = 1

2
erfc

(√
Eb

N0

)
.

Example 5 (PEP for Orthogonal Modulation) Consider an orthonormal transmit base
gk(t), k = 1, . . . , M . We may think of the Walsh base or the Fourier base as an example,
but any other choice is possible. Assume that one of the M possible signals

sk(t) =
√

ES gk(t)

is transmitted, where ES is again the signal energy. In case of the Walsh base, this is just
Walsh modulation. In case of the Fourier base, this is just (orthogonal) FSK (frequency shift
keying). To obtain the PEP, we have to calculate the squared Euclidean distance

‖si − sk‖2 =
∫ ∞

−∞
|si(t)− sk(t)|2 dt

between two possible transmit signals si(t) and sk(t) with i �= k. Because the base is or-
thonormal, we obtain

‖si − sk‖2 = ES ‖gi − gk‖2 = 2ES.

The PEP is then given by

P (si(t) �→ sk(t)) = 1

2
erfc

(√
ES

2N0

)
.

One can transmit log2(M) bits by selecting one of M possible signals. Therefore, the energy
per bit is given by Eb = ES/ log2(M), leading to the PEP

P (si(t) �→ sk(t)) = 1

2
erfc

(√
log2(M)

Eb

2N0

)
.
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Concerning the PEP, we see that for M = 2, orthogonal modulation is inferior compared
to antipodal modulation, but it is superior if more than two bits per signal are transmitted.
The price for that robustness of high-level orthogonal modulation is that the number of the
required signal dimensions and thus the required bandwidth increases exponentially with the
number of bits.

1.5 Linear Modulation Schemes

Consider some digital information that is given by a finite bit sequence. To transmit this
information over a physical channel by a passband signal s̃(t) = 
 {s(t)ej2πf0t

}
, we need

a mapping rule between the set of bit sequences and the set of possible signals. We call
such a mapping rule a digital modulation scheme. A linear digital modulation scheme is
characterized by the complex baseband signal

s(t) =
K∑

k=1

skgk(t),

where the information is carried by the complex transmit symbols sk . The modulation
scheme is called linear, because this is a linear mapping from the vector s = (s1, . . . , sK)T

of transmit symbols to the continuous transmit signal s(t). In the following subsections, we
will briefly discuss the most popular signal constellations for the modulation symbols sk that
are used to transmit information by choosing one of M possible points of that constellation.
We assume that M is a power of two, so each complex symbol sk carries log2(M) bits of the
information. Although it is possible to combine several symbols to a higher-dimensional
constellation, the following discussion is restricted to the case where each symbol sk is
modulated separately by a tuple of m = log2(M) bits. The rule how this is done is called
the symbol mapping and the corresponding device is called the symbol mapper. In this
section, we always deal with orthonormal base pulses gk(t). Then, as discussed in the
preceding sections, we can restrict ourselves to a discrete-time transmission setup where
the complex modulation symbols

sk = xk + jyk

are corrupted by complex discrete-time white Gaussian noise nk .

1.5.1 Signal-to-noise ratio and power efficiency

Since we have assumed orthonormal transmit pulses gk(t), the corresponding detector out-
puts are given by

rk = sk + nk,

where nk is discrete complex AWGN. We note that, because the pulses are normalized
according to ∫ ∞

−∞
g∗i (t)gk(t) dt = δik,

the detector changes the dimension of the signal; the squared continuous signals have the
dimension of a power, but the squared discrete detector output signals have the dimension
of an energy.
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The average signal energy is given by

E = E

{∫ ∞

−∞
|s(t)|2 dt

}
= E

{
K∑

k=1

|sk|2
}
= K E

{|sk|2
}
,

where we have assumed that all the K symbols sk have identical statistical properties. The
energy per symbol ES = E/K is given by

ES = E
{|sk|2

}
.

The energy of the detector output of the noise is

EN = E
{|nk|2

} = N0,

so the signal-to-noise ratio, SNR, defined as the ratio between the signal energy and the
relevant noise, results in

SNR = ES

N0
.

When thinking of practical receivers, it may be confusing that a detector changes the
dimension of the signal, because we have interpreted it as a matched filter together with
a sampling device. To avoid this confusion, we may introduce a proper constant. For
signaling with the Nyquist base, gk(t) = g(t − kTS), one symbol sk is transmitted in each
time interval of length TS . We then define the matched filter by its impulse response

h(t) = 1√
TS

g∗(−t)

so that the matched filter output h(t) ∗ r(t) has the same dimension as the input signal r(t).
The samples of the matched filter output are given by

1√
TS

rk = 1√
TS

sk + 1√
TS

nk.

Then, the power of the sampled useful signal is given by

PS = E

{∣∣∣∣ 1√
TS

sk

∣∣∣∣2
}
= ES

TS

,

and the noise power is

PN = E

{∣∣∣∣ 1√
TS

nk

∣∣∣∣2
}
= N0

TS

.

Thus, the SNR may equivalently be defined as

SNR = PS

PN

,

which is the more natural definition for practical measurements.
The SNR is a physical quantity that can easily be measured, but it does not say any-

thing about the power efficiency. To evaluate the power efficiency, one must know the
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average energy Eb per useful bit at the receiver that is needed for a reliable recovery of
the information. If log2(M) useful bits are transmitted by each symbol sk, the relation

ES = log2(M) Eb

holds, which relates both quantities by

SNR = log2(M)
Eb

N0
.

We note the important fact that Eb = PS/Rb is just the average signal power PS needed
per useful bit rate Rb. Therefore, a modulation that needs less Eb/N0 to achieve a reliable
transmission is more power efficient .

In the following sections, we discuss the most popular symbol mappings and their
properties.

1.5.2 ASK and QAM

For M-ASK (amplitude-shift keying), a tuple of m = log2(M) bits will be mapped only
on the real part xk of sk , while the imaginary part yk will be set to zero. The M points
will be placed equidistant and symmetrically about zero. Denoting the distance between
two points by 2d, the signal constellation for 2-ASK is given by xl ∈ {±d}, for 4-ASK by
xl ∈ {±d,±3d} and for 8-ASK by xl ∈ {±d,±3d,±5d,±7d} . We consider Gray mapping,
that is, two neighboring points differ only in one bit. In Figure 1.16, the M-ASK signal
constellations are depicted for M = 2, 4, 8.

Assuming the same a priori probability for each signal point, we easily calculate the
symbol energies as ES = E

{|sk|2
} = d2, 5d2, 21d2 for these constellations, leading to the

respective energies per bit Eb = ES/ log2(M) = d2, 2.5d2, 7d2.
Adjacent points have the distance 2d, so the distance to the corresponding decision

threshold is given by d. If a certain point of the constellation is transmitted, the probability
that an error occurs because the discrete noise with variance σ 2 = N0/2 (per real dimension)
exceeds the distance to the decision threshold with distance d is given by

Perr = Q

(
d
σ

)
= 1

2
erfc

√ d2

N0

 , (1.93)

01

00011110

010 011 001 000

0 +d–7d –5d –3d –d +3d +5d +7d

111101100 110

Figure 1.16 M-ASK Constellation for M = 2, 4, 8.
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see Equation (1.81). For the two outer points of the constellation, this is just the probability
that a symbol error occurs. In contrast, for M > 2, each inner point has two neighbors,
leading to a symbol error probability of 2Perr for these points. Averaging over the symbol
error probabilities for all points of each constellation, we get the symbol error probabilities

P 2−ASK
S = Q

(
d
σ

)
, P 4−ASK

S = 3

2
Q

(
d
σ

)
, P 8−ASK

S = 7

4
Q

(
d
σ

)
.

For Gray mapping, we can make the approximation that each symbol error leads only to
one bit error. Thus, we readily obtain the bit error probabilities expressed by the bit energy
for M = 2, 4, 8 as

P 2−ASK
b = 1

2
erfc

(√
Eb

N0

)
,

and

P 4−ASK
b ≈ 3

8
erfc

(√
2

5

Eb

N0

)
, (1.94)

P 8−ASK
b ≈ 7

24
erfc

(√
1

7

Eb

N0

)
.

For ASK constellations, only the I-component, corresponding to the cosine wave, will
be modulated, while the sine wave will not be present in the passband signal. Since, in
general, every passband signal of a certain bandwidth may have both components, 50% of
the bandwidth resources remain unused. A simple way to use these resources is to apply
the same ASK modulation for the Q-component too. We thus have complex modulation
symbols sk = xk + jyk , where both xk and yk are taken from an M-ASK constellation. The
result is a square constellation of M2 signal points in the complex plane, as depicted in
Figure 1.17 for M2 = 64. We call this an M2-QAM (quadrature amplitude modulation).
The bit error performance of M2-QAM as a function of Eb/N0 is the same as for M-ASK,
that is,

P
4−QAM
b = 1

2
erfc

(√
Eb

N0

)
,

P
16−QAM
b ≈ 3

8
erfc

(√
2

5

Eb

N0

)
(1.95)

and

P
64−QAM
b ≈ 7

24
erfc

(√
1

7

Eb

N0

)
.

This is because the I- and the Q-component can be regarded as completely independent
channels that do not influence each other. Thus, M2-QAM can be regarded as M-ASK
multiplexed to the orthogonal I- and Q-channel. Note that the bit error rates are not identical
if they are plotted as a function of the signal-to-noise ratio. The bit error probabilities of
Equations (1.95) are depicted in Figure 1.18. For high values of Eb/N0, 16-QAM shows
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Figure 1.17 The 64-QAM constellation.

0 5 10 15 20
10–6

10–5

10–4

10–3

10–2

10–1

100

Eb/N0 [dB]

P
b

4-QAM 16-QAM 64-QAM

Figure 1.18 Bit error probabilities for 4-QAM, 16-QAM, and 64-QAM.
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a performance loss of 10 lg(2.5) ≈ 4 dB compared to 4-QAM, while 64-QAM shows a
performance loss of 10 lg(7) ≈ 8.5 dB. This is the price that has to be paid for transmitting
twice, respectively three times the data rate in the same bandwidth.

We finally note that nonsquare QAM constellations are also possible like, for example,
8-QAM, 32-QAM and 128-QAM, but we will not discuss these constellations in this text.

1.5.3 PSK

For M-PSK (phase-shift keying), the modulation symbols sk can be written as

sk =
√

ES ejφk ,

that is, all the information is contained in the M possible phase values φk of the symbol.
Two adjacent points of the constellation have the phase difference 2π/M . It is a matter of
convenience whether φ = 0 is a point of the constellation or not. For 2-PSK – often called
BPSK (binary PSK) – the phase may take the two values φk ∈ {0, π} and thus 2-PSK is
just the same as 2-ASK. For 4-PSK – often called QPSK (quaternary PSK) – the phase
may take the four values φk ∈

{±π
4 ,± 3π

4

}
and thus 4-PSK is just the same as 4-QAM.

The constellation for 8-PSK with Gray mapping, as an example, is depicted in Figure 1.19.
The approximate error probabilities for M-PSK with Gray mapping can be easily ob-

tained. Let the distance between two adjacent points be 2d. From elementary geometrical
consideration, we get

d =
√

ES sin
( π

M

)
.

For M > 2, each constellation point has two nearest neighbors. All the other signal points
corresponding to symbol errors lie beyond the two corresponding decision thresholds. By

000

001010

110

111 100

I

Q

2d

101

011

Figure 1.19 Signal constellation for 8-PSK.
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a simple union-bound argument, we find that the symbol error probability can be tightly
upper bounded by

PS ≤ 2Q

(
d
σ

)
= erfc

(√
sin2

( π

M

) ES

N0

)
.

By assuming that only one bit error occurs for each symbol error and taking into account
the relation ES = log2(M) Eb, we get the approximate expression

Pb ≈ 1

log2(M)
erfc

(√
log2(M) sin2

( π

M

) Eb

N0

)
(1.96)

for the bit error probability. The bit error probabilities of Equation (1.96) are de-
picted in Figure 1.20. For high values of Eb/N0, 8-PSK shows a performance loss of
10 lg(3 sin2(π/8)) ≈ 3.6 dB compared to 4-PSK, while 16-PSK shows a performance loss
of 10 lg(4 sin2(π/16)) ≈ 8.2 dB. Thus, higher-level PSK modulation leads to a considerable
loss in power efficiency compared to higher-level QAM at the same spectral efficiency.

1.5.4 DPSK

For DPSK (differential PSK), the phase difference between two adjacent transmit symbols
carries the information, not the phase of the transmit symbol itself. This means that for a
sequence of transmit symbols

sk =
√

ES ejφk ,
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Figure 1.20 Bit error probabilities for 4-PSK, 8-PSK and 16-PSK.
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the information is carried by
�φk = φk − φk−1,

and
zk = ej�φk

is a symbol taken from an M-PSK constellation with energy one. The transmit symbols are
then given by the recursion

sk = zk · sk−1

with a start symbol s0 that may have some arbitrary reference phase φ0. We may set this
phase equal to zero and write

s0 =
√

ES.

Because of this phase reference symbol, the transmit signal

s(t) =
K∑

k=0

skgk(t)

carries K + 1 transmit symbols sk, but only K useful PSK symbols zk . Typically, the phase
reference symbol will be transmitted at the beginning of a frame, and the frame length is
large enough so that the loss in data rate due to the reference symbol can be neglected.

Again it is a matter of convenience whether the PSK constellation for zk contains
the phase (difference) �φk = 0 or not. For the most popular QPSK constellation, �φk ∈{±π

4 ,± 3π
4

}
or

zk ∈
{

1√
2

(±1 ± j)

}
.

Obviously, this leads to eight possible values of the transmit symbol sk, corresponding to
the absolute phase values

φk ∈
{

0,±π

4
,±π

2
,±3π

4
, π

}
,

see Figure 1.21, where the possible transitions are marked by arrows.
For even values of k,

φk ∈
{

0,±π

2
, π
}

and for odd values of k,

φk ∈
{
±π

4
,±3π

4

}
.

We thus have two different constellations for sk, which are phase shifted by π/4. This
modulation scheme is therefore called π/4-DQPSK.

Differential PSK is often used because it does not require an absolute phase reference.
In practice, the channel introduces an unknown phase θ , that is, the receive signal is

rk = ejθ sk + nk.

In a coherent PSK receiver, the phase must be estimated and back- rotated. A differential
receiver compares the phase of two adjacent symbols by calculating

uk = rkr
∗
k−1 = sks

∗
k−1 + ejθ skn

∗
k−1 + nke−jθ s∗k−1 + nkn

∗
k−1.
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I

Q

Figure 1.21 Transmit symbols for π
4 -DQPSK.

In the noise-free case, uk/
√

ES = zk represents original PSK symbols that carry the infor-
mation. However, we see from the above equation that we have additional noise terms that
do not occur for coherent signaling and that degrade the performance. The performance
analysis of DPSK is more complicated than for coherent PSK (see e.g. (Proakis 2001)). We
will later refer to the results when we need them for the applications.

1.6 Bibliographical Notes

This chapter is intended to give a brief overview of the basics that are needed in the follow-
ing chapters and to introduce some concepts and notations. A more detailed introduction
into digital communication and detection theory can be found in many text books (see e.g.
(Benedetto and Biglieri 1999; Blahut 1990; Kammeyer 2004; Lee and Messerschmidt 1994;
Proakis 2001; Van Trees 1967; Wozencraft and Jacobs 1965)). We assume that the reader
is familiar with Fourier theory and has some basic knowledge of probability and stochastic
processes. We will not define these concepts further; one may refer to standard text books
(see e.g. (Bracewell 2000; Feller 1970; Papoulis 1991)).

We have emphasized the vector space properties of signals. This allows a geometrical
interpretation that makes the solution of many detection problems intuitively obvious. The
interpretation of signals as vectors is not new. We refer to the excellent classical text books
(Van Trees 1967; Wozencraft and Jacobs 1965).

We have emphasized the concept of a detector as an integral operation that performs a
measurement. A Fourier analyzer is such a device that may be interpreted as a set of detec-
tors, one for each frequency. The integral operation is given by a scalar product if the signal
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is well behaved (i.e. of finite energy). If not, the signal has to be understood as a generalized
function (which is called distribution or functional in mathematical literature (Reed and
Simon 1980)), and the detection is the action of this signal on a well-behaved test function.
It is interesting to note that this is the same situation as in quantum theory, where such a test
function is interpreted as a detection device for the quantum state of a physical system. In
this context it is worth noting that δ(t), the most important generalized function in commu-
nication theory, has been introduced by one of the quantum theory pioneers, P.A.M. Dirac.

1.7 Problems

1. Let {gk(t)}Kk=1 be an orthonormal transmit base and

s = (s1, . . . , sK)T

and
x = (x1, . . . , xK)T

two transmit symbol vectors. Let

s(t) =
K∑

k=1

skgk(t)

and

x(t) =
K∑

k=1

xkgk(t).

Show that
〈s, x〉 = s†x.

2. Let S(f ) denote the Fourier transform of the signal s(t) and define

s̃(t) =
√

2
{s(t)ej2πf0t }.

Show that the Fourier transform of that signal is given by

S̃(f ) = 1√
2

(
S (f − f0)+ S∗ (−f − f0)

)
.

3. Let x(t) and y(t) be finite-energy low-pass signals strictly band- limited to B/2
and let f0 > B/2. Show that the two signals

x̃(t) =
√

2 cos (2πf0t) x(t)

and
ỹ(t) = −

√
2 sin (2πf0t) y(t)
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are orthogonal. Let u(t) and v(t) be two other finite-energy signals strictly band-
limited to B/2 and define

ũ(t) =
√

2 cos (2πf0t) u(t)

and
ṽ(t) = −

√
2 sin (2πf0t) v(t).

Show that
〈ũ, x̃〉 = 〈u, x〉

and
〈ṽ, ỹ〉 = 〈v, y〉

hold. Hint: Transform all the signals into the frequency domain and use Parseval’s
equation.

4. Show that, from the definition of the time-variant linear systems I and Q, the
definitions (given in Subsection 1.2.2) of the time-variant linear systems ID and
QD are uniquely determined by

〈ũ, Iv〉 = 〈
IDũ, v

〉
and

〈ũ, Qv〉 = 〈
QDũ, v

〉
for any (real-valued) finite-energy signal ũ(t) and v(t). Mathematically speaking,
this means that ID and QD are defined as the adjoints of the linear operators I

and Q. For the theory of linear operators, see for example (Reed and Simon 1980).

5. Show that the definitions

E {w(t1)w(t2)} = N0

2
δ(t1 − t2)

and

E
{Dφ1 [w]Dφ2 [w]

} = N0

2
〈φ1, φ2〉

are equivalent conditions for the whiteness of the (real-valued) noise w(t).

6. Let g(t) be a transmit pulse and n(t) complex baseband white (not necessarily
Gaussian) noise. Let

Dh[r] =
∫ ∞

−∞
h∗(t)r(t) dt

be a detector for a (finite-energy) pulse h(t) and r(t) = g(t)+ n(t) be the transmit
pulse corrupted by the noise. Show that the signal-to-noise ratio after the detector
defined by

SNR = |Dh[g]|2
E
{|Dh[n]|2}

becomes maximal if h(t) is chosen to be proportional to g(t).
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7. Show the equality

‖y − x‖2 − ‖y − x̂‖2 = 2

[(
y − x + x̂

2

)
(x̂ − x)

]
.

8. Let n = (n1, . . . , nK)T be a K-dimensional real-valued AWGN with variance σ 2 =
N0/2 in each dimension and u = (u1, . . . , uK)T be a vector of length |u| = 1 in
the K-dimensional Euclidean space. Show that n = n · u is a Gaussian random
variable with mean zero and variance σ 2 = N0/2.

9. We consider a digital data transmission from the Moon to the Earth. Assume that
the digital modulation scheme (e.g. QPSK) requires Eb/N0 = 10 dB at the receiver
for a sufficiently low bit error rate of, for example, BER = 10−5. For free-space
propagation, the power at the receiver is given by

Pr = GtGr

λ2

(4πR)2 Pt .

We assume Gt = Gr = 10 dB for the antenna gains at the receiver and the trans-
mitter, respectively, and λ = 40 cm for the wavelength. The distance of the moon
is approximately given by R = 400 000 km. The receiver noise (including a noise
figure of 4 dB) is given by N0 = −170 dBm/Hz. How much transmit power is
necessary for a bit rate of Rb = 1 bit/s?





2

Mobile Radio Channels

2.1 Multipath Propagation

Mobile radio reception is severely affected by multipath propagation; the electromagnetic
wave is scattered, diffracted and reflected, and reaches the antenna via various ways as an
incoherent superposition of many signals with different delay times that are caused by the
different path lengths of these signals. This leads to an interference pattern that depends on
the frequency and the location or – for a mobile receiver – the time. The mobile receiver
moves through an interference pattern that may change within milliseconds and that varies
over the transmission bandwidth. One says that the mobile radio channel is characterized
by time variance and frequency selectivity .

The time variance is determined by the relative speed v between receiver and transmitter
and the wavelength λ = c/f0, where f0 is the transmit frequency and c is the velocity of
light. The relevant physical quantity is the maximum Doppler frequency shift given by

νmax = v

c
f0 ≈ 1

1080

f0

MHz

v

km/h
Hz.

Table 2.1 shows some practically relevant figures for νmax for speeds from a slowly moving
person (2.4 km/h) to a high-speed train or car (192 km/h).

For an angle α between the direction of the received signal and the direction of motion,
the Doppler shift ν is given by

ν = νmax cos α.

Consider a carrier wave transmitted at frequency f0. Typically, the received signal is a
superposition of many scattered and reflected signals from different directions resulting
in a spatial interference pattern. For a vehicle moving through this interference pattern,
the received signal amplitude fluctuates in time, which is called fading. In the frequency
domain, we see a superposition of many Doppler shifts corresponding to different di-
rections resulting in a Doppler spectrum instead of a sharp spectral line located at f0.
Figure 2.1 shows an example of the amplitude fluctuations of the received time signal for
νmax = 50 Hz, corresponding for example, to a transmit signal at 900 MHz for a vehicle

Theory and Applications of OFDM and CDMA Henrik Schulze and Christian Lüders
 2005 John Wiley & Sons, Ltd
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Table 2.1 Doppler frequencies

Radio Doppler frequency for a speed of
frequency v = 2.4 km/h v = 48 km/h v = 120 km/h v = 192 km/h

f0 = 225 MHz 0.5 Hz 10 Hz 25 Hz 40 Hz
f0 = 900 MHz 2.0 Hz 40 Hz 100 Hz 160 Hz
f0 = 2025 MHz 4.5 Hz 90 Hz 225 Hz 360 Hz
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Figure 2.1 Time variance (selectivity) of the fading amplitude for 50 Hz maximum Doppler
frequency.

speed v = 60 km/h. The figure shows deep amplitude fades up to −40 dB. If a car stands
still at the corresponding location (e.g. at a traffic light), the reception breaks down. If the
car moves half a wavelength, it may get out of the deep fade.

The superposition of Doppler-shifted carrier waves leads to a fluctuation of the carrier
amplitude and phase. This means that the received signal is amplitude and phase modulated
by the channel.

Figure 2.2 shows the trace of the phasor in the complex plane for the same channel
parameters as above. For digital phase modulation, these rapid phase fluctuations cause
severe problems if the carrier phase changes too much during the time TS that is needed to
transmit one digitally modulated symbol. The amplitude and the phase fluctuate randomly.
The typical frequency of the variation is of the order of νmax corresponding to a timescale
of the variations given by

tcorr = ν−1
max,
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Figure 2.2 Time variance (selectivity) shown above as a curve in the complex plane.

which we call the correlation time. Digital transmission with symbol period TS is only
possible if the channel remains nearly constant during that period, which requires TS � tcorr

or, equivalently, the condition
νmaxTS � 1

must hold.
The frequency selectivity of the channel is determined by the different delay times of

the signals. They can be calculated as the ratio between the traveling distances and the
velocity of light. 1 µs delay time difference corresponds to 300 m of path difference. A
few microseconds are typical for cellular mobile radio. For a broadcasting system for a
large area, echoes up to 100 µs are possible in a hilly or mountainous region. In a so-called
single frequency network (see Section 4.6), the system must cope with even longer echoes.
Longer echoes correspond to more fades within the transmission bandwidth. Figure 2.3
shows an example for a received signal level as a function of the frequency (relative to the
center frequency) at a fixed location in a situation with delay time differences of the signals
corresponding to a few kilometers. In the time domain, intersymbol interference disturbs the
transmission if the delay time differences are not much smaller than the symbol duration
TS . A data rate of 200 kbit/s leads to TS = 10 µs for the QPSK modulation. This is of
the same order as the echoes for such a scenario. This means that digital transmission of
that data rate is not possible without using more sophisticated methods such as equalizers,
spread spectrum techniques, or multicarrier modulation. We define a correlation frequency

fcorr = �τ−1,

where �τ is the square root of the variance of the power distribution of the echoes, which we
call the delay spread . fcorr is often called coherence (or coherency) bandwidth because the
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Figure 2.3 Frequency selectivity (variance) of the fading amplitude for a broadcasting
channel with long echoes.

channel can be regarded as frequency-nonselective within a bandwidth B with B � fcorr.
If B is in the order of T −1

s as it is the case for signaling with the Nyquist base, this is
equivalent to the condition

�τ � TS

that intersymbol interference can be neglected.

2.2 Characterization of Fading Channels

2.2.1 Time variance and Doppler spread

Consider a modulated carrier wave

s̃(t) =
√

2
 {s(t)ej2πf0t
}

(2.1)

at frequency f0 that is modulated by a complex baseband signal s(t). For a moving receiver
with velocity v and an incoming wave with an angle of incidence α relative to the direction
of motion, the carrier frequency will be shifted by the Doppler frequency given by

ν = νmax cos α. (2.2)

The same Doppler shift occurs for a fixed receiver and a transmitter moving with velocity
v. Because the angle α from the left-hand side causes the same Doppler shift as the angle
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−α from the right-hand side, we identify both cases and let the angle run from 0 to π. The
Doppler-shifted receive signal is given by

r̃(t) =
√

2
 {aejθej2πνt s(t)ej2πf0t
}
, (2.3)

where a is an attenuation factor and θ the phase of the carrier wave at the receiver. Here,
we have made some reasonable assumptions that simplify the treatment:

• The angle α is constant during the time of consideration. This is true if the distance
between transmitter and receiver is sufficiently large and we can assume that many
bits are transmitted during a very small change of the angle. This is in contrast to the
case of the acoustic Doppler shift of an ambulance car, where the angle runs from 0
to π during the observation time and the listener hears a tone decreasing in frequency
from f0 + vmax to f0 − vmax.

• The signal is of sufficiently small bandwidth so that the Doppler shift can be assumed
to be the same for all spectral components.

Furthermore, we have only taken into account that the delay of the RF signal results in a
phase delay, ignoring the group delay of the complex baseband signal s(t). We will study
the effect of such a delay in the following subsection. Here, we assume that these delays
are so small that they can be ignored. Typically, the received signal is the superposition
of several signals, scattered from different obstacles, with attenuation factors ak , carrier
phases θk and Doppler shifts νk = νmax cos αk, resulting in

r̃(t) =
√

2
N∑

k=1


 {akejθk ej2πνkt s(t)ej2πf0t
}
. (2.4)

The complex baseband transmit and receive signals s(t) and r(t) are thus related by

r(t) = c(t)s(t), (2.5)

where

c(t) =
N∑

k=1

akejθk ej2πνkt (2.6)

is the time-variant complex fading amplitude of the channel. Typically, this complex fading
amplitude looks as shown in Figures 2.1 and 2.2. In the special case of two-path channels
(N = 2), the fading amplitude shows a more regular behavior. In this case, the time-variant
power gain |c(t)|2 of the channel can be calculated as

|c(t)|2 = a2
1 + a2

2 + 2a1a2 cos (2π (ν1 − ν2) t + θ1 − θ2) .

Figure 2.4 shows |c(t)|2 for a1 = 0.75 and a2 =
√

7/4. The average power is normal-
ized to one, the maximum power is (a1 + a2)

2 ≈ 1.99, the minimum power is (a1 − a2)
2 ≈

0.008, resulting in level fluctuations of about 24 dB. The fading amplitude is periodic
with period |v1 − v2|−1. Such a two-path channel can occur in reality, for instance, in
the special situation where the received signal is a superposition of a direct signal and
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Figure 2.4 Time variance of a two-path channel.

a strong reflection. If, for example, ν1 = νmax and ν2 = −νmax, that is, one signal from
the front and one from the back, then the period is (2νmax)

−1. Since νmax = v/λ, the
spatial separation of two power maxima (or minima) is λ/2. This interference pattern is
well known in physics as a standing wave. In the example, we have chosen ν1 = 100 Hz
and ν2 = −100 Hz, which corresponds to 120 km/h at 900 MHz. For that frequency,
λ/2 ≈ 16.7 cm.

It is a usual assumption to think of a general complex fading amplitude c(t) given by
Equation (2.6) as a stationary random signal. This is a convenient assumption, but one
should keep in mind that this introduces a simplified mathematical model for the physical
reality. We therefore add the following remarks:

• The real physical c(t) is deterministic because ak , νk , and θk are deterministic. But
at least the phases θk are completely unknown. It is reasonable and a common prac-
tice in communications engineering to model unknown phases as random variables.
Philosophically speaking, statistics is not due to the randomness of nature, but to
our lack of knowledge. This is also a common practice in physics, for example, in
statistical thermodynamics (Landau and Lifshitz 1958).

• Strictly speaking, stationarity cannot be true because the environment changes. This
slow change of the channel is called long-term fading, in contrast to the short-term
fading considered here. Long-term fading is of primary interest for network planning
(see Subsection 5.1.2), but for the performance analysis of communication systems
we have to focus on the short-term fading, thereby assuming that the environment
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is constant during the time period that is necessary to measure, for example, the bit
error rate.

• Because mathematical modeling of physical reality is a coarse procedure, we regard
it as splitting hairs to distinguish between wide-sense stationary (WSS) and strict-
sense stationary (SSS) stochastic processes. For SSS processes, time-shift invariance
is given for all statistical properties, while for WSS this is only true up to the second-
order properties (covariances). For a theoretical analysis, for example, to identify bit
error probabilities with bit error rates, we need to assume even some ergodic prop-
erties (which is a stronger assumption than SSS) that are mathematically necessary
but physically not given.

The random process c(t) given by Equation (2.6) has a discrete power spectral density
(psd) Sc(ν) as shown in Figure 2.5(a) for N = 5. We call Sc(ν) the Doppler spectrum.
However, in most real situations, the received signal is a continuous rather than a discrete
superposition of Doppler-shifted signals, resulting in a continuous psd Sc(ν) as shown in
Figure 2.5(b).

As a result of Equation (2.2), each Doppler frequency corresponds to an angle α ∈ [0, π ].
Therefore, the Doppler spectrum is related to the angular power density Sangle(α) by

−Sc(ν) dν = Sangle(α) dα.

The negative sign is due to the fact that, because the cosine is a decreasing function over
the relevant interval, a positive infinitesimal dα corresponds to a negative infinitesimal dν.

By Equation (2.2), we get

dν = −νmax sin α dα = −νmax

√
1 − ν2

ν2
max

dα

resulting in

Sc(ν)

√
ν2

max − ν2 = Sangle

(
arccos

(
ν

νmax

))
, −νmax < ν < νmax.

(a) (b)

ν ν

Figure 2.5 Example of a discrete (a) and continuous (b) Doppler spectrum.
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A simple model – and also a kind of worst case – is the isotropic angular power distribution
Sangle(α) = π−1. In that case, we obtain the power spectral density

Sc(ν) = 1

πνmax

√
1 − ν2

ν2
max

(2.7)

for −νmax < ν < νmax and zero outside that interval. This spectral shape is sometimes
called the isotropic or Jakes Doppler spectrum (Jakes 1975). Figure 2.6 shows this (nor-
malized) Doppler spectrum νmaxSc(ν). Note the singularities at the edges that have their
origin in geometry.

We assumed that c(t) is the complex baseband signal corresponding to a (wide-sense)
stationary stochastic process, which is the carrier wave affected by the Doppler spread. The
autocorrelation function (ACF) of such a process is given by

Rc(t) = E
{
c(t1 + t)c∗(t1)

}
(see Proposition 1.3.3). The power spectrum is the Fourier transform of the ACF, that is,

Sc(ν) =
∫ ∞

−∞
e−j2πνtRc(t) dt.

For the Jakes spectrum, the ACF given by

Rc(t) = J0 (2πνmaxt) , (2.8)

where J0 (x) is the Bessel function of the first kind of order 0.
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Figure 2.6 The Jakes Doppler spectrum corresponding to the isotropic power distribution.
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Because of the coarse modeling of reality, relevant quantities like error probabilities
should not strongly depend on the shape of the Doppler spectrum, and in fact, they do not
for all known examples. We will illustrate this by the following consideration. As discussed
above, digital transmission is only possible if the channel does not vary too fast relative to
the symbol duration, which can be expressed by the condition νmaxTS � 1 over relevant
times (of the order TS). The correlation time tcorr = ν−1

max must be large enough so that the
channel samples are highly correlated. These correlations are characterized by the ACF
Rc(t). Thus, only Rc(t) for small values |t | � tcorr is relevant for the performance and we
may approximate Rc(t) by a Taylor series. We note that

dn

dtn
Rc(t)

∣∣∣∣
t=0

= (2πj)nµn {Sc(ν)} ,

where

µn {Sc(ν)} =
∫ ∞

−∞
νnSc(ν) dν

is the nth moment of the power spectral density. Rc(t) can thus be expanded into the Taylor
series

Rc(t) =
∞∑

n=0

1

n!
(2πj)nµn {Sc(ν)} tn.

Note that µ0 {Sc(ν)} = 1 due to energy normalization and µ1 {Sc(ν)} = 0 can always be
achieved by a frequency shift. Since µn {Sc(ν)} ≤ (2νmax)

n, the absolute value of the nth
term in the Taylor series is bounded by

1

n!
|4πνmaxt |n,

which is very small for |t | � tcorr = ν−1
max. We thus approximate Rc(t) by the lowest non-

trivial order of the Taylor series

Rc(t) ≈ 1 − 1

2
(2π)2µ2 {Sc(ν)} t2.

Thus, one should expect that only the second moment of the Doppler spectrum – rather
than the exact shape – is relevant for the performance of the system. We will see later in
Subsection 2.4.6 that the bit error rate of differential QPSK (DQPSK) in a time-variant
fading channel depends on the time variance through Rc(TS).

Thus, it is therefore not important to use the real shape of the Doppler spectrum. We
may use, for example, the Jakes spectrum as a coarse reflection of reality. We note that
the second moment typically becomes smaller if the angles of receive signals are not
isotropically distributed.

Furthermore, we should always keep in mind that the assumed stationarity (or wide-
sense stationarity) is, strictly speaking, not true. We can only say that c(t) cannot be
distinguished from a stationary process when observed over a relatively short time of, say,
a few seconds. This makes it reasonable to treat it like a stationary process, because this is
mathematically convenient.
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Finally, we state that for the Jakes spectrum the second moment can easily be calcu-
lated as

µ2 {Sc(ν)} = ν2
max

2
(see Problem 2).

The inverse of the variance

�ν =
√

µ2 {Sc(ν)}
also appears to be a reasonable choice for the definition of the correlation time tcorr. How-
ever, vmax is easy to obtain from the carrier frequency and the vehicle speed and is therefore
a better choice for the practice. For typical shapes as the Jakes spectrum, both quantities
are of the same order.

2.2.2 Frequency selectivity and delay spread

Consider again a transmit signal as given by Equation (2.1). We now assume that both
transmitter and receiver are at rest (or the time variance is so slow that it can be neglected
for the time period under consideration) and we can ignore any Doppler shifts. But, unlike
in the above treatment, we do not ignore the delays τk = lk/c of the complex baseband
signal s(t) �→ s(t − τk) for the different propagation paths of length lk . Instead of Equation
(2.4), we now get for the received signal

r̃(t) =
√

2
N∑

k=1


 {akejθk s(t − τk)e
j2πf0t

}
. (2.9)

The delays of the carrier are already included in the phases θk . The complex baseband
transmit and receive signals s(t) and r(t) are related by

r(t) = h(t) ∗ s(t), (2.10)

where

h(t) =
N∑

k=1

akejθk δ(t − τk) (2.11)

is the impulse response of the channel. The corresponding channel transfer function is
given by

H(f ) =
N∑

k=1

akejθk e−j2πf τk . (2.12)

We note the strong similarity to Equation (2.6). Typically, the frequency response looks as
shown in Figure 2.3. In the special case of two-path channels (N = 2), the transfer function
shows a more regular behavior. In this case, the power gain |H(f )|2 of the channel can be
calculated as

|H(f )|2 = a2
1 + a2

2 + 2a1a2 cos (2πf (τ1 − τ2)+ θ2 − θ1) .

The picture is similar to the one depicted in Figure 2.4, where time is replaced by frequency.
The transfer function is periodic with period |τ1 − τ2|−1.
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(a) (b)

τ τ

Figure 2.7 Example of a discrete (a) and continuous (b) delay power spectrum.

With the same arguments as for the treatment of the time-variant fading amplitude c(t),
we may regard H(f ) as a random transfer function, or – more formally – as a stochastic
process in a frequency variable. Frequency-shift invariance (corresponding to stationarity
for the time variable) can only be an approximation. The same remarks about modeling the
reality as made in the preceding subsection apply here. Since the variable for this process
is a frequency, there is a power density distribution as a function of a time variable τ that
can be identified as the delay time. Figure 2.7(a) illustrates such a delay power spectrum
SH (τ) corresponding to the process given by the Equations (2.11) and (2.12). However, in
most real situations, the received signal is a continuous rather than a discrete superposition
of delayed signal components, resulting in a continuous delay power spectrum SH (τ) as
shown in Figure 2.7(b). Note that the delay power spectrum reflects the distribution of path
length. We identify the delay spread as

�τ =
√

µ2 {SH (τ)} − µ2
1 {SH (τ)}.

Here, in contrast to the Doppler spectrum, we do not set the first moment to zero because
this would lead to negative delay times τ . However, with similar arguments as for the
Doppler spectrum, we expect that typically the performance of a communication system in
a frequency selective fading channel will not depend on the shape of SH (τ), but only on
the second moment.

One popular model for SH (τ) is an exponential distribution

SH (τ) = 1

τm

e−τ/τm

for τ > 0 and zero elsewhere. The mean value τm of this distribution equals the delay
spread �τ . The exponential power delay spectrum reflects the idea that the power of the
paths decreases strongly with their delay. This is of course a very rough model, but it can
be refined by adding components due to significant distant reflectors.

We have assumed frequency-shift invariance (which is similar to what is called wide-
sense stationarity for the time variable). The (frequency) ACF is given by

RH (f ) = E
{
H(f1 + f )H ∗(f1)

}
.



62 MOBILE RADIO CHANNELS

The delay power spectrum is the inverse Fourier transform of the ACF, that is,

SH (τ) =
∫ ∞

−∞
ej2πf τRH (f ) df.

For the exponential delay power spectrum, the ACF given by

RH (f ) = 1

1 + j2πf τm

.

2.2.3 Time- and frequency-variant channels

We now consider a channel that is both time and frequency selective. We combine the
effects of the Equations (2.4) and (2.9) and obtain a receive signal given by

r̃(t) =
√

2
N∑

k=1


 {akejθk ej2πνkt s(t − τk)e
j2πf0t

}
. (2.13)

The complex baseband transmit and receive signals s(t) and r(t) are related by

r(t) =
∫ ∞

−∞
h(τ, t)s(t − τ ) dτ, (2.14)

where

h(τ, t) =
N∑

k=1

akejθk ej2πνkt δ(t − τk) (2.15)

is the time-variant impulse response of the channel. Note that Equation (2.14) contains
Equations (2.5) and (2.10) as special cases by setting either h(τ, t) = c(t)δ(τ ) or h(τ, t) =
h(τ). We note that h(τ, t) is the channel response of an impulse with travel time τ received
at time t , that is, transmitted at time t − τ.

The time-variant channel transfer function will now be defined as the Fourier transform
in the delay variable τ of the time-variant impulse response

H(f, t) =
∫ ∞

−∞
e−j2πf τh(τ, t) dτ

which equals

H(f, t) =
N∑

k=1

akejθk ej2πνkte−j2πf τk

in our special case. The receive signal r(t) is related to the Fourier transform S(f ) of the
transmit signal s(t) by

r(t) =
∫ ∞

−∞
e−j2πf τH(f, t)S(f ) dτ.

The power density with respect to Doppler and delay is now given by a common power
density function S(τ, ν) called scattering function with the properties

Sc(ν) =
∫ ∞

−∞
S(τ, ν) dτ
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and

SH (τ) =
∫ ∞

−∞
S(τ, ν) dν.

Since the Doppler frequency is related to the angle of the incoming wave by ν = νmax cos α,
and the delay is related to the echo path length l by τ = l/c, the scattering function reflects
the geometrical distribution of the scatterers and their corresponding power contributions.
Like the Doppler and the delay power spectrum, the scattering function is typically a
continuous rather than a discrete superposition of Doppler-shifted and delayed components.

The ACF of the two-dimensional random process is defined by

R(f, t) = E
{
H(f1 + f, t1 + t)H ∗(f1, t1)

}
.

It is related to the scattering function by a two-dimensional Fourier (back) transform

S(τ, ν) =
∫ ∞

−∞
df

∫ ∞

−∞
dt ej2πf τ e−j2πνtR(f, t).

Here, we have used the simpler notation
∫

dx
∫

dyf (x, y) instead of
∫ (∫

f (x, y) dy
)

dx.
We note that

R(0, t) = Rc(t)

and
R(f, 0) = RH (f )

hold.
Up to now, the treatment was mainly heuristic, which seems to be adequate for a channel

that can only be modeled roughly. However, formally we have to deal with time-variant
random systems. In the following section, we characterize such systems and give more
formal definitions. However, these are formal mathematical concepts and their relation to
reality must be argued as done above.

2.2.4 Time-variant random systems: the WSSUS model

Consider a linear, but typically not time-invariant system. The output r(t) for an input s(t)

of such a system can formally be written as

r(t) =
∫ ∞

−∞
k(t, t ′)s(t ′) dt ′, (2.16)

where k(t, t ′) is the so-called integral kernel of the system. This means that the output at
time t is a continuous superposition of the input signal taken at time instants t ′ multiplied
by a weight factor k(t, t ′). We add the following remarks:

• For (finite-dimensional) vectors, every linear mapping is given by a matrix multipli-
cation. Equation (2.16) is just a natural generalization of a matrix multiplication to
the continuous case.

• In the case in which the kernel depends only on the difference argument t − t ′, that
is k(t, t ′) = k̃(t − t ′), the system is time invariant, and Equation (2.16) reduces to a
convolution.



64 MOBILE RADIO CHANNELS

• Equation (2.16) is a formal notation. The integral kernel k(t, t ′) may contain sin-
gularities, for example, terms like δ-functions. But this is not really a problem in
practice.

We now substitute the integration variable by τ = t − t ′, which can be interpreted as the
delay between the input time t ′ and the output time t , resulting in

r(t) =
∫ ∞

−∞
k(t, t − τ )s(t − τ ) dτ.

Furthermore, we define the time-variant impulse response as

h(τ, t) = k(t, t − τ )

and obtain

r(t) =
∫ ∞

−∞
h(τ, t)s(t − τ ) dτ.

The time-variant channel transfer function is defined as the Fourier transform in the delay
variable τ of the time-variant impulse response

H(f, t) =
∫ ∞

−∞
e−j2πf τ h(τ, t) dτ.

The receive signal r(t) is related to the Fourier transform S(f ) of the transmit signal s(t) by

r(t) =
∫ ∞

−∞
ej2πf τH(f, t)S(f )τ,

where H(f, t) is the time-variant transfer function of the channel.
We now assume that the time-variant transfer function H(f, t) is a two-dimensional

random process, and, without losing generality, that the mean value is zero1. We further
assume that the two-dimensional autocorrelation is time- and frequency-shift invariant,
that is,

E
{
H(f1 + f, t1 + t)H ∗(f1, t1)

} = E
{
H(f2 + f, t2 + t)H ∗(f2, t2)

}
. (2.17)

Such a process is called a wide-sense stationary uncorrelated scattering (WSSUS) process.
Wide-sense stationarity means time-shift invariance only up to second-order statistical ex-
pectation values. This is weaker than SSS, where all statistical expectation values must be
time-shift invariant. Frequency-shift invariance up to the second order is named uncorre-
lated scattering for reasons that will become obvious soon. The two-dimensional ACF of
the two-dimensional random process is defined by

R(f, t) = E
{
H(f1 + f, t1 + t)H ∗(f1, t1)

}
(2.18)

and the scattering function by the two-dimensional (2-D) Fourier (back) transform

S(τ, ν) =
∫ ∞

−∞
df

∫ ∞

−∞
dt ej2πf τ e−j2πνtR(f, t). (2.19)

1If the mean value does not equal zero, we may consider the stochastic process of the difference to the mean
value.



MOBILE RADIO CHANNELS 65

Because H(f, t) is the complex baseband process for a WSSUS process, we have the
property

E {H(f1 + f, t1 + t)H(f1, t1)} = 0,

which is the generalization of the result of Proposition 1.3.3. to two-dimensional stochastic
processes.

We define the 2-D Fourier transform of the time-variant transfer function as

G(τ, ν) =
∫ ∞

−∞
df

∫ ∞

−∞
dt ej2πf τ e−j2πνtH(f, t). (2.20)

The inverse is given by

H(f, t) =
∫ ∞

−∞
dτ

∫ ∞

−∞
dν e−j2πf τ ej2πνtG(τ, ν). (2.21)

The term uncorrelated scattering stems from the following.

Proposition 2.2.1 (Uncorrelated scattering) The condition (2.17) is equivalent to the con-
dition

E
{
G(τ1, ν1)G

∗(τ2, ν2)
} = δ(τ1 − τ2)δ(ν1 − ν2)S(τ1, ν2)

with S(τ, ν) defined by Equations (2.19) and (2.18).

Proof. From Equations (2.20) and (2.18), we conclude that the left-hand side equals
the fourfold integral∫ ∞

−∞
df1 dt1 df2 dt2 ej2πf1τ1e−j2πν1t1 e−j2πf2τ2ej2πν2t2 · E

{
H(f1, t1)H

∗(f2, t2)
}

=
∫ ∞

−∞
df1

∫ ∞

−∞
dt1

∫ ∞

−∞
df2

∫ ∞

−∞
dt2 ej2π(f1τ1−f2τ2)e−j2π(ν1t1−ν2t2)R(f1 − f2, t1 − t2).

We change the order of integration and substitute f = f1 − f2 for f1 and t = t1 − t2 for
t1 to obtain∫ ∞

−∞
df2

∫ ∞

−∞
dt2

∫ ∞

−∞
df

∫ ∞

−∞
dt ej2π(f+f2)τ1 e−j2πν1(t+t2)e−j2πf2τ2ej2πν2t2R(f, t)

=
∫ ∞

−∞
df2ej2πf2(τ1−τ2)

∫ ∞

−∞
dt2e−j2π(ν1−ν2)t2

∫ ∞

−∞
df

∫ ∞

−∞
dt ej2πf τ1e−j2πν1tR(f, t).

The first integral equals δ(τ1 − τ2), the second equals δ(ν1 − ν2) and the third (twofold)
integral equals S(τ1, ν2).

We add the following remarks:

• This is a generalization of a known property for WSS processes to two dimensions:
The Fourier transform X(f ) of a WSS process x(t) has the property that its values
X(f1) and X(f2) for different frequencies f1 and f2 are uncorrelated (see e.g. (Pa-
poulis 1991)). The proposition says that the values of G(τ, ν) for different Doppler
frequencies and for different delays are uncorrelated.

• We must note that in a real transmission setup, uncorrelated scattering will no
longer be given because any receive filter will introduce a correlation between delays
τ1 and τ2.
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2.2.5 Rayleigh and Ricean channels

To apply the WSSUS model to concrete problems in digital communications (e.g. to calcu-
late or simulate bit error rates), the statistics of the two-dimensional fading process H(f, t)

has to be specified. In many typical situations without line of sight (LOS), the received
signal is a superposition of many scattered components. Owing to the central limit theorem
(Feller 1970; Papoulis 1991; van Kampen 1981), it is reasonable in this case to model
H(f, t) by a Gaussian process with zero mean. If a LOS component is present, this can
be taken into account simply by adding a constant mean value. A WSSUS process that
is Gaussian is sometimes called a GWSSUS process. We note that a wide-sense stationary
Gaussian process is already a strict-sense stationary (see e.g. (Feller 1970; Papoulis 1991)).
Gaussian processes are completely characterized by their properties up to second order, that
is, the mean and the autocorrelation (one can take this as a definition of a Gaussian process).
For a GWSSUS process with zero mean, every sample H(f1, t1) for fixed frequency and
time is a complex Gaussian random variable that we write as

H(f1, t1) = X + jY.

From the property
E {H(f1 + f, t1 + t)H(f1, t1)} = 0

we conclude that X and Y are uncorrelated and have the same variance (see Problem 1).
Because these random variables are Gaussian, they are even statistically independent, iden-
tically distributed real Gaussian random variables . We normalize the average power gain
of the channel to one so that

E
{
X2} = E

{
Y 2} = 1

2
.

The probability density functions of X and Y are then given by

pX(x) = 1√
π

e−x2
, pY (y) = 1√

π
e−y2

.

We introduce polar coordinates X = A cos 	, Y = A sin 	 to calculate the joint pdf
pA,	(a, φ) of amplitude and phase. From the condition

pA,	(a, φ) da dφ = pX(x)pY (y) dx dy

and dx dy = a da dφ, we obtain

pA,	(a, φ) = 1

2π
2ae−a2

.

Thus, pA,	(a, φ) = pA(a)p	(φ) with

p	(φ) = 1

2π

and
pA(a) = 2ae−a2

. (2.22)
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This probability density function for the amplitude is called Rayleigh distribution. We
therefore call this mean-zero GWSSUS channel a Rayleigh fading channel. It is interesting
to ask for the pdf ppower(γ ) of the power A2. From the condition

ppower(γ ) dγ = pA(a) da

we easily obtain
ppower(γ ) = e−γ ,

that is, the power is exponentially distributed for a Rayleigh fading channel. The probability
P(A2 < γ ) that the power falls below a certain value γ is given by

P(A2 < γ ) =
∫ γ

0
e−x dx = 1 − e−γ = γ − 1

2
γ 2 + · · · .

For small values of γ , the approximation P(A2 < γ ) ≈ γ is allowed. We can now easily
conclude that, in a Rayleigh fading channel, the probability for a deep fade of −20 dB
(relative to the mean power) is approximately 1%, the probability for a deep fade below
−30 dB is approximately 0.1% and so on.

For a LOS channel, we assume a GWSSUS channel with a constant mean value, that
is, the Doppler shift of the LOS is assumed to be zero. This can always be achieved by a
proper choice of the carrier frequency f0, that is, each Doppler shift is defined as the shift
relative to the LOS. The probability density function for the amplitude is now a Gaussian
distribution with nonzero mean. It can be shown to be (Proakis 2001)

pA(a) = 2a (1 +K) e
−
(
K+a2(1+K)

)
· I0

(
2a
√

K (1 +K)
)

,

where I0 (x) is the modified Bessel function of the first kind and order zero. This pdf is called
the Rice distribution and the GWSSUS channel is called a Ricean channel. The parameter
K called Rice factor is the power ratio between the LOS component and the scattering
components. The special case K = 0 corresponds to the absence of a LOS and leads to a
Rayleigh channel. The special case K →∞ corresponds to the absence of scattering and
leads to an AWGN channel. Figure 2.8 shows the Ricean pdf for different values of K . For
large K , it approaches a δ function. The pdf for the power can be obtained as

ppower(γ ) = (1 +K) e−(K+γ (1+K)) · I0

(
2
√

γK (1 +K)
)

.

The probability P(A2 < γ ) that the power falls below a certain value γ must be calculated
by numerical integration. Figure 2.9 shows this quantity for different values of K .

2.3 Channel Simulation

To evaluate the performance of a digital communication system in a mobile radio channel
by means of computer simulations, we need a simulation method that can be implemented
in a computer program and that reflects the relevant statistical properties of the channels
discussed above. In this section, we introduce a practical simulation method that is quite
simple to implement and has been adopted by many authors because of its computational
efficiency.
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Figure 2.8 The Ricean pdf for K = 0 (Rayleigh), and K = 1, 2, 4, 8, 16, 32.
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Figure 2.9 The probability P(A2 < γ ) that the power below a certain value γ for the
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The main idea of this simulation model is to reverse the line of thought that leads
to the statistical Gaussian WSSUS model to reflect the physical reality. The central limit
theorem gives the justification to apply the mathematical model of a Gaussian process
for a physical signal that is the superposition of many unknown, that is, (pseudo-) ran-
dom components. On the other hand, owing to the central limit theorem, a superposition
of sufficiently many independent random signal components should be a good approxi-
mation for a Gaussian process and should thus be a good model for computer simula-
tions. The remaining task is to find out what statistical properties of the components are
needed to achieve the appropriate statistical properties of the composed process. For a zero
mean GWSSUS channel, we make the following ansatz for the process of the simulation
model

HN(f, t) = 1√
N

N∑
k=1

ejθk ej2πνkte−j2πf τk , (2.23)

where θk , νk , τk are random variables that are statistically independent and identically dis-
tributed for different values of k. To be more specific, the random phase θk is assumed to
be independent of νk and τk and it is uniformly distributed over the unit circle. The random
variables νk and τk have a joint pdf p(τ, ν) that needs to be adjusted to the statistical
properties of the mathematical GWSSUS channel, which is completely characterized by
the autocorrelation R(f, t) or, alternatively, by the scattering function S(τ, ν). The factor
1/
√

N in Equation (2.23) has been introduced to normalize the average power to one. Note
that we did not introduce different amplitudes for the different fading paths. It turns out that
this is not necessary. Because of the central limit theorem, in the limit N →∞, HN(f, t)

approaches a Gaussian process. The following theorem states that HN(f, t) is WSSUS for
any finite value of N .

Theorem 2.3.1 For any value of N ,

E
{
HN(f1 + f, t1 + t)H ∗

N(f1, t1)
} = E

{
HN(f2 + f, t2 + t)H ∗

N(f2, t2)
}

is independent of f1 and t1 and

E
{
HN(f1 + f, t1 + t)H ∗

N(f1, t1)
} = ∫ ∞

−∞
dτ

∫ ∞

−∞
dν e−j2πf τ ej2πνtp(τ, ν)

holds. Furthermore
E {HN(f, t)} = 0.

Proof. We insert Equation (2.23) into the left-hand side of the above equation and
obtain the expression

1

N

N∑
k=1

N∑
l=1

E
{
ej (θk−θl )ej2π(νk(t1+t)−νl t1)e−j2π((f1+f )τk−f1τl )

}

= 1

N

N∑
k=1

N∑
l=1

E
{
ej (θk−θl )

}
E
{
ej2π(νk(t1+t)−νl t1)e−j2π((f1+f )τk−f1τl )

}
.
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The last equality holds because θk is independent of all other random variables. For k �= l,
E
{
ej (θk−θl )

} = E
{
ejθk

}
E
{
ejθl

} = 0. Therefore, all terms with k �= l in the double sum
vanish and we obtain the single sum

1

N

N∑
k=1

E
{
ej2πνkte−j2πf τk

}
,

which is obviously independent of f1 and t1. Because the random variables νk and τk

have the same statistics for all values of k with joint pdf p(τ, ν), we eventually obtain for
the sum

E
{
ej2πνkte−j2πf τk

} = ∫ ∞

−∞
dτ

∫ ∞

−∞
dν e−j2πf τ ej2πνtp(τ, ν).

The second property follows from E
{
ejθl

} = 0.

The theorem states that HN(f, t) is a WSSUS process with an ACF

Rmodel(f, t) = E
{
HN(f1 + f, t1 + t)H ∗

N(f1, t1)
}

and a scattering function given by

Smodel(τ, ν) =
∫ ∞

−∞
df

∫ ∞

−∞
dt ej2πf τ e−j2πνtRmodel(f, t).

The inverse relation is

Rmodel(f, t) =
∫ ∞

−∞
dτ

∫ ∞

−∞
dν e−j2πf τ ej2πνtSmodel(τ, ν).

Comparing this equation with the statement

Rmodel(f, t) =
∫ ∞

−∞
dτ

∫ ∞

−∞
dν e−j2πf τ ej2πνtp(τ, ν)

of the theorem, we find that
Smodel(τ, ν) = p(τ, ν).

We thus have found that for the model channel, the scattering function can be interpreted
as a probability density function of the delays and Doppler frequencies.

We add the following remarks:

• The statement of the theorem and the interpretation is true for any N , even for N = 1.
However, the model is a reasonable approximation only if N is sufficiently large.

• For finite values of N , the model process is not ergodic.

• The model process is Gaussian only in the limit N →∞. Thus, it only approximates
the GWSSUS process, and it does so in a similar manner, as the GWSSUS process
is only a model of the physical reality.



MOBILE RADIO CHANNELS 71

• For bit error simulations, it is not necessary to choose N extremely large. For small
amplitudes, only a moderately large number of superposed random variables already
approximates a Gaussian distribution quite well. Bit errors in a Rayleigh fading
channel occur mainly during deep fades, that is, at small channel amplitudes. For
many practical simulations, N = 100 has proven to be a good choice.

Channel simulations will be done in the time domain. The fading channel model is then
given by the receive signal

r(t) = 1√
N

N∑
k=1

eiθk ei2πνkt s(t − τk)+ n(t), (2.24)

where s(t) is the transmit signal and n(t) is AWGN. The random variables νk and τk will
be generated by a random number generator matched to the scattering function. Approxi-
mations are allowed. As discussed above, the exact structure of the scattering function is
not important, and it can be expected that the model is quite good if the second moments
agree.

An additional direct component to simulate Ricean fading can easily be included into
the model by writing

r(t) = K

1 +K
· s(t)+ 1

1 +K

1√
N

N∑
k=1

eiθk ei2πνkt s(t − τk)+ n(t) (2.25)

for a direct component with Doppler shift zero. K is the Rice factor.

The tapped delay line model

Another kind of model, which is widely used for simulations of mobile communication
systems, is called the tapped delay line model. This model may be interpreted as a superpo-
sition of a certain number M of discrete fading paths (taps) corresponding to propagation
delay values τm, m = 1, 2, . . . , M . To fix such a model, the Doppler spectrum of each tap,
the delay values (relative to the first tap) and the corresponding mean relative amplitudes
or power values of each tap have to be specified. The channel according to such a model
may be generated using Equation (2.23) by inserting the fixed delay values τm of the taps
instead of choosing random delay values. The number of summands corresponding to one
tap has to be selected proportional to the relative amplitude of that tap.

Some important tapped delay line models used for Global System for Mobile Com-
munication (GSM) and Universal Mobile Telecommunication System (UMTS) simulations
are illustrated in Figure 2.10: the GSM models for a typical urban (TU) and a hilly ter-
rain (HT) as well as the International Telecommunication Union (ITU) channel models for
the so-called vehicular (V) and indoor-to-outdoor-pedestrian (IOP) environment. For each
environment, two channel models have been specified by the ITU (see e.g. (ETSI TR 101
112 1998)) – one with a low delay spread (channel A) and one with a higher delay spread
(channel B). For the evaluation of the system proposals of UMTS, mainly the low delay
spread models (channel A) have been used.
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Figure 2.10 Tapped delay line models for GSM, UMTS simulations.

2.4 Digital Transmission over Fading Channels

2.4.1 The MLSE receiver for frequency nonselective and slowly
fading channels

Consider a time variant, but frequency nonselective fading channel as discussed in Sub-
section 2.2.1 with a complex baseband receive signal given by

r(t) = c(t)s(t)+ n(t),

where c(t) is the complex fading amplitude of the channel, n(t) is complex baseband
AWGN and the transmit signal s(t) is given by

s(t) =
K∑

k=1

skgk(t)

with an orthonormal transmit base gk(t) and transmit symbols sk . The assumption that the
fading is frequency nonselective – resulting only in a multiplicative fading amplitude – is
justified if the symbol duration TS is much longer than the delay spread �τ of the channel.
The fading channel transforms the transmit base to a new base with pulses given by hk(t) =
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c(t)gk(t) that must be taken as detector pulses at the receiver. In general, these pulses are
not orthogonal and the treatment becomes more involved. However, it can be simplified for
the important special case that the fading amplitude varies slowly compared to the duration
of the pulse gk(t) (which is typically of the order TS) and can thus be treated as a constant ck

for the transmission of sk . This means that the pulse gk(t) is concentrated in time compared
to the variation of the channel so that the approximation hk(t) = c(t)gk(t) ≈ ckgk(t) can
be made and ∫ ∞

−∞
g∗i (t)c(t)gk(t) dt ≈

∫ ∞

−∞
g∗i (t)ckgk(t) dt = ckδik

holds. Because the channel only changes the transmit base vectors by a multiplicative factor,
the outputs rk of the detectors for the base gk(t) are a set of sufficient statistics and the
treatment is similar to the one described in Section 1.4 with sk replaced by cksk, resulting
in discrete-time channel model with receive symbols given by

rk = cksk + nk, k = 1, . . . , K. (2.26)

We can write this in vector notation as

r = Cs + n, (2.27)

where C = diag(c1, . . . , cK) is the diagonal matrix of the complex fading amplitudes.
We note that the discrete channel model also applies to frequency selective channels

as long as the channel is frequency-flat for one transmission pulse. Such a situation may
occur if the transmit pulses gk(t) are located at different frequencies, for example, for
multicarrier transmission (OFDM), frequency hopping or frequency diversity, when the
same information is repeated at another frequency. Let Gk(f ) be the Fourier transform of
gk(t). The fading channel transforms the transmit base to a new base with pulses given by

hk(t) =
∫ ∞

−∞
ej2πf tH(f, t)Gk(f ) df

that have to be taken as detector pulses at the receiver. We first assume that Gk(f ) is con-
centrated at the frequency fk so that H(f, t) can be replaced by H(fk, t) under the integral.
Then, we can write hk(t) ≈ H(fk, t)gk(t). We then assume that gk(t) is concentrated at
the frequency tk so that H(fk, t) ≈ H(fk, tk) during the pulse duration. We can then write

hk(t) ≈ ckgk(t)

with ck = H(fk, tk).
Given a receive vector r, we now ask for the maximum likelihood transmit vector ŝ. If

we assume that the complex fading amplitudes are known at the receiver, we can apply the
analysis of Subsection 1.4.2, only replacing the vector s by Cs. Modifying Equation (1.77)
in this way, we obtain the most likely transmit vector ŝ as

ŝ = arg min
s
‖r − Cs‖2 , (2.28)

where

‖r − Cs‖2 =
K∑

k=1

|ck|2
∣∣∣c−1

k rk − sk

∣∣∣2 . (2.29)
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This equation allows an interesting interpretation of the optimum receiver. First, the receive
symbols rk are multiplied by the inverse of the complex channel coefficient ck = akejϕk .
This means that, by multiplying with c−1

k , the channel phase shift ϕk is back rotated, and
the receive symbol is divided by the channel amplitude ak to adjust the symbols to their
original size. We may regard this as an equalizer. Each properly equalized receive symbol
will be compared with the possible transmit symbol sk by means of the squared Euclidean
distance. These individual decision variables for each index k must be summed up with
weighting factors given by |ck|2, the squared channel amplitude. Without these weighting
factors, the receiver would inflate the noise for the very unreliable receive symbols. If a
deep fade occurs at the index k, the channel transmit power |ck|2 may be much less than
the power of the noise. The receive symbol rk is nearly absolutely unreliable and provides
us with nearly no useful information about the most likely transmit vector ŝ. It would thus
be much better to ignore that very noisy receive symbol instead of amplifying it and using
it like the more reliable ones. The factor |ck|2 just takes care of the weighting with the
individual reliabilities.

As in Subsection 1.4.2, we may use another form of the maximum likelihood condition.
Replacing the vector s by Cs in Equation (1.78), we obtain

ŝ = arg max
s

(

 {s†C†r

}− 1

2
‖Cs‖2

)
. (2.30)

There is one difference to the AWGN case: in the first term, before cross-correlating with
all possible transmit vectors s, the receive vector r will first be processed by multiplication
with the matrix C†. This operation performs a back rotation of the channel phase shift ϕk

for each receive symbol rk and a weighting with the channel amplitude ak . The resulting
vector

C†r =

 c∗1r1
...

c∗KrK

 .

must be cross-correlated with all possible transmit vectors. The second term takes the
different energies of the transmit vectors Cs into account, including the multiplicative
fading channel. If all transmit symbols sk have the same constant energy ES = |sk|2 as it
is the case for PSK signaling,

‖Cs‖2 =
K∑

k=1

|ck|2 |sk|2 = ES

K∑
k=1

|ck|2

is the same for all transmit vectors s and can therefore be ignored for the decision.

2.4.2 Real-valued discrete-time fading channels

Even though complex notation is a common and familiar tool in communication theory,
there are some items where it is more convenient to work with real-valued quantities.
If Euclidean distances between vectors have to be considered – as it is the case in the
derivation of estimators and in the evaluation of error probabilities – things often become
simpler if one recalls that a K-dimensional complex vector space has equivalent distances
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as a 2K-dimensional real vector space. We have already made use of this fact in Subsection
1.4.3, where pairwise error probabilities for the AWGN channel were derived. For a discrete
fading channel, things become slightly more involved because of the multiplication of the
complex transmit symbols sk by the complex fading coefficients ck . In the corresponding
two-dimensional real vector space, this corresponds to a multiplication by a rotation matrix
together with an attenuation factor. Surely, one prefers the simpler complex multiplication
by ck = akejϕk , where ak and ϕk are the amplitude and the phase of the channel coefficient.
At the receiver, the phase will be back rotated by means of a complex multiplication with
ejϕk corresponding to multiplication by the inverse rotation matrix in the real vector space.
Obviously, no information is lost by this back rotation, and we still have a set of sufficient
statistics. We may thus work with a discrete channel model that includes the back rotation
and where the fading channel is described by a multiplicative real fading amplitude.

To proceed as described above, we rewrite Equation (2.27) as

r = Cs + nc.

Here C is the diagonal matrix of complex fading amplitudes ck = akejϕk and nc is complex
AWGN. We may write

C = DA

with
A = diag(a1, . . . , aK)

is the diagonal matrix of real fading amplitudes and

D = diag(ejϕ1, . . . , ejϕK )

is the diagonal matrix of phase rotations. We note that D is a unitary matrix, that is,
D−1 = D†. The discrete channel can be written as

r = DAs + nc.

We apply the back rotation of the phase and get

D†r = As + nc.

Note that a phase rotation does not change the statistical properties of the Gaussian white
noise, so that we can write nc instead of D†nc. We now decompose the complex vectors
into their real and imaginary parts as

s = x1 + jx2,

D†r = y1 + jy2

and
nc = n1 + jn2.

Then the complex discrete channel can be written as two real channels in K dimensions
given by

y1 = Ax1 + n1
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and
y2 = Ax2 + n2

corresponding to the inphase and the quadrature component, respectively. Depending on
the situation, one may consider each K-dimensional component separately, as in the case
of square QAM constellations and then drop the index. Or one may multiplex both together
to a 2K-dimensional vector, as in the case of PSK constellations. One must keep in mind
that each multiplicative fading amplitude occurs twice because of the two components. In
any case, we may write

y = Ax+ n (2.31)

for the channel with an appropriately redefined matrix A. We finally mention that Equation
(2.30) has its equivalent in this real model as

x̂ = arg max
x

(
x · Ay − 1

2
‖As‖2

)
.

2.4.3 Pairwise error probabilities for fading channels

In this subsection, we consider the case that the fading amplitude is even constant during
the whole transmission of a complete transmit vector, that is, the channel of Equation (2.31)
reduces to

y = ax + n

with a constant real fading amplitude a. A special case is, of course, a symbol by symbol
transmission where only one symbol is be considered. If that symbol is real, the vector x
reduces to a scalar. If the symbol is complex, x is a two-dimensional vector.

Let the amplitude a be a random variable with pdf p(a). For a fixed amplitude value a,
we can apply the results of Subsection 1.4.3 with x replaced by ax. Then Equation (1.83)
leads to the conditioned pairwise error probability

P (x �→ x̂|a) = Q

(
ad

σ

)
= 1

2
erfc

√ a2

4N0
‖x − x̂‖2


with σ 2 = N0/2 and

d = 1

2
‖x − x̂‖ .

The overall pairwise error probability

P (x �→ x̂) =
∫ ∞

0
P (x �→ x̂|a)p(a) da

is obtained by averaging over the fading amplitude a.
We first consider the Rayleigh fading channel and insert the integral expression for

Q(x) to obtain

P (x �→ x̂) =
∫ ∞

0
da 2ae−a2 1√

2πσ 2/d2

∫ ∞

a

dte
− d2t2

2σ2 .
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We change the order of integration resulting in

P (x �→ x̂) = 1√
2πσ 2/d2

∫ ∞

0
dt e

− d2t2

2σ2

∫ t

0
da 2ae−a2

.

The second integral is 1 − e−t2
so that

P (x �→ x̂) = 1√
2πσ 2/d2

∫ ∞

0

(
e
− d2t2

2σ2 − e
− d2+2σ2

2σ2 t2
)

dt,

which can be solved resulting in

P (x �→ x̂) = 1

2

1 −
√

d2/2σ 2

1 + d2/2σ 2


or

P (x �→ x̂) = 1

2

1 −
√√√√ 1

4N0
‖x − x̂‖2

1 + 1
4N0

‖x − x̂‖2

 .

For BPSK and QPSK transmission, each bit error corresponds to an error for one real
symbol x, that is, Pb = P (x �→ x̂) with x̂ = −x and

1

4N0
‖x − x̂‖2 = Eb

N0

holds. Thus,

Pb = 1

2

1 −
√√√√ Eb

N0

1 + Eb

N0

 .

To discuss the asymptotic behavior for large Eb/N0 of this expression, we observe that√
1 + x ≈ 1 + x/2 for small values of x = N0/Eb and find the approximation

Pb ≈ 1

2

1

1 + 2 Eb

N0

≈
(

4
Eb

N0

)−1

for large SNRs. For other modulation schemes than BPSK or QPSK,

P (x �→ x̂) ≈ 1

2

1

1 + 1
2N0

‖x − x̂‖2 ≈
(

1

N0
‖x − x̂‖2

)−1

holds. There is always the proportionality

1

4N0
‖x − x̂‖2 ∝ SNR ∝ Eb

N0
.

As a consequence, the error probabilities always decrease asymptotically as SNR−1 or
(Eb/N0)

−1.
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2.4.4 Diversity for fading channels
In a Rayleigh fading channel, the error probabilities Perror decrease asymptotically as slow
as Perror ∝ SNR−1. To lower Perror by a factor of 10, the signal power must be increased
by a factor of 10. This is related to the fact that, for an average receive signal power γm,
the probability P

(
A2 < γ

)
that the signal power A2 falls below a value γ is given by

P
(
A2 < γ

) = 1 − e−
γ

γm

which decreases as
P
(
A2 < γ

) ≈ γ

γm

∝ SNR−1

for high SNRs.
The errors occur during the deep fades, and thus the error probability is proportional to

the probability of deep fades. A simple remedy against this is twofold (or L-fold) diversity
reception: if two (or L) replicas of the same information reach the transmitter via two
(or L) channels with statistically independent fading amplitudes, the probability that the
whole received information is affected by a deep fade will be (asymptotically) decrease as
SNR−2 (or SNR−L). The same power law will then be expected for the probability of error.
L is referred to as the diversity degree or the number of diversity branches. The following
diversity techniques are commonly used:

• Receive antenna diversity can be implemented by using two (or L) receive antennas
that are sufficiently separated in space. To guarantee statistical independence, the
antenna separation �x should be much larger than the wavelength λ. For a mobile
receiver, �x ≈ λ/2 is often regarded as sufficient (without guarantee). For the base
station receiver, this is certainly not sufficient.

• Transmit antenna diversity techniques were developed only a few years ago. Since
then, these methods have evolved in a widespread area of research. We will discuss
the basic concept later in a separate subsection.

• Time diversity reception can be implemented by transmitting the same information
at two (or L) sufficiently separated time slots. To guarantee statistical independence,
the time difference �t should be much larger than the correlation time tcorr = ν−1

max.

• Frequency diversity reception can be implemented by transmitting the same in-
formation at two (or L) sufficiently separated frequencies. To guarantee statistical
independence, the frequency separation �f should be much larger than fcorr = �τ−1,
that is, the correlation frequency (coherency bandwidth) of the channel.

It is obvious that L-fold time or frequency diversity increases the bandwidth requirement
for a given data rate by a factor of L. Antenna diversity does not increase the required
bandwidth, but increases the hardware expense. Furthermore, it increases the required space,
which is a critical item for mobile reception.

The replicas of the information that have been received via several and (hopefully)
statistical independent fading channels can be combined by different methods:

• Selection diversity combining simply takes the strongest of the L signals and ignores
the rest. This method is quite crude, but it is easy to implement. It needs a selector,
but only one receiver is required.
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• Equal gain combining (EGC) needs L receivers. The receiver outputs are summed
as they are (i.e. with equal gain), thereby ignoring the different reliabilities of the L

signals.

• Maximum ratio combining (MRC) also needs L receivers. But in contrast to EGC,
the receiver outputs are properly weighted by the fading amplitudes, which must be
known at the receiver. The MRC is just a special case of the maximum likelihood
receiver that has been derived in Subsection 2.4.1. The name maximum ratio stems
from the fact that the maximum likelihood condition always minimizes the noise
(i.e. maximizes the signal-to-noise ratio) (see Problem 3).

Let Eb be the total energy per data bit available at the receiver and let ES = E{|si |2} be
the average energy per complex transmit symbol si . We assume M-ary modulation, so each
symbol carries log2(M) data bits. We normalize the average power gain of the channel to
one, that is, E

{
A2
} = 1. Thus, for L-fold diversity, the energy ES is available L times at the

receiver. Therefore, the total energy per data bit Eb and the symbol energy are related by

LES = log2(M)Eb. (2.32)

As discussed in Section 1.5, for linear modulations schemes SNR = ES/N0 holds, that is,

SNR = log2(M)

L

Eb

N0
. (2.33)

Because the diversity degree L is a multiplicative factor between SNR and Eb/N0, it is very
important to distinguish between both quantities when speaking about diversity gain. A fair
comparison of the power efficiency must be based on how much energy per bit, Eb, is
necessary at the receiver to achieve a reliable reception. If the power has a fixed value and
we transmit the same signal via L diversity branches, for example, L different frequencies,
each of them must reduce the power by a factor of L to be compared with a system without
diversity. This is also true for receive antenna diversity: L receive antennas have L times
the area of one antenna. But this is an antenna gain, not a diversity gain. We must therefore
compare, for example, a setup with L antenna dishes of 1 m2 with a setup with one dish of
L m2. We state that there is no diversity gain in an AWGN channel. Consider for example,
BPSK with transmit symbols xk = ±√ES . For L-fold diversity, there are only two possible
transmit sequences. The pairwise error probability then equals the bit error probability

Pb = P (x �→ x̂) = 1

2
erfc

(√
1

4N0
‖x − x̂‖2

)
.

With x = −x̂ and ‖x‖2 = LES we obtain

Pb = 1

2
erfc

(√
L · SNR

)
for Pb as a function of the SNR but

Pb = 1

2
erfc

(√
Eb

N0

)
for Pb as a function of Eb/N0. Thus, for time or frequency diversity, we have wasted
bandwidth by a factor of L without any gain in power efficiency.
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2.4.5 The MRC receiver

We will now analyze the MRC receiver in some more detail. For L-fold diversity, L

replicas of the same information reach the transmitter via L statistically independent fading
amplitudes. In the simplest case, this information consists only of one complex PSK or
QAM symbol, but in general, it may be any sequence of symbols, for example, of chips in
the case of orthogonal modulation with Walsh vectors. The general case is already included
in the treatment of Subsection 2.4.1. Here we will discuss the special case of repeating only
one symbol in more detail.

Consider a single complex PSK or QAM symbol s ≡ s1 and repeat it L times over
different channels. The diversity receive vector can be described by Equation (2.26) by
setting s1 = · · · = sL with K replaced by L. The maximum likelihood transmit symbol ŝ

is given by Equations (2.28) and (2.29), which simplifies to

ŝ = arg min
s

L∑
i=1

|ci |2
∣∣∣c−1

i ri − s

∣∣∣2 ,

that is, the receive symbols ri are equalized, and next the squared Euclidean distances to
the transmit symbol are summed up with the weights given by the powers of the fading
amplitudes.

We may write Equation (2.27) in a simpler form as

r = sc + nc, (2.34)

with the channel vector c given by

c = (c1, . . . , cL)T

and complex AWGN nc. The vector c defines a (complex) one-dimensional transmission
base, and sufficient statistics is given by calculating the scalar product c†r at the receiver.
The complex number c†r is the output of the maximum ratio combiner, which, for each
receive symbol ri back rotates the phase ϕi , weights each with the individual channel
amplitude ai = |ci |, and forms the sum of all these L signals.

Here we note that EGC cannot be optimal because at the receiver, the scalar prod-
uct

(
e−jϕ1, . . . , e−jϕL

)
r is calculated, and this is not a set of sufficient statistics because(

ejϕ1, . . . , ejϕL
)T

does not span the transmit space.
Minimizing the squared Euclidean distance yields

ŝ = arg min
s
‖r − sc‖2

or

ŝ = arg max
s

(

 {s∗c†r

}− 1

2
|s|2 ‖c‖2

)
, (2.35)

which is a special case of Equation (2.30).
The block diagram for the MRC receiver is depicted in Figure 2.11. First, the combiner

calculates the quantity

v = c†r =
L∑

k=1

c∗k rk =
L∑

k=1

ake−jϕk rk,
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Figure 2.11 Block diagram for the MRC diversity receiver.

that is, it back rotates the phase for each receive symbol rk and then sums them up (combines
them) with a weight given by the channel amplitude ak = |ck|. The first term in Equation
(2.35) is the correlation between the MRC output v = c†r and the possible transmit symbols
s. For general signal constellations, second (energy) term in Equation (2.35) has to be
subtracted from the combiner output before the final decision. For PSK signaling, it is
independent of s and can thus be ignored. For BPSK, the bit decision is given by the sign
of 
 {v}. For QPSK, the two bit decisions are obtained from the signs of 
 {v} and � {v}.

For the theoretical analysis, it is convenient to consider the transmission channel in-
cluding the combiner. We define the composed real fading amplitude

a =
√√√√ L∑

i=1

a2
i

and normalize the combiner output by

u = a−1c†r.

We multiply Equation (2.34) by a−1c† and obtain the one-dimensional scalar transmission
model

u = as + nc,

where nc = a−1c†nc can easily be proven to be one-dimensional discrete complex AWGN
with variance σ 2 = N0. A two-dimensional equivalent real-valued vector model

y = ax + n, (2.36)

can be obtained by defining real transmit and receive vectors

x =
[ 
 {s}
� {s}

]
, y =

[ 
 {u}
� {u}

]
.

Here, n is two-dimensional real AWGN. Minimizing the squared Euclidean distance in the
real vector space yields

x̂ = arg min
s
‖y − ax‖2
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or

x̂ = arg max
x

(
ay · x − 1

2
|a2 ‖x‖2

)
. (2.37)

The first term is the correlation (scalar product) of the combiner output ay and the trans-
mit symbol vector x, and the second is the energy term. For PSK signaling, this term is
independent of x and can thus be ignored. In that case, the maximum likelihood transmit
symbol vector x is the one with the smallest angle to the MRC output. For QPSK with
Gray mapping, the two dimensions of x are independently modulated, and thus the signs
of the components of y lead directly to bit decisions.

2.4.6 Error probabilities for fading channels with diversity

Consider again the frequency nonselective, slowly fading channel with the receive vector

r = Cs + n

as discussed in Subsection 2.4.1. Assume that the diagonal matrix of complex fading ampli-
tudes C = diag (c1, . . . , cK) is fixed and known at the receiver. We ask for the conditional
pairwise error probability P (s �→ ŝ|C) that the receiver erroneously decides for ŝ instead
of s for that given channel. Since P (s �→ ŝ|C) = P (Cs �→ Cŝ), we can apply the results of
Subsection 1.4.3 by replacing s with Cs and ŝ with Cŝ and get

P (s �→ ŝ|C) = 1

2
erfc

(√
1

4N0
‖Cs − Cŝ‖2

)
.

Let s = (s1, . . . , sK) and ŝ = (ŝ1, . . . , ŝK) differ exactly in L ≤ K positions. Without losing
generality we assume that these are the first ones. This leads to the expression

P (s �→ ŝ|C) = 1

2
erfc


√√√√ 1

4N0

L∑
i=1

|ci |2 |si − ŝi |2
 .

The pairwise error probability is the average EC {·} over all fading amplitudes, that is,

P (s �→ ŝ) = EC

1

2
erfc


√√√√ 1

4N0

L∑
i=1

|ci |2 |si − ŝi |2
 . (2.38)

For the following treatment, we use the polar representation

1

2
erfc(x) = 1

π

∫ π/2

0
exp

(
− x2

sin2 θ

)
dθ

of the complementary error integral (see Subsection 1.4.3) and obtain the expression

P (s �→ ŝ) = 1

π

∫ π/2

0
EC

{
exp

(
− 1

4N0 sin2 θ

L∑
i=1

|ci |2 |si − ŝi |2
)}

dθ. (2.39)
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This method proposed by Simon and Alouini (2000); Simon and Divsalar (1998) is very
flexible because the expectation of the exponential is just the moment generating function
of the pdf of the power, which is usually known. The remaining finite integral over θ is
easy to calculate by simple numerical methods. Let us assume that the fading amplitudes
are statistically independent. Then the exponential factorizes as

EC

{
exp

(
− 1

4N0 sin2 θ

L∑
i=1

|ci |2 |si − ŝi |2
)}

=
L∏

i=1

Eai

{
exp

(
−a2

i |si − ŝi |2
4N0 sin2 θ

)}
,

where Eai
{·} is the expectation over the fading amplitude ai = |ci |. We note that with this

expression, it will not cause additional problems if the L fading amplitudes have different
average powers or even have different types of probability distribution. If they are identically
distributed, the expression further simplifies to

EC

{
exp

(
− 1

4N0 sin2 θ

L∑
i=1

|ci |2 |si − ŝi |2
)}

=
L∏

i=1

Ea

{
exp

(
− a2�2

i

N0 sin2 θ

)}
,

where �i = 1
2 |si − ŝi | and Ea {·} is the expectation over the fading amplitude a = ai . For

Rayleigh fading, the moment generating function of the squared amplitude can easily be
calculated as

Ea

{
e−xa2

}
=
∫ ∞

0
2ae−a2

e−xa2
da

resulting in

Ea

{
e−xa2

}
= 1

1 + x
.

With this expression, Equation (2.39) now simplifies to

P (s �→ ŝ) = 1

π

∫ π/2

0

L∏
i=1

1

1 + �2
i

N0 sin2 θ

dθ. (2.40)

We note that an upper bound can easily be obtained by upper bounding the integrand by
its maximum at θ = π/2, leading to

P (s �→ ŝ) ≤ 1

2

L∏
i=1

1

1 + �2
i

N0

. (2.41)

Obviously, this quantity decreases asymptotically as SNR−L. We note that bounds of this
type – but without the factor 1/2 in front – are commonly obtained by Chernoff bound
techniques (Jamali and Le-Ngoc 1994). A method described by Viterbi (Viterbi 1995)
improved those bounds by a factor of two and yields (2.41).

A similar bound that is tighter for high SNRs but worse for low SNRs can be obtained
by using the inequality

1

1 + 1
sin2 θ

�2
i

N0

≤ sin2 θ

(
�2

i

N0

)−1
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to upper bound the integrand. The integral can then be solved resulting in the asymptotically
tight upper bound

P (s �→ ŝ) ≤ 1

2

1

4L

(
2L

L

) L∏
i=1

N0

�2
i

, (2.42)

which again shows that the error probability decreases with the power L of the inverse
SNR for L-fold repetition diversity.

Consider BPSK as an example. Here, �2
i = ES for all values of i and, by Equation

(2.32) with M = 2,

ES = 1

L
Eb

holds. Thus, by Equation (2.40), the expression for the bit error rate Pb = P (s �→ ŝ) be-
comes

Pb = 1

π

∫ π/2

0

 1

1 + 1
L

Eb

N0 sin2 θ

L

dθ (2.43)

which may be upper bounded by

P (s �→ ŝ) ≤ 1

2

(
1

1 + 1
L

Eb

N0

)L

.

It is interesting to note that we can see from Equation (2.43) that in the limit that the
diversity degrees approach infinity, we reach the performance of an AWGN channel. Using
the formula

lim
n→∞

(
1 + 1

n
x

)n

= ex

we obtain

lim
L→∞

1

π

∫ π/2

0

 1

1 + 1
L

Eb

N0 sin2 θ

L

dθ = 1

π

∫ π/2

0
exp

(
− Eb

N0 sin2 θ

)
dθ.

By the polar representation of the error integral, the r.h.s. equals

Pb = 1

2
erfc

(√
Eb

N0

)
,

which is the BER for BPSK in the AWGN channel. Figure 2.12 shows these curves for
L = 1, 2, 4, 8, 16, 32, 64 compared to the AWGN limit.

For Ricean fading with Rice factor K , the characteristic function can be calculated as
well, resulting in the expression for the error probability

P (s �→ ŝ) = 1

π

∫ π/2

0

L∏
i=1

RK

(
�2

i

N0 sin2 θ

)
dθ (2.44)

with the abbreviation

RK (x) = 1 +K

1 +K + x
exp

(
− Kx

1 +K + x

)
(see (Benedetto and Biglieri 1999; Jamali and Le-Ngoc 1994)).
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Figure 2.12 Error rates for BPSK with L-fold diversity for different values of L in a
Rayleigh fading channel.

Some alternative expressions for error probabilities with diversity reception

The above method that utilizes the polar representation of the complementary Gaussian
error integral is quite flexible because the fading coefficients may or may not have equal
power. We will see later that it is also suited very well to investigate error probabilities
for codes QAM. One drawback of this method is that it does not apply to differential
modulation.

For the sake of completeness, we will now present some formulas that are valid for
differential and coherent BPSK (M = 2) and QPSK (M = 4). These formulas can be found
in (Hagenauer 1982; Hagenauer et al. 1990; Proakis 2001). We define the SNR

γS = ES/N0 = log2(M)Eb/N0.

For coherent modulation, we define a parameter

ξ =


√
γs

1+γs
: M = 2√

γs

2+γs
: M = 4

.

Note that

ξ =
√

Eb/N0

1 + Eb/N0
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for both cases. For differential modulation, we define

ξ =


γsR1
1+γs

: M = 2
γsR1√

2(1+γs )2−γ 2
s R2

1

: M = 4 ,

where
R1 = Rc(TS)

is the value of the time autocorrelation Rc(t) of the channel, taken at the symbol duration
t = TS . For the Jakes Doppler spectrum, we obtain from Equation (2.8)

Rc(TS) = J0 (2πνmaxTS) ,

which is obviously a function of the product νmaxTS . As discussed in Subsection 2.2.1, for
νmaxTS � 1, we can approximate Rc(TS) by the second order of the Taylor series as

Rc(TS) ≈ 1 − (πνmaxTS)2 .

The bit error probabilities PL for L-fold diversity can then be expressed by either of the
three following equivalent expressions:

PL = 1

2

[
1 − ξ

L−1∑
k=0

(
2k

k

)(
1 − ξ 2

4

)k
]

PL =
(

1 − ξ

2

)L L−1∑
k=0

(
L− 1 + k

k

)(
1 + ξ

2

)k

PL =
(

1 − ξ

2

)2L−1 L−1∑
k=0

(
2L− 1

k

)(
1 + ξ

1 − ξ

)k

We note that – as expected – these expressions are identical for coherent BPSK and QPSK
if they are written as functions of Eb/N0. DBPSK (differential BPSK) and DQPSK are
numerically very close together.

2.4.7 Transmit antenna diversity

In many wireless communications scenarios, the practical boundary conditions at the trans-
mitter and at the receiver are asymmetric. Consider as an example the situation of mobile
radio. The mobile unit must be as small as possible and it is practically not feasible to
apply receive antenna diversity and mount two antennas with a distance larger than half the
wavelength. At the base station site, this is obviously not a problem. Transmit antenna di-
versity is thus very desirable because multiple antennas at the base station can then be used
for the uplink and for the downlink as well. However, if one transmits signals from two
or more antennas via the same physical medium, the signals will interfere and the receiver
will be faced with the difficult task of disentangling the information from the superposition
of signals. It is apparent that this cannot be done without loss in any case. Only a few years
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ago, Alamouti (Alamouti 1998) found a quite simple setup for two antennas for which it
is possible to disentangle the information without loss. The scheme can even be proven
to be in some sense equivalent to a setup with two receive antennas. For the geometrical
interpretation of this fact and the situation for more than two antennas, we refer to the
discussion in (Schulze 2003a).

The Alamouti scheme

This scheme uses two transmit antennas to transmit a pair of two complex symbols (s1, s2)

during two time slots. We assume that for both antennas the channel can be described by
the discrete-time fading model with complex fading coefficients c1 and c2, respectively. We
assume that the time variance of the channel is slow enough so that we can assume that
these coefficients do not change from one time slot to the other.

The pair of complex transmit symbols (s1, s2) is then processed in the following way:
at time slot 1, the symbol s1 is transmitted from antenna 1 and s2 is transmitted from
antenna 2. The received signal (without noise) at time slot 1 is then given by c1s1 + c2s2.
At time slot 2, the symbol s∗2 is transmitted from antenna 1 and −s∗1 is transmitted from
antenna 2. The received signal at time slot 2 is then given by −c2s

∗
1 + c1s

∗
2 . It is convenient

for the analysis to take the complex conjugate of the received symbol in the second time
slot before any other further processing at the receiver. We can therefore say that, at time
slot 2, s1 and s2 have been transmitted over channel branches with fading coefficients −c∗2
and c∗1, respectively. The received symbols with additive white Gaussian noise at time slots
1 and 2 are given by

r1 = c1s1 + c2s2 + nc1

and
r2 = −c∗2s1 + c∗1s2 + nc2,

respectively, where nc1 and nc2 are the independent complex Gaussian noise components
with variance σ 2 = N0/2 in each real dimension. We can write this in vector notation as

r = Cs + nc (2.45)

with the vectors s = (s1, s2)
T , r = (r1, r2)

T , n = (n1, n2)
T and the channel matrix

C =
[

c1 c2

−c∗2 c∗1

]
. (2.46)

We observe that the channel matrix has the property

C†C = CC† = (|c1|2 + |c2|2
)

I2, (2.47)

where I2 is the 2 × 2 identity matrix. Equation (2.47) means that the channel matrix can
be written as

C =
√
|c1|2 + |c2|2 U,

where U is a unitary matrix, that is, a matrix with the property U†U = UU† = I2. Unitary
matrices (like orthogonal matrices for real vector spaces) are invertible matrices that leave
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Euclidean distances invariant (see e.g. (Horn and Johnson 1985)). They can be visualized
as rotations (possibly combined with a reflection) in an Euclidean space. This means that
the transmission channel given by Equation (2.45) can be separated into three parts:

1. A rotation of the vector s in two complex (= four real) dimensions.

2. An attenuation by the composed fading amplitude
√
|c1|2 + |c2|2.

3. An AWGN channel.

Keeping in mind that multiplicative fading is just a phase rotation together with an at-
tenuation by a real fading amplitude, we can now interpret this transmission according to
Equation (2.45) with a matrix given by Equation (2.46) as a generalization of the familiar
multiplicative fading from one to two complex dimensions, or, if this is easier to visualize,
from two to four real dimensions. The two-dimensional rotation by the channel phase is
replaced by a four-dimensional rotation, and the (real-valued) channel fading amplitude has
to be replaced by the composed fading amplitude

a =
√
|c1|2 + |c2|2.

This geometrical view shows that the receiver must back rotate the receive signal r, and
then estimate the transmit vector s in the familiar way as known for the AWGN channel,
thereby taking into account the amplitude factor a.

For the formal derivation of the diversity combiner, we proceed as in Subsection 2.4.1.
The channel given by Equation (2.45) looks formally the same as the channel considered
there, only the matrix C has a different structure. The maximum likelihood transmit vector
ŝ is the one that minimizes the squared Euclidean distance, that is,

ŝ = arg min
s
‖r − Cs‖2 .

Equivalently, we may write

ŝ = arg max
s

(

 {s†C†r

}− 1

2
‖Cs‖2

)
.

Using Equation (2.47), we can evaluate the energy term and obtain the expression

ŝ = arg max
s

(

 {s†C†r

}− 1

2

(|c1|2 + |c2|2
) ‖s‖2

)
.

We note that the energy term can be discarded if all signal vectors s have the same energy.
This is obviously the case if the (two-dimensional) symbols si have always equal energy
as for PSK signaling, but this is not necessary. It remains true if the symbol energy differs,
but all vectors of a four-dimensional signal constellation lie on a four-dimensional sphere.

The diversity combiner processes the receive vector r to the vector

C†r =
[

c∗1r1 − c2r2

c∗2r1 + c1r2

]
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and correlates it with all possible transmit vectors, thereby – if necessary – taking into
account their different energies. We note that for QPSK with Gray mapping, the signs of
the real and imaginary parts of C†r provide us directly with the bit decisions.

The strong formal similarity to two-antenna receive antenna diversity becomes evident
in the equivalent real-valued model. We multiply Equation (2.45) by the back-rotation
matrix U† = |c|−1C† and obtain

U†r = as + nc,

where we made use of the fact that U†nc has the same statistical properties as nc. We define
the four-dimensional real transmit and receive vectors

x =
[ 
 {s}
� {s}

]
, y =

[ 
 {U†r
}

� {U†r
} ]

and obtain the real-valued time-discrete vector model

y = ax + n, (2.48)

where n is four-dimensional real AWGN. This is formally the same as the real-valued model
for the MRC combiner given by Equation (2.36). The only difference is the extension from
two to four dimensions. As for the MRC combiner, minimizing the squared Euclidean
distance in the real vector space yields

x̂ = arg min
s
‖y − ax‖2

or

x̂ = arg max
x

(
ay · x − 1

2
|a2 ‖x‖2

)
.

The first term is the correlation (scalar product) of the combiner output ay and the trans-
mit symbol vector x, and the second is the energy term. For PSK signaling, this term is
independent of x and can thus be ignored. In that case, the maximum likelihood transmit
symbol vector x is the one with the smallest angle to the MRC output. For QPSK with
Gray mapping, the two dimensions of x are independently modulated, and thus the signs
of the components of y lead directly to bit decisions.

The conditional pairwise error probability given a fixed channel matrix C will be ob-
tained similar to that of conventional diversity discussed in Subsection 2.4.6 as

P (s �→ ŝ|C) = 1

2
erfc

(√
1

4N0
‖Cs − Cŝ‖2

)
.

In Subsection 2.4.6, the matrix C is diagonal, but here it has the property given by Equations
(2.47). Thus the squared Euclidean distance can be simplified according to ‖Cs − Cŝ‖2 =(|c1|2 + |c2|2

) ‖s − ŝ‖2 and we find the expression for the pairwise error probability

P (s �→ ŝ) = EC

1

2
erfc

√‖s − ŝ‖2

4N0

(|c1|2 + |c2|2
) ,

where EC means averaging over the channel. This equation is a special case of Equation
(2.38), and it can be analyzed using the same methods.
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Now let Eb be the total energy per data bit available at the receiver and ES the energy
per complex transmit symbol s1 or s2. We assume M-ary modulation, so each of them carries
log2(M) data bits. Both symbols are assumed to be of equal (average) energy, which means
that ES = E{|s1|2} = E{|s2|2} = E{‖s‖2 /2}. We normalize the average power gain for each
antenna channel coefficient to one, that is, E

{|c1|2
} = E

{|c2|2
} = 1. Then, for each time

slot, the total energy 2ES is transmitted at both antennas together and the same (average)
energy is available at each of the receive antenna. Therefore, the total energy available at
the receiving site for that time slot is

2ES = log2(M)Eb.

For only one transmit antenna, SNR = ES/N0 is the SNR at the receive antenna for linear
modulation. For two transmit antennas, we have SNR = 2ES/N0. For uncoded BPSK or
QPSK transmission, the value of each data bit affects only one real dimension. The event
of an erroneous bit decision corresponds to the squared Euclidean distance

‖s − ŝ‖2 = 4ES/ log2(M) = 2Eb,

which means that both BPSK (M = 2) and QPSK (M = 4) have the bit error probability

Pb = EC

{
1

2
erfc

(√
Eb

2N0

(|c1|2 + |c2|2
))}

as a function of Eb/N0. This is exactly the same as for twofold receive antenna diversity,
which is a special case of the results in Subsection 2.4.6 and we can apply the formulas
given there for independent Rayleigh or Ricean fading.

We note that Alamouti’s twofold transmit antenna diversity has the same performance
as the twofold receive antenna diversity only if we write Pb as a function of Eb/N0 because
SNR = log2 M · Eb/N0 holds for the first case and SNR = 1

2 log2 M · Eb/N0 holds for the
latter.

2.5 Bibliographical Notes

The classical textbook about mobile radio channels is (Jakes 1975). However, fading chan-
nels are treated in many modern textbooks about digital communication techniques (see
e.g. (Benedetto and Biglieri 1999; Kammeyer 2004; Proakis 2001)). We also recommend
the introductory chapter of (Jamali and Le-Ngoc 1994).

The system theory of WSSUS processes goes back to the classical paper of (Bello
1963). The practical simulation method described in this chapter has been developed by
one of the authors (Schulze 1988) and has later been refined and extended by Hoeher
(1992). We would like to point out that the line of thought for this model was mainly
inspired by the way physicists looked at statistical mechanics (see e.g. (Hill 1956; Lan-
dau and Lifshitz 1958)). All measurements are time averages, while the statistical theory
deals with statistical (so-called ensemble) averages. This replacement (the so-called ergodic
hypothesis) is mathematically nontrivial, but is usually heuristically justified. Systems in
statistical physics that are too complex to be studied analytically are often investigated by
the so-called Monte-Carlo Simulations. The initial conditions (locations and velocities) of
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the particles (e.g. molecules) are generated as (pseudo) random variables by a computer,
and the dynamics of the system has to be calculated, for example, by the numerical solu-
tion of differential equations. From these solutions, time averages of physical quantities are
calculated. For a mobile radio system, we generate phases, Doppler shifts and delay (as
initial conditions of the system) and calculate the system dynamics from these quantities.
Finally, time averages, for example, for the bit error rate are calculated.

2.6 Problems

1. Let z(t) = x(t)+ jy(t) be a stochastic process with the property

E {z(t + τ )z(t)} = 0.

Show the properties

E {x(t + τ )x(t)} = E {y(t + τ )y(t)}

and
E {x(t + τ )y(t)} = −E {y(t + τ )x(t)} .

2. Show that for the Jakes Doppler spectrum Sc(ν), the second moment is given by

µ2 {Sc(ν)} = ν2
max

2
.

3. An L-branch diversity channel is given by the receive signal vector

r = sc + n,

with the channel vector c given by

c = (c1, . . . , cL)T ,

where s is the transmit symbol and n is L-dimensional (not necessarily Gaussian)
complex white noise. A linear combiner is given by the operation u = v†r with
a given vector v. Show that the SNR for the combiner output is maximized for
v = c.





3

Channel Coding

3.1 General Principles

3.1.1 The concept of channel coding

Channel coding is a common strategy to make digital transmission more reliable, or, equiv-
alently, to achieve the same required reliability for a given data rate at a lower power level
at the receiver. This gain in power efficiency is called coding gain. For mobile communica-
tion systems, channel coding is often indispensable. As discussed in the preceding chapter,
the bit error rate in a Rayleigh fading channel decreases as Pb ∼ (Eb/N0)

−1, which would
require an unacceptable high transmit power to achieve a sufficiently low bit error rate. We
have seen that one possible solution is diversity. We will see in the following sections that
channel coding can achieve the same gain as diversity with less redundancy.

This chapter gives a brief but self-contained overview over the channel coding tech-
niques that are commonly applied in OFDM and CDMA systems. For a more detailed
discussion, we refer to standard text books cited in the Bibliographical Notes.

Figure 3.1 shows the classical channel coding setup for a digital transmission system.
The channel encoder adds redundancy to digital data bi from a data source. For simplicity,
we will often speak of data bits bi and channel encoder output bits ci , keeping in mind that
other data symbol alphabets than binary ones are possible and the same discussion applies
to that case. We briefly review some basic concepts and definitions.

• The output of the encoder is called a code word . The set of all possible code words is
the code. The encoder itself is a mapping rule from the set of possible data words into
the code. We remark that a code (which is a set) may have many different encoders
(i.e. different mappings with that same set as the image).

• Block codes : If the channel encoder always takes a data block b = (b1, . . . , bK)T

of a certain length K and encodes it to a code word c = (c1, . . . , cN)T of a certain
length N , we speak of an (N, K) block code. For other codes than block codes,
for example, convolutional codes, it is often convenient to work with code words of
finite length, but it is not necessary, and the length is not determined by the code.

Theory and Applications of OFDM and CDMA Henrik Schulze and Christian Lüders
 2005 John Wiley & Sons, Ltd
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Figure 3.1 Block diagram for a digital transmission setup with channel coding.

• If the encoder maps b = (b1, . . . , bK)T to the code word c = (c1, . . . , cN)T , the ratio
Rc = K/N is called the code rate.

• If two code words differ in d positions, then d is called the Hamming distance between
the two code words. The minimum Hamming distance between any two code words
is called the Hamming distance of the code and is usually denoted by dH . For an
(N, K) block code, we write the triple (N, K, dH ) to characterize the code.

• If the vector sum of any two code words is always a code word, the code is called
linear .

• The Hamming distance of a linear code equals the minimum number of nonzero
elements in a code word, which is called the weight of the code. A code can correct
up to t errors if 2t + 1 ≤ dH holds.

• An encoder is called systematic if the data symbols are a subset of the code word. Ob-
viously, it is convenient but not necessary that these systematic (i.e. data) bits (or sym-
bols) are positioned at the beginning of the code word. In that case the encoder maps
b = (b1, . . . , bK)T to the code word c = (c1, . . . , cN)T and bi = ci for i = 1, . . . , K .
The nonsystematic symbols of the code word are called parity check (PC) symbols.

The channel decoder outputs ci are the inputs of the modulator. Depending on these data,
the modulator transmits one out of a set of possible signals s(t). For binary codes, there
are 2K code words and thus there are 2K possible signals s(t). For a linear modulation
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scheme, such a signal can be written as

s(t) =
L∑

i=1

sigi(t)

with an orthonormal transmit base {gi(t)}Li=1. Each possible signal can then uniquely be
characterized by the corresponding transmit symbol vector s = (s1, . . . , sL)T . Generally,
there is a one-to-one correspondence between the code word vectors c = (c1, . . . , cN)T

and the transmit symbol vector s = (s1, . . . , sL)T . Because each code word c is uniquely
determined by the corresponding data word b, the mapping b �→ c is uniquely defined and
one may regard the channel encoder and the modulator as one single device that corresponds
to the mapping b �→ s. This natural, but modern concept is called coded modulation and it
has the advantage that it is quite natural to look for a joint optimization of channel coding
and modulation (see e.g. (Biglieri et al. 1991; Jamali and Le-Ngoc 1994; Ungerboeck
1982)).

The more traditional concept as depicted in Figure 3.1 keeps both parts separated, and
the modulator is one of the classical concatenation schemes discussed in Section 1.4. We
may have a simple M-ary PSK or QAM symbol mapping for the si . Then, a subset of
m = log2(M) bits of one code word will be mapped on each symbol si . Or, alternatively,
m = log2(M) bits taken from m different code words will be mapped on each symbol si .
The latter turns out to be a better choice for fading channels to avoid two bits of the same
code word being affected by the same fading amplitude. We note that for M-ary signal
constellations and a code rate Rc, only Rc log2(M) useful bits are transmitted per complex
symbol si . Thus, the energy Eb per useful bit is related to the average symbol energy
ES = E

{|sk|2
}

by the equation

ES = Rc log2(M) · Eb. (3.1)

Following Figure 3.1, the modulated signal is corrupted by the noisy transmission
channel. Thus, some of the demodulator output bits ĉi will be erroneously decided from the
received signal r(t). The channel decoder then uses the redundancy of the code to correct
the errors and delivers (hopefully) correct data b̂i identical to the source data bi .

The crucial point of this traditional conception of correcting bit errors is the interface
between CoDec (Coder/Decoder) and the MoDem (Modulator/Demodulator). We have seen
that there is no fundamental reason to distinguish between these blocks at the transmitter.
And, as we know from the detection theory as discussed in Section 1.3, the MLSE will find
the most probable transmit vector ŝ that corresponds uniquely to a data vector b̂. The only
reason to separate demodulator and decoder is a practical one: often, especially for long
block codes, the MLSE requires quite an exhaustive search that cannot be implemented.
But there are often algebraic decoding techniques for such codes that require binary inputs1.
There may be good reasons to proceed this way but one should always keep in mind that
any hard bit decision before the decoder causes loss of information. For convolutional
codes, the MLSE can be easily implemented by the Viterbi decoder (see the following
text). Hard decisions would cause a needless loss of approximately 2 dB in performance
for convolutional codes.

The following example shows how the same transmission setup can be interpreted
according to different points of view.

1Or, for nonbinary codes, discrete valued inputs are taken from some other finite signal alphabet.
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Example 6 (Walsh–Hadamard codes) Consider an encoder map b �→ c for a linear
(8, 3, 4) block code given by

 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 �→



0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1


,

where the eight possible data words b are the columns of the left matrix, and the corre-
sponding code words c are the columns of the right matrix. One can easily verify that this
code is linear (see Proposition 3.1.1) and that the Hamming distance is given by dH = 4.
Thus, it can correct one bit error. We now use a BPSK modulator with the symbol mapping
ci �→ si = (−1)ci . The composed mapping b �→ s is then given by

 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 �→



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.

The resulting matrix is the Hadamard matrix for M = 8, and it is obvious that this scheme
is nothing but orthogonal Walsh modulation as discussed in Subsection 1.1.4. The columns
of the matrix just represent the signs of the Walsh functions of Figure 1.7. These codes cor-
responding to Hadamard matrices are called Walsh–Hadamard (WH) codes. The example
here is the WH(8, 3, 4) code.

We now consider as an example detector outputs given by the receive vector r =
(1.5, 1.2, 0.9, 0.4, 0.8,-0.2, 1.2,−0.3)T . The hard decision BPSK demodulator produces
the output ĉ = (0, 0, 0, 0, 0, 1, 0, 1)T . This vector differs in two positions from the
first and in two positions from the second code word. Thus, (at least) two errors have
occurred that cannot be corrected. However, the MLSE for orthogonal Walsh modula-
tion calculates the eight scalar products r · s that are the elements of the row vector
(5.4, 3.2, 1.2, 1.2, −0.6, 2.6, 1.6, 0.2) and decides in favor of the first vector of the
Hadamard matrix with the maximal scalar product r · s = 5.4.

This example shows that there is often an ambiguity in what we call channel coding
and what we call modulation. For example, we may regard any linear modulation scheme
as a code. The symbol mapper is an encoder that produces real or complex outputs. Here,
we prefer real symbols, that is, we identify the complex plane with the two-dimensional
(real) space. An M-PSK or M-QAM symbol is a code word of length N = 2 with M code
words labeled by K = log2 M data bit. This is a (N, K) block code. The alphabet of the
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coded symbols is a finite set of real numbers. For 8-PSK, for example, this is given by
{0,± 1

2

√
2,±1}.

A code word is given by a vector

x = (x1, . . . , xN)T

of real-valued modulation symbols. To interpret the orthogonal Walsh modulation of Sub-
section 1.1.4 as channel coding, we set N = M , and the vectors x are the columns of the
M ×M Hadamard matrix. The transmit signal is given by

s(t) =
M∑

m=1

xmgm(t).

Note that now the base pulses gm(t) of this linear modulation correspond to what has been
called chip pulses in that subsection.

As discussed in Subsection 2.4.1, we may consider the real-valued fading channel with
AWGN disturbance given by

yi = aixi + ni

with real-valued receive symbols yi , fading amplitudes ai , transmit symbols xi and noise
samples ni with variance σ 2 = N0/2 in each dimension. Using vector notation, we may
write

y = Ax + n.

The MLSE receiver calculates the most probable transmit vector x from the receive vector
y. Because the input of the MLSE, that is, the components yi of the receive vector, are
real numbers, the MLSE is called a soft decision receiver, in contrast to a hard decision
receiver, where (hard ) bit decisions are taken from the yi and these bits are passed to the
decoder (see Figure 3.1). However, the output of the MLSE receiver is the bit sequence that
labels the most likely transmit vector. Thus, the MLSE is a hard output receiver. Receivers
with soft output (i.e. with reliability information about the decisions) are desirable for
concatenated coding schemes as described in Subsection 3.1.4. A receiver with soft inputs
and soft outputs is called a SISO(soft-in, soft-out) receiver.

3.1.2 Error probabilities

In this subsection, we discuss error rates for binary codes with antipodal signaling, that is,
BPSK. The same formulas apply for QPSK, which can be separated into antipodal signaling
for both the in-phase and quadrature component.

Error probabilities for the MLSE receiver and the AWGN channel

For the MLSE receiver, general expressions for the pairwise error probabilities in the
AWGN channel were derived in Subsection 1.4.3. The probability that the receiver erro-
neously decides for the transmit vector s instead of the transmitted vector ŝ is given by
Equation (1.84), that is, the expression

P (s �→ ŝ) = 1

2
erfc

(√
1

4N0
‖s − ŝ‖2

)
.



98 CHANNEL CODING

For BPSK transmission, we have s = (s1, . . . , sL)T with si = ±√ES , where ES is the
symbol energy. We assume a binary code with rate Rc and Hamming distance dH . Assume
that s corresponds to a code word c and the receiver decides for a code word ĉ corresponding
to the signal vector ŝ, and the code words c and ĉ have the Hamming distance d. Then,

‖s − ŝ‖2 = 4dES.

For each transmitted symbol, only Rc useful bits are transmitted. Thus, ES = RcEb, and the
error event probability Pd for an erroneous decision corresponding to a Hamming distance
d is given by

Pd = 1

2
erfc

(√
dRc

Eb

N0

)
. (3.2)

For high values of Eb/N0, the total error probability is dominated by the most probable
error event corresponding to d = dH . Asymptotically, the number of such events (that leads
to a factor in front of the complementary error function) can be ignored and we may say
that we obtain an asymptotic coding gain of

Ga = 10 log10(dH Rc) dB

compared to uncoded BPSK. We note that the expression (3.2) for Pd – written as a function
of Eb/N0 – also holds for QPSK with Gray mapping and the coding gain is also the
same. For higher level modulation schemes, the analysis is more complicated because the
Euclidean distances between the symbols are different.

Error probabilities for the MLSE receiver and the Rayleigh fading channel

We assume a discrete-time fading channel with receive symbols given by

ri = aisi + ni, i = 1, . . . , N

with discrete AWGN ni and real fading amplitudes ai , that is, the phase has already been
back rotated. We consider BPSK transmission with si = ±√ES and a binary code of rate
Rc and Hamming distance dH . Assume that s corresponds to a code word c of length N

and the receiver decides for a code word ĉ corresponding to the signal vector ŝ, and the
code words c and ĉ have the Hamming distance d. We ask for the probability Pd that the
code word c has been transmitted and the receiver erroneously decides for another code
word ĉ. To keep the notation simple, we assume a renumbering of the indices in such a
way that the different positions are those with i = 1, . . . , d and write s = (s1, . . . , sd)

T

for the symbol vector corresponding to the first d positions of c and ŝ = (ŝ1, . . . , ŝd)
T for

the symbol vector corresponding to the first d positions of ĉ. The last N − d symbols are
irrelevant for the decision. This is just the same as the problem of d-fold diversity that was
treated in Subsection 2.4.6. We can apply Equation (2.38) with |si − ŝi |2 = 4ES and obtain
the expression

Pd = Eai

1

2
erfc


√√√√ES

N0

d∑
i=1

|ai |2
 , (3.3)
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where Eai
{·} is the average over all fading amplitudes. For a Rayleigh channel with identi-

cally distributed and independent fading amplitudes of average power one, the average can
be easily performed as shown in Subsection 2.4.5 resulting in

Pd = 1

π

∫ π/2

0

 1

1 + Rc
Eb

N0 sin2 θ

d

dθ, (3.4)

where we have used ES = RcEb. As an alternative to this polar representation expression,
the formulas given at the end of Subsection 2.4.6 can be applied. We thus have seen that
the Hamming distance can be interpreted as diversity that is provided by the code. Using
Equation (2.42), Pd can be tightly upper bounded by

Pd ≤ 1

2

1

4L

(
2d

d

)(
Rc

Eb

N0

)−d

.

Thus, for a code with Hamming distance dH , the error rates asymptotically decay as
SNR−dH in an independently fading Rayleigh channel. These expressions for Pd – written
as a function of Eb/N0 – also hold for QPSK if the two bits corresponding to a QPSK
symbol si belong to different code words. Otherwise, two bits of the same code word will
be affected by the same fading amplitude, which would result in a loss of diversity.

Residual bit error rates for hard decision decoding of block codes

We consider an (N, K, dH ) binary block code with hard decision error correction capability
of t bit errors. For an odd Hamming distance dH , we have dH = 2t + 1, and for even dH ,

we have dH = 2t + 2. Let p be the channel bit error probability and assume that i ≥ t + 1
channel bit errors occurs inside the code word. The probability for a certain error pattern
with i bit errors is given by

pi(1 − p)N−i .

There are
(
N
i

)
such possible patterns for a code word of length N . Thus, the block error

probability, that is, the probability for a wrong decoding decision for the code word is
given by

PBlock =
N∑

i=t+1

(
N

i

)
pi(1 − p)N−i . (3.5)

Often, one is interested not only in the block error probability, but in the bit error
probability. If the error correction capability is t , the decoder may change at most t bits
inside the code word when trying to correct the error. If i > t errors have occurred, this
will result in a wrong decision and the decoder will erroneously change at most t additional
bits, resulting in at most i + t errors. Thus, if we consider only error events corresponding
to exactly i errors (i > t), the bit error probability for such an event is bounded by

t + i

N

(
N

i

)
pi(1 − p)N−i .

Keeping in mind that not more than N errors may occur, the bound can be slightly improved
if we replace t + i in the numerator by min(t + i, N). Summing up over all possible
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numbers of errors, we get the bound for the bit error probability

Pb ≤
N∑

i=t+1

min(t + i, N)

N

(
N

i

)
pi(1 − p)N−i . (3.6)

Although it is more popular to talk about bit error probabilities rather than block error
probabilities, one should keep in mind that the block error probability is often more relevant
for an application than the bit error probability. For the application, the average time
between two error events is often the most relevant figure. In case of a decoding error, at
least dH bit errors occur at the same time. The error event corresponding to dH errors is
the most probable one, and it is dominant if the channel is not too bad. Looking only at
Pb without knowledge of the code may give rise to wrong interpretations. A residual bit
error rate of Pb = 10−6 for a rate of 10 kbit/s does not mean that in average one bit error
occurs every 100 seconds, but approximately dH errors occur every 100 dH seconds. For
large values of dH , this makes a great difference for the application.

3.1.3 Some simple linear binary block codes
In this subsection, we will present some facts about linear binary block codes and give
some examples. We will not go into further details and refer to the text books about
channel coding cited in the Bibliographical Notes.

Let C be a linear binary (N, K) block code. We write all the M = 2K code words of
length N as binary columns cm ∈ C, m = 1, . . . , M and join them together to a matrix

C = [c1, . . . , cM ].

There are M bit tuples of length K . We write them as column vectors bm, m = 1, . . . , M

with the LSB (Least Significant Bit) in the upper position. We join them together to a
binary tuple matrix

B = [b1, . . . , bM ].

For M = 8, for example, this matrix is given by

B =
 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 .

We write B for the set of all these binary vectors. The encoder can then be written as a
linear mapping

G : B → C, bm �→ cm = Gbm

between the vector spaces B and C. G is called the generator matrix. Using matrix notation,
we may also write

C = GB.

From linear algebra we know that G is given by an N ×K matrix, with K columns given
by the images of the K canonical base vectors, that is, those vectors in B with only one 1
and all other entries equal to 0. From the structure of B, we see that these are the vectors
cm with m = 2k + 1, k = 0, 1, . . . , K − 1, that is,

G = [c2, c3, c5, c9, . . . , cM/2+1].
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The dual code C⊥ is just the orthogonal complement of C in the N -dimensional vector
space over the binary numbers. Its (N −K)×N generator matrix H is related to G by

HT G = 0.

Because HT c = 0 for each c ∈ C, H is called the parity check matrix of the code C.

Repetition (RP) codes

A very naive idea for coding is a simple repetition of the bits. An RP(N, 1, N ) code has
dH = N and Rc = 1/N and, thus, the coding gain is zero. Obviously, RP coding is just
another word for diversity, and, in a fading channel, it has a diversity gain if the fading
amplitudes of the received coded symbols are sufficiently independent. The generator matrix
of this code is the all-one column vector of length N .

Single parity check (SPC) codes

The matrix of code words C for the SPC(K + 1, K, 2) code is obtained from the binary
tuple matrix B by appending one row in such a way that the (modulo 2) sum over each
column equals zero, that is, all code words must have even parity. For the SPC(4, 3, 2)
code, for example, we have

C =


0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 1 1 0 1 0 0 1


and

G =


1 0 0
0 1 0
0 0 1
1 1 1

 .

An SPC(K + 1, K, 2) code has Hamming distance dH = 2 and rate Rc = K/(K + 1). The
most popular application for SPC (single parity check) codes is error detection by checking
the parity. Obviously, the detection is not very reliable because only one error can be
detected, not two. It is generally believed that SPC codes can only detect errors, but cannot
correct them. This is only the case for hard decision. When using an MLSE receiver, SPC
codes have an asymptotic coding gain of

Ga = 10 log10
2K

K + 1
dB,

which approximately approaches a 3 dB gain for high values of N .

Walsh–Hadamard (WH) codes

As already discussed in the example in the last subsection, Walsh–Hadamard codes will be
obtained from the Hadamard matrices by replacing each +1 by a 0 and −1 by a 1. The code
words of the WH(M, log2 M, M/2) code of length M = 2K and Hamming distance M/2



102 CHANNEL CODING

are the columns of the resulting M ×M matrix. Transmitting these code words with BPSK
modulation brings us back to orthogonal signaling with Walsh functions. The asymptotic
coding gain

Ga = 10 log10
K

2
dB

has already been obtained in Subsection 1.4.3, where the pairwise error probabilities of
orthogonal modulation has been derived.

Proposition 3.1.1 The WH codes are linear codes.

Proof. The proof is by induction over K , where M = 2K . The statement is trivially
true for K = 0, that is, M = 1. We will show that if it is true for any M/2, it is true
for M . Let C = [c1, . . . , cM ] be the M ×M matrix obtained from the M ×M Hadamard
matrix as described above. The column vectors are the code words. Then, by construction
of the Hadamard matrices, the code words cm are exactly those vectors that have either the
structure

cm =
[

c′
c′

]
for m ∈ {1, . . . , M/2}

or

cm =
[

c′
c′ ⊕ 1

]
for m ∈ {M/2 + 1, . . . , M},

where c′ is a code word of the WH(M/2, log2 M − 1, M/4) code, which, by assumption,
has already been proven to be a linear code. From the above decomposition it can easily
be seen that the sum of any such vectors has again this structure and thus is a code word
of WH(M, log2 M, M/2).

From the recursive construction of the Hadamard matrices, we observe that the column
cM/2+1 equals the last row of B (the MSB (Most Significant Bit) row), the column cM/4+1

equals the second last row of B, and so on. Thus, we find that for the WH code, the
interesting property

G = BT

holds, and the matrix of code words is given by

C = BT B.

Since B has the canonical base as column numbers m = 2k + 1, k = 0, 1, . . . , K − 1, the
generator matrix G provides a systematic encoder with the systematic bit number k + 1 at
the position m = 2k + 1, k = 0, 1, . . . , K − 1 in the code word. For M = 8, for example,
the three systematic bit can be found in the positions 2, 3 and 5 of the code word.

Simplex (SPL) codes

An SPL(M − 1, log2 M, M/2) is obtained by omitting the first bit of every WH
(M, log2 M, M/2) code word. This can be done without any loss in performance because
this bit is always zero. Because of the higher code rate, the performance is even better,
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especially for small values of M . For M = 8, the matrix of code words is given by

C =



0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1


,

and the generator matrix is

G =



1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1


.

Hamming codes

Hamming codes are the dual codes of simplex codes. A (2K − 1, 2K − 1 −K, 3) Hamming
code can correct one error. Hamming codes are simple and weak codes, but they are popular
to explain the concepts of algebraic coding. We do not discuss them further because they
are exhaustively treated in most text books.

3.1.4 Concatenated coding

If an application requires very low bit error rates, concatenated coding is often the most
efficient method to reach this goal. In such a setup, two codes are combined to a stronger
overall concatenated code (see Figure 3.2). At the transmitter, the source data will first
be encoded by the outer code. The code words of this code will then serve as the input
data for the inner code2. Between the two encoders, the order of the symbols inside the
stream of code words may be changed by a device that is called interleaver. Interleaver
structures will be discussed later in Subsection 4.4.2. The code words of the inner code
are transmitted over the channel and then decoded by the inner decoder. The inner decoder
has to be matched to the channel. At its output, the error rate will be low, but the errors
are not uniformly distributed. The inner decoder will typically produce error bursts, that
is, connected sequences of unreliable symbols between long sequences of reliable symbols.
For block codes, a burst error corresponds to an erroneously decided code word. For
convolutional codes, an error burst corresponds to the sequence of states in the trellis,
where the correct path and the maximum likelihood path are different (see Subsection
3.2.2). The deinterleaver inverts the interleaver. The interleaving scheme breaks up the
error bursts and has to be matched to the error correction capabilities of the outer code, that
is, to its Hamming distance and code word length. For a properly designed concatenated
coding scheme, the output of the outer decoder will be nearly error free. Thus, one can

2The naming inner and outer code stems from the fact that the inner code is closer to the channel than the
outer code.



104 CHANNEL CODING

� � �

�

����

Outer
encoder encoder

InnerInter
leaver

Channel

Inner
decoder

Outer Deinter-
leaverdecoder

Figure 3.2 Block diagram for a concatenated coding setup.

visualize the inner decoder as a device that is suited for coarsely cleaning up the errors that
are produced by a severely corrupted transmission channel. The outer decoder will then
clean up the residual errors left by the outer decoder.

We note that in some cases the inner decoder may pass soft decision values rather
than hard decision bits to the outer decoder. This is, for example, an important item for a
concatenated coding scheme with two convolutional codes. Turbo codes are a setup of two
parallel concatenated codes (see Subsection 3.2.5). The classical concatenation described
above is sometimes called serial concatenation to distinguish from such setups. For serially
concatenated convolutional codes, we refer to (Benedetto and Biglieri 1999).

If we regard QAM or PSK modulation as (nonbinary) coding schemes (see the discus-
sion at the end of Subsection 3.1.1), QAM or PSK with additional (convolutional) coding
is a concatenated coding scheme. The outer QAM or PSK decoder will typically pass soft
bits to the outer (convolutional) decoder. The optimal soft bits are the LLRs (log-likelihood
ratios) calculated by the MAP receiver (see Subsection 3.1.5).

Probably the most popular concatenated coding scheme is an inner convolutional code
with an outer Reed–Solomon (RS) code. Both types of codes are discussed in the following
sections. Convolutional codes with soft decision decoding are well suited for channels that
are severely corrupted by a high noise level and/or by multipath fading. MLSE can be
easily implemented by the Viterbi decoder. However, because of their typically quite low
Hamming distance, the BER curves show a poor decay. Thus, a high SNR is needed if very
low BERs are required. The convolutional decoder produces bursts of erroneously decided
bits. RS codes can be designed as strong codes with high Hamming distances. They are
based on byte arithmetics rather than bit arithmetics, that is, they correct byte errors rather
than bit errors. The decoder works with hard decision input bytes. The favorable input for
the decoder is a data stream with bit errors that are grouped together into bytes, but the
byte error structure should not be bursty. Thus, a convolutional decoder together with a
byte interleaving produces the favorite input for the RS decoder.

Deep space communication was one of the first applications of such a scheme with
a convolutional code and an RS code (see (McEliece and Swanson 2001)). Because of
the power limitation, the physical channel is a very noisy AWGN channel that makes
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convolutional codes the best choice. If, for example, data compressed pictures have to
be transmitted, the bit error rate has to be very low. Therefore an outer RS will give a
considerable gain (see (McEliece and Swanson 2001)). For this application, the outer codes
give an additional coding gain of 2.5 dB at BER = 10−6 or a gain in data rate of 78%.

Another concatenated coding scheme with a convolutional code and an RS code is
applied in the DVB-T system, which will be described in Subsection 4.6.2. DVB-T is
an OFDM system with QAM modulation. Because QAM with convolutional coding can
already be interpreted as code concatenation, we have a twofold concatenation in this
system. The outer RS code has been chosen because the goal has been to reach the extremely
low residual bit error rate 10−11 in the video data stream. This cannot be reached with
convolutional codes at a reasonable effort, especially in a fading channel.

We note that in a concatenated decoding setup as depicted in Figure 3.2, the decod-
ing will be done stepwise and the two decoders are separate devices. This is in general
suboptimal compared to a MLSE or MAP receiver for the complete concatenated code.
Improvements can be obtained if the decoders can help each other by means of iterative
decoding. Turbo codes may be the most famous application (see Subsection 3.2.5). The idea
of iterative decoding had been applied earlier in deep space communications (Hagenauer
et al. 2001). Another application is multistage coding, which is implemented in the OFDM
system DRM (Digital Radio Mondiale). The iterative decoding of a convolutionally coded
QAM system with OFDM will be discussed in Subsection 4.5.2.

3.1.5 Log-likelihood ratios and the MAP receiver

Until now, we have discussed only the maximum likelihood sequence estimator at the
receiver. For a channel with additive white Gaussian noise, and a given receive signal
vector r, this receiver estimates the most probable transmit signal vector ŝ out of a finite
set of possible transmit vectors. This most probable transmit vector is the one for which
the squared Euclidean distance ‖r − ŝ‖2 is minimized, or, for transmit vectors of equal
energy, the correlation given by 
 {r · ŝ} is maximized. The MLSE estimates transmit
vectors (sequences), not bits. Since there is a one-to-one correspondence to the bit sequences
b, we get an estimate for each bit. Thus, MLSE does not provide us directly with an estimate
for the most probable value of a bit. Both may sometimes be different 3 (see Problem 2).

In this subsection, we introduce a receiver that gives an estimate for the bit together
with a reliability information of the decision. It does not need the assumption of Gaussian
statistics, and is able to provide a reliability measure for each decision, even for single bit
decisions. Furthermore, we can incorporate a priori probabilities of the bits. This is of high
value for any kind of iterative decoding algorithms, as applied in the turbo decoding and
multistage decoding. The basic tool is the log-likelihood ratio, which is defined by

Definition 3.1.2 (Log-likelihood ratio) Let P (A) be the probability of an event A. Then
the LLR of this event is defined as

L(A) = log
P (A)

1 − P (A)
. (3.7)

We add the following remarks.

3Even though in practice, for reasonably high SNRs, both will be the same with extremely high probability.
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• The LLR is the ratio between the probability that something is true and that it is not
true, viewed on a logarithmic scale. This is extremely useful if the probabilities are
very high or very small. This is quite similar to the familiar decibel calculus for signal
power levels. Even though the logarithm in Equation (3.7) is usually understood
as a natural logarithm, one can in principle also use 10 log10 there and then, for
example, regard the probability P (A) = 0.999 as an LLR of approximately 30 dB or
the probability P (A) = 0.001 as an LLR of approximately −30 dB.

• One easily finds that the probability can be expressed by the LLR as

P (A) = e
1
2 L(A)

e
1
2 L(A) + e−

1
2 L(A)

. (3.8)

• The LLR of the complementary event Ā is given by

L(Ā) = −L(A).

Soft bits

We often deal with the probability that a random bit takes the value 0 or 1. We will therefore
derive some simple properties of the corresponding random LLRs. To do this, it is very
convenient to replace bits by signs, that is, write +1 for the bit value 0 and −1 for the bit
value 1. This can be interpreted as antipodal (BPSK) signaling with energy 1 given by the
mapping

s = (−1)b = 1 − 2b

between the bit b and the sign (BPSK symbol) s. In the following text, we will speak of bits
and their corresponding signs synonymously. To avoid confusion, we will (at this place)
carefully distinguish, in our notation, between random variables (written as capital letters)
and their values. That is, we deal with a random variable S, which is a random sign that
takes values s ∈ {+1,−1}. The LLR for the event S = s is then given by

L(S = s) = log
P (S = s)

P (S = −s)
.

From L(S = s) = −L(S = −s), we easily see that L(S = s) = sL(S = +1). If no confu-
sion may arise, we simply write

L = L(S = +1) (3.9)

We call this the L-value of the random bit S. We note that

L(S = s) = sL. (3.10)

The L-value of a random bit S (written as a sign) has a very natural interpretation as
a soft bit. The sign of L says which of the two possible events S = +1 or S = −1 is
more probable, that is, the sign gives a hard bit decision. The absolute value of L is
a logarithmic measure for the reliability of this decision. For those who like to express
everything in decibels, we can write 10 log10 for the logarithm in the definition of the LLR.
Then, for example, an LLR value of +30 dB means that the random bit equals zero with
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a probability 0.999 (approximately), and an LLR value of −30 dB means that the random
bit equals one with a probability 0.999 (approximately).

Using Equation (3.8), the probability for the random bit can be expressed by the LLR
as

P (S = s) = e
1
2 sL

e
1
2 L + e−

1
2 L

. (3.11)

We note that
P (S = s) = C e

1
2 sL,

where the constant C =
(

e
1
2 L + e−

1
2 L
)−1

does not depend on the value of s. Using the
definition of the LLR, we find

L(S = s) = log

(
P (S = s)√

P (S = −s)P (S = s)

)2

and
P (S = s) =

√
P (S = +1)P (S = −1) e

1
2 sL, (3.12)

which is an alternative representation with the constant C expressed by the probabilities.

Sequences of random signs

Now consider a vector S = (S1, . . . , SK)T of statistically independent random signs. Then,
the probability for the event that S takes a certain value s = (s1, . . . , sK)T factorizes into
the probabilities of the single signs, that is,

P (S = s) =
K∏

i=1

P (Si = si).

Using Equation (3.12), we may write this as

P (S = s) =
K∏

i=1

√
P (Si = +1)P (Si = −1) e

1
2 siLi ,

where Li = log(P (Si = +1)/P (Si = −1)). This takes the more compact form

P (S = s) = C exp

(
1

2

K∑
i=1

siLi

)
= C exp

(
1

2
s · L

)
,

where we have defined a log-likelihood vector L = (L1, . . . , LK). The constant C is now
given by

C =
K∏

i=1

√
P (Si = +1)P (Si = −1).

We see that as in the case of the MLSE estimator for the AWGN channel, we find the most
probable sequence (which is here directly a bit sequence) by maximizing a correlation that
is given by the scalar product s · L. Here we have derived the general case, and the LLR
expressions must be evaluated for any special statistics.
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Products of random signs

Consider a random sign S. The expectation value of S is given by

E {S} = (+1) · Pr(S = +1)+ (−1) · Pr(S = −1).

Using Equation (3.11), we easily obtain

E {S} = tanh

(
1

2
L

)
,

where again we have used the shorthand notation L = L(S = +1). Now let S1 and S2 be two
independent random signs and define S = S1 · S2 and write L1, L2, L for the corresponding
LLRs for the positive sign. From

E {S} = E {S1}E {S2} ,

we conclude

tanh

(
1

2
L

)
= tanh

(
1

2
L1

)
tanh

(
1

2
L2

)
or

L = 2 artanh

(
tanh

(
1

2
L1

)
tanh

(
1

2
L2

))
. (3.13)

Using the relations

2 artanh (x) = log
1 + x

1 − x

and

tanh(x) = ex − 1

ex + 1
,

one can show that this equals

L = log
1 + eL1eL2

eL1 + eL2
.

This can be approximated as

L ≈ sign (L1) sign (L2) min (|L1| , |L2|)

(see Problem 3). We can interpret this expression as follows: multiplication of random signs
corresponds to the modulo 2 addition of the corresponding random bits. Thus, the modulo
2 addition of two random bits can (approximately) be realized as follows: the hard decision
value of the result is obtained as modulo 2 addition of the hard decision values of the two
bits. Its reliability given by |L| equals the reliability of the least reliable of the two bits,
similar to the saying that a chain is as strong as its weakest link. This becomes especially
obvious if we generalize the approximation to the modulo 2 addition of more than two
random bits and write

L ≈
K∏

i=1

sign (Li) · min (|L1| , . . . , |LK |) . (3.14)
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LLRs for BPSK and additive white Gaussian noise

Until now, no assumption has been made about the special statistics. It is instructive to
exploit the concept of LLRs for the special case of antipodal transmission in an additive
white Gaussian noise channel. In the context of channel coding, it is often convenient to
deal with quantities that have no physical dimension. We rewrite BPSK transmission in an
AWGN channel as

yi = xi + ni,

where xi ∈ {±1} and ni is real and normalized discrete AWGN with variance

σ 2 = N0

2Eb

.

The transmit symbols xi and the receive symbols yi are regarded as random variables4.
According to Bayes’ law, the probability P (xi |yi) that xi has been transmitted under the
condition that yi has been received is given by

P (xi |yi) = p(yi |xi)P (xi)

p(yi)
.

Here P (xi) is the a priori probability that xi was transmitted, p(yi) is the probability
density for the receive symbol yi and p(yi |xi) is the probability density for the receive
symbol yi under the condition that xi was transmitted. This is just the Gaussian probability
density with mean xi and variance σ 2, that is,

p(yi |xi = ±1) = 1√
2πσ 2

exp

(
− 1

2σ 2
|yi ∓ 1|2

)
.

We write

Li = log
P (xi = +1|yi)

P (xi = −1|yi)

and get

Li = log
exp

(
− 1

2σ 2 |yi − 1|2
)

P (xi = +1)

exp
(
− 1

2σ 2 |yi + 1|2
)

P (xi = −1)
,

which can eventually be written as

Li = Lc
i + La

i , (3.15)

where

Lc
i = log

p(yi |xi = +1)

P (yi |xi = −1)
= 2

σ 2
yi

is the channel LLR obtained from the symbol transmitted over the channel, and

La
i = log

P (xi = +1)

P (xi = −1)
(3.16)

is the a priori LLR corresponding to the a priori probability of the bit.

4Here we fall back into the lax usage of notation that is common in engineering not to distinguish between
random variables and their values.
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For a multiplicative fading channel given by

yi = aixi + ni,

where ai is a real fading amplitude, one easily sees that the channel LLR turns out to be

Lc
i =

2

σ 2
aiyi, (3.17)

that is, the receive symbol must be weighted by the fading amplitude. We note that a one
bit hard BPSK decision will be based on the sign of

Li = 2

σ 2

(
aiyi + σ 2

2
La

i

)
.

A positive sign corresponds to a 0, a negative to 1. The second term corresponds to a shift
of the decision threshold that is proportional to the a priori LLR and to the noise.

The conditional probability for the BPSK symbol xi under the condition that yi was
received is given by

P (xi |yi) =
√

P (xi = +1|yi)P (xi = −1|yi) e
1
2 xiLi .

For uncoded transmission, the transmit symbols are statistically independent, and thus the
conditional probability P (x|y) for the whole BPSK vector x = (x1, . . . , xK)T given that y
was received factorizes to

P (x|y) =
K∏

i=1

P (xi |yi) =
K∏

i=1

√
P (xi = +1|yi)P (xi = −1|yi) e

1
2 xiLi .

General signal constellation and coded transmission

We consider a set C of M = 2K real transmit signal vectors x = (x1, . . . , xN)T labeled by
bit tuples of length K written as binary vectors b = (b1, . . . , bK)T . We write B for the set
of these tuples. As discussed at the end of Subsection 3.1.1, the mapping

X : B → C, b �→ x

can be interpreted as a joint channel encoder and symbol mapper. When using LLR values,
it is convenient to replace a binary vector b by its equivalent sign vector u = (u1, . . . , uK)T

defined by uk = (−1)bk . The set of these vectors will be denoted by U .
First, we ask for the conditional probability P (x|y) for a transmitted signal vector x

given that the vector y has been received. According to Bayes’ law, we have

P (x|y) = p(y|x)P (x)

p(y)
.

Here, P (x) is the a priori probability that x was transmitted, p(y) is the probability density
function for the receive symbol vector y and p(y|x) is the probability density function for
the receive symbol y under the condition that x has been transmitted. We have fallen back
into the loose notation for random variables, that is, we use x for the random variable and
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for the value of the random variable as well. We may replace P (x) by P (b), which is the
a priori probability for the bit tuple b that corresponds to x or by the a priori probability
P (u) of the sign vector u. Assuming that the a priori probabilities of the bits are statistically
independent and that p(y|x) factorizes as well because of statistical independence, we may
write

P (x|y) = 1

p(y)

N∏
i=1

p(yi |xi)

K∏
k=1

p(uk).

To find the most probable transmit vector for a general signal constellation, this expression
must be maximized.

For the special case of a binary code with antipodal signaling with xi ∈ {±1}, we define

Lc
i = log

p(yi |xi = +1)

P (yi |xi = −1)
, La

k = log
P (uk = +1)

P (uk = −1)
.

It is convenient to define channel and a priori LLR vectors as Lc = (Lc
1, . . . , Lc

K) and
La = (La

1, . . . , La
N). The channel LLR vector can be written as

Lc = 2

σ 2
Ay

with the diagonal matrix of fading amplitudes A = diag(a1, . . . , aK). The conditional prob-
ability that a certain sequence has been transmitted is then given by

P (x|y) = C exp

(
1

σ 2
µ (x)

)
(3.18)

with a constant C that does not depend on the transmitted sequence and a metric defined
by

µ(x) = σ 2

2

(
x · Lc + u · La

)
. (3.19)

To find the most probable sequence x, this correlation metric µ(x) has to be maximized. We
have chosen this normalization, because in the case of BPSK without a priori information,
Equation (3.17) yields µ(x) = Ay · x, which does not depend on σ .

For the special case of a systematic code, the vector x consists of a systematic part
xs = u and a parity check part xp . In that case, the correlation metric becomes

µ(x) = xs ·
(
La + Lc

s

)+ xp · Lc
p. (3.20)

Thus, the channel LLR can be split up to a part Lc
s corresponding to the systematic symbol

vector and a part Lc
p corresponding to the parity check symbol vector. The a priori LLR

will be added to the channel LLR for the systematic part.
For an arbitrary signal constellation and a (real-valued) discrete fading channel with

AWGN of variance σ 2, we have

P (x|y) = C1 exp

(
1

2σ 2
‖y − Ax‖2

)
· exp

(
1

2
u · La

)
,

which can be written as

P (x|y) = C2 exp

(
1

σ 2

(
x · Ay − 1

2
‖Ax‖2

))
· exp

(
1

2
u · La

)
,
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with properly defined constant C1 and C2. This can be written as Equation (3.18) with the
metric expression of Equation (3.19) replaced by

µ(x) = σ 2

2

(
x · Lc + u · La

)− 1

2
‖Ax‖2 , (3.21)

that is, an energy term must be taken into account.

The bitwise MAP receiver

We now want to analyze decisions about single bits instead of whole sequences. We ask
for the probability P (bk = 0|y) that the kth bit bk in the tuple b has the value zero under
the condition that the vector y was received. The corresponding LLR is given by

L(bk = 0|y) = log
P (bk = 0|y)

P (bk = 1|y)
.

We write B(0)
k for the set of those vectors b ∈ B for which bk = 0 and B(1)

k for the set of
those for which bk = 1. Then,

P (bk = 0|y) =
∑

b∈B(0)
k

P (b|y)

and
P (bk = 1|y) =

∑
b∈B(1)

k

P (b|y)

hold and the LLR can be written as

L(bk = 0|y) = log

(∑
b∈B(0)

k

P (b|y)∑
b∈B(1)

k

P (b|y)

)
. (3.22)

Applying Bayes’ law for P (b|y), we get

L(bk = 0|y) = log

(∑
b∈B(0)

k

p(y|b)P (b)∑
b∈B(1)

k

p(y|b)P (b)

)
, (3.23)

where P (b) is the a priori probability of vector b, and p(y|b) is the conditional probability
density for the receive vector y given that the signal vector x corresponding to b was
transmitted. If L(bk = 0|y) > 0, the receiver decides for bk = 0 and otherwise for bk = 1.
Furthermore, this receiver provides information about the reliability of the decision, which
is given by the absolute value of L(bk = 0|y). We call such a receiver a (bitwise) maximum
a posteriori probability (MAP) receiver. As we have already seen above, we may write

p(y|b)P (b) = C exp

(
1

σ 2
µ (x)

)
(3.24)

with a metric µ(x) that depends on the code and the signal constellation. The constant C

is the same in numerator and denominator.
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The SISO decoder for systematic codes

For the special case of a binary systematic code, the metric µ(x) is given by Equation
(3.20). We insert that expression into Equation (3.23) and get the LLR expression

L(bk = 0|y) = log

∑b∈B(0)
k

exp
( 1

2

(
xs ·

(
La + Lc

s

)+ xp · Lc
p

))
∑

b∈B(1)
k

exp
( 1

2

(
xs ·

(
La + Lc

s

)+ xp · Lc
p

))
 (3.25)

for the MAP receiver. Here, the sum has to be understood in such a way that, for each
binary vector b, there are uniquely determined corresponding vectors xs and xp. We may
now split up this equation into three terms that have an intuitively obvious interpretation.
To do this, we keep the index k fixed and split up the exponents in the numerator and the
denominator as

xs ·
(
La + Lc

s

)+ xp · Lc
p = xsk(L

a
k + Lc

sk)+
∑
i �=k

xsi(L
a
i + Lc

si)+ xp · Lc
p.

In the numerator, the first term is constantly +(La
k + Lc

sk), and in the denominator, it is
constantly −(La

k + Lc
sk). We can thus extract this term from the sum. Lk = L(bk = 0|y) in

Equation (3.25) can then be written as

Lk = La
k + Lc

sk + Le
k (3.26)

with the extrinsic LLR defined by

Le
k = log


∑

b∈B(0)
k

exp
(

1
2

(∑
i �=k xsi(L

a
i + Lc

si)+ xp · Lc
p

))
∑

b∈B(1)
k

exp
(

1
2

(∑
i �=k xsi(L

a
i + Lc

si)+ xp · Lc
p

))
 .

Comparing this with Equation (3.15) for uncoded transmission, we see that this extrinsic
LLR corresponds to the additional information gain due to channel coding. It depends on
all other received symbols – systematic symbols and parity check symbols – except the one
corresponding to bk . This LLR adds to the LLRs La

k and Lc
sk that already occur in case of

uncoded transmission.
We now write Equation (3.26) in vector notation as

L = La + Lc + Le

and interpret the MAP as a SISO receiver that has soft LLR vectors as input and output
as depicted in Figure 3.3. The input vectors of the SISO are La and Lc, where Lc consists
of the two parts Lc

s and Lc
p. The systematic MAP of Equation (3.25) has the two inputs

La + Lc
s and Lc

p. The output vector is L. The extrinsic LLR vector Le of that vector is
obtained from the output L by

Le = L − La − Lc
s .

The SISO may be regarded as a device that calculates extrinsic LLR information due to
the code. The total LLR is the sum of this extrinsic LLR and the (a priori and channel)
LLR information already available before decoding.
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MAP

La

Lc
s

Lc
p L

+ − Le

Figure 3.3 The soft-input/soft-output (SISO) decoder.

The maxlog MAP approximation

The expression (3.23) for the MAP receiver contains transcendental functions and thus it
may sometimes be too costly to implement. The maxlog MAP approximation is often used
in practice because it is quite accurate if the SNR is not extremely low. In that case, the
sums in the numerator and denominator are dominated by their respective largest term and
Equation (3.23) can be approximated by

L(bk = 0|y) ≈ max
b∈B(0)

k

log (p(y|b)P (b))− max
b∈B(1)

k

log (p(y|b)P (b)) . (3.27)

We note that the hard bit decisions obtained by this maxlog MAP receiver are al-
ways identical to those obtained from the MLSE receiver because the latter searches
for maxb∈B log (p(y|b)P (b)) and decides for the corresponding sequence b = b̂ and thus
L(bk = 0|y) has always the same sign as the sign obtained from the MLSE.

If we insert Equation (3.24) for the argument of the logarithm, we can write this as

L(bk = 0|y) ≈ 1

σ 2

(
max

b∈B(0)
k

µ (x)− max
b∈B(1)

k

µ (x)

)
.

For a binary code with antipodal signaling, the metric is given by

µ(x) = Ay · x + σ 2

2
Lau.

If no a priori information is available, both the input LLR Lc = 1
σ 2 Ay · x and the output

LLR L are linear in the SNR value σ−2. This linear scale factor can be omitted without
any loss and is only needed for the calculation of absolute probabilities. This is in contrast
to the exact MAP, where the output is a nonlinear function in the SNR and even the hard
decision value may depend on its value.

3.2 Convolutional Codes

3.2.1 General structure and encoder
In contrast to block codes, convolutional codes do not have a defined block structure. A
continuously flowing data stream will be encoded into a continuously flowing code word.
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Figure 3.4 Block diagram for a simple convolutional encoder.

Even though it is reasonable for practical and theoretical reasons to work with finite sets
of data and coded bits, the length of a code word is given by other requirements than
the structure of the code. Convolutional encoders are linear and time-invariant systems
given by the convolution of a binary data stream with generator sequences. They can be
implemented by shift registers. Figure 3.4 shows a simple example of such an encoder with
rate Rc = 1/2 and memory m = 2.

Given an input bit stream {bi}∞i=0, a convolutional encoder of code rate Rc = 1/n

produces n parallel data streams {cν,i}∞i=0, ν = 1, . . . , n that may be multiplexed to one
serial code word before transmission. It can be written as

cν,i =
m∑

k=0

gν,kbi−k,

where we have set bi = 0 für i < 0. The sum has to be understood as modulo 2 sum. Here,
gν,k, (ν = 1, . . . , n; k = 0, . . . , m) are the generators that can also be written as generator
polynomials

gν(D) =
m∑

k=0

gν,kD
k,

where D is a formal variable that can be interpreted as delay. In the example of Figure 3.4,
we have

g1(D) = 1 +D2 ≡ (101) ≡ 5oct,

g2(D) = 1 +D +D2 ≡ (111) ≡ 7oct,

where we have introduced the binary vector notation and the octal notation for the gener-
ators.

It is often convenient to work with formal power series instead of sequences. This
is similar to the formalism in signal processing, where we may switch to the frequency
domain to replace convolutions by multiplications. We define the power series

b(D) =
∞∑

k=0

bkD
k

for the data word and

cν(D) =
∞∑

k=0

cνkD
k, ν = 1, . . . , n
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for the code word. Then the encoder can be described by

cν(D) = b(D)gν(D) (3.28)

or, in vector notation, as
c(D) = b(D)g(D), (3.29)

that is,  c1(D)
...

cn(D)

 = b(D)

 g1(D)
...

gn(D)

 .

Convolutional codes are linear codes. Thus, the Hamming distance of the code is the
minimum weight. This is called the free distance and will be denoted by dfree.

Trellis diagrams

For any time instant i, one can characterize the encoding step by the actual state s =
(s1, . . . , sm), that is, the content of the shift register (s1 is the most recent bit that has been
shifted into the register) and the actual input bit bi . This uniquely defines the next state
s′ = (bi, s1, . . . , sm−1) and the encoded output bits c1i , c2i , . . . , cni . For the code given by
Figure 3.4, there are four possible states (s1s2) ∈ {(00), (10), (01), (11)} and eight possible
transitions from one stage to the following, as depicted in Figure 3.5. For each transition,
there is an input bit bi and a pair of output bits (c1i , c2i ) denoted by bi/c1ic2i at each
transition line in the figure. Now consider a certain number of such transitions. They can
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s1s2 at time i
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0/00

1/11

1/10

1/01

0/10

0/11

0/01

1/00

s1s2 at time i + 1bi/c1ic2i

Figure 3.5 State transitions for the (1 +D2, 1 +D +D2) convolutional code.
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Figure 3.6 Trellis diagram for the (1 +D2, 1 +D +D2) convolutional code.

be depicted by successively appending such transitions as shown in Figure 3.6. This is
called a trellis diagram. Given a defined initial state of the shift register (usually the all-
zero state), each code word is characterized by sequence of certain transitions. We call this
a path in the trellis. In Figure 3.6, the path corresponding to the data word 1000 0111
0100 and the code word 11 01 11 00 00 11 10 01 10 00 01 11 is depicted by bold lines
for the transitions in the trellis. In this example, the last m = 2 bits are zero and, as a
consequence, the final state in the trellis is the all-zero state. It is common practice to start
and to stop with the all-zero state because it helps the decoder. This can easily be achieved
by appending m zeros – the so-called tail bits – to the useful bit stream.

State diagrams

One can also characterize the encoder by states and inputs and their corresponding transi-
tions as depicted in part (a) of Figure 3.7 for the code under consideration. This is known
as a Mealy automat. To evaluate the free distance of a code, it is convenient to cut open the
automat diagram as depicted in part (b) of Figure 3.7. Each path (code word) that starts in
the all-zero state and comes back to that state can be visualized by a sequence of states that
starts at the all-zero state on the left and ends at the all-zero state on the right. We look at
the coded bits in the labeling bi/c1ic2i and count the bits that have the value one. This is
just the Hamming distance between the code word corresponding to that sequence and the
all-zero code word. From the diagram, one can easily obtain the smallest distance dfree to
the all-zero code word. For the code of our example, the minimum distance corresponds to
the sequence of transitions 00 → 10 → 01 → 00 and turns out to be dfree = 5. The alter-
native sequence 00 → 10 → 11 → 01 → 00 has the distance d = 6. All other sequences
include loops that produce higher distances.

From the state diagram, we may also find the so-called error coefficient cd . These error
coefficients are multiplicative coefficients that relate the probability Pd of an error event
of distance d to the corresponding bit error probability. To obtain cd , we have to count
all the nonzero data bits of all error paths of distance d to the all-zero code word. Using
P (A1 ∪ A2) ≤ P (A1)+ P (A2), we obtain the union bound

Pb ≤
∞∑

d=dfree

cdPd

for the bit error probability. The coefficients cd for most relevant codes can be found in
text books. The error event probability Pd , for example, for antipodal signaling is given
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Figure 3.7 State diagram (Mealy automat) for the (1 +D2, 1 +D +D2) convolutional
code.

by Equation (3.2) for the AWGN channel and by Equation (3.4) for the Rayleigh fading
channel.

Catastrophic codes

The state diagram also enables us to find a class of encoders called catastrophic encoders
that must be excluded because they have the undesirable property of error propagation: if
there is a closed loop in the state diagram where all the coded bits c1ic2i are equal to zero, but
at least one data bit bi equals one, then there exists a path of infinite length with an infinite
number of ones in the data, but with only a finite number of ones in the code word. As a
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Figure 3.8 Example of a catastrophic convolutional encoder.

consequence, a finite number of channel bit errors may lead to an infinite number of errors
in the data, which is certainly a very undesirable property. An example for a catastrophic
encoder is the one characterized by the generators (3, 6)oct = (1 +D, D +D2), which is
depicted in Figure 3.8. Once in the state 11, the all-one input sequence will be encoded to
the all-zero code word.

Punctured convolutional codes

Up to now, we have only considered convolutional codes of rate Rc = 1/n. There are two
possibilities to obtain Rc = k/n codes. The classical one is to use k parallel shift registers
and combine their outputs. This, however, makes the implementation more complicated.
A simpler and more flexible method called puncturing is usually preferred in practical
communication systems. We explain it by means of the example of an Rc = 1/2 code that
can be punctured to obtain an Rc = 2/3 code. The encoder produces two parallel encoded
data streams {c1,i}∞i=0 and {c2,i}∞i=0. The first data stream will be left unchanged. From the
other data stream every second bit will be discarded, that is, only the bits with even time
index i will be multiplexed to the serial code word and then transmitted. Instead of the
original code word(

c10 c20 c11 c21 c12 c22 c13 c23 c14 . . .
)

the punctured code word(
c10 c20 c11 © c12 c22 c13 © c14 . . .

)
will be transmitted. Here we have indicated the punctured bits by ©. At the receiver,
the puncturing positions must be known. A soft decision (e.g. MLSE) receiver has metric
values µνi as inputs that correspond to the encoded bits cνi . The absolute value of µνi is an
indicator for the reliability of the bit. Punctured bits can be regarded as bits with reliability
zero. Thus, the receiver has to add dummy receive bits at the punctured positions of the
code word and assign them the metric values µνi = 0.

Recursive systematic convolutional encoders

Recursive systematic convolutional (RSC) encoders have become popular in the context
of parallel concatenated codes and turbo decoding (see below). For every nonsystematic
convolutional (NSC) Rc = 1/n encoder, one can find an equivalent RSC encoder that
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Figure 3.9 Inversion circuit for the generator polynomial 1 +D2.

produces the same code (i.e. the same set of code words) with a different relation between
the data word and the code word. It can be constructed in such a way that the first of the
n parallel encoded bit stream of the code word is systematic, that is, it is identical to the
data word.

As an example, we consider the Rc = 1/2 convolutional code of Figure 3.4 that can be
written in compact power series notation as[

c1(D)

c2(D)

]
= b(D)

[
1 +D2

1 +D +D2

]
.

The upper branch corresponding to the generator polynomial g1(D) = 1 +D2 of the shift
register circuit depicted in part (a) of Figure 3.9 defines a one-to-one map from the set
of all data words to itself. One can easily check that the inverse is given by the recursive
shift register circuit depicted in part (b) of Figure 3.9. This can be described by the formal
power series

g−1
1 (D) = (

1 +D2)−1 = 1 +D2 +D4 +D6 + · · ·
This power series description of feedback shift registers is formally the same as the descrip-
tion of linear systems in digital signal processing5, where the delay is usually denoted by
e−jω instead of D. The shift register circuits of Figure 3.9 invert each other. Thus, g−1

1 (D)

is a one-to-one mapping between bit sequences. As a consequence, combining the convolu-
tional encoder with that recursive shift register circuit as depicted in part (a) of Figure 3.10
leads to the same set of code words. This circuit is equivalent to the one depicted in part
(b) of Figure 3.10. This RSC encoder with generator polynomials (5, 7)oct can formally
be written as [

c1(D)

c2(D)

]
= b̃(D)

[
1

1+D+D2

1+D2

]
,

where the bit sequences are related by b̃(D) = (1 +D2) b(D).
For a general Rc = 1/n convolutional code, we have the NSC encoder given by the

generator polynomial vector

g(D) =

 g1(D)
...

gn(D)

 .

5In signal processing, we have an interpretation of ω as a (normalized) frequency, which has no meaning for
convolutional codes. Furthermore, here all additions are modulo 2. However, all formal power series operations
are the same.
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Figure 3.10 Recursive convolutional encoder.

The equivalent RSC encoder is given by the generator vector

g̃(D) =


1

g2(D)/g1(D)
...

gn(D)/g1(D)

 .

The bits sequence b(D) encoded by g(D) results in the same code word as the bit sequence
b̃(D) = g1(D)b(D) encoded by g̃(D) = g−1

1 (D)g(D), that is,

c(D) = b(D)g(D) = b̃(D)g̃(D).

An MLSE decoder will find the most likely code word that is uniquely related to a data
word corresponding to an NSC encoder and another data word corresponding to an RSC
encoder. As a consequence, one may use the same decoder for both and then relate the
sequences as described above. But note that this is true only for a decoder that makes
decisions about sequences. This is not true for a decoder that makes bitwise decisions like
the MAP decoder.

3.2.2 MLSE for convolutional codes: the Viterbi algorithm

Let us consider a convolutional code with memory m and a finite sequence of K input data
bits {bk}Kk=1. We denote the coded bits as ci . We assume that the corresponding trellis starts
and ends in the all-zero state. In our notation, the tail bits are included in {bk}Kk=1, that is,
there are only K −m bits that really carry information.
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Although the following discussion is not restricted to that case, we first consider the
concrete case of antipodal (BPSK) signaling, that is, transmit symbols xi = (−1)ci ∈ {±1}
written as a vector x and a real discrete AWGN channel given by

y = x + n,

where y is the vector of receive symbols and n is the real AWGN vector with components
ni of variance

σ 2 = E
{
n2

i

} = N0

2ES

.

Here, we have normalized the noise by the symbol energy ES . We know from the discussion
in Subsection 1.3.2 that, given a fixed receive vector y, the most probable transmit sequence
x for this case is the one that maximizes the correlation metric given by the scalar product

µ(x) = y · x. (3.30)

For an Rc = 1/n convolutional code, the code word consists of nK encoded bits, and the
metric can be written as a sum

µ(x) =
K∑

k=1

µk (3.31)

of metric increments
µk = yk · xk

corresponding to the K time steps k = 1, . . . , K of the trellis. Here xk is the vector of the
n symbols xi that correspond to encoded bits for the time step number k where the bit bk

is encoded, and yk is the vector of the corresponding receive vector.
The task now is to find the vector x that maximizes the metric given by Equation

(3.31), thereby exploiting the special trellis structure of a convolutional code. We note that
the following treatment is quite general and it is by no means restricted to the special
case of the AWGN metric given by Equation (3.30). For instance, any metric that is given
by expressions like Equations (3.19–3.21) can be written as Equation (3.31). Thus, a
priori information about the bits also can be included in a straightforward manner by the
expressions presented in Subsection 3.1.5, see also (Hagenauer 1995).

For a reasonable sequence length K , it is not possible to find the vector x by exhaustive
search because this would require a computational effort that is proportional to 2K . But,
owing to the trellis structure of convolutional codes, this is not necessary. We consider two
code words x and x̂ with corresponding paths merging at a certain time step k in a common
state sk (see Figure 3.11). Assume that for both paths the accumulated metrics, that is, the
sum of all metric increments up to that time step

�k =
k∑

i=1

µi

for x and

�̂k =
k∑

i=1

µ̂i
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Figure 3.11 Transition where the paths x and x̂ merge.

for x̂ have been calculated. Because the two paths merge at time step k and will be identical
for the whole future,

µ(x̂)− µ(x) = �̂k −�k

holds and we can already make a decision between both paths. Assume µ(x̂)− µ(x) > 0.
Then, x̂ is more likely than x, and we can discard x from any further considerations. This
fact allows us to sort out unlikely paths before the final decision and thus an effort that is
exponentially growing with the time can be avoided.

The algorithm that does this is the Viterbi algorithm and it works as follows: starting
from the initial state, the metric increments µk for all transitions between all the state sk−1

and sk are calculated recursively and added up to the time accumulated metrics �k−1. Then,
for the two transitions with the same new state sk, the values of �k−1 + µk are compared.
The larger value will serve as the new accumulated metric �k = �k−1 + µk , and the other
one will be discarded. Furthermore, a pointer will be stored, which points from sk to the
preceding state corresponding to the larger metric value. Thus, going from the left to the
right in the trellis diagram, for each time instant k and for all possible states, the algorithm
executes the following steps:

1. Calculate the metric increments µk for all the 2 · 2m transitions between all the 2m

states sk−1 and all the 2m states sk and add them to the to the 2m accumulated metric
values �k−1 corresponding to the states sk−1.

2. For all states sk compare the values of �k−1 + µk for the two transitions ending at
sk and select the one that is the maximum and then set �k = �k−1 + µk , which is
the accumulated metric of that state.

3. Place a pointer to the state sk−1 that is the most likely preceding state for that
transition.

Then, when all these calculations and assignments have been done, we start at the end of
the trellis and trace back the pointers that indicate the most likely preceding states. This
procedure finally leads us to the most likely path in the trellis.
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3.2.3 The soft-output Viterbi algorithm (SOVA)

The soft-output Viterbi algorithm (SOVA) is a relatively simple modification of the Viterbi
algorithm that allows to obtain an additional soft reliability information for the hard decision
bits provided by the MLSE.

By construction, the Viterbi algorithm is a sequence estimator, not a bit estimator. Thus,
it does not provide reliability information about the bits corresponding to the sequence.
However, it can provide us with information about the reliability of the decision between
two sequences. Let x and x̂ be two possible transmit sequences. Then, according to Equation
(3.18), the conditional probability that this sequence has been transmitted given that y has
been received is

P (x|y) = C exp

(
1

σ 2
µ(x)

)
for x and

P (x̂|y) = C exp

(
1

σ 2
µ(x̂)

)
for x̂. Now assume that x̂ is the maximum likelihood sequence obtained by the Viterbi
algorithm. If one could be sure that one of the two sequences x or x̂ is the correct one (and
not any other one), then Pr(x̂|y) = 1 − Pr(x|y) and the LLR for a correct decision would
be given by

L(x̂) = log
P (x̂|y)

P (x|y)
= 1

σ 2
(µ(x̂)− µ(x)) , (3.32)

that is, the metric difference is a measure for the reliability of the decision between the two
sequences. We note that this LLR is conditioned by the event that one of both paths is the
correct one.

We now consider a data bit b̂k at a certain position in the bit stream corresponding to the
ML sequence x̂ estimated by the Viterbi Algorithm6. The goal now is to gain information
about the reliability of this bit by looking at the reliability of the decisions between x̂ and
other sequences x(β) whose paths merge with the ML path at some state sk . Any decision
in favor of x̂ instead of the alternative sequence x(β) with a bit b

(β)

k is only relevant for that
bit decision if b

(β)

k �= bk . Thus, we can restrict our consideration to the relevant sequences
x(β). Each of the relevant alternative paths labeled by the index β is the source of a possible
erroneous decision in favor of b̂k instead of b

(β)

k . We define a random error bit e
(β)

k that
takes the value e

(β)

k = 1 for an erroneous decision in favor of b̂k instead of b
(β)

k and e
(β)

k = 0

otherwise. We write L
(β)

k = L
(
e
(β)

k = 0
)

for the L-values of the error bits. By construction,
it is given by

L
(β)

k = 1

σ 2

(
µ(x̂)− µ(xβ)

)
.

Note that L
(β)

k > 0 holds because bk belongs to the maximum likelihood path that is per
definitionem more likely than any other.

It is important to note that all the corresponding probabilities are conditional probabili-
ties because in any case it is assumed that one of the two sequences x̂ or x(β) is the correct

6The same arguments apply if we consider a symbol x̂i of the transmit sequence.
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one. Furthermore, we only consider paths that merge directly with the ML path. Therefore,
all paths that are discarded after comparing them with another path than the ML path are
not considered. It is possible (but not very likely in most cases) that the correct path is
among these discarded paths. This rare event has been excluded in our approximation. We
further assume that the random error bits e

(β)

k are statistically independent. All the random
error bits e

(β)

k together result in an error bit ek that is assumed to be given by the modulo
2 sum

ek =
∑

relevant β

⊕e
(β)

k .

We further write Lk = L (ek = 0) for the L-value of the resulting error bit. Using Equation
(3.14), the L-value for this resulting error bit is approximately given by

Lk ≈ min
relevant β

(
L

(β)

k

)
= min

relevant β

(
1

σ 2

(
µ(x̂)− µ(x(β))

))
,

where we have used Equation (3.32). It is intuitively simple to understand that this is a
reasonable reliability information about the bit bk . We consider all the sequence decisions
that are relevant for the decision of this bit. Then, according to the intuitively obvious
rule that a chain is as strong as its weakest link, we assign the smallest of those sequence
reliabilities as the bit reliability.

Now, in the Viterbi algorithm, the reliability information about the merging paths have
to be stored for each state in addition to the accumulated metric and the pointer to the most
likely preceding state. Then the reliability of the bits of the ML path will be calculated.
First, they will all be initialized with +∞, that is, practically speaking, with a very large
number. Then, for each relevant decision between two paths, this value will be updated, that
is, the old reliability will be replaced by the reliability of the path decision if the latter is
smaller. To do this, every path corresponding to any sequence x(β) that has been discarded
in favor of the ML sequence x̂ has to be traced back to a point where both paths merge.

We finally note that the reliability information can be assigned to the transmit symbols
xi ∈ {±1} (i.e. the signs corresponding to the bits of the code word) as well as to the data
bit itself.

3.2.4 MAP decoding for convolutional codes: the BCJR algorithm

To obtain LLR information about bits rather than about sequences, the bitwise MAP re-
ceiver of Equation (3.23) has to be applied instead of a MLSE. This equation cannot be
applied directly because it would require an exhaustive search through all code words. For
a convolutional code, the exhaustive search for the MLSE can be avoided in the Viterbi
algorithm by making use of the trellis structure. For the MAP receiver, the exhaustive
search can be avoided in the BCJR (Bahl, Cocke, Jelinek, Raviv) algorithm (Bahl et al.
1974). In contrast to the SOVA, it provides us with the exact LLR value for a bit, not just
an approximate one. The price for this exact information is the higher complexity. The
BCJR algorithm has been known for a long time, but it became very popular not before its
widespread application in turbo decoding.

We consider a vector of data bits b = (b1, . . . , bK)T encoded to a code word c and
transmitted with symbols xk . Given a receive symbol sequence y = (y1, . . . , yN)T , we
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Figure 3.12 Transition.

want to calculate the LLR for a data bit bk given as

L(bk = 0|y) = log

∑
b∈B(0)

k

P (b|y)∑
b∈B(1)

k

P (b|y)
. (3.33)

Here, B(0)
k is the set of those vectors b ∈ B for which bk = 0 and B(1)

k is the set of those for
which bk = 1. We assume that the bit bk is encoded during the transition between the states
sk−1 and sk of a trellis. For each time instant k, there are 2m such transitions corresponding
to bk = 0 and 2m transitions corresponding to bk = 1. Each probability term P (b|y) in the
numerator or denominator of Equation (3.33) can be written as the conditional probability
P (sksk−1|y) for the transition between two states sk−1 and sk. Since the denominator in

P (sksk−1|y) = p(y, sksk−1)

p(y)

cancels out in Equation (3.33), we can consider the joint probability density function
p(y, sksk−1) instead of the conditional probability P (sksk−1|y). We now decompose the
receive symbol vector into three parts: we write y−k for those receive symbols correspond-
ing to time instants earlier than the transition between the states sk−1 and sk . We write yk for
those receives symbols corresponding to time instants at the transition between the states
sk−1 and sk . And we write y+k for those receive symbols corresponding to time instants
later than the transition between the states sk−1 and sk . Thus, the receive vector may be
written as

y =
 y−k

yk

y+k


(see Figure 3.12), and the probability density may be written as

p(y, sksk−1) = p(y+k yky−k sksk−1).

If no confusion arises, we dispense with the commas between vectors. Using the definition
of conditional probability, we modify the right-hand side and get

p(y, sksk−1) = p(y+k |yky−k sksk−1)p(yky−k sksk−1),
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and, in another step,

p(y, sksk−1) = p(y+k |yky−k sksk−1)p(yksk|y−k sk−1)p(y−k sk−1).

We now make the assumptions

p(y+k |yky−k sksk−1) = p(y+k |sk)

and
p(yksk|y−k sk−1) = p(yksk|sk−1),

which are quite similar to the properties of a Markov chain. The first equation means that
we assume that the random variable y+k corresponding to the receive symbols after state sk

depends on that state, but is independent of the earlier state sk−1 and any earlier receive
symbols corresponding to y and y−k . The second equation means that we assume that the
random variable yk corresponding to the receive symbols for the transition from the state
sk−1 to sk does not depend on earlier receive symbols corresponding to y−k . For a given
fixed receive sequence y, we define

αk−1(sk−1) = p(y−k sk−1), βk(sk) = p(y+k |sk), γk(sk|sk−1) = p(yksk|sk−1) (3.34)

and write
p(y, sksk−1) = βk(sk)γk(sk|sk−1)αk−1(sk−1).

The probability densities γk(sk|sk−1) for the transition from the state sk−1 to sk can be
obtained from the metric value µk calculated from yk . As shown in Section 3.1.5, for
the AWGN channel with normalized noise variance σ 2 and bipolar transmission, we have
simply

γk(sk|sk−1) = C exp

(
1

σ 2
xk · yk

)
· Pr(xk),

where xk is the transmit symbol and P (xk) is the a priori probability corresponding to that
transition. The αk and βk values have to be calculated using recursive relations. We state
the following proposition.

Proposition 3.2.1 (Forward-backward recursions) For αk , βk , γk as defined by Equation
(3.34), the following two recursive relations

αk(sk) =
∑
sk−1

γk(sk|sk−1)αk−1(sk−1) (3.35)

and
βk−1(sk−1) =

∑
sk

βk(sk)γk(sk|sk−1) (3.36)

hold.

Proof. Forward recursion:

αk(sk) = p(y−k+1sk) = p(yky−k sk)

=∑
sk−1

p(yky−k sksk−1)

=∑
sk−1

p(yksk|y−k sk−1)p(y−k sk−1)

Using the Markov property p(yksk|y−k sk−1) = p(yksk|sk−1), we obtain Equation (3.35).
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Backward recursion:

βk−1(sk−1) = p(y+k−1|sk−1) = p(y+k yk|sk−1) = p(y+k yksk−1)/ Pr(sk−1)

=∑
sk

p(y+k yksksk−1)/ Pr(sk−1)

=∑
sk p(y+k |yksksk−1)p(yksksk−1)/ Pr(sk−1).

Using p(yksksk−1)/ Pr(sk−1) = p(yksk|sk−1) and the Markov property p(y+k |yksksk−1) =
p(y+k |sk), we obtain Equation (3.36).

The BCJR algorithm now proceeds as follows: initialize the initial and the final state
of the trellis as α0 = 1 and βK = 1 and calculate the αk values according to the forward
recursion of Equation (3.35) from the left to the right in the trellis and then calculate the
βk according to the backward recursion Equation (3.36) from the right to the left in the
trellis. Then the LLRs for each transition can be calculated as

L(bk = 0|y) = log

∑
b∈B(0)

k

p(y, sksk−1)∑
b∈B(1)

k

p(y, sksk−1)

that is,

L(bk = 0|y) = log

∑
b∈B(0)

k

αk−1(sk−1)γk(sk|sk−1)βk(sk)∑
b∈B(1)

k

αk−1(sk−1)γk(sk|sk−1)βk(sk)
.

In this notation, we understand the sum over all b ∈ B(0)
k as the sum over all transitions

from sk−1 to sk with bk = 0 and sum over all b ∈ B(1)
k as the sum over all transitions from

sk−1 to sk with bk = 1.

3.2.5 Parallel concatenated convolutional codes and turbo decoding

During the last decade, great success has been achieved in closely approaching the theoret-
ical limit of channel coding. The codes that have been used for that are often called turbo
codes. More precisely, one should carefully distinguish between the code and the decod-
ing method. The first turbo code was a parallel concatenated convolutional code (PCCC).
Parallel concatenation can be done with block codes as well. Also serial concatenation is
possible. The novel decoding method that has been applied to all theses codes deserves
the name turbo decoder because there is an iterative exchange of extrinsic and a priori
information between the decoders of the component codes.

To explain the method, we consider the classical scheme with a parallel concatenation
of two RSC codes of rate Rc = 1/2 as depicted in Figure 3.13. The data bit stream is
encoded in parallel by two RSC encoders (that may be identical). The common systematic
part xs of both codes will be transmitted only once. Thus, the output code word consists
of three parallel vectors: the systematic symbol vector xs and the two nonsystematic PC
symbol vectors xp1 and xp2. The input for the second RSC parity check encoder (RSC-PC2)
is interleaved by a pseudo-random permutation � before encoding. The resulting Rc = 1/3
code word may be punctured in the nonsystematic symbols to achieve higher code rates.
Lower code rates can be achieved by additional RSC-PCs, together with interleavers. This
setup may be regarded as well as a parallel concatenation of the first RSC code of rate
Rc = 1/2 with an Rc = 1 recursive nonsystematic code that produces xp2. However, here
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RSC−PC1

RSC−PC2�

xs

xp1

xp2

Figure 3.13 PCCC encoder.

Time index

xp2

xp1xs

Figure 3.14 PCCC code word.

we prefer the point of view of two equal rate RSC codes with a common systematic symbol
stream.

The code word consisting of three parallel symbol streams can be visualized as depicted
in Figure 3.14. The vector xp1 can be regarded as a horizontal parity check, the vector xp2

as a vertical parity check. The time index is the third dimension. At the decoder, the
corresponding receive vectors are denoted by ys , yp1 and yp2. With a diagonal matrix of
fading amplitudes A, the channel LLRs are

Lc
s =

2

σ 2
Ays, Lc

p1 =
2

σ 2
Ayp1, Lc

p2 =
2

σ 2
Ayp2,

where σ−2 is the channel SNR. We write Lc
1 =

(
Lc

s , Lc
p1

)
and Lc

2 =
(

Lc
s , Lc

p2

)
for the

respective channel LLRs. In the decoding process, independent extrinsic information Le
1

and Le
2 about the systematic part can be obtained from the horizontal and from the vertical

decoding, respectively. Thus, the horizontal extrinsic information can be used as a priori
information for vertical decoding and vice versa.

The turbo decoder setup is depicted in Figure 3.15. It consists of two SISO decoders,
SISO1 and SISO2, for the decoding of RSC1 and RSC2, as depicted in Figure 3.3. To
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2
σ 2 yp2

2
σ 2 ys
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σ 2 yp1

SISO1 SISO2

Lc
1 Lc

2
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2
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2

L1 L2

DecisionDecision

Figure 3.15 Turbo decoder.

simplify the figure, the necessary de–interleaver �−1 at the input for Lc
s and La

2 and the
interleaver � at the output for Le

2 and L2 of RSC2 are included inside the SISO2. The
MAP decoder for convolutional codes will be implemented by the BCJR algorithm. In the
iterative decoding process, the extrinsic output of one SISO decoder serves as the a priori
input for the other. At all decoding steps, the channel LLR values are available at both
SISOs. In the first decoding step, only the channel information, but no a priori LLR value is
available at SISO1. Then SISO1 calculates the extrinsic LLR value Le

1 from the horizontal
decoding. This serves as the a priori input LLR value La

2 for SISO2. The extrinsic output
Le

2 then serves as the a priori input for SISO1 in the second iteration. These iterative steps
will be repeated until a break, and then a final decision can be obtained from the SISO
total LLR output value L2 (or L1).

We note that the a priori input is not really an independent information at the second
iteration step or later. This is because all the information of the code has already been
used to obtain it. However, the dependencies are small enough so that the information can
be successfully used to improve the reliability of the decision by further iterations. On the
other hand, it is essential that there will be no feedback of LLR information from the output
to the input. Such a feedback would be accumulated at the inputs and finally dominate the
decision. Therefore, the extrinsic LLR must be used, where the SISO inputs have been
subtracted from the LLR.

We add the following remarks:

• In the ideal case, the SISO is implemented by a BCJR MAP receiver. In practice,
the maxlog MAP approximation may be used, which results only in a small loss in
performance. This loss is due to the fact that the reliability of the very unreliable
symbols is slightly overestimated. The SOVA may also be used, but the performance
loss is higher.
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• The exact MAP needs the knowledge of the SNR value σ−2, which is normally not
available. Thus, a rough estimate must be used. Using the maxlog MAP or SOVA,
the SNR is not needed. This is due to the fact that in the first decoding step no a
priori LLR is used, and, as a consequence, the SNR appears only as a common linear
scale factor in all further calculated LLR outputs.

3.3 Reed–Solomon Codes

Reed–Solomon (RS) codes may be regarded as the most important block codes because of
their extremely high relevance for many practical applications. These include deep space
communications, digital storage media and, last but not least, the digital video broadcasting
system (DVB). However, these most useful codes are based on quite sophisticated theoreti-
cal concepts that seem to be much closer to mathematics than to electrical engineering. The
theory of RS codes can be found in many text books (Blahut 1983; Bossert 1999; Clark
and Cain 1988; Lin and Costello 1983; Wicker 1995). In this section about RS codes,
we restrict ourselves to some important facts that are necessary to understand the coding
scheme of the DVB-T system discussed in Subsection 4.6.2. We will first discuss the basic
properties of RS codes as far as they are important for the practical application. Then, we
will give a short introduction to the theoretical background. For a deeper understanding of
that background, we refer to the text books cited above.

3.3.1 Basic properties

Reed–Solomon codes are based on byte arithmetics7 rather than on bit arithmetics. Thus, RS
codes correct byte errors instead of bit errors. As a consequence, RS codes are favorable for
channels with bursts of bit errors as long as these bursts do not affect too many subsequent
bytes. This can be avoided by a proper interleaving scheme. Such bursty channels occur
in digital recording. As another example, for a concatenated coding scheme with an inner
convolutional code, the Viterbi decoder produces burst errors. An inner convolutional code
concatenated with an outer RS code is therefore a favorable setup. It is used in deep space
communications and for DVB-T.

Let N = 2m − 1 with an integer number m. For the practically most important RS codes,
we have m = 8 and N = 255. In that case, the symbols of the code word are bytes. For
simplicity, in the following text, we will therefore speak of bytes for those symbols. For an
RS(N, K, D) code, K data bytes are encoded to a code word of N bytes. The Hamming
distance is given by D = N −K + 1 bytes. For odd values of D, the code can correct up to
t byte errors with D = 2t + 1. For even values of D, the code can correct up to t byte errors
with D = 2t + 2. RS codes are linear codes. For a linear code, any nonsystematic encoder
can be transformed into a linear encoder by a linear transform. Figure 3.16 shows the
structure of a systematic RS code word with an odd Hamming distance and an even number
N −K = D − 1 = 2t of redundancy bytes called parity check (PC) bytes. In that example,
the parity check bytes are placed at the end of the code word. Other choices are possible.
RS codes based on byte arithmetics have always the code word length N = 28 − 1 = 255.

7RS codes can be constructed for more general arithmetic structures, but only those based on byte arithmetics
are of practical relevance.
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2t PC bytesK data bytes

Figure 3.16 A systematic RS code word.

Table 3.1 Some RS
code parameters

RS(255, 253, 3) t = 1
RS(255, 251, 5) t = 2
RS(255, 249, 7) t = 3
. . .
RS(255, 239, 17) t = 8
. . .

16 PC bytes188 data bytes41 zero bytes

Figure 3.17 A shortened RS code word.

They can be constructed for any value of D ≤ N . Table 3.1 shows some examples for odd
values of D.

Shortened RS codes

In practice, the fixed code word length N = 255 is an undesirable restriction. One can
get more flexibility by using a simple trick. For an RS(N, K, D) code with N = 255, we
want to encode only K1 < K data byte and set the first K −K1 bytes of the data word to
zero. We then encode the K bytes (including the zeros) with the RS(N, K, D) systematic
encoder to obtain a code word of length N whose first K −K1 code words are equal to
zero. These bytes contain no information and need not to be transmitted. By this method
we have obtained a shortened RS(N1, K1, D) code word with N1 = N − (K −K1). Figure
3.17 shows the code word of a shortened RS(204, 188, 17) code obtained from an RS(255,
239, 17) code. Before decoding, at the receiver, the K −K1 zero bytes must be appended
at the beginning of the code word and a RS(255, 239, 17) decoder will be used. This
shortened RS code is used as the outer code for the DVB-T system.

Decoding failure

It may happen that the decoder detects errors that cannot be corrected. In the case of
decoding failure, an error flag can be set to indicate that the data are in error. The application
may then take benefit from this information.



CHANNEL CODING 133

Erasure decoding

If it is known that some received bytes are very unreliable (e.g. from an inner decoder that
provides such reliability information), the decoder can make use of this fact in the decoding
procedure. These bytes are called erasures.

3.3.2 Galois field arithmetics

Reed–Solomon codes are based on the arithmetics of finite fields that are usually called
Galois fields. The mathematical concept of a field stands for a system of numbers, where
addition and multiplication and the corresponding inverses are defined and which is com-
mutative. The existence of an (multiplicative) inverse is crucial: for any field element a,
there must exist a field element a−1 with the property a−1a = 1. The rational numbers and
the real numbers with their familiar arithmetics are fields. The integer numbers are not,
because the (multiplicative) inverse of an integer is not an integer (except for the one).

A Galois field GF(q) is a field with a finite number q of elements. One can very
easily construct a Galois field GF(q) with q = p, where p is a prime number. The GF(p)

arithmetics is then given by taking the remainder modulo p. For example, GF(7) with the
elements 0, 1, 2, 3, 4, 5, 6 is defined by the addition table

+ 1 2 3 4 5 6
1 2 3 4 5 6 0
2 3 4 5 6 0 1
3 4 5 6 0 1 2
4 5 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5

and the multiplication table
1 2 3 4 5 6
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2
6 5 4 3 2 1

Note that every field element must occur exactly once in each column or row of the
multiplication table to ensure the existence of a multiplicative inverse.

A Galois field has at least one primitive element α with the property that any nonzero
field element can be uniquely written as a power of α. By using the multiplication table of
GF(7), we easily see that α = 5 is such a primitive element and the nonzero field elements
can be written as powers of α in the following way

α0 = 1, α1 = 5, α2 = 4, α3 = 6, α4 = 2, α5 = 3.

We note that since α6 = α0 = 1, negative powers of α like α−2 = α4 are defined as well.
We can easily visualize the multiplicative structure of GF(7) as depicted in Figure 3.18.
Each nonzero element is represented by the edge of a hexagon or the corresponding angle.
α0 has the angle zero, α1 has the angle π/3, α2 has the angle 2π/3, and so on. Obviously,
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α0 = 1

α1 = 5α2 = 4

α3 = 6

α4 = 2 α5 = 3

GF(7)

Figure 3.18 GF (7).

the multiplication of field elements is represented by the addition of the corresponding
angles. This is the same multiplicative group structure as if we would identify α with the
complex phasor exp(j2π/N) with N = q − 1. This structure leads directly to a very natural
definition of the discrete Fourier transform (DFT) for Galois fields (see below).

The primitive of GF(q) element has the property αN = 1 and thus αiN = 1 for i =
0, 1, . . . , N − 1. It follows that each element αi of GF(q) is a root of the polynomial
xN − 1, and we may write

xN − 1 =
N−1∏
i=0

(
x − αi

)
.

Similarly,

xN − 1 =
N−1∏
i=0

(
x − α−i

)
holds.

The prime number Galois fields GF(p) are of some tutorial value. Of practical relevance
are the extension fields GF(2m), where m is a positive integer. We state that a Galois field
GF(q) exists for every q = pm, where p is prime8. Almost all practically relevant RS
codes are based on GF(28) because the field element can be represented as bytes. We will
use the smaller field GF(23) to explain the arithmetics of the extension fields.

The elements of an extension field GF(pm) can be represented as polynomials of degree
m− 1 over GF(p). Without going into mathematical details, we state that the primitive
element α is defined as the root of a primitive polynomial. The arithmetic is then modulo
that polynomial. Note that addition and subtraction is the same in GF(2m).

We explain the arithmetic for the example GF(23). The primitive polynomial is given
by p(x) = x3 + x + 1. The primitive element α is the root of that polynomial, that is, we
can set

α3 + α + 1 ≡ 0.

We then write down all powers of alpha and reduce them to modulo α3 + α + 1. For
example, we may identify α3 ≡ α + 1. Each element is thus given by a polynomial of

8For a proof, we refer to the text books mentioned above.
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Table 3.2 Representation of
GF(23)

dec bin poly αi

0 000 0 ∗
1 001 1 α0

2 010 α α1

3 011 α + 1 α3

4 100 α2 α2

5 101 α2 + 1 α6

6 110 α2 + α α4

7 111 α2 + α + 1 α5

degree 2 over the dual number system GF(2) and can therefore be represented by a bit
triple or a decimal number. Table 3.2 shows the equivalent representations of the elements
of GF(23). We note that for a Galois field GF(2m), the decimal representation of the
primitive element is always given by the number 2.

The addition is simply defined as the addition of polynomials, which is equivalent
to the vector addition of the bit tuples. Multiplication is defined as the multiplication of
polynomials and reduction modulo α3 + α + 1. The addition table is then given by

+ 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0

and the multiplication table by

1 2 3 4 5 6 7
2 4 6 3 1 7 5
3 6 5 7 4 1 2
4 3 7 6 2 5 1
5 1 4 2 7 3 6
6 7 1 5 3 2 4
7 5 2 1 6 4 3

We can visualize the multiplicative structure of GF(8) as depicted in Figure 3.19. This
will lead us directly to the discrete Fourier transform that will be defined in the following
subsection.

3.3.3 Construction of Reed–Solomon codes

From the communications engineering point of view, the most natural way to introduce
Reed–Solomon codes is via the DFT and general properties of polynomials.
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α0 = 1GF(8)

α1 = 2
α2 = 4

α3 = 3

α4 = 6

α5 = 7
α6 = 8

Figure 3.19 GF (8).

The discrete Fourier transforms for Galois fields

Let
A = (A0, A1, . . . , AN−1)

T

be a vector of length N = q − 1 with elements Ai ∈ GF(q). We define the vector

a = (a0, a1, . . . , aN−1)
T

of the DFT by the operation

aj =
N−1∑
i=0

Aiα
ij .

We note that the Fourier transform can be described by the multiplication of the vector A

by the DFT matrix

F =


1 1 1 · · · 1
1 α α2 · · · αN−1

1 α2 α4 · · · α2N−2

...
...

...
. . .

...

1 αN−1 α2N−2 · · · α(N−1)(N−1)

 .

As mentioned above, the primitive element α of GF(q) has the same multiplicative
properties as exp(j2π/N) with N = q − 1. Thus, this is the natural definition of the DFT
for Galois fields. We say that A is the frequency domain vector and a is the time domain
vector. The inverse discrete Fourier transform (IDFT) in GF(2m) is given by

Ai =
N−1∑
j=0

ajα
−ij .
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The proof is the same as for complex numbers, but we must use the fact that

N−1∑
j=0

α0 = 1

in GF(2m). For other Galois fields, a normalization factor would occur for the inverse
transform.

Any vector can be represented by a formal polynomial. For the frequency domain vector,
we may write this formal polynomial as

A(x) = A0 + A1x + · · · + AN−1x
N−1.

We note that x is only a dummy variable. We add two polynomials A(x) and B(x) by adding
their coefficients. If we multiply two polynomials A(x) and B(x) and take the remainder
modulo xN − 1, the result is the polynomial that corresponds to the cyclic convolution of
the vectors A and B. We write

A(x)B(x) ≡ A ∗ B(x) mod(xN − 1).

The DFT can now simply be defined by

aj = A(αj ),

that is, the ith component aj of the time domain vector a can be obtained by evaluating the
frequency domain polynomial A(x) for x = αj . We write the polynomial corresponding to
the time domain vector a as

a(y) = a0 + a1y + · · · + aN−1y
N−1.

Here, y is again a formal variable9. The IDFT is then given by

Ai = a(α−i ).

As for the usual DFT, cyclic convolution in the time domain corresponds to elementwise
multiplication in the frequency domain and vice versa. We may write this as

A ∗ B ←→ a ◦ b

A ◦ B ←→ a ∗ b

in GF(2m). Here we have written a ◦ b and A ◦ B for the Hadamard product, that is, the
componentwise multiplication of vectors. We may define it formally as

A ◦ B(x) = A0B0 + A1B1x + · · · + AN−1BN−1x
N−1.

9We may call it x as well.
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Frequency domain encoding

We are now ready to define Reed–Solomon in the frequency domain. As an example, we
start with the construction of the RS(7, 5, 3) code over GF(8). We want to encode K = 5
useful data symbols Ai, i = 0, 1, 2, 3, 4 to a code word of length N = 7. The polynomial

A(x) = A0 + A1x + A2x
2 + A3x

3 + A4x
4

of degree 4 cannot have more than four zeros. Thus, aj = A(αj ) cannot be zero for more
than four values of j . Then the time domain vector

a = (a0, a1, a2, a3, a4, a5, a6)
T

has at least three nonzero components, that is, the weight of the vector is at least 3. The
vector a is the RS code word. The Hamming distance of that code is then given by (at
least) D = 3. Figure 3.20 shows this frequency domain encoding. The useful data are given
by the data word (2, 7, 4, 3, 6) in decimal notation, where each symbol represents a bit
triple according to Table 3.2. The code word in the frequency domain is given by

A = (2, 7, 4, 3, 6, 0, 0)T .

Redundancy has been introduced by setting two frequencies equal to zero. This guarantees
a minimum weight of three for the time domain code word, which is given by

a = (4, 6, 5, 1, 2, 3, 5)T .

0 1 2 3 4 5 6
0

2

4

6

i

A
i

RS code word (frequency domain)

0 1 2 3 4 5 6
0

2

4

6

j

a j

RS code word (time domain)

Figure 3.20 The RS(7, 5, 3) code word in the frequency domain.
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A general RS(N, K, D) code over GF(q) with N = q − 1 can be constructed in the
following way. We consider polynomials

A(x) = A0 + A1x + · · · + AK−1x
K−1

with K useful data symbols, that is, the last N −K components Ai of the frequency domain
vector A will be set equal to zero. We perform a DFT of length N . Since A(x) has at most
K − 1 zeros, aj = A(αj ) can have at most K − 1 zeros. In other words, there are at least
D = N −K + 1 nonzero components in the time domain code word

a = (a0, a1, . . . , aN−1)
T .

Encoder and parity check

The encoder can be described by the matrix operation
a0

a1

a2
...

aN−1

 =


1 1 1 · · · 1
1 α α2 · · · αK−1

1 α2 α4 · · · α2K−2

...
...

...
. . .

...

1 αN−1 α2N−2 · · · α(K−1)(N−1)




A0

A1

A2
...

AK−1

 ,

that is, the generator matrix is the matrix of the first K columns of the DFT matrix. The
condition that the last N −K components Ai of the frequency domain vector A are equal
to zero can be written as

1 α−K α−2K · · · α−(N−1)K

1 α−(K+1) α−2(K+1) · · · α−(N−1)(K+1)

...
...

...
. . .

...

1 α−(N−1) α−2(N−1) · · · α−(N−1)(N−K−1)




a0

a1

a2
...

aN−1

 = 0,

that is, the parity check matrix is the matrix of the last N −K rows of the IDFT matrix.
The condition Ai = a(α−i ) = 0 for i = K, . . . , N − 1 means that the polynomial a(x)

has zeros for x = α−K ,. . . ,α−(N−1). We may thus factorize a(x) as

a(x) = q(x)

N−1∏
i=K

(
x − α−i

)
with some quotient polynomial q(x). We define the generator polynomial

g(x) =
N−1∏
i=K

(
x − α−i

)
.

The code (i.e. the set of code words) can thus equivalently be defined as those polynomials
a(x) that can be written as a(x) = q(x)g(x).

We define the parity check polynomial

h(x) =
K−1∏
i=0

(
x − α−i

)
.
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Obviously,
g(x)h(x) ≡ 0 mod(xN − 1)

and the code words a(x) must fulfill the parity check condition

a(x)h(x) ≡ 0 mod(xN − 1).

3.3.4 Decoding of Reed–Solomon codes
Consider an RS(N, K, D) code with odd Hamming distance D = 2t + 1. We assume that
a code word a has been transmitted, but another vector r = (r0, . . . , rN−1)

T with elements
rj ∈ GF(q) has been received. We write

r = a + e,

where e = (e0, . . . , eN−1)
T with elements ej ∈ GF(q) has is the error vector. We write

E = (E1, . . . , EN−1)
T for the error in the frequency domain and E(x) for the corresponding

polynomial. We multiply the above equation by the parity check matrix. The result is the
syndrome vector

S1

S2

S3
...

S2t

 =


1 α−K α−2K · · · α−(N−1)K

1 α−(K+1) α−2(K+1) · · · α−(N−1)(K+1)

...
...

...
. . .

...

1 α−(N−1) α−2(N−1) · · · α−(N−1)(N−K−1)




e0

e1

e2
...

eN−1

 .

If the syndrome is not equal to zero, then an error has occurred. We note that the syndrome
is the vector of the last N −K = 2t components of E, that is, S1 = EK , S2 = EK+1,
S2t = EN−1. The task now is to calculate the error vector from the syndrome.

Error locations

First, we must find the error positions, that is, the set of indices

σ = {j | ej = E(αj ) �= 0}
corresponding to the nonzero elements of the error vector. The complement of σ is given
by

ρ = {j | ej = E(αj ) = 0}.
We define the error location polynomial

C(x) =
∏
j∈σ

(x − αj )

and the polynomial of error-free positions

D(x) =
∏
j∈ρ

(x − αj ).

By construction,
C(x)D(x) ≡ 0 mod(xN − 1)
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holds. Since ρ corresponds to the zeros of E(x), it can be factorized as E(x) = T (x)D(x)

with some polynomial T (x). It follows that

C(x)E(x) ≡ 0 mod(xN − 1).

Assume that exactly t errors have occurred. The zeros of C(x) are then given by αjl , l =
1, . . . , t . We write

Xl = α−jl

for their inverses. The error positions are given by

jl = − logα Xl.

We now renormalize the error location polynomial in such a way that the first coefficient
equals one, that is, we define

�(x) =
t∏

l=1

(1 − α−jl x) =
t∏

l=1

(1 −Xlx) = �0 +�1x +�2x
2 + · · · +�tx

t

with �0 = 1. Obviously, C(x) and �(x) have the same zeros and

�(x)E(x) ≡ 0 mod(xN − 1)

holds, which means � ∗ E = 0 for the cyclic convolution of the vectors. We may write this
componentwise as ∑

i+j=k (mod N)

Ei�j = 0 ∀ k ∈ {0, 1, 2, . . . , N − 1}.

We write down the last t of these N linear equations and obtain

S1�t+ S2�t−1+ . . . +St�1 +St�0 = 0
S2�t+ S3�t−1+ . . . +St+1�1 +St+2�0 = 0

...
...

...
...

...
...

...

St�t+ St+1�t−1+ . . . +S2t−1�1 +S2t�0 = 0

.

From �0 = 1, we obtain
S1 S2 S3 · · · St

S2 S3 S5 · · · St+1

S3 S4 S5 · · · St+2
...

...
...

. . .
...

St St+1 St+2 · · · S2t−1




�t

�t−1

�t−2
...

�1

 = −


St+1

St+2

St+3
...

S2t

 .

This system of linear equations can be solved by matrix inversion. If less than t errors have
occurred, the matrix will be singular. In that case, the polynomial �(x) will be of degree
t − 1 or less. Thus, we delete the first row and first column of the matrix and proceed this
way until the remaining matrix is nonsingular. If the last equation S2t−1�1 = −S2t is still
singular (i.e. S2t−1 = 0, but the syndrome is not equal to zero), then a decoding failure has
occurred.
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Once the coefficients of polynomial �(x) have been found, we have to find the zeros
X−1

l of the polynomial. This will be simply done by evaluating the polynomial for all the
N nonzero elements of GF(q). This procedure is called Chien search. If less zeros than
the degree of �(x) or multiple zeros are found, then a decoding failure has occurred.

Error values

We are now ready to determine the values of the nonzero components of e. For simplicity,
we consider the case that t errors have occurred. The treatment of less errors is similar. In
the sum

Ei =
N−1∑
j=0

α−ij ej

only those coefficients with j ∈ σ occur, that is,

Ei =
t∑

l=1

α−ijl ejl
=

t∑
l=1

Xi
l ejl

.

The syndrome coefficients S1 = EK , S2 = EK+1, S2t = EN−1 are known. We thus have 2t

equations with t unknowns. We take only the first t of them, which leads to the system of
linear equations given by


S1

S2

S3
...

St

 =



XK
1 XK

2 XK
3 · · · XK

l

XK+1
1 XK+1

2 XK+1
3 · · · XK+1

l

XK+2
1 XK+2

2 XK+2
3 · · · XK+2

l

...
...

...
. . .

...

XK+t−1
1 XK+t−1

2 XK+t−1
3 · · · XK+t−1

l




ej1

ej2

ej3
...

ejt

 .

The Vandermonde matrix is nonsingular and can thus be inverted, which provides us with
the error vector e. The corrected code word will then be obtained as a = r − e.

3.4 Bibliographical Notes

For a more detailed treatment of channel coding, we refer to the text books (Blahut 1983;
Bossert 1999; Clark and Cain 1988; Lin and Costello 1983; Wicker 1995). A delightful in-
troduction into the conceptional ideas of channel coding can be found in the paper (Massey
1984). For a conceptional understanding of concatenated coding, we refer to the classical
paper (Forney 1966). For a conceptional understanding of convolutional codes, we refer to
(Forney 1970). It is interesting to note that this paper already described RSC encoders before
they fell into oblivion for more than 30 years until turbo codes were discovered. The Viterbi
algorithm, which is the MLSE for convolutional codes, has been developed by Viterbi
(1967), even though the author did not point out that it is really the optimum MLSE receiver
(note the word asymptotically optimum in the title of that paper). The conceptual under-
standing of the Viterbi algorithm as a MLSE receiver has been established by Forney (1973).
Punctured convolutional codes can be found in classical text books (see e.g. (Clark and Cain
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1988)). For their application, see (Hagenauer 1988). The concept of log-likelihood ratios
is well established in probability theory. However, their usefulness for channel coding and
their intuitively amazing visualization has been established in great parts by Hagenauer and
coworkers (Hagenauer 1988, 1995; Hagenauer and Hoeher 1989; Hagenauer et al. 1996). It
is interesting to note that the concept of soft-output decoding introduced as BCJR algorithm
(Bahl et al. 1974) is nearly as old as the Viterbi algorithm, but seemingly it was too early
for an application at that time. A much more popular soft-output decoder was established
25 years later (Hagenauer and Hoeher 1989) as the SOVA. The first turbo code simulations
were done with the SOVA, but the BCJR algorithm turned out to be more efficient for that
application. Turbo codes were introduced a decade ago (Berrou et al. 1993), a great step to
their conceptional understanding is the paper (Hagenauer et al. 1996). RS codes have been
developed by Reed and Solomon (1960). They are treated extensively in the text books cited
above. Trellis coded modulation goes back to (Ungerboeck 1982). It is treated in the text
books cited above (see also (Biglieri et al. 1991)). An interesting overview about their appli-
cations can be found in (Wicker and Bhargava 2001). Very enlightening and recommendable
overviews about the application of channel coding for deep space communication can be
found in (Massey 1992) and (McEliece and Swanson 2001). A concatenated coding scheme
with an inner convolutional code and an outer RS code has been standardized for deep space
communications (CCSDS 1987). Improvements for the corresponding decoder by using
iterative decoding with reliability information are described in (Hagenauer et al. 2001).

3.5 Problems

1. Prove the identity

log
(
ex + ey

) = max (x, y)+ log
(
1 + e−|x−y|) .

2. Consider a transmission setup with four possible signals given by the columns of
the matrix

X =
 1 1 −1 −1

1 −1 1 −1
1 −1 −1 1

 ,

which is an SPC(3, 2, 2) code with BPSK modulation. Find an example for which
the ML receiver takes a different decision for the first bit than the MAP receiver.

3. Let f (x, y) be a function of two real variables x and y defined by

f (x, y) = log

(
1 + exey

ex + ey

)
.

Show that
f (x, y) ≈ sign(x)sign(y) · min(|x| , |y|)

if either |x| � |y| or |x| � |y|.





4

OFDM

4.1 General Principles

4.1.1 The concept of multicarrier transmission

Let us consider a digital transmission scheme with linear carrier modulation (e.g. M-PSK
or M-QAM) and a symbol duration denoted by TS . Let B be the occupied bandwidth.
Typically, B is of the order of T −1

S , for example, B = (1 + α)T −1
S for raised-cosine pulses

with rolloff factor α. For a transmission channel with a delay spread τm, a reception free
of intersymbol interference (ISI) is only possible if the condition

τm � TS

is fulfilled. As a consequence, the possible bit rate Rb = log2(M)T −1
S for a given single

carrier modulation scheme is limited by the delay spread of the channel.
The simple idea of multicarrier transmission to overcome this limitation is to split the

data stream into K substreams of lower data rate and to transmit these data substreams
on adjacent subcarriers, as depicted in Figure 4.1 for K = 8. This can be regarded as a
transmission parallel in the frequency domain, and it does not affect the total bandwidth
that is needed. Each subcarrier has a bandwidth B/K , while the symbol duration TS is
increased by a factor of K , which allows for a K times higher data rate for a given delay
spread. The factor K, however, cannot be increased arbitrarily, because too long symbol
durations make the transmission too sensitive against the time incoherence of the channel
that is related to the maximum Doppler frequency νmax (see the discussion in Section 2.2).
There, we state that the condition

νmaxTS � 1

must be fulfilled. Both conditions can only be valid simultaneously if the coherency factor
κ = νmaxτm fulfills the condition κ � 1. For a given and sufficiently small factor κ , one
should expect that there exists a symbol duration TS that satisfies both requirements together
to give the best possible transmission conditions for that channel. We may then choose this
optimal symbol duration that is matched to the channel and parallelize the given data stream
in an appropriate way.

Theory and Applications of OFDM and CDMA Henrik Schulze and Christian Lüders
 2005 John Wiley & Sons, Ltd
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Figure 4.1 The multicarrier concept.

There are two possible ways to look at (and to implement) this idea of multicarrier
transmission. Both are equivalent with respect to their transmission properties. Even though
mathematically closely related, they differ slightly from the conceptual point of view. The
first one emphasizes the multicarrier concept by having K individual carriers that are
modulated independently. This concept is the favorite textbook point of view. The second
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one is based on a filter bank of K adjacent bandpass filters that are excited by a parallel data
stream, leading to a transmission parallel in frequency. This concept is usually implemented
in practical systems.

The first concept keeps the subcarrier frequency fixed and considers the modulation in
time direction for each subcarrier. The second one keeps a time slot of length TS fixed and
considers modulation in frequency direction for each time slot.

In the first setup, the data stream is split up into K parallel substreams, and each one
is modulated on its own subcarrier at frequency fk in the complex baseband, described
by the complex harmonic wave exp(j2πfkt). We denote the complex (e.g. PSK or QAM)
modulation symbols by skl , where k is the frequency index and l is the time index. With a
baseband transmission pulse g(t), this setup can be visualized by Figure 4.2: The parallel
data stream excites replicas of the same pulse-shaping filter g(t), and the filtered signals
are modulated on the different carriers and summed up before transmission. The complex
baseband signal is then given by the expression

s(t) =
∑

k

ej2πfkt
∑

l

sklg(t − lTS), (4.1)

where TS is the parallel symbol duration. To keep the notation flexible, we do not specify the
domain of the summation indices. If it is convenient, the time index l may run from zero or
minus infinity to infinity. Since every real transmission starts and stops at some time instant,
it is more realistic to let l run from 0 to L− 1, where L is an integer. The frequency index
may only run over a limited domain of, say, K different frequencies. From the mathematical
point of view, we may choose k = 0, 1, . . . , K − 1. The engineer, however, would prefer
to have f0 in the middle, corresponding to DC in the complex baseband and to the center
frequency fc in the passband, with negative k for the lower sideband and positive k for the
upper sideband. For reasons of symmetry, we may then choose the number of carriers to

S/P Σ

. . .

. . .

g(t)

g(t)

g(t)

ej2πfk−1t

ej2πfk+1t

ej2πfkt

skl s(t)

sk−1,l

sk+1,l

skl

Figure 4.2 Block diagram for multicarrier transmission: Version 1.
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be K + 1, where K is an even integer, and let k = 0,±1,±2, . . . ,±K/2. The passband
signal is then given by

s̃(t) = 

{√

2 ej2πfct s(t)
}
= 


{√
2
∑

k

ej2π(fc+fk)t
∑

l

sklg(t − lTS)

}
.

For reasons due to implementation, in practical systems, the DC component will sometimes
be left empty, that is, only the subcarriers at k = ±1,±2, . . . ,±K/2 are used.

In the second setup, we start with a base transmit pulse g(t). We obtain frequency-shifted
replicas of this pulse as

gk(t) = ej2πfktg(t),

that is, if g(t) = g0(t) is located at the frequency f = 0, then gk(t) is located at f = fk .
In contrast to the first scheme, for each time instant l, the set of K (or K + 1) modulation
symbols is transmitted by using different pulse shapes gk(t): the parallel data stream excites
a filter bank of K (or K + 1) different bandpass filters. The filter outputs are then summed
up before transmission. This setup is depicted in Figure 4.3. The transmit signal in the
complex baseband representation is given by

s(t) =
∑

l

∑
k

sklgk(t − lTS).

For the domain of the summation indices k and l, the same remarks apply as for the
discussion of the first setup. We define

gkl(t) = gk(t − lTS) = ej2πfk(t−lTS )g(t − lTS)

to get the compact expression
s(t) =

∑
kl

sklgkl(t). (4.2)

S/P

. . .

. . .

Σ
skl

sk−1,l

sk+1,l

gk−1(t)

gk(t)

gk+1(t)

s(t)skl

Figure 4.3 Block diagram for multicarrier transmission: Version 2.
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It is obvious that we come back to the first setup if we replace the modulation symbols skl

by skle−j2πfklTS in Equation (4.1). Such a time-frequency-dependent phase rotation does
not change the performance, so both methods can be regarded as equivalent. However,
the second – the filter bank – point of view is closer to implementation, especially for the
case of OFDM, where the filter bank is just an FFT, as it will be later. In the following
discussion, we will refer to the second point of view.

4.1.2 OFDM as multicarrier transmission
So far, nothing has been said about the shape of the base transmission pulse g(t). In
Chapter 1, we have seen that it is very convenient to have an orthogonal transmit base. It
therefore seems to be quite natural to choose the gkl(t) of Equation (4.2) in such a way
that they are orthogonal in time and frequency, that is, we require

〈gkl, gk′l′ 〉 = δkk′δll′ . (4.3)

Nonorthogonal bases (e.g. Gaussian) are possible and may have interesting properties, see
for example, (Kammeyer et al. 1992). We will restrict ourselves on pulses with the property
(4.3). As discussed in depth in Chapter 1, orthogonality ensures that the modulation symbol
can be recovered from the transmit signal without ISI, that is, the detector Dkl for gkl(t)

has just the modulation symbol skl as its output:

Dkl[s] = 〈gkl, s〉 = skl.

In principle, there are two obvious approaches to satisfy the orthogonality condition for
multicarrier transmission. We recall that two pulses are always orthogonal if they do not
overlap either in time or in frequency domain, and that a pulse cannot be strictly band
limited and time limited. Thus, we must decide on one of these two options.

The first approach is seemingly the most straightforward one to implement the idea
of multicarrier modulation. We choose band-limited pulses that are orthogonal in time. In
Subsection 1.1.2, we defined time-orthogonal Nyquist bases. The most important examples
for a strictly band-limited Nyquist base are the (square root) raised-cosine pulses. The
bandwidth B is related to the rolloff factor α by BTS = 1 + α. Let g(t) be such a pulse
that is concentrated in the frequency domain around f = 0, so that we may write g(t) =
g0(t), that is, this is the pulse corresponding to the frequency index k = 0. The pulses
g0l (t) = g0(t − lTS) with l ∈ {0,±1,±2, . . . .} are a Nyquist base, that is, they satisfy the
orthogonality condition

〈g0l , g0l′ 〉 = δll′

in the time domain. With

fk = k
1 + α

TS

,

we define
gk(t) = ej2πfktg0(t)

and
gkl(t) = gk(t − lTS).

Since these pulses are strictly separated in frequency for different k, it is obvious that the
condition (4.3) is fulfilled. This multicarrier modulation setup is depicted in Figure 4.4
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Figure 4.4 Multicarrier spectrum.

for α = 0.5 and α = 0. In this figure, we have replaced the raised-cosine spectrum by a
trapezoidal one, which also corresponds to a Nyquist base. The case α = 0 corresponding
to an ideal rectangular spectral shape and sinc shaping in time domain and is spectrally
most efficient, but not possible to be implemented in practice.

The second approach is to choose time-limited pulses that are orthogonal in frequency.
In the example in Subsection 1.1.3, we have already seen that the time-limited complex
exponentials of the Fourier series are such a base of time-limited orthogonal pulses. These
are just the base pulses for OFDM transmission. However, there are more choices for
time-limited orthogonal base pulses. We recall that the Nyquist base discussed in Sub-
section 1.1.3 fulfills just the condition that one base pulse and its periodically time-shifted
replicas are orthogonal. Since the time and the frequency domain are mathematically equiv-
alent, we may state the same orthogonality condition in the frequency domain. Doing this,
we obtain strictly time-limited pulses gkl(t) that are orthogonal in frequency by the fol-
lowing construction: choose g(t) to be a pulse that is strictly limited to the time interval1

[−TS/2, TS/2] of duration TS in such a way that |g(t)|2 has a raised-cosine shape with
rolloff factor α. Let G(f ) be the pulse in the frequency domain. We define

fk = k
1 + α

TS

1If this is more convenient, we may use the interval [0, TS ] as well.
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and the frequency-shifted pulse

gk(t) = ej2πfktg(t)

written in the frequency domain as

Gk(f ) = G(f − fk).

From the discussion of the Nyquist pulses (with time and frequency domain interchanged),
it follows immediately that

〈Gk, Gk′ 〉 = 〈gk, gk′ 〉 = δkk′ .

We define
gkl(t) = gk(t − lTS).

Using the fact that these pulses are strictly separated in time for different l, it can easily be
verified that the condition (4.3) is fulfilled. This multicarrier modulation setup is depicted
in Figure 4.5 for α = 0. This corresponds to the Fourier bases discussed above. Note that
there is always a spectral overlap of subcarriers, but the carriers can be separated due to
their orthogonality.

In contrast to the method discussed earlier, α = 0 is possible to be implemented with a
reasonable accuracy in practical systems. Even though every orthogonal multicarrier pulse
transmission as discussed above deserves to be called OFDM (orthogonal frequency division
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Figure 4.5 Orthogonal overlapping spectral shapes for OFDM.
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multiplexing), it is indeed this case with α = 0 which is the (narrow-sense) OFDM, because
it is usually implemented. In that case, g(t) is just a rectangle over an interval of length TS ,
which we choose as [0, TS] for convenience. Then fk = k/TS , and the frequency-shifted
pulses are just the Fourier base functions

gk(t) =
√

1

T
exp

(
j2π

k

T
t

)
�

(
t

T
− 1

2

)
(4.4)

over the Fourier period of length T = TS . OFDM transmission is therefore just a Fourier
synthesis for every time interval, where the information is contained in the Fourier co-
efficients skl . For a receive signal r(t), the detector outputs Dk[r] = Dgk

[r] at frequency
number k for l = 0 are just the results of the Fourier analysis given by

Dk[r] = 〈gk, r〉 =
√

1

T

∫ T

0
exp

(
−j2π

k

T
t

)
r(t) dt, (4.5)

which exactly recovers sk0 for the ideal transmission channel with r(t) = s(t). For any
general l, Dkl[r] = 〈gkl, r〉 is the Fourier analyzer output for the frequency number k at the
time interval shifted by lTS . We note that for this narrow-sense OFDM the two concepts
of Figures 4.2 and 4.3 are equivalent because fk = 1/T = 1/TS holds. This property will
be lost when a guard interval is introduced (see Subsection 4.1.4).

The power density spectrum of an OFDM signal for K + 1 = 97 subcarriers is depicted
in Figure 4.6. On the linear scale, it looks very similar to a rectangular spectrum. However,
the linear scale is indeed a very flattering presentation of the OFDM spectrum. Note that
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Figure 4.6 The power density spectrum of an OFDM signal on a linear scale (a) and on a
logarithmic scale (b).
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because of the rectangular pulse shape, at every subcarrier frequency fk = k/T , the spectral
shape is given by a sinc function. This can be seen very well at the edges of the spectrum.
These edge effects are indeed a severe item and much care must be taken for them in
practice. One usually reduces them by applying some filtering or smoothing (see Subsection
4.2.1). The relative size (compared to the bandwidth) of the edge effect region becomes
smaller as the number of carriers K (or K + 1) increases. Therefore, the bandwidth needed
to transmit K complex symbols in a time slot of length T grows linearly as B ≈ K/T + C

with some constant C that is due to the edge effects. Thus, ideal narrow-sense OFDM in
the limit K →∞ has the same spectral efficiency as the ideal sinc pulse shaping in time
domain.

4.1.3 Implementation by FFT

The narrow-sense OFDM with the Fourier base is very simple to implement. If we consider
one time interval (e.g. that for l = 0), the transmit signal is given by

s(t) = 1√
T

K/2∑
k=−K/2

sk exp

(
j2π

k

T
t

)
�

(
t

T
− 1

2

)
.

This means that, for each time interval of length T , OFDM is just a Fourier synthesis for
that period. The perfectly synchronized receiver just performs a Fourier analysis to recover
the data symbols sk from the signal:

sk = 〈gk, s〉 = 1√
T

∫ T

0
exp

(
−j2π

k

T
t

)
s(t) dt.

A Fourier analysis is preferably implemented by means of a fast Fourier transform (FFT),
a synthesis by the inverse fast Fourier transform (IFFT), leading to a setup as depicted in
Figure 4.7. The stream of digitally modulated symbols skl is divided into blocks of length
K (or K + 1), discretely Fourier transformed by the IFFT, digital–analog converted and
then transmitted. The FFT length NFFT must be chosen to be significantly larger than K

to ensure that the edge effects are neglectible at half the sampling frequency and to ensure
that the shape of the reconstruction filter of the DAC (digital-to-analog converter) does not
affect the significant part of the spectrum. Furthermore, the alias spectra must be suppressed.
To give a concrete example, in the European DAB (Digital Audio Broadcasting) and in
the DVB-T (Digital Video Broadcasting-Terrestrial) system (EN300401 2001a; EN300744
2001b; Hoeg and Lauterbach 2003), an FFT with NFFT = 2048 is used (among other FFT
modes), and the number of modulated carriers is of the order K ≈ 1500 and K ≈ 1700,
respectively. The NFFT −K remaining spectral coefficients outside the transmission band
are set to zero. At the receiver, the baseband signal will be analog-to-digital converted.
Then, for each block of NFFT samples, an FFT of that length is performed, and the K

useful coefficients will be extracted from the NFFT spectral coefficients.
This picture is very suggestive from a practical point of view and one feels easily

inclined to believe that it should work, because every block on the transmit site has its
corresponding inverse on the receive site, so all the data should be perfectly recovered if
every block works perfectly. Without explaining anything about orthogonality, the picture
is also suited to convince a practical engineer that the concept of OFDM should work.
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Figure 4.7 OFDM implementation by FFT.

However, the concept of orthogonality is only hidden in this picture under the cover of
Fourier transform theory.

One should keep in mind that, for principal reasons, the block diagram of Figure 4.7 can
never perfectly reflect the setup given by the theory. This is because the ideal OFDM signal
is not strictly band limited due to the sinc shapes in the spectrum, while an analog signal
can only be perfectly represented by its samples if it is strictly band limited. However, the
problem of aliasing is a familiar one that occurs in many communications systems. For
OFDM transmission, special care must be taken because of the poor spectral decay (see
Subsection 4.2.1).

4.1.4 OFDM with guard interval

So far, we have always assumed perfect synchronization between transmitter and receiver.
In a frequency-selective multipath fading channel, synchronization mismatches are typically
of significant order, because every echo component of the signal is a poorly synchronized
signal. As a consequence, the base pulses of the original OFDM signal and the delayed
version of the signal are no longer orthogonal. This leads to severe intersymbol interfer-
ence (ISI) in time and frequency as well because the detector output Dkl[sτ ] = 〈gkl, sτ 〉 at
frequency number k and time slot l of the delayed signal sτ (t) = s(t − τ ) with 0 < τ < T

has ISI contributions from pulses at all subcarrier frequencies at time slot l and l − 1. This
property, which is a consequence of the loss of orthogonality due to the overlap of spec-
tral components, would seemingly disqualify narrow-sense ODFM as a useful technique
in a multipath channel. There is, however, a simple trick that modifies the transmit signal
in such a way that the orthogonality is preserved in a certain manner in the presence of
multipath signal components.

The idea is to introduce a guard interval (sometimes called cyclic prefix ). By doing
this, the symbol will be cyclically extended from the original harmonic wave of the Fourier
period T by a guard interval of length � to become a harmonic of the same frequency and
phase, but of duration TS = T +�. As depicted in Figure 4.8, this means that we copy a
piece of length � from the end of the symbol and paste it in front of the signal. To express
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Figure 4.8 Introducing a guard interval.

this more formally, we replace the base pulse gk(t) as given by Equation (4.4) by a new
base pulse defined by

g′k(t) =
√

1

TS

exp

(
j2π

k

T
t

)
�

(
t +�

TS

− 1

2

)
. (4.6)

Note that the complex exponential remains exactly the same. The frequency is still fk =
k/T , and the phase is the same. Only the interval where the pulse does not vanish has been
extended from t ∈ [0, T ) to t ∈ [−�, T ). For convenience, we have chosen the factor in
front in such a way that the energy of the pulse remains normalized to one. The transmit
signal is then given by

s(t) =
∑
kl

sklg
′
kl(t) (4.7)

with
g′kl(t) = g′k(t − lTS). (4.8)

We first note that these transmit pulses g′kl(t) by themselves are not pairwise orthogonal to
each others. However, at the receiver, we work with a set of orthonormal detector pulses
given by

gkl(t) = gk(t − lTS),

where the gk(t) are still the Fourier base functions for the interval of length T as defined
in Equation (4.4). This means that the Fourier analysis at the receiver works with the same
analysis window of length T , but it will be performed once during the time period TS

instead of once during the time period T . As depicted in Figure 4.9, there is now a gap (or
relaxation time) of length � between two adjacent analysis windows. We will see in the
following text that it is just this gap together with the cyclically extended transmit pulse
that allows a synchronization mismatch (and therefore, also echoes) of maximal duration
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Figure 4.9 OFDM with guard interval: (a) Transmit pulses (b) Detector pulses.

τ = �, corresponding to a shift to the right of the signal in part (a) of Figure 4.9. The
output of the detector for gkl(t), given that the pulse g′

k′l′(t) has been transmitted, is

〈
gkl, g′k′l′

〉 = √
T

TS

δkk′δll′ .

This means that the transmit base pulses gkl(t) and the detector base pulses g′
k′l′(t) are

orthogonal unless both the time and the frequency index are identical. Note that if they
are identical the output does not take the value 1 but the smaller value

√
T /TS . This can

be understood as a waste of energy by transmitting a part of the symbol (i.e. the guard
interval) that is not used for detection.

Now let g′kl,τ (t) = g′kl(t − τ ) with 0 < τ < � denote a base pulse delayed by τ . By
writing down the corresponding integral, we easily see that

〈
gkl, g′k′l′,τ

〉 = √
T

TS

e−j2πfkτ δkk′δll′ . (4.9)

This means that – as long τ < � holds – the orthogonality between the transmit and detect
pulses for different indices is still preserved, and the detector output for the same index
is only affected by a frequency-dependent phase factor. Now, let s(t) be an OFDM signal
given by Equation (4.7) and let r(t) = s(t − τ ) with 0 < τ < � be the receive signal,
which is just a delayed version of that signal. From the above equation and Equation (4.7),
we obtain

〈gkl, r〉 =
√

T

TS

e−j2πfkτ skl,

that is, the transmit symbol skl is recovered without ISI, but only rotated by the phase factor.
This phase factor cancels out for differential demodulation. For coherent demodulation, it
must be determined by the channel estimation.



OFDM 157

c2e−j2πfkτ2

c1e−j2πfkτ1

Hk = c1e−j2πfkτ1 + c2e−j2πfkτ2

Figure 4.10 Signal plus echo.

If the received signal is the superposition of two delayed versions of the transmitted
signal, that is, given by r(t) = c1s(t − τ1)+ c2s(t − τ2) with some complex constants c1

and c2, then skl will again be recovered without ISI if their delays do not exceed the guard
interval. But they will be affected by a complex multiplicative factor Hk = c1e−j2πfkτ1 +
c2e−j2πfkτ2 , which is the superposition of the phasors corresponding to the two echo paths
(see Figure 4.10). The detector output is then given by

Dkl[r] = 〈gkl, r〉 =
√

T

TS

Hk skl.

For a superposition of N such echo paths, we obtain the same expression with Hk given
by

Hk =
N∑

n=1

cne−j2πfkτn .

We now assume a time-variant channel given by a time-variant impulse response h(τ, t).
We assume that h(τ, t) = 0 for τ < 0 and for τ > �. The corresponding time-variant
transfer function H(f, t) is then given by

H(f, t) =
∫ �

0
e−j2πf τ h(τ, t) dτ.

The receive signal without noise is given by

r(t) =
∫ �

0
h(τ, t)s(t − τ ) dτ.

We further assume that the channel is slowly time-variant so that it can be approximated to
be time independent during the time slot number l, that is, H(f, t) ≈ Hl(f ) and h(τ, t) ≈
hl(τ ) with

Hl(f ) =
∫ �

0
e−j2πf τhl(τ ) dτ

during the OFDM symbol number l of length TS . We now calculate the detector output for
a base pulse transmitted over that channel, which is formally given by

Dkl[hl′ ∗ g′k′l′ ] =
〈
gkl, hl′ ∗ g′k′l′

〉
.
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This is the twofold integral

Dkl[hl ∗ g′k′l′ ] =
∫ T

0
dt g∗kl(t)

∫ �

0
dτ hl′(τ )g′k′l′(t − τ )

with the first integral corresponding to the scalar product and the second one corresponding
to the convolution. We change the order of integration and obtain

Dkl[hl ∗ g′k′l′ ] =
∫ �

0
dτ hl′(τ )

∫ T

0
dt g∗kl(t)g

′
k′l′(t − τ ).

The second integral is just 〈gkl, g′
k′l′,τ 〉. From Equation (4.9) we get

Dkl[hl ∗ g′k′l′ ] =
∫ �

0
dτ hl′(τ )

√
T

TS

e−j2πfkτ δkk′δll′

that is,

Dkl[hl ∗ g′k′l′ ] =
√

T

TS

Hl(fk) δkk′δll′ .

The detector output at time l and frequency k for the noise-free receive signal r(t) is then
given by

〈gkl, r〉 =
√

T

TS

Hl(fk) skl. (4.10)

We define rkl = 〈gkl, r〉 and ckl = Hl(fk). Then, the OFDM transmission with guard interval
in a noisy slowly fading channel can be described by the discrete channel model

rkl =
√

T

TS

cklskl + nkl, (4.11)

where nkl is discrete complex AWGN with variance σ 2 = E
{|nkl |2

} = N0. This is just
the same as the discrete-time multiplicative fading channel that has been analyzed in
Section 2.4, but with an additional second index for the frequency. The fading ampli-
tude ckl is typically modeled as Rayleigh or Ricean fading. We assume a channel transfer
power normalized to one, that is, E

{|ckl |2
} = 1. Note the factor

√
T /TS , which means that

there is an energy loss in performance because a part of the signal available at the receiver
is not evaluated. All Euclidean distance in the expressions for error probabilities will be
lowered by that factor, that is,

1

2
erfc

(√
1

N0

∑
kl

|ckl|2 |skl − ŝkl|2
)

must be replaced by
1

2
erfc

(√
1

N0

T

TS

∑
kl

|ckl|2 |skl − ŝkl|2
)
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and thus all performance curves as functions of Eb/N0 or ES/N0 have to be shifted by
10 log10 (T /TS) decibels to the right. For the typical value T /TS = 0.8, this loss is approx-
imately 1 dB. Because the base pulses g′kl(t) are normalized according to

∥∥g′kl

∥∥2 = 1, we
still have ES = E

{|skl |2
}
, and the SNR,

SNR =
E

{∣∣∣√ T
TS

sklckl

∣∣∣2}
E
{|nkl |2

}
at the receiver is given by

SNR = T

TS

· ES

N0
= T

TS

· Rc log2(M)
Eb

N0
(4.12)

for a modulation with log2(M) bits per complex symbol and a code rate of Rc. This means
that the performance curves as a function of the SNR will be left unchanged by the guard
interval.

We summarize and add the following remarks:

• The time period of length T in Figure 4.9 that is used for the Fourier analysis at
the detector will be called the Fourier analysis window. The spacing between two
adjacent subcarriers is given by �f = fk − fk−1 = T −1.

• TS = T +� is the symbol period for each subcarrier. Thus, for each fixed index k,

the symbol rate of the transmit symbols skl is given by T −1
S .

• In contrast to OFDM without guard interval, the two concepts of Figures 4.2 and 4.3
are not equivalent because fk = 1/T �= 1/TS . The FFT implementation of OFDM
corresponds to that of Figure 4.3. To switch to the concept of Figure 4.2, we must
multiply each modulation symbol skl by e−j2πklT /TS . As there is no advantage in
doing that, it is not implemented in any real system.

• The part of the signal transmitted during each time period TS is called an OFDM
symbol2. Each OFDM symbol corresponds to a number of K transmit symbols skl .
Thus, the total symbol rate is given by RS = K T −1

S . Ignoring any other overhead
(e.g. for synchronization), the useful bit rate is Rb = K · Rc log2(M)T −1

S , where we
have assumed that M-PSK or M-QAM with code rate Rc is used for modulation and
channel coding.

• The FFT length N is typically (but not necessarily) given by the smallest power
of two that satisfies K < N . For example, the so-called 2k mode of the DVB-T
system has K + 1 = 1705, so N = 2048 is the smallest possible FFT length (which
explains the name of the mode). However, one could also use an (I)FFT with N =
4096 for the Fourier analysis or synthesis. Such an oversampling may be useful for
several purposes (see Subsection 4.2.1). Note that the FFT length is an implementation
parameter for transmitter and receiver and it is not relevant for the description of the
OFDM signal in the air.

2Here we have adopted the terminology used in the specification of the European DAB system.
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4.2 Implementation and Signal Processing
Aspects for OFDM

4.2.1 Spectral shaping for OFDM systems

In this subsection, we will discuss the implementation aspects that are related to the
spectral properties of OFDM. We consider an OFDM system with subcarriers at fre-
quency positions in the complex baseband given by fk = k/T with frequency index k ∈
{0,±1,±2, . . . ,±K/2}. As already discussed in Subsection 4.1.2, the subcarrier pulses in
the frequency domain are shaped like sinc functions that superpose to a seemingly rectan-
gular spectrum located between −K/T and +K/T . However, as depicted in Figure 4.6,
there is a severe out-of-band radiation outside this main lobe of the OFDM spectrum caused
by the poor decay of the sinc function. That figure shows the spectrum of an OFDM signal
without guard interval. The guard interval slightly modifies the spectral shape by intro-
ducing ripples into the main lobe and reducing the ripples in the side lobe. However, the
statements about the poor decay remain valid. Figure 4.11 shows such an OFDM spectrum
with K = 96. Here and in the following discussion, the guard interval length � = T /4 has
been chosen.

The number of subcarriers has a great influence on the decrease of the sidelobes.
For a given main lobe bandwidth B = K/T , the spectrum of each individual subcar-
rier – including its side lobes – becomes narrower with increasing K . As a consequence,
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Figure 4.11 The power density spectrum of an OFDM signal with guard interval on a
linear scale (a) and on a logarithmic scale (b).
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K = 1536

Figure 4.12 The power density spectra of an OFDM for K = 48, 96, 384, 1536.

the side lobes of the complete OFDM spectrum show a steeper decay and the spec-
trum comes closer to a rectangular shape. Figure 4.12 shows the OFDM spectra for K =
48, 192, 384, 1536. But, even for a high number of K , the decay may still not be sufficient
to fulfill the network planning requirements. These are especially strict for broadcasting
systems, where side lobe reduction in the order of −70 dB are mandatory. In that case,
appropriate steps must be taken to reduce the out-of-band radiation.

We note that the spectra shown in the figures correspond to continuous OFDM signals3.

Digital-to-analog conversion

In practice, discrete-time OFDM signals will be generated by an inverse discrete (fast)
Fourier transform and then processed by a digital-to-analog converter (DAC). It is well
known from signal processing theory that a discrete-time signal has a periodic spectrum
from which the analog signal has to be reconstructed at the DAC by a low-pass filter
(LPF) that suppresses these aliasing spectra beyond half the sampling frequency fs/2.
Figure 4.13(a) shows the periodic spectrum of a discrete OFDM signal with K = 96 and
an FFT length N = 128, which is the lowest possible value for that number of subcarriers.
The LPF must be flat inside the main lobe (i.e. for |f | ≤ 48/T ) and the side lobe must
decay steeply enough so that the alias spectra at |f | ≥ 80/T will be suppressed. This
analog filter is always a complexity item. It is a common practice to use oversampling

3The spectra shown above are computer simulations and not measurements of a continuous OFDM signal.
However, the signal becomes quasi-continuous if the sampling rate is chosen to be high enough.
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Figure 4.13 The periodic power density spectra of a discrete OFDM signal for K = 96
and FFT length N = 128 (a) and FFT length N = 512 (b).

to move complexity from the analog to the digital part of the system. Oversampling can
be implemented by using a higher FFT length and padding zeros at the unused carrier
positions4. Figure 4.13(b) shows the discrete spectrum for the same OFDM parameters
with fourfold oversampling, that is, N = 4 · 128 = 512 and fs/2 = 256/T . Now the main
lobe of the next alias spectrum starts at |f | = 464/T and the requirements to the steepness
of the LPF can be significantly reduced.

We finally note that since the signal is not strictly band limited, any filtering will always
hurt the useful signal in some way because the sidelobes are a part of the signal, even though
not the most significant.

Reduction of the out-of-band radiation

For a practical system, network planning aspects require a certain spectral mask that must
not be exceeded by the implementation. Typically, this spectrum mask defined by the spec-
ification tells the maximal allowed out-of-band radiation at a given frequency. Figure 4.14
shows an example of such a spectrum mask similar to the one that is used for a wire-
less LAN system. The frequency is normalized with respect to the main lobe bandwidth
B = K/T , that is, the main lobe is located between the normalized frequencies −0.5 and
+0.5. We note that such a spectrum mask for a wireless LAN system is relatively loose
compared, for example, to those for terrestrial broadcast systems like DAB and DVB-T.

4Alternatively, one may use the smallest possible FFT together with a commercially available oversampling
circuit. This will be the typical implementation in a real system.
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Figure 4.14 Example for the spectrum mask of an OFDM system as a function of the
normalized bandwidth f/B.

To fulfill the requirements of a spectrum mask, it is often necessary to reduce the
sidelobes. This can be implemented by – preferably digital – filtering.

As an example, we use a digital Butterworth filter to reduce the sidelobes of an OFDM
signal with K = 96 and N = 512 (fourfold oversampling). To avoid significant attenuation
or group delay distortion inside the main lobe, we choose a 3 dB filter bandwidth f3 dB =
64/T . For this filter bandwidth, the amplitude is approximately flat and the phase is nearly
linear within the main lobe. Figure 4.15 shows the OFDM spectrum filtered by a digital
Butterworth filter of 5th and 10th order. As an example, let us assume that the spacing
between two such OFDM signals inside a frequency band is 128/T , that is, the lowest
possible sampling frequency. Then, the main lobe of the next OFDM signal would begin
at (±) 80/T . The out-of-band radiation at this frequency is reduced from −30 to −41 dB
for the 5th order filter and to −52 dB for the 10th order filter.

One must keep in mind that any filtering will influence the signal. The rectangular pulse
shape of each OFDM subcarrier will be smoothened and broadened by the convolution with
the filter impulse response. The guard interval usually absorbs the resulting ISI, but this
reduces the capability of the system to cope with physical echoes. Thus, the effective length
of the guard interval will be reduced. Figure 4.16 shows the respective impulse responses of
both filters that we have used. We recall that for N = 512, the guard interval is N/4 = 128
samples long. The filter impulse responses reduce the effective guard interval length by
10–20%.

Instead of low-pass filtering, one may also form the spectral shape by smoothing the
shape of the rectangular subcarrier pulse. This can be done as described in the following
text. We first cyclically extend the OFDM symbol at the end by δ to obtain a harmonic
wave of symbol length TS + δ. We then choose a smoothing window that is equal to one
for −�+ δ < t < T and decreases smoothly to zero outside that interval (see Figure 4.17).
The (cyclically extended) OFDM signal will then be multiplied by this window. The signal
remains unchanged within −�+ δ < t < T , that is, the effective guard interval will be
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Figure 4.15 OFDM spectrum filtered by a digital Butterworth filter of 5th and 10th order.
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Figure 4.16 Impulse response of the digital Butterworth filter of 5th (a) and 10th (b) order.
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Figure 4.17 Smoothing window for the OFDM symbol.
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Figure 4.18 OFDM spectrum for a smoothened subcarrier pulse shape.

reduced by δ. We choose a raised-cosine pulse shape (Schmidt 2001). For the digital
implementation, the flanks are just the increasing and decreasing flanks of a discrete Hanning
window. Figure 4.18 shows the OFDM spectra for δ = 0, �/16, �/8, �/4. The out-of-
band power reduction is similar to that of digital filtering.

We finally show the efficiency of the windowing method for an OFDM signal with a
high number of carriers. Figure 4.19 shows the OFDM spectra for K = 1536 and δ = 0,
�/16, �/8, �/4. We note a very steep decay for the out-of-band radiation. Even a small
reduction of the guard interval is enough to fulfill the requirements of a broadcasting
system5. Similar results can be achieved by digital filtering. However, this would require
higher-order filters with more computational complexity and a smaller 3 dB bandwidth.
Thus, the method of pulse shape smoothing seems to be the better choice.

5The DAB system with K = 1536 requires a −71 dB attenuation at f T = 970 for the most critical cases.
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Figure 4.19 OFDM spectrum for a smoothened subcarrier pulse shape (K = 1536).

4.2.2 Sensitivity of OFDM signals against nonlinearities

As we have already seen, OFDM signals in the frequency domain look very similar to band-
limited white noise. The same is true in the time domain. Figure 4.20 shows the inphase
component I (t) = 
 {s(t)}, the quadrature component Q(t) = � {s(t)} and the amplitude
|s(t)| of an OFDM signal with subcarriers at frequency positions in the complex baseband
given by fk = k/T with k ∈ {0,±1,±2, . . . ,±K/2} and K = 96 and the guard interval
length � = T /4. We will further use these OFDM parameters in the following discussion.

Because the inphase and the quadrature component the OFDM are superpositions of
many sinoids with random phases, one can argue from the central limit theorem that both
are Gaussian random processes. A normplot is an appropriate method to test whether
the samples of a signal follow Gaussian statistics. To do this, one has to plot the (mea-
sured) probability that a sample is smaller than a certain value as a function of that value.
The probability values are then scaled in such a way that a Gaussian normal distribution
corresponds to a straight line. Figure 4.21 shows such a normplot for the OFDM signal
under consideration. We note that the measurements fit quite well to the straight line that
corresponds to the Gaussian normal distribution. However, there are deviations for high
amplitudes. This is due to the fact that the number of subcarriers is not very high (K = 96)
and the maximum amplitude of their superposition cannot exceed a certain value. For an
increasing number of subcarriers, the measurements follow closely the straight line. For
a lower value of K , the agreement becomes poorer. The crest factor Cs = Ps,max/Ps,av is
defined as the ratio (usually given in decibels) between the maximum signal power Ps,max

and the average signal power Ps,av. With K →∞, the amplitude of an OFDM signal is
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Figure 4.20 The inphase component I (t) (a), the quadrature component Q(t) (b) and the
amplitude (c) of an OFDM signal of average power one.
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Figure 4.21 Normal probability plot for the inphase component I (t) of an OFDM signal.
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Figure 4.22 Histogram for the amplitude of an OFDM signal.

a Gaussian random variable and the crest factor becomes infinity. Even for a finite (high)
number of subcarriers, the crest factor is so high that it does not make sense to use it
to characterize the signal. This is because the probability of extremely high-power values
decreases exponentially with increasing power.

As discussed in detail in Chapter 3, a normal distribution for the I and Q component
of a signal leads to a Rayleigh distribution for the signal amplitude. Figure 4.22 shows the
histogram for the amplitude of the OFDM signal under consideration.

We now consider an OFDM complex baseband signal

s(t) = a(t)ejϕ(t)

with amplitude a(t) and phase ϕ(t) that passes a nonlinear amplifier with power saturation
as depicted in Figure 4.23. For low values of the input power, the output power grows
approximately linear. For intermediate values, the output power falls below that linear
growth and it runs into a saturation as the input power grows higher. In addition to that
smooth nonlinear amplifier, we consider a clipping amplifier. This amplifier is linear as long
as the input power is smaller than a certain value Pin,max corresponding to the maximum
output power Pout,max. If the input exceeds Pin,max, the output will be clipped to Pout,max.
As depicted in Figure 4.23, for any nonlinear amplifier with power saturation, there is a
uniquely defined clipping amplifier with the same linear growth for small input amplitudes
and the same saturation (maximum output). For an input signal with average power Ps,av,
the input backoff IBO = Pin,max/Ps,av is defined as the ratio (usually given in decibels)
between the power Pin,max and the average signal power Ps,av.

The nonlinear amplifier output in the complex baseband model is given by

r(t) = F (a(t)) ej(ϕ(t)+	(a(t)))
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Figure 4.23 Characteristic curves for nonlinear amplifiers with power saturation.

(see (Benedetto and Biglieri 1999)). The real-valued function F(x) is the characteristic
curve for the amplitude distortion, and the real-valued function 	 (x) describes the phase
distortion caused by the nonlinear amplifier.

To see how nonlinearities influence an OFDM signal, we consider a very simple char-
acteristic curve F(x) that is approximately linear for small values of x and runs into a
saturation for x →∞. Such a behavior can be modeled by the characteristic curve (nor-
malized to Pin,max = Pout,max = 1) given by the function

Fexp(x) = 1 − e−x.

For x →∞, the curve runs exponentially into the saturation Fexp(x) → 1. For small values
of x, we can expand into the Taylor series

Fexp(x) = x − 1

2!
x2 + 1

3!
x3 − 1

4!
x4 ± · · ·

and observe a linear growth for small values of x. The clipping amplifier is given by the
characteristic curve

Fclip(x) = min (x, 1) ,

which is linear for x < 1 and equal to 1 for higher values of x. For simplicity, we do not
consider phase distortions.

In Figure 4.24, we see an OFDM time signal and the corresponding amplifier output
for the smooth nonlinear amplifier corresponding to Fexp(x) and for the clipping amplifier
corresponding to Fclip(x) for an IBO of 6 dB. The average OFDM signal power is normal-
ized to one. Thus, an IBO of 6 dB means that all amplitudes with a(t) > 2 are clipped in
part (c) of that figure.

The nonlinearity severely influences the spectral characteristics of an OFDM signal. As
can be seen from the Taylor series for Fexp(x), mixing products of second, third and higher
order occur for every subcarrier and for every pair of subcarriers. These mixing products
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Figure 4.24 Amplitude of an OFDM signal (a) after a smooth nonlinear (b) and a clipping
(c) amplifier with IBO = 6 dB.

corrupt the signal inside the main lobe and they will cause out-of-band radiation. This must
not be confused with the out-of-band radiation discussed in the preceding subsection, which
is caused by the rectangular pulse shape. To distinguish between these two things, we use
the spectral smoothing by a raised-cosine window as described in the preceding subsection.
We choose δ = �/4 to achieve a very fast decay of the side lobes. Figure 4.25 shows the
OFDM signal corrupted by the amplifier corresponding to Fexp(x) for an IBO of 3 dB, 9 dB
and 15 dB. As expected, there is a severe out-of-band radiation, and a very high IBO is
necessary to reduce this radiation. Note that we have renormalized all the amplifier output
signals to the same average power in order to draw all the curves in the same picture.
Figure 4.26 shows the OFDM signal corrupted by the amplifier corresponding to Fclip(x)

for an IBO of 3 dB, 6 dB and 9 dB. We observe that, compared to the other amplifier, we
need much less IBO to reduce the out-of-band radiation.

Inside the main lobe, the useful signal is corrupted by the mixing products between
all subcarriers. Simulations of the bit error rate would be necessary to evaluate the per-
formance degradations for a given OFDM system and a given amplifier for the concrete
modulation and coding scheme. For a given modulation scheme, the disturbances caused
by the nonlinearities can be visualized by the constellation diagram in the signal space.
Figure 4.27 shows the constellation of a 16-QAM signal for both amplifiers and the IBO
values as given above. For the IBO of 3 dB, the QAM signal is severely distorted for
both amplifiers. For the clipping amplifier, the distortion soon becomes smaller as the IBO
increases. For the other amplifier, much more IBO is necessary to reduce the disturbance.
This is what we may expect by looking at the spectra.
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Figure 4.25 Spectrum of an OFDM signal with a (smooth exponential) nonlinear amplifier.

–80 –60 –40 –20 0 20 40 60 80
–50

–40

–30

–20

–10

0

10

Normalized frequency f T

P
ow

er
 s

p
ec

tr
um

 [d
B

]

IBO = 3 dB

IBO = 6 dB

IBO = 9 dB
Linear

Figure 4.26 Spectrum of an OFDM signal with a (clipping) nonlinear amplifier.



172 OFDM

–4 –2 0 2 4

–4

–2

0

2

4

I(a)

(b)

–4 –2 0 2 4
I

–4 –2 0 2 4
I

–4 –2 0 2 4
I

–4 –2 0 2 4
I

–4 –2 0 2 4
I

Q

–4

–2

0

2

4

Q

–4

–2

0

2

4

Q

–4

–2

0

2

4

Q

IBO = 3 dB, amp = exp

–4

–2

0

2

4

Q

IBO = 9 dB, amp = exp

–4

–2

0

2

4

Q

IBO = 15 dB, amp = exp

IBO = 3 dB, amp = clip IBO = 6 dB, amp = clip IBO = 9 dB, amp = clip

Figure 4.27 The 16-QAM constellation diagram of an OFDM signal with a smooth expo-
nential (a) and a clipping (b) nonlinear amplifier.

Figure 4.27 gives the impression that the QAM symbols are corrupted by an additive
noise-like signal. The spectra of Figures 4.25 and 4.26 agree with the picture of an additive
noise floor that corrupts the signal. At least for the smooth amplifier with a character-
istic curve Fexp(x) given by a Taylor series, one can heuristically argue as follows. The
quadratic, cubic and higher-order terms cause mixing products of the subcarriers that inter-
fere additively with the useful signal. Each subcarrier is affected by many mixing produces
of other subcarriers. Thus, there is an additive disturbance that is the sum of many random
variables. By using the central limit theorem, we can argue that this additive disturbance is
a Gaussian random variable for the inphase and the quadrature component of the 16-QAM
constellation diagram. Figure 4.28 shows the normplots of the error signal (samples of the
real and imaginary parts) for the smooth exponential amplifier for the three IBO values.

The samples fit well to the straight line, which confirms the heuristic argument given
above. We have also investigated the spectral properties of this interfering signal and found
that it shows a white spectrum. Thus, the interference can be modeled as AWGN and can
be analyzed by known methods (see Problem 2).

Figure 4.29 shows the normplots of the error signal for the clipping amplifier. Only for
3 dB, the statistics error signal seems to follow a normal distribution. For higher values of
the IBO, there are severe deviations.

One can argue that the performance degradations caused by the interference can be
neglected if the signal-to-interference ratio (SIR) is significantly higher than the signal-to-
noise ratio (SNR). We have calculated the SIR for several values of the IBO. The results
are depicted in Figure 4.30 . We find a rapid growth of the SIR as a function of the
IBO for the clipping amplifier. For an IBO above approximately 6 dB, the SIR can be



OFDM 173

–0.4 –0.2 0 0.2

0.001
0.003

0.01
0.02

0.05
0.10

0.25

0.50

0.75

0.90
0.95

0.98
0.99

0.997
0.999

0.001
0.003

0.01
0.02

0.05
0.10

0.25

0.50

0.75

0.90
0.95

0.98
0.99

0.997
0.999

0.001
0.003

0.01
0.02

0.05
0.10

0.25

0.50

0.75

0.90
0.95

0.98
0.99

0.997
0.999

Interferer samples

P
ro

b
ab

ili
ty

IBO = 3 dB, SIR = 19 dB, 
 amp = exp

–0.2 0 0.2
Interferer samples

IBO = 9 dB, SIR = 24.1 dB, 
 amp = exp

–0.1 0 0.1
Interferer samples

IBO = 15 dB, SIR = 29.7 dB, 
amp = exp

Figure 4.28 Normal probability plot of the 16-QAM error signal for a smooth exponential
nonlinear amplifier.
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Figure 4.30 The SIR for the 16-QAM symbol for OFDM signal with a smooth exponential
and a clipping nonlinear amplifier.

practically neglected. For the smooth exponential amplifier, the SIR increases very slowly
as an approximately linear function at IBO values above 10 dB. One must increase the IBO
by a factor of 10 for an SIR increase approximately by a factor of 10.

We summarize and add the following remarks:

• OFDM systems are much more sensitive against nonlinearities than single carrier
systems. The nonlinearities of a power amplifier degrade the BER (bit error rate)
performance and inflate the out-of-band radiation. The performance degradations will
typically be the less severe problem because most communication systems work at an
SNR well below 20 dB, while the SIR will typically be beyond that value. However,
a high IBO value may be necessary to fulfill the requirements of a given spectral
mask. As a consequence, the power amplifier will then work with a poor efficiency.
In certain cases, it may be necessary to reduce the out-band radiation by using a filter
after the power amplifier.

• There are several methods to reduce the crest factor of an OFDM signal by modifying
the signal in a certain way (see (Schmidt 2001) and references therein). However,
these methods are typically incompatible to existing standards and cannot be applied
in those OFDM systems.

• Preferably one should separate the problem of nonlinearities and the OFDM signal
processing. This can be done by a predistortion of the signal before amplification.
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Analog and digital implementations are possible. After OFDM was chosen as
the transmission scheme for several communication standards, there has been a
considerable progress in this field (see (Banelli and Baruffa 2001; D’Andrea et al.
1996) and references therein).

4.3 Synchronization and Channel Estimation Aspects
for OFDM Systems

4.3.1 Time and frequency synchronization for OFDM systems

There are some special aspects that make synchronization for OFDM systems very different
from that for single carrier systems. OFDM splits up the data stream into a high number
of subcarriers. Each of them has a low data rate and a long symbol duration TS . This
is the original intention for using multicarrier modulation, as it makes the system more
robust against echoes. Consequently, the system also becomes more robust against time
synchronization errors that can also be absorbed by the guard interval of length � = TS − T .
A typical choice is � = TS/5 = T /4 which allows a big symbol timing uncertainty of 20%
in case of no physical echoes. In practice, there will appear a superposition of timing
uncertainty and physical echoes.

On the other hand, because the subcarrier spacing T −1 is typically much smaller than the
total bandwidth, frequency synchronization becomes more difficult. Consider, for example,
an OFDM system working at the center frequency fc = 1500 MHz with T = 500 ms. The
ratio between carrier spacing and center frequency is then given by (fcT )−1 = 1.33 · 10−9,
which is a very high demand for the accuracy of the downconversion to the complex
baseband.

Once the correct Fourier analysis window is found by an appropriate time synchroniza-
tion mechanism and the downconversion is carried out with sufficient accuracy, the OFDM
demodulator (implemented by the FFT) produces the noisy receive symbols given by the
discrete channel

rkl =
√

T

TS

cklskl + nkl

(see Subsection 4.1.4). The amplitudes and phases of the channel coefficients ckl are still
unknown. The knowledge of the channel is not required for systems with differential de-
modulation. For coherent demodulation, the channel estimation is a different task that
has to be done after time and frequency synchronization. In this subsection, we focus
our attention on time and frequency synchronization and follow (in parts) the discussion
presented by Schmidt (2001). Channel estimation will be discussed in the subsequent sub-
sections.

When speaking of frequency synchronization items for OFDM, there often appears
some misunderstanding because for single carrier PSK systems there is a joint frequency
and phase synchronization that can be realized, for example, by a squaring loop or a Costas
loop (see e.g. (Proakis 2001)). As mentioned above, frequency synchronization and phase
estimation are quite different tasks for OFDM systems.
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Time synchronization

An obvious way to obtain time synchronization is to introduce a kind of time stamp into the
seemingly irregular and noise-like OFDM time signal. The EU147 DAB system – which
can be regarded as the pioneer OFDM system – uses quite a simple method that even
allows for traditional analog techniques to be used for a coarse time synchronization. At
the beginning of each transmission frame, the signal will be set to zero for the duration of
(approximately) one OFDM symbol. This null symbol can be detected by a classical analog
envelope detector (which may also be digitally realized) and tells the receiver where the
frame and where the first OFDM symbol begin.

A more sophisticated time stamp can be introduced by periodically repeating a certain
known OFDM reference symbol of known content. The subcarriers should be modulated
with known complex symbols of equal amplitude to have a white frequency spectrum and
a δ-type cyclic time autocorrelation function. Thus, as long as the echoes do not exceed
the length of the guard interval, the channel impulse response can be measured by cross
correlating the received and the transmitted reference symbol.

In the DAB system, the first OFDM symbol after the null symbol is such a reference
symbol. It has the normal OFDM symbol duration TS and is called the TFPR (time-
frequency-phase reference) symbol. It is also used for frequency synchronization (see the
following text) and it provides the phase references for the beginning of the differential
demodulation. We note that the channel estimate provided by the TFPR symbol is only
needed for the positioning of the Fourier analysis window, not for coherent demodulation.

In the wireless LAN systems IEEE 802.11a and HIPERLAN/2, a reference OFDM
symbol of length 2TS is used for time synchronization and for the estimation of the channel
coefficients ckl that are needed for coherent demodulation. The OFDM subcarriers are
modulated with known data. The signal of length T resulting from the Fourier synthesis
will then be cyclically extended to twice the length of the other OFDM symbols.

Another smart method to find the time synchronization without any time stamp is based
on the guard interval. We note that an OFDM signal with guard interval has a regular
structure because the cyclically extended part of the signal occurs twice in every OFDM
symbol of duration TS – this means that the OFDM signal s(t) given has the property

s(t) = s(t + T )

for lTS −� < t < lTS (l integer), that is, the beginning and the end of each OFDM symbol
are identical (see Figure 4.31). We may thus correlate s(t) with s(t + T ) by using a sliding
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(l + 1)TS
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Figure 4.31 Identical parts of the OFDM symbol.
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correlation analysis window of length �, that is, we calculate the correlator output signal

y(t) = �−1
∫ t

t−�


 {s(τ )s∗(τ + T )
}

dτ.

This correlator output can be considered as a sliding average given by the convolution

y(t) = h(t) ∗ x(t).

Here,

h(t) = �−1�

(
t

�
− 1

2

)
is the (normalized) rectangle between t = 0 and t = �, and

x(t) = 
 {s(τ )s∗(τ + T )
}

is the function to be averaged. The signal y(t) has peaks at t = lTS , that is, at the beginning
of the analysis window for each symbol, (see Figure 4.32(a)). Because of the statistical
nature of the OFDM signal, the correlator output is not strictly periodic, but it shows some
fluctuations. But it is not necessary to place the analysis window for every OFDM symbol.
Only the relative position is relevant and it must be updated from time to time. Thus, we
may average over several OFDM symbols to obtain a more regular symbol synchronization
signal (see Figure 4.32(b)). This averaging also reduces the impairments due to noise. In a
mobile radio environment, the signal in Figure 4.32 is smeared out because of the impulse
response of the channel. It is a nontrivial task to find the optimal position of the Fourier
analysis window. This may be aided by using the results of the channel estimation.
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Figure 4.32 The correlator output y(t) (a) and the average of it over 20 OFDM symbols (b).
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Frequency synchronization

Because the spacing T −1 between adjacent subcarriers is typically very small, accurate
frequency synchronization is an important item for OFDM systems. Such a high accu-
racy can usually not be provided by the local oscillator itself. Standard frequency-tracking
mechanisms can be applied if measurements of the frequency deviation δf are available.

First, we want to discuss what happens to an OFDM system if there is a residual
frequency offset δf that has not been corrected. There are two effects:

1. The orthogonality between transmit and receive pulses will be corrupted.

2. There is a time-variant phase rotation of the receive symbols.

The latter effect occurs for any digital transmission system, but the first is a special OFDM
item that can be understood as follows. Using the notation introduced in Subsection 4.1.4,
we write

s(t) =
∑
kl

sklg
′
kl(t)

for the transmitted OFDM signal that is modulated, for example, with complex QAM
symbols skl . Here, k and l are the time and frequency indices, respectively. We assume
a noise-free channel with a time variance that describes the frequency shift. The receive
signal is then given by

r(t) = ej2πδf t s(t).

To study the first effect, we consider only the first OFDM symbol and drop the correspond-
ing time index l = 0. The detector for the subcarrier at frequency fk = k/T is given by
the Fourier analysis operation

Dk[r] = 〈gk, r〉 =
∫ ∞

−∞
g∗k (t)r(t) dt =

√
1

T

∫ T

0
e−j2πfkt r(t) dt.

Because of the orthogonality 〈
gk, g′k′

〉 = √
T

TS

δkk′

between the transmit and receive base pulses, the Fourier analysis detector recovers the
undisturbed QAM symbols from the original transmit symbol, that is,

Dk[s] = sk.

The frequency offset, however, corrupts the orthogonality, leading to the detector output

Dk[r] =
√

T

TS

∑
m

γkm(δf ) sm

with

γkm(δf ) =
∫ ∞

−∞
g∗k (t)gm(t)ej2πδf t dt.
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Typically, for small frequency offsets with δ = δf · T � 1, the term with k = m dominates
the sum, but all the other terms contribute and cause intersymbol interference that must be
regarded as an additive disturbance to the QAM symbol.

We now consider an OFDM signal with running time index l = 0, 1, 2, . . .. The fre-
quency shift that is given by the multiplication with exp (j2πδf t) means that the QAM
symbols skl are rotated by a phase angle 2πδf · TS between the OFDM symbols with time
indices l and l + 1. Figure 4.33 shows a 16-QAM constellation affected by that rotation
and the additive disturbance. The OFDM parameters are the same as above, and a small
frequency offset given by δ = δf · T = 0.01 is chosen.

In the discrete channel model, the phase rotation can be regarded as the time variance
of the channel, that is, the channel coefficient shows the proportionality

ckl ∝ ej2πδf TS l .

In a coherent system with channel estimation, this time variance can be measured and the
QAM constellation will be back rotated. Part (a) of Figure 4.34 shows the back-rotated
16-QAM constellation for δ = 0.01, δ = 0.02 and δ = 0.05. The additive disturbances look
similar to Gaussian noise. Indeed, a statistical analysis with a normplot fits well to a
Gaussian normal distribution (see part (b) of Figure 4.34. One can therefore argue that the
frequency is accurate enough if the SIR of the residual additive disturbance (after frequency
tracking) is significantly below the SNR where the system is supposed to work. The latter
can be obtained from the BER performance curves of the channel coding and modulation
scheme.
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Figure 4.33 16-QAM for OFDM with frequency offset given by δ = δf · T = 0.01.
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Figure 4.34 16-QAM for OFDM with frequency offset given by δ = δf · T = 0.01.

As pointed out above, an estimate for δf can be obtained from the estimated channel
coefficients ĉkl . This can be done by frequency demodulation and averaging. The frequency
demodulation can be implemented as follows. We note that for any complex time signal

z(t) = a(t)ejϕ(t)

with amplitude a(t) and phase ϕ(t), the time derivative of the phase can be calculated as
(see Problem 3)

ϕ̇(t) = �
{

ż(t)

z(t)

}
,

where the dot denotes the time derivative. The instantaneous frequency modulation (FM)
is then given by

fM(t) = 1

2π
ϕ̇(t) = 1

2π
�
{

ż(t)

z(t)

}
.

For a discrete-time signal z[n] = z(nts) that has been obtained by sampling z(t) with the
sampling frequency fs = t−1

s , the time discrete FM is

fM [n] = 1

2πts
�
{

z[n] − z[n− 1]

z[n]

}
.

For an OFDM system with channel estimation as discussed in the next subsection, a noisy
estimate ĉkl of the channel coefficient ckl is obtained for every OFDM symbol of duration
TS at a frequency position k. The estimated instantaneous frequency deviation for time
index l is then

δ̂f kl =
1

2πTS

�
{

ĉkl − ĉk l−1

ĉkl

}
.
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This noisy instantaneous estimate of the frequency deviation has to be averaged over a
sufficiently large number of OFDM symbols and over the frequency index k. This average
δ̂f may then be used to obtain a frequency-shift-corrected receive signal

r̂(t) = e−j2πδ̂f t r(t).

In a typical mobile radio channel with Doppler spread, the time variance of the channel
will introduce an additional frequency modulation. The averaging of the FM will place the
Doppler spectrum in such a way that its first moment vanishes. In the WSSUS model, the
Doppler spectrum is the same for every subcarrier frequency. Thus, an accurate estimate for
the frequency offset and for the Doppler spectrum can be obtained from the measurements
at a certain number of subcarrier positions (at least one). It is a common method applied
in the DVB-T system and the wireless LAN systems IEEE 802.11a and HIPERLAN/2 to
use certain subcarriers as continuous pilots. These subcarriers that are boosted by a certain
factor and carry known data will be used for frequency synchronization and estimation of
the Doppler bandwidth νmax. The latter will be needed for the channel estimation by Wiener
filtering, as discussed in the next subsection. The Doppler spectrum can be estimated from
the continuous pilots (after frequency-shift correction) by standard power spectral density
estimation methods.

Wireless LAN systems require a very fast frequency synchronization at the beginning
of every burst. For this purpose, a special OFDM symbol at the beginning of the burst
has been defined. In this OFDM symbol, only 12 subcarriers are modulated to serve as a
frequency reference.

An accurate frequency synchronization is also necessary for OFDM systems with dif-
ferential demodulation. The EU147 DAB system uses DQPSK. The first symbol in every
frame (after the null symbol) serves as the phase reference for the differential modulation
and as a reference for time and frequency synchronization. The complex symbols are built
from CAZAC (constant amplitude zero autocorrelation) sequences. They allow a frequency
offset estimation by correlating in frequency direction.

4.3.2 OFDM with pilot symbols for channel estimation

Coherent demodulation requires the knowledge of the channel, that is, of the coefficients ckl

in the discrete-time model for OFDM transmission in a fading channel. The two-dimensional
structure of the OFDM signal makes a two-dimensional pilot grid especially attractive for
channel measurement and estimation. An example of such a grid is depicted in Figure 4.35.
These pilots are usually called scattered pilots to distinguish them from the continuous pilots
discussed in the preceding subsection.

At certain positions in time and frequency, the modulation symbols skl will be replaced
by known pilot symbols. At these positions, the channel can be measured. Figure 4.35
shows a rectangular grid with pilot symbols at every third frequency and every fourth time
slot. The pilot density is thus 1/12, that is, 1/12 of the whole capacity is used for channel
estimation. This lowers not only the data rate, but also the available energy Eb per bit.
Both must be taken into account in the evaluation of the spectral and the power efficiency
of such a system.

The density of the grid has to be matched to the incoherency of the channel, that is, to
the time-frequency fluctuations described by the scattering function. To illustrate this by a
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Figure 4.35 Example of a rectangular pilot grid.

numerical example, we consider the grid of Figure 4.35 for an OFDM system with carrier
spacing �f = 1/T = 1 kHz and symbol duration TS = 1250 µs. At every third frequency,
the channel will be measured once in the time 4TS = 5 ms, that is, the unknown signal
(the time-variant channel) is sampled at the sampling frequency of 200 Hz. For a noise-free
channel, we can conclude from the sampling theorem that the signal can be recovered from
the samples if the maximum Doppler frequency νmax fulfills the condition

νmax < 100 Hz.

More generally, for a pilot spacing of 4TS , the condition

νmaxTS < 1/8
must be fulfilled.

In frequency direction, the sample spacing is 3 kHz. From the (frequency domain)
sampling theorem, we conclude that the delay power spectrum must be inside an interval
of the length of 333 µs. Since the guard interval already has the length 250 µs, this condition
is automatically fulfilled if we can assume that all the echoes lie within the guard interval.
We can now start the interpolation (according to the sampling theorem) either in time
or in frequency direction and then calculate the interpolated values for the other direction.
Simpler interpolations are possible and may be used in practice for a very coherent channel,
for example, linear interpolation or piecewise constant approximation. However, for a really
time-variant and frequency-selective channel, these methods are not adequate. For a noisy
channel, even the interpolation given by the sampling theorem is not the best choice because
the noise is not taken into account. The optimum linear estimator will be derived in the
next subsection.

In some systems, the pilot symbols are boosted, that is, they are transmitted with a
higher energy than the modulation symbols. In that case, a rectangular grid as shown in
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Figure 4.36 Example of a diagonal pilot grid.

Figure 4.35 would cause a higher average power for every fourth OFDM symbol, which is
not desirable for reasons of transmitter implementation. In that case, a diagonal grid will
be chosen. Figure 4.36 shows such a diagonal grid as it is used for the DVB-T system.

4.3.3 The Wiener estimator

Consider a complex discrete stochastic process with samples yl that have to be estimated.
For our application, we think of the complex fading amplitudes of a discrete channel model.
Recall that in Section 4.1.4 we derived a discrete channel model for OFDM that could be
written as

rkl =
√

T

TS

cklskl + nkl.

Here, ckl is the complex fading amplitude of the time-frequency discrete channel model with
frequency index k and time index l. This is a stochastic process in two dimensions. We may
keep either the time index or the frequency index fixed and consider only one dimension. For
the treatment of the two-dimensional stochastic process, we may rearrange the numbering
similar to a parallel–serial conversion so that one can work with only one index. This
makes the formalism more clear. The samples yl of the process under consideration must
be estimated from measurements xm that are samples of another stochastic process. For our
application, these processes are closely related: the xm are the noisy channel measurements
at the pilot positions. We look for a linear estimator, that is, we assume that the estimates
ŷl of the process yl can be written as

ŷl =
∑
m

blmxm (4.13)
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with properly chosen estimator coefficients blm. The sum can be finite or infinite. To simplify
the formalism, we assume that only a finite number of L samples yl must be estimated
from a finite number M of measurements xm. We may then write the linear estimator as

ŷ = Bx (4.14)

with the vectors ŷ = (ŷ1, . . . , ŷL)T and x = (x1, . . . , xM)T and the estimator matrix

B =


b11 b12 · · · b1M

b21 b22 · · · b2M

...
...

. . .
...

bL1 bL2 · · · bLM

 .

Let el = yl − ŷl be the error of the estimate for the sample number l. The ansatz of the
Wiener estimator is to minimize the mean square error (MMSE) for each sample, that is,

E
{|el |2

} = min .

The orthogonality principle (or projection theorem) of probability theory (Papoulis 1991;
Therrien 1992) says that this is equivalent to the orthogonality condition

E
{
elx

∗
m

} = 0. (4.15)

This orthogonality principle becomes intuitively clear and it can easily be visualized by
means of the vector space structure of random variables. Then E

{
elx

∗
m

}
is the scalar product

of the random variables (vectors) el and xm, and E{|el |2} = E{|yl − ŷl|2} is the squared
distance between the vectors yl and ŷl . Equation (4.13) says that ŷl lies in the plane that is
spanned by the random variables (vectors) x1, . . . , xl . Then, as depicted in Figure 4.37, this
distance (length of the error vector) becomes minimal if ŷl is just the orthogonal projection
of yl on that plane. In that case, el = yl − ŷl is orthogonal to every vector xm, that is,
Equation (4.15) holds.

It is convenient to write Equation (4.15) in vector notation as

E
{
e · x†} = 0,

el

yl

ŷl

Figure 4.37 Illustration of the orthogonality principle.
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that is, the L×M cross-correlation matrix between the error vector e = (e1, . . . , eM)T and
the vector of measurements x = (x1, . . . , xM)T vanishes. Writing e = y − ŷ, we obtain

E
{
(y − ŷ) · x†} = 0,

and, employing Equation (4.14)

E
{
y · x†} = E

{
Bx · x†} .

This Wiener–Hopf equation can be written as

Ryx = BRxx, (4.16)

where
Rxx = E

{
x · x†} (4.17)

denotes the autocorrelation matrix of x and

Ryx = E
{
y · x†} (4.18)

the cross-correlation matrix between y and x. The Wiener–Hopf equation can be solved by
matrix inversion, that is,

B = RyxR−1
xx .

Estimation error

The estimation error of a linear predictor can be derived as follows. We define a mean
square error (MSE) matrix E by

E = E
{
e · e†} = E

{
(y − ŷ) · (y − ŷ)†} .

The diagonal elements E
{|el |2

}
of that matrix are the MSE for the estimates. For the linear

estimator of Equation (4.14), we get

E = E
{
(y − Bx) · (y − Bx)†}

and
E = E

{
y · y† − Bx · y† − y · (Bx)† + Bx · (Bx)†} .

With Equations (4.17) and (4.18) we get

E = Ryy − BR†
yx −

(
Ryx − BRxx

)
B†.

This is the general expression for any linear estimator B. If B is the solution of the
Wiener–Hopf equation, the expression in parentheses vanishes and we get the MMSE
error matrix

E = Ryy − BR†
yx.
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4.3.4 Wiener filtering for OFDM

For our application, the stochastic process corresponds to the complex fading amplitudes
at certain times and frequencies, that is,

yi = H(fi, ti),

where H(f, t) is the time-variant channel transfer function, see Section 4.1.4. If only chan-
nel estimation in time direction is required (at a given frequency), all the values of fi are
identical. If only channel estimation in frequency direction is required (at a given time),
all the values of ti are identical. But, in general, we have to deal with an arbitrary set of
points in the time-frequency plane. The measurements will be taken at some pilot positions
given by

{(
fim, tim

)}M

m=1. The measurements xm are noisy channel samples, that is,

xm = H
(
fim, tim

)+ ni,

where ni is complex AWGN with variance σ 2 = ES/N0 and ES is the energy of the pilot
symbols. As discussed in detail in Chapter 2, we assume the WSSUS model for H(f, t)

with two-dimensional autocorrelation function

E
{
H(f, t)H ∗(f ′, t ′)

} = R(f − f ′, t − t ′).

We assume that the noise and the fading are statistically independent. Then the matrix
elements of Rxx are given by

(Rxx)km = R (
fik − fim, tik − tim

)+ δkmσ 2, (4.19)

and the matrix elements of Ryx are(
Ryx

)
lm
= R (

fl − fim, tl − tim
)
. (4.20)

Channel estimation in time direction

Consider a fixed carrier of an OFDM signal. In that case, all the frequency samples are equal
to the subcarrier frequency fk and we only have to deal with samples of the multiplicative
fading process c(t) = H(fk, t) for that frequency. This wide-sense stationary process has
the autocorrelation function

R(0, t) = Rc(t),

which is given as the inverse Fourier transform of the Doppler spectrum. For the Jakes
spectrum, it is given by

Rc(t) = J0 (2πνmaxt) .

For a rectangular Doppler spectrum between −νmax and νmax, it is given by

Rc(t) = sinc (2νmaxt) .

For some applications, the Gaussian Doppler spectrum

Sc(ν) = 1√
2πσ 2

D

exp

(
− 1

2σ 2
D

ν2
)
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of width σD is an appropriate model. It has the autocorrelation function

Rc(t) = exp

(
−1

2
(2πσDt)2

)
.

The autocorrelation matrix Rxx is given by the elements

(Rxx)km = Rc

(
tik − tim

)+ δkmσ 2.

The matrix elements of the cross correlation Ryx are given by(
Ryx

)
lm
= R (

tl − tim
)
.

To give a concrete example, we assume that every fourth symbol in time direction is a
pilot symbol, as it is the case for DVB-T for certain subcarrier frequencies. The channel
at the positions in between and at the pilot positions itself must be estimated from the
channel measurements taken at these pilot positions. In practice, only a finite number of
measurements can be used. We illustrate the channel estimation for the case that channel
measurements are taken at the five positions t = −8TS,−4TS, 0,+4TS,+8TS for the esti-
mation at the four positions t = 0, TS, 2TS, 3TS . This corresponds to the grid as depicted in
Figure 4.35 or Figure 4.36 at a frequency where pilots are located. Note that measurements
are taken at five adjacent pilot positions to estimate the channel at four adjacent time slots.
One of them is the pilot position in the middle and the other three are those between this
pilot and the next one. Obviously, this is a noncausal estimator, that is, a delay has to be
taken into account. The measurements are given by the random vector

x = (
c (−8TS) c (−4TS) c (0) c (4TS) c (8TS)

)T + n,

where n is a vector of five AWGN samples, each with variance σ 2. The random vector to
be estimated is given by

y = (
c (0) c (TS) c (2TS) c (3TS)

)T
,

and the autocorrelation matrix is given by

Rxx =


Rc (0)+ σ 2 Rc (4TS) Rc (8TS) Rc (12TS) Rc (16TS)

Rc (−4TS) Rc (0)+ σ 2 Rc (4TS) Rc (8TS) Rc (12TS)

Rc (−8TS) Rc (−4TS) Rc (0)+ σ 2 Rc (4TS) Rc (8TS)

Rc (−12TS) Rc (−8TS) Rc (−4TS) Rc (0)+ σ 2 Rc (4TS)

Rc (−16TS) Rc (−12TS) Rc (−8TS) Rc (−4TS) Rc (0)+ σ 2

 .

We note that the additive SNR term σ 2 on the diagonal ensures that the matrix is nonsingu-
lar. We will see in Subsection 4.4.3 that the eigenvalues of this matrix for σ 2 = 0 represent
the diversity branches of the equivalent independent fading channel. It may happen (and
is often the case in practice) that the channel does not have the full diversity degree. This
corresponds to a singular matrix. To ensure that Rxx can be inverted, one should always
set σ 2 > 0. In practice, a very rough estimate of the noise is sufficient. For example, one
can iteratively improve the noise estimate by comparing the measured channel values at
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the pilot position with their estimates. One starts that procedure with some reasonable SNR
value, where the system will typically work.

The cross-correlation matrix is given by

Ryx =


Rc (8TS) Rc (4TS) Rc (0) Rc (−4TS) Rc (−8TS)

Rc (9TS) Rc (5TS) Rc (TS) Rc (−3TS) Rc (−7TS)

Rc (10TS) Rc (6TS) Rc (2TS) Rc (−2TS) Rc (−6TS)

Rc (11TS) Rc (7TS) Rc (3TS) Rc (−TS) Rc (−5TS)

 .

The estimator matrix
B = RyxR−1

xx

has the shape

B =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

 .

Now, denote the noisy channels measurements by the vector

x = (
c̃ (−8TS) c̃ (−4TS) c̃ (0) c̃ (4TS) c̃ (8TS)

)T
and the estimates by the vector

ŷ = (
ĉ (0) ĉ (TS) ĉ (2TS) ĉ (3TS)

)T
.

Then, the estimator is given by
ĉ (0)

ĉ (TS)

ĉ (2TS)

ĉ (3TS)

 =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45




c̃ (−8TS)

c̃ (−4TS)

c̃ (0)

c̃ (4TS)

c̃ (8TS)

 .

Since the random process c(t) is wide-sense stationary and the pilot positions are periodic
with period 4TS, any time shift of the whole setup by 4iTS, i = 1, 2, 3, . . . result in the
same estimator, that is,

ĉ (4iTS)

ĉ ((4i + 1) TS)

ĉ ((4i + 2) TS)

ĉ ((4i + 3) TS)

 =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45




c̃ (4 (i − 2) TS)

c̃ (4 (i − 1) TS)

c̃ (4iTS)

c̃ (4 (i + 1) TS)

c̃ (4 (i + 2) TS)

 .

The estimate can now be interpreted as the convolution of the measurements with the
left–right flipped columns of the estimator matrix. To see this, we define the four discrete-
time signals

ĉl [i] = ĉ ((4i + l) TS) , l = 0, 1, 2, 3

for the estimates and the discrete-time signal

c̃ [m] = c̃ (4mTS)
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for the measurements. We define four impulse responses bl[m], l = 0, 1, 2, 3 of the esti-
mator by rewriting the estimator matrix as

B =


b0 [2] b0 [1] b0 [0] b0 [−1] b0 [−2]
b1 [2] b1 [1] b1 [0] b1 [−1] b1 [−2]
b2 [2] b2 [1] b2 [0] b2 [−1] b2 [−2]
b3 [2] b3 [1] b3 [0] b3 [−1] b3 [−2]

 .

The estimator can now be written as the noncausal filtering

ĉl [i] =
2∑

m=−2

bl[m]c̃ [i −m]

of the measurements.
To keep the treatment more easy, we have chosen a small filter with a fixed number

of five taps. The generalization to more taps is straightforward. In practice, a figure in the
order of 20 taps is a reasonable choice.

Channel estimation in frequency direction

We now consider the time slot of a fixed OFDM symbol. In that case, all the time sam-
ples are equal and we only have to deal with frequency samples of the transfer function.
This uncorrelated scattering (i.e. frequency-shift invariant) process H(f ) has the frequency
autocorrelation function

R(f, 0) = RH (f ),

which is given as the Fourier transform of the delay power spectrum. For the exponential
delay power spectrum, we have

RH (f ) = 1

1 + j2πf τm

.

For a rectangular delay power spectrum between 0 and τmax, it is given by

RH (f ) = e−jπf τmax · sinc (f τmax) .

The autocorrelation matrix Rxx has the elements

(Rxx)km = RH

(
fik − fim

)+ δkmσ 2,

and the cross-correlation matrix Ryx has the elements(
Ryx

)
lm
= RH

(
fl − fim

)
.

Again, we consider a concrete example that is inspired by the pilot structure of DVB-T.
We assume that every third symbol in frequency direction is a pilot symbol. The channel at
the positions in between and at the pilot positions itself must be estimated from the channel
measurements taken at these pilot positions. We assume that channel measurements are
taken at the five positions f = −6�f,−3�f, 0,+3�f,+6�f for the estimation at the
four positions f = 0, �f, 2�f, 3�f. Here �f = 1/T is the OFDM carrier spacing, and
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f = 0 corresponds to the center frequency. The measurements are given by the random
vector

x = (
H (−6�f ) H (−2�f ) H (0) H (2�f ) H (6�f )

)T + n,

where n is a vector of five AWGN samples with variance σ 2. The random vector to be
estimated is

y = (
H (0) H (�f ) H (2�f )

)T
.

For the autocorrelation matrix, we have

Rxx =


RH (0)+ σ 2 RH (3�f ) RH (6�f ) RH (9�f ) RH (12�f )

RH (−3�f ) RH (0)+ σ 2 RH (3�f ) RH (6�f ) RH (9�f )

RH (−6�f ) RH (−3�f ) RH (0)+ σ 2 RH (3�f ) RH (6�f )

RH (−9�f ) RH (−6�f ) RH (−3�f ) RH (0)+ σ 2 RH (3�f )

RH (−12�f ) RH (−9�f ) RH (−6�f ) RH (−3�f ) RH (0)+ σ 2

 ,

and the cross-correlation matrix is given by

Ryx =
 RH (6�f ) RH (3�f ) RH (0) RH (−3�f ) RH (−6�f )

RH (7�f ) RH (4�f ) RH (�f ) RH (−2�f ) RH (−5�f )

RH (8�f ) RH (5�f ) RH (2�f ) RH (−�f ) RH (−4�f )

 .

The estimator matrix
B = RyxR−1

xx

has the shape

B =
 b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

 .

Now, denote the noisy channel measurements by the vector

x = (
H̃ (−6�f ) H̃ (−3�f ) H̃ (0) H̃ (3�f ) H̃ (6�f )

)T
and the estimates by the vector

ŷ = (
Ĥ (0) Ĥ (�f ) Ĥ (2�f )

)T
.

Then, the estimator is given by

 Ĥ (0)

Ĥ (�f )

Ĥ (2�f )

 =
 b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35




H̃ (−6�f )

H̃ (−3�f )

H̃ (0)

H̃ (3�f )

H̃ (6�f )

 .

Since the random process H(f ) is uncorrelated scattering (i.e. wide-sense stationary in
frequency direction) and the pilot positions are periodic with period 3�f, any frequency
shift by 3i/T , i = 0,±1,±2, . . . of the whole setup will result into the same estimator.
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Then, we can use the same arguments as for the estimation in time direction to show that
the estimate can be interpreted as the convolution of the measurements with the left–right
flipped columns of the estimator matrix. We define the three (frequency-) discrete signals

Ĥl [i] = Ĥ ((3i + l) �f ) , l = 0, 1, 2

for the estimates and the discrete signal

H̃ [m] = H̃ (3mTS)

for the measurements. We define three impulse responses bl[m], (l = 0, 1, 2) of the esti-
mator by rewriting the estimator matrix as

B =
 b0 [2] b0 [1] b0 [0] b0 [−1] b0 [−2]

b1 [2] b1 [1] b1 [0] b1 [−1] b1 [−2]
b2 [2] b2 [1] b2 [0] b2 [−1] b2 [−2]

 .

The estimator can now be written as the noncausal filtering

Ĥl [i] =
2∑

m=−2

bl[m]H̃ [i −m]

of the measurements.
Even though this filtering in the frequency domain is formally the same as filtering

in the time domain, there is an essential difference in practice. One can easily think of
an infinite time duration of the transmission, but the frequency domain is always hard
limited by the signal bandwidth, corresponding to a finite number of OFDM subcarriers.
This number may be quite small (approximately 50 for WLAN systems or approximately
200 for DRM) or large (more than 6000 for the 8K mode for DVB-T). In any case, there
will be edge effects. At both edges, there are some measurements not available because
there are no pilots outside the band. If one ignores these terms in the sum, it will severely
degrade the performance. This is especially severe for a low number of carriers. For WLAN
systems and a filter of approximately length 10, the channel estimation would be correct
for only approximately 40 subcarriers. Especially for higher-level QAM modulation, this
results in an unacceptable error, even for a high number of subcarriers. To cope with this,
the estimator must be modified at the edges. It is not a convolution there, but a matrix
estimator that makes use of, for example, the 20 closest available pilots.

In contrast to time domain estimation, the estimation in frequency domain is always
a problem with a finite number of measurements and a finite number of estimates. It is
therefore worth considering the use of the full matrix estimator to solve this problem. This
needs more processor power, but it provides us with the optimal MMSE estimate for the
given number of measurements that are available.

In that case, the matrix elements of Rxx are calculated for all pairs of pilot positions
fik , fim as

(Rxx)km = RH

(
fik − fim

)+ δkmσ 2

and the matrix elements of Ryx as(
Ryx

)
lm
= RH

(
fl − fim

)
,
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where the fl are the positions of the estimates. The estimator matrix

B = RyxR−1
xx

then has as much columns as there are pilot positions and as many rows as there are estimate
positions.

Channel estimation in time and frequency direction

In most situations, a channel estimation has to be performed both in time and frequency
direction. In that case, the full autocorrelation matrix according to Equation (4.19) and
the cross correlation according to Equation (4.20) must be calculated. The pilot positions(
fik , tik

)
are arbitrary. Typically, they are positioned on some grid. Figure 4.35 shows such

a rectangular grid corresponding to the above examples for time and frequency.
The pilot positions are numbered in some order. In most typical channel models, the

scattering function and thus the two-dimensional autocorrelation function factorizes to

R(f, t) = RH (f )Rc(t).

From this, the estimator matrix B can be calculated. The estimation is time- and frequency-
shift invariant because of the WSSUS property. As a consequence, the estimation can be
written as a two-dimensional convolution. Of course, the edges of the frequency have to
be taken into account as discussed above.

Instead of that rather involved 2-D filtering one can perform a suboptimal 1-D × 1-D
filtering without losing significantly in performance (Hoeher 1991; Hoeher et al. 1997).
One may first perform a 1-D channel estimation, for example, in frequency direction (with
the method described above) at those time slots where the pilots are located. After that,
at these time slots, there is a channel estimate available for every frequency. Now a 1-D
channel estimation in time direction can be performed and an estimate for all time-frequency
positions is available. One can also first do a 1-D channel estimation in time direction and
then in frequency direction. The order can be shown to be arbitrary due to linearity of the
estimation and due to the fact that the rectangular constellation is the Cartesian product of
two one-dimensional ones.

We finally note that in practical systems as DVB-T and DRM a diagonal grid has been
chosen rather than a rectangular one. The procedure is similar, but the order of channel
estimation is no longer arbitrary.

4.4 Interleaving and Channel Diversity
for OFDM Systems

4.4.1 Requirements of the mobile radio channel
As already discussed in Chapter 3, channel coding is one important method to introduce
diversity into the mobile radio transmission. To achieve the full diversity gain of the code,
the transmitted bits must be affected by independent fading. Independent or uncorrelated
fading amplitudes6 can only be realized by a physical separation of the parts of the signal
corresponding to the different bits. Bits that are closely related by the code should not be

6Here we do not distinguish between uncorrelated and independent, keeping in mind that we will later focus
on the case where both are the same.
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Figure 4.38 Time and frequency interleaving for OFDM with symbol duration TS and
Fourier analysis window T .

transmitted at closely related locations of the channel. For a block code, bits are closely
related by the code if they are part of the same code word. For a convolutional code,
they are closely related unless there are many constraint lengths between them. For a
moving receiver (or transmitter), the separation of closely related bits can be realized in
the physical dimension of time. This separation is called time interleaving. Obviously, one
must wait some time until all closely related bits are received and can be decoded. Thus,
time interleaving introduces a decoding delay .

For multicarrier transmission, there is an obvious additional way to realize a physical
separation in frequency direction. This is called frequency interleaving. Thus, as depicted in
Figure 4.38, multicarrier transmission provides us with two degrees of freedom to separate
the information in the physical transmission channel: time and frequency. The physical
reasons that cause decorrelation in time and in frequency direction are independent, so that
multicarrier transmission with time and frequency interleaving is a very powerful technique
for mobile radio transmission systems.

The decorrelation in time has its origin in the time variance of the channel due to the
Doppler spread that is caused by multipath reception for a moving vehicle. It can equiv-
alently be interpreted as caused by the motion of a vehicle through a spatial interference
pattern. The spatial correlation length is xcorr = λ, where λ = c/f0 is the wavelength, c is
the velocity of light and f0 is the radio frequency. The corresponding correlation time is
tcorr = xcorr/v = ν−1

max, where v is the vehicle speed and

νmax = v

c
f0
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is the maximum Doppler frequency. The correlation time is then given by

tcorr = c

f0v
≈ 1080 MHz

f0

km/h

v
seconds.

The time separation of closely related bits should be significantly larger that this correlation
time. We give a numerical example.

Example 7 (Time interleaving for DAB) The European DAB system has been intro-
duced in many regions in Europe and in Canada. It uses Band III (174–240 MHz) and
L-band (1452–1492 MHz) frequencies. In many European regions, the TV channel 12
(223–230 MHz) has been allocated for DAB. For f0 = 225 MHz and v = 100 km/h, the
above formula yields a correlation time tcorr = 48 ms. We will later see that the DAB time
interleaver separates two adjacent encoded bits by exactly 24 ms, that is, twice the cor-
relation time. Thus, for Band III transmission and typical vehicle speeds, time interleaving
alone does, by far, not guarantee a sufficient statistical independence of the fading amplitude
of closely related bits. In the DAB system – as in many other communication systems – a
trade-off has to be made between the requirements of channel coding (leading to a huge in-
terleaver) and the restrictions of decoding delay given by the application. For multicarrier
systems as DAB, the frequency interleaving is an appropriate method to come out of this
dilemma.

The decorrelation in frequency direction has its origin in the frequency selectivity of the
channel due to the different travel times caused by the multipath reception. The frequency
correlation length fcorr – or coherence bandwidth – as introduced in Chapter 2 is given by
fcorr = τ−1

m , where τm is the delay spread of the channel. An electromagnetic wave travels
300 m in 1 µs. Thus, in an environment with path differences of a few hundred meters,
the system bandwidth should be significantly greater than 1 MHz to achieve an efficient
frequency interleaving.

4.4.2 Time and frequency interleavers

Interleaving can be implemented by different techniques. A block interleaver always takes
a block of K coded symbols7 of the data stream and changes the order of symbols within
this block. After this permutation, the symbols are sent to the channel. At the receiver, the
permutation is inverted. A convolutional interleaver – similar to a convolutional code – has
no block-oriented structure and acts on the flowing symbol stream. Frequency interleavers
are typically block interleavers as there is a block structure involved by the number of
subcarriers. Convolutional interleavers are often regarded as the best choice for the time
interleaver as they have desirable properties concerning decoding delay.

Block interleavers

The simplest way to implement a block interleaver is to apply a pseudorandom permutation
to each block of K encoded symbols. Owing to the random nature of the interleaver, this,
by construction, does not guarantee any minimum separation of symbols on the channel.

7This can be encoded bits or bytes (for RS codes) or even complex modulation symbols.
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However, any randomly chosen permutation can easily be analyzed numerically and its
performance for a given transmission system can be evaluated by simulations.

A matrix block interleaver offers a more constructive approach. We take a block of
K = N · B symbols and write them row-wise into an N × B matrix. Then we read them
out column-wise and send them to the channel. Take, as an example, N = 12, B = 4, and
K = 48. We write the 48 symbols a0, a1, a2, . . . , a48 row-wise into a 12 × 4 matrix as

r ↓



a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15
...

...
...

...

a44 a45 a46 a47

w →


and read them out column-wise. The bit stream on the channel is then given by

(a0, a4, a8, a12, a16, a20, a24, . . . , a44 a1, a5, . . . , a39, a43, a47).

At the receiver, the deinterleaver writes column-wise into the same matrix and reads out
row-wise.

Let us call each matrix row a subblock. Assume that the symbols of each subblock are
closely related, but symbols of different subblocks are unrelated because each subblock is
a code word. We may think, for example, of a WH(4, 2, 2) code and write each code word
of length B = 4 into a row. Then, on the channel, any two bits of the same code word
are separated on the channel by at least N = 12 symbol positions. To extend this example
further, we think of OFDM transmission with K = 48 subcarriers with carrier spacing T −1.
We choose BPSK modulation and map the symbols in the above order on these carriers.
Then each two bits of the same code word are separated in the frequency dimension by
12/T 8. Thus, for two symbols of the same subblock, this matrix block interleaver guarantees
a separation in frequency by N · T −1 when used as frequency interleaver for OFDM, or in
time by N · TS when used as a time interleaver. The deinterleaver at the receiver simply
writes column-wise into the matrix and reads out row-wise. The matrix at the (de) interleaver
can be implemented by a RAM.

Let us summarize. We call each matrix column a frame. A frame is a sequence of N

adjacent symbols on the channel. The N × B matrix block interleaver with frame length
N and subblock length B has the following properties:

1. All symbols of one subblock of length B are transmitted in different frames.

2. If one frame of length N is completely corrupted by an error burst, this will only
affect one symbol in each subblock of length B.

3. The overall decoding delay (interleaver plus deinterleaver together) is 2BN symbol
clocks.

8For QPSK transmission, half of the code words are mapped on the inphase and the other half on the quadrature
component. We may thus simply double the matrix in horizontal direction. The left part will then be mapped on
the inphase, the right on the quadrature component.
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We note that, by construction, such a matrix block interleaver guarantees a certain physical
separation. However, the very regular structure of this interleaver may sometimes lead to
unwanted properties.

Convolutional interleavers

It is possible to construct a convolutional interleaver with the same two first properties
as above but only half the decoding delay of the corresponding block interleaver. Because
decoding delay is a critical item for most communication systems, convolutional interleavers
are often preferred in practical systems.

We consider a serial symbol stream a0, a1, a2, . . .. With this symbol stream we do a
serial-to-parallel (S/P) conversion that results in a stream of subblocks of B parallel symbols.
Let i = 0, 1, 2, . . . , B − 1 denote the position of each symbol of a subblock. Then the sym-
bol with position i in a subblock is delayed by i ·M parallel symbol clocks, where M is a
certain integer number that must be chosen to adjust the interleaver properties. After that de-
lay, the parallel symbol stream will be P/S converted and then transmitted (see Figure 4.39).

For a better understanding of the properties of the convolutional interleaver, we may
think that M subblocks of length B are grouped together to a data frame of length N = B ·
M . The interleaver output will be grouped into transmission frames of the same structure,
but, by the action of the interleaver, the symbols are transmitted in different frames. Since
the serial symbol clock and the parallel symbol clock are related by the factor B, the symbol
with position i in each subblock will be delayed by i ·N serial symbol clocks, that is, by
i frames, thereby retaining the relative position within a frame.

The deinterleaver at the receiver has the same structure as the interleaver, but the
symbol with position i = 0, 1, 2, . . . , B − 1 in a subblock will be delayed by (B − i − 1) ·
M parallel symbol clocks (see Figure 4.40).

It is evident from both figures that the deinterleaver inverts the operation of the inter-
leaver, thereby introducing an overall decoding delay of (B − 1) · N symbol clocks, that
is, B − 1 frames.

The action of an (N, B) convolutional interleaver can be visualized as shown in
Figure 4.41 for N = 12 and B = 4. As depicted in part (a) of the figure, we arrange

S/P
an cn

(B − 1)M

· · ·

2 ·M

M

No delay

P/S

Figure 4.39 Block diagram for the convolutional interleaver.
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· · ·

(B − 2) ·M

(B − 1) ·M

P/S

Figure 4.40 Block diagram for the convolutional deinterleaver.

Subblock

Transmission frame

Data frame

Figure 4.41 The action of a convolutional interleaver.

the sequence of frames as the columns of a matrix. If we read out this matrix column-wise,
adjacent positions in the same row will be read out with a time difference of one frame
duration, that is, N symbol clocks. We may thus realize the actions of the interleaver by
shifting the row of position number i in the subblock to the right by i horizontal positions
(see part (b) of the figure). Obviously, the B bits within the same subblock will be shifted
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to B different columns that correspond to different transmission frames when we read out
the matrix. We summarize the properties of a (N, B) convolutional interleaver.

1. All symbols of one subblock of length B are transmitted in different frames.

2. If one transmission frame of length N is completely corrupted by an error burst, this
affects only one symbol in each subblock of length B in the data frame.

3. If one subblock of length B inside a transmission frame of length N is completely
corrupted by an error burst, this will only affect one symbol in a data frame of
length N .

4. The overall decoding delay (interleaver plus deinterleaver together) is (B − 1) ·N
symbol clocks.

The first two properties are clear from the above discussion. They are identical to the
first two properties of the N × B matrix block interleaver. The third property has no such
correspondence. It is clear from the figure and it can be understood from the fact that one
can interchange the interleaver and the deinterleaver without altering the properties. Using
this argument, the third property immediately follows from the first one.

Figures 4.39 and 4.40 correspond to a shift register implementation of the delays.
However, Figure 4.41 suggests a matrix representation realized by a RAM. This will be
favorable for implementation.

To do so, we need a matrix with N rows. For a moment, we allow the matrix to have an
infinite number of columns. The interleaver can then be implemented by diagonal writing
for each subblock. For N = 12, B = 4, M = 3, we write the matrix

a0 a12 a24 a36

· a1 a13 a25

· · a2 a14

· · · a3

a4 a16 a28 a40

· a5 a17 a29

· · a6 a18

· · · a7

a8 a20 a32 a44

· a9 a21 a33

· · a10 a22

· · · a11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a48 a60 a72 · · ·
a37 a49 a61 · · ·
a26 a38 a50 · · ·
a15 a27 a39 · · ·
a52 a64 a76 · · ·
a41 a53 a65 · · ·
a30 a42 a54 · · ·
a19 a31 a43 · · ·
a56 a68 a80 · · ·
a45 a57 a69 · · ·
a34 a46 a58 · · ·
a23 a35 a47 · · ·


and then read it out column-wise. At the receiver, the deinterleaver has the same structure,
but the write and read operations are interchanged. The matrix will be initialized with
dummy symbols. Because of the diagonal writing, there will be some dummy symbols left
at the beginning of the matrix. A real RAM is not a matrix with an infinite number of
rows, but this is not necessary. At positions where the data are read out, new data can be
written. It is easy to see that a matrix with B columns is sufficient. The RAM can then be
addressed cyclically. All data in the right part of the matrix above can be written into the
left part as the symbols there have already been read out.
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4.4.3 The diversity spectrum of a wideband multicarrier channel

In this subsection, we address the question how much interleaving is necessary to have
enough statistical independence for the channel code to work. We further present a method
to analyze the correlations of a wideband channel with interleaving. In particular, we discuss
the question how much bandwidth is needed to allow the channel code to exploit its diversity
degree that is given by the Hamming distance dH (or free distance dfree).

To start with a simple example, we first consider a transmission channel given by
four frequencies f1, f2, f3, f4 that are sufficiently separated so that their Rayleigh fading
amplitudes can be regarded as independent. We encode a bit stream by a repetition code
of rate Rc = 1/4 with Hamming distance dH = 4 and transmit each of the four bits in
a code word on another frequency, where we may use, for example, BPSK modulation.
Of course, this is nothing else but simple frequency diversity, but we regard it as RP(4,
1, 4) coding with frequency interleaving and multicarrier transmission. The pairwise error
probability (PEP) that the code word (0000) is transmitted but the receiver decides for
(1111), decreases asymptotically as

Perr ∼
(

Eb

N0

)−L

(4.21)

with L = dH = 4. We now consider the same transmission setup with the Walsh–Hadamard
code of length 4, rate Rc = 1/2 and Hamming distance dH = 2. The decay of the PEP for
each error event is given by the power law of Equation (4.21) with L = dH = 2. We may
say that the channel has a diversity degree of four – because of the four independently
fading subcarriers – and the two codes have diversity degrees (i.e. Hamming distance dH )
four and two, respectively. We are interested in the question whether a fading channel
provides enough diversity so that the code can exploit its full diversity, that is, Equation
(4.21) holds with L = dH . It is obvious that the channel diversity must not be smaller
than dH . However, equality of both diversity degrees typically does not guarantee that the
diversity of the code can be fully exploited, as it can easily be seen by the example of the
WH(4, 2, 2) code whose code words are given by the rows of the matrix

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

 .

If we use only the frequencies f1, f2 and transmit the bits numbers 1 and 3 on f1 and
the bits numbers 2 and 4 on f2, we have different power laws for different error events.
Let (0000) be the transmitted code word. The power law for probability that the receiver
decides for (0101) is given by Equation (4.21) with L = 1, because the two bits in which
the code words differ are transmitted on the same frequency. This is not the case for the
other two error events corresponding to the code words (0011) and (0110) for which the
power law with L = 2 holds.

An obviously sufficient condition for a (block) code to exploit its full diversity is to
transmit each bit of a code word at another frequency, for example, if the diversity degree of
the channel is at least the length of the code. The condition is not necessary. One can easily
see that three frequencies would be sufficient for the WH(4, 2, 2) code. For a convolutional
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code, a detailed analysis is more difficult because the number of possible error events is
infinite and their length is growing to infinity. However, one should intuitively expect that
the diversity degree of the code will be exploited if the diversity degree of the channel
significantly exceeds the free distance dfree.

We add the following remarks:

• The two example codes we have chosen are quite weak so they will not be used in
practice. Indeed, they have no coding gain in an AWGN channel because dHRc = 1
in either case.

• A transmission channel that splits up into a given number of K independently fading
channels (K = 4 in the above example) is called a block fading channel. It is of
practical relevance, for example, for frequency hopping systems, where K different
frequencies are used subsequently during different time slots. The question, what
number of K must be chosen to allow the code to exploit its diversity is of great
practical relevance. For the simple convolutional code with memory 2, the most
probable error event corresponds to the code word (111011000. . . ). We conclude
that we should hop at least between six different frequencies for that code.

Up to now, we have considered independently fading (sub) carrier frequencies. In practice,
the fading of adjacent subcarriers in a multicarrier system is highly correlated. Take as an
example an OFDM system with the (typical) ratio T /� = 4 between the Fourier analysis
window and the guard interval. Since � must be chosen to be larger than the maximum
path delay, the delay spread τm should be significantly smaller than �. We take as an
example τm = �/5, which is already quite a frequency-selective channel. We then have T =
20 τm. For this figure, the frequency correlation length (or coherency bandwidth) fcorr = τ−1

m

exceeds the frequency separation T −1 of the subcarriers by a factor of 20, which means
that up to 20 neighboring subcarriers are highly correlated. The number of subcarriers
in an OFDM system must therefore significantly exceed this number to guarantee some
decorrelation that is necessary to exploit the frequency diversity in a channel coded and
frequency-interleaved OFDM system. Only in that case we may legitimately call this a
wideband system from the physical system point of view. A proper code design needs
some information on the diversity that can be provided by the channel. In a real multicarrier
system, there are always significant correlations. It is therefore desirable to find a quantity
to characterize the diversity of a correlated fading channel.

In the following discussion, we will present a method to characterize the diversity of a
wideband channel with correlated fading. We consider a set of channel samples

ci = H(fi, ti), i = 1, . . . , K

in the time-frequency plane. We assume a WSSUS Rayleigh process with average power
E
{|ci |2

} = 1. Thus, the channel samples ci are zero mean complex Gaussian random vari-
ables that can be completely characterized by their autocorrelation properties. Writing the
channel samples as a channel vector c = (c1, . . . , cK)T , the autocorrelation matrix is

R = E
{
cc†}

with elements Rik = E
{
cic

∗
k

}
given by

Rik = R(fi − fk, ti − tk),
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where R(f, t) is the two-dimensional autocorrelation function of the GWSSUS process
H(f, t). Since R(f, t) = R∗(−f,−t), the matrix R is Hermitian. From matrix theory, we
know that every Hermitian matrix can be transformed to a diagonal matrix: there exists a
unitary matrix U (i.e. U−1 = U†) such that

URU† = D,

where D = diag(λ1, . . . , λK) is the diagonal matrix of the eigenvalues of R. We may write
this as

E
{
Uc(Uc)†} = D

and set
b = Uc.

This is a vector of mean zero Gaussian random variables with the diagonal autocorrelation
matrix D, that is, the coefficients of b = (b1, . . . , bK)T are uncorrelated

E
{
bib

∗
k

} = λiδik

and, because they are Gaussian, even independent. We may regard this unitarily transformed
channel vector as the equivalent independently fading channel. To explain this name, we
consider as a simple example the multicarrier BPSK modulation with a K-fold repetition
code, that is, the same BPSK symbol s ∈ {±√ES

}
will be transmitted at K different

positions in the time-frequency plane. This is again simple frequency diversity combined
with time diversity, but with correlated fading amplitudes. We recall from subsection 2.4.6
that the conditional PEP is given by

P (s �→ s̃|c) = 1

2
erfc


√√√√ES

N0

K∑
i=1

|ci |2
 .

Because the matrix U is unitary, it leaves the vector norm invariant, that is,

‖b‖2 = ‖Uc‖2 = ‖c‖2

or
K∑

i=1

|bi |2 =
K∑

i=1

|ci |2 .

This means that the transfer power of the equivalent channel is the same. P (s �→ s̃|c) can
then be expressed as

P (s �→ s̃|c) = P (s �→ s̃|U−1b) = 1

2
erfc


√√√√ES

N0

K∑
i=1

|bi |2
 .

Since the transformed fading amplitudes bi are independent, we can apply the same method
as in Subsection 2.4.6 to perform the average for

P (s �→ s̃) = E
{
P (s �→ s̃|U−1b)

}
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and eventually obtain the expression

P (s �→ s̃) = 1

π

∫ π/2

0

L∏
i=1

1

1 + λi

sin2 θ

ES

N0

dθ.

Using Eb = KES , we obtain the tight Chernoff-like bound

P (s �→ s̃) ≤ 1

2

K∏
i=1

1

1 + λi

K

Eb

N0

. (4.22)

For independent fading, we have λi = 1 for all values of i and we obtain the power law
of Equation (4.21) with L = K . For correlated fading they are different, but because of

E

{
K∑

i=1

|bi |2
}
= E

{
K∑

i=1

|ci |2
}

,

their sum
K∑

i=1

λi = K

is always the same. Even though – in case that λi �= 0 for all i – Equation (4.22) will
asymptotically approach the power law of Equation (4.21) with L = K for large Eb/N0,
many of the eigenvalues may be very small so that they will not contribute significantly
to the product for relevant values of Eb/N0. Only those eigenvalues λi of significant size
contribute, but there is no natural threshold. The diversity that can be achieved by the chan-
nel is thus characterized by the whole eigenvalue spectrum {λi}Ki=1 of the autocorrelation
matrix of the fading. We thus call it the diversity branch spectrum of the channel.

For the following numerical example, we restrict ourselves to the frequency direction
and assume an exponential delay power spectrum

SD(τ) = 1

τm

e−τ/τmε(τ ),

where τm is the mean delay and ε(τ ) is the Heaviside function. The corresponding frequency
autocorrelation function is given by

Rf (f ) = 1

1 + j2πf τm

.

Figure 4.42 shows the first 16 eigenvalues for K = 64 and different values of the
bandwidth B. We define a normalized bandwidth X = Bτm. We have assumed that the
BPSK symbols are equally frequency spaced over the bandwidth. We see that for a small
bandwidth (e.g. X = 1 corresponding to 1 MHz for τ = 1 µs), the equivalent independent
fading channel has only a low number of diversity branches of significant power. We found
that the diversity branch spectrum as shown in Figure 4.42 is nearly independent of K if
K is significantly greater than X. It is therefore a very useful quantity to characterize the
diversity that can be provided by the channel. A look at the eigenvalues gives a first glimpse
at how many diversity branches of the equivalent independent fading channel contribute
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Figure 4.42 Diversity branches of the equivalent independent fading channel and normal-
ized bandwidth X = Bτm = 1, 2, 4, 8.

significantly to the transmission. It finds its reflection in the performance curves. Figure 4.43
shows the pairwise (=bit) error probability for K = 32 and X = Bτm = 0.5, 1, 2, 4, 8, 16.
The high diversity degree of the repetition code (K = 32) can show a high diversity gain
if the equivalent channel has enough independent diversity branches of significant power.
This is the case for X = 16, but not for X = 1 or X = 2. For low X, a lower repetition
rate K would have been sufficient.

Figure 4.44 shows the bit error probability for K = 10 and the same values of X. For
low X, the curves of Figure 4.43 and 4.44 are nearly identical. For higher X, the curves of
Figure 4.44 run into a saturation that is given by the performance curve of the independent
Rayleigh fading. For X = 8, this limit is practically achieved. There is still a gap of nearly
2 dB in the AWGN limit at the bit error rate of 10−4.

For BPSK and any linear code, the probability for an error event corresponding to a
Hamming distance d is given by

Pd = 1

π

∫ π/2

0

d∏
i=1

1

1 + λi

sin2 θ

ES

N0

dθ, (4.23)

which can be upper bounded by

Pd ≤ 1

2

d∏
i=1

1

1 + λi
ES

N0

.
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Figure 4.43 Bit error probabilities for 32-fold repetition diversity with X = 0.5, 1, 2, 4,
8, 16.
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Figure 4.44 Bit error probabilities for 10-fold repetition diversity with X = 0.5, 1, 2, 4,
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For the region of reasonable ES/N0, those factors with λi � 1 do not contribute signifi-
cantly to the product. Thus, it is not possible to obtain tight union bounds like

Pd ≤
∞∑

d=dfree

cdPd

because Pd does not decrease as (ES/N0)
−d if d is greater than the diversity degree of the

channel, that is, the number of significant eigenvalues λi . The cd values grow with d and
thus the union bound will typically diverge.

However, the diversity branch spectrum may serve as a good indicator of whether the
time-frequency interleaving for a coded OFDM system is sufficient. Consider for example a
system with a convolutional code9 with free distance dfree = 10 like the popular NASA code
(133, 171)oct. The probability for the most likely error event is given by Equation (4.23)
with d = dfree = 10. This probability will decrease as (ES/N0)

−10 only if the 10 eigen-
values λi, i = 1, . . . , 10 are of significant size. Let us consider an OFDM system with
a pseudorandom time-frequency interleaver over the time Tframe of one frame and over a
bandwidth B. We consider a GWSSUS model scattering function given by

S(τ, ν) = SDelay(τ )SDoppler(ν)

as a product of a delay power spectrum SDelay(τ ) and a Doppler spectrum SDoppler(ν). As
a consequence, the time-frequency autocorrelation function also factorizes into

R(f, t) = Rf (f )Rt (t).

We assume an exponential power delay spectrum with delay time constant τm that has a
frequency autocorrelation function

Rf (f ) = 1

1 + j2πf τm

and an isotropic Doppler spectrum (Jakes spectrum) with a maximum Doppler frequency
νmax that has a time autocorrelation function given by

Rt (t) = J0 (2πνmaxt) .

The correlation lengths in frequency and time are given by fcorr = τ−1
m and tcorr = ν−1

max,
respectively.

The dfree = 10 time-frequency positions (ti , fi) of the BPSK symbols corresponding to
the most likely error event are spread randomly over the time Tframe and the bandwidth B.
Thus, the diversity branch spectrum is a random vector. To eliminate this randomness, we
average over an ensemble of 100 such vectors, which turns out to be enough for a stable
result. To justify this procedure, we recall that error probabilities are averaged quantities.

Figure 4.45 shows the diversity branch spectrum {λi}10
i=1for frequency interleaving only

(i.e. Tframe/tcorr = 0) and values B/fcorr = 1, 2, 4, 8, 16, 32 for the normalized bandwidth.
It can be seen that even for B/fcorr = 32, the full diversity is not reached because the size

9Similar considerations apply for linear block codes.
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Figure 4.45 Diversity branch spectrum for d = 10 and frequency interleaving only.

of normalized eigenvalues is very different and the greatest values dominate the product. As
shown in Figure 4.46, the same is true if only time interleaving is applied. The figure shows
the spectra for time interleaving over a normalized length of Tframe/tcorr = 1, 2, 4, 8, 16, 32.
Note that, due to the different autocorrelation in time and frequency domain, both diversity
branch spectra show a different shape. Figure 4.47 shows the diversity branch spectrum
for combined frequency-time interleaving. It can be seen that both mechanisms help each
other, and for a wideband system with long time interleaving, all eigenvalues contribute to
the product. However, the interleaving can be considered to be ideal only if all eigenvalues
are of nearly the same size. As shown in Figure 4.48, a huge time-frequency interleaver is
necessary to achieve this.

We may say that an OFDM system is a wideband system if the system bandwidth B

is large enough compared to fcorr so that the frequency interleaver works properly. For a
well-designed OFDM system, the guard interval length � must be matched to the maximum
echo length. Assume, for example, a channel with τm = �/5 and a guard interval of length
� = T /4. Using B = K/T , where K is the number of carriers and T is the Fourier analysis
window length, we obtain the relation

K = 20Bτm.

With a look at the figures we may speak of a wideband system, for example, for B/fcorr =
Bτm = 32, which leads to K = 640. There may of course occur flat fading channels with
τm � �, where the frequency interleaving fails to work. But we may conclude that an
OFDM system may be called a wideband system relative to the channel parameters only
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Figure 4.46 Diversity branch spectrum for d = 10 and time interleaving only.
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Figure 4.47 Diversity branch spectrum for d = 10 for moderate time-frequency
interleaving.
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Figure 4.48 Diversity branch spectrum for d = 10 and small and huge time-frequency
interleavers.

if at least several hundred subcarriers are used. This is the case for the digital audio and
video broadcasting systems DAB and DVB-T. It is not the case for the WLAN systems
IEEE 802.11a and HIPERLAN/2 with only 48 carriers.

Time interleaving alone is often not able to provide the system with sufficient diversity.
A certain vehicle speed can, typically, not be guaranteed in practice. For the DAB system
working at 225 MHz, a vehicle speed of 48 km/h leads to a Doppler frequency that is
as low as 10 Hz. For such a Doppler frequency, sufficient time interleaving alone would
lead to a delay of several seconds, which is not tolerable in practice. It is an attractive
feature of OFDM that the time and frequency mechanisms together may often lead to a
good interleaving. However, there will always be situations where the correlations of the
channel must be taken into account.

4.5 Modulation and Channel Coding for OFDM Systems

4.5.1 OFDM systems with convolutional coding and QPSK

In this subsection, we present theoretical performance curves for OFDM systems with
QPSK modulation, both with differential and coherent demodulation. These curves are of
great relevance for the performance analysis of existing practical systems. Fortunately, most
practical OFDM systems use essentially the same convolutional code, at least for the inner
code. And most of these systems use QPSK modulation, at least as one of several possible
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options. DAB always uses differential QPSK, and DVB-T as well as the WLAN systems
(IEEE 802.11a and HIPERLAN/2) use QAM, where QPSK is a special case. These WLAN
systems also have the option to use BPSK. The performance curves for coherent BPSK
are the same as those for QPSK when plotted as a function of Eb/N0. When plotted as a
function of SNR, there is a gap of 3.01 dB between the BPSK and the QPSK curves. The
performance of higher-level QAM will be discussed in a subsequent subsection.

The channel coding of all the above-mentioned systems is based on the so-called NASA
planetary standard, the rate 1/2, memory 6 convolutional code with generator polynomials
(133, 171)oct, that is,

g(D) =
(

1 +D2 +D3 +D5 +D6

1 +D +D2 +D3 +D6

)
.

This code can be punctured to get higher code rates. For the DAB system, lower code rates
are needed, for example, to protect the most sensitive bits in the audio frame, and two
additional generator polynomials are introduced. The generator polynomials of this code
Rc = 1/4 are given by (133, 171, 145, 133)oct, that is,

g(D) =


1 +D2 +D3 +D5 +D6

1 +D +D2 +D3 +D6

1 +D +D4 +D6

1 +D2 +D3 +D5 +D6

 .

This encoder is depicted in Figure 4.49. The shift register is drawn twice to make it easier
to survey the picture. For DVB-T and the wireless LAN systems, only the part of the code
corresponding to the upper shift register is used.
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Figure 4.49 The DAB convolutional encoder.
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The bit error rates for a convolutional code can be upper bounded by the union bound

Pd ≤
∞∑

d=dfree

cdPd. (4.24)

Here, Pd is the PEP for d-fold diversity as given by the expressions in Subsection 2.4.6. The
coefficient cd is the error coefficient corresponding to all the error events with Hamming
distance d. We note that cd depends only on the code, while Pd depends only on the
modulation scheme and the channel. The union bound given in Equation (4.24) is valid for
any channel. For an AWGN channel, the error event probability is simply given by

Pd = 1

2
erfc

(√
d

ES

N0

)
,

where ES = |s|2 is the energy of the PSK symbol s. For the independently fading Rayleigh
channel, the expressions for the error event probabilities Pd were discussed in Subsection
2.4.6. All the curves asymptotically decay as

Pd ∼
(

ES

N0

)−d

.

The union bound is also valid for the correlated fading channel, but it does not tightly
bound the bit error rate. It may even diverge. This is because the degree of the channel
diversity is limited and the pairwise error probabilities for diversity run into a saturation
for d →∞, while the coefficients cd grow monotonically.

The cd values can be obtained by the analysis of the state diagram of the code. In
Hagenauer’s paper about RCPC (rate compatible punctured convolutional) codes (Hage-
nauer 1988), these values have been tabulated for punctured codes of rate Rc = 8/N with
N ∈ {9, 10, 11, . . . , 24}. These punctured codes have been implemented in the DAB sys-
tem. In the other systems, some different code rates are used. However, their performance
can be estimated from the closest code rates of that paper. We now discuss the performance
of these codes for (D)QPSK in a Rayleigh fading channel.

First we consider DQPSK and an ideally interleaved Rayleigh fading channel with the
isotropic Doppler spectrum of maximum Doppler frequency νmax. The Pd values depend on
the product νmaxTS . High values of this product cause a loss of coherency between adjacent
symbols, which degrades the performance of differential modulation. We first consider the
ideal case νmaxTS = 0. In practice, this is of course a contradiction to the assumption of
ideal interleaving. But we may think of a very huge (time and frequency) interleaver and
the limit of very low vehicle speed. Figure 4.50 shows the union bounds of the performance
curves in that case for several code rates. We have plotted the bit error probabilities as a
function of the SNR, not as a function of Eb/N0. The latter is better suited to compare
the power efficiencies, but for practical planning aspects the SNR is the relevant physical
quantity. Both are related by

SNR = T

TS

Rc log2(M)
Eb

N0



OFDM 211

0 2 4 6 8 10 12 14 16

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

U
ni

on
 b

ou
nd

 fo
r 

P b

8/32 8/24 8/20 8/16 8/14 8/12 8/11

8/10

Uncoded

Figure 4.50 Union Bounds for the bit error probability for DQPSK and νmaxTS = 0 for
Rc = 8/10, 8/11, 8/12, 8/14, 8/16, 8/20, 8/24, 8/32.

with M = 4 for (D)QPSK. Another reason to plot the different performance curves together
as a function of the SNR is that different parts of the data stream may be protected by
different code rates as it is the case for the DAB system discussed in Subsection 4.6.1.
Here, all parts of the signal are affected by the same SNR. For example, the curves of
Figure 4.50 are the basis for the design of the unequal error protection (UEP) scheme of
the DAB audio frame, where the most important header bits are better protected than the
audio scale factors that are better protected than the audio samples. For more details, see
(Hoeg and Lauterbach 2003; Hoeher et al. 1991). The curves show that there is a high degree
of flexibility to choose the appropriate error protection level for different applications. Note
that there are still intermediate code rates in between that have been omitted in order not
to overload the picture. Figure 4.51 shows the union bounds for the performance curves
for the same codes, but with a higher Doppler frequency corresponding to νmaxTS = 0.02.
For the DAB system (Transmission Mode I) with TS ≈ 1250 µs working at 225 MHz, this
corresponds to a moderate vehicle speed of approximately 80 km/h. One can see that the
curves become less steep, and flatten out. This effect is greater for the weak codes, and
it is nearly neglectible for the strong codes. In any case, this degradation is still small.
Figure 4.52 shows the union bounds for the performance curves for the same codes, but
with a higher Doppler frequency corresponding to νmaxTS = 0.05. For the DAB system
(Transmission Mode I) with TS ≈ 1250 µs working at 225 MHz, this corresponds to a
high vehicle speed of approximately 190 km/h. The curves flatten out significantly; the
loss is approximately 1.5 dB at Pb = 10−4 for Rc = 8/16, and it is more than 3 dB for
Rc = 8/12.
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Figure 4.51 Union Bounds for the bit error probability for DQPSK and νmaxTS = 0.02 for
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Figure 4.53 Union Bounds for the bit error probability for QPSK and Rc = 8/10, 8/11,
8/12, 8/14, 8/16, 8/20, 8/24, 8/32.

As long as the interleaving is sufficient, all these curves fit quite well to computer
simulations. We will show some DQPSK performance curves for simulations of the DAB
system in a subsequent section. One must keep in mind that high Doppler frequencies
also effect the orthogonality of the subcarriers, which will cause additional degradations.
However, this effect turns out to be significantly smaller than the DQPSK coherency loss
for each single subcarrier.

Figure 4.53 shows the union bounds of the performance curves for QPSK and the same
code rates. QPSK is not affected directly by the Doppler spread. However, the loss of
orthogonality will also degrade QPSK. In practice, the most significant loss due to high
Doppler frequencies turns out to be due to degradations in the channel estimation. In fact,
it was generally believed for many years that for this reason, in practice, coherent QPSK is
not really superior to differential QPSK, because this channel estimation loss approximately
compensates the gain. In a subsequent section, we will discuss this item and we will show
that this is not true.

4.5.2 OFDM systems with convolutional coding and M2-QAM

In this subsection, we analyze the performance of OFDM systems with M2-QAM modu-
lation, as it is used for DVB-T as well as the WLAN systems IEEE 802.11a and HIPER-
LAN/2. The channel coding of these systems is based on the same coding scheme as
discussed in the preceding subsection.
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