
TOWARDS THE SEMANTIC WEB

TOWARDS THE

SEMANTIC WEB
Ontology-driven Knowledge Management

Edited by

Dr John Davies

British Telecommunications plc

Professor Dieter Fensel

University of Innsbruck, Austria

and Professor Frank van Harmelen

Vrije Universiteit, Amsterdam, Netherlands

JOHN WILEY & SONS, LTD

Copyright q 2003 John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in
writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John
Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc.,
111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco,
CA 94103–1741, USA

Wiley-VCH Verlag GmbH,
Boschstr. 12, D–69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road,
Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop 02–01,
Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road,
Etobicoke, Ontario, Canada M9W 1L1

Library of Congress Cataloging-in-Publication Data

Towards the semantic web : ontology-driven knowledge management / edited by John Davies, Dieter Fensel,
and Frank van Harmelen.

p. cm.
Includes bibliographical references and index.
ISBN 0-470-84867-7 (alk. paper)
I. Semantic web. 2. Ontology. 3. Knowledge acquisition (Expert systems) I. Davies,

John. II. Fensel, Dieter. III. Van Harmelen, Frank.

TK5105.88815.T68 2002
006.3 03–dc21

2002033103

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0470 84867 7

Typeset in 10/12pt Times by Deerpark Publishing Services Ltd, Shannon, Ireland.
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn.
This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two
trees are planted for each one used for paper production.

Contents

Foreword xiii

Biographies xv

List of Contributors xix

Acknowledgments xxi

1 Introduction 1
John Davies, Dieter Fensel and Frank van Harmelen

1.1 The Semantic Web and Knowledge Management 2
1.2 The Role of Ontologies 4
1.3 An Architecture for Semantic Web-based Knowledge Management 5

1.3.1 Knowledge Acquisition 5
1.3.2 Knowledge Representation 6
1.3.3 Knowledge Maintenance 7
1.3.4 Knowledge Use 7

1.4 Tools for Semantic Web-based Knowledge Management 7
1.4.1 Knowledge Acquisition 8
1.4.2 Knowledge Representation 8
1.4.3 Knowledge Maintenance 8
1.4.4 Knowledge Use 8

2 OIL and DAML1OIL: Ontology Languages for the Semantic Web 11
Dieter Fensel, Frank van Harmelen and Ian Horrocks

2.1 Introduction 11
2.2 The Semantic Web Pyramid of Languages 12

2.2.1 XML for Data Exchange 12
2.2.2 RDF for Assertions 13
2.2.3 RDF Schema for Simple Ontologies 14

2.3 Design Rationale for OIL 15
2.3.1 Frame-based Systems 16
2.3.2 Description Logics 17

2.3.3 Web Standards: XML and RDF 17
2.4 OIL Language Constructs 17

2.4.1 A Simple Example in OIL 18
2.5 Different Syntactic Forms 20
2.6 Language Layering 23
2.7 Semantics 26
2.8 From OIL to DAML1OIL 26

2.8.1 Integration with RDFS 26
2.8.2 Treatment of Individuals 29
2.8.3 DAML1OIL Data Types 29

2.9 Experiences and Future Developments 31

3 A Methodology for Ontology-based Knowledge Management 33
York Sure and Rudi Studer

3.1 Introduction 33
3.2 Feasibility Study 34
3.3 Kick Off Phase 38
3.4 Refinement Phase 41
3.5 Evaluation Phase 41
3.6 Maintenance and Evolution Phase 42
3.7 Related Work 42

3.7.1 Skeletal Methodology 43
3.7.2 KACTUS 44
3.7.3 Methontology 44
3.7.4 Formal Tools of Ontological Analysis 45

3.8 Conclusion 45

4 Ontology Management: Storing, Aligning and Maintaining Ontologies 47
Michel Klein, Ying Ding, Dieter Fensel and Borys Omelayenko

4.1 The Requirement for Ontology Management 47
4.2 Aligning Ontologies 48

4.2.1 Why is Aligning Needed 48
4.2.2 Aligning Annotated XML Documents 49
4.2.3 Mapping Meta-ontology 50
4.2.4 Mapping in OIL 53

4.3 Supporting Ontology Change 54
4.3.1 Ontologies are Changing 54
4.3.2 Changes in Ontologies Involve Several Problems 55
4.3.3 Change Management 58

4.4 Organizing Ontologies 61
4.4.1 Sesame Requirements 62
4.4.2 Functionality of an Ontology Storage System 62
4.4.3 Current Storage Systems 64
4.4.4 Requirements for a Storage System 66

4.5 Summary 69

Contentsvi

5 Sesame: A Generic Architecture for Storing and Querying RDF and RDF
Schema 71
Jeen Broekstra, Arjohn Kampman and Frank van Harmelen

5.1 The Need for an RDFS Query Language 72
5.1.1 Querying at the Syntactic Level 72
5.1.2 Querying at the Structure Level 73
5.1.3 Querying at the Semantic Level 75

5.2 Sesame Architecture 76
5.2.1 The RQL Query module 78
5.2.2 The Admin Module 79
5.2.3 The RDF Export Module 80

5.3 The SAIL API 80
5.4 Experiences 82

5.4.1 Application: On-To-Knowledge 82
5.4.2 RDFS in Practice 84
5.4.3 PostgreSQL and SAIL 84
5.4.4 MySQL 86

5.5 Future Work 87
5.5.1 Transaction Rollback Support 87
5.5.2 Versioning Support 88
5.5.3 Adding and Extending Functional Modules 88
5.5.4 DAML1OIL Support 88

5.6 Conclusions 88

6 Generating Ontologies for the Semantic Web: OntoBuilder 91
R.H.P. Engels and T.Ch. Lech

6.1 Introduction 91
6.1.1 OntoBuilder and its Relation to the CORPORUM System 92
6.1.2 OntoExtract 93
6.1.3 OntoWrapper and TableAnalyser 96

6.2 Reading the Web 97
6.2.1 Semantics on the Internet 97
6.2.2 Problems with Retrieving Natural Language Texts from Documents 99
6.2.3 Document Handling 100
6.2.4 Normalization 100
6.2.5 Multiple Discourses 101
6.2.6 Document Class Categorization 102
6.2.7 Writing Style 102
6.2.8 Layout Issues 102

6.3 Information Extraction 103
6.3.1 Content-driven Versus Goal-driven 104
6.3.2 Levels of Linguistic Analysis 104
6.3.3 CognIT Vision 107

6.4 Knowledge Generation from Natural Language Documents 108
6.4.1 Syntax Versus Semantics 108
6.4.2 Generating Semantic Structures 109
6.4.3 Generating Ontologies from Textual Resources 110
6.4.4 Visualization and Navigation 111

Contents vii

6.5 Issues in Using Automated Text Extraction for Ontology Building using IE
on Web Resources 111

7 OntoEdit: Collaborative Engineering of Ontologies 117
York Sure, Michael Erdmann and Rudi Studer

7.1 Introduction 117
7.2 Kick Off Phase 118
7.3 Refinement Phase 123

7.3.1 Transaction Management 124
7.3.2 Locking Sub-trees of the Concept Hierarchy 126
7.3.3 What Does Locking a Concept Mean? 127

7.4 Evaluation Phase 128
7.4.1 Analysis of Typical Queries 128
7.4.2 Error Avoidance and Location 129
7.4.3 Usage of Competency Questions 129
7.4.4 Collaborative Evaluation 130

7.5 Related Work 130
7.6 Conclusion 131

8 QuizRDF: Search Technology for the Semantic Web 133
John Davies, Richard Weeks and Uwe Krohn

8.1 Introduction 133
8.2 Ontological Indexing 135
8.3 Ontological Searching 138
8.4 Alternative data models 141

8.4.1 Indexing in the New Model 141
8.4.2 Searching in the New Model 142

8.5 Further Work 142
8.5.1 Technical Enhancements 142
8.5.2 Evaluation 143

8.6 Concluding Remarks 143

9 Spectacle 145
Christiaan Fluit, Herko ter Horst, Jos van der Meer, Marta Sabou
and Peter Mika

9.1 Introduction 145
9.2 Spectacle Content Presentation Platform 145

9.2.1 Ontologies in Spectacle 146
9.3 Spectacle Architecture 147
9.4 Ontology-based Mapping Methodology 147

9.4.1 Information Entities 149
9.4.2 Ontology Mapping 149
9.4.3 Entity Rendering 150
9.4.4 Navigation Specification 150
9.4.5 Navigation Rendering 151
9.4.6 Views 152
9.4.7 User Profiles 152

Contentsviii

9.5 Ontology-based Information Visualization 153
9.5.1 Analysis 153
9.5.2 Querying 156
9.5.3 Navigation 158

9.6 Summary: Semantics-based Web Presentations 159

10 OntoShare: Evolving Ontologies in a Knowledge Sharing System 161
John Davies, Alistair Duke and Audrius Stonkus

10.1 Introduction 161
10.2 Sharing and Retrieving Knowledge in OntoShare 162

10.2.1 Sharing Knowledge in OntoShare 163
10.2.2 Ontological Representation 164
10.2.3 Retrieving Explicit Knowledge in OntoShare 167

10.3 Creating Evolving Ontologies 169
10.4 Expertise Location and Tacit Knowledge 170
10.5 Sociotechnical Issues 172

10.5.1 Tacit and Explicit Knowledge Flows 172
10.5.2 Virtual Communities 173

10.6 Evaluation and Further Work 175
10.7 Concluding Remarks 176

11 Ontology Middleware and Reasoning 179
Atanas Kiryakov, Kiril Simov and Damyan Ognyanov

11.1 Ontology Middleware: Features and Architecture 179
11.1.1 Place in the On-To-Knowledge Architecture 181
11.1.2 Terminology 182

11.2 Tracking Changes, Versioning and Meta-information 183
11.2.1 Related Work 184
11.2.2 Requirements 184

11.3 Versioning Model for RDF(S) Repositories 185
11.3.1 History, Passing through Equivalent States 188
11.3.2 Versions are Labelled States of the Repository 188
11.3.3 Implementation Approach 188
11.3.4 Meta-information 190

11.4 Instance Reasoning for DAML1OIL 192
11.4.1 Inference Services 194
11.4.2 Functional Interfaces to a DAML1OIL Reasoner 195

12 Ontology-based Knowledge Management at Work: The Swiss Life Case
Studies 197
Ulrich Reimer, Peter Brockhausen, Thorsten Lau and Jacqueline R. Reich

12.1 Introduction 197
12.2 Skills Management 198

12.2.1 What is Skills Management? 198
12.2.2 SkiM: Skills Management at Swiss Life 200
12.2.3 Architecture of SkiM 202
12.2.4 SkiM as an Ontology-based Approach 203

Contents ix

12.2.5 Querying Facilities 207
12.2.6 Evaluation and Outlook 208

12.3 Automatically Extracting a ‘Lightweight Ontology’ from Text 209
12.3.1 Motivation 209
12.3.2 Automatic Ontology Extraction 210
12.3.3 Employing the Ontology for Querying 213
12.3.4 Evaluation and Outlook 215

12.4 Conclusions 217

13 Field Experimenting with Semantic Web Tools in a Virtual Organization 219
Victor Iosif, Peter Mika, Rikard Larsson and Hans Akkermans

13.1 Introduction 219
13.2 The EnerSearch Industrial Research Consortium as a Virtual Organization 219
13.3 Why Might Semantic Web Methods Help? 222
13.4 Design Considerations of Semantic Web Field Experiments 223

13.4.1 Different Information Modes 224
13.4.2 Different Target User Groups 224
13.4.3 Different Individual Cognitive Styles 225
13.4.4 Hypotheses to be Tested 228

13.5 Experimental Set-up in a Virtual Organization 229
13.5.1 Selecting Target Test Users 229
13.5.2 Tools for Test 230
13.5.3 Test Tasks and their Organization 230
13.5.4 Experimental Procedure 231
13.5.5 Determining What Data to Collect 232
13.5.6 Evaluation Matrix and Measurements 233

13.6 Technical and System Aspects of Semantic Web Experiments 234
13.6.1 System Design 234
13.6.2 Ontology Engineering, Population, Annotation 235

13.7 Ontology-based Information Retrieval: What Does it Look Like? 236
13.7.1 Ontology and Semantic Sitemaps 236
13.7.2 Semantics-based Information Retrieval 239

13.8 Some Lessons Learned 241

14 A Future Perspective: Exploiting Peer-to-Peer and the Semantic Web for
Knowledge Management 245
Dieter Fensel, Steffen Staab, Rudi Studer, Frank van Harmelen
and John Davies

14.1 Introduction 245
14.2 A Vision of Modern Knowledge Management 247

14.2.1 Knowledge Integration 247
14.2.2 Knowledge Categorization 247
14.2.3 Context Awareness 248
14.2.4 Personalization 248
14.2.5 Knowledge Portal Construction 249
14.2.6 Communities of Practice 249
14.2.7 P2P Computing and its Implications for KM 250

Contentsx

14.2.8 Virtual Organizations and their Impact 251
14.2.9 eLearning Systems 251
14.2.10 The Knowledge Grid 251
14.2.11 Intellectual Capital Valuation 252

14.3 A Vision of Ontologies: Dynamic Networks of Meaning 252
14.3.1 Ontologies or How to Escape a Paradox 253
14.3.2 Heterogeneity in Space: Ontology as Networks of Meaning 254
14.3.3 Development in Time: Living Ontologies 255

14.4 Peer-2-Peer, Ontologies and Knowledge 256
14.4.1 Shortcomings of Peer-2-Peer and Ontologies as Isolated Para-

digms 256
14.4.2 Challenges in Integrating Peer-2-Peer and Ontologies 258

14.5 Conclusions 263
14.5.1 P2P for Knowledge Management 263
14.5.2 P2P for Ontologies 263
14.5.3 Ontologies for P2P and Knowledge Management 264
14.5.4 Community Building 264

15 Conclusions: Ontology-driven Knowledge Management – Towards the
Semantic Web? 265
John Davies, Dieter Fensel and Frank van Harmelen

References 267

Index 281

Contents xi

Foreword

Knowledge is Power Again!

J. Hendler, University of Maryland

More than 30 years ago, ACM Turing Award winner, Ed Feigenbaum,

heralded a revolution in business computing under the banner ‘knowledge is

power’. With this slogan, Feigenbaum brought domain-specific expert

systems to the attention of the computing world. Now deployed in shrink-

wrapped tax preparation programs, embedded in one of the world’s best sell-

ing software products, and estimated to be in use by over two-thirds of Fortune

500 companies, the expert system gains its power by the use of the specific

knowledge of a domain that is encoded in its rules – be it rules about tax laws,

rules about the spelling of words, or the specific business rules dictating how

your market sector operates. In all these systems, this special-purpose knowl-

edge is where the power is derived.

In the past decade, however, a new agenda has been evolving as part of research

in what is now known as the Semantic Web. This approach might also be called

‘knowledge is power,’ but with a significantly different metaphor. Where Feigen-

baum envisioned power akin to the power of a sledgehammer, the new paradigm

makes knowledge akin to the power flowing through the electrical grid. Rather

than the centralized power coming from carefully engineered knowledge bases

aimed at specific applications, the new power flows through the routers of the

Internet, as electricity flows through the wires in your wall. Knowledge, in this

view, becomes as distributed, dynamic and ubiquitous as the power flowing into

the lamp by which you are reading these words.

The Semantic Web vision, per se, is rightly attributed to Tim Berners-Lee,

inventor of the web and coiner of the term ‘Semantic Web,’ but he was not the first

or only one to realize the strength of the new knowledge is power metaphor. A

small group of researchers, branching out from the traditional confines of knowl-

edge representation in Artificial Intelligence, were talking about ‘knowledge

servers,’ ‘semantic engines,’ ‘ontology management systems,’ and other

approaches to ubiquitous knowledge before the web even came into being.

However, with the expanding impact of Berners-Lee’s World Wide Web, the

deployment vehicle for this ubiquitous knowledge became clear, and these Arti-

ficial Intelligence technologies, brought to the web, now provide the knowledge

technologies capable of powering the Semantic Web.

The power of the semantic web, therefore, comes from the coupling of the

knowledge technologies developed by the AI world with the power grid being

developed by the Web developers. Sitting on top of web-embedded languages

like the Resource Description Framework (RDF) and the Extensible Markup

Language (XML), the new Semantic Web languages bring powerful AI

concepts into contact with the Web infrastructure that has changed the

world. The Web, reaching into virtually every computer around the world,

can now carry the knowledge of the AI community with it!

It is now becoming clear that the most important work making the transition

from the AI labs to the standards of the World Wide Web is in the area of web

ontologies. In the mid to late 1990s, several important projects showed the

utility of tying machine-readable ontologies to resources on the web. These

projects led to significant government interest in the area, and under the aegis

of funding from the US DARPA and the EU’s IST program, the Semantic Web

began to grow – gaining in size, capability and interest by leaps and bounds.

Mechanisms for embedding knowledge in the web are now being standar-

dized, and industry is beginning to take significant notice of this emerging

trend. As the CTO for software of a large multi-national corporation, Richard

Hayes-Roth of Hewlett-Packard, put it ‘we expect the Semantic Web to be as

big a revolution as the original Web itself.’ (Business Week, February 2002).

Comprised of many of the top European researchers working in the Ontol-

ogy area, the On-To-Knowledge project, from where much of the work

described in this book originates, is a major contributor to this coming revolu-

tion. The book sets out new approaches to the development and deployment of

knowledge on the web, and sets a precedent for high quality research in this

exciting new area. This collection thus portrays state-of-the-art work demon-

strating the power of new approaches to online knowledge management.

In short, we now see the day when the careful encapsulation of knowledge into

domain-specific applications is replaced by a ubiquity of knowledge sources

linked together into a large, distributed web of knowledge. Databases, web

services, and documents on the web will all be able to bring this power to bear

– with machine-readable ontologies helping to power a new wave of applications.

The projects described in this book are the harbingers of this coming revolution,

the leading edge of this new version of the ‘knowledge is power’ revolution.

James Hendler

University of Maryland

Forewordxiv

Biographies

Dr John Davies

Head of Adanced Business Applications

British Telecommunications plc, UK

john.nj.davies@bt.com

John Davies graduated from the University of London with a degree in

Physics. He obtained a Masters degree in Computer Science and a doctorate

in Artificial Intelligence from the University of Essex. He joined BT in 1990

and currently leads the Advanced Business Applications team in BTexact

Technologies, BT’s R&D arm, where he has responsibility for work in the

areas of eBusiness, mCommerce and Knowledge Management. He has been

responsible for the development of a set of intranet-based knowledge manage-

ment tools which have been successfully deployed within BT and are the

subject of a number of patents. This has led to the setting up of a spin-off

company, Exago, of which he is the CTO.

Dr Davies is a frequent speaker at conferences on knowledge management

and he has authored and edited many papers and books in the areas of the

Internet, intelligent information access and knowledge management. Current

research interests include the Semantic Web, online communities of practice,

intelligent WWW search and collaborative virtual environments.

He is a visiting lecturer at Warwick Business School. He is a Chartered

Engineer and a member of the British Computer Society, where he sits on the

Information Retrieval expert committee.

Professor Dieter Fensel

University of Innsbruck

Austria

Dieter Fensel obtained a Diploma in Social Science at the Free University of

Berlin and a Diploma in Computer Science at the Technical University of

Berlin in 1989. In 1993 he was awarded a Doctor’s degree in economic science

(Dr. rer. pol.) at the University of Karlsruhe and in 1998 he received his

Habilitation in Applied Computer Science. He has worked at the University

of Karlsruhe (AIFB), the University of Amsterdam (UvA), and the Vrije

Universiteit Amsterdam (VU). Since 2002, he has been working at the Univer-

sity of Innsbruck, Austria. His current research interests include ontologies,

semantic web, web services, knowledge management, enterprise application

integration, and electronic commerce.

He has published around 150 papers as journal, book, conference, and

workshop contributions. He has co-organized around 100 scientific workshops

and conferences and has edited several special issues of scientific journals. He

is Associate Editor of the Knowledge and Information Systems in 1989, IEEE

Intelligent Systems, the Electronic Transactions on Artificial Intelligence

(ETAI), and Web Intelligence and Agent Systems (WIAS). He is involved

in many national and international research projects, and in particular has been

the project coordinator of the EU Ontoknowledge, Ontoweb, and SWWS

projects.

Dieter Fensel is the co-author of the books Intelligent Information Integra-

tion in B2B Electronic Commerce, Kluwer, 2002; Ontologies: Silver Bullet for

Knowledge Management and Electronic Commerce, Springer-Verlag, Berlin,

2001; Problem-Solving Methods: Understanding, Development, Description,

and Reuse, Lecture Notes on Artificial Intelligence (LNAI), no 1791,

Springer-Verlag, Berlin, 2000; and The Knowledge Acquisition and Repre-

sentation Language KARL, Kluwer Academic Publisher, Boston, 1995.

Biographiesxvi

Professor Frank van Harmelen

Department of AI

Vrije Universtiteit Amsterdam

Netherlands

Frank van Harmelen (1960) is professor in Knowledge Representation and

Reasoning at the Department of Artificial Intelligence of the Vrije Universiteit

Amsterdam. He studied mathematics and computer science in Amsterdam. In

1989, he was awarded a PhD from the Department of AI in Edinburgh for his

research on meta-level reasoning. After holding a post-doctorate position at

the University of Amsterdam, he moved to the Vrije Universiteit Amsterdam,

where he currently heads the Knowledge Representation and Reasoning

research group. He is the author of a book on meta-level inference, and editor

of a book on knowledge-based systems.

He has published over 60 papers, many of them in leading journals and

conferences. He has made key contributions to the CommonKADS project by

providing a sound formal basis for the conceptual models. More recently, he

has been co-project manager of the OnToKnowledge project, and was one of

the designers of OIL, which (in its form DAML+OIL) is currently the basis for

a W3C standardized Web ontology language. He is a member of the joint EU/

US committee on agent markup languages (who are designing DAML+OIL),

and a member of the W3C working group on Web Ontology languages.

Biographies xvii

List of Contributors

John Davies, Richard Weeks, Uwe Krohn, Alistair Duke and Audrius Stonkus

BTexact Technologies, Orion 5/12, Adastral Park, Ipswich IP5 3RE, UK

{john.nj.davies, richard.weeks, uwe.krohn, alistair.duke, audrius.stonkus}@bt.com

http://www.quizxml.com/people/johndavies/

Ian Horrocks

Department of Computer Science, University of Manchester, Kilburn Building, Oxford

Road, Manchester, M13 9PL, UK

ihorrocks@cs.man.ac.uk

http://www.cs.man.ac.uk/~horrocks/

Dieter Fensel

Universitaet Innsbruck

Technikerstrasse 25, A-6020 Innsbruck, Austria

dieter.fensel@uibk.ac.at

http://informatik.uibk.ac.at/users/c70385/

York Sure, Rudi Studer and Steffan Staab

Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

{sure, studer, staab}@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de/wbs/

Michael Erdmann

Ontoprise GmbH, Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

erdmann@ontoprise.de

http://www.ontoprise.de/

Jeen Broekstra, Arjohn Kampman, Christiaan Fluit, Herko ter Horst, Jos van der Meer

AIdministrator nederland bv, Amersfoort, Netherlands

{jeen.broekstra, arjohn.kampman, christiaan.fluit, herko.ter.horst,

jmee}@aidministrator.nl

http://www.aidministrator.nl/

Atanas Kiryakov, Kiril Simov, Damyan Ognayov

OntoText Lab, Sirma AI Ltd.

38A Chr. Botev blvd, Sofia 1000, Bulgaria

{naso,kivs,damyan}@sirma.bg

http://www.sirma.bg/

Frank van Harmelen, Hans Akkermans, Ying Ding, Peter Mika, Michel Klein, Marta

Sabou, Boris Omelayenko

Division of Mathematics & Computer Science, Free University, Amsterdam,

De Boelelaan 1081a, 1081 HV Amsterdam, Netherlands

{frank.van.harmelen, hansakkermans, ying, pmika, michel.klein, marta,

boris}@cs.vu.nl

http://www.cs.vu.nl

Robert Engels, Till Christopher Lech

CognIT a.s., Meltzersgt. 4, 0254 Oslo, Norway

robert.engels@cognit.no

http://www.cognit.no

Ulrich Reimer, Peter Brockhausen, Thorsten Lau, Jacqueline Reich

Swiss Life, IT Research & Development, P.O. Box, CH-8022 Zürich, Switzerland

{ulrich.reimer, peter.brockhausen, thorsten.lau, jacqueline.reich}@swisslife.ch

http://www.swisslife.ch

Victor Iosif

EnerSearch AB, Malmo, Sweden

victor@enersearch.se

http://www.enersearch.se/

Rikard Larsson

Lund University Business School,

Lund University, Box 7080, 22007 Lund

Sweden

rikard.larsson@fek.lu.se

http://www.lu.se/lu/engindex.html

List of Contributorsxx

Acknowledgements

Cath McCarney is thanked for her significant contribution to the typographical

preparation of this volume.

Chapter 3: Hans-Peter Schnurr, Hans Akkermans and colleagues from AIFB,

University of Karlsruhe, are thanked.

Chapter 8: The authors would like to mention Dirk Wenke, Siggi Handschuh

and Alexander Mädche , who implemented large parts of the OntoEdit Ontol-

ogy Engineering Environment, and Jürgen Angele and Steffen Staab, who

contributed valuable input for this work.

Chapter 10: Nick Kings is thanked for his contribution to the design and

development of the OntoShare system.

Chapter 13: The authors thank their former colleagues Bernd Novotny and

Martin Staudt who put considerable effort into earlier phases of the two case

studies described in this chapter.

The work in this book has been partially supported by the European Commis-

sion research project OnToKnowledge (IST-1999-10132), and by the Swiss

Federal Office for Education and Science (project number BBW 99.0174).

Vincent Obozinski, Wolfram Brandes, Robert Meersman and Nicola Guarino

are thanked for their constructive feedback on the On-To-Knowledge project.

Elisabeth, Joshua and Thomas – thanks for the patience and the inspiration.

JD.

1

Introduction

John Davies, Dieter Fensel and Frank van Harmelen

There are now several billion documents on the World Wide Web (WWW),

which are used by more than 300 million users globally, and millions more

pages on corporate intranets. The continued rapid growth in information

volume makes it increasingly difficult to find, organize, access and maintain

the information required by users. The notion of a Semantic Web (Berners-

Lee et al., 2001) that provides enhanced information access based on the

exploitation of machine-processable meta-data has been proposed. In this

book, we are particularly interested in the new possibilities afforded by

Semantic Web technology in the area of knowledge management.

Until comparatively recently, the value of a company was determined

mainly by the value of its tangible assets. In recent years, however, it has

been increasingly recognized that in the post-industrial era, an organization’s

success is more dependent on its intellectual assets than on the value of its

physical resources.

This increasing importance of intangible assets is evident from the high

premiums on today’s stockmarkets. We can measure this by expressing the

market value of a company as a percentage of its book value. Looking at this

index, we see that the Dow Jones Industrial has risen steadily over the last 25

years and now stands at around 300%, notwithstanding recent stockmarket

falls.

Underlying this trend are a number of factors. The requirement for highly-

skilled labour in many industries, new computing and telecommunications

technologies, faster innovation and ever shorter product cycles, has caused a

huge change in the ways organizations compete: knowledge is now the key

battleground for competition.

Other factors driving companies to try and manage and exploit their intel-

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

lectual assets more effectively are: increasing employee turnover rates and a

more mobile workforce, which can lead to loss of knowledge; and globaliza-

tion, often requiring people to collaborate and exchange knowledge across

continents and time zones.

The knowledge management discipline aims to address this challenge and

can be broadly defined as the tools, techniques and processes for the most

effective and efficient management of an organization’s intellectual assets

(Davies, 2000a). These intellectual assets can be exploited in a variety of

ways. By sharing and re-using current best practice, for instance, current

business processes can be improved, and duplication of effort can be elimi-

nated. New business opportunities can be generated by collecting intelligence

on markets and sales leads; and new products and services can be created,

developed and brought to the marketplace ahead of competitors.

It is often argued in knowledge management circles that technology is a

relatively marginal aspect of any knowledge management initiative and that

organizational culture is far more important. While the sentiment that we need

a wider perspective than just technology is correct, this viewpoint reveals the

assumption of a dichotomy between technology and organizational culture

which does not exist. Rather, technology-based tools are among the many

artefacts entwined with culture, whose use both affects and is affected by

the prevailing cultural environment. A holistic view is required and technol-

ogy often plays a larger part in cultural factors than is sometimes acknowl-

edged. Although the focus of this book is Semantic Web-based tools for

knowledge management, it is equally important to understand the cultural

and organizational contexts in which such tools can be used to best effect.

Related work in this area can be found, for example, in Maxwell (2000).

1.1 The Semantic Web and Knowledge Management

Intranets have an important role to play in the more effective exploitation of

both explicit (codified) and tacit (unarticulated) knowledge. With regard to

explicit knowledge, intranet technology provides a ubiquitous interface to an

organization’s knowledge at relatively low cost using open standards. Moving

information from paper to the intranet can also have benefits in terms of speed

of update and hence accuracy. The issue then becomes how to get the right

information to the right people at the right time: indeed, one way of thinking

about explicit knowledge is that it is information in the right context; that is,

information which can lead to effective action. With tacit knowledge, we can

use intranet-based tools to connect people with similar interests or concerns,

thus encouraging dialogue and opening up the possibility of the exchange of

tacit knowledge.

Towards the Semantic Web2

Herpo
Resaltado

Herpo
Resaltado

Herpo
Resaltado

Important information is often scattered across web and/or intranet

resources. Traditional search engines return ranked retrieval lists that offer

little or no information on the semantic relationships among documents.

Knowledge workers spend a substantial amount of their time browsing and

reading to find out how documents are related to one another and where each

falls into the overall structure of the problem domain. Yet only when knowl-

edge workers begin to locate the similarities and differences among pieces of

information do they move into an essential part of their work: building rela-

tionships to create new knowledge.

Current knowledge management systems have significant weaknesses:

† Searching information: existing keyword-based searches can retrieve irre-

levant information that includes certain terms in different meanings. They

also miss information when different terms with the same meaning about

the desired content are used. Information retrieval traditionally focuses on

the relationship between a given query (or user profile) and the information

store. On the other hand, exploitation of interrelationships between selected

pieces of information (which can be facilitated by the use of ontologies) can

put otherwise isolated information into a meaningful context. The implicit

structures so revealed help users use and manage information more effi-

ciently (Davies, 1999).

† Extracting information: currently, human browsing and reading is

required to extract relevant information from information sources.

This is because automatic agents do not possess the common sense

knowledge required to extract such information from textual representa-

tions, and they fail to integrate information distributed over different

sources.

† Maintaining weakly structured text sources is a difficult and time-consum-

ing activity when such sources become large. Keeping such collections

consistent, correct, and up-to-date requires mechanized representations of

semantics that help to detect anomalies.

† Automatic document generation would enable adaptive websites that are

dynamically reconfigured according to user profiles or other aspects of

relevance. Generation of semi-structured information presentations from

semi-structured data requires a machine-accessible representation of the

semantics of these information sources.

The competitiveness of many companies depends heavily on how they

exploit their corporate knowledge and memory. Most networked information

is now typically multimedia and rather weakly structured. This is not only

true of the Internet but also of large company intranets. Finding and main-

taining information is a challenging problem in weakly structured representa-

Introduction 3

tion media. Increasingly, companies have realized that their intranets are

valuable repositories of corporate knowledge. But as volumes of information

continue to increase rapidly, the task of turning this resource into useful

knowledge has become a major problem.

Knowledge management tools are needed that integrate the resources

dispersed across web resources into a coherent corpus of interrelated informa-

tion. Previous research in information integration (see, e.g., Hearst, 1998) has

largely focused on integrating heterogeneous databases and knowledge bases,

which represent information in a highly structured way, often by means of

formal languages. In contrast, the web consists to a large extent of unstruc-

tured or semi-structured natural language text.

The Semantic Web is envisioned as an extension of the current web where,

in addition to being human-readable using WWW browsers, documents are

annotated with meta-information. This meta-information defines what the

information (documents) is about in a machine processable way. The explicit

representation of meta-information, accompanied by domain theories (i.e.

ontologies), will enable a web that provides a qualitatively new level of

service. It will weave together an incredibly large network of human knowl-

edge and will complement it with machine processability. Various automated

services will help the user achieve goals by accessing and providing informa-

tion in machine-understandable form. This process may ultimately create

extremely knowledgeable systems with various specialized reasoning services

systems that can support us in nearly all aspects of life and that will become as

necessary to us as access to electric power.

Ontologies offer a way to cope with heterogeneous representations of web

resources. The domain model implicit in an ontology can be taken as a unify-

ing structure for giving information a common representation and semantics.

1.2 The Role of Ontologies

Ontologies are a key enabling technology for the Semantic Web. They inter-

weave human understanding of symbols with their machine processability.

Ontologies were developed in artificial intelligence to facilitate knowledge

sharing and re-use. Since the early 1990s, ontologies have become a popular

research topic. They have been studied by several artificial intelligence

research communities, including knowledge engineering, natural-language

processing and knowledge representation. More recently, the use of ontologies

has also become widespread in fields such as intelligent information integra-

tion, cooperative information systems, information retrieval, electronic

commerce, and knowledge management. The reason ontologies are becoming

popular is largely due to what they promise: a shared and common under-

Towards the Semantic Web4

standing of a domain that can be communicated between people and applica-

tion systems. As such, the use of ontologies and supporting tools offers an

opportunity to significantly improve knowledge management capabilities in

large organizations and it is their use in this particular area which is the subject

of this book.

It describes a Semantic Web-based knowledge management architecture

and a suite of innovative tools for semantic information processing. The

theoretical underpinnings of our approach are also set out. The tool environ-

ment addresses three key aspects:

† Acquiring ontologies and linking them with large amounts of data. For

reasons of scalability this process must be automated based on information

extraction and natural language processing technology. For reasons of

quality this process requires the human in the loop to build and manipulate

ontologies using ontology editors.

† Storing and maintaining ontologies and their instances. We developed a

resource description framework (RDF) schema repository that provides

database technology and simple forms of reasoning over web information

sources.

† Querying and browsing semantically enriched information sources. We

describe semantically enriched search engines, browsing and knowledge

sharing support that makes use of machine processable semantics of data.

The developed technology has been proven to be useful in a number of case

studies. We discuss improved information access in the intranet of a large

organization (Lau and Sure, 2002). The technology has also been used to

facilitate electronic knowledge sharing and reuse in a technology firm and

knowledge management in a virtual organization. We now move to a more

detailed discussion of our architecture.

1.3 An Architecture for Semantic Web-based Knowledge
Management

Figure 1.1 shows our architecture for knowledge management based on the

Semantic Web. The architecture addresses all the key stages of the knowledge

management lifecycle (with one exception – the methodology, which we

mention shortly):

1.3.1 Knowledge Acquisition

Given the large amounts of unstructured and semi-structured information held

on organizational intranets, automatic knowledge extraction from unstruc-

Introduction 5

tured and semi-structured data in external data repositories is required and

this is shown in the bottom layer of the diagram. Support for human knowl-

edge acquisition is also needed and the knowledge engineer needs to be

supported by ontology editing tools which support the creation, maintenance

and population of ontologies.

1.3.2 Knowledge Representation

Once knowledge has been acquired from human sources or automatically

extracted, it is then required to represent the knowledge in an ontology

language (and of course to provide a query language to provide access to

the knowledge so stored). This is the function of the ontology repository.

Towards the Semantic Web6

Figure 1.1 Architecture for Semantic Web-based knowledge management

1.3.3 Knowledge Maintenance

Ontology middleware is required with support for development, management,

maintenance, and use of knowledge bases.

1.3.4 Knowledge Use

Finally, and perhaps most importantly, information access tools are required

to allow end users to exploit the knowledge represented in the system. Such

tools include facilities for finding, sharing, summarizing, visualizing, brows-

ing and organizing knowledge.

1.4 Tools for Semantic Web-based Knowledge Management

Figure 1.2 makes this diagram more concrete by instantiating the various

modules of the abstract architecture with a number of tools which are

Introduction 7

Figure 1.2 Tools for Semantic Web-based knowledge management

described in later chapters. Here we briefly mention each tool and the chapter

in which it is described.

1.4.1 Knowledge Acquisition

OntoWrapper for knowledge extraction from semi-structured information and

OntoExtract, which extracts meta-data from unstructured information are

discussed in Chapter 6. Support for human knowledge acquisition is discussed

in the context of the OntoEdit system in Chapter 7, which supports the crea-

tion, maintenance and population of ontologies in a variety of data formats.

1.4.2 Knowledge Representation

A fully-fledged RDF data repository (the SESAME system) is described in

Chapter 5. In addition to data storage, SESAME supports RDF querying in

two leading RDF query languages.

1.4.3 Knowledge Maintenance

The ontology middleware module (OMM) is described in Chapter 11.

1.4.4 Knowledge Use

A range of information access tools for the Semantic Web are discussed.

QuizRDF, described in Chapter 8, is a semantic search engine for browsing

and querying RDF-annotated information resources. Spectacle (Chapter 9) is a

visualization and browsing tool for ontology-based information. Chapter 10

describes OntoShare, an RDF-based system which supports knowledge shar-

ing between users, using Semantic Web technology to create an ontology-

based information resource automatically from the information so shared.

In addition to the chapters outlined above, the book contains seven further

chapters in addition to this introduction. Chapter 2 discusses the pyramid of

languages that underpin the Semantic Web. XML, RDF and RDF Schema are

covered briefly and the chapter then focuses on OIL and DAML1OIL,

currently the most prominent ontology languages for the Semantic Web.

Key to applying Semantic Web technology in the knowledge management

arena is the development of appropriate ontologies for the domain and appli-

cation at hand. Chapter 3 presents a five step methodology for application-

driven ontology development. Once created, ontologies must of course be

managed: they need to be stored, aligned, maintained and their evolution

tracked. This important topic is the subject of Chapter 4.

Towards the Semantic Web8

Chapters 12 and 13 look at specific case studies using the tools and tech-

niques described in earlier chapters. Chapter 12 covers two case studies from

the Swiss Life insurance group in the application areas of skills management

and intelligent information access in the domain of international accounting

standards. Chapter 13 looks at the application of Semantic Web tools for

knowledge dissemination in a virtual organization.

Chapter 14 looks ahead to the future potential of the emergence and combi-

nation of the P2P computing paradigm and the use of Semantic Web technol-

ogies. In Chapter 15, we offer some brief concluding remarks and consider

prospects for a truly global Semantic Web.

Introduction 9

2

OIL and DAML1OIL:
Ontology Languages for the
Semantic Web

Dieter Fensel, Frank van Harmelen and Ian Horrocks

2.1 Introduction

This chapter discusses OIL and DAML1OIL, currently the most prominent

ontology languages for the Semantic Web.

The chapter starts by discussing the pyramid of languages that underlie the

architecture of the Semantic Web (XML, RDF, RDFS). In section 2.2, we

briefly describe XML, RDF and RDFS. We then discuss in more detail OIL

and DAML1OIL, the first proposals for languages at the ontology layer of the

semantic pyramid. For OIL (and to some extent DAML1OIL) we discuss the

general design motivations (Section 2.3), describe the constructions in the

language (Section 2.4), and the various syntactic forms of these languages

(Section 2.5). Section 2.6 discusses the layered architecture of the language,

section 2.7 briefly mentions the formal semantics, section 2.8 discusses the

transition from OIL to DAML+OIL, and section 2.9 concludes with our

experience with the language to date and future development in the context

of the World Wide Web Consortium (W3C).

This chapter is not intended to give full and formal definitions of either the

syntax or the semantics of OIL or DAML1OIL. Such definitions are already

available elsewhere: http://www.ontoknowledge.org/oil/ for OIL and http://

www.w3.org/submission/2001/12/ for DAML1OIL.

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

2.2 The Semantic Web Pyramid of Languages

One of the main architectural premises of the Semantic Web is a stack of

languages, often drawn in a figure first presented by Tim Berners-Lee in his

XML 2000 address (http://www.w3.org/2000/talks/1206-xml2k-tbl/slide1-0.

html) (see Figure 2.1). We briefly discuss all of the layers in this language

stack leading up to the ontology languages.

2.2.1 XML for Data Exchange

XML is already widely known, and is the basis for a rapidly growing number

of software development activities. It is designed for mark-up in documents of

arbitrary structure, as opposed to HTML, which was designed for hypertext

documents with fixed structures. A well-formed XML document creates a

balanced tree of nested sets of open and close tags, each of which can include

several attribute-value pairs. There is no fixed tag vocabulary or set of allow-

able combinations, so these can be defined for each application. In XML 1.0

this is done using a document type definition (DTD) to enforce constraints on

which tags to use and how they should be nested within a document. A DTD

defines a grammar to specify allowable combinations and nesting of tag

names, attribute names, and so on. Developments are well underway at

W3C to replace DTDs with XML Schema definitions. Although XML Schema

Towards the Semantic Web12

Figure 2.1

offers several advantages over DTDs, their role is essentially the same: to

define a grammar for XML documents.

XML is used to serve a range of purposes:

† Serialization syntax for other mark-up languages. For example, the

synchronized multimedia integration language (SMIL) is syntactically

just a particular XML DTD; it defines the structure of a SMIL document.

The DTD is useful because it facilitates a common understanding of the

meaning of the DTD elements and the structure of the DTD.

† Separating form from content. An XML serialization can be used in a web

page with an XSL style sheet to render the different elements appropriately.

† Uniform data-exchange format. An XML serialization can also be trans-

ferred as a data object between two applications.

It is important to note that in all these applications of XML, a DTD (or an

XML schema) only specifies syntactic conventions; any intended semantics

are outside the realm of the XML specification.

2.2.2 RDF for Assertions

The resource description framework (RDF) is a recent W3C recommendation

designed to standardize the definition and use of meta-data descriptions of

web-based resources. However, RDF is equally well suited to representing

data.

The basic building block in RDF is an object–attribute–value triple,

commonly written as A(O,V). That is, an object O has an attribute A with

value V. Another way to think of this relationship is as a labelled edge between

two nodes:

[O]-A ! [V]

This notation is useful because RDF allows objects and values to be inter-

changed. Thus, any object can play the role of a value, which amounts to

chaining two labelled edges in a graphic representation. Figure 2.2, for exam-

ple, expresses the following three relationships in A(O,V) format:

hasName(‘http://www.w3.org/employee/id1321’,
‘Jim Lerners’)

authorOf(‘http://www.w3.org/employee/id1321’,
’http://www.books.org/ISBN0062515861’)

hasPrice(‘http://www.books.org/ISBN0062515861’,
"$62").

RDF uses XML as its serialization syntax (i.e. using XML in the first of its

OIL and DAML1OIL: Ontology Languages for the Semantic Web 13

intended uses listed above). The first of the three A(O,V) triples would look as

follows in RDF’s XML serialization:

,rdf:Description rdf:about¼
"http://www.w3.org/employee/id1321".

,hasName rdf:resource¼"Jim Lerners"/.
,/rdf:Description.

RDF also allows a form of reification in which any RDF statement can be the

object or value of a triple, which means graphs can be nested as well as

chained. On the web this allows us, for example, to express doubt or support

of statements created by other people. Finally, it is possible to indicate that a

given object is of a certain type, such as stating that ‘ISBN0012515866’ is of

the rdf:type book, by creating a type arc referring to the book definition in

RDFS:

,rdf:Description rdf:about¼
"http://www.books.org/ISBN0062515861".

,rdf:type rdf:resource¼
"http://description.org/schema/book".

,/rdf:Description.

It is important to note that RDF is designed to provide a basic object–attribute–

value data model for meta-data. Other than this intended semantics, described

only informally in the standard, RDF makes no data-modelling commitments.

In particular, no reserved terms are defined for further data modelling. As with

XML, the RDF data model provides no mechanisms for declaring property

names that are to be used.

2.2.3 RDF Schema for Simple Ontologies

RDF Schema takes a step further into a richer representation formalism and

introduces basic ontological modelling primitives into the web. With RDFS,

Towards the Semantic Web14

Figure 2.2

we can talk about classes, subclasses, subproperties, domain and range restric-

tions of properties, and so forth in a web-based context.

Despite the similarity in their names, RDFS fulfils a different role than XML

Schema. XML Schema, and also DTDs, prescribe the order and combination of

tags in an XML document. In contrast, RDFS only provides information about

the interpretation of the statements given in an RDF data model, but it does not

constrain the syntactical appearance of an RDF description.

RDFS lets developers define a particular vocabulary for RDF data (such as

hasName) and specify the kinds of object to which these attributes can be

applied. In other words, the RDFS mechanism provides a basic type system

for RDF models. This type system uses some predefined terms, such asClass,

subPropertyOf, andsubClassOf. RDFS expressions are also valid RDF

expressions (just as XML Schema expressions are valid XML). RDF objects

can be defined as instances of one or more classes using thetype property. The

subClassOf property allows the developer to specify the hierarchical orga-

nization of such classes:

,rdfs:Class rdf:about¼"Book"/.

,rdfs:Class rdf:about¼"HardCover".
,rdfs:subClassOf rdf:resource¼"#Book"/.

,/rdfs:Class.

,Hardcover rdf:resource¼
"http://www.books.org/ISBN0062515861"/.

Properties can be defined with their domain and range, and they can be

organized in a property hierarchy using subPropertyOf:

,rdfs:Property rdf:about¼"hasPrice".
,rdfs:domain rdf:resource¼"#Book"/.

,/rdfs:Property.

2.3 Design Rationale for OIL

The previous section shows that RDFS can be regarded as a very simple ontology

language. However, many types of knowledge cannot be expressed in this simple

language. Just a few examples of useful things we cannot say in RDFS are:

† stating that every book has exactly one price, but at least one author (and

possibly more);

† stating that titles of books are strings and prices of books are numbers;

OIL and DAML1OIL: Ontology Languages for the Semantic Web 15

† stating that no book can be both hardcover and softcover;

† stating that every book is either hardcover or softcover (i.e. there is no other

option than these two).

It is clear that a richer language than RDFS is required if we want to be able to

express anything but the most trivial domain models on the Semantic Web.

OIL aims to be such a language.

The following have been important design goals for OIL:

† maximizing compatibility with existing W3C standards, such as XML and

RDF;

† maximizing partial interpretability by less semantically aware processors;

† providing modelling primitives that have proven useful for large user

communities;

† maximizing expressiveness to enable modelling of a wide variety of ontol-

ogies;

† providing a formal semantics (a mathematically precise description of the

meaning of every expression) in order to facilitate machine interpretation

of that semantics;

† enabling sound, complete and efficient reasoning services, if necessary by

limiting the expressiveness of the language.

These design goals lead to the following three requirements:

† It must be highly intuitive to the human user. Given the success of the

frame-based and object-oriented modelling paradigm, an ontology should

have a frame-like look and feel.

† It must have a well-defined formal semantics with established reasoning

properties to ensure completeness, correctness, and efficiency.

† It must have a proper link with existing web languages such as XML and

RDF to ensure interoperability.

We now discuss each of these three requirements briefly.

2.3.1 Frame-based Systems

The central modelling primitives of predicate logic are relations (predicates).

Frame-based and object-oriented approaches take a different viewpoint. Their

central modelling primitives are classes (or frames) with certain properties called

attributes. These attributes do not have a global scope but apply only to the

classes for which they are defined; we can associate the same attribute name

with different range restrictions when defined for different classes. A frame

provides a context for modelling one aspect of a domain. Researchers have

developed many other additional refinements of these modelling constructs,

Towards the Semantic Web16

which have led to this modelling paradigm’s success. Many frame-based systems

and languages have emerged, and, renamed as object orientation, they have

conquered the software engineering community. OIL incorporates the essential

modelling primitives of frame-based systems: it is based on the notion of a

concept and the definition of its superclasses and attributes. Relations can also

be defined not as an attribute of a class but as an independent entity having a

certain domain and range. Like classes, relations can fall into a hierarchy. OIL’s

modelling primitives are further discussed in Section 2.4.

2.3.2 Description Logics

Description logics (DL) describes knowledge in terms of concepts and role

restrictions that can automatically derive classification taxonomies. The main

thrust of knowledge representation research is to provide theories and systems

for expressing structured knowledge and for accessing and reasoning with it in

a principled way. In spite of the discouraging theoretical worst-case complex-

ity of the results, there are now efficient implementations for DL languages,

which we explain later. OIL inherits from DL its formal semantics and the

efficient reasoning support. The semantics of OIL are briefly discussed in

Section 2.7.

2.3.3 Web Standards: XML and RDF

Modelling primitives and their semantics are one aspect of an ontology

language, but we still have to decide about its syntax. Given the web’s current

dominance and importance, we must formulate a syntax of an ontology

exchange language with existing web standards for information representa-

tion. First, OIL has a well-defined syntax in XML based on a DTD and an

XML Schema definition. Second, OIL is an extension of RDF and RDFS.

With regard to ontologies, RDFS provides two important contributions: a

standardized syntax for writing ontologies and a standard set of modelling

primitives such as instance-of and subclass-of relationships. OIL’s relation to

XML and RDF(S) is discussed in Section 2.5.

2.4 OIL Language Constructs

The frame structure of OIL is based on XOL (Karp et al., 1999), an XML

serialization of the OKBC-lite knowledge model (Chaudhri et al., 1998). In

these languages classes (concepts) are described by frames, whose main

components consist of a list of superclasses and a list of slot-filler pairs.

OIL and DAML1OIL: Ontology Languages for the Semantic Web 17

OIL extends this basic frame syntax so that it can capture the full power of an

expressive description logic. These extensions include the following:

† Arbitrary Boolean combinations of classes (called class expressions) can be

formed, and used anywhere that a class name can be used. In particular,

class expressions can be used as slot fillers, whereas in typical frame

languages slot fillers are restricted to being class (or individual) names.

† A slot-filler pair (called a slot constraint) can itself be treated as a class: it

can be used anywhere that a class name can be used, and can be combined

with other classes in class expressions.

† Class definitions (frames) have an (optional) additional field that specifies

whether the class definition is primitive (a subsumption axiom) or non-

primitive (an equivalence axiom). If omitted, this defaults to primitive.

† Different types of slot constraint are provided, specifying value restriction,

existential quantification and various kinds of cardinality constraint (some

frame languages also provide this feature, referring to such slot constraints

as facets).

† Global slot definitions are extended to allow the specification of superslots

(subsuming slots) and of properties such as transitive and symmetrical.

† Unlike many frame languages, there is no restriction on the ordering of

class and slot definitions, so classes and slots can be used before they are

‘defined’’. This means that OIL ontologies can contain cycles.

† In addition to standard class definitions (frames), OIL also provides axioms

for asserting disjointness, equivalence and coverings with respect to class

expressions (and not just with respect to atomic concepts).

Many of these points are standard for a DL, but are novel for a frame language.

OIL is also more restrictive than typical frame languages in some respects.

In particular, it does not support collection types other than sets (e.g. lists or

bags), and it does not support the specification of default fillers. These restric-

tions are necessary in order to maintain the formal properties of the language

(e.g. monotonicity) and the correspondence with description logics.

2.4.1 A Simple Example in OIL

Below is a simple example of an OIL ontology taken from a case-study at

Swiss Life for constructing an ontology-based skills-management system.

begin-ontology

ontology-container

title "Swiss Life skills DB"

Towards the Semantic Web18

creator "Ullrich Reimer"
description "Part of the ontology from the Swiss Life

case study"
description.release "1.0"
type ontology
identifier "SLSkillsDB"
language "OIL"

ontology-definitions

class-def Department
instance-of ITDept Department
class-def Skills
slot-constraint SkillsLevel cardinality 1

slot-def HasSkills
domain Employee
range Skills

slot-def WorksInProject
domain Employee
range Project
inverse ProjectMembers

class-def defined ITProject
subclass-of Project
slot-constraint ResponsibleDept has-value ITDept

slot-def ManagementLevel
domain Employee
range one-of "member" "head-of-group"
"head-of-dept" "CEO"

class-def Publishing
subclass-of Skills

class-def DocumentProcessing
subclass-of Skills

class-def DesktopPublishing
subclass-of Publishing and DocumentProcessing

instance-of GeorgeMiller Employee
related HasSkills GeorgeMiller

DesktopPublishingLevel3
instance-of DesktopPublishingLevel3

DesktopPublishing
related SkillsLevel DesktopPublishingLevel3 3

end-ontology

OIL and DAML1OIL: Ontology Languages for the Semantic Web 19

This is a snapshot from a larger ontology defined at Swiss Life for a skills-

management case study. Every OIL ontology is itself annotated with meta-

data, starting with such things as title, creator, creation date, and so on. OIL

follows the W3C Dublin Core Standard on bibliographical meta-data for this

purpose. Any ontology language’s core is its hierarchy of class declarations,

stating, for example, that Department is a class, and that ITDept is an

instance of that class. Skills are another class, this time with an associated

slot SkillsLevel. The cardinality constraint stipulates that every Skill
must have exactly one SkillsLevel. Skills are the range of a relation

HasSkills (between Employees and Skills). WorksInProject is

another relation defined on Employees (i.e. another slot of the Employee
class. ProjectMembers is defined as the inverse relation of

WorksInProject. Projects come in various subclasses, one of which

is ITProject. ITProjects are exactly those Projects whose

ResponsibleDept slot has at least the value ITDept. A third slot defined

on Employees is their ManagementLevel. Values for this slot are

restricted to one of the enumerated values. Next, two subclasses of Skills
are defined (Publishing and DocumentProcessing). The class

DesktopPublishing is defined to be exactly the intersection of both of

these two skills. Finally GeorgeMiller is defined to be particular

Employees who has a DesktopPublishing skill of SkillsLevel 3.

2.5 Different Syntactic Forms

The above language description uses OIL’s ‘human readable’ serialization.

This aids readability, but is not suitable for publishing ontologies on the web.

For this purpose OIL is also provided with both XML and RDFS serializa-

tions. OIL’s XML serialization directly corresponds with the human readable

form. Its main benefit is to provide a format that is easier to parse than the

more human-readable form shown above. A full specification in the form of an

XML DTD and XML Schema can found on the OIL website (http://www.on-

toknowledge.org/oil).

The RDFS serialization is more interesting as it uses the features of RDFS

to capture as much as possible of OIL ontologies in RDFS. The following code

shows part of the RDFS serialization of the skills-management example given

above:

,rdf:Description rdf:about¼""
dc:creator¼"Ullrich Reimer"
dc:description.release¼"1.0"
dc:language¼"OIL"
dc:title¼"Swiss Life skills DB"

Towards the Semantic Web20

dc:type¼"ontology".
,dc:description."Part of the ontology from the
Swiss Life case study",/dc:description.

,/rdf:Description.
,rdfs:Class rdf:about¼"DesktopPublishing".
,rdfs:subClassOf.

,oil:And.
,oil:hasOperand rdf:resource¼
"DocumentProcessing"/.
,oil:hasOperand rdf:resource¼"Publishing"/.

,/oil:And.
,/rdfs:subClassOf.

,/rdfs:Class.
,DesktopPublishing rdf:about¼
"DesktopPublishingLevel3".
,SkillsLevel rdf:resource¼"3"/.

,/DesktopPublishing.
,rdfs:Class rdf:about¼"DocumentProcessing".
,rdfs:subClassOf rdf:resource¼"Skills"/.

,/rdfs:Class.
,Employee rdf:about¼"GeorgeMiller".
,HasSkills rdf:resource¼
"DesktopPublishingLevel3"/.

,/Employee.
,rdf:Property rdf:about¼"HasSkills".
,rdfs:domain rdf:resource¼"Employee"/.
,rdfs:range rdf:resource¼"Skills"/.

,/rdf:Property.
,oil:DefinedClass rdf:about¼"ITProject".
,rdfs:subClassOf rdf:resource¼"Project"/.
,oil:hasPropertyRestriction.

,oil:HasValue.
,oil:toClass rdf:resource ¼ "ITDept"/.
,oil:onProperty rdf:resource¼
"ResponsibleDept"/.

,/oil:HasValue.
,/oil:hasPropertyRestriction.

,/oil:DefinedClass.

,/rdf:RDF.

OIL and DAML1OIL: Ontology Languages for the Semantic Web 21

The RDFS serialization makes clear that OIL’s ontology-container is

indeed expressed using Dublin Core properties. It also shows that OIL’s

RDFS form re-uses as much as possible the constructions already available

in RDFS, such as rdfs:Class, rdfs:domain, rdfs:range,

rdf:Property, etc. The main value of this is to make OIL ontologies

accessible to software that only understands the weaker RDFS language.

More on the usefulness of this in the next section.

The RDFS serialization also attempts to define a ‘meta-ontology’ describ-

ing the structure of the OIL language itself. The RDFS code below shows part

of the RDFS description of OIL.

,rdfs:Class rdf:ID¼"DefinedClass".
,rdfs:subClassOf rdf:resource¼
"http://www.w3.org/2000/01/rdf-schema#Class"/.

,/rdfs:Class.
,rdf:Property rdf:ID¼"hasPropertyRestriction".
,rdf:type rdf:resource¼
"http://www.w3.org/2000/01/
rdf-schema#ConstraintProperty"/.

,rdfs:domain rdf:resource¼
"http://www.w3.org/2000/01/rdf-schema#Class"/.

,rdfs:range rdf:resource¼
"#PropertyRestriction"/.

,/rdf:Property.

,rdfs:Class rdf:ID¼"PropertyRestriction".
,rdfs:subClassOf rdf:resource¼
"#ClassExpression"/.

,/rdfs:Class.

,rdfs:Class rdf:ID¼"HasValue".
,rdfs:subClassOf rdf:resource¼
"#PropertyRestriction"/.

,/rdfs:Class.

,rdf:Property rdf:ID¼"onProperty".
,rdfs:domain rdf:resource¼
"#PropertyRestriction"/.

,rdfs:range rdf:resource¼
"http://www.w3.org/1999/02/22-rdf-syntax-
ns#Property"/.

,/rdf:Property.

Towards the Semantic Web22

,rdf:Property rdf:ID¼"toClass’’.
,rdfs:domain rdf:resource¼
"#PropertyRestriction"/.

,rdfs:range rdf:resource¼
*"#ClassExpression"/.

,/rdf:Property.

,/rdf:RDF.

The ‘meta-ontology’ defines definedClass as a subclass of rdfs:Class.

It also defines hasPropertyRestriction as an instance of RDFS

ConstraintProperty that connects an RDFS class (the property’s

domain) to an OIL property restriction (the property’s range). (Property is

the RDF name for a binary relation like a slot or role). A PropertyRes-
triction (slot constraint) is then defined as a kind of ClassExpres-
sion, with HasValue (an existential quantification) being a kind of

PropertyRestriction. Properties onProperty and toClass are

then defined as ‘meta-slots’ of PropertyRestriction whose fillers

will be the name of the property (slot) to be restricted and the restriction

class expression. Again, all this helps to make OIL ontologies partly available

to RDFS-only agents.

The complete description of OIL in RDFS, as well as a more detailed

description of RDF and RDFS, can be found in Horrocks et al. (2000).

2.6 Language Layering

It is unlikely that a single ontology language can fulfil all the needs of the large

range of users and applications of the Semantic Web. We have therefore

organized OIL as a series of ever increasing layers of sublanguages. Each

additional layer adds functionality and complexity to the previous layer. This

is done such that agents (humans or machines) who can only process a lower

layer can still partially understand ontologies that are expressed in any of the

higher layers. A first and very important application of this principle is the

relation between OIL and RDFS (Figure 2.3).

† Core OIL coincides largely with RDFS (with the exception of the reifica-

tion features of RDFS). This means that even simple RDFS agents are able

to process the OIL ontologies, and pick up as much of their meaning as

possible with their limited capabilities.

† Standard OIL is a language intended to capture the necessary mainstream

modelling primitives that both provide adequate expressive power and are

OIL and DAML1OIL: Ontology Languages for the Semantic Web 23

well understood, thereby allowing the semantics to be precisely specified

and complete inference to be viable.

† Instance OIL includes a thorough individual integration. While the

previous layer – Standard OIL – included modelling constructs that

allow individual fillers to be specified in term definitions, Instance OIL

includes a full-fledged database capability.

† Heavy OIL may include additional representational (and reasoning)

capabilities. Especially a more expressive rule languages and meta-class

facilities seem highly desirable.

The layered architecture of OIL has three main advantages:

† First, an application is not forced to work with a language that offers

significantly more expressiveness and complexity than is actually needed.

† Second, applications that can only process a lower level of complexity are

still able to catch same of the aspects of an ontology.

† Third, an application that is aware of a higher level of complexity can still

also understand ontologies expressed in a simpler ontology language.

Defining an ontology language as an extension of RDFS means that every

RDFS ontology is a valid ontology in the new language (i.e. an OIL processor will

also understand RDFS). However, the other direction is also available: defining

an OIL extension as close as possible to RDFS allows maximal reuse of existing

RDFS-based applications and tools. However, since the ontology language

Towards the Semantic Web24

Figure 2.3

usually contains new aspects (and therefore new vocabulary, which an RDFS

processor does not know), 100% compatibility is not possible. If we look at the

RDFS serialization of the Swiss Life skills-management ontology above, all

statements that do not include the oil: namespace are already valid RDFS. It

is noteworthy that this is already the majority of the ontology! Furthermore, even

the statements that do include OIL-specific constructs are at least partially under-

standable to an RDFS processor. For example, the statement:

,rdfs:Class rdf:about¼"DesktopPublishing".
,rdfs:subClassOf.

,oil:And.
,oil:hasOperand rdf:resource¼
"DocumentProcessing"/.
,oil:hasOperand rdf:resource¼"Publishing"/.

,/oil:And.
,/rdfs:subClassOf.

,/rdfs:Class.

still defines DesktopPublishing as a class for any RDFS processor, even

though the relationship between DesktopPublishing and the classes

DocumentProcessing and Publishing will be lost.

The value of the meta-ontology (which defines parts of OIL’s semantics in

terms of RDFS itself) becomes clear if we look at the statement:

,oil:DefinedClass rdf:about¼"ITProject".
,rdfs:subClassOf rdf:resource¼"Project"/.
,oil:hasPropertyRestriction.

,oil:HasValue.
,oil:toClass rdf:resource¼"ITDept"/.
,oil:onProperty rdf:resource¼
"ResponsibleDept"/.

,/oil:HasValue.
,/oil:hasPropertyRestriction.

,/oil:DefinedClass.

The meta-ontology states that oil:DefinedClass is a subclass of

rdfs:Class. Since ITProject is defined to be an instance of oil:De-
finedClass, it must also be an instance of rdfs:Class, and hence an

RDFS processor would be able to recognize that ITProject is a class, even

though this statement is almost fully couched in OIL specific vocabulary.

OIL and DAML1OIL: Ontology Languages for the Semantic Web 25

2.7 Semantics

The semantics of OIL relies on a translation into the SHIQ(D) description

logic. SHIQ(D) has a highly expressive concept language that is able to fully

capture the OIL core language, and a satisfiability preserving translation can

be defined that maps OIL ontologies into SHIQ(D) terminologies. This has the

added benefit that an existing SHIQ reasoner implemented in the FaCT system

can be used to reason with OIL ontologies. The full details of this mapping

have been given in Horrocks et al. (2000), and are not repeated here.

2.8 From OIL to DAML1OIL

DAML1OIL is the successor of OIL, defined in collaboration with research

groups from the DARPA sponsored DAML programme, following the origi-

nal versions of OIL and DAML-ONT (http://www.daml.org/2000/10/daml-

ont.html).

2.8.1 Integration with RDFS

DAML1OIL is similar to OIL in many respects, but is more tightly inte-

grated with RDFS, which provides the only specification of the language and

its only serialization. While the dependence on RDFS has some advantages

in terms of the re-use of existing RDFS infrastructure and the portability of

DAML1OIL ontologies, using RDFS to completely define the structure of

DAML1OIL is quite difficult as, unlike XML, RDFS is not designed for the

precise specification of syntactic structure. For example, there is no way in

RDFS to state that a restriction (slot constraint) should consist of exactly one

property (slot) and one class. The solution to this problem adopted by

DAML1OIL is to define the semantics of the language in such a way that

they give a meaning to any (parts of) ontologies that conform to the RDFS

specification, including ‘strange’ constructs such as slot constraints with

multiple slots and classes. This is made easier by the fact that, unlike OIL,

the semantics of DAML1OIL are directly defined in both a model theoretic

and an axiomatic form (using KIF; Genesereth and Fikes, 1992). The mean-

ing given to strange constructs may, however, include strange side effects.

For example, in the case of a slot constraint with multiple slots and classes,

the semantics interprets this in the same way as a conjunction of all the

constraints that would result from taking the cross product of the specified

slots and classes, but with the added (and possibly unexpected) effect that all

these slot constraints must have the same interpretation (i.e. are equivalent).

Although OIL’s RDFS based syntax would seem to be susceptible to the

Towards the Semantic Web26

same difficulties, in the case of OIL there does not seem to be an assumption

that any ontology conforming to the RDFS meta-description would be a valid

OIL ontology – presumably ontologies containing unexpected usages of the

meta-properties would be rejected by OIL processors as the semantics do not

specify how these could be translated into SHIQ(D).

DAML1OIL’s dependence on RDFS also has consequences for the decid-

ability of the language. In OIL, the language specification states that the slots

used in cardinality constraints can only be applied to simple slots (slots that are

neither transitive nor have transitive subslots). There is no way to capture this

constraint in RDFS (although the language specification does include a warn-

ing about the problem), so DAML1OIL is theoretically undecidable. In prac-

tice, however, this may not be a very serious problem as it would be easy for a

DAML1OIL processor to detect the occurrence of such a constraint and warn

the user of the consequences.

Another effect of DAML1OIL’s tight integration with RDFS is that the

frame structure of OIL’s syntax is much less evident: a DAML1OIL ontology

is more DL- like in that it consists largely of a relatively unstructured collec-

tion of subsumption and equality axioms. This can make it more difficult to

use DAML1OIL with frame based tools such as Protege (Grosso et al., 1999)

or OilEd (Bechhofer et al., 2001b) because the axioms may be susceptible to

many different frame-like groupings (Bechhofer et al., 2001a). From the point

of view of language constructs, the differences between OIL and DAML1OIL

are relatively trivial. Although there is some difference in keyword vocabu-

lary, there is usually a one to one mapping of constructors, and in the cases

where the constructors are not completely equivalent, simple translations are

possible. For example, DAML1OIL restrictions (slot constraints) use has-
class and to-class where OIL uses ValueType and HasValue, and

while DAML1OIL has no direct equivalent to OIL’s covering axioms, the

same effects can be achieved using a combination of (disjoint) union and

subClass. The similarities can clearly be seen in the DAML1OIL code

below, which illustrates the DAML1OIL version of the OIL serialization in

RDFS given above.

,daml:Ontology rdf:about¼"".
,dc:title."Swiss Life Skills DB,/dc:title.
,dc:creator.Ullrich Reimer,/dc:creator.
,dc:description.Part of the ontology from the Swiss
Life case study,/dc:description.
,daml:versionInfo.1.0,/daml:versionInfo.

,/daml:Ontology.
,daml:Class rdf:about¼"#DesktopPublishing".

OIL and DAML1OIL: Ontology Languages for the Semantic Web 27

,rdfs:subClassOf.
,daml:Class.

,daml:intersectionOf rdf:parsetype¼
"daml:Collection".

,daml:Class rdf:about¼"#Publishing"/.
,daml:Class rdf:about¼
"#DocumentProcessing"/.

,/daml:intersectionOf.
,/daml:Class.

,/rdfs:subClassOf.
,/daml:Class.
,rdf:Description rdf:about¼
"#DesktopPublishingLevel3".
,rdf:type rdf:about¼"#Skills"/.
,SkillsLevel rdf:resource¼"#3"/.

,/rdf:Description.
,daml:Class rdf:about¼"#DocumentProcessing".
,rdfs:subClassOf rdf:about¼"#Skills"/.

,/daml:Class.
,rdf:Description rdf:about¼"#GeorgeMiller".
,rdf:type rdf:about¼"#Employee"/.
,HasSkills rdf:resource¼
"#DesktopPublishingLevel3"/.

,/rdf:Description.
,daml:ObjectProperty rdf:about¼"#HasSkills".
,rdfs:domain rdf:about¼"#Employee"/.
,rdfs:range rdf:about¼"#Skills"/.

,/daml:ObjectProperty.
,daml:Class rdf:about¼"#ITProject".
,rdfs:subClassOf rdf:about¼"#Project"/.
,rdfs:subClassOf.

,daml:Restriction.
,daml:onProperty rdf:resource¼
"#ResponsibleDept"/.

,daml:hasClass rdf:resource¼"#ITDept"/.
,/daml:Restriction.

,/rdfs:subClassOf.
,/daml:Class.
,/rdf:RDF.

Towards the Semantic Web28

2.8.2 Treatment of Individuals

The treatment of individuals in DAML1OIL is, however, very different from

that in OIL. In the first place, DAML1OIL relies wholly on RDF for asser-

tions on the type (class) of an individual or a relationship between a pair of

individuals. In the second place, DAML1OIL treats individuals occurring in

the ontology (in oneOf constructs or hasValue restrictions) as true indivi-

duals (i.e. interpreted as single elements in the domain of discourse) and not as

primitive concepts as is the case in OIL. Moreover, there is no unique name

assumption: in DAML1OIL it is possible to explicitly assert that two indivi-

duals are the same or different, or to leave their relationship unspecified. This

treatment of individuals is very powerful, and justifies intuitive inferences that

would not be valid for OIL, for example, that persons all of whose countries of

residence are Italy are kinds of person that have at most one country of

residence: Unfortunately, the combination of individuals with inverse roles

is so powerful that no ‘practical’ decision procedure (for satisfiability/

subsumption) is currently known, and there is no implemented system that

can provide sound and complete reasoning for the whole DAML1OIL

language. In the absence of inverse roles, however, a tableaux algorithm has

been devised (Horrocks and Sattler, 2001), and in the absence of individuals,

DAML1OIL ontologies can exploit implemented DL systems via a transla-

tion into SHIQ similar to the one described for OIL. It would, of course, also

be possible to translate DAML1OIL ontologies into SHIQ using the disjoint

primitive concept of interpretation of individuals adopted by OIL, but in this

case reasoning with individuals would not be sound and complete with respect

to the semantics of the language.

2.8.3 DAML1OIL Data Types

The initial release of DAML1OIL did not include any specification of data

types. However, in the March 2001 release, the language was extended with

arbitrary data types from the XML Schema type system, which can be used in

restrictions (slot constraints) and range constraints. As in SHOQ(D) (Horrocks

and Sattler, 2001), a clean separation is maintained between instances of

‘object’ classes (defined using the ontology language) and instances of data

types (defined using the XML Schema type system). In particular, it is

assumed that that the domain of interpretation of object classes is disjoint

from the domain of interpretation of data types, so that an instance of an object

class (e.g. the individual Italy) can never have the same interpretation as a

value of a data type (e.g. the integer 5), and that the set of object properties

OIL and DAML1OIL: Ontology Languages for the Semantic Web 29

(which map individuals to individuals) is disjoint from the set of data type

properties (which map individuals to data type values).

The disjointness of object and data type domains was motivated by both

philosophical and pragmatic considerations:

† Data types are considered to be already sufficiently structured by the built-

in predicates, and it is, therefore, not appropriate to form new classes of

data type values using the ontology language (Hollunder and Baader,

1991).

† The simplicity and compactness of the ontology language are not compro-

mised; even enumerating all the XML Schema data types would add

greatly to its complexity, while adding a theory for each data type, even

if it were possible, would lead to a language of monumental proportions.

† The semantic integrity of the language is not compromised; defining

theories for all the XML Schema data types would be difficult or impossible

without extending the language in directions whose semantics may be

difficult to capture in the existing framework.

† The implementability of the language is not compromised; a hybrid

reasoner can easily be implemented by combining a reasoner for the object

language with one capable of deciding satisfiability questions with respect

to conjunctions of (possibly negated) data types (Horrocks and Sattler,

2001).

From a theoretical point of view, this design means that the ontology

language can specify constraints on data values, but as data values can

never be instances of object classes, they cannot apply additional constraints

to elements of the object domain. This allows the type system to be extended

without having any impact on the object class (ontology) language, and vice

versa. Similarly, reasoning components can be independently developed and

trivially combined to give a hybrid reasoner whose properties are determined

by those of the two components; in particular, the combined reasoner will be

sound and complete if both components are sound and complete. From a

practical point of view, DAML1OIL implementations can choose to support

some or all of the XML schema data types. For supported data types, they can

either implement their own type checker/validater or rely on some external

component (non-supported data types could either be trapped as an error or

ignored). The job of a type checker/validater is simply to take zero or more

data values and one or more data types, and determine if there exists any data

value that is equal to every one of the specified data values and is an instance

of every one of the specified data types.

Towards the Semantic Web30

2.9 Experiences and Future Developments

Since its first release in December 2000, DAML1OIL has seen a remarkable

take-up in the Semantic Web community. At leading recent Semantic Web

events (e.g. the proceedings of the first Semantic Web Symposium, at

http://www.semanticweb.org/swws/), many researchers are using DAML1

OIL for their work. The axiomatization (Fikes and McGuinness, 2001) has

been formally verified (http://vis.home.mindspring.com/daml/kiflist.htm),

languages are being built on top of it (Ankolenkar et al., 2002), it is being

integrated with best-practice techniques in software engineering such as UML,

and tutorials are being written for a wider audience (http://www.xml.com/pub/

a/2002/01/30/daml1.html).

Under the auspices of both the US DAML and the European IST

programmes, a large number of tools have been written (http://www.dam-

l.org/tools), including editors, storage, crawlers, visualizors, validators, infer-

ence engines, parsers, etc.

At the time of writing, the DAML ontology library contains over 175

ontologies, and DAML crawlers have found millions of DAML1OIL mark-

up statements in documents. Possibly more important, however, is that some

major efforts have been committed to encoding their ontologies in

DAML1OIL. This has been particularly evident in the bio-ontology domain,

where the Bio-Ontology Consortium has specified DAML1OIL as their

ontology exchange language, and the Gene Ontology (The Gene Ontology

Consortium, 2000) is being migrated to DAML1OIL in a project partially

funded by GlaxoSmithKline Pharmaceuticals in cooperation with the Gene

Ontology Consortium.

Large scale industrial take-up to date is still lacking. Perhaps this is too

much to ask for, if we consider the very low industrial take-up of RDFS (a

much simpler language than DAML1OIL), and, a bit more in the past, the

long time that passed between the first XML specification and the first waves

of industrial enthusiasm.

An important development is that the Semantic Web activity of the W3C

has started a Web Ontology Working Group (http://www.w3.org/2001/sw/

webont/). This Working Group has been chartered to develop an ontology

language for use in the Semantic Web, and DAML1OIL has specifically

been designated by the charter to serve as the starting point for this develop-

ment.

Thus, the most important impact of OIL and DAML1OIL may well not be

the actual usage these languages get, but rather the fact that they form the basis

of new languages, which will get widespread usage.

OIL and DAML1OIL: Ontology Languages for the Semantic Web 31

3

A Methodology for
Ontology-based
Knowledge Management

York Sure and Rudi Studer

3.1 Introduction

Ontologies are a core element of the knowledge management architecture

described in Chapter 1. In this chapter we describe a methodology for applica-

tion driven ontology development, covering the whole project lifecycle from

the kick off phase to the maintenance phase. Existing methodologies and

practical ontology development experiences have in common that they start

from the identification of the purpose of the ontology and the need for domain

knowledge acquisition. They differ in their foci and following steps to be

taken. In our approach of the ontology development process, we integrate

aspects from existing methodologies and lessons learned from practical

experience (as described in the Section 3.7). We put ontology development

into a wider organizational context by performing an a priori feasibility study.

The feasibility study is based on CommonKADS (cf. Schreiber et al., 1999).

We modified certain aspects of CommonKADS for a tight integration of the

feasibility study into our methodology.

The case studies described in later chapters explore a broad spectrum of

knowledge management challenges. Each has its own characteristics and

usually evaluates only a subset of the generic methodology. The path of an

application driven ontology development process is sketched in Figure 3.1.

The main stream indicates activities that finally lead to a refined, evaluated

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

and applied ontology that has to be maintained. Each flag indicates major

outcomes of the related activity. The most important steps of each activity

are sketched below every activity. Refinement, evaluation and maintenance

may need to be performed in iterative cycles. We now describe each activity in

detail.

3.2 Feasibility Study

Any knowledge management system can function satisfactorily only if it is

properly integrated into the organization in which it is operational. Many

factors other than technology determine the success or failure of such a

system. To analyse these factors, we initially have to prepare a feasibility

study, that is, we identify problem/opportunity areas and potential solutions,

and put them into a wider organizational perspective. In general, a feasibility

study serves as decision support for economical, technical and project feasi-

bility, in order to select the most promising focus area and target solution.

We focus on aspects of the feasibility study that help to identify (cf. the

UML use case diagram (Booch et al., 1998) in Figure 3.2 for the following

users and use cases and their interactions): (i) stakeholders related to a project

Towards the Semantic Web34

Figure 3.1 Steps of the on-to-knowledge (OTK) methodology

divided into users of the system (the knowledge worker) and supporters of the

system (the knowledge engineer, the knowledge provider and management);

(ii) use cases describing the usage scenarios which we call user driven use

cases (push services, community of knowledge sharing, navigating and brows-

ing a knowledge base, querying a knowledge base and seeking knowledge)

and (iii) use cases supporting these user driven use cases which we call

supporting use cases (ontology development, maintenance, annotation, fill

knowledge base). The toolset described in later chapters is the underlying

system that provides the technical backbone for instantiation of the use cases.

An essential element of a successful knowledge management system is the

creation of a sound navigation system or framework to make it easy for users,

viz. knowledge workers, to locate the knowledge they seek and to make it easy

for users to provide the knowledge they want to share. The user can choose

between two general approaches in finding information: one is in querying the

knowledge base, and the other is in navigating and browsing the knowledge

base. To support the provision and sharing of knowledge, the user has to be

guided and supported in a community of knowledge sharing. Push services

may push new knowledge according to user profiles to specific users that

stated interest in particular knowledge areas.

Knowledge engineers provide the structure for the system, that is, ontolo-

gies. Initially they are responsible for the ontology development, but also for

handling of the maintenance (and evolution) afterwards. Knowledge providers

are responsible for the content provision to the system. Typically the main

sources of that knowledge stem from intranet pages, documents in electronic

formats and databases. The semantic interlinkage between intranets, electro-

A Methodology for Ontology-based Knowledge Management 35

Figure 3.2 Users and use cases of on-to-knowledge

nic documents and a knowledge base are annotations. Web pages and docu-

ments have to be annotated to explicitly represent the semantics of their

contents. The annotations might be stored within the sources or externally.

Here we follow the approach of filling all annotations into the knowledge base.

Last but not least, management has several important roles in a knowledge

management project: it supports the legitimacy of the project and brings in

vision that correlates with the overall company-wide vision. Management

needs to be thoroughly convinced of the value of the project (Tiwana,

2000). Therefore it commits the resources needed – and especially assigns

the people needed for the supporting use cases.

For the analysis of the users and use cases during the feasibility study, the

CommonKADS methodology offers three models: the organization, task and

agent model. The process of building these models proceeds in the following

steps:

† Carry out a scoping and problem analysis study, consisting of two parts:

a. identifying problem/opportunity areas and potential solutions, and

putting them into a wider organizational perspective;

b. deciding about economic, technical and project feasibility, in order to

select the most promising focus area and target solution.

† Carry out an impacts and improvements study, for the selected target

solution, again consisting of two parts:

c. gathering insights into the interrelationships between the business task,

actors involved, and use of knowledge for successful performance, and

what improvements may be achieved here;

d. deciding about organizational measures and task changes, in order to

ensure organizational acceptance and integration of a knowledge system

solution.

An overview of the process of organizational context modelling is given in

Figure 3.3. Building the task, organization and agent model is done by follow-

ing a series of steps supported by practical and easy-to-use worksheets and

checklists (a detailed description of these steps is given in the CommonKADS

methodology).

Following the feasibility study, the next step according to CommonKADS

is to identify relevant tasks, agents carrying them out and knowledge items

used by the agents while performing tasks.1 For our purpose, the steps (viz.

TM-1 worksheet, task analysis; TM-2 worksheet, knowledge item analysis;

Towards the Semantic Web36

1 Some definitions from CommonKADS: ‘A task is a piece of work that needs to be done by an

agent.’; ‘An agent is any human or software system able to execute a task in a certain domain.’

and AM-1 worksheet, agent model) lead to a modified result as indicated in the

dark shading in Figure 3.3.

The task analysis (TM-1) identifies the features of relevant tasks and may

therefore serve as a base for tool selection. To maximize the range of possible

tool combinations, every candidate tool needs to be interoperable with respect

to the architecture set out in Chapter 1.

The knowledge item analysis (TM-2) concentrates in detail on bottlenecks

and improvements relating to specific areas of knowledge. It therefore helps to

focus the domain for the ontology development and additionally serves as

knowledge source for the kick off phase of the ontology development. Each

identified knowledge item is a potential candidate for being part of the ontol-

ogy and should be evaluated during the kick off phase.

The agent model (AM-1) also serves as an input source for the kick off

phase of the ontology development by listing all relevant agents who possess

knowledge items. Especially the human agents are likely to be potential

domain experts and might be a valuable knowledge source during the kick

off and refinement phase of the ontology development. Human agents might

also be users of the system, that is, knowledge workers, and therefore this

might indicate the design of an appropriate user interface for the application

envisioned according to the needs of those agents.

A Methodology for Ontology-based Knowledge Management 37

Figure 3.3 Modified CommonKADS steps

Given that a GO decision was made during the feasibility study, the results

as described above serve as input for the kick off phase of the ontology

development.

3.3 Kick Off Phase

The ontology development starts with the kick off phase. Similar to software

development in general, we start with an ontology requirements specification

document (ORSD). In general it describes what an ontology should support,

sketching the planned area of the ontology application and listing, for example,

valuable knowledge sources. It contains a set of relevant structures of the domain

(they are refined and formalized to a target ontology during the refinement phase).

The ORSD should guide an ontology engineer in deciding about inclusion and

exclusion of concepts/relations and the hierarchical structure of the ontology. In

this early stage one should look for already developed and potentially reusable

ontologies. In detail, the ORSD contains the following information:

1. Domain and goal of the ontology. First one should specify the particular

domain in use (valuable input is given by the TM-2 worksheet), which

might help to identify already existing ontologies. The feasibility study

made clear proposals about interesting areas to be supported by a knowl-

edge management project. The ontology engineer may use the outcomes of

the task analysis to describe the goal of the ontology. The following list

gives some examples: ‘The ontology serves as a means to structure the xy

domain’, ‘The ontology serves as a guideline for the knowledge distribu-

tion between department A and department B’, ‘Ontology serves as a base

for semantic search.’.

2. Design guidelines. Design guidelines help users who are not familiar with

modelling ontologies. They might, for example, contain an estimate of the

number of concepts and the level of granularity of the planned model. This

estimate is based on the knowledge item analysis, a further outcome of the

feasibility study. For example, if the requirements analysis specified that an

ontology should support browsing through a domain which includes around

100 concepts and the ontology engineer ended up with modelling 1000

concepts, either the ontology grew too big and should be modified to fulfil

the requirements or the requirement specification is no longer up to date

and should be updated. Also one might specify common rules how to name

concepts. A typical approach for a naming convention is to begin all

concepts with capitals and all relations with small caps. Whatever rules

one might specify, they should be used consistently when modelling an

ontology (e.g. supported by OntoEdit, cf. chapter 7).

Towards the Semantic Web38

3. Knowledge sources. The knowledge item analysis from the feasibility

study serves as an important knowledge source at hand. The ontology

engineer may derive people and documents to complete the list of knowl-

edge sources for the domain in use. The following shows a partial list of

knowledge sources as an example:

– TM1 (based on CommonKADS);

– domain experts (interviews, competency questionnaires);

– (re-usable) ontologies;

– dictionaries;

– internal documents;

– index lists;

– regulations;

– standard templates;

– product and project descriptions;

– technology white papers;

– telephone indices;

– web pages/site statistics;

– organization charts;

– employee role descriptions;

– business plans;

– external documents.

The usage of potentially reusable ontologies may improve the speed and

quality of the development during the whole process. These ontologies

might, for example, give useful hints for modelling decisions. If the avail-

able ontologies fulfil the requirements (viz.in the ORSD) one might even

reuse an already existing ontology – or reuse it with slight modifications.

An ontology engineer should use all available knowledge sources based on

their availability and reliability.

4. (Potential) users and usage scenarios. Lists of potential users or user

groups and description of each usage scenario. These scenarios should be

described from the potential user who may report from own experiences: In

what situation did they wish such a system (better search for information,

information distribution etc.)? How did they proceed without it? What were

the hindering blocks? How would they like to be supported? The usage

scenarios sketch the point of view of each individual user, which may vary

to an extreme degree. Those views give interesting input to the structure of

the ontology. The descriptions of the hindering blocks also include impor-

tant hints for the design of the ontology based system. The acquisition of

the usage scenarios is done via structured or informal interviews. A

common way of modelling usage scenarios in software engineering are

A Methodology for Ontology-based Knowledge Management 39

use cases. In particular they help to identify stakeholders and to clarify their

roles in the scenario.

5. Competency questions. The usage scenarios (see above) describe the real

existing domain of the targeted system. They deliver information about

concepts and their relations which have to be modelled in the target ontol-

ogy. To derive that information out of the use cases, the ontology engineer

has to transform the scenarios in detailed competency questions (Ushold

and Grueninger, 1996). This represents an overview of possible queries to

the system, indicating the scope and content of the domain ontology (cf.

Chapter 7 for an example of a competency questionnaire).

6. Applications supported by the ontology. Here, typically a draft of the

ontology based knowledge management application and its system and

software environment is sketched. The ontology engineer may also use

the task analysis from the feasibility study as an input source to describe

the proposed system and analyse the role of the ontology. The draft must

also deliver a clear picture about the ontology interface to the user and

answer the following question: what parts of the ontology, namely concepts

and relations, are visible to the user and how does he use them? If the

application runs several times on different hosts, one might want to keep

track of the different locations to enable separate update processes in the

maintenance phase.

In general there are two concurrent approaches while modelling: top-down

and bottom-up. The usage scenario/competency question method usually

follows a top-down approach in modelling the domain. One starts by model-

ling concepts on a very generic level. Subsequently they are refined. This

approach is typically done manually and leads to a high-quality engineered

ontology. Available top-level ontologies may be reused here and serve as a

starting point to develop new ontologies. In practice this seems to be more a

middle-out approach, that is, to identify the most important concepts which

will then be used to obtain the remainder of the hierarchy by generalization

and specialization.

However, with the support of automatic document analysis, a typical

bottom-up approach may be applied. There, relevant lexical entries are

extracted semi-automatically from available documents. Based on the

assumption that most concepts and conceptual structures of the domain as

well the company terminology are described in documents, applying knowl-

edge acquisition from text for ontology design seems to be promising. There

exists also a bottom-up-driven approach for merging of ontologies. A number

of proposals have been made to facilitate ontological engineering through

automatic discovery from domain data, domain-specific natural language

Towards the Semantic Web40

texts in particular (cf. Maedche and Staab, 2000). OntoExtract from CognIT

(cf. Chapter 6) provides support for semi-automatic extraction of relevant

concepts and relations between them.

Both approaches have advantages and drawbacks (e.g. the case studies at

Swiss Life each follow a different path, cf. Chapter 12). The competency

questions lead to a more detailed description of the problem area at hand.

This supports the fine tuning of the ontology. On the other hand, this gathering

of several views is likely to be never complete and might not focus on the

documents available. Semi-automatic text extraction is usually not able to

produce high-level quality but delivers instead a more complete list of relevant

concepts. So, the top-down approach meets the representation of the informa-

tion demand better than the bottom-up approach with automatic analysis of

documents, which itself supports a better representation of the information

supply. A promising method combines both approaches. We propose that

ontology engineers should include various knowledge sources depending on

their availability and their reliability (see above) and each time use the more

applicable method to extract relevant knowledge from the sources.

3.4 Refinement Phase

The goal of the refinement phase is to produce a mature and application-

oriented target ontology according to the specification given by the kick off

phase. It is divided into several subphases. First, a knowledge elicitation

process with domain experts based on the initial input from the kick off

phase is performed. There, the initial draft of the ontology is modified and/

or extended (e.g. by refining concepts). Second, the target ontology is created

by formalizing the semi-formal description of the ontology in formal repre-

sentation languages such as OIL and DAML1OIL (cf. Chapter 2).

Depending on the application that has to be supported, one has to choose

the appropriate representation language. Formal representation languages

typically differ in their expressive power and tool support for reasoning.

The ontology engineer has to consider the advantages and limitations of the

different languages to choose the appropriate one for the application.

This phase is closely linked to the evaluation phase. If the analysis of the

ontology in the evaluation phase shows gaps or misconceptions, the ontology

engineer takes these results as an input for the refinement phase. It might be

necessary to perform several iterative steps.

3.5 Evaluation Phase

To describe the evaluation task, we cite Gomez-Perez (1996): ‘to make a

A Methodology for Ontology-based Knowledge Management 41

technical judgement of the ontologies, their associated software environment,

and documentation with respect to a frame of reference … The frame of

reference may be requirements, specifications, competency questions, and/

or the real world.’

The ontology engineer needs to check, whether the target ontology itself

suffices the ontology requirements specification document (cf. Section 4.2)

and whether the ontology based application supports or answers the compe-

tency questions, analysed in the kick off phase of the project. Therefore the

ontology is tested in the target application environment. A prototype should

already show core functionalities of the target system. Feedback from beta

users of the prototype may be a valuable input for further refinement of the

ontology.

A valuable input for refinement (and further maintenance) are usage

patterns of the ontology. The system has to track the ways users navigate or

search for concepts and relations. With such an ontology log file analysis, one

may trace what areas of the ontology are often used and others which were not

navigated. Less frequently used parts of the ontology should be monitored

whether they are relevant for the application. Parts of the ontology used with

high frequency might need to be expanded. However, the ontology engineer

should carefully evaluate the usage patterns before updating the ontology.

3.6 Maintenance and Evolution Phase

The maintenance and evolution of an ontology-based application is primarily

an organizational process. There have to be strict rules to the update/insert/

delete processes of ontologies. We recommend that the ontology engineer

gathers changes to the ontology and initiates the switch over to a new version

of the ontology after thoroughly testing all possible effects on the application.

Most important is to clarify who is responsible for maintenance and how it is

performed. For example, is a single person or a consortium responsible for the

maintenance process? In which time interval is the ontology maintained?

Seminal proposals for handling of the evolution process of ontologies

already exist. See Chapter 4 for a detailed description of these aspects.

3.7 Related Work

Methodologies that guide the building process of ontologies have been

proposed by several research groups. Due to the fact that ontology engineering

is still a relatively immature discipline, each research group employed its own

methodology. We have based our methodology on previously published meth-

odologies.

Towards the Semantic Web42

In recent years, some research groups have proposed methodologies guid-

ing the ontology development process. Ushold’s skeletal methodology was the

first methodological outline proposed in 1995 on the basis of the experience

gathered in developing the Enterprise Ontology (Ushold and King, 1995). On

the basis of the Toronto Virtual Enterprise (TOVE) project, Ushold and Grue-

ninger (1996) described ontology development steps. A method to build an

ontology in the domain of electrical networks was presented from Bernaras et

al. (1996) as part of the Esprit KACTUS project. At the same time Methontol-

ogy appeared (Gomez-Perez, 1996), extended in later papers. In parallel, the

philosophical discipline of ontology is evolving towards an engineering disci-

pline. Guarino and Welty (2000) demonstrate how some methodology efforts

founded on analytic notions that have been drawn from philosophy can be

used as formal tools of ontological analysis. In the following, we give a brief

overview of these methodologies.

3.7.1 Skeletal Methodology

This methodology is based on the experience of building the enterprise

ontology (Ushold and King, 1995), which includes a set of ontologies for

enterprise modelling. The following guidelines for developing ontologies are

proposed:

1. Identify purpose. Clarify goal and intended usage of the ontology.

2. Building the ontology, which is broken down into three steps:

a. Ontology capture. Identify key concepts and relationships in the domain

of interest. Create precise unambiguous text definitions for such

concepts and relationships and identify terms to refer to them. Use a

middle-out approach to perform this step, so identify the most important

concepts which will then be used to obtain the remainder of the hier-

archy by generalization and specialization.

b. Coding. Represent the knowledge acquired in 2(a) in a formal language.

c. Integrate existing ontologies.

3. Evaluation. Make a judgement of the ontologies with respect to a frame of

reference which may be requirements specifications or competency ques-

tions.

4. Documentation. Document ontologies according to the type and purpose.

A disadvantage of this methodology is that it does not precisely describe the

techniques for performing the different activities. For example, it remains

unclear how the key concepts and relationships should be acquired, only a

very vague guideline, involving the use of brainstorming techniques, is given

A Methodology for Ontology-based Knowledge Management 43

(López, 1999). A life cycle is not recommended. There are no guidelines about

the maintenance of evolving ontologies.

We catch up with the idea of competency questions and expand their usage.

We not only propose to use them for evaluation of the system, but also for

finding relevant lexical entries such as concepts, relations, etc. (see Chapter 8

for an example).

3.7.2 KACTUS

The approach of Bernaras et al. (1996) was developed within the Esprit

KACTUS project. One of the objectives of this project was to investigate

the feasibility of knowledge re-use in complex technical systems and the

role of ontologies to support it. The methodology recommends an application

driven development of ontologies. So, every time an application is assembled,

the ontology that represents the knowledge required for the application is

built. Three steps have to be taken every time an ontology-based application

is assembled:

1. Specification of the application. Provide an application context and a view

of the components that the application tries to model.

2. Preliminary design. Based on relevant top-level ontological categories,

create a first draft where the list of terms and application specific tasks

developed during the previous phase is used as input for obtaining several

views of the global model in accordance with the top-level ontological

categories determined. Search for existing ontologies which may be refined

and extended for use in the new application.

3. Ontology refinement and structuring. Structure and refine the model in

order to arrive at a definitive design.

The methodology offers very little detail and does not recommend particular

techniques to support the development steps. Also, documentation, evaluation

and maintenance processes are missing (López, 1999). In general we agree

with the general idea of application driven ontology development and in

particular with refinement and structuring, which is reflected by our proposal

for the ontology development process.

3.7.3 Methontology

The methontology framework from Gomez-Perez (1996) includes:

1. The identification of the ontology development process, which refers to

which tasks (planning, control, specification, knowledge acquisition,

Towards the Semantic Web44

conceptualization, integration, implementation, evaluation, documenta-

tion, configuration management) one should carry out, when building

ontologies.

2. The identification of stages through which an ontology passes during its

lifetime.

3. The steps to be taken to perform each activity, supporting techniques and

evaluation steps.

4. Setting up an ORSD to capture requirements for an ontology similar to a

software specification.

The methodology offers detailed support in development-oriented activities

except formalization and maintenance, and describes project management

activities. We used the methontology framework as a skeleton and tailored

it for our specific need. We adopted the idea of an ORSD, but modified and

extended the version presented for our own needs. For example, we included

design guidelines to support ontology engineers and especially to ensure a

consistent development of ontologies. Besides typical modelling guidelines,

they also include constraints that should be checked during the development

phase.

3.7.4 Formal Tools of Ontological Analysis

In Guarino and Welty (2000), a formal ontology of unary properties is

proposed to help the use of the subsumption relation in a disciplined way.

This formal ontology is based on four fundamental philosophical notions

(identity, unity, rigidity and dependence) which impose constraints about

the way subsumption is used to model a domain. These constraints clarify

misconceptions about taxonomies and give support to bring substantial order

to ontologies. The authors present a six-step methodology to produce well-

founded taxonomies. These steps are important to get a cleaner taxonomy due

to the semantic constraints imposed on the is-a relation. In addition, the

rigorous analysis forces the ontology engineer to make ontological commit-

ments explicit, clarifying the intended meaning of the concepts used and

therefore producing a more re-usable taxonomic structure. We take this into

account in the refinement phase of the application driven ontology process.

3.8 Conclusion

We have presented a comprehensive methodology that guides the develop-

ment of ontologies for knowledge management applications. Five major steps

– a feasibility study, kick off phase, refinement phase, evaluation phase and

A Methodology for Ontology-based Knowledge Management 45

maintenance and evolution phase – are performed to build an ontology-based

application. In the future we plan to expand in particular support for the

maintenance and evolutionary aspects of ontologies, which is still a wide

open research area.

Towards the Semantic Web46

4

Ontology Management:
Storing, Aligning and
Maintaining Ontologies

Michel Klein, Ying Ding, Dieter Fensel and Borys Omelayenko

4.1 The Requirement for Ontology Management

Ontologies need to be stored, sometimes aligned and their evolution needs to

be managed. All these tasks together are called ontology management.

Alignment is a central task in ontology re-use. Re-use of existing ontologies

often requires considerable effort (Uschold et al., 1998): the ontologies either

need to be integrated (Pinto et al., 1999), which means that they are merged

into one new ontology, or the ontologies can be kept separate. In both cases,

the ontologies have to be aligned, which means that they have to be brought

into mutual agreement. The problems that underlie the difficulties in integrat-

ing and aligning are the mismatches that may exist between separate ontolo-

gies. Ontologies can differ at the language level, which can mean that they are

represented in a different syntax, or that the expressiveness of the ontology

language is dissimilar. Ontologies also can have mismatches at the model

level, for example, in the paradigm, or modelling style (Klein, 2001).

Ontology alignment is very relevant in a Semantic Web context. The

Semantic Web will provide us with a lot of freely accessible domain specific

ontologies. To form a real web of semantics – which will allow computers to

combine and infer implicit knowledge – those separate ontologies should be

aligned and linked.

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

Support for evolving ontologies is required in almost all situations where

ontologies are used in real-world applications. In those cases, ontologies are

often developed by several persons and will continue to evolve over time,

because of changes in the real world, adaptations to different tasks, or align-

ments to other ontologies. To prevent that such changes will invalidate exist-

ing usage, a change management methodology is needed. This involves

advanced versioning methods for the development and the maintenance of

ontologies, but also configuration management, that takes care of the identi-

fication, relations and interpretation of ontology versions.

All these aspects come together in integrated ontology library systems.

When the number of different ontologies is increasing, the task of storing,

maintaining and re-organizing them to secure the successful re-use of ontol-

ogies is challenging. Ontology library systems can help in the grouping and re-

organizing ontologies for further re-use, integration, maintenance, mapping

and versioning. Basically, a library system offers various functions for mana-

ging, adapting and standardizing groups of ontologies. Such integrated

systems are a requirement for the Semantic Web to grow further and scale up.

In this chapter, we describe a number of results with respect to the above

mentioned areas. We start with a description of the alignment task and show a

meta-ontology that is developed to specify the mappings. Then, we discuss the

problems that are caused by evolving ontologies and describe two important

elements of a change management methodology. Finally, in Section 4.4 we

survey existing library systems and formulate a wish-list of features of an

ontology library system.

4.2 Aligning Ontologies

For effective ontology interoperation, ontologies must be efficiently aligned.

These alignments must explicitly represent the maximal possible share of the

relationships between the ontologies and their elements to enable efficient

ontology re-use.

4.2.1 Why is Aligning Needed

The knowledge management scenario, which is in focus in this volume,

assumes different departments and individual employees create domain-speci-

fic ontologies capturing specific aspects of their knowledge. Special mapping

ontologies must be created to link different terminologies and modelling styles

used in these domain specific ontologies, creating bridges between separated

pieces of knowledge. These bridges along with domain ontologies are then

used to perform cross-ontology information search and retrieval.

Towards the Semantic Web48

Existing ontology mapping techniques primarily concern the weak ontology

coupling (Mitra et al., 2000) needed to refer them and to query. Inference-

based techniques can be also used to represent and exploit the correspon-

dences between ontology terms (Sintek and Decker, 2001). However, practical

knowledge integration and aligning tasks require development of computa-

tionally cheap mapping techniques.

4.2.2 Aligning Annotated XML Documents

Companies tend to use XML to represent more and more internal documents.

One of the main benefits of using XML is the possibility of automatic proces-

sing of XML documents according to their conceptual models represented

with document DTDs or XML schemas. The documents may contain knowl-

edge-level annotations represented in RDF according to a certain ontology

encoded in RDF Schema. These annotations may be used to answer knowl-

edge-level user’s queries and to perform document search and retrieval based

on the results of processing the annotations and ontologies. Query results may

themselves be represented as XML documents to be further automatically

processed.

This knowledge management task requires performing a sequence of

transformations of the concepts represented in the documents illustrated in

Figure 4.1.

† The source XML document is transformed to its conceptual model in RDF

(schema) that captures all the objects (with a possible shallow hierarchy of

their classes) and relations presented in the document. XML DTDs and

schemas contain a large portion of knowledge about the concepts repre-

Ontology Management: Storing, Aligning and Maintaining Ontologies 49

Figure 4.1 The alignments

sented in the documents. Basically, most of the part-of relations are expli-

citly encoded and can be re-used in document conceptual models. Some

efficient techniques for doing that have been already proposed (Lee and

Chu, 2001; Mello and Heuser, 2001). Provided with the results of these

algorithms, the user needs only to align the models to some upper-level

ontologies and perform small modifications.

† The source conceptual model is aligned to the mediating ontology provided

by the company and, for example, classifying all the documents according

to a taxonomy of possible subjects. The document is then stored as an

instance of the mediating ontology. The query service needs to process

the conceptual models and the mediating ontology to extract the concepts

that match the query.

† The target RDF (schema) conceptual model corresponds to the target docu-

ment and is aligned to the mediating ontology. The target document is

extracted from the mediating document according to these alignments.

† The target XML document serialization is re-constructed from its concep-

tual model to be then processed by the querying service.

A mapping meta-ontology needs to be developed to represent all the bridges

between XML elements and attributes, and RDF Schema classes and proper-

ties.

The XML documents tend to change with time and it may not be efficient to

store all of them as RDF instances of their conceptual models. Instead, the

documents that were retrieved to answer the query must be transformed into

the format required for the query answer. The transformation of instance XML

documents may be performed by an XSLT (Clark, 1999) stylesheet specially

compiled from the mappings to transform the concepts from the source docu-

ments to the XML format required by the query source. The necessity to

compile the mappings naturally restricts the expressive power of the mapping

language.

4.2.3 Mapping Meta-ontology

We developed the RDF transformation (RDFT) mapping meta-ontology1 that

specifies a small ontology for mapping XML DTDs to/and RDF Schemas and is

built on top of RDF Schema. The basic class diagram is presented in Figure 4.2,

where the classes are represented by their names, and name nesting indicates the

is-a relationship. The main concept of RDFT is the bridge between two sets of

concepts: the source set and the target set. The bridges are grouped

into maps. Each Map is a collection of bridges serving a single purpose. The

Towards the Semantic Web50

1 http://www.cs.vu.nl/~borys/rdft

maps are identified by their names (URIs) and form minimal re-usable modules

of RDFT bridges.

An abstract class Bridge describes common properties of bridges allow-

ing only one-to-many and many-to-one bridges. Each Bridge contains the

ValueCorrespondence property linking a map between the instance

values of the source and target entities.

The bridges also contain the Relation property linking to one of the

BridgeRelations: EquivalenceRelation or VersionRela-
tion:

† Equivalence bridges specify that the source element of a one-to-many

bridge is equivalent to the target set of elements, and the source set of

elements is equivalent to the target element for many-to-one bridges.

† A Version bridge specifies that the target set of elements form a (later)

Ontology Management: Storing, Aligning and Maintaining Ontologies 51

Figure 4.2 RDFT class diagram

version of the source set of elements. Opposite to equivalence bridges, they

assume that both source and target concepts belong to the same domain (or

document standard), and may refer to two concepts with the same name

(but different namespaces indicating versions), and imply that all the rela-

tions that held for the original concept must hold for the versioned concept,

if the opposite is not stated explicitly.

Several types of Bridges are defined in RDFT:

† Class2Class and Property2Property bridges between RDF

Schema classes and properties. In RDF Schema, classes are represented

by their names, place in taxonomy, and properties that are attached to

this class. Properties are defined as first-class objects together with

classes, and they capture most of domain knowledge (Lassila and

Swick, 1999). Classes specify aggregation of properties, and thus we

do not include class-to-property and property-to-class bridges in

RDFT. These bridges occur at steps 2 and 3 of the integration process

depicted in Figure 4.1. Class2Class bridges between a set of n

source classes and a set of m target classes declares that a set of n

instances of the classes listed as sources corresponds to a set of m

instances of the classes listed as targets. Property2Property
bridges have similar semantics related to properties.

† Tag2Class and Tag2Property bridges between XML tags of the

source DTD and the target RDF Schema classes and properties. They

occur at step 1 of the integration process.

† Class2Tag and Property2Tag bridges between RDF Schema classes

and properties, and the elements of the target DTD. They occur at step 4 of

the process.

All of the bridges contain the ValueCorrespondence property inherited

from the abstract Bridge class linking to a map. Two types of Maps are

defined in RDFT:

† DeclarativeMap specifies a set of bridges mapping all possible values

to be mapped.

† ProceduralMap specifies an XPath (Clark, 1999) expression transform-

ing instance data. XPath defines the means for two tasks: addressing data

elements in XML documents and performing element or attribute value

transformations (Chapter 4 of the specification2). In procedural maps we

use only the second part of the XPath functions (e.g. substring_
before).

Towards the Semantic Web52

2 http://www.w3.org/tr/xpath

The bridges are linked to the maps with different Connectors. Each

Connector represents a class-property assignment that has a unique URI

and as a result can be distinguished from other assignments of a property to a

class.

More information on RDFT is available from the RDFT project homepage.3

4.2.4 Mapping in OIL

The RDFT meta-ontology is intended to serve as a template for creating

mapping ontologies for the business integration tasks. It represents meta-

classes that are then instantiated into user’s classes linking user’s domain

ontologies. OIL was developed as an ontology representation language and

contains less flexible means for defining meta-classes than RDF Schema does.

However, it is still possible to represent RDFT semantics in OIL.

We model the RDFT bridges in OIL in the following way. For each bridge,

we specify two classes that define the source and the target concepts to be

mapped. For example, a one-to-many Class2Class bridge specifies the

fact that each instance of the source class is equivalent to the set of instances,

one instance of each target class. The corresponding bridge sources and bridge

targets can be defined as follows:

class-def BridgeSources
slot-constraint rdft_set_member has-value Source-
Class

class-def BridgeTargets
slot-constraint rdft_set_member has-value Target-
Class1
slot-constraint rdft_set_member has-value Target-
Class2
slot-constraint rdft_set_member has-value Target-
Class3

The equivalence of BridgeSources to BridgeTargets can also be

modelled in OIL by an equivalent axiom:

equivalent BridgeSources BridgeTargets

This axiom specifies the fact that each instance of the SourceClass class is

equivalent to three instances, one of the TargetClass1, the second is of the

TargetClass2, and the third is of TargetClass3.

However, statements over the bridges (e.g. Maps) need to be specified as

Ontology Management: Storing, Aligning and Maintaining Ontologies 53

3 http://www.cs.vu.nl/~borys/rdft

statements over OIL axioms, and it is problematic to represent them in OIL

directly. Despite that, bridge translation to OIL is still very useful because it

allows us to invoke an inference engine to perform knowledge-level validation

of the bridges.

4.3 Supporting Ontology Change

4.3.1 Ontologies are Changing

In practice, ontologies are not static, but evolve over time. Support to handle

this evolution is needed. This is especially important when ontologies will be

used in a decentralized and uncontrolled environment like the Web, where

changes occur without coordination. Much more than in a controlled environ-

ment, this may have unexpected and unknown results.

There are several reasons for changes in ontologies. According to Gruber

(1993), an ontology is a specification of a conceptualization of a domain.

Hence, changes in ontologies can be caused by either:

† changes in the domain;

† changes in the conceptualization;

† changes in the specification.

The first type of change occurs often. This problem is very well known

from the area of database schema versioning. In Ventrone and Heiler

(1991), seven different situations are sketched in which changes in a

domain (domain evolution) require changes to a database model. An exam-

ple of this type of change is the merging of two university departments: this

is a change in the real world, which requires the ontology that describes this

domain to be modified too.

Changes in the conceptualization are also happening frequently. It is impor-

tant to realize that a shared conceptualization of a domain – which is a

requirement for information exchange – is not a static specification that is

produced once in the history, but has to be reached over time. In chapter 14,

ontologies are described as dynamic networks of meaning, in which consensus

is achieved in a social process of exchanging information and meaning. This

view attributes a dual role to ontologies in information exchange: they provide

consensus that is both a prerequisite for information exchange and a result of

this exchange process.

A conceptualization can also change because of the usage perspective.

Different tasks may imply different views on the domain and consequently

a different conceptualization. When an ontology is adapted for a new task or a

new domain, the modifications represent changes to the conceptualization. For

Towards the Semantic Web54

example, consider an ontology about traffic connections in Amsterdam, with

concepts like roads, cycle-tracks, canals, bridges and so on. When the ontol-

ogy is adapted from a bicycle perspective to a water transport perspective, the

conceptualization of a bridge changes from a remedy for crossing a canal to a

time consuming obstacle.

Finally, a specification change is a kind of translation, that is, a change in

the way in which a conceptualization is formally recorded. Although ontology

translation is an important and non-trivial issue in many practical applications,

it is less interesting from a change management perspective, for two reasons.

First, an important goal of a translation is to retain the semantics, that is,

specification variants should be equivalent4 and they thus only cause syntactic

interoperability problems. Second, a translation is often created to use the

ontology in an other context (i.e. an other application or system), which

heavily reduces the importance of interoperability questions.

Changes in ontologies are thus inevitable. In the next sections, we look at

the characteristics of ontology changes and describe two elements of an ontol-

ogy change methodology.

4.3.2 Changes in Ontologies Involve Several Problems

There are several problems involved with ontology changes. In this section we

look at incompatibilities caused by ontology changes, the specification of

them, and at the conceptual implication of such changes.

4.3.2.1 Effects of Ontology Change

An important effect of the evolution of ontologies is that it might cause

incompatibilities. Incompatibility for ontologies means that the original ontol-

ogy cannot be replaced by the changed version without causing side effects in

the conforming data or the applications that use them. However, the real

problem is that these side effects, and thus the meaning of compatibility,

depend on the use of the ontology.

† When an ontology is used to specify the meaning of data, this data may get

a different interpretation or may use unknown terms. An example of this

use is a web page in which content is annotated with terms from an ontol-

ogy.

† If ontologies are built from other ontologies, changes to the source ontol-

ogy may affect the meaning of the resulting ontologies.

Ontology Management: Storing, Aligning and Maintaining Ontologies 55

4 Although in practice a translation often implies a change in semantics, possibly caused by

differences in the representation languages. See Corcho et al. (2000) and Klein (2001) for a

discussion of ontology language differences and mismatches.

† Applications that use the ontology may also be hampered by changes to the

ontology. In the ideal case, the conceptual knowledge that is necessary for

an application should be merely specified in the ontology; however, in

practice applications also use an internal model. This internal model may

become incompatible with the ontology.

The meaning of compatibility is different for each of those types of usage. In

the first case, compatibility means the ability to interpret all the data correctly

through the changed ontology. This is much like the interpretation of compat-

ibility in database schema versioning. Compatibility here means ‘preservation

of instance data’.

In the second case, the effects of the changes on the logical model that the

ontology forms are often important. Other ontologies that import an ontology

might depend on the conclusions that can be drawn from it. A change in the

ontology should not make previous conclusions invalid. In this case, compat-

ibility means ‘consequence preservation’.

Applications that use the ontology might depend on the logical model, but

also on the characteristics of the ontology itself. For example, a web site that

uses an ontology for navigation can depend on the fact that there are only four

top-level classes, or that the hierarchy is only three levels deep. A change that

does not invalidate queries to instance data or the logical model might inva-

lidate queries to the ontology itself. This interpretation of compatibility is

‘preservation of answers to ontology queries’.

4.3.2.2 Typical Changes and their Specification

The specification of changes is another problem. There are many possible

types of changes in ontologies, ranging from simple renamings to compound

transformations. The specification of especially the latter is important, because

the effect of a compound change can be different from the accumulated effect

of steps that build the complex change (Lerner, 2000).

To make this more concrete, we consider changes in a particular content

standard, that is, UNSPSC.5 Content standards specify a standard hierarchy of

products and services which can be used by companies to classify their actual

products. This hierarchy can be considered as a simple ontology that specifies

a consensus on the products that exist. Different companies that use the same

content standard can easily communicate with respect to their products.

Besides UNSPSC, which addresses a general and broad domain of products

and services, there are several other standard classifications in use, for exam-

Towards the Semantic Web56

5 http://eccma.org/unspsc/

ple, RosettaNet,6 which is targeted at the IT industry, and e@Class,7 another

broad standard that originates from Germany.

These standards tend to change very often. For example, when we take a

look at UNSPSC, we see the following:

† there were 16 updates between 31 January 2001 and 14 September 2001;

† each update contained between 50 and 600 changes;

† in 7.5 months, more than 20% of the current standard is changed!

Although some parts of the UNSPSC schema might be more stable than other

parts, it is clear that this amount of changes cannot be ignored. Such a high

change rate can quickly invalidate a lot of the actual classifications of

products. For example, the product ‘Binding elements’ in version 8.0 is

removed from the standard and three new products are added in version 8.1

(‘Binding spines or snaps’, ‘Binding coils or wire loops’, and ‘Binding combs

or strips’). This means that all products that were classified as ‘Binding

elements’ are unclassified under the new version.

An analysis of differences between two version of content standards has

yielded the following list of typical changes: class-title changes, additions

of classes, relocations of classes in the hierarchy (by moving them up or

down in the hierarchy, or horizontally), relocations of a whole subtree in

the hierarchy, merges of two classes (in two variants: two classes become

one new class, or one class is appended to the other class), splits of classes,

and pure deletions. However, current versioning techniques for content

standards are often quite simple. In UNSPSC, for example, all changes

are encoded as either additions, deletions or edits (title changes). This

means that the relocation of a subtree is specified as a sequence of ‘delete

a list of classes’ and ‘add a list of classes’.

4.3.2.3 Conceptual Implication of Changes

Another problem with ontology change is the possible discrepancy between

changes in the specification and changes in the conceptualization. The actual

specification of concepts and properties is a specific representation of the

conceptualization; however, the same concepts could also be specified differ-

ently. Hence, a change in the specification does not necessarily coincide with a

change in the conceptualization (Klein and Fensel, 2001), and changes in the

specification of an ontology are not by definition ontological changes.

Ontology Management: Storing, Aligning and Maintaining Ontologies 57

6 http://www.rosettanet.org/
7 http://www.eclass.de/

For example, there are changes in the definition of a concept which are not

meant to change the concept, and, the other way around, a concept can change

without a change in its logical definition. An example of the first case is

attaching a slot ‘fuel-type’ to a class ‘Car’. Both class definitions still refer

to the same ontological concept, but in the second version it is described more

extensively. On the other hand, a natural language definition of a concept

might change without a logical change in the definition of a concept, for

example, a new definition of ‘Chair’ might exclude reclining chair.

In the literature, these different types of changes are distinguished in the

following way (Visser et al., 1997b; Klein, 2001):

† a conceptual change is a change in the interpretation of a domain (i.e. the

conceptualization), which results in different ontological concepts or differ-

ent relations between those concepts;

† an explication change is a change in the way the conceptualization is

specified.

It is impossible to determine the type of change automatically, because this is

basically a decision of the ontology engineer. Therefore, it is necessary to

allow ontology engineers to specify the intention of their change. If they

characterize a change in a definition as ‘conceptual’, then the source and target

definitions should be considered as different (even when their specification is

the same), else, if a change is ‘explicational’, the two definitions can be

regarded as equivalent.

4.3.3 Change Management

A change management methodology that allows partly automatic transforma-

tion of data and ontologies between different versions is essential. Such a

methodology should be able to cope with the different types of incompatibil-

ity, should allow a precise specification of changes, and should help ontology

engineers to specify the conceptual consequence of the change. We now

discuss two aspects of such a methodology: a comparison tool for ontologies

and the change specification mechanism.

4.3.3.1 Comparing Ontologies

An important aspect of a change management methodology is the ability to

compare versions of ontologies and highlight the differences. This helps in

finding changes in ontologies, even if those have occurred in an uncontrolled

way, that is, possibly by different people in an unknown order. We have

developed an Ontology Versioning Server, a web-based system to manage

Towards the Semantic Web58

changes in ontologies. Its main function is to present a transparent interface to

arbitrary versions of ontologies. To achieve this, the system maintains an

internal specification of the relation between the different variants of ontolo-

gies. It allows users to differentiate between ontologies at a conceptual level

and to export the differences as adaptations or transformations.

One of the central features of system is the ability to compare ontologies at a

conceptual level. This is inspired by UNIX diff, but the implementation is

quite different. Standard diff compares file versions at line level, highlight-

ing the lines that textually differ in two versions. Our system, in contrast,

compares version of ontologies at a structural level, showing which defini-

tions of ontological concepts or properties are changed.

The comparison function distinguishes between the following types of

change:

† Non-logical change, e.g. in a natural language description. These are

changes in the label of an concept or property, or in comment inside

definitions.

† Logical definition change. This is a change in the definition of a concept

that affects its formal semantics. Examples of such changes are alterations

of subclass statements, or changes in the domain or range of properties.

Additions or deletions of local property restrictions in a class are also

logical changes. The second and third change in Figure 4.3 (class ‘Male’

and property ‘hasParent’) are examples of such changes.

† Identifier change. This is the case where a concept or property is given a

new identifier, that is, a renaming.

† Addition of definitions.

† Deletion of definitions.

Each type of change is highlighted in a different colour, and the actually

changed lines are printed in boldface. An example of the visual representation

of the result of a comparison is shown in Figure 4.3.

The comparison function also allows the user to characterize the conceptual

implication of the changes. For the first three types of changes, the user is

given the option to label them either as ‘identical’ (i.e. the change is an

explication change), or as ‘conceptual change’. In the latter case, the user

can specify the conceptual relation between the two version of the concept.

For example, by stating that the property ‘hasParent1.0’ is a sub-property of

‘hasParent2.0’.

Another function is the possibility of analysing effects of changes. Changes

in ontologies not only affect the data and applications that use them, but they

can also have unintended, unexpected and unforeseeable consequences in the

ontology itself (McGuinness et al., 2000). The system provides some basic

Ontology Management: Storing, Aligning and Maintaining Ontologies 59

support for the analysis of these effects. First, on request it can highlight the

places in the ontology where conceptually changed concepts or properties are

used. For example, if a property ‘hasChild’ is changed, it will highlight the

definition of the class ‘Mother’, which uses the property ‘hasChild’. This

function can also exploit the transitivity of properties to show the propagation

of possible changes through the ontology.

4.3.3.2 Specification of Change

A change in an ontology constitutes a new version of the ontology. This new

version defines an orthogonal update relation between the definitions in the

original version of the ontology and those in the new version. The update

relation between two versions of a concept, for example, between class A1.0

and class A2.0, is fundamentally different from the relation between two

concepts inside an ontology, for example, between class A and class B. In

the latter case, the relation is purely conceptual; however, the update relation

also has meta-information about the change of the concept associated with

it.

Towards the Semantic Web60

Figure 4.3 The result of a comparison of two ontologies

We distinguish the following properties that are associated with an update

relation:

† transformation or actual change: a specification of what has actually chan-

ged in an ontological definition, specified by a set of change operations (cf.

(Banerjee et al., 1987), for example, change of a restriction on a property,

addition of a class, removal of a property, etc.;

† conceptual relation: the logical relation between constructs in the two

versions of the ontology, for example, specified by equivalence relations,

subsumption relations, logical rules, or approximations. The conceptual

relation between two versions of a concept specifies the intention of the

ontology engineer that characterized the change.

† descriptive meta-data like date, author, and reason of the update: this

describes the when, who and why of the change;

† valid context: a description of the context in which the update is valid. In its

simplest form, this is the time period in which the change is valid in the real

world, conforming to valid date in temporal databases (Roddick, 1995) (in

this terminology, the ‘date’ in the descriptive meta-data is called transac-

tion date). More extensive descriptions of the context, in various degrees of

formality, are also possible.

Keeping track of these four aspects of a change relation serves several func-

tions. It is possible to perform loss-less transformations of ontologies, by

exploiting the set of change operations. The conceptual relation gives the

ability to re-interpret data and other ontologies that use the changed ontology

via the new ontology. The meta-data and context helps to select versions and

validate their applicability.

4.4 Organizing Ontologies

As the number of different ontologies is increasing, the task of storing,

maintaining and re-organizing them to ensure the successful re-use of ontol-

ogies is challenging (Fensel, 2001). Ontology library systems are an impor-

tant tool in grouping and re-organizing ontologies for further re-use,

integration, maintenance, mapping and versioning. Basically it is a library

system that offers various functions for managing, adapting and standardiz-

ing groups of ontologies. It should be easily accessible and offer efficient

support for re-using existing relevant ontologies and standardizing them

based on upper-level ontologies and ontology representation languages

(Ding and Fensel, 2001).

Ontology Management: Storing, Aligning and Maintaining Ontologies 61

4.4.1 Sesame Requirements

Sesame8 (see Chapter 5) allows persistent storage of RDF data and RDFS

information and subsequent querying of the information enabled by RQL.

Sesame selected a relational database as the storage mechanism, but is

DBMS-independent via the repository abstraction layer (RAL). The RAL is

an interface that offers RDF-specific methods to its clients and translates these

methods to calls to its specific DBMS. The big advantage of RAL is that it

makes it possible to implement Sesame on top of a wide variety of repositories

without changing any of Sesame’s other components (Broekstra et al., 2000).

Sesame provides a basis functionality to store ontologies and their instances

and provides the querying service as well. However, for large-scale use and

ontology re-use, more advanced functions are needed. A real-world ontology

library system must support the following (see Figure 4.4):

† open storage, identification and versioning of ontologies;

† smooth access to existing ontologies and advanced support in adapting

ontologies to certain domain and task-specific circumstances (instead of

requiring such ontologies to be developed from scratch);

† fully employing the power of standardization and providing access to

upper-layer ontologies and standard representation languages.

4.4.2 Functionality of an Ontology Storage System

An ontology library system should feature a functional infrastructure to store

and maintain ontologies, an uncomplicated adapting environment for editing,

Towards the Semantic Web62

Figure 4.4 Aspects of an ontology library system

8 http://sesame.aidministrator.nl/

searching and reasoning ontologies, and strong standardization support by

providing upper-level ontologies and standard ontology representation

languages. The aspects above can be further specified as follows.

4.4.2.1 Management

The main purpose of ontologies is to enable knowledge sharing and re-use

(Visser et al., 1997a). Important functions should include open storage, iden-

tification, and versioning support.

† Storage (how to store the ontology): (a) Is the ontology easily accessible

(via a client/server architecture, Peer-to-Peer, etc.); (b) Are ontologies

classified according to some existing or home-made categories; and (c)

Are ontologies stored in modules? (The modularity structure can guaran-

tees proficient ontology re-use).

† Identification (how to uniquely identify an ontology): Each ontology must

have a unique identifier in the ontology library system.

† Versioning (how to maintain the changes of ontologies in an ontology

library system): Versioning is very critical in ensuring consistency

among different versions of ontologies.

4.4.2.1 Adaptation

Ontology library systems should facilitate the task of extending and updating

ontologies. They should provide user-friendly environments for searching,

editing and reasoning ontologies. Important aspects include support in finding

and modifying existing ontologies.

† Searching (how to search ontology): Does a library system provide certain

searching facilities, such as keyword-based searching or other advanced

searching? Does it feature an adequate browsing function?

† Editing (how to add, delete and edit specific ontologies): How does the

system support the editing function? Does it support remote and coopera-

tive editing?

† Reasoning (how to derive consequences from an ontology): How does the

system support ontology evaluation and verification? Is it possible to derive

any query-answering behaviour?

4.4.2.3 Standardization

Ontology library systems should support existing or available standards, such

as standardized ontology representation languages and standardized taxo-

nomies or structures of ontologies.

Ontology Management: Storing, Aligning and Maintaining Ontologies 63

† Language (the kind of standard ontology language used in the ontology

library system, for instance, RDFS,9 XMLS10 or DAML1OIL11): Does the

system only support one standard language or different languages?

4.4.2.4 Upper-level Ontologies

It can be useful if the ontology library system is ‘grounded’ in any existing

upper-level ontologies, such as Upper Cyc Ontology, SENSUS, MikroKos-

mos, the PENNMAN Upper Model, and IEEE upper-layer ontology. The

upper-level ontology captures and models the basic concepts and knowledge

that could be re-used in creating new ontologies and in organizing ontology

libraries.

4.4.3 Current Storage Systems

We have surveyed a number of existing ontology library systems, to analyse

the current state-of-the art in ontology library systems. The systems that we

included in our survey are: WebOnto,12 Ontolingua,13 DAML Ontology

library system, SHOE,14 Ontology Server from Vrije Universiteit, Brussels,

Belgium,15 IEEE Standard Upper Ontology,16 OntoServer17 and ONIONS.18

Not all are real ontology library systems, but each provides at least some

aspects of a library system. There are other ontology library systems than

those that we included in our comparison. We have only included approaches

that are publicly available as those offer enough detailed information to enable

us to evaluate their actual functionality. The results frequently have been

related to Sesame to identify the extensions that might be required in the

future. The following summarizes the features of the above-mentioned ontol-

ogy library systems.

4.4.3.1 Management

Storage. The ontology library systems in this survey fall into one of two

Towards the Semantic Web64

9 http://www.w3.org/rdf/
10 http://www.w3.org/xml/
11 http://www.ontoknowledge.org/oil/oilhome.shtml
12 http://eldora.open.ac.uk:3000/webonto
13 http://www-ksl-svc.stanford.edu:5915/
14 http://www.cs.umd.edu/projects/plus/shoe/
15 http://www.starlab.vub.ac.be/research/dogma/ontologyserver.htm
16 http://suo.ieee.org/refs.html
17 http://ontoserver.aifb.uni-karlsruhe.de/
18 http://saussure.irmkant.rm.cnr.it/onto/

categories: (a) those with a client/server-based architecture aimed at enabling

remote accessing and collaborative editing (WebOnto, Ontolingua, DAML

Ontology Library); and (b) those that feature a web-accessible architecture

(SHOE, IEEE SUO). Ontology Server features a database-structured architec-

ture. Most ontologies in this survey are classified or indexed. They are stored

in a modular structured library (or lattice of ontologies). WebOnto, Ontolin-

gua and ONIONS all highlight the importance of a modular structure in an

ontology library system as that structure facilitates the task of re-organizing

ontology library systems and re-using and managing ontologies.

Identification. The standard way to identify an ontology is by its Unique

name or Identifier.

Versioning. Only SHOE supports versioning for handling the dynamic

changes of ontologies. Versioning is an important aspect of the ontology

library system. Although many of the systems surveyed do not currently

have this function, they clearly show that it is needed for future improvements.

Sesame. It has a client/server-based architecture and supports web access. It

does not support collaborative editing. It deploys the RAL that makes it

possible to implement Sesame on top of a wide variety of database-structured

repositories without changing any of Sesame’s other components. The ontol-

ogies stored in Sesame are not classified and are not in a modular structure.

Sesame supports ontology versioning, as described in Chapter 11.

4.4.3.2 Adaptation

Searching. Most of these ontology library systems can be accessed through the

Internet or World Wide Web. They offer simple browsing only. Ontolingua is

the only one that offers some functional searching features, such as keyword

searching (wild-card searching), simple query answering, context sensitive

searching, etc. As it is embedded in the database management system, Ontol-

ogy Server could also provide SQL-based searching.

Editing. Most ontology library systems only provide simple editing func-

tions. WebOnto and Ontolingua support collaborative ontology editing (asyn-

chronous and synchronous).

Reasoning. Very simple reasoning functions are provided by WebOnto

(rule-based reasoning), Ontolingua (ontology testing) and SHOE (ontology

revision).

Sesame. It supports the highly expressive querying of RDFS and RDF data

enabled by RQL. It has some simple editing functions but not collaborative

editing. The reasoning function of Sesame is described in Chapter 11.

Ontology Management: Storing, Aligning and Maintaining Ontologies 65

4.4.3.3 Standardization

Language. These ontology library systems use different languages to store

their ontologies. In this case, the important function for the future ontology

library system should support inter-language translating (like Ontolingua) or

some standard language should be accepted or proposed within the ontology

community (such as DAML1OIL).

Upper-level Ontology. Ontolingua has a public version of CYC upper-level

ontology called HPKB-UPPER-LEVEL with some modification drawn from

Pangloss, WordNet, and Penma. WebOnto and SHOE do not have the stan-

dard upper-level ontology but have their own fine-grained structure (e.g. Base

Ontology). IEEE SUO tries to set up a public standard upper-level ontology.

Sesame. It supports RDF, RDFS and DAML1OIL. It does not have any

upper-level ontology.

4.4.4 Requirements for a Storage System

In this section, we summarize important requirements for structuring an ontol-

ogy library system to enhance ontology management, adaptation and standar-

dization. In doing this, we formulate a wish-list for an ideal ontology library

system.

4.4.4.1 Management

Storage. A client/server-based architecture is critical to an ontology library

system’s capacity to support collaborative ontology editing. An ontology

library system should also be web accessible.

It is necessary to classify an ontology in an ontology library system in order

to facilitate searching, managing and re-using ontology. Some of the ontology

classification mechanisms available are based on distinguishable features of

ontologies. Examples include the following:

† the subject of ontologies: the DAML ontology library system classifies

ontologies according to the Open Directory Category (www.dmoz.org);

† the structure of the ontology: the Ontolingua ontology library system has

an inclusion lattice showing the inclusion relations between different ontol-

ogies;

† inter and intra ontology features: Visser and Bench-Capon (1998) indexed

ontologies based on the intra and inter ontology features. Examples include

general, design process, taxonomy, axioms, inference mechanism, applica-

tion, contributions, etc.;

Towards the Semantic Web66

† the lattice structure: Noy and Hafner (1997) built a lattice of ontologies

showing the relevance of ontologies;

† the dimensions of the ontology: Heijst et al. (1997) indexed ontologies

using dimensions (task/method dependency and domain dependency) to

partition the library into a core library and a peripheral library;

† stratified upper-level ontology: ONIONS used generic, intermediate and

domain layer to index ontologies;

† the relations of ontology: Visser and Bench-Capon (1998) indexed ontol-

ogy based on defined relations, such as the subset/superset relation, exten-

sion relation, restriction, and mapping relation;

† the components of ontology: Visser and Bench-Capon (1998) also

mentioned the indexing of ontology based on components of ontologies,

such as domain partitioning (partition domain in logical units), alternative

domain views (polymorphic refinement), abstraction (abstract and detailed

ontologies), primary ontologies versus secondary ontologies, terminologi-

cal, information and knowledge modelling ontologies.

Support for modular organization in the ontology library system allows

complex ontologies to be composed from simpler ones. This requires maximal

cohesion within modules and minimal interaction between modules (McGuin-

ness et al., 2000). Most of the ontology library systems that aim to facilitate

ontology re-use, ontology mapping and integration have adopted this struc-

ture. ONIONS also highlights the stratified design of an ontology library

system. Different naming policies assist the ontology library system to achieve

the modular organization or stratified storage of ontologies (McGuinness et

al., 2000). The disjointed partitioning of classes can facilitate modularity,

assembling, integrating and consistency checking of ontologies. If, for

instance, a certain class, such as ‘people,’ were disjointed from another

class, say ‘countries’, then consistency checks could be carried out much

sooner and faster. Thus, the partition modification has proven to be extremely

valuable for editing purposes. Linking class names with their own contexts or

using namespaces for differentiating them can serve to prevent violation

within individual ontologies. As ontologies continue to grow, so too does

the importance of systematic and consistent naming and organizational rules.

Identification. Unique ontology URL, identifier and name are used as the

identifier for ontologies in the ontology library systems.

Versioning. A version control mechanism is very important to an ontology

library system. Unfortunately, most existing ontology library systems cannot

support it, except for SHOE.

Ontology Management: Storing, Aligning and Maintaining Ontologies 67

4.4.4.2 Adaptation

Searching and editing. An ontology library system should feature a visualized

browsing environment, using hyperlinks or cross-references to closely related

information. It should support collaborative editing and offer advanced

searching features by adopting various existing information retrieval techni-

ques, database searching features, or AI heuristic techniques. Ontology library

systems could also monitor user profiles based on access patterns in order to

personalize the view of ontologies (Domingue and Motta, 1999).

Reasoning. A simple reasoning function should be included in order to

facilitate ontology creation, ontology mapping and integration.

4.4.4.3 Standardization

Language. Syntactically, an ontology representation language should be stan-

dardized or inter- or intra-ontology language translation should be supported.

Semantically, an ontology library system should feature the common vocabu-

lary (or faceted taxonomy). At any rate, it should eliminate the implicitness

and misunderstanding of terms in different ontologies (due to synonyms,

homonyms, etc.) for most generic classes. Preferably, an ontology library

system should also support compatibility with or mapping between multiple

controlled vocabularies from different domains. This would not only serve to

guarantee flexibility in expressing an ontology semantically, but also to liqui-

date implicitness. The structures of these common vocabularies or multiple

controlled vocabularies must be faceted, or modulated so as to facilitate the re-

use, mapping and integration of ontologies (McGuinness, 2000). These voca-

bularies can help in simple synonym matching, sibling analysis, and disjoint

partition checking.

Upper-level ontology. A standard upper-level ontology is important for

better organization of ontology library systems (Ontolingua, IEEE SUO).

4.4.4.4 Other requirements

Ontology scalability. Ontology library systems should also consider increas-

ing the scale of ontologies.

Maintenance facility. Ontology library systems should also provide some

maintenance features, such as consistency checking, diagnostic testing,

support for changes, and adaptation of ontologies for different applications.

Explicit documentation. Each ontology in an ontology library system should

be extensively documented. The documentation should include such informa-

tion as how the ontology was constructed, how to make extensions and what

Towards the Semantic Web68

the ontology’s naming policy, organizational principles and functions are.

Such explicit documents about the ontologies themselves will pave the way

for efficient ontology management and re-use.

4.5 Summary

In this chapter, we have looked at various aspects of ontology management.

Ontology management is the whole set of methods, methodologies, and tech-

niques that is necessary to efficiently use multiple variants of ontologies from

possibly different sources for different tasks.

Alignment is an important aspect, because in many real-world scenarios,

there are several ontologies of a domain used for a specific task. Each of those

domain ontologies might capture specific aspects of knowledge and might use

different terminology. Special mapping ontologies must be created to link

different terminologies and modelling styles used in these domain specific

ontologies. We described a meta-ontology that can be used to creating such

bridges between separated pieces of knowledge. These bridges along with

domain ontologies can then be used to perform cross-ontology tasks.

We also discussed the fact that ontologies are not static, but evolve over

time. Domain changes, adaptations to different tasks, or changes in the

conceptualization require modifications of the ontology. The evolution of

ontologies causes interoperability problems which might hamper their effec-

tive re-use. Ontology comparison techniques can help the ontology engineer to

find changes between ontologies and to characterize them conceptually. When

the conceptual relation between the versions, the transformations between

them, as well as the meta-data of the change is maintained, it is possible to

support both loss-less transformations between version and re-interpretation

of data and knowledge under different versions.

Ontology library systems are systems that support the ontology manage-

ment task in various aspects. We have discussed the functions of a ontology

library system, we have surveyed exiting systems and finally came up with a

wish-list for the ideal ontology library system.

Ontology Management: Storing, Aligning and Maintaining Ontologies 69

5

Sesame: A Generic
Architecture for Storing
and Querying RDF and
RDF Schema

Jeen Broekstra, Arjohn Kampman and Frank van Harmelen

The resource description framework (RDF) (Lassila and Swick, 1999) is a

W3C recommendation for the formulation of meta-data on the World Wide

Web. RDF Schema (RDFS) (Brickley and Guha, 2000) extends this standard

with the means to specify domain vocabulary and object structures. These

techniques will enable the enrichment of the Web with machine-processable

semantics, thus giving rise to what has been dubbed the Semantic Web.

We have developed Sesame, an architecture for storage and querying of

RDF and RDFS information. Sesame allows persistent storage of RDF data

and schema information, and provides access methods to that information

through export and querying modules. It features ways of caching information

and offers support for concurrency control.

This chapter is organized as follows: In Section 5.2 we discuss why a query

language specifically tailored to RDF and RDFS is needed, over and above

existing query languages such as XQuery. In Section 5.3 we look at Sesame’s

modular architecture in some detail. In Section 5.4 we give an overview of the

SAIL API and a brief comparison to other RDF API approaches. Section 5.5

discusses our experiences with Sesame to date, and Section 5.6 looks into

possible future developments. Finally, we provide our conclusions in Section

5.7.

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

5.1 The Need for an RDFS Query Language

RDF documents and RDF schemata can be considered at three different levels

of abstraction:

† at the syntactic level they are XML documents;1

† at the structure level they consist of a set of triples;

† at the semantic level they constitute one or more graphs with partially

predefined semantics.

We can query these documents at each of these three levels. We briefly

consider the pros and cons of doing so for each level in the next sections.

This leads us to conclude that RDF and RDFS should really be queried at the

semantic level. We also briefly discuss RQL, a language for querying RDF(S)

documents at the semantic level, which has been implemented in the Sesame

architecture.

5.1.1 Querying at the Syntactic Level

Any RDF model (and therefore any RDF schema) can be written down in

XML notation. It would therefore seem reasonable to assume that we can

query RDF using an XML query language (e.g., XQuery) (Chamberlin et

al., 2001).

However, this approach disregards the fact that RDF is not just an XML

notation, but has its own data model that is very different from the XML tree

structure. Relationships in the RDF data model that are not apparent from the

XML tree structure become very hard to query.

As an example, the XML description of the RDF model in Figure 5.1 is as

follows:

,rdf:Description rdf:about¼
"http://www.enersearch.se/
corporate/organisation/hohome.html".
,s:hasName.Hans Ottosson,/s:hasName.
,s:worksFor rdf:resource ¼

"http://www.enersearch.com"/.
,/rdf:Description.

,rdf:Description rdf:about¼
"http://www.enersearch.com".
,s:legalName.Enersearch AB,/s:legalName.

Towards the Semantic Web72

1 Actually, this is not necessarily true; non-XML syntaxes for RDF exist, but XML is the most

widely used syntax for RDF.

,rdf:type rdf:resource¼
"http://www.description.org/
schema#Consortium"/.

,/rdf:Description.

In an XML query language such as XQuery (Chamberlin et al., 2001), expres-

sions to traverse the data structure are tailored towards traversing a node-

labelled tree. However, the RDF data model is a graph, not a tree, and more-

over, both its edges (properties) and its nodes (subjects/objects) are labelled.

In querying at the syntax level, this is literally left as an exercise for the query

builder: one cannot query the relation between the resource signifying ‘Hans

Ottoson’ and the resource signifying ‘Enersearch AB’ without knowledge of

the syntax that was used to encode the RDF data in XML. Ideally, we would

want to formulate a query like ‘Give me all the relationships that exist between

Hans Ottosson and Enersearch AB’. However, using only the XML syntax, we

are stuck with formulating an awkward query like ‘Give me all the elements

nested in a Description element with an about attribute with value

‘‘http://www.enersearch.se/corporate/organisation/hohome.html’’, of which

the value of its resource attribute occurs elsewhere as the about attribute

value of a Description element that has a nested element title with the

value ‘‘Enersearch AB’’.’

Not only is this approach inconvenient, it also disregards the fact that the

XML syntax for RDF is not unique: the same RDF graph can be serialized in

XML in a variety of ways. This means that one query will never be guaranteed

to retrieve all the answers from an RDF model.

5.1.2 Querying at the Structure Level

When we abstract from the syntax, any RDF document represents a set of

triples, each triple representing a statement of the form Subject-Predicate-

Object. A number of query languages have been proposed and implemented

that regard RDF documents as such a set of triples, and that allow such a triple

set to be queried in various ways.

Sesame 73

Figure 5.1 An example RDF graph

Consider the RDFS graph in Figure 5.2. An RDF query language such as,

for example, Squish (Miller, 2001) would allow us to query which resources

are known to be of type VicePresident:

SELECT ?x
FROM somesource
WHERE (rdf::type ?x VicePresident)

The clear advantage of such a query is that it directly addresses the RDF data

model, and it is therefore independent of the specific syntax that has been

chosen to represent the data.

However, a disadvantage of any query language at this level is that it

interprets any RDF model only as a set of triples, including those elements

that have been given a special semantics in RDFS. For example, since .../
hohome.html is of type VicePresident, and since VicePresident
is a subclass of Employee,.../hohome.html is also of type

Employee, by virtue of the intended RDFS semantics of type and

subClassOf. However, there is no triple that explicitly asserts this fact.

As a result, the query:

SELECT ?x
FROM somesource
WHERE (rdf::type ?x Employee)

will fail because the query only looks for explicit triples in the store, whereas

the triple (../hohome.html, type, Employee) is not explicitly

present in the store, but is implied by the semantics of RDFS.

Notice that simply expanding the query into something like:

Towards the Semantic Web74

Figure 5.2 An example RDFS graph

SELECT ?x
FROM somesource
WHERE (rdf::type ?x ?c1),

(rdfs::subClassOf ?c1 Employee)
OR ?c1 ~ Employee

will solve the problem in this specific example, but does not solve the problem

in general.

5.1.3 Querying at the Semantic Level

What is clearly required is the means to query at the semantic level, that is,

querying the full knowledge that a RDFS description entails and not just the

explicitly asserted statements. There are at least two options to achieve this

goal:

† Compute and store the closure of the given graph as a basis for querying.

† Let a query processor infer new statements as needed per query.

While the choice of an RDF query language is, in principle, independent of the

choice made in this respect, the fact remains that most RDF query languages

have been designed to query a simple triple base, and have no specific func-

tionality or semantics to discriminate between schema and data information.

RQL (Alexaki et al., 2000; Karvounarakis et al., 2000) is a proposal for a

declarative query language that does explicitly capture these semantics in the

language design itself. The language has been initially developed by the

Institute of Computer Science at FORTH,2 in Heraklion, Greece, in the

context of the European IST project MESMUSES.3 We briefly describe the

language here; for a detailed description of the language see Karvounarakis et

al. (2000) and Broekstra and Kampman (2001a).

RQL adopts the syntax of OQL (Cattel et al., 2000), and like OQL, the

language is defined by means of a set of core queries, a set of basic filters, and

a way to build new queries through functional composition and iterators.

The core queries are the basic building blocks of RQL, which give access to

the RDFS specific contents of an RDF triple store. RQL allows queries such as

Class (retrieving all classes), Property (retrieving all properties) or

Employee (returning all instances of the class with name Employee).

This last query of course also returns all instances of subclasses of

Employee, since these are also instances of the class Employee, by virtue

of the semantics of RDFS. Notice that in RQL, these semantics are defined in

the query language itself: the formal query language definition makes a

Sesame 75

2 See http://www.ics.forth.gr/
3 See http://cweb.inria.fr/projects/mesmuses/

commitment to interpret the semantics of RDFS. This is notably different from

an approach like Squish, where the designer/implementer is at liberty to inter-

pret the RDFS entailment using one of the options mentioned earlier, or not at

all.

RQL can also query the structure of the subclass hierarchy. In our example,

the query subClassOf(Employee) would return the class VicePre-
sident as its only result. In general, this would return all direct and indirect

subclasses of Employee, since RQL is aware of the transitivity of the

subclass relation. The query subClassOf^(Employee) would return

only the immediate subclasses.

For composing more complex queries, RQL has a select-from-where

construction. In the from-clause of such a query, we can specify a path expres-

sion. These allow us to match patterns along entire paths in RDF/RDFS

graphs. For example, the query:

select Y, $Y
from VicePresident{X}.worksFor{Y : $Y}

returns all things that employ a vice-president, as well as the type of that thing,

effectively doing pattern-matching along a path in the graph of Figure 6.2.

Notice that RQL path expressions explicitly enable free mixing of data and

schema information.

5.2 Sesame Architecture

An overview of Sesame’s architecture is shown in Figure 5.3. In this section

we give a brief overview of the main components.

For persistent storage of RDF data, Sesame needs a scalable repository.

Naturally, a data base management system (DBMS) comes to mind, as these

have been used for decades for storing large quantities of data. In these

decades, a large number of DBMSs have been developed, each having their

own strengths and weaknesses, targeted platforms, and APIs. Also, for each of

these DBMSs, the RDF data can be stored in numerous ways.

As we would like to keep Sesame DBMS-independent and it is impossible

to know which way of storing the data is best fitted for which DBMS or which

application domain, all DBMS-specific code is concentrated in a single archi-

tectural layer of Sesame: the storage and inference layer (SAIL).

This SAIL is an application programming interface (API) that offers RDF-

specific methods to its clients and translates these methods to calls to its

specific DBMS. An important advantage of the introduction of such a separate

layer is that it makes it possible to implement Sesame on top of a wide variety

Towards the Semantic Web76

of repositories without changing any of Sesame’s other components. Section

5.4 looks at the API in more detail.

Sesame’s functional modules are clients of the SAIL API. Currently, there

are three such modules: the RQL query engine, the RDF admin module and the

RDF export module. Each of these modules is described in more detail in the

next three sections.

Depending on the environment in which it is deployed, different ways to

communicate with the Sesame modules may be desirable. For example,

communication over HTTP may be preferable in a Web context, but in

other contexts protocols such as remote method invocation (RMI) or the

simple object access protocol (SOAP) (Box et al., 2000) may be more suited.

Sesame 77

Figure 5.3 Sesame’s architecture

In order to allow maximal flexibility, the actual handling of these protocols has

been placed outside the scope of the functional modules. Instead, protocol

handlers are provided as intermediaries between the modules and their clients,

each handling a specific protocol. The introduction of the SAIL and the proto-

col handlers makes Sesame into a generic architecture for RDFS storage and

querying, rather than just a particular implementation of such a system.

Adding additional protocol handlers makes it easy to connect Sesame to

different operating environments. The construction of concrete SAIL imple-

mentations is discussed in Section 5.4.

Sesame’s architecture has been designed with extensibility and adaptability

in mind. The possibility of using other kinds of repositories has been

mentioned before. Adding additional modules or protocol handlers is also

possible.

5.2.1 The RQL Query module

As we have seen, one of the three modules currently implemented in Sesame is

an RQL query engine. In Sesame, a version of RQL was implemented that is

slightly different from the language proposed by Karvounarakis et al. (2000).

The Sesame version of RQL features better compliance to W3C specifications,

including support for optional domain and range restrictions as well as multi-

ple domain and range restrictions. It does not, however, feature support for

data typing as proposed in the original language proposal. See Broekstra and

Kampman (2001b) for details.

The Query Module follows the path depicted in Figure 5.4 when handling a

query. After parsing the query and building a query tree model for it, this

model is fed to the query optimizer, which transforms the query model into an

equivalent model that will evaluate more efficiently. These optimizations

mainly consist of a set of heuristics for query sub-clause move-around. Notice

that these pre-evaluation optimizations are not dependent on either the domain

or storage method.

The optimized model of the query is subsequently evaluated in a streaming

fashion, following the tree structure into which the query has been broken

down. Each object represents a basic unit in the original query and evaluates

Towards the Semantic Web78

Figure 5.4 Query parsing and optimization model

itself, fetching data from the SAIL where needed. The main advantage of this

approach is that results can be returned in a streaming fashion, instead of

having to build up the entire result set in memory first.

In Sesame, RQL queries are translated (via the object model) into a set of

calls to the SAIL. This approach means that the main bulk of the actual

evaluation of the RQL query is done in the RQL query engine itself. For

example, when a query contains a semi-join operation over two sub-queries,

each of the sub-queries is evaluated, and the semi-join operation is then

executed by the query engine on the results.

Another approach would be to directly translate as much of the RQL query

as possible to a query specific for the underlying repository. An advantage of

this approach is that, when using a DBMS, we would get all its sophisticated

query evaluation and optimization mechanisms for free. However, a large

disadvantage is that the implementation of the query engine is directly depen-

dent on the repository being used, and the architecture would lose the ability to

easily switch between repositories.

This design decision is one of the major differences between Sesame and

the RDF Suite implementation of RQL by ICS-FORTH (see Alexaki et al.,

2000). The RDF Suite implementation relies on the underlying DBMS for

query optimization. However, this dependency means that RDF Suite cannot

as easily be transported to run on top of another storage engine.

A natural consequence of our choice to evaluate queries in the SAIL is that

we need to devise several optimization techniques in the engine and the SAIL

API implementation, since we cannot rely on any given DBMS to do this for

us.

5.2.2 The Admin Module

In order to be able to insert RDF data and schema information into a reposi-

tory, Sesame provides an admin module. The current implementation is rather

simple and offers two main functions:

† incrementally adding RDF data/schema information;

† clearing a repository.

Partial delete (on a per statement basis) functionality is not yet available in the

current admin module, but support for this feature is under development.

The admin module retrieves its information from an RDF(S) source (usually

an online RDF(S) document in XML-serialized form) and parses it using a

streaming RDF parser (currently, we use the ARP RDF parser that is part of

the Jena toolkit (Carrol and McBride, 2001). The parser delivers the informa-

tion to the admin module on a per statement basis: (Subject, Predi-

Sesame 79

cate, Object). The admin subsequently tries to assert this statement into

the repository by communicating with the SAIL and reports back any errors or

warnings that might have occurred.

The current implementation makes no explicit use of the transaction func-

tionality of SAIL yet, but we expect to implement this in the near future.

5.2.3 The RDF Export Module

The RDF Export Module is a very simple module. This module is able to

export the contents of a repository formatted in XML-serialized RDF. The

idea behind this module is that it supplies a basis for using Sesame in combi-

nation with other RDF tools, as all RDF tools will at least be able to read this

format.

Some tools, like ontology editors, only need the schema part of the data. On

the other hand, tools that do not support RDFS semantics will probably only

need the non-schema part of the data. For these reasons, the RDF Export

Module is able to selectively export the schema, the data, or both.

5.3 The SAIL API

The SAIL API is a set of Java interfaces that has been specifically designed for

storage and retrieval of RDFS-based information. The main design principles

of SAIL are that the API should:

† Define a basic interface for storing RDF and RDFS in, and retrieving and

deleting RDF and RDFS from (persistent) repositories.

† Abstract from the actual storage mechanism; it should be applicable to, for

example, RDBMSs, file systems, or in-memory storage.

† Be usable on low-end hardware like PDAs, but also offer enough freedom

for optimizations to handle huge amounts of data efficiently on, for exam-

ple, enterprise level database clusters.

† Be extendable to other RDF-based languages like DAML1OIL (Horrocks

et al., 2001).

Other proposals for RDF APIs are currently under development. The most

prominent of these are the Jena toolkit (Carrol and McBride, 2001) and the

Redland Application Framework (Beckett, 2001). SAIL shares many charac-

teristics with both approaches.

An important difference between these two proposals and SAIL is that the

SAIL API specifically deals with RDFS on the retrieval side: it offers methods

for querying class and property subsumption, and domain and range restric-

tions. In contrast, both Jena and Redland focus exclusively on the RDF triple

Towards the Semantic Web80

set, leaving interpretation of these triples as an exercise to the user. In SAIL,

these RDFS inference tasks are handled internally. The main reason for this is

that there is a strong relationship between the efficiency of the inference and

the actual storage model being used. Since any particular SAIL implementa-

tion has a complete understanding of the storage model (e.g. the database

schema in the case of an RDBMS), this knowledge can be exploited to

infer, for example, class subsumption more efficiently.

Another difference between SAIL and other RDF APIs is that SAIL is

considerably more lightweight: only four basic interfaces are pre-defined,

offering basic storage and retrieval functionality and transaction support,

but not much beyond that. We feel that in some applications such minimalism

may be preferable to an API that has more features, but is also more complex

to understand and implement.

The current Sesame system offers several implementations of the SAIL

API. The most important of these is the SQL92SAIL, which is a generic

implementation for SQL92 (ISO, 1999). The aim is to be able to connect to

any RDBMS while having to re-implement as little as possible. In the

SQL92SAIL, only the definitions of the data types (which are not part of

the SQL92 standard) have to be changed when switching to a different data-

base platform. The SQL92SAIL features an inference module for RDFS,

based on the RDFS entailment rules as specified in the RDF Model Theory

(Hayes, 2001). This inference module computes the schema closure of the

RDFS being uploaded, and asserts these implicates of the schema as derived

statements. For example, whenever a statement of the form (foo,
rdfs:domain, bar) is encountered, the inference module asserts that

(foo, rdf:type, property) is an implied statement.

The SQL92SAIL has been tested in use with several DBMSs, including

PostgreSQL4 and MySQL5 (see also Section 5.5).

An important feature of the SAIL (or indeed of any API) is that it is possible

to put one on top of the other. The SAIL at the top can perform some action

when the modules make calls to it, and then forward these calls to the SAIL

beneath it. This process continues until one of the SAILs finally handles the

actual retrieval request, propagating the result back up again.

We implemented a SAIL that caches all schema data in a dedicated data

structure in main memory. This schema data is often very limited in size and is

requested very frequently. At the same time, the schema data is the most

difficult to query from a DBMS because of the transitivity of the subClassOf

and subPropertyOf properties. This schema-caching SAIL can be placed on

Sesame 81

4 See http://www.postgresql.org/
5 See http://www.mysql.com/

top of arbitrary other SAILs, handling all calls concerning schema data. The

rest of the calls are forwarded to the underlying SAIL.

Another important task that can be handled by a SAIL is concurrency

handling. Since any given RQL query is broken down into several operations

on the SAIL level, it is important to preserve repository consistency over

multiple operations. We implemented a SAIL that selectively blocks and

releases read and write access to repositories, on a first come first served

basis. This set-up allows us to support concurrency control for any type of

repository.

5.4 Experiences

Our implementation of Sesame can be found at http://sesame.aidministrator.nl/,

and is freely available for non-commercial use. The implementation follows the

generic architecture described in this chapter, using the following concrete imple-

mentation choices for the modules:

† We use both PostgreSQL and MySQL as database platforms. The reason

we are running two platforms simultaneously is mainly a development

choice: we wish to compare real-life performance of both platforms and

SAIL implementations.

† We have various repository set-ups running, combining different stacks of

SAILs (including the SQL92SAIL, the PostgreSQL SAIL, the MySQL

SAIL, and a schema cache and a concurrency handler) on top of each

repository.

† A protocol handler is realized using HTTP.

† The admin module uses the ARP RDF parser.

In this section, we briefly report on our experiences with various aspects of this

implementation.

5.4.1 Application: On-To-Knowledge

Figure 5.5 shows how Sesame serves as the central data repository for a

number of tools in our knowledge management architecture as outlined in

Chapter 1:

† OntoExtract extracts ontological conceptual structures from natural

language documents. OntoWrapper performs the same task for semi-struc-

tured information sources. These ontologies are uploaded for storage in

Sesame.

† The resulting ontologies can be downloaded into the OntoEdit ontology

Towards the Semantic Web82

editor. When the user has edited an ontology, the result is again stored in

Sesame.

† The resulting ontologies are downloaded into QuizRDF, a semantic search

engine, which provides search, browse and query facilities for web data

based on the ontologies.

† Spectacle generates web sites whose content and navigation structure are

based on the ontologies and data stored in Sesame.

† OntoShare allows end-users in a community to share knowledge using the

ontological structure stored in Sesame. An RDF-annotated information

resource for the community is built up automatically and stored in Sesame.

Because Sesame is a server-based application, the integration of all this func-

tionality is realized simply by establishing HTTP connections to Sesame. We

are currently in the process of applying this architecture in a number of knowl-

edge management applications.

Sesame 83

Figure 5.5 Sesame is positioned as a central tool in the knowledge management

architecture

5.4.2 RDFS in Practice

While developing Sesame, many ambiguities in the RDFS specification were

uncovered. One of the reasons for this is that RDFS is defined in natural

language: no formal description of its semantics is given. As a result of this,

the RDFS specification even contains some inconsistencies.

In an attempt to solve these ambiguities, the RDF Core Working Group has

been chartered to revise the RDF and RDFS specifications. One of the results

is a formal Model Theory for RDF (Hayes, 2001), which specifies model and

schema semantics more precisely and includes a formal procedure for comput-

ing the closure of a schema.

As mentioned in Section 5.4, the SQL92SAIL features an inference module

that follows the procedure described in the model theory. Our experiences are

that a naive implementation of this formal procedure is painfully slow, but

with relative ease it can be optimized to perform quite satisfactorily. Improv-

ing this performance even further is currently work in progress.

5.4.3 PostgreSQL and SAIL

In our first test set-up for Sesame we used PostgreSQL. PostgreSQL is a freely

available (open source) object-relational DBMS that supports many features

that normally can only be found in commercial DBMS implementations.

One of the main reasons for choosing PostgreSQL is that it is an object-

relational DBMS, meaning that it supports sub-table relations between its

tables. As these sub-table relations are also transitive, we used these to

model the class and property subsumption relations of RDFS.

The SAIL that is used in this set-up therefore is specifically tailored towards

PostgreSQL’s support for sub-tables (which is not a standard SQL feature). It

uses a dynamic database schema that was inspired by the schema shown in

Karvounarakis et al. (2000). New tables are added to the database whenever a

new class or property is added to the repository. If a class is a sub-class of

other classes, the table created for it will also be a sub-table of the tables for

the super-classes. Likewise for properties being sub-properties of other prop-

erties. Instances of classes and properties are inserted as values into the appro-

priate tables. Figure 5.6 gives an impression of the contents of a database

containing the data from Figure 5.2.

The actual schema involves one more table called resources. This

table contains all resources and literal values, mapped to a unique ID. These

IDs are used in the tables shown in the figure to refer to the resources and

literal values. The resources table is used to minimize the size of the

database. It ensures that resources and literal values, which can be quite

Towards the Semantic Web84

long, only occur once in the database, saving potentially large amounts of

memory.

In the test set-up, several optimizations in the SAIL implementation were

made, such as selective caching of namespaces and frequently requested

resources to avoid repetitive table lookups.

Our experiences with this database schema on PostgreSQL were not comple-

tely satisfactory. Data insertion is not as fast as we would like. Especially incre-

mental uploads of schema data can be very slow, since table creation is very

expensive in PostgreSQL. Even worse, when adding a new subClassOf relation

between two existing classes, the complete class hierarchy starting from the sub-

class needs to be broken down and rebuilt again because sub-table relations

cannot be added to an existing table; the sub-table relations have to be specified

when a table is created. Once created, the sub-table relations are fixed. Another

Sesame 85

Figure 5.6 Impression of the object-relational schema used with PostgreSQL

disadvantage of the sub-table approach is that cycles in the class hierarchy cannot

be modelled properly in this fashion.

In a new set-up, we used the SQL92SAIL to connect to PostgreSQL. The

current version of this SAIL implementation takes a radically different

approach: all RDF statements are inserted into a single table with three

columns: Subject, Predicate, Object. While we have yet to perform

structured testing and analysis with this approach, it seems to perform signifi-

cantly better, especially in scenarios where the RDFS changes often.

For querying purposes, the original PostgreSQL SAIL performed quite

satisfactorily, especially when combined with a schema-caching SAIL stacked

on top (see Section 5.4). We have yet to perform structured testing on querying

with the new SQL92SAIL, but initial results show that it performs somewhat

slower than the earlier PostgreSQL SAIL, which is to be expected.

5.4.4 MySQL

In initial tests with MySQL, we implemented a SAIL with a strictly relational

database schema (see Figure 5.7). As can be seen, a number of dependencies

arise due to the storage of schema information in separate tables. In order to

keep overhead to a minimum, every resource and literal is encoding using an

integer value (the id field), to enable faster lookups. To encode whether a

Towards the Semantic Web86

Figure 5.7 Impression of the relational schema used with MySQL

particular statement was explicitly asserted or derived from the schema infor-

mation, an extra column is_derived is added where appropriate.

The main difference between this schema and the schema used in the

PosgreSQL set-up (see Figure 5.6) is that in this set-up, the database schema

does not change when the RDFS changes. In application scenarios where the

RDFS (the ontology) is unstable, this is an advantage because typically adding

new tables to a database requires more time and resources than simply insert-

ing a row in an existing table.

As in the PostgreSQL SAIL, selective caching of namespaces and other

optimization techniques were implemented in this set-up. Overall, this

approach performed significantly better in our test scenarios, especially on

uploading.

5.5 Future Work

5.5.1 Transaction Rollback Support

While the SAIL API has support for transactions, it currently has no transac-

tion rollback feature. Transaction rollbacks, especially in the case of upload-

ing information, are crucial if we wish to guarantee database consistency. In

the case of RDF uploads, transaction rollbacks can be supported at two levels:

† A single upload of a set of RDF statements can be seen as a single transac-

tion, or alternatively, a single upload can be ‘chunked’ into smaller sets to

support partial rollback when an error occurs during the upload session.

† A single RDFS statement assertion can be seen as a transaction in which

several tables in the database need to be updated. From the user point of

view, the schema assertion is atomic (‘A is a class’), but from the repository

point of view, it may consist of several table updates, for instance, in the

schema presented in Figure 5.6, a new table would have to be created, and

new rows would have to be inserted into the ‘Resources’ and the ‘Classes’

table.

Both levels of transaction rollback support may help ensure database consis-

tency. Together with the concurrency support already present in the Sesame

system, this will help move Sesame towards becoming an ACID6 compliant

storage system (note, however, that this can only be guaranteed if the platform

used for storage supports it).

Sesame 87

6 Atomicity, concurrency, isolation, durability – these four properties of a transaction ensure

database robustness over aborted or (partially) failed transactions.

5.5.2 Versioning Support

Chapter 11 describes an implementation of per statement versioning. This

basic type of versioning will enable more elaborate versioning schemes.

5.5.3 Adding and Extending Functional Modules

Sesame currently features three functional modules. We plan to extend the

functionality of these modules, as well as add new modules. In the current

admin module implementation, only incremental upload of RDF statements is

supported. We plan to implement more advanced update support, most impor-

tantly support for deleting individual triples from the repository. A prototype

implementation of this new feature already exists but has to be tested and

extended further. Plans for new modules include a graphical visualization

component and query engines for different query languages (for example,

Squish).

5.5.4 DAML1OIL Support

As mentioned in Section 5.4, the RDF SAIL API has been designed to allow

extension of the functionality, for example, to include support for

DAML1OIL. Such an implementation is described in Chapter 11.

5.6 Conclusions

In this chapter we have presented Sesame, a generic architecture for storing

and querying both RDF and RDFS information. Sesame is an important step

beyond the currently available storage and query devices for RDF, since it is

the first publicly available implementation of a query language that is aware of

the RDFS semantics.

An important feature of the Sesame architecture is its abstraction from the

details of any particular repository used for the actual storage. This makes it

possible to port Sesame to a large variety of different repositories, including

relational databases, RDF triple stores, and even remote storage services on

the Web.

Sesame itself is a server-based application, and can therefore be used as a

remote service for storing and querying data on the Semantic Web. As with the

storage layer, Sesame abstracts from any particular communication protocol,

so that Sesame can easily be connected to different clients by writing different

protocol handlers.

We have constructed several concrete implementations of the generic archi-

Towards the Semantic Web88

tecture, using PostgreSQL and MySQL as repositories and using HTTP as

communication protocol handlers.

Important next steps to expand Sesame towards a full fledged storage and

querying service for the Semantic Web include implementing transaction roll-

back support, versioning, extension from RDFS to DAML1OIL and imple-

mentations for different repositories. This last feature especially will be

greatly facilitated by the fact that the current SAIL implementation is a

generic SQL92 implementation, rather than specific for a particular DBMS.

Sesame 89

6

Generating Ontologies for
the Semantic Web:
OntoBuilder

R.H.P. Engels and T.Ch. Lech

6.1 Introduction

Significant progress has been made in technologies for publishing and distribut-

ing knowledge and information on the web. However, much of the published

information is not organized, and it is hard to find answers to questions that

require more than a keyword search. In general, one can say that the web is

organizing itself. Information is often published in relatively ad hoc fashion.

Typically, concern about the presentation of content has been limited to purely

layout issues. This, combined with the fact that the representation language used

on the World Wide Web (HTML) is mainly format-oriented, makes publishing

on the WWW easy, giving it an enormous expressiveness.

People add private, educational or organizational content to the web that is

of an immensely diverse nature. Content on the web is growing closer to a real

universal knowledge base, with one problem relatively undefined; the problem

of the interpretation of its contents. Although widely acknowledged for its

general and universal advantages, the increasing popularity of the web also

shows us some major drawbacks. The developments of the information

content on the web during the last year alone, clearly indicates the need for

some changes. Perhaps one of the most significant problems with the web as a

distributed information system is the difficulty of finding and comparing infor-

mation.

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

Thus, there is a clear need for the web to become more semantic. The aim of

introducing semantics into the web is to enhance the precision of search, but

also enable the use of logical reasoning on web contents in order to answer

queries. The CORPORUM OntoBuilder toolset is developed specifically for

this task. It consists of a set of applications that can fulfil a variety of tasks,

either as stand-alone tools, or augmenting each other.

Important tasks that are dealt with by CORPORUM are related to document

and information retrieval (find relevant documents, or support the user finding

them), as well as information extraction (building a knowledge base from web

documents to answer queries), information dissemination (summarizing stra-

tegies and information visualization), and automated document classification

strategies.

First versions of the toolset are encouraging in that they show large poten-

tial as a supportive technology for building up the Semantic Web. In this

chapter, methods for transforming the current web into a semantic web are

discussed, as well as a technical solution that can perform this task: the

CORPORUM tool set. First, the toolset is introduced; followed by some

pragmatic issues relating to the approach; then there will be a short overview

of the theory in relation to CognIT’s vision; and finally, a discussion on some

of the applications that arose from the project.

6.1.1 OntoBuilder and its Relation to the CORPORUM System

When generating and building up, utilizing and maintaining a semantic web,

the main raison d’être for such a web is the fact that people need to deal with

information overload. Naturally, this holds at the individual level when learn-

ing, organizing and interacting on the Internet as much as for organizational

learning, knowledge sharing and socializing (Bremdal et al., 1999).

Facilitation of these scenarios by the CORPORUM system requires a

diverse functionality, covering a broad variety of applications. Scenarios differ

from information collection, categorization, analysis and extraction to brows-

ing, visualization and navigation aids. In order to give such a semantic web

some autonomy, intelligent agents can be defined for automation of many

tasks. CORPORUM serves as the ‘brains’ of such intelligent agents, gathering

intelligence of all kinds on the Internet, intranets or networked servers, in

order to find specific information. This information could be medical knowl-

edge for a specific new medicine, a student wanting to collect material for a

course or business intelligence about potential market opportunities or threats.

For such intelligent agent scenarios, web server components, database servers,

mission schedulers and a client server component are included in

CORPORUM (Bremdal and Johansen, 2000). The CORPORUM tool set

Towards the Semantic Web92

comprises a component that is able to generate textual summaries based on

information distribution in discourses, visualize graphical summaries of texts

and relate personal profiles to summary generation (Bremdal, 2000). By offer-

ing a server for semantic analysis of natural language (free text) texts it

effectively puts the flesh on the bones of the Semantic Web (Bremdal and

Johansen, 2000; Engels and Bremdal, 2000). Analyses of structured and

unstructured texts are performed by OntoBuilder. The basic principles on

which the linguistic approach is based are explained in Section 6.3.

In short, three main scenarios for applying the CORPORUM system can be

identified:

1. extraction of information from texts for building knowledge bases (cf.

semantic web);

2. retrieval of information from other sources (search scenarios); and

3. strategies to compress, visualize and disseminate information to people

(dissemination and navigation).

It is at the extraction layer that OntoBuilder is defined. It consists of the two

modules OntoExtract and OntoWrapper.

The OntoBuilder toolbox will eventually be able to extract all kinds of

information from structured sources (OntoWrapper) and unstructured free

text (OntoExtract). These documents could be available on your local intranet

or the World Wide Web.

6.1.2 OntoExtract

OntoExtract builds on a core natural language analysis engine. The engine

supports analysis of natural language texts and generates lightweight, domain

specific ontologies of these texts while utilizing already existing knowledge

from a central data repository.

OntoExtract utilizes highly expressive querying of RDF data and schema

information, using RQL, which is being developed by the ICS-FORTH insti-

tute in Greece. Sesame (described in the previous chapter), is used for the

repository management. The Sesame data repository can be questioned

through the access layer and edited with the OntoEdit ontology editor

described in Chapter 7.

The overall extraction process, shown in Figure 6.1, is typically iterative,

with a user initiating the process by providing a location to analyse for seed-

ontology generation, together with some parameters that define the extent of

the Internet domain to be analysed. From each page containing natural

language text, lightweight ontologies are produced and automatically

submitted to the Sesame repository for storage. The statements that are

Generating Ontologies for the Semantic Web: OntoBuilder 93

submitted include pointers to the original documents from which the knowl-

edge is extracted. Figure 6.2 provides an example of generated output from the

case study described in Chapter 13.

The toolset can be used in two basic scenarios. In one scenario, the user has

no starting point for ontology building and is actively pursuing one. OntoEx-

tract can now analyse a few documents that are seen as ‘core’ with respect to

the domain that is to be modelled. The user provides the location(s) of the

domain after which the software analyses it. After the analysis phase an initial

ontology is uploaded to the Sesame server. OntoEdit can be used from that

point in order to visualize, alter and extend this initial ontology according to its

needs. When analysing documents, OntoExtract keeps track of which

concepts are already available in Sesame, and will output concepts closely

related to those already stored and confirmed. The user can request these

Towards the Semantic Web94

Figure 6.1 The OntoBuilder extraction cycle

concepts to be visualized as a ‘proposal’ for ontology extension within OntoE-

dit.

Secondly, there is the scenario in which the ontology builder has sufficient

overview of the domain that is to be modelled. In that case, the starting point

will be a user-defined initial ontology, which is inputted using OntoEdit and

stored in Sesame. OntoExtract can now retrieve this ontology from the Sesame

repository and take this into consideration as ‘background knowledge’ when

analysing more documents. In this scenario, OntoExtract will only propose

concepts that are semantically ‘close’ to the already existing ontology, either

being closely related to existing concepts, or being sub-/super-classes, exten-

sion definitions of classes and so on.

Generating Ontologies for the Semantic Web: OntoBuilder 95

Figure 6.2 Excerpt of output generated by OntoExtract on the Enersearch domain

6.1.3 OntoWrapper and TableAnalyser

Often, an ontology engineer would like to analyse (web) domains for instance

data in order to populate ontologies. Instance data is frequently represented as

structured information. This means that in many scenarios, there is a need for a

tool that can be configured for such tasks. OntoWrapper and TableAnalyser

are defined for these tasks (see Figure 6.3).

OntoWrapper deals with the analysis of structured pages and allows for the

definition of rule-based entity extraction. OntoWrapper allows the user to

define XML/RDF templates, variables and rule sets in order to perform a

structured analysis of a specific domain (e.g. a company’s internal phone

directory). It iteratively scrolls through all the available pages and extracts,

for example, the names of people and their telephone numbers. The informa-

tion that is found is exported to the RDF repository.

Towards the Semantic Web96

Figure 6.3 OntoWrapper and TableAnalyser allow for the analysis of structured web

pages and table based content extraction

The ontology engineer defines RDF templates and OntoWrapper then

analyses the specified documents, automatically generating the merged output

and sending it to the Sesame repository as data statements about specific

pages.

Figure 6.4 provides an example RDF template, to be automatically filled out

with information extracted from a phone directory. OntoWrapper explicitly

populates the repository with data according to the ontology that is defined

and stored in Sesame. In the current example, the class kCLASS: PERSONl
is defined to have three properties kPROPERTY: NAMEl, kPROPERTY:
TELEPHONEl and kPROPERTY: EMAILl. For every analysed instance that

is found in the web domain, the system automatically generates a new instance

of class ‘PERSON’ which is automatically numbered.

OntoBuild is dependent on a ‘document handler’ which recursively crawls

the Internet, thereby avoiding loops, reiterations and other issues related to

automated web-crawling. The current component can deal with a variety of

formats, ranging from HTML, ASCII and PDF to documents in MS-Office

format.

6.2 Reading the Web

6.2.1 Semantics on the Internet

The disadvantage of ‘flat’, format-based representation languages such as

HTML, is that they rarely combine information about content (the text a writer

wants to disseminate), and layout (the format in which this is to be done). In

the case of HTML, this disadvantage has to be set against a rather easy to learn

language, so that virtually anybody with web access can easily publish infor-

mation, knowledge and opinions. Using an explicit representation language

Generating Ontologies for the Semantic Web: OntoBuilder 97

Figure 6.4 Template defining an instance of class ’person’ used by OntoWrapper

with clear semantics, usually puts an end to ease of use for most average users.

In addition, the web is a medium for publishing content and much of this

content is not originally created with web-based publishing in mind. This,

once more, shows the need for the introduction of a clearly separated semantic

representation of content.

History teaches that few scenarios evolve so completely as to totally oblit-

erate their past. An example of this would be the development of web browsers

over the years, where backward compatibility has always been a major issue.

Seen from such a point of view, there are two different scenarios in which the

World Wide Web could evolve further. On the one hand, content and seman-

tics could be extracted from the currently existing mass of documents avail-

able on the web, thus probably reproducing the initial semantics of the web.

Alternatively, there is possibility of starting by defining the semantics in a

page and developing web sites from there on.

The former alternative implies a need for redundant storage, as web contents

are stored in their original form (e.g. HTML annotated) as well as in a semantic

form (e.g. in the form of RDF code that can be stored inside a page or in a

separate repository like Sesame (see Chapter 5).

The latter alternative will in many cases imply a breach with the ‘old style’ and

probably imply the need for a new and different architecture for the World Wide

Web. As is often the case, each of these approaches has its own drawbacks.

Given that a combination of approaches is often the best way to go, one can

imagine tool support in order to either analyse pages that are not represented in

a ‘semantically rich’ manner, or graphical interfaces (editors) to support creat-

ing such semantic representations (semi-) automatically (cf. Chapter 7). A

variety of projects developing and evaluating semantic representation

languages have shown that representing all web content in ‘higher order

languages’ might not be feasible unless more automated approaches become

available. Several projects have been initiated worldwide to support this

Semantic Web approach on all levels (Fensel et al., 1999; Hendler, 2000).

This includes defining languages, extensions on languages and query

languages (Brickley and Guha, 2000; Fensel et al., 2000) and the implementa-

tion of tools for (semi-) automatic content extraction (Bremdal and Johansen,

2000; Knowledge Management Group, 2000).

6.2.2 Problems with Retrieving Natural Language Texts from
Documents

Most approaches for natural language analysis start at a level where ‘clean‘

text is available. Often there are also restrictions on the scope of such ‘clean‘

text in that it may only contain a single discourse. Besides problems related to

Towards the Semantic Web98

the linguistic analysis of a piece of text, the actual physical retrieval process

can be rather problematic. Regularly, it is seen that theoretically fine

approaches do not make it in the light of real-world applications, simply

because the pre-processing steps are not implemented satisfactorily. Thus,

understanding the often pragmatic problems during retrieval, as well as defin-

ing ways to overcome them, can lift accuracy in the practical application of

such linguistic technologies dramatically.

What type of problems can be identified? Generally speaking, the following

factors strongly influence the results of applied linguistic systems:

† Document handling: although a rather trivial issue, we mention it for

completeness sake. The factors that follow are all strongly dependent on

the ability to get a running text from a document. Not all document formats

allow for the extraction of such running texts (as streams of characters and

layout information), or at least make them very hard to get.

† Normalization: documents can be parsed up front during retrieval such that

special characters, line breaks, paragraph breaks, hyphenation and the like

are represented in a standard manner; bulleted lists and enumerations are

normalized; and such that as few as possible differences between the final

analysed texts exist.

† Multiple discourses: one of the harder problems is to find out how many

discourses a document actually contains. Is it a single, consistent document

or is it a mere collection of smaller, independent pieces of information? As

soon as linguistic approaches start to perform co-reference chaining,

pronoun resolution and the like, there is a clear need for a thorough

discourse boundary analysis.

† Document categorization: closely related to the issue of multiple discourses

is the issue of document classification. Ideally, one is able to analyse up

front the type of document that is going to be retrieved. In that way, it is

possible to treat it accordingly and possibly sub-divide it.

† Writing style: perhaps one of the least emphasized facts in linguistic analy-

sis on the Internet is the fact that the vast majority of authors are non-native

speakers. This has a profound effect on analysis methods that are mostly

based upon the assumption that texts are grammatically correct.

† Layout issues: texts can be found in various locations within a document,

e.g. in headings, captions, and within pictures. Font size, type and appear-

ance can convey meaning (bold, italics, etc.).

These six factors relating to the early stages of document analysis strongly

influence results in the later stages. Some effects are easily dealt with, others

are really domain-specific and some accumulate problems. We now take a

closer look at these factors.

Generating Ontologies for the Semantic Web: OntoBuilder 99

6.2.3 Document Handling

There are an increasing number of documents that can only be read with third-

party programs and plug-ins. These are documents that do not limit them-

selves to the standard HTML format and its derivatives (XHTML, DHTML,

etc.), and to standard scripting languages (ASP, JavaScript, CGI, etc.). Due to

the sheer variety of programs in this area, and the fact that each community

and usage seems to have its own preferred programs, standardization is a

seemingly fruitless effort. Problems with retrieving documents from the Inter-

net are multifold.

Linguistic analysis really benefits from information on important words,

sentences and paragraphs. One can think of titles, abstracts, emphasized words

and phrases and so on. Every document format has its own way of representing

such information, and whereas some formats allow easy identification of this

information, others do not.

Many programs and plug-ins do provide ways to export the original docu-

ment into ASCII or another less complex format that is easily usable. Layout

information is often lost, which is one thing, but often the text is also

obstructed. Exporting a two-column text from some document formats can

mean that the exported ASCII represents the document as if it was a one-

column text. Similar problems are often found with images, captions under

images that appear in the middle of a text, page numbers and other items on the

page that are completely mixed with the text. It does not need arguing that

severe problems will arise in the later phases of the document analysis.

6.2.4 Normalization

Related to these non-standardized representation issues is the issue of ‘text

normalization’. As many linguistic algorithms take standard (enhanced)

ASCII as input, this input has to be generated out of the various formats,

possibly using a variety of (proprietary) components and plug-ins.

Normalization is necessary to generate the pre-specified format required

by the particular parser being used. Normalization needs to take account

of all the different ways of representing, for example, headlines, sections,

line breaks, but also paragraphs, chapters, etc. It also needs to take

account of the various ways and characters used to achieve hyphenation,

for example, for word hyphenation or for the identification of compounds,

etc. Finally, normalization is required to overcome the differences in

standards used in the document format, for example, the identification

of a bulleted list in HTML vs. PDF.

Towards the Semantic Web100

6.2.5 Multiple Discourses

Discourse analysis can be done on several levels. A natural division is between

an analysis on the document level (is a document built up of smaller docu-

ments or not?), or at the linguistic level (how many discourses does the current

text contain?). In this section we are concerned with the document level, that

is, how much information is available for deciding whether a currently

retrieved document is about a single or multiple topics. Documents like news-

letters, news front pages, listings, but also contracts and legal documents often

discuss a variety of topics in one single document, whereas research papers,

articles and so on often basically discuss a single domain or topic.

Analysis of discourses at this level will obviously be very layout oriented,

with heuristics used for recognition of articles in news pages. A specific order

of events and characters can be enough to identify a headline:

,CR.1,LF.1,EMPHASIZED TEXT.1,CR.1(OPTIONAL:
,LF.) 1,SMALLER\ FONT.) HEADLINE

Other document information that can lead to the identification of specific

text parts are HTML anchor and SPAN tags, used for identification of text

within a document as in:

,A NAME¼"#987457".HEADLINE,/A.

Similar heuristics can be implemented for documents in MS-Office format,

where in many cases paragraphs and sentences already are classified according

to a set of tags with properties of their own (e.g. heading styles, body text

styles, etc.). Many such identifiers can be used in discourse identification at the

document level, but there are again only a few heuristics that are universally

applicable to all pages.

Probably the best way to tackle this sheer diversity of ways to identify

discourses is to combine this step with the later step of discourse analysis at

the linguistic level. In that case, it is advantageous to retain as much format

and layout information as possible, to be available at later stages of analy-

sis.

6.2.6 Document Class Categorization

Related to the previous issue is the problem of document classification. It may

be possible to classify documents at the document level, so that general

parsing strategies with class-specific heuristics can be applied.

This is probably most clearly seen when looking at news pages vs. insur-

ance documents or contracts. Whereas the former document type usually

Generating Ontologies for the Semantic Web: OntoBuilder 101

distinguishes between articles through visual clues in the form of emphasized

text, bulleted lists or headlines, contracts and insurance documents often

identify a breach in discourse by an enumeration in its articles (i.e. ‘§1.2’, ‘

§1.3’, etc.). One common approach is to use the ‘Naive Bayes’ classifier,

which involves a little basic probability and very little guidance from a

human director.

6.2.7 Writing Style

Specific styles of writing by different authors are an important factor in

explaining results from an automated analysis process. The way in which a

piece of prose is written determines for a large part how ‘interpretable’ a text

is. Many of the factors that play a role in this are really cognitive. People use

several strategies to explain themselves, from discourses that explain things

bottom up, top down, from the beginning or just from some intermediate

‘knowledge’ level or even not at all. Additionally one can try to explain a

specific phenomenon straight away, or by using an analogy. Texts are not only

written to explain but also to influence (like political statements, adverts, etc.).

Some texts are also written for a particular group of readers (children, specia-

lists, youth, etc.). All these factors determine how much additional back-

ground knowledge is needed in order to read and understand a discourse. It

is expected that if documents can be classified up front (see Section 6.2.6), the

kind of analysis and preprocessing and the amount of knowledge needed to

really understand the text can be estimated. Common strategies for dealing

with these topics are unfortunately not known, whereas a variety of

approaches tackle partial problems in specific domains. It is to be expected

that until these issues are resolved, many approaches will have to fall back on

more general linguistically oriented heuristics.

6.2.8 Layout Issues

Currently, many approaches first completely normalize texts, thereby throw-

ing away much of the non-textual conventions on layout, which contains much

information of importance and relevance. A typical analysis process might

benefit from knowledge about headlines, the relations between footnotes and

text markers, the paragraph a specific caption belongs to, ingresses and their

relation to the whole document, and also font sizes, emphasized texts and so

on. Often there are pieces of text that could be filtered out (e.g. program

snippets in a text on programming), or should be treated differently (e.g.

citations). There are approaches that aim at tackling specific issues in layout,

Towards the Semantic Web102

whereas the overall topic of layout interpretation is probably closely related to

document classification.

It is probably infeasible to expect heuristics based on layout to apply in

general, the more since this issue is one of cognition and culture rather than

being purely technical.

6.3 Information Extraction

Information extraction (IE) is the task of obtaining structured information

from unstructured sources, for example, natural language text (Klabunde et

al., 2001). IE-related tasks are by no means restricted to text, as there are

numerous domains like tables, lists, etc. However, the following section

focuses on natural language text only. With the Internet developing rapidly

and huge amounts of information being available, the necessity for systems

that organize information in a more accessible manner is obvious. Thus, IE-

related applications are found in a variety of fields (Engels and Bremdal,

2000):

† Abstracting and summarizing: aims to deliver shorter, informative repre-

sentations of larger documents.

† Visualization of text: documents can often be visualized according to the

concepts and relationships that play a role.

† Comparison and search (information retrieval): find instances of semanti-

cally similar pieces of information.

† Question answering: in computer-human interacting systems, such as

expert systems.

† Induction/deduction of knowledge based on extracted information: many

approaches from the field of machine learning play a role here.

† Knowledge base generation: information that is extracted, deduced or

induced can be used in other scenarios as well. A knowledge base can be

regarded as a typical container for transfer or sharing of such knowledge

across applications and time.

In this section, we describe the main strategies and linguistic techniques in IE,

followed by presentation of the main features and strategies employed by the

CORPORUM OntoBuilder toolkit.

6.3.1 Content-driven Versus Goal-driven

Today’s IE landscape is mainly characterized by two major strategic

approaches. On the one hand, there are systems using goal-driven (top

down) techniques for acquiring the information desired and, on the other

Generating Ontologies for the Semantic Web: OntoBuilder 103

hand, there are initiatives extracting the information in a content-driven

(bottom up) manner.

Goal-driven systems, for example, SMES (Declerck and Neumann, 2000),

are generally domain specific and make use of knowledge about the domain in

question. The information of interest typically is predefined as open slots, in

so-called templates, which are to be filled by the relevant parts of the text.

Goal-driven systems often make use of shallow parsing techniques, and this

has led to a renaissance of finite state techniques, for example, augmented

transition networks or finite state transducers.

Content-driven systems, on the other hand, are designed to work more or

less domain-independently. Typically, content-driven systems build up ontol-

ogies/taxonomies based on heuristics as well as statistical techniques.

Goal-driven and content-driven systems have in common that both of them

are highly dependent on a thorough low-level linguistic analysis of a given

text, comprising normalization, tokenization and part-of-speech (POS)

tagging.

As of today, many goal-driven systems perform reasonably well within

their domains (for evaluation methods, see, e.g. the MUC conferences).

However, their dependency on predefined domains is a clear drawback and

makes them rather unattractive in the Semantic Web context, or for agents or

other domain-independent applications. This drawback has led to initiatives

that are either trying to make goal-driven systems more domain-adaptive (e.g.

SMES; Declerck and Neumann, 2000), or combining them with content-

driven techniques (e.g. GETESS; Düsterhöft et al., 1999).

On the other hand, the domain-independence of content-driven systems

comes with a deficiency in terms of performance. The lack of accuracy

makes content-driven systems somewhat inappropriate as tools for extracting

information units that require a high degree of precision (e.g. knowledge base

generation). However, their fuzziness is an important feature when it comes to

tasks dealing with uncategorized texts such as summarization or agent-based

searching.

6.3.2 Levels of Linguistic Analysis

Like other tasks within the field of natural language processing (NLP), the

performance of IE systems is dependent on a linguistic analysis of the texts in

question. However, there is a high degree of variation among different systems

in terms of the analysis level and thoroughness. While some systems try to

perform an exhaustive analysis over all linguistic levels, others rely only on a

rough lexical analysis. In the following, we give a short survey of the different

levels and their relevance in the IE context. Of course, this survey cannot give

Towards the Semantic Web104

more than a shallow impression of the complexity of the challenges at each

level. Since today’s IE applications mainly work with documents and other

written text, speech recognition and other tasks on the phonological level are

omitted in this context.

6.3.2.1 Tokenization

Tokenization is the task of dividing a text into single lexical tokens. It is an

absolutely vital task for any IE system that goes beyond very primitive forms

of crude pattern matching, and a task that is often underestimated in its

complexity. Besides simple white space identification, tokenization includes

activities such as dehyphenation, sentence boundary detection, proper name

recognition, and – for multi-lingual systems – language detection. There is a

range of different techniques for solving these problems. Whereas some

systems employ statistical techniques (Palmer and Hearst, 1994) for disam-

biguating sentence boundaries (the ‘full stop vs. abbreviation period’

problem), others only make use of heuristics like regular expressions

(Grefenstette and Tapanainen, 1994).

6.3.2.2 Lexical/Morphological Analysis

After tokenization, most IE systems perform a lexical analysis on the toke-

nized text. The main task at this level is the POS tagging. POS tagging is a

prerequisite for dividing grammatical words like determiners (the, a, those) or

prepositions, from lexical words like nouns, verbs or adjectives, since the

latter tend to be the content-bearing units in a text. Stemming of inflected

words is a major challenge in this context, raising the problem of deciding

between a full form lexicon or tools for morphological analysis. Most of

today’s POS tagging systems use statistical methods as well as heuristics

for this task, employing both suffix-stripping algorithms, word form tables

and frequency lists. In addition to the pure POS tagging, many IE systems

perform other forms of morphological analysis on the tokens, for example,

compounds analysis.

6.3.2.3 Syntactic Analysis

The goal of syntactic analysis is to determine the underlying structure in a

string of words. There is a wide range of grammar formalisms applied in

computational linguistics. On the one hand, there are declarative unifica-

tion-based formalisms like, for example, lexical functional grammar (LFG)

(Kaplan and Bresnan, 1982) or head-driven phrase structure grammar (HPSG)

Generating Ontologies for the Semantic Web: OntoBuilder 105

(Pollard and Sag, 1994). On the other hand, there are procedural methods like

finite state parsers, or augmented transition networks. After having been criti-

cized for their shortcomings in linguistically correct description of language,

the latter have experienced a renaissance recently, since many goal-driven IE

systems employ augmented transition networks (Klabunde et al., 2001) and

other shallow parsing techniques.

Furthermore, there are systems employing a combination of the techniques

mentioned above, using statistics and finite state techniques for chunk parsing,

and advanced grammar formalisms on a whole sentence level. However,

context independent parsing of full sentences is computationally highly expen-

sive, especially when being applied to less formal texts, and therefore not yet

implemented in large-scale commercial IE systems.

6.3.2.4 Semantic/Pragmatic Analysis

A typical semantic analysis of a sentence will return the sentence’s proposi-

tion(s) in a formal language, e.g. predicate logic. Most of the advanced gram-

mar formalisms supply their own tools for describing a sentence’s meaning

(e.g. the S-structure in LFG), or use so called F roles (theta roles, or semantic

roles) to describe the meaning of the constituents in a sentence.

Other approaches to semantics have their root in the frame-based work of

Winograd or Schank, for example, memory based parsing (Lebowitz, 1983).

These systems utilize knowledge about prototypical situations and the

involved participants. Many of those systems use script mapping (scenario

mapping) in order to identify the participants in given instances of the situa-

tions.

6.3.2.5 Discourse Analysis

Discourse analysis is a vast and still mainly unconquered territory in linguistics.

Thus, there are not many systems that work with a large-scale implementation of

computational discourse analysis. There are many challenges within the field of

discourse analysis, like, for example, the problem of discourse boundaries. Espe-

cially for IE purposes, it is essential to be able to distinguish between two different

instances of a given event type. Other tasks related to discourse analysis include

the detection of digressions, enumerations, introduction of new topics and enti-

ties. Another challenge within this field is pronoun resolution and co-reference

chaining.

Towards the Semantic Web106

6.3.3 CognIT Vision

CognIT’s technology supports both personal and enterprise wide document

and information management – that is, management by content. The

CORPORUM system is based on CognIT’s core technology developed in

Norwegian research labs. This technology focuses on meaningful content:

CognIT’s mission is to capture content with respect to the interest of the

individual rather than address the document itself. There are three essential

aspects of this:

† CORPORUM interprets text in the sense that it builds ontologies that

reflect world concepts as the user of the system sees and expresses them.

The ontology constitutes a model of a person’s interest or concern. The

interest model is applied as a knowledge base in order to determine contex-

tual and thematic correspondence with documents presented before it.

† The interest model and the text interpretation process drive an information

extraction process that characterizes the hit in terms of relevance and in

terms of content. This information can be stored in a persistent database for

future reference.

CORPORUM is able to augment ‘meaning’ structures with concepts that are

invented from the text. The core component of the CORPORUM system is

also able to extract the information most pertinent to a specific text for

summary creation, and extract the so-called core concept area (CCA) from

a text. Results are represented according to a ranking which is based on

interest relative to a specific contextual theme set by the user. On top of

that, the CORPORUM system is able to generate explanations, which will

allow the user to make an informed guess on which documents to look at and

which to ignore. CORPORUM can point to exactly those parts of the targeted

documents that are most pertinent to a specific user’s interest.

In order to accomplish these tasks, CORPORUM OntoExtract (part of

CORPORUM OntoBuilder) employs techniques at different levels of linguis-

tic analysis. Like other IE systems CORPORUM performs a thorough lexical

analysis including text normalization, tokenization, and POS tagging.

CORPORUM performs no extensive syntactic parsing, at any rate not

within the framework of any of the major grammar formalisms. Skipping

the syntactic processing at whole sentence level makes CORPORUM fast

and robust as it does not require a priori selection of a particular IE

technique.

At the semantic level, CORPORUM performs word sense disambiguation,

by describing the context in which a particular word is used. This is naturally

closely related to knowledge representation issues. In addition, CORPORUM

Generating Ontologies for the Semantic Web: OntoBuilder 107

extracts content bearing words and collocations, weighting them according to

a scoring algorithm. These concepts and the weighted connections between

them are the basis for the lightweight ontologies created by the OntoBuilder.

6.4 Knowledge Generation from Natural Language
Documents

Natural language processing and information extraction are fields that have

reached a specific level of maturity, which is starting to show in the increasing

presence of commercial and freely available technology. Currently, speech

recognition and generation is used in telephone interaction with human

beings; OCR software is used for recognition of hand-written documents;

tools for spelling correction are available; and much more is about to appear

on the market. The CORPORUM toolset extracts and generates semantic

structures from documents. These are then exported in the form of graph-

like images and ontologies. From each encountered document, the system

extracts meta-data that can be stored in the Sesame repository.

6.4.1 Syntax Versus Semantics

Over the past 30 years there has been an ongoing discussion on what focus to

sustain, syntax or semantics, in order to pursue natural language processing.

This discussion has surfaced in both the empiricist camp as well as the ration-

alist camp. Yet we see a tendency that both are important. There must be

significant interplay between syntax and semantic modelling. In fact the whole

issue of language understanding circulates in our view around the process of

communication. In terms of written expressions this implies that it is not

sufficient to focus on the text alone, but on the whole system of author,

author’s knowledge, author’s goals and constraints, author’s world, chosen

vocabulary, listener’s context and listener’s knowledge. The work of Ram and

Moorman (1999) is a recent and quite impressive contribution in this direc-

tion.

6.4.2 Generating Semantic Structures

The description of the issues and processes involved in bringing an analysis of

a natural language text from the token level to a semantic level is very basic to

the understanding of the level of granularity of the generated semantic struc-

tures (Engels and Bremdal, 2000). The outcome of the analysis process is a

virtual representation of a text’s contents, its semantics (e.g. the concepts

Towards the Semantic Web108

playing a role in it, the role type, relations between various roles that are

identified, and so on).

Generation of semantic knowledge in information extraction is based upon

the results of parsing steps that can be of varying ‘analysis depth’. Some

approaches build on knowledge about word types only, whereas other

approaches go beyond that and require a deep understanding of the sentence

structure before being able to generate the semantic representations that are

aimed at.

When analysing published IE approaches the whole range can be found,

from utilizing statistical word lists (often augmented with frequencies that are

learned on document corpora), through hierarchies of concepts that are related

to each other by specific relation types (concept–superconcept relations, part–

whole relations, etc.), towards even richer semantic representations like the

theory of conceptual dependencies (Shank, 1975). Generally speaking, such

representational schemes are said to represent a world state, certain beliefs or

even factual knowledge that is implicitly present in the analysed documents.

There are very diverse opinions on how to represent semantics. Some research

groups see semantics as the semantics of some logic representation. Others

propose that semantics and context are contained in a more ‘fuzzy’ way by

statistical properties over text. Other representation formalisms are also found,

but the division between symbolic approaches (representation through logic)

and sub-symbolic (connectionist, fuzzy or statistical approaches) is important.

In OntoExtract the initial analysed and annotated text is transformed into an

internal representation that makes use of a variety of linguistic analysis steps

to come to an initial interpretation of what is written. After an additional

disambiguation phase, performing co-reference chaining, resolution of, for

example, abbreviations, pronoun resolution, etc., an internal representation

of the text is built up. This representation contains the original text, its annota-

tions, but also the resolutions performed on it. Now it is possible to tell what is

going on, who is involved, and what type of relations are discussed in the

discourse that has been analysed.

Whereas this internal representation is a very rich one, the model used

contains a mix of properties and contents that is not suitable for a usage in

a clean, formal knowledge representation such as DAML1OIL or RDF(S).

Therefore the semantic structures undergo a translation such that a more

formal representation emerges, filtering out the pragmatic properties and

focusing on a clean representation. Other export filters defined in this

internal representation format deal with export of Dublin Core meta-data,

XML representations of texts, (semantically ordered) key concept vector

lists and semantic networks for visualization.

Generating Ontologies for the Semantic Web: OntoBuilder 109

6.4.3 Generating Ontologies from Textual Resources

A number of issues, many of them generally known from the field of knowl-

edge representation, have to be dealt with at this stage. When representing

results of this information analysis phase into formal representation paradigms

like DAML1OIL (incorporating elements of F-LOGICS and Description

Logics, which come with a clear semantics), there is also a need to have a

clear philosophy on how the translation from linguistics into such formalisms

can be done properly. As would be clear to the observant reader, these issues

are not trivial. Among the most pertinent problems that are encountered, we

report:

† the problem of representation level, what knowledge should be represented

at the ontology level, what knowledge should be represented at the fact

level (cf. the general discussion on ontology modelling as in: what repre-

sents an ‘instance’ and what represents a ‘concept’);

† the problem of dealing with the inheritance problem (e.g. taxonomies);

† the issue of consistency between extracted ontologies and their truth within

specific domains.

Whereas the first issue is a general issue that is and has been discussed for a

long time in several research fields, the last two issues have recently become

more pertinent with the wider availability of web resources and the introduc-

tion of automated services for their analysis and representation. It is not easy

to decide and find out what the domain of a subset of web documents is, nor is

it easy to decide which and how much of the extracted taxonomies/ontologies

are related to the same ‘world view’. During the course of the project, it

became quite clear that an automated approach to this is not quite feasible

based on current state-of-the-art technology alone. It might require some

intervention from human beings to decide whether extracted interrelations

between concepts, properties and instances actually hold for a specific para-

graph, text, domain, part of a domain or possibly universally. This aspect of

the current approach taken in the On-To-Knowledge project is presumably

more a cognitive issue than a linguistic issue.

Currently ontologies are extracted from single documents taken from the

web. From these documents concepts are extracted, but also created. These are

then set into relation with each other, augmented with properties and even-

tually found instances are hooked up to them. On top of this, relationships that

are considered to be more or less cross-taxonomic (i.e. not representing pure

class/super-class or part/whole relations) are included so that an additional

reasoning through such concept clusters is also allowed for. One example of

Towards the Semantic Web110

usage of this kind of relationships is that of ‘orthogonal’ lists of concepts used

for providing help with searching in unfamiliar domains.

6.4.4 Visualization and Navigation

Rather different from the more logic-based representations defined in

DAML1OIL are the exported semantic network structures. These exported

networks, in either an XML or an RDF representation, can be run through a

graph layout algorithm in order to generate visualizations (cf. Figure 6.1).

Such visualizations allow for usage in visual browsers and navigators based

on larger document sets, and offer people an at-a-glance overview of the

information to which they have access. Figure 6.5 shows a simplified structure

created from a specific text visualized with CCAviewer.

Generating Ontologies for the Semantic Web: OntoBuilder 111

Figure 6.5 CORPORUM generated semantic network structures visualized with

CCAviewer1

1 CCAviewer: visualization software module developed by Aidministrator Nederland BV (On-

To-Knowledge Consortium Partner).

The enlarged part of the structure shows the semantic cluster around the

terms ‘XML’, ‘RDF’, ‘inference engine’and ‘web technology’. There are

more of such clusters recognizable, and their intercluster relationships are

used to navigate from one cluster to another by relevant concepts. Pictures

that are thus automatically generated from natural language texts provide an

at-a-glance overview over a piece of information. They can be used in order to

augment executive summaries and readers’ aids, but they are also used as

visual interfaces to databases (preferably in corporate settings). As such

they augment knowledge management systems, where they provide a visual

entrance to pieces of information pertinent to specific interest groups within an

enterprise.

6.5 Issues in Using Automated Text Extraction for Ontology
Building using IE on Web Resources

Although many approaches exist that deal with the processing and extraction

of information from natural language resources, there is not a final answer to

the problem of how to perform that task. Many of the approaches found use

statistical methods on larger corpora of documents in order to disclose taxo-

nomic relationships (is-a, part-whole). Such approaches tend to get into trou-

ble when domains are dynamic (and the statistics have to be recalculated

often), or whenever no large corpora are present in order to calculate support

for rare relations. Providing such relations with a semantically meaningful

label is not trivial when using corpora-based, statistical heuristics either. On

top of this, the Internet has an additional challenge that is not taken into

consideration very often, and that is the multi-cultural background of the

authors contributing to it. Many of the more statistically oriented approaches

tend to model peculiarities in writing style, which can lead to interesting

observations when non-native authors struggle to bring forward a point

while using a restricted vocabulary.

A few clear presumptions that were made at the start of this work:

† Semantics on the web should be modelled and represented in an explicit

manner.

† Ontologies should be built for a variety of domains, in order to facilitate

recall and precision of ‘information searches’.

† The approach is not domain-specific.

† Current representation languages are not sufficient, therefore a formal

representation language (DAML1OIL) has been developed.

† Many of the current Internet resources should be analysed using automated

information extraction techniques that are not too domain specific.

Towards the Semantic Web112

Taking these five main assumptions, considering the literature and reports

from academia and taking into account practical experience gained in use of

the tools, a variety of observations can be made.

First, transforming ‘informal text’ into formal representations requires a

‘deep’ analysis of the text if the aim is to really build formally valid, logically

correct knowledge bases. Revealing class/sub-class relationships and part-

whole relationships are very difficult. Ways exist to extract such information,

but there is a ‘social consensus’ or ‘cognitive’ argument that makes it very

difficult to really create these pieces of knowledge. An important factor is the

‘open world’ assumption that holds on the internet.2

Related to this problem is the problem of enriching the knowledge that can

be generated from a single document resource. Currently, the OntoBuilder

software generates knowledge on a per document basis. The system is

‘unbiased’ towards specific domains, and should therefore be universally

applicable, which is one of the more general requirements for web-based

NLP technology. Due to this non-specific applicability, the current system

has to work on the syntactic/morphological level only, and will encounter

difficulties in areas where knowledge about the world is needed.

The current OntoBuilder software analyses on a per page/document basis.

Therefore, the system is said to build small, lightweight ontologies for each

and every document that is encountered. Within the current project, we have

taken the assumption that documents found within a specific domain, are

describing the same ‘view on the universe’. Therefore all knowledge gener-

ated is currently hooked up to the domain from which the documents stem

(e.g. the definition of a concept ‘car’ is hooked up to the domain root of, for

example, ‘http://www.ford.com’). Specific instances of the concept ‘car’,

such as a report on a specific ‘ford mondeo’ that crossed the Sahara desert,

are found on pages within the domain (e.g. ‘http://www.ford.com/travels/

sahara/mondeotour.html’). Such specific knowledge is then hooked up

through the page it stems from. Obviously, such an approach runs into numer-

ous problems, for which (again), no universal solution exists.

Closely related to this problem of the scope of validity of modelled knowl-

edge, truth and trust are other issues that play an important role. Is a model

valid across domains? Can we model a domain in such a way that truth is

maintained? Does an aeroplane definition by an engineer in the United King-

dom refer to the same aeroplane like structure as in the definition of an

aboriginal in Australia? Or are they two different entities? Is a specific state-

ment, for example, on a war, universally true, or is it only true within the eyes

Generating Ontologies for the Semantic Web: OntoBuilder 113

2 Open World Assumption: no knowledge generated can be falsified, since there is only partial

knowledge on the state of the world. For the same reason it is hard to define any class that is

universally valid, because not the whole world is known.

of a specific observer? How can we extract the difference out of the documents

that are retrieved? The same holds for the treatment of contradictions in

descriptions within and between domains, specialization of and extensions

to class definitions, similarity and analogy. Basically, these issues all relate

to the issue of the scope of discourses and the validity of knowledge across the

borders of such a scope.

Then, is it all that bad? Is it maybe not a good idea to use automated natural

language technology as Semantic Web technology? Obviously, there are enor-

mous gains to be expected from relatively simple extensions on current tech-

nology, such as:

† non-‘pure’ ontology definition, defining different types of ‘cross taxo-

nomic’ interrelationships between concepts;

† recognition of simple elements like named entities and their most important

relations to other close or nearby concepts;

† automated thesaurus building/analysis of hypernyms/hyponyms to enhance

relevant concept recognition.

Automated ontology building without having available extensive world

knowledge is probably not feasible when it comes to very rich models, but

such generated ontologies can be used as ‘seed ontologies’, automatically

generated from a variety of user defined documents. Seed ontologies can be

enriched manually using graphical editors, and stored for later reference.

Current extensions of the software incorporate as much knowledge as possible

from the repository, recapturing automated extraction in an iterative process,

so that an eventual lack of explicit background knowledge can be taken care

of.

Within current approaches to the Semantic Web, it is debatable which

should be central – the human using the web or the possibility of performing

machine processing on web content. In the former case, logic representations

are probably not the most intuitive for use with humans, and different, more

‘cognitive’ representations of such knowledge might be more convenient. In

the latter case, there is a clear need for more formal definitions of knowledge

representation, but its sheer complexity in relation to some of the problems

mentioned above (truth maintenance, contradictions, scope of validity, etc.)

might seem a major stumbling block. Another key debate concerns natural

language processing technology and which technologies turn out to be the

most suitable for the Semantic Web. As long as logic representations (cf.

DAML1OIL) are seen as the way to store knowledge in the Semantic Web,

it is probably better to aim at formal grammar methods for analysis of rich and

logically consistent models. However, it is clear that such approaches tend to

suffer from their complexity and richness, in such a way that there will be an

Towards the Semantic Web114

enduring need for pragmatic solutions, probably based on statistical, corpora-

based technology.

The current OntoBuilder software shows us that there are possibilities to

explore, and there is a real chance to get some automated information extrac-

tion technology for the Semantic Web in place and the area to look into might

be at the interface between the formal approaches and corpora-based

approaches. Playing a central role in future research will be challenging issues

such as discourse boundary analysis, the scope of the validity of knowledge

extracted from such a discourse, document type classification in order to

tackle differences in writing and speaking, and others issues related to these.

Generating Ontologies for the Semantic Web: OntoBuilder 115

7

OntoEdit: Collaborative
Engineering of Ontologies

York Sure, Michael Erdmann and Rudi Studer

7.1 Introduction

Developing ontologies is central to our vision of Semantic Web-based knowl-

edge management. The methodology described in Chapter 3 guides the devel-

opment of ontologies for different applications. However, because of the size

of ontologies, their complexity, their formal underpinnings and the necessity

to come towards a shared understanding within a group of people when defin-

ing an ontology, ontology construction is still far from being a well-under-

stood process. In recent years, research has aimed at paving the way for the

construction of ontologies by ontology development environments (Duineveld

et al., 1999; Fridman et al., 2000; Arprez et al., 2001). Different directions

have been taken to support the engineering of ontologies:

1. Several seminal proposals for guiding the ontology development process by

engineering methodologies have been described (Uschold and King, 1995;

Lopez et al., 1999), which influenced the ontology development environ-

ments (Arprez et al., 2001).

2. Inferencing mechanisms for large ontologies have been developed and

implemented (e.g. Horrocks, 1998), also to support ontology engineering

(Bechhofer et al., 2001).

3. Finally, the need to achieve consensus about an ontology was reflected by

collaborative environments (Tennison and Shadbolt, 1998; Domingue,

1998; Swartout et al., 1996; Farquhar et al., 1996) for ontology engineer-

ing.

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

However, only a few of these seminal approaches (e.g. Arprez et al., 2001)

have worked towards combining all of these urgent desiderata. This observa-

tion seems to reflect our own experience, viz. that it is far from trivial to offer a

sound integration of these aspects. Therefore, OntoEdit is an ontology engi-

neering environment that is rather unique in its kind as it combines methodol-

ogy-based ontology development with capabilities for collaboration1 and a

tight integration into a tool framework, i.e. the framework outlined in Chapter

1.

Concerning the methodology, OntoEdit focuses on three of the main steps

for ontology development (the methodology is described in Chapter 3), viz.

the kick off, refinement, and evaluation. We describe the steps supported by

OntoEdit and focus on collaborative aspects that occur during each of the step.

First, all requirements of the envisaged ontology are collected during the kick

off phase. Typically for ontology engineering, ontology engineers and domain

experts are joined in a team that works together on a description of the domain

and the goal of the ontology, design guidelines, available knowledge sources

(e.g. re-usable ontologies and thesauri, etc.), potential users and use cases and

applications supported by the ontology. The output of this phase is a semi-

formal description of the ontology. Second, during the refinement phase, the

team extends the semi-formal description in several iterations and formalizes

it in an appropriate representation language like RDF(S) or, more advanced,

DAML1OIL. The output of this phase is a mature ontology (the ‘target

ontology’). Third, the target ontology needs to be evaluated according to

the requirement specifications. Typically this phase serves as a proof for the

usefulness of ontologies (and ontology-based applications) and may involve

the engineering team as well as end users of the targeted application. The

output of this phase is an evaluated ontology, ready for roll-out into a produc-

tive environment.

Support for these collaborative development steps within the ontology

development methodology is crucial in order to meet the conflicting needs

for ease of use and construction of complex ontology structures. We now

illustrate OntoEdit’s support for each of the supported steps. The examples

shown are taken from the Swiss Life case study on skills management (cf.

Chapter 12).

7.2 Kick Off Phase

As in software engineering and as proposed by Lopez et al. (1999), we start

ontology development by collecting requirements for the envisaged ontology.

Towards the Semantic Web118

1 In a recently submitted paper (Sure et al., 2002), we have described how methodology and

inferencing interact to support the ontology engineering process.

By nature, this task is performed by a team of experts in the domain accom-

panied by experts in modelling. The goal of this phase is to set up requirement

specifications for the ontology and to produce a first draft version of the

ontology (‘semi-formal ontology description’).

The outcome of such a requirement specification phase is (i) a document

that contains all relevant requirements (domain and goal of the ontology,

design guidelines, available knowledge sources, potential users and use

cases and applications supported by the ontology), (ii) a semi-formal ontology

description, i.e. a graph of named nodes and (un)named, (un)directed edges,

both of which may be linked with further descriptive text.

To operationalize our project methodology it is desirable to have tools that

reflect and support the steps of the methodology and guides users step by step

through the ontology engineering process. Along with the development of the

methodology, we therefore extended the core functionalities of OntoEdit with

two plug-ins to support the first stages of the ontology development, viz.

OntoKick and Mind2Onto.2 OntoKick targets (i) creation of the requirement

specification document and (ii) extraction of relevant structures for the build-

ing of the semi-formal ontology description. Mind2Onto targets the integra-

tion of brainstorming processes.

As computer science people, we are familiar with software development

and prefer to start with a requirement specification of the ontology, that is,

OntoKick. People who are not so familiar with software design principles

often prefer to start with ‘doing something’. Brain storming is a good method

to quickly and intuitively start a project, therefore one also might begin the

ontology development process with Mind2Onto.

OntoKick supports the collaborative generation of requirements specifica-

tions for ontologies. The collaborative aspect of OntoKick is not so much the

support for the distributed work of the team members, but rather the support for

the personal interaction of the ontology engineers and the domain experts. This

is a two step process. First, OntoKick allows important meta-aspects of the

ontology to be described, viz. the domain and goal of the ontology, design

guidelines, available knowledge sources (e.g. domain experts, re-usable ontol-

ogies, etc.), potential users, use cases, and applications supported by the ontol-

ogy. OntoKick guides the engineering team stepwise through all the relevant

aspects and stores these descriptions along with the ontology definitions.

Second, OntoKick supports the creation of a semi-formal ontology descrip-

tion. Naturally, domain experts are a valuable knowledge source for structur-

ing a domain. A very common method for knowledge acquisition from domain

OntoEdit: Collaborative Engineering of Ontologies 119

2 Describing the technical foundations of the plug-in framework is beyond the scope of this

work; it is described in Handschuh (2001). In a nutshell, one might easily expand OntoEdit’s

functionalities through plug-ins.

experts is personal interviews. To structure the interviews with domain

experts, we use competency questions (CQ) (cf. Uschold and King, 1995).

Each CQ defines a query that the envisaged ontology (or the ontology-based

application) should be able to answer and therefore defines explicit require-

ments for the ontology. Typically, CQs are derived from interviews with

domain experts and help to structure knowledge. We take further advantage

by using them to create the initial version of the semi-formal description of an

ontology and also for evaluation of the ontology in a later stage. Based on the

assumption that each CQ contains valuable information about the domain of

the ontology, we extract relevant concepts, relations and instances from these

CQs (cf. Figure 7.1).

OntoKick establishes and maintains links between CQs and concepts

derived from them (cf. Figure 7.2). This allows for better traceability of the

origins of concept definitions in later stages and improves quality assurance

during the development process, that is, by documenting the origins and the

context of concepts, relations and instances. Therefore, the level of quality of

the ontology reached can be re-engineered by other ontology engineers. ‘Real

life’ ontology modelling is supported by OntoKick as the following example

from the Swiss Life Skills Management case study illustrates. First, the ontol-

ogy engineer interviews a domain expert. Thereby they identify CQs, for

example, ‘Which skills does a person have?’ (cf. Figures 7.1 and 7.2).

Based on these CQs, the ontology engineer creates a first draft of the semi-

formal description of the ontology and models it graphically in OntoEdit. He

identifies relevant concepts, relations and instances from the above-mentioned

Towards the Semantic Web120

Figure 7.1 OntoKick: capturing of competency questions

CQ, for example, the concept Person. The instances might, for example, be

prototypical instances that are used for evaluation purposes. After capturing

CQs and modelling the ontology with OntoEdit, the ontology engineer is able

to retrieve corresponding CQs for each concept, relation and instance. This

helps him and others to identify the context in which these elements were

modelled.

Mind2Onto is a plug-in for supporting brainstorming and discussion about

ontology structures. Especially during the early stages of projects in general,

brainstorming methods are commonly used to quickly capture pieces of rele-

vant knowledge. Mind maps are widely used (Buzan, 1974); they were origin-

ally developed to support more efficient learning and evolved into a

management technique used by numerous companies. Numerous tools already

exist for the electronic creation of mind maps. Many people from academia

and industry are familiar with mind maps and related tools, including potential

ontology engineers and domain experts. Therefore, the integration of electro-

nic mind maps into the ontology development process is very attractive (e.g.

Lau and Sure, 2002).

OntoEdit: Collaborative Engineering of Ontologies 121

Figure 7.2 OntoKick: traceability of competency questions

We have relied on a widely used commercial tool3 for the creation of mind

maps. It supports collaborative engineering of mind maps through peer-to-peer

communication and has advanced facilities for graphical presentations of hier-

archical structures, for example, easy to use copy and paste functionalities and

different highlighting mechanisms. Its strength but also its weakness lies in the

intuitive user interface and the simple but effective usability, which allows for

quick creation of mind maps but it lacks expressiveness for advanced ontology

modelling. By nature, mind maps have no assumptions for its semantics, that is,

elements connected by branches are somehow ‘associatively related’ to each

other. This assumption fits perfectly well during the early stages of ontology

development for quick and effective capturing of relevant knowledge pieces

and makes the mind map tool a valuable add-on.

Mind2Onto integrates the mind map tool into the ontology engineering

Towards the Semantic Web122

Figure 7.3 Mind2Onto: research topics as a mind map and in the ontology

3 MindManager 2002 Business Edition; cf. http://www.mindjet.com

methodology. Currently OntoEdit and the mind map tool interoperate through

import and export facilities based on XML (cf. Figure 7.3). In the Swiss Life

Skills Management case study (cf. Chapter 12) we used the mind map tool to

facilitate discussions about the skills hierarchy. Most of the domain experts

were already familiar with the tool, the others learned how to use it very

quickly. Initially all workgroups created a mind map of relevant skills in

joint sessions. The peer-to-peer communication of the mind map tool provided

the necessary workgroup functionalities for this effort. Another requirement

for the ontology was multi-linguality (viz. German, English, French and

Italian). The mind map itself was modelled by German-speaking domain

experts who preferred to model in German. We transferred the German

concepts and used OntoEdit’s facilities to complete the multi-lingual external

representations in cooperation with people from the Swiss Life translation

service.

7.3 Refinement Phase

The goal of this phase was to refine the semi-formal description of the ontol-

ogy according to the captured requirements into a mature ontology, which is

the output of this phase. We found that, especially during the refinement

phase, different teams worked simultaneously on developing the ontologies.

For example, several sessions were necessary in the skills management case

study until the skill structures were accepted by all members. In this phase,

relationships are typically added to refine an ontology (a task that the brain-

storming tool is not capable of). After reaching a consensus, the mind map

created for skills (see previous section) was restructured in cooperation with

the ontology engineers to facilitate the interoperability with OntoEdit; that is,

as a simple assumption we took the elements of a mind map as concepts and

branches as ‘subConceptOf’ relationships between concepts (cf. Figure 7.3).

In the current version of OntoEdit, members of an engineering team can

collaborate even though they are geographically distributed and still modify

the ontology at the same time. We have developed a client/server architecture

(cf. Figure 7.4) in which the clients connect to an ontology server and can

change or extend the ontology.4 All clients are immediately informed of

modifications performed by the other ontologists. Engineers can store

comments (e.g. explaining design decisions) in a documentation field for

OntoEdit: Collaborative Engineering of Ontologies 123

4 For practical reasons, our first collaborative version is based on Ontobroker (cf. Decker et al.,

1999) as an ontology server (with reasoning capabilities), which was initially developed at the

Institute AIFB. The communication with Sesame (cf. Chapter 5) is currently restricted to non-

collaborative upload and download of ontologies. For the future, we plan to connect the On-To-

Knowledge Ontology Middleware and Reasoning component (cf. Chapter 11) to enable colla-

borative ontology engineering on top of Sesame.

each concept and relation. In this way, one of the main features of ontologies,

that is, their consensual character, is supported. Collaborating ontologists must

agree on the modelling decisions that are made. Therefore it is the possible to

monitor the development process of all collaborators, which is essential for

reaching the goal of a shared ontology.

7.3.1 Transaction Management

In a distributed development environment, certain mechanisms must be imple-

mented to ensure safe development conditions, such as consistency of the

models and the provision of a minimum degree of concurrency. To reach

this goal, we employed a locking and transaction protocol and implemented

a distributed event model on the basis of Java-RMI (remote method invoca-

tion). To guarantee consistent models, the clients are forced to obtain locks for

each resource (e.g. concept, instance, relation) that they want to modify (e.g.

add a super-concept, add an attribute-value pair to an instance, or change the

arity of a relation).5 The server denies the (write) access to a resource if the

resource is not locked by the client that attempts to modify it. Clients can

Towards the Semantic Web124

Figure 7.4 Client/server architecture of OntoEdit

5 The grounding data model of OntoEdit is OXML 2.0. This frame-based model offers a number

of meta-classes, like ontology, concept, relation, but also predicate or axiom, with a rich set of

properties and associations to facilitate ontology modelling (cf. http://www.ontoprise.de/down-

load/oxml2.0.pdf for a reference manual).

obtain locks either by explicitly locking these resources, or more conveni-

ently, by a begin of transaction (BOT) that is accompanied with a list of

needed resources. If not all resources can be assigned to the calling client,

the BOT fails and the transaction is immediately aborted. Otherwise the server

locks the needed resources for the client, so that no other client can manipulate

them until the end of the transaction is reached.

The client can now manipulate the locked resources until it commits the

transaction. After a commit, all locked resources are freed again and the

operations performed in the body of the transaction are actually applied to

the data model. Afterwards, events are created to inform the other clients of

the modifications performed. If the transaction needs to be aborted by the

client, all operations are undone, all locks are removed, and no events are

fired. Transactions may be nested to make complex operations possible with-

out the need for rollback mechanisms. For example, the data model procedure

of moving a concept from one super-concept to another one consists of two

subtransactions (remove a super-concept relationship to the first super-concept

and establish a new one for the second concept) that must be performed all

together or none at all. Because of the necessity for nested transactions, we

implemented a strict two phase locking protocol (S2PL).

In this protocol, additional resources can be achieved (and locked) within

the body of a transaction. Our implementation of the S2PL allows for arbi-

trarily nested transactions. The execution of inner transactions and the release

of all locked resources is postponed until the outermost commit or abort is

finally reached. Again, only after the final commit are events sent to the other

clients. We employ the S2PL because (i) it allows for nested transactions and

(ii) prevents cascading aborts. Thus, clients can be immediately informed if a

planned operation will commit or is prohibited due to unavailable resources.

(iii) S2PL also prevents deadlocks since resources are only locked in a BOT if

all locks can be achieved. Other locking protocols are either too inflexible

(like conservative locking (C2PL) that cannot lock resources in addition to the

locks of the BOT and thus, is not suitable for nested transactions) or provide

chances for deadlocks that must be appropriately handled.

To reduce communication overhead, save bandwidth and because transac-

tions are relatively short lived, no information about transactions (especially

not about locked objects within a BOT) is communicated from the server to

other clients; that is, the local view on locking information within a client (cf.

Figure 7.4) contains all resources that are locked by this client (by a BOT) but

none that have been locked by a BOT of any other client. Nevertheless,

another kind of locking information isdistributed to all clients: An ontologist

can lock a whole sub-tree of the concept hierarchy. The server informs all

clients of this locking operation.

OntoEdit: Collaborative Engineering of Ontologies 125

7.3.2 Locking Sub-trees of the Concept Hierarchy

A common practice in ontology engineering is to start with a top level struc-

ture and to refine it later on. Different parts of an ontology can be refined by

different ontologists or groups. These collaborators should be able to work on

their parts of the ontology with as little interference from other ontologists as

possible. This is achieved in OntoEdit by the possibility of locking a complete

sub-tree of the concept hierarchy. After the sub-trees have been locked, no

conflicts can arise anymore, and what is equally important, the need to check

for locking information with the server is reduced drastically. Since most

modelling operations will occur within the scope of the sub-trees, that is,

Towards the Semantic Web126

Figure 7.5 Locked trees in OntoEdit

will mainly access already locked resources, the client can decide locally

whether these operations are permitted or not. This (tree) locking information

is distributed to all other clients and visually indicated in the GUI (cf. Figure

7.5). Crosses mark concepts that are locked by other clients and may not be

edited. Bullets mark concepts that may be edited, altered and removed at will.

Due to the distribution of this information, clients can often check locally

whether a transaction will be permitted or not. If all needed resources are

marked as ‘locked by me’ in the local view of the locking information (cf.

Figure 7.4), a BOT can be safely accepted. If at least one resource is marked as

being locked by another client, the current client can definitively reject a BOT

(or a lockSubTree request). Only if resources are requested in a BOT for which

no information is locally available, does the server have to be consulted.

7.3.3 What Does Locking a Concept Mean?

Locking resources in relational databases means the database administrators

or application developers must decide whether to lock an attribute, a tuple, or a

complete table (i.e. relation). Since the basic data model for ontologies is

much richer (especially due to hierarchical relationships between concepts,

between relations, and between instances and concepts) the decision of what a

lock entails is more complex. The most simple answer would be to lock the

complete ontology with all its components. But this solution is ruled out since

it would disallow any kind of concurrency and distributed collaboration.

Another simple answer would be to lock the resources that are to be modified

within a transaction; for example, the resource X in the transaction that states

that concept X has a super-concept Y. Apparently, for this transaction, concept

Y should also be locked since a new sub-concept for Y is defined. Thus, the

second simple approach seems to lock too few resources.

Due to hierarchical relationships between concepts locking a concept X

implies read-locks for all super-concepts of X and all their super-concepts,

recursively. A read-lock marks a resource as being read-only, that is, modifi-

cations to it are currently disallowed. If a read-lock for at least one super-

concept cannot be achieved X will not be locked and the BOT fails. Thus, no

operations may modify X. Read-locks can be available to multiple clients at

the same time without conflict. If a client is the only one that read-locked a

resource, the client can achieve a stricter (write) lock. Other clients cannot.

The reason why a lock propagates from one resource to another in the

ontology can be seen in the following example scenario. Assume, X is a

sub-concept of Y and Y has a slot A with range Y. Assume, we want to restrict

the value range of A for X from Y to X. Thus, in the BOT we just lock the

concept X and call the appropriate operation on X. Before we send the commit

OntoEdit: Collaborative Engineering of Ontologies 127

another client (after locking Y) changes the name of A to B and commits. If we

now commit our transaction, the semantics of the combined operations is not

defined. Does X now have two independent attributes A and B? Or is attribute

A totally lost as well as our newly defined range restriction? Both situations are

unsatisfactory. Thus, to prevent them, super-concepts need to be read-locked.

The same holds for locking complete sub-trees of the concept hierarchy.

Here all sub-concepts are locked in the same way as the root of the sub-tree

and all super-concepts of the root. All super-concepts of the sub-concepts of

the root must be read-locked. This is necessary only if multiple inheritance is

allowed. Because the same rules for computing super- and sub-objects of

concepts, etc. are available in the client, in the server some decisions whether

a transaction is allowed or not may be made on the client side without connect-

ing to the server. Thus, the amount of queries sent over the network is reduced

and processing times are enhanced.

7.4 Evaluation Phase

Once we have produced a target ontology, we need to evaluate it. The goal of

the evaluation phase is to check whether the ontology fulfils the requirements

specified during the first stage of the methodology. OntoEdit tackles several

aspects for evaluation, that is, (i) test sets of instances and axioms can be used

for the analysis of typical queries, (ii) a graphical axiom editor in combination

with an underlying inference engine6 allows for error avoidance and location,

(iii) competency questions might be formalized into queries and evaluated by

using the facilities of (i) and (ii) and, last but not least, (iv) a namespace

mechanism allows the facilities (i)–(iii) to be used collaboratively.

7.4.1 Analysis of Typical Queries

The ontology engineer may interactively construct and save instances and

axioms. OntoEdit contains a simple instance editor (cf. Figure 7.6) and an

axiom editor that the ontology engineer can use to create test sets. A test set

can be automatically processed and checked for consistency. Once the ontol-

ogy evolves and needs changes to remain up-to-date, a test set may be re-used

for checking the validity of the ontology. This basic functionality is needed,

for example, during the use of competency questions. The ontology as well as

related instances can be exported through export plug-ins to RDF(S),

DAML1OIL in a file or be transferred directly into Sesame (the same

holds for imports).

Towards the Semantic Web128

6 The underlying inference engine used for processing of axioms is Ontobroker.

7.4.2 Error Avoidance and Location

While the generation and validation of test cases allows for detection of errors,

it does not really support the localization of errors. The set of all axioms, class

and instance definitions sometimes express complex relationships and axioms

often interact with other axioms when processed. Thus, it is frequently very

difficult to overview the correctness of a set of axioms and detect the faulty

ones. In order to avoid problems, OntoEdit allows for defining several stan-

dardized properties of relationships by clicking on the GUI (viz. symmetry,

transitivity and inverseness of relations) and a graphical rule editor for other

types of axioms. In order to locate problems, OntoEdit takes advantage of the

underlying inference engine, which allows for introspection and also comes

with a debugger. A very simple but effective method to test axioms with test

cases, for example, is to switch off and switch on axioms. A more sophisti-

cated approach uses visualizations of proof trees by tracking back the drawn

inferences to the test instances. Therefore semantic errors in rules may be

discovered. A more detailed description of OntoEdit’s facilities for the ‘analy-

sis of typical queries’ and ‘error avoidance and location’ can be found in Sure

et al. (2002).

7.4.3 Usage of Competency Questions

Competency questions may help evaluation in two ways. First, they might

provide prototypical instances for a test set (see above). Second, CQs define

OntoEdit: Collaborative Engineering of Ontologies 129

Figure 7.6 Instance editor/export plug-ins

requirements for the ontology (ontology-based application), therefore they

provide a checklist of questions the ontology should be able to answer. For

example, from the CQ ‘Who is head of a research group?’ the concept group
and the property headOfGroup (with domain Researcher and range

group) are identified as relevant elements and therefore modelled in the

ontology. A prototypical instance, for example, is an instance of

Researcher, viz. ‘Rudi Studer’, who is headOfGroup of an instance

of group, viz. the ‘Knowledge Management Group’. Each CQ may now

be formalized with the facilities described above into a query which is

executed by the inference engine. The query result may be used to check

whether the requirements expressed by the CQs are fulfilled by the current

ontology.

7.4.4 Collaborative Evaluation

Taken together, the three facilities above can be used collaboratively through

support from the backbone inference engine for the handling of multiple test

sets. A namespace mechanism allows for syntactically splitting up ontologies

or ontology parts (i.e. concepts, relations, instances and axioms) into modules

that can be processed by a single instance or separate instances of the inference

engine. Members of the engineering team usually have different requirements

and use case scenarios, for example, expressed by their different CQs, there-

fore they typically need separate test sets for evaluation. In a two step

approach, we (i) evaluate each test set locally, that is, each member (or

each pair of ontology engineer and domain expert) evaluates his CQs, and

(ii) evaluate globally the union of test sets.

7.5 Related Work

A good overview, viz. a comparative study of existing tools up to 1999, is

given in Duineveld et al. (1999). Typically the internal knowledge model of

ontology engineering environments is capable of deriving is-a hierarchies of

concepts and attached relations. On top of that, our system provides facilities

for axiom modelling and debugging. Naturally, the study does not fully

consider the more recent developments, for example, Protégé (Fridman et

al., 2000) and WebODE (Arprez et al., 2001).

WebODE has a well-known methodological backbone, viz. METHON-

TOLOGY, and is designed to integrate numerous aspects of an ontology life-

cycle. Arprez et al. (2001) mentions that it offers inferencing services

(developed in Prolog) and an axiom manager (providing functionalities such

as an axiom library, axiom patterns and axiom parsing and verification), but

Towards the Semantic Web130

the very brief mentioning of these functionalities is too short to assess

precisely. About collaboration, it is said that this is supported at the knowledge

level, but how this is achieved remains open.

Environments like Protégé (Fridman et al., 2000) or Chimaera (McGuin-

ness et al., 2000) offer sophisticated support for ontology engineering and

merging of ontologies. Protégé also has a modular plug-in design rational

like OntoEdit, but lacks sophisticated support for collaborative engineering.

They provide limited methodological and collaborative support for ontology

engineering.

A system well-known for its reasoning support is OilEd (Bechhofer et al.,

2001b) in combination with the description logics (DL) reasoner FaCT (Bech-

hofer et al., 2001a). Their collaborative and methodological support is rather

weak.

Some tools explicitly support collaboration during ontology engineering.

APECKS (Tennison and Shadbolt, 1998) is targeted mainly for use by domain

experts, possibly in the absence of a knowledge engineer, and its aim is to

foster and support the debate about domain ontologies. It does not enforce

consistency or correctness, and instead allows different conceptualisations of a

domain to coexist. Tadzebao (Domingue, 1998) supports argument between

users on the ontology design, using text, GIF images and even hand-drawn

sketches. The strength of these approaches lies in the advanced support for

communication. In contrast, we provide a more sophisticated support for fine-

granular locking of the ontology.

The web-based Ontosaurus (Swartout et al., 1996) combines support for

collaboration with reasoning and allows individuals to expand an ontology

only when consistency is retained within the ontology as a whole. This

approach takes advantage of the reasoning and consistency checking abilities

of the underlying representation language LOOM. Ontosaurus was inspired by

the Ontolingua system (Farquhar et al., 1996), which does not have an infer-

encing support as an integral part of the ontology development environment.

Due to the simple ‘state-less’ HL interaction, both systems have several

limitations. For example, a server does not maintain any state information

about users, that is, clients. Nor is it possible for a server to initiate an inter-

action on its own, for example, alerting users to simultaneous changes by

others. In general, no other approach is known to us that implements fine-

granular locking of ontologies like we do.

7.6 Conclusion

In this chapter we have presented the advanced collaborative tool support of

OntoEdit for three major steps of the methodology for ontology development.

OntoEdit: Collaborative Engineering of Ontologies 131

We have illustrated the features by examples from the Swiss Life case study

on skills management. OntoEdit also has some features that could not be

presented here, for example, an extremely capable plug-in structure, a lexicon

component, and an ontology mapping plug-in. We have already applied

OntoEdit and the methodology in additional scenarios (e.g. Mädche et al.,

2002). OntoEdit has proven to be a flexible and powerful tool for developing

ontologies.

For the future, it is planned to develop OntoEdit in several directions: (i) the

collaborative facilities will be further expanded, for example, by adding a

rights- and user-management layer on top of the locking mechanism, integrat-

ing communication and workgroup facilities and providing connectors to

additional ontology servers and repositories; especially we want to implement

a connection to the Ontology Middleware and Reasoning component (cf.

Chapter 11) and Sesame (cf. Chapter 5); (ii) new imports and exports will

be developed; (iii) the integration of ontology construction with requirement

specification documents will be generalized by means of semantic document

annotation; and (iv) the mind map tool will be more tightly integrated into the

ontology engineering process, for example, through enabling direct commu-

nication between the tool and an ontology server, to name but a few.

Towards the Semantic Web132

8

QuizRDF: Search
Technology for the
Semantic Web

John Davies, Richard Weeks and Uwe Krohn

8.1 Introduction

Important information is often scattered across Web and/or intranet resources.

Traditional search engines return ranked retrieval lists that offer little or no

information on the semantic relationships among documents. Knowledge

workers spend a substantial amount of their time browsing and reading to

find out how documents are related to one another and where each falls into

the overall structure of the problem domain. Yet only when knowledge work-

ers begin to locate the similarities and differences among pieces of informa-

tion do they move into an essential part of their work: building relationships to

create new knowledge.

Information retrieval traditionally focuses on the relationship between a

given query (or user profile) and the information store. On the other hand,

exploitation of interrelationships between selected pieces of information

(which can be facilitated by the use of ontologies) can put otherwise isolated

information into a meaningful context. The implicit structures so revealed

help users use and manage information more efficiently (Shipman et al.,

1995).

Knowledge management tools are needed that integrate the resources

dispersed across Web resources into a coherent corpus of interrelated informa-

tion. Previous research in information integration (see, e.g. Hearst, 1998) has

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

largely focused on integrating heterogeneous databases and knowledge bases,

which represent information in a highly structured way, often by means of

formal languages. In contrast, the Web consists to a large extent of unstruc-

tured or semi-structured natural language texts.

As we have seen, ontologies offer an alternative way to cope with hetero-

geneous representations of Web resources. The domain model implicit in an

ontology can be taken as a unifying structure for giving information a common

representation and semantics. Once such a unifying structure exists, it can be

exploited to improve browsing and retrieval performance in information

access tools. QuizRDF is an example of such a tool.

We now motivate the design of QuizRDF, a search engine that uniquely

combines free-text search with a capability to exploit RDF meta-data in

searching and browsing. There are three primary reasons for this approach,

two of which are based on theoretical observations, and one of which is more

pragmatic.

Pragmatically speaking, it is the case at the time of writing that only a very

small proportion of WWW- and intranet-based information resources are

annotated with RDF (meta)data. It is therefore preferable to provide a

combined search facility that can exploit meta-data annotations where they

exist but which will degrade gracefully to a ‘traditional’ free text search

engine where information is not annotated.

Turning to more principled reasons for our approach, our own early user

trials and, more importantly, a wealth of data from the information retrieval

literature indicate that information seeking activity is often comprised of a

mixture of searching and browsing behaviours. Research on user behaviour

has typically characterized a variety of paradigms for information seeking and

Bates (1986), for example, provides a discussion of these paradigms and their

interactions. Similarly, Manber et al. (1997) describe a system for combining

browsing and searching of WWW resources and argue that this combination

delivers a more powerful tool for information seeking than search or browse

facilities alone.

More specifically to the discussion at hand, browsing a graphical display of

a comprehensive ontology can result in a high cognitive overload for the user.

Instead of navigating the entire graph of a complex ontology, users may

benefit more by starting from a particular node of the ontology and exploring

its immediate surroundings in order to create appropriate queries. This raises

the question of how to enable the user to find an interesting node in the

ontology from which to start his exploration. In QuizRDF, as we will see,

this is achieved by user entry of a ‘standard’ keyword search query which is

used to locate them at an appropriate point in the information space repre-

sented by the ontology.

Towards the Semantic Web134

Another important observation is that it is in the general case impossible

and impractical to cover the content of a document exhaustively by an RDF

description. In practice, RDF descriptions can never replace the original docu-

ment’s content: any given RDF description of a set of resources will inevitably

give one particular perspective on the information described. Essentially, a

meta-data description can never be complete since all possible uses for or

perspectives on data can never be enumerated in advance. Searches restricted

to RDF descriptions will tend to produce a lower recall, while it is especially

important at the beginning of a retrieval session to achieve a high recall. Most

users are not able to initiate their search by formulating a complex and precise

query. They prefer to start with a very simple query consisting of only one or

two search terms in order to get a first idea of what information is available.

Users may then continue their search by refining the queries to narrow the

search results down to relevant documents.

Searching the full text of documents along with any associated RDF anno-

tations can ensure the high recall desirable in the early stages of the informa-

tion seeking process. In later stages of the search, when the user may typically

be more interested in the precision of the retrieval results, it can be advanta-

geous to put more emphasis on searching the RDF annotations.

QuizRDF can be used like a conventional Internet search engine by entering

a set of search terms or a natural language query and produces a ranked list of

links to relevant Web pages based on statistical algorithms (Salton, 1989) in

the usual way. However, QuizRDF’s indexing and retrieval technique is also

designed to use domain knowledge that is made available in the form of

ontologies specified as RDF Schemas. In our data model, RDF(S) is used to

specify the classes in the ontology and their properties. The information items

processed by QuizRDF are then RDF resources, which may be Web pages or

parts thereof. Ontologically speaking, these RDF resources (WWW pages or

parts thereof) are thus instances of the classes defined in RDF(S).

In the next section, we describe in detail the indexing process used by

QuizRDF and then proceed to discuss in Section 8.3 how this index is

exploited in the retrieval process. Finally, we briefly describe our experience

to date in using QuizRDF and some avenues for further research.

8.2 Ontological Indexing

QuizRDF’s indexing and retrieval technique is designed to use domain knowl-

edge that is made available in the form of ontologies specified as RDF Sche-

mas. The information items processed by QuizRDF are generally RDF

resources, which may be whole Web pages or parts of Web pages. QuizRDF

uses a given RDF Schema to create a structured index of RDF resources.

QuizRDF: Search Technology for the Semantic Web 135

The core of the indexing process in QuizRDF is the assignation of content

descriptors to RDF resources (Web pages or parts thereof). Content descrip-

tors of a resource are terms (words and phrases) that QuizRDF obtains from

both a full text analysis of the resource content and from processing all literal

values that are directly related to the resource by a property (recall that an RDF

resource is an instance of a class in the ontology). The QuizRDF index also

retains structural information about the ontology from the corresponding

RDF(S) description (e.g. classes, their properties and the sub/super-class rela-

tions holding between them).

In practice, the ontological index created by QuizRDF is a set of triples that

refer to a set of RDF resources in a manner analogous to the way in which

constituent terms (words and phrases) refer to documents in ‘traditional’

information retrieval systems (Salton, 1989).

In the RDF meta-data, URLs are instances of classes, as defined by the

typeOf property and we can write this in our scheme as:

,URLn, typeOf, Employee.

Furthermore, values of properties can be written down as follows:

,URLn, last_name, "Miller".

QuizRDF creates a multidimensional index by combining such triples as

follows:

,"Miller", Employee, last_name. ! URLn

which represents the fact that the resource at URLn is an instance of class

employee and that this instance’s lastname property has value ‘‘Miller’’. More

generally, a set of triples of the following type are produced:

,literal,class,property. ! URL

At the same time the full text of the annotated URLs is indexed in the way

familiar from the information retrieval literature (conceptually at least) creat-

ing further triples:

,"George Miller", Employee, f. ! URLn

So the triple above represents the fact that the phrase ‘‘George Miller’’ occurs

in the body of the document at URLn and that this document is of type

Employee.

Figure 8.1 shows a simple example to illustrate ontology-based index-

ing. When indexing the example Web page at malta.bt.com/gm/cv,

QuizRDF not only analyses the full text of the resource content but

also the relevant parts of the RDF graph that describe this resource.

Towards the Semantic Web136

Since our example Web page is annotated as being of type Employee,

QuizRDF processes all literal values that are directly related to the class

Employee. The properties connected to Employee in this example are last_-

name, first_name, has_skills and works_in_project (last_name and first_name

being inherited from the class Person). QuizRDF traverses the RDF graph

along these properties and performs a full text analysis on those properties

having literal values. (Note that QuizRDF will also convert numeric literal

values to strings for similar indexing). The resulting index contains descriptors

extracted from both the full text content of the Web page and the RDF graph.

The content descriptors obtained are stored in QuizRDF’s index along

with references to their structural origin. Figure 8.2 illustrates schemati-

QuizRDF: Search Technology for the Semantic Web 137

Figure 8.1 Ontology-based indexing

Figure 8.2 Ontology-based index

cally the data structure used to store the index for the given example.

For each extracted keyword the index maintains a reference to the

resource type Employee. For descriptors obtained from literal values,

the database additionally stores the name of property that relates the

literal to the given instance of Employee.

Figure 8.3 gives a more general overview of the full QuizRDF index struc-

ture.

8.3 Ontological Searching

In this section, we describe how the ontological index above is used to provide

a natural and intuitive browsing and searching interface onto a set of RDF-

annotated WWW information resources.

On start-up, QuizRDF presents the user with a text entry box and a drop-

down menu. The drop-down menu contains a list of all the resource types

stored in the QuizRDF index. The user can enter any natural language text into

the text entry box. QuizRDF responds by returning a list of RDF resources

ranked according to a resource’s relevance to the user query (the ranking is

currently based on a variation of the well-known tf.idf vector product scheme

(Harman et al., 1992). Simultaneously, the classes of which the URLs in the

results list are instances are computed and included in the drop-down list

above the results list. Selecting a class then (i) filters the retrieval list to

Towards the Semantic Web138

Figure 8.3 Ontological index structure

include only those URLs which are instances of the selected class and (ii)

displays the properties and related classes to the selected class, each of which

has a hyperlink associated with it allowing the user to browse the ontology.

For each attribute the user can input a search criterion. QuizRDF combines

the search criteria entered (which can be both free text search terms and

attribute values) and matches the resulting query against its ontology-based

index. In addition, resource types (classes) related by some property to the

currently selected type are displayed as hyperlinks. Clicking on such a type

then selects that type and in turn displays those types which are related to it.

Thus, the user can browse the ontology in a natural and intuitive way.

To exemplify, Figure 8.4 shows a typical initial query by a user using the

skills ontology described above. The user has entered a free text query for

information about an employee called George Miller. The search engine has

QuizRDF: Search Technology for the Semantic Web 139

Figure 8.4

returned a ranked list of 73 documents mentioning the terms ‘George’ and/or

‘Miller’. At the top of the screenshot can be seen a drop-down list containing

the selection ‘any…’. When returning the 73 results documents, QuizRDF has

also compiled a list of the classes to which each document belongs. This class

list is then made available to the user via the drop-down list referred to.

Figure 8.5 shows the result after the user has selected the Employee class

from the drop-down list. The screen now shows the properties of the Employee

class, differentiating between those which relate (instances of) this class to

(instances of) another class (HasSkills and WorksInProject) and those which

expect a literal value (last name and first name). The user has then specified

values (Miller and George, respectively) for these properties, while now leav-

ing the free text search box empty. Based on these selections, QuizRDF has

identified in its results list the single document (instance) of class Employee

fulfilling the criteria specified. The super-classes of Employee (Person and

Resource) are also identified. These super-classes, as well as the classes linked

to Employee by properties (Skills and Projects), are clickable, allowing the

user to continue to browse the ontology, initiating new searches at any point.

Towards the Semantic Web140

Figure 8.5

8.4 Alternative data models

The data model used above to exemplify the use of QuizRDF sometimes turns

out in practice to be a little simplistic. It will be recalled that a Web resource in

the model was an instance of an ontological class (Employee, say). Intuitively,

one interpretation of this is that the Web resource is ‘about’ in some sense a

particular employee (George Miller in our examples above). For some infor-

mation sets, however, the Web resources may typically be ‘about’ more than

one ontological class. Consider, for example, a Web page which has a section

describing the life of Van Gogh and a further section with reproductions and

descriptions of some of his most famous paintings. Suppose further that the

ontology at hand has classes ‘painter’ and ‘painting’: of which class are we to

say the given page is an instance? To choose only one of the two valid classes

seems to throw away some valid domain knowledge that could be captured

were we to allow the page somehow to be ‘about’ both relevant classes.

An alternative data model has thus been developed to deal with this

problem. The new model effectively introduces a ‘level of indirection’. Speci-

fically, each instance of a class is now a URI which does not refer to a WWW

resource. Instead, these new URIs are related to URLs via the is-about prop-

erty. Crucially, this property is n:1 (i.e. many URIs can point to 1 URL,

allowing any given Web resource to be ‘about’ many of the new URIs).

8.4.1 Indexing in the New Model

URIs are now instances of classes, as defined by the type-of property:

,URIn, typeOf, Employee.

Values of properties are defined as follows:

,URIn, last_name, "Miller".

There is now a new type of triple in the index:

,URLn, is-about, URIn.

QuizRDF now creates a ‘multidimensional index’ from such triples as

follows:

,"Miller", Employee, last_name. ! URI
,literal, class, property. ! URI

At the same time the URLs are full text indexed as before, creating further

triples:

,"George", Employee, f. ! URI

QuizRDF: Search Technology for the Semantic Web 141

8.4.2 Searching in the New Model

Now when a user enters a query, a ranked list of URLs is returned in the usual

way, based on the terms (literal values and words) referencing the URIs in the

index. However, the referenced URIs may of course point to the same URL. In

this instance, two or more URIs are combined in the results list and link to the

same URL. Where labels for the URIs are provided in the RDF descriptions,

these are used in the results list as the name(s) of a given URL; where they do

not exist, the URL string itself is listed.

8.5 Further Work

8.5.1 Technical Enhancements

A number of possible enhancements to QuizRDF are in progress or under

consideration and we briefly mention three of them here.

As we have seen, the resources returned from QuizRDF can be clustered

based on their types (i.e. classes of which they are an instance). The proposal is

that each resulting cluster can then be ‘scored’ by combining some score of the

individual WWW resources contained therein. Currently, as mentioned above,

QuizRDF uses a variation of the well-understood tf.idf scoring scheme to rank

WWW resources against a user query (Harman et al., 1992). In this way, each

resource type (ontological class) can be ranked by relevance to the user query

and results can be presented aggregated around resource types. Currently, we

are developing a text-based way of presenting these results but there are

clearly opportunities to exploit a graphical interface here also.

A second area of ongoing work stems from an obvious limitation of

QuizRDF as currently implemented: namely, queries can only be made around

one class. To exemplify, we can ask the queries

‘Find me all employees with last name Miller’ and

‘Show me all instances of the class painter’

but we cannot (at least not in a single step) ask queries involving any ‘chain-

ing’, for example:

‘Find me all instances of class painting painted by an (instance of class)

painter whose first name is Pablo’

Allowing this possibility without comprising the simple and intuitive interface

of QuizRDF is the subject of ongoing research.

The third area of current work involves the implications of indexing large

ontologies in QuizRDF. The issue is not one of scalability at the indexing

Towards the Semantic Web142

level: the technology underlying QuizRDF has been used to comfortably index

a collection of 3.5 million documents. Rather, the issue arises at the user

interface level: in a heavily interconnected ontology, or one in which classes

typically have a large number of properties, how can we display many classes

and properties intuitively in the QuizRDF interface? Some initial work has

been carried out involving use of drop-down lists rather than lists of hyperlinks

but further effort is needed.

8.5.2 Evaluation

In addition to BT itself, several other organizations are interested in evaluating

QuizRDF. We briefly mention here the use that EnerSearch intend to make of

the system. EnerSearch is a virtual organization researching new IT-based

business strategies and customer services in deregulated energy markets on

behalf of its member companies. As such, EnerSearch is a knowledge creation

company. In common with most WWW-based information, EnerSearch’s

WWW site for the use of its members holds weakly structured information

in mixed media. EnerSearch’s site is a key component for delivery of its

primary role: the transfer of knowledge to its shareholders (member compa-

nies), employees and other interested parties. It is intended to carry out a study

to compare the effectiveness of EnerSearch’s current ‘text-only’ search engine

with the combination of free text search and structured ontological browsing

which is embodied in QuizRDF.

As described in Chapter 13, EnerSearch have designed a detailed experi-

ment to evaluate the advantages of QuizRDF, using both qualitative and

quantitative evaluation techniques.

8.6 Concluding Remarks

Discussion with potential users as well as evidence from the information

retrieval literature indicated clearly the desirability of combining RDF brows-

ing and querying with full text search. A full text search capability means a

user can enter a relatively simple initial query that essentially quickly locates

them in the information space, from where further browsing and searching can

proceed. Additionally, supporting full text search means that the user can

access the information even at an early stage when annotations are still sparse,

while the support for RDF in QuizRDF allows structured browsing of an

ontology. As RDF annotations are added to the system the user will benefit

from the high precision and semantic expressiveness of RDF querying. This

can be seen as a low threshold, high ceiling approach: the user can start using

QuizRDF without necessarily having to invest a lot of time in creating a rich

QuizRDF: Search Technology for the Semantic Web 143

set of annotations; while on the other hand, every newly added annotation will

have an immediate effect on the system’s performance and usability.

We have argued that QuizRDF’s combination of ontological browsing and

free text search supports a more natural and intuitive information seeking

process than is available in either a search engine or a browsing tool alone.

We have described our initial implementation of QuizRDF and indicated

some further directions of research and briefly discussed an ongoing evalua-

tion of the system. QuizRDF is an early example of the much-improved

information access tools that the advent of the Semantic Web makes possible.

Towards the Semantic Web144

9

Spectacle

Christiaan Fluit, Herko ter Horst, Jos van der Meer,
Marta Sabou and Peter Mika

9.1 Introduction

Many Semantic Web initiatives improve the capabilities of machines to

exchange the meaning of information with other machines. These efforts

lead to an increased quality of the application’s results, but their user inter-

faces take little or no advantage of the semantic richness. For example, an

ontology-based search engine will use its ontology when evaluating the user’s

query (e.g. for query formulation, disambiguation or evaluation), but fails to

use it to significantly enrich the presentation of the results to a human user. For

example, one could imagine replacing the endless list of hits with a structured

presentation based on the semantic properties of the hits.

Another problem is that the modelling of a domain is done from a single

perspective (most often that of the information provider). Therefore, presenta-

tion based on the resulting ontology is unlikely to satisfy the needs of all the

different types of users of the information. So even assuming an ontology for

the domain is in place, mapping that ontology to the needs of individual users

– based on their tasks, expertise and personal preferences – is not trivial.

9.2 Spectacle Content Presentation Platform

The Spectacle Semantic Web initiative improves the capabilities of machines

to present the meaning of information to humans. Spectacle is a content

presentation platform featuring custom-made information presentations,

aimed at supporting the information needs of its users. This means not only

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

that the right information should be delivered to the user, but also that it needs

to be presented (structured, formatted, rendered) in a manner appropriate for

that specific user.

Spectacle is used to disclose both the content of databases, document repo-

sitories and other enterprise information sources, as well as the semantics of

that information from Semantic Web resources.

For the end user, Spectacle transforms the task of gathering information

from a search task (formulating explicit queries) to a browsing task (using

navigation heuristics) by presenting each user with the navigational means

appropriate for his or her task. This results in more efficiency in retrieving the

right information, both in terms of retrieval accuracy as well as time spent on

the task.

Spectacle can present information in two different ways: firstly, it can create

hypertext interfaces, containing selected content, design and an appropriate

navigation structure, based on the semantics of the information. Additionally,

it can present the information by graphical visualization.

A key benefit of the first approach is that it allows for an easy and flexible

presentation of the same information in different ways, for each of the envi-

sioned tasks or user groups. Furthermore, it has all the usual benefits of a

generated web site (like having a consistent design, being up-to-date) and it

also takes advantage of the expressivity and flexibility provided by Semantic

Web standards such as RDF, RDF Schema and DAML1OIL.

A benefit of the second approach is that it can offer insights and kinds of

information access that are not possible with conventional publishing methods

such as web sites. For example, overview and analysis of large sets of objects

requires an effective and compact graphical presentation. Similarly, presenta-

tion of the relations between these objects is virtually impossible without the

support of a graphical visualization.

9.2.1 Ontologies in Spectacle

What is required is a powerful information organization metaphor that can still

be understood by all users. The first candidate that comes to mind is the list,

which fails to comply with the ‘powerful’ requirement. The next step up is a

tree-like structure, which is significantly more powerful than a list, yet is still

easily understood and widely used, for example in menus, directory trees,

bookmarks, etc. Anything potentially more powerful, for example, unrest-

ricted graphs, is too complex for the average user to handle.

For this reason, Spectacle maps the existing complex domain ontologies to

lightweight ontologies that describe the domain through a set of classes

(concepts) and their hierarchical relationships. Also known as taxonomies,

Towards the Semantic Web146

this type of ontology is already being used in several domains (biology,

chemistry, libraries) as classification systems. Information architects consider

taxonomies to be basic building blocks, representing the backbone of most

web sites. Non-formal taxonomies are already widely used in web applications

for product classification (e.g. Amazon1) or web directories (e.g. Yahoo,2

Open Directory Project3). Taxonomies are also part of Semantic Web stan-

dards such as RDF and Topic Maps.

Due to the specialization relationship that is encoded in the hierarchy, the

set of objects in a subclass is a subset of the objects of its super-class. The set

of subclasses of a class is called complete when their union contains all the

objects of the super-class. Classes that share instances are called overlapping

if no specialization relationship holds between them.

These characteristics are very common for taxonomies. Especially the

‘overlapping’ characteristic of a taxonomy proves very valuable, because it

provides multiple routes to the same information (when used in navigation)

and insight into correlations between concepts (when used for graphical analy-

sis).

9.3 Spectacle Architecture

For the transformation of information from existing sources to an ontology-

based presentation, Spectacle offers an application development architecture

consisting of the following components (Figure 9.1):

† Spectacle Onto API. Supports the ontology mapping introduced in Section

9.4.2. A detailed description of the mapping process is provided in Section

9.4.

† Spectacle Core API. Provides an interface to the Spectacle server. This API

is used internally by the Onto API and is not discussed here.

† Spectacle Visualization API. Provides the means to generate and interact

with the visualizations described in Section 9.5.

9.4 Ontology-based Mapping Methodology

Applications based on the Spectacle Onto API create a transient ontology-

based mapping of data sources to a Spectacle presentation. The Onto API

provides a framework for application development by offering a controlled

procedure for the transformation process. It supplies the application developer

Spectacle 147

1 http://www.amazon.com/
2 http://www.yahoo.com/
3 http://www.dmoz.org/

with domain-independent methods and components that facilitate the devel-

opment.

The procedure consists of the following steps:

1. Identify relevant information entity types in the data sources and the data to

display for each entity.

For each distinct entity type:

2. Create a mapping of terms, relations, properties and property values from

the domain ontology to taxonomical terms.

3. Decide on how to render the individual entities in the presentation.

4. Decide on the navigation paths through the ontology that are relevant to the

entire entity set, based on the properties identified in step 2.

5. Decide on which information to render in each step of the navigation

sequence.

Towards the Semantic Web148

Figure 9.1 Spectacle API architecture

6. Decide on filters that limit the entire set on certain criteria, yet use one of

the navigation sequences identified in step 4.

7. Determine typical user profiles, based on the information views from step 4

and 6.

Example. Throughout this chapter, we will use examples from the Ener-

Search case study. EnerSearch is a virtual research organization that uses

Spectacle in order to provide access to its extensive collection of publications

through ontology based navigation. The ontology of EnerSearch is a combi-

nation of a lightweight ontology that describes the domain of EnerSearch and

a rich ontology that contains meta-data such as the author and title of publi-

cations. For further information, please consult Chapter 13.

9.4.1 Information Entities

The first step in the Spectacle Onto scenario is to identify relevant information

entity types in the data sources. Entities are real-world concepts such as

‘products’ or ‘documents’, information about which is stored in – or can be

derived from – the data sources.

Example. EnerSearch identified the need to offer the users navigation on the

level of pages, as opposed to entire publications, for example. This level of

granularity is made possible by named anchors in the HTML pages that can be

used to point to specific parts within publications.

9.4.2 Ontology Mapping

In this step, the taxonomical terms are determined by which the entities are

classified, based on the characteristics of the available content. The classifica-

tion terms may correspond to types from the domain ontology, property

values, ranges of property values, combinations of property values, or rela-

tions between instances. These terms will be used later for navigation and

selection purposes. The key benefit of this step is that an abstraction is made

(for the purpose of presentation and navigation) from the arbitrary modelling

decisions made in the domain ontology.

Example. The EnerSearch presentation employs several classifiers. Entities

(i.e. pages) are classified by individual concepts, authors, projects and the

year of publication. Concepts are classes in the ontology, while authors and

Spectacle 149

projects are property values. Classification by year is an example of classifi-

cation by a range of property values, since a year is defined as a range of date

values.

9.4.3 Entity Rendering

In this step, the default rendering of each entity type is determined. Typically,

some form of HTML or XML template is chosen or developed in which the

relevant information for each entity can be inserted. Note that this default

rendering can later be overridden for specific user profiles (Figure 9.2).

Example. Entities are shown as a link along with a summary of the content,

based on an HTML template. By clicking on the URL the content opens in a

separate window for viewing. The source of the information that is used for

rendering the entities is the ontological meta-data.

9.4.4 Navigation Specification

In this step, the sequence of taxonomical terms is determined by defining

generally applicable paths by which users can navigate through the taxonomy.

Each level in the navigation is expressed as the set of values for a term

obtained in Section 9.4.2. Each sequence of levels leads to a simple navigation

specification. Multiple navigation specifications are possible for each set of

entities.

In order to allow the end user to select the next most relevant taxonomical

term (instead of just a value of that term), the concept of a meta navigation

step was introduced. A meta navigation step differs from the regular (content)

navigation step, in that it allows the user to select a taxonomical term, instead

of one of the values of that term. Note that a meta navigation step does not

actually narrow down the selection for the user. For that reason, a meta

navigation step is normally combined with the corresponding content naviga-

tion steps in the user interface.

Example. In the EnerSearch case, there is only one navigation specification

Towards the Semantic Web150

Figure 9.2 Example entity rendering

that is defined in terms of concepts. However, only key concepts are included

on the top level of the navigation, as it is expected that users would naturally

start navigating by the most important concepts.

9.4.5 Navigation Rendering

In this step, a decision is made as to what to render in each step of the

navigation obtained in the previous section (and how to render it). For exam-

ple, it might not be deemed appropriate to show the default entity rendering at

each level in the navigation, because this would lead to information overload

for the user. So higher levels in the navigation hierarchy commonly use over-

views (showing only a summarized rendering of a limited set of matching

entities), and only when the user has drilled down to a sufficiently small set of

information are the full entities shown.

An important aspect of the navigation rendering is that navigation paths are

only offered when they lead to a non-empty set of entities. The user will never

be confronted with a navigation step that results in an empty page.

Example. The topmost level is shown as a menu in a separate frame in the

EnerSearch presentation while all other navigation steps are rendered using

Spectacle 151

Figure 9.3 Example navigation rendering

in-page navigation. In other words, the links that the user can use to navigate

further are embedded within the page. See Figure 9.3 for an example.

On the top of each section that is rendered from a navigation step, there is a

table that contains all concepts that occur in the current selection of pages.

Below, in a separate table, the concepts related to the previously selected

concept(s) are shown. These provide an alternative way to continue the navi-

gation. At the bottom the entities in the current selection are rendered as

discussed above.

The presentation also makes use of configurable heuristics built into Spec-

tacle that help to reduce the number of sections that needs to be rendered.

Permutations of navigation steps are recognized, for example the step

‘energy/saving’ is equivalent to ‘saving/energy’ and therefore needs to be

rendered only once. Furthermore, in each section the steps that do not cut

back the selection significantly are not shown, as these choices lengthen the

navigation path without adding much to the definition of the user’s query.

Also, nodes that contain less than a minimum number of entities are not

extended any further, as it is expected that the user can handle a smaller

selection without further help from the system.

9.4.6 Views

In this step, useful subsets of the entire set of entities that nonetheless use the

same navigation are determined. Views are used instead of just introducing

extra navigation steps in order to avoid an internal combinatorial explosion of

the number of navigation paths. Views are integrated into the navigational

structure by mounting them at a particular location in the navigation tree.

Conceptually and visually, there is no difference between a view and the

regular navigation tree; views are a tool to be able to control the combinatorial

explosion that occurs when introducing navigation steps.

Example. Navigations by the author, project or date of publication are

implemented as views. For example, the view that is mounted at ‘By

Author/Akkermans, Hans’ selects the subset of pages that belong to publica-

tions written by Hans Akkermans.

9.4.7 User Profiles

In the final step it is determined which of the default navigation(s) and views

are appropriate for the identified user groups. For example, end users may

never get to see the full set of entities and have only one navigation path, while

administrators may get access to all information along multiple navigation

paths. User profiles may also control the rendering of the information, so that

Towards the Semantic Web152

internal properties can be hidden from regular users. The user profiles decided

upon here are just defaults, and can be extended and adapted by individual

users if required.

Example. Although the EnerSearch case study does not employ user profiles

at the moment, these could be used to provide privileged access to internal

publications for selected users, such as the shareholders of the company.

9.5 Ontology-based Information Visualization

In the previous section, a textual, web-based rendering was used to present the

information to the end user. This presentation is appropriate for the average

information consumer due to its low entrance threshold: the user can find

information by simply browsing through it. However, a textual presentation

often hides certain characteristics of the information that are necessary for

other tasks that require more insight into the structural properties of the infor-

mation.

The Spectacle Cluster Map is an information visualization component that

visualizes the objects of a number of selected terms from a taxonomy, using

these terms as the primary organization principle. Cluster maps support at

least three general information-seeking tasks: analysis, querying and naviga-

tion.

9.5.1 Analysis

A user may want to analyse a data set in order to get a better insight in its

characteristics, to get a global understanding of the collection and to discover

patterns and exceptional cases.

The cluster map in Figure 9.4 shows a collection of pages from the publica-

tions of EnerSearch, organized according to a select number of key concepts

from the ontology. Each small yellow sphere represents a page. The larger,

green spheres represent taxonomical terms. Directed edges indicate the hier-

archical relationships between terms and point from specific to generic (e.g.

knowledge management is a subclass of management). Balloon-shaped edges

connect a set of objects to their most specific term(s). Objects that are classi-

fied by the same set of terms are grouped in clusters. Our example contains

seven clusters; three of them represent overlaps between terms.

This visualization is immediately more expressive than its text-based coun-

terpart with respect to the gained global insight into the taxonomy. The terms

and their relationships are easy to detect. Also, it is immediately apparent

which objects belong to one or multiple terms, which terms have shared

Spectacle 153

instances (e.g. IT and knowledge management) and which do not (load

management and knowledge management). Also it is clear that IT plays a

part in both types of management. The relative sizes of the classes are clearly

visible, e.g. there are a lot more pages written about load management than

knowledge management.

Another interesting aspect of the visualization is that proximity in the map

is related to semantic proximity. This is a consequence of the graph layout

algorithm. Classes are semantically close if they share many instances.

Indeed, the more instances two classes share, the closer they are in the visua-

lization. Instances are semantically close if they belong to the same class(es).

Indeed, instances that have the same class memberships are explicitly clus-

tered.

Figure 9.5 shows a more extensive example of a cluster map, displaying the

cluster model of four key terms within the EnerSearch domain. Here, the clusters

are displayed as cylinders, abstracting from the individual instances they contain.

This allows the visualization to scale to larger amounts of instances. Furthermore,

the edges connecting the same class to various clusters all have the same colour,

so that the distribution of its instances over the map is easier to spot.

The static version of the cluster map (i.e. the image itself) already contains a

lot of information that can be useful for analysing the data set. The classes and

their hierarchical relationships provide an understanding of the domain of the

Towards the Semantic Web154

Figure 9.4 An example cluster map

data set. The way instances are classified results in characteristics such as

incompleteness and overlaps, showing class relationships at the instance

level. The cardinality of classes and clusters supports a quantitative analysis.

By interpreting just this information, one can already come up with some

domain-specific observations.

Additionally, the interactive cluster map viewer, shown in Figure 9.6,

makes analysis an interactive and explorative process. The overview, zoom

and filter facilities offered by the user interface qualitatively enhance the

analysis process, by allowing the user to graphically browse through the

taxonomy.

The strategy used to obtain one or more cluster maps plays an important

role in its application. Different strategies can support different analysis

scenarios:

1. Analysis within a single domain. In this case a data set is visualized from

one or more perspectives, giving insight into the collection. In one of our

pilots we investigated the characteristics of a set of job offers by visualizing

them according to the region or the relevant economic sector.

2. Comparison of different data sets. Data sets can be compared by visualizing

them using the same ontology. For example, we have compared the offer-

ings of two banks, by imposing the same taxonomy on their web sites and

analysing the two visualizations.

Spectacle 155

Figure 9.5 A cluster map showing countries vs. accommodation space

3. Monitoring. Analysis of a data set at different points in time provides

insight into the way it evolves. For example, one can monitor the web

site of a company over time and see how its activities evolve.

9.5.2 Querying

The goal of a query task is to find a narrow set of items in a large collection

that satisfy a well-understood information need (Marchionini, 1995). Query

functionality for document collections is typically provided by a query form in

which the user can enter query terms, optionally combined with Boolean

operators. Several factors limit the effectiveness of this approach. Often,

users find it difficult to come up with the right terms, because they only

have a vague understanding of their information need and/or because they

use a different vocabulary. Furthermore, they often have great difficulty

formulating effective queries using Boolean expressions (Shneiderman, 1996).

The cluster map offers an alternative, graphical approach to querying. A user

interface, such as shown in Figure 9.6, may allow the user to select a number of

Towards the Semantic Web156

Figure 9.6 The cluster map viewer

classes from the taxonomy, which become the query terms. Presenting the user

with a collection of terms solves the vocabulary mismatch problem. Moreover, it

will often lead to more precise queries since users may encounter additional

applicable terms that they would not have thought of by themselves.

A cluster map displaying these classes and their instances then serves as

a graphical representation of the hit list. For example, the left side of

Figure 9.7 shows the result of the query ‘load management OR research

OR deregulation’. The individual instances in the map represent the hits

that match this query. A different colour scheme is used that shows the

degree of relevance: the more relevant the hits, the darker the colour of

the edges connecting them to their classes. Consequently, the best hits

visually stand out from the map.

Clearly, there is no hit that satisfies all the requirements, since there is no

overlap between all classes. This scenario is well known in electronic

commerce: when searching for a product, a customer selects a set of values

that are of interest. If the query does not fully succeed then either a ‘no results’

message or a long list of partial matches is shown. The customer gets neither a

clear overview of the results nor suggestions for further exploration. As a

result he often abandons the site. The ideal situation would be that the custo-

mer is guided to alternatives that would come close to his needs. With this

visualization the customer has the opportunity to analyse alternative solutions

in terms of his original query. For example, the map indicates that, although

there is no instance satisfying all criteria, a hit is obtained when one of two

requirements is dropped.

There is no need to formulate Boolean expressions, since they are an inher-

ent part of the visualization. The following expressions are already expressed

by the graph structure:

1. the union of the classes (disjunction of all query terms);

2. all intersections of the selected classes (conjunction of some query terms);

3. a special case of two: the intersection of all classes (conjunction of all

query terms) – if any.

If the user wants a disjunction of the terms, he will analyse all the presented

instances. As an added value he will see how the corresponding classes over-

lap, providing more insight into the resulting set. A more interesting (and

probably more frequent) case is when a user wants the conjunction of the

terms. In that scenario, two extreme situations can happen:

1. the result set is too large (under-specification);

2. the result set is empty (over-specification).

If the result set is empty, the user can still find instances that partially satisfy

Spectacle 157

the query, as shown above. The colour scheme assists in picking out the best

hits. This is a form of query relaxation.

It is also possible to narrow or broaden the scope of the search by refining

the query. If the result set is too large, the user can replace some classes with

more specific subclasses. If the result set does not contain the item the user is

looking for, he can try to broaden the search by replacing classes with their

super-classes.

This principle is illustrated by the two cluster maps shown in Figure 9.7.

While no single instance matches all terms of the query on the left, the right

side shows that an optimal hit can be found by broadening the search to all

forms of management. Note that both narrowing and broadening the scope of

the query are possible due to the subclass relations in the taxonomy; therefore

this capability is strongly dependent on a well-structured hierarchy.

Summarizing, we can say that this visualization has transformed the query

process into a browsing process.

9.5.3 Navigation

Cluster maps can also be used for graphical navigation. We have employed

them as image maps in Spectacle-generated web sites based on taxonomical

data. Two navigation scenarios have been implemented, as described below.

In the first scenario, the cluster map is used in addition to the more tradi-

tional navigation facilities used in these sites: textual trees. It plays the role of

Towards the Semantic Web158

Figure 9.7 Two cluster maps showing the hit lists of two queries

a site map that can be invoked by the user when needed. It presents an over-

view of the whole data set: it shows the most important classes, their relation-

ships and their instances. One can click on a class or a cluster of instances,

which links to a corresponding location in the navigation structure. The role of

the map is to facilitate a quick understanding of the available content and to

provide quick access to individual items.

In the second scenario, the cluster map is always present as it has become

the only navigation facility. Maps gradually present deeper levels of the

ontology: the user starts with a visualization of the top of the taxonomy,

showing only top-level classes, and can navigate towards more specific topics

by clicking on a class of interest, which then becomes the current class. At any

point, the map shows the current class and its super- and sub-classes (i.e. all

classes that it has a direct hierarchical relationship with). For the current class,

its instances are also presented in a textual list alongside the map. This hier-

archical browsing facilitates a levelled understanding of the data.

9.6 Summary: Semantics-based Web Presentations

The technologies described in this chapter, supported by other Semantic Web

technologies described in this book, enable organizations to exploit their

semantically enhanced information resources to enrich the information

presentation towards individual users. One presentation technique excels at

low entrance threshold, easy to understand, browsable presentations, while the

other offers highly expressive visualizations that provide the insight necessary

for more complex tasks. Depending on specific needs, the right combination of

these two techniques will provide optimal information access for knowledge

workers.

Spectacle 159

10

OntoShare: Evolving
Ontologies in a Knowledge
Sharing System

John Davies, Alistair Duke and Audrius Stonkus

10.1 Introduction

We saw in the introduction how the Semantic Web makes possible a new

generation of knowledge management tools. We now turn our attention more

specifically to Semantic Web based support for virtual communities of prac-

tice. The notion of communities of practice (Seely-Brown and Duguid, 1991)

has attracted much attention in the field of knowledge management. Commu-

nities of practice are groups within (or sometimes across) organizations who

share a common set of information needs or problems. They are typically not a

formal organizational unit but an informal network, each sharing in part a

common agenda and shared interests or issues. In one example it was found

that a lot of knowledge sharing among copier engineers took place through

informal exchanges, often around a water cooler. As well as local, geographi-

cally based communities, trends towards flexible working and globalisation

have led to interest in supporting dispersed communities using Internet tech-

nology (Davies, 2000a). The challenge for organizations is to support such

communities and make them effective. Provided with an ontology meeting the

needs of a particular community of practice, knowledge management tools can

arrange knowledge assets into the predefined conceptual classes of the ontol-

ogy, allowing more natural and intuitive access to knowledge.

Knowledge management tools must give users the ability to organize infor-

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

mation into a controllable asset. Building an intranet-based store of informa-

tion is not sufficient for knowledge management; the relationships within the

stored information are vital. These relationships cover such diverse issues as

relative importance, context, sequence, significance, causality and association.

The potential for knowledge management tools is vast; not only can they make

better use of the raw information already available, but they can sift, abstract

and help to share new information, and present it to users in new and compel-

ling ways

In this chapter, we describe the OntoShare system which facilitates and

encourages the sharing of information between communities of practice

within (or perhaps across) organizations and which encourages people –

who may not previously have known of each other’s existence in a large

organization – to make contact where there are mutual concerns or inter-

ests. As users contribute information to the community, a knowledge

resource annotated with meta-data is created. Ontologies defined using

the resource description framework (RDF) and RDF Schema (RDFS)

are used in this process. RDF (Lassila and Swick, 1999) is a W3C recom-

mendation for the formulation of meta-data for WWW resources. RDF(S)

(Brickley and Guha, 2000) extends this standard with the means to specify

domain vocabulary and object structures – that is, concepts and the rela-

tionships that hold between them.

In the next section, we describe in detail the way in which OntoShare can be

used to share and retrieve knowledge and how that knowledge is represented

in an RDF-based ontology. We then proceed to discuss in Section 10.3 how

the ontologies in OntoShare evolve over time based on user interaction with

the system and motivate our approach to user-based creation of RDF-anno-

tated information resources. The way in which OntoShare can help to locate

expertise within an organization is then described, followed by a discussion of

the sociotechnical issues of deploying such a tool. Finally, a planned evalua-

tion exercise and avenues for further research are outlined.

10.2 Sharing and Retrieving Knowledge in OntoShare

OntoShare is an ontology-based WWW knowledge sharing environment for a

community of practice that models the interests of each user in the form of a

user profile. In OntoShare, user profiles are a set of topics or ontological

concepts (represented by RDF classes and declared in RDF(S)) in which the

user has expressed an interest. OntoShare has the capability to summarize and

extract keywords from WWW pages and other sources of information shared

by a user and it then shares this information with other users in the community

of practice whose profiles predict interest in the information.

Towards the Semantic Web162

OntoShare is used to store, retrieve, summarize and inform other users

about information considered in some sense valuable by an OntoShare user.

This information may be from a number of sources: it can be a note typed by

the user him/herself; it can be an intra/Internet page; or it can be copied from

another application on the user’s computer.

As we will see below, OntoShare also modifies a user’s profile based on

their usage of the system, seeking to refine the profile to better model the

user’s interests.

10.2.1 Sharing Knowledge in OntoShare

When a user finds information of sufficient interest to be shared with their

community of practice, a ‘share’ request is sent to OntoShare via the Java

client that forms the interface to the system. OntoShare then invites the user to

supply an annotation to be stored with the information. Typically, this might

be the reason the information was shared or a comment on the information and

can be very useful for other users in deciding which information retrieved

from the OntoShare store to access. At this point, the system will also match

the content being shared against the concepts (ontological classes) in the

community’s ontology. Each ontological class is characterized by a set of

terms (keywords and phrases) and the shared information is matched against

each concept using the vector cosine ranking algorithm (Granovetter, 1982).

The system then suggests to the sharer a set of concepts to which the informa-

tion could be assigned. The user is then able to accept the system recommen-

dation or to modify it by suggesting alternative or additional concepts to which

the document should be assigned.

When information is shared in this way, OntoShare performs four tasks:

1. An abridgement of the information is created, to be held on the user’s local

OntoShare server. This summary is created using the ViewSum text

summarization tool. The summarizer extracts key theme sentences from

the document. It is based on the frequency of words and phrases within a

document, using a technique based on lexical cohesion analysis (Ahmed

and Benbrahim, 1995). Access to this locally held summary enables a user

to quickly assess the content of a page from a local store before deciding

whether to retrieve the (larger amount of) remote information.

2. The content of the page is analyzed and matched against every user’s

profile in the community of practice. As when recommending concepts

to the user, the vector cosine ranking model is used: here, however, the

shared information is matched against the set of terms (words and phrases)

created from the union of all terms associated with the concepts to which

OntoShare: Evolving Ontologies in a Knowledge Sharing System 163

has user has subscribed (i.e. the concepts which make up the user profile). If

the profile and document match strongly enough, OntoShare emails the

user, informing him or her of the page that has been shared, by whom

and any annotation added by the sharer.

3. The information is also matched against the sharer’s own profile in the

same way. If the profile does not match the information being shared, the

system will suggest one or more concepts which strongly match the shared

information that the user can then add to their profile. Thus, OntoShare has

the capability to adaptively learn users’ interests by observing user beha-

viour.

4. For each document shared, an instance of the class Document is created,

with properties holding meta-data including keywords, an abridgement of

the document, document title, user annotation, universal resource locator

(URL), the sharer’s name and date of storage. (The ontological structure of

the OntoShare store is described in detail in the next section).

In this way, a shared and enhanced information resource is built up in the

OntoShare store based on user contributions. Given that users must make a

conscious decision to store information, the quality of the information in the

OntoShare store is high – it is effectively pre-filtered by OntoShare users.

Thus, each user leverages the assessment of the information made by all the

other users.

10.2.2 Ontological Representation

We said above that each piece of shared information leads to the creation of a

new entry in the OntoShare store and that this store is effectively an ontology

represented in RDFS and RDF. We now set this out in more detail. RDFS is

used to specify the classes in the ontology and their properties. RDF is then

used to populate this ontology with instances as information is shared. Figure

10.1 shows a slightly simplified version of the ontology for a community

sharing information about the Semantic Web, along with an example of a

single shared document (‘Document_1’).

It is not our intention to describe each class and property and their function

here but we will mention a few key aspects. First, notice Concept and its sub-

classes: this is the set of concepts that the community of practice at hand is

interested in. Note that in the current version of OntoShare, the concept

structure is limited to a strict hierarchy. Another key class is Document,

which is the class used to represent shared information: each document shared

generates an instance of Document with the set of properties shown. Docu-

ment_1, for example, was stored by John Smith into the concept RDF with the

Towards the Semantic Web164

annotation ‘RDF tutorial for beginners…’ with the summary and URI as

shown in Figure 10.1. It also has a set of keywords associated with it. (For

simplicity, note that here we show only one keyword Kw_1, which is an

instance of the class Keyword, as is Kw_2 and furthermore that the instance

(typeOf) relation is not shown for these keywords, nor is the fact that Keyword

is a subclass of rdfs#Resource). The third central class is Profile, instances of

which represent user information, including the concepts in which they are

interested, their names and email addresses. Profile_1, for example, is the

profile of a user with name ‘John Smith’. Finally, note that keyword Kw_2

is one of (possibly many) terms (words and phrases) which characterize the

concept Language.

Below we include excerpts from the RDFS and RDF (in XML notation)

used to represent the ontology depicted above. We see the declarations of the

classes Document, Profile and Keyword in RDFS, followed by the descriptions

of Document_1 and the user profile of John Smith in RDF.

,?xml version¼"1.0" encoding¼"UTF-8" ?.
,rdf:RDF
xmlns:rdf¼"http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

OntoShare: Evolving Ontologies in a Knowledge Sharing System 165

Figure 10.1 Ontological structure in OntoShare

xmlns:rdfs¼"http://www.w3.org/2000/01/rdf-
schema#"
xmlns:ontoshare¼"http://www.bt.com/ontoshare#".

,!–– *************** RDFS SCHEMA *************** ––.
,rdfs:Class rdf:ID¼"Document" /.
,rdfs:Class rdf:ID¼"Profile" /.
,rdfs:Class rdf:ID¼"Keyword" /.

,!–– Document properties ––.
,rdf:Property rdf:ID¼"submitted_by".
,rdfs:domain rdf:resource¼"#Document" /.
,rdfs:range rdf:resource¼"#Profile" /.

,/rdf:Property.
……………
……………

,!–– **************** RDF DATA **************** ––.

,!–– DOCUMENTS ––.
,Document rdf:ID ¼ "Document_1".
,title.RDF Tutorial,/title.
,uri.http://www710.univ-lyon1.fr/~champin/rdf-
tutorial,/uri.
,submitted_by.#Profile_1,/submitted_by.
,summary.the summary of this doc goes
here,/summary.
,isAbout rdf:resource¼"#RDF" ontoshare:ID¼"7" /.
,annotation.RDF tutorial for beginners
…,/annotation.

,/Document.

,!–– PROFILES ––.

,Profile rdf:ID¼"Profile_1".
,user_name.John Smith,/user_name.
,email . john.smith@bt.com,/email.
,interestedIn rdf:resource¼
"#Sesame" ontoshare:ID¼"5" /.
,interestedIn rdf:resource¼
"#Tools" ontoshare:ID¼"2" /.

,/Profile.
……………
……………

Towards the Semantic Web166

10.2.3 Retrieving Explicit Knowledge in OntoShare

In this section, we discuss the ways in which OntoShare facilitates access to

and the automatic sharing of the information shared by users.

10.2.3.1 Email Notification

As described above, when information is shared in OntoShare, the system

checks the profiles of other users in the community of which the user is a

member. If the information matches a user’s profile sufficiently strongly, an

email message is automatically generated and sent to the user concerned,

informing the user of the discovery of the information. Thus, in cases where

a user’s profile indicates that they would have a strong interest in information

shared, they are immediately and proactively informed about the appearance

of the information.

10.2.3.2 Searching the Community Store – Accessing Information and
People

Via a button on their OntoShare home page, a user can supply a query in the

form of a set of keywords and phrases in the way familiar from WWW search

engines. Users can also request that OntoShare only returns documents added

by a particular user or added to particular concepts. A search window is shown

in Figure 10.2. OntoShare then retrieves the most closely matching pages held

in the OntoShare store, using a vector space matching and scoring algorithm

(Granovetter, 1982).

The system then displays a ranked list of links to the pages retrieved and

OntoShare: Evolving Ontologies in a Knowledge Sharing System 167

Figure 10.2 Searching the OntoShare store

their abridgements, along with the scores of each retrieved page. Any annota-

tion made by the original sharer is also shown. Importantly, the user can elect

to simultaneously search for other users by selecting the appropriate check

box. We will have more to say about this capability to identify other users as

well as information in Section 4 when we look at accessing tacit knowledge

via other users using OntoShare.

10.2.3.3 Personalized Information

A user can also ask OntoShare to display ‘Documents for me’ as shown in the

top right pane of Figure 10.3. The system then interrogates the OntoShare store

and retrieves the most recently stored information. It determines which of these

pages best match the user’s profile. The user is then presented with a list of links

to the most recently shared information, along with a summary, annotations

where provided, date of storage, the sharer and an indication of how well the

information matches the user’s profile (the thermometer-style icon in Figure

10.3).

In addition, two buttons are provided (on the button bar at the bottom of the

Towards the Semantic Web168

Figure 10.3 Typical OntoShare home page

screen in Figure 10.3) so that the user can indicate interest or disinterest in a

particular piece of information – this feedback will be used to modify the

user’s profile. At this point, the system will match the content of the current

document against each concept (ontological class) in the community’s ontol-

ogy. As described above, each ontological class is characterized by a set of

terms (keywords and phrases) and the shared information is matched against

the term set of each concept using the vector cosine ranking algorithm

(Harman, 1992). The system then identifies the set of zero or more concepts

that match the information above a given ranking threshold and suggests to the

sharer that this set of concepts be added to or removed from their profile in the

cases of user interest or disinterest, respectively. The user is then free to accept

the system recommendation or to modify it by selecting from the set of

suggested concepts.

Two further operations are possible on documents presented to the user.

These operations are selected from the ‘Documents’ menu. First, a user can

add their own annotation to information stored by another user. Second, a user

can request that OntoShare identifies other users with an interest in the infor-

mation under consideration.

This ‘Documents for me’ information is in fact displayed on the user’s

OntoShare home page, so that whenever they access the system, they are

shown the latest information. Figure 10.3 is a typical OntoShare home page.

10.3 Creating Evolving Ontologies

In Section 10.2, we described how, when a user shares some information, the

system will match the content being shared against each concept (class) in the

community’s ontology. Recall that each ontological class is characterized by a

set of terms (keywords and phrases) and that following the matching process,

the system suggests to the sharer a set of concepts to which the information

could be assigned. The user is then able to accept the system recommendation

or to modify it by suggesting alternative concept(s) to which the document

should be assigned. It is at this point that an opportunity for ontology evolution

arises.

Should the user indeed override the system’s recommended classification of

the information being shared, the system will attempt to modify the ontology

to better reflect the user’s conceptualization, as follows. The system will

extract the keywords and keyphrases from the information using the ViewSum

system mentioned above. The set of such words and phrases are then presented

to the user as candidate terms to represent the class to which the user has

assigned the information. The user is free to select zero or more terms from

this list and/or type in words and phrases of his own. The set of terms so

OntoShare: Evolving Ontologies in a Knowledge Sharing System 169

identified is then added to the set of terms associated with the given concept,

thus modifying its characterization.

We call this approach usage-based ontology evolution and in this way the

characterization of a given concept evolves over time, this evolution being

based on input from the community of users. We believe that this ability to

change as users’ own conceptualization of the given domain changes is a

powerful feature which allows the system to better model the consensual

ontology of the community.

As well as usage-based evolution, we have seen above how users also

indirectly annotate the information as a side-effect of sharing it with the

community and we discuss and motivate this approach below.

Pragmatically speaking, it is the case at the time of writing that only a very

small proportion of WWW- and intranet-based information resources are

annotated with RDF (meta)data. It is therefore beneficial to provide a system

wherein such annotation effectively occurs as a side-effect of normal usage.

Another important observation is that it is in the general case impossible to

cover the content of a document exhaustively by an RDF description. In

practice, RDF descriptions can never replace the original document’s content:

any given RDF description of a set of resources will inevitably give one

particular perspective on the information described. Essentially, a meta-data

description can never be complete since all possible uses for or perspectives

on data can never be enumerated in advance.

Our approach accommodates this observation, however, in the sense that

each community will create its own set of meta-data according to its own

interest in and perception of information that is added to its store. It is very

possible that the same information could be shared in two separate commu-

nities and emerge with different meta-data annotations in each.

10.4 Expertise Location and Tacit Knowledge

In Section 10.2, we focused on the technical aspects of OntoShare and on the

sharing and storing of explicit knowledge. Explicit knowledge we take to be

that knowledge which has been codified in some way. This codification can

take place in many different media (paper, WWW page, audio, video, and so

on). In the context of OntoShare, by explicit knowledge, we mean the infor-

mation shared in OntoShare, along with the meta-information associated with

it such as the sharer, the annotations attached to it, and so forth. We now turn

to the social aspects of the system and tacit knowledge.

A large amount of the knowledge within an organization may of course

not be codified: it may be personal, context-specific and difficult to write

down, and may be better transmitted through a master-apprentice ‘learning

Towards the Semantic Web170

by watching and copying’ arrangement. Such knowledge is referred to as

tacit knowledge (Polyani, 1966). When tacit knowledge is difficult to make

explicit (codify), we need to find new ways of transmitting the knowledge

through an organization. Failure to do so can lead to loss of expertise when

people leave, failure to benefit from the experience of others, needless

duplication of a learning process, and so on.

One way in which a system such as OntoShare can encourage the sharing of

tacit knowledge is by using its knowledge of the users within a community of

practice to put people who would benefit from sharing their (tacit) knowledge

in touch with one another automatically.

One important way we gain new insights into problems is through ‘weak

ties’, or informal contacts with other people (Granovetter, 1974, 1982). Every-

one is connected to other people in social networks, made up of stronger or

weaker ties. Stronger ties occur between close friends or parts of an organiza-

tion where contact is maintained constantly. Weak ties are those contacts

typified by a ‘friend of a friend’ contact, where a relationship is far more

casual. Studies have shown that valuable knowledge is gathered through

these weak ties, even over an anonymous medium such as electronic mail

and that weak ties are crucial to the flow of knowledge through large organi-

zations. People and projects connected to others through weak ties are more

likely to succeed than those not (Constant et al., 1996; Hansen, 1997).

User profiles can be used by the OntoShare system to enable people to find

other users with similar interests. The user can request OntoShare to show

them a list of people with similar interests to themselves. OntoShare then

compares their profile with that of every user in the store and a list of

names of users whose interests closely match their own. Each name is repre-

sented as a hypertext link which when clicked initiates an email message to the

named user. Recall that profiles in OntoShare are a set of phrases and thus the

vector space model can be used to measure the similarity between two users. A

threshold can then be used to determine which users are of sufficient similarity

to be deemed to ‘match’.

This notion is extended to allow a user to view a set of users who are

interested in a given document. OntoShare determines which members of

the community ‘match’ the relevant document above a predetermined thresh-

old figure and presents back to the user a list of user names. As before, these

names are presented as hypertext links, allowing the user to initiate an email

message to any or all of the users who match the document. Figure 10.4 shows

typical output from this process.

In addition, as already mentioned, a user can carry out a keyword search on

other users and thus identify users with an interest in a particular subject.

In this way, OntoShare, while not claiming to actually capture tacit knowl-

OntoShare: Evolving Ontologies in a Knowledge Sharing System 171

edge, provides an environment which actively encourages the sharing of tacit

knowledge, perhaps by people who previously would not otherwise have been

aware of each other’s existence.

10.5 Sociotechnical Issues

10.5.1 Tacit and Explicit Knowledge Flows

In the organizational literature, it is common to distinguish between different

types of knowledge along two axes: tacit and explicit knowledge, as discussed

in the previous section; and group and individual knowledge.

Clearly, knowledge management is concerned with the sharing of knowl-

edge and hence the transfer of individual knowledge to group knowledge. This

much is uncontentious but the means by which this may be achieved is less so.

Nonaka (1994) is typical of much of the literature when he says ‘While tacit

knowledge held by individuals may lie at the heart of the knowledge creating

process, realising the practical benefits of that knowledge centres on its exter-

nalization…’, where by externalization is meant the conversion of tacit knowl-

edge to explicit. Therefore, Nonaka is keen to attempt facilitation of this

conversion process.

However, as we have discussed above, we view tacit knowledge as essen-

tially of a different type from explicit knowledge. It follows from this that tacit

knowledge cannot necessarily be ‘externalized’. Space does not permit a full

Towards the Semantic Web172

Figure 10.4 Finding users in OntoShare

discussion of the epistemological issues here and the reader is referred to Cook

and Seely-Brown (1998) for further details.

In OntoShare, the main focus is on explicit knowledge, which is transferred

via the sharing of information (along with additional meta-information). Tacit

knowledge transfer is not directly supported in OntoShare but is, however,

facilitated by allowing and encouraging users to contact others with shared

interests or concerns as shown in Figure 10.5.

10.5.2 Virtual Communities

There is no blueprint to guarantee a successful virtual community. In our

experience, there are a number of relevant factors, some of which are inter-

related. We discuss these factors briefly below.

10.5.2.1 Reward Collaborative Behaviours

This can be done in a number of ways. Collaboration in appropriate commu-

nities can be written into job descriptions and/or personal objectives and thus

become part of an organization’s appraisal processes. Less formal approaches

could include the award of monthly prizes for the most effective contributions

to a community, perhaps selected by a senior manager.

OntoShare: Evolving Ontologies in a Knowledge Sharing System 173

Figure 10.5 Knowledge flows in OntoShare

10.5.2.2 Identify a Senior Management Champion and Gain
Local Management Support

We have found it almost universally true that senior management buy-in and

active promotion is very helpful. A degree of care must be taken, however, to

ensure that involvement from senior figures does not jeopardize the informal

nature of the communities. Studies at Xerox found that informality was key to

creating trust and a greater tendency to information exchange in many situa-

tions (Seely-Brown and Duguid, 1991).

10.5.2.3 Consider Job Types and Cultures

In practice, it is usually the case that many different cultures exist within the

overarching culture of a large organization. One needs to understand the

culture (and of course information needs) of candidate job groups in order

to assess the areas where communities of practice are likely to be most bene-

ficial. In one organization, we trialled a collaborative working solution with a

community of engineers and a community of sales people: The engineers’

community flourished, while that of the sales people withered on the vine.

When we looked a little more closely at the nature of the communities, we

uncovered the attributes summarized in Table 10.1. Of course, this summary

would not necessarily apply universally: it does not even apply to all the

members of the groups we were working with but nevertheless explains the

success of one group and relative failure of the other.

10.5.2.4 Technology drivers

It has become common place in knowledge management circles that ‘technol-

ogy is only 20% of the solution, the rest is culture’. While the sentiment that

we need a wider perspective than just technology is indisputably correct, it

Towards the Semantic Web174

Table 10.1 Job groups and culture

Engineers Sales people

Job spanned multiple customers Rarely concerned with more than one customer

Motivation tied to best quality

solutions

Motivated by unique solutions and ‘being first’

Schooled in total quality

management and re-use of best

Competitive by personality (and selection)

Compensation schemes reinforce competitive

practice attitudes

reveals the assumption of a dichotomy between technology and organizational

culture which does not exist. Rather, technology-based tools are among the

many artefacts entwined with culture, whose use both affects and is affected by

the prevailing cultural environment. A holistic view is required and technol-

ogy often plays a larger part in cultural factors than is sometimes acknowl-

edged. We should never ignore the possibility of the introduction of a new

technological capability driving new behaviours. An example of this would be

a geographically dispersed team exhibiting a low level of collaborative beha-

viour: the introduction of the right tools can increase the level of collaboration

significantly. A good discussion of the inter-relationship between technology

and culture can be found at http://www.deepwoods.com.

10.5.2.5 Identify Facilitators

In a number of communities, we have seen great benefit in assigning ‘early

adopters’ a facilitation role. In OntoShare, for example, this would typically

involve the facilitator sharing items of the right content (and at the right

technical level) on a regular basis, particularly during the early stages of the

tools use.

10.5.2.6 Build trust

Trust between members of a community of practice is of course essential if

people are to participate fully (indeed, it is highly doubtful whether a group of

individuals comprise a genuine community without it). In some trials,

members of communities will be well known to one another. Where this is

not the case, it may be appropriate to bring people (physically) together to

begin to build mutual trust and to set expectations for the community. It should

always be made clear that no kind of censure will result from ‘incorrect’

participation in the community. Trust is of course a highly complex issue in

its own right and the reader is referred to Maxwell (2000) for further discus-

sion.

10.6 Evaluation and Further Work

OntoShare is a recently developed system and at the time of writing a formal

evaluation has just started which we describe briefly here. The user group for

the study will consist of approximately 30 researchers, developers and tech-

nical marketing professionals from the research and development arm of a

large telecommunications firm. The interests of the users fall into three main

groupings: conferencing, knowledge and information management and perso-

OntoShare: Evolving Ontologies in a Knowledge Sharing System 175

nalization technologies. It is felt that three separate yet overlapping topic areas

will constitute an interesting mix of interests for the purposes of the trial.

The case study will commence with a workshop involving the practitioners

in order to develop an ontology that encompasses the research fields with

particular emphasis upon the overlap between them. OntoEdit (described in

Chapter 7) will be used to create the ontology for the research areas. This will

then be uploaded to Sesame (Chapter 5), allowing it to be viewed by the

Spectacle tool (described in the previous chapter) and used as the ontology

in OntoShare (which contains a module for reading ontological information

from Sesame). The use of Sesame also allows access to the ontology for other

ontology-based tools. The ontology will automatically evolve and extend over

the course of the study as documents are added to OntoShare. The effective-

ness of this evolutionary process will be considered in the evaluation exercise.

Qualitative and quantitative measures of the trial are being devised. The main

evaluation criterion is to what degree the application of tools and methodology

can ensure that knowledge discovered by individuals can be transferred to the

most appropriate members of the user group. An interesting secondary

outcome we wish to look at is the extent to which the ontology built up by

the community is useful to other users in other contexts. In this regard, we plan

to offer a searching and browsing facility over the community’s information

using the QuizRDF system (see Chapter 8) for other users outside the commu-

nity.

Research and development of OntoShare is ongoing. A particular area of

focus currently is the ontological structure: a strict hierarchy of concepts about

which the communities wants to represent and reason may prove ultimately

limiting and various possibilities for allowing a more expressive concept map

are under consideration. One such is that OntoShare will be developed beyond

the sub-class/super-class concept hierarchy with isRelatedTo properties,

allowing ‘horizontal’ links between concepts. The exploitation of this addi-

tional information is again a matter for further research. One proposal is that

when seeking to match users to other users, the system can use some notion of

tree-matching, taking into account the concepts in the users’ profiles as well as

not only the isA (subClassOf) links but also the isRelatedTo links. A further

research area is the automatic identification and incorporation of new concepts

as they emerge in the community. Work on this area is, however, at a very

early stage.

10.7 Concluding Remarks

We have described OntoShare, an ontology-based system for sharing informa-

tion among users in a virtual community of practice. We motivated the use of

Towards the Semantic Web176

Semantic Web technology for knowledge management tools and described

how ontologies in OntoShare are defined in RDF and RDF(S). Communities

are able to automatically share information and thereby create RDF-annotated

information resources. Furthermore, these information resources are then of

course available to other RDF-based tools for processing.

Importantly, the ontology used by a given community in OntoShare can

evolve over time based on the concepts represented and the information that

users choose to associate with particular concepts. This is a significant advan-

tage over a community attempting to reach consensus on a set of concepts and

how they relate to one another at the outset that is then difficult or impossible

to change. Much remains to be done in this area, however, particularly with

regard to the introduction of new concepts. In addition, users have personal

profiles according to the concepts in which they have declared an interest and

these profiles also evolve automatically, seeking to match more closely a

user’s information needs and interests based on the usage they make of the

system.

We concluded by indicating some further directions of research and briefly

discussed an ongoing evaluation of the system.

OntoShare: Evolving Ontologies in a Knowledge Sharing System 177

11

Ontology Middleware and
Reasoning

Atanas Kiryakov, Kiril Simov and Damyan Ognyanov

The ontology middleware discussed in this chapter can be seen as ‘adminis-

trative’ software infrastructure that makes the rest of the modules in a knowl-

edge management toolset easier to integrate into real-world applications. The

central issue is to make the methodology and modules available to society as a

self-sufficient platform with mature support for development, management,

maintenance, and use of middle-size and large knowledge bases.1

This chapter starts with an explanation of the required features of ontology

middleware in the context of our knowledge management architecture and the

terminology used. In Section 11.2 the problem of versioning and tracking

change is discussed. Section 11.3 presents the versioning model and its imple-

mentation that is developed in the project, and Section 11.4 describes the

functionality of the instance reasoning module.

11.1 Ontology Middleware: Features and Architecture

The ontology middleware system serves as a flexible and extendable platform

for knowledge management. It should provide infrastructure with the follow-

ing features:

† A repository providing at least the basic storage services in a scalable and

reliable fashion.

† Support for plugable reasoning modules suitable for various domains and

applications. This ensures that within a single enterprise or computing

environment one and the same system may be used for various purposes

1 See the discussion on ontology vs. instance data vs. knowledge base below.

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

so providing easy integration, interoperability between applications,

knowledge maintenance and re-use.

† Multi-protocol client access to allow different users and applications to use

the system via the most efficient ‘transportation’ media.

† Knowledge control. The following features are considered:

– versioning (tracking changes) in knowledge bases;

– access control (security) system;

– meta-information for knowledge bases.

† These features are interrelated to each other as depicted in Figure 11.1.

We call the composition of these three functions a knowledge control

system (KCS). It provides knowledge engineers with the same level of control

and manageability of the knowledge in the process of its development and

maintenance as source control systems (such as Concurrent Versions System)

provide for software. From the perspective of the end-user applications, KCS

can also be seen as equivalent to database security, change tracking2 and

auditing systems. A KCS should be carefully designed to support these two

distinct use cases.

Towards the Semantic Web180

Figure 11.1

2 The change tracking is often called ‘cataloguing’.

11.1.1 Place in the On-To-Knowledge Architecture

The ontology middleware module (OMM) is implemented as an extension of

the Sesame architecture that fulfils the repository role and provides a good

basis for multi-protocol access and plugable storage and inference layers. The

exact approach undertaken can be seen in Figure 11.2; it represents a modi-

fication of the bottom part of the Sesame architecture diagram presented in

Figure 5.3.

The grey boxes denote the additional modules and extensions developed.

The arrows depict how the requests of the different modules are passing

through the different SAIL interfaces. The boxes with dashed borders

(Reasoning and BOR – the DAML1OIL reasoner) are optional, that is, not

an obligatory part tightly coupled with the Sesame architecture. Those are

only necessary for DAML1OIL reasoning.

The interfaces of the OMM are designed to fit in the stacked SAIL archi-

tecture by extending it with their specific functionality. Some of the Sesame

functional modules are modified so to benefit directly from the interfaces in

the OMM SAIL extension. The implementation of BOR is an additional SAIL.

Its full potential is accessible via a specific functional interface (described in

Section 11.4). On the other hand, the BOR supports the SAIL interface so the

rest of the modules can also interoperate with it in the same way as they do

with standard RDF(S) supporting SAIL. For instance, the Query module can

perform queries against DAML1OIL repositories without changes to its inter-

faces.

Ontology Middleware and Reasoning 181

Figure 11.2

The above architecture allows a transparent manipulation of the repository

for the existing tools. Each application can work with the repository through

the standard Sesame modules – the middleware remains transparent in this

case. In addition, the repository behaviour can be changed if the application is

working directly with the new reasoning, versioning, and security modules or

gaining access to the underlying low-level programming interfaces.

11.1.2 Terminology

A number of justifications in terminology are necessary. An almost trivial but

very important question is ‘What do the knowledge management tools

support: ontologies, data, knowledge, or knowledge bases?’ A simple and

correct answer is ‘All of these.’ Here we provide a simplified interpretation

of these terms.

Ontology is the basic knowledge formally defining the model (schema,

conceptualization) relevant for a certain knowledge domain. Such a model

allows the information relevant to a more or less general set of applications

considering this domain to be represented as much as possible in an adequate,

effective, structured, and non-redundant way. The ontologies are usually

defined in a kind of formal logical or schema-definition language and at

least define the types of entities to be considered together with some charac-

teristics, constraints, and relations applicable to them. An ontology may or

may not include: type hierarchies, attribute definitions and restrictions, induc-

tion or other rules. Examples of ontologies could be a database schema or a

definition of a product catalogue structure and categories.

Data or instance data is the particular information to be managed – it

usually considers specific situations or phenomena. The data should always

be structured according to the ontology (if this is defined, of course) and

comply with its restrictions. In the ideal case, a big number of different data

sets and applications use one and the same ontology. While the instance data

and the applications may regularly change to reflect changes in the situation or

particular needs, the ontologies are expected to be much more stable so as to

provide a coherent interpretation of the data and easy integration among the

applications.

Knowledge is a hard to define philosophical category that is often inter-

preted in different ways according to the context and purpose of use. It is the

case that both ontologies and data can be considered as knowledge, so, it is

often used as a generic term denoting both types of information. Knowledge

base is a term used in a way similar to database, so, not surprisingly it may

denote both a specific body of knowledge as well as the software system for its

management. In contrast to databases, knowledge base management systems

Towards the Semantic Web182

are expected to support some inference mechanisms in order to be able to

provide explicit facts that logically follow from the existing knowledge but not

formally asserted.

Repository is also often used as a synonym of database or knowledge base

or just as a more generic term that denotes any of them, as well, as hybrid and

marginal systems. So, everything discussed in the previous paragraph is also

applicable for repositories.

For the purpose of compliance with the terminology used in the Sesame

RDF(S) repository, the term repository is used here to denote a compact

body of knowledge that could be used, manipulated, and referred to as a

whole. Such may contain (or host) both ontological statements and

instance data.

In the knowledge management community there is a rich diversity of almost

equivalent terms used to reference similar modelling primitives – this is result

of the diversity paradigms with their own vocabularies. We use mostly the

RDF(S) terminology and when necessary DAML1OIL. So, here we use:

Class for any concepts, types and other unary predicates; Property for any

binary relations, attributes, slots, etc. More detailed discussion on the termi-

nology diversity can be found in Kiryakov et al. (2001).

11.2 Tracking Changes, Versioning and Meta-information

The Big Brother is watching you!

1984, George Orwell

The problem of tracking changes within a knowledge base is addressed in this

section. It is important to clarify that higher level evaluation or classification

of updates (considering, for instance, different sorts of compatibility between

two states or between a new ontology and old instance data) is beyond the

scope of this work (see Ding et al., 2001, Section 2.2). Tracking changes in the

knowledge (as discussed here) provides the necessary basis for further analy-

sis. As an example, in order to judge the compatibility between two states of

an ontology, a system should be able to at least retrieve the two states and/or

the differences between them.

An overview of the related work is followed by formal statement of the

requirements. Next, a model that satisfies these requirements is presented,

complemented with comments on the implementation approach. In

summary, the approach taken can be briefly characterized as ’versioning

of RDF on a structural level in the spirit of the software source control

systems’’.

Ontology Middleware and Reasoning 183

11.2.1 Related Work

Here we briefly review similar work, namely, several other studies related to

the management of different versions of complex objects. In general, although

some of the sources discuss closely related problems and solutions, there is no

one addressing ontology evolution and version management in a fashion

allowing granularity down to the level of specific resources and statements

(or similar constructs) and also able to capture interactive changes in knowl-

edge repositories such as asserting or retracting statements.

One of the studies that provides a methodological framework close to the

one needed here is Kitcharoensakkul and Wuwongse (2001). The authors

model a framework, which is designed to handle the identification, control,

recording, and tracking of the evolution of software products, objects, struc-

tures, and their interrelationships. The paper investigates the different models

and versioning strategies for large scale software projects and presents a way

to express the meta-information and the impact of a single change over the

various components of the project in RDF(S) – in this case used just for

representation of the related meta-information; the objects being tracked are

pieces of software.

Database schema evolution and the tasks related to keeping schema and data

consistent to each other can be recognized as very similar to ours. A detailed and

formal study on this problem can be found in Franconi et al. (2000a); it presents

an approach allowing the different sorts of modifications of the schema to be

expressed within suitable description logic. More detailed information about

the reasoning and other related tasks can be found in Franconi et al. (2000b).

Similar issues are discussed also in Benatallah and Tari (1998).

Unsurprisingly, some of the most relevant studies were done under the On-

To-Knowledge project; among the reports concerning various aspects of the

knowledge management, the most relevant is Ding et al. (2001), mentioned

earlier in this section.

11.2.2 Requirements

The top-level requirements towards a versioning model for knowledge

management in the contexts targeted by the On-To-Knowledge project are

enumerated below:

1. To allow tracking of changes in both ontologies and instance data with

fine granularity.

2. To allow work with, revert to, extraction of, and branching of different

states and versions of a knowledge base. This to be possible without any

loss or corruption of information related to other states or versions.

Towards the Semantic Web184

3. To be independent from the serialization of the knowledge. In other words

a change of the ordering or formatting of the knowledge that does not

cause changes in its formal interpretation not to be considered as a change

of the state. This requirement should not be understood in the sense of a

necessity for continuous evaluations of logical equivalence, but rather as a

need for abstraction from re-ordering of statements or terms and other

similar cosmetic changes which are syntactically detectable as sense-

preserving in a declarative representation.

4. To be applicable for various platforms or medias. The mechanism to allow

versioning of repositories (where statements can be asserted and retracted

in an interactive way), but to be also adaptable for use cases when the

different states of a repository (a body of knowledge) are represented as,

say, XML files.

5. To be applicable for knowledge represented in RDF(S), DAML1OIL,

and similar ontology languages.

6. To be as much as possible independent from the semantics of a specific

state or variant of a single language. Taking into account the current state

of the development of the Semantic Web vision and the related languages,

specifications, and tools, development of a scheme particularly tuned for

language such as DAML1OIL seems not to be feasible.

7. To be simple and intuitive, optionally transparent, to allow use of the

knowledge in a manner abstracting from the change tracking. Thus, not

to unnecessarily increase the complexity of simple applications.

8. To allow versioning of the meta-information as well. (Motivation

provided below.)

9. To allow naming, addressing, and keeping meta-information for specific

states. Well-structured meta-information considering various characteris-

tics of a certain state (or version) of a knowledge base to be supported in a

flexible way.

10. To cause minimal overhead to the volume of the data.

11. To provide a basis for further evaluations of the changes, such as checking

the consistency of a state and various types of compatibility between

states of ontologies and data (as in Ding et al., 2001).

11.3 Versioning Model for RDF(S) Repositories

A versioning model for RDF(S) repositories is presented. To make it more

explicit (i) the knowledge representation paradigm supported is RDF(S) and

(ii) repositories are being tracked independently from the fact of whether they

contain ontologies, instance data, or both. The decision to support tracking of

Ontology Middleware and Reasoning 185

changes, versioning, and meta-information for RDF(S) repositories has a

number of consequences and requires more decisions to be taken. The most

important principles are presented in the next paragraphs.

Principle 1. The RDF statement is the smallest directly manageable piece of

knowledge.

Each repository, formally speaking, is a set of RDF statements (i.e. triples);

these are the smallest separately manageable pieces of knowledge. Arguments

can be found to support that the resources and the literals are the smallest

entities; it is true in a way, however, they cannot be manipulated indepen-

dently. None of them can independently ‘live’ in a repository because they

always appear as a part of a triple and never independently. The moment when

a resource is added to the repository may only be defined indirectly as the

same as ‘the moment when the first triple including the resource was added’.

Analogously, a resource may be considered as to be removed from a reposi-

tory when the last statement including it gets out. To summarize, there is no

way to add, remove, or update (the description of) a resource without also

changing some statements while the opposite does not hold. So, the resources

and the literals from a representational and structural point of view are depen-

dent from the statements.

Principle 2. An RDF statement may not change – it can only appear and

disappear.

As far as the statements are nothing more than triples, changing one of the

constituents, just converts it into another triple. This is because there is noth-

ing else but the constituents to determine the identity of the triple, which is an

abstract entity that is fully defined by them. Let us take for instance the

statement ST1¼,A, PR1, B. and suppose B is a resource, that is, a URI.

Then ST1 is nothing more than a triple of the URIs of A, PR1, and B – if one of

those get changed it will be already pointing to a different resource that may or

may not have something in common with the first one. For example, if the URI

of A was http://x.y.z/o1#A and it got changed to http://x.y.z/
o1#C then the statement ST2¼,C,PR1,B. will be a completely different

statement.

Further, if the resource pointed by a URI gets changed, two cases can be

distinguished:

† The resource changes but its meta-description in RDF does not. Such

changes are outside the scope of the problem for tracking changes in

formally represented knowledge.

Towards the Semantic Web186

† The description of the resource changes – it can happen if and only if a

statement including this resource get changed, that is, added or removed. In

such a case, there is another statement affected, but the one that just bears

the URI of the same resource does not.

There could be an argument that when the object of a triple is a literal and it

gets changed, this is still the same triple. However, if there is, for instance, a

statement ,A,R,"abc". and it changes to ,A,R,"cba"., the graph

representation shows that it is just a different arc because the new literal is

a new node and there could be other statements (say, ,B,P,"abc".) still

connected to the old one.

The next principle is a consequence of this.

Principle 3. The two basic types of updates in a repository are addition and

removal of a statement.

In other words, those are the events that necessarily have to be tracked by a

tracking system. It is obvious that more event types such as replacement or

simultaneous addition of a number of statements may also be considered as

relevant for an RDF(S) repository change tracking system. However, those

can all be seen as composite events that can be modelled via sequences of

additions and removals. As far as there is no doubt that the solution proposed

allows tracking of composite events (say, via post-processing of the sequence

of the simple ones), we are not going to enumerate or specify them here.

Principle 4. Each update turns the repository into a new state.

Formally, a state of the repository is determined by the set of statements that

are explicitly asserted. As far as each update is changing the set of statements,

it is also turning the repository into another state. A tracking system should be

able to address and manage all the states of a repository.

Some notes and definitions that complement the principles stated above are

presented in the following sub-sections.

Ontology Middleware and Reasoning 187

11.3.1 History, Passing through Equivalent States

The history of changes in the repository can be defined as a sequence of states,

as well as a sequence of updates, because there is always an update that turned

the repository from one state to the next. It has to be mentioned that in the

history, there can be a number of equivalent states. It is just a question of

perspective whether we consider those as one and the same state or as equiva-

lent ones. Both perspectives have some advantages for some applications. We

accepted that there could be equivalent states in the history of a repository, but

they are still managed as distinguishable entities. Although it is hard to

provide formal justification for this decision, the following arguments can

be presented:

† For most applications, it is not typical for a repository to pass through

equivalent states often. Although possible, accounting for this phenomenon

is not obviously worth taking into account as finding equivalent states could

be a computationally very heavy task.

† If necessary, equivalent states can be identified and matched or combined

via post-processing of a history of a repository.

11.3.2 Versions are Labelled States of the Repository

Some of the states of the repository could be versions, which could be any

state, without any formal criteria and requirements – it completely depends

on the user’s or application’s needs and desires. Once defined as a version,

the state becomes a first class entity for which additional knowledge can be

supported as a meta-information (as described below).

11.3.3 Implementation Approach

Let us now present the schema for tracking changes in a repository. For each

repository, there is an update counter (UC), an integer variable that increases

its value each time the repository get updated, which in the basic case means

when a statement get added to or deleted from the repository. Let us call each

separate value of the UC an update identifier (UID). Then for each statement

in the repository, when the UID was added and removed will be known – these

two values determine the ‘lifetime’ of the statement. It is also the case that

each state of the repository is identified by the corresponding UID.

If the UIDs that determine the ‘lifetime’ of each statement are kept, for each

state it will be straightforward to find the set of statements that determine it –

those that were ‘alive’ at the UID of the state being examined. As far as

Towards the Semantic Web188

versions are nothing more than labelled states, for each one there will also be a

UID that uniquely determines the version.

This approach can be demonstrated with the sample repository KB1 and its

‘‘history’’. The repository is represented as a graph in Figure 11.3; the lifetime

of the statements is given separated by semicolons after the property names.

The history is presented as a sequence of events in the format UID:nn
{add|remove} ,subj, pred, obj.. Two ‘snapshots’ of states of

the repository for UIDs 2 and 8 are shown in Figure 11.4.

It is an interesting question as to how do we handle in the above model,

multiple additions and removals of one and the same statement, which in a

sense periodically appears and disappears form the repository. We have under-

taken the approach to consider them as separate statements, because of reasons

Ontology Middleware and Reasoning 189

Figure 11.3

Figure 11.4

similar to those presented for the support of distinguishable equivalent state-

ments.

11.3.3.1 Batch Updates

We call a batch update the possibility of stopping the update counter of the

repository, so as not to increment its value for a number of consequent

updates. This feature can be very important for cases when it does not make

sense that individual updates are tracked one by one. An example could be

assertion of a DAML1OIL element that is represented via a set of RDF

statements none of which can be interpreted separately (see Section 11.4).

Another example for a reasonable batch update would be an application that

works with the repository in a transactional fashion – a series of updates are

bundled together, because according to the logic of the application, they are

closely related. Finally, batch updates can also be used for file imports.

11.3.3.2 Versioning and Meta-information for Inferred Statements

There are cases when the addition of a single statement in the repository leads

to the appearance of several additional statements in it. An example is the

addition of the statement ST1¼,B, rdfs:subClassOf, C. which leads

to the addition of two new statements ST2¼,B, rdf:type,
rdfs:Class. and ST3¼,C, rdf:type, rdfs:Class..

New statements can also appear when an external ontology is imported into

the repository either by a xmlns:prefix¼"uri" attribute of an XML tag in

the XML serialized form of the ontology or by a daml:imports statement

found in the header of a DAML1OIL ontology. In each of those cases, the

inferred or imported statements in the repository should be treated as read-

only and thus the users of the repository cannot change them. Also all these

statements appear and disappear in the repository at the same moment as the

statement that causes their inference or import. An additional note about the

imported statements relating to the security: these statements should be recog-

nized as external, and not belonging to the repository and thus we can avoid

the application of the security policies to them.

11.3.4 Meta-information

Meta-information should be supported for the following classes: resources,

literals, statements and versions. As far as DAML1OIL ontologies are also

formally encoded as resources (of type daml:Ontology) meta-information can

also be attached to them.

Towards the Semantic Web190

The meta-information is also modelled in RDF – something completely

admissible taking into account the unrestricted meta-modelling approach in

RDF(S). A number of objections against such an approach can be given. First,

it raises the number of meta-layers and so makes the representation more

abstract and hard to understand. However, adding meta-information always

requires one more layer in the representation, so, making it via extensions of

the same primitives used for the ‘real data’ (instead of defining some new

formalisation) can even be considered as a simplification. Second, it makes

confusion possible and may introduce technical difficulties, say, because of

intensive use of heavy expressive means such as reification.

The schema proposed below handles these problems to some degree and

provides some advantages:

† It is probably the most typical role of RDF to be used for encoding of meta-

information.

† One and the same technology can be used for viewing, editing and manage-

ment of both knowledge and meta-information. Any RDF(S) reasoners and

editors can handle the meta-information without special support for it.

† Queries including both knowledge and meta-information are straightfor-

ward. So, lookup of knowledge according to conditions involving both

meta-information and ‘real’ knowledge is possible. Imagine a situation

when a complex ontology is being developed and there is meta-information

supporting this process, say, a meta-property ‘Status’ (with possible values

‘New’, ‘Consistent with the ontology’, ‘Verified against the sample data’,

‘Done’) being attached to each class. Then a lookup of all classes that are

subclasses of C and have status ‘New’ will be just a typical query against

the RDF repository.

† Representing the meta-information as RDF could be done in a flexible way

that allows it to be customized for the specific needs of the use case.

11.3.4.1 Tracking Changes in the Meta-information

An important decision to be taken is whether changes in the meta-information

should be tracked. The resolution proposed here is as follows. Changes in the

meta-information should be considered as regular changes of the repository, so, to

turn it from one state to another. Here are few arguments backing this position:

† There are a number of cases when the only result of serious work on an

ontology is just a single change in the meta-information. Let us use again

the example with the ‘Status’ meta-property for classes (described above.)

The result of a complex analysis of the coherence of a class definition may

result just in changing the status from ‘New’ to one of the other values. In

Ontology Middleware and Reasoning 191

this case, although there is no formal change in the ‘real’ data, something

important get changed. From an ontology management point of view, it is

extremely important that tracking of such changes is possible.

† It is possible that appropriate analysis can be made on demand so that

changes that affect only the meta-information can be ignored. This way

both behaviours can be achieved. In the case of the opposite decision (not to

track changes in meta-information), no kind of analysis can reconstruct the

missing information.

† An analogy with software source control systems may also provide addi-

tional intuition about this issue. If we consider the comments in the soft-

ware code as meta-information, it becomes clear that the source control

systems definitely consider changes in the meta-information as equal to

‘real’ changes in the code.

11.4 Instance Reasoning for DAML1OIL

The represented knowledge allows a (potentially) infinite number of possible

uses, but within a practical system, mainly the typical usage cases are implemen-

ted efficiently. Two typical usage cases are Ontology development and Ontology

use. Ontology development requires the following basic tasks to be supported:

† checking whether a class definition is consistent by itself or with respect to

a set of other class descriptions;

† checking whether a given class definition is more general than another class

definition;

† construction of an explicit hierarchy of class names on the base of their

class definitions.

We call these reasoning tasks terminological reasoning.

Ontology use involves an already developed ontology in which the classes

are defined and (possibly) the relations between them are explicitly repre-

sented (after some terminological reasoning) and instance data of much higher

magnitude, say, thousands or millions of instances. This usage case requires

task such as:

† to find the most specific classes that describe a partially specified instance;

† to find all instances in the data set which are instances of a given class

definition;

† more complex queries trying to retrieve answers to questions involving

instance data; for example, getting all pairs of instances related in some way;

† checking the consistence of the instance data with respect to the ontology.

We call these reasoning tasks instance reasoning.

Towards the Semantic Web192

The infrastructure initially developed under the On-To-Knowledge project

separates the ontology and data representation from the reasoning over them.

The storage, management and querying of ontologies and instances is handled

by the Sesame system (see Chapter 5). If more expressive reasoning is neces-

sary (in a more expressive language like OIL or DAML1OIL), then the

corresponding information should be sent to an external reasoner (say, the

FaCT system) that processes it and returns the answer. Although such a solu-

tion is appealing in terms of re-use of existing tools and compliance, in our

view it can hardly provide a good level of performance and interoperability in

cases when the ontology and/or the instance data is huge. There are two

possible approaches for implementation of such an architecture:

1. Only the relevant parts of the ontology and the instance data are sent to the

external reasoner. Such a solution minimizes the exchange overhead

between the two system, but imposes the question how these relevant

parts are determined. In general, the problem of fragmentation of an ontol-

ogy and/or instance data into non-interacting chunks can require a consid-

erable amount of reasoning.

2. The external reasoner to support its own copy of the ontology and/or

instance data. In this case the reasoner duplicates a lot of the functions

of the repository, one way or another everything ‘known’ to the repository

should be passed to the reasoner.

Both approaches are in contradiction with the expectation for Sesame usage –

thousands of classes and millions of instances. Thus, integration with the

external reasoner seems feasible only for small ontologies.

Using only Sesame is also not a satisfactory solution because it supports

only RDF(S) which has expressive power that is insufficient to support ontol-

ogies and instance data for domains and applications requiring the full inven-

tory of ontological languages such as DAML1OIL.

These arguments motivated our position that the reasoning services has to

satisfy the following requirements:

† to be aware of the semantics of DAML1OIL;

† to be efficient in the typical usage cases;

– ontology development – terminological reasoning, usually no instances

are involved,

– ontology use – instance reasoning, stable ontology with huge instance

data;

† to be in close integration with the RDF(S) repository.

In the following, we discuss the inference services necessary to support the

Ontology Middleware and Reasoning 193

typical uses. First, the instance reasoning services are discussed. Next, the

inference services are specified in terms of high-level functional interfaces.

11.4.1 Inference Services

In this section we describe the inference services that we consider useful for

instance reasoning. In the following, we use the term ‘Repository’ to point

to the Sesame RDF(S) repository which contains a well-defined

DAML1OIL repository. The inference(s) will be concerned with the ontol-

ogy and the data set parts of such a repository, called instance resources.

† Realization. Find in an ontology the most specific classes that describe a

given instance resource.

† Instance checking. Check whether a given instance resource is an instance

of a given class.

† Retrieval. Find the set of instance names that are described by a given class.

Besides the individuals, one can require retrieval of their components as

well. A component of an instance consists of all instances connected to the

given instance by some DAML1OIL property.

† Model checking. Check whether a given set of instances is a correct model

of a given ontology. This inference service is very useful for compatibility

checks between versions of ontologies and data sets.

† Minimal sub-ontology extraction. Find the minimal sub-ontology for which

a given set of instance statements is a correct model. A minimal ontology is

defined as a minimal sub-taxonomy, but also such ontology will need to

include some non-hierarchical knowledge (because of generalized concept

inclusion axioms). This inference service can be very useful for determin-

ing the scope of an ontology exchange, for example, when certain informa-

tion (typically a set of instances) has to be exchanged between two systems

(or databases or knowledge bases).

In order to make the reasoning task feasible within the time constraints, we

offer one graduated approach to the tasks that we will implement. First, we

classify the possible data sets with respect to their complexity. At one end of

the scale, we have the data sets in which instance statements of an arbitrary

complex form are presented. At the other end of the scale, we have data sets

which contain only ground instance statements. Such data sets are called

ground data sets.

General instance statements

a: C class statement: C is an arbitrary complex class expression

(a,b): R property statement: R is a property name

Towards the Semantic Web194

a ¼ b equality statement

a – b inequality statement

;x.C(x) universal statement: C is an arbitrary complex class

expression, a, b are instance names, x is an instance

variable

The class and the universal statements provide high expressivity within the

data sets. They allow one to state additional ontological restrictions over a

particular data set. Usually these statements impose great computational

problems to the inference procedure. Here are examples of such statements,

a: (Mother > (·3 has-child)) states that a is a mother with more

than two children. ;x.(: Mother < (·3 has-child))(x) states that

each mother in the current domain has more than two children.

Ground instance statements

a: A concept statement: A is a class name

(a,b): R property statement: R is a property name

a ¼ b equality statement

a – b inequality statement

Our expectations are that data sets containing only ground instance statements

will allow very efficient implementation of inference procedures. Also ground

data sets are typical of the case studies described in this book and other

knowledge management applications. It is important to mention that universal

statements are consequences from the ontological knowledge and thus they

can be expected to be always presented as constraints over the instance data.

11.4.2 Functional Interfaces to a DAML1OIL Reasoner

In this section we propose a collection of interface functions necessary for

effective use and maintenance of repositories of DAML1OIL represented

knowledge that may contain both ontologies and data sets. Here we consider

the repositories as abstract objects and the corresponding interfaces are opera-

tions working on these abstract objects and producing new abstract objects.

The interfaces are defined as functions over repositories and elements. All

interfaces are defined with respect to a current repository, but if it is necessary

to make it explicit, an optional argument Repository can be used.

† Tell interfaces. Tell interfaces make it possible to add knowledge to the

repository. Some tell interfaces do not add new information, but instead

only initiate some processing over the repository.

† Delete interfaces. Delete interfaces allow deletion of elements from a

repository. We assume that what is deleted is a DAML1OIL element

Ontology Middleware and Reasoning 195

and its interpretation is unique within the repository. Only elements that are

explicitly added to the repository by the user can be deleted.

† Ask interfaces. Ask interfaces query the repository. The ask interfaces

follow the ideas of Bechhofer et al. (1999), extending their interfaces

with appropriate interfaces for instance reasoning.

Towards the Semantic Web196

12

Ontology-based
Knowledge Management at
Work: The Swiss Life Case
Studies

Ulrich Reimer, Peter Brockhausen, Thorsten Lau
and Jacqueline R. Reich

12.1 Introduction

This chapter describes two case studies conducted by the Swiss Life insurance

group with the objective of proving the practical applicability and superiority

of ontology-based knowledge management over classical approaches based on

text retrieval technologies.

The first case study in the domain of skills management uses manually

constructed ontologies about skills, job functions and education. The

purpose of the system is to give support for finding employees with certain

skills. The ontologies are used to ensure that the user description of skills

and the machine-held index of skills and people use the same vocabulary.

The use of a shared vocabulary increases the performance of such a system

significantly.

The second case study aims at improving content-oriented access to

passages of a 1000 page document about the International Accounting Stan-

dard on the corporate intranet. To this end, an ontology was automatically

extracted from the document. It can be used to reformulate queries that turned

out not to deliver the intended results. Since the ontology was automatically

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

built, it is of a rather simple structure, consisting of weighted semantic asso-

ciations between the relevant concepts in the document. We therefore call it a

‘lightweight ontology’.

The two case studies cover quite different aspects of using ontologies in

knowledge management applications. Whereas in the second case study an

ontology was automatically derived from a search space to improve informa-

tion retrieval, in the first skills management case study the ontology itself

introduces a structured search space. In one case study we gathered experience

in building an ontology manually, while the challenge of the other case study

was automatic ontology creation. A number of the novel Semantic Web-based

tools described elsewhere in this book were used to build the two systems and

both case studies described have led to projects to deploy live systems within

Swiss Life.

12.2 Skills Management

12.2.1 What is Skills Management?

The tacit knowledge, personal competencies and skills of its employees are the

most important resources of a company for solving knowledge-intensive tasks,

such as decision-making, strategic planning, or creative design. They are the

real substance of the company’s success (Taubner and Brössler, 2000). There-

fore, establishing an electronically accessible repository of people’s capabil-

ities, experiences and key knowledge areas is one of the major building blocks

in setting up enterprise knowledge management. Such a skills repository

forms the basis for a skills management system (Ackerman et al., 1999)

(see Figure 12.1) that can be used to:

† enable a search for people with specific skills;

† expose skill gaps and competency levels;

† direct training, education and learning opportunities as part of the career

planning process;

† document that part of a company’s intellectual capital that results from the

knowledge of its employees.

By making employees’ experiences, knowledge and skills explicit, it is

easier to find out what people know or to direct people to others who can

be of help. This sharing of information improves organizational productivity

as well as individual performance.

Skills management is a prerequisite for supporting project staffing, and it

enables the planning of professional development (Auer, 2000; Sure et al.,

2000) – or, as Younker phrased it,

Towards the Semantic Web198

Skills management is a robust and systematic approach to forecasting, identify-

ing, classifying, evaluating and analysing the work force skills, competencies

and gaps that enterprises face. (Younker, 1998)

Introducing a skills management system requires effort in three dimensions.

The technical dimension deals with providing the necessary functionality. The

content dimension encompasses the setting up of organizational and automatic

processes for providing and updating the system content. Otherwise, outdated

experience profiles will lead to a decreased utility of the system and can

ultimately end up with a system being not used at all. The concern of the

cultural dimension is to ensure a climate of trust and openness so that employ-

ees are motivated to make their skills known – to their own and to the compa-

ny’s benefit.

Skills management also presupposes a critical mass of users to justify

investment in the system. A successful system may offer the means to affect

a cultural change and instill real change into the organizational mind-set and

value-set (Deiters et al., 2000; Liao et al., 1999).

A skills management system should be based on specific ontologies to be

used for entries in the skills, job function and education areas. This ensures

that terms for describing skills and for searching them are used consistently.

Other types of information, such as personal experiences, are very hard to

Ontology-based Knowledge Management at Work 199

Figure 12.1 Tasks of a skills management system

structure using an ontology because they are very subjective and personal.

Thus, for them free text fields are required.

12.2.2 SkiM: Skills Management at Swiss Life

At Swiss Life, we developed an ontology-based skills management system

(SkiM) that allows each employee to describe her or his skills, qualifications,

experiences and special interests. From that description, a personal home page

on the intranet is generated. A SkiM query interface combines an ontology-

based search with a classical free text (keyword) search on those home pages.

In its first version, SkiM aims at finding people with a specific skills profile,

and can either be used for staffing new projects, or for identifying experts who

might be of help to solve a certain problem. The first prototype was used and

evaluated by more than 100 pilot users from different departments. The

current system is now being used by more than 150 users although the system

is not yet officially introduced.

Employees are provided with structured templates to enable them to design

their personal home page in a standardized format. Existing employee data from

organizational databases is automatically inserted into the templates. An

employee then specifies her or his skills by selecting concepts from a skills

ontology and by indicating a level for each selected skill according to a scale of

four levels: basic knowledge, practical experience, profound knowledge and

top specialist. According to the experience made in other companies (like

Credit Suisse, ABB and IBM), the approach to have employees describe their

skills themselves proved to produce highly reliable information in combination

with the four-level skills grade. The social pressure works as a corrective,

motivating employees to be honest in describing their skills.

Besides the skills, additional details can be given, such as education, former

affiliations, special interests, or projects participated in. Finally, from all given

statements, a personal home page is generated on the intranet, which can then

be searched. A home page currently contains (Figure 12.2):

† general information, such as name, functional unit, room, phone number;

† ontology-based details of personal skills, job function, and education;

† free text descriptions, such as qualification, current tasks, projects involved

in, kind of work interested in;

† a more personal section giving, for example, information about hobbies.

Since a skills ontology can never be complete, the users of the system can

make suggestions for extending the ontology as needed. Therefore, SkiM

offers a dialogue, where an employee can suggest new ontology concepts as

well as the place in the hierarchy where they should go. The skills ontology

Towards the Semantic Web200

administrator collects the suggestions and ensures a regular consolidation of

the ontology.

Participation in SkiM is absolutely voluntary. Instead of making it obliga-

tory we rely on the employees’ motivation to become more visible within the

company and thus to increase their career opportunities. In this sense, SkiM

can be seen (among other things) as providing an internal job fair.

An approach complementary to ours is to identify people with certain skills

by doing text mining on the documents in the intranet (Becerra-Fernandez,

2000; McDonald and Ackerman, 1998). By applying information extraction

technology, the Expert Finder tool identifies and correlates names and topic

areas in documents (Mattox et al., 1999). XperNet in contrast uses clustering

and network analysis techniques (Maybury et al., 2000). Groups of people

with related skills and interests are identified by processing the project infor-

mation, publications and web pages. Expertise indicators like explicit refer-

ences or citations are used in combination with counter indicators like being a

member of the administrative staff.

Ontology-based Knowledge Management at Work 201

Figure 12.2 A personal home page in SkiM (top part)

12.2.3 Architecture of SkiM

The SkiM system comprises several components (see Figure 12.3). The ontol-

ogy editor OntoEdit allows an administrator to create and edit the required

ontologies for skills, education and job functions. OntoEdit enables inspect-

ing, browsing, codifying and modifying ontologies and therefore supports the

ontology development and maintenance tasks. The ontologies are modelled at

a conceptual level and independently of the formalism of the final representa-

tion language. OntoEdit offers views on conceptual structures, such as

concepts, concept hierarchy, relations, or axioms (see Chapter 7). For the

early phases of ontology development, the MindManager tool was used to

edit the ontologies because it better supports brainstorming processes.

The web application part of SkiM allows employees to build their perso-

nalized intranet home pages by filling in the information categories given by

templates. Sesame is an RDF/RDF Schema storage and retrieval system.

Within SkiM Sesame stores the skills ontology as an RDF Schema and the

Towards the Semantic Web202

Figure 12.3 Architecture of SkiM

instances of the ontology concepts, namely the association of skills to employ-

ees, as RDF facts. It also stores any additional RDF annotations of the home

pages which serve to characterize the content of the free text fields. Sesame

supports expressive querying of RDF Schema and RDF facts by means of a

query engine for the RQL query language (see Chapter 6 for further details on

the Sesame system).

The query interface employs QuizRDF (see Chapter 8) to do a combined

ontology-based and free text retrieval (see Section 2.5). QuizRDF combines

full text searching with querying RDF facts, in our case the skills data for each

employee stored in Sesame as well as the additional annotations. Full text

searching is provided to offer high recall and coverage of unannotated infor-

mation, while precise ontological queries result in a high precision. Of course,

a combination of both query modes is possible.

12.2.4 SkiM as an Ontology-based Approach

12.2.4.1 The Underlying Ontology

Within SkiM, three ontologies are defined: for skills, education and job func-

tion. At the moment, these ontologies are simple taxonomies (i.e. each class

has only one parent) but it is intended to extend this in order to allow more

advanced functionality to be added to SkiM (see Section 12.2.6). SkiM forces

every skill, education or job description to be formulated by terms selected

from the corresponding ontology. We thus make sure that the terms used for

describing skills, education or jobs will match with query terms when SkiM

users search for information. This will guarantee a high recall and precision of

the result sets. Moreover, the application of ontologies is a prerequisite for

comparing skills descriptions, for generating a classification of the organiza-

tion’s knowledge, and for doing a so-called gap analysis which identifies skills

not sufficiently present in the organization but needed.

The skills ontology consists of three rather independent branches which

correspond to the three organizational units that were selected for the pilot

phase, that is, IT, Private Insurance and HR (see Figure 12.4). The ontologies

for education and job function are not subdivided into sub-domains. Currently,

the skills ontology consists of 700 concepts, the education ontology consists of

180 concepts, and the job function ontology comprises 130 concepts.

The concept hierarchies are only that part of the underlying ontology which

a SkiM user sees. The complete ontology additionally includes concepts and

attributes to allow the connection between employees and their descriptions.

An OIL fragment that gives an impression of the whole ontology is shown in

Figure 12.5.

Ontology-based Knowledge Management at Work 203

12.2.4.2 Ontology Building

The development and maintenance of appropriate ontologies are the main

challenges in building a skills management system. Manual ontology devel-

opment can be characterized as an iterative, incremental and evaluative

process. In the beginning, we provided the domain experts with a simple

top level ontology to give a better understanding of the domain to be covered

by the ontology. According to an initial baseline methodology (see Chapter 3),

we advised the experts to use simple but helpful design rules, such as reducing

Towards the Semantic Web204

Figure 12.4 Fragment of the Swiss Life skills ontology

the degree of branching by setting a maximum of 5–10 branches, or limiting

the maximum depth of the ontology. Then, domain experts independently

filled their specific domain area within this top level ontology.

Using the design rules resulted in an overall reduction of the concepts which

was a welcome side effect. In total, this step resulted in an ontology with more

than 1000 concepts, including many duplicates. We then discussed and froze

the ontology layer by layer, thereby identifying and eliminating some seman-

tic duplicates in the ontology. Moreover, parts of the ontologies were restruc-

tured and apparently missing concepts were added.

For the development process we chose the brainstorming and mind mapping

tool MindManager from Mindjet. We created concept hierarchies, reorganized

them using simple drag and drop mechanisms, and applied the export function

to make the ontology public on the web for review purposes. In addition, we

annotated ontology elements with symbols or short notes about decisions that

were made. For instance, a question mark denotes an open topic to be

discussed, while a tick stands for an approved part of the ontology (see Figure

12.6). For group discussions we made large printouts of the ontologies and put

them on the wall. The group of developers could view the current state of the

ontologies with the meta data describing the state of the discussion. Then the

unclarified points of the ontology were discussed and the ontology was rear-

ranged and completed step by step. This approach to ontology development

proved to be very successful concerning the outcome, the time required and

the satisfaction of the ontology developers (see Chapter 3).

Ontology-based Knowledge Management at Work 205

Figure 12.5 A glimpse of the whole ontology

The iterative approach as sketched above makes it very difficult to get a

clear versioning of the ontologies. Since most of the decisions are an outcome

of a discussion, part of the changes never physically exist as a version of their

own. It is also very hard to record the arguments that led to a decision without

making a detailed protocol of the discussion. As this is more or less impossible

due to the dynamic nature of the discussions, we only documented the result of

a discussion and the main arguments for the decisions but left out any inter-

mediate parts of the decision process.

While MindManager is an excellent tool to develop hierarchies in a coop-

erative brainstorming process, it does not offer real editing functionality. It

does not check for duplicates in the ontology, relations can not be restricted in

any way (e.g. range, cardinality), nor does it distinguish between the identifier

for a concept and its representation. Such a distinction is a prerequisite for the

construction and maintenance of multi-lingual ontologies which are a basic

requirement in an international company, such as Swiss Life. All these

features are supported by the ontology editor OntoEdit (see Chapter 7). There-

fore, a combination of both tools might be close to a perfect ontology devel-

opment tool: MindManager for the early development phase while using

OntoEdit for extensions and maintenance.

Towards the Semantic Web206

Figure 12.6 Meta-data for ontology development (screenshot from MindManager)

12.2.5 Querying Facilities

The first version of the skills management system we developed at Swiss Life

aims at finding people with certain skills and at supporting project staffing.

Therefore, at the core of a query facility is the skills ontology from which a

user can select terms to formulate a query. This kind of query simply inter-

faces to a corresponding RQL query to the Sesame repository (see Chapter 5).

Likewise, a query that combines ontology terms by Boolean operators like

AND and OR, can be translated directly into an RQL query.

More advanced queries combine ontology terms with arbitrary terms for a

full text search over some or all of the information categories found on the

home pages. Examples of such categories include projects worked on, special

interests, former affiliations, etc. A typical home page would be divided into

sections corresponding to some or all of the categories, with each section

containing free text. To make sure that free text search terms can be restricted

to one of the information categories, the division of home pages into sections

is documented by the RDF annotation of the home pages. Thus, the free text

search results can be filtered such that only those pages are returned where the

search terms appear in the correct information categories.

For example, if someone is looking for a recommendation for Java training

courses, the skills management system is used to search for ‘Java’ and maybe

‘course’. An unspecific full text search will deliver all pages where the two

search terms occur but it will not be able to recognize whether Java occurs in

the ‘Recommended Courses’ section. By interpreting the RDF annotation, it is

possible to filter out all pages where Java occurs in another section of the home

page. For this the user has only to qualify the search term ‘Java’ as belonging

to the information category ‘Recommended Courses’. The search engine

QuizRDF provides this functionality, that is, is capable of combining an

ontology-based search (by interpreting RDF facts) with a free text search

(see Chapter 8 for a detailed discussion of QuizRDF).

In order to achieve a match between an employee’s skills description and

some search terms entered, a down-posting along the concept hierarchy can be

done, thus giving more flexibility to achieve a match. For example, if someone

states that she has good skills in Java a full text search for ‘Object-Oriented

Programming Language’ skills would not find this person because the term

‘Java’ does not occur in the home page. By down-posting, the search engine

extends the query to include all subconcepts of ‘Object-Oriented Program-

ming Language’ as well, thus also covering ‘Java’.

Alternatively, in the case where a query does not give a satisfactory result,

an up-posting might be appropriate. For example, when searching for an

expert in Oracle 8 does not give a result, the query engine can automatically

Ontology-based Knowledge Management at Work 207

modify the query by substituting the query term with a more general term, for

example, ‘Oracle’. Another heuristic is to go up one step in the concept

hierarchy and then include all immediate subordinate concepts. For example,

if someone is looking for skills in ‘XML’ but no one has entered this skill, all

employees with ‘SGML’ would be a good guess to ask, because ‘XML’ and

‘SGML’ have the same superconcept ‘Markup Language’ in the ontology.

A ranking of the results, as usually done by search engines, is problematic in

our case. Of course, it is possible to define some similarity measure that takes

all aspects into account, but this is not enough. Additionally, a user must be

able to understand how the ranking was obtained. Moreover, it is unclear what

is really meant when an employee specifies that he has a certain skill with a

certain degree. If then another user looks, for example, for a specialist in Java,

is somebody with basic knowledge in Java more relevant than somebody who

is an expert in object-oriented programming languages? And what about

somebody who has a strong experience with C11. Is he preferable to the

other two? Only the user who posed the query can decide this.

Another problem concerning unclear semantics is that the meaning of the

relationship between a concept and its sub-concept in the concept hierarchy

does not correspond to the common understanding of is-a. For example, stat-

ing that somebody is an expert in Java does not imply the statement that the

same person is an expert in object-oriented programming, and even less does it

imply that the person is an expert in programming.

Our solution to the above-mentioned problems of producing a meaningful

and intuitive display of search results is to move away from the traditional

ranked list of relevant documents and to instead generate hierarchically

displayed output (taking up an idea present in some search engines; see

Chapter 9). This output visualizes the query results with numbers attached

to relevant fragments of the concept hierarchy, each number indicating the

skills level an employee has with respect to the skills concept it is attached to.

We can then leave it to the user to decide which results are more relevant for

the current search problem. This advanced query interface is currently under

development.

12.2.6 Evaluation and Outlook

We are currently evaluating the existing version of SkiM in a pilot phase with

more than 100 users. We found them to be very open to such a system and

willing to publish their skills, provided they are publicly visible in the

company. Most users said that they would not participate if their skills

would only be seen by a few managers and a small group of people in the

HR department. This confirms our hypothesis that employees will voluntarily

Towards the Semantic Web208

participate in such a system if it leads to higher visibility in the company

which may lead to increased acknowledgement and better career opportu-

nities.

Many users complained that browsing the skills ontology is too cumber-

some and that it is difficult to find the right terms. A main emphasis of our

future work will therefore concentrate on how to help users find appropriate

ontology concepts. This might imply a redesign of the interactive user inter-

face to improve navigation, or might call for an additional search functionality

to find concepts by string pattern matching.

So far, the three ontologies for skills, education and job function have been

developed independently from each other. In fact, however, there are depen-

dencies which must be made explicit in the ontologies when more advanced

functionalities will be realized in a future version of SkiM. For example, a

certain education (including trainings and courses) results in certain skills,

while a certain job function requires certain skills. A skills management

system which takes care of such dependencies needs an ontology which

describes them. For skills management tasks like career development and

gap analysis, we consider it necessary that these dependencies are modelled

in the ontologies. A sketch of how such an extended ontology could look like

is depicted in Figure 12.7.

12.3 Automatically Extracting a ‘Lightweight Ontology’ from
Text

12.3.1 Motivation

Swiss Life has moved from the local accounting standards used in individual

countries to the International Accounting Standard (IAS) of the European

Union. To support this move Swiss Life IAS specialists wrote the Corporate

Accounting and Reporting Manual (CARM) which contains a description of

Ontology-based Knowledge Management at Work 209

Figure 12.7 Sketch of an extension to the ontology shown in Figure 12.5

the IAS insurance-specific accounting rules for European countries. Accoun-

tants all over Swiss Life use the manual to look up the information they need.

However, it turned out that it is quite difficult to find relevant text passages in

this 1000 page document. This is because CARM uses a very strict terminol-

ogy which is generally unknown to Swiss Life’s accountants in the various

European countries because they are used to their country-specific accounting

terminology and not yet totally familiar with the IAS. Of course, not entering

the proper terms in a free text-based search engine leads to a poor search

result.

To improve searching of the CARM document, Swiss Life started a case

study with the aim of developing a search facility that supports a user in

finding the right query terms. To this end, a special CARM ontology was

built which contains the most relevant concepts from the document. The

ontology is used by the search facility to map the terms of an initial free

text query to the semantically most strongly associated ontology terms. This

list of ontology terms can then be used by the user to modify the initial query.

The benefits of this ontology-based search facility is a faster and easier access

to the proper passages in the CARM and – as a side effect – an opportunity to

get a deeper understanding of the new IAS vocabulary.

The main problem to be solved in realizing such a query support system is

to build the ontology to be used. This is therefore the main issue dealt with in

the following sections.

12.3.2 Automatic Ontology Extraction

The ontology development for the CARM search facility was severely

restricted by the lack of time of the accounting experts. As a consequence,

we had no expertise to develop the CARM ontology manually and were forced

to follow a mostly automatic approach, using the experts only to correct and

verify the outcome. Furthermore, time and financial considerations were addi-

tional reasons for an automatic approach because a manual development

process takes much more time due to the negotiation and agreement process

between the experts involved after each development cycle (see Chapter 3).

On the other hand, the CARM standard with its strict and coherent voca-

bulary offers good conditions for an automatic ontology development

approach. Additionally, practically no synonyms and homonyms occur in

the text that could confuse an automatic ontology extraction tool. The tool

we used was OntoExtract, which takes one or more training documents as

input and generates a draft ontology from them (see Chapter 6).

OntoExtract identifies the most relevant concepts in a document and infers

weighted semantic associations between them. Consequently, the result

Towards the Semantic Web210

cannot really be called an ontology yet, but would rather be a useful basis for a

subsequent manual development into a fully fledged ontology. As we have not

been able to add the manual step, due to the reasons mentioned above, we use

the term ‘lightweight ontology’ for the resulting structure. In fact, it is an

associative semantic network, which despite its simplicity, is the basis of a

very useful application.

Clearly, a disadvantage of the automatic approach using a tool like OntoEx-

tract is the small variety of relation types as compared to a manual develop-

ment process. OntoExtract is currently not able to extract a concept hierarchy

with class/sub-class relations, which is the basic relationship between

concepts. However, as there are multi-word terms among the concepts

extracted by OntoExtract, sub-class relations can be inferred on a syntactical

basis via a sub-string match. For example, ‘baby bond’ and ‘zero-coupon

bond’ can thereby be identified as specializations of the single-word term

‘bond’. (Of course, such heuristics need to be used with care: ‘software

agent’ and ‘estate agent’ would not be considered as sub-classes of the

same class in most ontologies, for example).

The relations extracted by OntoExtract are weighted and take a value

between 0 and 1, where 1 is the strongest relationship and 0 is no relationship

at all. Table 12.1 shows an example of related concepts as generated by

OntoExtract. The concept ‘account’ has 48 relations to other concepts, but

only a few are depicted here. A relation describes a semantic closeness

between two concepts, for example, ‘account’ and ‘asset’ which are strongly

related in the CARM document. From the weighted relations, the CARM

search facility generates the list of concepts most strongly related to a search

term entered by the user.

The entire CARM was used by OntoExtract as a training document to

develop the ontology. We also tried to use only parts of the document as

training input but the outcome was poor. It turned out that although sufficiently

Ontology-based Knowledge Management at Work 211

Table 12.1 Example of weighted concept relations

Concepts related to ‘account’ With the relation weight of

Asset 0.86

Value 0.804

Amount 0.799

… …

Maturity 0.054

Share 0.051

Security 0.051

large parts of the document mention most of the relevant concepts, the rela-

tions between concepts are incomplete as compared to acquiring the relations

from the whole document. Even if we only take the relations with the strongest

association weight into consideration, this still holds true.

Conversely, the problem that the extremely high connectivity of the

concepts result in an ontology where every concept tends to be connected

with every other concept was also encountered. The reason for this is the

relatively even distribution of the accounting terms throughout the document

so that there are no passages which use parts of the ontology predominantly.

Applying such a densely connected ontology for suggesting additional query

terms would result in a very low discriminative power among the concepts to

be selected. This either leads to too many related concepts or to a few very

strongly related ones that are trivial and of no use at all. The problem was

solved by deleting those relations from the ontology which have a higher

weight than 0.95 or a weight below 0.05. The strongest relations are removed

because they occur with nearly every concept and thus are useless. The weak-

est relations are deleted because they are simply irrelevant. These cut-off

values have been determined experimentally and proved to fulfil our applica-

tion requirements best.

The extracted ontology was only superficially verified by the domain

experts due to their lack of time, but concepts that were obviously irrelevant

to the accounting domain could be eliminated. Thus, the ontology evaluation

was done as part of the usability evaluation of the application.

The characteristics of the generated ontology are shown in Table 12.2. The

number of actually extracted concepts depends on the minimal cut-off value

set within OntoExtract. This can be implicitly adjusted by the ontology devel-

oper by saying how many concepts should be extracted. For the CARM search

facility, 1500 concepts were generated, which was determined to be a reason-

able number of concepts given the size of the CARM. An exhaustive extrac-

Towards the Semantic Web212

Table 12.2 Characteristics of the extracted lightweight ontology

Characteristic Value

Number of concepts 1500

Number of relations 47086

Average number of relations per concept 31.39

Minimum number of relations for any concept 2

Maximum number of relations for any concept 64

Average relation strength over all concepts 0.2855

tion of concepts by OntoExtract, that is, without any cut-off value on concept

weights, would give about 16,000 concepts.

12.3.3 Employing the Ontology for Querying

The extracted ontology was used in a search facility to support a user in

finding the appropriate terms for a free text search on the CARM. The user

starts by entering several search terms to specify what he or she is looking for

(cf. Figure 12.8). If the result of the query (field 4 in Figure 12.9) satifies the

user requirement, no further processing is needed. Otherwise, the user is

motivated to invest some more time into reformulating the query. To facilitate

this, the results page shows a list of concepts that are most strongly related to

one of the query terms (field 2 in Figure 12.9). The user can then select from

that list to reformulate the original query (field 1 in Figure 12.9). The user can

also enter any new query term (field 3 in Figure 12.9). The results page for the

reformulated query again shows a list of related concepts so that the reformu-

lation step can be repeated as often as the user likes.

We originally considered two more possible scenarios for setting up the

search facility. In the first of these, the user would start by browsing the

ontology and picking up relevant query terms. We rejected this approach

because a preliminary field study showed that users are not willing to invest

much time in formulating a query. Entering a whole phrase or even a sentence

was out of the question. However, after being confronted with an unsatisfac-

tory result, users are much more motivated to invest further time.

Ontology-based Knowledge Management at Work 213

Figure 12.8 The query (re-)formulation process

Towards the Semantic Web214

Figure 12.9 Query interface for query reformulation

Figure 12.10 Architecture of the CARM search facility

Instead of offering a list of relevant concepts for query reformulation, we

also considered showing for each original query term a graph of ontology

concepts to which it is related. At first glance this might seem a better

approach because it visualizes the structure and connectivity of the ontology

concepts, but in our case users found such a richer interface confusing.

The architecture underlying the search facility is shown in Figure 12.10.

The main component of the search facility is the query handler which gets all

incoming user requests from the browser. The query handler calls the search

engine for doing the full text search on the CARM and processes the returned

results. In addition, the query handler matches the query terms to the ontology

and merges the list of related ontology concepts with the results from the free

text search engine to generate the output page.

12.3.4 Evaluation and Outlook

The evaluation of the application consists of two parts: the evaluation of the

user interface and the evaluation of the underlying ontology. The usability of

the search facility was evaluated with a questionnaire. The obtained user

feedback led to some minor changes to the user interface.

The evaluation of the ontology consisted of two parts:

† compare the ontology with an existing glossary for the CARM;

† monitor the users’ behaviour.

The results of comparing the ontology with the CARM glossary are given in

Table 12.3. From the 290 glossary terms, 259 occur in the CARM document

itself. This is somewhat odd but shows the deficits of a manual ontology (or

glossary) building. There are 253 ontology concepts which contain at least one

glossary term (more exactly, the names of those ontology concepts include a

glossary term as a sub-string), while 85 glossary terms occur identically in the

Ontology-based Knowledge Management at Work 215

Table 12.3 Comparing the ontology with an existing glossary

Characteristic Value

CARM glossary terms 290

Glossary terms within the whole document 259 (89.3%)

Identical glossary terms and ontology concepts 85

Concept terms containing one or more glossary terms 253

Concepts within the whole document 1500

Concepts related to a glossary term 1178

ontology. The CARM ontology consists of 1500 concepts, which, of course,

are all contained in the document. From these concepts 1178 have a relation to

a glossary term. Thus, the ontology concepts are situated around the glossary

terms, which can be considered as describing the terminological core of the

underlying domain. It can be seen that the ontology and the glossary are well

aligned.

The monitoring of user behaviour (cf. Tables 12.4 and 12.5) covers the

usage of query terms, identifies if they are within the ontology or not, and

keeps track of which terms are added and which terms are removed during

query reformulation. The results of the monitoring gives an indication of the

usage of concepts. From these results a decision can be derived as to which

concepts and relations in the ontology should be deleted, updated (re-

weighted), or inserted. Terms which were not used over a long period are

candidates to delete, while terms that are often entered as query terms but are

not in the ontology should be added to it. The number of times a query term is

Towards the Semantic Web216

Table 12.4 Users’ query refinement behaviour (over a period of 7 months)

Characteristic Value

Total number of queries 289

Total number of refined queries (1) 239

Total number of refinement steps (2) 301

Average refinement steps (for refined queries) (2)/(1) 1.26

Table 12.5 Query match with ontology (over a period of 7 months)

Characteristic Value

Total number of queries 289

Single word queries 191

Single word queries in ontology 109

Single word queries not in ontology 82

Multiple word queries 98

Total match with ontology as a phrase 24

Total match with ontology as single words 32

Partial match with ontology 40

No match 2

replaced with the same concept is an indicator for increasing or decreasing the

relation weight between both.

The evaluation results show that the ontology-based query refinement facil-

ity is well accepted by the users. Additionally, the following observations

were made:

† Sometimes, users are looking for account numbers by typing in the number

directly (12% of the queries). This suggests that a query answering system

based on extracting facts from the tables in the CARM might be a highly

welcome additional support. Instead of delivering text passages, such a

system could give direct answers, for example, the definition of the entered

accounting number, the accounting group to which the accounting number

belongs, etc.

† Users often enter quite general terms as a starting point for their search. It

might therefore be worthwhile to have a concept hierarchy in the ontology

to better help the users in finding more specific terms.

Currently ongoing work aims at offering means to formulate more focused

queries. An extension of the OntoWrapper tool (see Chapter 6) allows analysis

of the structure of tables in the HTML code of the CARM document. Once that

structure has been learned, it is possible to automatically index the contents of

table cells, for example, as being numbers of accounting groups, or as being

numbers of a sum account. The indexing is done by adding RDF annotations to

the document. By substituting the currently used search engine with QuizRDF

(see Chapter 8), a user will become able to qualify a number entered as having

a certain meaning, for example, as identifying a sum account, thus posing a

restriction on text passages that qualify as a query result. Further kinds of

annotations might be worthwhile adding in order to achieve more focused

search behaviour.

12.4 Conclusions

Both case studies evolved into real projects within Swiss Life. The CARM

search facility is routinely being used by accountants from all business units of

Swiss Life. The skills management system was rebuilt to meet the require-

ments of a productive system and is currently being used by over 150 employ-

ees on a completely voluntary basis. We are currently discussing with

corporate and local HR departments enterprise-wide deployment of the system

and how it would best fit into an overall knowledge management strategy.

During the case studies we encountered three main problem areas. One was

the lack of available domain experts, who are needed to build an ontology. We

had this problem with the case study on searching the CARM document, and

Ontology-based Knowledge Management at Work 217

solved it by doing an automatic ontology extraction from the document. In that

case this worked very nicely because the document is based on a well-

controlled vocabulary. In the general case, however, we anticipate that ontol-

ogy extraction would be much more difficult. Moreover, we were only able to

extract what we called a lightweight ontology (in fact an associative semantic

network). In the general case, this network could form the starting point for a

manual ontology development phase.

The second problem area encountered concerns ontology evaluation. It was

found that within a certain range it can be determined which concepts, which

attributes and which relations are OK and which should be re-examined, but

beyond that any evaluation of the ontology becomes very difficult. The best

way to do a further evaluation is via the application(s) for which the ontology

was built. User response to the application dictates what is an appropriate

ontology and what is not. Thus, ontology evaluation boils down to a large

degree to application evaluation.

The third problem area became mostly visible within the skills management

case study. We found that users have difficulty finding the right concepts

within an ontology of several hundred concepts or more. This applies for

selecting concepts for annotation as well as for querying. The problem of

searching a large search space can be more easily solved by using ontologies.

But then the problem of searching the ontology space needs to be solved. This

is much simpler because the search space is smaller but it is nevertheless quite

often a problem that usually gets only ‘solved’ by drastically cutting down the

size of the ontology. This is clearly not satisfying. Interfaces such as those

provided by QuizRDF (see Chapter 8) which allow users to locate themselves

in an ontological space via a simple keyword search and then to browse the

ontology from that point may help in this regard.

Notwithstanding the problems encountered, as we have discussed, the use

of ontologies in the two application areas described clearly offered advantages

over the use of traditional free text search technology and has led to systems

which are now in live use.

Towards the Semantic Web218

13

Field Experimenting with
Semantic Web Tools in a
Virtual Organization

Victor Iosif, Peter Mika, Rikard Larsson and Hans Akkermans

13.1 Introduction

How do we test Semantic Web tools? How can we know that they perform

better than current technologies for knowledge management? What does

‘better’ precisely mean? How can we operationalize and measure this?

Some of these questions may be partially answered by simulations in lab

experiments that for example look at the speed or scalability of algorithms.

However, it is not clear in advance to what extent such laboratory results carry

over to the real world. Quality is in the eye of the beholder, and so the quality

of Semantic Web methods will very much depend on the perception of their

usefulness as seen by tool users. This can only be tested by carefully designed

field experiments. In this chapter, we discuss the design considerations and

set-up of field experiments with Semantic Web tools, and illustrate these with

case examples from a virtual organization in industrial research.

13.2 The EnerSearch Industrial Research Consortium as a
Virtual Organization

EnerSearch is an industrial research consortium focused on IT and energy. Its

aim is to create and disseminate knowledge on how the use of advanced IT

will impact the energy utility sector, particularly in view of the fact that this

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

industry branch is being liberalized across Europe. This liberalization is

leading to strong market competition, supplier choice for customers, and

major changes in industry structure such as mergers and acquisitions that

cut across the traditional regional-national monopolistic borderlines. Thus, a

hot issue for energy utilities is how they should strategically position them-

selves in a new deregulated market environment. Apart from the new market

forces, new developments in both IT and energy technology are also an

important factor in this strategic positioning. Innovations in energy technol-

ogy increase the importance of decentralized local production and storage

(e.g. ‘green’ renewable energy) leading to the concept of a ‘distributed

utility’. Advances in networked IT strengthen this trend, because they

make it much easier to manage distributed utility operations at lower cost,

but also open up the possibility of delivering novel energy e-services, and

thus getting closer to the customer, for example, via the Internet and the

Web.

In addition to the Web becoming smarter (which is the Semantic Web

effort), it will also become more universal in the sense that it will not just

connect computers, but essentially any device. This is variously referred to

as ‘ambient intelligence’, ‘universal connectivity’ or ‘ubiquitous comput-

ing’. Mobile commerce applications are one step in this direction, but

basically all equipment, including home appliances such as personal

audio and video, telecom and home control systems, and even heaters,

coolers or ventilation systems, will become part of the Web. This develop-

ment of smart networked equipment enables a broad spectrum of e-services

for end consumers also in the utility sector, such as e-billing, energy

management information and real-time feedback, energy saving advice-at-

a-distance, home security and distant control, usage of the power line as a

communication medium (e.g. for home networking), and smart buildings

that are able to manage themselves.

EnerSearch carries out research projects to investigate such innovative

possibilities. Some of this research is on innovative IT, especially on distrib-

uted intelligence. For example, EnerSearch has developed intelligent agents

(so-called HomeBots) for smart buildings (Gustavsson, 1999), and electronic

market-based control for applications such as distributed load management

and in-building comfort management (Ygge and Akkermans, 1999; Carlsson

et al., 2001). Such applications are also field tested (see Figure 13.1). All of

these new imagined e-services are technically challenging, but will also

require and induce different behaviours and attitudes from the adopting end

consumers as well as from the businesses delivering these e-services. There-

fore, EnerSearch is also carrying out business modelling and marketing

research (Larsson et al., 1998, 1999; Sweet et al., 2000; Sweet, 2001).

Towards the Semantic Web220

EnerSearch has a structure that is very different from a traditional research

company. Research projects are carried out by a varied and changing group of

researchers spread over different countries (Sweden, United States, Nether-

lands, Germany, France). Many of them, although funded for their work, are

not even employees of EnerSearch. Thus, for its knowledge creation function

EnerSearch is organized as a virtual research organization. The insights

derived from the conducted research are intended for interested utility indus-

tries and their IT suppliers. Here, EnerSearch has the structure of a limited

company, which is owned by a number of companies in the industry sector that

have an express interest in the research carried out. Shareholding companies

include large utilities in different European countries including Sweden

(Sydkraft), Portugal (EDP), The Netherlands (ENECO, ECN), Spain (Iber-

Field Experimenting with Semantic Web Tools in a Virtual Organization 221

Figure 13.1 Field test sites of EnerSearch work. Top, Villa Wega, Ronneby, Sweden;

bottom, smart office building at ECN, Petten, The Netherlands. ECN is one of the

shareholding companies in EnerSearch

drola), and Germany (Eon), as well as some worldwide IT suppliers to this

sector (IBM, ABB). Due to this wide geographical spread, EnerSearch has the

character of a virtual organization also from the knowledge distribution point

of view. In addition, for the general public interest it maintains a website

(www.enersearch.se) where it publishes many of its research results as papers,

reports and books. Thus, dissemination of produced knowledge on IT and

energy is a key function for EnerSearch. Within the On-To-Knowledge

project, EnerSearch investigates whether Semantic Web methods and tools

might be helpful to improve on this function, especially focused on its web

information provisioning.

13.3 Why Might Semantic Web Methods Help?

The EnerSearch website happens to be an important mechanism for knowl-

edge dissemination. In fact, one of the shareholding companies actually

entered EnerSearch directly as a result of getting to know it from the web.

Nevertheless, the information structuring of the website leaves many things to

desire. It has a very traditional structure typical for many research organiza-

tions: some central ‘about us’ information, an overview of what projects have

been done, and what researchers are involved. From there one finds the many

electronic papers, reports and books that contain the EnerSearch research

results in various knowledge areas. So, the real entry to what constitutes the

heart of the EnerSearch – insights on how advanced IT may impact the energy

business in a deregulated market environment – is along the lines of projects

and authors. Clearly, this is very much a website organization driven by the

information suppliers – projects and authors. Consequently, it does not

adequately cater for the demand-side needs of information seekers – for

example, users from interested utility companies. They are generally not at

all interested in knowing what the projects or who the authors are, but rather in

finding answers to questions that are important in this industry domain. For

example: Does load management lead to cost savings; if so, how big are they,

and what are the upfront investments needed? Can powerline communication

be technically competitive to cable modems or ADSL? Is there an interest in

the residential market in new energy services? Et cetera.

The main difficulty with the current EnerSearch web server is that it is rather

hard to find the right information on such issues (unless you know something

about the projects/authors, or take some more time to browse and search). This

is the result of a supply-side (or inside-out) rather than demand-side (or

outside-in) style of information provisioning. Also, the EnerSearch search

engine supports free text search but not content-based search. This standard

text search has the usual problems: lack of precision and retrieval of irrelevant

Towards the Semantic Web222

information resources. One possibility is to completely restructure the infor-

mation on the website, but this is a huge burden on the information providers –

researchers for whom the project/author structure is quite natural and, more-

over, in a virtual organization it is difficult to impose that they spend time on

what they will mostly see as additional overhead time. Therefore, an alter-

native solution is not to change the structure of the website too much, but to

make it more accessible to users, by providing an extra information access

viewpoint that is structured such that expected demand-side questions and

interests are the starting point instead of the end point.

This is where Semantic Web methods and tools might clearly help. There

are several reasons for this. First, they might help, as already pointed out, to

limit the time that is spent by the information suppliers. Furthermore, the

target groups of the web information are quite clear: researchers in the field,

staff and management of utility industries, and to a lesser extent, a general

outside audience that happens to have an interest in IT and energy, smart

homes, etc. Accordingly, it is quite possible to form a clear picture of what

kind of topics and questions would be relevant to these target groups. Finally,

the knowledge domain in which EnerSearch works is relatively well defined.

So, it should be certainly possible to come up with a domain ontology, describ-

ing the various important topics and their relationships, that is of good quality

and fairly stable. In actual fact, some of the semantic sitemaps shown later are

based on a lightweight ‘EnerSearch lunchtime ontology’ that took the two

developers no more than a few hours (over lunchtime) to develop.

13.4 Design Considerations of Semantic Web Field
Experiments

Thus, Semantic Web tools and ontology methods might help EnerSearch with

its internal and external knowledge management. For this reason, EnerSearch

is conducting a case study to implement and evaluate methods of semantic

access to its website (Iosif and Ygge, 2001, 2002). There are several indepen-

dent elements that are to be considered in general when it comes to the design

of field tests of Semantic Web tools:

† different modes of information gathering that are employed by users when

trying to find the information they are looking for;

† different target user groups that are to be distinguished from the viewpoint

of differences in interest, motivation, the nature of information they pursue,

and background knowledge they bring;

† different personal styles of information use that relate to differences in

individual cognitive styles in handling information.

Field Experimenting with Semantic Web Tools in a Virtual Organization 223

13.4.1 Different Information Modes

If we want to evaluate semantic methods, we first have to establish a clear

reference point for comparison, or some kind of unit in terms of which we can

measure the quality of new ways of doing things. In the present case, the

reference point is the usual web way of gathering information: keyword search

and hyperlink-based browsing. This provides the yard stick with which we can

measure how good novel semantic approaches are. Here, we consider two

different semantic web-style information modes: (i) ontology-based search;

(ii) ontology-based browsing. We provide some examples of both these

semantic information modes later.

13.4.2 Different Target User Groups

In general it is highly important to carry out a proper segmentation of target

users, because often they are quite different, each bringing with them their

own view or, so to speak, ‘ontology’ regarding the information they seek.

These differences will clearly influence their perception of how good

semantic web methods work. In the case of EnerSearch, some target user

groups and their characteristics are fairly easy to identify, namely (i) exter-

nally: interested staff and management in utility companies; (ii) internally:

researchers involved in IT and energy projects. These two groups are very

different. Utility staff is generally more interested in business issues. Even

when it concerns new technology, the interest will not first of all be with

the technicalities, but more with envisioning the potential applications

(‘what can we do with it?’) and establishing the business case for it

(‘what are the benefits?’). For researchers, it is more or less the other

way around. Refereed publications containing a strong and technically

detailed, usually formal, line of argument are key to academics. In contrast,

in the utility business, technical competence has always been seen as very

important, but research has always been limited: a typical figure for R&D

spending in the utility industry is no more than 2% of total annual revenue.

This figure tends to go down with market deregulation: cost cutting is

crucial, and the strategic time horizon decreases. In addition, IT is typically

not a core competence in utilities that tend to have a very much ‘cable and

wire’ view on networks, a view that is carried over also to IT (so we may

invite the reader to imagine how to explain convincingly the concept of

‘software agent’ in such a setting). Thus, the outlook of researchers and

interested utilities on the same broad topic of IT and energy is significantly

different. Last but not least, there seems to be (as measured by hits and

downloads on the website) a third user group of the EnerSearch website

Towards the Semantic Web224

that is much more diffuse, viz. the more general public that is unknown but

interested in various bits and pieces of the research results and trends. Of

course, adequately predicting the expectations and interests of this broad

group for the purpose of adequate website information provisioning is very

difficult, and herein lies an interesting challenge for application of Semantic

Web methods.

13.4.3 Different Individual Cognitive Styles

Yet another dimension that will influence the outcome of Semantic Web

tests and experiments lies in the fact that people differ in the personal style

with which they handle information and make corresponding decisions. As

this is a novel element in Semantic Web research, we will go a bit deeper

into how cognitive styles of information use can be framed and measured.

A useful theory to do this stems from the field of organizational behaviour

and is called decision style theory (Driver et al., 1993). It has roots in

Herbert Simon’s theory of bounded rationality that says that humans

often cannot process all relevant information pertaining to a decision to

be made, but are content to take in a limited amount of information that is

adequate to make a decision that is ‘good enough’. This is called satisficing

decision-making behaviour.

Decision style theory generalizes Simon’s idea as follows. People differ

markedly in how much information they use in decisions. There are people

who seem to quickly jump to conclusions, and some who will not move

without a thorough analysis. A person that is happy to consider the minimum

amount of information needed to come to a reasonable, ‘good enough’ deci-

sion is called satisficing in his/her information use. In contrast, a person that

wants to do a thorough analysis first to make sure that no relevant piece of

information has been missed before coming to a decision, is called maximiz-

ing in use of information. This difference is illustrated in Figure 13.2. The first

information you receive about a problem generally is most valuable to you as a

decision-maker. When you know almost nothing about a problem, those first

few pieces of information can be real eye-openers. Later, after you already

have gained a lot of knowledge about a situation, new items of information are

much less likely to add to, or alter, your understanding of the situation. The

satisficing versus maximizing styles of information use are related to the

perceived value of information, and constitutes one dimension of cognitive

style. In addition to the question how much information you use to come to a

decision, there is a second dimension called solution focus. Here, the distin-

guishing issue is that in decision-making, some people tend to employ infor-

mation to come to a single definite course of action, while others tend to view

Field Experimenting with Semantic Web Tools in a Virtual Organization 225

information as leading to a variety of different possible solutions at the same

time. These contrasting styles in decision-making focus are depicted in Figure

13.3 and are called unifocus versus multifocus.

Then, if we combine these two style dimensions – amount of information

use and solution focus – we get a set of different individual information-based

decision-making styles as presented in Figure 13.4. The ensuing decision

styles are called decisive, flexible, hierarchic, integrative and systemic. The

Towards the Semantic Web226

Figure 13.3 Solution focus dimension in individual decision styles

Figure 13.2 Two styles of information use, related to perceived value of information

decisive style is a satisficing and unifocus style. Decisives use a minimum

amount of information to rapidly come up with a clear solution for a problem.

Get-things-done-now is characteristic of this style. Decisive communication is

short and to the point. Decisive personalities say what they mean and mean

what they say. Flexible style people use moderate levels of information (as do

decisives), but they interpret the same information in different ways at differ-

ent times depending on the point of view they currently hold. They are able to

quickly adapt to the expectations of others and so frequently change direction

depending on who is present. Flexibles prefer not to plan, because planning

makes them feel trapped and unable to exercise options. In contrast, the

hierarchic style makes maximum use of all information to reach the best single

conclusion. For hierarchics, there is clearly a ‘best way’ of doing things. High

data use is dictated by the desire to ignore no detail that could diminish the

quality of a conclusion. Once information is rigorously analysed – often in

quantitative fashion – the resulting plan is complex but highly focused. The

integrative style tends to process a large amount of information (like hier-

archics), but they use it (like flexibles) to generate many solution alternatives.

Integratives habitually produce a wide variety of possible interpretations of

information about a situation simultaneously. Their plans are constantly open

to change: to be seen as a good initial course of action, but not something to

stick to indefinitely and thus to be revised when the evolving situation so

requires. Finally, the systemic style turns up empirically in the quantitative

studies done regarding decision styles (empirical data actually involve many

Field Experimenting with Semantic Web Tools in a Virtual Organization 227

Figure 13.4 Matrix of decision styles (Driver et al., 1993)

tens of thousands subjects in many different countries). It combines qualities

of both the integrative and hierarchic styles. It is a maximizing style in infor-

mation use, but it is both multifocused and unifocused in decision making.

Systemic planning is comprehensive. It is unifocused in terms of having a

single overarching and unifying goal, but it is multifocused in that it will

contain many different sub-goals and many tactics and strategies for hitting

those targets.

Individual differences in information processing style thus capture essential

characteristics of people in an organization, as to how they want information

presented and how they typically communicate. Generally, people do not have

a single style, but usually some mixture, with one or two being dominant.

Furthermore, decision styles are not static. They change as a result of changes

in environmental parameters such as work pressure creating cognitive (over)-

load, or whether we are in a daily work situation or in a formal, self-aware

setting (operating vs. role styles). On a longer time scale, the decision style of

a person also may change. Styles are learned habits of doing things, and are

influenced by the social environment we live in, the work we do, the demands

and expectations that go with it, etc. As these factors change, our information-

processing styles may change as well over the years. Many aspects of decision

style theory cannot really be touched upon here, and for a comprehensive

overview the reader may consult the literature (Driver et al., 1993; Larsson

et al., 1998, 1999). To measure a person’s decision style, standardized ques-

tionnaires exist that have been validated over many years of research. These

measurement instruments are also used in the Semantic Web case study

carried out by EnerSearch.

13.4.4 Hypotheses to be Tested

In sum, in designing Semantic Web experiments, different design dimen-

sions are of importance: variations in information modes, in target user

groups, and in individual information-processing styles. Finally, an experi-

ment must be based on one or more clearly formulated hypotheses that can

be verified or falsified, for example, by empirical-statistical methods. A

possible list of testable hypotheses regarding Semantic Web-based informa-

tion seeking is:

† H1: Users will be able to complete information-finding tasks in less time

using the ontology-based semantic access tools than with the current main-

stream keyword-based free text search.

† H2: Users will make fewer mistakes during a search task using the ontol-

ogy-based semantic access tools than with the current mainstream

keyword-based free text search.

Towards the Semantic Web228

† H3: The reduction in completion and number of mistakes will be more

noticeable for less experienced users.

† H4: The reduction in time will also be more noticeable for users lacking a

detailed knowledge of the underlying technical system implementation.

† H5: The ontology-based semantic access tools will be perceived as more

useful than free text search by different types of persons for a broad range

of domains and knowledge-acquisition scenarios.

† H6: The effort for developing and maintaining the ontology and informa-

tion structure will not significantly exceed the effort to develop and main-

taining the free text approach.

In a field experiment, hypotheses such as these are tested for their significance,

and how their validity varies with different information modes, target user

groups, and individual information-processing styles is investigated.

13.5 Experimental Set-up in a Virtual Organization

The case study that we are carrying out on Semantic Web tools under field

conditions is to be seen as an exploration study. It does not constitute a

comprehensive comparative study. For this we would need more information

retrieval tools (both standard ones and ontology-based semantic access tools)

and in addition a larger group of subjects to compare the results and extract

statistically significant empirical conclusions. However, this exploratory case

study will give a good indication as to what directions we should aim for

semantic tools and methods in the future.

13.5.1 Selecting Target Test Users

The involvement of knowledge users in the experiment from the beginning is

important because of the interaction between the users and tasks on the one

hand, and their pre-knowledge, or lack thereof, of domain and/or systems on

the other hand. We identified several types of target users for the tests through

conducting a set of pre-trial interviews. As a result, the evaluation experiment

includes three different types of interest groups, as outlined previously. One

group consists of staff members from four different shareholder companies

(the companies involved in the case study are: Sydkraft AB, Sweden, Iber-

drola from Spain, Electricidade de Portugal, and ECN, The Netherlands). A

second group consists of researchers from different scientific fields, several

having at some time participated in EnerSearch projects. The third and final

group intends to represent more or less a general outside audience and consists

of students (studying at the Department of Software Engineering and Compu-

Field Experimenting with Semantic Web Tools in a Virtual Organization 229

ter Science at the Blekinge Institute of Technology in Sweden). Finding

information on a personal basis is important for all of these three groups,

but for various reasons (that well reflect those found in geographically spread

virtual organizations) they are generally limited in their time to invest for

searching knowledge. The majority of the test users are familiar with the

EnerSearch web and have used it before. There were of course also those

who had never heard of the EnerSearch web but were introduced to and

instructed on how the EnerSearch web is functioning.

13.5.2 Tools for Test

The test people will use three different tools: the two ontology-based semantic

tools QuizRDF and Spectacle (described in Chapters 8 and 9, respectively)

and the free text search tool, the EnerSEARCHer. These tools and what kind

of results they produce are discussed in detail later. The ontology-based search

tool QuizRDF is chosen for the case study for two reasons. The tool has the

advantage that the user can start with simple queries consisting of only a small

number of search terms in order to get a picture of what kind of information is

available in the EnerSearch knowledge base. There is then a continuum

offered from the common keyword-based search to different levels of seman-

tic search. The reason for using the ontology-based browsing tool Spectacle is

that it presents the information according to the inherent structuring that is

offered by the domain ontology. This gives a valuable semantic context for the

user not available through standard information retrieval tools. The informa-

tion is presented in such a way that the path that leads to the information adds

to the users’ understanding of the semantic role of the information. Each

concept chosen is ‘surrounded’ by other ontologically similar concepts.

Semantic generalizations and specializations (in different dimensions) are

also offered to the user when browsing for information.

13.5.3 Test Tasks and their Organization

An important issue is the choice of the application tasks posed to the test users.

For our purpose, they need to be simple enough to be learned in a short time

but complex enough to challenge the users in the test groups. An example of a

knowledge-acquisition task given to the test users is to find certain answers to

predefined questions about finding information in the EnerSearch knowledge

base. Significant effort has gone into setting up a useful set of predefined

questions such that they allow for adequate comparative analysis, and at the

same time, adequately sample the different interests of the test user categories

and cover the various available information tools in a representative fashion.

Towards the Semantic Web230

An experimental problem within the test case study is that if one gives a user

the same exact search task to do with two different tools there will be most

probably be a transfer error. This means that it is rather certain that they will be

unlikely to repeat errors the second time they perform the task, and that they

will remember how they did something and will not need to figure it out the

second time around. To avoid this transfer effect, we designed three different

but comparable scenarios, each involving the same kind of knowledge-acqui-

sition task in the same domain but involving a different aspect of the knowl-

edge base.

The test questions are divided into three blocks. There are six different ways

to organize the tools in different order (Spectacle, QuizRDF, EnerSEARCHer)

and equally many ways to organize the blocks of questions. In total there are

36 different ways to organize the order of the tools and the search questions.

Each person will have a unique combination of tools and search questions.

Through this permutation of question and tools order, we will make a fair and

statistically sound evaluation of the tools.

To facilitate the test user’s acquisition of the knowledge required to perform

the scenarios and to ensure a uniform understanding of the domain across users,

the application domain was explained to the test users by an email that was sent

out in advance. The test users and the domain were especially chosen to avoid

differences in the subjects’ previous exposure to the domain. Of course, these

points are not relevant when testing test users that are experts in a specific

domain. A repository of knowledge bases and scenarios to test the tools that

could be shared by different researchers makes it a better comparative evalua-

tion among the different approaches, as well as reduces the amount of work

required to evaluate the test. For every major ontology area a different scenario

is used. It is important that the different scenarios are as comparable in size and

complexity as possible for the results of the experiment to be meaningful.

13.5.4 Experimental Procedure

After having determined the kind of experiment to be carried out, our

hypotheses, the type of users, and the nature of the search task, we are in

the position to plan other details of the experiment. These include, for exam-

ple, what information will be given to the test users and in what format, what

kind of interaction can the test users have with the experimenters during the

tests, for example, can they ask questions that are related to the domain or

the tools used in the experiment. How many iterations or problems will be

given to each test user and in what order, and an indication of the success

criteria for the test user so they know when they have finished the scenario

they are given.

Field Experimenting with Semantic Web Tools in a Virtual Organization 231

The experimental set-up has to be carefully designed to control as much

as possible the variables that could affect the outcome of the experiment. In

this case, the order in which the tasks are executed might also affect the

results, therefore we switch the execution order for different test users. We

asked the test users to fill out a background questionnaire prior to the

execution of the experiment to form the groups as balanced as possible.

For all test users, their information-processing styles are also determined

separately by administering the standard questionnaires that go with the

decision style theory.

Our controlled experiments compare the EnerSEARCHer with the perfor-

mance of test users using the QuizRDF and Spectacle tool. Each test user is

confronted with different questions related to the EnerSearch web. Each

scenario will be performed with an ontology-based tool and the free text

search tool. In this way the results will be independent of the complexity of

the scenario. Summarizing, by a careful experimental design, all factors are

balanced to even out the qualifications of the test users for each one of the

groups, the number of times that each tool is used for each scenario, and the

number of times that each tool is used in the first place.

13.5.5 Determining What Data to Collect

The data collected during the experiment may be determined and/or limited by

what is possible in terms of instrumenting the ontology-based search tools and

the knowledge environment. Intrusive ways of recording data should be

avoided. For example, we should not ask the users to fill out a long form to

describe what they just did if that is going to disrupt their thoughts and if it

makes the overall time to complete the task longer. The following data are

collected during the execution of our scenarios:

† Time to complete the whole search task.

† Automatic log of changes performed to the knowledge system.

† Automatic log of errors in the search task.

† Automatic log of commands executed (e.g. add a new problem-solving

sub-step similar to an existing one).

† Detailed notes of the actions performed by the test users (taken manually by

the experimenters by means of onsite observations) including how users

approach the given problem and what materials they consult. For this

purpose we ask the test users to verbalize what they are thinking and

doing during the execution of the scenario. We use tape recording during

the interviews since we found that only note taking is not sufficient.

† Post-trial questionnaires the test users fill out at the end of the experiments,

with questions regarding the perceived usability of the tools.

Towards the Semantic Web232

The data collected should be sufficient to test our hypotheses, as listed above,

and confirm whether they are relevant or not. Collecting data is very useful

because it not only proves/disproves the hypotheses, but it also helps to

explain the outcome of the experiment, and to explore the potential causes

of certain experiment outcomes. We found that conducting pre-test interviews

was useful not only to help refine the actual evaluation set-up but also to set up

the data collection strategy.

13.5.6 Evaluation Matrix and Measurements

Each person performing the experiment starts the test by a login procedure.

The user’s name and which company or organization the user belongs to is

registered. By using login it will also be possible to see when and from

where the user entered the EnerSearch web. We will be able to measure the

time period the different users will spend on answering each question in the

experiment. After each question the users are asked to explain how they

received the information for answering the question. By collecting the

information and comparing the user’s answers to a question it will be

possible to evaluate the different ontology-based semantic tools. It is also

important to evaluate the level of appreciation for the different tools. The

questions to evaluate this would be for example: Were you able to complete

search tasks in less time using the ontology-based tools than with a standard

free text search tool? Was it easy to use the ontology-based tool? Did you

understand the interface? Were the answers correct? Was the answer rele-

vant to your search question?

To be able to answer the questions in a reasonable time, the case study needs

to be limited to a certain number of questions for each ontology-based tool.

The case study is therefore restricted to a limited number of questions, in order

to avoid user defection due to lack of time to complete the experiment. To

avoid defection we have also made it possible for the users to log in at any time

to complete the questionnaire.

It clearly follows that Semantic Web tool tests require a very careful experi-

ment design. Prospective test user groups and test tasks must be carefully

balanced to allow for adequate empirical-statistical testing of hypotheses

that must be explicitly formulated in advance. Empirical data gathering in

such an experiment must be rich, including various qualitative methods (such

as pre- and post-trial semi-open interviews, collecting verbal protocols during

the experiment, onsite observation), as well as quantitative methods (e.g.

Likert-scale questionnaires, electronic logging of actions and execution

times, and statistical processing of resulting data).

Field Experimenting with Semantic Web Tools in a Virtual Organization 233

13.6 Technical and System Aspects of Semantic Web
Experiments

13.6.1 System Design

The baseline hypothesis is that the ontology-based solution will make it easier

for the users to locate the information they seek and will also make it easier to

share knowledge with others in the organization. Users can choose between

two new ways of finding information:

† querying the knowledge base with the ontology-based search tool QuizRDF;

† navigating and browsing the presentation built from the website knowledge

base using the Spectacle presentation tool.

Field tests will evaluate the navigation and search facilities of this system

against the traditional keyword-based EnerSEARCHer tool that has been

previously in use for search within the domain. The complete design of the

system for ontology-based information retrieval is shown in Figure 13.5. The

system is built using tools and technologies developed within the On-To-

Knowledge research project and thus it follows many of the design decisions

taken within the project, such as:

Towards the Semantic Web234

Figure 13.5 Overview of the system design for the EnerSearch case study

† a loose coupling of tools through HTTP;

† the use of a central storage facility (Sesame);

† support for weakly structured media (plain text, HTML and PDF formats);

† the choice of RDF(S) as a knowledge representation format;

† the conformance to a commonly agreed upon data model.

For the end user, the functionality of the system is made available through the

HTML interfaces of the QuizRDF search engine and the Spectacle presenta-

tion that we present further below.

13.6.2 Ontology Engineering, Population, Annotation

The process of setting up the system begins with acquiring a base ontology by

running the OntoExtract extraction tool (see Chapter 6) on the publications

stored on the website of EnerSearch. The resulting lightweight ontology

contains a shallow hierarchy of concepts and relations between the concepts,

plus the classification of pages according to concepts. Once submitted to the

central Sesame server, it is supplemented with the ontology compiled from the

EnerSearch publication database by reverse engineering it into RDF(S). The

OntoExtract domain ontology obtained through natural language processing

(NLP) and the ontology describing the publications are naturally linked

together via the URLs of the publications.

The second step is to refine the ontology by using the OntoEdit tool. As

guidance in this process, the editor of the ontology consults domain experts

and takes proposed use cases into account. When it is implemented, the

ontology engineer will be able to feed back the resulting ontology as back-

ground knowledge for OntoExtract, realizing iterative ontology development

in effect. (The background knowledge is also stored in a Sesame repository.)

Such a feature will make it possible to transform the rather lightweight ontol-

ogy obtained by NLP into a richer, more structured form while maintaining the

advantages of an automated approach (e.g. scalable, automated classification).

In a third and last step, two presentations are generated from the ontological

data for searching and browsing. Generating an ontology-based search engine

is a one-click process: it simply requires selecting the Sesame repository to

use. (Naturally, this assumes that the ontology conforms to the common data

model.) Subsequently, the tool processes the pages that are annotated by the

ontology and augments its keyword index with ontological data. The result is

the tailored search engine described below.

As the iterative ontology development process was not available at the time

of this writing, the ontology used in the case study is based upon a combina-

tion of the OntoExtract generated lightweight ontology and the converted

Field Experimenting with Semantic Web Tools in a Virtual Organization 235

publication database. The QuizRDF search engine, however, has been gener-

ated from a version of the lightweight ontology where only key concepts are

present. This was strictly necessary because QuizRDF is a generic tool that has

no understanding of the ontology beyond RDF Schema and parts of the data

model used within the On-To-Knowledge project. Also, a different version of

the publication database has been used in the case of QuizRDF for technical

reasons, notably that QuizRDF can only search property values on the instance

level.

Creating the Spectacle browsing interface is a programming task that

requires intensive use of the Sesame client API, the Spectacle publishing

API and some programmatic ontology transformations, for example, to infer

new facts that are not explicitly stored in the ontology. For example, if a page

is about a certain concept then it is also about the super-class(es) of the given

concept. Once the content is generated, it is stored on the Spectacle presenta-

tion server where users can access it using a JavaScript enabled browser.

13.7 Ontology-based Information Retrieval: What Does it
Look Like?

Ontology-based information retrieval will support the user when s/he is query-

ing the knowledge base. It will allow the user to formulate queries in a more

natural way, for example, by helping to select and combine relevant terms.

Such an approach will also enable advanced types of queries that are not

possible with non-ontology-based search tools, for example, by locating infor-

mation when specifying the scope of interest or by providing help with gener-

alizing or refining a query. Also, with the browsing approach embodied in the

Spectacle presentation, it is expected that the process of information retrieval

will also add to the user’s understanding of the domain.

13.7.1 Ontology and Semantic Sitemaps

As sufficient technologies for enriching the ontology obtained by NLP are not

available at the moment, the ontology employed in the case study is a light-

weight ontology that was manually developed in a short time. We note that the

domain is such that it lacks a well-defined sub-class hierarchy (rather, it is a

network whereby only in some parts a hierarchy exists). However, we were

able to capitalize on the strengths of an automated approach, namely efficient

classification of the fairly extensive publication database complemented with

the automated selection of key concepts and related concepts. Thus, the work

imposed on the information providers was very limited.

Towards the Semantic Web236

Field Experimenting with Semantic Web Tools in a Virtual Organization 237

Figure 13.6 Fragment of a lightweight ontology showing some of the topics and sub-

topics on which the EnerSearch website provides information

Figure 13.7 Semantic map of the EnerSearch website for the sub-topics related to the

concept of ‘agent’

Towards the Semantic Web238

Figure 13.8 Semantic map of the EnerSearch website showing the overlap links

between the topic ‘Powerline Communication’ and other main topics

Figure 13.9 Semantic map of the EnerSearch website showing the semantic distance

between different authors, in terms of their disciplinary field of research and publica-

tion

Previous experience has shown that lightweight ontologies can still provide

meaningful insight when combined with automated approaches. To demon-

strate that, Aidministrator’s Webmaster tool (v1.4) was used with a baseline

lightweight ontology, of which a fragment is shown in Figure 13.6. Outcomes

from the automatic semantic sitemap analysis are shown in Figures 13.7–13.9.

Figure 13.9 provides interesting information about the relation between the

different authors that only becomes clear due to the ontology-based semantics.

The authors, Ygge and Gustavsson, have mainly provided technical papers

whereas Sweet and Bosch have written mainly business administration

oriented papers. Some authors have a more general interest (cf. Akkermans),

and this is visible in the semantic map of the EnerSearch website that shows

the semantic distance between the authors in terms of their disciplinary fields

of research and publication.

13.7.2 Semantics-based Information Retrieval

For the information retrieval approaches (EnerSearcher, QuizRDF and Spec-

tacle) that correspond to different information modes, examples of screenshots

are shown in Figures 13.10–13.13.

Field Experimenting with Semantic Web Tools in a Virtual Organization 239

Figure 13.10 The integration of the search tool and the electronic questionnaire. In

the left frame, a question is shown ‘What is CommonKads?’ In the right frame, a free

text search result is shown

The EnerSEARCHer supports standard features like searching on words or

combinations of words and using case sensitive and intensive search. The

search quality of the EnerSEARCHer is similar to the quality obtained on

most standard web-search engines. The difficulty with this search tool is that it

returns a lot of irrelevant hits, can be rather sensitive to spelling and performs

very poorly with synonyms. A screenshot from the EnerSEARCHer is shown

in Figure 13.10.

QuizRDF first presents the user with a text entry box and a drill-down menu.

The drill-down menu contains a list of all the resources types stored in

QuizRDF’s index, which are concepts and a ‘Publication’ class in our case.

The drill-down menu gives the user the option to narrow down the search to a

specific concept: after selecting a concept, only the pages related to that

concept are shown. By selecting the class ‘Publication’ in the drill-down

Towards the Semantic Web240

Figure 13.11 A search using QuizRDF. The user selected the concept ‘communica-

tion’ resulting in four hits. (Although two appear to be the same, the links point to

separate parts within the HTML document.) The drop down list at this point shows

other key concepts that appear on these pages. Selecting one of these results in further

filtering of the selection

menu, the user has the opportunity to search on the various fields of the

publication database. At any time the user can enter natural language text

into the text entry box as with free-text searching. QuizRDF combines these

search criteria using the AND operator and matches the resulting query against

its ontology-based index. The response is a list of QuizRDF resources ranked

according to a resource’s relevance to the user query. Screenshots from

QuizRDF are shown in Figures 13.11 and 13.12.

Finally, using the Spectacle presentation, users can start browsing by select-

ing an item from the list of all concepts, key concepts, authors, projects or

years of publication. Subsequently, the user can further narrow the search by

choosing a co-occurring concept (i.e. one that appears along with the concepts

chosen so far on some of the pages) or a related concept. This step is repeated

until the list of pages (hits) is reduced to a certain number. A screenshot of

Spectacle is shown in Figure 13.13.

13.8 Some Lessons Learned

To demonstrate the real value of Semantic Web methods we need to carry out

field experiments. We have outlined a number of hypotheses that should be

Field Experimenting with Semantic Web Tools in a Virtual Organization 241

Figure 13.12 Here, the user selects the concept ‘Publication’. Due to the rich set of

facets attached to this concept, the user has the additional optional of searching on a

publication’s ID, author, title, date of publication and the project to which it belongs

Towards the Semantic Web242

F
ig

u
re

1
3

.1
3

S
em

an
ti

c
b

ro
w

si
n

g
w

it
h

S
p

ec
ta

cl
e.

T
h

e
u

se
r

se
le

ct
ed

th
e

‘B
y

A
u

th
o

r’
o

p
ti

o
n

,
th

en
ch

o
se

th
e

au
th

o
r

F
re

d
ri

k
Y

g
g

e
an

d
th

e

co
n

ce
p

t
ca

b
le

le
n

g
th

.
T

h
e

re
su

lt
is

al
l

th
e

p
ag

es
(c

o
)a

u
th

o
re

d
b

y
F

re
d

ri
k

Y
g

g
e

w
h

er
e

h
e

d
is

cu
ss

es
ca

b
le

ty
p

es

studied in representative case studies. We have also described what kind of

variables have to be taken into account, how data collection, evaluation,

experiment procedure, and system design can be done, and we have sketched

the importance of the human side of information processing.

At the time of writing, we cannot yet give the final results of our field tests

of Semantic Web tool use. However, several lessons and conclusions can be

already be derived from our practical experiences so far.

† Semantic Web tool tests and case studies in the field require a very careful

experiment design. Prospective test user groups and test tasks must be

carefully balanced to allow for adequate empirical-statistical testing of

hypotheses that must be explicitly formulated in advance. Empirical data

gathering in such experiments must be rich, including various qualitative

methods (such as pre- and post-trial semi-open interviews, collecting

verbal protocols during the experiment, onsite observation), as well as

quantitative methods (e.g. Likert-scale questionnaires, electronic logging

of actions and execution times, and statistical processing of resulting data).

† The case study validated the approach advocated here of providing a set of

tools and technologies for building customized knowledge management

solutions, as opposed to providing a one-size-fits-all knowledge system.

Tool integration, however, requires some additional components to the

architecture that glue together the functionality of the components. There

is also a need for a library for ontology transformations such as filtering and

custom inferencing to fit the needs of the various subsystems.

† Building a search engine from an ontology using QuizRDF is a one-click

process in contrast to creating an ontology-based presentation with Spec-

tacle, which is a complex programming task. The QuizRDF search engine,

however, cannot leverage ontological knowledge that goes beyond the

common data model, while the Spectacle presentation can be custom

tailored for the automatically extracted ontology (e.g. to present related

concepts).

† Ontologies obtained through natural language processing are lightweight

ontologies without a solid class hierarchy. This situation will be alleviated

by supporting the automated ontology extraction through a repository of

background knowledge that contains the domain information not found in

the texts and guides the modelling process (e.g. by capturing design deci-

sions such as what is a class and what is an instance). It is already possible,

however, to capitalize on the advantages of automatically extracted ontol-

ogies that include, among others, a ranked selection of concepts, cross-

taxonomical relationships (relations between concepts) and the automated

markup of pages with concepts. This is particularly important for the

Field Experimenting with Semantic Web Tools in a Virtual Organization 243

Semantic Web where automated approaches and lightweight ontologies

will prevail.

† The business case for ontology-based search and navigation is particularly

strong for virtual enterprises, such as EnerSearch, whose main value driver

is the creation and dissemination of (scientific) knowledge. For this kind of

enterprise, the gains from employing ontologies can offset the significant

technological risks involved with using advanced semantic technologies.

Virtual organizations provide a fertile test ground to validate the ideas that

underlie knowledge management through Semantic Web methods. They have

general characteristics that are such that semantic methods promise to be very

beneficial. EnerSearch is such a knowledge-intensive virtual organization in

which one of the main business ideas is to produce and transfer knowledge

from researchers and experts to interested industries. So, internal, and even

more importantly, external knowledge management is a key function where

semantic methods can prove to be very helpful. But, the proof of the Semantic

Web pudding is in the eating.

Towards the Semantic Web244

14

A Future Perspective:
Exploiting Peer-to-Peer and
the Semantic Web for
Knowledge Management

Dieter Fensel, Steffen Staab, Rudi Studer, Frank van Harmelen
and John Davies

14.1 Introduction

Over the past few years, we have seen a growing interest in the potential of

both peer-to-peer (P2P) computing and the use of more formal approaches to

knowledge management, involving the development of ontologies. This

penultimate chapter discusses possibilities that both approaches may offer

for more effective and efficient knowledge management. In particular, we

investigate how the two paradigms may be combined.

This book has presented a set of innovative tools for semantic information

processing and thus for more selective, faster, and meaningful user access.

This tool environment addresses three areas:

† Acquiring ontologies and linking them with large amounts of data. For

reasons of scalability this process must be automated based on information

extraction and natural language processing technology. For reasons of

quality this process also requires the human in the loop to build and manip-

ulate ontologies using ontology editors.

† Storing and maintaining ontologies and their instances. We developed an

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

RDF Schema repository that provides database technology and simple

forms of reasoning over web information sources.

† Querying and browsing semantically enriched information sources. We

developed semantically enriched search engines, browsing and knowledge

sharing tools that make use of the machine processable semantics of data

provided by the Semantic Web.

The developed technology has been shown to be useful in a number of case

studies. It improved information access in the intranet of a large organization

(Lau and Sure, 2002). The technology has also been used to facilitate electro-

nic knowledge sharing and re-use for customer relationship management and

knowledge management in virtual organizations.

We also encountered a number of shortcomings in our current approach.

Ontologies help to establish consensual terminologies that make sense to all

users. Computers are able to process information based on their machine-

processable semantics. Humans are able to make sense of this information

based on its connection to real-world semantics. However, building up such

ontologies that are a pre-requisite for and result of the common understanding

of large user groups is no trivial task. A model or ‘protocol’ for driving the

network that maintains the process of evolving ontologies is the real challenge

for making the Semantic Web a reality. Most work on ontologies views them

in terms of an isolated theory containing a potentially large number of

concepts, relationships, and constraints that further detach formal semantics

from them. Conversely, in order to employ their full potential for the Semantic

Web, they must be realized as interwoven networks that make it possible to

deal with the heterogenic needs in the communication processes they are

supposed to mediate. It is the network of ontologies and their dynamic nature

that make future research necessary. So the challenge in current work on

ontologies is the quest for what glues ontology networks together in space

and time. Instead of a central top-down process we require a distributed

process of emerging and aligning ontologies. Proper methodological and

tool support for building up networks where the nodes represent small and

specialized ontologies is far from well understood – especially not for such a

noisy and dynamically changing environment as the web is and will remain. In

this chapter, we describe our vision in terms of a set of future steps that need to

be taken to bring the results described in earlier chapters to their full potential.

The remainder of this chapter is organized as follows. In Section 14.2, we

discuss the main requirements for effective and efficient knowledge manage-

ment. Section 14.3 takes a detailed look at the requirement on ontologies as a

means for supporting communication and information exchange in large,

heterogeneous and dynamic networks. Section 14.4 proposes a combination

Towards the Semantic Web246

of ontologies and the P2P paradigm as a way to offer much enhanced knowl-

edge management capabilities. Final conclusions are provided in Section 14.5.

14.2 A Vision of Modern Knowledge Management

Knowledge is one of the most crucial success factors for today’s enterprises.

Therefore, knowledge management (KM) has been identified as a strategically

important capability. Clearly, KM is an interdisciplinary task, including

human resource management, enterprise organization and cultural considera-

tions as well as IT. However, there is a widespread consensus that IT plays an

important role as an enabler for many aspects of a KM solution.

In the past, IT for knowledge management has focused on the management

of knowledge containers using text documents as the main repository and

source of knowledge. As we have argued in this book, Semantic Web tech-

nology, especially ontologies and machine-processable relational meta-data,

pave the way to enhanced KM solutions that are based on semantically related

knowledge pieces of varying granularity. Although early semantic web-based

KM approaches and solutions have shown the benefits of ontologies and

related methods, there still exist a large number of open research issues that

have to be addressed in order to make semantic web technologies fully effec-

tive when applied to KM solutions, as discussed below.

14.2.1 Knowledge Integration

Industrial KM applications need to minimize any kind of development over-

head as far as possible. Therefore, a seamless integration of knowledge crea-

tion, for example, content and meta-data specification, and knowledge access,

for example, querying or browsing, into the working environment is required

(Handschuh and Staab, 2001). Strategies and methods are needed that support

the creation of knowledge automatically or semi-automatically as side-effects

of activities that are carried out anyway. An example of such an approach is

the usage of forms that are generated from an ontology. Since form elements

are then linked to the underlying ontology, filling in these forms results in the

creation of meta-data which maps directly to the ontology.

14.2.2 Knowledge Categorization

The new field of emergent semantics (Mädche et al., 2002) deals with assign-

ing semantic categories and relations to objects by observing user interactions

or patterns of user behaviour, and taking into account the user’s current

context. That is to say, emergent semantics is closely related to ontology

A Future Perspective 247

learning where the aim is to reduce the overhead of building-up and main-

taining ontologies. A P2P knowledge management system is ideally suited to

take advantage of emergent semantics, because many typical knowledge

worker actions have implicit semantics attached to them, such as:

† sending (new) email messages with subject descriptions;

† organizing documents into folders;

† clustering knowledge (e.g. presenting overlapping hierarchies of book-

marks);

† developing schemata (XML DTDs, XML schemata, RDF schemata, etc.).

14.2.3 Context Awareness

Access to, as well as presentation of, knowledge has to be context-dependent.

Since the context is set up by the current business task and thus by the business

process being handled, a tight integration of business process management and

knowledge management is required (Abecker et al., 2000). KM approaches

which can manage knowledge pieces provide a promising starting point for

smart push services that will proactively deliver relevant knowledge for carry-

ing out the task at hand. For example, the Smart Task approach (Staab and

Schnurr, 2000) uses knowledge of the sub-task being carried out as well as the

content of documents being handled for submitting dynamically defined

queries to the knowledge warehouse. The delivered answers provide knowl-

edge that is of importance for the given context, that is, the performed sub-task

and the processed documents. Such a context-dependent knowledge delivery

is a promising approach for avoiding information overload for the knowledge

worker. Location-aware services are a specialization of this technique. They

provide the knowledge worker with the most relevant knowledge pieces

depending on where he or she is situated, for example, in the basement of a

construction site or at a trade fair (Klemke and Nick, 2001).

14.2.4 Personalization

Contextualization has to be supplemented by personalization. Taking into

account the experience of the user and his or her personal needs is a prere-

quisite, on the one hand, for avoiding information overload and, on the other

hand, for delivering knowledge at the right level of granularity. Again, Seman-

tic Web technology provides a promising basis since ontologies and associated

meta-data deliver semantic information about the user behaviour and user

interests.

Personalization may be supported by technologies such as statistics and data

Towards the Semantic Web248

mining. However, future knowledge management solutions will rely on more

sophisticated applications of data mining that are currently heavily under-

explored: document repositories will be mined for interesting relations, inte-

grating data from the enterprise value chain. For instance, customer response

should be mined in conjunction with production data in order to find faults in

single production steps.

14.2.5 Knowledge Portal Construction

The development of knowledge portals serving the needs of companies or

communities is still a more or less manual process. Ontologies and related

meta-data provide a promising conceptual basis for generating (parts of) such

knowledge portals (Jin et al., 2001). Obviously, conceptual models of the

domain, the users and the tasks are needed among others. Generation of

knowledge portals has to be supplemented with the (semi-)automatic evolu-

tion of portals (Staab and Mädche, 2001; Hotho et al., 2001). Since business

environments and strategies change rather rapidly, KM portals have to be kept

up-to-date in this fast changing environment. Evolution of portals also

includes the aspect of ‘forgetting’ outdated knowledge.

KM solutions will be based on a combination of intranet-based functional-

ities and mobile functionalities in the very near future. Semantic Web tech-

nologies are a promising approach to meet the needs of the mobile

environments, such as location-aware personalization and adaptation of infor-

mation presentation to the specific capabilities of mobile devices, that is, the

presentation of the required information at an appropriate level of granularity.

In essence, employees should have access to the KM application anywhere

and anytime. However, in order to be able to deal with large amounts of

knowledge, it must be served at different levels of granularities. For instance,

a search on the desktop might also pop up related links and many details, but

on the palmtop one must restrict knowledge pieces to the bare minimum.

14.2.6 Communities of Practice

The importance of knowledge sharing and re-use in knowledge management

in order to share best practice and prevent duplication of effort has led to much

interest in communities of practice. Recent ethnographic studies of workplace

practices indicate that the ways people actually work often differ fundamen-

tally from the ways organizations describe that work in manuals, organiza-

tional charts and job descriptions. The term ‘community of practice’ describes

the informal groups where much knowledge sharing takes place and has been

increasingly applied in the knowledge management context. They are typi-

A Future Perspective 249

cally not a formal team but an informal network, each sharing in part a

common agenda and shared interests. In one example, it was found that a

lot of knowledge sharing among photocopier engineers took place through

informal exchanges, often around the coffee point. As well as such local,

geographically based communities, trends towards flexible working and

globalization have led to interest in supporting global communities using

Internet technology. The challenge for organizations is to support such

communities and make them effective. Semantic Web technology can be

used to support communities of practice more effectively: ontologies, as

consensual domain models directly address a key concern of such commu-

nities – how to represent and reason about a shared world model or concep-

tualization. In Chapter 10, we saw an early example of the use of Semantic

Web technology to support communities of practice.

14.2.7 P2P Computing and its Implications for KM

P2P computing combined with Semantic Web technology will be an interest-

ing and effective alternative to the more centralized KM solutions that are

currently implied by ontology-based solutions. The term ‘peer-to-peer’

became commonplace in IT towards the second half of 2000. The application

largely responsible was Napster, the music file-sharing application. Many

similar P2P applications appeared at around the same time, such as Gnutella,

Kazaa, and Freenet. P2P applications effectively turn an individual user’s

computer from primarily a display device (showing emails, documents and

WWW pages) into an active Internet-based computing resource. The success

of these initial applications has led to interest in the exploitation of P2P

architectures in business applications. Leveraging the spare CPU cycles and

storage capacity of an organization’s PCs will, it is anticipated, bring greater

flexibility and a better return from a company’s IT investments. In short, P2P

allows a highly decentralized computer network architecture, with computers

(and hence applications) able to interact with one another with little or no

centralized control.

P2P scenarios open up the way to derive consensual conceptualizations

among employees within an enterprise in a bottom-up manner. Thereby,

another requirement may be fulfilled: Future knowledge management solu-

tions should be nearly free of administration in order that they may be used by

everyone including private persons and small cooperating companies perhaps

as part of a virtual company. We discuss further the relationship between P2P

technology and KM in Section 14.4.

Towards the Semantic Web250

14.2.8 Virtual Organizations and their Impact

Virtual organizations are becoming increasingly important in business scenar-

ios characterized by decentralization and globalization. Obviously, semantic

interoperability between different knowledge sources as well as trust is a must

in inter-organizational KM applications. The process of setting up a virtual

organization may also take profit of semantic descriptions of competencies

and experiences of prospective partners. This enables a semantic matching

process selecting the most appropriate collection of partners from a group of

potentially interesting partners.

14.2.9 eLearning Systems

The smooth integration of KM applications, for example, skill management,

with eLearning is an important field enabling a lot of synergy between these

two areas. KM solutions and eLearning have to be integrated from both an

organizational and an IT point of view. KM solutions that have an explicit

notion of context and user profile provide an excellent environment for tailor-

ing the learning situation to the specific needs of the learner. Clearly, inter-

operability and/or integration of (meta-data) standards of the eLearning

community, for example, LOM or Ariadne, with the Semantic Web meta-

data standards are needed to realize such an integration (Maurer and Sapper,

2001; Stojanovic et al., 2001). Attaching semantic meta-data to learning

modules enables the context specific configuration of learning modules and

their adaptation to the specific user needs. Of course, the ontologies being used

to specify the learning module meta-data have to be aligned with the ontolo-

gies defining the context and user profile.

14.2.10 The Knowledge Grid

Further application areas of KM and the Semantic Web will be the Knowledge

Grid, particularly with regard to eScience applications. In subjects such as

genomics, astrophysics, bioengineering, or biochemistry there are massive

data sources, however little access to these data by semantic means. Thus,

these data sources are plagued by the same effects as knowledge in the WWW.

They are hardly digestible by software and humans alike and need an under-

lying infrastructure such that people may better share experiences, analyses

may be easily redone, and data may be easily integrated. For instance, knowl-

edge portals may be used to assist analysts in selecting, combining and aggre-

gating knowledge in the life sciences area. Since life sciences evolve very

quickly and so does the terminology of the field, a further important aspect is

A Future Perspective 251

the association of new words that show up in new documents with the appro-

priate concepts from the respective ontologies.

14.2.11 Intellectual Capital Valuation

In order to determine the outcome of knowledge management or eLearning

undertakings, knowledge should be accounted for in the same way as other

goods. An important part of knowledge valuation will be the structuring of the

underlying knowledge based on which the valuation proper may be done.

14.3 A Vision of Ontologies: Dynamic Networks of Meaning

As argued before, ontologies glue together two essential aspects that help to

bring the web to its full potential:

† Ontologies define formal semantics for information, consequently allowing

information processing by a computer.

† Ontologies define real-world semantics, which makes it possible to link

machine processable content with meaning for humans based on consen-

sual terminologies.

Especially the latter aspect is still far from being studied to its full extent: how

can ontologies be used to communicate real-world semantics between human

and artificial agents? In answering this question we will argue that most

current work on ontologies is mis-focused in part, in that it ignores the

main problems in building and using them. Most of the work on ontologies

views them in terms of an isolated theory that covers a potentially large

number of concepts, relationships, and constraints that further attach formal

semantics from them. Here, we take a much broader view of ontologies:

Ontologies must have a network architecture and ontologies must be dynamic.

That is, ontologies have to deal with:

† Heterogeneity in space: ontology as networks of meaning. From the very

beginning, heterogeneity has been an essential requirement for this ontol-

ogy network. Tools for dealing with conflicting definitions and strong

support in interweaving local theories are essential in order to make this

technology workable and scalable, just as the first generation web was

workable and scalable because it was error-tolerant with regard to hyper-

linking.

† Development in time: living ontologies. Originally, an ontology should

reflect the ‘truth’ of a certain aspect of reality. It was the holy task of a

philosopher to find such truth. Today, ontologies are used as a means of

Towards the Semantic Web252

exchanging meaning between different agents. They can only provide this

if they reflect an inter-subjectual consensus. By definition, they can only be

the result of a social process. For this reason, ontologies cannot be under-

stood as a static model. An ontology is as much required for the exchange

of meaning as the exchange of meaning may influence and modify an

ontology. Consequently, evolving ontologies describe a process rather

than a static model. Having protocols for the process of evolving ontologies

is the real challenge. Evolving over time is an essential requirement for

useful ontologies. As daily practice constantly changes, ontologies that

mediate the information needs of these processes must have strong support

in versioning and must be accompanied by process models that help to

organize evolving consensus.

In the following sub-section, we take a philosophical view of ontologies,

helping to clarify their very nature. Then, we discuss in more detail the aspects

of heterogenity in space and time. We conclude with a short summary.

14.3.1 Ontologies or How to Escape a Paradox

Every first-year philosophy student has heard about the vicious circle in trying

to explain our ability to communicate as a means of exchanging meaning and

creating understanding between human beings. On the one hand, people can

only communicate and exchange meaning based on a common understanding

of symbols and intentions. Thus, an agreed set of symbols and a consensual

interpretation thereof is a prerequisite for communication. On the other hand,

such a set of symbols and a consensual interpretation can only be established

as a result of communication.1 In other words, the result of successful commu-

nication is, at the same time, a prerequisite for it. Consequently, its existence is

required for explaining its existence. Our first-year philosophy student may

also have learned how to overcome such a paradoxical situation. There must

be an underlying process that takes both sides as intermediate and frequently

repeated sub-steps that rely on something that mediates between the extremes

(Hegel, 1812). This would make successful communication and a shared set of

understandings merely two sides of the same coin. The reader may have found

our arguments ‘too philosophical’. However, we want to underline the princi-

pal difference between viewing ontologies as ‘true’ models of the real world or

as steps in a process of organizing evolving consensus. For this reason, a brief

argument on the cyclic nature of understanding and communication would

seem appropriate. From an abstract philosophical perspective, it seems like a

miracle that any two human beings can understand each other. Meaning and

A Future Perspective 253

1 At least as long as this interpretation is not hard-coded via instincts.

intention cannot be exchanged or expressed directly. Nor can we access the

actual meaning that is perceived and understood by our counterpart. We can

only express our intention by some action that influences the perception of our

counterpart. And we can only guess what this is supposed to mean to him by

analysing his behaviour as much as it is reflected in our perception (Hegel,

1812). Thus, establishing meaning and communication (to exchange meaning)

is a process by definition. People can only establish shared meaning and

communicate it to each other through a process in which they coordinate

some of their actions to achieve common goals. Therefore, from the very

beginning2 it can only be a social process that creates a shared understanding,

which serves as a basis for exchanging meaning with communicative symbols.

Following this argument, it becomes fairly rather clear that the ontology to

which everybody subscribes does not exist. Instead, ontologies arise as pre-

requisites and results of cooperation in certain areas reflecting task, domain

and sociological boundaries. The web weaves billions of people together to

support them in their information needs. Similarly, ontologies can only be

viewed as a network of interwoven ontologies. This network of ontologies

may have overlapping and excluding pieces, and must be as dynamic in nature

as the dynamics of the process it underlies. This view on ontologies as

dynamic networks of formally represented meaning is what we want to stress

here. Most of the work on ontologies views them in terms of an isolated theory

that covers a potentially large number of concepts, relationships, and

constraints that further detach formal semantics from them. Here, we take a

much broader view of ontologies. To recap, there are two main dimensions in

which these mediators of communication differ from current work on ontol-

ogies: ontologies must have a network architecture and ontologies must be

dynamic.

14.3.2 Heterogeneity in Space: Ontology as Networks of Meaning

An island of meaning must be interwoven to form more complex structures

enabling exchange of information beyond domain, task and sociological

boundaries. This has two practical implications. Firstly, tool support must

be provided to define local domain models that express a commitment of a

group of agents that share a certain domain and task and that can agree on a

joined world view for this purpose. A great deal of work has already been done

in this area and significant methodological support is available (for a survey,

see Fensel et al., 2002b). Secondly, these local models must be interwoven

Towards the Semantic Web254

2 In principle, it is not even important whether another agent actually thinks. He ‘understands’

our communicative acts properly if they are properly contained within the framework of his

approach to cooperation with us.

with other models, such as the social practice of the agents that use ontologies

to facilitate their communicational needs. Little work has been done in this

latter area.3 We no longer talk about a single ontology, but rather about a

network of ontologies. Links must be defined between these ontologies and

this network must allow overlapping ontologies with conflicting – and even

contradictory – conceptualizations. From the very beginning, heterogeneity

has been an essential requirement for this ontology network. Tools for dealing

with conflicting definitions and strong support in interweaving local theories

are essential in order to make this technology workable and scalable.4

Gnutella, a P2P network, is a case in point (Oram, 2001). Agents were able

to enter and leave the network dynamically. They could also communicate

with a local environment of other agents. This network was dynamically set up

and collapsed according to the joined needs of a group of agents. Current work

on ontologies that focuses either on local domain theories or on principles,

structures and content of the right ‘upper-layer’ (general purpose) ontology are

far from supporting such a vision. What is needed is a focus on:

† linking local conceptualizations that deal with heterogeneous definitions

and personalized views;

† support in easy configuration and re-configuration of such networks

according to the communication needs of agent coalitions; and

† methods and tools that help agents to organize consensus, allowing them to

exchange meaning.

Ontologies ensure communication between various agents. They are ‘right’ if

they fulfil this purpose.

14.3.3 Development in Time: Living Ontologies

Originally, an ontology should reflect the ‘truth’ of a certain aspect of reality.

It was the holy task of a philosopher to find such truth. Today, ontologies are

used as a means of exchanging meaning between different agents. They can

only provide this if they reflect an inter-subjectual consensus. By definition,

they can only be the result of a social process. This gives ontologies a dual

status for the exchange of meaning:

† Ontologies as pre-requisite for consensus. Agents can only exchange mean-

ing when they have already agreed on a shared body of meaning reflecting a

consensual point of view on the world.

A Future Perspective 255

3 An experiment for developing a shared ontology of a world-wide distributed research commu-

nity is described in Benjamins et al. (1999).
4 Steps in the direction we recommend are supported in ontology mappings (cf. Omelayenko

and Fensel, 2002) and re-use (cf. Ding and Fensel, 2002).

† Ontologies as a result of consensus. Ontologies as consensual models of

meaning can only arise as result of a process where agents agree on a

certain model of the world and its interpretation.

Thus, ontologies are as much a pre-requisite for consensus and information

sharing as they are the results of them. For this reason, ontologies cannot be

understood as a static model. An ontology is as much required for the

exchange of meaning as the exchange of meaning may influence and modify

an ontology. Consequently, evolving ontologies describe a process rather than

a static model. Having protocols for the process of evolving ontologies is the

real challenge. Evolving over time is an essential requirement for useful

ontologies. As daily practice constantly changes, ontologies that mediate the

information needs of these processes must have strong support in versioning5

and must be accompanied by process models that help to organize consensus.

Centralized process models have standardization bodies, such as the central

clearing unit. This central unit may soon pose problems to the scalability of the

entire process. Often, such standardization is slow and leads to mongrelized

results. Decentralized process models for consensus achievement can be based

on the natural consensus of working networks. They can, therefore, reflect a

consensus that is true, has proven useful and is used widely. In this context,

one may want to take a look at P2P, where networks arise and are configured

dynamically according to the shared interests of loosely coupled groups.

14.4 Peer-2-Peer, Ontologies and Knowledge

In today’s knowledge-based economy, the competitiveness of enterprises and

the quality of work life are directly tied to the ability to effectively create and

share knowledge both within and across organizations. In this section, we

discuss solutions for knowledge management based on integrating the Peer-

2-Peer paradigm with ontology-based information access, that is, Semantic

Web technology (also cf. Nejdl et al., 2002). First, we discuss the shortcoming

of both approaches when realized in isolation. Second, we define challenges in

combining them and finally we sketch major advantages of such a unifying

approach.

14.4.1 Shortcomings of Peer-2-Peer and Ontologies as Isolated
Paradigms

P2P computing (in its various flavours) is currently a trend in intranet and

Internet applications. Analysts like the Gartner Group expect its fast growing

Towards the Semantic Web256

5 Klein and Fensel (2001) provide an analysis for a versioning framework.

importance for knowledge management solution in large companies and orga-

nizations. Companies like Microsoft, IBM, Intel, SAP (together with Groove

Networks), and Sun (developing JXTA) have announced first solutions in this

area. Emerging P2P solutions are particularly well suited to the increasingly

decentralized nature of today’s organizations, be it a single enterprise or a

dynamic network of organizations. They make it possible for different parti-

cipants (organizations, individuals or departments within an organization) to

maintain different views of the world while exchanging information. They

also circumvent the bottlenecks associated with more traditional solutions,

which rely on one or a small number of centralized servers. At the same

time, because they rely on keyword search and rather simple knowledge

representation techniques, today’s peer-to-peer solutions are extremely

limited. They cannot easily support the introduction of new concepts, they

make it difficult to determine whether two terms are equivalent, and generally

can only support very limited levels of automation – all types of functionality

which Semantic Web technologies have been shown to support.

The current state-of-the-art in knowledge management solutions still

focuses on one or a relatively small number of highly centralized knowledge

repositories with ontologies as the conceptual backbone for knowledge

brokering. As it turns out, this assumption is very restrictive, because

† it creates major bottlenecks and entails significant administrative over-

heads, especially when it comes to scaling up to large and complex

problems;

† it does not lend itself to easy maintenance and the dynamic updates often

required to reflect changing user needs, dynamic enterprise processes or

new market conditions.

In contrast P2P computing offers the promise of removing many of these

limitations. The essence of P2P is that nodes in the network directly exploit

resources present at other nodes of the network without intervention of any

central server. The tremendous success of networks like Napster and Gnutella,

and of highly visible industry initiatives such as Sun’s JXTA, as well as the

Peer-to-Peer Working Group including HP, IBM and Intel, have shown that

the P2P paradigm is a particularly powerful one when it comes to sharing files

over the Internet without any central repository, without centralized adminis-

tration, and with file delivery dedicated solely to user needs in a robust,

scalable manner. At the same time, today’s P2P solutions support only limited

update, search and retrieval functionality. P2P solutions currently have the

following limitations:

† In many projects, P2P is discussed as a solution at the protocol level (no

A Future Perspective 257

client–server dichotomy) and as a means for distributing disk space.

However, this is of minor importance for improved service in knowledge

management. Here it is the actual sharing of information and knowledge

which needs to be supported and not the organization of disk storage or

network traffic.

† Existing solutions such as Napster or Gnutella provide limited support in

information and knowledge sharing. Napster supports only keyword-based

search of music titles and author names, Gnutella does not provide any pre-

defined search support. Each Gnutella client is completely free in how it

interprets a query.

† Leading industry efforts such as JXTA by Sun Microsystems are limiting

P2P services to string matching. No support for shared ontologies is

provided. Queries are specified in arbitrary XML formats. No use is

being made of the opportunities to use RDF/RDF Schema for expressing

shared vocabularies. Finally, JXTA limits query-answering to using

resources in a single location, while in fact many queries will require the

combination of information retrieved from different sources at different

locations.

† Peer selection is currently not really based on content. This needs to be

improved to route a query to the next knowledgeable peer rather than some

arbitrary one.

These flaws make current P2P systems unsuitable for knowledge sharing

purposes. Key to the success of combining P2P solutions with Semantic

Web technologies is the use of emergent semantics. Emergent semantics

can build on lightweight and/or heavyweight ontologies that different indivi-

duals, departments or organizations have created. It considers the overlap

between ontology definitions and the use of concepts and relations with actual

data in order to extract shared ontologies for sets of individuals or groups of

people. Intelligent tools will use such definitions to ensure that knowledge will

be appropriately structured, so that it can be easily found. Knowledge manage-

ment can occur in a distributed fashion without overhead through central

administration.

14.4.2 Challenges in Integrating Peer-2-Peer and Ontologies

We aim for a P2P based knowledge management approach that integrates the

advantages of Semantic Web-based knowledge management technology

developed in successful IST projects like On-To-Knowledge, KnowNet, or

Comma. Figure 14.1 illustrates the intended advantages. It depicts a qualita-

tive comparison of benefits (time saved or redundant work avoided expressed

Towards the Semantic Web258

financially) gained by using a KM system against the amount of knowledge in

that system. Of course, explicitly modelled ontologies may increase the bene-

fits brought by any knowledge management solution, because they may

improve the accuracy of knowledge access and sharing. The solutions we

describe, however, may produce benefits even with near zero investment –

in contrast to conventional knowledge management systems that need an

extensive and expensive set-up phase.6 Conventional knowledge management

repositories will still appear as just another, powerful peer in the network.

Hence, a combined Semantic Web and P2P solution may always outperform

the sophisticated, but conventional centralized system.

Challenges for such an approach are:

† Peer selection service. In order to receive the right answers without flood-

ing the peer network with queries one must ask the ‘right’ peers. Ontology-

based peer selection mechanisms need to exploit similarity of ontologies

for this purpose.

† Variation of ontologies. Different peers will use different, though overlap-

ping ontologies. Alignment, mapping and visualization tools will have to

cope with different ontologies, even though no alignments are explicitly

specified. Some of the alignments and the mappings may be found by

analysis of peer knowledge using methods of the just emerging field of

A Future Perspective 259

Figure 14.1 Qualitative comparison of benefits resulting from investments in KM

systems

6 We are focussing here on the investment required in IT systems. There may or may not also be

a cost with regard to cultural change programmes and so forth.

emergent semantics (e.g. same file categorized to different concepts indi-

cates alignment).

† Lack of ontological precision. Ontologies will be produced from various

user interactions, like classifications into folders or usage of meta-data.

Ontology definitions will be imprecise and ‘sloppy’ ontologies will be

the norm rather than the exception. An inference engine for these ontolo-

gies must be able to ask and answer queries to peers in a robust, scalable,

often locally contained, manner.

† Ontological drift. In a P2P environment, one cannot expect any mainte-

nance of the ontologies to happen (in fact, users will often not know what is

in the ontologies on their machine). As a result, we must design mechan-

isms that allow the ontologies to update themselves, in order to cope with

ontological drift. Based on the queries and answers elsewhere in the P2P

network, ontologies will have to adjust their own definitions accordingly.

Each of these challenges will require significant research in ontology engi-

neering technology.

14.4.2.1 Peer Selection Service

Clearly, the success of a P2P network relies on the quality of peers that each

member of the network selects.

Example: Investment Analysis. If an investment analyst in the TIME7

market performs a domain-specific query, it is highly improbable that a

colleague of his/hers who specializes in the Life Science Domain will know

the answer. Correspondingly, the query should rather be routed to colleagues

who work in similar domains in order to receive many useful answers.

Selection of peers in existing P2P networks is typically based on network

related parameters, such as ping-time, number of network-hops, etc. Clearly,

in an ontology based P2P service, one would rather want to select peers on the

basis of their conceptual proximity to one’s own ontology – possibly including

contextual information (e.g. what activity the user is currently engaged in).

Continuing the example from above, we would expect that colleagues with

overlapping tasks would also have overlapping ontologies that describe their

view of the domain.

Therefore, routing of queries should depend on some kind of ‘similarity

measures’ between ontologies, which can be used to select peers with similar

ontologies, that is, peers that are likely to have answers to my queries or peers

Towards the Semantic Web260

7 TIME stands for telecommunication, information technology, multimedia and e-business.

that are likely to even understand my queries. So far, no robust notion of

‘conceptual distance’ or ‘semantic similarity’ between ontologies exists in

the current literature; it needs to be developed and evaluated.

14.4.2.2 Dealing with Variation of Ontologies

Different peers will use different, though overlapping ontologies. Alignment,

mapping and visualization tools will have to cope with different ontologies,

even though no alignments are explicitly specified.

Example: Virtual Enterprise Case Study. Two SMEs, let us call them

design.com and producing.com, have agreed about cooperation and about

sharing knowledge resources in order to watch current and upcoming tech-

nology in their markets. Therefore, they both collect product announcements,

but view them from different angles. design.com must know which possibilities

they are given by new technology (what), while producing.com must know how

to handle the same new technology (how). The what and the how refer to

different views of concepts in the two organizations.

Some of the alignments and the mappings may be found by analysis of peer

knowledge using methods of the just emerging field of emergent semantics

(e.g. same file categorized to different concepts indicates alignment).

The classification of the same announcement under the two different

concepts at the two companies may be exploited for proposing a more general

alignment between design.com’s what and produce.com’s how. Furthermore,

one may automatically translate queries for design.com’s what into produce.-

com’s how, allowing the user to navigate the two peers and their ontologies

while being visually reminded of the underlying differences and commonal-

ities.

14.4.2.3 Robust Inferencing

Current ontology-based applications rely on careful engineering of the

terms in the ontology. Terms are carefully defined to obtain maximally

clean and useful relationships between them (proper subset relations,

complement relations, strict domain/range restrictions, etc). All of the

current inference techniques for ontologies (querying, inferencing, consis-

tency checking, subsumption checking, etc.) rely on such clean relation-

ships. The same holds for current applications based on multiple ontologies.

Multiple ontologies can currently only be integrated through careful, hand-

crafted engineering.

A Future Perspective 261

In a P2P setting, ontologies will have to be obtained with no or very little

human intervention (e.g. by ‘scraping’ ontologies from existing resource

structures such as file hierarchies, mail folders, etc.). These ontologies will

therefore not be of the same high quality as current human-engineered ontol-

ogies, and many of the relationships in an ontology will be incomplete or even

incorrect. For instance, sub-class definitions will not be precise or instances

will sometimes be miss-classified. As a result, many (if not all) of the existing

inference techniques fail to produce useful results on such ‘sloppy’ ontologies.

Even a single miss-classified instance is sufficient to invalidate a sub-class

relationship, and even one wrong value for a single attribute is sufficient to

make a class inconsistent.

Example: Investment Analysis. An investment analyst in the TIME market

may erroneously mis-classify information about the Danish company ‘Excel

Data’ into the category ‘Spreadsheet Software’. Complementary knowledge

may describe that ‘Excel Data’ is a company and, therefore, the logical theory

becomes inconsistent – leading in the ‘logical worst case’ to arbitrary answers

to any question, for example, that ‘Bill Gates’ is a product.

What is needed in a P2P setting are more robust forms of reasoning that can

cope with limited amounts of incompleteness and inconsistencies. Such robust

inference techniques will be able to identify when a sub-class relationship

‘almost holds’ (even though a few instances may be mis-classified), or when

an ontology is ‘almost consistent’ (by ignoring a few local inconsistencies).

Continuing our example, the mis-classification of ‘Excel Data’ and corre-

sponding inconsistencies must be ‘contained’ in small niches. Then wrong

answers about ‘Excel Data’ will be given, but ‘Bill Gates’ will still be known

as founder of Microsoft.

Existing work in the field of knowledge representation on approximate

inference (e.g. Cadoli and Schaerf, 1995; Dalal, 1996) and local containment

of inconsistencies (Wasserman, 2000) is expected to provide the required

framework to tackle the problem of reasoning with sloppy ontologies.

14.4.2.4 Handling Ontological Drift

Ontological drift is a natural phenomenon that appears in almost every

domain.

Example: Investment Analysis. Notions about the capabilities of software

and hardware have changed tremendously in the TIME market within a few

years. ‘eCommerce’ first almost exclusively referred to business-to-consumer

Towards the Semantic Web262

sales. Over time it changed its meaning and now also includes business-to-

business, customer-to-customer, business-to-employee, etc. interactions.

Such ontological drift means that ontologies must be constantly maintained.

We must regularly update the definitions of terms and relations in an ontology.

Such maintenance is possible in current applications, because they all employ

a single ontology in a centralized location.

In a P2P environment, one cannot expect any maintenance to happen on the

ontologies (in fact, users will often not know what is in the ontologies on their

machine, let alone that they can perform maintenance on them). As a result,

we must design mechanisms that allow the ontologies to update themselves, in

order to cope with ontological drift. Based on the queries and answers else-

where in the P2P network, ontologies will have to adjust their own definitions

accordingly: if other ontologies give different answers to queries, possibly

update your own definitions; possibly based on ‘confidence’ in the other

ontologies; do this on a sliding scale of truth values of the definitions (instead

of simply binary true/false); use metaphors from social science (opinion-form-

ing, rumour-spreading, etc.).

14.5 Conclusions

The combination of ontologies and the P2P paradigm may provide promising

directions for future research and tool development and we discuss some of

these possibilities below.

14.5.1 P2P for Knowledge Management

We propose to develop and validate P2P-based knowledge management solu-

tions, where knowledge is updated and searched in a completely decentralized

manner, thereby moving away from the limitations of today’s knowledge

management solutions, which are organized around one or a small number

of centralized knowledge clusters. For this purpose we must resolve the issues

around peer selection services based on knowledge structure and content (cf.,

e.g. peer selection services).

14.5.2 P2P for Ontologies

Ontology technology should be moved to the next level by letting the seman-

tics emerge from the way in which knowledge is accessed and used. Centra-

lized ontologies are too static when they are defined in a slow, centralized

process while the users’ interests/perspectives they reflect change fast and

A Future Perspective 263

frequently. We propose to develop ontology technology that gives participants

the freedom to use their own ontology structures. The P2P knowledge

management system will be able to take advantage of differences (cf. ‘onto-

logical drift’ from above as one example). It will dynamically come up with

ontologies that constitute common denominators for groups of participants as

well as with proposals for mappings between ontologies (e.g. through

common names of documents at different nodes in the network). Thus, one

may come to semantic conclusions without centralized ontologies.

14.5.3 Ontologies for P2P and Knowledge Management

With P2P-based solutions, existing ontology-based knowledge management

approaches do not stay the same. Ontologies give participants the semantic

accuracy for finding the answers to their problems, but ontology use must

change; for example, ontology inferencing must be adapted (cf. ‘robust infer-

ence’ above) or new visualization techniques must be investigated in order to

deal with the distinction between local and shared ontologies. The use of

emergent semantics gives all the freedom to the participant that he/she

wants, but ontology tools must be adapted to meet the challenges of the

new paradigm.

14.5.4 Community Building

Because communities are not defined by ‘what repository you are using’, but

rather by ‘what knowledge is important to you’, people have new possibilities

to form communities taking full advantage of P2P communication.

Over the past few years, we have seen a growing interest in the potential of

P2P computing and the use of more formal approaches to knowledge manage-

ment, involving the development of ontologies. At the same time, to date,

nothing has been done to combine the power of these approaches.

We began by discussing some of the main requirements for effective and

efficient knowledge management. We then examined the requirement on

ontologies as a means for supporting communication and information

exchange in large, heterogeneous and dynamic networks. We proposed a

combination of ontologies and the P2P paradigm as a way to offer much

enhanced knowledge management capabilities.

Our argument has been that only by bringing together Semantic Web (speci-

fically, ontologies) and P2P technology can we fully realize their potential to

enhance dramatically the capabilities offered by today’s knowledge manage-

ment solutions.

Towards the Semantic Web264

15

Conclusions: Ontology-
driven Knowledge
Management – Towards the
Semantic Web?

John Davies, Dieter Fensel and Frank van Harmelen

The global economy is rapidly becoming more and more knowledge intensive.

Knowledge is now widely recognized as the fourth production factor, on an

equal footing with the traditional production factors of labour, capital and

materials. Managing knowledge is as important as the traditional management

of labour, capital and materials.

In this book, we have shown how Semantic Web technology can make an

important contribution to knowledge management. A prerequisite to applying

many of the technologies described in this volume is that knowledge is suffi-

ciently computer-accessible. This coincides with the vision of the Semantic

Web at large: making knowledge machine-accessible rather than limiting the

role of the computer to displaying knowledge sources on a screen for inter-

pretation by humans. In Chapter 2, we discussed the representation languages

that are required for making knowledge computer-accessible in a way that is

both expressive, logically well-founded, and compatible with current IT stan-

dards such as XML.

In any knowledge management initiative, technology alone is not sufficient:

knowledge management is a sociotechnical discipline. Chapter 3 described a

methodology that should be used in order to effectively apply the technology

from this volume.

Chapters 5–11 described a wide range of technologies to exploit the Seman-

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

tic Web for knowledge management: an ontology editor to capture human

expertise, an environment for collaborative knowledge sharing, tools for auto-

mated concept extraction from knowledge sources, support for semantic

search and navigation through knowledge sources, among others.

Chapters 12 and 13 showed how these tools, under the guidance of the

methodology, have been used in realistic case studies in very different compa-

nies, and under widely varying conditions.

All this demonstrates that Semantic Web technology can indeed be used for

knowledge management. This technology was deployed on a company wide-

scale, with company intranets as the technological base. But the title of this

book also hints at something else: it contains the promise that the knowledge

management technologies of this book would also be steps towards a world-

wide Semantic Web, rather than being limited to company-wide intranets,

highly valuable though such applications are.

We do indeed believe that this is the case: much of the same technology that

was developed in this book for the purposes of company-wide knowledge

management has also been shown to be useful on a much larger scale. A

follow-up language of OIL is currently in large-scale use on the web (http://

www.daml.org), tools like OntoEdit are being used to mark up pages on the

web, infrastructure technology such as Sesame is now in use for web applica-

tions that are not just limited to internal company use.

That is not to say, however, that the results from this book are now ready to

be applied in an industrial setting in a routine fashion. The tools are in the main

prototypes, the methodology needs to mature, the case studies have been

relatively costly, labour intensive and have required input from skilled specia-

lists. Much exciting work remains to be done to make the transition from the

pages of this book into real practice, in real industry, on the real web.

Towards the Semantic Web266

References

Abecker, A., Bernardi, A., Maus, H., Sintek, M. and Wenzel, C. (2000) Information

supply for business processes: coupling workflow with document analysis and

information retrieval. Knowledge Based Systems, 13(5): 271–284.

Ackerman, M.S., McDonald, D., Lutters, W. and Marumatsu, J. (1999) Recommenders

for expertise management. In Workshop on Recommender Systems: Algorithms

and Evaluation, SIGIR ’99.

Ahmed, K. and Benbrahim, M. (1995) Text summarisation: the role of lexical cohesion

analysis. New Review of Document and Text Management, 1: 321–335.

Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D. and Tolle, K. (2000)

The RDF Suite: Managing Voluminous RDF Description Bases. Technical report,

Institute of Computer Science, FORTH, Heraklion, Greece.

See http://www.ics.forth.gr/proj/isst/rdf/rssdb/rdfsuite.pdf.

Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McDermott, D.,

McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T.R. and Sycara, K. (2002),

DAML-S: web service description for the semantic web, In The First International

Semantic Web Conference (ISWC), June.

Arprez, J.C., Corcho, O., Fernandez-Lopez, M. and Gomez-Perez, A. (2001)

WebODE: a scalable workbench for ontological engineering. In Proceedings of

the First International Conference on Knowledge Capture (K-CAP) October 21–

23, Victoria, BC, Canada.

Auer, T. (2000) Wissens-Sicherung im Kontext mit der Personal Entwicklung. Schwei-

zer Arbeitgeber, 10.

Banerjee, J., Kim, W., Kim, H.-J. and Korth, H.F. (1987) Semantics and implementa-

tion of schema evolution in object-oriented databases. SIGMOD Record. In

Proceedings of the Conference on Management of Data, Vol. 16(3), pp. 311–322.

Bates, M.J. (1986) An exploratory paradigm for online information retrieval. In

Brookes, B.C. (ed.), Intelligent Information Systems for the Information Society.

Amsterdam: North-Holland.

Becerra-Fernandez, I. (2000) Facilitating the online search of experts at NASA using

expert seeker people-finder. In Reimer, U. (ed.), 3rd International Conference on

Practical Aspects of Knowledge Management PAKM 2000.

Bechhofer, S., Horrocks, I., Patel-Schneider, P.F. and Tessaris, S. (1999) A proposal for

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

a description logic interface. In Lambrix, P., Borgida, A., Lenzerini, M., Mueller, R.

and Patel-Schneider, P. (eds.), Proceedings of the International Workshop DL’99,

July 30–August 1, Linköping, Sweden.

Bechhofer, S., Goble, C. and Horrocks, I. (2001a) DAML+OIL is not enough. In

Proceedings of the First Semantic Web Working Symposium (SWWS’01) CEUR

Electronic Workshop Proceedings, pp. 151–159. http://ceur-ws.org/

Bechhofer, S., Horrocks, I., Goble, C. and Stevens, R. (2001b) OilEd: a reasonable

ontology editor for the semantic web. In Proceedings of the Joint German/

Austrian Conference on Artificial Intelligence (KI 2001), Lecture Notes in Arti-

ficial Intelligence, no. 2174, pp. 396–408. Berlin: Springer-Verlag.

Beckett, D. (2001) The design and implementation of the Redland RDF application

framework. In Proceedings of Semantic Web Workshop of the 10th International

World Wide Web Conference, May, Hong-Kong, China.

Benatallah, B. and Tari, Z. (1998) Dealing with version pertinence to design an efficient

schema evolution framework. In Proceedings of an International Database Engineer-

ing and Application Symposium (IDEAS’98), pp.24–33, July 8–10, Cardiff, UK.

Benjamins, R., Fensel, D., Decker, S. and Gomez Perez, A. (1999) (KA)2: building

ontologies for the internet: a mid-term report, International Journal of Human-

Computer Studies, 51(3): 687–712.

Bernaras, A. Laresgoiti, I. and Corera, J. (1996) Building and reusing ontologies for

electrical network applications. In Proceedings of the European Conference on

Artificial Intelligence ECAI-96.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001) The semantic web. Scientific

American, May.

Booch, G,. Rumbaugh, J. and Jacobson, I. (1998) The Unified Modelling Language

User Guide. Reading, MA: Addison-Wesley.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,

Thatte, S. and Winer, D. (2000) Simple object access protocol (SOAP) 1.1. W3C

note, World Wide Web Consortium, May 2000. See http://www.w3.org/tr/soap/.

Bremdal, B.A. (2000) Summarizer. CognIT a.s, white paper.

Bremdal, B.A. and Johansen, F. (2000) CORPORUM technology and applications.

CognIT a.s, white paper.

Bremdal, B.A., Johansen, F., Spaggiari, Ch., Engels, R. and Jones, R. (1999) Creating a

learning organisation through content based document management, CognIT a.s

white paper.

Brickley, D. and Guha, R.V. (2000) Resource Description Framework (RDF) Schema

Specification 1.0. Candidate recommendation, World Wide Web Consortium,

March. See http://www.w3.org/tr/2000/cr-rdf-schema-20000327.

Broekstra, J. and Kampman, A. (2001a) Query language definition. On-To-Knowledge

(IST-1999-10132) Deliverable 9, Aidministrator Nederland b.v., April.

See http://www.ontoknowledge.org/.

Broekstra, J. and Kampman, A. (2001b) Sesame: A generic Architecture for Storing

and Querying RDF and RDF Schema. Deliverable 10, On-To-Knowledge project,

October. http://www.ontoknowledge.org/downl/del10.pdf

Broekstra, J., Fluit, C. and van Harmelen, F. (2000), The state of the art on representa-

Towards the Semantic Web268

tion and query languages for semistructured data, IST-199-10132 On-To-Knowl-

edge Project, Deliverable 8. [http://www.ontoknowledge.org/del.shtml]

Broekstra, J., Kampman, A. and van Harmelen, F. (2002) Sesame: an architecture for

storing and querying RDF data and schema information, In Fensel, D., Hendler, J.,

Lieberman, H. and Wahlster, W. (eds.) Semantic Web Technology, Boston, MA:

MIT Press, in press.

Buzan, T. (1974) Use Your Head. BBC Books.

Cadoli, M. and Schaerf, M. (1995) Tractable reasoning via approximation, Artificial

Intelligence, 74(2): 249–310.

Carlsson, P., Ygge, F. and Andersson, A. (2001) Extending Equilibrium Markets, IEEE

Intelligent Systems, 16(4): 18–26.

Carrol, J. and McBride, B. (2001) The Jena Semantic Web Toolkit. Public API, HP-

Labs, Bristol. See http://www.hpl.hp.com/semweb/jena-top.html.

Cattel, R.G.G., Barry, D., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow, O.,

Stanienda, T. and Velez, F. (2000) The Object Database Standard: ODMG 3.0.

Morgan Kaufmann.

Chamberlin, D., Florescu, D., Robie, J., Simeon, J. and Stefanescu, M. (2001) XQuery:

A Query Language for XML. Working draft, World Wide Web Consortium, Febru-

ary. See http://www.w3.org/tr/xquery/

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P.D. and Rice, J. (1998) OKBC: A

programmatic foundation for knowledge base interoperability. In Proceedings of

the 15th National Conference on Artificial Intelligence (AAAI’98), pp. 600–607.

Clark, J. (1999) XSL Transformations (XSL-T), W3C Recommendation, 1999.

http://www.w3.org/tr/xslt/

Constant, D., Sproull, L. and Kiesler, S. (1996) The kindness of strangers: the useful-

ness of electronic weak ties for technical advice, Organisation Science, 7(2): 119–

135.

Cook, S.D.N. and Seely-Brown, J. (1998) Bridging epistemologies: the generative

dance between organizational knowledge and organizational knowing, Organiza-

tion Science, 10(July–August): 381–400.

Corcho, O. and Gomez-Perez, A. (2000) A roadmap to ontology specification

languages, In Dien, R. and Corby, O (eds.), Knowledge Engineering and Knowl-

edge Management; Methods, Models and Tools, Proceedings of the 12th Interna-

tional Conference EKAW, Juan-les-Pins, France, October 2–6 LNCS 1937, pp. 80–

96.

Dalal, M. (1996) Semantics of anytime family of reasoners, In Wahlster, W. (ed.),

Proceedings of ECAI’96, pp. 360–364.

Das, A., Wu, W., McGuinness, D.L. and Cheyer, A. (2001) Industrial strength ontology

management for e-business applications. In the Proceedings of International

Semantic Web Working Symposium (SWWS), July 30–August 1, Stanford Univer-

sity, CA.

Davies, N.J. (2000a) Knowledge management, BT Technology Journal, 18, 1, Kluwer,

Netherlands.

Davies, N.J. (2000b) Supporting virtual communities of practice. In Roy, R. (ed.),

Industrial Knowledge Management, Springer-Verlag.

References 269

Davies, N.J. and Chen, C. (1999) Integrating spatial, semantic, and social structures for

knowledge management. In Proceedings HICSS-99, Hawaii, January.

Decker, S., Erdmann, M., Fensel, D. and Studer, R. (1999) Ontobroker: ontology based

access to distributed and semi-structured information. In Meersman, R., Tari, Z. and

Stevens, S. (eds.), Database Semantics: Semantic Issues in Multimedia Systems.

Kluwer Academic.

Declerck, T. and Neumann, G. (2000) Using a parameterizable and domain-adaptive

information extraction system for annotating large-scale corpora? In Proceedings of

the LREC’2000 Workshop Information Extraction meets Corpus Linguistics,

Athens.

Deiters, W., Lucas, R. and Weber, T. (2000) Skill-Management: ein Baustein für das

Management flexibler Teams. Information Management and Consulting, 15(3): 54–

60.

Dimitrov, M. (2000) XML standards for ontology exchange. In Proceedings of Onto-

Lex 2000: Ontologies and Lexical Knowledge Bases, September 8–10, Sozopol.

Ding, Y. and Fensel, D. (2001) Ontology library systems: The key for successful

ontology reuse. The First Semantic Web Working Symposium (SWWS1), July

29–August 1, Stanford, CA.

Ding, Y. and Fensel, D. (2002) Ontology Library Systems: The essential ontology

management issue for the Semantic Web, Knowledge Engineering Review,

submitted.

Ding, Y., Fensel, D., Klein, M. and Omelayenko, B. (2001) Ontology management:-

survey, requirements and directions. Deliverable 4, On-To-Knowledge project,

June 2001. http://www.ontoknowledge.org/downl/del4.pdf

Domingue, J. (1998) Tadzebao and webonto: discussing, browsing, and editing ontol-

ogies on the web. In Proceedings of the 11th Knowledge Acquisition for Knowl-

edge-Based Systems Workshop, April 18–23, Banff, Canada.

Domingue, J. and Motta, E. (1999) A knowledge-based news server supporting ontol-

ogy-driven story enrichment and knowledge retrieval. In Fensel, D. and Studer, R.

(eds.), Proceedings of the 11th European Workshop on Knowledge Acquisition,

Modeling, and Management (EKAW ’99), LNAI 1621, Springer-Verlag.

Driver, M., Brousseau, K.R. and Hunsaker, P.L. (1993) The Dynamic Decision Maker.

San Francisco, CA: Jossey-Bass.

Duineveld, A.J., Stoter, R., Weiden, M.R., Kenepa, B.and Benjamins, V.R. (1999)

Won-derTools? A comparative study of ontological engineering tools. In Proceed-

ings of the Twelfth Workshop on Knowledge Acquisition, Modeling and Manage-

ment. October 16–21, Banff, Canada.

Düsterhöft, A., Heuer, A., Klettke, M. and Priebe, D. (1999) GETESS: Text-orientier-

ter Anfrage- und Suchdienst im Internet. Grundlagen von Datenbanken 1999, pp.

17–21.

Engels, R.H.P. and Bremdal, B.A. (2000) Information extraction: state-of-the-art

report. Deliverable 5 of the EU 5th Framework Project OntoKnowledge (IST-

1999-10132).

Engels, R. and Bremdal, B. (2001) Ontology Extraction Tool. On-To-Knowledge

deliverable D-6, CognIT a.s, 2001.

Towards the Semantic Web270

Farquhar, A., Fickas, R. and Rice, J. (1996) The Ontolingua Server: A tool for colla-

borative ontology construction. In Proceedings of the 10th Banff Knowledge Acqui-

sition for Knowledge Based System Workshop (KAW’95), November, Banff,

Canada.

Fensel, D. (2001) Ontologies: Silver Bullet for Knowledge Management and Electronic

Commerce. Berlin: Springer-Verlag.

Fensel, D. and van Harmelen, F. (2000) Project Presentation On-To-Knowledge:

Content-driven Knowledge-Management Tools through Evolving Ontologies Deli-

verable 33 of the EU 5th framework project OntoKnowledge (IST-1999-10132).

Fensel, D., van Harmelen, F., Klein, M. and Akkermans, H. (1999) OntoKnowledge:

Ontology Based Tools for Knowledge Management. In: Proceedings of the business

and Ecommerce Conference, Madrid, Spain.

Fensel, D., Horrocks, I., van Harmelen, F., McGuinness, D. and Patel-Schneider, P.F.

(2001) OIL: ontotlogy infrastrucutre to enable the semantic web, IEEE Intelligent

System, 16(2).

Fensel, D., Hendler, J., Lieberman, H. and Wahlster, W. (eds.) (2002a) Semantic Web

Technology, Boston, MA: MIT Press.

Fensel, D., Hendler, J., Lieberman, H. and Wahlster, W. (2002b) Introduction, In

Fensel, D., Hendler, J., Lieberman, H. and Wahlster, W. (eds.), Semantic Web

Technology, Boston, MA: MIT Press.

Fensel, D., van Harmelen, F., Akkermans, H., Klein, M., Broekstra, J., Fluyt, C., van

der Meer, J., Schnurr, H.-P., Studer, R., Davies, J., Hughes, J., Krohn, U., Engels,

R., Bremdahl, B., Ygge, F., Reimer, U. and Horrocks, I. (2000c) OnToKnowledge:

ontology-based tools for knowledge management. In Proceedings of the eBusiness

and eWork 2000 (EMMSEC 2000) Conference, October, Madrid, Spain.

Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M. and Klein, M.

(2000d) OIL in a nutshell. In Dieng, R. and Corby, O. (eds.), Knowledge Acquisi-

tion, Modeling and Management: Proceedings of the European Knowledge Acqui-

sition Conference (EKAW-2000), Berlin: Springer.

Fikes, R. and McGuinness, D.L. (2001) An axiomatic semantics for rdf, rdf schema,

and daml+oil. Stanford University KSL Technical Report KSL-01-01.

http://www.ksl.stanford.edu/people/dlm/daml-semantics/abstract-axiomatic-

semantics.html.

Franconi, E., Grandi, F. and Mandreoli, F. (2000a) Schema evolution and versioning: a

logical and computational characterization. In Database Schema Evolution And

Meta-Modeling - Ninth International Workshop on Foundations of Models and

Languages for Data and Objects, Schloss Dagstuhl LNCS no. 2065, pp. 85–99,

Germany, September 18–21.

Franconi, E., Grandi, F. and Mandreoli, F. (2000b) A semantic approach for schema

evolution and versioning of OODB. In Proceedings of the 2000 International Work-

shop on Description Logics (DL2000), Aachen, Germany, August 17–19, pp. 99–112.

Fridman N., Fergerson, R. and Musen, M. (2000) The knowledge model of Protégé-

2000: Combining interoperability and flexibility. In Proceedings of European

Knowledge Acquisition Workshop (EKAW) 2000, LNCS 1937, pp. 17–32.

Springer.

References 271

Genesereth, M.R. and Fikes, R.E. (1992) Knowledge Interchange Format, Version 3.0

Reference Manual. Technical Report Logic-92-1, Stanford University.

Goldman-Segall, R. and Rao, S.V. (1998) A collaborative online digital data tool for

creating living narratives. In Organisational Knowledge Systems, 31st Hawaii Inter-

national Conference on Systems Science, Hawaii, USA.

Gomez-Perez, A. (1996) A framework to verify knowledge sharing technology. Expert

Systems with Applications, 11(4): 519–529.

Granovetter, M. (1974) The strength of weak ties, American Journal of Sociology, 78:

1360–1380.

Granovetter, M. (1982) The strength of weak ties: a network theory revisited, In,

Marsden, P. and Nan, L. (Eds.), Social Structure and Network Analysis, California:

Sage Publications.

Grefenstette, G. and Tapanainen, P. (1994) What is a Word, What is Sentence?

Problems of Tokenization, Grenoble: Rank Xerox Research Centre.

Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, J.H., Tu, S.W. and Musen, M.A.

(1999) Knowledge modelling at the millenium (the design and evolution of protégé-

2000. In Proceedings of Knowledge Acquisition Workshop (KAW-99).

Gruber, T.R. (1993) A translation approach to portable ontology specifications. Knowl-

edge Acquisition, 5(2).

Guarino, N. and Welty, C. (2000) identity, unity, and individuality: towards a formal

toolkit for ontological analysis. Proceedings of ECAI-2000, August.

Gustavsson, R. (1999) Agents with power, Communications of the ACM, 42(3): 41–47.

Haarslev, V., Mueller, R. and Turhan, A.-Y. (2001) Exploiting Pseudo Models for

Tbox and Abox Reasoning in Expressive Description Logics, IJCAI2001.

Handschuh, S. (2001) Ontoplugins – a flexible component framework. Technical

Report, University of Karlsruhe, May.

Handschuh, S. and Staab, S. (2001) Authoring and Annotation of Web Pages in

CREAM, submitted.

Handschuh, S., Staab, S. and Mädche, A. (2001) CREAM – Creating relational meta-

data with a component-based, ontology-driven annotation framework. In K-CAP

2001 – Proceedings of the First International ACM Conference on Knowledge

Capture. October 21–23, Victoria, BC, Canada.

Hansen, M.T. (1997) The Search-Transfer Problem: The Role of Weak Ties in Sharing

Knowledge Across Organisation Subunits, Working Paper, Harvard Business

School.

Harman, D. (1992) Ranking algorithms. In Frakes, W. and Baeza-Yates, R. (eds.),

Information Retrieval, Englewood Cliffs, NJ: Pentice-Hall.

Hayes, P. (2001) RDF Model Theory. W3C Working Draft.

http://www.w3.org/tr/rdf-mt/

Hearst, M.A. (1998) Information integration. IEEE Intelligent Systems, September/

October: 12–24.

Hegel, G. (1812) Wissenschaft der Logik, Nuremberg, Germany. English translation

available at http://www.marxists.org/reference/archive/hegel/works/hl/

Heijst, G., van Schreiber, A.T. and Wielinga, B.J. (1997) Using explicit ontologies in KBS

development. International Journal of Human-Computer Studies, 45: 183–292.

Towards the Semantic Web272

Hendler, J. (2000) DARPA Agent Markup Language. Technical Report, Defense

Advanced Research Projects Agency, http://www.daml.org/.

Hollunder, B. and Baader, F. (1991) Qualifying number restrictions in concept

languages. In Proceedings of the 2nd International Conference on the Principles

of Knowledge Representation and Reasoning (KR’91), pp. 335–346.

Horrocks, I. (1998) Using an expressive description logic: FaCT or fiction? In Proceed-

ings of KR 1998, pp. 636–649. Morgan Kaufmann.

Horrocks I. and Sattler U. (2001) Ontology Reasoning in the SHOQ(D) Description

Logic, IJCAI2001.

Horrocks, I. and Tessaris, S. (2000) A conjunctive query language for description logic

Aboxes. In Proc. of AAAI 2000, pp. 399–404.

Horrocks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D.,

Connoly, D., Dean, M., Decker, S., Fensel, D., Hayes, P., Hein, J., Hendler, J.,

Lassila, O., McGuinness, D. and Stein, L.A. (2001a) DAML+OIL. http://

www.daml.org/2001/03/daml+oil-index.html, March.

Horrocks, I., Fensel, D., Broekstra, J., Decker, S., Erdmann, M., Goble, C., van Harme-

len, F., Klein, M., Staab, S., Studer, R. and Motta, E. (2001b) OIL: The Ontology

Inference Layer. Technical Report IR-479, Faculty of Sciences, Vrije Universiteit

Amsterdam, September.

Hotho, A., Mädche, A., Staab, S. and Studer, R. (2001) SEAL-II - The soft spot

between richly structured and unstructured knowledge. Journal of Universal

Computer Science, 7(7): 566–590.

Hu, J., Kashi, R., Lopresti, D. and Wilfon, G. (1999) Table detection across mutiple

media. In Proceedings of the Document Layout Interpretation and its Applications

(DLIA99) Workshop, Bangalore, India.

Iosif, V. and Ygge, F. (2001) EnerSearch Virtual Organisation Case Study: Require-

ments Analysis Document, On-To-Knowledge EU-IST-1999-10132 Project Deli-

verable D27, January, Malmö, Sweden: EnerSearch AB.

http://www.ontoknowledge.org/ and http://www.enersearch.se/

Iosif, V. and Ygge, F. (2002) EnerSearch Virtual Organisation Case Study: VE Proto-

type, On-To-Knowledge EU-IST-1999-10132 Project Deliverable D28, January,

Malmö, Sweden: EnerSearch AB.

http://www.ontoknowledge.org/ and http://www.enersearch.se/

ISO (1999) Information Technology-Database Language SQL. Standard no. ISO/IEC

9075:1999, International Organization for Standardization. Available from Amer-

ican National Standards Institute, New York.

Jin, Y., Decker, S. and Wiederhold, G: (2001) OntoWebber: Model-Driven Ontology-

Based Web Site Management. In Proceedings of the 1st International Semantic Web

Working Symposium (SWWS ‘01), July 29–August 1, Stanford, CA: Stanford

University.

Kaplan, R. and Bresnan, J. (1982) Lexical-functional grammar: A formal system for

grammatical representation. In Bresnan, J. (ed.), The Mental Representation of

Grammatical Relations, Cambridge, MA: MIT Press.

Karp, P.D., Chaudhri, V.K. and Thomere, J. (1999) XOL: An XML-Based Ontology

References 273

Exchange Language, Version 0.3, July 3, 1999.

ftp://smi.stanford.edu/pub/bio-ontology/ontologyexchange.doc

Karvounarakis, G., Christophides, V., Plexousakis, D. and Alexaki, S. (2000) Querying

community web portals. Technical Report, Heraklion, Greece: Institute of Compu-

ter Science, FORTH. See http://www.ics.forth.gr/proj/isst/rdf/rql/rql.pdf.

Kieninge, T. and Denge, A. (1999) The T-RECS approach for table structure recogni-

tion and table border determination. In Proceedings of the Document Layout Inter-

pretation and its Applications (DLIA99) Workshop, Bangalore, India.

Kiryakov, A., Simov, K.Iv. and Dimitrov, M. (2001) OntoMap - the guide to the upper-

level. In Proceedings of the International Semantic Web Working Symposium

(SWWS), July 30–August 1, Stanford University, CA.

Kiryakov, A., Simov, K.Iv. and Ognyanov, D. (2002) OntologyMiddleware Module:

Analysis and Design. Deliverable 38, On-To-Knowledge Project, February.

http://www.ontoknowledge.org/downl/del38.pdf

Kitcharoensakkul, S. and Wuwongse, V. (2001) Towards a unified version model using

the resource description framework (RDF). International Journal of Software Engi-

neering and Knowledge Engineering, 11(6).

Klabunde, R., Carstensen, K.-U., Ebert, C., Endriss, C., Jekat, S. and Langer, H. (2001)

Informationsextraktion. In Klabunde, R., Carstensen, K.-U., Ebert, C., Endriss, C.,

Jekat, S. and Langer, H. (eds.), Computerlinguistik and Sprachtechnologie - Eine

Einfuhrung. Heidelberg: Spektrum Akademischer.

Klein, M. (2001) Combining and relating ontologies: an analysis of problems and

solutions. In Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H. and Uschold,

M. (eds.), Workshop on Ontologies and Information Sharing, IJCAI’01, August 4–

5, Seattle, WA.

Klein, M. and Fensel, D. (2001) Ontology versioning for the semantic web. In Proceed-

ings of the International Semantic Web Working Symposium (SWWS), July 30–

August 1, Stanford University, CA.

Klemke, R. and Nick, A. (2001) Case studies in developing contextualising information

systems. In Proceedings of CONTEXT 2001, LNCS 2116, pp. 457–460, Springer.

Knowledge Management Group at AIFB (2001) Engineering Environment OntoEdit.

Technical Report, Angewandte Informatik und Formale Beschreibungs-verfahren,

University of Karlsruhe. http://ontoserver.aifb.uni-karlsruhe.de

Larsson, R., Driver, M. and Sweet, P. (1998) Interactive marketing and organisation

learning dynamics: implications of ISES research for energy companies. In Ottos-

son, H., Akkermans, J.M. and Ygge, F. (eds.), Information Society Energy System –

The ISES Project 1996–1998, pp. 31–60. Malmö, Sweden: EnerSearch AB. Also

available from: http://www.enersearch.se

Larsson, R., Schönknecht, J., Sweet, P. and Driver, M. (1999) The customer side of

energy saving activities: exploring attitudes and interests on the Karlshamn’s

energy market. In Akkermans, J.M. and Ottosson, H. (eds.), Energy Efficiency In

A Deregulated Market – The KEES Project, Chapter 3, pp. 39–60. Malmö, Sweden:

EnerSearch AB. Also available from: http://www.enersearch.se

Lassila, O. and Swick, R.R. (eds.) (1999) W3C; Resource Description Framework

Towards the Semantic Web274

(RDF) Model and Syntax Specification.

http://www.w3.org/tr/1999/rec-rdf-syntax-19990222/

Lau, T. and Sure, Y. (2002) Introducing ontology-based skills management at a large

insurance company. In Proceedings of the Modellierung 2002, March, Tutzing,

Germany.

LeBourgeois, F. and Souafi-Bensafi, S. (1999) RASADE: Automatic recognition of

structured document using typography and spatial inference. In Proceedings of the

Document Layout Interpretation and its Applications (DLIA99) Workshop, Banga-

lore, India.

Lebowitz, M. (1983): Memory-based parsing. Artificial Intelligence, 21.

Lee, D. and Chu, W. (2001) CPI: constraint-preserving inlining algorithm for mapping

XML DTD to relational schema, Data and Knowledge Engineering, 39: 3–25.

Lerner, B.S. (2000) A model for compound type changes encountered in schema

evolution. ACM Transactions on Database Systems, 25(1): 83–127.

Liao, M., Hinkelmann, K., Abecker, A. and Sintek, M. (1999) A competence knowl-

edge base system for the organisational memory. In Puppe, F. (ed.), XPS-99:

Knowledge-Based Systems, LNAI 1570, pp. 125–137.

López, F. (1999) Overview of methodologies for building ontologies. In Proceedings of

the IJCAI-99 Workshop on Ontologies and Problem-SolvingMethods: Lessons

Learned and Future Trends. CEUR Publications.

Lopez, M.F., Gomez-Perez, A., Sierra, J.P. and Sierra, A.P. (1999) Building a chemical

ontology using methontology and the ontology design environment. Intelligent

Systems, 14(1).

Mädche, A. and Staab, S. (2000) Discovering conceptual relations from text. In

Proceedings of the 14th European Conference on Artificial Intelligence (ECAI

2000), Berlin: IOS Press.

Mädche, A. and Staab, S. (2001) Ontology learning for the semantic web. IEEE

Intelligent Systems, 16(2): 72–79.

Mädche, A., Neumann, G. and Staab, S. (1999) A generic architectural framework for

text knowledge acquisition. Technical Report, Institute AIFB.

Mädche, A., Nack, F., Santini, S., Staab, S. and Steels, L. (2000) Emergent semantics.

IEEE Intelligent Systems, Trends and Controversies, 17(2), 2002.

Mädche, A., Staab, S., Studer, R., Sure, Y. and Volz, R. (2002) SEAL – Tying up

information integration and web site management by ontologies. IEEE-CS Data

Engineering Bulletin (Special Issue on Organizing and Discovering the Semantic

Web), March, in press.

Manber, U., Smith, M. and Gopal, B. (1997) WebGlimpse – Combining Searching and

Browsing. Usenix 97 Technical Conference.

Marchionini, G. (1995) Information seeking in electronic environments. Cambridge

Series on Human-Computer Interaction. Cambridge University Press.

Mattox, D., Maybury, M. and Morey, D. (1999) Enterprise expert and knowledge

discovery. In Proceedings of the International Conference on Human Computer

Interaction, pp. 303–307.

Maurer, H. and Sapper, M. (2001) E-Learning has to be seen as part of general knowl-

edge management. In Proceedings of ED-MEDIA 2001 World Conference on

References 275

Educational Multimedia, Hypermedia and Telecommunications, pp. 1249–1253,

Charlottesville, VA: Tampere, CE.

Maxwell, C. (2000) The future of work – understanding the role of technology, BT

Technology Journal, 18: 1.

Maybury, M., D’Amore, R. and House, D. (2000) Automatic expert finding. Interna-

tional Journal of Technology Research Management, 43(6): 12–15

Mello, R. and Heuser, C. (2001) A rule-based conversion of a DTD to a conceptual

schema, In Kunii, H., Jojodia, S. and Solvberg, A. (eds.), Conceptual Modeling -

ER’2001, LNCS 2224, pp. 133-148, Yokohama, Japan, November 27–30, Springer.

McDonald, D. and Ackerman, M. S. (1998) Just talk to me: a field study of expertise

location. In Proceedings of the ACM Confrerence. on Computer Supported Coop-

erative Work (CSCW’98).

McGuinness, D.L. (2000) Conceptual modelling for distributed ontology environment.

In Proceedings of the Eighth International Conference on Conceptual Structures

Logical, Linguistic, and Computational Issues (ICCS2000), Darmstadt, Germany,

August 14–18.

McGuinness,. D.L., Fikes, R., Rice, J. and Wilder, S. (2000) An environment for

merging and testing large ontologies. In Proceedings of the Seventh International

Conference on Principles of Knowledge Representation and Reasoning (KR2000).

Breckenridge, CO, April 12–15.

Miller, L. (2001) RDF squish query language and Java implementation. Public Draft,

Institute for Learning and Research Technology.

See http://ilrt.org/discovery/2001/02/squish/.

Mitra, P., Wiederhold, G. and Kersten, M. (2000) A graph-oriented model for articula-

tion of ontology interdependencies. In: Zaniolo, C., Lockemann, P., Scholl, M. and

Grust, T. (eds.), Advances in Database Technology - EDBT 2000, 7th International

Conference on Extending Database Technology, LNCS 1777, pp. 86–100,

Konstanz, Germany, March 27–31, Springer-Verlag.

Mladenic, D. (1999) Text-learning and related intelligent agents: a survey. IEEE Intel-

ligent Systems 14(4): 44–54.

Nejdl, W., Wolf, B., Staab, S. and Tane, J. (2002) EDUTELLA: Searching and Anno-

tating Resources within an RDF-based P2P Network. In 1st International Workshop

on Peer-to-Peer Systems (IPTPS02), submitted.

Nonaka, I. (1994) A dynamic theory of organisational knowledge creation. Organisa-

tion Science, 5: 1.

Noy, F.N. and Hafner, C.D. (1997) The state of the art in ontology design: a survey and

comparative review. AI Magazine 4: 53–74.

O’Leary, D.E. and Studer, R. (eds.) (2001) Knowledge management, IEEE Intelligent

Systems, 16(1).

Omelayenko, B. and Fensel, D. (2002) Scalable document integration for B2B electro-

nic commerce, Electronic Commerce Research Journal, submitted.

OntoEdit, http://ontoserver.aifb.uni-karlsruhe.de/ontoedit/

Oram, A. (ed.) (2001) Peer-to-peer: harnessing the benefits of a disruptive technology,

Sebastobol: O’Reilly.

Palmer, D.D. and Hearst, M.A. (1994) Adaptive sentence boundary disambiguation. In

Towards the Semantic Web276

Proceedings of the Fourth ACL Conference on Applied Natural Language Proces-

sing. Stuttgart.

Pan, J. and Horrocks, I. (2001) Metamodeling architecture of web ontology languages.

In the Proceedings of the International Semantic Web Working Symposium

(SWWS), July 30–August 1, Stanford University, CA.

Patel-Schneider, P. (ed.) (2001) A Model-Theoretic Semantics for DAML+OIL,

March.

http://www.daml.org/2000/12/model-theoretic-semantics.html, November.

Patel-Schneider, P. and van Harmelen, F. (2001) Coordination points between RDF(S)

and DAML+OIL.

http://www.daml.org/2001/07/rdfs-daml+oil-coordination.html

Pinto, H.S., Gómez-Pérez, A. and Martins, J.P. (1999) Some issues on ontology inte-

gration. In Proceedings of the Workshop on Ontologies and Problem Solving Meth-

ods IJCAI-99, Stockholm, Sweden.

Pollard, C. and Sag, I. (1994) Head-driven Phrase Structure Grammar. Chicago, IL:

University of Chicago Press.

Polyani, M. (1966) The Tacit Dimension. London: Routledge and Paul.

Ram, A. and Moorman, K. (1999) Introduction: toward a theory of reading and under-

standing. In Ram, A. and Moorman, K. (eds.) Understanding Language Under-

standing: Computational Models of Reading. Cambridge, MA: MIT Press.

Roddick, J.F. (1995) A survey of schema versioning issues for database systems.

Information and Software Technology, 37(7): 383–393.

Salton, G. (1989) Automatic Text Processing. Reading, MA: Addison-Wesley.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de

Velde, W. and Wielinga, B. (1999) Knowledge engineering and management - the

CommonKADS Methodology. Cambridge, MA: The MIT Press.

Seely-Brown, J. and Duguid, P. (1991), Organisational learning and communities of

practice, Organisational Science, 2(1).

Shank, R.C. (1975) Conceptual Information Processing. Amsterdam: North Holland.

Shipman, F.M., Marshall, C.C. and Moran, T.P. (1995) Finding and using implicit

structure in human-organized spatial layouts of information. In CHI-95.

Shneiderman, B. (1996) The eyes have it: a task by data type taxonomy of information

visualizations, In the Proceedings of the IEEE Symposium on Visual Languages

’96, pp. 336–343, September, Los Alamitos, CA, IEEE.

Sintek, M. and Decker, S. (2001) TRIPLE - An RDF query, inference, and transforma-

tion language, In Proceedings of the Workshop on Deductive Databases and Knowl-

edge Management (DDLP-2001), Tokio, Japan, October 20–22.

Spitz, L. (1999) Style-directed document recognition. In Proceedings of the Document

Layout Interpretation and its Applications (DLIA99) Workshop, Bangalore, India.

Staab, S. and Mädche, A. (2001) Knowledge portals - ontologies at work, AI Magazine,

21(2): 63–75.

Staab, S. and Schnurr, H.-P. (2000) smart task support through proactive access to

organizational memory, Knowledge-Based Systems, 3(5): 251–260.

Staab, S., Schnurr, H.-P., Studer, R. and Sure, Y. (2001) Knowledge processes and

ontologies, IEEE Intelligent Systems, 16(1): 26–35.

References 277

Stojanovic, L., Staab, S. and Studer, R. (2001) eLearning based on the semantic web. In

Proceedings of the WebNet 2001 - World Conference on the WWW and the Inter-

net, October 23–27, Orlando, FL.

Sure, Y., Maedche, A. and Staab, S. (2000) Leveraging corporate skill knowledge -

from ProPer to OntoProper. In Reimer, U. (ed.), 3rd International Conference on

Practical Aspects of Knowledge Management PAKM 2000.

Sure, Y., Staab, S., Angele, J., Wenke, D. and Maedche, A. (2002) OntoEdit: Guiding

ontology development by methodology and inferencing. In Prestigious Applications

of Intelligent Systems (PAIS), in conjunction with ECAI 2002, July 1–26, Lyon,

France, submitted.

Swartout, B., Patil, R., Knight, K. and Russ, T. (1996) Toward distributed use of large-

scale ontologies. In Proceedings of the 10th Knowledge Acquisition Workshop

(KAW’96), November, Banff, Canada.

Sweet, P. (2001) Designing interactive value development: perspectives and strategies

for high-precision marketing, PhD Thesis, Lund University, May, Malmö, Sweden:

EnerSearch AB.

Sweet, P., Olsson, M. and Akkermans, J.M. (2000) PLC Service Business Model

Development and Market Survey Instrument, PALAS EU-IST-1999-11379 Project

Powerline as an Alternative Local AccesS, Deliverable D7, Malmö, Sweden:,

EnerSearch AB, December.

Also available from http://palas.regiocom.net and http://www.enersearch.se

Taubner, D. and Brössler, P. (2000) The people make the project. Project control: the

human factor. In Proceedings of ESCOM-SCOPE 2000, pp. 105–113.

Tennison, J. and Shadbolt, N. (1998) APECKS: a tool to support living ontologies. In

Proceedings of the 11th Knowledge Acquisition Workshop (KAW’98), April,

Banff, Canada.

The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of

biology. Nature Genetics, 25(1): 25–29.

Tiwana, A. (2000) The Knowledge Management Toolkit. Upper Saddle River, NJ:

Prentice Hall PTR.

Uschold, M. and Grueninger, M. (1996) Ontologies: principles, methods and applica-

tions. Knowledge Sharing and Review, 11(2).

Uschold, M. and King, M. (1995) Towards a methodology for building ontologies. In

Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction

with IJCAI-95, Montreal, Canada.

Uschold, M., Healy, M., Williamson, K., Clark, P. and Woods, S. (1998) Ontology

reuse and application. In Guarino, N. (ed.), Formal Ontology in Information

Systems (FOIS’98), Treno, Italy, June 6–8, Amsterdam: IOS Press.

van Harmelen, F., Patel-Schneider, P.F. and Horrocks, I. (eds.) (2001a) Reference

description of the DAML+OIL (March) ontology markup language. http://

www.daml.org/2001/03/reference.html

van Harmelen, F., Kampman, A. and Broekstra, J. (2001b) Interoperability and scal-

ability of on-to-knowledge tools. On-To-Knowledge deliverable D-X1, Vrije

Universiteit Amsterdam.

Ventrone, V. and Heiler, S. (1991) Semantic heterogeneity as a result of domain

Towards the Semantic Web278

evolution. SIGMOD Record (ACM Special Interest Group on Management of

Data), 20(4): 16–20.

Visser, P.R.S. and Bench-Capon, T.J.M. (1998) A comparison of four ontologies for the

design of legal knowledge systems. Artificial Intelligence and Law, 6: 27–57.

Visser, P.R.S., van Kralingen, R.W. and Bench-Capon, T.J.M. (1997a) A method for

the development of legal knowledge systems. In Proceedings of the Sixth Interna-

tional Conference on Artificial Intelligence and Law (ICAIL’97), Melbourne,

Australia.

Visser, P.R.S., Jones, D.M., Bench-Capon, T.J.M. and Shave, M.J.R. (1997b) An

analysis of ontological mismatches: heterogeneity versus interoperability. In

AAAI 1997 Spring Symposium on Ontological Engineering, Stanford, CA.

Wasserman, R. (2000) Resource-bounded belief revision, Ph.D. thesis, ILLC, Faculty

of Science, University of Amsterdam.

Ygge, F. and Akkermans, J.M. (1999) Decentralized markets versus central control - a

comparative study, Journal of Artificial Intelligence Research, 11: 301–333.

Also available from: http://www.jair.org

Younker, E. (1998) Skills management: the linchpin for IT work force management.

InSide GartnerGroup, 2–4.

References 279

Index

Accounting standard, 9, 197, 209

Agent model, 36, 37

Analysis phase, 94, 110

Analysis process, 102, 108, 155

Application domain, 76, 231

Architecture, 6, 71, 78, 88

ARP RDF parser, 79, 82

Associative semantic network, 211, 218

Attribute value, 73, 139

Attribute-value pair, 12, 124

Augmented transition network, 104, 106

Avoiding information overload, 248

Axiom editor, 128

Background knowledge, 95, 102, 114, 223,

235, 243

Basic type, 15, 88, 187

Binary relation, 23, 183

Boundary analysis, 99, 115

Brainstorming process, 119, 202, 206

Browsing semantically enriched information

source, 5, 246

Browsing tool, 8, 144

Business case, 224, 243

Business process, 2, 248

Cardinality constraint, 18, 27

CARM document, 210, 211, 215, 217, 218

CARM search facility, 210, 212, 217

Case study, 5, 9, 19, 20, 21, 27, 41, 118, 123,

132, 149, 153, 176, 197, 198, 210, 217,

218, 223, 229, 230, 231, 233, 235, 236,

241, 243, 246, 261, 266

experiment design, 233, 243

experimental set-up, 229, 232

field experiment, 219, 223, 229, 241

field test, 223, 234, 243

Centralized ontology, 263, 264

Class

definition, 18, 58, 114, 191, 192

expression, 18, 23, 194, 195

hierarchy, 85, 86, 243

name, 67, 192

RDF class, 15, 21, 22, 25, 27, 28, 166

Cluster map, 153, 154, 156, 158, 159

Cognitive style, 223, 225

Collaborative behaviour, 173, 175

Collaborative editing, 65, 68

Collaborative engineering, 122, 131

Collaborative ontology editing, 65, 66

Common representation, 4, 134

Common understanding, 13, 208, 246, 253

Common vocabulary, 68

Community of practice, 161ff

Comparative study, 130, 229

Competency question, 40, 41, 42, 43, 44,

120, 122, 128, 129

Competency questionnaire, 39, 40

Complex class expression, 194, 195

Complex ontology, 67, 134, 191

Concept hierarchy, 125, 126, 128, 176, 202,

203, 205, 207, 208, 211, 217

Concept language, 26, 165

Conceptual level, 59, 202

Conceptual model, 49, 50, 249

Conceptual relation, 59, 61, 69

Conceptual structure, 40, 82, 202

Concurrency control, 71, 82

Configuration management, 45, 48

Consensual terminology, 246, 252

Consistency checking, 67, 68, 261

Consistent model, 114, 124

Towards the Semantic Web: Ontology-driven Knowledge Management.
Edited by John Davies, Dieter Fensel and Frank van Harmelen

Copyright 2003 John Wiley & Sons, Ltd.
ISBN: 0-470-84867-7

Content descriptor, 136, 137

Content extraction, 97, 98

Content standard, 56, 57

Controlled vocabulary, 68

Co-reference chaining, 99, 107, 109

Corporate knowledge, 3, 4

Cosine ranking algorithm, 163, 169

Cultural environment, 2, 175

Cultural factor, 2, 175

DAML+OIL, 26–32

element, 190, 196

ontology, 190

reasoner, 181, 195

repository, 181, 194

DAML ontology library, 64, 65, 66

Database

consistency, 87

schema, 81, 84, 85, 86, 87, 182

schema versioning, 54, 56

technology, 5, 246

Data mining, 249

Data model, 14, 15, 72, 73, 74, 125, 127, 135,

141, 235, 236, 243

Data repository, 6, 8, 82, 93

Data set, 155, 182, 194, 195

Data source, 147, 148, 149, 251

Data structure, 73, 81, 138

Data type, 29, 30, 31, 81

Decision style theory, 225, 228, 232

Deregulated market environment, 220,

222

Description element, 73

Description framework, 5, 13, 71, 162

Description logic, 17, 18, 26, 110, 131,

184

Design

guidelines, 38, 45, 118, 119

mechanisms, 260, 263

principles, 80, 119

Developing ontology, 43, 117, 132

Development environment, 117, 124, 131

Development process, 33, 43, 44, 117, 119,

120, 121, 124, 205, 211, 235

Discourse analysis, 101, 106

Discourse boundary analysis, 99, 115

Document analysis, 40, 100

Document classification, 99, 101, 103

Document repository, 146, 249

Domain

expert, 37, 39, 118, 119, 120, 121, 123,

130, 131, 204, 205, 212, 217, 235

knowledge, 52, 135, 141

model, 16, 254

ontology, 40, 48, 53, 69, 131, 146, 148,

149, 223, 230, 235

theory, 4, 255

vocabulary, 71, 162

Dynamic network, 54, 246, 252, 254, 257,

264

Electronic commerce, 4, 157

Emergent semantics, 247, 248, 258, 260,

261, 264

Empirical-statistical testing, 233, 243

End user, 7, 118, 146, 150, 152, 153, 235

EnerSearch

case study, 153, 235

domain, 96, 154

knowledge base, 230

web, 230, 232, 233

website, 225, 238, 239

Enterprise ontology, 43

Entity rendering, 150, 151

Entity type, 148, 149, 150

Evaluation

exercise, 162, 176

phase, 41, 46, 128

Event type, 106, 187

Evolving ontology, 44, 48, 169, 246, 253,

256

Exchange language, 17, 31

Exchanging information, 54, 257

Exchanging meaning, 253, 254, 255

Explicit knowledge, 2, 167, 170, 172,

173

Expressive power, 24, 41, 50, 193

Extract meta-data, 8, 108

Extracted ontology, 110, 212, 213, 243

Extraction process, 93, 107

Extraction technology, 115, 201

Extraction tool, 210, 235

Feasibility study, 33, 34, 36, 38, 40, 45

Finite state technique, 104, 106

Formal language, 4, 43, 106, 134

Formal ontology, 45

Formal representation language, 41, 112

Index282

Formal semantics, 11, 16, 17, 59, 246, 252,

254

Frame-based system, 16, 17

frame language, 18

frame structure, 17, 27

Free text

query, 139, 210

search, 143, 207, 213, 222, 228, 229, 240

search engine, 134, 215

search tool, 230, 232, 233

Gap analysis, 203, 209

Gene ontology consortium, 31

Generated ontology, 114, 212

Grammar formalism, 106, 107

Graph layout algorithm, 111, 154

Graphical presentation, 122, 146

Graphical visualization, 146

Heterogeneous database, 4, 134

Heterogeneous representation, 4, 134

Human knowledge acquisition, 6, 8

Hybrid reasoner, 30

Improved information access, 5, 246

Incremental upload, 85, 88

Index structure, 138, 139

Indexing process, 135, 136

Individual instance, 154, 157

Industrial take-up, 31

Inequality statement, 195

Inference

engine, 31, 54, 112, 129, 130, 260

layer, 76, 181

mechanism, 66, 183

module, 81, 84

procedure, 195

service, 193, 194

technique, 261, 262

Informal exchange, 161, 250

Informal network, 161, 250

Information

access, 5, 9, 146, 159, 246, 256

access tool, 7, 8, 134, 144

category, 202, 207

distribution, 39, 93

entity type, 148, 149

exchange, 54, 174, 246, 264

extraction, 5, 92, 103, 108, 109, 245

extraction technology, 115, 201

integration, 4, 133

management, 107, 176

overload, 92, 151, 248

presentation, 3, 145, 159, 249

processing, 5, 242, 245, 252

processing style, 228, 229, 232

provisioning, 222, 225

resource, 8, 83, 134, 138, 159, 162, 164,

170, 177, 223

retrieval, 4, 92, 103, 198, 234, 236, 239

retrieval tool, 229, 230

search, 48, 112

seeking, 134, 228

seeking process, 135, 144

source, 3, 5, 82, 146, 246

store, 3, 133

supplier, 222, 223

visualization, 92, 153

Instance editor, 128, 130

Instance level, 155, 236

Instance reasoning, 192, 193, 194

Insurance document, 101, 102

Insurance group, 9, 197

Intellectual asset, 1, 2

Intelligent agent, 92, 220

Internal representation, 109

International accounting standard, 9, 197,

209

Interoperability, 55, 69

Inter-subjectual consensus, 253, 255

Inverse role, 29

Investment analysis, 260, 262

Job description, 173, 203, 249

Job function, 197, 199, 200, 202, 203, 209

Job group, 174, 175

KACTUS project, 43, 44

Key concept, 43, 151, 153, 236, 241

Keyword search, 3, 91, 171, 218, 228, 228,

230, 257, 258

Knowledge access, 247, 259

Knowledge acquisition, 5, 6, 8, 33, 40, 45,

120

Knowledge base, 35, 36, 91, 92, 103, 107,

180, 182, 183, 184, 185, 230, 231, 234,

236

Knowledge base generation, 103, 104

Index 283

Knowledge control, 180

Knowledge dissemination, 9, 222

Knowledge engineer, 6, 35, 131, 180

Knowledge extraction, 6, 8

Knowledge flow, 172, 174

Knowledge grid, 251

Knowledge maintenance, 8, 180

Knowledge management, 1, 2, 4, 5, 7, 34, 35,

117, 153, 154, 161, 162, 172, 179, 184,

197, 198, 219, 223, 244, 245, 246, 247,

248, 249, 252, 258, 263, 264, 265, 266

Knowledge management architecture, 5, 6,

82, 84, 179

Knowledge management capability, 5, 247,

264

Knowledge management solution, 243, 249,

250, 257, 259, 263, 264

Knowledge model, 17, 130

Knowledge piece, 122, 247, 249

Knowledge portal, 249, 251

Knowledge provider, 35

Knowledge repository, 184, 257

Knowledge representation, 4, 6, 8, 109, 110,

114, 262

Knowledge sharing, 4, 5, 8, 35, 63, 92, 161ff,

246, 249, 250, 258, 266

Knowledge source, 37, 38, 39, 118, 119, 251,

265, 266

Knowledge use, 7, 8

Knowledge worker, 3, 35, 37, 133, 248

Knowledge-acquisition task, 230, 231

Language processing, 4, 104, 108, 114, 235,

243, 245

Layered architecture, 6, 11, 24

Layout algorithm, 111, 154

Lexical analysis, 104, 105, 107

Lexical entry, 40, 44

Library system, 48, 61, 63, 64, 65, 67, 68, 69

123

Lightweight ontology, 93, 113, 146, 149,

198, 209, 211, 218, 235, 236, 237, 238,

243

Likert-scale questionnaire, 233, 243

Linguistic analysis, 99, 100, 104, 107

Load management, 154, 157, 220, 222

Locked resource, 125, 127

Locking information, 125, 126, 127

Locking protocol, 125

Logic representation, 109, 114

Logical definition, 58, 59

Logical model, 56

Loss-less transformation, 61, 69

Low entrance threshold, 153, 159

Machine processability, 4

Machine processable semantics, 5, 246

Maintenance phase, 33, 40

Maintenance process, 42, 44

Management case study, 123, 198, 218

Management methodology, 48, 58

Mapping meta-ontology, 50

Mapping ontology, 48, 53, 69

Meta-data annotation, 134, 170

Meta-data description, 13, 135, 170

Method invocation, 77, 124

Methodological support, 131, 254

Methontology framework, 44, 45

Middle-out approach, 40, 43

Middleware, 8, , 179ff, 181

Mind map, 121, 122, 123

Model theory, 81, 84

Modelling construct, 17, 24

Modelling decision, 39, 124, 149

Modelling ontology, 38, 67

Modelling primitive, 14, 16, 17, 23, 183

Modelling style, 47, 48, 69

Modular organization, 67

Modular structure, 65

Morphological analysis, 105

Multidimensional index, 136, 141

Multiple controlled vocabulary, 68

Multiple discourse, 99

Multiple ontology, 261

Multiple slot, 26

Namespace mechanism, 128, 130

Natural language, 5, 84, 93, 104, 108, 114,

245

Natural language text, 4, 41, 93, 98, 103, 108,

134, 138, 240

Navigation

facility, 158, 159

path, 148, 151, 152

rendering, 151

specification, 150, 151

structure, 83, 146, 159

tree, 152

Index284

Object class, 29, 30

Object structure, 71, 162

Object-oriented programming language, 207,

208

OIL

language, 22, 29

ontology, 18, 20, 23, 26, 27, 29

processor, 27

standard, 23, 24

OntoEdit ontology editor, 202, 206

OntoKick support, 119

On-To-Knowledge project, 110, 184, 222,

236

Ontological analysis, 43, 45

Ontological browsing, 143, 144

Ontological class, 141, 142, 163, 169

Ontological concept, 58, 59, 162

Ontological data, 235

Ontological drift, 260, 262, 263, 264

Ontological knowledge, 195, 243

Ontological structure, 164, 166, 176

Ontology

acquisition, 5, 245

building, 94, 112, 114, 204

capture, 43, 64

change, 55

concept, 200, 203, 209, 215, 216

construction, 117, 132

creation, 68, 198

definition, 114, 119, 258, 260

description, 119

design, 40, 131

developer, 205, 212

development, 8, 33, 35, 37, 38, 44, 118,

119, 122, 132, 192, 193, 202, 204,

205, 207, 210, 235

development environment, 117, 131

development process, 33, 43, 44, 117,

119, 121, 235

editing, 65, 66

editor, 5, 80, 83, 245, 266

engineer, 38, 39, 40, 41, 42, 45, 58, 61,

69, 96, 118, 119, 120, 121, 123, 128,

130, 235

engineering, 42, 117, 118, 123, 124, 126,

131, 235

engineering environment, 118, 130

engineering process, 119, 132

evaluation, 63, 212, 218

evolution, 161ff, 170, 184

exchange language, 17, 31

extraction, 210, 218, 243

language, 6, 8, 11, 12, 15, 17, 20, 23, 24,

25, 29, 30, 31, 47, 64, 185

layer, 11, 205

library, 48, 62, 63, 64, 65, 66, 67, 68, 69

library system, 48, 61, 63, 64, 65, 67, 68,

69

management, 47, 66, 69

mapping, 67, 68, 149, 256

middleware, 7, 124, 132, 179ff

modelling, 8, 110, 120, 122, 125, 181

network, 246, 252, 255

representation language, 53, 61, 63, 68

requirement specification document, 38,

42

re-use, 47, 48, 62, 63, 67

server, 64, 65, 123, 124, 132

shared, 124, 161ff, 256, 258, 264

structure, 118, 121, 264

term, 49, 207, 210

transformation, 236, 243

upper-level, 50, 61, 62, 63, 64, 66, 67, 68

use, 192, 193, 264

Ontology-based

index, 139, 240

indexing, 136, 138

information retrieval, 234, 236

knowledge management, 197

search, 207, 224, 243

search engine, 145, 235

semantic access tool, 228, 229

solution, 234, 250

tool, 176, 232, 233

OntoShare, 161ff

home, 167, 169

store, 163, 164, 167, 168

user, 163, 164

Open storage, 62, 63

Optimization technique, 79, 87

Organizational

context, 2, 33

culture, 2, 175

perspective, 34, 36

unit, 161, 203

Overlapping ontology, 255, 259, 260, 261

P2P, 245ff

Index 285

computing, 250, 256, 264

environment, 260, 263

knowledge management, 248, 264

network, 255, 260, 263

paradigm, 247, 257, 263, 264

service, 258, 260

setting, 262

solution, 257, 258, 259

technology, 250, 264

Pattern matching, 105, 209

Peer selection service, 259, 260, 263

Peer-to-peer communication, 122, 123

Persistent storage, 62, 71, 76

Personal profile, 93, 177

Predicate logic, 16, 106

Pronoun resolution, 99, 106, 109

Property linking, 51

Property restriction, 23, 59

Property statement, 194, 195

Property value, 148, 149, 150, 236

Property2property bridge, 52

Qualitative method, 233, 243

Quantitative method, 233, 243

Query engine, 77, 78, 79, 88, 203, 208

Query language, 6, 8, 71, 72, 73, 74, 75, 88,

98, 203

Query module, 78, 181

Query reformulation, 215, 216

Query result, 49, 208

Query term, 156, 157, 203, 208, 210, 212,

213, 215, 216, 217

Querying RDF, 71, 72

Querying service, 50, 62, 89

QuizRDF, 133ff

index, 136, 138

ontology-based search tool, 230, 234

search engine, 235, 236, 243

tool, 230, 234

use, 135, 142

Ranking algorithm, 163, 169

RDF, 13–14

annotated information resource, 8, 83,

162, 177

annotation, 135, 143, 203, 207, 217

class, 23, 162

data model, 15, 72, 73, 74

data, 15, 62, 71, 73, 76, 79, 93, 166

description, 15, 22, 135, 142, 170

export module, 77, 80

expression, 15

fact, 203, 207

graph, 73, 74, 76, 136, 137

meta-data, 134, 136

model, 15, 72, 73, 74

parser, 79, 82

query language, 8, 74, 75

querying, 8, 143

repository, 97, 191

resource, 135, 136

schema, 8, 14, 49, 50, 52, 53, 71, 72, 135,

146, 162, 166, 203, 236, 248, 258

serialization, 20, 22, 25

specification, 26, 84

statement, 14, 86, 87, 88, 186, 190

triple, 75, 88

tutorial, 165, 166

Reasoning

component, 30, 124, 132

ontology, 63

service, 16, 193, 194

support, 17, 131

Refinement phase, 37, 38, 41, 45, 118, 123

Relation

type, 109, 211

weight, 212, 217

Relational database, 62, 88

Remote method invocation, 77, 124

Representation

formalism, 14, 109

format, 109, 235

language, 41, 53, 56, 61, 62, 63, 68, 91,

97, 98, 112, 118, 202, 265

Requirement

specification, 38, 43, 118, 119

specification document, 38, 42, 119, 132

Resource description framework, see RDF

Reusable ontology, 38, 39,118, 119

Rollback support, 87, 89

RQL, 77–79

query, 79, 82, 207

query engine, 77, 78, 79

SAIL

API, 71, 77, 80, 81, 87, 88

implementation, 78, 81, 82, 85, 89

interface, 181

Index286

Schema

class, 50, 52

data, 81, 82, 85

definition, 12, 17

information, 71, 76, 79, 86, 87, 93

repository, 5, 246

type, 29

versioning, 54, 56

Scoring algorithm, 108, 167

Search engine, 3, 5, 8, 83, 133, 134, 135, 140,

143, 144, 145, 167, 208, 215, 217, 235,

236, 243, 246

Search facility, 134, 210, 212, 213, 215, 217,

234

Selection service, 259, 260, 263

Selective caching, 85, 87

Semantic

access tool, 228, 229

analysis, 93, 106

association, 198, 210

distance, 239

information processing, 5, 245

level, 72, 75, 107, 108

map, 238, 239

network, 109, 211, 218

representation, 98, 109

search, 38, 133ff, 230, 266

search engine, 8, 83, 133ff

structure, 108

web, 1, 2, 4, 5, 8, 11, 12, 16, 23, 31, 47,

48, 71, 88, 89, 92, 93, 114, 115, 164,

243, 245, 246, 251, 259, 264, 265,

266

web initiative, 145

web standard, 146, 147

web technology, 1, 8, 9, 114, 177, 247,

249, 250, 256, 257, 258, 265, 266

web-based knowledge management, 5, 7,

117

Semi-join operation, 79

Semi-open interview, 233, 243

Semi-structured information, 5, 8

Serialization

XML, 13

SESAME, 71ff

architecture, 72, 76, 88, 181

module, 77, 182

provide, 62, 79

RDF, 183, 194

repository, 93, 95, 97, 108, 207, 235

server, 94, 235

Shallow hierarchy, 49, 235

Shallow parsing technique, 104, 106

Similarity measure, 208, 260

Skills DB, 19, 21, 27

Skills description, 203, 207

Skills management, 9, 118, 132, 198, 199,

200, 204, 207, 209, 217, 251

Skills management case study, 123, 198, 218

Skills ontology, 200, 202, 205, 207, 209

Slot constraint, 18, 23, 26, 27, 29

Slot definition, 18

Slot filler, 18

Slot-filler pair, 18

Smart building, 220

Social process, 54, 253, 254, 255

Sociological boundary, 254

Sociotechnical issues, 162, 172

Software agent, 211, 224

Software analysis, 94, 113

Software development, 38, 119

Software engineering, 31, 40, 118, 230

Software source control system, 183, 192

Specification document, 38, 42, 119, 132

Spectacle presentation, 147, 235, 236, 241,

243

Spectacle tool, 176, 232

Speech recognition, 105, 108

Standards, 17, 146, 147

Standardization language, 66, 68

Static model, 253, 256

Subclass

RDF, 15, 21, 22, 25, 28

relation, 76, 113, 158, 211, 262

Subsumption relation, 45, 61, 84

Sub-table relation, 84, 85

Swiss Life

case study, 19, 21, 27, 118, 132, 197

insurance group, 9, 197

Skill DB, 18, 20, 27

skill management case, 120, 123

Syntactic level, 72

Tacit knowledge, 2, 3, 168, 170, 171, 172,

198

Task analysis, 36, 37, 38, 40

Terminological reasoning, 192, 193

Text

Index 287

analysis, 136, 137

extraction, 41, 112

normalization, 100, 107

query, 139, 210

search engine, 134, 215

search term, 139, 207

search tool, 230, 232, 233

search, 143, 207, 213, 215, 222, 228, 229,

240

searching, 203

Transaction rollback, 87, 89

Transition network, 104, 106

Triple store, 75, 88

Use case, 34, 35, 36, 40, 118, 119, 181, 185,

191, 235

User group, 39, 146, 152, 175, 176, 223, 224,

228, 229, 233, 243, 246

User profile, 3, 35, 133, 149, 150, 152, 153,

162, 164, 165, 171, 251

Vector cosine ranking algorithm, 163, 169

Verbal protocol, 233, 243

Versioning model, 179, 184, 185

Versioning support, 63, 88

Virtual community, 161, 173, 176

Virtual

enterprise, 43, 243

organization, 5, 9, 219, 222, 223, 229,

230, 244, 246, 251

research organization, 149, 221

Visualization component, 88, 153

Visualization tool, 259, 261

W3C recommendation, 71, 162

Web method, 219, 222, 223, 224, 225, 241,

244

Web-based knowledge management, 5, 7,

117

Weighted semantic association, 198, 210

XML

document, 13, 15, 49, 50, 52, 72

DTD, 13, 20, 49, 248

notation, 72, 165

query language, 72, 73

schema, 13, 15, 20, 49, 248

schema definition, 12, 17

schema type, 29

serialization, 13, 14, 17

specification, 13, 31

syntax, 73

tag, 52, 190

tree structure, 72

Index288

	Wiley Towards The Semantic Web
	Cover
	Back Cover
	Contents
	Foreword
	Biographies
	Dr John Davies
	Professor Dieter Fensel
	Professor Frank van Harmelen

	List of Contributors
	Acknowledgements
	1 Introduction
	1.1 The Semantic Web and Knowledge Management
	1.2 The Role of Ontologies
	1.3 An Architecture for Semantic Web-based Knowledge Management
	1.3.1 Knowledge Acquisition
	1.3.2 Knowledge Representation
	1.3.3 Knowledge Maintenance
	1.3.4 Knowledge Use

	1.4 Tools for Semantic Web-based Knowledge Management
	1.4.1 Knowledge Acquisition
	1.4.2 Knowledge Representation
	1.4.3 Knowledge Maintenance
	1.4.4 Knowledge Use

	2 OIL and DAML+OIL:

 Ontology Languages for the

 Semantic Web
	2.1 Introduction
	2.2 The Semantic Web Pyramid of Languages
	2.2.1 XML for Data Exchange
	2.2.2 RDF for Assertions
	2.2.3 RDF Schema for Simple Ontologies

	2.3 Design Rationale for OIL
	2.3.1 Frame- based Systems
	2.3.2 Description Logics
	2.3.3 Web Standards: XML and RDF

	2.4 OIL Language Constructs
	2.4.1 A Simple Example in OIL

	2.5 Different Syntactic Forms
	2.6 Language Layering
	2.7 Semantics
	2.8 From OIL to DAML+OIL
	2.8.1 Integration with RDFS
	2.8.2 Treatment of Individuals
	2.8.3 DAML+OIL Data Types

	2.9 Experiences and Future Developments

	3 A Methodology for

Ontology-based

Knowledge Management

	3.1 Introduction
	3.2 Feasibility Study
	3.3 Kick Off Phase
	3.4 Refinement Phase
	3.5 Evaluation Phase
	3.6 Maintenance and Evolution Phase
	3.7 Related Work
	3.7.1 Skeletal Methodology
	3.7.2 KACTUS
	3.7.3 Methontology
	3.7.4 Formal Tools of Ontological Analysis

	3.8 Conclusion

	4 Ontology Management:

Storing, Aligning and

Maintaining Ontologies
	4.1 The Requirement for Ontology Management
	4.2 Aligning Ontologies
	4.2.1 Why is Aligning Needed
	4.2.2 Aligning Annotated XML Documents
	4.2.3 Mapping Meta-ontology
	4.2.4 Mapping in OIL

	4.3 Supporting Ontology Change
	4.3.1 Ontologies are Changing
	4.3.2 Changes in Ontologies Involve Several Problems
	4.3.3 Change Management

	4.4 Organizing Ontologies
	4.4.1 Sesame Requirements
	4.4.2 Functionality of an Ontology Storage System
	4.4.3 Current Storage Systems
	4.4.4 Requirements for a Storage System

	4.5 Summary

	5 Sesame: A Generic

Architecture for Storing

and Querying RDF and

 RDF Schema
	5.1 The Need for an RDFS Query Language
	5.1.1 Querying at the Syntactic Level
	5.1.2 Querying at the Structure Level
	5.1.3 Querying at the Semantic Level

	5.2 Sesame Architecture
	5.2.1 The RQL Query module
	5.2.2 The Admin Module
	5.2.3 The RDF Export Module

	5.3 The SAIL API
	5.4 Experiences
	5.4.1 Application: On-To-Knowledge
	5.4.2 RDFS in Practice
	5.4.3 PostgreSQL and SAIL
	5.4.4 MySQL

	5.5 Future Work
	5.5.1 Transaction Rollback Support
	5.5.2 Versioning Support
	5.5.3 Adding and Extending Functional Modules
	5.5.4 DAML OIL Support

	5.6 Conclusions

	6 Generating Ontologies for

the Semantic Web:

 OntoBuilder
	6.1 Introduction
	6.1.1 OntoBuilder and its Relation to the CORPORUM System
	6.1.2 OntoExtract
	6.1.3 OntoWrapper and TableAnalyser

	6.2 Reading the Web
	6.2.1 Semantics on the Internet
	6.2.2 Problems with Retrieving Natural Language Texts from Documents
	6.2.3 Document Handling
	6.2.4 Normalization
	6.2.5 Multiple Discourses
	6.2.6 Document Class Categorization
	6.2.7 Writing Style
	6.2.8 Layout Issues

	6.3 Information Extraction
	6.3.1 Content- driven Versus Goal- driven
	6.3.2 Levels of Linguistic Analysis
	6.3.3 CognIT Vision

	6.4 Knowledge Generation from Natural Language Documents
	6.4.1 Syntax Versus Semantics
	6.4.2 Generating Semantic Structures
	6.4.3 Generating Ontologies from Textual Resources
	6.4.4 Visualization and Navigation

	6.5 Issues in Using Automated Text Extraction for Ontology Building using IE on Web Resources

	7 OntoEdit: Collaborative

Engineering of Ontologies
	7.1 Introduction
	7.2 Kick Off Phase
	7.3 Refinement Phase
	7.3.1 Transaction Management
	7.3.2 Locking Sub-trees of the Concept Hierarchy
	7.3.3 What Does Locking a Concept Mean?

	7.4 Evaluation Phase
	7.4.1 Analysis of Typical Queries
	7.4.2 Error Avoidance and Location
	7.4.3 Usage of Competency Questions
	7.4.4 Collaborative Evaluation

	7.5 Related Work
	7.6 Conclusion

	8 QuizRDF: Search

Technology for the

Semantic Web
	8.1 Introduction
	8.2 Ontological Indexing
	8.3 Ontological Searching
	8.4 Alternative data models
	8.4.1 Indexing in the New Model
	8.4.2 Searching in the New Model

	8.5 Further Work
	8.5.1 Technical Enhancements
	8.5.2 Evaluation

	8.6 Concluding Remarks

	9 Spectacle
	9.1 Introduction
	9.2 Spectacle Content Presentation Platform
	9.2.1 Ontologies in Spectacle

	9.3 Spectacle Architecture
	9.4 Ontology- based Mapping Methodology
	9.4.1 Information Entities
	9.4.2 Ontology Mapping
	9.4.3 Entity Rendering
	9.4.4 Navigation Specification
	9.4.5 Navigation Rendering
	9.4.6 Views
	9.4.7 User Profiles

	9.5 Ontology- based Information Visualization
	9.5.1 Analysis
	9.5.2 Querying
	9.5.3 Navigation

	9.6 Summary: Semantics- based Web Presentations

	10 OntoShare: Evolving

Ontologies in a Knowledge

Sharing System
	10.1 Introduction
	10.2 Sharing and Retrieving Knowledge in OntoShare
	10.2.1 Sharing Knowledge in OntoShare
	10.2.2 Ontological Representation
	10.2.3 Retrieving Explicit Knowledge in OntoShare

	10.3 Creating Evolving Ontologies
	10.4 Expertise Location and Tacit Knowledge
	10.5 Sociotechnical Issues
	10.5.1 Tacit and Explicit Knowledge Flows
	10.5.2 Virtual Communities

	10.6 Evaluation and Further Work
	10.7 Concluding Remarks

	11 Ontology Middleware and

Reasoning
	11.1 Ontology Middleware: Features and Architecture
	11.1.1 Place in the On-To-Knowledge Architecture
	11.1.2 Terminology

	11.2 Tracking Changes, Versioning and Meta-information
	11.2.1 Related Work
	11.2.2 Requirements

	11.3 Versioning Model for RDF(S) Repositories
	11.3.1 History, Passing through Equivalent States
	11.3.2 Versions are Labelled States of the Repository
	11.3.3 Implementation Approach
	11.3.4 Meta- information

	11.4 Instance Reasoning for DAML+OIL
	11.4.1 Inference Services
	11.4.2 Functional Interfaces to a DAML+OIL Reasoner

	12 Ontology-based

Knowledge Management at

Work: The Swiss Life Case

Studies
	12.1 Introduction
	12.2 Skills Management
	12.2.1 What is Skills Management?
	12.2.2 SkiM: Skills Management at Swiss Life
	12.2.3 Architecture of SkiM
	12.2.4 SkiM as an Ontology-based Approach
	12.2.5 Querying Facilities
	12.2.6 Evaluation and Outlook

	12.3 Automatically Extracting a ‘Lightweight Ontology’ from Text
	12.3.1 Motivation
	12.3.2 Automatic Ontology Extraction
	12.3.3 Employing the Ontology for Querying
	12.3.4 Evaluation and Outlook

	12.4 Conclusions

	13 Field Experimenting with

 Semantic Web Tools in a

Virtual Organization
	13.1 Introduction
	13.2 The EnerSearch Industrial Research Consortium as a Virtual Organization
	13.3 Why Might Semantic Web Methods Help?
	13.4 Design Considerations of Semantic Web Field Experiments
	13.4.1 Different Information Modes
	13.4.2 Different Target User Groups
	13.4.3 Different Individual Cognitive Styles
	13.4.4 Hypotheses to be Tested

	13.5 Experimental Set- up in a Virtual Organization
	13.5.1 Selecting Target Test Users
	13.5.2 Tools for Test
	13.5.3 Test Tasks and their Organization
	13.5.4 Experimental Procedure
	13.5.5 Determining What Data to Collect
	13.5.6 Evaluation Matrix and Measurements

	13.6 Technical and System Aspects of Semantic Web Experiments
	13.6.1 System Design
	13.6.2 Ontology Engineering, Population, Annotation

	13.7 Ontology- based Information Retrieval: What Does it Look Like?
	13.7.1 Ontology and Semantic Sitemaps
	13.7.2 Semantics- based Information Retrieval

	13.8 Some Lessons Learned

	14 A Future Perspective:

Exploiting Peer-to-Peer and

the Semantic Web for

Knowledge Management
	14.1 Introduction
	14.2 A Vision of Modern Knowledge Management
	14.2.1 Knowledge Integration
	14.2.2 Knowledge Categorization
	14.2.3 Context Awareness
	14.2.4 Personalization
	14.2.5 Knowledge Portal Construction
	14.2.6 Communities of Practice
	14.2.7 P2P Computing and its Implications for KM
	14.2.8 Virtual Organizations and their Impact
	14.2.9 eLearning Systems
	14.2.10 The Knowledge Grid
	14.2.11 Intellectual Capital Valuation

	14.3 A Vision of Ontologies: Dynamic Networks of Meaning
	14.3.1 Ontologies or How to Escape a Paradox
	14.3.2 Heterogeneity in Space: Ontology as Networks of Meaning
	14.3.3 Development in Time: Living Ontologies

	14.4 Peer- 2- Peer, Ontologies and Knowledge
	14.4.1 Shortcomings of Peer- 2- Peer and Ontologies as Isolated Paradigms
	14.4.2 Challenges in Integrating Peer- 2- Peer and Ontologies

	14.5 Conclusions
	14.5.1 P2P for Knowledge Management
	14.5.2 P2P for Ontologies
	14.5.3 Ontologies for P2P and Knowledge Management
	14.5.4 Community Building

	15 Conclusions: Ontology-driven

Knowledge

Management-towards the

Semantic Web?
	References
	Index

