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Kurt Gödel 26
Knowledge Representation 32
Computational Logic 34
Artificial Intelligence 35
Web Architecture and Business Logic 36
The Semantic Web 37
Conclusion 40
Exercises 41

Interlude #2: Truth and Beauty 43

3 Turing: What is Machine Intelligence? 45

Overview 45
What is Machine Intelligence? 45
Alan Turing 46
Turing Test and the Loebner Prize 48
John Searle’s Chinese Room 49
Artificial Intelligence 49
Machine Intelligence 50
Semantic Networks and Frames 51
Reasoning with Semantic Networks 51
Computational Complexity 52
Description Logic 54
Ontology 55
Inference Engines 55
Software Agents 56
Adaptive Software 56
Limitations and Capabilities 57
Conclusion 57
Exercises 58

Interlude #3: Computing Machines 60

4 Berners-Lee: What is Solvable on the Web? 63

Overview 63
The World Wide Web 64
Tim Berners-Lee 64
The Semantic Web Roadmap 68
Logic on the Semantic Web 75
Conclusion 77



CONTENTS ix

Exercises 77

Interlude #4: Turing’s Test 79

PART II WEB ONTOLOGY AND LOGIC 81

5 Resource Description Framework 83

Overview 83
HTML Language 84
XML Language 84
RDF Language 86
Basic Elements 89
RDF Schema 95
XQuery: XML Query Language 100
Conclusion 102
Exercises 102

Interlude #5: The Chinese Room 104

6 Web Ontology Language 107

Overview 107
Ontology Language 108
Ontology Language Requirements 109
Compatibility of OWL and RDF/RDFS 109
The OWL Language 111
Basic Elements 112
OWL Example: Compute Ontology 117
Ontology Example: Birthplace 118
Applying OWL 120
OWL Capabilities and Limitations 120
Conclusion 121
Exercises 121

Interlude #6: Machines and Brains 123

7 Ontology Engineering 125

Overview 125
Ontology Engineering 125
Constructing Ontology 127
Ontology Development Tools 128
Ontology “Spot” Example 128
Ontology Methods 131



x CONTENTS

Ontology Sharing and Merging 132
Ontology Libraries 133
Ontology Matching 133
Ontology Mapping 135
Ontology Mapping Tools 135
Conclusion 136
Exercises 136

Interlude #7: Machines and Meaning 138

8 Logic, Rules, and Inference 143

Overview 143
Logic and Inference 144
Monotonic and Nonmonotonic Rules 147
Descriptive Logic 148
Inference Engines 149
RDF Inference Engine 152
Conclusion 155
Exercises 155

Interlude #8: Machines and Rules 157

9 Semantic Web Rule Language 161

Overview 161
Rule Systems 161
Rule Languages 162
Semantic Web Rule Language 163
Conclusion 164
Exercise 165

Interlude #9: Machines and Language 166

10 Semantic Web Applications 169

Overview 169
Semantic Web Applications 169
Semantic Web Services 171
Semantic Search 171
e-Learning 172
Semantic Bioinformatics 173
Enterprise Application Integration 173
Knowledge Base 175
Conclusion 175
Exercise 176

Interlude #10: Distributed Intelligence 177



CONTENTS xi

11 Web Ontology Language for Services 179

Overview 179
XML-based Web Services 180
Next Generation Web Services 180
Creating an OWL-S Ontology for Web Services 190
Conclusion 190
Exercises 190

Interlude #11: The Semantic Web 191

12 Semantic Search Technology 193

Overview 193
Search Engines 193
Semantic Search 196
Semantic Search Technology 197
Web Search Agents 199
Semantic Methods 201
Latent Semantic Index Search 201
TAP 203
Swoogle 204
Conclusion 206
Exercises 206

Interlude #12: The Halting Problem 207

13 Semantic Patterns and Adaptive Software 209

Overview 209
Patterns in Software Design 209
Pattern Frame 210
Semantic Patterns 211
Self-Organizing and Adaptive Software 213
Conclusion 214
Exercise 214

Interlude #13: The Semantic Web and Rules 215

14 Semantic Tools 217

Overview 217
Semantic Tools 217
Semantic Web Services Tools 221
Conclusion 224
Exercise 224

Interlude #14: The Semantic Web and Language 225



xii CONTENTS

15 Challenges and Opportunities 227

Overview 227
Semantic Doubts 228
Semantic Opportunities 229
The Challenges 229
Balancing Proprietary and Open Standards 231
Conclusion 232

Interlude #15: The Semantic Web and Zeno’s Paradox 234

Bibliography 235

Glossary 243

Acronyms 257

Index 259



FOREWORD

The modern world is becoming networked at an amazing rate. At the core of
this process of change is the revolutionary impact of information technology on
society through the World Wide Web (WWW). What is next in the development of
the WWW, an intelligent WWW? The authors of this enlightening book provide
a forward-looking approach to the development of an intelligent “semantic” web,
based on the classic works of Gödel, Turing, and Berners-Lee.

Gödel’s insights are essential in understanding the limits of logic applica-
tions through the discovery of decidability limits. Turing’s work defines the
basis of machine intelligence. The fresh new look at Berners-Lee sets up the
path for WWW evolution toward a new intelligent environment of the seman-
tic web.

The synergy of the ideas of Gödel, Turing, and Berners-Lee illustrate the
emergence of a coherent philosophy of machine intelligence and AI, which pro-
vides a focus for the well-written text of this book. This approach allows the
authors to give insightful answers to critical questions concerning the capa-
bility of the Web to provide for machine intelligence and complex problem
solving.

The creative use of interludes between the chapters as a parallel set of dialogs
allows the authors to delve into some of the most important philosophical issues
underlying the exciting advance toward a new ideal, a semantic web. This writing
device not only provides insight, but is a delightfully enjoyable complementary
approach to the technology discussions of the text.

xiii



xiv FOREWORD

Overall, this book provides synergistic analysis and critical thinking that is
highly relevant to the ongoing societal revolution in information technology. It
offers a unique melding of big ideas with a style and approach that makes it a
delightful reading experience.

PROFESSOR ALEX BORDETSKY

Department of Information Science
Naval Postgraduate School
Monterey, California



PREFACE

Tim Berners-Lee, Kurt Gödel, and Alan Turing are the pivotal pioneers who have
opened the door to the Information Revolution. Through their contributions, we
are witnessing the remarkable refashioning of the Information Age, which began
with the introduction of the computer in the 1950s, into the Information Revo-
lution as the World Wide Web evolves into a resource with intelligent features
and capabilities.

The contributions of Gödel (what is decidable?), Turing (what is machine
intelligence?), and Berners-Lee (what is solvable on the Web?) are central to just
how much “intelligence” can be projected onto the Web.

Web intelligence is an issue of philosophy as much as application. It has been
suggested that the next generation of Web architecture, the Semantic Web, creates
an Artificial Intelligence (AI) application that will make Web content meaningful
to computers, thereby unleashing a revolution of new abilities. More realistically,
however, the Semantic Web may add semantics to the Web along with some lim-
ited AI capabilities to produce a more useful Web. Creating the Semantic Web
with just the right balance between greater logic expressive power and achievable
computer reasoning complexity is still being questioned and analyzed. An overly
structured layering of many languages to deliver logic and machine processing
would probably over-design the future Web architecture leading to a top-down
command structure and weak adoption in the development community. The goal
of this book is to present and explore many of the challenging issues in achiev-
ing the appropriate balance of powerful reasoning with reasonable complexity
on the Web.

xv
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BACKGROUND

The Greek philosopher Aristotle considered intelligence to be the main distin-
guishing feature of humans when he described man as a “rational animal.” He
also established many precedents in the study of logic and began the process of
codifying syllogisms, a process later extended by the mathematician Leibnitz. In
addition to his work in developing the mathematics of calculus, Leibnitz initiated
an effort to represent human logic and reasoning as a series of mechanical and
symbolic tasks. He was followed by logicians, such as by George Boole, who
developed Boolean logic, paving the way for the use of mechanical rules to carry
out logical deductions.

While it is still not possible to resolve controversial differences of opinion over
the nature of human intelligence, it is possible to recognize certain attributes that
most would agree reflect the concept. These include such attributes as: the ability
to learn; the ability to assimilate information; the ability to organize and process
data; and the ability to apply knowledge to solve complex problems. By extension
then, many of these real intelligence attributes can be traced into the various areas
of research in the field of artificial intelligence. Artificial Intelligence addresses
the basic questions of what it means for a machine to have intelligence.

WHAT IS DECIDABLE?

In the 1930s, the mathematical logician, Kurt Gödel, established that, in certain
important mathematical domains, there are problems that cannot be solved or
propositions that cannot be proved, or disproved, and are therefore undecidable.
Whether a certain statement of first-order logic is provable as a theorem is one
example; and whether a polynomial equation in several variables has integer
solutions is another. While humans solve problems in these domains all the time,
it is not certain that arbitrary problems in these domains can always be solved.
This is relevant for artificial intelligence, since it is important to establish the
boundaries for a problem’s solution.

One critical area explored in this book involves the implications of Gödel’s
discovery for the World Wide Web.

WHAT IS MACHINE INTELLIGENCE?

In 1947, shortly after the end of World War II, English mathematician Alan Turing
first started to seriously explore intelligent machines. By 1956, John McCarthy
of MIT contributed the term “Artificial Intelligence.” By the late 1950s, there
were many researchers in AI most basing their work on programming computers.
Eventually, AI became more than a branch of science: It expanded far beyond
mathematics and computer science into fields such as philosophy, psychology,
and biology.
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However, in Turing’s seminal work, more than 50 years ago, he determined
that a computer can be called intelligent if it could deceive a human into believing
that it was human. His test—called the Turing Test—consists of a person asking
a series of questions of both a human subject and a machine. The questioning
is done via a keyboard so that the questioner has no direct interaction with the
subjects, human or machine. A machine with true intelligence will pass the Turing
Test by providing responses that are sufficiently human-like that the questioner
cannot determine which responder is human and which is not. A scaled down
version of the Turing Test, known as the Loebner Prize, requires that machines
“converse” with testers only on a limited topic in order to demonstrate their
intelligence.

As participants of the Information Age, we could ask: “Is the World Wide
Web intelligent?” For the most part, the Web can be considered to be a massive
information system with interconnected databases and remote applications pro-
viding various services. While these services are becoming more and more user
oriented, the concept of smart applications and services on the Web is still in its
infancy, and today we could not refer to the Web as intelligent.

In this book, however, we will examine how the Web may be pushing the
boundaries of intelligence and Turing’s Test. We will consider how the Semantic
Web’s goal of machine processing using powerful reasoning with reasonable
computational complexity relates to the concept of machine intelligence.

WHAT IS SOLVABLE ON THE WEB?

In the late 1980s, AOL, CompuServe, and Microsoft were investing fortunes
in proprietary networks that offered mostly duplicated and limited amounts of
information to the public for a fee. It was Tim Berners-Lee who designed a cheap,
efficient, and simple way for free universal access to great stores of information.
As a result, today’s Web is essentially hypertext for human consumption. The
next generation Web, however, may need to extend these capabilities to automatic
machine processing.

As the inventor of the World Wide Web, Tim Berners-Lee is also the originator
of the proposed next generation Web architecture: the Semantic Web. Currently,
his World Wide Web Consortium (W3C) team works to develop, extend, and
standardize the Web’s markup languages and tools. The objective of the Semantic
Web architecture is to provide a knowledge representation of linked data in order
to allow machine processing on a global scale. To provide this, the W3C has
developed a new generation of open markup languages that are now poised to
unleash the power, flexibility and, above all, logic of the next generation of
the Web.

While search engines that index Hypertext Markup Language (HTML) pages
find many answers to searches and cover a huge part of the Web, they also return
many irrelevant results. There is no notion of “correctness” to such searches. And
the growth of the Web has resulted in a combinatorial explosion of possibilities
that is becoming quite intractable.
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By contrast, logic (inference) engines could apply reasoning power to solve
problems on the Web. However, while these engines have been able to restrict
their output to provably correct solutions, they suffer from computation complex-
ity limitations as they go through the mass of connected data across the Web.
The issue of what is solvable on the Web is directly related to reaching a balance
of powerful expressive reasoning with reasonable computational complexity.

The objective of the Semantic Web is therefore to provide the best framework
for adding logic, inference, and rule systems to the Web. A combination of
mathematical and AI issues complicates this task. The logic must be powerful
enough to describe complex properties of objects, but not so powerful that agents
can be tricked when asked to consider a paradox.

If an engine of the future combines a reasoning engine with a search engine,
it may actually be able to produce useful results. It will be able to reach out to
indexes that contain very complete lists of all occurrences of a given term, and
then use logic to weed out all but those that can be of use in solving the given
problem.

Two important technologies for developing the Semantic Web are already
in place: eXtensible Markup Language (XML) and the Resource Description
Framework (RDF). eXtensible Markup Language lets anyone create their own
tags. Scripts or programs can make use of these tags in sophisticated ways, but
the scriptwriter has to know how the page writer uses each tag. In short, XML
allows users to add arbitrary structure to their documents, but says nothing about
what the structure means. Resource Description Framework was developed to
extend XML. The goal of RDF is to make work easier for autonomous agents
and automated services by supplying a rudimentary semantic capability.

The next steps up the Language Pyramid of the Web include the Web Ontology
Language (OWL) and a rule systems markup capability.

The Semantic Web will develop software agents that can interpret informa-
tion and perform a service automatically. Differences in terminology between
businesses will be resolved using standard abstract domain models, and data will
be exchanged using translation services. Software agents will be empowered to
auction, negotiate, and draft contracts automatically.

Achieving powerful reasoning with reasonable complexity is the ultimate goal
for the Semantic Web because it will lead to machine processing and services
automation on a global scale. The challenge is finding the best layering of ontol-
ogy, logic, and rule markup languages for the Semantic Web that will offer
solutions to the most useful Web information processing. Essentially, Berners-Lee
is designing the Semantic Web to find what is solvable on the Web.

THIS BOOK

Important mathematical and practical limitations present serious challenges for
development of the Semantic Web. These limitations touch some of the most
difficult problems in mathematics and logic, such as machine intelligence, unde-
cidability, paradox, recursion, and computational complexity. Throughout the
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book we struggle with both abstract and practical questions in order to delineate
both the opportunities and challenges.

In addition, we present Web Ontology and Logic: the solution of the W3C to
deliver machine processing and services automation on a global scale through
Semantic Web architecture built upon layers of open markup languages.

Finally, we highlight some of the philosophical issues that underpin the Infor-
mation Revolution with a threaded series of vignettes between the chapters.

Our goal with this book is to offer a stimulating as well as practical view of
“Thinking” on the Web.
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WHO THIS BOOK IS FOR

The primary audience for this book is the general tech-savvy public, as well as
computer science students and professional Web developers looking for insight
into the next generation Web architecture and technologies.

This book offers a balanced perspective for developing machine-processible
complex logic on the Web. It creates a vision of how solvable problems can
be logically addressed on the Web to produce a modest semblance of machine
intelligence. The unique advantage of this book is that it addresses these sophis-
ticated artificial intelligence (AI) concepts for the Web, but presents the material
at a level appropriate for a computer literate audience, as well as the computer
science student. The intent is to offer insight to the merely curious, as well as
the professional.

In addition, the audience for this book includes the general tech-savvy pub-
lic, software developers, Web designers and Web developers who are new to
application programming and looking to evaluate the direction of AI technology
applications; software architects interested in advanced semantic architecture, as
well as how AI and Web services relate to each other; and computer scientists,
mathematical logicians, educators and students who wish to gain experience with
Web logics and semantic technology.
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THE ORGANIZATION OF THIS BOOK

This book is organized into two parts: Part I, “What is Web Intelligence” and
Part II, “Web Ontology and Logic.”

We begin Part I (What is Web Intelligence) with a presentation of the devel-
opment of the Information Revolution and how the Web contributes to human
productivity (Chapter 1). Then in Chapters 2–4, we weave the contributions of
Gödel (what is decidable?), Turing (what is machine intelligence?), and Berners-
Lee (what is solvable on the Web?) into a coherent mosaic of intelligent Web
capabilities.

In addition, we highlight the more controversial philosophical issues through
the use of interludes: a threaded series of vignettes presented between chapters.
The point and counterpoint debate on many of the most controversial topics in
artificial intelligence (AI) attempts to lay bare the essential issues. But, before
we can achieve anything approaching AI or “thinking” on the Web, the next
generation Web architecture must be able to support the basic elements of logic
and automation.

In Part II, we present Web Ontology and Logic: The solution of the W3C
to deliver Semantic Web architecture built upon layers of open markup lan-
guages. The Semantic Web will support machine-processing capabilities that will
automate Web applications and services. Berners-Lee has suggested that Web
technologies would benefit from integration of the Semantic Web’s meaningful
content with Web Services’ business logic.

For the Semantic Web to provide intelligent features and capabilities, it will
have to trade-off the expressive power of new logic languages against the compu-
tational complexity of processing large semantic networks. The layered language
approach of the W3C seeks to implement a balanced approach toward building
the Semantic Web.

xxv
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Agents on the Semantic Web will perform tasks by seeking information from
Web resources while communicating with other Web agents. Agents are simply
pieces of software that work autonomously and proactively. In most cases, agents
will simply collect and organize information by utilizing metadata, ontologies,
and logic.

Part II (Web Ontology and Logic) begins with Chapter 5. This chapter opens
with our presentation of Semantic Web markup languages by introducing Re-
source Description Framework (RDF). Chapter 6 describes the Web Ontology
Language (OWL). In Chapter 7, Ontology Engineering is introduced, while in
Chapter 8 Logic, Inference and Rule Systems are discussed. Chapter 9 presents
the current state of development for the Semantic Web Rule Language (SWRL).

Achieving powerful reasoning with reasonable complexity is the ultimate goal.
The challenge is finding the best layering of ontology, logic, and rule markup
languages for the Semantic Web that will offer solutions to the most useful
Web applications. These include accomplishing important tasks automatically on
the Web, such as search, query, and information acquisition for collaborative
Web applications and services. In Chapter 10, the Semantic Web applications
are presented in general. Chapter 11 details Semantic Web Services. Chapter 12,
offers the latest in Semantic Search Technology. Chapter 13 discussed Semantic
Patterns and Adoptive Software that may play an important role in automation on
the Web. Chapter 14 summarizes the state of Semantic Tools. Finally, Chapter 15
summarizes the challenges and opportunities for the Semantic Web and Zeno’s
paradox.



ASSOCIATED RESOURCES

The Semantic Web Organization has developer software resources at http://www.
SemanticWeb.org and the World Wide Consortium can be found at http://www.
w3.org/Consortium/Activities. In addition, the DAML Services Coalition is avail-
able at http://www.daml.org/services/. MITs AI Laboratory hosts the OXYGEN
Project and is available at http://oxygen.lcs.mit.edu/. An associated Web site for
this book is available at http://www.web-iq.com to provide reference material,
errata, and discussion forums.
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PART I

WHAT IS WEB INTELLIGENCE?

Today, the world is experiencing the excitement of an historic change. We find
ourselves in the midst of an information revolution, the result of rapid advances
in technology built in great part upon the shoulders of three pivotal pioneers:
Kurt Gödel, Alan Turing, and Tim Berners-Lee. Through their contributions, we
are witnessing the remarkable refashioning of the Information Age, which began
in the 1950s, into the Information Revolution as the World Wide Web evolves
into a resource with intelligent capabilities.

The contributions of Gödel (what is decidable?), Turing (what is machine
intelligence?), and Berners-Lee (what is solvable on the Web?) are important
milestones toward just how much “intelligence” can be projected onto the Web.

While the capabilities and scope of today’s World Wide Web are impressive,
its continuing evolution into a resource with intelligent features and capabili-
ties presents many challenges. The traditional approach of building information
systems has consisted of custom-made, costly database applications. However,
this is changing. Information services are beginning to use generic components
and open global standards to offer widely accessible graphical presentations with
easier interaction. As a result, benefits are accruing to transactions over the Web
including such areas as: e-commerce, banking, manufacturing, and education.

At the heart of the Information Revolution is the transformation of the world
toward a knowledge economy with a knowledge society. Helping to forge this
transformation is the World Wide Web Consortium (W3C), which is working to
deliver global machine processing built upon layers of open markup languages.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.
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2 WHAT IS WEB INTELLIGENCE?

The key question is: “How far can we go in enhancing the expressive ability of
the Web while still offering tractable solutions?”

In Part I (what is Web Intelligence), we begin with a discussion of the devel-
opment of the Information Age and how the Web contributes information services
that benefit human productivity. Then, the contributions of Gödel in Chapter 2,
Turing in Chapter 3, and Berners-Lee in Chapter 4, are introduced and woven
into a portrait of potential intelligent Web capabilities.

Both abstract and practical questions of intelligence, logic, and solvability
are explored in order to delineate the opportunities and challenges facing the
development of Web capabilities. In addition, we highlight some of the philo-
sophical issues that underpin the Information Revolution with a threaded series
of vignettes or interludes that are presented in between the chapters.



1
EMPOWERING THE
INFORMATION AGE

OVERVIEW

It is widely accepted that the technology of today’s Information Age has had a
major impact on global communications and commerce, and that it will continue
to support major improvements in human productivity. However, while the World
Wide Web is making significant contributions to this progress, there remain many
challenges to its further development into a resource with intelligent features.

For the Information Age to achieve its full potential in improving human pro-
ductivity, at least two key new advances must still be achieved: (1) ubiquitous
access to transaction applications of all types; and (2) intelligent software appli-
cations enabling automated transactions.

For example, Web Services require human processing to be implemented. In
addition, Web Services rely on the interoperation of two competing proprietary
server frameworks to successfully communicate complex business logic. The
solution of the W3C to both of these problems is to deliver automatic machine
processing globally through a Web architecture utilizing layers of open markup
languages.

This chapter begins by highlighting what is meant by the concepts of “think-
ing” and “intelligent applications” on the Web. Then, the development of the
Information Age and the emergence of the Web as an empowering force for
global change is presented. We discuss the forces behind the Information Revolu-
tion that are transforming the world’s economic and social systems, and producing

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
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4 EMPOWERING THE INFORMATION AGE

the demand for intelligent features on the Web. Next are presented the limita-
tions of today’s Web and the need for intelligent automatic capabilities through
the development of the Semantic Web.

In addition, some of the philosophical issues that underpin the information
revolution are highlighted, by providing the first of a threaded series of vignettes
in Interlude #1 entitled “Thinking about Thinking,” following this chapter.

THINKING AND INTELLIGENT WEB APPLICATIONS

When the philosopher René Descartes proclaimed his famous observation “Cogito,
ergo sum,” he demonstrated the power of thought at the most basic level by deriving
an important fact (i.e., the reality of his own existence) from the act of thinking
and self-awareness.

Today, the term “thinking” is frequently loosely defined and ambiguously
applied. For that reason, it is important to provide a brief preview of what
we mean by the term in the context of intelligent applications on the World
Wide Web.

In general, thinking can be a complex process that uses concepts, their inter-
relationships, and inference or deduction, to produce new knowledge. However,
thinking is often used to describe such disparate acts as memory recall, arithmetic
calculations, creating stories, decision making, puzzle solving, and so on.

Some aspects of the concept of thinking can be inferred by recognizing that
an individual can be identified as intelligent if they have accurate memory recall,
the ability to apply valid and correct logic, and the capability to expand their
knowledge through learning and deduction. Ultimately, self-awareness and con-
sciousness are important if not central aspects of human intelligence, but these
characteristics prove much more difficult to analyze or emulate than other, more
direct indicators of intelligence.

The term “intelligence” can be applied to nonhuman entities as we do in the
field of Artificial Intelligence (AI). But frequently we mean something somewhat
different than in the case of human intelligence. For example, while one might
be quite impressed with the intelligence of a child prodigy who can perform
difficult arithmetic calculations quickly and accurately, a computer that could
perform the same calculations faster and with greater accuracy would not be
considered to be particularly intelligent. An individual who has rapid memory
recall and who has accumulated sufficient amounts of information to consistently
win games such as Scrabble, or Trivial Pursuit, might also be considered to be
very intelligent; while a computer storing much greater quantities of accessible
factual information would not.

It is recognized that human thinking involves complicated interactions within
the biological components of the brain, and that the process of learning is also
an important element of human intelligence. Increasingly, software applications
perform tasks that are sufficiently complex and human-like that the term intelli-
gent may be appropriate. Whereas AI can be seen as the science of machines that
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behave intelligently (or simulate intelligent behavior), the concept of intelligent
applications entails the efforts to take advantage of AI technologies to enhance
applications and make them act in more intelligent ways.

This brings us to the question of Web intelligence or intelligent software appli-
cations on the Web. The World Wide Web can be described as an interconnected
network of networks, but that does not go quite far enough. The present day Web
consists not only of the interconnected networks, servers, and clients, but also the
multimedia hypertext representation of vast quantities of information distributed
over an immense global collection of electronic devices. With software services
being provided over the Web, one can readily see an analogy to the human (or
machine) thinking process where information is stored, accessed, transferred, and
processed by electronic patterns in electrical devices and their interconnections.

However, the current Web consists primarily of static data representations
that are designed for direct human access and use. Search engines are one Web
technology designed to automatically process information from large numbers
of Web sites to deliver useful processed information, but the search methods
used today have rudimentary capabilities. The key to moving to the next level is
the improvement of the ability of software applications to communicate directly
with one another, and the representation of information in ways that are far more
usable by software applications.

An important framework for creating such meaningful abilities can be provided
by the proposed next generation of Web architecture: the Semantic Web.

Leading the Way

The Greek philosopher Aristotle considered intelligence to be the main distin-
guishing feature of humans when he described humans as “rational animals.”
He also established many precedents in the study of logic and began the pro-
cess of codifying syllogisms, a process later extended by other mathematicians.
Logicians then developed logic with mechanical rules to carry out deductions.

The nature of human intelligence is still controversial, but it is possible to
recognize certain attributes that most would agree reflect the concept. These
attributes include: the ability to learn, the ability to assimilate information, the
ability to organize and process data, and the ability to apply knowledge to solve
complex problems. Many of these real intelligence attributes can be traced into the
field of artificial intelligence. Artificial intelligence addresses the basic questions
of what it means for a machine to have intelligence.

There have been many contributors to the concepts of thinking, logic, and intel-
ligence, but in this book the focus will be on three pioneers who had a profound
affect in shaping the Information Revolution: Gödel, Turing, and Berners-Lee.

In the 1930s, the logician, Kurt Gödel, established that, in certain important
mathematical domains, there are problems that cannot be solved or propositions
that cannot be proved, or disproved, and are therefore undecidable. This is rele-
vant to the field of artificial intelligence because of the limits and boundaries that
can be inferred from Gödel’s insights. We will revisit Gödel and his contributions
to the Information Revolution in Chapter 2.
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In 1947, mathematician Alan Turing first started to seriously explore the con-
cept of intelligent machines. He determined that a computing machine can be
called intelligent if it could deceive a human into believing that it was human. His
test—called the Turing Test—consists of a person asking a series of questions
to both a human subject and a machine. The questioning is done via a key-
board so that the questioner has no direct interaction with the subjects; human or
machine. A machine with true intelligence will pass the Turing Test by providing
responses that are sufficiently human-like that the questioner cannot determine
which responder is human and which is not. We will investigate Turing and his
contributions to the Information Revolution in Chapter 3.

The inventor of the World Wide Web, Tim Berners-Lee, is also the originator of
the proposed next generation Web architecture, the Semantic Web. The objective
of the Semantic Web architecture is to provide a knowledge representation of
linked data in order to allow machine processing on a global scale. Chapter 4
presents Berners-Lee and his contributions to the Information Revolution. But
before the detailed discoveries of these pioneers are examined, let us find out
how the Information Age began and progressed until it became evident that an
intelligent Web was a necessary requirement for the fulfillment of the Information
Revolution.

THE INFORMATION AGE

We are accustomed to living in a world that is rapidly changing. This is true
in all aspects of our society and culture, but is especially true in the field of
information technology. Most are aware of the rapid advances in computer and
information technology as exemplified in “Moore’s law,” the observation made
in 1965 by Gordon Moore, co-founder of Intel, that the number of components
on integrated circuits had doubled every 18 months.

As a result, it is common to observe such rapid change and comment simply
that “things change.” But, even accepting the reality of rapid change, when can
we assess that the change has actually improved human productivity? And what
types of change can produce transformation on a global scale?

To gain an historical perspective of global change, take a brief look back.
Over the millennia, mankind has experienced two global revolutionary changes:
the Agricultural Revolution and the Industrial Revolution. Each produced over
a 100-fold factor of improvement in the access to basic human resources and
subsequently freed individuals to pursue higher level cultural and social goals.
In addition, over the past half century, many have been pondering the possibility
that the technological inventions of the Information Age may in fact be of such
scope as to represent a third revolutionary change: the Information Revolution.

Should the rapidly changing world of the Information Age be considered a
global revolutionary change on the scale of these earlier revolutions? In order
to address this issue we must compare it with the changes associated with the
Agricultural Revolution, which began around 8000 B.C. and continued through
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around 1700 A.D., and the Industrial Revolution, which began around 1700 and
is still continuing to spread across the underdeveloped world even today.

Ten thousand years ago, humans lived in migratory groups and with the
aid of flexible, rapidly evolving cultures, these loosely organized groups of
“hunter–gatherers” were able to adapt to virtually all the climate zones and envi-
ronmental niches on the planet, from the Arctic to temperate zones to the tropics.
They fed themselves by hunting, herding, fishing, and foraging. The essence of
hunting and gathering economies was to exploit many resources lightly rather
than to depend heavily on only a few. Small, mobile human populations sub-
sisted on whatever resources were available within their territory. In such small,
continuously moving communities, there was little opportunity for economic or
other kinds of specialization to develop. What one person knew and believed,
the entire group tended to know and believe. Life was communal; cultural and
technical knowledge and skills were widely diffused.

However, a major and dramatic turning point in human social development
occurred when humans discovered the utility of agriculture. Agriculture resulted
in living permanently in one place. Living in one spot permanently means exploit-
ing a relatively small amount of land very intensively and over a long period
of time.

To survive, agriculturalists had to collect all their food for the year at one or
two harvest times, rather than gathering year round. Nothing, therefore, could
be allowed to interrupt the harvest. This is due to a very narrow window of
opportunity for planting and cultivating. Under this kind of pressure, agricultural
communities became more time-conscious. Agriculturalists also had to store the
produce of their fields for the rest of the year, protect it from moisture, vermin,
and thieves, and learn to distribute supplies so the community could survive and
still have seed for next year’s planting. These conditions created a new kind of
life style.

While a hunter–gather acquired resources from 100 acres to produce an ade-
quate food supply, a single farmer needed only 1 acre of land to produce the
equivalent amount of food. It was this 100-fold improvement in land management
that fueled the agricultural revolution. It not only enabled far more efficient food
production, but also provided food resources well above the needs of subsistence,
resulting in a new era built on trade.

The Agricultural Revolution crept slowly across villages and regions, intro-
ducing land cultivation and a new way of life. During the long millennia that
this revolution progressed, the world population was divided into two compet-
itive categories: primitive and civilized. The primitive tribes continued in the
mode of hunting–gathering while the civilized communities worked the land.
The civilized communities produced foodstuffs for their own use with a surplus
to allow for trade.

Because farmers consumed what they produced directly and traded their sur-
plus locally, there was a close relationship between production and consump-
tion. However, as trade developed the Agricultural Revolution encouraged the
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construction of the roads that facilitated the exchange of specialized produce on
an expanding scale until it eventually become global.

This evolutionary transition to an agricultural basis for society was still incom-
plete when, by the end of the seventeenth century, the Industrial Revolution
unleashed a new global revolutionary force. Societies, up until this period, had
used human and animal muscle to provide the energy necessary to run the
economy. As late as the French revolution, millions of horses and oxen provided
the physical force that supported the European economy.

Where a single farmer and his horse had worked a farm, during the Industrial
Revolution, workers were able to use a single steam engine that produced 100
times the horsepower. Consequently, the Industrial Revolution placed a 100-fold
increase of mechanical power into the hands of the laborer. It resulted in the
falling cost of labor and this fueled the economic growth of the period. The
new industrialization process moved rapidly over Europe and across the other
continents. It utilized flowing water, wood, coal, oil, and gas to generate energy
that in turn produced an abundance of food and material goods.

In contrast to the agricultural cycle of planting and harvesting, the industrial
society followed the continuous linear timing of machines to build inventory
and maintain stored goods. This enabled consumers to be far removed from the
producer. The industrialization process, therefore, broke down the close relation-
ship between local production and consumption. The result was a stockpiling of
resources at strategic locations along the distribution path. Again this revolution-
ary change also stimulated the intellectual growth of the society in order to meet
the skill requirements for the workers.

The Industrial Revolution was defined by the application of power-driven
machinery to manufacturing. It was not until 1873 that a dynamo capable of
prolonged operation was developed. Through the nineteenth century the use of
electric power was limited by small productive capacity, short transmission lines,
and high cost. The coming of the railroads greatly facilitated the industrialization
process and the building of transcontinental railroads mimicked the early growth
of roads during the beginning of the Agricultural Revolution.

The Industrial Revolution became characterized by six basic characteristics:
Standardization: mass production of identical parts. Concentration: work and
energy maintained locally. Centralization: authoritative leadership. Specialization:
division of labor. Synchronization: work at the pace of machines. Maximization:
strategic planning.

One important development was the construction of the railroads that facili-
tated the exchange of raw materials into finished products on a global scale.

The 1950s—the decade that introduced the computer—began the latest historic
turning point, the Information Age. However, it did not approach its full potential
toward reducing information transaction costs until the computer was networked
for global communications beginning in the 1990s with the growth of the Internet.

Today, the Information Age is establishing a new set of rules to replace those
of the Industrial Revolution. For example, “standardization of parts” is being
replaced by parts “designed and manufactured to custom specifications.” And
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“concentration of workers” is being replaced by flexible work forces including
“telecommuters.” And most importantly, “concentration of stockpiles” is being
replaced by “just-in-time” inventory and reductions in planning uncertainty.

As a result, production and consumption are continuing to move further apart.
For many years, the falling cost of information has shifted power from the hands
of the producers into the hands of the consumer. Even so, the cost of information
has generally changed very slowly. The evolution of information distribution from
writing to the printing press took thousands of years. However, once moveable
type was developed, the transition rapidly accelerated. When significant drops in
the cost of information occurred, as a result of the printing press, only certain
types of organizations survived. From the ancient empires to the world’s industrial
giants, leaders have recognized that information is power. Controlling information
means keeping power.

In fact, it was the high cost of information that made early civilizations most
vulnerable. If a temple was sacked, it meant the loss of all available knowledge:
from when to plant crops to how to construct buildings. Information was expen-
sive to collect and maintain, and as empires rose and fell, the cost of information
remained high. Empires in China, India, and Europe all used large, expensive
bureaucracies to control information collection and dissemination.

The Roman Empire set the pace of communications by constructing 53,000
miles of roads, thereby eliminating the traditional dependence on water trans-
portation. The Empire lasted for centuries and spread its administration across
Europe, West Asia, and North Africa. Couriers traveled over Roman roads to the
furthest reaches of the Empire. Rome also moved the management of knowledge
from the temples to libraries for civil administration and learning. But for access
to information resources, one still had to go to the libraries, which meant that
information had limited distribution.

The invention of the printing press enabled common people to gain access to
scientific knowledge and political ideas. By the sixteenth century, information
moved into the hands of the people and out of the strict control of the state. In a
similar dramatic change, the invention of the telegraph produced the possibility
for instant widespread dissemination of information, thereby liberating economic
markets. So while there has been continuous improvement in information flow
for centuries, it is also clear that only within recent years has the pace accelerated
as a result of the computer and the Internet.

Today, there is a competitive collision of industrial-based organizations and
information-based systems. Information-based technology systems are the cat-
alysts for the rapid change that has led to the dissemination of information
throughout the workplace and home. The world’s leading nations are experienc-
ing a shift to knowledge-based economies requiring knowledge workers. These
knowledge workers must be highly educated and possess significant technology
skills. As a result, technology is facilitating globalization of the world economy
and requiring a more highly educated society.

While it is still to be determined if the Information Age will actually become
a revolution comparable in scope to the Agricultural and Industrial Revolutions,
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it remains a strong candidate. Indeed, service workers today complete knowl-
edge transactions many times faster through intelligent software using photons
over IP switching, in comparison to clerks using electrons over circuit switching
technology just a few decades ago.

By the mid-twentieth century, the explosion of available information required
greater information management and can be said to have initiated the Information
Age. As computer technology offered reduced information costs, it did more than
allow people to receive information. Individuals could buy, sell, and even create
their own information. Cheap, plentiful, easily accessible information became as
powerful an economic dynamic as land and energy.

The falling cost of information followed Moore’s law, which said that the price
performance of microprocessors doubled every 18 months. Starting in the 1950s,
mainframe computers cost $10 million/MIPS (Million Instructions Processed per
Second). By 1996, the comparable cost for the readily available PC was at
$1/MIPS.

While the computer has been contributing to information productivity since
the 1950s and has experienced the cost reduction due to Moore’s law, the result-
ing global economic productivity gains were slow to be realized. Until the late
1990s, networks were rigid and closed, and time to implement changes in the
telecommunication industry was measured in decades. Since then, the Web has
become the “grim reaper” of information inefficiency. For the first time, ordinary
people had real power over information production and dissemination. As the
cost of information dropped, the microprocessor in effect gave ordinary people
control over information about consumer products.

What makes the Web such a catalyst for change is its ability to take advantage
of the marginal cost of information both for business-to-consumer (B2C) and
business-to-business (B2B). While traditional company clerks once used electrons
over the phone system circuit switching technology, today’s service workers
can now process multiple orders acquired through automatic services through
intelligent software using photons over IP packet switching. Thus, the Web is the
least expensive of all communication media and is a natural marketplace.

Today, the service worker is beginning to see the productivity gains in rapidly
communicating knowledge transactions. A service worker can now complete
knowledge transactions 100 times faster using intelligent software and ubiqui-
tous computing in comparison to a clerk using written records. As a result,
the Information Revolution places a 100-fold increase in transaction speed into
the hands of the service worker. Therefore, the Information Revolution may be
based on the falling cost of information-based transactions, which in turn fuels
economic growth.

A defining feature of each revolution has been the requirement for more knowl-
edgeable and more highly skilled workers. The Information Age clearly signals
that this will be a major priority for its continued growth. We can expect the
Web to play a central role in the development of the Information Revolution
because it offers a powerful communication media that is itself becoming ever
more useful through intelligent applications.
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Over the past 50 years, the Internet/Web has grown into the global Information
Superhighway. Just as roads connected the traders of the Agricultural Revolution
and railroads connected the producers and consumers of the Industrial Revo-
lution, the Web is now connecting everybody to everybody in the Information
Revolution.

THE WORLD WIDE WEB

How is the World Wide Web managing knowledge and empowering the Infor-
mation Revolution? Does rapid change and improved information productivity
require more intelligent Web capabilities? What technologies offer the best oppor-
tunities for sustained powerful change? Let us explore these questions by briefly
evaluating the development and limitations of today’s Web technology.

The history of the Web extends back more than 40 years. Looking back, we
can find early signs of network architecture in the 1960s. The RAND Corporation
began research sponsored by the U.S. Air Force to determine how to develop
robust, distributed communication networks for military command and control
that could survive and function in the event of a nuclear attack.

This initial study led to the development of the Advanced Research Programs
Agency Network (ARPANET) an agency of the U. S. Department of Defense. In
addition to robustness, it promoted the sharing of supercomputers among scientific
researchers in the United States. ARPANET originally consisted of four nodes in
the western U.S. (the University of California at Los Angeles, SRI of Stanford,
California, the University of California at Santa Barbara, and the University of
Utah) connected in a system that was to become the precursor to the Internet.

The ARPANET was a success right from the very beginning. Over those
first few years, the network developed and expanded as new sites (nodes) were
added, and as new capabilities and features were introduced, such as software
and protocols to facilitate email and file transfers. Although the ARPANET was
originally designed to allow scientists to share data and access remote computers,
email quickly became the most popular application. The ARPANET became a
high-speed digital postoffice as people used it to collaborate on research projects.
It was a distributed system of “many-to-many” connections.

Transmission Control Protocol/Internet Protocol (TCP/IP), a suite of network
communications protocols used to connect hosts on the Internet was developed
to connect separate networks into a “network of networks” (e.g., the Internet).
These protocols specified the framework for a few basic services that everyone
would need (file transfer, electronic mail, and remote logon) across a very large
number of client and server systems. Several computers linked in a local network
can use TCP/IP (along with other protocols) within the local network just as
they can use the protocols to provide services throughout the Internet. The IP
component provides routing from the local to the enterprise network, then to
regional networks, and finally to the global Internet. Socket is the name for the
package of subroutines that provide access to TCP/IP.
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The mid-1980s marked a boom in the personal computer and superminicom-
puter industries. The combination of inexpensive desktop machines and powerful,
network-ready servers allowed many companies to join the Internet for the
first time.

Corporations began to use the Internet to communicate with each other and
with their customers. By 1990, the ARPANET was decommissioned, leaving only
the vast network-of-networks called the Internet with over 300,000 hosts.

The stage was set for the final step to move beyond the Internet, as three
major events and forces converged, accelerating the development of informa-
tion technology. These three events were the introduction of the World Wide
Web, the widespread availability of the graphical browser, and the unleashing of
commercialization.

In startling contrast, AOL, CompuServe, and Microsoft were investing fortunes
in proprietary networks that offered mostly duplicated and limited amounts of
information to the public, but for a fee. Tim Berners-Lee on the other hand was
designing a cheap, efficient, and simple way for universal access to great stores
of information for free.

In 1991, Berners-Lee, working at European Particle Physics Laboratory of
the European Organization for Nuclear Research, Conseil Européen pour la
Recherche Nucléaire, (CERN) in Switzerland, introduced the concept of the
World Wide Web.

The Web combined words, pictures, and sounds on Internet pages and pro-
grammers saw the potential for publishing information in a way that could be as
easy as using a word processor, but with the richness of multimedia.

Berners-Lee and his collaborators laid the groundwork for the open standards
of the Web. Their efforts included the Hypertext Transfer Protocol (HTTP) linking
Web documents, the Hypertext Markup Language (HTML) for formatting Web
documents, and the Universal Resource Locator (URL) system for addressing
Web documents.

Today, we reach the Web through commercial browsers, such as, Internet
Explorer or Netscape Navigator. These browsers are powerful applications that
read the markup languages of the Web, display their contents and collect data.

The primary language for formatting Web pages is HTML. With HTML the
author describes what a page should look like, what types of fonts to use, what
color the text should be, where paragraph marks come, and many more aspects
of the document. All HTML documents are created by using tags. Tags have
beginning and ending identifiers to communicate to the browser the beginning
and ending text formatted by the tag in question.

In 1993, Marc Andreesen and a group of student programmers at NCSA
(the National Center for Supercomputing Applications located on the campus
of University of Illinois at Urbana Champaign) developed a graphical browser
for the World Wide Web called Mosaic, which he later reinvented commer-
cially as Netscape Navigator. The graphical browser greatly stimulated Web
development.
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Soon studies of Web traffic began to show signs that all Web sites were not
“equidistant.” That is, some sites were acting as hubs and garnishing a dominant
share of the “through” traffic. In addition, some Web sites acted as prominent
sources of primary content, and became authorities on the topic, while other
sites, resembled high-quality guides acted as focused hub, directing users to
recommended sites. By 1994, the W3C was founded under the leadership of Tim
Berners-Lee to develop standards for the Web.

LIMITATIONS OF TODAY’S WEB

Over the past several decades, the Web has changed from a distributed, high-
reliability, open system, to a Web dominated by portals, such as Yahoo, Google,
AOL, and MSN, which control much of the traffic. While the W3C developed
open Web standards, vendors have been customizing their applications for effi-
cient business logic processing through their proprietary servers and applications.

By the year 2000, the introduction of Web Services led to a dichotomy of
Microsoft’s Windows (.NET) and Sun’s Java (J2EE) frameworks within the
server community infrastructure. As a result, the Web moved strongly toward
becoming a decentralized network with highly critical hubs. The eXensible
Markup Language (XML) was developed as a markup language based on
the principles and rules of Standard Generalized Markup Language (SGML)
and uses tags that are not predefined. This gives XML great flexibility, and
extensibility. The XML remains the interoperable bridge for exchanging data
between J2EE and .NET, and as a result XML is an essential support for both
Web Services’ frameworks.

Nevertheless, the problem with performing intelligent tasks, such as auto-
mated Web Services, is that they first require human assistance, and second
that they must rely on the interoperation and inefficient exchange of the two
competing proprietary server frameworks to successfully communicate complex
business logic.

The Web is still based on HTML, which describes how information is to be
displayed and laid out on a Web page for humans to read. In effect, the Web
has developed as a medium for display of information directly to humans; there
has been no real emphasis on establishing the capability for machine understand-
ing and processing of web-based information. HTML is not capable of being
directly exploited by information retrieval techniques; hence processing of Web
information is largely restricted to manual keywords searches.

Because the World Wide Web has its origin in the idea of hypertext, the
Web is focused on textual data enriched by illustrative insertions of audiovisual
materials. The status quo paradigm of the Web is centered on the client–server
interaction, which is a fundamentally asymmetric relationship between providers
inserting content onto the Web hypertext (the server) and users who essentially
read texts or provide answers to questions by filling out forms (the clients).

Today, the development complex networks of meaningful content remains
difficult. Web browsers are restricted to accessing existing information in a
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standard form. In addition, some of today’s basic Web limitations include search,
database support, interoperable applications, intelligent business logic, automa-
tion, security, and trust. As a result, the Information Revolution awaits the next
break-through to fully open the information flow.

THE NEXT GENERATION WEB

A new Web architecture called the Semantic Web offers users the ability to work
on shared knowledge by constructing new meaningful representations on the
Web. Semantic Web research has developed from the traditions of AI and ontol-
ogy languages and offers automated processing through machine-understandable
metadata.

Semantic Web agents could utilize metadata, ontologies, and logic to carry out
its tasks. Agents are pieces of software that work autonomously and proactively
on the Web to perform certain tasks. In most cases, agents will simply collect and
organize information. Agents on the Semantic Web will receive some tasks to per-
form and seek information from Web resources, while communicating with other
Web agents, in order to fulfill its task. The roadmap for building the Semantic
Web is discussed in detail in Chapter 4.

WHY INTELLIGENT UBIQUITOUS DEVICES
IMPROVE PRODUCTIVITY

For the Information Revolution to succeed, two key elements are necessary:
(1 ) ubiquitous access to transaction applications of all types and (2 ) intelligent
software applications producing automated transactions. The results could be
orders of magnitude improvement in all decision and financial transactions cre-
ating significant improvements in human productivity.

Ubiquitous access can be achieved through the World Wide Web just as soon
as small wireless devices become globally distributed: thereby extending the
reach of the desktop personal computer to the persons themselves. Intelligent
software applications can become available just as soon as the Semantic Web
offers intelligent automatic applications.

By applying the power of Moore’s law, wireless chip technology will allow
cellular carriers to build networks for less and promote all of the four basic
attributes of the Information Revolution: decentralization, reduced middle man-
agement, automatic knowledgeable customer service, and vertical and horizontal
organization.

As computers have evolved over the past several decades, they have become
smaller (main frames to handheld devices) and mobile (wired to wireless). The
numbers of computing machines ranges from consumer items (in the trillions),
home appliances (10s of billion), handheld devices (100 million), computers (10s
of million), and the Web (1).
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Within the next decade, the most prevalent computers may actually be
small mobile wireless devices that combine the capabilities of cell phones,
personal digital assistants (PDAs), pocket-sized PCs, and tablets. Their small
size, relatively low cost, and wide availability from many manufacturers will
ensure that many people will have one, or more. The computing environment of
small mobile wireless devices will be very different from today’s predominant
desktop computing environment.

How much faster will intelligent applications over wireless Web devices
improve productivity? No one knows. But accessible intelligent Web features
offer a significantly enhanced contribution to an Information Revolution.

Roughly one-half of today’s world economy involves some related office work.
This includes buying and selling transactions, banking applications, insurance,
government, and education forms, and business-to-business transactions. The
required information processing is currently being done mostly by specialized
humans and secondarily by machines. For the most part, information technology
has been a tool to improve the productivity of the human work force. Even in
that role, the Web is only beginning to scratch the surface of office work and
commercial transactions.

Banking, which typically involves straightforward, standardized transactions,
could be one of the first major areas for widespread small device wireless access.
The ubiquitous mobile phone is the new contender in financial services and it
carries with it the potential for much broader access. Unlike earlier experiments
with smart cards and PC banking services, mobile devices look like a natural
channel for consumer financial services. Mobile operators have built networks
and technology capable of cheap, reliable, and secure, person-to-merchant and
person-to-person payments. Wireless telecommunication can augment the pay-
ment system.

Small mobile devices using the Web will offer consumers as well as businesses
access to products and services anytime, anywhere, and by shifting even more
power from producers to consumers, the falling cost of information provides
a powerful feedback loop for the economic production cycle. The introduction
of millions of small devices at the fingertips of consumers no matter where
they are will require more Web Services. Web Services will enable information
transactions of every kind and automation of these activities will certainly mean
a fundamental empowerment of the Information Age to meet its true potential.

It is this need for ubiquitous connection to global computational resources that
is signaling the arrival of the Information Revolution connecting everybody to
everybody. All we are waiting for now is the intelligent, automatic applications
to make transactions occur at the speed of light.

CONCLUSION

This chapter presented the development of the Information Age and the emer-
gence of the Web as an empowering force for global change. From this chapter,
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we may conclude that: The Web empowers individuals on a global scale, but that
the evolution of the Web requires the development of more intelligent features.
The Semantic Web could play a vital role in transforming the Information Age
into the Information Revolution as intelligent automatic applications speed up
transactions. But, important limitations present challenges to developing Seman-
tic Web architecture. These limitations touch some of the most difficult problems
in mathematics and logic, such as machine intelligence, paradox, recursion, unde-
cidability, and computational complexity.

In the next chapters, we will continue to consider the contributions of Kurt
Gödel (what is decidable?), Alan Turing (what is machine intelligence?), and
Tim Berners-Lee (what is solvable on the Web?) and attempt to weave them
into a coherent portrait of AI on the Web. The result will provide insight into
the progress of the World Wide Web to empower the Information Revolution by
introducing “thinking” on the Web.

EXERCISES

1-1. Plot the trend of Moore’s law from 1970 to today. Then project processor
performance for the year 2020 based on Moore’s law.

1-2. Estimate the growth of small devices and desktop computers in the next 5
years. Plot the ratio of small devises to desktop computers.

1-3. List the possible uses for small devices that may develop within the next 5
years.

1-4. Explain how HTML limits the manipulation of information.
1-5. Consider how logic paradoxes could prevent finding solutions on the

Semantic Web.

Some of the interesting philosophical issues involved with Web intelligence
will be highlighted through the use of a threaded series of vignettes or interludes
presented between chapters. The following is the first interlude entitled “Thinking
about Thinking.”



Figure 1-1. Print Gallery. Used with permission from M. C. Escher’s “Print Gallery” ©
2005, The M. C. Escher Company-Holland, All rights reserved www.mcescher.com.



INTERLUDE #1: THINKING ABOUT
THINKING

John picked up the two double Latte Grandes and walked over to the corner table
near the fireplace where Mary was setting up the chess game. She took a pawn
of each color and concealed them in her hands before offering two fists to John.

Putting the cups down, he tapped Mary’s left hand and was pleased to see the
white piece as he took his chair.

John said “Playing chess always reminds me of the game between IBMs Deep
Blue Supercomputer and the reigning World Chess Champion at the time, Garry
Kasparov.” He glanced at the board, “d4, I think,” as he moved his pawn.

Mary said, “Me too.” Mary smiled to herself as she moved her own queen’s
pawn forward to d5. She knew that John had strong feelings about the limits of
true Artificial Intelligence and she hoped to gain an advantage by baiting him.
“That was the first time a computer won a complete match against the world’s
best human player. It took almost 50 years of research in the field, but a computer
finally was thinking like a human.”

John bristled slightly, but then realized that Mary was just poking a little fun.
Taking his next move, c4, he said “You can guess my position on that subject.
The basic approach of Deep Blue was to decide on a chess move by assessing
all possible moves and responses. It could identify up to a depth of about 14
moves and value-rank the resulting game positions using an algorithm developed
in advance by a team of grand masters. Deep Blue did not think in any real
sense. It was merely computational brute force.”

Mary reached over and took John’s pawn, accepting the gambit. “You must
admit,” she replied, “although Kasparov’s ‘thought’ processes were without a
doubt something very different than Deep Blue’s, their performances were very
similar. After all, it was a team of grand masters that designed Deep Blue’s
decision-making ability to think like them.”

John played his usual Nc3, continuing the main line of the Queen’s Pawn Gambit.
“You’ve made my point,” he exclaimed, “Deep Blue did not make its own deci-
sions before it moved. All it did was accurately execute, the very sophisticated
judgments that had been preprogrammed by the human experts.”
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“Let’s look at it from another angle,” Mary said as she moved Nf6. “Much like
a computer, Kasparov’s brain used its billions of neurons to carry out hundreds
of tiny operations per second, none of which, in isolation, demonstrates intelli-
gence. In totality, though, we call his play ‘brilliant’. Kasparov was processing
information very much like a computer does. Over the years, he had memorized
and pre-analyzed thousands of positions and strategies.”

“I disagree,” said John quickly moving e3. “Deep Blue’s behavior was merely
logic algebra—expertly and quickly calculated, I admit. However, logic estab-
lished the rules between positional relationships and sets of value-data. A fun-
damental set of instructions allowed operations including sequencing, branching,
and recursion within an accepted hierarchy.”

Mary grimaced and held up her hands, “No lectures please.” Moving to e6 she
added, “A perfectly reasonable alternative explanation to logic methods is to
use heuristics methods, which observe and mimic the human brain. In particu-
lar, pattern recognition seems intimately related to a sequence of unique images
connected by special relationships. Heuristic methods seem as effective in pro-
ducing AI as logic methods. The success of Deep Blue in chess programming is
important because it employed both logic and heuristic AI methods.”

“Now who’s lecturing,” responded John, taking Mary’s pawn with his bishop. “In
my opinion, human grandmasters do not examine 200,000,000 move sequences
per second.”

Without hesitation Mary moved c5 and said, “How do we know? Just because
human grandmasters are not aware of searching such a number of positions
doesn’t prove it. Individuals are generally unaware of what actually does go on
in their minds. Patterns in the position suggest what lines of play to look at,
and the pattern recognition processes in the human mind seem to be invisible to
the mind.”

John said, “You mean like your playing the same Queen’s Gambit Accepted line
over and over again?” as he castled.

Ignoring him, Mary moved a6 and said, “Suppose most of the chess player’s skill
actually comes from an ability to compare the current position against images of
thousands of positions already studied. We would call selecting the best position
(or image) insightful. Still, if the unconscious human version yields intelligent
results, and the explicit algorithmic Deep Blue version yields essentially the same
results, then why can’t I call Deep Blue intelligent too?”

John said, “I’m sorry, but for me you’ve overstated your case by calling Deep
Blue intelligent,” moving Qe2. He continued, “Would you like to reconsider your
position?”

Mary moved Nc3 and said, “Of course not, I still have plenty of options to think
about alone this line.”
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GÖDEL: WHAT IS DECIDABLE?

OVERVIEW

In Chapter 1, we suggested that small wireless devices connected to an intelligent
Web could produce ubiquitous computing and empower the Information Revolu-
tion. In the future, Semantic Web architecture is designed to add some intelligence
to the Web through machine processing capabilities. For the Semantic Web to
succeed, the expressive power of the logic added to its markup languages must be
balanced against the resulting computational complexity. Therefore, it is impor-
tant to evaluate both the expressive characteristics of logic languages, as well
as their inherit limitations. In fact, some options for Web logic include solutions
that may not be solvable through rational argument. In particular, the work of
Kurt Gödel identified the concept of undecidability where the truth or falsity of
some statements may not be determined.

This chapter reviews some of the basic principles of logic and related them
to the suitability for Web applications. First, the basic concepts of logic are
reviewed, and the various characteristics and limitations of logic analysis are
discussed. The First-Order Logic (FOL) and its subsets, such as Descriptive Logic
and Horn Logic, which offer attractive characteristics for Web applications, are
introduced next. These logic frameworks set the parameters for how expressive
Web markup languages can become.

Second, we investigate how logic conflicts and limitations in computer
programming and Artificial Intelligence (AI) have been handled in closed
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environments to date. We consider how errors in logic contribute to significant
‘bugs’ that lead to crashed computer programs.

Third, we review how Web architecture is used to partition the delivery of
business logic from the user interface. The Web architecture keeps the logic
restricted to executable code residing on the server and delivers user-interface
presentations residing within the markup languages traveling over the Web. The
Semantic Web changes this partitioned arrangement. Finally, the implications of
using logic in markup languages on the Semantic Web are discussed.

PHILOSOPHICAL AND MATHEMATICAL LOGIC

Aristotle described humans as a “rational animal” and established the study of
logic beginning with the process of codifying syllogisms. A syllogism is a kind
of argument in which there are three propositions, two of them premises, one
a conclusion.

Aristotle was the first to create a logic system that allowed predicates and
subjects to be represented by letters or symbols. His logic form allowed one to
substitute for subjects and predicates with letters (variables).

For example: If A is predicated of all B, and B is predicated of all C, then A is
predicated of all C. By predicated, Aristotle means B belongs to A, or all B’s are
A’s. For example, we can substitute subjects and predicates into this syllogism
to get: If all humans (B’s) are mortal (A), and all Greeks (C’s) are humans (B’s),
then all Greeks (C’s) are mortal (A). Today, Aristotle’s system is seen as mostly
of historical value.

Subsequently, other philosophers and mathematicians, such as Leibniz, devel-
oped methods to represent logic and reasoning as a series of mechanical and
symbolic tasks. They were followed by logicians who developed mechanical
rules to carry out logical deductions.

In logic, as in grammar, a subject is what we make an assertion about, and a
predicate is what we assert about the subject. Today, logic is considered to be the
primary reasoning mechanism for solving problems. Logic allows us to set up
systems and criteria for distinguishing acceptable arguments from unacceptable
arguments. The structure of arguments is based upon formal relations between
the newly produced assertions and the previous ones. Through argument we can
then express inferences. Inferences are the processes where new assertions may
be produced from existing ones.

When relationships are independent of the assertions themselves, we call them
“formal.” Through these processes, logic provides a mechanism for the extension
of knowledge. As a result, logic provides prescriptions for reasoning by machines,
as well as, by people.

Traditionally, logic has been studied as a branch of philosophy. However, since
the mid-1800s logic has been commonly studied as a branch of mathematics and
more recently as a branch of computer science. The scope of logic can therefore
be extended to include reasoning using probability and causality. In addition,
logic includes the study of structures of fallacious arguments and paradoxes.
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By logic then, we mean the study and application of the principles of reason-
ing, and the relationships between statements, concepts, or propositions. Logic
incorporates both the methods of reasoning and the validity of the results. In
common language, we refer to logic in several ways; logic can be considered as
a framework or system of reasoning, a particular mode or process of reasoning,
or the guiding principles of a field or discipline. We also use the term “logical” to
describe a reasoned approach to solve a problem or get to a decision, as opposed
to the alternative “emotional” approaches to react or respond to a situation.

As logic has developed, its scope has splintered into many distinctive branches.
These distinctions serve to formalize different forms of logic as a science.
The distinctions between the various branches of logic lead to their limitations
and expressive capabilities, which are central issues to designing the Semantic
Web languages. The following sections identify some of the more important
distinctions.

Deductive and Inductive Reasoning

Originally, logic consisted only of deductive reasoning that was concerned with
a premise and a resultant deduction. However, it is important to note that induc-
tive reasoning—the study of deriving a reliable generalization from observa-
tions—has also been included in the study of logic. Correspondingly, we must
distinguish between deductive validity and inductive validity.

The notion of deductive validity can be rigorously stated for systems of for-
mal logic in terms of the well-understood notions of semantics. An inference is
deductively valid if and only if there is no possible situation in which all the
premises are true and the conclusion false. Inductive validity on the other hand
requires us to define a reliable generalization of some set of observations. The
task of providing this definition may be approached in various ways, some of
which use mathematical models of probability.

Paradox

A paradox is an apparently true statement that seems to lead to a contradiction
or to a situation that defies intuition. Typically, either the statements in ques-
tion do not really imply the contradiction; or the puzzling result is not really a
contradiction; or the premises themselves are not all really true (or, cannot all
be true together). The recognition of ambiguities, equivocations, and unstated
assumptions underlying known paradoxes has often led to significant advances
in science, philosophy, and mathematics.

Formal and Informal Logic

Formal logic (sometimes called symbolic logic) attempts to capture the nature of
logical truth and inference in formal systems. This consists of a formal language,
a set of rules of derivation (often called rules of inference), and sometimes a
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set of axioms. The formal language consists of a set of discrete symbols, a
syntax (i.e., the rules for the construction of a statement), and a semantics (i.e.,
the relationship between symbols or groups of symbols and their meanings).
Expressions in formal logic are often called “formulas.”

The rules of derivation and potential axioms then operate with the language
to specify a set of theorems, which are formulas that are either basic axioms or
true statements that are derivable using the axioms and rules of derivation. In the
case of formal logic systems, the theorems are often interpretable as expressing
logical truths (called tautologies).

Formal logic encompasses a wide variety of logic systems. For example,
propositional and predicate logic are kinds of formal logic, as ARE tempo-
ral, modal, and Hoare logic, and the calculus of constructions. Higher order
logics are logical systems based on a hierarchy of types. For example, Hoare
logic is a formal system developed by the British computer scientist C. A. R.
Hoare. The purpose of such a system is to provide a set of logical rules by
which to reason about the correctness of computer programs with the rigor of
mathematical logic. The central feature of Hoare logic is the Hoare triple. A
triple describes how the execution of a piece of code changes the state of the
computation.

A Hoare triple is of the form:

{P} C {Q}
where P and Q are assertions and C is a command.

P is called the precondition and Q is the postcondition. Assertions are formulas
in predicate logic. An interpretation of such a triple is: “Whenever P holds for
the state before the execution of C, then Q will hold afterward.”

Alternatively, informal logic is the study of logic that is used in natural
language arguments. Informal logic is complicated by the fact that it may be
very hard to extract the formal logical structure embedded in an argument.
Informal logic is also more difficult because the semantics of natural language
assertions is much more complicated than the semantics of formal logical sys-
tems.

Mathematical Logic

Mathematical logic really refers to two distinct areas of research: the first is the
application of the techniques of formal logic to mathematics and mathematical
reasoning, and the second, is the application of mathematical techniques to the
representation and analysis of formal logic.

The boldest attempt to apply logic to mathematics was pioneered by philoso-
pher–logician Bertrand Russell. His idea was that mathematical theories were
logical tautologies, and his program was to show this by means of a reduction
of mathematics to logic. The various attempts to carry this out met with a series
of failures, such as Russell’s Paradox, and the defeat of Hilbert’s Program by
Gödel’s incompleteness theorems, which will be described shortly.
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Russell’s paradox represents either of two interrelated logical contradictions.
The first is a contradiction arising in the logic of sets or classes. Some sets can
be members of themselves, while others cannot. The set of all sets is itself a set,
and so it seems to be a member of itself. The null or empty set, however, must
not be a member of itself. However, suppose that we can form a set of all sets
that, like the null set, are not included in themselves. The paradox arises from
asking the question of whether this set is a member of itself. It is, if and only if,
it is not!

The second form is a contradiction involving properties. Some properties seem
to apply to themselves, while others do not. The property of being a property is
itself a property, while the property of being a table is not, itself, a table.

Hilbert’s Program was developed in the early 1920s, by German mathemati-
cian David Hilbert. It called for a formalization of all of mathematics in axiomatic
form, together with a proof that this axiomatization of mathematics is consistent.
The consistency proof itself was to be carried out using only what Hilbert called
“finitary” methods. The special epistemological character of this type of reason-
ing yielded the required justification of classical mathematics. It was also a great
influence on Kurt Gödel, whose work on the incompleteness theorems was moti-
vated by Hilbert’s Program. In spite of the fact that Gödel’s work is generally
taken to prove that Hilbert’s Program cannot be carried out, Hilbert’s Program
has nevertheless continued to be influential in the philosophy of mathematics,
and work on Revitalized Hilbert Programs has been central to the development
of proof theory.

Both the statement of Hilbert’s Program and its refutation by Gödel depended
on their work establishing the second area of mathematical logic, the applica-
tion of mathematics to logic in the form of proof theory. Despite the negative
nature of Gödel’s incompleteness theorems, a result in model theory can be
understood as showing how close logics came to being true: Every rigorously
defined mathematical theory can be exactly captured by a First-Order Logical
(FOL) theory. Thus it is apparent that the two areas of mathematical logic are
complementary.

Logic is extensively applied in the fields of artificial intelligence and com-
puter science. These fields provide a rich source of problems in formal logic. In
the 1950s and 1960s, researchers predicted that when human knowledge could
be expressed using logic with mathematical notation, it would be possible to
create a machine that reasons, or produces artificial intelligence. This turned
out to be more difficult than expected because of the complexity of human
reasoning.

In logic programming, a program consists of a set of axioms and rules. In
symbolic and mathematical logic, proofs by humans can be computer assisted.
Using automated theorem proving, machines can find and check proofs, as well as
work with proofs too lengthy to be written out by hand. However, the computation
complexity of carrying out automated theorem proving is a serious limitation. It
is a limitation that will be discussed in subsequent chapters, which significantly
impacts the Semantic Web.
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Decidability

In the 1930s, the mathematical logician, Kurt Gödel shook the world of math-
ematics when he established that, in certain important mathematical domains,
there are problems that cannot be solved or propositions that cannot be proved,
or disproved, and are therefore undecidable. Whether a certain statement of first-
order logic is provable as a theorem is one example; and whether a polynomial
equation in several variables has integer solutions is another. While humans solve
problems in these domains all the time, it is not certain that arbitrary problems
in these domains can always be solved. This is relevant for artificial intelligence
since it is important to establish the boundaries for a problem’s solution.

KURT GÖDEL

Kurt Gödel (shown Fig. 2-1) was born April 28, 1906 in Brünn, Austria–
Hungary (now Brno, the Czech Republic). He had rheumatic fever when he
was 6 years old and his health became a chronic concern over his lifetime.
Kurt entered the University of Vienna in 1923 where he was influenced by
the lectures of Wilhelm Furtwängler. Furtwängler was an outstanding mathe-
matician and teacher, but in addition he was paralyzed from the neck down,
and this forced him to lecture from a wheel chair with an assistant to write
on the board. This made a big impression on Gödel who was very conscious
of his own health.

As an undergraduate, Gödel studied Russell’s book Introduction to Mathe-
matical Philosophy. He completed his doctoral dissertation under Hans Hahn
in 1929. His thesis proved the completeness of the first-order functional cal-
culus. He subsequently became a member of the faculty of the University of
Vienna, where he belonged to the school of logical positivism until 1938.

Figure 2-1. Photo of Kurt Gödel.
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Gödel is best known for his 1931 proof of the “Incompleteness Theorems.”
He proved fundamental results about axiomatic systems showing that in any
axiomatic mathematical system there are propositions that cannot be proved
or disproved within the axioms of the system. In particular, the consistency
of the axioms cannot be proved.

This ended 100 years of attempts to establish axioms and axiom-based logic
systems that would put the whole of mathematics on this basis. One major
attempt had been by Bertrand Russell with Principia Mathematica (1910–1913).
Another was Hilbert’s formalism, which was dealt a severe blow by Gödel’s
results. The theorem did not destroy the fundamental idea of formalism, but it
did demonstrate that any system would have to be more comprehensive than
that envisaged by Hilbert. One consequence of Gödel’s results implied that a
computer can never be programmed to answer all mathematical questions.

In 1935, Gödel proved important results on the consistency of the axiom
of choice with the other axioms of set theory. He visited Göttingen in the
summer of 1938, lecturing there on his set theory research and returned to
Vienna to marry Adele Porkert in 1938.

After settling in the United States, Gödel again produced work of the
greatest importance. His paper “Consistency of the axiom of choice and of the
generalized continuum-hypothesis with the axioms of set theory” (1940) is a
classic of modern mathematics. In this, he proved that if an axiomatic system
of set theory of the type proposed by Russell and Whitehead in Principia
Mathematica is consistent, then it will remain so when the axiom of choice
and the generalized continuum hypothesis are added to the system. This did not
prove that these axioms were independent of the other axioms of set theory,
but when this was finally established by Cohen in 1963, he used the ideas of
Gödel. Gödel held a chair at Princeton from 1953 until his death in 1978.

Propositional Logic

Propositional logic (or calculus) is a branch of symbolic logic dealing with propo-
sitions as units and with the combinations and connectives that relate them. It
can be defined as the branch of symbolic logic that deals with the relationships
formed between propositions by connectives, such as compounds and connec-
tives, shown below:

Symbols Statement Connectives

p ∨ q “either p is true, or q is true, or both” Disjunction
p · q “both p and q are true” Conjunction
p ⊃ q “if p is true, then q is true” Implication
p ≡ q “p and q are either both true or both false” Equivalence

A “truth table” is a complete list of the possible truth values of a statement. We
use “T” to mean “true,” and “F” to mean “false” (or “1” and “0,” respectively).
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For example, p is either true or false. So its truth table has just 2 rows:

p

T

F

But the compound, p ∨ q, has 2 components, each of which can be true or false.
So there are four possible combinations of truth values. The disjunction of p with
q will be true as a compound whenever p is true, or q is true, or both:

p q p ∨ q

T T T

T F T

F T T

F F F

Truth tables are adequate to test validity, tautology, contradiction, contingency,
consistency, and equivalence. This is important because truth tables are a mechan-
ical application of the rules.

Propositional calculus is a formal system for deduction whose atomic formulas
are propositional variables. In propositional calculus, the language consists of
propositional variables (or placeholders) and sentential operators (or connectives).
A well-formed formula is any atomic formula or a formula built up from sentential
operators.

First-Order Logic

First-order logic, also known as first-order predicate calculus, is a systematic
approach to logic based on the formulation of quantifiable statements, such as
“there exists an x such that . . . ” or “for any x, it is the case that . . . ” An FOL
theory is a logical system that can be derived from a set of axioms as an extension
of First Order Arithmetic (FOA).

First-order logic is distinguished from higher order logic in that the values
“x” in the FOL statements are individual values and not properties. Even with
this restriction, FOL is capable of formalizing all of set theory and most of
mathematics. Its restriction to quantification of individual properties makes it
difficult to use for the purposes of topology, but it is the classical logical theory
underlying mathematics.

The branch of mathematics called Model Theory is primarily concerned with
connections between first-order properties and first-order structures. First-order
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languages are by their nature very restrictive and as a result many questions
cannot be discussed using them. On the other hand, FOLs have precise grammars.

Predicate calculus is quantificational and based on atomic formulas that are
propositional functions and modal logic. In Predicate calculus, as in grammar, a
subject is what we make an assertion about, and a predicate is what we assert
about the subject.

Automated Inference for FOL

Automated inference using FOL is harder than using Propositional Logic because
variables can take on potentially an infinite number of possible values from their
domain. Hence, there are potentially an infinite number of ways to apply the
Universal-Elimination rule of inference.

Godel’s Completeness Theorem says that FOL is only semidecidable. That is,
if a sentence is true given a set of axioms, there is a procedure that will determine
this. However, if the sentence is false, then there is no guarantee that a procedure
will ever determine this. In other words, the procedure may never halt in this
case. As a result, the Truth Table method of inference is not complete for FOL
because the truth table size may be infinite.

Natural deduction is complete for FOL, but is not practical for automated
inference because the “branching factor” in the search process is too large. This
is the result of the necessity to try every inference rule in every possible way
using the set of known sentences.

Let us consider the rule of inference known as Modus Ponens (MP). Modus
Ponens is a rule of inference pertaining to the IF/THEN operator. Modus Ponens
states that if the antecedent of a conditional is true, then the consequent must
also be true:

(MP) Given the statements p and if p then q, infer q.

The Generalized Modus Ponens (GMP) is not complete for FOL. However, GMP
is complete for Knowledge Bases (KBs) containing only Horn clauses.

Another very important logic that will be discussed in detail in Chapter 8, is
Horn logic. A Horn clause is a sentence of the form:

(Ax)(P1(x) ∧ P2(x) ∧ . . . ∧ Pn(x)) ⇒ Q(x)

where there are 0 or more Pi’s, and the Pi’s and Q are positive (i.e., unnegated)
literals.

Horn clauses represent a subset of the set of sentences representable in FOL.
For example: P(a) v Q(a) is a sentence in FOL, but is not a Horn clause.

Natural deduction using GMP is complete for KBs containing only Horn
clauses. Proofs start with the given axioms/premises in KB, deriving new sen-
tences using GMP until the goal/query sentence is derived. This defines a for-
ward chaining inference procedure because it moves “forward” from the KB to
the goal.
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For example: KB = All cats like fish, cats eat everything they like, and Molly
is a cat. In FOL then,

KB = (Ax) cat(x) ⇒ likes(x, Fish) (1)

(Ax)(Ay) (cat(x) ∧ likes(x, y)) ⇒ eats(x, y) (2)

cat(Molly) (3)

Query: Does Molly eat fish?

Proof:

Use GMP with (1) and (3) to derive: (4) likes(Molly, Fish)

Use GMP with (3), (4) and (2) to derive: eats(Molly, Fish)

Conclusion: Yes, Molly eats fish.

Description Logic

Description Logics (DLs) allow specifying a terminological hierarchy using a
restricted set of first-order formulas. The DLs have nice computational properties
(they are often decidable and tractable), but the inference services are restricted
to classification and subsumption. That means, given formulas describing classes,
the classifier associated with certain description logic will place them inside a
hierarchy. Given an instance description, the classifier will determine the most
specific classes to which the instance belongs.

From a modeling point of view, DLs correspond to Predicate Logic statements
with three variables suggesting that modeling is syntactically bound.

Descriptive Logic is one possibility for Inference Engines for the Semantic
Web. Another possibility is based on Horn Logic, which is another subset of
First-Order Predicate logic (see Fig. 2-2).

In addition, DL and rule systems (e.g., Horn Logic) are somewhat orthog-
onal, which means that they overlap, but one does not subsume the other. In
other words, there are capabilities in Horn logic that are complementary to those
available for DL.

Both DL and Horn Logic are critical branches of logic that highlight essential
limitations and expressive powers that are central issues to designing the Semantic
Web languages. They will be discussed further in Chapter 8.

Using Full First-Order Logic (FFOL) for specifying axioms requires a full-
fledged automated theorem prover. However, FOL is semidecidable and doing
inferencing becomes computationally untractable for large amounts of data and
axioms.

This means that in an environment like the Web, FFOL programs will not
scale to handle huge amounts of knowledge. Besides, full first theorem proving
would mean maintaining consistency throughout the Web, which is impossible.
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Figure 2-2. This diagram shows the relationship of DL and Horn Logic as subsets
of FOL.

Relating Logic Fragments

In Figure 2-2, the outer ellipse represents FOL-based formalisms. The Horn
rules are a subset as is the DL fragment of FOL. First-order logics includes
expressiveness beyond the overlap, notably: positive disjunctions; existentials;
and entailment of nonground and nonatomic conclusions.

Horn FOL is another fragment of FOL. Horn Logic Program (LP) is a slight
weakening of Horn FOL. “Weakening” here means that the conclusions from a
given set of Horn premises that are entailed according to the Horn LP formalism
are a subset of the conclusions entailed (from that same set of premises) according
to the Horn FOL formalism. However, the set of ground atomic conclusions is
the same in the Horn LP as in the Horn FOL. For most practical purposes (e.g.,
relational database query answering), Horn LP is thus essentially similar in its
power to the Horn FOL. Horn LP is a fragment of both FOL and nonmonotonic
LP. This discussion may seem esoteric, but it is precisely these types of issues
that will decide both the design of the Semantic Web, as well as its likelihood
to succeed.

Higher Order Logic

Higher Order Logics (HOLs) provide greater expressive power than FOL, but
they are even more difficult computationally. For example, in HOLs, one can have
true statements that are not provable (see discussion of Gödel’s Incompleteness
Theorem). There are two aspects of this issue: higher order syntax and higher
order semantics. If a higher order semantics is not needed (and this is often the
case), a second-order logic can often be translated into a FOL.

In first-order semantics, variables can only range over domains of individuals
or over the names of predicates and functions, but not over sets as such. In higher
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order syntax, variables are allowed to appear in places where normally predicate
or function symbols appear.

Predicate calculus is the primary example of logic where syntax and semantics
are both first order. There are logics that have higher order syntax, but first order
semantics. Under a higher order semantics, an equation between predicate (or
function) symbols is true, if and only if logics with a higher order semantics and
higher order syntax are statements expressing trust about other statements.

To state it another way, higher order logic is distinguished from FOL in several
ways. The first is the scope of quantifiers; in FOL, it is forbidden to quantify over
predicates. The second way in which higher order logic differs from FOL is in
the constructions that are allowed in the underlying type theory. A higher order
predicate is a predicate that takes one or more other predicates as arguments. In
general, a higher order predicate of order n takes one or more (n − 1)th-order
predicates as arguments (where n > 1).

Recursion Theory

Recursion is the process a procedure goes through when one of the steps of the
procedure involves rerunning a complete set of identical steps. In mathematics
and computer science, recursion is a particular way of specifying a class of
objects with the help of a reference to other objects of the class: A recursive
definition defines objects in terms of the already defined objects of the class. A
recursive process is one in which objects are defined in terms of other objects of
the same type. By using a recurrence relation, an entire class of objects can be
built up from a few initial values and a small number of rules.

The Fibonacci numbers (i.e., the infinite sequence of numbers starting 0, 1, 1,
2, 3, 5, 8, 13, . . . , where the next number in the sequence is defined as the sum
of the previous two numbers) is a commonly known recursive set.

The following is a recursive definition of person’s ancestors: One’s parents
are one’s ancestors (base case). The parents of any ancestor are also ancestors
of the person under consideration (recursion step).

Therefore, your ancestors include your parents, and your parents’ parents
(grandparents), and your grandparents’ parents, and everyone else you get by
successively adding ancestors.

It is convenient to think that a recursive definition defines objects in terms of a
“previously defined” member of the class. While recursive definitions are useful
and widespread in mathematics, care must be taken to avoid self-recursion, in
which an object is defined in terms of itself, leading to an infinite nesting (see
Fig. 1-1: “The Print Gallery” by M. C. Escher is a visual illustration of self-
recursion). (Figs. 2-4, 3-2, 4-2, 5-7, 6-4, 7-3, 8-5 are a progression of images
that illustrate recursion).

KNOWLEDGE REPRESENTATION

Let us define what we mean by the fundamental terms “data,” “information,”
“knowledge,” and “understanding.” An item of data is a fundamental element of
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an application. Data can be represented by populations and labels. Data is raw;
it exists and has no significance beyond its existence. It can exist in any form,
usable or not. It does not have meaning by itself.

Information on the other hand is an explicit association between items of
data. Associations represent a function relating one set of things to another set
of things. Information can be considered to be data that has been given mean-
ing by way of relational connections. This “meaning” can be useful, but does
not have to be. A relational database creates information from the data stored
within it.

Knowledge can be considered to be an appropriate collection of information,
such that it is useful. Knowledge-based systems contain knowledge as well as
information and data. A rule is an explicit functional association from a set of
information things to a specific information thing. As a result, a rule is knowl-
edge.

Information can be constructed from data and knowledge from information to
finally produce understanding from knowledge. Understanding lies at the highest
level. Understanding is an interpolative and probabilistic process that is cogni-
tive and analytical. It is the process by which one can take existing knowledge
and synthesize new knowledge. One who has understanding can pursue useful
actions because they can synthesize new knowledge or information from what
is previously known (and understood). Understanding can build upon currently
held information, knowledge, and understanding itself.

Artificial Intelligence systems possess understanding in the sense that they are
able to synthesize new knowledge from previously stored information and knowl-
edge. An important element of AI is the principle that intelligent behavior can be
achieved through processing of symbolic structures representing increments of
knowledge. This has produced knowledge-representation languages that allow the
representation and manipulation of knowledge to deduce new facts from the exist-
ing knowledge. The knowledge-representation language must have a well-defined
syntax and semantics system while supporting inference.

Three techniques have been popular to express knowledge representation and
inference: (1 ) logic-based approaches, (2 ) rule-based systems, and (3 ) frames
and semantic networks.

Logic-based approaches use logical formulas to represent complex relation-
ships. They require a well-defined syntax, semantics, and proof theory. The
formal power of a logical theorem proof can be applied to knowledge to derive
new knowledge. Logic is used as the formalism for programming languages
and databases. It can also be used as a formalism to implement knowledge
methodology. Any formalism that admits a declarative semantics and can be
interpreted both as a programming language and a database language is a knowl-
edge language. However, the approach is inflexible and requires great precision
in stating the logical relationships. In some cases, common sense inferences
and conclusions cannot be derived, and the approach may be inefficient, espe-
cially when dealing with issues that result in large combinations of objects or
concepts.
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Rule-based approaches are more flexible and allow the representation of
knowledge using sets of IF-THEN or other conditional rules. This approach
is more procedural and less formal in its logic. As a result, reasoning can be
controlled through a forward or backward chaining interpreter.

Frames and semantic networks capture declarative information about related
objects and concepts where there is a clear class hierarchy and where the principle
of inheritance can be used to infer the characteristics of members of a subclass.
The two forms of reasoning in this technique are matching (i.e., identification
of objects having common properties), and property inheritance in which prop-
erties are inferred for a subclass. Frames and semantic networks are limited to
representation and inference of relatively simple systems.

In each of these approaches, the knowledge-representation component (i.e.,
problem-specific rules and facts) is separate from the problem-solving and infer-
ence procedures.

For the Semantic Web to function, computers must have access to struc-
tured collections of information and sets of inference rules that they can use
to conduct automated reasoning. AI researchers have studied such systems and
produced today’s Knowledge–Representation (KR). This system is currently in
a state comparable to that of hypertext before the advent of the Web. Knowl-
edge–representation contains the seeds of important applications, but to fully
realize its potential, it must be linked into a comprehensive global system.

COMPUTATIONAL LOGIC

Programming a computer involves creating a sequence of logical instructions that
the computer will use to perform a wide variety of tasks. While it is possible to
create programs directly in machine language, it is uncommon for programmers
to work at this level because of the abstract nature of the instructions. It is better
to write programs in a simple text file using a high-level programming language
that can later be compiled into executable code.

The “logic model” for programming is a basic element that communicates
the logic behind a program. A logic model can be a graphic representation of
a program illustrating the logical relationships between program elements and
the flow of calculation, data manipulation, or decisions as the program executes
its steps.

Logic models typically use diagrams, flow sheets, or some other type of visual
schematic to convey relationships between programmatic inputs, processes, and
outcomes. Logic models attempt to show the links in a chain of reasoning about
relationships to the desired goal. The desired goal is usually shown as the last
link in the model.

A logic program may consist of a set of axioms and a goal statement. The
logic form can be a set of “IF-THEN” statements. The rules of inference are
applied to determine whether the axioms are sufficient to ensure the truth of the
goal statement. The execution of a logic program corresponds to the construction
of a proof of the goal statement from the axioms.
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In the logic programming model, the programmer is responsible for specifying
the basic logical relationships and does not specify the manner in which the
inference rules are applied. Thus

Logic + Control = Algorithms

The operational semantics of logic programs correspond to logical inference. The
declarative semantics of logic programs are derived from the term model. The
denotation of semantics in logic programs are defined in terms of a function that
assigns meaning to the program. There is a close relation between the axiomatic
semantics of imperative programs and logic programs.

The control portion of the equation is provided by an inference engine whose
role is to derive theorems based on the set of axioms provided by the programmer.
The inference engine uses the operations of resolution and unification to construct
proofs. Faulty logic models occur when the essential problem has not been clearly
stated or defined.

Program developers work carefully to construct logic models to avoid logic
conflicts, recursive loops, and paradoxes within their computer programs. As
a result, programming logic should lead to executable code without paradox
or conflict, if it is flawlessly produced. Nevertheless, we know that “bugs” or
programming errors do occur, some of which are directly or indirectly a result
of logic conflicts.

As programs have grown in size from thousands of line of code to millions of
lines, the problems of bugs and logic conflicts have also grown. Today, programs,
such as operating systems, can have >25 million lines of codes and are considered
to have hundreds of thousands of bugs, most of which are seldom encountered
during routine program usage.

Confining logic issues to beta testing on local servers allows programmers
reasonable control of conflict resolution. Now, consider applying many lines of
application code logic to the Semantic Web were it may access many information
nodes. The magnitude of the potential conflicts could be somewhat daunting.

ARTIFICIAL INTELLIGENCE

John McCarthy of MIT contributed the term AI and by the late 1950s, there
were many researchers in AI working on programming computers. Eventually,
AI expanded into such fields as philosophy, psychology and biology.

Artificial Intelligence is sometimes described in two ways: strong AI and weak
AI. Strong AI asserts that computers can be made to think on a level equal to
humans. Weak AI simply holds that some “thinking-like” features can be added
to computers to make them more useful tools. Examples of Weak AI abound:
expert systems, drive-by-wire cars, smart browsers, and speech recognition soft-
ware. These weak AI components may, when combined, begin to approach the
expectations of strong AI.
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Artificial Intelligence includes the study of computers that can perform cog-
nitive tasks including: understanding natural language statements, recognizing
visual patterns or scenes, diagnosing diseases or illnesses, solving mathematical
problems, performing financial analyses, learning new procedures for problem
solving, and playing complex games, like chess. A more detailed discussion on
AI on the Web and what is meant by machine intelligence will be provided in
Chapter 3.

WEB ARCHITECTURE AND BUSINESS LOGIC

So far, we have explored the basic elements, characteristics, and limitations of
logic and suggested that errors in logic contribute to many significant bugs that
lead to crashed computer programs. Next, we review how Web architecture is
used to partition the delivery of business logic from the user interface. The
Web architecture keeps the logic restricted to executable code residing on the
server and delivering user interface presentations residing within the markup
languages traveling along the Internet. This simple arrangement of segregating the
complexity of logic to the executable programs residing on servers has minimized
processing difficulties over the Web itself.

Today, markup languages are not equipped with logic connectives. So all com-
plex logic and detailed calculations must be carried out by specially compiled
programs residing on Web servers where they are accessed by server page frame-
works. The result is highly efficient application programs on the server that must
communicate very inefficiently with other proprietary applications using XML in
simple ASCII text. In addition, there is difficulty in interoperable programming
that greatly inhibits automation of Web Services.

Browsers, such as Internet Explorer and Netscape Navigator, view Web pages
written in HyperText Markup Language (HTML). The HTML program can be
written to a simple text file that is recognized by the browser and can call embed-
ded script programming. In addition, HTML can include compiler directives
that call server pages with access to proprietary compiled programming. As a
result, simple-text HTML is empowered with important capabilities to call com-
plex business logic programming residing on servers both in the frameworks of
Microsoft’s .NET and Sun’s J2EE. These frameworks support Web Services and
form a vital part of today’s Web.

When a request comes into the Web server, the Web server simply passes the
request to the program best able to handle it. The Web server does not provide
any functionality beyond simply providing an environment in which the server-
side program can execute and pass back the generated responses. The server-side
program provides functions as transaction processing, database connectivity, and
messaging.

Business logic is concerned with logic about: how we model real-world busi-
ness objects, such as accounts, loans, travel; how these objects are stored; how
these objects interact with each other, for example, a bank account must have
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an owner and a bank holder’s portfolio is the sum of his accounts; and who can
access and update these objects.

As an example, consider an online store that provides real-time pricing and
availability information. The site will provide a form for you to choose a product.
When you submit your query, the site performs a lookup and returns the results
embedded within an HTML page. The site may implement this functionality in
numerous ways.

The Web server delegates the response generation to a script; however, the
business logic for the pricing lookup is included from an application server. With
that change, instead of the script knowing how to look up the data and formulate
a response, the script can simply call the application server’s lookup service.
The script can then use the service’s result when the script generates its HTML
response.

The application server serves the business logic for looking up a product’s
pricing information. That functionality does not say anything about display or
how the client must use the information. Instead, the client and application server
send data back and forth. When a client calls the application server’s lookup
service, the service simply looks up the information and returns it to the client.

By separating the pricing logic from the HTML response-generating code, the
pricing logic becomes reusable between applications. A second client, such as a
cash register, could also call the same service as a clerk checking out a customer.

Recently, eXtensible Markup Language (XML) Web Services use an XML
payload to a Web server. The Web server can then process the data and respond
much as application servers have in the past.

The XML has become the standard for data transfer of all types of applications
and provides a data model that is supported by most data-handling tools and ven-
dors. Structuring data as XML allows hierarchical, graph-based representations
of the data to be presented to tools, which opens up a host of possibilities.

The task of creating and deploying Web Services automatically requires inter-
operable standards. The most advanced vision for the next generation of Web
Services is the development of Web Services over Semantic Web Architecture.

THE SEMANTIC WEB

Now let us consider using logic within markup languages on the Semantic Web.
This means empowering the Web’s expressive capability, but at the expense of
reducing Web performance.

The current Web is built on HTML and XML, which describes how informa-
tion is to be displayed and laid out on a Web page for humans to read. In addition,
HTML is not capable of being directly exploited by information retrieval tech-
niques. The XML may have enabled the exchange of data across the Web, but
it says nothing about the meaning of that data. In effect, the Web has devel-
oped as a medium for humans without a focus on data that could be processed
automatically.
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As a result, computers are unable to automatically process the meaning of
Web content. For machines to perform useful automatic reasoning tasks on these
documents, the language machines used must go beyond the basic semantics of
XML Schema. They will require an ontology language, logic connectives, and
rule systems.

By introducing these elements, the Semantic Web is intended to be a paradigm
shift just as powerful as the original Web. The Semantic Web will bring meaning
to the content of Web pages, where software agents roaming from page-to-page
can carry out automated tasks.

The Semantic Web will be constructed over the Resource Description Frame-
work (RDF) and Web Ontology Language (OWL). In addition, it will implement
logic inference and rule systems. These languages are being developed by the W3C.
Data can be defined and linked using RDF and OWL so that there is more effective
discovery, automation, integration, and reuse across different applications.

Figure 2-3 illustrates how Semantic Web languages are built upon XML and
climbs up the Markup Language Pyramid.

These languages are conceptually richer than HTML and allow representation
of the meaning and structure of content (interrelationships between concepts).
This makes Web content understandable by software agents, opening the way
to a whole new generation of technologies for information processing, retrieval,
and analysis.

If a developer publishes data in XML on the Web, it does not require much
more effort to take the extra step and publish the data in RDF. By creating
ontologies to describe data, intelligent applications will not have to spend time
translating various XML schemas.

An ontology defines the terms used to describe and represent an area of
knowledge. Although XML Schema is sufficient for exchanging data between
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parties who have agreed to the definitions beforehand, their lack of semantics pre-
vents machines from reliably performing this task with new XML vocabularies.

In addition, the ontology of RDF and RDF Schema (RDFS) is very limited
(see Chapter 5). The RDF is roughly limited to binary ground predicates and
RDF Schema is roughly limited to a subclass hierarchy and a property hierarchy
with domain and range definitions.

Adding an Ontology language will permit the development of explicit, for-
mal conceptualizations of models (see Chapter 6). The main requirements of
an onotology language include a well-defined syntax, a formal semantics, con-
venience of expression, an efficient reasoning support system, and sufficient
expressive power.

Since the W3C has established that the Semantic Web would require much
more expressive power than using RDF and RDFS would offer, the W3C has
defined OWL. The layered architecture of the Semantic Web would suggest that
one way to develop the necessary ontology language is to extend RDF Schema by
using the RDF meaning of classes and properties and adding primitives to support
richer expressiveness. However, simply extending RDF Schema would fail to
achieve the best combination of expressive power and efficient reasoning. The
layered architecture of the Semantic Web promotes the downward compatibility
and reuse of software that is achieved only with OWL Full (see Chapter 6), but
at the expense of computational intractability.

Both RDF and OWL (DL and Lite, see Chapter 6) are specializations of
predicate logic. They provide a syntax that fits well with Web languages. They
also define reasonable subsets of logic that offer a trade-off between expressive
power and computational complexity.

Semantic Web research has developed from the traditions of AI and ontology
languages. Currently, the most important ontology languages on the Web are
XML, XML Schema, RDF, RDF Schema, and OWL.

Agents are pieces of software that work autonomously and proactively. In
most cases, agent will simply collect and organize information. Agents on the
Semantic Web will receive some tasks to perform and seek information from
Web resources, while communicating with other Web agents, in order to fulfill
its task. Semantic Web agents will utilize metadata, ontologies, and logic to carry
out its tasks.

In a closed environment, Semantic Web specifications have already been used
to accomplish many tasks, such as data interoperability for business-to-business
(B2B) transactions. Many companies have expended resources to translate their
internal data syntax for their partners. As the world migrates toward RDF and
ontologies, interoperability will become more flexible to new demands.

An inference is a process of using rules to manipulate knowledge to produce
new knowledge. Adding logic to the Web means using rules to make inferences
and choosing a course of action. The logic must be powerful enough to describe
complex properties of objects, but not so powerful that agents can be tricked by
a paradox. A combination of mathematical and engineering issues complicates
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this task. A more detailed presentation on paradoxes on the Web and what is
solvable on the Web will be provided in the next few chapters.

Inference Engines for the Semantic Web

Inference engines process the knowledge available in the Semantic Web by
deducing new knowledge from already specified knowledge. Higher Order Logic
(HOL)-based inference engines have the greatest expressive power among all
known logics, such as the characterization of transitive closure. However, higher
order logics do not have nice computational properties. There are true statements,
which are unprovable (Gödel’s Incompleteness Theorem).

Full First-Order Logic based inference engines for specifying axioms requires
a full-fledged automated theorem prover, which is semidecidable, but inferencing
is computationally not tractable for large amounts of data and axioms.

This means that in an environment like the Web, HOL and FFOL programs
would not scale up for handling huge amounts of knowledge. Besides, full first
theorem proving would mean maintaining consistency throughout the web, which
is impossible.

Predicate calculus is the primary example of logic where syntax and semantics
are both first order. From a modeling point of view, DL correspond to Predicate
Logic statements with three variables suggesting that modeling is syntactically
bound and is a good candidate language for Web logic. Other possibilities for
inference engines for the Semantic Web are languages based on Horn Logic,
which is another fragment of First-Order Predicate logic (see Fig. 2-2).

In addition, DL and rule systems (e.g., Horn Logic) have different capa-
bilities. Both Descriptive Logic and Horn Logic are critical branches of logic
that highlight essential limitations and expressive powers that are central issues
to designing the Semantic Web languages. They will be discussed further in
Chapters 6–9.

CONCLUSION

For the Semantic Web to provide machine processing capabilities, the logic
expressive power of mark-up languages must be balanced against the result-
ing computational complexity of reasoning. This chapter, examined both the
expressive characteristics of logic languages, as well as, their inherit limitations.
First-Order Logics (FOL) fragments, such as Descriptive Logic and Horn Logic
offer attractive characteristics for Web applications and set the parameters for
how expressive Web markup languages can become.

The concept of Artificial Intelligence (AI) and how logic is applied in computer
programming was also reviewed. After exploring the basic elements, character-
istics, and limitations of logic and suggesting that errors in logic contribute to
many significant “bugs” that lead to crashed computer programs, we reviewed
how Web architecture is used to partition the delivery of business logic from the
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user interface. The Web architecture keeps the logic restricted to executable code
residing on the server and delivering user interface presentations residing within
the markup languages traveling along the Internet. Finally, the implications of
using logic within markup languages on the Web through the development of the
Semantic Web was discussed.

Our conclusions from this chapter include the idea that logic is the foundation
of knowledge representation that can be applied to AI in general and the World
Wide Web specially. Logic can provide a high-level language for expressing
knowledge and has high expressive power. Logic has a well-understood formal
semantics for assigning unambiguous meaning to logic statements. In addition, we
saw that proof systems exist that can automatically derive statements syntactically
from premises. Predicate logic uniquely offers a sound and complete proof system
while higher order logics do not. By tracking the proof to reach its consequence,
the logic can provide explanations for the answers.

Currently, complex logic and detailed calculations must be carried out by
specially compiled programs residing on Web servers where they are accessed
by server page frameworks. The result is highly efficient application programs
on the server that must communicate very inefficiently with other proprietary
applications using XML in simple ASCII text. In addition, this difficulty for
interoperable programs greatly inhibits automation of Web Services. The Seman-
tic Web offers a way to use logic in the form of Descriptive Logic or Horn Logic
on the Web.

EXERCISES

2-1. Explain how logic for complex business calculations is currently carried out
through .NET and J2EE application servers.

2-2. Explain the difference between FOL and HOL.
2-3. Why is it necessary to consider less powerful expressive languages for the

Semantic Web?
2-4. Why is undeciability a concern on the Web?

Website http://escherdroste.math.leidenuniv.nl/ offers the mathematical struc-
ture behind Escher’s Print Gallery using the Escher and the Droste effect. This
mathematical structure answers some questions about Escher’s picture, such as:
What’s in the blurry white hole in the middle? This project is an initiative of
Hendrik Lenstra of the Universiteit Leiden and the University of California at
Berkeley. Bart de Smit of the Universiteit Leiden runs the project (see Figure
2-1).



Figure 2-4. Escher and the Droste effect (http://escherdroste.math.leidenuniv.nl/)



INTERLUDE #2: TRUTH AND BEAUTY

As John passed with a sour look on his face, Mary looked up from her text book
and asked, “Didn’t you enjoy the soccer game?”

“How can you even ask that when we lost?” asked John gloomily.

“I think the team performed beautifully, despite the score,” said Mary.

This instantly frustrated John and he said, “Do you know Mary that sometimes I
find it disarming the way you express objects in terms of beauty. I find that simply
accepting something on the basis of its beauty can lead to false conclusions?”

Mary reflected upon this before offering a gambit of her own, “Well John, do
you know that sometimes I find that relying on objective truth alone can lead to
unattractive conclusions.”

John became flustered and reflected his dismay by demanding, “Give me an
example.”

Without hesitation, Mary said, “Perhaps you will recall that in the late 1920s,
mathematicians were quite certain that every well-posed mathematical question
had to have a definite answer—either true or false. For example, suppose they
claimed that every even number was the sum of two prime numbers,” referring
to Goldbach’s Conjecture, which she had just been studying in her text book.
Mary continued, “Mathematicians would seek the truth or falsity of the claim
by examining a chain of logical reasoning that would lead in a finite number of
steps to prove if the claim were either true or false.”

“So mathematicians thought at the time,” said John. “Even today most people
still do.”

“Indeed,” said Mary. “But in 1931, logician Kurt Gödel proved that the math-
ematicians were wrong. He showed that every sufficiently expressive logical
system must contain at least one statement that can be neither proved nor dis-
proved following the logical rules of that system. Gödel proved that not every
mathematical question has to have a yes or no answer. Even a simple question
about numbers may be undecidable. In fact, Gödel proved that there exist ques-
tions that while being undecidable by the rules of logical system can be seen to
be actually true if we jump outside that system. But they cannot be proven to be
true.”
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“Thank you for that clear explanation,” said John. “But isn’t such a fact simply a
translation into mathematic terms of the famous Liar’s Paradox: ‘This statement
is false.’ ”

“Well, I think it’s a little more complicated than that,” said Mary. “But Gödel
did identify the problem of self-reference that occurs in the Liar’s Paradox.
Nevertheless, Gödel’s theorem contradicted the thinking of most of the great
mathematicians of his time. The result is that one cannot be as certain as the
mathematician had desired. See what I mean, Gödel may have found an impor-
tant truth, but it was—well to be frank—rather disappointingly unattractive,”
concluded Mary.

“On the contrary,” countered John, “from my perspective it was the beauty of
the well-posed mathematical question offered by the mathematicians that was
proven to be false.”

Mary replied, “I’ll have to think about that.”



3
TURING: WHAT IS MACHINE
INTELLIGENCE?

OVERVIEW

Web intelligence is an issue of philosophy as much as application. It has been
suggested that the next generation of Web architecture, the Semantic Web, creates
an Artificial Intelligence (AI) application that will make Web content meaningful
to computers thereby unleashing a revolution of new abilities. More realistically,
however, the Semantic Web will add semantics to the Web along with some
limited AI capabilities to produce a more useful Web. The balance between
greater logic expressive power and solvable computer reasoning complexity is
still being questioned and evaluated.

Alan Turing was one of the great thinkers of the twentieth century, and his
contributions in the area of machine intelligence were seminal. This chapter
provides an overview of Turing’s contributions and discusses some of the key
ideas emanating from his work. In addition, we engage in a discussion of the
meaning of machine intelligence and offer some perspective on how making
content on the Web machine processible will contribute toward Web intelligence.

In Interlude #3 at the end of this chapter, we present a vignette entitled,
“Turing’s test” to highlight some of these ideas.

WHAT IS MACHINE INTELLIGENCE?

Alan Turing, while acting as the leading cryptography expert to break the German
codes during the Second World War, formulated the ideas that emerged after the
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war as Intelligent Machinery, and are now referred to as AI. Key to this field of
study is the definition of what is meant by the terms “thinking” and “intelligence.”

Thinking is often ambiguously defined, but generally can be applied to a
complex processes that uses concepts, their interrelationships, and inference to
produce new knowledge. We can extend the concept of thinking and identify an
intelligent individual as one who is capable of accurate memory recall or able to
apply logic to extend knowledge.

It is possible to extend the description of intelligence to nonhuman entities as
well, such as in AI. But we frequently mean something different than in the case
of human intelligence. For example, while one might be quite impressed with the
intelligence of a child prodigy who can perform difficult arithmetic calculations
quickly and accurately, a computer that could perform the same calculations
faster and with greater accuracy would not be considered intelligent.

While it is still not possible to resolve controversial differences of opinion over
the nature of human intelligence, it is possible to recognize certain attributes that
most would agree reflect the concept. These include such elements as: the ability
to learn; the ability to assimilate; the ability to organize and process information;
and the ability to apply knowledge to solve complex problems. By extension then,
many of these attributes of human intelligence can be traced into the various areas
of research in the field of artificial intelligence. Artificial intelligence addresses
the basic questions of what it means for a machine to have intelligence.

In 1947, shortly after the end of World War II, English mathematician Alan
Turing first started to seriously explore the idea of intelligent machines. By
1956, John McCarthy of MIT coined the term Artificial Intelligence, and by
the late 1950s, there were many researchers in AI, most basing their work on
programming computers. Eventually, AI became more than a branch of science:
it expanded far beyond mathematics and computer science into fields such as
philosophy, psychology, and biology.

ALAN TURING

Alan Mathison Turing was one of the great pioneers of the computer field. He
designed “The Turing machine” and “Turing’s test.” As a mathematician he
applied the concept of the algorithm to digital computers. His research into
the relationships between machines and Nature created the field of AI. His
insights opened the door into the information age.

Turing was born in London, U.K., on June 23, 1912 (see Fig. 3-1). He had
a difficult childhood, and was separated from his parents for long periods of
time. He struggled through his school years, but he excelled in mathematics.
He entered King’s College, Cambridge, in 1931 to study mathematics.

He took an early interest in the works of von Neumann, Einstein, Edding-
ton, and Russell’s Introduction to Mathematical Philosophy.

By 1933, Turing’s interest in mathematical logic intensified. He suggested
that a purely logic-based view of mathematics was inadequate; and that
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Figure 3-1. Photo of Alan Turing.

mathematical propositions possessed a variety of interpretations. Turing’s
achievements at Cambridge were primarily centered on his work in proba-
bility theory. However, he began to focus his attention on the question of
mathematical decidability. In 1936, he published the paper On Computable
Numbers, with an Application to the Entscheidungsproblem. Turing introduced
the idea of a computational machine, now called the “Turing machine,” which
in many ways became the basis for modern computing (see Interlude #3). The
Turing machine was an abstract device intended to help investigate the extent
and limitations of computation. A Turing machine is a “state machine” that
can be considered to be in any one of a finite number of states. Instructions
for a Turing machine consist of specified conditions under which the machine
will transition between one state and another using a precise, finite set of rules
(given by a finite table) and depending on a single symbol it read from a tape,
representing the state of the machine.

A Turing machine includes a one-dimensional tape, theoretically of infinite
length, divided into cells. Each cell contains one symbol, either “0” or “1.” The
machine has a read–write head to scan a single cell on the tape. This read–write
head can move left and right along the tape to scan successive cells.

The action of a Turing machine is determined completely by (1) the current
state of the machine; (2) the symbol in the cell currently being scanned by the
head; and (3) a table of transition rules, which serves as the “program” for
the machine. If the machine reaches a situation in which there is not exactly
one transition rule specified, then the machine halts.

In modern terms, the tape represents the memory of the machine, and the
read–write head represents the memory bus through which data is accessed
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(and updated) by the machine. Two important factors are (1) the machine’s
tape is infinite in length; and (2) a function will be Turing-computable if
there exists a set of instructions that will result in the machine computing
the function regardless of how long it takes; that is, the function will be
successfully computed in a finite number of steps.

These two assumptions ensure that no computable function will fail to
be computable on a Turing machine (i.e., Turing computable) solely because
there is insufficient time or memory to complete the computation.

Turing defined a computable number as a real number whose decimal
expansion could be produced by a Turing machine. He showed that, although
only countable many real numbers are computable, most real numbers are not
computable (e.g., irrational numbers). He then described a number that is not
computable and remarked that this seemed to be a paradox since he appeared
to have described, in finite terms, a number that cannot be described in finite
terms. However, Turing understood the source of the apparent paradox. It
is impossible to decide (using another Turing machine) whether a Turing
machine with a given table of instructions will output an infinite sequence
of numbers. Turing’s paper contains ideas that have proved of fundamental
importance to mathematics and to computer science ever since.

In 1939, he was recruited to work for the British Government breaking
the German Enigma codes. Together with W. G. Welchman, Turing devel-
oped the Bombe, a machine based on earlier work by Polish mathemati-
cians, which, from late 1940, was decoding messages sent by the Enigma
machines of the German Luftwaffe. By the middle of 1941, Turing’s sta-
tistical approach, together with captured information, had led to the German
Navy messages being decoded, using the first practical programmed computer,
called Colossus.

In March 1946, Turing submitted a design proposing the Automatic Comput-
ing Engine (ACE). Turing’s design was a prospectus for a modern computer.

In 1950, Turing published Computing Machinery and Intelligence in the
journal Mind. It is a remarkable work on questions that would become increas-
ingly important as the field of computer science developed. He studied prob-
lems that today lie at the heart of artificial intelligence. In his 1950 paper, he
suggested what has become known as a Turing’s test, still the acid test for
recognizing intelligence in a machine. Turing died of cyanide poisoning, an
apparent suicide, in 1954.

TURING TEST AND THE LOEBNER PRIZE

In Turing’s seminal work entitled Computing Machinery and Intelligence more
than 50 years ago, he suggested that a computer can be called intelligent if it
could deceive a human into believing that it was human. His test—called the
Turing test—consists of a person asking a series of questions to both a human
subject and a machine (see Interlude #4). The questioning is done via a keyboard
so that the questioner has no direct interaction. A machine with true intelligence
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will pass the Turing test by providing responses that are sufficiently human-like
that the questioner cannot determine which responder is human. A scaled down
version of the Turing test, known as the Loebner Prize, requires that machines
“converse” with testers only on a limited topic in order to demonstrate their
intelligence.

JOHN SEARLE’S CHINESE ROOM

While AI enthusiasts have pursued and promoted technologies related to machine
intelligence, doubts about the possibility of producing intelligent machines have
also continued over the years. In 1980, John Searle, a philosophy professor at
the University of California, Berkeley, came up with a thought experiment called
the Chinese Room.

The experiment consists of the idea of an English-speaking man in a room with
a book of instructions. There is a slot in the wall, through which a paper can be
delivered. The instruction book includes directions in English that describe how
to manipulate Chinese characters by copying, erasing, and reordering. However,
the book says nothing about the meaning of the characters. Someone outside the
room puts paper slips into the slot that contains a written story and a question
about the story, but all in Chinese. The man inside the room does not speak
or read Chinese, but he uses the rule book and follows the instructions. The
instructions may tell him to write or erase characters, and by blindly applying
the rules, he continues until the instruction book tells him he is done. He passes
the final paper with the answer to the original questions (in Chinese characters)
out the slot without understanding what it says.

Outside, a Chinese speaker reads the page and understands the answers. This
person may even find the answers intelligent and insightful. But the real question
is, “Where does the insight reside?” (see Interlude #5).

ARTIFICIAL INTELLIGENCE

How far is AI from reaching human-level intelligence? Some have suggested that
human-level intelligence can be achieved by writing large numbers of programs
and assembling vast databases of facts in the languages used for expressing
knowledge. However, most AI researchers believe that new fundamental ideas
are required before true intelligence can be approached.

There are two main lines of AI research. One is biological, based on the
idea that since humans are intelligent, AI should study humans and imitate the
psychology or physiology of human intelligence. The other is phenomenological,
based on studying and formalizing common sense facts about the world and the
problems that the world presents to the achievement of goals thereby providing
functionality that, in humans, would be considered intelligent behavior, even if
the approach used is quite different from what would be found in a human.
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Today, AI still means different things to different people. Some confusion
arises because the word intelligence is so ill-defined. Artificial intelligence is
sometimes described in two ways: strong AI and weak AI. Strong AI asserts that
computers can be made to think on a level (at least) equal to humans. Weak AI
simply holds that some thinking-like features can be added to computers to make
them more useful tools. Examples of Weak AI abound: expert systems, drive-
by-wire cars, smart browsers, and speech recognition software. These weak AI
components may, when combined, begin to approach some aspects of strong AI.

As participants of the Information Revolution, we could ask by extension,
“What is Web intelligence?” For the most part, the World Wide Web can be con-
sidered to be a massive information system with interconnected databases and
remote applications providing various services. While these services are becom-
ing more and more user oriented, the concept of smart or intelligent applications
and services on the Web is still in its infancy.

A classic example of an AI application that many would consider intelligent in
some form is computer chess. Over the years, computer chess-playing software
has received considerable attention, and such programs are a commercial success
for home PCs or on the Web. In addition, most are aware of the highly visible
contest between IBMs Deep Blue Supercomputer and the reigning World Chess
Champion, Garry Kasparov in May 1997. Millions of chess and computing fans
observed this event in real-time where, in a dramatic sixth game victory, Deep
Blue beat Kasparov. This was the first time a computer has won a match with a
current world champion under tournament conditions.

Computer chess programs generally make use of standardized opening
sequences, and end game databases as a knowledge base to simplify these phases
of the game. For the middle game, they examine large trees and perform deep
searches with pruning to eliminate branches that are evaluated as clearly inferior
and to select the most highly favorable move.

MACHINE INTELLIGENCE

Machine intelligence is associated with Machine Learning, Computational Intel-
ligence, Soft-Computing, and Artificial Intelligence. Although these terms are
often used interchangeably, they are actually different branches of study.

For example, Artificial Intelligence involves symbolic computation (i.e.,
the mathematical transformation of symbolic expressions, using computer
algorithms), while Soft-Computing (i.e., techniques in computer science
and in artificial intelligence, such as Fuzzy logic, Neural networks, and
Probabilistic reasoning, that resemble human reasoning more closely than
traditional techniques) involves intensive numerical computation. The following
subbranches of machine intelligence have particular relevance to the Semantic
Web and the idea Web intelligence: computational complexity, descriptive logic,
ontology, inference, and software agents.

Although symbolic AI is currently built and incorporated into Semantic Web
data representation, there is no doubt that software tool developers will eventually
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incorporate the soft-computing paradigm as well. The benefit of such a step
will be the creation of adaptive software. This would imply that soft-computing
applications will have the ability to adapt to changing environments and input.

While the Semantic Web is under development, concepts surrounding machine
intelligence will continue to evolve. The extent of the usefulness of the Semantic
Web will be tested in various ways, but the controversy involving the meaning
of machine intelligence will undoubtedly not end in the foreseeable future.

In the following sections, topics related to semantic networks and description
logic, will be discussed and then each of the key machine-intelligence areas iden-
tified above will be addressed starting with computational complexity, followed
by knowledge representation, Ontology, inference engines, and software agents.

SEMANTIC NETWORKS AND FRAMES

A semantic network or net is a graphic approach to represent knowledge in
patterns of interconnected nodes and arcs. Computer applications using semantic
networks were first developed for artificial intelligence and machine translation,
but earlier versions were also used in the fields of philosophy, psychology, and
linguistics. A more complex type of semantic net is sometimes used in expert
systems. These are known as frames; frames use a hierarchical structure.

What is common to all semantic networks is a declarative graphic repre-
sentation that can be used to either represent knowledge or support automated
systems for reasoning about knowledge. Some versions are informal, but other
versions are formally defined systems of logic. Semantic nets facilitate processing
of information and have been found to be useful as modeling tools.

The way that the information is processed, is known as arc traversal. This
is used to identify the complex relationships between nodes. One method of
obtaining information from the network is though intersection search. This finds
relationships between nodes by spreading a pattern of activation out from two
nodes and then seeing where they meet.

REASONING WITH SEMANTIC NETWORKS

There is no formal semantics or agreed upon notion of what a given representa-
tional structure means. Meaning is assigned only by the nature of the programs
that manipulate the network. Most common reasoning schemes use a network
fragment as constructed for the query and attempt to match the network. Sets
of things in a semantic network are termed types, while individual objects in a
semantic network are termed instances. Reasoning on such nets takes place when
the network is modified to reflect some process of derived meaning, such as the
inheritance of values and relationships.

Semantic nets are important to cognitive science, but are rarely used on their
own due to limitations in representing some concepts. The problem is dealing
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with concepts like “some of” and “all of ,” which are known as quantifiers. They
are impossible to represent in normal semantic nets, and extensions have been
proposed to deal with the problem. However, there are still limitations to semantic
nets and the only way to get around these is to use a more complex calculus,
such as that offered by frames.

Frames offer a more highly structured hierarchy of nodes. Basically, each
level in the hierarchy is of a given type, and there are certain options for filling
the slot of this node type. In this way, specific knowledge can be represented
and manipulated. A lot of work has been done in the field of hypertext network
organization. Advocates of hypertext suggest that the ideas relevant to a subject
can be represented best by a simple associative network, or web, with multiple
interrelationships specified. The idea is that hypertext representation mimics the
associative networks of the human brain a notion derived directly from Vannevar
Bush’s seminal 1945 Atlantic Monthly article entitled “As We May Think.”

It has long been recognized that hypertext structures mimic semantic networks.
Similar to hypertext, semantic networks are composed of nodes and links. Nodes
represent concepts, and links represent relationships between them. A hypertext
system with arbitrary link types corresponds to a free semantic net. If the hyper-
text system allows just a limited number of link types, the underlying semantic
net is restricted. Semantic nets are tightly coupled to the notion of associative
networks.

We can say that, in general, knowledge is stored in the human mind in infor-
mation packets that are interrelated in a network structure. This view of the
organization of the human memory may be used as a model to organize the
information in hypertext. The evolution of associative network theory provides
the foundation for the development of hypertext structures.

The semantic network formalism can be used as a general inferential
representation mechanism of knowledge. Concepts surrounding a starting point
are viewed during the process of problem solving. The resulting path indicates a
potential relationship between the original concepts. Other inferential mechanisms
in semantic networks are inheritance hierarchies and analogical structures. Both
draw on the assumption that relevant facts about nodes can be inferred from
neighboring nodes.

Frame-based representation adds methods to handle inference to the declara-
tive knowledge representation in semantic networks. Each node in the semantic
network (and in the corresponding hypertext structure) is represented as a single
frame. Links are defined as slots of frames. Frame-based systems support inheri-
tance, defaults of slot values, integration of truth maintenance, inference engines,
and rule-based reasoning.

COMPUTATIONAL COMPLEXITY

Turing’s ideas rearding the operation of a general purpose computing machine lead
naturally into the question of computability. Computational complexity addresses
the issue of the relative computational difficulty of computable functions.
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In computational complexity, a single problem is in reality a class of related
questions, where each question can be considered a finite-length string. For
example, a problem might be to determine the prime factors of a number; this
problem could consist of many or even an infinite number of instances of the
problem.

The time complexity of a problem is characterized by the number of steps
that it takes to solve an instance of the problem as a function of the size of the
input (usually measured in bits), using the most efficient algorithm. If a problem
instance involves an input value that is n bits long, and the problem can be solved
in n2 steps, we say the problem has a time complexity of n2. The actual number
of steps will depend on exactly what machine computational process is being
used. Nevertheless, we generally use the terminology that if the complexity is of
order n2 [or O(n2)] on one typical computer, then it will also have complexity
O(n2) on other computers.

Decision Problems

Much of complexity theory deals with decision problems. A decision problem is
a problem where the answer always comes down to Yes or No. For example, the
problem to determine whether or not a number is prime can be stated as: given an
integer written in binary, return whether it is a prime number or not. A decision
problem can be considered to be equivalent to a language, in the sense that it can
be considered to be a set of finite-length strings. For a given decision problem,
the equivalent language is the set of all strings for which the answer is YES.

Decision problems are often considered because an arbitrary problem can
generally be reduced to a decision problem. For example, consider the problem
to determine if a given number has a prime factor less than another number
(i.e., given integers n and k written in binary, return whether n has any prime
factors < k). If this problem can be solved with a certain amount of resources,
then we can use that solution to solve the problem of determining the prime
factors of a number without much more resources (i.e., by conducting a binary
search on k until you find the smallest factor of n, then dividing out that factor,
and repeat until all the factors are found).

Complexity Classes

Decision problems fall into sets of comparable complexity, called complexity
classes. The complexity class P is the set of decision problems that can be
solved by a deterministic machine in polynomial time. This class corresponds to
an intuitive idea of the problems that can be effectively solved in the worst cases.
The complexity class NP is the set of decision problems that can be verified in
polynomial time or solved by a nondeterministic machine in polynomial time.

Intractability

Problems that are solvable in theory, but cannot be solved in practice, are called
intractable. Although what can be solved “in practice” is open to debate, in



54 TURING: WHAT IS MACHINE INTELLIGENCE?

general only problems that have polynomial-time solutions are solvable for more
than the smallest inputs. Problems that are known to be intractable include those
that are exponential-time-complete. If NP is not the same as P, then the NP-
complete problems are also intractable.

To see why exponential-time solutions are not usable in practice, consider a
problem that requires 2n operations to solve (where n is the size of the input).
For a relatively small input size of n = 100, and assuming a computer that can
perform 1010 operations per second, a solution would take about 4 × 1012 years,
far longer than the age of the universe.

DESCRIPTION LOGIC

The question of how best to represent knowledge in a database or informa-
tion system has long been recognized as a key issue in AI. The main research
effort in Knowledge–Representation (KR) is centered on theories and systems
for expressing structured knowledge and for accessing and reasoning with it.
Description Logics (DL) is an important powerful class of logic-based knowl-
edge–representation languages.

The basic components of DL include a family of knowledge–representation
formalisms designed for the representation of and reasoning about semantic net-
works and frame-based systems. Description Logics are also closely related to
Modal Logic (an extension of propositional calculus, which uses operators that
express various “modes” of truth, such as: necessarily A, possibly A, probably A,
it has always been true that A, it is permissible that A, it is believed that A and
DL (a multimodal logic in which there are explicit syntactic constructs, called
programs, whose main role is to change the values of variables, thereby changing
the truth values of formulas based on program representation), and it has turned
out that DLs are also well suited to the representation of and reasoning about
database conceptual models, information integration, and ontologies. A variety of
different DLs exist with different expressive power and different computational
complexity for the corresponding inference problems.

The Semantic Web requires a language that expresses both data and
rules for reasoning about the data and allows rules from any existing
knowledge–representation system to be imported. Both XML and the RDF
are important technologies for developing the Semantic Web. The meaning is
expressed by RDF, in which it is encoded in sets of triples, each triple acting
as a sentence with a subject, predicate, and object. These triples can be written
using XML syntax.

For the Semantic Web to function, computers must have access to struc-
tured collections of information (as RDF statements) and sets of inference rules
that they can use to conduct automated reasoning. A knowledge–representation
language includes language syntax (describes configurations that can consti-
tute sentences) and semantics (determines the facts based upon the sentences).
Traditional knowledge–representation systems typically have been centralized,
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requiring everyone to share exactly the same definition of common concepts.
But central control is stifling, and increasing the size produces complexity that
rapidly becomes unmanageable. These systems limit the questions that can be
asked reliably. In avoiding the problems, traditional knowledge–representation
systems narrow their focus and use a limited set of rules for making inferences.

Possible inference engines for the Semantic Web could be based upon Horn
logic, which is a fragment of first-order logic (FOL). Horn logic was studied in
the area of deductive databases and logic programming and a number of efficient
evaluation strategies are available for this fragment of predicate logic. However,
integrating Horn rules from different sources distributed on the Web introduces
rules that can interfere with each other (see Chapter 8).

ONTOLOGY

If a program wants to compare conceptual information across two knowledge
bases on the Web, it has to know when any two given terms are being used to
mean the same thing. Ideally, the program must have a way to discover common
meanings for whatever knowledge bases it encounters. A solution to this problem
is provided by the Semantic Web in the form of collections of information called
ontologies. Artificial Intelligence and Web researchers use the term ontology as
a document that defines the relations among terms. A typical ontology for the
Web uses a taxonomy and a set of inference rules.

The taxonomy defines classes of objects and relations among them. Classes,
subclasses, and relations among entities are important tools. We can express a
large number of relations among entities by assigning properties to classes and
allowing subclasses to inherit such properties.

Inference rules in ontologies may express rules for manipulating information.
Inference rules may express the rule: “If a city code is associated with a state
code, and an address uses that city code, then that address has the associated
state code.” A program could then readily deduce, for example, that a Cornell
University address, being in Ithaca, must be in New York State, which is in the
United States, and therefore should be formatted to U.S. standards.

The real power of the Semantic Web will be realized when people create many
programs that collect Web content from diverse sources, automatically process
the information, and exchange the results. The effectiveness of software agents
will increase exponentially as more machine-readable Web content and automated
services become available. The Semantic Web promotes this synergy: even agents
that were not expressly designed to work together can transfer semantic data (see
Chapter 7).

INFERENCE ENGINES

Inference engines are intended to derive answers from a knowledge base. They
are at the core of the expert systems that provide a methodology for reasoning
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about the information in the knowledge base, and for formulating conclusions.
Inference engines process knowledge available in the Semantic Web. They deduce
new knowledge from previously established knowledge.

An inference engine controls overall execution of a set of rules. It searches
through a knowledge base, attempting to pattern-match facts or knowledge present
in memory to the antecedents of rules. If a rule’s antecedent is satisfied, the rule
is ready to fire and is placed in the agenda. When a rule is ready to fire it means
that since the antecedent is satisfied, the consequent can be executed.

Salience is a mechanism used by some expert systems to add a procedural
aspect to rule inferencing. Certain rules may be given a higher salience than
others, which means that when the inference engine is searching for rules to fire,
it places those with a higher salience at the top of the agenda.

SOFTWARE AGENTS

An intelligent agent is a computer system that is situated in some environment,
and that is capable of autonomous action and learning in order to meet its design
objectives. Agents have the following characteristics: they are reactive—they
perceive their environment, and respond; proactive—they exhibit goal-directed
behavior; and social—they interact with other agents.

Real-time intelligent agent technology offers a powerful Web tool. Agents are
able to act without the intervention of humans or other systems; they have con-
trol both over their own internal state and their behavior. Normally, an agent will
have a repertoire of actions available to it. So that in complexity domains, agents
must be prepared for the possibility of failure. This situation is called nondeter-
ministic. Its set of possible actions represents the agent’s capability to modify
its environments. Similarly, the action “purchase a house” will fail if insufficient
funds area available to do so. Actions therefore have preconditions associated
with them, which define the possible situations in which they can be applied.

The key problem facing an agent is that of deciding which of its actions it
should perform to satisfy its design objectives. Agent architectures are really
software architectures for decision-making systems that are embedded in an
environment. The complexity of the decision-making process can be affected
by a number of different environmental choices: accessible versus inaccessible,
deterministic versus nondeterministic, episodic versus nonepisodic, static versus
dynamic, and discrete versus continuous.

The most complex general class of environments consists of those that are
inaccessible, nondeterministic, nonepisodic, dynamic, and continuous. For the
Semantic Web, providing sufficient expressive power for agents to interact suc-
cessfully is essential.

ADAPTIVE SOFTWARE

In the 1970s, structured programming made it feasible to build larger scale
software systems based on existing specifications. A typical application was a
database program that read an input file and produced an output file.
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In the 1980s, object-oriented programming made it easier to reorganize for
changes, because functionality was split up into separate classes. A typical appli-
cation was a desktop publishing system using user-initiated events (mouse clicks
or menus). The problem with using existing software, however, is that it takes
too much time and money to modify, and it is brittle when used in situations for
which it was not explicitly designed. Adaptive software design methodologies
can help alleviate this problem.

A primary element in adaptive software is realizing that optimization of
structured programs is not the only solution to increasingly complex problems.
The optimization approach is based on maintaining control to impose order on
uncertainty. Imposed order is the product of rigorous engineering discipline and
deterministic, cause-and-effect-driven processes. The alternative idea is one of
an adaptive mindset, of viewing organizations as complex adaptive systems, and
of creating emergent order out of a web of interconnected components.

Complexity involves the number of interacting agents and the speed of agent
interaction. For software products, the need for adaptive development arises when
there are a great many independent operators—developers, customers, vendors,
competitors, stockholders—interacting with each other, fast enough that linear
cause and effect rules are no longer sufficient for success. Size and technological
complexity are additional factors.

Adaptive software adds a feedback loop that provides information based on
performance. The design criteria themselves become a part of the program and
the program reconfigures itself as the environment changes. There are significant
adaptive software challenges including scaling to large networks and to large
numbers of applications. Other challenges include deployable intelligence mech-
anisms from pattern recognition algorithms to data mining algorithms. For the
Semantic Web, adaptive software agents could yield surprising benefits.

LIMITATIONS AND CAPABILITIES

The promising aspects of combining Web Services and intelligent agents on
the Semantic Web would be the ability to move from manipulating keywords to
understanding and manipulating concepts. The limitations to achieving this would
be the development of ontologies and the annotation of content with metadata
that may not scale due to computational complexity.

CONCLUSION

This chapter provided an overview of Alan Turing’s ideas and a discussion of
some of the key ideas emanating from his work. In addition, we engaged in a dis-
cussion of the meaning of machine intelligence and offer some perspective of how
realistically making the Web machine processable will contribute toward Web
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intelligence. Some of the more advanced applications on the Web, which include
Artificial Intelligence, were explored. Key related concepts essential for under-
standing what is meant by machine intelligence were also described: machine
intelligence, computational complexity, knowledge representation, ontology, in-
ference, and software agents.

From this chapter, it may be concluded that balancing expressive power with
reasoning capability may offer useful applications on the Semantic Web that are
much less exciting than one might expect from the hype surrounding machine
intelligence. In addition, innovations in adaptive software may offer surprising
capabilities for Web software agents.

EXERCISES

3-1. Make a list of 10 questions you would ask as part of a Turing test.
3-2. Ask a colleague or classmate these questions and record their answers.

Compare the results.



Figure 3-2. This is a “completed” representation of Escher’s Print Gallery, which in-
cludes the filled-in hole in Figure 1-1, created (http://escherdroste.math.leidenuniv.nl/) by
Hendrik Lenstra and Bart de Smit.



INTERLUDE #3: COMPUTING
MACHINES

Having had the final word in their last discussion, John was feeling a little smug
as he listened to his ipod. Mary sat down next to him on the library steps. Their
last class had been on computer design and they were both thinking about just
how far the new technology could evolve.

John said, “As you suggested earlier, Gödel was concerned that a logic system
had to be consistent and then he determined that no logic system can prove itself
to be consistent.”

“True,” replied Mary. “But it was Turing who built on Gödel’s findings. Shortly
before World War II, Turing found a way to translate Gödel’s logic results about
numbers and mathematics into analogous results about calculations and comput-
ing machines.”

John interrupted, “Yes, Turing was convinced that mathematical problem solving
could be reduced to simple steps that could be used to program computer actions.”

Mary said, “True. Turing considered the logical steps one goes through in con-
structing a proof as being the same steps that a human mind follows in a
computation.” Mary gave John a sideways glance before continuing, “Turing
was convinced that the ability to solve this type of mathematical problem is a
significant indication of the ability of machines to duplicate human thought.”

John dissented, “Wait a minute. We’ve been here before. Just because machines
follow the same logical steps a human uses to solve a calculation doesn’t mean
that they actually think. Since calculating machines are not biological, it seems
unreasonable to me to suggest that machines are capable of actual creative
thought. They may be mimicking the logical steps, but are they actually thinking?
I think not.”

“Therefore, you are not,” Mary said with a grin.

John relied, “Hey.”

Mary said, “Ok. Seriously, if it were even remotely possible that machines could
independently mimic thought that would be significant.”

She continued, “Consider Turing’s machine. Turing held that a mechanical com-
puter is basically a large number of address locations acting as a memory, together
with an executive unit that carries out individual operations of a calculation. These
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operations represent a program. Let’s imagine that I want to use the machine to
add two numbers 1 and 2 together. The computing machine would begin with
placing a ‘1’ in the first location and a ‘2’ in the second location and then the
computer consults a program for how to do addition. The instructions would say
gather the numbers from the two locations and perform a summing operation
to yield the sum of the two numbers and place the resultant number ‘3’ in the
third location. This process could be considered to mimic the operations a human
would perform.”

John replied solemnly, “Simple rote actions.”

Mary added, “Turing’s computer consists of two basic elements: an infinitely
long tape ruled off into squares, each capable of being inscribed with the symbol
‘0’ or ‘1,’ and a scanning head that can move forward or back one square at a
time reading the symbol on that square, either leaving it alone or writing a new
symbol on that square. At any step of the operation, the scanning head can be in
one of an infinite number of states. The machine has a pointer that is set at one
of the letters ‘A’ ‘B’ ‘C,’ and this letter represents the state of the machine. Part
of the program tells the machine how to change the pointer setting, depending
on what state the machine is currently in and what symbol is on the square of
the tape that the head is currently reading.”

John nodded slowly as he visualized the machine.

Mary continued, “The action of a Turing machine is determined completely by
(1) the current state of the machine; (2) the symbol in the cell currently being
scanned by the head; and (3) a table of transition rules, which serves as the
“program” for the machine. If the machine reaches a situation in which there is
not exactly one transition rule specified, then the machine halts. While it may
take a long tape and many steps to carry out sophisticated calculations, anything
at all that can be thought of as following from a set of rules, can be calculated
in the step by step fashion.”

John said, “It is easy to appreciate that Turing’s machine is the foundation of the
modern computer.”

Mary said, “And that leads us to your earlier question about whether a computing
machine can have human-like intelligence.”

John said, “In general, I would consider ‘thinking’ to be a complex process that
uses concepts and relationships to infer new knowledge. Thinking would involve
acts, such as memory recall, arithmetic calculations, puzzle solving, and so on.
By extension, the performance of these acts would indicate ‘intelligence.’ For
example, a child who can perform difficult arithmetic calculations quickly would
display intelligence. Likewise an individual who has rapid memory recall and
who has accumulated sufficient amounts of information to consistently win games
such as Scrabble, or Trivial Pursuit, might also be considered to be intelligent.”

“Well then,” responded Mary, “Why wouldn’t a computer that could perform the
same calculations as that child, but faster and with greater accuracy be considered
intelligent. Or consider a computer with substantial memory storage that is able to
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answer all those Trivial Pursuit questions. Why can’t that computer, be considered
intelligent.”

John said, “Well human thinking involves complicated interactions within the
biological components of the brain. In addition, the processes of communication
and learning are also important elements of human intelligence.”

Mary replied, “By mentioning intelligent communication you have led us to
Turing’s test for machine intelligence.”

John said, “Ok, but please, let’s talk about that tomorrow.”



4
BERNERS-LEE: WHAT IS SOLVABLE
ON THE WEB?

OVERVIEW

When Tim Berners-Lee was developing the key elements of the World Wide Web,
he showed great insight in providing Hypertext Markup Language (HTML) as a
simple easy-to-use Web development language. As a result, it was rapidly and
widely adopted. To produce Web information required skills that could be learned
with a high school level education. Consequently, personal computing merged
with global networking to produce the World Wide Web.

The continuing evolution of the Web into a resource with intelligent features,
however, presents many new challenges. The solution of the World Wide Web
Consortium (W3C) is to provide a new Web architecture that uses additional lay-
ers of markup languages that can directly apply logic. However, the addition of
ontologies, logic, and rule systems for markup languages means consideration of
extremely difficult mathematic and logic consequences, such as paradox, recur-
sion, undecidability, and computational complexity on a global scale. Therefore,
it is important to find the correct balance between achieving powerful reasoning
with reasonable complexity on the Web. This balance will decide what is solvable
on the Web in terms of application logic.

This chapter will briefly review Berners-Lee’s contribution in developing the
Web. Then, we look at the impact of adding formal logic to Web architecture
and present the new markup languages leading to the future Web architecture: the
Semantic Web. It concludes with a presentation of complexity theory and rule-
based inference engines followed by a discussion of what is solvable on the Web.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.
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THE WORLD WIDE WEB

By 1991, three major events converged to accelerate the development of the Infor-
mation Revolution. These three events were the introduction of the World Wide
Web, the widespread availability of the graphical browser, and the unleashing of
commercialization on the Internet. The essential power of the World Wide Web
turned out to be its universality though the use of HTML. The concept provided
the ability to combine words, pictures, and sounds (i.e., to provide multimedia
content) on Internet pages. This excited many computer programmers who saw
the potential for publishing information on the Internet with the ease of using a
word processor, but with the richness of multimedia forms.

Berners-Lee and his collaborators laid the groundwork for the open standards
of the Web. Their efforts included inventing and refining the Hypertext Transfer
Protocol (HTTP) for linking Web documents, the HTML for formatting Web
documents and the Universal Resource Locator (URL) system for addressing
Web documents.

TIM BERNERS-LEE

Tim Berners-Lee was born in London, England, in 1955. His parents were
computer scientists who met while working on the Ferranti Mark I, the world’s
first commercially sold computer. He soon developed his parents’ interest in
computers, and at Queen’s College, at Oxford University, he built his first
computer from an old television set and a leftover processor.

Berners-Lee studied physics at Oxford, graduated in 1976, and began a
career in computing (see Fig. 4-1). Between 1976 and 1980, he worked at
Plessey Telecommunications Ltd. followed by D. G. Nash Ltd.

In 1980, he was a software engineer at CERN, the European Particle
Physics Laboratory, in Geneva, Switzerland where he learned the laboratory’s
complicated information system. He wrote a computer program to store infor-
mation and use random associations that he called, “Enquire-Within-Upon-
Everything,” or “Enquire.” This system provided links between documents.

Hypertext actually began in 1945 when Vannevar Bush, a computer pioneer,
wrote an article for the Atlantic Monthly describing a theoretical electrome-
chanical device called a memex, which would make and follow links between
documents on microfiche. In the mid-1960s, Ted Nelson drew on Bush’s work to
develop a software framework called Xanadu and coined the word “hypertext.”

In 1968, Douglas Engelbart completed a prototype for an “oNLine System”
(NLS), which linked documents through hypertext. He also invented the mouse.

While Enquire proved useful at CERN, Berners-Lee did not publish his
work and he left CERN in 1981. In 1984, he returned to CERN, to work on
distributed real-time systems for scientific data acquisition and system control.

During this time at CERN, Berners-Lee began to conceive of a different
type of Enquire system. The Internet was 15 years old and had proven to be
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Figure 4-1. Photo of Tim Berner-Lee.

a reliable networking system, but it was still cumbersome to use. Berners-
Lee was looking at ways to simplify the exchange of information. Berners-
Lee began to imagine a system that would link up all the computers of his
colleagues at CERN, as well as those of CERN’s associates in laboratories
around the world.

In 1989, Berners-Lee with a team of colleagues developed HTML, an
easy-to-learn document coding system that allows users to click onto a link
in a document’s text and connect to another document. He also created an
addressing plan that allowed each Web page to have a specific location known
as a URL. Finally, he completed HTTP a system for linking these documents
across the Internet. He also wrote the software for the first server and the first
Web client browser that would allow any computer user to view and navigate
Web pages, as well as create and post their own Web documents.

In the following years, Berners-Lee improved the specifications of URLs,
HTTP, and HTML as the technology spread across the Internet.

While many early Web developers became Internet entrepreneurs, Berners-
Lee eventually chose an academic and administrative life. He left CERN in
the early 1990s and spent research stints at various laboratories, including
Xerox’s Palo Alto Research Center (PARC), in California, and the Laboratory
for Computer Science (CSAIL) at the Massachusetts Institute of Technology
(MIT), in Cambridge. He directs the W3C, an open forum of companies and
organizations with the mission to lead the Web to its full potential.
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HyperText Markup Language is the primary language for formatting Web
pages. With HTML, the author describes what a page should look like, what
types of fonts to use, what color text should be, where paragraphs begin, and
many other attributes of the document.

Hypertext Transfer Protocol

HyperText Transfer Protocol is the network protocol used to deliver files and
data on the Web including: HTML files, image files, query results, or anything
else. Usually, HTTP takes place through TCP/IP sockets. Socket is the term for
the package of subroutines that provide an access path for data transfer through
the network.

Like most network protocols, HTTP uses the client–server model: An HTTP
client opens a connection and sends a request message to an HTTP server; the
server then returns a response message, usually containing the resource that was
requested. After delivering the response, the server closes the connection.

A simple HTTP exchange to retrieve the file at the URL, first opens a socket
to the host www.somehost.com, at port 80 (the default) and then, sends following
through the socket:

GET/path/file.html HTTP/1.0
From: someuser@somehost.com
User-Agent: HTTPTool/1.0

The server responds with the HTTP protocol file followed by the HTML “hello
world” file with the following:

HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/html
Content-Length: 1354

<html>
<body>
Hello World

</body>
</html>

This simple process has proven to be not only easy and straightforward, but
highly successful as well.

Bridging Web Services

While the W3C continually develops open Web standards, vendors have been
customizing their applications for efficient business logic processing through
their proprietary server applications. For example, Web Services communicate
through open standards including Simple Object Access Protocol (SOAP) and
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Web Service Description Language (WSDL), but then the business logic is exe-
cuted through server pages designed for specialized server frameworks (either
Java 2 Platform Enterprise Edition (J2EE) or Microsoft .NET).

Simple Object Access Protocol (SOAP) is an implementation of XML that
represents one common set of rules about how data and commands are represented
and extended. It consists of three parts: an envelope (a framework for describing
what is in a message and how to process it), a set of encoding rules (for expressing
instances of application-defined data types), and a convention for representing
remote procedure calls and responses. The SOAP messages are fundamentally
one-way transmissions from a sender to a receiver using HTTP binding. Simple
Object Access Protocol describes commands and parameters that can be passed
between browsers and Web Services for both J2EE and .NET platforms.

Web Services Description Language (WSDL) describes networked XML-based
services. It provides a way for service providers to describe the format of requests
to their systems regardless of the underlying protocol or encoding. It is a part of
the effort of Universal Discovery and Description Identification (UDDI) initia-
tive to provide directories and descriptions of such on-line services for electronic
business.

Limits of Today’s Web

The Web has changed from its original structure of a distributed, high-reliability,
open system without a superimposed logic or metadata. Today, the basic infor-
mation is still displayed as a distributed open system, but the development of
portals, such as, Yahoo, Google AOL, and MSN has focused Web entry and led
to controlling traffic to partisan sites. In addition, business logic has migrated
primarily into two segregated server frameworks: active server pages and java
server pages. The result has produced a decentralized Web system with critical
proprietary portal-centric nodes and frameworks.

In the future, we can expect significant improvements, such as increased aver-
age bandwidth, the use of open standards to facilitate advanced markup languages,
the application of metadata, and the use of inference search.

The paradigm of the Web is centered on the client–server interaction, which is
a fundamentally asymmetric relationship between providers, who insert content
into the Web hypertext (server) and users who essentially read texts or provide
answers to questions by filling out forms (clients). The hyperlinks of the Web
represent structures of meaning that transcend the meaning represented by indi-
vidual texts. At present, these Web structures of meaning lack longevity and can
only be blindly used, for example by search engines, which at best optimize
navigation by taking into account the statistical behavior of Web users.

In effect, the Web has developed as a medium for humans without a focus on
data that could be processed automatically. Hypertext Markup Language is not
capable of being directly exploited by information retrieval techniques, hence the
Web is restricted to manual keyword searches.

The problem at present is that there is no way to construct complex networks
of meaningful relations between Web contents. In fact, the providers have no
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influence on the links to the contents they provide and the users have no impact
on the available access structures to the content. As a result, some of today’s
basic Web limitations include search, database support, interoperable applications,
intelligent business logic, automation, security, and trust.

An important framework for creating meaningful Web links can be pro-
vided by the Semantic Web: the automated creation of links between machine-
understandable metadata. Such semantic linking will not be restricted to the use
of specifically prepared metadata sets, but will exploit the meaningful structure of
the Web itself in order to provide a content-based semantic access to information.

THE SEMANTIC WEB ROADMAP

The inventor of the World Wide Web, Tim Berners-Lee, and his W3C team work
to develop, extend, and standardize the Web’s markup languages and tools. In
addition, what they are designing is the next generation Web architecture: the
Semantic Web.

Currently, the objective of the Semantic Web architecture is to provide a
knowledge representation of linked data in order to allow machine processing
on a global scale. This involves moving the Web from a repository of data
without logic to a level where it is possible to express logic through knowledge-
representation systems. The vision for the Semantic Web is to augment the
existing Web with resources more easily interpreted by programs and intelligent
agents.

A defining application for the Semantic Web will be a more effective search
capability. While today’s search engines index HTML pages to find many answers
and cover a huge part of the Web, they return many irrelevant pieces of infor-
mation. There is no notion of “correctness” to such searches.

The difficulty of semantic search is perhaps its most important limitation.
With the current state of the Web, there are two methods of gaining broader
information about documents. The first is to use a directory, or portal site, man-
ually constructed by searching the Web and then categorizing pages and links.
The problem with this approach is that directories take a tremendous effort to
maintain. Finding new links, updating old ones, and maintaining the database
technology, all add to a portal’s administrative burden and operating costs. The
second method uses automatic Web crawling and indexing systems.

Consequently, searching the World Wide Web can be frustrating. The result
of having better standard metadata could be a Web where users and agents could
directly tap the latent information in linked and related pages. This would be a
powerful paradigm greatly improving the intelligent use of Web resources.

By contrast, logic engines have typically been able to restrict their output to
that which is a provably correct answer, but have suffered from the inability to
go through the mass of connected data across the Web to construct valid answers.

If an engine of the future combines a reasoning engine with a search engine,
it may actually be able to produce useful results. It will be able to reach out to
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indexes that contain very complete lists of all occurrences of a given term, and
then use logic to weed out all but those that can be of use in solving the given
problem.

If the Semantic Web can bring structure and meaningful content to the Web,
it will create an environment where software agents can carry out sophisticated
tasks for users. The first steps in weaving the Semantic Web with the existing
Web are already under way. In the near future, these developments will provide
new functionality as machines become better able to “understand” and process
the data.

For the Semantic Web to function, computers must have access to structured
collections of information and sets of inference rules that they can use to con-
duct automated reasoning. Artificial Intelligence researchers have long studied
such systems and have produced today’s knowledge representation. Knowledge
representation is currently in a state comparable to that of hypertext before the
advent of the Web.

The objective of the Semantic Web therefore, is to provide a framework that
expresses both data and rules for reasoning for Web-based knowledge represen-
tation. Adding logic to the Web means using rules to make inferences, choose
courses of action, and answering questions. A combination of mathematical and
engineering issues complicates this task. The logic must be powerful enough to
describe complex properties of objects, but not so powerful that agents can be
tricked by being asked to consider a paradox.

The development of the Semantic Web is proceeding in a step-by-step approach
building one layer on top of another. Two important technologies for developing
the Semantic Web are already in place: eXtensible Markup Language (XML) and
the Resource Description Framework (RDF) (see Fig. 2-3).

Building one layer upon another requires each layer to have downward com-
patibity and upward partial understanding. Downward compatibility means that
agents are fully aware of a layer to interpret and use information written at a
lower level. Upward partial understanding means that agents take at least par-
tial advantage of information at higher levels. For example, an agent aware of
RDF and RDF Schema semantics can interpret knowledge written in OWL, by
disregarding all but RDF and RDF Schema elements.

eXtensible Markup Language lets everyone create their own tags. Scripts, or
programs, can make use of these tags in sophisticated ways, but the script writer
has to know how the page writer uses each tag. In short, XML allows users
to add arbitrary structure to their documents, but says nothing about what the
structure means.

Why is so XML important? Just as HTML is an open standard that allows
information exchange and display over the Internet, XML is an open standard
that allows data to be exchanged between applications over the Web. XML is the
bridge to exchange data between the two main software development frameworks
over the Web: J2EE and .NET. We can consider XML as a highly functional
subset of SGML, but as a result, it is a meta-language that allows users to design
their own markup languages.
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Resource Description Framework

Resource Description Framework contains the concept of an assertion and allows
assertions about assertions. Meta-assertions make it possible to do rudimentary
checks on a document (see Chapter 5).

Resource Description Framework is a model of statements made about
resources and associated URI. Its statements have a uniform structure of three
parts: subject, predicate, and object.

For example,

“The book [subject] has the title [predicate] Gödel, Escher, Bach: An Eternal Golden
Braid [object].”

With RDF we can express statements in a formal way that software agents
can read and act on. It lets us express a collection of statements as a graph, as
a series of (subject, predicate, object) triples, or even in XML form. The first
form is the most convenient for communication between people, the second for
efficient processing, and the third for flexible communication with agent software.

The next steps up the Language Pyramid of Web markup languages, which
address ontology and services languages are: Web Ontology Language (OWL),
Semantic Web Rule Language (SWRL), and OWL-Services (OWL-S).

Ontology

An ontology is an agreement between agents that exchange information. The
agreement is a model for structuring and interpreting exchanged data and a vocab-
ulary that constrains these exchanges. Using ontology, agents can exchange vast
quantities of data and consistently interpret it. Furthermore, they can infer new
information by applying the ontology logical rules.

A nontrivial ontology will allow logical inconsistencies, and as Gödel pointed
out in his Incompleteness Theorem: in any axiomatic system it is possible to
create propositions that cannot be proved or disproved. This does not negate the
usefulness of ontologies; however, it does mean ontologies, like everything else,
have their limitations.

In the AI community, the ability to infer new information from existing data
is of fundamental importance, and this is sometimes misinterpreted as a defining
feature of ontology. In fact, many ontologies only weakly support this capability.
Ontology is also sometimes narrowly defined to mean hierarchical taxonomies
or constrained vocabularies, but ontology may also contain assertions about how
data can be structured and interpreted.

The leading ontology system using RDF is Web Ontology Language (called
OWL) (see Chapter 6).

Web Ontology Language allows us to formally express ontologies. The RDF
provides some classification and rules, but OWL goes much further. In fact, one
way to look at OWL is as the business rules for the Semantic Web, yet it is much
more flexible than most business rule languages.



THE SEMANTIC WEB ROADMAP 71

Most of OWLs power comes from primitives for expressing classifications.
The OWL provides a toolbox of class expressions, which bring the power of
mathematical logic and set theory to the tricky and important task of mapping
ontologies through classifications.

Web Ontology Language

In 2003, the W3C began final unification of the disparate ontology efforts into
a standardizing ontology and called it the OWL. This language is a vocabulary
extension of RDF and is currently evolving into the semantic markup language
for publishing and sharing ontologies on the World Wide Web.

Web Ontology Language facilitates greater machine readability of Web content
than that supported by XML, RDF, and RDFS by providing additional vocabulary
along with formal semantics. It comes in several flavors as three increasingly
expressive sublanguages: OWL Lite, OWL DL, and OWL Full. By offering three
flavors, OWL hopes to attract a broad following. Chapter 6 returns to detailed
presentation of OWL.

Making an Inference

In Artificial Intelligence, scientists recognize that although computers are begin-
ning to overtake the human brain in terms of sheer processing speed and storage
capacity, they still cannot approach the level of human intelligence in terms of
general purpose cognitive capability. At least one reason for this is that the brain
does not stubbornly store and categorize every scrap of every detail that we use
as the basis of thought. The brain can make connections between partially stored
information, and assemble this into intelligence.

The Semantic Web will not be possible until software agents have the means
to figure out some things by themselves. Fortunately, artificial intelligence gives
us two tools to help make this possible. First, knowledge representation is a
field that defines how we might represent, in computers, some of what is stored
between our ears. Second, inference is a way of using formal logic to approximate
further knowledge from what is already known. An inference engine is a software
application that processes the knowledge to derive resulting conclusions.

Computational Complexity for Large Networks

Knowledge representation, search, and software agents are all severely limited by
the complexity of their particular applications. This section, will explore various
complexity limitations affecting the Semantic Web.

A problem is solved when it is resolved or explained. On the other hand, an
unsolvable problem is one for which you have a proof that a solution cannot be
reached. The theory of the difficulty of solving general classes of problems is
called computational complexity.
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Computational-complexity theory establishes how much of a resource (e.g.,
time, space, parallelism, or randomness) is required to solve certain classes of
computations. Some of the most common classifications include

• P: Problems that can be solved in polynomial time. An example problem in
P is the task of sorting a list of numbers. Since by systematically swapping
any disordered pair the task can be accomplished within quadratic time, the
problem is considered to be in P.

• NP: Problems are “nondeterministic in polynomial time.” A problem is NP
if a selected (or guessed) trial solution can be quickly (in polynomial time)
tested to determine if it is correct.

• PSPACE: Problems that can be solved using an amount of memory that is
limited as a polynomial in the input size, regardless of how much time the
solution takes.

• EXPTIME: Problems that can be solved in exponential time. This class
contains problems most likely to be encountered, including everything in
the previous three classes.

• UNDECIDABLE: For some problems, it can be proved that there is no
algorithm that always solves them, no matter how much time or space is
allowed.

Whether a certain statement of First-Order Logic (FOL) is provable as a the-
orem is one example of the undecidable classification; and whether a polynomial
equation in several variables has integer solutions is another. While humans solve
problems in these domains all the time, it is not certain that arbitrary problems in
these domains can always be solved. This is relevant for AI since it is important
to establish the boundaries for problem solutions.

In the 1960s, computer scientists Steve Cook and Richard Karp developed the
theory of NP-complete problem domains. Problems in these domains are solvable,
but take an exponential amount of time in proportion to its size. Humans often
solve problems in NP-complete domains in times much shorter than is guaranteed
by the general algorithms, but, in general, cannot solve them quickly.

NP-complete problems are encountered frequently in AI. Alternatives to
addressing them include the following:

• Using a heuristic. If the problem cannot be quickly solved deterministically
in a reasonable time, a heuristic method may be used in certain cases.

• Accepting an approximate instead of an exact solution. In some cases, there
is probably a fast algorithm that does not solve the problem exactly, but
comes up with an acceptable approximate solution.

• Using an exponential time solution anyway. If an exact solution is necessary,
an exponential time algorithm may be the best approach.

• Redefining the problem. Normally, the NP-complete problem is based on an
abstraction of the real world. Revising the abstraction to eliminate unnec-
essary details may make the difference between a P and an NP problem.
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Evaluating different knowledge-representation methodologies is highly depen-
dent on the issue of scaling semantic applications for the Web. The complexity
introduced with each methodology will have to be closely analyzed.

SWRL and Rule-Based Inference Engines

The OWL language creates statements for knowledge bases that are interpreted by
inference engines utilizing powerful sets of rules. The Semantic Web Rule Lan-
guage (SWRL) expresses these rules as modular stand-alone units in a declarative
way (see Chapter 8). This language is XML-based and has an abstract syntax for
defining various concrete sub-languages serving different purposes. The seman-
tics of SWRL is a straightforward extension of the first-order model-theoretic
semantics of OWL-DL. Since, like RDF and OWL, SWRL is based on classical
two-valued logic, it cannot deal with partial information and with closed predi-
cates. It will, however, play an important role in facilitating business rules and
interactions over the Web.

In general, rules may be considered at three abstraction levels (business
domain, platform independent, platform specific).

• At the business domain level, rules are statements that express parts of
a business policy in a declarative manner, typically using a natural lan-
guage. Generally, rules are self-contained knowledge units that contain a
form of reasoning. They may specify static or dynamic integrity constraints,
derivations, or reactions.

• At the platform-independent level, rules are formal statements, expressed in
some formalism, which can be directly mapped to executable statements of
a software platform. These business rule categories are checks/assertions for
constraint rules, views for derivation rules, and triggers for reaction rules.

• At the platform-specific level, rules are statements in a specific executable
language. Given the linguistic richness and the complex dynamics of busi-
ness domains, it should be clear that any specific mathematical account
of rules, such as classical logic Horn clauses, must be viewed as a lim-
ited descriptive theory that captures just a certain fragment of the entire
conceptual space of rules.

Rule-Based Systems

Rule-based systems use symbolic representation and inference mechanisms to
reach conclusions from facts and rules. Certainty factors and truth maintenance
allow rules to deal with uncertainty. However, rules are cumbersome as a way
of encoding relational knowledge and knowledge about objects.

The term “expert system” can be considered a particular type of knowledge-
based system. Expert systems are applications that make decisions in real-life
situations, which would otherwise be performed by a human expert. Expert sys-
tems can take many different forms. In general, they are programs designed
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to mimic human performance at specialized, constrained problem-solving tasks.
Frequently, they are constructed as a collection of IF-THEN production rules
combined with a reasoning engine that applies those rules, either in a forward or
backward direction, to a specific problem.

A key element of an expert system is the acquisition of the body of knowl-
edge that is contained within the system. Such information is normally extracted
from human experts, and is frequently in the form of rules of thumb or heuristic
information, rather than statements of absolute fact. Simply put, an expert sys-
tem contains knowledge derived from an expert in some narrow domain. This
knowledge is used to help individuals using the expert system to solve some
problem.

The traditional definition of a computer program is usually:

Algorithm + data structures = program

In an expert system, this definition changes to

Inference engine + knowledge = expert system

Inference Engines

An inference engine controls overall execution of a set of rules to process the
knowledge available on the Semantic Web and deduce new knowledge. It searches
through a knowledge base, attempting to match patterns of facts, or knowledge,
to the antecedents of rules. If a rule’s precursors are satisfied, the consequence
can be executed. As a result, we can relate inference to computers in the same
way we would relate reason to humans.

There are two types of knowledge chaining: forward and backward. In forward
chaining, the expert system is given data and chains forward to reach a conclusion.
In backward chaining, the expert system is given a hypothesis and backtracks to
check if it is valid.

Most knowledge-representation systems distinguish between inference “rules”
and other information. In a knowledge-representation system the following prop-
erties are required: a compact syntax; a well-defined semantics; a sufficiently
expressive power to represent human knowledge; an efficient, powerful, and
understandable reasoning mechanism; and a usable and large knowledge base.
However, it has proven difficult to achieve the third and fourth properties simul-
taneously.

All logical data on the Web should to be expressed directly or indirectly in
terms of the Semantic Web, though different machines that use data from the Web
will use different algorithms and different sets of inference rules. In some cases,
these will be powerful AI systems and in others they will be simple document
conversion systems. The results should be provably correct against the same basic
minimalist rules.

As a result, the Semantic Web will require consistency. Applications will have
to be consistent.
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Semantic Web Services

Using the new generation of Web markup languages, such as OWL, an ontology
for Web Services, called OWL-S could facilitate automated functions.

The following are the fundamental automatic Web Service OWL-S tasks: dis-
covery, invocation, composition and interoperation, and execution monitoring.
OWL-S will provide descriptors for the automatic execution of services (see
Chapter 9).

LOGIC ON THE SEMANTIC WEB

The goal of the Semantic Web is different from most systems of logic. The
Semantic Web’s goal is to create a unifying system where a subset is constrained
to provide the tractability and efficiency necessary for real applications. However,
the Semantic Web itself does not actually define a reasoning engine, but rather
follows a proof of a theorem.

This mimics an important comparison between conventional hypertext systems
and the original Web design. The original Web design dropped link consistency
in favor of expressive flexibility and scalability. The result allowed individual
Web sites to have a strict hierarchical order or matrix structure, but it did not
require it of the Web as a whole.

As a result, a Semantic Web would actually be a proof validator rather than a
theorem prover. In other words, the Semantic Web cannot find answers, it cannot
even check that an answer is correct, but it can follow a simple explanation that
an answer is correct. The Semantic Web as a source of data would permit many
kinds of automated reasoning systems to function, but it would not be a reasoning
system itself.

Philosophically, the Semantic Web produces more than a set of rules for
manipulation of formulas. It defines documents on the Web having significant
meaning. Therefore it is not sufficient to demonstrate that one can constrain the
Semantic Web to make it isomorphic to a particular algebra.

Intractability and Undecidability

The world is full of undecidable statements and intractable problems, but the
Semantic Web is capable of expressing them.

Knowledge-representation systems require a trade-off between their expres-
sive power and their computational complexity. For example, if a knowledge-
representation system is a first-order predicate calculus, then the problem of
deciding what an agent could logically deduce is unsolvable.

An agent may have various kinds of reasoning engines, and various amounts
of connectivity, storage space, access to indexes, and processing power that will
determine what it may deduce. Knowing that a certain algorithm may be a nonde-
terministic polynomial in the size of the entire Web may not be helpful. Practical
computability may be assured by the existence of know shortcuts, such as pre-
compiled indexes and definitive exclusive lists.
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A goal of logicians has long been to find languages in which all sentences were
either true or false, and provably so. This involves trying to restrict the language
so as to avoid the possibility of self-contradictory statements that cannot be
categorized as a true or not true.

On the Semantic Web, however, we are already operating with a mass of
untrustworthy data and restrictions on usage. Clearly, a self-contradictory state-
ment is not useful, but there is no harm in the language being powerful enough
to express it. A typical response of a system that finds a self-contradictory state-
ment, such as, “that statement is false,” might be to cease to trust information
from that source.

Things will get really interesting when inference systems can acquire knowl-
edge in a goal-oriented fashion, that is, knowledge acquisition bots. We could
see proof engines operating on known-consistent knowledge bases. As a result,
before the Semantic Web can become a reality it faces challenges including

• Complexity: Semantics are complex, and it will not be easy to use.
• Abuse: Practices like metatag spamming, and even trademark hijacking, are

subject to abuse. Semantic Web technologies will need a mostly automated
system for establishing trust.

• Proprietary Technology: Because of the diversity in developers and devel-
opment tools, Semantic Web technology will have to be technically open
for implementation and use.

Semantic Web Capabilities and Limitations

The Semantic Web promises to make Web content machine-understandable, al-
lowing agents and applications to access a variety of heterogeneous resources,
processing and integrating the content, and producing added value for the user.
The Semantic Web aims to provide an extra machine-understandable layer, which
will considerably simplify programming and maintenance effort for knowledge-
based Web Services.

Current technology at research centers allows many of the functionalities the
Semantic Web promises such as software agents accessing and integrating con-
tent from distributed heterogeneous Web resources. However, these applications
are really ad hoc solutions using wrapper technology. A wrapper is a program
that accesses an existing Website and extracts the needed information. Wrappers
are screen scrapers in the sense that they parse the HTML source of a page,
using heuristics to localize and extract the relevant information. Not surprisingly,
wrappers have high construction and maintenance costs since much testing is
needed to guarantee robust extraction; and each time the Website changes, the
wrapper has to be updated accordingly.

The main power of Semantic Web languages is that anyone can create one, sim-
ply by publishing RDF triplets with URIs. We have already seen that RDF Schema
and OWL are very powerful languages. One of the main challenges the Semantic
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Web community faces for the construction of innovative and knowledge-based
Web Services is to reduce the programming effort while keeping the Web prepa-
ration task as small as possible.

CONCLUSION

This chapter presented a brief overview of Tim Berners-Lee and his role devel-
oping of the Web and Web Services. Then, we looked at the impact of adding
formal logic to the Web architecture and presented the competition between open
markup languages and proprietary server frameworks. This led to the evaluation
of the future Web architecture: the Semantic Web. This chapter concludes with a
presentation of complexity theory and rule-based inference engines followed by
a discussion of what is solvable on the Web.

From this chapter, it may be concluded that the Semantic Web will have to
balance the excessive power of its ontology languages with the efficient reasoning
capabilities it offers in order to become successful.

EXERCISES

4-1. Estimate the number of Web sites on the Web today.
4-2. Discuss how the number of nodes on the Web creates computational com-

plexity that limits the ability to develop logic proof systems.



Figure 4-2. Zooming into Figure 3-2 to create a blowup by a factor 2.
(http://escherdroste.math.leidenuniv.nl/ ).



INTERLUDE #4: TURING’S TEST

The next day, Mary was once again sitting on the library steps when John came
by and joined her to resume their conversation.

“Well, after our last discussion on Turing’s machine you should already have
considered the next step.”

John said, “By the next step, I expect you mean determining just how intelligent
the Turing machine could become?”

Mary said, “Yes, and Turing was obliging in suggesting a test to evaluate just
such a case. The Turing test is a behavioral approach to determining whether or
not a machine is intelligent.”

John said, “And can you state the conditions of the test?”

Mary said, “Of course. Originally, Alan Turing proposed that conversation was
the key to judging intelligence. In his test, a judge has conversations (via teletype)
with two subjects, one human, the other a machine. The conversations can be
about anything, and would proceed for a set period of time (e.g., 1 h). If, at the
end of this time, the judge cannot distinguish the machine from the human on
the basis of the conversation, then Turing argued that we would have to say that
the machine was intelligent.”

John said, “There are a number of different views about the utility of the Turing
test. Some researchers argue that it is the benchmark test of what John Searle
calls strong AI, and as a result is crucial to defining intelligence. Other experts
take the position that the Turing test is too weak to be useful in this way, because
many different systems can generate correct behaviors for incorrect reasons.”

Mary said, “That true. Some famous examples of this are Weizenbaum’s ELIZA
program and Colby’s PARRY program. These “chatbot” programs were designed
to converse as much like people as possible, and they did a pretty good job, as
long as the test was limited in time.”

John said, “The controversy around the Turning test is that it doesn’t seem to
be very general and it defines intelligence purely in terms of behavior. Thus the
Turing test may not in itself be an adequate test of intelligence. Conversation
is not the ultimate display of intelligence, and real thinking is not indicated by
spitting out sentences, and that is all the computer is programmed to do.”
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Mary frowned, but did not respond.

John said, “The Turing test focuses too much on the behavior of conversation.
Just because I am speaking to a student who speaks broken English, it does
not follow that the student is not intelligent. Just because a computer program
sometimes miscues and says something that makes no sense does not necessarily
mean it is not intelligent. On the other hand, a person who has an extensive
knowledge in a small area can seem to be very smart due to this knowledge.
This doesn’t necessarily imply intelligence either, since it says nothing about the
person’s ability to learn, handle a new situation, or to merely converse about
some other subject. In the end, conversational skills are not the ultimate sign of
intelligence, even where communication media are pervasive.”

Mary said, “Wait a minute. Let’s consider the purpose of building artificial intel-
ligence. Are we trying to simulate human minds in order to experiment about
how they work? Or are we interested solely in the end result? If we are only
interested in the consequences of a program’s execution, its output, then perhaps
the Turing test is applicable. In this case, it doesn’t matter how the program
arrived at the response, but merely the fact that the output matched, to some
degree, the output that would be expected from a human. The appearance of
intelligence could be sustained by a program that had merely a large enough
database of preprogrammed responses and a good pattern recognizer that could
trigger the appropriate output.”

John said, “We both need to think about this some more.”



PART II

WEB ONTOLOGY AND LOGIC

Before we can achieve anything approaching artificial intelligence or ‘thinking’
on the Web, the next generation Web architecture must be able to support the
basic elements of logic and automation.

In Part II, Web Ontology and Logic are presented: the solution of the World
Wide Web Consortium (W3C) to deliver Semantic Web architecture built upon
layers of open markup languages. The Semantic Web will support machine-
processing capabilities that will automate Web applications and services. Berners-
Lee has suggested that Web technologies would benefit from integration of the
Semantic Web’s meaningful content with Web Services’ business logic.

For the Semantic Web to provide intelligent features and capabilities, it will
have to trade off the expressive power of new logic languages against the compu-
tational complexity of processing large semantic networks. The layered language
approach of the W3C seeks to implement a balanced approach toward building
the Semantic Web.

Agents on the Semantic Web will perform tasks by seeking information from
Web resources while communicating with other Web agents. Agents are simply
pieces of software that work autonomously and proactively. In most cases, agents
will simply collect and organize information by utilizing metadata, ontologies,
and logic.

Chapter 5 begins our presentation of Semantic Web markup languages by
introducing Resource Description Framework (RDF). Chapter 6 describes the
Web Ontology Language (OWL). In Chapter 7, ontology engineering is intro-
duced, while in Chapter 8, logic, inference, and rule systems are discussed.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
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Chapter 9 presents the current state of development for the Semantic Web Rule
Language (SWRL).

Achieving powerful reasoning with reasonable complexity is the ultimate goal.
The challenge is finding the best layering of ontology, logic, and rule markup
languages for the Semantic Web that will offer solutions to the most useful Web
applications. These include accomplishing important tasks automatically on the
Web, such as search, query, and information acquisition for collaborative Web
applications and services. In Chapter 10, we present Semantic Web applications
in general. Chapter 11 details Semantic Web Services and Chapter 12 offers the
latest in semantic search technology.

Chapter 13 discusses semantic patterns and adoptive software that may play
an important role in automation on the Web. Chapter 14 summarizes the state of
semantic tools. Finally, in Chapter 15, the challenges and opportunities for the
Semantic Web in the near future are summarized.



5
RESOURCE DESCRIPTION
FRAMEWORK

OVERVIEW

The eXtensible Markup Language (XML) is a universal meta-language for defin-
ing markup. It provides a uniform framework for exchanging data between
applications. It builds upon the original and most basic layer of the Web, Hyper-
text Markup Language (HTML). However, XML does not provide a mechanism
to deal with the semantics (the meaning) of data.

Resource Description Framework (RDF) was developed by the World Wide
Web Consortium (W3C) for Web-based metadata in order to build and extend
XML. The goal of RDF is to make work easier for autonomous agents and
automated services by supplying a rudimentary semantic capability.

The RDF is a format for data that uses a simple relational model that allows
structured and semistructured data to be mixed, exported, and shared across differ-
ent applications. It is a data model for objects and relationships between them and
is constructed with an object-attribute-value triple called a statement. While XML
provides interoperability within one application (e.g., producing and exchanging
bank statements) using a given schema, RDF provides interoperability across
applications (e.g., importing bank statements into a tax calculating program).

This chapter highlights some basic characteristics of HTML and XML. Then,
we introduce RDF and present fundamental concepts, such as resources, prop-
erties, and statements. We define the subject, predicate, and object as the RDF
triplet and illustrate it as a graph. Then, we introduce RDF Schema (RDFS) and
provide illustrative examples. Finally, our conclusions about the utility of RDF
and RDFS for meeting the requirements of the Semantic Web are summarized.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.
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HTML LANGUAGE

In 1990, when Tim Berners-Lee laid the foundation for the World Wide Web, he
included three primary components: HTTP (Hypertext Transfer Protocol), URLs
(Universal Resource Locators), and HTML (Hypertext Markup Language).

These three components represented the essential ingredients leading to the
explosive growth of the World Wide Web. The original idea behind HTML was
a modest one. Browsers, such as Internet Explorer or Netscape Navigator, could
view information on Web pages written in HTML. The HTML program can be
written to a simple text file that is recognized by a browser application and can
also be called embedded script programming. As a result, it was so easy that it
could be mastered by a high school student in a day.

The following listing of HTML markup tags is a HTML “Hello World”
example consisting of root tags (<HTML>), head tags (<HEAD>), and body tags
(<BODY>) with the displayed information wedged in between the appropriate tags:

<HTML>
<HEAD>
<TITLE>My Title</TITLE>

</HEAD>
<BODY>

Hello World
</BODY>

</HTML>

As the Web flourished and use of HTML became widespread, the limitations
of the language began to foil continued progress. As more content moved to the
Web, those creating browsers realized that this simple markup language needed
more capability. In particular, Web applications, such as Web Services, required
a means to explicitly manipulate data. This motivated the development of XML.

XML LANGUAGE

The HTML program is not extensible. That is, it has specifically designed tags
that require universal agreement before changes can be made. Although over the
years, Microsoft was able to add tags that work only in Internet Explorer, and
Netscape was able to add tags that work only in Navigator, Web site developers
had no way of adding their own tags. The solution was XML. Proposed in late
1996 by the W3C, it offered developers a way to identify and manipulate their
own structured data.

The XML document simplified the process of defining and using metadata.
The very nature of XML is that of a structured document representing the infor-
mation to be exchanged, as well as the metadata encapsulating its meaning. As a
result, XML provides a good representation of extensible, hierarchical, formatted
information, and its required encoded metadata.
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XML is not a replacement, but rather a complementary technology to HTML.
While XML is already widely used across the Web today, it is still a relatively
new technology. The XML is a meta language, which means it is a language
used to create other languages. It can provide a basic structure and set of rules
for developing other markup languages. By using XML, it is possible to create
a unique markup language to model just about any kind of information.

Markup text, in general, needs to be differentiated from the rest of the docu-
ment text by delimiters. Just as in HTML, the angle brackets (<>) and the names
they enclose are delimiters called tags. Tags demarcate and label the parts of the
document and add other information that helps define the structure. The XML
document lets you name the tags anything you want, unlike HTML, which limits
you to predefined tag names. You can choose element names that make sense in
the context of the document. Tag names are case-sensitive, although either case
may be used as long as the opening and closing tag names are consistent.

The text between the tags is the content of the document, raw information that
may be the body of a message, a title, or a field of data. The markup and the
content complement each other, creating an information entity with partitioned
labeled data in a handy package.

In its simplest form, an XML document is comprised of one or more named
elements organized into a nested hierarchy. An element consists of an open-
ing tag, some data, and a closing tag. For any given element, the name of the
opening tag must match that of the closing tag. A closing tag is identical to an
opening tag except that the less-than symbol (<) is immediately followed by a
forward-slash (/). Keeping this simple view, we can construct the major portions
of the XML document to include the following six ingredients: (1) XML decla-
ration (required), (2) Document Type Definition (or XML Schema), (3) elements
(required), (4) attributes, (5) entity, and (6) notations.

The top of an XML document contains special information called the document
prolog. At its simplest, the prolog merely says that this is an XML document and
declares the version of XML being used. The XML declaration is an announce-
ment to the XML processor that this document is marked up in XML. The
declaration begins with the five-character delimiter “<?xml” followed by some
number of property definitions each of which has a property name and value in
quotes. The declaration ends with the two-character closing delimiter “?>.”

The Document Type Definition (DTD) is used for validating the XML doc-
ument. A DTD is a collection of parameters that describe a document type and
includes specific information about the sequence, frequency, and hierarchy of the
XML document’s elements, attributes, and character data.

The beginning of an XML document starts with the prolog that can hold
additional information that nails down such details as the DTD being used, dec-
larations of special pieces of text, the text encoding, and instructions to XML
processors.

An example of a well-formed XML declaration is

<?xml version=“1.0” encoding=“iso-8859-1” standalone="yes"?>
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Following the XML declaration is a document type declaration that links to a
DTD in a separate file. This is followed by a set of declarations. These parts
together comprise the prolog. A simple XML “Hello World” example follows:

<?xml version="1.0"?>
<!DOCTYPE message [
<!ELEMENT message (#PCDATA)>
]>
<message>
Hello World!

</message>

The text between the tags; <message> · · ·</message>; is the Hello World text.
In addition, XML is both a powerful and essential language for Web Services.

It is the open standard that allows data to be exchanged between applications and
databases over the Web. As such, XML is the interoperable bridge for exchanging
data between Java and Window frameworks that support today’s Web Services.
Yet, despite the recognition of XMLs importance today, its does not offer seman-
tics and logic capabilities. The next step up the markup language pyramid is RDF,
which begins to establish a basis for semantics on the Web.

RDF LANGUAGE

The XML tags can often add meaning to data, however, actually understanding
the tags is meaningful only to humans. For example, given the following segment
of XML markup tags:

<book>
<title>Gödel, Escher, Bach: An Eternal Golden Braid<title>

</book>

A human might infer that: “The book has the title Gödel, Escher, Bach: An Eter-
nal Golden Braid.” This simple grammatical sentence is understood to contain
three basic parts: a subject [The book], a predicate [has title], and an object
[Gödel, Escher, Bach: An Eternal Golden Braid ]. A machine, however, could
not make this inference based upon the XML alone.

We could, however, prepare an eXtensible Stylesheet Language Transform
(XSLT) style sheet to transform the XML markup to display the following string:

The book has the title Gödel, Escher, Bach: An Eternal Golden Braid.

Regardless, the computer would not take action based upon this string (e.g.,
checking to see related titles, prices, availability, etc.) without additional explicit
programming.

For machines to do more automatically, it is necessary to go beyond the
notion of the HTML display model, or XML data model, toward a “meaning”



RDF LANGUAGE 87

model. This is where RDF and metadata can provide new machine-processing
capabilities built upon XML technology.

What is metadata? It is information about other data. Building upon XML,
the W3C developed the RDF metadata standard. The goal was to add semantics
defined on top of XML.

While RDF is actually built upon a very simple model and it can support
very large-scale information processing. An RDF document can delineate precise
relationships between vocabulary items by constructing a grammatical represen-
tation. Assertions in different RDF documents can be combined to provide far
more information together than they could separately. As a result, RDF provides
a powerful and flexible query structure.

RDF Triple

The RDF model is based on statements made about resources that can be anything
with an associated URI (Universal Resource Identifier). The basic RDF model
produces a triple, where a resource (the subject) is linked through an arc labeled
with a property (the predicate) to a value (the object).

The RDF statements can be represented as

A resource[subject] has a property[predicate] with a specific value[object].

Which can be reduced to a triple:

(subject, predicate, object).

And subject, predicate, and object can be defined in terms of resources, properties,
and value as:

Subject: The resource (a person, place, or thing) that the statement
describes. A RDF resource can be anything in the data model
(document, user, product, etc) and is uniquely identified by a
URI. A URI can be a URL (Universal Resource Locator).

Predicate: The property (name, city, title, color, shape, characteristic) of the
subject (person, place, or thing) and is uniquely identified by a
URI.

Object: The value (Douglas R. Hofstadter, San Jose, “Gödel, Escher,
Bach: An Eternal Golden Braid,” blue, circle, strong) can be
specified for the property (name, city, title, color, shape,
characteristic), which describes the subject (person, place, or
thing). This value can be any valid RDF data type. (RDF
supports all of the XML data types.)

This simple model of the triple with URIs used by RDF to describe information
has many advantages. One of the most important is that any data model can be
reduced to a common storage format based on a triple. This makes RDF ideal
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for aggregating disparate data models because all the data from all models can
be treated the same. This means that information can be combined from many
sources and processed as if it came from a single source.

The RDF relationships can be between two resources or between a resource
and a literal. These relationships form arcs. The RDF arc can be graphically
represented where the subject is shown as an oval, the predicate as a connecting
arc or line, and the object as an oval. Graphs are easy to read and the directed arc
removes any possibility of confusion over what are the subject and the objects.

Let us examine a very simple statement and identify the components that
comprise an RDF model. Example 5-1 considers a simple RDF statement:

EXAMPLE 5-1. Consider this sentence as an RDF Statement

“The book has the title Gödel, Escher, Bach: An Eternal Golden Braid.”

“The book [subject] has the title [predicate] Gödel, Escher, Bach: An Eternal Golden
Braid [object].”

This can be represented as the triple:

(The book, has the title, Gödel, Escher, Bach: An Eternal Golden Braid ).

Figure 5-1 shows the corresponding graph for the Example 5-1 triple. It is a
directed graph with labeled nodes and labeled arcs. The arc is directed from
the resource (the subject) to the value (the object), and this kind of graph is
recognized in the AI community as a semantic net.

We can think of the triple (x,P,y) as a logical formula P(x,y) where the binary
predicate P relates the object x to the object y.

Applying this to our triple:

(The book, has the title, Gödel, Escher, Bach: An Eternal Golden Braid )

produces a logical formula:

‘has the title’ (The book, Gödel, Escher, Bach: An Eternal Golden Braid )

where the binary predicate (P):

‘has the title’

has the title
The book

Göbel, Escher,
Bach: An Eternal
Golden Braid

Figure 5-1. Graphical representation of the RDF statement of “The book has the title
Gödel, Escher, Bach: An Eternal Golden Braid.”
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relates the object (x):

The book

to the object (y):

Gödel, Escher, Bach: An Eternal Golden Braid.

Think of a collection of interrelated RDF statements represented as a graph
of interconnected nodes. The nodes are connected via various relationships. For
example, let us say each node represents a person. Each person might be related
to another person because they are siblings, parents, spouses, friends, or employ-
ees. Each interconnection is labeled with the relationship name. Another type of
relationship is the physical properties of a node, such as the name or job of a
person (see the Friend of a Friend application at the end of this chapter).

The RDF is used in this manner to describe these relationships. It does not
actually include the nodes directly, but it does indirectly since the relationships
point to the nodes. At any time, we could introduce a new node, such as a
newborn child, and all that is needed is for us to add the appropriate relationship
for the two parents.

BASIC ELEMENTS

Most of the elements of RDF concern classes, properties, and instances of classes.
This section presents the language components essential to introducing these
elements.

Syntax

Both RDF and RDF Schema (RDFS) use XML-based syntax.
The RDF system provides a means of describing the relationships among

resources in terms of named properties and values. Since RDF and XML were
developed about the same time, RDF was defined as an excellent complement to
XML. Encoding RDF triples in XML makes an object portable across platforms
and interoperable among applications. Because RDF data can be expressed using
XML syntax, it can be passed over the Web as a document and parsed using
existing XML-based software. This combination of RDF and XML enables indi-
viduals or programs to locate, retrieve, process, store, or manage the information
objects that comprise a Semantic Web site.

Header

An RDF Document looks very much like all XML documents in terms of ele-
ments, tags, and namespaces. An RDF document starts with a header including the
root element as an “rdf:RDF” element that also specifies a number of namespaces.
It then defines properties and classes.
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TABLE 5-1. RDF Document Parts

Document Parts RDF Document

Header–XML Syntax
declaration

<?xml version=''1.0''?>

Root element tag <rdf:RDF
XML namespaces for rdf

and dc, as well as, the
URLs where they are
defined.

xmlns:rdf=http://www.w3.org/1999/02/
22-rdf-syntax-ns#xmlns:dc=
''http://purl.org/dc/elements/1.1/''>

Inserting the Triple
(subject, predicate,
object) within the code.

<rdf:Description rdf:about=“SUBJECT”>
<dc:PREDICATE>“OBJECT”</dc:PREDICATE>
</rdf:Description>

End of root element
indicates end of RDF
document.

</rdf:RDF>

Table 5-1 illustrates the parts of an RDF document (header, XML syntax, root
element, namespace, the RDF triple, and the end element) and its serialization
as an XML document.

Namespaces

The namespace mechanism of XML is also used in RDF. However, in XML,
namespaces are only used to remove ambiguities. In RDF, external names-
paces are expected to be RDF documents defining resources, which are used
to import RDF documents. This allows reuse of resources and enables others to
add additional features for the resources producing a large distributed collection
of knowledge.

To add a namespace to an RDF document, a namespace attribute can be
added anywhere in the document, but is usually added to the RDF tag itself. The
namespace declaration for RDF vocabularies usually points to a URI of the RDF
Schema document for the vocabulary. We can add a namespace as:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

The namespace declaration for RDF vocabularies points to the URI of the
RDF Schema document for the vocabulary. Note, the prefix for the RDF Syntax
is given as “rdf,” the RDF Schema is given as “rdfs,” and the Dublin Core
schema (a special publication ontology) is given as “dc.”

Description

The “rdf:about” attribute of the element “rdf:Description” is equivalent to
that of an ID attribute, but is often used to suggest the object may be defined
elsewhere. A set of RDF statements form a large graph relating things to other
things through their properties.
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The content of “rdf:Description” elements are called property elements. Des-
criptions may be defined within other descriptions producing nested descriptions.
Further definition of ID is found through the “rdf:resource” attribute and the
“rdf:type” element introduces structure to the rdf document.

While RDF is required to be well formed, it does not require XML-style
validation. The RDF parsers do not use Document Type Definitions (DTDs) or
XML Schema to ensure that the RDF is valid.

Data Types

Sometimes it is useful to be able to identify what kind of thing a resource is,
much like how object-oriented systems use classes. The RDF system uses a type
for this purpose. While there are two very general types, a resource and a literal,
every resource may be given a precise type. For example, the resource “John”
might be given a type of “Person.” The value of the type should be another
resource that would mean that more information could be associated with the
type itself.

As with other properties, types can be specified with a triple:

<http://www.web-iq.com/people/John>,
rdf:type, <http://xmlns.com/wordnet/1.6/Person>

The resource <http://xmlns.com/wordnet/1.6/Person> is used to represent a
person. The URI is from WordNet, which provides resource URIs for words. The
predicate is rdf:type, which is in the RDF namespace since the “type” predicate
is built-in to RDF. The full name is

'http://www.w3.org/1999/02/22-rdf-syntax-ns#type'.

Also, the attribute rdf:datatype="&xsd;integer" indicates the data type
defines the range as an integer. The RDF uses XML data types that includes
a wide range of data types. In addition, RDF allows any externally defined data
typing scheme.

Now we will use Table 5-1 and serialize Example 5-1: “The book has the title
Gödel, Escher, Bach: An Eternal Golden Braid,” as:

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about=“http://www.amazon.com/books”>
<dc:title>Gödel, Escher, Bach: An Eternal Golden Braid</dc:title>

</rdf:Description>
</rdf:RDF>

Note: dc stands for Dublin Core: a well-established RDF vocabulary for publi-
cations (see http://dublincore.org/).
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Vocabularies

What kind of vocabularies can be used to model business resources using the
syntax of RDF? The answer is any kind of business resource. Because RDF
creates domain-specific vocabularies that are then used to model resources, we
can use RDF to model business-specific resources. The only limitation is the
need for industry cooperation in developing an interoperable vocabulary.

We can consider RDF as a way of recording information about resources.
The RDF can be serialized using XML for specific business domains using a
set of elements defined within the rule of the RDF data model and constrained
through RDF syntax, vocabulary, and schema. The RDF recorded in XML is
a powerful tool. By using XML we have access to a great number of existing
XML applications, such as parsers and APIs. However, RDF provides the same
level of functionality to XML as the relational data model adds to commer-
cial databases and RDF provides predefined data grammar that can be used for
business information.

The way to start defining the vocabulary for a business is to first create domain
elements and their properties within the given business scope. Defining the busi-
ness elements for a new system is the same process as being defined for use within
a more traditional relational database. Following the existing data-modeling tech-
niques, first describe the major entities and their properties, then describe how
these entities are related to one another. Once the elements for the vocabulary
are defined, they can be compared to existing Web resource domain vocabulary
for matches.

Classes and Properties

The RDF and RDF Schema (RDFS) classes and properties can be found at: RDF
W3C specifications:

RDF Model and Syntax Specification:

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

RDFS Specification:

http://www.w3.org/TR/2003/WD-rdf-schema-20030123/

We provide a summary of RDF and RDFS classes and properties in Tables 5-3
and 5-4 respectively after we discuss RDFS.

Collections

A collection is considered to be a finite grouping of items with a given termi-
nator. Within RDF, a collection is defined through the use of rdf:parseType =
"Collection" and through listing the collected resources within the collection
block.
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Reification

The RDF allows us to make statements about statements using a reification mech-
anism. This is particularly useful to describe belief or trust in other statements.

Example 5-2 discusses the interpretation of multiple statements in relationship
to RDF statements.

EXAMPLE 5-2. Interpreting Multiple Sentences as an RDF Statement.
Let us start with five simple facts that we wish to represent as RDF triplets.

1. The name of this URI (mailto: Hofstadter@yahoo.com) is Douglas
R. Hofstadter.

2. The type of this URI (mailto: Hofstadter@yahoo.com) is a person.
3. The author of this URI (mailto: Hofstadter@yahoo.com) is

isbn:0465026567.
4. The id of this URI (isbn:0465026567) is a book.
5. The title of this URI (isbn:0465026567) is Gödel, Escher, Bach: An Eternal

Golden Braid.

Alternatively,

1. URI (mailto: Hofstadter@yahoo.com) is the name Douglas R. Hofstadter.
2. This URI (mailto: Hofstadter@yahoo.com) is a type of person.
3. This URI (mailto: Hofstadter@yahoo.com) is an author of

isbn:0465026567.
4. URI (isbn:0465026567) is the identity of a book.
5. URI (isbn:0465026567) has the title of Gödel, Escher, Bach: An Eternal

Golden Braid.

We represent these five facts as RDF triplets in Table 5-2. Then, in Figure 5-2,
the information in this table is illustrated as a graph.

Figure 5-2 illustrates the simple individual RDF statements as five simple
directed graphs with subject, predicates, and objects.

Then in Figure 5-3, we draw a composite graph that represents all the state-
ments in an efficient form.

TABLE 5-2. RDF Triplet Data Table

Subject Predicate Object

mailto:Hofstadter@yahoo.com name Douglas R. Hofstadter
mailto:Hofstadter@yahoo.com type Person
mailto:Hofstadter@yahoo.com author-of isbn: 0465026567
isbn:0465026567 type book
isbn:0465026567 title Gödel, Escher, Bach: An

Eternal Golden Braid
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Figure 5-2. Individual graphs for each triplet statement of Example 5-2.
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Figure 5-3. Merged RDF graph for Example 5-2.
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The serialized form of the RDF document for this example can be written as:
Serialization of RDF Statement as

<?xml version="1.0"?>
<Class rdf:ID="book"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="uri">

<title>Gödel, Escher, Bach: An Eternal Golden Braid</title>
. . .

</Class>

In any RDF graph, a subgraph would be a subset of the triples contained in the
graph. Each triple is its own unique RDF graph (see Fig. 5-2). The union of two
or more graphs is a new graph called a merged graph (see Fig. 5-3).

RDF SCHEMA

The RDF provides a simple yet powerful model for describing information includ-
ing a basic directed graph, but the semantics (meaning of the information) is
described using RDFS. The purpose of RDFS is to provide an XML vocabulary
that can express classes and their (subclass) relationships, as well as to define
properties associated with classes.

The RDF Schemas are focused on defining taxonomies (class hierarchies)
that in turn facilitate inference and search. This Schema is actually a primitive
ontology language (see Chapter 6).

Classes and Properties

To describe a specific domain, we specify the “things” we want to talk about. We
can talk about either individual objects (resources) or classes that define types of
objects.

A class can be considered as a set of elements. Individual objects that belong to
a class are instances of the class. The relationship between instances and classes
in RDF is expressed by “rdf:type.” An important use of classes is to restrict
what can be stated in an RDF document using Schema.

When a relationship exists between two things, we can express it as a class.
The subject of any property is a domain of the property. The object of the class
is called the range of a property. A property can have many domains and ranges.

The three most important RDF concepts are “Resource” (rdfs:Resource),
“Class” (rdfs:Class), and “Property” (rdf:Property). These are all
“classes.” Class is in the rdfs namespace. Property is in the rdf namespace.
For example, all terms in RDF are types of resources. We just use the rdf:type
property, to declare that something is a “type” of something else as following:

rdfs:Resource rdf:type rdfs:Class.
rdfs:Class rdf:type rdfs:Class.
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rdf:Property rdf:type rdfs:Class.
rdf:type rdf:type rdf:Property.

This means that “Resource is a type of Class, Class is a type of Class, Property
is a type of Class, and type is a type of Property.”

For example, the rdf:ID provides a name for the class while the conjunction
(AND) of two subClassOf statements is a subset of the intersection of the classes:

<rdfs:Class rdf:ID="Set1 AND Set 2">
<rdfs:subClassOf rdf:resource="#Set1"/>
<rdfs:subClassOf rdf:resource="#Set2"/>

</rdfs:Class>

Both RDF and RDFS Classes are presented in Table 5-3.
We have listed the RDF and RDFS properties in Table 5-4.

Class Hierarchies and Inheritance

Once classes are established, the relationship between them must be established
through subclasses, superclasses, and so on.

Suppose we have the following simple related classes (e.g., ontology, see
Chapter 6) for polygons that are plane figures with three or more sides:

1. all quadrilaterals are polygons
2. all polygons are shapes
3. squares are quadrilaterals

In predicate logic, we can express these simple related classes (ontology) as

TABLE 5-3. RDF and RDFS Classes

Class Name Comment

rdfs:Resource Class of all resources
rdfs:Literal Class of all literals (strings)
rdfs:XMLLiteral The class of XML literals
rdfs:Class Class of all classes
rdf:Property Class of all properties
rdfs:Datatype Class of datatypes
rdf:Statement Class of all reified RDF statements
rdf:Bag An unordered collection
rdf:Seq An ordered collection
rdf:Alt A collection of alternatives
rdfs:Container This represents the set Containers
rdfs:ContainerMembershipProperty The container membership properties,

rdf:1, rdf:2, . . ., all of which are
subproperties of ’member’

rdf:List The class of RDF Lists
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TABLE 5-4. RDF and RDFS Properties

Property Name Comment

rdf:type Related a resource to its class
rdfs:subClassOf Indicates membership of a class
rdfs:subPropertyOf Indicates specialization of properties
rdfs:domain A domain class for a property type
rdfs:range A range class for a property type
rdfs:label Provides a human-readable version of a resource name.
rdfs:comment Use this for descriptions.
rdfs:member A member of a container.
rdf:first The first item in an RDF list. Also often called the head.
rdf:rest The rest of an RDF list after the first item, called the tail.
rdfs:seeAlso A resource that provides information about the subject

resource
rdfs:isDefinedBy Indicates the namespace of a resource.
rdf:value Identifies the principal value (usually a string) of a property

when the property value is a structured resource.
rdf:subject The subject of an RDF statement.
rdf:predicate The predicate of an RDF statement.
rdf:object The object of an RDF statement.

1. quadrilaterals(X) → polygons(X)
2. polygons(X) → shapes(X)
3. quadrilaterals (squares)

And now from this knowledge the following conclusions can be deduced:

1. polygons (squares)
2. shapes (squares)
3. quadrilateral(X) → shapes(X)

The hierarchy relationship of classes is shown in Figure 5-4 for the simple related
classes (ontology) of shapes.

Consider the range restriction that organization charts can only include quadri-
laterals and suppose that we want to use squares in an organization chart appli-
cation. Our restriction actually prohibits squares from being used. The reason is
because there is no statement specifying that squares are also a member of the
polygon class. What we need is for a square to inherit the ability to use the class
of polygons. This is accomplished through RDFS.

The RDFS fixes the semantics of “is a subclass of.” Now the meaning can
be used to process software. As a result, RDF Schema is a primitive ontology
language.

Object oriented programming also use classes, inheritance, and properties,
however, in RDFS, properties are defined globally and it is possible to define
new properties that apply to an existing class without changing that class.
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shape

circle polygon lines

triangles quadrilaterals other polygons

Figure 5-4. Hierarchy of Classes.

Property Hierarchies

Just as hierarchy for classes can be defined, so can properties.

RDF and RDFS Layers

Consider the RDF statement

“Nuclear Physics is taught by Professor Smith.”

The schema for this contains classes and properties shown in Figure 5-5, which
separates the layers of RDF from RDFS.

Let us consider the following classes: “academic staff” and “courses.” If a
course “c” is taught by academic staff “a” then “c” also involves “a.” We can con-
sider the class “academic staff” having subclasses: professor, associate professor,
and assistant professor designated by subClassOf (see Fig. 5-5).

In addition, property hierarchies consider, “its taught by” is a subproperty of
“involves” (see Fig. 5-5).

Figure 5-5 shows that the blocks are properties, ellipses in the RDFS layer
represent classes, while ellipses in the RDF layer are instances. The RDFS is
therefore able to express the ingredients: subClassOf, Class, Property, sub-
PropertyOf, Resource, and so on.

Constraints on Properties

The constraints on properties are introduced through “rdfs:domain” and
“rdfs:range.” The property “rdfs:domain” restricts the set of resources that
may have a given property (i.e., its domain). The “rdfs:range” property restricts
the set of values for a given property (i.e., its range). The domain and range
force subjects and objects of a property to be a certain type.

Figure 5-6 shows some relationships between modeling primitives in RDFS.
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Figure 5-5. RDF and RDFS separate layers.

rdfs:Resource

rdfs:Class rdfs:ConstrainResource

rdfs:ConstrainProperty

rdfs:Property

Figure 5-6. Subclass hierarchy for some RDFS primitives.

RDF and RDFS Semantics

In order to make the semantics of RDF and RDFS unambiguous and machine
accessible, the formal language of predicate logic can be used to axiomatically
represent RDF and RDFS. Then, automatic reasoning with RDF and RDFS
becomes possible, even though a first-order logic proof system is required.

The inference system supporting the semantic of RDF and RDFS directly uses
the RDF triplets. This inference system consists of rules of the form:
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IF S contains certain triples
THEN add to S certain additional triples

(where S is an arbitrary set of triples).
The entire set of inference rules can be found in the RDF specification. A

simple RDF inference engine example is presented in Chapter 8.

RDF and RDFS Limitations

The RDF uses only binary properties. This restriction is important because we
often use predicates with two or more arguments. Fortunately, RDF allows such
predicates to be simulated.

Another RDF limitation results from properties as special kinds of resources.
The properties themselves can be used as the object in an object-attribute-value
statement. This flexibility can lead to modelers becoming confused.

Also, the reification mechanism is very powerful, but may be misplaced in
the RDF language, since making statements about statements is complex.

The RDF promotes the use of standardized vocabularies, standardized types
(classes) and standardized properties. While RDF XML-based syntax is well
suited for machine processing, it is not user-friendly.

To summarize, RDF is not an optimal modeling language. However, it is an
accepted standard upon which subsequent ontology languages can build.

XQUERY: XML QUERY LANGUAGE

In order to get access to information applications we can use an XML-based
query language called XQuery. XQuery provides two forms of query specific to
retrieval of concepts and data. As such, an XQuery interface is tuned to support
the semantics and additional expressiveness over relational data structures.

XQuery provides a common query layer to the Semantic Web “stack”: enabling
developers to use a familiar grammar as the mechanism for discovering logic,
rules, data, and documents.

XQuery is a W3C query standard, it is a query language that uses the structure
of XML intelligently and can express queries across many kinds of data, whether
physically stored in XML or viewed as XML via middleware.

Friend of a Friend Application

Many communities, such as companies, professional organizations, and social
groupings, have proliferated on the Internet. The Friend of a Friend (FOAF)
RDF vocabulary, originated by Dan Brickley and Libby Miller, gives a basic
expression for community membership. The FOAF project describes people and
their basic properties, such as name, email address, and so on.

Friend of a Friend allows the expression of personal information and relation-
ships. As a result, search engines can find people with similar interests through
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FOAF. It is a useful building block for creating information systems that support
online communities.

Friend of a Friend is simply an RDF vocabulary. You can create FOAF files
on your Web server and share the URLs so that software can use the information.
The creation of FOAF data is decentralized since it allows many to contribute
independently. An example application that uses these files might be a community
directory where members maintain their own records. However, the interesting
parts of FOAF come into play when the data is aggregated and can then be
cross-linked.

The FOAF has the potential to become an important tool in managing com-
munities. In addition to providing simple directory services, information from
FOAF is accessible in many ways.

For the naming of people, the email address (mailto:) is a convenient URI
scheme to use. A naive approach might lead a developer to write down, for
example: mailto: alesso@web-iq.com lives in the USA.

While a person may have multiple email addresses, the principle of using an
email address to identify a person is reasonable. While we can never create a
global name for a person, we could reasonably assume that all descriptions of a
person that included this person’s email address.

So, you might correctly write: “The person with the email address mailto:
alesso@web-iq.com lives in the USA.” The result is building a web of relation-
ships that can combine in a useful way of relating specific information about
unique individuals.

In order to combine information about particular individuals, the assumption
is made that an email address is an unambiguous property and that only one
person owns a particular mailbox. We illustrate this as an RDF document.

A sample FOAF description of the author.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person>
<foaf:name>H. Peter Alesso</foaf:name>
<foaf:mbox rdf:resource="mailto:alesso@web-iq.com"/>

</foaf:Person>

</rdf:RDF>

Rich-Site Summary

One of the latest episodes in the personal Web publishing trend is weblogs,
which often have a very personal and informal tone. One of the technologies
that underpins this form of publishing is Rich-Site Summary or RSS, an XML
document that contains metadata about content items on a site. Part of its appeal
is the way you can connect your content to the larger Web, enabling others to
find you more easily.
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Many communities have proliferated on the Web, from companies to profes-
sional organizations to social groupings. The FOAF is simply an RDF vocabulary.
Its typical use is akin to that of RSS: We create one or more FOAF files on your
Web server and share the URLs so software can use the information inside the
file. The creation of FOAF data is decentralized. An example application that
uses these files might be a community directory where members maintain their
own records. However, as with RSS, the interesting parts of FOAF come into
play when the data is aggregated and can then be explored and cross-linked.

CONCLUSION

This chapter highlighted some characteristics of HTML and XML before we
introduced Resource Description Framework (RDF) and presented fundamental
concepts, such as resources, properties, and statements. The subject, predicate,
and object was defined as the RDF triplet and was illustrated as a graph. Then,
we introduced RDF Schema (RDFS) and provided illustrative examples.

Currently, the ontology related languages on the Web are XML (provides a sur-
face syntax for structured documents but includes no semantic constraints), XML
Schema (restricts the structure of XML documents), RDF (a data object model
for objects and relations between them), and RDFS (a vocabulary description
language for describing properties and classes of RDF resources).

From this chapter, you may conclude that although RDF and RDFS form
building blocks for defining the Semantic Web, together they still lacked suf-
ficient expressive power. For example, they cannot define: (1) the properties
of properties, (2) necessary and sufficient conditions for class membership, or
(3) equivalence and disjointness of classes. In addition, the only constraints
expressible are domain and range constraints on properties. As a result, the
semantics have remained weakly specified.

In addition, RDFS is an object-oriented type system that acts as a minimal
ontology modeling language, however, for the Semantic Web we will need a
more powerful ontology layer on top of RDF/RDFS. Chapter 6 presents the
Web Ontology Language (OWL), which will offer greater expressive power and
efficient reasoning capability.

EXERCISES

5-1. Map an RDF statement onto a relational database model.
5-2. Compare rdfd:subClassOf with the type extensions used in XML Schema.
5-3. Write an ontology about geography including cities, counties, states, and

so on.
5-4. What is the relationship between “is parent of” and “is child of”?



Figure 5-7. Zooming in Figure 3-2 to create a blow up of the filled in picture by a factor
4 (http://escherdroste.math.leidenuniv.nl/).



INTERLUDE #5: THE CHINESE ROOM

Mary said, “Hi, John. I was just thinking of you while I was sorting out my new
project assignment.”

John said, “Isn’t that curious? I was just hoping you had already figured out the
easiest approach to getting it done.”

Mary said, “That reminds me of a thought I wanted to share with you. I have been
puzzling over these revisions to our class project and wondering how something
as seemingly abstract as a language represented through a string of symbols can
actually convey meaning?”

John said, “I know what you mean. I’m still puzzling over how a computer that
seems able to rearrange patterns of 0’s and 1’s can ever acquire an understanding
of their meaning. I guess it is easier to appreciate how humans can attach meaning
to patterns, but when we try to visualize a machine obtaining understanding I
too get lost.”

Mary said, “Do you recall John R. Searle’s Chinese Room problem?”

John said, “Mmmm, as I remember it, a man is in a room with a book of rules.
Chinese sentences are passed under the door to him. The man uses the book
of rules to process the sentences. The rules tell him to transcribe some Chinese
characters onto a paper and pass on the resulting Chinese sentences as his reply
to the message. Since the man is only following the book of rule he does not need
to understand Chinese. Searle stated that a computer program carrying out these
same rules wouldn’t understand Chinese either, and therefore he concluded that
no computer program can understand anything it is processing. He also argued
something about biology being necessary for understanding.”

Mary said, “Yes, you got it. The Chinese room represents a kind of Turing test
where we can’t reliably tell the difference between a machine’s response and
a human’s response. We use the same closed room and communication scheme
of the Imitation Game. But in this case, you sit in the closed room together
with a book containing symbols while a symbols specialist types in expressions.
When you see the input symbols you open your book, find the corresponding
passage and copy out the symbols indicated as the correct reply. After several
exchanges of this sort, the symbols specialist has no reason to believe that he
isn’t communicating with another specialist. But in fact there is only that someone
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in the room and you don’t understand the symbols. You are merely responding
mechanically and using the prepared book of correct responses. To you the strings
are equally meaningless as to a computer.”

John said, “So what is at issue here is that if the someone inside had no under-
standing of what the symbols mean, then the Turing machine can’t understand
the symbols the computer repeats either. And if there is no understanding then
there can be no thinking. Neither you nor the machine is thinking because neither
actually understands what the string of symbol means. So where is the semantics,
either in the machine or the room? There is no semantics. There is only syntax
of manipulated symbols.”

Mary said, “It seems to me that one point of view is that an observer outside
the room would say that you passed the Turing test by giving correct responses
to the input symbols submitted. But another view is that while you were sitting
inside the room there was no actual understanding hence no thought, but only
symbol manipulation.”

John said, “So what is it to understand Chinese? Understanding Chinese involves
being able to translate Chinese sentences into some internal representation and to
reason with the internal representation and some knowledge base. However, there
is considerable thought involved in pre-packaging the dictionary book. Suppose
that we had built an elaborate branching tree for a computer instead of a dictionary
book. Then the computer would have answered all the input symbols correctly,
but what is wrong with the tree structure is that the Turing’s Test is not about
the behavior it produces, but the way it produces it.”

Mary said, “I believe the answer is to correctly define the “system” as consisting
of the combination of the man and the book of rules; together they form a system
that shows an understanding of Chinese.”

John said, “That is something concrete that I can think about.”
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WEB ONTOLOGY LANGUAGE

OVERVIEW

Although eXtensible Markup Language (XML) Schema is sufficient for exchang-
ing data between parties who have agreed to the definitions beforehand, the lack
of semantics prevents machines from reliably performing this task with new XML
vocabularies. In addition, the expressive power of Resource Description Frame-
work (RDF) and RDF Schema (RDFS) is very limited. RDF is roughly limited
to binary ground predicates and RDF Schema is roughly limited to a subclass
hierarchy and a property hierarchy with domain and range definitions.

For machines to perform useful automatic reasoning tasks on Web documents,
the language machines use must go beyond the basic semantics of XML Schema
and RDF Schema. They will require a more expressive and reasoning ontology
language; as a result, the World Wide Web Consortium (W3C) has defined Web
Ontology Language (called OWL).

Web Ontology Language enhances RDF with more vocabulary for describing
properties and classes, including relations between classes (e.g., disjointedness),
cardinality (e.g., exactly one), equality, richer typing of properties, characteristics
of properties (e.g., symmetry), and enumerated classes.

First, this chapter describes the requirements for OWL and its relationship with
RDFS. Then OWL is introduced and each of the three OWL versions currently
available: Lite, DL, and Full. Some comparisons of OWL and RDFS are made
along with several illustrative examples.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.
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ONTOLOGY LANGUAGE

Ontology formally describes a list of terms and the relationships between them
in order to represent an area of knowledge. The terms represent important con-
cepts, such as classes of objects. Besides subclass relationships, ontologies may
include information, such as properties, value restrictions, disjoint statements,
and specifications of logical relationships between objects.

To compare conceptual information across two knowledge bases on the Web, a
program must know when any two given terms are being used to mean the same
thing. Ideally, the program must have a way to discover common meanings.
A solution to this problem is to collect information into ontologies. Artificial
Intelligence and Web researchers use the term “ontology” as a document that
defines the relations among terms. While the term “taxonomy” defines classes
of objects and relationships among them, a typical ontology for the Web uses a
taxonomy plus a set of inference rules to produce new knowledge. On the Web,
ontologies provide a shared understanding.

Ontologies are usually expressed in a logic-based language, so that accu-
rate, consistent, and meaningful distinctions can be made among the classes,
properties, and relations. Some ontology tools can perform automated reasoning
using the ontologies, and thus provide advanced services to intelligent applica-
tions, such as conceptual (semantic) search and retrieval, software agents, speech
understanding, knowledge management, intelligent databases, and e-commerce.

OWL was developed in 2003, when the W3C began final unification of the
disparate international ontology efforts into a standardized ontology. Web Ontol-
ogy Language is designed to express a wide variety of knowledge, as well as
provide for an efficient means to reason with it in order to express the most
important kinds of knowledge. Using an ontology with a rule-based system, we
can reach logic inferences about Web information.

OWL can be used to describe the classes and relations between classes that
are inherent in Web documents and applications. It is able to formalize a domain
by defining classes and properties of those classes, define individuals and assert
properties about them, and reason about these classes through semantics and
rules.

A set of XML statements by itself does not allow us to reach a conclusion
about any other XML statements. To employ XML to generate new data, we
need knowledge embedded in some proprietary procedural code that exists as a
server page on a remote server. However, a set of OWL statements by itself can
allow us to reach a conclusion about another OWL statement.

OWL ontology documents are designed to be modular and independent. They
can be combined dynamically to provide additional meaning if required. As an
example, if there is additional need to include information about a shipping
concept in a manufacturing system, the application can add use of the shipping
ontology dynamically.

Web Ontology Language ontology documents have a logical consistency
to them. They provide machine-based systems with the ability to interpret
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the declared relationships within them. More importantly, they also allow
mathematical techniques to be applied that can interpret and calculate the
relationships that are implied within the logical formulations. These inferences
make the use of OWL ontologies tractable and realistic for organizations,
drastically reducing the amount of information that has to be modeled, encoded,
or worked around by systems engineers and integrators. Being able to standardize
the definition of real-world concepts becomes very powerful as we investigate
knowledge that spans across multiple domains.

ONTOLOGY LANGUAGE REQUIREMENTS

An ontology language permits the development of explicit, formal conceptu-
alizations of models. The main requirements of an onotology language are a
well-defined syntax, a formal semantics, convenience of expression, an efficient
reasoning support system, and sufficient expressive power.

A necessary condition for machine-processing is a well-define syntax. As a
result, OWL has been built upon RDF and RDFS and has the same XML-
based syntax.

A formal semantics precisely describes the meaning of knowledge and allows
users to reason about knowledge. Semantics is a prerequisite for reasoning sup-
port that allows consistency checks, checks for unintended relationships, and
automatic classification of instances in classes.

A formal semantics and reasoning support can be provided through mapping
an onotology language to a known logical formalism. The OWL is partially
mapped on description logic (see Chapter 2), which is a subset of predicate logic
for which efficient reasoning support is possible.

Limitation of Expressive Power of RDF Schema

Both RDF and RDF Schema allow some ontology knowledge representation. The
main modeling primitives of RDF–RDFS are concerned with the organization of
vocabularies in typed hierarchies. However, some of the missing necessary fea-
tures are local scope of properties, disjointness of classes, Boolean combinations
of classes, cardinality of restrictions, and special characteristics of properties.

Therefore, an ontology language that is richer than RDF Schema with respect
to these additional features is needed. In designing this language, the trade-off is
between expressive power and efficient reasoning support. The richer the language
the more inefficient the reasoning support becomes. Therefore, compromises must
be reached between a language that can support efficient reasoners while being
sufficiently expressive to incorporate classes of ontology and knowledge.

COMPATIBILITY OF OWL AND RDF/RDFS

The layered architecture of the Semantic Web would suggest that one way to
develop the necessary ontology language is to extend RDF Schema by using
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the RDF meaning of classes and properties (rdfs:classes, etc.) and adding
primitives to support richer expressiveness. However, simply extending RDF
Schema would fail to achieve the best combination of expressive power and
efficient reasoning.

The W3C has defined OWL to include three different sublanguages (OWL
Full, OWL DL, OWL Lite) in order to offer different balances of expressive
power and efficient reasoning.

OWL Full

The entire language is called OWL Full and it uses all the primitives and allows
their combination with RDF and RDFS. The OWL Full supports maximum
expressiveness and the syntactic freedom of RDF, but has no computational
guarantees. For example, in OWL Full, a class can be treated simultaneously as
a collection of individuals and as an individual in its own right. It is intended
to be used in situations where very high expressiveness is more important than
being able to guarantee the decidability or computational completeness of the
language (see Chapter 2). Therefore it may be impossible to perform automated
reasoning on OWL Full ontologies.

The advantage of OWL Full is that it is fully compatible with RDF syntax
and semantics. Any legal RDF document is also a legal OWL Full document.
Any valid RDF–RDFS conclusion is also a valid OWL Full conclusion. The
disadvantage of OWL Full is that the language is undecidable, and therefore
cannot provide complete (or efficient) reasoning support.

OWL DL

Web Ontology Language DL (Descriptive Logic) is a sublanguage of OWL Full
that restricts how the constructors from OWL and RDF can be used. This ensures
that the language is related to description logic. Description Logics are a decidable
fragment of First-Order Logic (FOL) (see Chapter 2), and are therefore amenable
to automated reasoning.

The OWL DL supports strong expressiveness while retaining computational
completeness and decidability. It is therefore possible to automatically compute
the classification hierarchy and check for inconsistencies in an ontology that
conforms to OWL DL.

The advantage of this sublanguage is efficient reasoning support. The disad-
vantage is the loss of full compatibility with RDF. However, every legal OWL
DL document is a legal RDF document.

OWL Lite

Further restricting OWL DL produces a subset of the language called OWL
Lite, which excludes enumerated classes, disjointness statements, and arbitrary
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rdfs:Resource

rdfs:Class

owl:Class
owl:ObjectProperty owl:DatatypeProperty

rdf:Property

Figure 6-1. The OWL and RDF–RDFS subclass relationships.

cardinality. The OWL Lite supports a classification hierarchy and simple con-
straints. It is simpler for tool support and provides a quick migration path for
taxonomies. While this language is easier to comprehend it is less expressive.
The choice between OWL Lite and OWL DL depends on the extent of require-
ments for expressive constructs. All sublanguages of OWL use RDF for their
syntax and instances are declared as in RDF (see Fig. 6-1).

The layered architecture of the Semantic Web promotes the downward com-
patibility and reuse of software. It is only achieved with OWL Full, but at the
expense of computational tractability.

THE OWL LANGUAGE

A key problem in achieving interoperability over the Web is recognizing when
two pieces of data referring to the same thing, even though different terminology
is being used. OWL may be used to bridge this “terminology gap.”

Specifically, ontology includes four concepts that form the basis of an OWL
document: (1) classes, (2) relationships between classes, (3) properties of classes,
and (4) constraints on relationships between the classes and properties of classes.

As a result, an OWL document identifies:

• Class hierarchy: Defines class–subclass relationships.
• Synonym: Identifies equivalent classes and equivalent properties.
• Class association: Maps one or more classes to one or more classes, through

the use of a property (i.e., domain/range).
• Property metadata: Contains metadata for properties.
• Class definition: Specifies the composition of classes.
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The W3C Specification for OWL

The OWL Syntax Specification http://www.w3.org/TR/owl-features/

Web Ontology Language defines the classes and properties, as well as their
relationship to each other in the document, consequently, they are extremely simi-
lar to RDF Schema (see Fig. 6-1). For example, an owl:Class element categorizes
elements that are classes.

The OWL reference document provides a formal specification of the OWL.
Unlike RDF, the OWL vocabulary is quite large. Like RDF, OWL makes use
of elements from RDFS. However, OWL has several concepts unique to it,
such as Boolean combination of class expressions and property restrictions,
which add a layer of reasoning to applications. Both the RDFS and OWL
are compatible, which is why there are RDFS elements within the OWL ele-
ment set.

BASIC ELEMENTS

Most of the elements of an OWL ontology concern classes, properties, instances
of classes, and relationships between these instances. This section presents the
language components essential to introducing these elements.

Syntax

The OWL builds on RDF and RDFS and uses RDFs XML-based syntax. How-
ever, because RDF syntax is not very readable, other syntactic forms for OWL
have also been proposed: an XML-base syntax that does not follow RDF, an
abstract syntax, and a graphical syntax based upon UML (Universal Modeling
Language).

Header

An OWL document contains an OWL ontology and is an RDF document with
elements, tags, and namespaces. An OWL document starts with a header that
identifies the root element as an rdf:RDF element, which also specifies a number
of namespaces. Then the document defines properties and classes as shown in
Table 6-1.

OWL Namespace and Ontology Elements

After the OWL header, the document includes the definitions for classes and
properties of the ontology. The OWL classes define entities through properties.

An OWL ontology begins with assertions grouped under the owl:Ontology
element. This section could also include import statements. The element
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TABLE 6-1. OWL Document Parts

Document Parts OWL Document

Header
XML Syntax <?xml version=''1.0'' encoding=''UTF-8''?>
Root element <rdf:RDF

Namespace xmlns:iq = “http://www.web-iq.com”>
xmlns:owl = “http://www.w3.org/2002/07/owl#”
xmlns:rdf = “http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs = “http://www.w3.org/1999/02/22-rdf-schema#”
xmlns:dc = “http://purl.org/dc/elements/1.1/”
xmlns:xsd = “http://www.w3.org/2000/1/XMLSchema#”>

OWL properties <owl:Ontology rdf:about = “http://www.amazon.com”>
and classes <owl:versionInfo>

$ID: Overview.html
</owl:versionInfo>
<dc:creator> Douglas R. Hofstadter </dc:creator>
<dc:title> Gödel, Escher, Bach: An Eternal Golden Braid
</dc:title>

End of OWL </owl:Ontology>
End of RDF </rdf:RDF>

owl:imports can be used to list other ontologies whose content are part of
the current ontology. An import section includes an rdf:resource attribute that
identifies a separate RDF resource providing definitions used by the ontology.
This may include the schema for the ontology.

Dublin Core (dc) elements are included in the header to provide title, creator,
and other information since the ontology is a published resource. The dc was
designed to document metadata about published resources.

Simple Classes and Individuals

Many uses of an ontology will depend on the ability to reason about individuals.
In order to do this we need to have a mechanism to describe the classes that
individuals belong to and the properties that they inherit by virtue of class mem-
bership. We can always assert specific properties about individuals, but much of
the power of ontologies comes from class-based reasoning.

Sometimes we want to emphasize the distinction between a class as an object
and a class as a set containing elements. We call the set of individuals that are
members of a class the extension of the class.

The most basic concept corresponds to classes that are the roots of a taxonomic
tree. Every individual in the OWL world is a member of the class owl:Thing. Thus
each user defined class is implicitly a subclass of owl:Thing. Domain specific
root classes are defined by simply declaring a named class. The OWL also defines
the empty class, owl:Nothing.
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The OWL classes are interpreted as sets that contain individuals. They
are described using formal (mathematical) descriptions that state precisely the
requirements for membership of the class. For example, the class Dog would
contain all the individuals that are dogs in our domain of interest. Classes may
be organized into a superclass–subclass hierarchy.

For example, consider the classes Animal and Dog: Dog might be a subclass
of Animal (so Animal is the superclass of Dog). This says that, “All dogs are ani-
mals,” “All members of the class Dog are members of the class Animal,” “Being
a Dog implies that you’re an Animal,” and “Dog is subsumed by Animal.” One
of the key features of OWL DL is that these superclass–subclass relationships
can be computed automatically by a reasoner.

Examples of the OWL vocabularies include (1) subClassOf: This OWL ele-
ment is used to assert that one class of items is a subset of another class of items.
Example: Dog is a subClassOf Animal, and (2) equivalentProperty: This OWL
element is used to assert that one property is equivalent to another. Example:
Quardruped is an equivalentProperty to “four-legged.”

Class Elements

Classes are defined using an owl:Class element. An example of an OWL class
“computer” is defined with a subclass “laptop” as

<owl:Class rdf:ID="Computer">
<rdfs:subClassOf rdf:resource="#laptop"/>

</owl:Class>

We can also specify that the class is disjoint using owl:disjointWith elements,
These elements are included in the definition or by referring to the ID using
rdf:about which is an inherited mechanism from RDF.

Equivalence of classes is defined with owl:equivelentClass.

Property

A property in RDF provides information about the entity it is describing. Property
characteristics increase our ability to understand the inferred information within
the data.

The RDF Schema provides three ways to characterize a property: (1) range:
Used to indicate the possible values for a property; (2) domain: Used to associate
a property with a class; and (3) subPropertyOf: Used to specialize a property.

The OWL documents can use rdfs:range, rdfs:domain, and rdfs:sub-

PropertyOf as well. An OWL property is very similar to an RDFS property.
They both share the same use of rdfs:domain and rdfs:range, but OWL adds
some constraints.

Properties let us assert general facts about the members of classes and specific
facts about individuals. A property is a binary relation. There are two kinds of
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OWL property: object properties that relate object to other objects and data type
properties that relate objects to datatype values.

When we define a property there are a number of ways to restrict the relation.
The domain and range can be specified. The property can be defined to be a
specialization (subproperty) of an existing property

Note that the use of range and domain information in OWL is different from
type information in a programming language. Among other things, types are used
to check consistency in a programming language. In OWL, a range may be used
to infer a type.

Properties and Datatypes

Properties are distinguished according to whether they relate individuals to
individuals (object properties) or individuals to datatypes (datatype properties).
Datatype properties may range over strings or they may make use of simple types
defined in accordance with XML Schema datatypes.

The OWL uses some of the many built-in XML Schema datatypes. Refer-
ences to these datatypes are by means of the URI reference for the datatype,
http://www.w3.org/2001/XMLSchema.

Property Restrictions

In general, an owl:Restriction element contains an owl:onProperty element
and one or more restriction declarations. One restriction could be the kind sof
values the property can take, such as owl:allValuesFrom.

Boolean Combinations

Boolean combinations, such as union, intersection, and complement of classes
are power elements. They can be nested arbitrarily.

Instances

Instances of classes are declared just as in RDF:

<rdf:Description rdf:ID=”123456">
<rdf:type rdf:resource="computer"/>

</rdf:Description>

OWL Lite Specific Property Examples

In OWL Lite it is possible to specify property characteristics, which provides
a powerful mechanism for enhanced reasoning about a property. The following
special identifiers can be used to provide information concerning properties and
their values:
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• inverseOf: One property may be stated to be the inverse of another property.
• TransitiveProperty: Properties may be stated to be transitive.
• SymmetricProperty: Properties may be stated to be symmetric.
• FunctionalProperty: Properties may be stated to have a unique value.
• InverseFunctionalProperty: Properties may be stated to be inverse func-

tional.

In addition to designating property characteristics, it is possible to further con-
strain the range of a property in specific contexts in a variety of ways. The OWL
Lite allows restrictions to be placed on how properties can be used by instances
of a class. The following two restrictions limit which values can be used while
the cardinality restrictions limit how many values can be used.

• allValuesFrom: The restriction allValuesFrom is stated on a property with
respect to a class.

• someValuesFrom: The restriction someValuesFrom is stated on a property with
respect to a class. A particular class may have a restriction on a property
that at least one value for that property is of a certain type.

• minCardinality: Cardinality is stated on a property with respect to a partic-
ular class. If a minCardinality of 1 is stated on a property with respect to a
class, then any instance of that class will be related to at least one individual
by that property. This restriction is another way of saying that the property
is required to have a value for all instances of the class.

• maxCardinality: Cardinality is stated on a property with respect to a par-
ticular class. If a maxCardinality of 1 is stated on a property with respect
to a class, then any instance of that class will be related to at most one

Product

DellProduct

DesktopComputer

LaptopPen

PersonalComputer

Workstation

Figure 6-2. Classes and subclasses of the computer ontology.
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individual by that property. A maxCardinality 1 restriction is sometimes
called a functional or unique property.

• cardinality: Cardinality is provided as a convenience when it is useful to
state that a property on a class has both minCardinality 0 and maxCardi-
nality 0 or both minCardinality 1 and maxCardinality 1.

• intersectionOf: OWL Lite allows intersections of named classes and
restrictions.

OWL EXAMPLE: COMPUTE ONTOLOGY

This example presents several OWL features for a computer ontology.
The classes and subclasses are shown in Figure 6-2. The serialization for the

computer ontology is

<[DOCTYPE owl [
<!ENTITY xsd “http://www.w3.org/2001/XMLSchema#”>
]>

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=”http://www.w3.org/200/01/rdf-schema#”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”
xmlns:owl=”http://www.w3.org/2002/07/owl#”
xmlns=”http://www.web-iq.com/computer.owl#”>

<owl:Ontology rdf:about=””>
<owl:versionInfo>
Example
</owl:versionInfo>
</owl:Ontology>

<owl:Class rdf:ID=“Product”>
</owl:Class>

<owl:Class rdf:ID=“Workstation”>
<rdfs:label>Device</rdfs:label>
<rdfs:subClassOf rdf:resource=“#product”/>
</owl:Class>

<owl:Class rdf:ID=“DellProducts”>
<rdfs:label>Dell Devices</rdfs:label>
<owl:intersectionOf rdf:parseType=“Collection”>
<owl:Class rdf:about “#product”/>
<owl:Restriction>
<owl:onProperty rdf:resource=“#manufactured by”/>
<owl:hasValue rdf:datatype=“&xsd;string”>
DELL
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</owl:hasValue>
</owl:Restriction>
</owl:Intersection>
</owl:Class>

<owl:Class rdf:ID=“PersonalComputer”>
<rdfs:subClassOf rdf:resource=“#workstation”/>
</owl:Class>

<owl:Class rdf:ID=“Laptop”>
<rdfs:subClassOf rdf:resource=“#personalcomputer”/>
</owl:Class>

<owl:Class rdf:ID=“DesktopComputer”>
<rdfs:subClassOf rdf:resource=“#personalcomputer”/>
<rdfs:subClassOf rdf:resource=“#dellproduct”/>
</owl:Class>

<owl:Class rdf:ID=“Pen”>
<rdfs:subClassOf rdf:resource=“#personalcomputer”/>
</owl:Class>

<owl:DatatypeProperty rdf:ID= “manufactured by”>
<rdf:domain rdf:resource= “#product”/>
<rdf:range rdf:resource =“&xsd:string”/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID= “price”>
<rdf:domain rdf:resource= “#product”/>
<rdf:range rdf:resource =”&xsd:string”/>
</owl:DatatypeProperty>

</rdf:RDF>

This onotology demonstrates siblings in a hierarchy may not be disjoint.

ONTOLOGY EXAMPLE: BIRTHPLACE

In this example, asking the question: What is the birthplace of George Washing-
ton? helps to illustrate several OWL facilities.

Suppose we search the Web and find three documents that provide information
about George Washington’s birthplace. The first document states that George
Washington was born in Virginia, the second document said he was born in
the Mother State, while the third document stated that George Washington was
born in the Old Dominion State. Historically, these are all referring to the same
location, but how could OWL help equate their meaning on the Web?

Consider the RDF, which defines a person, ontology, and birthplace.
What is the birthplace of George Washington?
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RDF Statements:

<Person rdf:about="http://www.person.org# GeorgeWashington ">
<birthplace rdf:about="http://www.states.org#Virginia"/>

</Person>
<Person rdf:about="http://www.person.org# GeorgeWashington ">

<birthplace rdf:resource="http://www.history.org# Mother State "/>
</Person>
<Person rdf:about="http://www.person.org# GeorgeWashington ">

<birthplace rdf:resource="http://www.tourism.org# Old Dominion
State"/>

</Person>

Figure 6-3, represents the OWL Ontology showing that the person OWL ontol-
ogy indicates a Person with only one birthplace location.

Figure 6-3 specifies that a subject Resource has exactly one value. The OWL
properties that relate a resource to exactly one other resource are said to have
a cardinality = 1. Therefore this example requires: “A person has exactly one
birthplace location.”

As a result, applying the person OWL ontology results in the interpretation of
the rules that makes the following inference:

Inference: Virginia, Mother State, and Old Dominion State, are actually the same
location.

This example demonstrates that:

An OWL instance document can be enhanced with an OWL property to indi-
cate that it is the same as another instance.

OWL provides the capability to construct taxonomies (class hierarchies). Such
taxonomies can be used to dynamically understand how entities in an RDF
instance relate to other entities.

OWL provides the capability to specify that a subject can have only one
value.

Resource Resource

Person Location

property

birth place

1

1

Figure 6-3. Birthplace ontology.
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OWL facilitates a dynamic understanding of the semantics of data.

APPLYING OWL

This section identifies several OWL applications: Web portal, multimedia seman-
tics, and corporate sites.

Web portals can define an ontology for the community to allow more intelligent
syndication. The ontology can provide a terminology for describing content and
terms about other terms. These definitions allow inferences that allow users to
obtain search results that are impossible to obtain from conventional retrieval
systems.

The OWL also can be used to provide semantic annotations for collections
of images, audio and video. Multimedia ontologies can be of two types: media-
specific or content-specific. Media-specific ontologies could have taxonomies of
different media types and describe properties of different media. For example,
video may include properties to identify the length of the clip and scene breaks.
Content-specific ontologies could describe the subject of the resource, such as
the setting or participants. Since such ontologies are not specific to the media,
they could be reused by other documents that deal with the same domain.

Company Web pages often contain press releases, product offerings, corpo-
rate procedures, product comparisons, white papers, and process descriptions.
Ontologies can be used to index these documents and provide a better means of
retrieval. Also, a typical problem is that they may not share terminology with
the authors of the desired content. For such problems, it would be useful for
each class of user to have different ontologies of terms, but have each ontology
interrelated so translations can be performed automatically.

There are >8 billion pages on the Web, and the potential application of the
Semantic Web to embedded devices and agents indicates that even larger amounts
of information eventually must be handled. The OWL language should support
reasoning systems that scale well. However, the language should also be as
expressive as possible, so that users can state the kinds of knowledge important
to their applications.

OWL CAPABILITIES AND LIMITATIONS

The OWL language offers the following features: less chance of misinterpretation,
understanding each other’s data’s semantics, and OWL uses existing XML syntax
to express semantics.

There are many reasons for keeping the OWL semantic information separate
from the application. The OWL document can be extensible, reusable, and avoids
misinterpretation.

Some OWL applications have encountered problems attaching semantics on a
per-application basis or with burying semantic definitions within each application.
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This can lead to duplicate effort since each application must express the semantics
and variability of its own interpretation.

Additional OWL problems include no ad hoc discovery and exploitation, thus
an application may not be able to effectively process new data when it is encoun-
tered. This can result in a brittle application. A better approach would be to
provide semantic definitions for applications and express them in a standard
vocabulary.

CONCLUSION

This chapter presented an introduction to the Web Ontology Language and
each of the three OWL versions currently available: Lite, DL, and Full. Some
comparisons of OWL and RDFS were made and several illustrative examples
are included. Finally, the basis of using this markup language for supporting the
development of the Semantic Web was discussed.

From this chapter, we may conclude: OWL is the W3C standard for Web
ontologies and provides the semantics of knowledge that can be processed in
a machine-accessible way. The OWL builds on RDF and RDF Schema. Formal
semantics and reasoning support for OWL is based on predicate logic and descrip-
tive logics. The OWL is offered in three flavors to allow developers to evaluate
trade-offs between expressive power and efficient reasoning. For example, OWL
Full has a very high expressiveness, but is unable to guarantee the decidability
or computational completeness of the language. Therefore it may be impossible
to perform automated reasoning on OWL Full ontologies. While OWL is suffi-
ciently rich to be applied, extensions are being developed for further features of
logic and rules. The OWL-Services is needed for automatic Web Services.

EXERCISES

6-1. State how to identify two classes as disjoint.
6-2. Consider a graph with nodes and edges. Let an edge e from node a to node

b be edge(a,b). Define a binary predicate path that is true for nodes c and
d, if and only if, there is a path c to d in the graph.

6-3. Determine which constructs of RDFS and OWL can be expressed with
monotonic rules.



Figure 6-4. Zooming in Figure 3-2 to create a blow up by a factor 8. (http://escherdroste.
math.leidenuniv.nl/).



INTERLUDE #6: MACHINES AND
BRAINS

John and Mary were walking across campus toward their afternoon class when
Mary felt compelled to renew their ongoing debate over machine intelligence.

Mary said, “The deeper problem we should be addressing is whether the perfor-
mance of machine processing is similar to how a human brain thinks.”

John said, “I still don’t see how writing and erasing 0s and 1s on a tape has
anything to do with thinking. How can you believe that a symbol writing machine
bears a resemblance to the thought processes of the human brain? Brains are not
machines.”

Mary said, “Well, before I disagree with you, let me review some basic features
of the physical makeup of the brain. I think you’ll see then how its structure
is captured in the structure of a computing machine. The human brain is com-
posed of a very large number of neurons; 10 billion or more. These neurons are
connected to each other through a dense network of axons and dendrites which
behave just like “wires.” The resulting brain structure resembles something like
a giant telephone switching network.”

John looked reproachfully at Mary and replied, “You can’t be serious—my brain
is a giant telephone switching network?”

Mary said, “Mine too. The neuron is a kind of switch that can be either ON
or OFF, which is determined by the signal it receives from other connected
neurons. The neurons fire like a trigger being pulled. The only difference is that
each neuron may have many signals from other neurons coming into it. But an
individual neuron has only one output going to one other neuron. Some of the
input channels are excitatory, which is like putting pressure on the trigger while
other inputs are inhibitory reducing trigger tension. If the net sum of all the
positive and negative inputs exceeds a certain threshold then the neuron fires a
pulse into its output channel. Otherwise it remains OFF. Many neurophysiologists
believe that the patterns created in the brain by these neuron firings form an
important part of the human thought process.”

John said, “Oh, I see! You are forming an analogy between the computer machine
and a brain on the basis of electric impulses. They both involve the storage of
large numbers of elements: 0s and 1s states for the compute and ON and OFF
states for the brain.”
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Mary said, “You’ve got it. Moreover, both the computer and the brain process
these data according to patterns.”

John said, “Patterns? That sounds like you are returning to your chess playing
analogy for pattern recognition.”

Mary said, “It is relevant. The brain stores its data in the form of patterns created
by firing neurons. Each pattern is just a listing of the firing of its associated
neurons in ON or OFF states. These patterns are associated with thought states
in ways no one understands. The computer on the other hand stores data in
sequences of 0s and 1s, which is equivalent to the ON and OFF states. In both
cases there is a way to modify what is stored in an individual memory location.
This produces output by either causing different neurons to fire in the brain or by
executing an instruction in a machine. The question you might ask, however, is
does the technological limitations of the machine prevent it from achieving the
same degree of pattern recognition as in the brain.”

John said “Perhaps. But in addition, I am concerned about what the brain com-
ponents do. That means we need to understand the cortex where higher human
cognition takes place.”

Mary said, “Of course and the neocortex, as well. In 1943, Warren McCulloch; a
neurophysiologist, and his student Walter Pitts published an article about how the
operation of groups neurons connected with other neurons might be duplicating
purely logical elements. The model regards a neuron as being activated and then
firing another neuron in the same way a logical sequence can imply the truth or
falsity of some other proposition. We can picture the analogy between neurons
and logic in engineering terms as signals that either pass or fail to pass through
electrical circuits. It’s only a small step from this to the elements of a computer.”

John said, “Surely you are not implying that data stored in machines or even the
ON–OFF neuron patterns in brains can be called “thoughts.”

Mary said, “There was a famous Dartmouth Conference in 1956 that split the
AI community into two camps. The “Top-down” group held that cognition was
a high level phenomenon that could be “skimmed off” the top so as to create
a similar intelligence in a machine, but it required the right silicon surrogates
for the symbols of the brain. The competing “Bottom-Up” group held that the
actual structure of the human brain is important for producing cognitive activity.
Therefore one needed to mimic this structure in hardware for AI. The “Top-down”
group gained some advantage in the 1970s.”

John said, “Well, we can’t observe mental phenomena directly, so we can’t actu-
ally resolve a theory of thinking. The only resolution we can make comes from
a conceptual investigation of how we use word like “apple” and “love.” These
words only gain meaning from a life experience and not through stored states.”

Mary said, “I’ll have to think about this experience.”



7
ONTOLOGY ENGINEERING

OVERVIEW

The field of Philosophy originally defined the word ontology to represent the
concept of existence. It is the theory of objects and their interrelationships. As
used in information science, the term ontology frequently refers to a hierarchical
data structure containing the relevant objects and their relationships, as well as
the rules within that domain.

In the field of Artificial Intelligence (AI), ontology applications have been devel-
oped for knowledge management, natural language processing, e-Commerce, edu-
cation, and new emerging technologies such as the Semantic Web. The Semantic
Web requires the construction of ontologies for its various representation lan-
guages, query languages, and inference technologies.

This chapter presents the basic methodology for designing and building ontolo-
gies. In addition, ontology matching and mapping, which are essential to knowl-
edge representations, are described.

ONTOLOGY ENGINEERING

Ontology is the formal specification of terms within a domain and their relation-
ships. It defines a common vocabulary for the sharing of information that can
be used by both humans and computers. Ontologies can be in the form of lists

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.
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of words; taxonomies, database schema, frame languages and logics. The main
difference between these forms is their expressive power. Ontology together with
a set of concept instances constitutes a knowledge base.

If a program is designed to compare conceptual information across two knowl-
edge bases on the Web, it must know when any two terms are being used to mean
the same thing. Ideally, the program must have a way to discover common mean-
ings for whatever knowledge bases it encounters. Typically, an ontology on the
Web will combine a taxonomy with a set of inference rules.

Taxonomy is defined as a set of classes of objects and their relationships. These
classes, subclasses, and their relationships are important tools for manipulating
information. Their relations are described by assigning properties to classes and
allowing subclasses to inherit these properties. An ontology then is a taxonomy
plus inference.

Ontology inference rules allow manipulation of conceptual information. The
most important ontology relationship is the subsumption link (e.g., subtype and
supertype link).

When a network of concepts is represented by a tree, it rigorously defines
the taxonomy. While ontology can sometimes be modularized as a set of trees,
some advocate that all ontology should be taxonomic, but others favor a lattice
structure. For example, ontology rigorously defines a Thesaurus structure when
it uses the related-to link in addition to the subsumption link.

Ontology engineering seeks a common vocabulary through a data collection
process that includes discussions, interviews, document analysis, and question-
naires. Existing ontologies on a subject are discovered, assessed, and reused
as much as possible to avoid “reinventing the wheel.” As part of this process,
ontologies are designed as living objects with a maintenance cycle.

Ontology Applications

The simplest ontology consists of a simple taxonomy with a single relation.
Categories of ontology applications can be grouped as

• Neutral Authoring: The author of an object in a single language translates
into a different format for use in alternative applications.

• Ontology as Specification: Ontology of a given domain is created and used
as a basis for specification and development of some software. This approach
allows documentation, maintenance, reliability and knowledge (re)use.

• Common Access to Information: Information in an inaccessible format
becomes intelligible by providing a shared understanding of the terms, or
by mapping between sets of terms.

• Ontology-Based Search: Ontology is used for searching an information
repository.
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CONSTRUCTING ONTOLOGY

Ontology permits sharing common understanding of the structure of informa-
tion among people and software agents. Since there is no unique model for a
particular domain, ontology development is best achieved through an iterative
process.

Objects and their relationships reflect the basic concepts within an ontology.
An iterative approach for building ontologies starts with a rough first pass through
the main processes as follows:

• First, set the scope. The development of an ontology should start by defin-
ing its domain and scope. Several basic questions are helpful at this point:
What will the ontology cover? How will the ontology be used? What ques-
tions does the ontology answer? Who will use and maintain the ontology?
The answers may change as we proceed, but they help limit the scope of
the model.

• Second, evaluate reuse. Check to see if existing ontologies can be refined
and extended. Reusing existing ontologies will help to interact with other
applications and vocabularies. Many knowledge-representation systems can
import and export ontologies directly for reuse.

• Third, enumerate terms. It is useful to list all terms, what they address, and
what properties they have. Initially, a comprehensive list of terms is useful
without regard for overlapping concepts. Nouns can form the basis for class
names, and verbs can form the basis for property names.

• Fourth, define the taxonomy. There are several possible approaches in devel-
oping a class hierarchy: a top-down process starts by defining general
concepts in the domain. A bottom-up development process starts with the
definition of the most specific classes, the levels of the hierarchy, with subse-
quent grouping of these classes into more general concepts. A combination
development process combines the top-down and bottom-up approaches:
define the more salient concepts first and then generalize them appropriately.

• Fifth, define properties. The classes alone will not provide enough infor-
mation to answer questions. We must also describe the internal structure
of concepts. While attaching properties to classes one should establish the
domain and range. Property constraints (facets) describe or limit the set of
possible values for a frame slot.

• Sixth, define facets. Up to this point the ontology resembles a RDFS without
any primitives from OWL. In this step, the properties add cardinality, values,
and characteristics that will enrich their definitions.

• Seventh, the slots can have different facets describing the value type, allowed
values, the number of the values (cardinality), and other features of the
values. Slot cardinality: the number of values a slot has. Slot value type: the
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type of values a slot has. Minimum and maximum value: a range of values
for a numeric slot. Default value: the value a slot has unless explicitly
specified otherwise.

• Eighth, define instances. The next step is to create individual instances of
classes in the hierarchy. Defining an individual instance of a class requires
choosing a class, creating an individual instance of that class, and filling in
the slot values.

• Finally, check for anomalies. The Web-Ontology Language allows the pos-
sibility of detecting inconsistencies within the ontology. Anomalies, such
as incompatible domain and range definitions for transitive, symmetric, or
inverse properties may occur.

Ontologies can be constructed by iterating through this process.

ONTOLOGY DEVELOPMENT TOOLS

Below is a list of some of the most common editors used for building ontologies:

• DAG-Edit provides an interface to browse, query and edit vocabularies with
a DAG data structure: http://www.geneontology.org/#dagedit.

• Protege 2000 is the most widely used tool for creating ontologies and knowl-
edge bases: http://protege.stanford.edu/index.shtml.

• WonderTools is an index for selecting an ontology-building tool: http://
www.swi.psy.uva.nl/wondertools/.

• WebOnto is a Java applet coupled with a Web server that allows users to
browse and edit knowledge models: http://kmi.open.ac.uk/projects/webonto/.

ONTOLOGY “SPOT” EXAMPLE

Portions of the following example for the “spot” ontology were taken from
http://www.charlestoncore.org/ont/example/index.html.

The spot ontology consists of three owl:Classes (spot, ellipse, and point) and
six rdf:Properties (shape, center, x-position, y-position, x-radius, y-radius).
Together, these vocabularies can be used to describe a spot. Figure 7-1 organizes
the relationships for these elements.

Classes

The three OWL classes are

Spot: A two dimensional (2D) “spot” defined as a closed region on the plane.
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Spot Shape Ellipse Center Point

X-Radius
Xsd-Double

Y-Radius
Xsd-Double

X-Position
Xsd-Double

Y-Position
Xsd-Double

Figure 7-1. Example ontology.

Point: A point is defined as a location on a Cartesian plane. It has two
attributes; its x-position and y-position on an implicit coordinate system
of the plane.

Ellipse: Ellipse here is defined as a circle stretched along either the x- or
y-axis of a coordinate system. The major and minor axes of an Ellipse
parallel the coordinates of the implicit coordinate system (see Fig. 7-2).

Properties

The six RDF properties are

Shape: A Spot assumes a shape of an Ellipse. Therefore the domain of shape
is Spot and the range of Spot is Ellipse.

Center: The center is the center point of the Ellipse. It has a rdfs:domain of
Ellipse and a rdfs:range of Point.

Center

Implicit coordinates

y

x

y-
ra

di
us

x-radius

Figure 7-2. Ellipse definition.
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x-Position: An x-position is an owl:Datatype property that has a domain of
Point. Its value (of type xsd:double) is the distance from the origin on the
x-axis of the coordinate system.

y-Position: A y-position is a owl:Datatype property that has a domain of
Point. Its value (of type xsd:double) is the distance from the origin on the
y-axis of the coordinate system.

x-Radius: x-radius is a owl:Datatype property that has a rdfs:domain of
Ellipse. It is the radius parallel to the x-axis of the coordinate system (see
Fig. 7-2).

y-Radius: A y-radius is a owl:Datatype property that has a rdfs:domain of
Ellipse. It is the radius parallel to the y-axis of the coordinate system (see
Fig. 7-2)

The OWL file for this ontology example (see http://www.charlestoncore.org/
ont/example/index.html) is as follows:

<?xml version="1.0" encoding="iso-8859-1" ?>
<!DOCTYPE rdf:RDF (...)>

<rdf:RDF xmlns="http:// example#"
xmlns:example="http:// example#" xmlns:rdf=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xml:base="http:// /example">

<owl:Ontology rdf:about="">
<rdfs:isDefinedBy rdf:resource="http:// example/" />
<dc:author>Smith</dc:author>
<dc:title>Example Ontology</dc:title>
<rdfs:comment>This file defines a partial ontology in

OWL</rdfs:comment>
<owl:versionInfo>2005</owl:versionInfo>

</owl:Ontology>
<owl:Class rdf:ID="Spot" />
<owl:Class rdf:ID="Ellipse" />
<owl:Class rdf:ID="Point" />
<owl:ObjectProperty rdf:ID="shape">
<rdfs:domain rdf:resource="#Spot" />
<rdfs:range rdf:resource="#Ellipse" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="center">
<rdfs:domain rdf:resource="#Ellipse" />
<rdfs:range rdf:resource="#Point" />

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="x-radius">
<rdfs:domain rdf:resource="#Ellipse" />
<rdfs:range rdf:resource= "http://www.w3.org/2001/XMLSchema#double"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="y-radius">
<rdfs:domain rdf:resource="#Ellipse" />
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<rdfs:range rdf:resource= "http://www.w3.org/2001/XMLSchema#double"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="x-position">
<rdfs:domain rdf:resource="#Point" />
<rdfs:range rdf:resource= "http://www.w3.org/2001/XMLSchema#double"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="y-position">
<rdfs:domain rdf:resource="#Point" />
<rdfs:range rdf:resource= "http://www.w3.org/2001/XMLSchema#double"/>

</owl:DatatypeProperty>
</rdf:RDF>

ONTOLOGY METHODS

Several approaches for developing ontologies have been attempted in the last two
decades. In 1990, Lenat and Guha proposed the general process steps. In 1995,
the first guidelines were proposed on the basis of the Enterprise Ontology and the
TOVE (TOronto Virtual Enterprise) project. At the 12th European Conference
for Artificial Intelligence in 1996, a method to build an ontology in the domain
of electrical networks was proposed. The methodology Methontology appeared
at about the same time. A few years later, the On-To-Knowledge methodology
was developed.

The Cyc Knowledge Base (see http://www.cyc.com/) was designed to accom-
modate all of human knowledge and contains about 100,000 concept types used
in the rules and facts encoded in its knowledge base. The method used to build
the Cyc consisted of three phases. The first phase manually codified articles and
pieces of knowledge containing common sense knowledge implicit in different
sources. The second and third phase consisted of acquiring new common sense
knowledge using natural language or machine learning tools.

The Electronic Dictionary Research (ERD) project in Japan has developed a
dictionary with over 400,000 concepts, with their mappings to both English and
Japanese words. Although the EDR project has many more concepts than Cyc,
it does not provide as much detail for each one (see http://www.iijnet.or.jp/edr/).

WordNet is a hierarchy of 166,000 word form and sense pairs. WordNet does
not have as much detail as Cyc or as broad coverage as EDR, but it is the most
widely used ontology for natural language processing, largely because it has
long been easily accessible over the Internet (see http://www.cogsci.princeton.
edu/∼wn/).

Cyc has the most detailed axioms and definitions; it is an example of an
axiomatized or formal ontology. Both EDR and WordNet are usually considered
terminological ontologies. The difference between a terminological ontology and
a formal ontology is one of degree: as more axioms are added to a terminological
ontology, it may evolve into a formal or axiomatized ontology.

The main concepts in the ontology development include: a top-down approach,
in which the most abstract concepts are identified first, and then, specialized
into more specific concepts; a bottom-up approach, in which the most specific
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concepts are identified first and then generalized into more abstract concepts; and
a middle-out approach, in which the most important concepts are identified first
and then generalized and specialized into other concepts.

Methontology was created in the Artificial Intelligence Lab from the Techni-
cal University of Madrid (UPM). It was designed to build ontologies either from
scratch, reusing other ontologies as they are, or by a process of reengineering
them. The Methontology framework enables the construction of ontologies at the
knowledge level. It includes the identification of the ontology development pro-
cess, a life cycle based on evolving prototypes, and particular techniques to carry
out each activity. The ontology development process identifies which tasks should
be performed when building ontologies (scheduling, control, quality assurance,
specification, knowledge acquisition, conceptualization, integration, formaliza-
tion, implementation, evaluation, maintenance, documentation, and configuration
management).

The life cycle identifies the stages through which the ontology passes during
its lifetime, as well as the interdependencies with the life cycle of other ontolo-
gies. Finally, the methodology specifies the techniques used in each activity, the
products that each activity outputs, and how they have to be evaluated. The main
phase in the ontology development process using the Methontology approach is
the conceptualization phase.

By comparison, the On-To-Knowledge methodology includes the identifica-
tion of goals that should be achieved by knowledge management tools and is
based on an analysis of usage scenarios. The steps proposed by the methodology
are kickoff: where ontology requirements are captured and specified, compe-
tency questions are identified, potentially reusable ontologies are studied, and a
first draft version of the ontology is built; refinement: where a mature and appli-
cation oriented ontology is produced; evaluation: where the requirements and
competency questions are checked, and the ontology is tested in the application
environment; and finally ontology maintenance.

ONTOLOGY SHARING AND MERGING

Knowledge representation is the application of logic and ontology to the task of
constructing automated models. Each of the following three fields contributes to
knowledge representation:

• Logic: Different implementations support different subsets and variations of
logic. Sharing information between implementations can usually be done
automatically if the information can be expressed a common subset.

• Ontology: Different systems may use different names for the same kinds of
objects; or they may use the same names for different kinds.

• Computation: Even when the names and definitions are identical, compu-
tational or implementation side effects may produce different behaviors in
different systems. In some implementations, the order of entering rules may
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have inferences that impact computations. Sometimes, the side effects may
cause an endless loop.

Although these three aspects of knowledge representation pose different kinds of
problems, they are interdependent. Standardizing the terminology used to clas-
sify and find the information is important. For artificial intelligence, where the
emphasis is on computer processing, effort has been directed to precise axioms
suitable for extended computation and deduction.

ONTOLOGY LIBRARIES

Scientists should be able to access a global, distributed knowledge base of sci-
entific data that appears to be integrated, locally available, and is easy to search.
Data is obtained by multiple instruments, using various protocols in differing
vocabularies using assumptions that may be inconsistent, incomplete, evolving,
and distributed. Currently, there are existing ontology libraries including

• DAML ontology library (www.daml.org/ontologies).
• Ontolingua ontology library (www.ksl.stanford.edu/software/ontolingua/).
• Protégé ontology library (protege.stanford.edu/plugins.html).

Available upper ontologies include

• IEEE Standard Upper Ontology (suo.ieee.org).
• Cyc (www.cyc.com).

Available general ontologies include

• (www.dmoz.org).
• WordNet (www.cogsci.princeton.edu/∼wn/).
• Domain-specific ontologies.
• UMLS Semantic Net.
• GO (Gene Ontology) (www.geneontology.org).
• Chemical Markup Language, CML.

ONTOLOGY MATCHING

Ontology provides a vocabulary and specification of the meaning of objects
that encompasses several conceptual models: including classifications, databases,
and axiom theories. However, in the open Semantic Web environment different
ontologies may be defined.
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Ontology matching finds correspondences between ontology objects. These
include ontology merging, query answering, and data translation. Thus, ontology
matching enables data interoperate.

Today ontology matching is still largely labor-intensive and error-prone. As a
result, manual matching has become a key bottleneck.

String Matching

String matching can help in processing ontology matching. String matching is
used in text processing, information retrieval, and pattern matching. There are
many string matching methods including “edit distance” for measuring the sim-
ilarities of two strings.

Let us consider two strings; S1 and S2. If we use limited steps of character edit
operations (insertions, deletions, and substitutions), S1 can be transformed into
S2 in an edit sequence. The edit distance defines the weight of an edit sequence.

The existing ontology files on the Web (e.g., http://www.daml.org/ontologies)
show that people usually use similar elements to build ontologies, although the
complexity and terminology may be different. This is because there are estab-
lished names and properties to describe a concept.

The value of string matching lies in its utility to estimate the lexical similarity.
However, we also need to consider the real meaning of the words and the context.
In addition, there are some words that are similar in alphabet form while they
have different meaning such as, “too” and “to.” Hence, it is not enough to use
only string matching.

Another approach to improve the performance is called normalization. Since
“edit distance” does not consider the lengths of the strings compared. This may
produce a side effect: a pair of long strings that differ only in one character may
get the same edit distance as that of a pair of short strings. For example, suppose
two words whose lengths are both 300 only differ in one character. Suppose
further that another pair of strings whose lengths are both 3 also differ in one
character. Now by traditional methods computing their edit distance, we will get
exactly the same value. However, this is an unfair result since the long strings
should get a higher value. In this case, we would use an efficient uniform-cost
normalized edit distance.

Comparing Ontologies

Ontology can be represented in a taxonomy tree where each node represents a
concept with its attributes. In comparison to the ontology O1 in Figure 7-1, we
can make an alternative “spot” ontology called O2, where the only difference is
that the term “point” in O1 has been replaced by “origin” in O2.

The aim of ontology matching is to map the semantically equivalent elements.
In this case, this is a one-to-one mapping of the simplest type. We can also
map the different types of elements: for example, a particular relation maps to
a particular attribute. Mapping can be more complex if we want to map the
combination of some elements to a specific element.
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An approach for semantic search can be based on text categorization for ontol-
ogy mapping that compares element by element, and then determines a similarity
metric on a per pair basis. Matched items are those whose similarity values are
greater than a determined threshold.

Similarity measures play a very significant role in ontology matching. All
ontologies in the real world not only specify the conceptualization by logical
structures, but also refer to terms restricted by natural languages use. For the
two ontologies, O1 and O2, we could compute a similarity measure and use
that measure to decide whether the onologies match. And we could also apply
the notion of the joint probability distribution between any two concepts as a
similarity measure.

ONTOLOGY MAPPING

Ontology mapping enables interoperability among different sources in the Seman-
tic Web. It is required for combing distributed and heterogeneous ontologies.
Ontology mapping transforms the source ontology into the target ontology based
on semantic relations. There are three mapping approaches for combing dis-
tributed and heterogeneous ontologies:

1. Mapping between local ontologies.
2. Mapping between integrated global ontology and local ontologies.
3. Mapping for ontology merging, integration, or alignment.

Ontology merge, integration, and alignment can be considered as ontology reuse
processes.

Ontology merge is the process of generating a single, coherent ontology from
two or more existing and different ontologies on the same subject. Ontology inte-
gration is the process of generating a single ontology from two or more differing
ontologies in different subjects. Ontology alignment creates links between two
original ontologies.

ONTOLOGY MAPPING TOOLS

This section reviews three types of ontology mapping tools and provide an
example of each.

For ontology mapping between local ontologies, an example mapping tool is
GLUE. GLUE is a system that semiautomatically creates ontology mapping using
machine learning techniques. Given two ontologies, GLUE finds the most similar
concept in the other ontology. For similarity measurement between two concepts,
GLUE calculates the joint probability distribution of the concepts. The GLUE
uses a multistrategy learning approach for finding joint probability distribution.
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GLUE has a Content Learner and Name Learner, and a Meta Learner. The
Content Learner exploits the frequencies of words in the textual content of an
instance in order to make predictions and uses the Naı̈ve Bayes’s theorem. The
Name Learner uses the full name of the input instance. The Meta-learner com-
bines the predictions of base learners and assigns weight to base learners based
on how much it trusts that learner’s predictions.

For ontology mappings between source ontology and integrated global ontol-
ogy, an example tool is Learning Source Description (LSD). In LSD, Schema can
be viewed as ontologies with restricted relationship types. Therefore, the mediated
schema can be considered as a global ontology. The LSD system uses a multistrat-
egy learning two phase approach: training and matching. In the matching phase,
prediction combiner combines meta-learner’s prediction and match the schema
of new input source to the mediated schema. This process can be considered as
ontology mapping between information sources and a global ontology.

For ontology mapping in ontology merging, alignment, and integration, an
example tool is OntoMorph. OntoMorph provides a powerful rule language for
specifying mappings, and facilitates ontology merging and the rapid generation
of knowledge base translators. It combines two syntactic rewriting and semantic
rewriting. Syntactic rewriting is done through pattern-directed rewrite rules for
sentence-level transformation based on pattern matching. Semantic rewriting is
done through semantic models and logical inference.

CONCLUSION

This chapter presented the basic issues for designing and building ontologies.
The development of the Semantic Web and semantic search requires much more
development in ontology engineering. Areas, such as ontology matching and
mapping, were prsented.

EXERCISES

7-1. Describe an ontology with the domain of your university faculty, with teach-
ers, courses, and departments. Use an inference engine to validate your
ontology and check for inconsistencies.

7-2. Create an ontology that describes the executive branch of government using
the Protégé editor.



Figure 7-3. Zooms in on Figure 3-2 to create a blow up of the filled in picture by a
factor of 16 (http://escherdroste.math.leidenuniv.nl/).



INTERLUDE #7: MACHINES AND
MEANING

“A penny for your thoughts?” asked Mary as she sat down next to John in the
auditorium.

John said, “That’s just it. What are thoughts?”

Mary said with a sigh, “Oh, you’re still thinking about machine intelligence.
Have you come round to my way of thinking yet?”

“No, I still don’t believe that machines will ever be truly intelligent. So I guess,”
John added, “we remain in conflict, although our conflict is the conflict of ideas.”

“Well said, but conflict can be a good thing.” Mary said, “A competition of ideas
improves the meaning of the message.”

John said, “The meaning that a human extracts from a message is something
very different from what is meaningful to a machine. How are words related to
reality and how do thoughts relate to language?”

Mary said, “Those are important questions for machine intelligence.”

“There’s more. The importance of social intercourse to understanding language,
the special characteristics of the human brain, and the nuance within a figure of
speech are all obstacles to developing machine thinking,” John ended defiantly.

Mary said, “Nonsense—each of those obstacles could be overcome by envision-
ing thinking in terms of a ‘thought language’.”

John said, “What do you mean by a ‘thought language’? How would that work?”

“Well,” Mary said pursing her lips, “I’m not exactly sure.”

John said, “Ha.”

Mary said, “Just a minute, I said I wasn’t exactly sure, I didn’t say that I didn’t
have any ideas. Actually, there are two possible approaches.”

“Two!” John said, “Two?”

Mary said, “Yes. First, let’s consider a thought language that is based on pictures.
I can hold an apple in my hands. That’s what’s called “manifest.” In Latin,
manifest means literally “what you hold in your hand.” I can look directly at the
physical object “apple” and form a picture image of the “apple” that represents
the word “apple.” The picture representation of language mirrors the physical



INTERLUDE #7: MACHINES AND MEANING 139

world and we can use it to form linguistic propositions that represent facts. As
a result, picture language can directly relate our physical reality to the logical
structure of language.”

“Perhaps a picture language could represent the words for ‘things’,” John said
making quotation marks in the air with his fingers. “But many concepts we
hold dear aren’t manifest. Words representing ideas and feelings certainly aren’t
manifest.”

Mary said, “Words are only sounds until they become associated with an object.
And they could just as easily be associated with an action or a feeling. The way
sounds come to have meaning is through repetitive exposure to spoken language
in context of a relationship.”

John said, “The rote learning of behaviorism is too limited an explanation for
learning language. Language exists to help people communicate, but part of
human communication is nonverbal. And this nonverbal communication starts
from childhood. Consider the parent who says to her child, “See the cat, this
is a cat,” or opens up a book and says, “Find the ball.” The infant will learn
that a unique combination of sounds to signify the cat or the ball. As soon as
the infant makes the connection between the object and the sounds, then those
sounds become a word. That’s how meaning comes to words, by making the
association between the sound and the object. But an infant who heard spoken
words only from a radio would never really come to understand the meaning of
words. That’s why I can’t learn a language by listening to a foreign language
radio station. There’s no context.”

Mary said, “However, in the beginning of our lives, just as you said, sounds
become words through repetitive training by the parent or teacher making the
connection between the sound and an object, or the sound and a behavior, or the
sound and a feeling. And later in life, we make the further association between
the sounds, the physical representation of the object, and the written word. And
these associations are maintained through synaptic combinations of neurons in
the brain that fire when an appropriate stimuli is introduced. At least in principle,
it seems possible that meaning could be coded into a machine just as in the neural
circuits of our brains.”

“Now it is my turn to say, ‘nonsense’.” John said. “Where do you find the
meaning of the word ‘apple’ in symbols? How can 0 s and 1 s actually mean
‘apple.’ You could code the word apple as 0 and 1 characters, but that doesn’t
codify the meaning as well. It is the practice of language to produce the meaning
of the word ‘apple.’ If the computer is playing any language game at all it isn’t
any game played by humans. Meaning must reside in social practice not logic.
Machines only move symbols around. When humans learn they add to their
definitions of the meaning of ‘something.’ Through that learning we modify our
behavior accordingly. As result, humans can change their mind.”

Mary said, “True a computer will only display actual intelligence when it is able
to modify its own programs materially. Adoptive and self-altering software have
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a long way to go to reach an effective level in this regard. However, I still support
the logical possibility of thinking machines.”

John said, “Are you saying that we should build a computer to mimic the human
brain in some way or should we duplicate the brain electronically?”

Mary said, “What’s the difference? Unless you hold that there is something
special about material constituent matter of human beings that can’t be captured
by electronic circuits. I don’t believe that there is anything special about the
matter humans are made of.”

John replied, “Humph. Let’s get back to your picture language as a thought
language.”

Mary said, “Ok.”

John said, “Doesn’t thinking require some symbolic representation of real-world
objects?”

Mary said, “Yes. I agree with that.”

John said, “Well then, how would you explain what the feeling of a parent’s ‘love’
means? I can think of one great example where the word love differentiates
love as a possession and love as an emotional attachment. In the story about
Solomon’s solution to the two mothers who claimed the same infant as their
own. One mother’s child had died and she had taken another mother’s child as
her possession. No one except the two mothers really knew whose baby this was.
When presented to Solomon, he said, Cut the child in half and give half to each
woman. The true mother who loved the child in the emotional sense was willing
to give up the child so that the child would live. That’s a great example of the
difference between the word ‘love’ as possession and the word ‘love’ in its truest
emotional meaning. How could you program that distinction into a computer?”

Mary said, “The distinction you presented in the parable was complex, detailed,
and rather involved even for me to understand your meaning. I could envision
a long involved, but plausible, process for ‘educating’ a machine. Consider the
possibility that every normal child has the basic grammar of all languages in
its brain from birth. Even small children can form sentences easily. Essentially
children already ‘know’ the correct structure of sentences. A child has a basic
template of sentence structure. Perhaps, there is a part of our brain that is
specifically wired for language. This language-specific part of the brain can
implement any human language. This basic structure gets programmed by their
education to specific applications so that a child in Boston speaks his parent’s
English and the Chinese born grows up to speak her parent’s Chinese. Further
the language part of the brain is wired to carry out basic operations of language,
such as distinguishing verbs from nouns, stringing sound together to create words
in sequential order to form sentences. This would appear to suggest the existence
of a sort of universal grammar underlying all human languages—acting as a
‘thought language’.”
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John said, “If you were correct then there would be a deep underlying structure
common to all languages, rather than a simple surface structure determined by
the particular language spoken. I think your universal language theory suffers
from a defect highlighted in the picture theory of language. The basic problem is
that it assumes the human mind contains a kind of storage of symbols, with each
symbol representing a linguistic atom. Then a type of logic calculus combines
symbols into creating linguistic sentences that can be verbalized. The calculus
would be an inherent structure in universal grammar and for picture language
the calculus would be a neurological implementation of logical propositions. But
language is much more. Language is a social phenomenon unique to humans.”

Mary said, “That leads me to my second possible approach to universal lan-
guage—a rule based language. But perhaps we had better discuss that later, the
professor is about to start his lecture.”

John said, “Good thinking.”
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LOGIC, RULES, AND INFERENCE

OVERVIEW

The architecture of the Semantic Web is comprised of a series of layers that
form a hierarchy of content and logic. The ontology layer defines knowledge
about content, concepts, and relationships. Currently, the RDF Schema (RDFS)
is recognized as an ontology language that provides classes, properties, sub-
superclasses, range, and domain. However, RDFS has no localized range and
domain constraints, no cardinality constraints, no provision for negation, and
no transitive, inverse, or symmetrical properties. As a result, RDFS is unable to
provide sufficient expressive power for machine processing on the Semantic Web.

To expand the expressive capabilities of RDFS, three versions of the Web
Ontology Language (OWL) have been developed: OWL Full is the union of OWL
syntax and RDF, but it is undecidable, and therefore cannot provide complete
reasoning support. The OWL Descriptive Logic (DL) is a sublanguage of OWL
Full that has efficient reasoning support, but is not fully compatible with RDF.
Web Ontology Language Lite is an “easier-to-implement” subset of OWL DL.

Both RDF and OWL DL are specializations of predicate logic (also known as
first-order logic (FOL)) that are used for Web knowledge representation. They
provide a syntax that promotes their use on the Web in the form of tags, where
OWL DL and OWL Lite correspond roughly to a descriptive logic that is a subset
of predicate logic for which there exists adequate proof systems. Another subset
of predicate logic with efficient proof systems is the rule system Horn Logic.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.
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The choice of OWL version and complementary rule systems will dictate the
resulting computational complexity of the Semantic Web.

This chapter explains how logic and rules are used on the Semantic Web to
create inferences that manipulate and produce new knowledge. In addition, an
example of a simple RDF inference engine is provided.

LOGIC AND INFERENCE

Logic is the study of the principles of reasoning. As such, it constructs formal lan-
guages for expressing knowledge, semantics, and automatic reasoners to deduce
(infer) conclusions.

Logic forms the foundation of Knowledge-Representation (KR), which has
been applied to Artificial Intelligence (AI) in general and the World Wide Web
in particular. Logic provides a high-level language for expressing knowledge
and has high expressive power. In addition, KR has a well-understood formal
semantics for assigning unambiguous meaning to logic statements.

Predicate (or first-order) logic, as a mathematical construct, offers a complete
proof system with consequences. Predicate logic is formulated as a set of axioms
and rules that can be used to derive a complete set of true statements (or proofs).
As a result, with predicate logic we can track proofs to reach their consequences
and also logically analyze hypothetical answers or statements of truth to deter-
mine their validity. Proof systems can be used to automatically derive statements
syntactically from premises. Given a set of premises, such systems can analyze
the logical consequences that arise within the system.

Both RDF and OWL (DL and Lite) incorporate capabilities to express
predicate logic that provide a syntax that fits well with Web languages. They
offer a trade-off between expressive power and computational complexity (see
Chapter 2). Other subsets of predicate logic with efficient proof systems include
rules systems (e.g., Horn Logic or definite logic programs).

The Semantic Web language pyramid shown in Figure 2-2 identifies how the
ontology and logic layers fit together. An automatic reasoning system would
be formed on top of the ontology structure and it would make new inferences
through logic and proofs.

The top layer of the stack addresses issues of trust. This component of the
Semantic Web has not progressed far beyond a vision of allowing people to
ask questions of the trustworthiness of the information on the Web, in order to
provide an assurance of its quality.

Inference Rules

In logic, a rule is a scheme for constructing valid inferences. These schemes
establish syntactic relations between a set of formulas called premises and an
assertion called a conclusion. New true assertions can be reached from already
known ones.
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There are two forms of deductively valid argument: modus ponens (Latin
for “the affirming mode”) and modus tollens (the denying mode). Chapter 2
presented prominent examples of rules of inference in propositional logic starting
with the rules of modus ponens and modus tollens. For first-order predicate logic,
rules of inference are needed to deal with logical quantifiers.

Related proof systems are formed from a set of rules, which can be chained
together to form proofs, or derivations. If premises are left unsatisfied in the
derivation, then the derivation is a proof of a conditional statement: “if the
premises hold, then the conclusion holds.”

Inference rules may also be stated in this form: (1) some premises; (2) a
turnstile symbol 
, which means “infers,” “proves,” or “concludes”; and (3) a
conclusion. The turnstile symbolizes the executive power. The implication symbol
→ indicates potential inference and it is a logical operator.

For the Semantic Web, logic can be used by software agents to make decisions
and select a path of action. For example, a shopping agent may approve a discount
for a customer because of the rule:

RepeatCustomer(X) → discount(25%)

where repeat customers are identified from the company database.
This involves rules of the form “IF (condition), THEN (conclusion).” With

only a finite number of comparisons, we are required to reach a conclusion. This
means that the logic will be tractable and the tools to execute it will be efficient
reasoning tools.

In addition, since the logic provides traceable steps in obtaining and backtrack-
ing a conclusion, we can analyze the explanation for the premises and inference
rules used to reach the conclusion. Explanations are useful because they establish
validated proofs for the Semantic Web agents that provide credibility for their
results.

Axioms of a theory are assertions that are assumed to be true without proof. In
terms of semantics, axioms are valid assertions. Axioms are usually regarded as
starting points for applying rules of inference and generating a set of conclusions.

Rules of inference, or transformation rules, are rules that one can use to infer
a conclusion from a premise to create an argument. A set of rules can be used
to infer any valid conclusion if it is complete, while never inferring an invalid
conclusion, if it is sound.

Rules can be either conditional or biconditional. Conditional rules, or rules of
inference, are rules that one can use to infer the first type of statement from the
second, but where the second cannot be inferred from the first. With biconditional
rules, in contrast, both inference directions are valid.

Conditional Transformation Rules

We will use letters p, q, r , s, etc. as propositional variables.
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An argument is Modus ponens if it has the following form (P1 refers to the
first premise; P2 to the second premise: C to the conclusion):

(P1) if p then q

(P2) p

(C) q

Example:

(P1) If Socrates is human then Socrates is mortal.
(P2) Socrates is human.
(C) Socrates is mortal.

Which can be represented as Modus ponens:

[(p → q) ∧ p] → [q]

An argument is Modus tollens if it has the following form:

(P1) if p then q

(P2) not-q
(C) not-p

Example:

(P1) If Socrates is human then Socrates is mortal.
(P2) Socrates is not mortal.
(C) Socrates is not human.

In both cases, the order of the premises is immaterial (e.g., in modus tollens
“not-q” could come first instead of “if p then q”).

Modus tollens
[(p → q) ∧ ¬q] → [¬p]

An argument is a disjunctive syllogism if it has either of the following forms:

(P1) p or q (P1) p or q

(P2) not-p (P2) not-q
(C) q (C) p

The order of the premises is immaterial (e.g., “not-q” could come first instead
of “p or q”).

This argument form derives its name from the fact that its major premise is
a “disjunction,” that is, a proposition of the form “p or q.” The propositions p

and q are called the “disjuncts” of the disjunction “p or q.”
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In logic, the disjunction “p or q” is interpreted as the claim that not both p

and q are false; that is, that at least one of them is true. Thus a disjunction is held
to be true even when both its disjuncts are true. For example, the proposition
“either John ate breakfast this morning or he went running this morning” is true
even if John did both. Of course, the disjunction will also be true if John only
did one of the two. But if he did neither, then the disjunction is false.

Examples of disjunctive syllogism:

(P1) John ate breakfast or he went running.
(P2) John did not eat breakfast.
(C) John went running.

(P1) John ate breakfast or he went running.
(P2) John did not go running.
(C) John ate breakfast.

Conjunction introduction (or conjunction) is represented as

[(p) ∧ (q)] → [p ∧ q]

Biconditional Transformation Rules

Biconditional rules, or rules of replacement, are rules that one can use to infer
the first type of statement from the second, or vice versa.

Double negative elimination is represented as

[¬¬p] ↔ [p]

Tautology is represented as

[p] ↔ [p ∨ p]

MONOTONIC AND NONMONOTONIC RULES

If a conclusion remains valid after new information becomes available within
predicate logic, then we refer to this case as a monotonic rule. If, however, the
conclusion may become invalid with the introduction of new knowledge, then
the case is called a nonmonotonic rule.

The Semantic Web will express knowledge in a machine accessible way using
RDF and OWL, and then exchange rules across different applications using XML-
based rule languages. A subset of predicate logic, Horn logic is the basis of
monotonic rules.

Nonmonotonic rules are useful where information is unavailable. These rules
can be overridden by contrary evidence presented by other rules. Priorities are
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helpful to resolve some conflicts between nonmonotonic rules. The XML-based
languages can be used to represent rules.

DESCRIPTIVE LOGIC

Descriptive logic is a family of logic based on knowledge-representation for-
malisms that is a descendant of semantic networks. It can describe the domain
in terms of concepts (classes), roles (properties, relationships), and individuals.
Descriptive logic is distinguished by being a formal semantic that has decidable
fragments of FOL and has provisions of inference services. Descriptive logics
allow specifying a terminological hierarchy using a restricted set of first-order
formulas. They usually have nice computational properties (often decidable and
tractable), but the inference services are restricted.

Inference and Classes

We can make inferences about relationships between classes, in particular sub-
sumption between classes. Recall that A subsumes B when it is the case that any
instance of B must necessarily be an instance of A.

Inference and Individuals

We can make inferences about the individuals, in particular inferring that par-
ticular individuals must be instances of particular classes. This can be because
of subsumption relationships between classes, or because of the relationships
between individuals.

The Unique Name Assumption (UNA) says that any two individuals with
different names are different individuals. Many DL reasoners assume UNA, but
OWL semantics does not make use of the UNA. Instead there are mechanisms
in the language (owl:differentFrom and owl:AllDifferent) that allow us to assert
that individuals are different.

Closed and Open Worlds

Reasoning in DLs is monotonic. This means that if we know that x is an instance
of A, then adding more information to the model cannot cause this to become
false. We cannot assume that if we do not know something, then it is false. This
is due to the Open World Assumption (OWA).

Simple Common Logic

Computer-understandable ontologies are represented in logical languages, such
as the W3C OWL and the draft ISO standard, SCL (Simple Common Logic).
However, logical languages are only a means to express content. It is the infor-
mation being imparted in the statements that drives how the individual words
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are selected and sequenced into sentences. It is not the language (or logic) that
makes the difference, but how it is used. Ontology is one way to use language
and logic more effectively.

Simple Common Logic (SCL) is a proposal for a unified semantic framework
for expressing full first-order logical (FFOL) content for transmission on the
Web. Simple Common Logic was recently submitted for ISO standardization as
Common Logic, and has been incorporated into the OMG Ontology Definition
Metamodel (ODM) standard. The SCL extends conventional first-order notations
in various ways and is the candidate formalism for expressing content that is
currently represented in both description logics and rule languages.

INFERENCE ENGINES

An expert system has three levels of organization: a working memory, an infer-
ence engine, and a knowledge base. The inference engine is the control of the
execution of reasoning rules. This means that it can be used to deduce new
knowledge from existing information.

The inference engine is the core of an expert system and acts as the generic
control mechanism that applies the axiomatic knowledge from the knowledge
base to the task-specific data to reach some conclusion.

Two techniques for drawing inferences are general logic-based inference
engines and specialized algorithms.

Many realistic Web applications will operate agent-to-agent without human
intervention to spot glitches in reasoning. Therefore developers will need to have
complete confidence in reasoner otherwise they will cease to trust the results.
Doubting unexpected results makes a reasoner useless.

How the Inference Engine Works

In simple rule-based systems, there are two kinds of inference, forward and
backward chaining.

Forward Chaining

In forward chaining, the data is put into working memory. This triggers rules
whose conditions match the new data. These rules then perform their actions.
The actions may add new data to memory, thus triggering more rules, and so on.
This is also called data-directed inference, because inference is triggered by the
arrival of new data in working memory.

Consider iterating continuously though the following set of rules until you
reach a conclusion:

Rule 1: IF A and C THEN F
Rule 2: IF A and E THEN G
Rule 3: IF B THEN E
Rule 4: IF G THEN D
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To prove that D is true, given that A and B are true, we start with Rule 1 and
go on down the list until a rule that “fires” is found. In this case, Rule 3 is the
only one that fires in the first iteration. At the end of the first iteration, it can
be concluded that A, B, and E are true. This information is used in the second
iteration.

In the second iteration, Rule 2 fires adding the information that G is true. This
extra information causes Rule 4 to fire, proving that D is true.

This is the method of forward chaining, where one proceeds from a given
situation toward a desired goal, adding new assertions along the way. This strat-
egy is appropriate in situations where data are expensive to collect and few are
available.

Backward Chaining

In backward chaining the system needs to know the value of a piece of data.
It searches for rules whose conclusions mention this data. Before it can use the
rules, it must test their conditions. This may entail discovering the value of more
pieces of data, and so on. This is also called goal-directed inference, or hypothesis
driven, because inferences are not performed until the system is made to prove
a particular goal.

In backward chaining, we start with the desired goal and then attempt to find
evidence for proving the goal. Using the forward chaining example, the strategy
to prove that D is true would be the following.

First, find the rule that proves D. This is Rule 4. The subgoal is then to prove
that G is true. Rule 2 meets the subgoal, and as it is already known that A is
true, therefore the next subgoal is to show that E is true. Rule 3 provides the
next subgoal of proving that B is true. But the fact that B is true is one of the
given assertions. Therefore, E is true, which implies that G is true, which in turn
implies that D is true.

Backward chaining is useful in situations where the amount of data is large
and where a specific characteristic of the system is of interest. Typical situations
include medical diagnosis or fault finding in electrical equipment.

Some expert systems use more complex methods, for example, mixtures of for-
ward and backward chaining. Some have probability factors attached to rules. Yet
others store their rules in frames, and trigger them when an object is recognized
as matching that frame.

Tree Searches

A knowledge base can be represented as a branching network or tree. There is
a large number of tree searching algorithms available in the existing literature.
However, the two basic approaches are depth-first search and breadth-first search.

The depth-first search algorithm begins at a node that represents either the
given data (forward chaining) or the desired goal (backward chaining). It then
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checks to see if the left-most (or first) node beneath the initial node (call this
node A) is a terminal node (i.e., it is proven or a goal). If not, it establishes
node A on a list of subgoals outstanding. It then starts with node A and looks
at the first node below it, and so on. If there are no more lower level nodes,
and a terminal node has not been reached, it starts from the last node on the
outstanding list and takes the next route of descent to the right.

Breadth-first search starts by expanding all the nodes one level below the
first node. Then it systematically expands each of these nodes until a solution is
reached or else the tree is completely expanded. This process finds the shortest
path from the initial assertion to a solution. However, such a search in large
solution spaces can lead to huge computational costs due to an explosion in the
number of nodes at a low level in the tree.

There are other methods of making inferences that use a combination of two
or more of the above techniques. Depending on the number of given facts and
the number of plausible inferences, some of these methods may be better than
others in terms of time, memory, and cost of the solution path (see Chapter 12
for Semantic Search Technology).

Full First-Order Logic Inference Engines

Using full first-order logic for specifying axioms requires a full-fledged automated
theorem prover. First-order logic is semidecidable and inferencing is computa-
tionally intractable for large amounts of data and axioms.

This means that in an environment such as the Web, these programs would
not scale up for handling huge amounts of knowledge. Besides, full first theo-
rem proving would mean maintaining consistency throughout the Web, which is
impossible.

The approach taken by CYCORPs CYC (see http://www.cyc.com/products.
html) is different. Their approach consists of roughly 1 MB of axioms using the
first-order framework. The CYC organizes its axioms in contexts and maintains
consistency just for one context, and it limits deductions to a few steps. Compared
to future Web architecture, CYC is still small.

An interactive theorem prover is not suitable for automated agents since they
rely on user interaction. However, they may be useful to construct proofs, which
can be validated by automated agents.

Closed World Machine

The Closed World Machine (CWM) (www.w3.org/2000/10/swap/doc/cwm.html)
inference engine written in Python by Tim Berners-Lee and Dan Connolly is a
popular Semantic Web program. It is a general-purpose data processor for the
Semantic Web and is a forward-chaining reasoner that can be used for query-
ing, checking, transforming, and filtering information. Its core language is RDF,
extended to include rules.
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RDF INFERENCE ENGINE

This section presents the elements of a simple RDF inference engine. RDF is a
system meant for stating meta-information through triples composed of a subject,
a property, and an object. The subject and object can be either a designation like
a URL or a set of another triple. Triples form a simple directed graph.

Figure 8-1 shows a simple RDF example. The first triple says that Smith owns
a computer and the second says that there is a computer made by Apple. The
third drawing, however, is composed of two triples, and it says that Smith owns
a computer made by Apple.

Suppose these triples were placed in a database. Now we can conduct a query
as in Figure 8-2.

In the first query, the question is who owns a computer? The answer is “Smith.”
In the second query, the question is What make of computer are defined in the

Smith

Smith

computer

computer

computer Apple

Apple

owns

owns

is manufacture by

is manufacture by

Figure 8-1. RDF statements.

? who

? who

computer

computer

computer ? what

? what

owns

owns

is manufacture by

is manufacture by

Figure 8-2. RDF queries.
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database? The third query, however asks who owns a computer and what is the
make of that computer?

The query is a graph containing variables that can be matched with the graph
in Figure 8-1. Should the graph in the database be more extended, it would have
to be matched with a subgraph. So, generally for executing an RDF query what
has to be done is called “subgraph matching.”

Following the data model for RDF the two queries are in fact equal because
a sequence of statements is implicitly a conjunction. Figure 8-3 illustrates this.

Let us make a rule: If X owns a computer, then X must buy software. How
do we represent such a rule? Figure 8-3 gives the graph representation of a rule.

The nodes of the rule form a triple set. Here there is one antecedent, but
there could be more. There is only one consequent. (Rules with more than one
consequent can be reduced to rules with one consequent.) Figure 8-4 gives a
query that will match with the consequent of the rule.

The desired answer is John must buy software. The query of Figure 8-4 is
matched with the consequent of the rule. Now an action has to be taken: The
antecedents of the rule have to be added to the database with the variables
replaced with the necessary values (substitution). Then the query has to be con-
tinued with the antecedent of the rule.

The question now is Who owns a computer? This is equal to a query described
earlier. A rule subgraph is treated differently from nonrule subgraphs.

X computer
owns

Implies

X software

Must_buy

Consequent

Antecedent

Figure 8-3. Graph representation of a rule.

? who Software
Must_buy

Figure 8-4. Query that matches with a rule.



154 LOGIC, RULES, AND INFERENCE

A triple can be modeled as a predicate: triple(subject, property, object). A set
of triples equals a list of triples and a connected graph is decomposed into a set
of triples. For our example this gives

Triple(John, owns, computer).
Triple(computer, make, Apple).

This sequence is equivalent to: [Triple(John, owns, computer). Triple(computer,
make, Apple).]

From Figure 8-2 the triples are

Triple(?who, owns, computer).
Triple(computer, make, ?what).

This sequence is equivalent to: [Triple(?who, owns, computer). Triple(computer,
make, ?what).]

From Figure 8-3 the triple is Triple([Triple(X, owns, computer)], implies,
[Triple(X, must buy, software)]).

From Figure 8-4 the triple is Triple(?who, must buy, software).
A unification algorithm for RDF can handle subgraph matching and embedded

rules by the term “subgraph matching with rules.” The unification algorithm
divides the sequence of RDF statements into sets where each set constitutes a
connected subgraph. This is called a tripleset that is done for the database and
for the query. Then the algorithm matches each tripleset of the query with each
tripleset of the database. Each triple of a tripleset of the query is matched with
each triple of the tripleset of the database. All the triples of the query set must
be unified with a triple from the database. If one triple is a rule, then unification
will use the mechanism for rules.

The modeling of a triple by owns(John, computer) is not correct because the
predicate can be a variable too.

The unication algorithm can be declared by triples and rules. It can do infer-
encing about properties of graphs. A complex description of the nodes is possible
because each node can be a graph itself.

Agents

Agents are pieces of software that work autonomously and proactively. In most
cases, an agent will simply collect and organize information. Agents on the
Semantic Web will receive some tasks to perform and seek information from
Web resources, while communicating with other Web agents, in order to fulfill
its task. Semantic Web agents will utilize metadata, ontologies, and logic to carry
out its tasks.

The Semantic Web and Artificial Intelligence

Many of the technologies necessary for the Semantic Web build upon the area
of Artificial Intelligence (AI). The past difficulties in achieving AI objectives in
software applications has led to disappointment. But on the Semantic Web partial
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solutions will work. Even if an intelligent agent is not able to come to all the
conclusions that a human counterpart could reach, the agent will still contribute
to a superior Web. The goal of the Semantic Web is to assist human users in
online activities and not to replace them.

There is no need to achieve AI at levels higher than are already available in
order to meet basic Semantic Web requirements.

CONCLUSION

This chapter introduced the process of forming an inference by using rules to
manipulate knowledge to produce new knowledge. In addition, we presented the
structure of inference engines and identified existing inference engines on the
Web. We discussed agents on the Semantic Web.

From this chapter, we may conclude that ontologies will play a key role
by providing vocabulary for semantic markup. Web Ontology Language is a
DL based ontology language designed for the Web that exploits the existing
standards of XML RDFS. Improved scale is necessary since reasoning is difficult
and Web ontologies may grow very large. Good empirical evidence of scalabil-
ity–tractability for conceptual reasoning with DL systems is necessary. The DLs
are a family of object-oriented KR formalisms related to frames and Semantic
networks. Descriptive Logic provides formal foundations and reasoning support.
Reasoning is important because understanding is closely related to reasoning.

Chapter 9 introduces a specific rule systems language, the Semantic Web Rule
Language.

EXERCISES

8-1. Identify the following argument’s premises and conclusions. “I think she’s
in law school; she’s always lugging around a pile of law books.”

8-2. Definition: An argument is valid if and only if it is absolutely impossible
that simultaneously (a) all its premises are true and (b) its conclusion is
false. Is the following argument valid: “All human beings are mortal, and
Socrates is a human being. Therefore, Socrates is mortal.” Explain.

8-3. Multiple choice: If the premises of an argument are true and its conclusion
is also true. Then which of the following holds: (a) The argument must be
valid. (b) The argument must be sound. (c) The argument must be valid and
sound. (d) None of the above.

8-4. Test the validity of the following arguments. Symbolize the propositions and
use either a truth table or an informal proof. If Mary loves cats, then John
loves dogs. John does not love dogs. Therefore Mary does not love cats.

8-5. Construct a truth table analysis of the following propositions: John is good
in either science or history, but not both. Moreover, either he is good at
logic or bad at history. If he is not good in science, he is bad at history. If
he is bad at history, he is good at logic.



Figure 8-5. Zooming in on Figure 3-2 to create a blow up of the filled in picture by a
factor 32.



INTERLUDE #8: MACHINES AND
RULES

Mary and John remained seated in the auditorium following the lecture. As other
students filed out, Mary turned to John and asked, “What makes you special?”

John said, “All humans are special, we are self-aware. We can think.”

Mary said, “Hmm. Some better than others.”

John said with amusement, “I suppose. What rules can we use to decide?”

Mary said, “Oh that reminds me, I wanted to discuss that second approach for
a ‘thought language’. I think it’s obvious that there is more to the meaning
conveyed through the combinations of words than through the individual words
examined alone. Much of the meaning comes from the relationships between the
words or concepts. In other words, rule-based systems should be considered.”

John said, “Ok. Let’s consider what constitutes a rule. If you push buttons for
2 × 4 on a calculator and get 8, you would be following a simple rule, but
how did you get the right answer? Getting the right answer is not the same as
calculating it yourself. Where was the thinking?”

Mary said, “But that’s all it takes. It is only the behavior that is important, not
how the behavior is arrived at.”

John said, “Just knowing that a rule can be mechanical like the calculator doesn’t
mean the rule the brain processes for 2 × 4 is mechanical. The crux is whether
a set of rules alone can serve to generate human cognitive behavior.”

Mary said, “Yes, we require rules as opposed to instinct.”

“Oh, but sometimes instinct can produce the right results.” John quickly inter-
jected.

Mary continued. “Nevertheless, central to the behaviorist view of language acqui-
sition is learning language as a conditioned response.”

John said, “In genuine rule following, there must be a difference between actually
following a rule and appearing to follow a rule.”

Mary nodded, “How can we be certain to follow the same rules as everyone
else?”

John said, “There is an acceptance of the rules by the general public.”
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Mary said, “If making judgments requires language and if language is a rule-
governed action requiring general agreement of the rules, then I can only make
judgments or carry out thinking if there are additional intelligences?”

John said, “Yes. Then rule-following in one person necessitates rule-following
by others. But this means that a computer cannot know that it is following a rule
or program and therefore can never be thinking like a human.”

Mary said, “Well, regardless of whether language is a picturing relationship
between words and objects, or a rule-based system, I still believe thinking can be
done by a kind of thought language based upon meaningful universal symbols.”

John said, “The idea of a language of thought has problems, while words can be
interpreted by reference to what we think, my interpretation of my own thoughts
may make no sense.”

Mary said, “I think in pictures sometimes. So if thoughts do not give meaning
to sentences, they still contain symbolic meaning. But this leads to a regression
problem. For example, if I hold a letter and make a statement regarding the con-
tents of the letter, the sentence plus the letter is capable of fewer interpretations
than the letter alone.”

John said, “In my opinion, there are links betweens thoughts and language. For
example, the question ‘What are you thinking?’ does not elicit the thought pro-
cess, but rather the train of thought in words.”

Mary said, “Then the very process of having a thought requires the capacity to
manipulate language symbols.”

John said, “Let me summarize; thinking must be equivalent to making judgments,
but to make judgments we require language. As a result, some type of language is
mandatory for thought. And while thinking requires some symbolic representation
of real-world objects, it is not a direct manipulation of symbols in the brain as per
a set of linguistic rules. Consequently, I would suggest that there is no explicit
universal grammar of thought.”

Mary said, “I hold that pure syntax is the essence of language for encoding the
universal grammar in the brain. If this is so, then there is no distinction that
matters between this and using a computer programming language involving 0s
and 1s to replace a human language like English. The more interesting question
becomes what kind of formal system can achieve that.”

John said, “But what is the meaning of a statement in your scheme. How about
‘What color is 4?’ The grammar is correct, but its content is nonsense. The syntax
is right, but it has zero semantics.”

Mary said, “I admit I can’t answer that, just yet.”

John said, “We agree that a machine needs language as a prerequisite to think,
but we disagree on how a machine could acquire language capability.”

Mary said, “A language organ in the brain must have a universal syntax structure.”
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John says, “On the other hand, meaning is the essence of language and that can
only be acquired in social context, namely, semantics.”

Mary said, “Well, how would you tell whether another human was thinking?
We can’t assess each others mental states. We must judge on the basis of that
person’s behavior. I say something, you respond. After a while I decide that you
are a thinking being.”

John said, “Thanks. From my perspective thinking requires mental states and
human life. And meaning comes from the participation in life’s experience.”

Mary said, “A computer changing symbols on a tape into new symbols is exactly
the same kind of process that the human brain goes through in the process of
thinking when it causes changes in synaptic patterns of the brain.”

John said, “So you argue, but what distinguishes humans is our ability to use
language to express new thoughts and communicate.”

Mary said, “Do you conclude that to duplicate human thought it will be necessary
for a machine to duplicate human language?”

John said, “Now there’s a thought. To pass the Turing Test, a computer must
acquire language capability.”





9
SEMANTIC WEB RULE LANGUAGE

OVERVIEW

The goal of incorporating logic, inference, and rules processing onto the Semantic
Web is to enable the automated use of classical perspectives on rules, and thereby
extend the reasoning capabilities of the Semantic Web. There are several rule lan-
guages available for use on the Semantic Web including Rule Markup Language
(RuleML), Web Service Modeling Language (WSML), Semantic Web Service
Language (SWSL), and Semantic Web Rule Language (SWRL). The SWRL
specification has strong support, but this language is likely to undergo further
development, extension, and merger with features of competing technologies.

Semantic Web Rule Language is based on a combination of the OWL DL and
OWL Lite sublanguages with the sublanguages of the Rule Markup Language.
It includes a high-level abstract syntax for Horn-like rules.

Chapter 8 discussed how inference engines apply rule systems in general. This
chapter briefly describes rule languages and introduces SWRL as the likely rule
system for the Semantic Web.

RULE SYSTEMS

Prolog, which stands for PROgramming in LOGic, was introduced in the early
1970s and marked the beginning of rule language development. Prolog became
the most commonly used language for logic programming. Logic programming
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is based on the mathematical concepts of relations and logical inference. Prolog
consists of a database of facts and logical relationships (rules) that describe
the relationships that hold for the given application. When a user queries the
system, it searches through the database of facts and rules to determine (by
logical deduction) the answer. In cases where there is more than one solution, the
system may backtrack to generate alternative solutions. Prolog is used in Artificial
Intelligence (AI) applications, such as natural language, automated reasoning, and
expert systems.

Rules allow the expression of certain logical relationships in a form suitable
for machine processing. They include declarations like: “IF A is true, then B
must also be true.”

Software designed to interpret rules, known as “rule engines,” have become an
increasingly popular tool for implementing business rule applications for dynamic
business logic. Migration of business applications onto Web rule engines empow-
ers new business rule applications. These applications enable users to personalize
their preferences while empowering providers to customize their products to meet
customer needs.

There have been several efforts by industry groups to develop rule engine
capabilities to facilitate automated business practices. To date, rule engines have
been based on the use of XML, which embeds data in a formal structure with
mutually agreed upon semantic definitions. Industry initiatives using XML have
included the development of the following standards: ebXML (Electronic Busi-
ness XML Initiative), OTP (Open Trading Protocol), OBI (Open Business on the
Internet), CBL (Common Business Language), RosettaNet, eBis-XML, BizTalk,
and xCBL.

Rules may be explicitly stated or implicitly inferred. While explicit rules are
readily expressed and acted upon by rule engines, rules implicitly embedded
on the Web may not be processed even with XML. Implicit rules need to be
implemented in such a way as to allow software agents to process them.

The formal foundations of the Semantic Web allow us to infer additional
(implicit) statements that are not explicitly made. Unambiguous semantics allow
question answerers to infer that objects are the same; objects are related; or that
objects have certain restrictions. Ontologies for the Semantic Web can use rules
to define axioms operating on taxonomy. An important feature of SWRL is that it
allows us to make additional inferences beyond those provided by the ontology.

First-Order Logic (FOL) provides significant flexibility in writing down the
required axioms for a Semantic Web rule system. However, FOL sublanguages
Descriptive Logic (DL) and Horn Logic (HL) are both interesting as a rule system
because they have the properties of decidability and tractability.

RULE LANGUAGES

Rules have classically been used in formal languages, compiler technology,
databases, logic programming, knowledge representation, and object-oriented
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modeling. Rule markup techniques for the Semantic Web, however, incorpo-
rate rule systems (e.g., extended HL) suitable for the Web. Both derivation rules
and reaction rules are considered.

Examples of Rule languages for the Semantic Web include the Rule Markup
Language, Web Service Modeling Language, Semantic Web Service Language,
and Semantic Web Rule Language.

Rule Markup Language is based on XML, although it includes an RDF syntax.
A FOL version of RuleML is available.

Web Service Modeling Language provides an overall framework for different
logic languages. The main language paradigms supported in WSML are Descrip-
tion Logics and Logic Programming.

Semantic Web Service Language is a language for describing Semantic Web
services. It has two parts: a process ontology (Semantic Web Services Ontology)
and a rules language. The rule language consists of two parts: SWSL–FOL is
a formal specification of the ontology and provides interoperability with other
first-order based process models and service ontologies. SWSL-Rules is the actual
language for service specification. Semantic Web Rule Language is a Semantic
Web language based on combining features of OWL and RuleML.

SEMANTIC WEB RULE LANGUAGE

The Semantic Web Rule Language was developed in 2003 by the Joint US/EU ad
hoc Agent Markup Language Committee in collaboration with RuleML Initiative,
in order to extend the expressiveness of OWL. The SWRL provides a high-
level abstract syntax that extends the abstract syntax of OWL and uses URIs
to identify things, making it compatible with RDF and OWL. For example, in
RDF, an organization can express the fact that a particular person is an employee
who is granted access to certain information. We can use SWRL to generalize
this relationship. In SWRL, one can express the rule that being an employee
implies authorization for access to this information. Given this rule and the fact
that someone is an employee, a SWRL reasoner can conclude that the particular
person is granted information access.

Semantic Web Rule Language is an extension of OWL DL. Applications of
OWL DL can add rules to their ontologies thereby maintaining clear semantics.
Some rule systems offer meta-processing (rules about rules). The SWRL has
high expressive power, but raises questions about computational complexity for
implementation. There may be a need for selecting suitable subsets for efficient
ways to balance expressive power against execution speed and termination of the
computation.

An OWL ontology contains a sequence of axioms and facts. These axioms may
include a variety of kinds (e.g., subClass axioms and equivalentClass axioms).
However, rule axioms can be extended.

The rules form an implication between antecedent (body) and consequent
(head). The intended meaning implies whenever the conditions specified in the
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antecedent hold, then the conditions in the consequent must also hold (see
Chapter 8).

Both the antecedent and consequent consist of atoms or elementary statements.
An empty antecedent is treated as trivially true; an empty consequent is treated
as trivially false. Multiple atoms are treated as a conjunction. The rules with
conjunctive consequents can be transformed into multiple rules each with an
atomic consequent.

Atoms in rules can be of the form C(x), P(x,y), sameAs(x,y) or differ-
entFrom(x,y), where C is an OWL description, P is an OWL property, and
x,y are either variables, OWL individuals or OWL data values. However, OWL
DL becomes undecidable when extended in this way.

An XML syntax is also given for these rules based on RuleML. Atoms may
refer to individuals, data literals, individual variables, or data variables. Variables
are treated as universally quantified, with their scope limited to a given rule.
Using this syntax, a rule asserting that the composition of parent and brother
properties implies the uncle property would be written as:

<ruleml:imp>
<ruleml: body>
<swrlx:individualPropertyAtom swrlx:property="hasParent">

<ruleml:var>x1</ruleml:var>
<ruleml:var>x2</ruleml:var>

</swrlx:individualPropertyAtom>
<swrlx:individualPropertyAtom swrlx:property="hasBrother">

<ruleml:var>x2</ruleml:var>
<ruleml:var>x3</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml: body>
<ruleml: head>
<swrlx:individualPropertyAtom swrlx:property="hasUncle">

<ruleml:var>x1</ruleml:var>
<ruleml:var>x3</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml: head>

</ruleml:imp>

A simple use of these rules would be to assert that the combination of the
hasParent and hasBrother properties implies the hasUncle property. From this
rule, if John has Mary as a parent, and Mary has Bill as a brother, then John has
Bill as an uncle.

CONCLUSION

This chapter introduced Semantic Web Rule Language (SWRL). The SWRL is
based on a combination of the OWL DL and OWL Lite sublanguages with the
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sublanguages of the Rule Markup Language. It includes a high-level abstract
syntax for Horn-like rules. Semantic Web Rule Language has some problems,
such as limits on some properties of rule languages and the fact that it is as
undecidable and untractable as a first-order logic.

EXERCISE

9-1. Create a rule to distinguish a family with first cousins.



INTERLUDE #9: MACHINES AND
LANGUAGE

John and Mary were preparing to play a game of scrabble in the recreation room.
John chose an “e” to Mary’s “g” and won the right to go first. He studied his
letters for a moment before placing the word “apple” vertically with the “e”
landing on the center square. “Twenty points,” he murmured as he reached into
the bag to replace his letters. “You know looking at the characters arranged
on that board reminds me of characters listed on a tape feeding into a Turing
machine. I would venture to say that the letters are mere symbols without meaning
themselves until we associate the word ‘apple’ with our own experiences.”

“Hmm,” said Mary. “Well, to restate what I believe our positions are, I would say
that we have already agreed that thinking is equivalent to making judgments and
that to make judgments requires language. As a result, some type of language is
mandatory for thought. However, we still disagreed about whether thinking is a
direct manipulation of symbols in the brain as per a set of linguistic rules and
about how important social interactions are to learning. But to duplicate human
thought we agree it will be necessary for a machine to duplicate human language.
So getting back to the symbolic meaning for ‘apple,’ I still am satisfied with the
0s and 1s representation.” Mary placed “dge” to the right of the letter “e” and
said “six points.”

John shuffled his letters and stared at the board before placing “knowl” in front
of ‘edge.’ “Knowledge, 19 points,” John said. “Yes, for a Turing machine to pass
the Turing test, it must display human-like language capabilities. But we are held
back by the language we think in and the assumptions we make, and a Turing
machine would also be limited by the language it uses to process its programs
and the assumptions used to build those programs. So how can you give natural
language capability to a machine?”

Mary said, “Consider how language is acquired by humans. We learn languages
best as children. Understanding how children acquire language skills would help
to understand language and thoughts.” Mary placed “earn” vertically down from
the letter “l” and claimed six more points.

“Yes!” John said triumphantly. He placed “lan” and “uage” around the “g” on the
board. “Fourteen points plus an extra 50 points for using all seven letters,” said
John. “And you’ve got a problem, because a child can create statements that he
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never heard before. This is in contrast to rote memorization learning and would
be difficult to duplicate in a computer.”

Mary placed “zer” vertically above the “o” in the word knowledge and claimed,
“26 points for double word score. Nevertheless, I believe that direct manipulation
of symbols in the brain learned in childhood according to a strict set of rules,
produces language that in turn permits judgments and thinking.”

John added an “o” and an “e” around the “n” in the word “learn” and said, “Four
points. Let me interject another issue. Certain translations are difficult, even for
people. To begin with, you have to know two languages intimately. Even if you
speak two or more languages fluently, it is not a trivial matter to produce a
good translation. When people start talking about the possibility of a computer
replacing a human translator, someone will often bring up a sentence similar to
the following: ‘Time flies like an arrow.’ I assert that this sentence is an example
that a computer could not translate.”

“False,” said Mary as she placed “f ” and “lse” around the second “a” in language
and said, “As a matter of fact, a computer could handle this sentence if it were
programmed to handle just this sentence. The problem is getting a computer to
deal adequately with sentences it has not been specifically programmed to handle.
That’s eight points for me by the way.”

“True,” said John.

“You’re agreeing with me?” asked Mary looking up.

“No,” said John placing “tru” vertically above the “e” in “false.” “Six points.
This sentence about time flying is a figure of speech that combines a metaphor
and a simile. Time does not really fly in the literal sense of a bird flying, but
here we metaphorically say it does. Another example of a metaphor would be
when we say that a ship ploughs the water, since there is no real plough and
no dirt involved. The simile in this expression is the comparison between the
metaphorical flight of time with the flight path of an arrow. The point of this
sentence for human versus computer translation is that a human translator would
know to handle the variation.”

“John,” Mary said, “nothing you have said precluded a future computer pro-
grammer from overcoming these issues. You should think of an argument that
would be conclusive or else amend your position.” Mary placed “thin” and “ing”
horizontally around the “k” in knowledge. She used a blank to substitute for
the letter “t” in thinking. “I’m thinking,” she said grinning, “That’s good for 17
points, plus 50 for using all 7 letters. Oh look, the score is even, 113 to 113.”





10
SEMANTIC WEB APPLICATIONS

OVERVIEW

Today, computers and small devices are being used to access, from any location,
an ever-increasing flood of Web information. As the size of the Web expands, and
with it its information content, it is becoming more and more difficult to search,
access, maintain, and manage network resources. Creating machine-processable
semantics could alleviate some of these difficulties. The resulting Semantic Web
applications could provide intelligent access to heterogeneous, distributed infor-
mation, enabling software products (and agents) to mediate between user needs
and the information sources available.

This chapter, describes some of the application areas for semantic technol-
ogy. We focus on ongoing work in the fields of knowledge management and
electronic commerce. Some opportunities for Semantic Web applications include
Semantic Web Services, Semantic Search, e-Learning, Semantic Web and Bio-
Informatics, Semantics-based Enterprise application and data integration, and
Knowledge Base.

SEMANTIC WEB APPLICATIONS

Semantic Web applications are those web-based applications that take advan-
tage of semantic content: content that includes not only information, but also
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metadata, or information about information. The Semantic Web can be used
for more effective discovery, automation, integration, and reuse across various
applications.

The Semantic Web will provide an infrastructure not just for Web pages, but
databases, services, programs, sensors, and personal devices. Software agents can
use this information to search, filter, and repackage information. The ontology
and logic languages will make information machine readable and power a new
generation of tools.

Web technologies can link information easily and seamlessly. The majority of
network systems now have Web servers, and the Web interfaces make them seem
part of the same world of information. Despite this, transferring content between
Web applications is still difficult.

The Semantic Web can address and improve the linking of databases, sharing
content between applications, and discovery and combination of Web Services.

Under the current Web architecture, linkages between dissimilar systems are
provided by costly, tailored software. Again and again, special purpose interfaces
must be written to bring data from one systems into another. Applications that run
in a given company involve a huge number of ways they can be linked together.
That linking requires a lot of custom code. Use of XML can help, but the problem
of effectively exchanging data remains. For every pair of applications someone
has to create an “XML to XML bridge.”

The problem is that different databases are built using different database
schemas, but these schemas are not made explicit. Just as older database sys-
tems suddenly became compatible by adopting a consistent relational model, so
unstructured Web data, or XML schema definitions, can adopt a relational model.

The use of Resource Description Framework (RDF) in addition to XML
can be appropriate when information from two sources need to be merged or
interchanged. It is possible to concatenate the files joining on defined terms to
correspond to the same Universal Resource Indicators (URIs). When you want to
extend a query on one RDF file to include constraints from another, you just add
in the constraints as part of the merging. Where XML is made up of elements and
attributes, RDF data is made up of statements where each statement expresses
the value of one property.

The Semantic Web is bringing to the Web a number of capabilities, such
as allowing applications to work together in a decentralized system without a
human having to custom handcraft every connection. The business market for
this integration of data and programs is huge, and we believe the companies who
choose to start exploiting Semantic Web technologies will be the first to reap the
rewards.

Some opportunities for Semantic Web applications include Semantic Web
Services, Semantic Search, e-Learning, Semantic Web and Bio-Informatics, Se-
mantics-based Enterprise Application and Data Integration, and Knowledge Base.

We will discuss these in the following sections.
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SEMANTIC WEB SERVICES

Semantic Web Services can bring programs and data together. Just as databases
cannot be easily integrated on the current Web without RDF, the same applies to
programs. Unfortunately, many e-business applications particularly in business-
to-business (B2B) interactions have difficulty loading someone else’s program to
run locally.

Consider the case of a company that wishes to purchase parts from a vendor,
arrange shipping from a large freight company, and have those parts delivered to
one of several manufacturing locations based on which plant has the most capacity
at the time of the delivery. Further, they would like this deal to be brokered on
the Web with the minimum amount of human interaction. These programs that
execute this brokering may be running on special purpose machines and/or behind
security and firewall protections. How can all these programs interoperate on the
Web to provide protocols and descriptions of the “services” that these various
programs offer?

Web Services are self-contained, self-described, component applications
invoked across the Web to perform complex business processes. Once a Web
Service is deployed, other applications can discover and invoke the service.
At present, Web Services require human interaction in order to identify and
implement.

Tim Berners-Lee has suggested that the integration of Web Services and the
Semantic Web could be done in such a way as to combine the business logic
of Web Services with the Semantic Web’s meaningful content. There are several
areas where the current technologies for discovery (UDDI or Universal Descrip-
tion, Discovery, and Integration), binding (WSDL or Web Services Description
Language), and messaging (SOAP or Simple Object Access Protocol) could use
OWL to provide an ontology for automatic Semantic Web Services thereby allow-
ing greater interaction with Web business rules’ engines.

The vision for Semantic Web Services is to automate the discovery, invoca-
tion, composition, and monitoring of Web Services through the use of machine
processing. Web sites will be able to use a set of classes and properties by declar-
ing and describing an ontology of services. Web Ontology Language for Services
(called OWL-S) has been designed to meet this goal. Semantic Web Services and
OWL-S will be described, in greater detail in Chapter 11.

SEMANTIC SEARCH

Semantic search methods can augment and improve traditional search results
by using, not just words, but concepts and logical relationships. There are two
approaches to improving search results through semantic methods: (1) the direct
use of Semantic Web metadata and (2) Latent Semantic Indexing (LSI).
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The Semantic Web will provide more meaningful metadata about content,
through the use of RDF and OWL documents that will help to form the Web
into a semantic network. In a semantic network, the meaning of content is better
represented and logical connections are formed between related information.

However, most semantic-based search engines suffer increasingly difficult per-
formance problems because of the large and rapidly growing scale of the Web.
In order for semantic search to be effective in finding responsive results, the net-
work must contain a great deal of relevant information. At the same time, a large
network creates difficulties in processing the many possible paths to a relevant
solution. We once again find ourselves facing a basic trade-off between finding
the minimum necessary expressive power and the maximum possible reasoning
capability for the Semantic Web. Semantic Search technology will be described
in greater detail in Chapter 12.

e-LEARNING

The big question in the area of educational systems is what is the next step in
the evolution of e-learning? Are we finally moving from scattered applications
to a coherent collaborative environment? How close we are to the vision of the
Educational Semantic Web and what do we need to do in order to realize it?

On the one hand, we wish to achieve interoperability among educational sys-
tems and on the other hand, to have automated, structured, and unified authoring.
The Semantic Web is the key to enabling the interoperability by capitalizing on
(1) semantic conceptualization and ontologies, (2) common standardized commu-
nication syntax, and (3) large-scale integration of educational content and usage.

The RDF describes objects and their relationships. It allows easy reuse of
information for different devices, such as mobile phones and PDAs, and for
presentation to people with different capabilities, such as those with cognitive or
visual impairments.

It is possible that in the near future students will be able to extract far more
data from a networked computer or wireless device, far more efficiently. Based
on a few specific search terms, library catalogues could be scanned automatically
and nearest library shelf marks delivered immediately to students, alongside mul-
timedia and textual resources culled from the Web itself. Students could also be
directed to relevant discussion lists and research groups.

By tailored restructuring of information, future systems will be able to deliver
content to the end-user in a form applicable to them, taking into account users’
needs, preferences, and prior knowledge. Much of this work relies on vast online
databases and thesauri, such as wordnet, which categorize synonyms into distinct
lexical concepts. Developing large multimedia database systems makes materials
as useful as possible for distinct user groups, from schoolchildren to university
lecturers. Students might, therefore, search databases using a simple term, while
a lecturer might use a more scientific term thus reflecting scaling in complexity.

The educational sector can also use the Internet Relay Chat (IRC)
(http://www.irc.org/) a tool that can be used by the Semantic Web. The IRC
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is a chat protocol where people can meet on channels and talk to each other. The
Semantic Web community is enhancing this capability by writing robots that can
help to log the chat when members are away. It can also assist with meetings,
discussions, and recording of results.

The IRC and related tools could work well within education, for project discus-
sion, remote working, and collaborative document creation. Video-conferencing
at schools is increasingly becoming useful in widening the boundaries for stu-
dents. The incorporation of Semantic Web technologies could create the ability to
work across distributed locations in communities of learning and enable content
creation outside of the classroom.

SEMANTIC BIOINFORMATICS

The Semantic Web could unlock a great deal of scientific data contained within
disparate applications’ formats otherwise limited by institutional factors. Life sci-
entists, in particular, could find the Semantic Web a useful tool. The World Wide
Web Consortium recently announced the formation of the Semantic Web Health
Care and Life Sciences Interest Group (HCLSIG) aimed to help life scientists
tap the potential benefits of using Semantic Web technology by developing use
cases and applying standard Semantic Web specifications to healthcare and life
sciences problems.

The initial foundation and early growth of theWeb was based in great part on
its adoption by the high-energy physics community when six high-energy physics
Web sites collaborated allowing their participating physicists to interact on this
new network of networks. A similar critical mass in life sciences could occur
if a half dozen ontologies for drug discovery were to become available on the
Semantic Web.

Life science is a particularly suitable field for pioneering the Semantic Web.
For example, in the area of drug discovery, many databases and information
systems are used by drug researchers on a global scale. In this regard, the Bio-
logical Pathways Exchange (http://www.biopax.org/) is developing a standard
data exchange format for metabolic, signaling, genetic regulatory, and genetic
pathway information as an example.

ENTERPRISE APPLICATION INTEGRATION

The Semantic Web can impact industry as a tool for enterprise application inte-
gration. Just as the Web today integrates human-oriented information systems,
the Semantic Web could integrate applications in which data has well-defined
meaning.

As an example, consider the British Telecom Call Center (http://www.bt.com/).
Call centers are platforms for companies to communicate with their customers
and the market. Current call center technology lacks the support of the operator
in solving incoming requests. The investment in call center technology could
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offer better customer service, lower overheads, and lower operational costs. For
British Telecom, a system for supporting intranet-based virtual communities is
being developed. It allows the automatic sharing of information. The system,
OntoShare, allows the storage of best practice information in an ontology and
the automatic dissemination of information to relevant call center agents. The
ontology provides a sharable structure for the knowledge base and a common
language for communication between call center agents.

The business integration technology uses XML documents that might first be
“lifted up” to an RDF data model. Then different private RDF data models are
mapped to the shared mediating data model enriched with different constraints
and formal specification of shared semantics of the concepts.

Middleware could facilitate the interaction between applications across het-
erogeneous computing platforms. The increasing use of the Web as a channel to
access information systems force middleware platforms to provide support for
Web application development. This support is typically provided in the form of
application servers and Web Services.

The complexity of managing a distributed application remains a challenge
for developers and administrators. For example, managing component dependen-
cies, versions, and licenses is a typical problem in an ever-growing repository
of programming libraries. Both types of middleware try to counter increasing
complexity by managing various issues (transactions, session management, user
rights, etc.) in an application independent way. An ontology could harmonize
conceptual models covering aspects from the heterogeneous areas of component
and service descriptions. The ontology could be leveraged to support developers
and administrators in their complex tasks during development, deployment, and
runtime.

An ontology covers aspects from the heterogeneous areas of component and
service descriptions, policies, quality of service, service level agreements, and pri-
vacy. Ontologies formalize concepts and concept relationships (associations) very
similar to conceptual database schemas or Unified Modeling Language (UML)
class diagrams However, ontologies are expressed in logic-based representation
languages. Inference engines are allowed to query and reason with ontologies at
runtime. The UML is a standard language for specifying, visualizing, construct-
ing, and documenting software systems, as well as for business modeling, and
other nonsoftware systems. It represents a collection of engineering practices that
have proven successful in the modeling of large and complex systems.

Semantics-based management of middleware comprises two layers. First, one
formally specifies a conceptual model of middleware in several aligned ontolo-
gies. Thereby, the conceptual model for the middleware proper needs to be built
only once, while the conceptual model for the application domain, for example,
Web shopping for books may vary. Second, a formal specification of a concrete
set of services and the properties they have by providing semantic metadata
that are aligned to the ontologies from the first layer. The semantic metadata
formalizes a particular instantiation of a distributed application.
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While some of the semantic metadata can be generated automatically, a full
specification will always require manual provision. This is usually a rather cum-
bersome and error-prone work for the developer. Hence, the goal is to decrease
the costs.

The idea behind foundational ontologies has arisen from experience in ontol-
ogy and software engineering. The experience has shown that ad hoc conceptual
models may adequately reflect a given state of requirements at a certain point in
time, however, the extension of requirements has easily led nowhere, because a
given ontology proved to be unextendable for new requirements. The problem
could often be attributed to a design of the ontology. Foundational ontologies
capture insights from philosophy, logics, and software engineering in order to
prescribe good ontology engineering practice at an upper level of the ontology.

Ontologies can provide more complex definitions for information retrieval.
They are a key asset in automating query answering, maintenance, and automatic
document generation.

KNOWLEDGE BASE

In a number of parallel efforts, knowledge systems are being developed to pro-
vide semantic-based and context-aware systems for the acquisition, organization,
processing, sharing and use of the knowledge embedded in multimedia con-
tent. Ongoing research aims to maximize automation of the complete knowledge
lifecycle and to achieve semantic interoperability between Web resources and
services.

In one particularly interesting application, Cycorp (http://www.cyc.com/)
intends to sell products and services using its inference engine, which has been
designed to work with the Cyc Knowledge. Cycorp provides a reference Cyc
Server executable for Intel-based Linux and for Windows 2000.

OpenCyc is the open source version of the Cyc technology, the world’s largest
and most complete general knowledge base and common sense reasoning engine.
Cycorp, the builders of Cyc, have set up an independent organization Open-
Cyc.org, to disseminate and administer OpenCyc. OpenCyc can be used as the
basis for a wide variety of intelligent applications, such as speech understanding
(using the KB to prune implausible choices via common sense, discourse context,
and prosodics), database integration and consistency-checking, rapid development
of an ontology, and email prioritizing, routing, summarizing, and annotating.

CONCLUSION

This chapter described some of the application areas for semantic technology.
We focused on ongoing work in the fields of knowledge management and
electronic commerce. Some opportunities for Semantic Web applications include
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Semantic Web Services, Semantic Search, e-Learning, Semantic Web and
Bio-Informatics, Semantics-based Enterprise Application and Data Integration,
and Knowledge Base.

EXERCISE

10-1. List three potential applications that would benefit from the Semantic Web
environment.



INTERLUDE #10: DISTRIBUTED
INTELLIGENCE

John said, “Boy, am I tired of math and computer science after this week’s
midterm exams. Our debate on machine intelligence has proven to be a welcome
distraction.”

Mary said, “Actually, I found that our discussions over the past few weeks were
helpful with some of the essay questions. It’s a funny sort of problem and I don’t
mind admitting that I’m puzzled by many aspects.”

John said, “Well, we have covered a lot of material. Based on our earlier dis-
cussions, however, I doubt if we will ever come to agreement on the precise
meaning of intelligence, either for humans or for machines; but surely we can
agree on some of its attributes.”

Mary said, “I’d like nothing more than to find agreement, but given our earlier
chats, that may prove elusive.”

John said, “How about this? We seem to agree that human intelligence is related
to synaptic brain patterns, and learning requires social behavior in humans. Can
we agree on that?”

Mary said, “Yes. But I’m a little suspicious when you try to characterize the basis
of something we can’t really define. Nevertheless, I can accept that intelligent
actions are not some out-of-body phenomenon, but are based on well-defined
biological processes.”

John said, “In that case, it seems clear to me that human intelligence, whatever
it is and however it works, must be distributed across the multiple regions of the
brain. Consciousness, memory recall, problem solving, and sensory perception
involve different parts of our physiology and therefore must be considered to be
distributed, at least in some sense.”

Mary said, “I guess I can agree with that. Maybe we agree in more ways than I
thought. Computers have some similarities to that, when we consider their func-
tions in emulating human intelligence. For example, memory may be stored in
one place, while an act of logical inference is taking place in the CPU. Informa-
tion may be “perceived” from sensor inputs that could also be remote from the
computer itself.”
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John said, “I think you are underestimating the process of human thought, but I
can’t disagree with your point that artificial intelligence may also be composed of
activities that are spread out in space result from the accumulation of individual
components.”

Mary said, “I’m glad you agree up to a point, but now let me take a giant leap
and propose that intelligent behavior in machines may be conductive to even
greater decentralization. What if the various components of what we consider
intelligent behavior: perception, analysis, memory and recall, problem solving,
inference, and so on, were to take place at different nodes on a vast network
of interconnected machines. Could we then consider the collective behavior of
such a system to be intelligent? Could intelligence be an emergent property of a
complex system of interconnected machines? Or in fact distributed intelligence
over a global network?”

John said, “Now you’ve gone too far. You’ve given me a headache. It’s time for
our next class.”



11
WEB ONTOLOGY LANGUAGE
FOR SERVICES

OVERVIEW

Web Services are self-contained, self-described, component applications that can
be published, located, and invoked across the Web. They perform functions that
can be anything from simple requests to complex business processes involving
multiple simple services. Once a Web Service is deployed, other applications
can discover and invoke the service. At present, Web Services require human
interaction for identification and implementation.

Tim Berners-Lee has suggested that the integration of Web Services and the
Semantic Web could offer significant performance improvement for Web appli-
cations. Integration could combine the business logic of Web Services with the
Semantic Web’s meaningful content. There are several areas where the two could
work well together. For example, the current technologies for discovery (Uni-
versal Description, Discovery and Integration, UDDI), binding (Web Services
Description Language, WSDL), and messaging (Simple Object Access Protocol,
SOAP) technologies could use OWL to provide an ontology for automatic Seman-
tic Web Services thereby allowing interaction with Web business rules’ engines.

This chapter presents the building blocks for the next generation of Web Ser-
vices: Semantic Web Services. Web Ontology Language and OWL for Services
(OWL-S) create logic statements for inference engines utilizing Semantic Web
Rule Language (SWRL) that allow manipulation of application logic directly
through Web markup languages.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.
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Currently, OWL-S and SWRL are not yet W3C recommendations and each
has several competing submittals. However, any future Semantic Web Service
W3C recommendation is likely to grow out of OWL-S and SWRL components,
so their presentation is included to illustrate the basic ingredients needed.

XML-BASED WEB SERVICES

Web Services provide a standard means of interoperating between different soft-
ware applications running on a variety of platforms. The XML provides the
extensibility and language neutrality that is the key for standard-based interoper-
ability of Web Services.

Web Service discovery and composition is led by Universal Description Dis-
covery and Integration (UDDI) developed by IBM and Microsoft. Well accepted
standards like Web Services Description Language (WSDL) for binding and
Simple Object Access Protocol (SOAP) for messaging make it possible to dynam-
ically invoke Web services.

Web Service Architecture requires discrete software agents that must work
together to implement functionality. Furthermore, the agents do not all operate in
the same processing environment so they must communicate by protocol stacks
that are less reliable than direct code invocation. This requires developers to
consider the unpredictable latency of remote access, and take into account issues
of partial failure and concurrency.

In XML-based Web Services, an agent sends and receives messages based
upon their architectural roles. If a requester wishes to make use of a provider’s
Web Service, he uses a requester agent to exchange messages with the provider
agent. In order for this message exchange to be successful, the requester and the
provider must first agree on both the semantics and the mechanics of the message
exchange.

The message exchange mechanics are documented using WSDL. The service
description is a specification that can be processed by a machine using message
formats, data types, and protocols that are exchanged between the requester and
provider. It also specifies the network location of the provider.

NEXT GENERATION WEB SERVICES

The vision for Semantic Web Services is to automate the discovery, invocation,
composition, and monitoring of Web Services through the use of machine pro-
cessing. Web sites will be able to use a set of classes and properties by declaring
and describing a ontology of services. Web Ontology Language for Services has
been designed to meet this goal.

When the semantics of the service is known, its WSDL description can be
accessed by a program using the WSDL description for the interface, binding,
and operations. If Web sites publish their metadata, then software agents can
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extract the information. In this way software agents can automatically exploit
Web Services from semantic descriptions that are machine processable.

To use a Web Service, a software agent requires a computer-interpretable
description of the service and access. Making and sharing these descriptions is
an important goal for Semantic Web markup languages. The ontology structuring
mechanisms of OWL provide the appropriate framework for Web sites to be
able to employ a set of basic classes and properties for declaring and describing
services.

For any piece of data to be automatically processable, first it has to have a well-
defined format. A well-defined metadata description language allows automatic
processing of the description to obtain the metadata. However, to interpret the
metadata automatically, the meaning (or semantics) must also be known. The
meaning of data is given through domain specific ontologies.

The OWL-S is a high-level ontology meant to answer the “what” and “why”
questions about a Web Service for the application level. An ontology for Web
Services makes Web Services machine understandable and supports automated
Web Service composition and interoperability.

OWL-S provides an ontology for Web Services that automates four functions:

1. Discovery: A program must be able to automatically find, or discover, an
appropriate Web service.

2. Invocation: Software must automatically determine how to invoke or exe-
cute the service. For example, if executing the service is a multistep
procedure, the software needs to know how to interact with the service
to complete the necessary sequence. A Semantic Web service provides a
descriptive list of what an agent needs to execute the service including the
inputs and outputs.

3. Composition: Software must be able to select and combine a number of
Web services to complete a given objective. The services have to interop-
erate with each other seamlessly so that the combined results produce a
valid solution.

4. Monitoring: Agent software must verify and monitor the service properties
during operation.

Program agents must locate Web Services that satisfy a given set of constraints.
This requires equally smart execution monitoring to go along with discovery and
invocation.

Developers will want to build up complex Web Services from simpler ones
using the inputs, outputs, preconditions, and effects of the simpler services.
Intelligent composition of services will provide interoperation and automatic
translations between clients and services.

The ontology of services provides three essential types of knowledge about a
service: service profile, service model, and service grounding. The class Service
provides an organizational point of reference for a declared Web Service.
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1. The class Service “presents” a ServiceProfile: “What does the service
provide for and require of agents?”

2. The class Service is “describedBy” a ServiceModel: “How does it work?”
3. The class Service “supports” a ServiceGrounding: “How to access the

service?”

The ServiceProfile provides information about a service offered by a Web site,
as well as services needed by a requestor. An agent determines if the service
meets its needs while satisfying constraints, such as security, locality, and quality
requirements.

The ServiceModel enables an agent to (1) determine whether the service meets
its needs, (2) compose a service description from multiple services, (3) coordinate
the activities of different agents, and (4) monitor the execution of the service.

The ServiceGrounding specifies the details of how to access the service, such
as protocol and message formats, serialization, transport, and addressing. The
grounding is basically, the inputs and outputs of atomic processes.

The current specification OWL-S 1.1 is available at: http://www.daml.org/
services/owl-s/1.1/.

In general, the ServiceProfile provides the information needed for an agent
to discover the service while the ServiceModel and ServiceGrounding objects
provide information for an agent to use the service (see Fig. 11-1). The properties
“presents” “describedBy,” and “supports” are properties of Service. The classes
ServiceProfile, ServiceModel, and ServiceGrounding are the respective ranges
of those properties. Each instance of Service will present a ServiceProfile
description, describedBy a ServiceModel description, and support a Service-

Grounding description. The details of profiles, models, and groundings may vary
widely from one type of service to another.

We will describe each of these three classes (ServiceProfile, ServiceModel,
ServiceGrounding) in the following sections.

ServiceProfile

A transaction in the Web service marketplace involves three parties: the service
requester, the service provider, and the infrastructure components. The service

presents describedby supports

Service

ServiceModelServiceProfile ServiceGrounding

Figure 11-1. Upper ontology of services.
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requester (buyer) seeks a service to perform work and the service provider (seller)
offers a service. The infrastructure components are available to facilitate the pro-
cess, and include items, such as registries to match the request with the available
offers. Within the OWL-S framework, the ServiceProfile provides a way to
describe the services being offered, and the services required.

By using OWL subclassing it is possible to create specialized service profiles
of services. The OWL-S provides one possible representation through the class
“Profile.” A ServiceProfile describes a service as a function of three basic
pieces of information: what organization provides the service, what functions the
service computes, and what features characterize the service.

There is a two-way relationship between a service and a profile that is
expressed by the properties “presents” (relates an instance of service and an
instance of profile) and “presentedBy” (specifies the inverse of presents).

ServiceProfile expresses two functions: first, the information transformation
and second, the state change produced by the execution of the service. The infor-
mation transformation includes the input and output properties of the profile. For
example, a book-selling service could require the buyer’s credit card number
and information on the book. The state change produced by the execution of the
service results from the “precondition and effect properties” of the profile. Pre-
condition presents logical conditions that should be satisfied prior to the service
being requested. Effects are the result of the successful execution of a service.

For example, to complete the sale, a book-selling service requires a credit
card number and expiration date, but also requires the precondition that the
credit card account actually exists and is in good standing. The result of the sale
is the transfer of the book from the warehouse to the address of the buyer with
the corresponding accounting transfer.

In addition, the ServiceProfile provides a description of the service to a
registry. Although the ServiceProfile and the ProcessModel play different roles
during the transaction, they reflect the same service, and so the IOPEs (inputs,
outputs, parameters, and effects) are related.

The information is encoded in modeling primitives of OWL-S classes and
properties, such as:

<rdfs:Class rdf:ID=“OfferedSevices”>
<rdf:label>OfferedService</rdfs:label>
<rdfs:subClassOf rdf:resource=

“http://daml.semanticweb.org/services/owl-s/1.1/”>
</rdfs:Class>

Table 11-1 lists the Profile properties used to provide a description of the
service on this class, such as, serviceName, textDescription, and contactIn-

formation.
The Profile of a service provides a concise description of the service to a reg-

istry, but once the service has selected the Profile, the client will use the Process
Model to control the interaction with the service. Although the Profile and the
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TABLE 11-1. ServiceProfile Property Description

Property Description

serviceName Name of the service
textDescription Provides a brief description of the service including what

the service requires to work
contactInformation Referring to individuals responsible for the service

Process Model play different roles, they use the same input, output, precondition,
and effects (IOPEs). Table 11-2 lists the functional description parameters.

Additional information is provided by functional attributes, such as guarantees
of response time or accuracy, the cost of the service, or the classification of the
service in a registry.

ServiceModel

Service models are based on the concept of processes that describe inputs, out-
puts, preconditions, effects, and subprocesses. A detailed perspective of a service
can be viewed as a process. A subclass of the ServiceModel is defined as the Pro-
cessModel that draws upon Artificial Intelligence (AI), planning, and workflow
automation to support a wide array of services on the Web. Figure 11-2 presents
the relationships of ServiceModel and includes the Process and ProcessControl,
IOPEs, and constructs.

ProcessModel

The process model comprises subclasses and properties of the ProcessModel class.

TABLE 11-2. Service Profile Functional Description

Function Description: The Profile ontology defines the following properties of the
Profile class for pointing to IOPEs:

hasParameter Ranges over a Parameter instance of the Process ontology.
Parameter class models intuition that Inputs and Outputs
(which are kinds of Parameters) are both involved in
information transformation and therefore they are
different from Preconditions and Effects.

hasInput Ranges over instances of Inputs as defined in the Process
Ontology.

hasOutput Ranges over instances of type Output, as defined in the
Process ontology.

hasPrecondition Specifies one of the preconditions of the service and ranges
over a Precondition instance defined according to the
schema in the Process ontology.

hasResult Specifies one of the results of the service, as defined by the
Result class in the Process ontology. It specifies under
what conditions the outputs are generated.
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ProcessModel

ProcessControl

ServiceControl

Process

CompositeProcess

inputs
outputs
preconditions
effects

Sequence
Split
RepeatUntil
...

Figure 11-2. ServiceModel.

The chief components of the process model are the Process Ontology that
describes a service in terms of its inputs, outputs, preconditions, effects, and
component subprocesses, and Process Control Ontology, which describes each
process in terms of its state, including initial activation, execution, and comple-
tion. The process control model allows agents to monitor the progression of a
service request as part of the Process Control Ontology.

Process Ontology

Process Ontology can have any number of inputs and outputs representing the
information required for execution. Besides inputs and outputs, parameters for
physical devices, such things as rates, forces, and control settings can be included.
The Process Ontology serves as the basis for specifying a wide array of services
on standardizations.

The OWL-S defines three types of processes (see Fig. 11-3): Atomic (directly
invokable), Simple (single-step, but not directly invokable), and Composite
(decomposable into other processes).

Profile

Process

atomic simple composite

Figure 11-3. Process ontology.
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In Figure 11-3, the three types of processes are related: atomic, simple, and
composite. They are represented in the following serializations. Process
encompasses the three disjoint subprocesses: atomic, simple, and composite,
where a simple process can include atomic processes and a composite process
can include more than one simple process, such as

<owl:Class rdf:ID="Process">
<rdfs:comment> The most general class of processes </rdfs:comment>
<owl:disjointUnionOf rdf:parseType="owl:collection">
<owl:Class rdf:about="#AtomicProcess"/>
<owl:Class rdf:about="#SimpleProcess"/>
<owl:Class rdf:about="#CompositeProcess"/>

</owl:disjointUnionOf>

AtomicProcess

The atomic processes can be invoked directly and are executed in a single step.
For each atomic process, there is a grounding that enables a service requester to
construct messages. An AtomicProcess is a subclass of a Process, such as

<owl:Class rdf:ID="AtomicProcess">
<owl:subClassOf rdf:resource="#Process"/>

</owl:Class>

SimpleProcess

Simple processes are not associated with a grounding. They are single-step exe-
cutions. Simple processes are used as elements of abstraction; a simple process
may be used either to provide a view of some atomic process, or a simplified
representation of some composite process. A SimpleProcess is

<owl:Class rdf:ID="SimpleProcess">
<owl:subClassOf rdf:resource="#Process"/>

</owl:Class>

<rdf:Property rdf:ID="realizedBy">
<rdfs:domain rdf:resource="#SimpleProcess"/>
<rdfs:range rdf:resource="#AtomicProcess"/>
<owl:inverseOf rdf:resource="#realizes"/>

</rdf:Property>
<rdf:Property rdf:ID="expandsTo">
<rdfs:domain rdf:resource="#SimpleProcess"/>
<rdfs:range rdf:resource="#CompositeProcess"/>
<owl:inverseOf rdf:resource="#collapsesTo"/>

</rdf:Property>

This listing identified a SimpleProcess as a subclass of the Process and says
that a simple process can realize an atomic process, and may be the result of
collapsing a composite process.
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CompositeProcess

Composite processes are decomposable into other processes. The decomposition
shows how the various inputs and outputs are accepted, such as

<owl:Class rdf:ID="CompositeProcess">
<owl:intersectionOf rdf:parseType=" owl:collection">
<owl:Class rdf:about="#Process"/>
<owl:Restriction owl:cardinality="1">
<owl:onProperty rdf:resource="#composedOf"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

A CompositeProcess must have a composedOf property by which is indicated the
control structure of the composite, using a ControlConstruct.

<rdf:Property rdf:ID="composedOf">
<rdfs:domain rdf:resource="#CompositeProcess"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</rdf:Property>
<owl:Class rdf:ID="ControlConstruct">
</owl:Class>

Building upon SOAP and WSDL technologies, the OWL-S ontology-based Web
services can be dynamically invoked by other services on the Web.

The following illustrates a Process:

<owl:Class rdf:ID="Process">
<rdfs:comment> The most general class of processes </rdfs:comment>
<owl:disjointUnionOf rdf:parseType="owl:collection">
<owl:Class rdf:about="#AtomicProcess"/>
<owl:Class rdf:about="#SimpleProcess"/>
<owl:Class rdf:about="#CompositeProcess"/>

</owl:disjointUnionOf>
</owl:Class>

The atomic processes can be invoked directly and are executed in a sin-
gle step. For each atomic process, there is a grounding that enables a service
requester to construct messages. The OWL-S atomic processes specify the basic
actions for larger processes and can also communicate the primitives of a process
specification. The following listing illustrates the AtomicProcess.

<owl:Class rdf:ID="AtomicProcess">
<owl:subClassOf rdf:resource="#Process"/>

</owl:Class>

Simple processes are not associated with a grounding. They are single-step
executions. Simple processes are used as elements of abstraction; a simple process
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may be used either to provide a view of some atomic process, or a simplified
representation of some composite process.

Constructs

A CompositeProcess must have a composedOf property to indicate the control
structure using a ControlConstruct. Each control construct, in turn, is associ-
ated with an additional property called components to indicate the ordering and
conditional execution of the subprocesses. For example, the control construct,
Sequence, has a components property that ranges over a ProcessComponent List
(see Table 11-3).

Process Control Ontology

To monitor and control the execution of a process, an agent uses a model with
three characteristics that provide: mapping rules for the input state properties and
preconditions to the corresponding output state properties; a model of the tem-
poral or state dependencies described by constructs, such as sequence, split, and
split + joi; and representation for messages about the execution state of atomic
and composite processes sufficient to do execution monitoring. This allows an
agent to keep track of the status of executions, including successful, failed, and
interrupted processes.

Process Ontology Control is still an area under significant development (see
Fig. 11-4).

ServiceGrounding

In OWL-S, both the ServiceProfile and the ServiceModel are thought of as
abstract representations; only the ServiceGrounding deals with the

TABLE 11-3. Process Constructs

Construct Description

Sequence A list of Processes to be done in order.
Split A bag of process components to be executed concurrently. Similar to

other ontologies’ use of Fork, Concurrent, or Parallel.
Split + Join Invoke elements of a bag of processes and synchronize.
Concurrent Execute elements of a bag of processes concurrently.
Unordered Allows the process components (specified as a bag) to be executed in

some unspecified order, or concurrently.
Choice Choose between alternatives and execute one.
If-Then-Else If specified condition holds, execute “Then,” else execute “Else.”
Repeat-Until Iterate execution of a bag of processes until a condition holds.
Repeat-While Iterate execution of a bag of processes while a condition holds.
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Figure 11-4. Top level process ontology.

concrete level of specification. The grounding of a service specifies the details of
how to access the service, including protocol and message formats, serialization,
transport, and addressing.

Relationship between OWL-S and WSDL and SOAP

An OWL-S/WSDL grounding involves complementary use of the two languages.
Both languages are required for the full specification of grounding even though
there is some overlap. Web Services Description Language specifies abstract
types using XML Schema, but OWL-S allows for the definition of logic-based
OWL classes.

An OWL-S/WSDL grounding uses OWL classes as the abstract types of mes-
sage parts declared in WSDL. The job of an OWL-S/WSDL grounding is to
define the messages and operations for the atomic processes that are accessed,
and then specify correspondences.

Because OWL-S is an XML-based language, and its atomic process decla-
rations and input–output types already fit with WSDL, it is useful to extend
existing WSDL bindings for OWL-S, such as the SOAP binding.

The OWL-S concept of grounding is generally consistent with the WSDL
concept of binding. The WSDL is used as the ground of an OWL-S atomic
process. Grounding OWL-S with WSDL and SOAP involves the construction
of a WSDL service description with the message, operation, port type, bind-
ing, and service constructs. The OWL-S grounding shows how the inputs
and outputs of an atomic process are realized as messages in transmittable
format.
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CREATING AN OWL-S ONTOLOGY FOR WEB SERVICES

Creating an OWL-S based Ontology for a Web Service requires five steps:

1. Describe individual programs: describe the individual programs that com-
prise the service. The process model provides a declarative description of
a program’s properties.

2. Describe the grounding for each atomic process: relate each atomic process
to its grounding.

3. Describe compositions of the atomic processes: describe the composite
process that is a composition of its atomic processes.

4. Describe a simple process: describe a simple process for the service
(optional).

5. Profile description: provide a declarative advertisement for the service. It
is partially populated by the process model.

CONCLUSION

This chapter discussed the markup language standards that form the building
blocks for the next generation of Web Services: Semantic Web Services. We
presented the state of development of Web Ontology Language for Services
(OWL-S). In addition, related Web architectures and grounding OWL-S services
with WSDL and SOAP were discussed.

EXERCISES

11-1. How could .NET and J2EE Web Services evolve toward automated dis-
covery and delivery?

11-2. Can Semantic Web Services be implemented immediately without waiting
for the full development of the Semantic Web?

11-3. Why would Semantic Web Services promote open Web standards and a
distributed Web?



INTERLUDE #11: THE SEMANTIC
WEB

Mary said, “Hi John; I hope you’re headache is better.”

John said, “I’m feeling much better; and I have to admit that your comments
on distributed thinking—in machines—got me thinking as well. When we talk
about artificial intelligence, it seems that we’re focused on how or to what extent
an individual computer could emulate the human behaviors that we call “think-
ing.” But machine intelligence of that form is really old fashioned. Computers
have been around for many decades, and while their capabilities continue to
improve, they’re not fundamentally different than they used to be, general pur-
pose Turing machines with ever-improving software. The real advances seem to
be in networks of computers.”

Mary said, “You’re right there. The advent of the Internet caught many by sur-
prise, and when the basic ideas for the World Wide Web were laid out by Tim
Berners-Lee in the 1980s, the power of a global network of interconnected net-
works really took off. The evolution of an increasingly powerful global network
continues to be amazing; the Internet now touches people’s lives in ways we
couldn’t have imagined only a few years ago. Still, the main value of the Inter-
net is in connectivity and access to ever increasing amounts of information. One
of these days, we will begin to see a shift from human-to-machine information
access to a new paradigm where the vast information content of the Web will
be machine processable. That’s when the door will open for more intelligent
behavior to emerge from the Web.”

John said, “I don’t know about the emergence of a human-like intelligence from
the Web, but clearly the reforming of Web information to be machine processable
could represent a major advance in the evolution of the Web. It would enable
much more automated processing of information and would open the door for
software agents to perform many automated functions that can now only be done
by humans.”

Mary said, “That’s exactly my point. The conversion of the Web from a repository
of static information to a place where software agents could begin to take on more
of the actions now considered the realm of the human being could have profound
impact. Berners-Lee calls this vision “The Semantic Web.” I think this is where
we’ll begin to see more “intelligent” applications become commonplace. And as
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this develops, at some point we’ll have to say that the Web has become at least
more useful.”

John said, “As usual, you have now pushed the point too far. The emergence of
intelligent behavior in a network of interconnected machines is too big a leap for
me. I think you’ve been reading too much science fiction. Let’s be content that,
if the obstacles of complexity and scaling can be overcome, the Semantic Web
will offer new paths for the growth and evolution of the Web.”

Mary said, “Do you think so?”
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SEMANTIC SEARCH TECHNOLOGY

OVERVIEW

Today, searching the Web is an essential capability whether you are sitting at your
desktop PC or wandering the corporate halls with your wireless PDA. As a result,
the business of commercial search engines has become a vital and lucrative part
of the Web. As search engines have become commonplace tools for virtually
every user of the Web, companies, such as Google and Yahoo!, have become
household names.

Recently, efforts have been made to implement limited semantic search by
Google and other innovators. However, even with Google, it is common that
searches return substantial unwanted results and may well miss the important
information that you need.

Semantic search methods could augment and improve traditional search results
by using not just words, but concepts and logical relationships. There are two
basic approaches to improving search results through semantic methods: (1) using
Semantic Web documents and (2) Latent Semantic Indexing (LSI).

This chapter explores semantic search engines and semantic search agents,
including their current development and progress. Google’s Page Rank algorithm,
a Latent Semantic Indexing algorithms and the Semantic Web search applications
TAP and Swoogle will also be discussed.

SEARCH ENGINES

Commercial search engines are based upon one of two forms of Web search
technologies: human directed search and automated search.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.

193



194 SEMANTIC SEARCH TECHNOLOGY

The human directed search engine technology utilizes a database of keywords,
concepts, and references. The keyword searches are used to rank pages, but this
simplistic method often leads to voluminous irrelevant and spurious results. In
its simplest form, a content-based search engine will count the number of the
query words (keywords) that occur in each of the pages that are contained in its
index. The search engine will then rank the pages accordingly. More sophisti-
cated approaches take into account the location of the keywords. For example,
keywords occurring in the title tags of the Web page are more important than
those in the body. Other types of human-directed search engines, like Yahoo! use
topic hierarchies to help to narrow the search and make search results more rele-
vant. These topic hierarchies are human created. Because of this, they are costly
to produce and maintain in terms of time, and are subsequently not updated as
often as the fully automated systems.

The fully automated form of Web search technology is based upon the Web
crawler, spider, robot (bot), or agent, which follows HyperText Transfer Protocol
(HTTP) links from site to site and accumulate information about Web pages to
create a complex indexing system for storage. This agent-based search technology
accumulates data automatically and is continuously updating information. (Note
that the information is automatically collected as links to words, not as meaningful
concepts as would be expected from a Semantic Web application.)

Current search engines are based upon huge databases of Web page references.
There are two implementations of search engines: individual search engines and
Metasearchers. Individual search engines (e.g., Google) compile their own search-
able databases on the Web, while Metasearchers do not compile databases, but
instead search the databases of multiple sets of individual engines simultaneously.

Ranking and Relevancy

In ranking Web pages, search engines follow a certain set of rules. Their goal,
of course, is to return the most relevant pages at the top of their lists. To do this,
they look for the location and frequency of keywords and phrases in the Web
page document and, sometimes, in the Hypertext Markup Language (HTML)
Meta tags. They check out the title field and scan the headers and text near the
top of the document. Some of them assess popularity by the number of links
that are pointing to a given site: the more links, the greater the popularity of
the page.

Because Web search engines use keywords, they are subject to the two well-
known linguistic phenomena that strongly degrade a query’s precision and recall:
Polysemy (one word might have several meanings) and Synonymy (several words
or phrases might designate the same concept).

There are several characteristics required to improve a search engine’s perfor-
mance. It is important to consider useful searches as distinct from fruitless ones.
To be useful, there are three necessary criteria: (1) maximum relevant informa-
tion; (2) minimum irrelevant information; and (3) meaningful ranking, with the
most relevant results first.
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The first of these criteria, getting all of the relevant information available, is
called recall. Without good recall, we have no guarantee that valid, interesting
results will not be left out of our result set. We want the rate of false negatives,
relevant results that we never see, to be as low as possible.

The second criterion, minimizing irrelevant information so that the proportion
of relevant documents in our result set is very high, is called precision. With too
little precision, our useful results get diluted by irrelevancies, and we are left
with the task of sifting through a large set of documents to find what we want.
High precision means the lowest possible rate of false positives.

There is an inevitable trade-off between precision and recall. Search results
generally lie on a continuum of relevancy, so there is no distinct place where
relevant results stop and extraneous ones begin.

This is why the third criterion, ranking, is so important. Ranking has to do with
whether the result set is ordered in a way that matches our intuitive understanding
of what is more and what is less relevant. Of course, the concept of “relevance”
depends heavily on our own immediate needs, our interests, and the context of our
search. In an ideal world, search engines would learn our individual preferences,
so that they could fine-tune any search based on our past interests.

Google Search Algorithm

The heart of Google search software is PageRank, a system for ranking Web pages
developed by the founders Larry Page and Sergey Brin at Stanford University.
PageRank relies on the vast link structure as an indicator of an individual page’s
value. Essentially, Google interprets a link from page A to page B as a vote,
by page A, for page B. Important sites receive a higher PageRank. Votes cast
by pages that are themselves “important,” weigh more heavily and help to make
other pages “important.”

Google combines PageRank with sophisticated text-matching techniques to
find pages that are both important and relevant to the search. Google goes
far beyond the number of times a term appears on a page and examines all
aspects of the page’s content (and the content of the pages linking to it) to deter-
mine if it is a good match for the query (see Google’s PageRank Algorithm
section).

Google’s PageRank Algorithm. The PageRank algorithm is calculated as
follows:

PR(A) = (1 − d) + d[PR(T1)/C(T1) + · · · + PR(Tn)/C(Tn)]

where,

PR(A) is the PageRank of a page A
PR(T1) is the PageRank of a page T1
C(T1) is the number of outgoing links from the page T1
d is a damping factor in the range 0 < d < 1, usually set to 0.85
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The PageRank of a Web page is therefore calculated as a sum of the PageRanks
of all pages linking to it (its incoming links), divided by the number of links on
each of those pages (its outgoing links).

Traditional search engines are based almost purely on the occurrence of words
in documents. Search engines like Google, however, augment this with informa-
tion about the hyperlink structure of the Web. Nevertheless their shortcomings
are still significant, including, there is a semantic gap between what a user wants
and what they get, users cannot provide feedback regarding the relevance of
returned pages, users cannot personalize the ranking mechanism that the search
engine uses, and the search engine cannot learn from past user preferences.

SEMANTIC SEARCH

Google, with its 800 million hits per day, and >8 billion indexed Web pages,
is undeniably the most popular commercial search engine used today, but even
with Google, there are problems. For example, how can you find just the right
bit of data that you need out of the ocean of irrelevant results provided?

As Web ontologies become widely available, it is reasonable to ask for better
search capabilities that can truly respond to detailed content requests. This is the
intent of semantic-based search engines and search agents. Semantic search seeks
to find documents that have similar concepts, not just similar words.

There are two approaches to improving search results through semantic meth-
ods: Latent Semantic Indexing and Semantic Web Documents.

One short-term approach to garner semantic information from existing Web
pages is to use LSI, which is an information retrieval method that organizes
existing HTML information into a semantic structure that takes advantage of
some of the implicit higher order associations of words with text objects. The
resulting structure reflects the major associative patterns in the data. This permits
retrieval based on the “latent” semantic content of the existing Web documents,
rather than just on keyword matches. The LSI offers an application method that
can be implemented immediately with existing Web documentation.

The Semantic Web will provide more meaningful metadata about content,
through the use of Resource Description Framework (RDF) and Web Ontology
Language (OWL) documents that will help to form the Web into a semantic
network. In a semantic network, the meaning of content is better represented and
logical connections are formed between related information.

However, most semantic network-based search engines would suffer perfor-
mance problems because of the scale of the very large semantic network. In
order for the semantic search to be effective in finding responsive results, the
network must contain a great deal of relevant information. At the same time,
a large network creates difficulties in processing the many possible paths to a
relevant solution.

Once again, we are faced with the Semantic Web’s basic trade-off between
finding the maximum expressive power and the minimum computational com-
plexity. Most of the early efforts on semantic-based search engines were highly
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dependent on natural language processing techniques to parse and understand the
query sentence. One of the first and the most popular of these search engines is
Cycorp (http://www.cyc.com). Cyc combines the world’s largest knowledge base
with the Web. Cyc (which takes it name from en-cyc-lopedia) is an immense,
multi-contextual knowledge based. With Cyc Knowledge Server it is possible for
Web sites to add common-sense intelligence and distinguish different meanings
of ambiguous concepts.

SEMANTIC SEARCH TECHNOLOGY

As Web ontology becomes more advanced, using RDF and OWL tags will offer
semantic opportunities for search.

Searching Techniques

Semantic search deals with concepts and logical relationships. If we examine the
practical problems of semantic search, we will find that the search tree faces an
incompleteness of logic resulting in the Incompleteness Problem, or the Halting
Problem.

Inference can be viewed as a sequence of logical deductions chained together.
At each point along the way, there might be different ways to reach a new
deduction. So, in effect, there is a branching set of possibilities for how to reach
a correct solution. This branching set can spread out in novel ways. For example,
you might want to try to determine “Whom does Kevin Bacon know?” based on
information about his family relationships, his movies, or his business contacts.
So, there is more than one path to some conclusions. This results in a branching
set of possibilities. Therefore, the inference in our system is a kind of search
problem, displayed as a search tree.

It is possible to start at the top of the tree, the root, or with the branches. Taking
the top of the tree, the query can be asked, Whom does Kevin Bacon know? Each
step down from parent-to-child nodes in this tree can be viewed as one potential
logical deduction that moves toward trying to assess the original query using this
logical deductive step. The fan out of possibilities can be viewed as a branching
tree, getting bushier and deeper. Each of the successful steps we take ends up
becoming a parent node from which we seek additional child nodes. Eventually,
a list of people “whom Kevin Bacon actually knows?” will be accumulated.

Imagine that each node in this tree represents a statement or fact to prove.
Each link from a parent node to a child node represents one logical statement.
Now the problem is that we have a big tree of possibilities and this could result
in any search being limited to incomplete results.

In a complex logical system, there is an arbitrarily large number of potential
proofs. Some of the potentially factual nodes may be arbitrarily long, and it may
be uncertain if a determination of whether or not it is factual can be made (i.e.,
it may be uncertain if there is a proof ). Gödel proved in the 1930s that any
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sufficiently complicated logical system is inherently incomplete (Undecidable).
In other words, there are statements that cannot be logically proven. His argument
in proving undecidability is also related to the Halting Problem.

The Halting Problem is a decision problem that can be informally stated as
follows: Given a description of an algorithm and a description of its initial argu-
ments, determine whether the algorithm, when executed with these arguments,
ever halts (the alternative is that it runs forever without halting). Alan Turing
proved in 1936 that there is no general method or algorithm that can solve the
halting problem for all possible inputs.

The importance of the Halting Problem lies in the fact that it was the first
problem to be proved undecidable. Subsequently, many other such problems have
been described; the typical method of proving a problem to be undecidable is to
reduce it to the Halting Problem.

The Halting Problem implies that certain algorithms will never end in a definite
answer. When you consider the Web, you referring to millions of facts and
tens of thousands of rules that can chain together in arbitrarily complicated and
interesting ways; so the space of potential proofs is infinite and the tree becomes
logically infinite. Due to this, you will run into some inherent incompleteness
issues; for example, in a complex network, you cannot simply look at every
possible factual statement, determine its truthfulness, and collect a complete set
of all such results.

You run into incompleteness because the search tree is too large. So our
approach must be to search only portions of the tree. There are well-known
strategies for how one addresses search problems like this. One strategy is to
search the tree in a depth-first fashion.

A depth-first search would start at the top of the tree and go as deeply as
possible down some path, expanding nodes as you go, until you find a dead end.
A dead end is either a goal (success) or a node where you are unable to produce
new children. So the system cannot prove anything beyond that point.

Let us walk through a depth-first search and traverse the tree. Start at the top
node and go as deeply as possible:

1. Start at the highest node.
2. Go as deeply as possible down one path.
3. When you run into a dead-end (i.e., a false statement), back-up to the last

node that you turned away from. If there is a path there that you have not
tried, go down it. Follow this option until you reach a dead-end or a goal
(a true statement with no child nodes).

4. If this path leads to another dead-end, go back up a node and try the other
branches.

5. This path leads to a goal. In other words, this final node is a positive result
to the query. So you have one answer. Keep searching for other answers
by going up a couple more nodes and then down a path you have not tried.

6. Continue until you reach more dead-ends and have exhausted search
possibilities.
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The advantage of depth-first search is that it is a very algorithmically efficient
way to search trees in one format. It limits the amount of space that you have
to keep for remembering the things you have not looked at yet. All you have to
remember is the path back up. The disadvantage with depth-first search is that
once you get started down some path, you have to trace it all the way to the end.

Another strategy for searching is a breadth-first search. Here you search layer
by layer. First, you try to do all of the zero-step proofs, then you try to do all of
the one-step proofs, and so on. The advantage of breadth-first search is that you
are guaranteed to get the simplest proofs before you get anything that is strictly
more complicated. This is referred to as the Ockham’s Razor benefit. If there is
an n-step proof, you will find it before you look at any n + 1-step proofs. The
disadvantage of breadth-first search becomes apparent when you encounter huge
deep trees. We also have huge bushy trees where you could have thousands, or
tens of thousands, of child nodes. Another disadvantage of breadth-first searching
is the amount of space you have to use to store what you have not examined as
yet. So, if the third layer is explosively large, you would have to store all of the
third level results before you could even look at them. With a breadth-first search,
the deeper you go into the tree, the more space you will need. So, you find that
each of the two traditional algorithms for search, depth-first and breadth-first, are
going to run into problems with large systems.

There are two basic classes of search algorithms used to attempt to overcome
the incompleteness and halting limitations: uninformed and informed. Unin-
formed, or blind, searches are those that have no information about the number of
steps or the path cost from the current state to the goal. These searches include:
depth-first, breadth-first, uniform-cost, depth-limiting, and iterative deepening
search. Informed, or heuristic, searches are those that have information about the
goal; this information is usually either an estimated path cost to it or estimated
number of steps away from it. This information is known as the search agent
heuristic. It allows informed searches to perform better than the blind searches
and makes them behave in an almost “rational” manner. These searches include
best-first, hill-climbing, beam, A∗, and IDA∗ (iterative deepening A∗) searches.
These methods can provide significant improve in search.

WEB SEARCH AGENTS

While Web search engines are powerful and important to the future of the Web,
there is another form of search that is also critical: Web search agents. A Web
search agent will not perform like a commercial search engine. Search engines
use database lookups from a knowledge base.

In the case of the Web search agent, the Web itself is searched and the com-
puter provides the interface with the user. The agent’s percepts are documents
connected through the Web utilizing HTTP. The agent’s actions are to determine
if its goal of seeking a Web site containing a specified target (e.g., keyword
or phrase), has been met and if not, find other locations to visit. It acts on the
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environment using output methods to update the user on the status of the search
or the end results.

What makes the agent intelligent is its ability to make a rational decision when
given a choice. In other words, given a goal, it will make decisions to follow the
course of actions that would lead it to that goal in a timely manner.

An agent can usually generate all of the possible outcomes of an event, but
then it will need to search through those outcomes to find the desired goal and
execute the path (sequence of steps) starting at the initial or current state, to get
to the desired goal state. In the case of the intelligent Web search agent, it will
need to utilize a search to navigate through the Web to reach its goal.

Building an intelligent Web search agent requires mechanisms for multiple and
combinational keyword searches, exclusion handling, and the ability to self-seed
when it exhausts a search space. Given a target, the Web search agent should
proceed to look for it through as many paths as are necessary. This agent will
be keyword based. The method advocated is to start from a seed location (user
provided) and find all other locations linked in a tree fashion to the root (seed
location) that contains the target.

The search agent needs to know the target (i.e., keyword or phrase), where to
start, how many iterations of the target to find how long to look (time constraint),
and what methods should determine criteria for choosing paths (search methods).
These issues are addressed in the software.

Implementation requires some knowledge of general programming, working
with sockets, the HTTP, HTML, sorting, and searches. There are many languages
with Web-based utilities, advanced application programming interfaces (APIs),
and superior text parsing capabilities that can be used to write a Web search
agent. Using a more advanced, efficient sorting algorithm will help improve the
performance of the Web search agent.

The Web search agent design consists of four main phases: initialization,
perception, action, and effect. In the initialization phase, the Web search agent
should set up all variables, structures, and arrays. It should also get the base
information it will need to conduct the hunt for the target, the goal, a place to
start, and the method of searching. The perception phase is centered on using
the knowledge provided to contact a site and retrieve the information from that
location. It should identify if the target is present and should identify paths to
other Universal Resource Locator (URL) locations. The action phase takes all of
the information that the system knows and determines if the goal has been met
(the target has been found and the hunt is over).

If the hunt is still active it must make the decision on where to go next. This
is the intelligence of the agent, and the method of search dictates how “smart”
the Web agent will be. If a match is found, the hunt is complete, and it provides
output to the user. The Web search agent moves from the initialize phase to
a loop consisting of the perception, action, and effect phases until the goal is
achieved or cannot be achieved.



LATENT SEMANTIC INDEX SEARCH 201

SEMANTIC METHODS

Semantic search methods augment and improve traditional search results by using
not just words, but meaningful concepts. Several major companies are seriously
addressing the issue of semantic search. There are two approaches to improv-
ing search results through semantic methods: (1) LSI and (2) Semantic Web
documents.

LATENT SEMANTIC INDEX SEARCH

So far, we have reviewed search technology in general, and identified today’s
search limitations. Now, future technologies based upon the semantics will be
explored. First, we will discuss implementing LSI, which may improve today’s
search capabilities without the extreme limitations of searching large semantic
networks.

Building on the criteria of precision, ranking, and recall requires more than
brute force. Assigning descriptors and classifiers to a text provides an important
advantage, by returning relevant documents that do not necessarily contain a
verbatim match to our search query. Fully described data sets can also provide
an image of the scope and distribution of the document collection as a whole. This
can be accomplished by examining the structure of categories and subcategories
called taxonomy.

A serious drawback to this approach to categorizing data is the problem inher-
ent in any kind of taxonomy: The world sometimes resists categorization. For
example, is a tomato a fruit or a vegetable? What happens when we combine two
document collections indexed in different ways? Solutions are called ontology
taxonomies.

Regular keyword searches approach a document collection where either a
document contains a given word or it does not. Latent semantic indexing adds an
important step to the document indexing process. In addition to recording which
keywords a document contains, the method examines the document collection as
a whole, to see which other documents contain some of those same words.

Latent semantic indexing was first developed at Bellcore in the late 1980s
and considers documents that have many words in common to be semantically
close, and ones with few words in common to be semantically distant. Although
the LSI algorithm does not understand anything about what the words mean, it
notices the patterns.

When you search an LSI-indexed database, the search engine looks at simi-
larity values it has calculated for every content word, and returns the documents
that it thinks best fit the query. Because two documents may be semantically
very close even if they do not share a particular keyword, LSI does not require
an exact match to return useful results. Where a plain keyword search will fail
if there is no exact match, LSI will often return relevant documents that do not
contain the keyword at all.
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Searching for Content

A semantic search engine is a remarkably useful solution. It can discover if two
documents are similar even if they do not have any specific words in common
and it can reject documents that share only uninteresting words in common.

Latent semantic indexing looks at patterns of words within a set of docu-
ments. Natural language is full of redundancies, and not every word that appears
in a document carries semantic meaning. Frequently used words in English often
do not carry content: examples include functional words, conjunctions, preposi-
tions, and auxiliary verbs. The first step in doing LSI, therefore, is culling these
extraneous words from a document. This is called stemming.

Stemming

Some of the preparatory work needed to get documents ready for indexing (e.g.,
stemming) is very language specific. For English documents, an algorithm called
the Porter stemmer is used to remove common endings from words, leaving
behind an invariant root form.

To obtain semantic content from a document, first make a complete list of
all the words that appear in the collection and then stem them as follows: dis-
card articles, prepositions, and conjunctions; discard common verbs (know, see,
do, be); discard pronouns; discard common adjectives (big, late, high); discard
frilly words (therefore, thus, however, albeit, etc.); discard any words that appear
in every document; and discard any words that appear in only one document.

After stemming is complete, the results are modified according to algorithmic
insights. The first of these insights applies to individual documents, and it is
referred to as local weighting. Words that appear multiple times in a document
are given a greater local weight than words that appear once.

In broad strokes, we present an algorithm that forms a web of documents and
words: connecting all documents to all words. Given such a model of words and
documents one can then establish values based on the distance of documents
from each other. The “value” of any document to any other document might be
designated as a function of the number of connections that must be traversed to
establish a connection between documents. If two documents are connected by
multiple routes, then those documents might have a high degree of correlation.

Term weighting is a formalization of two common-sense insights: content
words that appear several times in a document are probably more meaningful than
content words that appear just once; and infrequently used words are likely to be
more interesting than common words. The implementation algorithm follows:

For each document: (1) Stem all of the words and throw away any common
‘noise’ words; (2) For each of the remaining words, visit and remember each
document that has a direct relationship to this word. Score each document based
on a distance function from the original document and the relative scarcity of the
word in common; (3) For each of the as-of-yet-unvisited new related documents
now being tracked. Recursively perform the same operation as above.
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The particular weighting algorithm that was used is this: (1) For each increase
in distance, divide a baseline score by two; (2) The score of each document is
equal to the baseline divided by the square root of the popularity of the word.
Overall this algorithm delivers a cheap semantic lookup based on walking through
a document and creating a word graph.

The specification shown here is the simplest case and it could be improved in
a variety of ways. There are many other scoring algorithms that could be used.
Additionally, a thesaurus could be applied to help bridge semantic issues.

One interesting challenge would be to make the algorithm work “on the fly”
so that as new documents were added they would self-score. Another challenge
would be to find a way to distribute the algorithm over multiple machines for
scalability.

The word stemming process gets rid of common words, such as “the” and
“etc.” This feeds input into the semantic algorithm that first stems the words
appropriately, scores them according to the semantic algorithm, and sorts the
results into the new rank order reflecting the semantic analysis.

Semantic Search Engine Application

We have developed a Semantic Search Engine as a Windows application, that
uses Google APIs for an initial search that serves as input into our LSI stemming
and ranking methods. The following is the completed application for download.

Download Demo: http://www.web-iq.com/downloadSSE.htm

TAP

An example of semantic search technology is TAP, where TAP (http://tap.
stanford.edu/) is a distributed project involving researchers from the Stanford,
IBM, and Worldwide Web Consortium (W3C). TAP leverages automated and
semiautomated techniques to extract knowledge bases from unstructured and
semistructured bodies of text. The system is able to use previously learned infor-
mation to learn new information, and can be used for information retrieval.

Ontology describes concepts and relationships with a set of representational
vocabulary. The aim of building ontologies is to share and reuse knowledge.
Since the Semantic Web is a distributed network, there are different ontologies
that describe semantically equivalent things. As a result, it is necessary to map
elements of these ontologies if we want to process information on the scale of
the Web. An approach for semantic search can be based on text categorization.
In text categorization ontology, maps compare each element of an ontology with
each element of the other ontology, then it determines a similarity metric on a
per pair basis. Matched items are those whose similarity values are greater than
a certain threshold.

In TAP, existing documents are analyzed using semantic techniques and con-
verted into Semantic Web documents using automated techniques or manually by
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the document author using standard word processing packages. Both automated
and guided analyses are used for intelligent reasoning systems and agents. As a
result, traditional information retrieval techniques are enhanced with more deeply
structured knowledge to provide more accurate results.

The solutions are built on a core technology called Semantic Web Templates.
Utilizing knowledge representation, the creation, consumption, and maintenance
of knowledge becomes transparent to the user, where TAP utilizes RDF, RDF
Schema, and OWL.

SWOOGLE

“Swoogle” is a crawler-based indexing and retrieval system for Semantic Web
documents using RDF and OWL. It is being developed by the University of
Maryland Baltimore County (http://pear.cs.umbc.edu/swoogle/). It extracts meta-
data and computes relations between documents. Discovered documents are also
indexed by an information retrieval system to compute the similarity among a set
of documents and to compute rank as a measure of the importance of a Semantic
Web document (SWD).

Semantic Web RDF and OWL documents are essentially a parallel universe to
the Web of online HTML documents. A SWD is known for its semantic content.
Since no conventional search engines can take advantage of semantic features,
a search engine customized for SWDs, especially for ontologies, is necessary to
access, explore, and query the Web’s RDF and OWL documents.

A prototype Semantic Web search engine, Swoogle facilitates the finding of
appropriate ontologies, and helping users specify terms and qualify type (class or
property). In addition, the Swoogle ranking mechanism sorts ontologies by their
importance.

Swoogle helps users integrate Semantic Web data distributed on the Web.
It enables querying SWDs with constraints on the classes and properties. By
collecting metadata about the Semantic Web, Swoogle reveals interesting struc-
tural properties, such as how the Semantic Web is connected, how ontologies are
referenced, and how an ontology is modified externally.

Swoogle is designed to scale up to handle millions of documents and enables
rich query constraints on semantic relations. The Swoogle architecture consists
of a database that stores metadata about the SWDs. Two distinct Web crawlers
discover SWDs and compute semantic relationships among the SWDs.

Semantic Web Documents

A Semantic Web Document is a document in RDF or OWL that is accessible to
software agents. Two kinds of SWDs create Semantic Web ontologies (SWOs)
and Semantic Web databases (SWDBs). A document is an SWO when its state-
ments define new classes and properties or by adding new properties. A document
is considered as a SWDB when it does not define or extend terms. An SWDB
can introduce individuals and make assertions about them.
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Swoogle Architecture

Swoogle architecture can be broken into four major components: SWD discovery,
metadata creation, data analysis, and interface. These components work indepen-
dently and interact with one another through a database.

The SWD discovery component discovers potential SWDs on the Web. The
metadata creation component caches a snapshot of an SWD and generates objec-
tive metadata about SWDs at both the syntax and the semantic level. The data
analysis component uses the cached SWDs and the created metadata to derive
analytical reports, such as classification of SWOs and SWDBs, rank of SWDs,
and the Information Retrieval (IR) index for the SWDs. The interface component
focuses on providing data service.

Finding SWDs

It is not possible for Swoogle to parse all the documents on the Web to see if
they are SWDs, however, the crawlers employ a number of heuristics for finding
SWDs starting with a Google crawler that searches URLs using the Google Web
service.

By looking at the entire Semantic Web, it is hard to capture and analyze
relations at the RDF node level. Therefore, Swoogle focuses on SWD level
relations that generalize RDF node level relations.

Ranking SWDs

The Swoogle algorithm, Ontology Rank, was inspired by Google’s Page Rank
algorithm and is used to rank search results. Ontology Rank takes advantage of
the fact that the graph formed by SWDs has a richer set of relations and the
edges represent explicit semantics derivable from the RDF and OWL.

Given SWDs A and B, Swoogle classifies inter-SWD links into four categories:

1. Imports (A,B): A imports all content of B.
2. Uses-term (A,B): A uses some of terms defined by B without importing B.
3. Extends (A,B): A extends the definitions of terms defined by B.
4. Asserts (A,B): A makes assertions about the individuals defined by B.

These relations should be treated as follows: if a surfer observes the imports
(A,B) relation while visiting A, it will follow this link because B is semantically
part of A. Similarly, the surfer may follow the extends (A,B) relation because
it can understand the defined term completely only when it browses both A and
B. Therefore, the assigned weight is different, which shows the probability of
following that kind of link, to the four categories of inter-SWD relations.

The RDF node level relations to SWD level relations counts the number of
references. The more terms in B referenced by A, the more likely a surfer will
follow the link from A to B.
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Indexing and Retrieving SWDs

Central to a Semantic Web search engine is the problem of indexing and searching
SWDs. It is useful to apply IR techniques to documents not entirely subject to
markup. To apply search to both the structured and unstructured components of
a document it is conceivable that there will be some text documents that contain
embedded markup.

Information retrieval techniques have some value characteristics, such as
researched methods for ranking matches, computing similarity between
documents, and employing relevance feedback. These complement and extend
the retrieval functions inherent in Swoogle.

Currently, the most popular kinds of documents are Friend of a friend (FOAF)
files and RSS files (RSS, an acronym for Really Simple Syndication, is a Web
content syndication format). Swoogle is intended to support services needed by
software agents and programs via web service interfaces. Using Swoogle, one
can find all of the Semantic Web documents that use a set of properties or classes.

CONCLUSION

Today, searching the Web is an essential capability whether you are sitting at your
desktop PC or wandering the corporate halls with your wireless PDA. However,
even with Google, it may be difficult to find the right bit of data that you need and
interface with the search results efficiently. However, semantic search methods
augment and improve traditional search results by using not just words, but
concepts and logical relationships.

This chapter explored semantic search engines and semantic search agents,
including their current development and progress. Google’s Page algorithm,
Latent Semantic Indexing algorithm, and Semantic Web search applications TAP
and Swoogle were discussed.

EXERCISES

12-1. Compare page ranking for traditional search engines with Google’s Page
Ranking method.

12-2. How do semantic networks improve relevancy?



INTERLUDE #12: THE HALTING
PROBLEM

Mary returned to the corner fireplace and handed John his Latte. She was smirking
as she took a sip from her cup and asked, “John, let me pose a question. Given
the average Ph.D. student, will he ever complete his dissertation?”

John responded with a self-conscious grin, “Were you thinking of anyone in par-
ticular? Or were you merely posing an amusing form of the ‘Halting Problem’?”

Mary said, “Well, the ‘Halting Problem’ is a decision problem where a given
algorithm may never reach a conclusion. That may not be completely irrelevant
to your case.”

John said, “Don’t go there.” Then he added, “But consider a real ‘Halting Prob-
lem’. The Web may be the largest graph ever created. It is really the market place
of buyers and sellers: supply and demand. It’s no coincidence that Google and
Yahoo! are the fastest growing internet companies. In a perfect market, demand
is simply a computer bit of information and supply is another; matching the two
is very profitable. As a result, search must be one of the most important technolo-
gies of the future. Search will eventually mediate supply and demand globally.
But all collected data has yet to be completely correlated and put together in
useful relationships. What will happen when Google indexes the world?”

Mary said, “My issue with the ‘Halting Problem’ is not simply finding something.
My problem is understanding something. The future of search is more about
understanding than merely finding. Search will cross into the realm of intelligence
when it understands a request, the way you and I understand this sentence. The
perfect search must equal the perfect answer to any question. In short, search
must build upon finding and understanding to develop inference and intelligence.
Search is the obvious place for intelligence to happen and that leads to the
Semantic Web.”

John said, “The problem with trying to automatically derive truthful statements
from known facts is a difficult one. Isn’t that related to our earlier debate about
‘truth and beauty’? Anyway, the search for true solutions by computer algorithm
runs head on into the issue that some truths may not be provable at all, and
we might not know whether or not this is the case in a particular situation. Our
proving algorithm could continue forever without completing its task. So, we
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cannot simply say ‘let’s just look at every possible proof and gather up all the
answers’.”

Mary said, “However, there are practical methods to finding solutions to inter-
esting decision problems.”

John responded, “That’s true enough, but it’s an even more difficult problem
when we consider search on a knowledge base such as the Semantic Web. In that
case, we have to deal with millions of facts and thousands of rules that can be
chained together in arbitrarily complicated and interesting ways. The number of
truths that can be derived from known facts and accepted rules is immense, and
the tree that represents these connections is effectively infinite. As a result, trying
to follow a sequence of logical steps that can halt at some inherently practical
solution still implies limitations on completeness.”

Mary answered, “It seems to me that you’re seeking to find nothing but insur-
mountable difficulty.”

John came back: “Based on Gödel’s Incompleteness Theorem, Turing found that
the ‘Halting Problem’ was undecidable.”

Mary answered, “Nevertheless, we still do have functioning search technology.
Even though we run into incompleteness because the search tree that we’re
describing for the Web is too large, the approach has to be to search only portions
of the tree. There are well-known strategies for how one addresses search prob-
lems like this. One strategy is to search the tree in a “depth-first” fashion. Another
strategy for searching is the breadth-first search. The advantage of breadth-first
search is that we’re guaranteed to get the simplest and most immediate search
results before we get anything that’s more complicated. This is referred to as the
Ockham’s Razor benefit. If there is an n-step result, we’ll find it before we look
at any n + 1-step nodes.”

John responded, “Well there are many useful strategies for the search in general.
But I find it hard to believe that any search technology will produce practical
results in dealing with the ‘Halting Problem’ for the Semantic Web.”

Mary shrugged, “Try thinking positive for a change and maybe you will be the
one to find a way.”



13
SEMANTIC PATTERNS
AND ADAPTIVE SOFTWARE

OVERVIEW

Someone may have already solved your problem and a pattern might exist that
you can mimic. Semantic patterns along with adaptive software is an area of
innovation that could offer significant efficiency gains for the highly structured
Semantic Web through the process of automatically implementing performance
improvements. Semantic patterns may prove useful to bridge the different rep-
resentations and different ways of modeling knowledge. Because patterns are
often found in highly structured, repetitious environments, they offer an impor-
tant methodology for improving the efficiency of agents on the Semantic Web.
By creating agents that can self-organize, respond to feedback, and adapt, the
agents may be able to find efficiencies that make finding logic solutions on the
Semantic Web practical. This chapter, presents some basic concepts of semantic
patterns followed by a brief discussion of adaptive software.

PATTERNS IN SOFTWARE DESIGN

What does it take to become a software design master? To some extent, becoming
a master of software design is like becoming a master chess player. The process of
becoming a chess master consists of several steps. First, learn the rules including
the names of pieces, legal movements, chess board geometry and orientation.
Second, learn the basic principles including the relative value of the pieces, the
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strategic value of the center squares, and the power of a threat. Then, third, study
the games of the masters including those games containing patterns that must be
understood and applied.

Similarly, becoming a software design master requires the following analo-
gous steps: (1 ) Learn the rules: algorithms, data structures, and languages of
software. (2 ) Learn the principles: structured programming, modular program-
ming, object oriented programming, and generic programming. (3 ) Study the
designs of masters: Find patterns to be understood and applied. By taking this
approach, it is abundantly clear how patterns play a vital role in developing
deep programming expertise. But understanding recognized patterns is just the
beginning of the process of thinking in terms of using patterns and creating new
programs.

PATTERN FRAME

The pattern frame delineates the problem space and shows the relationships
between patterns. The pattern frame represents progressive levels of abstrac-
tion: architecture, design, and implementation. It represents perspectives of the
solution including database, application, deployment, and infrastructure.

Design Pattern History

The origin of design patterns lies in work of architect Christopher Alexander
during the late 1970s. He began by writing two books, “A Pattern Language” and
“A Timeless Way of Building” which, in addition to giving examples, described
his rationale for documenting design patterns.

The pattern movement remained quiet until 1987 when the topic of patterns and
their application to software design reappeared at an Object Oriented Program-
ming Systems Languages and Applications (OOPSLA) conference. Since then,
many papers and presentations have emerged. In 1995, Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides published “Design Patterns: Elements
of Reusable Object-Oriented Software,” which stimulated other similar articles.

Patterns Defined

Software reuse provides a basis for drastic improvement in software quality and
developer productivity. Patterns support reuse of software architecture, ontolo-
gies, and design. There are many successful solutions to various areas of human
endeavor, all of which are deeply rooted in patterns. Patterns are devices that
allow programs to share knowledge about their design.

In daily programming, many problems that have occurred will occur again.
The question is how will we solve them this time. Documenting patterns is one
way to reuse and possibly share the information that is learned, about how it is
best to solve a specific program design problem.
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A pattern describes a recurring problem that occurs in a given context and
based upon a set of guiding forces recommends a solution. The solution is usu-
ally a simple mechanism, a collaboration between two or more classes, objects,
services, processes, threads, components, or nodes that work together to resolve
the problem identified in the pattern.

Because patterns can readily be found in highly structured, repetitious envi-
ronments, they offer a very attractive methodology for improving the efficiency
of agents on the Semantic Web.

SEMANTIC PATTERNS

One area where semantic patterns may be useful is as a communication tool
between Semantic Web developers and designers who are mapping different
target languages with different representations and different ways of modeling
knowledge. While seeking to reuse semantics across boundaries that include
different representation languages and different formal models, we may recognize
characteristics of the semantic models that remain constant.

The goal is for semantic interchangeability through the capturing of these
characteristics. However, this is difficult because different language definitions
come with different formal models. In general, the models of two different lan-
guages may not be comparable. Or there may be several semantically equivalent
statements within one language. Their equivalence may be, in general (e.g., for
first-order predicate logic), undecidable. Thus, a translation may not exist.

Software design patterns may prove helpful where they are able to describe
successful solutions to common software problems. Design patterns are a valuable
technique in software engineering because they capture experts’ successful expe-
rience, make implicit design knowledge explicit, and explain the deep structure
and rationale of a design.

A design pattern is an abstract solution for how a problem can be solved with-
out prescribing how the concrete implementation should be done. Consequently,
the reuse of successful design patterns may be easier to achieve.

Design patterns include several varieties. Creational patterns deal with initial-
izing and configuring classes and objects. Structural patterns deal with decoupling
interface and implementation of classes and objects. Behavioral patterns deal with
dynamic interactions among societies of classes and objects.

Useful patterns for semantics could include upper ontologies and domain
ontologies, closure axioms and open world reasoning, n-ary relations, and classes
as values.

Some choices for representation are not semantically motivated, but are made
in order to generate some particular behavior of the system.

Direct translation from one representation language into another does not seem
a viable approach. Alternatively, one can construct a particular representation
according to an explicit model and then compile the final representation into
the other target language. Semantic characteristics (e.g., inheritance conditions)
show up in common representation languages (e.g., rdfs:subclass and rdf:type
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in RDFS). Other semantic characteristics can be modeled independently from a
particular target language to be mapped into a wide range of languages.

However, there exists no comprehensive concept for engineering semantics in
a way that is fully reusable across several languages. The problem of describing
formal model characteristics for all representation languages cannot be solved by
producing a closed list of modeling primitives. Therefore, there is a need for a
technique of describing new semantic primitives at a higher level of abstraction.

Semantic Patterns for the Semantic Web

Patterns are used to solve a problem. They capture solutions, not just abstract
principles or strategies. As a result, patterns prove concepts and capture solutions
with a track record, and they describe relationships.

A semantic pattern may be implemented by translating its primitives into the
target language. Thus, if one gives an instantiation of a semantic pattern together
with some example facts related to the pattern, the implementation may yield
semantic consequences.

Semantic patterns can be used for communicating some information to devel-
opers and computer systems. Resource Description Framework (RDF) may be
the ideal format for the representation of the semantic pattern itself.

Semantic Pattern Libraries

Eventually, the need for particular semantic patterns will be driven by Semantic
Web developers. With the engineering of ontologies on the Web, new ideas will
come up about what type of inferencing should be supported and what type
of representation systems should be used. Building the basic idea of semantic
patterns on the Web requires technical representation and the establishment of
semantic pattern libraries.

Semantic Patterns Language

The problem of computational semantics is central for making computer systems
intelligent. The ability to code and process semantics efficiently will be essential
to the Semantic Web. New trends in computing (e.g., pervasive computing) with
the emphasis on intelligence of content processing and intellectual interfaces will
lead to the development of new methods like the Semantic Patterns Language
(SEMPL) (see http://sempl.net/) and increase the importance of computational
semantics problem solving.

Semantic Patterns Language is a model for efficient coding of semantics. It has
supported the results of the Universal Semantic Code (USC), which has already
demonstrated applicability to multitude of problems.
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SELF-ORGANIZING AND ADAPTIVE SOFTWARE

Self-organizing network software refers to a network’s ability to organize and
configure itself according to environmental conditions. Adaptation software refers
to the ability of applications to learn and adapt to the changing conditions in the
network. As a result self-organizing and adaptive software may use information
from the environment to improve its performance and function over time.

These new approaches to software function are in the research stages compared
to more traditional programming. In the 1970s, Structured Programming made it
feasible to build larger scale software systems based on existing specifications. A
typical application was a database program that read an input file and produced
an output file. In the 1980s, Object-Oriented Programming made it easier to
reorganize for changes because functionality was split up into separate classes.
A typical application was a desktop publishing system using user-initiated events
(mouse clicks or menus).

Hundreds of programming languages have been developed since 1952, but
some of the more significant languages include FORTRAN, ALGOL, LISP,
COBOL, APL, SIMULA, BASIC, PL/I, Prolog, C, Pascal, Scheme, Ada, Parlog,
C++, Eiffel, Mathematica, Oberon, Haskell, and Java. Yet, despite this diversity
of language types, traditional software development with these tools has always
been based on principles requiring exact specification, complex maintenance, and
high levels of abstraction.

Adaptive Programming is aimed at the problem of producing applications that
can readily adapt in the face of changing user needs and environments. Adaptive
software explicitly represents the goals that the user is trying to achieve. This
makes it possible for the user to change goals without a need to rewrite the
program. A typical application is an information filter.

Adaptive software may offer functionality based upon a feedback loop that
updates information based on successful performance. The design criterion itself
becomes a part of the program and the program reconfigures itself as its suc-
cessful performance changes. The highly structured architecture of the Semantic
Web should offer a significant number of semantic patterns that could produce
optimized performance through adaptive software processing.

Genetic Algorithms

A genetic algorithm is a model for machine learning in which a population of
randomly created units goes through a selection process of evolution: A digital
“survival of the fittest” in which each unit represents a point in a problem’s
solution search space.

Individual units are referred to as chromosomes and consist of genes or param-
eters of the problem being optimized. A collection of chromosomes on which
a genetic algorithm operates is called a population. Through fitness functions,
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chromosomes are evaluated and ranked according to their relative strength within
the population. The fitter are chosen to reproduce while the remaining fails to sur-
vive succeeding generations. After a number of generations, the algorithm should
converge on the chromosomes representing an optimal solution. It is worth noting
the implicit parallelism of genetic algorithms.

While genetic algorithms exist mostly as research activities at academic insti-
tutions and commercial applications are still largely in developmental stages, they
do offer Web applications the potential ability to adapt to their environment.

In the digital world, genetic algorithms, capable of adapting to their envi-
ronment faster than their competition, can obtain a significant advantage for
survival. Already, software engineers are introducing Genetic Algorithms for
the Web using Java, but progress in this area would most likely benefit from
the development of a language with specific qualifications for these types of
applications.

Learning Algorithm

We can define a learning algorithm as a process that takes a data set from a
database as input and after performing an algorithmic operation returns an output
statement representing learning. As the Semantic Web increases the percentage of
applications and protocols with learning algorithms, we can expect improvements
in performance both in quality and type. The Web may become a learning network
through a composition of the Semantic Web architecture plus the addition of
components of AI agents built with adaptive software languages.

CONCLUSION

Semantic patterns on the Web will make it easier to reuse software modules
in representation systems and easier to communicate between different Seman-
tic Web developers. Semantic patterns may be useful to communicate between
Semantic Web developers and designers that produce mappings for reuse into
different target languages, thus bridging between different representations and
different ways of modeling knowledge.

This chapter presented the basic concepts of Patterns and adaptive software
and their application to semantics.

EXERCISE

13-1. Suggest innovative technologies that have the potential to compete for the
next generation Web architecture.



INTERLUDE #13: THE SEMANTIC
WEB AND RULES

Apparently lost in thought, John was sitting in the study hall, when Mary walked
up to him. Seeing that he was studying Web architecture she said, “Well, have
you done enough thinking to reach a conclusion?”

“How much is enough thinking?” John asked looking up.

“I don’t exactly know,” said Mary, “but it seems to be always a little more than
anyone ever does.” Mary put her books on the table and took a seat across from
John.

John said, “Nevertheless, I have been thinking about the Semantic Web language
pyramid and the amount of effort it will require to design automated applications:
never mind producing a ‘thinking’ Web.”

Mary said, “The addition of logic to Web architecture is a complex process, but
could yield great dividends. Google is already preparing to put millions of library
books on-line. Consider what would happen if that information could eventually
be access as part of a semantic network with a semantic search engine.”

John said, “Perhaps, but wouldn’t it be easier to use proprietary server AI appli-
cations to express and manipulate semantic information. The current method of
proprietary frameworks on servers for Web service applications could merely be
extended.”

Mary frowned, “At the cost of incompatibility between proprietary framework
applications. Not to mention the loss of global machine processing of all that
Web information. No, adding logic and rule systems to the Web will permit
a scheme for constructing valid Web inferences. Related proof systems can be
formed from a set of rules, which can be chained together to form proofs, or
derivations. Through the Semantic Web, logic can be used by software agents to
make decisions and search terabytes of data. It is a beautiful possibility.”

John said, “But the ugly truth is it can lead to undecidability, paradox, and
recursion. Under completely open standards, the Web could remain a distributed
network. However, proprietary server standards with critical portal and hub access
could focus Web traffic to produce a decentralized network with dominating sites
(e.g., AOL, Google, Yahoo!, and MSN). These hubs may just be the best places
to develop and access AI applications.”
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Mary said, “Currently, vendors support different frameworks on their special-
ized Web servers. The J2EE framework works to optimize UNIX/LINUX flavor
servers for applications provided by one group of vendors and .NET framework
works to optimize Windows servers for applications provided by Microsoft and its
supporters. So long as the business logic is controlled by vender-specific frame-
works, interoperability, overall efficiency, trust, security, and unbiased growth
will remain problematic. I think that moving toward an open markup language
standard will level the playing field worldwide and allow business logic, inference
and other intelligent applications to be more fully utilized.”

John said, “I think I can safely say that you are thinking too much.”
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SEMANTIC TOOLS

OVERVIEW

The unique needs of the Semantic Web require tools for ontology development,
content generation, and content analysis. Tools for ontology development include
ontology editing, visualization, and analysis. Content generation requires static
and dynamic mark-up generation. Needed content analysis and validation tools
include APIs, inference engines, query, persistence, and translation. Semantic
tools are already being developed; these include Resource Description Framework
(RDF) and Web Ontology Language (OWL) editors, parsers, servers, databases,
and inference engines. Some of the more widely used tools include Jena, SMORE,
and Drive.

This chapter identifies and examines some of the latest Semantic Web tools.
In addition, the early development tools in the area of Semantic Web Services are
discussed, which include WSDL2DAML-S Converter, Web Service Composer,
DL Mapping, and DAML-S Matchmaker.

SEMANTIC TOOLS

A layered approach to ontology creation and annotation has been adopted by
the Worldwide Web Consortium (W3C) in order to support the Semantic Web.
Tools to support these efforts are making significant progress. However, the tools
themselves are partly dependent on the ontology language they are intended to
support.
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Semantic Web languages will depend on distributed computing principles.
Software agents must move as mobile code from host-to-host carrying their state
with them. They will be built for moving data between different applications.
The ability to act autonomously through true mobility of the code comes from
the execution of computational tasks and not from the data.

Table 14-1 displays a list of some of the Semantic Web software tool devel-
opers and their products.

In the following sections, several of the more prominent tools are presented
and evaluated.

Ontology Tools

Software tools are available to accomplish most aspects of ontology development.
While ontology editors are useful during each step of the development process,
other types of ontology building tools are also needed. Development projects
often involve solutions using numerous ontologies from external sources as well
as existing and newly developed in-house ontologies. Ontologies from any source
may progress through a series of versions. In the end, careful management of
heterogeneous ontologies will become necessary.

Ontologies may be derived from or transformed into forms, such as W3C
extensible Markup Language (XML) Schemas, database schemas, and Unified
Modeling Language (UML) to achieve integration with associated enterprise
applications. Tools can help to map and link between ontologies, compare them,
reconcile and validate them, merge them, and convert them into other forms.

Some editors are intended for building ontologies in a specific domain, but
still are capable of general-purpose ontology building regardless. These ontology
editors may have enhanced support for information standards unique to their
target domain. An example in medicine is the OpenKnoMe editor’s support of
the GALEN reference medical terminology.

Editors may also support a broad upper level ontology, as in the case of the
editing environment that has grown up around the unique Cyc ontology. Ontolin-
gua and OpenCyc offer development environments affording highly expressive
and complete ontology specifications. OpenCyc also provides native access to
the most complete upper level ontology available (Cyc).

The enterprise-oriented products have often started out as data integration
tools like Unicorn Solutions and Modulant. Or as content management tools like
Applied Semantics. These products include linguistic classification and stochastic
analysis capabilities to aid in information extraction from unstructured content.
This information can potentially become instance data or extend the ontology
itself.

A few ontology editors like Microsoft’s Visio for Enterprise Architects, use
an object-oriented specification language to model an information domain. When
ontology technologies emerged in the 1990s, the focus on knowledge acquisition
influenced new capabilities. Early ontology editors adopted the popular “KADS”
(Knowledge Analysis and Documentation System) method for developing knowl-
edge bases.
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TABLE 14-1. Semantic Software Developers and Tools

Company Product Category

AIdministrator Sesame RDF(S) storage and retrieval
www.aidministrator.nl/ Spectacle Ontology-based information

presentation
Applied Semantics
www.appliedsemantics.com/

Circa Ontology-based automatic
categorization

Cycorp
www.cyc.com/

Cyc Knowledge Server Multicontextual knowledge
base/inference engine

DigitalOwl
www.digitalowl.com/

KineticEdge Content management/
publishing

Empolis
www.empolis.co.uk/

K42 Topic map server

Eprise
www.eprise.com/

Participant Server Content management

Epigraph
www.epigraph.com/

Xcellerant Content management/ontology
management

Forward look inc
www.forwardlook.com/

ContextStreams Data asset management

GlobalWisdom
www.globalwisdom.org/

Bravo engine Facilitated ontology
construction/dynamic
knowledge engine

Intellidimension
www.intellidimension.com/

RDF Gateway RDF data management system

Inxight ThingFinder Server Content extraction
www.inxight.com/ Star Tree Viewer Web content navigation
Mohomine
www.mohomine.com/

Several Information extraction and
classification

Network Inference
www.networkinference.com/

Cerebra Inference engine and tools

Ontoprise
www.ontoprise.de/

Ontobroker Inference middleware

Stanford Univ.
protege.stanford.edu/

Protégé Ontology Editor

Persist
www.persistag.com

Semantic Base Knowledge management
system

Profium
www.profium.com/

Smart Information
Router (SIR)

Semantic content management
based on RDF

R-Objects
www.r-objects.com/

Pepper Personal knowledge
management

SC4 Solution Clustering
www.sc4.org/

SemTalk RDFS editor based on Visio

Semio
www.semio.com/

SemioMap Content categorization and
indexing

SMORE—Semantic
Markup, Ontology and
RDF Editor

www.mindswap.org

MindSwap SMORE is a application that
incorporates four
applications in one.

(continued overleaf )
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TABLE 14-1 (continued )

Company Product Category

Tarragon Consulting
Corporation

www.tgncorp.com/

High-performance
knowledge and
content management
systems

Custom systems design and
development

TheBrain.com
http://www.thebrain.com/

TheBrain Information organizer

Unicorn Solutions
www.unicorn.com/

Unicorn Coherence Ontology modeling and data
integration

Verity
www.verity.com/

K2 Business portal infrastructure

Voquette
www.taalee.com/

Semantic Engine
WorldModel

Knowledge-based rich media
content management

Some editors incorporate the ability to add additional axioms and deductive
rules to the ontology. Rule extensions are mostly proprietary. Protégé from Stan-
ford offers an editing environment with several third-party plug-ins. Protégé is a
free, open source ontology editor and knowledge-base framework. It is based on
Java, is extensible, and provides a foundation for customized knowledge-based
applications. Protégé supports Frames, XML Schema, RDF(S), and OWL. It is a
tool that allows users to construct domain ontologies, customize data entry forms,
and enter data.

Cerebra

Cerebra is an OWL DL tool development software company. By leveraging
inference driven technology, Cerebra provides solutions to business problems
in innovative ways. Cerebra develops ontologies and external source. Cerebra
developed a commercial-grade inference platform, providing industry-standard
query, high-performance inference, and management capabilities with emphasis
on scalability, availability, robustness, and 100% correctness. The CEREBRA
repository for metadata, vocabulary, security, and policy management is available
at: www.cerebra.com.

Visual Ontology Modeler

The Visual Ontology Modeler by Sandpiper Software www.sandsoft.com devel-
ops business semantics infrastructure solutions for context-driven search, col-
laborative applications, and cross-organizational content interoperability. This
includes semantically aware, knowledge-based products and provides context
development services that facilitate business information interoperability, termi-
nology normalization, and context resolution across web-based and enterprise
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information systems. The Visual Ontology Modeler includes UML-based mod-
eling, add-in to Rational Rose, and produces RDF, OWL, DAML, and UML.

Jena: Java API for RDF

Researchers at Hewlett Packard Labs have been developing a Java-based open
source Semantic Web toolkit called Jena. Jena is compliant with the current deci-
sions made by the RDF-core and WebOnt Working Groups of W3C. Jena can be
downloaded from SourceForge and includes the ARP RDF parser; an RDF API
including RDF datatyping; an ontology API; ontology readers; storage mecha-
nisms; plug-in reasoner API; reasoners for RDFS and for the rules-based subset of
OWL; and Query language and implementation: RDQL. Jena is in widespread
use within the semantic community. Such toolkits enable the development of
myriad example applications, helping to embody the Semantic Web vision.

SMORE: Semantic Markup, Ontology, and RDF Editor

Semantic Markup, Ontology, and RDF Editor (SMORE) is a tool that allows
users to markup their documents in RDF using Web ontologies in association
with user-specific terms and elements.

This software provides the user with a flexible environment to create a Seman-
tic Web page. It allows the user to markup a document with minimal knowledge
of RDF terms and syntax. However, the user should be able to semantically
classify thus data set for annotation, that is, breakup sentences into the basic sub-
ject–predicate–object model. It also provides a reference to existing ontologies in
order to use more precise references in Web pages/text. The user can also create
their own ontology from scratch and borrow terms from existing ontologies.

Drive

A C# parser named “Drive” is a relatively uncomplicated API. The Drive RDF
browser is a tool for parsing and validating RDF documents using the Drive RDF
Parser. It works like a standard Web browser. The browser displays any document
just like a regular Web browser with one exception: If you type in a URL and
hit enter or click the Parse RDF button, the browser will attempt to parse and
validate the RDF document at that URL. If it do not find any RDF, it switches
back to standard browser mode. Drive parses RDF/XML documents and builds
an abstract graph that can be recursively traversed. Drive is fully compliant with
the RDF Syntax Specification.

SEMANTIC WEB SERVICES TOOLS

There are a number of new development tools and toolmakers for the Semantic
Web Services already available and more are coming. The currently available
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TABLE 14-2. Semantic Web Services Software Tools

Author and Affiliation Product Visit

Massimo Paolucci,
Carnegie-Mellon
University

WSDL2DAML-S
Converter

www.daml.ri.cmu.edu/wsdl2damls

Ervin Sirin,
Mindswap.org

Web Service
Composer

www.daml.ri.cmu.edu/wsdl2damls

Joachin Peer, University
of St. Gallen

DL Mapping Tool sws.mcm.unisg.ch/xmldl/mapper-
win32.zip for win32
systems.

Katia Sycara,
Carnegie-Mellon
University

DAML-S
Matchmaker

www.damlsmm.ri.cmu.edu/

Semantic Web Services tools under development include: profile, process, and
profile tools for services, as well as composition, conversion, and parsing tools.

Table 14-2 displays a list of some of the leading Semantic Web Services
software tool developers.

Each of these software tools is discussed in further detail in the following
sections.

WSDL2DAML-S Converter

Massimo Paolucci of Carnegie-Mellon University has developed a tool for con-
verting WSDL into DAML-S called “WSDL2DAML-S Converter.” It provides
a partial conversion from WSDL Web-services descriptions to DAML-S descrip-
tions. The tool provides a complete specification of the grounding and the atomic
processes of the DAML-S Process Model. In addition, it provides a partial spec-
ification of the DAML-S Profile. After the transformation, the specification of
the complex processes in the Process Model requires providing the XSLT trans-
formation from the data types used by WSDL and the DAML ontologies used
by the DAML-S description. Finally, it is necessary to complete the description
of the DAML-S Profile.

Web Service Composer

Ervin Sirin of Mindswap.org has developed a tool called the Web Service com-
poser (see http://www.mindswap.org/∼evren/composer/). The Web Service com-
poser is a prototype tool that guides a user in the dynamic composition of Web
Services. The semiautomatic process includes presenting matching services to the
user of a composition, and filtering the possibilities by using semantic descriptions
of the services. The generated composition is then directly executable through
the WSDL grounding of the services.



SEMANTIC WEB SERVICES TOOLS 223

The basic functionality of the composer is to let the users invoke Web Services
annotated with DAML-S. The user is presented a list of services registered to the
system and can execute an individual Web service by entering input parameters.
The DAML-S services are executed using the WSDL grounding information.

By using the composer, it is possible to create a workflow of Web Services.
The composition is done in a semiautomatic fashion where composer presents the
available choices. Composer provides a filtering mechanism to limit the services
shown and let the user locate the most relevant service for the current task. The
ontology of DAML-S ServiceProfiles are used to dynamically build up a filtering
panel, where constraints on various properties of the service may be entered.

DL Mapping Tool

Joachin Peer University of St. Gallen has created a Semantic Web Services
description of (using DAML-S) for XML Web Services, that tells agents how to
transform an XML element into a Description Logics (DAML/OWL) construct
and vice versa. In DAML-S, there exists an attribute “xsltTransformation” that
carries this kind of “mapping information” using XSL. The XSL document spec-
ifies how the mapping between XML grammars and Description Logic concept
descriptions is carried out. Since the construction of such mapping documents
is an error, this tool is aimed to support developers during this process; the tool
allows mapping documents via mouse clicks and the tool allows verification of
the mappings created “on the fly.” The mapping tool was developed using Java2
and the Eclipse SWT library.

DAML-S Matchmaker

Katia Sycara of Carnegie Mellon University has developed the DAML-
S Matchmaker. The Matchmaker is a Web Services tool that helps make
connections between service requesters and service providers. The Matchmaker
serves as a “yellow pages” of service capabilities. It allows users and/or software
agents to find each other by providing a mechanism for registering service
capabilities. Registration information is stored as advertisements. When the
Matchmaker agent receives a query from a user or another software agent, it
searches its dynamic database of advertisements for agents that can fulfill the
incoming request. The Matchmaker serves as a liaison between a service requester
and a service provider.

The DAML-S Matchmaker employs techniques from information retrieval,
AI, and software engineering to compute the syntactical and semantic similarity
among service capability descriptions. The matching engine of the matchmaking
system contains five different filters for namespace comparison, word frequency
comparison, ontology similarity matching, ontology matching, and constraint
matching. The user configures these filters to achieve a trade-off between perfor-
mance and matching quality.
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CONCLUSION

This chapter introduced some of the rapidly developing tools and toolmakers for
the Semantic Web Services. The currently available Semantic Web tools under
development include editors, parsers, servers, databases, and inference engines.
The early Semantic Web Services development tools included WSDL2DAML-
S, DAML-S Converter, Web Service Composer, DL Mapping, and DAML-
S Matchmaker.

EXERCISE

14-1. Download, install, and create a Semantic Web page using one of the Seman-
tic Editors (e.g., Protégé). Provide comments.



INTERLUDE #14: THE SEMANTIC
WEB AND LANGUAGE

John walked up the steps at the library and sat down next to Mary who was
typing away on her laptop responding to an email she had received over the
campus wireless broadband.

Mary interrupted her correspondence to comment, “I really look forward to the
next few years as ubiquitous computing and smart applications really take-off.”

John replied, “Does that include the Semantic Web as well?”

Mary said, “Of course, in some form. The Semantic Web could bring not just
order, but “meaning” to the vast amount of information on the Web. Scalability
will undoubtedly be the finally determining factor on whether the Semantic Web
is a practical.”

John said, “Frankly, given the difficulty in producing AI in small closed envi-
ronments, I find it hard to believe that the Semantic Web isn’t a mirage.”

Mary said, “Everyone agrees that bringing more intelligence and order to the
Web is the right thing to do. The RDF, RDF Schema, and OWL standards allow
programmers to embed information in Web content that, theoretically, tells a
computer everything it needs to know about the meaning, the ontology, of the
information and how one word relates to another.”

John said, “Display languages, and data languages, and relationship languages,
and schema, and ontology languages, and rule languages, and security, and trust.
It seems to me that you’ve forgotten what made the Web a success. It was the
simple, easy to use tools, like HTTP, HTML, and URL. A high school student
could easily publish their own Web pages. The Semantic Web has become so
burdensome that at a minimum it will require computer science graduate students
to develop ontologies and applications.”

Mary said, “It is possible that the Semantic Web is somewhat overdesigned to
be the future Web architecture and it is possible that an elegant alternative may
offer a startling solution. After all, in the late 1980s when AOL, CompuServe,
and Microsoft were investing fortunes in proprietary networks that offered mostly
duplicated and limited amounts of information to the public for a fee, Berners-
Lee was designing a cheap, efficient, easy, and simple way for universal access to
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great stores of information for free. It shouldn’t be a surprise if history repeated
itself. But for now the Semantic Web is the best game in town.”

John said, “My best guess for the future of the Semantic Web is that it is too overly
structured with its many layers of languages for logic and machine processing,
and that the computational complexity and trust issues will ultimately prove
unsolvable.”

Mary concluded, “Nevertheless, one must still travel the path to the journey’s
end, if only to learn the way, grasshopper.”



15
CHALLENGES AND OPPORTUNITIES

OVERVIEW

Today, computers and small devices are creating ubiquitous access to a flood of
Web information that is becoming more and more difficult to search, access, and
maintain. Creating machine-processable semantics could alleviate these difficul-
ties and open the way for a new burst of growth and utility for the Web. The
question is, At what cost?

Kurt Gödel, Alan Turing, and Tim Berners-Lee have all made important con-
tributions to the development of the Information Revolution we are immersed in
today, and as a result, the Web is evolving into a resource with intelligent fea-
tures and capabilities. The Semantic Web promises to make Web content machine
understandable, allowing agents and applications to access a variety of hetero-
geneous resources and to carry out more automated functions without the need
for human interaction or interpretation. The languages of the Semantic Web are
much richer than Hypertext Mark-up Language (HTML) and eXtensible Markup
Language (XML). They represent the meaning, logic, and structure of content.

On the other hand, significant ontology and logic limitations that challenge the
development of the Semantic Web have been identified. These limitations touch
some of the most difficult problems in logic, such as paradox, recursion, trust,
undecidability, computational complexity, and machine intelligence.

This chapter discusses the challenges and opportunities facing the development
of the Semantic Web.
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SEMANTIC DOUBTS

Berners-Lee intended the Semantic Web to bring not just order, but “meaning”
to the vast amount of information on the Web. His dream is to make it possible
for computers to understand the Web and perform complex tasks. Agents would
attempt to find available information and automatically solve problems. How-
ever, computer scientists have had considerable trouble trying to impart artificial
intelligence even under highly controlled laboratory environments. Developing
an intelligent agent that could operate across the World Wide Web is proving to
be an extremely demanding endeavor.

Everyone agrees that bringing more intelligence and order to the Web is the
right thing to do; however, the question is how best to do it. The World Wide
Web Consortium (W3C) is pushing forward with a highly structured approach
to the problem by supporting the development of complex new languages for
posting meaningful Web content.

Resource Description Framework (RDF), RDF Schema (RDFS), and Web
Ontology Language (OWL) standards allow programmers to embed information
in Web content that, theoretically, tells a computer everything it needs to know
about the meaning of the information: how one word relates to another word,
for example, or the classes and subclasses of objects. But introducing a com-
pletely effective system of Web-based metadata may be too bold a structured
vision.

Larry Page and Sergey Brin, as Stanford students, looked at how to impart
meaning to all the content. For example, they used information about which Web
sites link into a target site to infer value and relevance of the target site. They
founded Google as a result. What differentiates Google’s approach from Berners-
Lee’s is that Google does not require changes in the method of posting content.
They seek to place the burden on what computers already understand, rather than
what humans have to describe.

Many businesses are now using XML metadata to tag content so that com-
puters can readily find, identify, and manipulate the data, much as an intelligent
agent would. The RSS feeds, based on XML, allow individuals to have specific
content sent directly to them. The net result is that Berners-Lee’s dream for the
next stage of the Web is slowly unfolding, just not the way he envisioned. In the
end, we may not end up with a highly structured Semantic Web. Instead, it may
be more of a patchwork quilt of special case option solutions and standards. But
isn’t that what the Web has always been?

What is the best guess for the future of the Semantic Web? The highly struc-
tured layering of many languages to deliver logic and machine processing is
probably an overdesign of the future Web architecture. It is more likely that, as
the layers of the Semantic Web evolve, a surprisingly simple, but elegant alter-
native using adaptive software or patterns or something totally unexpected may
offer a startling solution.

After all, in the late 1980s when AOL, CompuServe, and Microsoft were
investing fortunes in proprietary networks that offered mostly duplicated and
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limited amounts of information to the public for a fee, Berners-Lee was design-
ing a cheap, efficient, easy, and simple way for universal access to great stores
of information for free. It should not be surprised if history repeated itself and
we find that an exploitive, yet simplified technology produces much of Seman-
tic Web’s vision without the tremendously burdensome structural demands of a
complete FOL Web. Nevertheless, one must still travel the path to the journey’s
end, if only to learn the way.

SEMANTIC OPPORTUNITIES

There are several areas were semantics could offer significant technical and finan-
cial opportunities including the following:

• Semantic Web Enterprise Applications: The Semantic Web can impact indus-
try as a tool for Enterprise Application Integration. Just as the Web integrates
human-oriented information systems, so the Semantic Web could integrate
applications in which data has well-defined meaning (see Chapter 10).

• Semantic Web Services: Semantic Web Services can bring programs and
data together. Just as databases cannot be easily integrated on the cur-
rent Web without RDF, the same applies to programs. Unfortunately, many
e-business applications particularly in business-to-business (B2B) applica-
tions, have difficulty loading someone else’s program to run locally (see
Chapter 11).

• Semantic Search: The Semantic Web will provide more meaningful metadata
about content through the use of RDF and OWL documents that will help to
form the Web into a semantic network. In a semantic network, the meaning
of content is better represented and searched due to the logical connections
that are formed between related information (see Chapter 12).

THE CHALLENGES

The Semantic Web may play a vital role in transforming the Information Age
into the Information Revolution, however, there are specific challenges ahead
including: (1 ) balancing expressive power verses efficient reasoning; (2 ) ontol-
ogy availability, development and evolution; (3 ) scalability of Semantic Web
content; (4 ) multilingualism; (5 ) proof and trust of the Semantic Web content;
(6 ) Semantic Web Services implementation; and (7 ) ease of development and
deployment verses payoff.

Challenge 1: Balancing Expressive Power Verses Useful Reasoning

Currently, there exist Web languages that extend facilities for content description.
The RDFS is recognizable as an ontology language that provides classes and
properties. It is too weak, however, to describe resources in sufficient detail. As
a result, RDFS is unable to provide reasoning support.
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Three “species” of OWL have been developed to overcome the limitations of
RDF and RDFS. Web Ontology Language Full is the union of OWL syntax and
RDF, however, OWL Full is undecidable, and therefore cannot provide complete
reasoning support. The OWL DL is a sublanguage of OWL Full that has efficient
reasoning support, but is not fully compatible with RDF, and OWL Lite is an
“easier to implement” subset of OWL Descriptive Logic (DL). These choices
between ontology languages have important implications for the expressive abil-
ities that will be implemented on the Semantic Web.

In addition, DL and rule systems (Horn logic) are orthogonal, which means
that they overlap, but one does not subsume the other. In other words, there are
capabilities in Horn logic that are different than those available for descriptive
logic. In effect, OWL DL is unable to provide full expressive power without
the additional capabilities available in a rule system. Therefore, to provide the
additional capabilities, OWL DL must be used in conjunction with a rules system
language. The W3C specification, the Semantic Web Rule Language (SWRL), is
likely to be the rule system that will prevail. The choice of OWL implementation
and supporting rule system will decide the balancing of expressive power verses
efficient reasoning,

Challenge 2: Ontology Availability, Development, and Evolution

Ontology development is key to the Semantic Web because ontologies are the
carriers of the meaning contained in the Semantic Web; that is, they provide the
vocabulary and semantics of the annotations. As they are developed for the many
areas of knowledge that must be codified, there will be maintenance and reuse
issues. More importantly, the developers of ontologies must be highly trained
and skilled. This means that the general public will be unable to participate in
its development. This translates into higher costs and longer development times
as with the original Web.

Challenge 3: Scalability of Semantic Web Content

As Semantic Web content grows, we will have to manage it in a scalable manner.
It will be necessary to organize and search it. The Semantic Web consists of
ontology-based annotated pages whose linking structure reflects the structure.
But hyperlinked configuration does not fully exploit the underlying semantics of
Semantic Web pages. The use of semantic indexes to group Semantic Web content
based on particular topics may be useful. This is a necessary step to aggregate
content for easy application development. Aggregation on a global scale will be
difficult.

Challenge 4: Multilingual

Even if English is the predominant language for Web documents, there are impor-
tant resources written in other languages. Multilingual access plays an increasing
role at the level of ontologies, of annotations, and of user interface.
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At the ontology level, ontology builders may want to use their native language
for the development of the ontologies in which annotations will be based.

Challenge 5: Proof and Trust of the Semantic Web Languages

In order to advance the state of the Semantic Web, it is important that such
standards appear that lead to consumer confidence in the accuracy of information.
This promotion of proof and trust of Semantic Web content will take time and
must constantly be updated to be valid.

Challenge 6: Semantic Web Services Implementation

Semantic Web Services can bring programs and data together using automatic
components: discovery, implementation, and maintenance.

Building upon SOAP and WSDL technologies, Semantic Web Services can
be dynamically invoked by other services in the network. In addition, Semantic
Web Services can be marked up with the OWL-S ontology using WSDL as the
service grounding. The challenge will be developing a standard that venders will
uniformly accept.

Challenge 7: Ease of Development and Deployment Verses Payoff

The approach of using highly structured layering of many languages to deliver
logic and machine processing is tremendously demanding. In the late 1980s
when AOL, CompuServe, and Microsoft were investing fortunes in proprietary
networks that offered mostly duplicated and limited amounts of information to the
public for a fee, Berners-Lee was designing a cheap, efficient, easy, and simple
way for universal access to great stores of information for free. It is necessary
to find a cheap simple and convenient way to produce onotologies and maintain
logics for the Semantic Web to succeed. In effect, the Semantic Web cannot
succeed if it solves the automation of Web information by creating an impossibly
demanding labor-intensive requirement for ontology and logic processing and/or
content generation.

BALANCING PROPRIETARY AND OPEN STANDARDS

As the Web adds layers of open markup languages, proprietary forces will con-
tinue to compete. Under completely open Web standards and access, the Web
should grow into a straightforward distributed network. However, proprietary
server standards with critical portal and hub access could dominate Web traffic
to produce a decentralized network with dominating sites (e.g., AOL, Google,
Yahoo!, and MSN). Finally, a monopoly on standards by one vendor could ulti-
mately produce a centralized network around the owner of the standards. The
latter two cases will face security, trust, and reliability difficulties.
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How will the standards of new Web languages be resolved? We can conclude
that future search and Web Services will need metadata and logic constructs
available globally.

Global Web standards (open vs. proprietary) are truly a key element for the
future of the Web. But how can we assure that the Web remains primarily
based upon compatible standards despite fierce vender competition for various
standards’ control?

Traditionally, standards have evolved through three methods:

1. A vendor dominates a market and sets a de facto standard (e.g., telephony
by AT&T, or PC operating systems by Microsoft). This would lead to a
Web monopoly and a centralized network.

2. Vendors and markets collaborate in ways that may not be clearly attributed
to any one organization, but over time emerge as the leader (e.g., TCP/IP).
This would lead to the Web as a decentralized network.

3. Standards organizations establish standards that are so useful that they are
rapidly universally adopted (e.g., HTML, by W3C). This would lead to a
Web as a distributed network.

Currently, vendors support different frameworks on their specialized Web
servers. The J2EE framework works to optimize UNIX flavor servers for Web
Service applications provided by one group of vendors and .NET framework
works to optimize Windows servers for Web Service applications provided by
Microsoft and its supporters. So long as the business logic is controlled by
vender-specific frameworks, interoperability, overall efficiency, inference, and
smooth growth will remain problematic. Moving toward an open markup lan-
guage standard will level the playing field worldwide and allow business logic,
inference, and other intelligent applications to be more fully utilized.

Ultimately, there will be a competition between proprietary developers work-
ing toward focusing data flow through their portals and over their specialized
framework servers and open standards that allow business logic to be imple-
mented directly on the Web.

CONCLUSION

Tim Berners-Lee, Kurt Gödel, and Alan Turing played a pivotal role as pio-
neers who have opened the door to the Information Revolution. Through their
contributions, we bare witness to the remarkable conversion of the Information
Age into the Information Revolution as the Web acquires intelligent features and
capabilities.

This book explored the contributions of Gödel (what is decidable?), Turing
(what is machine intelligence?), and Berners-Lee (what is solvable on the Web?)
and evaluated how “intelligence” can be projected onto the Web.
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The Semantic Web will probably not unleash an Artificial Intelligence (AI)
revolution of new capabilities. However, the Semantic Web will add ontology
and logic to produce a more useful Web. The goal of this book was to explore
many of the facets for achieving powerful reasoning with reasonable complexity.

Part I of this book, “What us Web Intelligence,” discussed the development
of the Information Age. Then reviewed the contributions of Gödel, Turing, and
Berners-Lee.

Part II presented Web Ontology and Logic: The solution of the World Wide
Web Consortium (W3C) to deliver machine processing and services automation
on a global scale through Semantic Web architecture built upon layers of open
markup languages.

Throughout the book we struggled with both abstract and practical questions
in order to delineate both the opportunities and challenges of a “smarter” Web.
In addition, some of the philosophical issues that underpin the information revo-
lution with a threaded series of vignettes between the chapters were highlighted.
We found that the Semantic Web is still a vision. While the Web will grow
toward this vision, the Semantic Web communities must work to overcome the
challenges they face.



INTERLUDE #15: THE SEMANTIC
WEB AND ZENO’S PARADOX

Mary and John were in the endgame of a chess match when Mary asked, “What
is that strange flag at the end of the university track? It reminds me is some ways
of my favorite artist, M. C. Escher.”

John looked up from the chess board where his two remaining pieces, his king
at a5 and a pawn at c6, threatened to reach a promotion position against Mary’s
lone king at b8. “It’s called Zeno’s flag and the ring in the middle represents a
Möbius strip that Escher once drew,” John answered.

Mary said, “The endless trip around the Möbius strip reminds me of the endless
problems in implementing the Semantic Web. How can any Web architecture
cope?” Then she moved Kc8.

John said, “Well, let me respond with a little slight of hand.” He moved Kb5,
and continued, “Do you recall Zeno’s Paradox of the motionless runner?”

Mary replied, “Certainly, Zeno’s paradox is where in each step a mathematician
runs exactly half the remaining distance toward an end point where Zeno’s flag
is planted: 100 m from the starting point. In the first step he covers 50 m, in
the second step he covers 25 m, in the third step he covers 12.5 m, and so
on. At each step, the mathematician approaches closer to Zeno’s flag; however,
in each subsequent step he covers a smaller distance until the steps become
infinitesimal.” Mary moved Kb8 and continued, “As a result the mathematician
can never actually reach Zeno’s flag.”

John moved Ka6 and said, “Yes. But suppose, instead of a mathematician we use
an engineer and at the end point we have a beautiful girl holding Zeno’s flag.”

Mary grimaced as she moved Kc8 and said, “How could that make a difference?
The engineer would still go half the distance in the first step, then half the
remaining distance in each step, and so on. The engineer would still never reach
Zeno’s flag or the girl.”

John: said, “That’s true,” moving his pawn to c7. “Check. But remember my
brother is an engineer, and he would say that after a reasonable effort he might
be convinced that he got close enough!”

“Kb8, stalemate!” exclaimed Mary, ending the match.
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GLOSSARY

Adaptive Routing: A form of network routing, whereby the path data packets
travel from a source to a destination node depends on the current state of the
network.

adjacent: Two vertices are adjacent if they are connected by an edge.
agent: A piece of software that runs without direct human control or constant

supervision to accomplish a goal provided by the user. Agents typically collect,
filter, and process information found on the Web sometimes in collaboration
with other agents.

Amaya: An open source Web browser editor from W3C and friends, used to
push leading-edge ideas in Web client design.

analog: Refers to an electronic device that uses a system of unlimited variables
to measure or represent flow of data. Radios use variable sound waves to carry
data from transmitter to receiver.

arc: A synonym for edge.
Apache: An open source Web server originally formed by taking all the

“patches” (fixes) to the NCSA Web server and making a new server out of it.
applet: A small software application or utility that is built to perform one task

over the Web.
appliance: Runs applications using a visual interface between user and network.
Application Layer: Establishes communications with other users and provides

services by Application Layer of OSI reference model.

Thinking on the Web: Berners-Lee, Gödel, and Turing, by H. Peter Alesso and Craig F. Smith
Copyright © 2006 John Wiley & Sons, Inc.
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asynchronous: The ability to send or receive calls independently and in any
order.

backbone: The largest communications lines on the Internet that connect cities
and major telecommunication centers.

bandwidth: The carrying capacity or size of a communications channel; usually
expressed in hertz (cycles per second, cps) for analog circuits and in bits per
second (bps) for digital circuits.

binding: A concrete protocol and data format specification for a particular type
of port.

bit rate: The rate at which a presentation is streamed, usually expressed in
kilobits per second (kbps).

browser: A Web client that allows a human to read information on the Web.
Microsoft Internet Explorer and Netscape Navigator are two leading browsers.

Cascade Style Sheets (CSS): Code that ensures important style elements on a
Web page appear consistently from page to page.

CERN: Conseil Européen pour la Recherche Nucléaire, European Particle
Physics Laboratory of the European Organization for Nuclear Research. The
European Particle Physics Laboratory, located on the French-Swiss border near
Geneva, Switzerland.

circuit switching: A switching system that establishes a dedicated physical com-
munications connection between end points, through the network, for the
duration of the communications session; this is most often contrasted with
packet switching in data communications transmissions.

class: A set of things; a one-parameter predicate; a unary relation.
client: Any program that uses the service of another program. On the Web, a

Web client is a program, such as a browser, editor, or search robot, that reads
or writes information on the Web.

Component Object Model (COM): A group of conventions and specifications
that let you create interactions between software components in a structured
object-oriented way. COM is the foundation of ActiveX.

Connectivity Software: A wireless system component that provides an interface
between the user and the database or application found on the network.

composition: The composition of new services through automatic selection,
composition, and interoperation of existing Web services.

connected: A graph is connected if there is a path connecting every pair of
vertices. A graph that is not connected can be divided into connected compo-
nents (disjoint connected subgraphs). For example, this graph is made of three
connected components.

CSS (Cascading Style Sheets): A W3C Standard that uses a rule-based declar-
ative syntax that assigns formatting properties to the element either HTML or
XML element content.
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cwm (Closed world machine): A bit of code for playing with this stuff, as grep
is for regular expressions. Sucks in RDF in XML or N3, processes rules, and
spits it out again.

Cyc: A knowledge–representation project that expresses real-world facts in a
machine-readable fashion.

DAML (DARPA Agent Markup Language): The DAML language is being
developed as an extension to XML and the Resource Description Framework
(RDF). The latest release of the language (DAML + OIL) provides a rich set
of constructs with which to create ontologies and to markup information so
that it is machine readable and understandable. http://www.daml.org/

DAML + OIL Web Ontology Language: DAML + OIL is a semantic markup
language for Web resources. It builds on earlier W3C standards, such as
RDF and RDF Schema, and extends these languages with richer modeling
primitives. DAML + OIL provides modeling primitives commonly found in
frame-based languages. DAML + OIL (March 2001) extends DAML + OIL
(December 2000) with values from XML Schema datatypes.

data model: A data model is what is formally defined in a DTD (Document
Type Definition) or XML Schema. A document’s “data model” consists of the
allowable element and attribute names and optional structural and occurrence
constraints for a “type” or “class” of documents.

data typing: Data is said to be “typed” when it takes on additional abstract mean-
ing than what its characters usually represent. “Integers,” “dates,” “booleans,”
and “strings” are all examples of “typed” data (data types). A data value that
is typed takes on additional meaning, due to the semantic properties known to
be associated with specific named “data types.”

data rate: the number of bytes per second used to represent a movie. Uncom-
pressed VHS quality video is ∼20 megabytes (MB) per second. Single Speed
CD-ROM quality is about 100 kilobytes (kB) per second, and Double Speed
CD-ROM quality is ∼200 kb per second.

Data Link Layer: Transforms the packets of the Network Layer to physical
Layer.

DataMining: Intelligent analyzing data to extract hidden trends, patterns, and
information. Commonly used by statisticians, data analysts, and Management
Information Systems communities.

Decentralized Network: A computer network distributed across many peers
rather than centralized around a server.

digital: An electronic devices that uses a predetermined numbering system to
measure and represent the flow of data. Modern computers use digital 0’s and
1’s as binary representations of data.

digraph: A digraph (or a directed graph) is a graph in which the edges are
directed. (Formally: A digraph is a (usually finite) set of vertices V and set
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of ordered pairs (a,b) (where a, b are in V) called edges. The vertex a is the
initial vertex of the edge and b the terminal vertex.

Digraph Matrix Analysis (DMA): Is a tool for mathematically representing
large complex systems and services in order to evaluate their design structure
and reliability.

discovery: Computer-interpretable capability for locating Web Services.
Distributed Artificial Intelligence (DAI): Is concerned with coordinated intelli-

gent behavior, which is intelligent agents coordinating their knowledge, skills,
and plans to act or solve problems, working toward a single goal, or toward
separate, individual goals that interact.

Document-type declaration (DOCTYPE declaration): A document type decla-
ration is the syntactical “glue” used by an XML document to locate an external
DTD (Document Type Definition) so that it can be validated against it.

Document Type Definition (DTD): A formal definition of the data model (the
elements and attributes allowed and their allowable content and nesting struc-
ture) for a class of documents. The XML DTDs are written using SGML DTD
syntax.

DOM (Document Object Model): Within a computer, information is often orga-
nized as a set of “objects.” When transmitted, it is sent as a “document.” The
DOM is a W3C specification that gives a common way for programs to access
a document as a set of objects.

domain: For a Property, a class of things that any subject of the Property must
be in.

Dublin Core: A set of basic metadata properties (e.g., title, etc.) for classifying
Web resources.

execution monitoring: Tracking the execution of complex or composite tasks
performed by a service or a set of services, thus identifying failure cases, or
providing explanations of different execution traces.

extraction pattern: A pattern that represents a predetermined entity or event
(corporate names, conferences, and workshops, etc.) in a natural language text.

expert system: A computer program that has a deep understanding of a topic,
and can simulate a human expert, asking and answering questions and making
decisions.

eXtensible Markup Language (XML): Separates content from format, thus
letting the browser decide how and where content gets displayed. The XML
is not a language, but a system for defining other languages so that they
understand their vocabulary.

fiber: The structure that guides light in a fiber optic system.
fiber optics: The use of light to transmit data, video, and voice. Fiber-optic cable

has a better bandwidth and carriers a signal longer than cable wire.
frame: A data packet that consist of a header that identifies it according to

network protocols, an address of the recipient’s network, a data field, an error-
checking field, and an identification trailer.
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graph: Informally, a graph is a finite set of dots called vertices (or nodes) con-
nected by links called edges (or arcs). More formally: A simple graph is a
(usually finite) set of vertices V and set of unordered pairs of distinct elements
of V called edges.

Graphical User Interface (GUI): A GUI is what an end-user sees and inter-
acts with when operating (interacting with) a software application. Sometimes
referred to as the “front-end” of an application. HTML is the GUI standard
for web-based applications.

grammar: A speech grammar specifies a set of utterances that a user may speak
to perform an action or supply information, and provides a corresponding string
value to describe the information or action.

header: A chunk of data, delivered from a source to a rendering plug-in when
first connecting to a stream, usually used to initialize the stream.

HTML (Hypertext Markup Language): A computer language for representing
the contents of a page of hypertext; the language that most Web pages are
written in.

HyperLink (see Link hypertext): Nonsequential writing; Ted Nelson’s term for
a medium that includes links. Nowadays, it includes other media apart from
text and is sometimes called hypermedia.

HyperText Transfer Protocol (HTTP): This is the protocol by which web
clients (browsers) and web servers communicate. It is stateless, meaning that
it does not maintain a conversation between a given client and server, but it
can be manipulated using scripting to appear as if state is being maintained.
Do not confuse HTML (Markup language for our browser-based front ends),
with HTTP (protocol used by clients and servers to send and receive messages
over the Web).

Hub: A point where communications lines are brought together to exchange
data.

Hyperlink: elements, such as, text, graphics, and other objects embedded in a
Web page’s HTML code, that establishes connections to related Web pages or
elements.

hypernavigation: Occurs when a rendering plug-in directs the client to display a
URL at a specified time in a stream. When the plug-in issues a hypernavigation
request, the default Web browser opens.

Internet: A global network of networks through which computers communi-
cate by sending information in packets. Each network consists of computers
connected by cables or wireless links.

Interoperation: Breaking down interoperability barriers through semantics, and
the automatic insertion of message parameter translations between clients and
Web services.

Intranet: A part of the Internet or part of the Web used internally within a
company or organization.
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invocation: Activation and execution of an identified Web Service by an agent
or other service.

IP (Internet Protocol): The protocol that governs how computers send packets
across the Internet. Designed by Vint Cerf and Bob Khan.

International Standards Organization (ISO): A nontreaty standards organiza-
tion active in development of Open Systems Interconnections.

Internet Service Provider (ISP): A company that lets users dial into its com-
puters that are connected to the Internet.

InterNIC: Created by several organizations to handle domain name registry.
Internet Protocol (IP): The set of rules that governs the transmission of data

from one computer to another over the Internet.
Internet Protocol address (IP address): The numeric address used to locate

computers on a TCP/IP network. The numbers include four groups each sep-
arated by a period.

Java: A programming language developed (originally as “Oak”) by James
Gosling of Sun Microsystems. Designed for portability and usability embedded
in small devices, Java took-off as a language for small applications (applets)
that ran within a Web browser.

kBps: Kilobytes per second.
Knowledge Discovery: The process of complex extraction of implicit, previ-

ously unknown, and potentially useful knowledge from large datasets. Coined
in 1989 by artificial intelligence and machine learning researchers.

Knowledge Management: The process of creating, capturing, and organizing
knowledge objects. A knowledge object might be a research report, a budget
for the development of a new product, or a video presentation. Knowledge
Management programs seek to capture objects in a repository that is searchable
and accessible in electronic form.

kps (kilobytes per second): A measure of the data rate (see kBps).
learning: The process of automatically finding relations between inputs and out-

puts given examples of that relation.
Lightpath: Analogous to virtual circuits in the ATM world, a lightpath is a

virtual circuit in the optical domain that could consist of multiple spans each
using a different physical wavelength for transmission of information across
an optical network.

link: A link (or hyperlink) is a relationship between two resources. The HTML
links usually connect HTML documents together in this fashion (called a
“hyperlink”), but links can link to any type of resource (documents, pictures,
sound and video files) capable of residing at a Web address.

loop: A loop is an edge that connects a vertex to itself.
markup: Markup is comprised of several “special characters” that are used to

structure a document’s character data into logical components that can then
be labeled (named) so that they can be manipulated more easily by a software
application.
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markup language: A markup language is used to structure a document’s char-
acter data into logical components, and “name” them in a manner that is useful.
These labels (element names) provide either formatting information about how
the character data should be visually presented (for a word processor or a web
browser, e.g.) or they can provide “semantic” (meaningful) information about
what kind of data the component represents. Markup languages provide a sim-
ple format for exchanging text-based character data that can be understood by
both humans and machines.

meta: A prefix to indicate something applied to itself; for example, a metameet-
ing is a meeting about meetings.

metadata: Data about data on the Web, including but not limited to, author-
ship, classification, endorsement, policy, distribution terms, IPR, and so on. A
significant use for the Semantic Web.

Meta-markup language: A language used to define markup languages. Both
SGML and XML are meta-markup languages. The HTML is a markup lan-
guage that was defined using the SGML meta-markup language.

Message Authentication Code (MAC): A number computed from the contents
of a text message that is used to authenticate the message. A MAC is like a
digital signature.

Mean Filter: Replaces a pixel with the average value of its surroundings. Apply-
ing a uniform mean filter blurs the image.

Median Filter: Replaces a pixel with the “most typical” value of its surround-
ings, while ignoring extreme values. Applying a uniform median filter tends
to remove small details.

Multimode fiber: One of two forms of optical fiber that has a larger core than
single mode fibers. They propagate, or spread, many modes of light through
the core simultaneously.

N3: Notation3, a quick notation for jotting down or reading RDF semantic web
information, and experimenting with more advanced semantic web features.

Natural Language Processing (NLP): Using software to “understand” the
meaning contained within texts. Everyday speech is broken down into patterns.
Typically, these systems employ syntactic analysis to infer the semantic
meaning embedded in documents. The NLP identifies patterns in sample
texts and makes predictions about unseen texts. Also called computational
linguistics.

Nanometer: A unit of measurement used to measure a wavelength (1 billionth
of a meter).

Network Access Point (NAP): A hub for exchanging information between
telecommunication carriers.

Network Services: Services that provide cross-platform methods for managing
network communications. Any server-side or client-side RealSystem com-
ponent can use Network Services to create TCP or UDP connections for
reading and writing data. Network Services also provides interfaces that let
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components resolve DNS host names and listen for TCP connections on spec-
ified ports.

object: A unique instance of a data structure defined according to the template
provided by its class. Each object has its own values for the variables belonging
to its class, and can respond to the methods defined by its class.

Ontologies: Collection of statements written in a language, such as RDF, that
defines relationships between concepts and specific logic rules. Semantic data
on the Web will be understandable by following the links to specific ontolo-
gies.

OIL (Ontology Inference Layer): A proposal for a web-based representation
and inference layer for ontologies, which combines the widely used modeling
primitives from frame-based languages with the formal semantics and reason-
ing services provided by description logics. It is compatible with RDF Schema
(RDFS), and includes a precise semantics for describing term meanings (and
thus also for describing implied information). http://www.ontoknowledge.org/
oil/index.shtml

Ontology: From an IT industry perspective, the word ontology was first used by
artificial intelligence researchers and then the Web community to describe the
linguistic specifications needed to help computers effectively share information
and knowledge. In both cases, ontologies are used to define “the things and
rules that exist” within a respective domain. In this sense, an ontology is like a
rigorous taxonomy that also understands the relationships between the various
classified items.

OWL: Web Ontology Language for markup ontology for the Internet.
OWL-S: Web Ontology Language for Services.
Pattern Recognition: The operation and design of systems that recognize pat-

terns in data.
path: A path is a sequence of consecutive edges in a graph and the length of

the path is the number of edges traversed.
path-set: Is defined as a set of components whose functioning ensures the func-

tioning of the system. Thus a path vector x yields ϕ (x) = 1. A minimum
path-set is a path-set that cannot be reduced.

Peer: A conversation participant. An “equal” to whatever person or application
it is communicating with across a network (bidirectional communication).

P2P or Peer-to-peer: A blanket term used to describe (1) a peer-centric dis-
tributed software architecture, (2) a flavor of software that encourages collab-
oration and file sharing between peers, and (3) a cultural progression in the
way humans and applications interact with each other that emphasizes two
way interactive “conversations” in place of the Web’s initial television-like
communication model (where information only flows in one direction).

predicate: Of the three parts of a statement, the predicate, or verb, is the
resource, specifically the Property, which defines what the statement means
(see also, subject, object).
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property: A sort of relationship between two things; a binary relation. A Prop-
erty can be used as the predicate in a statement.

protocol: A language and a set of rules that allow computers to interact in a
well-defined way. Examples are FTP, HTTP, and NNTP.

Port: A single endpoint defined as a combination of a binding and a network
address.

Port Type: An abstract set of operations supported by one or more end points.
Public Encryption Key: An asymmetric scheme that uses two keys from

encryption.
Resource Description Framework (RDF): Integrates a variety of web-based

metadata activities, including sitemaps, content ratings, stream channel defini-
tions, search engine data collection (web crawling), digital library collections,
and distributed authoring, using XML as the interchange syntax.

range: For a Property, its range is a class that any object of that Property must
be in.

RDF (Resource Description Framework): A framework for constructing log-
ical languages that can work together in the Semantic Web. A way of using
XML for data rather than just documents.

RDF Schema: RDF Vocabulary Description Language 1.0. The Resource
Description Framework (RDF) is a general purpose language for representing
information in the Web. This describes how to use RDF to describe RDF
vocabularies. This is a basic vocabulary for this purpose, as well as conventions
that can be used by Semantic Web applications to support more sophisticated
RDF vocabulary description. http://www.w3.org/TR/rdf-schema/

Reachability: Is an important characteristic of a directed logic graph that find
all paths from every node ni, to any node nj within the graph.

Resource: That identified by a Universal Resource Identifier (without a “#”). If
the URI starts “http:,” then the resource is some form of generic document.

rule: A loose term for a Statement that an engine has been programmed to
process. Different engines have different sets of rules.

Regression prediction: The operation and design of systems that develop mod-
els of data useful for the description of the data and for prediction.

Router: A hardware device that receives and transmits data packets from one
LAN (or WAN) to another. A router reads the address in a packet and deter-
mines the best path for the packet to travel to its destination.

Semantic Web: Communication protocols and standards that would include
descriptions of the item on the Web, such as people, documents, events,
products, and organizations, as well as, relationship between documents and
relationships between people.

Server: A computer that other computers connect to for the purpose of retrieving
information. In this manual, generally used to mean the computer that hosts
your WWW page.
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Semantic: The part of language concerned with meaning. For example, the
phrases “my mother’s brother” and “my uncle” are two ways of saying the
same thing and, therefore, have the same semantic value.

Semantic Web: The Web of data with meaning in the sense that a computer
program can learn enough about what the data means to process it. The prin-
ciple that one should represent separately the essence of a document and the
style is presented.

Semantic Web Services: Web Services developed using semantic markup lan-
guage ontologies.

server: A program that provides a service (typically information) to another
program, called the client. A Web server holds Web pages and allows client
programs to read and write them.

SGML (Standard Generalized Markup Language): An international standard
in markup languages, a basis for HTML and a precursor to XML.

SHOE Simple HTML Ontology Extension: A small extension to HTML that
allows web page authors to annotate their web documents with machine read-
able knowledge. SHOE claims to make real intelligent agent software on the
web possible (see http://www.cs.umd.edu/projects/plus/SHOE/).

Spider (crawler): A spider is a program that browses (crawlers) web sites
extracting information for search engine database. Spiders can be summoned
to a site through search engine registration or they will eventually find your
site by following links from other sites (assuming you have links from other
sites).

Stemming: The removal of suffixes, and sometimes prefixes from words to
arrive at a core that can represent any of a set of related words.

Stemming Algorithm: An algorithm to perform stemming.
Syntactic: The part of language concerned with syntax, sentence structure. For

example, the phrases “my mother’s brother” and “my brother” express the
same relationship, but the way in which the information is expressed differs.

Structured Query Language (SQL): An ISO and ANSI standard language for
database access. The SQL is sometimes implemented as an interactive, com-
mand line application and sometimes is used within database applications.
Typical commands include select, insert, and update.

Standard Generalized Markup Language (SGML): Since 1986, SGML has
been the international ISO standard used to define standards-based markup
languages. The HTML is a markup language that is defined using SGML. The
HTML DTD specifies HTML is written in SGML syntax. The XML is not a
markup language written in SGML. There is no predefined DTD for “XML
Markup.” XML is a subset of the SGML standard itself.

Statement: A subject, predicate, and object that assert meaning defined by the
particular predicate used.

Stylesheets: A term extended from print publishing to on-line media. A
stylesheet can contain either formatting information (as is the case with CSS,
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Cascading Style Sheets, or XSL FOs, XSL Formatting Objects), or it can
contain information about how to manipulate the structure of a document, so
it can be “transformed” into another type of structure (as is the case with XSLT
Transformation “style sheets”).

subject: Of the three parts of a statement, the subject is one of the two things
related by the predicate. Often, it indicates the thing being described, such as
a car whose color and length are being given (see also: object, predicate).

Service Discovery: The process of locating an agent or automatic Web-based
service that will perform a required function.

Short Message Entity (SME): Class of devices that can send and receive short
messages using SMS.

Short Message Service (SMS): A protocol for sending alphanumeric messages
using cell phones and pagers.

Simple Object Access Protocol (SOAP): Is a protocol for exchange of infor-
mation in a distributed environment. It is an XML-based protocol consisting
of three parts: an envelope (a framework for describing what is in a mes-
sage and how to process it), a set of encoding rules (for expressing instances
of application-defined datatypes), and a convention for representing remote
procedure calls and responses.

Site: An object that receives rendered data for display. The client core supplies
a site, and the rendering plug-in registers as a site user. The plug-in can then
send data without providing platform-specific commands for data display.

Taxonomy: This term traditionally refers to the study of the general principles
of classification. It is widely used to describe computer-based systems that use
hierarchies of topics to help users sift through information. Many companies
have developed their own taxonomies, although there are also an increasing
number of industry standard offerings. Additionally, a number of suppliers,
including Applied Semantics, Autonomy, Verity and Semio, provide taxonomy-
building software.

Transmission Control Protocol/Internet Protocol (TCP/IP): Two protocols
used together to govern communication between Internet computers. Trans-
mission Control Protocol, HTTP (Hypertext Transfer Protocol) uses TCP as
the protocol for reliable document transfer. If packets are delayed or damaged,
TCP will effectively stop traffic until either the original packets or backup
packets arrive. Among the tools that enabled the development of the Internet
and the subsequent explosive growth of the World Wide Web is Transmission
Control Protocol/Internet Protocol (TCP/IP), a suite of network communica-
tions protocols used to connect hosts on the Internet. TCP/IP is comprised of
several protocols, the two main ones being TCP and IP, which has become the
de facto standard for transmitting data over networks. Even network operating
systems that have their own protocols (e.g., Netware) also support TCP/IP.

Topical Maps (TM): Provide a standardized notation for interchangeably repre-
senting information about the structure of information resources used to define
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topics, and the relationships between topics. The structural information con-
veyed by topic maps includes (1) groupings of addressable information objects
around topics (occurrences), and (2) relationships between topics (associa-
tions). A topic map defines a multidimensional topic space.

Thing: In DAML, a generic name for anything abstract, animate, inanimate,
whatever. The class that anything is in. (In RDF parlance, confusingly, rdf:
Resource.) Identified by a URI with or without a “#” in it.

Transformation: In XSLT, a transformation is the process of a software appli-
cation applying a style sheet containing template “rules” to a source document
containing structured XML markup to create a new document containing a
completely altered data structure.

Types: A container for data-type definitions using some type system (e.g., XSD).

Unified Modeling Language (UML): Derived from three separate modeling
languages.

Universal Description, Discovery, and Integration (UDDI): Is a specification
of Web services’ information registries. In this distributed registry, businesses
and services are described in common XML format.

Universal Resource Identifier (URI): A URI defines an entity. The URLs are
a type of URI.

Universal Resource Locator (URL): The familiar codes (e.g., http://www.
sciam.com) that are used as hyperlinks to Web sites.

Valid: An XML document is “valid” if it is both well formed and it conforms to
an explicitly defined data model that has been expressed using SGMLs DTD
(Document Type Definition) syntax.

W3C (World Wide Web Consortium): A neutral meeting of those to whom the
Web is important, with the mission of leading the Web to its full potential. The
World Wide Web Consortium (W3C) is an organization that was founded in
October 1994 as a forum for information exchange, commerce, communication,
and collective education. The W3C is comprised of individuals and organiza-
tions located all over the world and involved in many different fields. Members
participate in a vendor-neutral forum for the creation of Web standards. The
W3C develops interoperable technologies (specifications, guidelines, software,
and tools) intended to enable further development of the World Wide Web and
lead it to its full potential.

WSDL (Web Service Description Language): This provides a communication
level description of the messages and protocols used by a Web Service.

Weblogs: Weblogs (Blogs) are personal publishing Web sites that syndicate
their content for inclusion in other sites using XML-based file formats known
as RSS. Weblogs frequently include links to contents syndicated from other
Weblogs. Organizations use RSS to circulate news about themselves and their
business. The RSS version 1.0 supports richly expressive metadata in the form
of RDF.
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Web Services: Web-accessible programs and devices.
Web server: A Web server is a program that, using the client–server model and

the World Wide Web’s Hypertext Transfer Protocol (HTTP), serves the files
that form Web pages to Web users (whose computers contain HTTP clients
that forward their requests).

Well formed: A document is “well formed” if all of its start tags have end tags
and are nested properly, with any empty tags properly terminated, and any
attribute values properly quoted. An XML document must be well formed by
definition.

XML: XML stands for “eXtensible Markup Language.” The key feature of XML
in comparison with HTML is that it, as it provides the ability to define tags and
attributes, is not allowed under HTML. The XML is a subset of the Standard
Generalized Markup Language (SGML) designed for use on the Internet. It
supports all the features of SGML and valid XML documents are therefore
valid SGML documents.

XSDL: XML Schema Description Language is the W3C recommendation that
goes beyond DTD with the addition of XML datatypes, namespace support,
and inheritance mechanisms.

XML Schema: A formal definition of a “class” or “type” of document that is
expressed using XML syntax instead of SGML DTD syntax.

XSL (Extensible Stylesheet Language): XSL has two parts to it. One is a
transformation vocabulary (XSL Transformations, XSLT) and the other is a
formatting vocabulary (XSL Formatting Objects (XSL FOs).

XSL FOs: (XSL Formatting Objects): The formatting vocabulary part of XSL
that applies style properties to the result of an XSLT transformation.

XSLT (XSL Transformations): The transformation vocabulary part of XSL. An
XSLT “stylesheet” contains template rules that are applied to selected portions
of a source document’s “source tree” to produce a “result tree” that can then be
rendered for viewing, processed by another application, or further transformed
into another data structure.
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AI Artificial Intelligence
CBL Common Business Language
COM Component Object Model
CSS Cascade Style Sheets
CWM Closed World Machine
DAML DARPA Agent Markup Language
DL Descriptive Logic
DMA Digraph Matrix Analysis
DOM Document Object Model
DTD Document Type Definition
ebXML Electronic Business XML
FFOL Full First Order Logic
FOAF Friend of a Friend
FOL First Order Logic
GMP Generalized Modus Ponens
GUI Graphical User Interface
HL Horn Logic
HOL Higher Order Logic
HTML Hypertext Markup Language
HTTP HyperText Transfer Protocol
IP Internet Protocol
J2EE Java 2 Enterprise Edition
KB Knowledge Base
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KR Knowledge Representation
LP Logic Program
MAC Message Authentication Code
MP Modus Ponens
NLP Natural Language Processing
OBI Open Business on the Internet
ODM Ontology Definition Metamodel
OIL Ontology Inference Layer
OTP Open Trading Protocol
OWL Web Ontology Language
P2P Peer-to-peer
RDF Resource Description Framework
RDFS RDF Schema
RSS Rich Site Summary
Rule ML Rule Markup Language
SCL Simple Common Logic
SGML Standard Generalized Markup Language
SOAP Simple Object Access Protocol
SQL Structured Query Language
SWRL Semantic Web Rule Language
TCP/IP Transmission Control Protocol/Internet Protocol
TM Topical Maps
UDDI Universal Description, Discovery and Integration
UML Unified Modeling Language
URI Universal Resource Identifier
URL Universal Resource Locator
W3C World Wide Web Consortium
WSDL Web Service Description Language
WSML Web Service Modeling Language
XML eXtensible Markup Language
XSDL XML Schema Description Language
XSL Extensible Stylesheet Language
XSLFO XSL Formatting Objects
XSLT XSL Transformations
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